1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/IntrinsicsX86.h"
65 #include "llvm/IR/LLVMContext.h"
66 #include "llvm/IR/MDBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Statepoint.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/IR/ValueHandle.h"
76 #include "llvm/IR/ValueMap.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/BlockFrequency.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Debug.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/MachineValueType.h"
87 #include "llvm/Support/MathExtras.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
96 #include <algorithm>
97 #include <cassert>
98 #include <cstdint>
99 #include <iterator>
100 #include <limits>
101 #include <memory>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 using namespace llvm::PatternMatch;
107 
108 #define DEBUG_TYPE "codegenprepare"
109 
110 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
111 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
112 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
114                       "sunken Cmps");
115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
116                        "of sunken Casts");
117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
118                           "computations were sunk");
119 STATISTIC(NumMemoryInstsPhiCreated,
120           "Number of phis created when address "
121           "computations were sunk to memory instructions");
122 STATISTIC(NumMemoryInstsSelectCreated,
123           "Number of select created when address "
124           "computations were sunk to memory instructions");
125 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
126 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
127 STATISTIC(NumAndsAdded,
128           "Number of and mask instructions added to form ext loads");
129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
130 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
134 
135 static cl::opt<bool> DisableBranchOpts(
136   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
137   cl::desc("Disable branch optimizations in CodeGenPrepare"));
138 
139 static cl::opt<bool>
140     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
141                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
142 
143 static cl::opt<bool> DisableSelectToBranch(
144   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
145   cl::desc("Disable select to branch conversion."));
146 
147 static cl::opt<bool> AddrSinkUsingGEPs(
148   "addr-sink-using-gep", cl::Hidden, cl::init(true),
149   cl::desc("Address sinking in CGP using GEPs."));
150 
151 static cl::opt<bool> EnableAndCmpSinking(
152    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
153    cl::desc("Enable sinkinig and/cmp into branches."));
154 
155 static cl::opt<bool> DisableStoreExtract(
156     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
157     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
158 
159 static cl::opt<bool> StressStoreExtract(
160     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
161     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
162 
163 static cl::opt<bool> DisableExtLdPromotion(
164     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
166              "CodeGenPrepare"));
167 
168 static cl::opt<bool> StressExtLdPromotion(
169     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
170     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
171              "optimization in CodeGenPrepare"));
172 
173 static cl::opt<bool> DisablePreheaderProtect(
174     "disable-preheader-prot", cl::Hidden, cl::init(false),
175     cl::desc("Disable protection against removing loop preheaders"));
176 
177 static cl::opt<bool> ProfileGuidedSectionPrefix(
178     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
179     cl::desc("Use profile info to add section prefix for hot/cold functions"));
180 
181 static cl::opt<unsigned> FreqRatioToSkipMerge(
182     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
183     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
184              "(frequency of destination block) is greater than this ratio"));
185 
186 static cl::opt<bool> ForceSplitStore(
187     "force-split-store", cl::Hidden, cl::init(false),
188     cl::desc("Force store splitting no matter what the target query says."));
189 
190 static cl::opt<bool>
191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
192     cl::desc("Enable merging of redundant sexts when one is dominating"
193     " the other."), cl::init(true));
194 
195 static cl::opt<bool> DisableComplexAddrModes(
196     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
197     cl::desc("Disables combining addressing modes with different parts "
198              "in optimizeMemoryInst."));
199 
200 static cl::opt<bool>
201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
202                 cl::desc("Allow creation of Phis in Address sinking."));
203 
204 static cl::opt<bool>
205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
206                    cl::desc("Allow creation of selects in Address sinking."));
207 
208 static cl::opt<bool> AddrSinkCombineBaseReg(
209     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
210     cl::desc("Allow combining of BaseReg field in Address sinking."));
211 
212 static cl::opt<bool> AddrSinkCombineBaseGV(
213     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
214     cl::desc("Allow combining of BaseGV field in Address sinking."));
215 
216 static cl::opt<bool> AddrSinkCombineBaseOffs(
217     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
218     cl::desc("Allow combining of BaseOffs field in Address sinking."));
219 
220 static cl::opt<bool> AddrSinkCombineScaledReg(
221     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
222     cl::desc("Allow combining of ScaledReg field in Address sinking."));
223 
224 static cl::opt<bool>
225     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
226                          cl::init(true),
227                          cl::desc("Enable splitting large offset of GEP."));
228 
229 static cl::opt<bool> EnableICMP_EQToICMP_ST(
230     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
231     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
232 
233 namespace {
234 
235 enum ExtType {
236   ZeroExtension,   // Zero extension has been seen.
237   SignExtension,   // Sign extension has been seen.
238   BothExtension    // This extension type is used if we saw sext after
239                    // ZeroExtension had been set, or if we saw zext after
240                    // SignExtension had been set. It makes the type
241                    // information of a promoted instruction invalid.
242 };
243 
244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
247 using SExts = SmallVector<Instruction *, 16>;
248 using ValueToSExts = DenseMap<Value *, SExts>;
249 
250 class TypePromotionTransaction;
251 
252   class CodeGenPrepare : public FunctionPass {
253     const TargetMachine *TM = nullptr;
254     const TargetSubtargetInfo *SubtargetInfo;
255     const TargetLowering *TLI = nullptr;
256     const TargetRegisterInfo *TRI;
257     const TargetTransformInfo *TTI = nullptr;
258     const TargetLibraryInfo *TLInfo;
259     const LoopInfo *LI;
260     std::unique_ptr<BlockFrequencyInfo> BFI;
261     std::unique_ptr<BranchProbabilityInfo> BPI;
262     ProfileSummaryInfo *PSI;
263 
264     /// As we scan instructions optimizing them, this is the next instruction
265     /// to optimize. Transforms that can invalidate this should update it.
266     BasicBlock::iterator CurInstIterator;
267 
268     /// Keeps track of non-local addresses that have been sunk into a block.
269     /// This allows us to avoid inserting duplicate code for blocks with
270     /// multiple load/stores of the same address. The usage of WeakTrackingVH
271     /// enables SunkAddrs to be treated as a cache whose entries can be
272     /// invalidated if a sunken address computation has been erased.
273     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
274 
275     /// Keeps track of all instructions inserted for the current function.
276     SetOfInstrs InsertedInsts;
277 
278     /// Keeps track of the type of the related instruction before their
279     /// promotion for the current function.
280     InstrToOrigTy PromotedInsts;
281 
282     /// Keep track of instructions removed during promotion.
283     SetOfInstrs RemovedInsts;
284 
285     /// Keep track of sext chains based on their initial value.
286     DenseMap<Value *, Instruction *> SeenChainsForSExt;
287 
288     /// Keep track of GEPs accessing the same data structures such as structs or
289     /// arrays that are candidates to be split later because of their large
290     /// size.
291     MapVector<
292         AssertingVH<Value>,
293         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
294         LargeOffsetGEPMap;
295 
296     /// Keep track of new GEP base after splitting the GEPs having large offset.
297     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
298 
299     /// Map serial numbers to Large offset GEPs.
300     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
301 
302     /// Keep track of SExt promoted.
303     ValueToSExts ValToSExtendedUses;
304 
305     /// True if the function has the OptSize attribute.
306     bool OptSize;
307 
308     /// DataLayout for the Function being processed.
309     const DataLayout *DL = nullptr;
310 
311     /// Building the dominator tree can be expensive, so we only build it
312     /// lazily and update it when required.
313     std::unique_ptr<DominatorTree> DT;
314 
315   public:
316     static char ID; // Pass identification, replacement for typeid
317 
318     CodeGenPrepare() : FunctionPass(ID) {
319       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
320     }
321 
322     bool runOnFunction(Function &F) override;
323 
324     StringRef getPassName() const override { return "CodeGen Prepare"; }
325 
326     void getAnalysisUsage(AnalysisUsage &AU) const override {
327       // FIXME: When we can selectively preserve passes, preserve the domtree.
328       AU.addRequired<ProfileSummaryInfoWrapperPass>();
329       AU.addRequired<TargetLibraryInfoWrapperPass>();
330       AU.addRequired<TargetPassConfig>();
331       AU.addRequired<TargetTransformInfoWrapperPass>();
332       AU.addRequired<LoopInfoWrapperPass>();
333     }
334 
335   private:
336     template <typename F>
337     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
338       // Substituting can cause recursive simplifications, which can invalidate
339       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
340       // happens.
341       Value *CurValue = &*CurInstIterator;
342       WeakTrackingVH IterHandle(CurValue);
343 
344       f();
345 
346       // If the iterator instruction was recursively deleted, start over at the
347       // start of the block.
348       if (IterHandle != CurValue) {
349         CurInstIterator = BB->begin();
350         SunkAddrs.clear();
351       }
352     }
353 
354     // Get the DominatorTree, building if necessary.
355     DominatorTree &getDT(Function &F) {
356       if (!DT)
357         DT = std::make_unique<DominatorTree>(F);
358       return *DT;
359     }
360 
361     bool eliminateFallThrough(Function &F);
362     bool eliminateMostlyEmptyBlocks(Function &F);
363     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
364     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
365     void eliminateMostlyEmptyBlock(BasicBlock *BB);
366     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
367                                        bool isPreheader);
368     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
369     bool optimizeInst(Instruction *I, bool &ModifiedDT);
370     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
371                             Type *AccessTy, unsigned AddrSpace);
372     bool optimizeInlineAsmInst(CallInst *CS);
373     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
374     bool optimizeExt(Instruction *&I);
375     bool optimizeExtUses(Instruction *I);
376     bool optimizeLoadExt(LoadInst *Load);
377     bool optimizeShiftInst(BinaryOperator *BO);
378     bool optimizeSelectInst(SelectInst *SI);
379     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
380     bool optimizeSwitchInst(SwitchInst *SI);
381     bool optimizeExtractElementInst(Instruction *Inst);
382     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
383     bool fixupDbgValue(Instruction *I);
384     bool placeDbgValues(Function &F);
385     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
386                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
387     bool tryToPromoteExts(TypePromotionTransaction &TPT,
388                           const SmallVectorImpl<Instruction *> &Exts,
389                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
390                           unsigned CreatedInstsCost = 0);
391     bool mergeSExts(Function &F);
392     bool splitLargeGEPOffsets();
393     bool performAddressTypePromotion(
394         Instruction *&Inst,
395         bool AllowPromotionWithoutCommonHeader,
396         bool HasPromoted, TypePromotionTransaction &TPT,
397         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
398     bool splitBranchCondition(Function &F, bool &ModifiedDT);
399     bool simplifyOffsetableRelocate(Instruction &I);
400 
401     bool tryToSinkFreeOperands(Instruction *I);
402     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
403                                      Intrinsic::ID IID);
404     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
405     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
406     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
407   };
408 
409 } // end anonymous namespace
410 
411 char CodeGenPrepare::ID = 0;
412 
413 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
414                       "Optimize for code generation", false, false)
415 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
416 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
417                     "Optimize for code generation", false, false)
418 
419 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
420 
421 bool CodeGenPrepare::runOnFunction(Function &F) {
422   if (skipFunction(F))
423     return false;
424 
425   DL = &F.getParent()->getDataLayout();
426 
427   bool EverMadeChange = false;
428   // Clear per function information.
429   InsertedInsts.clear();
430   PromotedInsts.clear();
431 
432   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
433   SubtargetInfo = TM->getSubtargetImpl(F);
434   TLI = SubtargetInfo->getTargetLowering();
435   TRI = SubtargetInfo->getRegisterInfo();
436   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
437   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
438   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
439   BPI.reset(new BranchProbabilityInfo(F, *LI));
440   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
441   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
442   OptSize = F.hasOptSize();
443   if (ProfileGuidedSectionPrefix) {
444     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
445       F.setSectionPrefix(".hot");
446     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
447       F.setSectionPrefix(".unlikely");
448   }
449 
450   /// This optimization identifies DIV instructions that can be
451   /// profitably bypassed and carried out with a shorter, faster divide.
452   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
453     const DenseMap<unsigned int, unsigned int> &BypassWidths =
454         TLI->getBypassSlowDivWidths();
455     BasicBlock* BB = &*F.begin();
456     while (BB != nullptr) {
457       // bypassSlowDivision may create new BBs, but we don't want to reapply the
458       // optimization to those blocks.
459       BasicBlock* Next = BB->getNextNode();
460       // F.hasOptSize is already checked in the outer if statement.
461       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
462         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
463       BB = Next;
464     }
465   }
466 
467   // Eliminate blocks that contain only PHI nodes and an
468   // unconditional branch.
469   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
470 
471   bool ModifiedDT = false;
472   if (!DisableBranchOpts)
473     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
474 
475   // Split some critical edges where one of the sources is an indirect branch,
476   // to help generate sane code for PHIs involving such edges.
477   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
478 
479   bool MadeChange = true;
480   while (MadeChange) {
481     MadeChange = false;
482     DT.reset();
483     for (Function::iterator I = F.begin(); I != F.end(); ) {
484       BasicBlock *BB = &*I++;
485       bool ModifiedDTOnIteration = false;
486       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
487 
488       // Restart BB iteration if the dominator tree of the Function was changed
489       if (ModifiedDTOnIteration)
490         break;
491     }
492     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
493       MadeChange |= mergeSExts(F);
494     if (!LargeOffsetGEPMap.empty())
495       MadeChange |= splitLargeGEPOffsets();
496 
497     // Really free removed instructions during promotion.
498     for (Instruction *I : RemovedInsts)
499       I->deleteValue();
500 
501     EverMadeChange |= MadeChange;
502     SeenChainsForSExt.clear();
503     ValToSExtendedUses.clear();
504     RemovedInsts.clear();
505     LargeOffsetGEPMap.clear();
506     LargeOffsetGEPID.clear();
507   }
508 
509   SunkAddrs.clear();
510 
511   if (!DisableBranchOpts) {
512     MadeChange = false;
513     // Use a set vector to get deterministic iteration order. The order the
514     // blocks are removed may affect whether or not PHI nodes in successors
515     // are removed.
516     SmallSetVector<BasicBlock*, 8> WorkList;
517     for (BasicBlock &BB : F) {
518       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
519       MadeChange |= ConstantFoldTerminator(&BB, true);
520       if (!MadeChange) continue;
521 
522       for (SmallVectorImpl<BasicBlock*>::iterator
523              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
524         if (pred_begin(*II) == pred_end(*II))
525           WorkList.insert(*II);
526     }
527 
528     // Delete the dead blocks and any of their dead successors.
529     MadeChange |= !WorkList.empty();
530     while (!WorkList.empty()) {
531       BasicBlock *BB = WorkList.pop_back_val();
532       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
533 
534       DeleteDeadBlock(BB);
535 
536       for (SmallVectorImpl<BasicBlock*>::iterator
537              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
538         if (pred_begin(*II) == pred_end(*II))
539           WorkList.insert(*II);
540     }
541 
542     // Merge pairs of basic blocks with unconditional branches, connected by
543     // a single edge.
544     if (EverMadeChange || MadeChange)
545       MadeChange |= eliminateFallThrough(F);
546 
547     EverMadeChange |= MadeChange;
548   }
549 
550   if (!DisableGCOpts) {
551     SmallVector<Instruction *, 2> Statepoints;
552     for (BasicBlock &BB : F)
553       for (Instruction &I : BB)
554         if (isStatepoint(I))
555           Statepoints.push_back(&I);
556     for (auto &I : Statepoints)
557       EverMadeChange |= simplifyOffsetableRelocate(*I);
558   }
559 
560   // Do this last to clean up use-before-def scenarios introduced by other
561   // preparatory transforms.
562   EverMadeChange |= placeDbgValues(F);
563 
564   return EverMadeChange;
565 }
566 
567 /// Merge basic blocks which are connected by a single edge, where one of the
568 /// basic blocks has a single successor pointing to the other basic block,
569 /// which has a single predecessor.
570 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
571   bool Changed = false;
572   // Scan all of the blocks in the function, except for the entry block.
573   // Use a temporary array to avoid iterator being invalidated when
574   // deleting blocks.
575   SmallVector<WeakTrackingVH, 16> Blocks;
576   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
577     Blocks.push_back(&Block);
578 
579   for (auto &Block : Blocks) {
580     auto *BB = cast_or_null<BasicBlock>(Block);
581     if (!BB)
582       continue;
583     // If the destination block has a single pred, then this is a trivial
584     // edge, just collapse it.
585     BasicBlock *SinglePred = BB->getSinglePredecessor();
586 
587     // Don't merge if BB's address is taken.
588     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
589 
590     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
591     if (Term && !Term->isConditional()) {
592       Changed = true;
593       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
594 
595       // Merge BB into SinglePred and delete it.
596       MergeBlockIntoPredecessor(BB);
597     }
598   }
599   return Changed;
600 }
601 
602 /// Find a destination block from BB if BB is mergeable empty block.
603 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
604   // If this block doesn't end with an uncond branch, ignore it.
605   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
606   if (!BI || !BI->isUnconditional())
607     return nullptr;
608 
609   // If the instruction before the branch (skipping debug info) isn't a phi
610   // node, then other stuff is happening here.
611   BasicBlock::iterator BBI = BI->getIterator();
612   if (BBI != BB->begin()) {
613     --BBI;
614     while (isa<DbgInfoIntrinsic>(BBI)) {
615       if (BBI == BB->begin())
616         break;
617       --BBI;
618     }
619     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
620       return nullptr;
621   }
622 
623   // Do not break infinite loops.
624   BasicBlock *DestBB = BI->getSuccessor(0);
625   if (DestBB == BB)
626     return nullptr;
627 
628   if (!canMergeBlocks(BB, DestBB))
629     DestBB = nullptr;
630 
631   return DestBB;
632 }
633 
634 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
635 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
636 /// edges in ways that are non-optimal for isel. Start by eliminating these
637 /// blocks so we can split them the way we want them.
638 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
639   SmallPtrSet<BasicBlock *, 16> Preheaders;
640   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
641   while (!LoopList.empty()) {
642     Loop *L = LoopList.pop_back_val();
643     LoopList.insert(LoopList.end(), L->begin(), L->end());
644     if (BasicBlock *Preheader = L->getLoopPreheader())
645       Preheaders.insert(Preheader);
646   }
647 
648   bool MadeChange = false;
649   // Copy blocks into a temporary array to avoid iterator invalidation issues
650   // as we remove them.
651   // Note that this intentionally skips the entry block.
652   SmallVector<WeakTrackingVH, 16> Blocks;
653   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
654     Blocks.push_back(&Block);
655 
656   for (auto &Block : Blocks) {
657     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
658     if (!BB)
659       continue;
660     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
661     if (!DestBB ||
662         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
663       continue;
664 
665     eliminateMostlyEmptyBlock(BB);
666     MadeChange = true;
667   }
668   return MadeChange;
669 }
670 
671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
672                                                    BasicBlock *DestBB,
673                                                    bool isPreheader) {
674   // Do not delete loop preheaders if doing so would create a critical edge.
675   // Loop preheaders can be good locations to spill registers. If the
676   // preheader is deleted and we create a critical edge, registers may be
677   // spilled in the loop body instead.
678   if (!DisablePreheaderProtect && isPreheader &&
679       !(BB->getSinglePredecessor() &&
680         BB->getSinglePredecessor()->getSingleSuccessor()))
681     return false;
682 
683   // Skip merging if the block's successor is also a successor to any callbr
684   // that leads to this block.
685   // FIXME: Is this really needed? Is this a correctness issue?
686   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
687     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
688       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
689         if (DestBB == CBI->getSuccessor(i))
690           return false;
691   }
692 
693   // Try to skip merging if the unique predecessor of BB is terminated by a
694   // switch or indirect branch instruction, and BB is used as an incoming block
695   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
696   // add COPY instructions in the predecessor of BB instead of BB (if it is not
697   // merged). Note that the critical edge created by merging such blocks wont be
698   // split in MachineSink because the jump table is not analyzable. By keeping
699   // such empty block (BB), ISel will place COPY instructions in BB, not in the
700   // predecessor of BB.
701   BasicBlock *Pred = BB->getUniquePredecessor();
702   if (!Pred ||
703       !(isa<SwitchInst>(Pred->getTerminator()) ||
704         isa<IndirectBrInst>(Pred->getTerminator())))
705     return true;
706 
707   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
708     return true;
709 
710   // We use a simple cost heuristic which determine skipping merging is
711   // profitable if the cost of skipping merging is less than the cost of
712   // merging : Cost(skipping merging) < Cost(merging BB), where the
713   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
714   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
715   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
716   //   Freq(Pred) / Freq(BB) > 2.
717   // Note that if there are multiple empty blocks sharing the same incoming
718   // value for the PHIs in the DestBB, we consider them together. In such
719   // case, Cost(merging BB) will be the sum of their frequencies.
720 
721   if (!isa<PHINode>(DestBB->begin()))
722     return true;
723 
724   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
725 
726   // Find all other incoming blocks from which incoming values of all PHIs in
727   // DestBB are the same as the ones from BB.
728   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
729        ++PI) {
730     BasicBlock *DestBBPred = *PI;
731     if (DestBBPred == BB)
732       continue;
733 
734     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
735           return DestPN.getIncomingValueForBlock(BB) ==
736                  DestPN.getIncomingValueForBlock(DestBBPred);
737         }))
738       SameIncomingValueBBs.insert(DestBBPred);
739   }
740 
741   // See if all BB's incoming values are same as the value from Pred. In this
742   // case, no reason to skip merging because COPYs are expected to be place in
743   // Pred already.
744   if (SameIncomingValueBBs.count(Pred))
745     return true;
746 
747   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
748   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
749 
750   for (auto SameValueBB : SameIncomingValueBBs)
751     if (SameValueBB->getUniquePredecessor() == Pred &&
752         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
753       BBFreq += BFI->getBlockFreq(SameValueBB);
754 
755   return PredFreq.getFrequency() <=
756          BBFreq.getFrequency() * FreqRatioToSkipMerge;
757 }
758 
759 /// Return true if we can merge BB into DestBB if there is a single
760 /// unconditional branch between them, and BB contains no other non-phi
761 /// instructions.
762 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
763                                     const BasicBlock *DestBB) const {
764   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
765   // the successor.  If there are more complex condition (e.g. preheaders),
766   // don't mess around with them.
767   for (const PHINode &PN : BB->phis()) {
768     for (const User *U : PN.users()) {
769       const Instruction *UI = cast<Instruction>(U);
770       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
771         return false;
772       // If User is inside DestBB block and it is a PHINode then check
773       // incoming value. If incoming value is not from BB then this is
774       // a complex condition (e.g. preheaders) we want to avoid here.
775       if (UI->getParent() == DestBB) {
776         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
777           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
778             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
779             if (Insn && Insn->getParent() == BB &&
780                 Insn->getParent() != UPN->getIncomingBlock(I))
781               return false;
782           }
783       }
784     }
785   }
786 
787   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
788   // and DestBB may have conflicting incoming values for the block.  If so, we
789   // can't merge the block.
790   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
791   if (!DestBBPN) return true;  // no conflict.
792 
793   // Collect the preds of BB.
794   SmallPtrSet<const BasicBlock*, 16> BBPreds;
795   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
796     // It is faster to get preds from a PHI than with pred_iterator.
797     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
798       BBPreds.insert(BBPN->getIncomingBlock(i));
799   } else {
800     BBPreds.insert(pred_begin(BB), pred_end(BB));
801   }
802 
803   // Walk the preds of DestBB.
804   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
805     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
806     if (BBPreds.count(Pred)) {   // Common predecessor?
807       for (const PHINode &PN : DestBB->phis()) {
808         const Value *V1 = PN.getIncomingValueForBlock(Pred);
809         const Value *V2 = PN.getIncomingValueForBlock(BB);
810 
811         // If V2 is a phi node in BB, look up what the mapped value will be.
812         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
813           if (V2PN->getParent() == BB)
814             V2 = V2PN->getIncomingValueForBlock(Pred);
815 
816         // If there is a conflict, bail out.
817         if (V1 != V2) return false;
818       }
819     }
820   }
821 
822   return true;
823 }
824 
825 /// Eliminate a basic block that has only phi's and an unconditional branch in
826 /// it.
827 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
828   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
829   BasicBlock *DestBB = BI->getSuccessor(0);
830 
831   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
832                     << *BB << *DestBB);
833 
834   // If the destination block has a single pred, then this is a trivial edge,
835   // just collapse it.
836   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
837     if (SinglePred != DestBB) {
838       assert(SinglePred == BB &&
839              "Single predecessor not the same as predecessor");
840       // Merge DestBB into SinglePred/BB and delete it.
841       MergeBlockIntoPredecessor(DestBB);
842       // Note: BB(=SinglePred) will not be deleted on this path.
843       // DestBB(=its single successor) is the one that was deleted.
844       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
845       return;
846     }
847   }
848 
849   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
850   // to handle the new incoming edges it is about to have.
851   for (PHINode &PN : DestBB->phis()) {
852     // Remove the incoming value for BB, and remember it.
853     Value *InVal = PN.removeIncomingValue(BB, false);
854 
855     // Two options: either the InVal is a phi node defined in BB or it is some
856     // value that dominates BB.
857     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
858     if (InValPhi && InValPhi->getParent() == BB) {
859       // Add all of the input values of the input PHI as inputs of this phi.
860       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
861         PN.addIncoming(InValPhi->getIncomingValue(i),
862                        InValPhi->getIncomingBlock(i));
863     } else {
864       // Otherwise, add one instance of the dominating value for each edge that
865       // we will be adding.
866       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
867         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
868           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
869       } else {
870         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
871           PN.addIncoming(InVal, *PI);
872       }
873     }
874   }
875 
876   // The PHIs are now updated, change everything that refers to BB to use
877   // DestBB and remove BB.
878   BB->replaceAllUsesWith(DestBB);
879   BB->eraseFromParent();
880   ++NumBlocksElim;
881 
882   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
883 }
884 
885 // Computes a map of base pointer relocation instructions to corresponding
886 // derived pointer relocation instructions given a vector of all relocate calls
887 static void computeBaseDerivedRelocateMap(
888     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
889     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
890         &RelocateInstMap) {
891   // Collect information in two maps: one primarily for locating the base object
892   // while filling the second map; the second map is the final structure holding
893   // a mapping between Base and corresponding Derived relocate calls
894   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
895   for (auto *ThisRelocate : AllRelocateCalls) {
896     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
897                             ThisRelocate->getDerivedPtrIndex());
898     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
899   }
900   for (auto &Item : RelocateIdxMap) {
901     std::pair<unsigned, unsigned> Key = Item.first;
902     if (Key.first == Key.second)
903       // Base relocation: nothing to insert
904       continue;
905 
906     GCRelocateInst *I = Item.second;
907     auto BaseKey = std::make_pair(Key.first, Key.first);
908 
909     // We're iterating over RelocateIdxMap so we cannot modify it.
910     auto MaybeBase = RelocateIdxMap.find(BaseKey);
911     if (MaybeBase == RelocateIdxMap.end())
912       // TODO: We might want to insert a new base object relocate and gep off
913       // that, if there are enough derived object relocates.
914       continue;
915 
916     RelocateInstMap[MaybeBase->second].push_back(I);
917   }
918 }
919 
920 // Accepts a GEP and extracts the operands into a vector provided they're all
921 // small integer constants
922 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
923                                           SmallVectorImpl<Value *> &OffsetV) {
924   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
925     // Only accept small constant integer operands
926     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
927     if (!Op || Op->getZExtValue() > 20)
928       return false;
929   }
930 
931   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
932     OffsetV.push_back(GEP->getOperand(i));
933   return true;
934 }
935 
936 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
937 // replace, computes a replacement, and affects it.
938 static bool
939 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
940                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
941   bool MadeChange = false;
942   // We must ensure the relocation of derived pointer is defined after
943   // relocation of base pointer. If we find a relocation corresponding to base
944   // defined earlier than relocation of base then we move relocation of base
945   // right before found relocation. We consider only relocation in the same
946   // basic block as relocation of base. Relocations from other basic block will
947   // be skipped by optimization and we do not care about them.
948   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
949        &*R != RelocatedBase; ++R)
950     if (auto RI = dyn_cast<GCRelocateInst>(R))
951       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
952         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
953           RelocatedBase->moveBefore(RI);
954           break;
955         }
956 
957   for (GCRelocateInst *ToReplace : Targets) {
958     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
959            "Not relocating a derived object of the original base object");
960     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
961       // A duplicate relocate call. TODO: coalesce duplicates.
962       continue;
963     }
964 
965     if (RelocatedBase->getParent() != ToReplace->getParent()) {
966       // Base and derived relocates are in different basic blocks.
967       // In this case transform is only valid when base dominates derived
968       // relocate. However it would be too expensive to check dominance
969       // for each such relocate, so we skip the whole transformation.
970       continue;
971     }
972 
973     Value *Base = ToReplace->getBasePtr();
974     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
975     if (!Derived || Derived->getPointerOperand() != Base)
976       continue;
977 
978     SmallVector<Value *, 2> OffsetV;
979     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
980       continue;
981 
982     // Create a Builder and replace the target callsite with a gep
983     assert(RelocatedBase->getNextNode() &&
984            "Should always have one since it's not a terminator");
985 
986     // Insert after RelocatedBase
987     IRBuilder<> Builder(RelocatedBase->getNextNode());
988     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
989 
990     // If gc_relocate does not match the actual type, cast it to the right type.
991     // In theory, there must be a bitcast after gc_relocate if the type does not
992     // match, and we should reuse it to get the derived pointer. But it could be
993     // cases like this:
994     // bb1:
995     //  ...
996     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
997     //  br label %merge
998     //
999     // bb2:
1000     //  ...
1001     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1002     //  br label %merge
1003     //
1004     // merge:
1005     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1006     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1007     //
1008     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1009     // no matter there is already one or not. In this way, we can handle all cases, and
1010     // the extra bitcast should be optimized away in later passes.
1011     Value *ActualRelocatedBase = RelocatedBase;
1012     if (RelocatedBase->getType() != Base->getType()) {
1013       ActualRelocatedBase =
1014           Builder.CreateBitCast(RelocatedBase, Base->getType());
1015     }
1016     Value *Replacement = Builder.CreateGEP(
1017         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1018     Replacement->takeName(ToReplace);
1019     // If the newly generated derived pointer's type does not match the original derived
1020     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1021     Value *ActualReplacement = Replacement;
1022     if (Replacement->getType() != ToReplace->getType()) {
1023       ActualReplacement =
1024           Builder.CreateBitCast(Replacement, ToReplace->getType());
1025     }
1026     ToReplace->replaceAllUsesWith(ActualReplacement);
1027     ToReplace->eraseFromParent();
1028 
1029     MadeChange = true;
1030   }
1031   return MadeChange;
1032 }
1033 
1034 // Turns this:
1035 //
1036 // %base = ...
1037 // %ptr = gep %base + 15
1038 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1039 // %base' = relocate(%tok, i32 4, i32 4)
1040 // %ptr' = relocate(%tok, i32 4, i32 5)
1041 // %val = load %ptr'
1042 //
1043 // into this:
1044 //
1045 // %base = ...
1046 // %ptr = gep %base + 15
1047 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1048 // %base' = gc.relocate(%tok, i32 4, i32 4)
1049 // %ptr' = gep %base' + 15
1050 // %val = load %ptr'
1051 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1052   bool MadeChange = false;
1053   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1054 
1055   for (auto *U : I.users())
1056     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1057       // Collect all the relocate calls associated with a statepoint
1058       AllRelocateCalls.push_back(Relocate);
1059 
1060   // We need at least one base pointer relocation + one derived pointer
1061   // relocation to mangle
1062   if (AllRelocateCalls.size() < 2)
1063     return false;
1064 
1065   // RelocateInstMap is a mapping from the base relocate instruction to the
1066   // corresponding derived relocate instructions
1067   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1068   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1069   if (RelocateInstMap.empty())
1070     return false;
1071 
1072   for (auto &Item : RelocateInstMap)
1073     // Item.first is the RelocatedBase to offset against
1074     // Item.second is the vector of Targets to replace
1075     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1076   return MadeChange;
1077 }
1078 
1079 /// Sink the specified cast instruction into its user blocks.
1080 static bool SinkCast(CastInst *CI) {
1081   BasicBlock *DefBB = CI->getParent();
1082 
1083   /// InsertedCasts - Only insert a cast in each block once.
1084   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1085 
1086   bool MadeChange = false;
1087   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1088        UI != E; ) {
1089     Use &TheUse = UI.getUse();
1090     Instruction *User = cast<Instruction>(*UI);
1091 
1092     // Figure out which BB this cast is used in.  For PHI's this is the
1093     // appropriate predecessor block.
1094     BasicBlock *UserBB = User->getParent();
1095     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1096       UserBB = PN->getIncomingBlock(TheUse);
1097     }
1098 
1099     // Preincrement use iterator so we don't invalidate it.
1100     ++UI;
1101 
1102     // The first insertion point of a block containing an EH pad is after the
1103     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1104     if (User->isEHPad())
1105       continue;
1106 
1107     // If the block selected to receive the cast is an EH pad that does not
1108     // allow non-PHI instructions before the terminator, we can't sink the
1109     // cast.
1110     if (UserBB->getTerminator()->isEHPad())
1111       continue;
1112 
1113     // If this user is in the same block as the cast, don't change the cast.
1114     if (UserBB == DefBB) continue;
1115 
1116     // If we have already inserted a cast into this block, use it.
1117     CastInst *&InsertedCast = InsertedCasts[UserBB];
1118 
1119     if (!InsertedCast) {
1120       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1121       assert(InsertPt != UserBB->end());
1122       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1123                                       CI->getType(), "", &*InsertPt);
1124       InsertedCast->setDebugLoc(CI->getDebugLoc());
1125     }
1126 
1127     // Replace a use of the cast with a use of the new cast.
1128     TheUse = InsertedCast;
1129     MadeChange = true;
1130     ++NumCastUses;
1131   }
1132 
1133   // If we removed all uses, nuke the cast.
1134   if (CI->use_empty()) {
1135     salvageDebugInfo(*CI);
1136     CI->eraseFromParent();
1137     MadeChange = true;
1138   }
1139 
1140   return MadeChange;
1141 }
1142 
1143 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1144 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1145 /// reduce the number of virtual registers that must be created and coalesced.
1146 ///
1147 /// Return true if any changes are made.
1148 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1149                                        const DataLayout &DL) {
1150   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1151   // than sinking only nop casts, but is helpful on some platforms.
1152   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1153     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1154                                  ASC->getDestAddressSpace()))
1155       return false;
1156   }
1157 
1158   // If this is a noop copy,
1159   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1160   EVT DstVT = TLI.getValueType(DL, CI->getType());
1161 
1162   // This is an fp<->int conversion?
1163   if (SrcVT.isInteger() != DstVT.isInteger())
1164     return false;
1165 
1166   // If this is an extension, it will be a zero or sign extension, which
1167   // isn't a noop.
1168   if (SrcVT.bitsLT(DstVT)) return false;
1169 
1170   // If these values will be promoted, find out what they will be promoted
1171   // to.  This helps us consider truncates on PPC as noop copies when they
1172   // are.
1173   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1174       TargetLowering::TypePromoteInteger)
1175     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1176   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1177       TargetLowering::TypePromoteInteger)
1178     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1179 
1180   // If, after promotion, these are the same types, this is a noop copy.
1181   if (SrcVT != DstVT)
1182     return false;
1183 
1184   return SinkCast(CI);
1185 }
1186 
1187 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1188                                                  CmpInst *Cmp,
1189                                                  Intrinsic::ID IID) {
1190   if (BO->getParent() != Cmp->getParent()) {
1191     // We used to use a dominator tree here to allow multi-block optimization.
1192     // But that was problematic because:
1193     // 1. It could cause a perf regression by hoisting the math op into the
1194     //    critical path.
1195     // 2. It could cause a perf regression by creating a value that was live
1196     //    across multiple blocks and increasing register pressure.
1197     // 3. Use of a dominator tree could cause large compile-time regression.
1198     //    This is because we recompute the DT on every change in the main CGP
1199     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1200     //    that was fixed, using a DT here would be ok.
1201     return false;
1202   }
1203 
1204   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1205   Value *Arg0 = BO->getOperand(0);
1206   Value *Arg1 = BO->getOperand(1);
1207   if (BO->getOpcode() == Instruction::Add &&
1208       IID == Intrinsic::usub_with_overflow) {
1209     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1210     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1211   }
1212 
1213   // Insert at the first instruction of the pair.
1214   Instruction *InsertPt = nullptr;
1215   for (Instruction &Iter : *Cmp->getParent()) {
1216     if (&Iter == BO || &Iter == Cmp) {
1217       InsertPt = &Iter;
1218       break;
1219     }
1220   }
1221   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1222 
1223   IRBuilder<> Builder(InsertPt);
1224   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1225   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1226   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1227   BO->replaceAllUsesWith(Math);
1228   Cmp->replaceAllUsesWith(OV);
1229   BO->eraseFromParent();
1230   Cmp->eraseFromParent();
1231   return true;
1232 }
1233 
1234 /// Match special-case patterns that check for unsigned add overflow.
1235 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1236                                                    BinaryOperator *&Add) {
1237   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1238   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1239   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1240 
1241   // We are not expecting non-canonical/degenerate code. Just bail out.
1242   if (isa<Constant>(A))
1243     return false;
1244 
1245   ICmpInst::Predicate Pred = Cmp->getPredicate();
1246   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1247     B = ConstantInt::get(B->getType(), 1);
1248   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1249     B = ConstantInt::get(B->getType(), -1);
1250   else
1251     return false;
1252 
1253   // Check the users of the variable operand of the compare looking for an add
1254   // with the adjusted constant.
1255   for (User *U : A->users()) {
1256     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1257       Add = cast<BinaryOperator>(U);
1258       return true;
1259     }
1260   }
1261   return false;
1262 }
1263 
1264 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1265 /// intrinsic. Return true if any changes were made.
1266 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1267                                                bool &ModifiedDT) {
1268   Value *A, *B;
1269   BinaryOperator *Add;
1270   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1271     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1272       return false;
1273 
1274   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1275                                  TLI->getValueType(*DL, Add->getType()),
1276                                  Add->hasNUsesOrMore(2)))
1277     return false;
1278 
1279   // We don't want to move around uses of condition values this late, so we
1280   // check if it is legal to create the call to the intrinsic in the basic
1281   // block containing the icmp.
1282   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1283     return false;
1284 
1285   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow))
1286     return false;
1287 
1288   // Reset callers - do not crash by iterating over a dead instruction.
1289   ModifiedDT = true;
1290   return true;
1291 }
1292 
1293 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1294                                                bool &ModifiedDT) {
1295   // We are not expecting non-canonical/degenerate code. Just bail out.
1296   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1297   if (isa<Constant>(A) && isa<Constant>(B))
1298     return false;
1299 
1300   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1301   ICmpInst::Predicate Pred = Cmp->getPredicate();
1302   if (Pred == ICmpInst::ICMP_UGT) {
1303     std::swap(A, B);
1304     Pred = ICmpInst::ICMP_ULT;
1305   }
1306   // Convert special-case: (A == 0) is the same as (A u< 1).
1307   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1308     B = ConstantInt::get(B->getType(), 1);
1309     Pred = ICmpInst::ICMP_ULT;
1310   }
1311   // Convert special-case: (A != 0) is the same as (0 u< A).
1312   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1313     std::swap(A, B);
1314     Pred = ICmpInst::ICMP_ULT;
1315   }
1316   if (Pred != ICmpInst::ICMP_ULT)
1317     return false;
1318 
1319   // Walk the users of a variable operand of a compare looking for a subtract or
1320   // add with that same operand. Also match the 2nd operand of the compare to
1321   // the add/sub, but that may be a negated constant operand of an add.
1322   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1323   BinaryOperator *Sub = nullptr;
1324   for (User *U : CmpVariableOperand->users()) {
1325     // A - B, A u< B --> usubo(A, B)
1326     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1327       Sub = cast<BinaryOperator>(U);
1328       break;
1329     }
1330 
1331     // A + (-C), A u< C (canonicalized form of (sub A, C))
1332     const APInt *CmpC, *AddC;
1333     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1334         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1335       Sub = cast<BinaryOperator>(U);
1336       break;
1337     }
1338   }
1339   if (!Sub)
1340     return false;
1341 
1342   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1343                                  TLI->getValueType(*DL, Sub->getType()),
1344                                  Sub->hasNUsesOrMore(2)))
1345     return false;
1346 
1347   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow))
1348     return false;
1349 
1350   // Reset callers - do not crash by iterating over a dead instruction.
1351   ModifiedDT = true;
1352   return true;
1353 }
1354 
1355 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1356 /// registers that must be created and coalesced. This is a clear win except on
1357 /// targets with multiple condition code registers (PowerPC), where it might
1358 /// lose; some adjustment may be wanted there.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1362   if (TLI.hasMultipleConditionRegisters())
1363     return false;
1364 
1365   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1366   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1367     return false;
1368 
1369   // Only insert a cmp in each block once.
1370   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1371 
1372   bool MadeChange = false;
1373   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1374        UI != E; ) {
1375     Use &TheUse = UI.getUse();
1376     Instruction *User = cast<Instruction>(*UI);
1377 
1378     // Preincrement use iterator so we don't invalidate it.
1379     ++UI;
1380 
1381     // Don't bother for PHI nodes.
1382     if (isa<PHINode>(User))
1383       continue;
1384 
1385     // Figure out which BB this cmp is used in.
1386     BasicBlock *UserBB = User->getParent();
1387     BasicBlock *DefBB = Cmp->getParent();
1388 
1389     // If this user is in the same block as the cmp, don't change the cmp.
1390     if (UserBB == DefBB) continue;
1391 
1392     // If we have already inserted a cmp into this block, use it.
1393     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1394 
1395     if (!InsertedCmp) {
1396       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1397       assert(InsertPt != UserBB->end());
1398       InsertedCmp =
1399           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1400                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1401                           &*InsertPt);
1402       // Propagate the debug info.
1403       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1404     }
1405 
1406     // Replace a use of the cmp with a use of the new cmp.
1407     TheUse = InsertedCmp;
1408     MadeChange = true;
1409     ++NumCmpUses;
1410   }
1411 
1412   // If we removed all uses, nuke the cmp.
1413   if (Cmp->use_empty()) {
1414     Cmp->eraseFromParent();
1415     MadeChange = true;
1416   }
1417 
1418   return MadeChange;
1419 }
1420 
1421 /// For pattern like:
1422 ///
1423 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1424 ///   ...
1425 /// DomBB:
1426 ///   ...
1427 ///   br DomCond, TrueBB, CmpBB
1428 /// CmpBB: (with DomBB being the single predecessor)
1429 ///   ...
1430 ///   Cmp = icmp eq CmpOp0, CmpOp1
1431 ///   ...
1432 ///
1433 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1434 /// different from lowering of icmp eq (PowerPC). This function try to convert
1435 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1436 /// After that, DomCond and Cmp can use the same comparison so reduce one
1437 /// comparison.
1438 ///
1439 /// Return true if any changes are made.
1440 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1441                                        const TargetLowering &TLI) {
1442   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1443     return false;
1444 
1445   ICmpInst::Predicate Pred = Cmp->getPredicate();
1446   if (Pred != ICmpInst::ICMP_EQ)
1447     return false;
1448 
1449   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1450   // icmp slt/sgt would introduce more redundant LLVM IR.
1451   for (User *U : Cmp->users()) {
1452     if (isa<BranchInst>(U))
1453       continue;
1454     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1455       continue;
1456     return false;
1457   }
1458 
1459   // This is a cheap/incomplete check for dominance - just match a single
1460   // predecessor with a conditional branch.
1461   BasicBlock *CmpBB = Cmp->getParent();
1462   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1463   if (!DomBB)
1464     return false;
1465 
1466   // We want to ensure that the only way control gets to the comparison of
1467   // interest is that a less/greater than comparison on the same operands is
1468   // false.
1469   Value *DomCond;
1470   BasicBlock *TrueBB, *FalseBB;
1471   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1472     return false;
1473   if (CmpBB != FalseBB)
1474     return false;
1475 
1476   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1477   ICmpInst::Predicate DomPred;
1478   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1479     return false;
1480   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1481     return false;
1482 
1483   // Convert the equality comparison to the opposite of the dominating
1484   // comparison and swap the direction for all branch/select users.
1485   // We have conceptually converted:
1486   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1487   // to
1488   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1489   // And similarly for branches.
1490   for (User *U : Cmp->users()) {
1491     if (auto *BI = dyn_cast<BranchInst>(U)) {
1492       assert(BI->isConditional() && "Must be conditional");
1493       BI->swapSuccessors();
1494       continue;
1495     }
1496     if (auto *SI = dyn_cast<SelectInst>(U)) {
1497       // Swap operands
1498       SI->swapValues();
1499       SI->swapProfMetadata();
1500       continue;
1501     }
1502     llvm_unreachable("Must be a branch or a select");
1503   }
1504   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1505   return true;
1506 }
1507 
1508 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1509   if (sinkCmpExpression(Cmp, *TLI))
1510     return true;
1511 
1512   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1513     return true;
1514 
1515   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1516     return true;
1517 
1518   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1519     return true;
1520 
1521   return false;
1522 }
1523 
1524 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1525 /// used in a compare to allow isel to generate better code for targets where
1526 /// this operation can be combined.
1527 ///
1528 /// Return true if any changes are made.
1529 static bool sinkAndCmp0Expression(Instruction *AndI,
1530                                   const TargetLowering &TLI,
1531                                   SetOfInstrs &InsertedInsts) {
1532   // Double-check that we're not trying to optimize an instruction that was
1533   // already optimized by some other part of this pass.
1534   assert(!InsertedInsts.count(AndI) &&
1535          "Attempting to optimize already optimized and instruction");
1536   (void) InsertedInsts;
1537 
1538   // Nothing to do for single use in same basic block.
1539   if (AndI->hasOneUse() &&
1540       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1541     return false;
1542 
1543   // Try to avoid cases where sinking/duplicating is likely to increase register
1544   // pressure.
1545   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1546       !isa<ConstantInt>(AndI->getOperand(1)) &&
1547       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1548     return false;
1549 
1550   for (auto *U : AndI->users()) {
1551     Instruction *User = cast<Instruction>(U);
1552 
1553     // Only sink 'and' feeding icmp with 0.
1554     if (!isa<ICmpInst>(User))
1555       return false;
1556 
1557     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1558     if (!CmpC || !CmpC->isZero())
1559       return false;
1560   }
1561 
1562   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1563     return false;
1564 
1565   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1566   LLVM_DEBUG(AndI->getParent()->dump());
1567 
1568   // Push the 'and' into the same block as the icmp 0.  There should only be
1569   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1570   // others, so we don't need to keep track of which BBs we insert into.
1571   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1572        UI != E; ) {
1573     Use &TheUse = UI.getUse();
1574     Instruction *User = cast<Instruction>(*UI);
1575 
1576     // Preincrement use iterator so we don't invalidate it.
1577     ++UI;
1578 
1579     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1580 
1581     // Keep the 'and' in the same place if the use is already in the same block.
1582     Instruction *InsertPt =
1583         User->getParent() == AndI->getParent() ? AndI : User;
1584     Instruction *InsertedAnd =
1585         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1586                                AndI->getOperand(1), "", InsertPt);
1587     // Propagate the debug info.
1588     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1589 
1590     // Replace a use of the 'and' with a use of the new 'and'.
1591     TheUse = InsertedAnd;
1592     ++NumAndUses;
1593     LLVM_DEBUG(User->getParent()->dump());
1594   }
1595 
1596   // We removed all uses, nuke the and.
1597   AndI->eraseFromParent();
1598   return true;
1599 }
1600 
1601 /// Check if the candidates could be combined with a shift instruction, which
1602 /// includes:
1603 /// 1. Truncate instruction
1604 /// 2. And instruction and the imm is a mask of the low bits:
1605 /// imm & (imm+1) == 0
1606 static bool isExtractBitsCandidateUse(Instruction *User) {
1607   if (!isa<TruncInst>(User)) {
1608     if (User->getOpcode() != Instruction::And ||
1609         !isa<ConstantInt>(User->getOperand(1)))
1610       return false;
1611 
1612     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1613 
1614     if ((Cimm & (Cimm + 1)).getBoolValue())
1615       return false;
1616   }
1617   return true;
1618 }
1619 
1620 /// Sink both shift and truncate instruction to the use of truncate's BB.
1621 static bool
1622 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1623                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1624                      const TargetLowering &TLI, const DataLayout &DL) {
1625   BasicBlock *UserBB = User->getParent();
1626   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1627   auto *TruncI = cast<TruncInst>(User);
1628   bool MadeChange = false;
1629 
1630   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1631                             TruncE = TruncI->user_end();
1632        TruncUI != TruncE;) {
1633 
1634     Use &TruncTheUse = TruncUI.getUse();
1635     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1636     // Preincrement use iterator so we don't invalidate it.
1637 
1638     ++TruncUI;
1639 
1640     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1641     if (!ISDOpcode)
1642       continue;
1643 
1644     // If the use is actually a legal node, there will not be an
1645     // implicit truncate.
1646     // FIXME: always querying the result type is just an
1647     // approximation; some nodes' legality is determined by the
1648     // operand or other means. There's no good way to find out though.
1649     if (TLI.isOperationLegalOrCustom(
1650             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1651       continue;
1652 
1653     // Don't bother for PHI nodes.
1654     if (isa<PHINode>(TruncUser))
1655       continue;
1656 
1657     BasicBlock *TruncUserBB = TruncUser->getParent();
1658 
1659     if (UserBB == TruncUserBB)
1660       continue;
1661 
1662     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1663     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1664 
1665     if (!InsertedShift && !InsertedTrunc) {
1666       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1667       assert(InsertPt != TruncUserBB->end());
1668       // Sink the shift
1669       if (ShiftI->getOpcode() == Instruction::AShr)
1670         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1671                                                    "", &*InsertPt);
1672       else
1673         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1674                                                    "", &*InsertPt);
1675       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1676 
1677       // Sink the trunc
1678       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1679       TruncInsertPt++;
1680       assert(TruncInsertPt != TruncUserBB->end());
1681 
1682       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1683                                        TruncI->getType(), "", &*TruncInsertPt);
1684       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1685 
1686       MadeChange = true;
1687 
1688       TruncTheUse = InsertedTrunc;
1689     }
1690   }
1691   return MadeChange;
1692 }
1693 
1694 /// Sink the shift *right* instruction into user blocks if the uses could
1695 /// potentially be combined with this shift instruction and generate BitExtract
1696 /// instruction. It will only be applied if the architecture supports BitExtract
1697 /// instruction. Here is an example:
1698 /// BB1:
1699 ///   %x.extract.shift = lshr i64 %arg1, 32
1700 /// BB2:
1701 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1702 /// ==>
1703 ///
1704 /// BB2:
1705 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1706 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1707 ///
1708 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1709 /// instruction.
1710 /// Return true if any changes are made.
1711 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1712                                 const TargetLowering &TLI,
1713                                 const DataLayout &DL) {
1714   BasicBlock *DefBB = ShiftI->getParent();
1715 
1716   /// Only insert instructions in each block once.
1717   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1718 
1719   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1720 
1721   bool MadeChange = false;
1722   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1723        UI != E;) {
1724     Use &TheUse = UI.getUse();
1725     Instruction *User = cast<Instruction>(*UI);
1726     // Preincrement use iterator so we don't invalidate it.
1727     ++UI;
1728 
1729     // Don't bother for PHI nodes.
1730     if (isa<PHINode>(User))
1731       continue;
1732 
1733     if (!isExtractBitsCandidateUse(User))
1734       continue;
1735 
1736     BasicBlock *UserBB = User->getParent();
1737 
1738     if (UserBB == DefBB) {
1739       // If the shift and truncate instruction are in the same BB. The use of
1740       // the truncate(TruncUse) may still introduce another truncate if not
1741       // legal. In this case, we would like to sink both shift and truncate
1742       // instruction to the BB of TruncUse.
1743       // for example:
1744       // BB1:
1745       // i64 shift.result = lshr i64 opnd, imm
1746       // trunc.result = trunc shift.result to i16
1747       //
1748       // BB2:
1749       //   ----> We will have an implicit truncate here if the architecture does
1750       //   not have i16 compare.
1751       // cmp i16 trunc.result, opnd2
1752       //
1753       if (isa<TruncInst>(User) && shiftIsLegal
1754           // If the type of the truncate is legal, no truncate will be
1755           // introduced in other basic blocks.
1756           &&
1757           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1758         MadeChange =
1759             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1760 
1761       continue;
1762     }
1763     // If we have already inserted a shift into this block, use it.
1764     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1765 
1766     if (!InsertedShift) {
1767       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1768       assert(InsertPt != UserBB->end());
1769 
1770       if (ShiftI->getOpcode() == Instruction::AShr)
1771         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1772                                                    "", &*InsertPt);
1773       else
1774         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1775                                                    "", &*InsertPt);
1776       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1777 
1778       MadeChange = true;
1779     }
1780 
1781     // Replace a use of the shift with a use of the new shift.
1782     TheUse = InsertedShift;
1783   }
1784 
1785   // If we removed all uses, or there are none, nuke the shift.
1786   if (ShiftI->use_empty()) {
1787     salvageDebugInfo(*ShiftI);
1788     ShiftI->eraseFromParent();
1789     MadeChange = true;
1790   }
1791 
1792   return MadeChange;
1793 }
1794 
1795 /// If counting leading or trailing zeros is an expensive operation and a zero
1796 /// input is defined, add a check for zero to avoid calling the intrinsic.
1797 ///
1798 /// We want to transform:
1799 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1800 ///
1801 /// into:
1802 ///   entry:
1803 ///     %cmpz = icmp eq i64 %A, 0
1804 ///     br i1 %cmpz, label %cond.end, label %cond.false
1805 ///   cond.false:
1806 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1807 ///     br label %cond.end
1808 ///   cond.end:
1809 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1810 ///
1811 /// If the transform is performed, return true and set ModifiedDT to true.
1812 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1813                                   const TargetLowering *TLI,
1814                                   const DataLayout *DL,
1815                                   bool &ModifiedDT) {
1816   // If a zero input is undefined, it doesn't make sense to despeculate that.
1817   if (match(CountZeros->getOperand(1), m_One()))
1818     return false;
1819 
1820   // If it's cheap to speculate, there's nothing to do.
1821   auto IntrinsicID = CountZeros->getIntrinsicID();
1822   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1823       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1824     return false;
1825 
1826   // Only handle legal scalar cases. Anything else requires too much work.
1827   Type *Ty = CountZeros->getType();
1828   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1829   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1830     return false;
1831 
1832   // The intrinsic will be sunk behind a compare against zero and branch.
1833   BasicBlock *StartBlock = CountZeros->getParent();
1834   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1835 
1836   // Create another block after the count zero intrinsic. A PHI will be added
1837   // in this block to select the result of the intrinsic or the bit-width
1838   // constant if the input to the intrinsic is zero.
1839   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1840   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1841 
1842   // Set up a builder to create a compare, conditional branch, and PHI.
1843   IRBuilder<> Builder(CountZeros->getContext());
1844   Builder.SetInsertPoint(StartBlock->getTerminator());
1845   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1846 
1847   // Replace the unconditional branch that was created by the first split with
1848   // a compare against zero and a conditional branch.
1849   Value *Zero = Constant::getNullValue(Ty);
1850   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1851   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1852   StartBlock->getTerminator()->eraseFromParent();
1853 
1854   // Create a PHI in the end block to select either the output of the intrinsic
1855   // or the bit width of the operand.
1856   Builder.SetInsertPoint(&EndBlock->front());
1857   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1858   CountZeros->replaceAllUsesWith(PN);
1859   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1860   PN->addIncoming(BitWidth, StartBlock);
1861   PN->addIncoming(CountZeros, CallBlock);
1862 
1863   // We are explicitly handling the zero case, so we can set the intrinsic's
1864   // undefined zero argument to 'true'. This will also prevent reprocessing the
1865   // intrinsic; we only despeculate when a zero input is defined.
1866   CountZeros->setArgOperand(1, Builder.getTrue());
1867   ModifiedDT = true;
1868   return true;
1869 }
1870 
1871 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1872   BasicBlock *BB = CI->getParent();
1873 
1874   // Lower inline assembly if we can.
1875   // If we found an inline asm expession, and if the target knows how to
1876   // lower it to normal LLVM code, do so now.
1877   if (isa<InlineAsm>(CI->getCalledValue())) {
1878     if (TLI->ExpandInlineAsm(CI)) {
1879       // Avoid invalidating the iterator.
1880       CurInstIterator = BB->begin();
1881       // Avoid processing instructions out of order, which could cause
1882       // reuse before a value is defined.
1883       SunkAddrs.clear();
1884       return true;
1885     }
1886     // Sink address computing for memory operands into the block.
1887     if (optimizeInlineAsmInst(CI))
1888       return true;
1889   }
1890 
1891   // Align the pointer arguments to this call if the target thinks it's a good
1892   // idea
1893   unsigned MinSize, PrefAlign;
1894   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1895     for (auto &Arg : CI->arg_operands()) {
1896       // We want to align both objects whose address is used directly and
1897       // objects whose address is used in casts and GEPs, though it only makes
1898       // sense for GEPs if the offset is a multiple of the desired alignment and
1899       // if size - offset meets the size threshold.
1900       if (!Arg->getType()->isPointerTy())
1901         continue;
1902       APInt Offset(DL->getIndexSizeInBits(
1903                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1904                    0);
1905       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1906       uint64_t Offset2 = Offset.getLimitedValue();
1907       if ((Offset2 & (PrefAlign-1)) != 0)
1908         continue;
1909       AllocaInst *AI;
1910       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1911           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1912         AI->setAlignment(MaybeAlign(PrefAlign));
1913       // Global variables can only be aligned if they are defined in this
1914       // object (i.e. they are uniquely initialized in this object), and
1915       // over-aligning global variables that have an explicit section is
1916       // forbidden.
1917       GlobalVariable *GV;
1918       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1919           GV->getPointerAlignment(*DL) < PrefAlign &&
1920           DL->getTypeAllocSize(GV->getValueType()) >=
1921               MinSize + Offset2)
1922         GV->setAlignment(MaybeAlign(PrefAlign));
1923     }
1924     // If this is a memcpy (or similar) then we may be able to improve the
1925     // alignment
1926     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1927       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1928       if (DestAlign > MI->getDestAlignment())
1929         MI->setDestAlignment(DestAlign);
1930       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1931         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1932         if (SrcAlign > MTI->getSourceAlignment())
1933           MTI->setSourceAlignment(SrcAlign);
1934       }
1935     }
1936   }
1937 
1938   // If we have a cold call site, try to sink addressing computation into the
1939   // cold block.  This interacts with our handling for loads and stores to
1940   // ensure that we can fold all uses of a potential addressing computation
1941   // into their uses.  TODO: generalize this to work over profiling data
1942   if (CI->hasFnAttr(Attribute::Cold) &&
1943       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
1944     for (auto &Arg : CI->arg_operands()) {
1945       if (!Arg->getType()->isPointerTy())
1946         continue;
1947       unsigned AS = Arg->getType()->getPointerAddressSpace();
1948       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1949     }
1950 
1951   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1952   if (II) {
1953     switch (II->getIntrinsicID()) {
1954     default: break;
1955     case Intrinsic::experimental_widenable_condition: {
1956       // Give up on future widening oppurtunties so that we can fold away dead
1957       // paths and merge blocks before going into block-local instruction
1958       // selection.
1959       if (II->use_empty()) {
1960         II->eraseFromParent();
1961         return true;
1962       }
1963       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1964       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1965         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1966       });
1967       return true;
1968     }
1969     case Intrinsic::objectsize:
1970       llvm_unreachable("llvm.objectsize.* should have been lowered already");
1971     case Intrinsic::is_constant:
1972       llvm_unreachable("llvm.is.constant.* should have been lowered already");
1973     case Intrinsic::aarch64_stlxr:
1974     case Intrinsic::aarch64_stxr: {
1975       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1976       if (!ExtVal || !ExtVal->hasOneUse() ||
1977           ExtVal->getParent() == CI->getParent())
1978         return false;
1979       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1980       ExtVal->moveBefore(CI);
1981       // Mark this instruction as "inserted by CGP", so that other
1982       // optimizations don't touch it.
1983       InsertedInsts.insert(ExtVal);
1984       return true;
1985     }
1986 
1987     case Intrinsic::launder_invariant_group:
1988     case Intrinsic::strip_invariant_group: {
1989       Value *ArgVal = II->getArgOperand(0);
1990       auto it = LargeOffsetGEPMap.find(II);
1991       if (it != LargeOffsetGEPMap.end()) {
1992           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1993           // Make sure not to have to deal with iterator invalidation
1994           // after possibly adding ArgVal to LargeOffsetGEPMap.
1995           auto GEPs = std::move(it->second);
1996           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1997           LargeOffsetGEPMap.erase(II);
1998       }
1999 
2000       II->replaceAllUsesWith(ArgVal);
2001       II->eraseFromParent();
2002       return true;
2003     }
2004     case Intrinsic::cttz:
2005     case Intrinsic::ctlz:
2006       // If counting zeros is expensive, try to avoid it.
2007       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2008     case Intrinsic::dbg_value:
2009       return fixupDbgValue(II);
2010     case Intrinsic::vscale: {
2011       // If datalayout has no special restrictions on vector data layout,
2012       // replace `llvm.vscale` by an equivalent constant expression
2013       // to benefit from cheap constant propagation.
2014       Type *ScalableVectorTy =
2015           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2016       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2017         auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2018         auto One = ConstantInt::getSigned(II->getType(), 1);
2019         auto *CGep =
2020             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2021         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2022         II->eraseFromParent();
2023         return true;
2024       }
2025     }
2026     }
2027 
2028     SmallVector<Value *, 2> PtrOps;
2029     Type *AccessTy;
2030     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2031       while (!PtrOps.empty()) {
2032         Value *PtrVal = PtrOps.pop_back_val();
2033         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2034         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2035           return true;
2036       }
2037   }
2038 
2039   // From here on out we're working with named functions.
2040   if (!CI->getCalledFunction()) return false;
2041 
2042   // Lower all default uses of _chk calls.  This is very similar
2043   // to what InstCombineCalls does, but here we are only lowering calls
2044   // to fortified library functions (e.g. __memcpy_chk) that have the default
2045   // "don't know" as the objectsize.  Anything else should be left alone.
2046   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2047   IRBuilder<> Builder(CI);
2048   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2049     CI->replaceAllUsesWith(V);
2050     CI->eraseFromParent();
2051     return true;
2052   }
2053 
2054   return false;
2055 }
2056 
2057 /// Look for opportunities to duplicate return instructions to the predecessor
2058 /// to enable tail call optimizations. The case it is currently looking for is:
2059 /// @code
2060 /// bb0:
2061 ///   %tmp0 = tail call i32 @f0()
2062 ///   br label %return
2063 /// bb1:
2064 ///   %tmp1 = tail call i32 @f1()
2065 ///   br label %return
2066 /// bb2:
2067 ///   %tmp2 = tail call i32 @f2()
2068 ///   br label %return
2069 /// return:
2070 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2071 ///   ret i32 %retval
2072 /// @endcode
2073 ///
2074 /// =>
2075 ///
2076 /// @code
2077 /// bb0:
2078 ///   %tmp0 = tail call i32 @f0()
2079 ///   ret i32 %tmp0
2080 /// bb1:
2081 ///   %tmp1 = tail call i32 @f1()
2082 ///   ret i32 %tmp1
2083 /// bb2:
2084 ///   %tmp2 = tail call i32 @f2()
2085 ///   ret i32 %tmp2
2086 /// @endcode
2087 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2088   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2089   if (!RetI)
2090     return false;
2091 
2092   PHINode *PN = nullptr;
2093   BitCastInst *BCI = nullptr;
2094   Value *V = RetI->getReturnValue();
2095   if (V) {
2096     BCI = dyn_cast<BitCastInst>(V);
2097     if (BCI)
2098       V = BCI->getOperand(0);
2099 
2100     PN = dyn_cast<PHINode>(V);
2101     if (!PN)
2102       return false;
2103   }
2104 
2105   if (PN && PN->getParent() != BB)
2106     return false;
2107 
2108   // Make sure there are no instructions between the PHI and return, or that the
2109   // return is the first instruction in the block.
2110   if (PN) {
2111     BasicBlock::iterator BI = BB->begin();
2112     // Skip over debug and the bitcast.
2113     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2114     if (&*BI != RetI)
2115       return false;
2116   } else {
2117     BasicBlock::iterator BI = BB->begin();
2118     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2119     if (&*BI != RetI)
2120       return false;
2121   }
2122 
2123   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2124   /// call.
2125   const Function *F = BB->getParent();
2126   SmallVector<BasicBlock*, 4> TailCallBBs;
2127   if (PN) {
2128     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2129       // Look through bitcasts.
2130       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2131       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2132       BasicBlock *PredBB = PN->getIncomingBlock(I);
2133       // Make sure the phi value is indeed produced by the tail call.
2134       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2135           TLI->mayBeEmittedAsTailCall(CI) &&
2136           attributesPermitTailCall(F, CI, RetI, *TLI))
2137         TailCallBBs.push_back(PredBB);
2138     }
2139   } else {
2140     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2141     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2142       if (!VisitedBBs.insert(*PI).second)
2143         continue;
2144 
2145       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2146       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2147       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2148       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2149       if (RI == RE)
2150         continue;
2151 
2152       CallInst *CI = dyn_cast<CallInst>(&*RI);
2153       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2154           attributesPermitTailCall(F, CI, RetI, *TLI))
2155         TailCallBBs.push_back(*PI);
2156     }
2157   }
2158 
2159   bool Changed = false;
2160   for (auto const &TailCallBB : TailCallBBs) {
2161     // Make sure the call instruction is followed by an unconditional branch to
2162     // the return block.
2163     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2164     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2165       continue;
2166 
2167     // Duplicate the return into TailCallBB.
2168     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2169     ModifiedDT = Changed = true;
2170     ++NumRetsDup;
2171   }
2172 
2173   // If we eliminated all predecessors of the block, delete the block now.
2174   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2175     BB->eraseFromParent();
2176 
2177   return Changed;
2178 }
2179 
2180 //===----------------------------------------------------------------------===//
2181 // Memory Optimization
2182 //===----------------------------------------------------------------------===//
2183 
2184 namespace {
2185 
2186 /// This is an extended version of TargetLowering::AddrMode
2187 /// which holds actual Value*'s for register values.
2188 struct ExtAddrMode : public TargetLowering::AddrMode {
2189   Value *BaseReg = nullptr;
2190   Value *ScaledReg = nullptr;
2191   Value *OriginalValue = nullptr;
2192   bool InBounds = true;
2193 
2194   enum FieldName {
2195     NoField        = 0x00,
2196     BaseRegField   = 0x01,
2197     BaseGVField    = 0x02,
2198     BaseOffsField  = 0x04,
2199     ScaledRegField = 0x08,
2200     ScaleField     = 0x10,
2201     MultipleFields = 0xff
2202   };
2203 
2204 
2205   ExtAddrMode() = default;
2206 
2207   void print(raw_ostream &OS) const;
2208   void dump() const;
2209 
2210   FieldName compare(const ExtAddrMode &other) {
2211     // First check that the types are the same on each field, as differing types
2212     // is something we can't cope with later on.
2213     if (BaseReg && other.BaseReg &&
2214         BaseReg->getType() != other.BaseReg->getType())
2215       return MultipleFields;
2216     if (BaseGV && other.BaseGV &&
2217         BaseGV->getType() != other.BaseGV->getType())
2218       return MultipleFields;
2219     if (ScaledReg && other.ScaledReg &&
2220         ScaledReg->getType() != other.ScaledReg->getType())
2221       return MultipleFields;
2222 
2223     // Conservatively reject 'inbounds' mismatches.
2224     if (InBounds != other.InBounds)
2225       return MultipleFields;
2226 
2227     // Check each field to see if it differs.
2228     unsigned Result = NoField;
2229     if (BaseReg != other.BaseReg)
2230       Result |= BaseRegField;
2231     if (BaseGV != other.BaseGV)
2232       Result |= BaseGVField;
2233     if (BaseOffs != other.BaseOffs)
2234       Result |= BaseOffsField;
2235     if (ScaledReg != other.ScaledReg)
2236       Result |= ScaledRegField;
2237     // Don't count 0 as being a different scale, because that actually means
2238     // unscaled (which will already be counted by having no ScaledReg).
2239     if (Scale && other.Scale && Scale != other.Scale)
2240       Result |= ScaleField;
2241 
2242     if (countPopulation(Result) > 1)
2243       return MultipleFields;
2244     else
2245       return static_cast<FieldName>(Result);
2246   }
2247 
2248   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2249   // with no offset.
2250   bool isTrivial() {
2251     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2252     // trivial if at most one of these terms is nonzero, except that BaseGV and
2253     // BaseReg both being zero actually means a null pointer value, which we
2254     // consider to be 'non-zero' here.
2255     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2256   }
2257 
2258   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2259     switch (Field) {
2260     default:
2261       return nullptr;
2262     case BaseRegField:
2263       return BaseReg;
2264     case BaseGVField:
2265       return BaseGV;
2266     case ScaledRegField:
2267       return ScaledReg;
2268     case BaseOffsField:
2269       return ConstantInt::get(IntPtrTy, BaseOffs);
2270     }
2271   }
2272 
2273   void SetCombinedField(FieldName Field, Value *V,
2274                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2275     switch (Field) {
2276     default:
2277       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2278       break;
2279     case ExtAddrMode::BaseRegField:
2280       BaseReg = V;
2281       break;
2282     case ExtAddrMode::BaseGVField:
2283       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2284       // in the BaseReg field.
2285       assert(BaseReg == nullptr);
2286       BaseReg = V;
2287       BaseGV = nullptr;
2288       break;
2289     case ExtAddrMode::ScaledRegField:
2290       ScaledReg = V;
2291       // If we have a mix of scaled and unscaled addrmodes then we want scale
2292       // to be the scale and not zero.
2293       if (!Scale)
2294         for (const ExtAddrMode &AM : AddrModes)
2295           if (AM.Scale) {
2296             Scale = AM.Scale;
2297             break;
2298           }
2299       break;
2300     case ExtAddrMode::BaseOffsField:
2301       // The offset is no longer a constant, so it goes in ScaledReg with a
2302       // scale of 1.
2303       assert(ScaledReg == nullptr);
2304       ScaledReg = V;
2305       Scale = 1;
2306       BaseOffs = 0;
2307       break;
2308     }
2309   }
2310 };
2311 
2312 } // end anonymous namespace
2313 
2314 #ifndef NDEBUG
2315 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2316   AM.print(OS);
2317   return OS;
2318 }
2319 #endif
2320 
2321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2322 void ExtAddrMode::print(raw_ostream &OS) const {
2323   bool NeedPlus = false;
2324   OS << "[";
2325   if (InBounds)
2326     OS << "inbounds ";
2327   if (BaseGV) {
2328     OS << (NeedPlus ? " + " : "")
2329        << "GV:";
2330     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2331     NeedPlus = true;
2332   }
2333 
2334   if (BaseOffs) {
2335     OS << (NeedPlus ? " + " : "")
2336        << BaseOffs;
2337     NeedPlus = true;
2338   }
2339 
2340   if (BaseReg) {
2341     OS << (NeedPlus ? " + " : "")
2342        << "Base:";
2343     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2344     NeedPlus = true;
2345   }
2346   if (Scale) {
2347     OS << (NeedPlus ? " + " : "")
2348        << Scale << "*";
2349     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2350   }
2351 
2352   OS << ']';
2353 }
2354 
2355 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2356   print(dbgs());
2357   dbgs() << '\n';
2358 }
2359 #endif
2360 
2361 namespace {
2362 
2363 /// This class provides transaction based operation on the IR.
2364 /// Every change made through this class is recorded in the internal state and
2365 /// can be undone (rollback) until commit is called.
2366 class TypePromotionTransaction {
2367   /// This represents the common interface of the individual transaction.
2368   /// Each class implements the logic for doing one specific modification on
2369   /// the IR via the TypePromotionTransaction.
2370   class TypePromotionAction {
2371   protected:
2372     /// The Instruction modified.
2373     Instruction *Inst;
2374 
2375   public:
2376     /// Constructor of the action.
2377     /// The constructor performs the related action on the IR.
2378     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2379 
2380     virtual ~TypePromotionAction() = default;
2381 
2382     /// Undo the modification done by this action.
2383     /// When this method is called, the IR must be in the same state as it was
2384     /// before this action was applied.
2385     /// \pre Undoing the action works if and only if the IR is in the exact same
2386     /// state as it was directly after this action was applied.
2387     virtual void undo() = 0;
2388 
2389     /// Advocate every change made by this action.
2390     /// When the results on the IR of the action are to be kept, it is important
2391     /// to call this function, otherwise hidden information may be kept forever.
2392     virtual void commit() {
2393       // Nothing to be done, this action is not doing anything.
2394     }
2395   };
2396 
2397   /// Utility to remember the position of an instruction.
2398   class InsertionHandler {
2399     /// Position of an instruction.
2400     /// Either an instruction:
2401     /// - Is the first in a basic block: BB is used.
2402     /// - Has a previous instruction: PrevInst is used.
2403     union {
2404       Instruction *PrevInst;
2405       BasicBlock *BB;
2406     } Point;
2407 
2408     /// Remember whether or not the instruction had a previous instruction.
2409     bool HasPrevInstruction;
2410 
2411   public:
2412     /// Record the position of \p Inst.
2413     InsertionHandler(Instruction *Inst) {
2414       BasicBlock::iterator It = Inst->getIterator();
2415       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2416       if (HasPrevInstruction)
2417         Point.PrevInst = &*--It;
2418       else
2419         Point.BB = Inst->getParent();
2420     }
2421 
2422     /// Insert \p Inst at the recorded position.
2423     void insert(Instruction *Inst) {
2424       if (HasPrevInstruction) {
2425         if (Inst->getParent())
2426           Inst->removeFromParent();
2427         Inst->insertAfter(Point.PrevInst);
2428       } else {
2429         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2430         if (Inst->getParent())
2431           Inst->moveBefore(Position);
2432         else
2433           Inst->insertBefore(Position);
2434       }
2435     }
2436   };
2437 
2438   /// Move an instruction before another.
2439   class InstructionMoveBefore : public TypePromotionAction {
2440     /// Original position of the instruction.
2441     InsertionHandler Position;
2442 
2443   public:
2444     /// Move \p Inst before \p Before.
2445     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2446         : TypePromotionAction(Inst), Position(Inst) {
2447       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2448                         << "\n");
2449       Inst->moveBefore(Before);
2450     }
2451 
2452     /// Move the instruction back to its original position.
2453     void undo() override {
2454       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2455       Position.insert(Inst);
2456     }
2457   };
2458 
2459   /// Set the operand of an instruction with a new value.
2460   class OperandSetter : public TypePromotionAction {
2461     /// Original operand of the instruction.
2462     Value *Origin;
2463 
2464     /// Index of the modified instruction.
2465     unsigned Idx;
2466 
2467   public:
2468     /// Set \p Idx operand of \p Inst with \p NewVal.
2469     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2470         : TypePromotionAction(Inst), Idx(Idx) {
2471       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2472                         << "for:" << *Inst << "\n"
2473                         << "with:" << *NewVal << "\n");
2474       Origin = Inst->getOperand(Idx);
2475       Inst->setOperand(Idx, NewVal);
2476     }
2477 
2478     /// Restore the original value of the instruction.
2479     void undo() override {
2480       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2481                         << "for: " << *Inst << "\n"
2482                         << "with: " << *Origin << "\n");
2483       Inst->setOperand(Idx, Origin);
2484     }
2485   };
2486 
2487   /// Hide the operands of an instruction.
2488   /// Do as if this instruction was not using any of its operands.
2489   class OperandsHider : public TypePromotionAction {
2490     /// The list of original operands.
2491     SmallVector<Value *, 4> OriginalValues;
2492 
2493   public:
2494     /// Remove \p Inst from the uses of the operands of \p Inst.
2495     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2496       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2497       unsigned NumOpnds = Inst->getNumOperands();
2498       OriginalValues.reserve(NumOpnds);
2499       for (unsigned It = 0; It < NumOpnds; ++It) {
2500         // Save the current operand.
2501         Value *Val = Inst->getOperand(It);
2502         OriginalValues.push_back(Val);
2503         // Set a dummy one.
2504         // We could use OperandSetter here, but that would imply an overhead
2505         // that we are not willing to pay.
2506         Inst->setOperand(It, UndefValue::get(Val->getType()));
2507       }
2508     }
2509 
2510     /// Restore the original list of uses.
2511     void undo() override {
2512       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2513       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2514         Inst->setOperand(It, OriginalValues[It]);
2515     }
2516   };
2517 
2518   /// Build a truncate instruction.
2519   class TruncBuilder : public TypePromotionAction {
2520     Value *Val;
2521 
2522   public:
2523     /// Build a truncate instruction of \p Opnd producing a \p Ty
2524     /// result.
2525     /// trunc Opnd to Ty.
2526     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2527       IRBuilder<> Builder(Opnd);
2528       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2529       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2530     }
2531 
2532     /// Get the built value.
2533     Value *getBuiltValue() { return Val; }
2534 
2535     /// Remove the built instruction.
2536     void undo() override {
2537       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2538       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2539         IVal->eraseFromParent();
2540     }
2541   };
2542 
2543   /// Build a sign extension instruction.
2544   class SExtBuilder : public TypePromotionAction {
2545     Value *Val;
2546 
2547   public:
2548     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2549     /// result.
2550     /// sext Opnd to Ty.
2551     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2552         : TypePromotionAction(InsertPt) {
2553       IRBuilder<> Builder(InsertPt);
2554       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2555       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2556     }
2557 
2558     /// Get the built value.
2559     Value *getBuiltValue() { return Val; }
2560 
2561     /// Remove the built instruction.
2562     void undo() override {
2563       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2564       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2565         IVal->eraseFromParent();
2566     }
2567   };
2568 
2569   /// Build a zero extension instruction.
2570   class ZExtBuilder : public TypePromotionAction {
2571     Value *Val;
2572 
2573   public:
2574     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2575     /// result.
2576     /// zext Opnd to Ty.
2577     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2578         : TypePromotionAction(InsertPt) {
2579       IRBuilder<> Builder(InsertPt);
2580       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2581       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2582     }
2583 
2584     /// Get the built value.
2585     Value *getBuiltValue() { return Val; }
2586 
2587     /// Remove the built instruction.
2588     void undo() override {
2589       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2590       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2591         IVal->eraseFromParent();
2592     }
2593   };
2594 
2595   /// Mutate an instruction to another type.
2596   class TypeMutator : public TypePromotionAction {
2597     /// Record the original type.
2598     Type *OrigTy;
2599 
2600   public:
2601     /// Mutate the type of \p Inst into \p NewTy.
2602     TypeMutator(Instruction *Inst, Type *NewTy)
2603         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2604       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2605                         << "\n");
2606       Inst->mutateType(NewTy);
2607     }
2608 
2609     /// Mutate the instruction back to its original type.
2610     void undo() override {
2611       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2612                         << "\n");
2613       Inst->mutateType(OrigTy);
2614     }
2615   };
2616 
2617   /// Replace the uses of an instruction by another instruction.
2618   class UsesReplacer : public TypePromotionAction {
2619     /// Helper structure to keep track of the replaced uses.
2620     struct InstructionAndIdx {
2621       /// The instruction using the instruction.
2622       Instruction *Inst;
2623 
2624       /// The index where this instruction is used for Inst.
2625       unsigned Idx;
2626 
2627       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2628           : Inst(Inst), Idx(Idx) {}
2629     };
2630 
2631     /// Keep track of the original uses (pair Instruction, Index).
2632     SmallVector<InstructionAndIdx, 4> OriginalUses;
2633     /// Keep track of the debug users.
2634     SmallVector<DbgValueInst *, 1> DbgValues;
2635 
2636     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2637 
2638   public:
2639     /// Replace all the use of \p Inst by \p New.
2640     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2641       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2642                         << "\n");
2643       // Record the original uses.
2644       for (Use &U : Inst->uses()) {
2645         Instruction *UserI = cast<Instruction>(U.getUser());
2646         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2647       }
2648       // Record the debug uses separately. They are not in the instruction's
2649       // use list, but they are replaced by RAUW.
2650       findDbgValues(DbgValues, Inst);
2651 
2652       // Now, we can replace the uses.
2653       Inst->replaceAllUsesWith(New);
2654     }
2655 
2656     /// Reassign the original uses of Inst to Inst.
2657     void undo() override {
2658       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2659       for (use_iterator UseIt = OriginalUses.begin(),
2660                         EndIt = OriginalUses.end();
2661            UseIt != EndIt; ++UseIt) {
2662         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2663       }
2664       // RAUW has replaced all original uses with references to the new value,
2665       // including the debug uses. Since we are undoing the replacements,
2666       // the original debug uses must also be reinstated to maintain the
2667       // correctness and utility of debug value instructions.
2668       for (auto *DVI: DbgValues) {
2669         LLVMContext &Ctx = Inst->getType()->getContext();
2670         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2671         DVI->setOperand(0, MV);
2672       }
2673     }
2674   };
2675 
2676   /// Remove an instruction from the IR.
2677   class InstructionRemover : public TypePromotionAction {
2678     /// Original position of the instruction.
2679     InsertionHandler Inserter;
2680 
2681     /// Helper structure to hide all the link to the instruction. In other
2682     /// words, this helps to do as if the instruction was removed.
2683     OperandsHider Hider;
2684 
2685     /// Keep track of the uses replaced, if any.
2686     UsesReplacer *Replacer = nullptr;
2687 
2688     /// Keep track of instructions removed.
2689     SetOfInstrs &RemovedInsts;
2690 
2691   public:
2692     /// Remove all reference of \p Inst and optionally replace all its
2693     /// uses with New.
2694     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2695     /// \pre If !Inst->use_empty(), then New != nullptr
2696     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2697                        Value *New = nullptr)
2698         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2699           RemovedInsts(RemovedInsts) {
2700       if (New)
2701         Replacer = new UsesReplacer(Inst, New);
2702       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2703       RemovedInsts.insert(Inst);
2704       /// The instructions removed here will be freed after completing
2705       /// optimizeBlock() for all blocks as we need to keep track of the
2706       /// removed instructions during promotion.
2707       Inst->removeFromParent();
2708     }
2709 
2710     ~InstructionRemover() override { delete Replacer; }
2711 
2712     /// Resurrect the instruction and reassign it to the proper uses if
2713     /// new value was provided when build this action.
2714     void undo() override {
2715       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2716       Inserter.insert(Inst);
2717       if (Replacer)
2718         Replacer->undo();
2719       Hider.undo();
2720       RemovedInsts.erase(Inst);
2721     }
2722   };
2723 
2724 public:
2725   /// Restoration point.
2726   /// The restoration point is a pointer to an action instead of an iterator
2727   /// because the iterator may be invalidated but not the pointer.
2728   using ConstRestorationPt = const TypePromotionAction *;
2729 
2730   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2731       : RemovedInsts(RemovedInsts) {}
2732 
2733   /// Advocate every changes made in that transaction.
2734   void commit();
2735 
2736   /// Undo all the changes made after the given point.
2737   void rollback(ConstRestorationPt Point);
2738 
2739   /// Get the current restoration point.
2740   ConstRestorationPt getRestorationPoint() const;
2741 
2742   /// \name API for IR modification with state keeping to support rollback.
2743   /// @{
2744   /// Same as Instruction::setOperand.
2745   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2746 
2747   /// Same as Instruction::eraseFromParent.
2748   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2749 
2750   /// Same as Value::replaceAllUsesWith.
2751   void replaceAllUsesWith(Instruction *Inst, Value *New);
2752 
2753   /// Same as Value::mutateType.
2754   void mutateType(Instruction *Inst, Type *NewTy);
2755 
2756   /// Same as IRBuilder::createTrunc.
2757   Value *createTrunc(Instruction *Opnd, Type *Ty);
2758 
2759   /// Same as IRBuilder::createSExt.
2760   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2761 
2762   /// Same as IRBuilder::createZExt.
2763   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2764 
2765   /// Same as Instruction::moveBefore.
2766   void moveBefore(Instruction *Inst, Instruction *Before);
2767   /// @}
2768 
2769 private:
2770   /// The ordered list of actions made so far.
2771   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2772 
2773   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2774 
2775   SetOfInstrs &RemovedInsts;
2776 };
2777 
2778 } // end anonymous namespace
2779 
2780 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2781                                           Value *NewVal) {
2782   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2783       Inst, Idx, NewVal));
2784 }
2785 
2786 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2787                                                 Value *NewVal) {
2788   Actions.push_back(
2789       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2790           Inst, RemovedInsts, NewVal));
2791 }
2792 
2793 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2794                                                   Value *New) {
2795   Actions.push_back(
2796       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2797 }
2798 
2799 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2800   Actions.push_back(
2801       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2802 }
2803 
2804 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2805                                              Type *Ty) {
2806   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2807   Value *Val = Ptr->getBuiltValue();
2808   Actions.push_back(std::move(Ptr));
2809   return Val;
2810 }
2811 
2812 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2813                                             Value *Opnd, Type *Ty) {
2814   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2815   Value *Val = Ptr->getBuiltValue();
2816   Actions.push_back(std::move(Ptr));
2817   return Val;
2818 }
2819 
2820 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2821                                             Value *Opnd, Type *Ty) {
2822   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2823   Value *Val = Ptr->getBuiltValue();
2824   Actions.push_back(std::move(Ptr));
2825   return Val;
2826 }
2827 
2828 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2829                                           Instruction *Before) {
2830   Actions.push_back(
2831       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2832           Inst, Before));
2833 }
2834 
2835 TypePromotionTransaction::ConstRestorationPt
2836 TypePromotionTransaction::getRestorationPoint() const {
2837   return !Actions.empty() ? Actions.back().get() : nullptr;
2838 }
2839 
2840 void TypePromotionTransaction::commit() {
2841   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2842        ++It)
2843     (*It)->commit();
2844   Actions.clear();
2845 }
2846 
2847 void TypePromotionTransaction::rollback(
2848     TypePromotionTransaction::ConstRestorationPt Point) {
2849   while (!Actions.empty() && Point != Actions.back().get()) {
2850     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2851     Curr->undo();
2852   }
2853 }
2854 
2855 namespace {
2856 
2857 /// A helper class for matching addressing modes.
2858 ///
2859 /// This encapsulates the logic for matching the target-legal addressing modes.
2860 class AddressingModeMatcher {
2861   SmallVectorImpl<Instruction*> &AddrModeInsts;
2862   const TargetLowering &TLI;
2863   const TargetRegisterInfo &TRI;
2864   const DataLayout &DL;
2865 
2866   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2867   /// the memory instruction that we're computing this address for.
2868   Type *AccessTy;
2869   unsigned AddrSpace;
2870   Instruction *MemoryInst;
2871 
2872   /// This is the addressing mode that we're building up. This is
2873   /// part of the return value of this addressing mode matching stuff.
2874   ExtAddrMode &AddrMode;
2875 
2876   /// The instructions inserted by other CodeGenPrepare optimizations.
2877   const SetOfInstrs &InsertedInsts;
2878 
2879   /// A map from the instructions to their type before promotion.
2880   InstrToOrigTy &PromotedInsts;
2881 
2882   /// The ongoing transaction where every action should be registered.
2883   TypePromotionTransaction &TPT;
2884 
2885   // A GEP which has too large offset to be folded into the addressing mode.
2886   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2887 
2888   /// This is set to true when we should not do profitability checks.
2889   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2890   bool IgnoreProfitability;
2891 
2892   /// True if we are optimizing for size.
2893   bool OptSize;
2894 
2895   ProfileSummaryInfo *PSI;
2896   BlockFrequencyInfo *BFI;
2897 
2898   AddressingModeMatcher(
2899       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2900       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2901       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2902       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2903       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2904       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
2905       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2906         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2907         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2908         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
2909         OptSize(OptSize), PSI(PSI), BFI(BFI) {
2910     IgnoreProfitability = false;
2911   }
2912 
2913 public:
2914   /// Find the maximal addressing mode that a load/store of V can fold,
2915   /// give an access type of AccessTy.  This returns a list of involved
2916   /// instructions in AddrModeInsts.
2917   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2918   /// optimizations.
2919   /// \p PromotedInsts maps the instructions to their type before promotion.
2920   /// \p The ongoing transaction where every action should be registered.
2921   static ExtAddrMode
2922   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2923         SmallVectorImpl<Instruction *> &AddrModeInsts,
2924         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2925         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2926         TypePromotionTransaction &TPT,
2927         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
2928         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
2929     ExtAddrMode Result;
2930 
2931     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2932                                          MemoryInst, Result, InsertedInsts,
2933                                          PromotedInsts, TPT, LargeOffsetGEP,
2934                                          OptSize, PSI, BFI)
2935                        .matchAddr(V, 0);
2936     (void)Success; assert(Success && "Couldn't select *anything*?");
2937     return Result;
2938   }
2939 
2940 private:
2941   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2942   bool matchAddr(Value *Addr, unsigned Depth);
2943   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2944                           bool *MovedAway = nullptr);
2945   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2946                                             ExtAddrMode &AMBefore,
2947                                             ExtAddrMode &AMAfter);
2948   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2949   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2950                              Value *PromotedOperand) const;
2951 };
2952 
2953 class PhiNodeSet;
2954 
2955 /// An iterator for PhiNodeSet.
2956 class PhiNodeSetIterator {
2957   PhiNodeSet * const Set;
2958   size_t CurrentIndex = 0;
2959 
2960 public:
2961   /// The constructor. Start should point to either a valid element, or be equal
2962   /// to the size of the underlying SmallVector of the PhiNodeSet.
2963   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2964   PHINode * operator*() const;
2965   PhiNodeSetIterator& operator++();
2966   bool operator==(const PhiNodeSetIterator &RHS) const;
2967   bool operator!=(const PhiNodeSetIterator &RHS) const;
2968 };
2969 
2970 /// Keeps a set of PHINodes.
2971 ///
2972 /// This is a minimal set implementation for a specific use case:
2973 /// It is very fast when there are very few elements, but also provides good
2974 /// performance when there are many. It is similar to SmallPtrSet, but also
2975 /// provides iteration by insertion order, which is deterministic and stable
2976 /// across runs. It is also similar to SmallSetVector, but provides removing
2977 /// elements in O(1) time. This is achieved by not actually removing the element
2978 /// from the underlying vector, so comes at the cost of using more memory, but
2979 /// that is fine, since PhiNodeSets are used as short lived objects.
2980 class PhiNodeSet {
2981   friend class PhiNodeSetIterator;
2982 
2983   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2984   using iterator =  PhiNodeSetIterator;
2985 
2986   /// Keeps the elements in the order of their insertion in the underlying
2987   /// vector. To achieve constant time removal, it never deletes any element.
2988   SmallVector<PHINode *, 32> NodeList;
2989 
2990   /// Keeps the elements in the underlying set implementation. This (and not the
2991   /// NodeList defined above) is the source of truth on whether an element
2992   /// is actually in the collection.
2993   MapType NodeMap;
2994 
2995   /// Points to the first valid (not deleted) element when the set is not empty
2996   /// and the value is not zero. Equals to the size of the underlying vector
2997   /// when the set is empty. When the value is 0, as in the beginning, the
2998   /// first element may or may not be valid.
2999   size_t FirstValidElement = 0;
3000 
3001 public:
3002   /// Inserts a new element to the collection.
3003   /// \returns true if the element is actually added, i.e. was not in the
3004   /// collection before the operation.
3005   bool insert(PHINode *Ptr) {
3006     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3007       NodeList.push_back(Ptr);
3008       return true;
3009     }
3010     return false;
3011   }
3012 
3013   /// Removes the element from the collection.
3014   /// \returns whether the element is actually removed, i.e. was in the
3015   /// collection before the operation.
3016   bool erase(PHINode *Ptr) {
3017     auto it = NodeMap.find(Ptr);
3018     if (it != NodeMap.end()) {
3019       NodeMap.erase(Ptr);
3020       SkipRemovedElements(FirstValidElement);
3021       return true;
3022     }
3023     return false;
3024   }
3025 
3026   /// Removes all elements and clears the collection.
3027   void clear() {
3028     NodeMap.clear();
3029     NodeList.clear();
3030     FirstValidElement = 0;
3031   }
3032 
3033   /// \returns an iterator that will iterate the elements in the order of
3034   /// insertion.
3035   iterator begin() {
3036     if (FirstValidElement == 0)
3037       SkipRemovedElements(FirstValidElement);
3038     return PhiNodeSetIterator(this, FirstValidElement);
3039   }
3040 
3041   /// \returns an iterator that points to the end of the collection.
3042   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3043 
3044   /// Returns the number of elements in the collection.
3045   size_t size() const {
3046     return NodeMap.size();
3047   }
3048 
3049   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3050   size_t count(PHINode *Ptr) const {
3051     return NodeMap.count(Ptr);
3052   }
3053 
3054 private:
3055   /// Updates the CurrentIndex so that it will point to a valid element.
3056   ///
3057   /// If the element of NodeList at CurrentIndex is valid, it does not
3058   /// change it. If there are no more valid elements, it updates CurrentIndex
3059   /// to point to the end of the NodeList.
3060   void SkipRemovedElements(size_t &CurrentIndex) {
3061     while (CurrentIndex < NodeList.size()) {
3062       auto it = NodeMap.find(NodeList[CurrentIndex]);
3063       // If the element has been deleted and added again later, NodeMap will
3064       // point to a different index, so CurrentIndex will still be invalid.
3065       if (it != NodeMap.end() && it->second == CurrentIndex)
3066         break;
3067       ++CurrentIndex;
3068     }
3069   }
3070 };
3071 
3072 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3073     : Set(Set), CurrentIndex(Start) {}
3074 
3075 PHINode * PhiNodeSetIterator::operator*() const {
3076   assert(CurrentIndex < Set->NodeList.size() &&
3077          "PhiNodeSet access out of range");
3078   return Set->NodeList[CurrentIndex];
3079 }
3080 
3081 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3082   assert(CurrentIndex < Set->NodeList.size() &&
3083          "PhiNodeSet access out of range");
3084   ++CurrentIndex;
3085   Set->SkipRemovedElements(CurrentIndex);
3086   return *this;
3087 }
3088 
3089 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3090   return CurrentIndex == RHS.CurrentIndex;
3091 }
3092 
3093 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3094   return !((*this) == RHS);
3095 }
3096 
3097 /// Keep track of simplification of Phi nodes.
3098 /// Accept the set of all phi nodes and erase phi node from this set
3099 /// if it is simplified.
3100 class SimplificationTracker {
3101   DenseMap<Value *, Value *> Storage;
3102   const SimplifyQuery &SQ;
3103   // Tracks newly created Phi nodes. The elements are iterated by insertion
3104   // order.
3105   PhiNodeSet AllPhiNodes;
3106   // Tracks newly created Select nodes.
3107   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3108 
3109 public:
3110   SimplificationTracker(const SimplifyQuery &sq)
3111       : SQ(sq) {}
3112 
3113   Value *Get(Value *V) {
3114     do {
3115       auto SV = Storage.find(V);
3116       if (SV == Storage.end())
3117         return V;
3118       V = SV->second;
3119     } while (true);
3120   }
3121 
3122   Value *Simplify(Value *Val) {
3123     SmallVector<Value *, 32> WorkList;
3124     SmallPtrSet<Value *, 32> Visited;
3125     WorkList.push_back(Val);
3126     while (!WorkList.empty()) {
3127       auto P = WorkList.pop_back_val();
3128       if (!Visited.insert(P).second)
3129         continue;
3130       if (auto *PI = dyn_cast<Instruction>(P))
3131         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3132           for (auto *U : PI->users())
3133             WorkList.push_back(cast<Value>(U));
3134           Put(PI, V);
3135           PI->replaceAllUsesWith(V);
3136           if (auto *PHI = dyn_cast<PHINode>(PI))
3137             AllPhiNodes.erase(PHI);
3138           if (auto *Select = dyn_cast<SelectInst>(PI))
3139             AllSelectNodes.erase(Select);
3140           PI->eraseFromParent();
3141         }
3142     }
3143     return Get(Val);
3144   }
3145 
3146   void Put(Value *From, Value *To) {
3147     Storage.insert({ From, To });
3148   }
3149 
3150   void ReplacePhi(PHINode *From, PHINode *To) {
3151     Value* OldReplacement = Get(From);
3152     while (OldReplacement != From) {
3153       From = To;
3154       To = dyn_cast<PHINode>(OldReplacement);
3155       OldReplacement = Get(From);
3156     }
3157     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3158     Put(From, To);
3159     From->replaceAllUsesWith(To);
3160     AllPhiNodes.erase(From);
3161     From->eraseFromParent();
3162   }
3163 
3164   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3165 
3166   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3167 
3168   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3169 
3170   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3171 
3172   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3173 
3174   void destroyNewNodes(Type *CommonType) {
3175     // For safe erasing, replace the uses with dummy value first.
3176     auto Dummy = UndefValue::get(CommonType);
3177     for (auto I : AllPhiNodes) {
3178       I->replaceAllUsesWith(Dummy);
3179       I->eraseFromParent();
3180     }
3181     AllPhiNodes.clear();
3182     for (auto I : AllSelectNodes) {
3183       I->replaceAllUsesWith(Dummy);
3184       I->eraseFromParent();
3185     }
3186     AllSelectNodes.clear();
3187   }
3188 };
3189 
3190 /// A helper class for combining addressing modes.
3191 class AddressingModeCombiner {
3192   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3193   typedef std::pair<PHINode *, PHINode *> PHIPair;
3194 
3195 private:
3196   /// The addressing modes we've collected.
3197   SmallVector<ExtAddrMode, 16> AddrModes;
3198 
3199   /// The field in which the AddrModes differ, when we have more than one.
3200   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3201 
3202   /// Are the AddrModes that we have all just equal to their original values?
3203   bool AllAddrModesTrivial = true;
3204 
3205   /// Common Type for all different fields in addressing modes.
3206   Type *CommonType;
3207 
3208   /// SimplifyQuery for simplifyInstruction utility.
3209   const SimplifyQuery &SQ;
3210 
3211   /// Original Address.
3212   Value *Original;
3213 
3214 public:
3215   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3216       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3217 
3218   /// Get the combined AddrMode
3219   const ExtAddrMode &getAddrMode() const {
3220     return AddrModes[0];
3221   }
3222 
3223   /// Add a new AddrMode if it's compatible with the AddrModes we already
3224   /// have.
3225   /// \return True iff we succeeded in doing so.
3226   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3227     // Take note of if we have any non-trivial AddrModes, as we need to detect
3228     // when all AddrModes are trivial as then we would introduce a phi or select
3229     // which just duplicates what's already there.
3230     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3231 
3232     // If this is the first addrmode then everything is fine.
3233     if (AddrModes.empty()) {
3234       AddrModes.emplace_back(NewAddrMode);
3235       return true;
3236     }
3237 
3238     // Figure out how different this is from the other address modes, which we
3239     // can do just by comparing against the first one given that we only care
3240     // about the cumulative difference.
3241     ExtAddrMode::FieldName ThisDifferentField =
3242       AddrModes[0].compare(NewAddrMode);
3243     if (DifferentField == ExtAddrMode::NoField)
3244       DifferentField = ThisDifferentField;
3245     else if (DifferentField != ThisDifferentField)
3246       DifferentField = ExtAddrMode::MultipleFields;
3247 
3248     // If NewAddrMode differs in more than one dimension we cannot handle it.
3249     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3250 
3251     // If Scale Field is different then we reject.
3252     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3253 
3254     // We also must reject the case when base offset is different and
3255     // scale reg is not null, we cannot handle this case due to merge of
3256     // different offsets will be used as ScaleReg.
3257     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3258                               !NewAddrMode.ScaledReg);
3259 
3260     // We also must reject the case when GV is different and BaseReg installed
3261     // due to we want to use base reg as a merge of GV values.
3262     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3263                               !NewAddrMode.HasBaseReg);
3264 
3265     // Even if NewAddMode is the same we still need to collect it due to
3266     // original value is different. And later we will need all original values
3267     // as anchors during finding the common Phi node.
3268     if (CanHandle)
3269       AddrModes.emplace_back(NewAddrMode);
3270     else
3271       AddrModes.clear();
3272 
3273     return CanHandle;
3274   }
3275 
3276   /// Combine the addressing modes we've collected into a single
3277   /// addressing mode.
3278   /// \return True iff we successfully combined them or we only had one so
3279   /// didn't need to combine them anyway.
3280   bool combineAddrModes() {
3281     // If we have no AddrModes then they can't be combined.
3282     if (AddrModes.size() == 0)
3283       return false;
3284 
3285     // A single AddrMode can trivially be combined.
3286     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3287       return true;
3288 
3289     // If the AddrModes we collected are all just equal to the value they are
3290     // derived from then combining them wouldn't do anything useful.
3291     if (AllAddrModesTrivial)
3292       return false;
3293 
3294     if (!addrModeCombiningAllowed())
3295       return false;
3296 
3297     // Build a map between <original value, basic block where we saw it> to
3298     // value of base register.
3299     // Bail out if there is no common type.
3300     FoldAddrToValueMapping Map;
3301     if (!initializeMap(Map))
3302       return false;
3303 
3304     Value *CommonValue = findCommon(Map);
3305     if (CommonValue)
3306       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3307     return CommonValue != nullptr;
3308   }
3309 
3310 private:
3311   /// Initialize Map with anchor values. For address seen
3312   /// we set the value of different field saw in this address.
3313   /// At the same time we find a common type for different field we will
3314   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3315   /// Return false if there is no common type found.
3316   bool initializeMap(FoldAddrToValueMapping &Map) {
3317     // Keep track of keys where the value is null. We will need to replace it
3318     // with constant null when we know the common type.
3319     SmallVector<Value *, 2> NullValue;
3320     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3321     for (auto &AM : AddrModes) {
3322       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3323       if (DV) {
3324         auto *Type = DV->getType();
3325         if (CommonType && CommonType != Type)
3326           return false;
3327         CommonType = Type;
3328         Map[AM.OriginalValue] = DV;
3329       } else {
3330         NullValue.push_back(AM.OriginalValue);
3331       }
3332     }
3333     assert(CommonType && "At least one non-null value must be!");
3334     for (auto *V : NullValue)
3335       Map[V] = Constant::getNullValue(CommonType);
3336     return true;
3337   }
3338 
3339   /// We have mapping between value A and other value B where B was a field in
3340   /// addressing mode represented by A. Also we have an original value C
3341   /// representing an address we start with. Traversing from C through phi and
3342   /// selects we ended up with A's in a map. This utility function tries to find
3343   /// a value V which is a field in addressing mode C and traversing through phi
3344   /// nodes and selects we will end up in corresponded values B in a map.
3345   /// The utility will create a new Phi/Selects if needed.
3346   // The simple example looks as follows:
3347   // BB1:
3348   //   p1 = b1 + 40
3349   //   br cond BB2, BB3
3350   // BB2:
3351   //   p2 = b2 + 40
3352   //   br BB3
3353   // BB3:
3354   //   p = phi [p1, BB1], [p2, BB2]
3355   //   v = load p
3356   // Map is
3357   //   p1 -> b1
3358   //   p2 -> b2
3359   // Request is
3360   //   p -> ?
3361   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3362   Value *findCommon(FoldAddrToValueMapping &Map) {
3363     // Tracks the simplification of newly created phi nodes. The reason we use
3364     // this mapping is because we will add new created Phi nodes in AddrToBase.
3365     // Simplification of Phi nodes is recursive, so some Phi node may
3366     // be simplified after we added it to AddrToBase. In reality this
3367     // simplification is possible only if original phi/selects were not
3368     // simplified yet.
3369     // Using this mapping we can find the current value in AddrToBase.
3370     SimplificationTracker ST(SQ);
3371 
3372     // First step, DFS to create PHI nodes for all intermediate blocks.
3373     // Also fill traverse order for the second step.
3374     SmallVector<Value *, 32> TraverseOrder;
3375     InsertPlaceholders(Map, TraverseOrder, ST);
3376 
3377     // Second Step, fill new nodes by merged values and simplify if possible.
3378     FillPlaceholders(Map, TraverseOrder, ST);
3379 
3380     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3381       ST.destroyNewNodes(CommonType);
3382       return nullptr;
3383     }
3384 
3385     // Now we'd like to match New Phi nodes to existed ones.
3386     unsigned PhiNotMatchedCount = 0;
3387     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3388       ST.destroyNewNodes(CommonType);
3389       return nullptr;
3390     }
3391 
3392     auto *Result = ST.Get(Map.find(Original)->second);
3393     if (Result) {
3394       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3395       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3396     }
3397     return Result;
3398   }
3399 
3400   /// Try to match PHI node to Candidate.
3401   /// Matcher tracks the matched Phi nodes.
3402   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3403                     SmallSetVector<PHIPair, 8> &Matcher,
3404                     PhiNodeSet &PhiNodesToMatch) {
3405     SmallVector<PHIPair, 8> WorkList;
3406     Matcher.insert({ PHI, Candidate });
3407     SmallSet<PHINode *, 8> MatchedPHIs;
3408     MatchedPHIs.insert(PHI);
3409     WorkList.push_back({ PHI, Candidate });
3410     SmallSet<PHIPair, 8> Visited;
3411     while (!WorkList.empty()) {
3412       auto Item = WorkList.pop_back_val();
3413       if (!Visited.insert(Item).second)
3414         continue;
3415       // We iterate over all incoming values to Phi to compare them.
3416       // If values are different and both of them Phi and the first one is a
3417       // Phi we added (subject to match) and both of them is in the same basic
3418       // block then we can match our pair if values match. So we state that
3419       // these values match and add it to work list to verify that.
3420       for (auto B : Item.first->blocks()) {
3421         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3422         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3423         if (FirstValue == SecondValue)
3424           continue;
3425 
3426         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3427         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3428 
3429         // One of them is not Phi or
3430         // The first one is not Phi node from the set we'd like to match or
3431         // Phi nodes from different basic blocks then
3432         // we will not be able to match.
3433         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3434             FirstPhi->getParent() != SecondPhi->getParent())
3435           return false;
3436 
3437         // If we already matched them then continue.
3438         if (Matcher.count({ FirstPhi, SecondPhi }))
3439           continue;
3440         // So the values are different and does not match. So we need them to
3441         // match. (But we register no more than one match per PHI node, so that
3442         // we won't later try to replace them twice.)
3443         if (MatchedPHIs.insert(FirstPhi).second)
3444           Matcher.insert({ FirstPhi, SecondPhi });
3445         // But me must check it.
3446         WorkList.push_back({ FirstPhi, SecondPhi });
3447       }
3448     }
3449     return true;
3450   }
3451 
3452   /// For the given set of PHI nodes (in the SimplificationTracker) try
3453   /// to find their equivalents.
3454   /// Returns false if this matching fails and creation of new Phi is disabled.
3455   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3456                    unsigned &PhiNotMatchedCount) {
3457     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3458     // order, so the replacements (ReplacePhi) are also done in a deterministic
3459     // order.
3460     SmallSetVector<PHIPair, 8> Matched;
3461     SmallPtrSet<PHINode *, 8> WillNotMatch;
3462     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3463     while (PhiNodesToMatch.size()) {
3464       PHINode *PHI = *PhiNodesToMatch.begin();
3465 
3466       // Add us, if no Phi nodes in the basic block we do not match.
3467       WillNotMatch.clear();
3468       WillNotMatch.insert(PHI);
3469 
3470       // Traverse all Phis until we found equivalent or fail to do that.
3471       bool IsMatched = false;
3472       for (auto &P : PHI->getParent()->phis()) {
3473         if (&P == PHI)
3474           continue;
3475         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3476           break;
3477         // If it does not match, collect all Phi nodes from matcher.
3478         // if we end up with no match, them all these Phi nodes will not match
3479         // later.
3480         for (auto M : Matched)
3481           WillNotMatch.insert(M.first);
3482         Matched.clear();
3483       }
3484       if (IsMatched) {
3485         // Replace all matched values and erase them.
3486         for (auto MV : Matched)
3487           ST.ReplacePhi(MV.first, MV.second);
3488         Matched.clear();
3489         continue;
3490       }
3491       // If we are not allowed to create new nodes then bail out.
3492       if (!AllowNewPhiNodes)
3493         return false;
3494       // Just remove all seen values in matcher. They will not match anything.
3495       PhiNotMatchedCount += WillNotMatch.size();
3496       for (auto *P : WillNotMatch)
3497         PhiNodesToMatch.erase(P);
3498     }
3499     return true;
3500   }
3501   /// Fill the placeholders with values from predecessors and simplify them.
3502   void FillPlaceholders(FoldAddrToValueMapping &Map,
3503                         SmallVectorImpl<Value *> &TraverseOrder,
3504                         SimplificationTracker &ST) {
3505     while (!TraverseOrder.empty()) {
3506       Value *Current = TraverseOrder.pop_back_val();
3507       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3508       Value *V = Map[Current];
3509 
3510       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3511         // CurrentValue also must be Select.
3512         auto *CurrentSelect = cast<SelectInst>(Current);
3513         auto *TrueValue = CurrentSelect->getTrueValue();
3514         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3515         Select->setTrueValue(ST.Get(Map[TrueValue]));
3516         auto *FalseValue = CurrentSelect->getFalseValue();
3517         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3518         Select->setFalseValue(ST.Get(Map[FalseValue]));
3519       } else {
3520         // Must be a Phi node then.
3521         auto *PHI = cast<PHINode>(V);
3522         // Fill the Phi node with values from predecessors.
3523         for (auto B : predecessors(PHI->getParent())) {
3524           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3525           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3526           PHI->addIncoming(ST.Get(Map[PV]), B);
3527         }
3528       }
3529       Map[Current] = ST.Simplify(V);
3530     }
3531   }
3532 
3533   /// Starting from original value recursively iterates over def-use chain up to
3534   /// known ending values represented in a map. For each traversed phi/select
3535   /// inserts a placeholder Phi or Select.
3536   /// Reports all new created Phi/Select nodes by adding them to set.
3537   /// Also reports and order in what values have been traversed.
3538   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3539                           SmallVectorImpl<Value *> &TraverseOrder,
3540                           SimplificationTracker &ST) {
3541     SmallVector<Value *, 32> Worklist;
3542     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3543            "Address must be a Phi or Select node");
3544     auto *Dummy = UndefValue::get(CommonType);
3545     Worklist.push_back(Original);
3546     while (!Worklist.empty()) {
3547       Value *Current = Worklist.pop_back_val();
3548       // if it is already visited or it is an ending value then skip it.
3549       if (Map.find(Current) != Map.end())
3550         continue;
3551       TraverseOrder.push_back(Current);
3552 
3553       // CurrentValue must be a Phi node or select. All others must be covered
3554       // by anchors.
3555       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3556         // Is it OK to get metadata from OrigSelect?!
3557         // Create a Select placeholder with dummy value.
3558         SelectInst *Select = SelectInst::Create(
3559             CurrentSelect->getCondition(), Dummy, Dummy,
3560             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3561         Map[Current] = Select;
3562         ST.insertNewSelect(Select);
3563         // We are interested in True and False values.
3564         Worklist.push_back(CurrentSelect->getTrueValue());
3565         Worklist.push_back(CurrentSelect->getFalseValue());
3566       } else {
3567         // It must be a Phi node then.
3568         PHINode *CurrentPhi = cast<PHINode>(Current);
3569         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3570         PHINode *PHI =
3571             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3572         Map[Current] = PHI;
3573         ST.insertNewPhi(PHI);
3574         for (Value *P : CurrentPhi->incoming_values())
3575           Worklist.push_back(P);
3576       }
3577     }
3578   }
3579 
3580   bool addrModeCombiningAllowed() {
3581     if (DisableComplexAddrModes)
3582       return false;
3583     switch (DifferentField) {
3584     default:
3585       return false;
3586     case ExtAddrMode::BaseRegField:
3587       return AddrSinkCombineBaseReg;
3588     case ExtAddrMode::BaseGVField:
3589       return AddrSinkCombineBaseGV;
3590     case ExtAddrMode::BaseOffsField:
3591       return AddrSinkCombineBaseOffs;
3592     case ExtAddrMode::ScaledRegField:
3593       return AddrSinkCombineScaledReg;
3594     }
3595   }
3596 };
3597 } // end anonymous namespace
3598 
3599 /// Try adding ScaleReg*Scale to the current addressing mode.
3600 /// Return true and update AddrMode if this addr mode is legal for the target,
3601 /// false if not.
3602 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3603                                              unsigned Depth) {
3604   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3605   // mode.  Just process that directly.
3606   if (Scale == 1)
3607     return matchAddr(ScaleReg, Depth);
3608 
3609   // If the scale is 0, it takes nothing to add this.
3610   if (Scale == 0)
3611     return true;
3612 
3613   // If we already have a scale of this value, we can add to it, otherwise, we
3614   // need an available scale field.
3615   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3616     return false;
3617 
3618   ExtAddrMode TestAddrMode = AddrMode;
3619 
3620   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3621   // [A+B + A*7] -> [B+A*8].
3622   TestAddrMode.Scale += Scale;
3623   TestAddrMode.ScaledReg = ScaleReg;
3624 
3625   // If the new address isn't legal, bail out.
3626   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3627     return false;
3628 
3629   // It was legal, so commit it.
3630   AddrMode = TestAddrMode;
3631 
3632   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3633   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3634   // X*Scale + C*Scale to addr mode.
3635   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3636   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3637       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3638     TestAddrMode.InBounds = false;
3639     TestAddrMode.ScaledReg = AddLHS;
3640     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3641 
3642     // If this addressing mode is legal, commit it and remember that we folded
3643     // this instruction.
3644     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3645       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3646       AddrMode = TestAddrMode;
3647       return true;
3648     }
3649   }
3650 
3651   // Otherwise, not (x+c)*scale, just return what we have.
3652   return true;
3653 }
3654 
3655 /// This is a little filter, which returns true if an addressing computation
3656 /// involving I might be folded into a load/store accessing it.
3657 /// This doesn't need to be perfect, but needs to accept at least
3658 /// the set of instructions that MatchOperationAddr can.
3659 static bool MightBeFoldableInst(Instruction *I) {
3660   switch (I->getOpcode()) {
3661   case Instruction::BitCast:
3662   case Instruction::AddrSpaceCast:
3663     // Don't touch identity bitcasts.
3664     if (I->getType() == I->getOperand(0)->getType())
3665       return false;
3666     return I->getType()->isIntOrPtrTy();
3667   case Instruction::PtrToInt:
3668     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3669     return true;
3670   case Instruction::IntToPtr:
3671     // We know the input is intptr_t, so this is foldable.
3672     return true;
3673   case Instruction::Add:
3674     return true;
3675   case Instruction::Mul:
3676   case Instruction::Shl:
3677     // Can only handle X*C and X << C.
3678     return isa<ConstantInt>(I->getOperand(1));
3679   case Instruction::GetElementPtr:
3680     return true;
3681   default:
3682     return false;
3683   }
3684 }
3685 
3686 /// Check whether or not \p Val is a legal instruction for \p TLI.
3687 /// \note \p Val is assumed to be the product of some type promotion.
3688 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3689 /// to be legal, as the non-promoted value would have had the same state.
3690 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3691                                        const DataLayout &DL, Value *Val) {
3692   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3693   if (!PromotedInst)
3694     return false;
3695   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3696   // If the ISDOpcode is undefined, it was undefined before the promotion.
3697   if (!ISDOpcode)
3698     return true;
3699   // Otherwise, check if the promoted instruction is legal or not.
3700   return TLI.isOperationLegalOrCustom(
3701       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3702 }
3703 
3704 namespace {
3705 
3706 /// Hepler class to perform type promotion.
3707 class TypePromotionHelper {
3708   /// Utility function to add a promoted instruction \p ExtOpnd to
3709   /// \p PromotedInsts and record the type of extension we have seen.
3710   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3711                               Instruction *ExtOpnd,
3712                               bool IsSExt) {
3713     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3714     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3715     if (It != PromotedInsts.end()) {
3716       // If the new extension is same as original, the information in
3717       // PromotedInsts[ExtOpnd] is still correct.
3718       if (It->second.getInt() == ExtTy)
3719         return;
3720 
3721       // Now the new extension is different from old extension, we make
3722       // the type information invalid by setting extension type to
3723       // BothExtension.
3724       ExtTy = BothExtension;
3725     }
3726     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3727   }
3728 
3729   /// Utility function to query the original type of instruction \p Opnd
3730   /// with a matched extension type. If the extension doesn't match, we
3731   /// cannot use the information we had on the original type.
3732   /// BothExtension doesn't match any extension type.
3733   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3734                                  Instruction *Opnd,
3735                                  bool IsSExt) {
3736     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3737     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3738     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3739       return It->second.getPointer();
3740     return nullptr;
3741   }
3742 
3743   /// Utility function to check whether or not a sign or zero extension
3744   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3745   /// either using the operands of \p Inst or promoting \p Inst.
3746   /// The type of the extension is defined by \p IsSExt.
3747   /// In other words, check if:
3748   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3749   /// #1 Promotion applies:
3750   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3751   /// #2 Operand reuses:
3752   /// ext opnd1 to ConsideredExtType.
3753   /// \p PromotedInsts maps the instructions to their type before promotion.
3754   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3755                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3756 
3757   /// Utility function to determine if \p OpIdx should be promoted when
3758   /// promoting \p Inst.
3759   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3760     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3761   }
3762 
3763   /// Utility function to promote the operand of \p Ext when this
3764   /// operand is a promotable trunc or sext or zext.
3765   /// \p PromotedInsts maps the instructions to their type before promotion.
3766   /// \p CreatedInstsCost[out] contains the cost of all instructions
3767   /// created to promote the operand of Ext.
3768   /// Newly added extensions are inserted in \p Exts.
3769   /// Newly added truncates are inserted in \p Truncs.
3770   /// Should never be called directly.
3771   /// \return The promoted value which is used instead of Ext.
3772   static Value *promoteOperandForTruncAndAnyExt(
3773       Instruction *Ext, TypePromotionTransaction &TPT,
3774       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3775       SmallVectorImpl<Instruction *> *Exts,
3776       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3777 
3778   /// Utility function to promote the operand of \p Ext when this
3779   /// operand is promotable and is not a supported trunc or sext.
3780   /// \p PromotedInsts maps the instructions to their type before promotion.
3781   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3782   /// created to promote the operand of Ext.
3783   /// Newly added extensions are inserted in \p Exts.
3784   /// Newly added truncates are inserted in \p Truncs.
3785   /// Should never be called directly.
3786   /// \return The promoted value which is used instead of Ext.
3787   static Value *promoteOperandForOther(Instruction *Ext,
3788                                        TypePromotionTransaction &TPT,
3789                                        InstrToOrigTy &PromotedInsts,
3790                                        unsigned &CreatedInstsCost,
3791                                        SmallVectorImpl<Instruction *> *Exts,
3792                                        SmallVectorImpl<Instruction *> *Truncs,
3793                                        const TargetLowering &TLI, bool IsSExt);
3794 
3795   /// \see promoteOperandForOther.
3796   static Value *signExtendOperandForOther(
3797       Instruction *Ext, TypePromotionTransaction &TPT,
3798       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3799       SmallVectorImpl<Instruction *> *Exts,
3800       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3801     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3802                                   Exts, Truncs, TLI, true);
3803   }
3804 
3805   /// \see promoteOperandForOther.
3806   static Value *zeroExtendOperandForOther(
3807       Instruction *Ext, TypePromotionTransaction &TPT,
3808       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3809       SmallVectorImpl<Instruction *> *Exts,
3810       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3811     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3812                                   Exts, Truncs, TLI, false);
3813   }
3814 
3815 public:
3816   /// Type for the utility function that promotes the operand of Ext.
3817   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3818                             InstrToOrigTy &PromotedInsts,
3819                             unsigned &CreatedInstsCost,
3820                             SmallVectorImpl<Instruction *> *Exts,
3821                             SmallVectorImpl<Instruction *> *Truncs,
3822                             const TargetLowering &TLI);
3823 
3824   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3825   /// action to promote the operand of \p Ext instead of using Ext.
3826   /// \return NULL if no promotable action is possible with the current
3827   /// sign extension.
3828   /// \p InsertedInsts keeps track of all the instructions inserted by the
3829   /// other CodeGenPrepare optimizations. This information is important
3830   /// because we do not want to promote these instructions as CodeGenPrepare
3831   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3832   /// \p PromotedInsts maps the instructions to their type before promotion.
3833   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3834                           const TargetLowering &TLI,
3835                           const InstrToOrigTy &PromotedInsts);
3836 };
3837 
3838 } // end anonymous namespace
3839 
3840 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3841                                         Type *ConsideredExtType,
3842                                         const InstrToOrigTy &PromotedInsts,
3843                                         bool IsSExt) {
3844   // The promotion helper does not know how to deal with vector types yet.
3845   // To be able to fix that, we would need to fix the places where we
3846   // statically extend, e.g., constants and such.
3847   if (Inst->getType()->isVectorTy())
3848     return false;
3849 
3850   // We can always get through zext.
3851   if (isa<ZExtInst>(Inst))
3852     return true;
3853 
3854   // sext(sext) is ok too.
3855   if (IsSExt && isa<SExtInst>(Inst))
3856     return true;
3857 
3858   // We can get through binary operator, if it is legal. In other words, the
3859   // binary operator must have a nuw or nsw flag.
3860   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3861   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3862       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3863        (IsSExt && BinOp->hasNoSignedWrap())))
3864     return true;
3865 
3866   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3867   if ((Inst->getOpcode() == Instruction::And ||
3868        Inst->getOpcode() == Instruction::Or))
3869     return true;
3870 
3871   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3872   if (Inst->getOpcode() == Instruction::Xor) {
3873     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3874     // Make sure it is not a NOT.
3875     if (Cst && !Cst->getValue().isAllOnesValue())
3876       return true;
3877   }
3878 
3879   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3880   // It may change a poisoned value into a regular value, like
3881   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3882   //          poisoned value                    regular value
3883   // It should be OK since undef covers valid value.
3884   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3885     return true;
3886 
3887   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3888   // It may change a poisoned value into a regular value, like
3889   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3890   //          poisoned value                    regular value
3891   // It should be OK since undef covers valid value.
3892   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3893     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
3894     if (ExtInst->hasOneUse()) {
3895       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
3896       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3897         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3898         if (Cst &&
3899             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3900           return true;
3901       }
3902     }
3903   }
3904 
3905   // Check if we can do the following simplification.
3906   // ext(trunc(opnd)) --> ext(opnd)
3907   if (!isa<TruncInst>(Inst))
3908     return false;
3909 
3910   Value *OpndVal = Inst->getOperand(0);
3911   // Check if we can use this operand in the extension.
3912   // If the type is larger than the result type of the extension, we cannot.
3913   if (!OpndVal->getType()->isIntegerTy() ||
3914       OpndVal->getType()->getIntegerBitWidth() >
3915           ConsideredExtType->getIntegerBitWidth())
3916     return false;
3917 
3918   // If the operand of the truncate is not an instruction, we will not have
3919   // any information on the dropped bits.
3920   // (Actually we could for constant but it is not worth the extra logic).
3921   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3922   if (!Opnd)
3923     return false;
3924 
3925   // Check if the source of the type is narrow enough.
3926   // I.e., check that trunc just drops extended bits of the same kind of
3927   // the extension.
3928   // #1 get the type of the operand and check the kind of the extended bits.
3929   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3930   if (OpndType)
3931     ;
3932   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3933     OpndType = Opnd->getOperand(0)->getType();
3934   else
3935     return false;
3936 
3937   // #2 check that the truncate just drops extended bits.
3938   return Inst->getType()->getIntegerBitWidth() >=
3939          OpndType->getIntegerBitWidth();
3940 }
3941 
3942 TypePromotionHelper::Action TypePromotionHelper::getAction(
3943     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3944     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3945   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3946          "Unexpected instruction type");
3947   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3948   Type *ExtTy = Ext->getType();
3949   bool IsSExt = isa<SExtInst>(Ext);
3950   // If the operand of the extension is not an instruction, we cannot
3951   // get through.
3952   // If it, check we can get through.
3953   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3954     return nullptr;
3955 
3956   // Do not promote if the operand has been added by codegenprepare.
3957   // Otherwise, it means we are undoing an optimization that is likely to be
3958   // redone, thus causing potential infinite loop.
3959   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3960     return nullptr;
3961 
3962   // SExt or Trunc instructions.
3963   // Return the related handler.
3964   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3965       isa<ZExtInst>(ExtOpnd))
3966     return promoteOperandForTruncAndAnyExt;
3967 
3968   // Regular instruction.
3969   // Abort early if we will have to insert non-free instructions.
3970   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3971     return nullptr;
3972   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3973 }
3974 
3975 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3976     Instruction *SExt, TypePromotionTransaction &TPT,
3977     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3978     SmallVectorImpl<Instruction *> *Exts,
3979     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3980   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3981   // get through it and this method should not be called.
3982   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3983   Value *ExtVal = SExt;
3984   bool HasMergedNonFreeExt = false;
3985   if (isa<ZExtInst>(SExtOpnd)) {
3986     // Replace s|zext(zext(opnd))
3987     // => zext(opnd).
3988     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3989     Value *ZExt =
3990         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3991     TPT.replaceAllUsesWith(SExt, ZExt);
3992     TPT.eraseInstruction(SExt);
3993     ExtVal = ZExt;
3994   } else {
3995     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3996     // => z|sext(opnd).
3997     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3998   }
3999   CreatedInstsCost = 0;
4000 
4001   // Remove dead code.
4002   if (SExtOpnd->use_empty())
4003     TPT.eraseInstruction(SExtOpnd);
4004 
4005   // Check if the extension is still needed.
4006   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4007   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4008     if (ExtInst) {
4009       if (Exts)
4010         Exts->push_back(ExtInst);
4011       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4012     }
4013     return ExtVal;
4014   }
4015 
4016   // At this point we have: ext ty opnd to ty.
4017   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4018   Value *NextVal = ExtInst->getOperand(0);
4019   TPT.eraseInstruction(ExtInst, NextVal);
4020   return NextVal;
4021 }
4022 
4023 Value *TypePromotionHelper::promoteOperandForOther(
4024     Instruction *Ext, TypePromotionTransaction &TPT,
4025     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4026     SmallVectorImpl<Instruction *> *Exts,
4027     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4028     bool IsSExt) {
4029   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4030   // get through it and this method should not be called.
4031   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4032   CreatedInstsCost = 0;
4033   if (!ExtOpnd->hasOneUse()) {
4034     // ExtOpnd will be promoted.
4035     // All its uses, but Ext, will need to use a truncated value of the
4036     // promoted version.
4037     // Create the truncate now.
4038     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4039     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4040       // Insert it just after the definition.
4041       ITrunc->moveAfter(ExtOpnd);
4042       if (Truncs)
4043         Truncs->push_back(ITrunc);
4044     }
4045 
4046     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4047     // Restore the operand of Ext (which has been replaced by the previous call
4048     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4049     TPT.setOperand(Ext, 0, ExtOpnd);
4050   }
4051 
4052   // Get through the Instruction:
4053   // 1. Update its type.
4054   // 2. Replace the uses of Ext by Inst.
4055   // 3. Extend each operand that needs to be extended.
4056 
4057   // Remember the original type of the instruction before promotion.
4058   // This is useful to know that the high bits are sign extended bits.
4059   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4060   // Step #1.
4061   TPT.mutateType(ExtOpnd, Ext->getType());
4062   // Step #2.
4063   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4064   // Step #3.
4065   Instruction *ExtForOpnd = Ext;
4066 
4067   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4068   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4069        ++OpIdx) {
4070     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4071     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4072         !shouldExtOperand(ExtOpnd, OpIdx)) {
4073       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4074       continue;
4075     }
4076     // Check if we can statically extend the operand.
4077     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4078     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4079       LLVM_DEBUG(dbgs() << "Statically extend\n");
4080       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4081       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4082                             : Cst->getValue().zext(BitWidth);
4083       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4084       continue;
4085     }
4086     // UndefValue are typed, so we have to statically sign extend them.
4087     if (isa<UndefValue>(Opnd)) {
4088       LLVM_DEBUG(dbgs() << "Statically extend\n");
4089       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4090       continue;
4091     }
4092 
4093     // Otherwise we have to explicitly sign extend the operand.
4094     // Check if Ext was reused to extend an operand.
4095     if (!ExtForOpnd) {
4096       // If yes, create a new one.
4097       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4098       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4099         : TPT.createZExt(Ext, Opnd, Ext->getType());
4100       if (!isa<Instruction>(ValForExtOpnd)) {
4101         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4102         continue;
4103       }
4104       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4105     }
4106     if (Exts)
4107       Exts->push_back(ExtForOpnd);
4108     TPT.setOperand(ExtForOpnd, 0, Opnd);
4109 
4110     // Move the sign extension before the insertion point.
4111     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4112     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4113     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4114     // If more sext are required, new instructions will have to be created.
4115     ExtForOpnd = nullptr;
4116   }
4117   if (ExtForOpnd == Ext) {
4118     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4119     TPT.eraseInstruction(Ext);
4120   }
4121   return ExtOpnd;
4122 }
4123 
4124 /// Check whether or not promoting an instruction to a wider type is profitable.
4125 /// \p NewCost gives the cost of extension instructions created by the
4126 /// promotion.
4127 /// \p OldCost gives the cost of extension instructions before the promotion
4128 /// plus the number of instructions that have been
4129 /// matched in the addressing mode the promotion.
4130 /// \p PromotedOperand is the value that has been promoted.
4131 /// \return True if the promotion is profitable, false otherwise.
4132 bool AddressingModeMatcher::isPromotionProfitable(
4133     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4134   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4135                     << '\n');
4136   // The cost of the new extensions is greater than the cost of the
4137   // old extension plus what we folded.
4138   // This is not profitable.
4139   if (NewCost > OldCost)
4140     return false;
4141   if (NewCost < OldCost)
4142     return true;
4143   // The promotion is neutral but it may help folding the sign extension in
4144   // loads for instance.
4145   // Check that we did not create an illegal instruction.
4146   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4147 }
4148 
4149 /// Given an instruction or constant expr, see if we can fold the operation
4150 /// into the addressing mode. If so, update the addressing mode and return
4151 /// true, otherwise return false without modifying AddrMode.
4152 /// If \p MovedAway is not NULL, it contains the information of whether or
4153 /// not AddrInst has to be folded into the addressing mode on success.
4154 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4155 /// because it has been moved away.
4156 /// Thus AddrInst must not be added in the matched instructions.
4157 /// This state can happen when AddrInst is a sext, since it may be moved away.
4158 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4159 /// not be referenced anymore.
4160 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4161                                                unsigned Depth,
4162                                                bool *MovedAway) {
4163   // Avoid exponential behavior on extremely deep expression trees.
4164   if (Depth >= 5) return false;
4165 
4166   // By default, all matched instructions stay in place.
4167   if (MovedAway)
4168     *MovedAway = false;
4169 
4170   switch (Opcode) {
4171   case Instruction::PtrToInt:
4172     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4173     return matchAddr(AddrInst->getOperand(0), Depth);
4174   case Instruction::IntToPtr: {
4175     auto AS = AddrInst->getType()->getPointerAddressSpace();
4176     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4177     // This inttoptr is a no-op if the integer type is pointer sized.
4178     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4179       return matchAddr(AddrInst->getOperand(0), Depth);
4180     return false;
4181   }
4182   case Instruction::BitCast:
4183     // BitCast is always a noop, and we can handle it as long as it is
4184     // int->int or pointer->pointer (we don't want int<->fp or something).
4185     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4186         // Don't touch identity bitcasts.  These were probably put here by LSR,
4187         // and we don't want to mess around with them.  Assume it knows what it
4188         // is doing.
4189         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4190       return matchAddr(AddrInst->getOperand(0), Depth);
4191     return false;
4192   case Instruction::AddrSpaceCast: {
4193     unsigned SrcAS
4194       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4195     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4196     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4197       return matchAddr(AddrInst->getOperand(0), Depth);
4198     return false;
4199   }
4200   case Instruction::Add: {
4201     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4202     ExtAddrMode BackupAddrMode = AddrMode;
4203     unsigned OldSize = AddrModeInsts.size();
4204     // Start a transaction at this point.
4205     // The LHS may match but not the RHS.
4206     // Therefore, we need a higher level restoration point to undo partially
4207     // matched operation.
4208     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4209         TPT.getRestorationPoint();
4210 
4211     AddrMode.InBounds = false;
4212     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4213         matchAddr(AddrInst->getOperand(0), Depth+1))
4214       return true;
4215 
4216     // Restore the old addr mode info.
4217     AddrMode = BackupAddrMode;
4218     AddrModeInsts.resize(OldSize);
4219     TPT.rollback(LastKnownGood);
4220 
4221     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4222     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4223         matchAddr(AddrInst->getOperand(1), Depth+1))
4224       return true;
4225 
4226     // Otherwise we definitely can't merge the ADD in.
4227     AddrMode = BackupAddrMode;
4228     AddrModeInsts.resize(OldSize);
4229     TPT.rollback(LastKnownGood);
4230     break;
4231   }
4232   //case Instruction::Or:
4233   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4234   //break;
4235   case Instruction::Mul:
4236   case Instruction::Shl: {
4237     // Can only handle X*C and X << C.
4238     AddrMode.InBounds = false;
4239     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4240     if (!RHS || RHS->getBitWidth() > 64)
4241       return false;
4242     int64_t Scale = RHS->getSExtValue();
4243     if (Opcode == Instruction::Shl)
4244       Scale = 1LL << Scale;
4245 
4246     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4247   }
4248   case Instruction::GetElementPtr: {
4249     // Scan the GEP.  We check it if it contains constant offsets and at most
4250     // one variable offset.
4251     int VariableOperand = -1;
4252     unsigned VariableScale = 0;
4253 
4254     int64_t ConstantOffset = 0;
4255     gep_type_iterator GTI = gep_type_begin(AddrInst);
4256     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4257       if (StructType *STy = GTI.getStructTypeOrNull()) {
4258         const StructLayout *SL = DL.getStructLayout(STy);
4259         unsigned Idx =
4260           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4261         ConstantOffset += SL->getElementOffset(Idx);
4262       } else {
4263         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4264         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4265           const APInt &CVal = CI->getValue();
4266           if (CVal.getMinSignedBits() <= 64) {
4267             ConstantOffset += CVal.getSExtValue() * TypeSize;
4268             continue;
4269           }
4270         }
4271         if (TypeSize) {  // Scales of zero don't do anything.
4272           // We only allow one variable index at the moment.
4273           if (VariableOperand != -1)
4274             return false;
4275 
4276           // Remember the variable index.
4277           VariableOperand = i;
4278           VariableScale = TypeSize;
4279         }
4280       }
4281     }
4282 
4283     // A common case is for the GEP to only do a constant offset.  In this case,
4284     // just add it to the disp field and check validity.
4285     if (VariableOperand == -1) {
4286       AddrMode.BaseOffs += ConstantOffset;
4287       if (ConstantOffset == 0 ||
4288           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4289         // Check to see if we can fold the base pointer in too.
4290         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4291           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4292             AddrMode.InBounds = false;
4293           return true;
4294         }
4295       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4296                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4297                  ConstantOffset > 0) {
4298         // Record GEPs with non-zero offsets as candidates for splitting in the
4299         // event that the offset cannot fit into the r+i addressing mode.
4300         // Simple and common case that only one GEP is used in calculating the
4301         // address for the memory access.
4302         Value *Base = AddrInst->getOperand(0);
4303         auto *BaseI = dyn_cast<Instruction>(Base);
4304         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4305         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4306             (BaseI && !isa<CastInst>(BaseI) &&
4307              !isa<GetElementPtrInst>(BaseI))) {
4308           // Make sure the parent block allows inserting non-PHI instructions
4309           // before the terminator.
4310           BasicBlock *Parent =
4311               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4312           if (!Parent->getTerminator()->isEHPad())
4313             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4314         }
4315       }
4316       AddrMode.BaseOffs -= ConstantOffset;
4317       return false;
4318     }
4319 
4320     // Save the valid addressing mode in case we can't match.
4321     ExtAddrMode BackupAddrMode = AddrMode;
4322     unsigned OldSize = AddrModeInsts.size();
4323 
4324     // See if the scale and offset amount is valid for this target.
4325     AddrMode.BaseOffs += ConstantOffset;
4326     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4327       AddrMode.InBounds = false;
4328 
4329     // Match the base operand of the GEP.
4330     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4331       // If it couldn't be matched, just stuff the value in a register.
4332       if (AddrMode.HasBaseReg) {
4333         AddrMode = BackupAddrMode;
4334         AddrModeInsts.resize(OldSize);
4335         return false;
4336       }
4337       AddrMode.HasBaseReg = true;
4338       AddrMode.BaseReg = AddrInst->getOperand(0);
4339     }
4340 
4341     // Match the remaining variable portion of the GEP.
4342     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4343                           Depth)) {
4344       // If it couldn't be matched, try stuffing the base into a register
4345       // instead of matching it, and retrying the match of the scale.
4346       AddrMode = BackupAddrMode;
4347       AddrModeInsts.resize(OldSize);
4348       if (AddrMode.HasBaseReg)
4349         return false;
4350       AddrMode.HasBaseReg = true;
4351       AddrMode.BaseReg = AddrInst->getOperand(0);
4352       AddrMode.BaseOffs += ConstantOffset;
4353       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4354                             VariableScale, Depth)) {
4355         // If even that didn't work, bail.
4356         AddrMode = BackupAddrMode;
4357         AddrModeInsts.resize(OldSize);
4358         return false;
4359       }
4360     }
4361 
4362     return true;
4363   }
4364   case Instruction::SExt:
4365   case Instruction::ZExt: {
4366     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4367     if (!Ext)
4368       return false;
4369 
4370     // Try to move this ext out of the way of the addressing mode.
4371     // Ask for a method for doing so.
4372     TypePromotionHelper::Action TPH =
4373         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4374     if (!TPH)
4375       return false;
4376 
4377     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4378         TPT.getRestorationPoint();
4379     unsigned CreatedInstsCost = 0;
4380     unsigned ExtCost = !TLI.isExtFree(Ext);
4381     Value *PromotedOperand =
4382         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4383     // SExt has been moved away.
4384     // Thus either it will be rematched later in the recursive calls or it is
4385     // gone. Anyway, we must not fold it into the addressing mode at this point.
4386     // E.g.,
4387     // op = add opnd, 1
4388     // idx = ext op
4389     // addr = gep base, idx
4390     // is now:
4391     // promotedOpnd = ext opnd            <- no match here
4392     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4393     // addr = gep base, op                <- match
4394     if (MovedAway)
4395       *MovedAway = true;
4396 
4397     assert(PromotedOperand &&
4398            "TypePromotionHelper should have filtered out those cases");
4399 
4400     ExtAddrMode BackupAddrMode = AddrMode;
4401     unsigned OldSize = AddrModeInsts.size();
4402 
4403     if (!matchAddr(PromotedOperand, Depth) ||
4404         // The total of the new cost is equal to the cost of the created
4405         // instructions.
4406         // The total of the old cost is equal to the cost of the extension plus
4407         // what we have saved in the addressing mode.
4408         !isPromotionProfitable(CreatedInstsCost,
4409                                ExtCost + (AddrModeInsts.size() - OldSize),
4410                                PromotedOperand)) {
4411       AddrMode = BackupAddrMode;
4412       AddrModeInsts.resize(OldSize);
4413       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4414       TPT.rollback(LastKnownGood);
4415       return false;
4416     }
4417     return true;
4418   }
4419   }
4420   return false;
4421 }
4422 
4423 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4424 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4425 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4426 /// for the target.
4427 ///
4428 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4429   // Start a transaction at this point that we will rollback if the matching
4430   // fails.
4431   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4432       TPT.getRestorationPoint();
4433   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4434     // Fold in immediates if legal for the target.
4435     AddrMode.BaseOffs += CI->getSExtValue();
4436     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4437       return true;
4438     AddrMode.BaseOffs -= CI->getSExtValue();
4439   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4440     // If this is a global variable, try to fold it into the addressing mode.
4441     if (!AddrMode.BaseGV) {
4442       AddrMode.BaseGV = GV;
4443       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4444         return true;
4445       AddrMode.BaseGV = nullptr;
4446     }
4447   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4448     ExtAddrMode BackupAddrMode = AddrMode;
4449     unsigned OldSize = AddrModeInsts.size();
4450 
4451     // Check to see if it is possible to fold this operation.
4452     bool MovedAway = false;
4453     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4454       // This instruction may have been moved away. If so, there is nothing
4455       // to check here.
4456       if (MovedAway)
4457         return true;
4458       // Okay, it's possible to fold this.  Check to see if it is actually
4459       // *profitable* to do so.  We use a simple cost model to avoid increasing
4460       // register pressure too much.
4461       if (I->hasOneUse() ||
4462           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4463         AddrModeInsts.push_back(I);
4464         return true;
4465       }
4466 
4467       // It isn't profitable to do this, roll back.
4468       //cerr << "NOT FOLDING: " << *I;
4469       AddrMode = BackupAddrMode;
4470       AddrModeInsts.resize(OldSize);
4471       TPT.rollback(LastKnownGood);
4472     }
4473   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4474     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4475       return true;
4476     TPT.rollback(LastKnownGood);
4477   } else if (isa<ConstantPointerNull>(Addr)) {
4478     // Null pointer gets folded without affecting the addressing mode.
4479     return true;
4480   }
4481 
4482   // Worse case, the target should support [reg] addressing modes. :)
4483   if (!AddrMode.HasBaseReg) {
4484     AddrMode.HasBaseReg = true;
4485     AddrMode.BaseReg = Addr;
4486     // Still check for legality in case the target supports [imm] but not [i+r].
4487     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4488       return true;
4489     AddrMode.HasBaseReg = false;
4490     AddrMode.BaseReg = nullptr;
4491   }
4492 
4493   // If the base register is already taken, see if we can do [r+r].
4494   if (AddrMode.Scale == 0) {
4495     AddrMode.Scale = 1;
4496     AddrMode.ScaledReg = Addr;
4497     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4498       return true;
4499     AddrMode.Scale = 0;
4500     AddrMode.ScaledReg = nullptr;
4501   }
4502   // Couldn't match.
4503   TPT.rollback(LastKnownGood);
4504   return false;
4505 }
4506 
4507 /// Check to see if all uses of OpVal by the specified inline asm call are due
4508 /// to memory operands. If so, return true, otherwise return false.
4509 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4510                                     const TargetLowering &TLI,
4511                                     const TargetRegisterInfo &TRI) {
4512   const Function *F = CI->getFunction();
4513   TargetLowering::AsmOperandInfoVector TargetConstraints =
4514       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4515                             ImmutableCallSite(CI));
4516 
4517   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4518     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4519 
4520     // Compute the constraint code and ConstraintType to use.
4521     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4522 
4523     // If this asm operand is our Value*, and if it isn't an indirect memory
4524     // operand, we can't fold it!
4525     if (OpInfo.CallOperandVal == OpVal &&
4526         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4527          !OpInfo.isIndirect))
4528       return false;
4529   }
4530 
4531   return true;
4532 }
4533 
4534 // Max number of memory uses to look at before aborting the search to conserve
4535 // compile time.
4536 static constexpr int MaxMemoryUsesToScan = 20;
4537 
4538 /// Recursively walk all the uses of I until we find a memory use.
4539 /// If we find an obviously non-foldable instruction, return true.
4540 /// Add the ultimately found memory instructions to MemoryUses.
4541 static bool FindAllMemoryUses(
4542     Instruction *I,
4543     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4544     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4545     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4546     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4547   // If we already considered this instruction, we're done.
4548   if (!ConsideredInsts.insert(I).second)
4549     return false;
4550 
4551   // If this is an obviously unfoldable instruction, bail out.
4552   if (!MightBeFoldableInst(I))
4553     return true;
4554 
4555   // Loop over all the uses, recursively processing them.
4556   for (Use &U : I->uses()) {
4557     // Conservatively return true if we're seeing a large number or a deep chain
4558     // of users. This avoids excessive compilation times in pathological cases.
4559     if (SeenInsts++ >= MaxMemoryUsesToScan)
4560       return true;
4561 
4562     Instruction *UserI = cast<Instruction>(U.getUser());
4563     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4564       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4565       continue;
4566     }
4567 
4568     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4569       unsigned opNo = U.getOperandNo();
4570       if (opNo != StoreInst::getPointerOperandIndex())
4571         return true; // Storing addr, not into addr.
4572       MemoryUses.push_back(std::make_pair(SI, opNo));
4573       continue;
4574     }
4575 
4576     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4577       unsigned opNo = U.getOperandNo();
4578       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4579         return true; // Storing addr, not into addr.
4580       MemoryUses.push_back(std::make_pair(RMW, opNo));
4581       continue;
4582     }
4583 
4584     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4585       unsigned opNo = U.getOperandNo();
4586       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4587         return true; // Storing addr, not into addr.
4588       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4589       continue;
4590     }
4591 
4592     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4593       if (CI->hasFnAttr(Attribute::Cold)) {
4594         // If this is a cold call, we can sink the addressing calculation into
4595         // the cold path.  See optimizeCallInst
4596         bool OptForSize = OptSize ||
4597           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4598         if (!OptForSize)
4599           continue;
4600       }
4601 
4602       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4603       if (!IA) return true;
4604 
4605       // If this is a memory operand, we're cool, otherwise bail out.
4606       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4607         return true;
4608       continue;
4609     }
4610 
4611     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4612                           PSI, BFI, SeenInsts))
4613       return true;
4614   }
4615 
4616   return false;
4617 }
4618 
4619 /// Return true if Val is already known to be live at the use site that we're
4620 /// folding it into. If so, there is no cost to include it in the addressing
4621 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4622 /// instruction already.
4623 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4624                                                    Value *KnownLive2) {
4625   // If Val is either of the known-live values, we know it is live!
4626   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4627     return true;
4628 
4629   // All values other than instructions and arguments (e.g. constants) are live.
4630   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4631 
4632   // If Val is a constant sized alloca in the entry block, it is live, this is
4633   // true because it is just a reference to the stack/frame pointer, which is
4634   // live for the whole function.
4635   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4636     if (AI->isStaticAlloca())
4637       return true;
4638 
4639   // Check to see if this value is already used in the memory instruction's
4640   // block.  If so, it's already live into the block at the very least, so we
4641   // can reasonably fold it.
4642   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4643 }
4644 
4645 /// It is possible for the addressing mode of the machine to fold the specified
4646 /// instruction into a load or store that ultimately uses it.
4647 /// However, the specified instruction has multiple uses.
4648 /// Given this, it may actually increase register pressure to fold it
4649 /// into the load. For example, consider this code:
4650 ///
4651 ///     X = ...
4652 ///     Y = X+1
4653 ///     use(Y)   -> nonload/store
4654 ///     Z = Y+1
4655 ///     load Z
4656 ///
4657 /// In this case, Y has multiple uses, and can be folded into the load of Z
4658 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4659 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4660 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4661 /// number of computations either.
4662 ///
4663 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4664 /// X was live across 'load Z' for other reasons, we actually *would* want to
4665 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4666 bool AddressingModeMatcher::
4667 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4668                                      ExtAddrMode &AMAfter) {
4669   if (IgnoreProfitability) return true;
4670 
4671   // AMBefore is the addressing mode before this instruction was folded into it,
4672   // and AMAfter is the addressing mode after the instruction was folded.  Get
4673   // the set of registers referenced by AMAfter and subtract out those
4674   // referenced by AMBefore: this is the set of values which folding in this
4675   // address extends the lifetime of.
4676   //
4677   // Note that there are only two potential values being referenced here,
4678   // BaseReg and ScaleReg (global addresses are always available, as are any
4679   // folded immediates).
4680   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4681 
4682   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4683   // lifetime wasn't extended by adding this instruction.
4684   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4685     BaseReg = nullptr;
4686   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4687     ScaledReg = nullptr;
4688 
4689   // If folding this instruction (and it's subexprs) didn't extend any live
4690   // ranges, we're ok with it.
4691   if (!BaseReg && !ScaledReg)
4692     return true;
4693 
4694   // If all uses of this instruction can have the address mode sunk into them,
4695   // we can remove the addressing mode and effectively trade one live register
4696   // for another (at worst.)  In this context, folding an addressing mode into
4697   // the use is just a particularly nice way of sinking it.
4698   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4699   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4700   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4701                         PSI, BFI))
4702     return false;  // Has a non-memory, non-foldable use!
4703 
4704   // Now that we know that all uses of this instruction are part of a chain of
4705   // computation involving only operations that could theoretically be folded
4706   // into a memory use, loop over each of these memory operation uses and see
4707   // if they could  *actually* fold the instruction.  The assumption is that
4708   // addressing modes are cheap and that duplicating the computation involved
4709   // many times is worthwhile, even on a fastpath. For sinking candidates
4710   // (i.e. cold call sites), this serves as a way to prevent excessive code
4711   // growth since most architectures have some reasonable small and fast way to
4712   // compute an effective address.  (i.e LEA on x86)
4713   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4714   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4715     Instruction *User = MemoryUses[i].first;
4716     unsigned OpNo = MemoryUses[i].second;
4717 
4718     // Get the access type of this use.  If the use isn't a pointer, we don't
4719     // know what it accesses.
4720     Value *Address = User->getOperand(OpNo);
4721     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4722     if (!AddrTy)
4723       return false;
4724     Type *AddressAccessTy = AddrTy->getElementType();
4725     unsigned AS = AddrTy->getAddressSpace();
4726 
4727     // Do a match against the root of this address, ignoring profitability. This
4728     // will tell us if the addressing mode for the memory operation will
4729     // *actually* cover the shared instruction.
4730     ExtAddrMode Result;
4731     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4732                                                                       0);
4733     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4734         TPT.getRestorationPoint();
4735     AddressingModeMatcher Matcher(
4736         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4737         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4738     Matcher.IgnoreProfitability = true;
4739     bool Success = Matcher.matchAddr(Address, 0);
4740     (void)Success; assert(Success && "Couldn't select *anything*?");
4741 
4742     // The match was to check the profitability, the changes made are not
4743     // part of the original matcher. Therefore, they should be dropped
4744     // otherwise the original matcher will not present the right state.
4745     TPT.rollback(LastKnownGood);
4746 
4747     // If the match didn't cover I, then it won't be shared by it.
4748     if (!is_contained(MatchedAddrModeInsts, I))
4749       return false;
4750 
4751     MatchedAddrModeInsts.clear();
4752   }
4753 
4754   return true;
4755 }
4756 
4757 /// Return true if the specified values are defined in a
4758 /// different basic block than BB.
4759 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4760   if (Instruction *I = dyn_cast<Instruction>(V))
4761     return I->getParent() != BB;
4762   return false;
4763 }
4764 
4765 /// Sink addressing mode computation immediate before MemoryInst if doing so
4766 /// can be done without increasing register pressure.  The need for the
4767 /// register pressure constraint means this can end up being an all or nothing
4768 /// decision for all uses of the same addressing computation.
4769 ///
4770 /// Load and Store Instructions often have addressing modes that can do
4771 /// significant amounts of computation. As such, instruction selection will try
4772 /// to get the load or store to do as much computation as possible for the
4773 /// program. The problem is that isel can only see within a single block. As
4774 /// such, we sink as much legal addressing mode work into the block as possible.
4775 ///
4776 /// This method is used to optimize both load/store and inline asms with memory
4777 /// operands.  It's also used to sink addressing computations feeding into cold
4778 /// call sites into their (cold) basic block.
4779 ///
4780 /// The motivation for handling sinking into cold blocks is that doing so can
4781 /// both enable other address mode sinking (by satisfying the register pressure
4782 /// constraint above), and reduce register pressure globally (by removing the
4783 /// addressing mode computation from the fast path entirely.).
4784 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4785                                         Type *AccessTy, unsigned AddrSpace) {
4786   Value *Repl = Addr;
4787 
4788   // Try to collapse single-value PHI nodes.  This is necessary to undo
4789   // unprofitable PRE transformations.
4790   SmallVector<Value*, 8> worklist;
4791   SmallPtrSet<Value*, 16> Visited;
4792   worklist.push_back(Addr);
4793 
4794   // Use a worklist to iteratively look through PHI and select nodes, and
4795   // ensure that the addressing mode obtained from the non-PHI/select roots of
4796   // the graph are compatible.
4797   bool PhiOrSelectSeen = false;
4798   SmallVector<Instruction*, 16> AddrModeInsts;
4799   const SimplifyQuery SQ(*DL, TLInfo);
4800   AddressingModeCombiner AddrModes(SQ, Addr);
4801   TypePromotionTransaction TPT(RemovedInsts);
4802   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4803       TPT.getRestorationPoint();
4804   while (!worklist.empty()) {
4805     Value *V = worklist.back();
4806     worklist.pop_back();
4807 
4808     // We allow traversing cyclic Phi nodes.
4809     // In case of success after this loop we ensure that traversing through
4810     // Phi nodes ends up with all cases to compute address of the form
4811     //    BaseGV + Base + Scale * Index + Offset
4812     // where Scale and Offset are constans and BaseGV, Base and Index
4813     // are exactly the same Values in all cases.
4814     // It means that BaseGV, Scale and Offset dominate our memory instruction
4815     // and have the same value as they had in address computation represented
4816     // as Phi. So we can safely sink address computation to memory instruction.
4817     if (!Visited.insert(V).second)
4818       continue;
4819 
4820     // For a PHI node, push all of its incoming values.
4821     if (PHINode *P = dyn_cast<PHINode>(V)) {
4822       for (Value *IncValue : P->incoming_values())
4823         worklist.push_back(IncValue);
4824       PhiOrSelectSeen = true;
4825       continue;
4826     }
4827     // Similar for select.
4828     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4829       worklist.push_back(SI->getFalseValue());
4830       worklist.push_back(SI->getTrueValue());
4831       PhiOrSelectSeen = true;
4832       continue;
4833     }
4834 
4835     // For non-PHIs, determine the addressing mode being computed.  Note that
4836     // the result may differ depending on what other uses our candidate
4837     // addressing instructions might have.
4838     AddrModeInsts.clear();
4839     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4840                                                                       0);
4841     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4842         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4843         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4844         BFI.get());
4845 
4846     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4847     if (GEP && !NewGEPBases.count(GEP)) {
4848       // If splitting the underlying data structure can reduce the offset of a
4849       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4850       // previously split data structures.
4851       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4852       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4853         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4854     }
4855 
4856     NewAddrMode.OriginalValue = V;
4857     if (!AddrModes.addNewAddrMode(NewAddrMode))
4858       break;
4859   }
4860 
4861   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4862   // or we have multiple but either couldn't combine them or combining them
4863   // wouldn't do anything useful, bail out now.
4864   if (!AddrModes.combineAddrModes()) {
4865     TPT.rollback(LastKnownGood);
4866     return false;
4867   }
4868   TPT.commit();
4869 
4870   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4871   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4872 
4873   // If all the instructions matched are already in this BB, don't do anything.
4874   // If we saw a Phi node then it is not local definitely, and if we saw a select
4875   // then we want to push the address calculation past it even if it's already
4876   // in this BB.
4877   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4878         return IsNonLocalValue(V, MemoryInst->getParent());
4879                   })) {
4880     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4881                       << "\n");
4882     return false;
4883   }
4884 
4885   // Insert this computation right after this user.  Since our caller is
4886   // scanning from the top of the BB to the bottom, reuse of the expr are
4887   // guaranteed to happen later.
4888   IRBuilder<> Builder(MemoryInst);
4889 
4890   // Now that we determined the addressing expression we want to use and know
4891   // that we have to sink it into this block.  Check to see if we have already
4892   // done this for some other load/store instr in this block.  If so, reuse
4893   // the computation.  Before attempting reuse, check if the address is valid
4894   // as it may have been erased.
4895 
4896   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4897 
4898   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4899   if (SunkAddr) {
4900     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4901                       << " for " << *MemoryInst << "\n");
4902     if (SunkAddr->getType() != Addr->getType())
4903       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4904   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
4905                                    SubtargetInfo->addrSinkUsingGEPs())) {
4906     // By default, we use the GEP-based method when AA is used later. This
4907     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4908     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4909                       << " for " << *MemoryInst << "\n");
4910     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4911     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4912 
4913     // First, find the pointer.
4914     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4915       ResultPtr = AddrMode.BaseReg;
4916       AddrMode.BaseReg = nullptr;
4917     }
4918 
4919     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4920       // We can't add more than one pointer together, nor can we scale a
4921       // pointer (both of which seem meaningless).
4922       if (ResultPtr || AddrMode.Scale != 1)
4923         return false;
4924 
4925       ResultPtr = AddrMode.ScaledReg;
4926       AddrMode.Scale = 0;
4927     }
4928 
4929     // It is only safe to sign extend the BaseReg if we know that the math
4930     // required to create it did not overflow before we extend it. Since
4931     // the original IR value was tossed in favor of a constant back when
4932     // the AddrMode was created we need to bail out gracefully if widths
4933     // do not match instead of extending it.
4934     //
4935     // (See below for code to add the scale.)
4936     if (AddrMode.Scale) {
4937       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4938       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4939           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4940         return false;
4941     }
4942 
4943     if (AddrMode.BaseGV) {
4944       if (ResultPtr)
4945         return false;
4946 
4947       ResultPtr = AddrMode.BaseGV;
4948     }
4949 
4950     // If the real base value actually came from an inttoptr, then the matcher
4951     // will look through it and provide only the integer value. In that case,
4952     // use it here.
4953     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4954       if (!ResultPtr && AddrMode.BaseReg) {
4955         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4956                                            "sunkaddr");
4957         AddrMode.BaseReg = nullptr;
4958       } else if (!ResultPtr && AddrMode.Scale == 1) {
4959         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4960                                            "sunkaddr");
4961         AddrMode.Scale = 0;
4962       }
4963     }
4964 
4965     if (!ResultPtr &&
4966         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4967       SunkAddr = Constant::getNullValue(Addr->getType());
4968     } else if (!ResultPtr) {
4969       return false;
4970     } else {
4971       Type *I8PtrTy =
4972           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4973       Type *I8Ty = Builder.getInt8Ty();
4974 
4975       // Start with the base register. Do this first so that subsequent address
4976       // matching finds it last, which will prevent it from trying to match it
4977       // as the scaled value in case it happens to be a mul. That would be
4978       // problematic if we've sunk a different mul for the scale, because then
4979       // we'd end up sinking both muls.
4980       if (AddrMode.BaseReg) {
4981         Value *V = AddrMode.BaseReg;
4982         if (V->getType() != IntPtrTy)
4983           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4984 
4985         ResultIndex = V;
4986       }
4987 
4988       // Add the scale value.
4989       if (AddrMode.Scale) {
4990         Value *V = AddrMode.ScaledReg;
4991         if (V->getType() == IntPtrTy) {
4992           // done.
4993         } else {
4994           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4995                  cast<IntegerType>(V->getType())->getBitWidth() &&
4996                  "We can't transform if ScaledReg is too narrow");
4997           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4998         }
4999 
5000         if (AddrMode.Scale != 1)
5001           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5002                                 "sunkaddr");
5003         if (ResultIndex)
5004           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5005         else
5006           ResultIndex = V;
5007       }
5008 
5009       // Add in the Base Offset if present.
5010       if (AddrMode.BaseOffs) {
5011         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5012         if (ResultIndex) {
5013           // We need to add this separately from the scale above to help with
5014           // SDAG consecutive load/store merging.
5015           if (ResultPtr->getType() != I8PtrTy)
5016             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5017           ResultPtr =
5018               AddrMode.InBounds
5019                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5020                                               "sunkaddr")
5021                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5022         }
5023 
5024         ResultIndex = V;
5025       }
5026 
5027       if (!ResultIndex) {
5028         SunkAddr = ResultPtr;
5029       } else {
5030         if (ResultPtr->getType() != I8PtrTy)
5031           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5032         SunkAddr =
5033             AddrMode.InBounds
5034                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5035                                             "sunkaddr")
5036                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5037       }
5038 
5039       if (SunkAddr->getType() != Addr->getType())
5040         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5041     }
5042   } else {
5043     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5044     // non-integral pointers, so in that case bail out now.
5045     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5046     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5047     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5048     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5049     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5050         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5051         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5052         (AddrMode.BaseGV &&
5053          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5054       return false;
5055 
5056     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5057                       << " for " << *MemoryInst << "\n");
5058     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5059     Value *Result = nullptr;
5060 
5061     // Start with the base register. Do this first so that subsequent address
5062     // matching finds it last, which will prevent it from trying to match it
5063     // as the scaled value in case it happens to be a mul. That would be
5064     // problematic if we've sunk a different mul for the scale, because then
5065     // we'd end up sinking both muls.
5066     if (AddrMode.BaseReg) {
5067       Value *V = AddrMode.BaseReg;
5068       if (V->getType()->isPointerTy())
5069         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5070       if (V->getType() != IntPtrTy)
5071         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5072       Result = V;
5073     }
5074 
5075     // Add the scale value.
5076     if (AddrMode.Scale) {
5077       Value *V = AddrMode.ScaledReg;
5078       if (V->getType() == IntPtrTy) {
5079         // done.
5080       } else if (V->getType()->isPointerTy()) {
5081         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5082       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5083                  cast<IntegerType>(V->getType())->getBitWidth()) {
5084         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5085       } else {
5086         // It is only safe to sign extend the BaseReg if we know that the math
5087         // required to create it did not overflow before we extend it. Since
5088         // the original IR value was tossed in favor of a constant back when
5089         // the AddrMode was created we need to bail out gracefully if widths
5090         // do not match instead of extending it.
5091         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5092         if (I && (Result != AddrMode.BaseReg))
5093           I->eraseFromParent();
5094         return false;
5095       }
5096       if (AddrMode.Scale != 1)
5097         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5098                               "sunkaddr");
5099       if (Result)
5100         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5101       else
5102         Result = V;
5103     }
5104 
5105     // Add in the BaseGV if present.
5106     if (AddrMode.BaseGV) {
5107       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5108       if (Result)
5109         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5110       else
5111         Result = V;
5112     }
5113 
5114     // Add in the Base Offset if present.
5115     if (AddrMode.BaseOffs) {
5116       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5117       if (Result)
5118         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5119       else
5120         Result = V;
5121     }
5122 
5123     if (!Result)
5124       SunkAddr = Constant::getNullValue(Addr->getType());
5125     else
5126       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5127   }
5128 
5129   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5130   // Store the newly computed address into the cache. In the case we reused a
5131   // value, this should be idempotent.
5132   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5133 
5134   // If we have no uses, recursively delete the value and all dead instructions
5135   // using it.
5136   if (Repl->use_empty()) {
5137     // This can cause recursive deletion, which can invalidate our iterator.
5138     // Use a WeakTrackingVH to hold onto it in case this happens.
5139     Value *CurValue = &*CurInstIterator;
5140     WeakTrackingVH IterHandle(CurValue);
5141     BasicBlock *BB = CurInstIterator->getParent();
5142 
5143     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5144 
5145     if (IterHandle != CurValue) {
5146       // If the iterator instruction was recursively deleted, start over at the
5147       // start of the block.
5148       CurInstIterator = BB->begin();
5149       SunkAddrs.clear();
5150     }
5151   }
5152   ++NumMemoryInsts;
5153   return true;
5154 }
5155 
5156 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5157 /// address computing into the block when possible / profitable.
5158 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5159   bool MadeChange = false;
5160 
5161   const TargetRegisterInfo *TRI =
5162       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5163   TargetLowering::AsmOperandInfoVector TargetConstraints =
5164       TLI->ParseConstraints(*DL, TRI, CS);
5165   unsigned ArgNo = 0;
5166   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5167     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5168 
5169     // Compute the constraint code and ConstraintType to use.
5170     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5171 
5172     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5173         OpInfo.isIndirect) {
5174       Value *OpVal = CS->getArgOperand(ArgNo++);
5175       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5176     } else if (OpInfo.Type == InlineAsm::isInput)
5177       ArgNo++;
5178   }
5179 
5180   return MadeChange;
5181 }
5182 
5183 /// Check if all the uses of \p Val are equivalent (or free) zero or
5184 /// sign extensions.
5185 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5186   assert(!Val->use_empty() && "Input must have at least one use");
5187   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5188   bool IsSExt = isa<SExtInst>(FirstUser);
5189   Type *ExtTy = FirstUser->getType();
5190   for (const User *U : Val->users()) {
5191     const Instruction *UI = cast<Instruction>(U);
5192     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5193       return false;
5194     Type *CurTy = UI->getType();
5195     // Same input and output types: Same instruction after CSE.
5196     if (CurTy == ExtTy)
5197       continue;
5198 
5199     // If IsSExt is true, we are in this situation:
5200     // a = Val
5201     // b = sext ty1 a to ty2
5202     // c = sext ty1 a to ty3
5203     // Assuming ty2 is shorter than ty3, this could be turned into:
5204     // a = Val
5205     // b = sext ty1 a to ty2
5206     // c = sext ty2 b to ty3
5207     // However, the last sext is not free.
5208     if (IsSExt)
5209       return false;
5210 
5211     // This is a ZExt, maybe this is free to extend from one type to another.
5212     // In that case, we would not account for a different use.
5213     Type *NarrowTy;
5214     Type *LargeTy;
5215     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5216         CurTy->getScalarType()->getIntegerBitWidth()) {
5217       NarrowTy = CurTy;
5218       LargeTy = ExtTy;
5219     } else {
5220       NarrowTy = ExtTy;
5221       LargeTy = CurTy;
5222     }
5223 
5224     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5225       return false;
5226   }
5227   // All uses are the same or can be derived from one another for free.
5228   return true;
5229 }
5230 
5231 /// Try to speculatively promote extensions in \p Exts and continue
5232 /// promoting through newly promoted operands recursively as far as doing so is
5233 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5234 /// When some promotion happened, \p TPT contains the proper state to revert
5235 /// them.
5236 ///
5237 /// \return true if some promotion happened, false otherwise.
5238 bool CodeGenPrepare::tryToPromoteExts(
5239     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5240     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5241     unsigned CreatedInstsCost) {
5242   bool Promoted = false;
5243 
5244   // Iterate over all the extensions to try to promote them.
5245   for (auto I : Exts) {
5246     // Early check if we directly have ext(load).
5247     if (isa<LoadInst>(I->getOperand(0))) {
5248       ProfitablyMovedExts.push_back(I);
5249       continue;
5250     }
5251 
5252     // Check whether or not we want to do any promotion.  The reason we have
5253     // this check inside the for loop is to catch the case where an extension
5254     // is directly fed by a load because in such case the extension can be moved
5255     // up without any promotion on its operands.
5256     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5257       return false;
5258 
5259     // Get the action to perform the promotion.
5260     TypePromotionHelper::Action TPH =
5261         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5262     // Check if we can promote.
5263     if (!TPH) {
5264       // Save the current extension as we cannot move up through its operand.
5265       ProfitablyMovedExts.push_back(I);
5266       continue;
5267     }
5268 
5269     // Save the current state.
5270     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5271         TPT.getRestorationPoint();
5272     SmallVector<Instruction *, 4> NewExts;
5273     unsigned NewCreatedInstsCost = 0;
5274     unsigned ExtCost = !TLI->isExtFree(I);
5275     // Promote.
5276     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5277                              &NewExts, nullptr, *TLI);
5278     assert(PromotedVal &&
5279            "TypePromotionHelper should have filtered out those cases");
5280 
5281     // We would be able to merge only one extension in a load.
5282     // Therefore, if we have more than 1 new extension we heuristically
5283     // cut this search path, because it means we degrade the code quality.
5284     // With exactly 2, the transformation is neutral, because we will merge
5285     // one extension but leave one. However, we optimistically keep going,
5286     // because the new extension may be removed too.
5287     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5288     // FIXME: It would be possible to propagate a negative value instead of
5289     // conservatively ceiling it to 0.
5290     TotalCreatedInstsCost =
5291         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5292     if (!StressExtLdPromotion &&
5293         (TotalCreatedInstsCost > 1 ||
5294          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5295       // This promotion is not profitable, rollback to the previous state, and
5296       // save the current extension in ProfitablyMovedExts as the latest
5297       // speculative promotion turned out to be unprofitable.
5298       TPT.rollback(LastKnownGood);
5299       ProfitablyMovedExts.push_back(I);
5300       continue;
5301     }
5302     // Continue promoting NewExts as far as doing so is profitable.
5303     SmallVector<Instruction *, 2> NewlyMovedExts;
5304     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5305     bool NewPromoted = false;
5306     for (auto ExtInst : NewlyMovedExts) {
5307       Instruction *MovedExt = cast<Instruction>(ExtInst);
5308       Value *ExtOperand = MovedExt->getOperand(0);
5309       // If we have reached to a load, we need this extra profitability check
5310       // as it could potentially be merged into an ext(load).
5311       if (isa<LoadInst>(ExtOperand) &&
5312           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5313             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5314         continue;
5315 
5316       ProfitablyMovedExts.push_back(MovedExt);
5317       NewPromoted = true;
5318     }
5319 
5320     // If none of speculative promotions for NewExts is profitable, rollback
5321     // and save the current extension (I) as the last profitable extension.
5322     if (!NewPromoted) {
5323       TPT.rollback(LastKnownGood);
5324       ProfitablyMovedExts.push_back(I);
5325       continue;
5326     }
5327     // The promotion is profitable.
5328     Promoted = true;
5329   }
5330   return Promoted;
5331 }
5332 
5333 /// Merging redundant sexts when one is dominating the other.
5334 bool CodeGenPrepare::mergeSExts(Function &F) {
5335   bool Changed = false;
5336   for (auto &Entry : ValToSExtendedUses) {
5337     SExts &Insts = Entry.second;
5338     SExts CurPts;
5339     for (Instruction *Inst : Insts) {
5340       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5341           Inst->getOperand(0) != Entry.first)
5342         continue;
5343       bool inserted = false;
5344       for (auto &Pt : CurPts) {
5345         if (getDT(F).dominates(Inst, Pt)) {
5346           Pt->replaceAllUsesWith(Inst);
5347           RemovedInsts.insert(Pt);
5348           Pt->removeFromParent();
5349           Pt = Inst;
5350           inserted = true;
5351           Changed = true;
5352           break;
5353         }
5354         if (!getDT(F).dominates(Pt, Inst))
5355           // Give up if we need to merge in a common dominator as the
5356           // experiments show it is not profitable.
5357           continue;
5358         Inst->replaceAllUsesWith(Pt);
5359         RemovedInsts.insert(Inst);
5360         Inst->removeFromParent();
5361         inserted = true;
5362         Changed = true;
5363         break;
5364       }
5365       if (!inserted)
5366         CurPts.push_back(Inst);
5367     }
5368   }
5369   return Changed;
5370 }
5371 
5372 // Spliting large data structures so that the GEPs accessing them can have
5373 // smaller offsets so that they can be sunk to the same blocks as their users.
5374 // For example, a large struct starting from %base is splitted into two parts
5375 // where the second part starts from %new_base.
5376 //
5377 // Before:
5378 // BB0:
5379 //   %base     =
5380 //
5381 // BB1:
5382 //   %gep0     = gep %base, off0
5383 //   %gep1     = gep %base, off1
5384 //   %gep2     = gep %base, off2
5385 //
5386 // BB2:
5387 //   %load1    = load %gep0
5388 //   %load2    = load %gep1
5389 //   %load3    = load %gep2
5390 //
5391 // After:
5392 // BB0:
5393 //   %base     =
5394 //   %new_base = gep %base, off0
5395 //
5396 // BB1:
5397 //   %new_gep0 = %new_base
5398 //   %new_gep1 = gep %new_base, off1 - off0
5399 //   %new_gep2 = gep %new_base, off2 - off0
5400 //
5401 // BB2:
5402 //   %load1    = load i32, i32* %new_gep0
5403 //   %load2    = load i32, i32* %new_gep1
5404 //   %load3    = load i32, i32* %new_gep2
5405 //
5406 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5407 // their offsets are smaller enough to fit into the addressing mode.
5408 bool CodeGenPrepare::splitLargeGEPOffsets() {
5409   bool Changed = false;
5410   for (auto &Entry : LargeOffsetGEPMap) {
5411     Value *OldBase = Entry.first;
5412     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5413         &LargeOffsetGEPs = Entry.second;
5414     auto compareGEPOffset =
5415         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5416             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5417           if (LHS.first == RHS.first)
5418             return false;
5419           if (LHS.second != RHS.second)
5420             return LHS.second < RHS.second;
5421           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5422         };
5423     // Sorting all the GEPs of the same data structures based on the offsets.
5424     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5425     LargeOffsetGEPs.erase(
5426         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5427         LargeOffsetGEPs.end());
5428     // Skip if all the GEPs have the same offsets.
5429     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5430       continue;
5431     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5432     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5433     Value *NewBaseGEP = nullptr;
5434 
5435     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5436     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5437       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5438       int64_t Offset = LargeOffsetGEP->second;
5439       if (Offset != BaseOffset) {
5440         TargetLowering::AddrMode AddrMode;
5441         AddrMode.BaseOffs = Offset - BaseOffset;
5442         // The result type of the GEP might not be the type of the memory
5443         // access.
5444         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5445                                         GEP->getResultElementType(),
5446                                         GEP->getAddressSpace())) {
5447           // We need to create a new base if the offset to the current base is
5448           // too large to fit into the addressing mode. So, a very large struct
5449           // may be splitted into several parts.
5450           BaseGEP = GEP;
5451           BaseOffset = Offset;
5452           NewBaseGEP = nullptr;
5453         }
5454       }
5455 
5456       // Generate a new GEP to replace the current one.
5457       LLVMContext &Ctx = GEP->getContext();
5458       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5459       Type *I8PtrTy =
5460           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5461       Type *I8Ty = Type::getInt8Ty(Ctx);
5462 
5463       if (!NewBaseGEP) {
5464         // Create a new base if we don't have one yet.  Find the insertion
5465         // pointer for the new base first.
5466         BasicBlock::iterator NewBaseInsertPt;
5467         BasicBlock *NewBaseInsertBB;
5468         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5469           // If the base of the struct is an instruction, the new base will be
5470           // inserted close to it.
5471           NewBaseInsertBB = BaseI->getParent();
5472           if (isa<PHINode>(BaseI))
5473             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5474           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5475             NewBaseInsertBB =
5476                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5477             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5478           } else
5479             NewBaseInsertPt = std::next(BaseI->getIterator());
5480         } else {
5481           // If the current base is an argument or global value, the new base
5482           // will be inserted to the entry block.
5483           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5484           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5485         }
5486         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5487         // Create a new base.
5488         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5489         NewBaseGEP = OldBase;
5490         if (NewBaseGEP->getType() != I8PtrTy)
5491           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5492         NewBaseGEP =
5493             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5494         NewGEPBases.insert(NewBaseGEP);
5495       }
5496 
5497       IRBuilder<> Builder(GEP);
5498       Value *NewGEP = NewBaseGEP;
5499       if (Offset == BaseOffset) {
5500         if (GEP->getType() != I8PtrTy)
5501           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5502       } else {
5503         // Calculate the new offset for the new GEP.
5504         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5505         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5506 
5507         if (GEP->getType() != I8PtrTy)
5508           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5509       }
5510       GEP->replaceAllUsesWith(NewGEP);
5511       LargeOffsetGEPID.erase(GEP);
5512       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5513       GEP->eraseFromParent();
5514       Changed = true;
5515     }
5516   }
5517   return Changed;
5518 }
5519 
5520 /// Return true, if an ext(load) can be formed from an extension in
5521 /// \p MovedExts.
5522 bool CodeGenPrepare::canFormExtLd(
5523     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5524     Instruction *&Inst, bool HasPromoted) {
5525   for (auto *MovedExtInst : MovedExts) {
5526     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5527       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5528       Inst = MovedExtInst;
5529       break;
5530     }
5531   }
5532   if (!LI)
5533     return false;
5534 
5535   // If they're already in the same block, there's nothing to do.
5536   // Make the cheap checks first if we did not promote.
5537   // If we promoted, we need to check if it is indeed profitable.
5538   if (!HasPromoted && LI->getParent() == Inst->getParent())
5539     return false;
5540 
5541   return TLI->isExtLoad(LI, Inst, *DL);
5542 }
5543 
5544 /// Move a zext or sext fed by a load into the same basic block as the load,
5545 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5546 /// extend into the load.
5547 ///
5548 /// E.g.,
5549 /// \code
5550 /// %ld = load i32* %addr
5551 /// %add = add nuw i32 %ld, 4
5552 /// %zext = zext i32 %add to i64
5553 // \endcode
5554 /// =>
5555 /// \code
5556 /// %ld = load i32* %addr
5557 /// %zext = zext i32 %ld to i64
5558 /// %add = add nuw i64 %zext, 4
5559 /// \encode
5560 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5561 /// allow us to match zext(load i32*) to i64.
5562 ///
5563 /// Also, try to promote the computations used to obtain a sign extended
5564 /// value used into memory accesses.
5565 /// E.g.,
5566 /// \code
5567 /// a = add nsw i32 b, 3
5568 /// d = sext i32 a to i64
5569 /// e = getelementptr ..., i64 d
5570 /// \endcode
5571 /// =>
5572 /// \code
5573 /// f = sext i32 b to i64
5574 /// a = add nsw i64 f, 3
5575 /// e = getelementptr ..., i64 a
5576 /// \endcode
5577 ///
5578 /// \p Inst[in/out] the extension may be modified during the process if some
5579 /// promotions apply.
5580 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5581   bool AllowPromotionWithoutCommonHeader = false;
5582   /// See if it is an interesting sext operations for the address type
5583   /// promotion before trying to promote it, e.g., the ones with the right
5584   /// type and used in memory accesses.
5585   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5586       *Inst, AllowPromotionWithoutCommonHeader);
5587   TypePromotionTransaction TPT(RemovedInsts);
5588   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5589       TPT.getRestorationPoint();
5590   SmallVector<Instruction *, 1> Exts;
5591   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5592   Exts.push_back(Inst);
5593 
5594   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5595 
5596   // Look for a load being extended.
5597   LoadInst *LI = nullptr;
5598   Instruction *ExtFedByLoad;
5599 
5600   // Try to promote a chain of computation if it allows to form an extended
5601   // load.
5602   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5603     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5604     TPT.commit();
5605     // Move the extend into the same block as the load
5606     ExtFedByLoad->moveAfter(LI);
5607     // CGP does not check if the zext would be speculatively executed when moved
5608     // to the same basic block as the load. Preserving its original location
5609     // would pessimize the debugging experience, as well as negatively impact
5610     // the quality of sample pgo. We don't want to use "line 0" as that has a
5611     // size cost in the line-table section and logically the zext can be seen as
5612     // part of the load. Therefore we conservatively reuse the same debug
5613     // location for the load and the zext.
5614     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5615     ++NumExtsMoved;
5616     Inst = ExtFedByLoad;
5617     return true;
5618   }
5619 
5620   // Continue promoting SExts if known as considerable depending on targets.
5621   if (ATPConsiderable &&
5622       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5623                                   HasPromoted, TPT, SpeculativelyMovedExts))
5624     return true;
5625 
5626   TPT.rollback(LastKnownGood);
5627   return false;
5628 }
5629 
5630 // Perform address type promotion if doing so is profitable.
5631 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5632 // instructions that sign extended the same initial value. However, if
5633 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5634 // extension is just profitable.
5635 bool CodeGenPrepare::performAddressTypePromotion(
5636     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5637     bool HasPromoted, TypePromotionTransaction &TPT,
5638     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5639   bool Promoted = false;
5640   SmallPtrSet<Instruction *, 1> UnhandledExts;
5641   bool AllSeenFirst = true;
5642   for (auto I : SpeculativelyMovedExts) {
5643     Value *HeadOfChain = I->getOperand(0);
5644     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5645         SeenChainsForSExt.find(HeadOfChain);
5646     // If there is an unhandled SExt which has the same header, try to promote
5647     // it as well.
5648     if (AlreadySeen != SeenChainsForSExt.end()) {
5649       if (AlreadySeen->second != nullptr)
5650         UnhandledExts.insert(AlreadySeen->second);
5651       AllSeenFirst = false;
5652     }
5653   }
5654 
5655   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5656                         SpeculativelyMovedExts.size() == 1)) {
5657     TPT.commit();
5658     if (HasPromoted)
5659       Promoted = true;
5660     for (auto I : SpeculativelyMovedExts) {
5661       Value *HeadOfChain = I->getOperand(0);
5662       SeenChainsForSExt[HeadOfChain] = nullptr;
5663       ValToSExtendedUses[HeadOfChain].push_back(I);
5664     }
5665     // Update Inst as promotion happen.
5666     Inst = SpeculativelyMovedExts.pop_back_val();
5667   } else {
5668     // This is the first chain visited from the header, keep the current chain
5669     // as unhandled. Defer to promote this until we encounter another SExt
5670     // chain derived from the same header.
5671     for (auto I : SpeculativelyMovedExts) {
5672       Value *HeadOfChain = I->getOperand(0);
5673       SeenChainsForSExt[HeadOfChain] = Inst;
5674     }
5675     return false;
5676   }
5677 
5678   if (!AllSeenFirst && !UnhandledExts.empty())
5679     for (auto VisitedSExt : UnhandledExts) {
5680       if (RemovedInsts.count(VisitedSExt))
5681         continue;
5682       TypePromotionTransaction TPT(RemovedInsts);
5683       SmallVector<Instruction *, 1> Exts;
5684       SmallVector<Instruction *, 2> Chains;
5685       Exts.push_back(VisitedSExt);
5686       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5687       TPT.commit();
5688       if (HasPromoted)
5689         Promoted = true;
5690       for (auto I : Chains) {
5691         Value *HeadOfChain = I->getOperand(0);
5692         // Mark this as handled.
5693         SeenChainsForSExt[HeadOfChain] = nullptr;
5694         ValToSExtendedUses[HeadOfChain].push_back(I);
5695       }
5696     }
5697   return Promoted;
5698 }
5699 
5700 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5701   BasicBlock *DefBB = I->getParent();
5702 
5703   // If the result of a {s|z}ext and its source are both live out, rewrite all
5704   // other uses of the source with result of extension.
5705   Value *Src = I->getOperand(0);
5706   if (Src->hasOneUse())
5707     return false;
5708 
5709   // Only do this xform if truncating is free.
5710   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
5711     return false;
5712 
5713   // Only safe to perform the optimization if the source is also defined in
5714   // this block.
5715   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5716     return false;
5717 
5718   bool DefIsLiveOut = false;
5719   for (User *U : I->users()) {
5720     Instruction *UI = cast<Instruction>(U);
5721 
5722     // Figure out which BB this ext is used in.
5723     BasicBlock *UserBB = UI->getParent();
5724     if (UserBB == DefBB) continue;
5725     DefIsLiveOut = true;
5726     break;
5727   }
5728   if (!DefIsLiveOut)
5729     return false;
5730 
5731   // Make sure none of the uses are PHI nodes.
5732   for (User *U : Src->users()) {
5733     Instruction *UI = cast<Instruction>(U);
5734     BasicBlock *UserBB = UI->getParent();
5735     if (UserBB == DefBB) continue;
5736     // Be conservative. We don't want this xform to end up introducing
5737     // reloads just before load / store instructions.
5738     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5739       return false;
5740   }
5741 
5742   // InsertedTruncs - Only insert one trunc in each block once.
5743   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5744 
5745   bool MadeChange = false;
5746   for (Use &U : Src->uses()) {
5747     Instruction *User = cast<Instruction>(U.getUser());
5748 
5749     // Figure out which BB this ext is used in.
5750     BasicBlock *UserBB = User->getParent();
5751     if (UserBB == DefBB) continue;
5752 
5753     // Both src and def are live in this block. Rewrite the use.
5754     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5755 
5756     if (!InsertedTrunc) {
5757       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5758       assert(InsertPt != UserBB->end());
5759       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5760       InsertedInsts.insert(InsertedTrunc);
5761     }
5762 
5763     // Replace a use of the {s|z}ext source with a use of the result.
5764     U = InsertedTrunc;
5765     ++NumExtUses;
5766     MadeChange = true;
5767   }
5768 
5769   return MadeChange;
5770 }
5771 
5772 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5773 // just after the load if the target can fold this into one extload instruction,
5774 // with the hope of eliminating some of the other later "and" instructions using
5775 // the loaded value.  "and"s that are made trivially redundant by the insertion
5776 // of the new "and" are removed by this function, while others (e.g. those whose
5777 // path from the load goes through a phi) are left for isel to potentially
5778 // remove.
5779 //
5780 // For example:
5781 //
5782 // b0:
5783 //   x = load i32
5784 //   ...
5785 // b1:
5786 //   y = and x, 0xff
5787 //   z = use y
5788 //
5789 // becomes:
5790 //
5791 // b0:
5792 //   x = load i32
5793 //   x' = and x, 0xff
5794 //   ...
5795 // b1:
5796 //   z = use x'
5797 //
5798 // whereas:
5799 //
5800 // b0:
5801 //   x1 = load i32
5802 //   ...
5803 // b1:
5804 //   x2 = load i32
5805 //   ...
5806 // b2:
5807 //   x = phi x1, x2
5808 //   y = and x, 0xff
5809 //
5810 // becomes (after a call to optimizeLoadExt for each load):
5811 //
5812 // b0:
5813 //   x1 = load i32
5814 //   x1' = and x1, 0xff
5815 //   ...
5816 // b1:
5817 //   x2 = load i32
5818 //   x2' = and x2, 0xff
5819 //   ...
5820 // b2:
5821 //   x = phi x1', x2'
5822 //   y = and x, 0xff
5823 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5824   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5825     return false;
5826 
5827   // Skip loads we've already transformed.
5828   if (Load->hasOneUse() &&
5829       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5830     return false;
5831 
5832   // Look at all uses of Load, looking through phis, to determine how many bits
5833   // of the loaded value are needed.
5834   SmallVector<Instruction *, 8> WorkList;
5835   SmallPtrSet<Instruction *, 16> Visited;
5836   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5837   for (auto *U : Load->users())
5838     WorkList.push_back(cast<Instruction>(U));
5839 
5840   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5841   unsigned BitWidth = LoadResultVT.getSizeInBits();
5842   APInt DemandBits(BitWidth, 0);
5843   APInt WidestAndBits(BitWidth, 0);
5844 
5845   while (!WorkList.empty()) {
5846     Instruction *I = WorkList.back();
5847     WorkList.pop_back();
5848 
5849     // Break use-def graph loops.
5850     if (!Visited.insert(I).second)
5851       continue;
5852 
5853     // For a PHI node, push all of its users.
5854     if (auto *Phi = dyn_cast<PHINode>(I)) {
5855       for (auto *U : Phi->users())
5856         WorkList.push_back(cast<Instruction>(U));
5857       continue;
5858     }
5859 
5860     switch (I->getOpcode()) {
5861     case Instruction::And: {
5862       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5863       if (!AndC)
5864         return false;
5865       APInt AndBits = AndC->getValue();
5866       DemandBits |= AndBits;
5867       // Keep track of the widest and mask we see.
5868       if (AndBits.ugt(WidestAndBits))
5869         WidestAndBits = AndBits;
5870       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5871         AndsToMaybeRemove.push_back(I);
5872       break;
5873     }
5874 
5875     case Instruction::Shl: {
5876       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5877       if (!ShlC)
5878         return false;
5879       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5880       DemandBits.setLowBits(BitWidth - ShiftAmt);
5881       break;
5882     }
5883 
5884     case Instruction::Trunc: {
5885       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5886       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5887       DemandBits.setLowBits(TruncBitWidth);
5888       break;
5889     }
5890 
5891     default:
5892       return false;
5893     }
5894   }
5895 
5896   uint32_t ActiveBits = DemandBits.getActiveBits();
5897   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5898   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5899   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5900   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5901   // followed by an AND.
5902   // TODO: Look into removing this restriction by fixing backends to either
5903   // return false for isLoadExtLegal for i1 or have them select this pattern to
5904   // a single instruction.
5905   //
5906   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5907   // mask, since these are the only ands that will be removed by isel.
5908   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5909       WidestAndBits != DemandBits)
5910     return false;
5911 
5912   LLVMContext &Ctx = Load->getType()->getContext();
5913   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5914   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5915 
5916   // Reject cases that won't be matched as extloads.
5917   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5918       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5919     return false;
5920 
5921   IRBuilder<> Builder(Load->getNextNode());
5922   auto *NewAnd = cast<Instruction>(
5923       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5924   // Mark this instruction as "inserted by CGP", so that other
5925   // optimizations don't touch it.
5926   InsertedInsts.insert(NewAnd);
5927 
5928   // Replace all uses of load with new and (except for the use of load in the
5929   // new and itself).
5930   Load->replaceAllUsesWith(NewAnd);
5931   NewAnd->setOperand(0, Load);
5932 
5933   // Remove any and instructions that are now redundant.
5934   for (auto *And : AndsToMaybeRemove)
5935     // Check that the and mask is the same as the one we decided to put on the
5936     // new and.
5937     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5938       And->replaceAllUsesWith(NewAnd);
5939       if (&*CurInstIterator == And)
5940         CurInstIterator = std::next(And->getIterator());
5941       And->eraseFromParent();
5942       ++NumAndUses;
5943     }
5944 
5945   ++NumAndsAdded;
5946   return true;
5947 }
5948 
5949 /// Check if V (an operand of a select instruction) is an expensive instruction
5950 /// that is only used once.
5951 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5952   auto *I = dyn_cast<Instruction>(V);
5953   // If it's safe to speculatively execute, then it should not have side
5954   // effects; therefore, it's safe to sink and possibly *not* execute.
5955   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5956          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5957 }
5958 
5959 /// Returns true if a SelectInst should be turned into an explicit branch.
5960 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5961                                                 const TargetLowering *TLI,
5962                                                 SelectInst *SI) {
5963   // If even a predictable select is cheap, then a branch can't be cheaper.
5964   if (!TLI->isPredictableSelectExpensive())
5965     return false;
5966 
5967   // FIXME: This should use the same heuristics as IfConversion to determine
5968   // whether a select is better represented as a branch.
5969 
5970   // If metadata tells us that the select condition is obviously predictable,
5971   // then we want to replace the select with a branch.
5972   uint64_t TrueWeight, FalseWeight;
5973   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5974     uint64_t Max = std::max(TrueWeight, FalseWeight);
5975     uint64_t Sum = TrueWeight + FalseWeight;
5976     if (Sum != 0) {
5977       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5978       if (Probability > TLI->getPredictableBranchThreshold())
5979         return true;
5980     }
5981   }
5982 
5983   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5984 
5985   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5986   // comparison condition. If the compare has more than one use, there's
5987   // probably another cmov or setcc around, so it's not worth emitting a branch.
5988   if (!Cmp || !Cmp->hasOneUse())
5989     return false;
5990 
5991   // If either operand of the select is expensive and only needed on one side
5992   // of the select, we should form a branch.
5993   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5994       sinkSelectOperand(TTI, SI->getFalseValue()))
5995     return true;
5996 
5997   return false;
5998 }
5999 
6000 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6001 /// false value of \p SI. If the true/false value of \p SI is defined by any
6002 /// select instructions in \p Selects, look through the defining select
6003 /// instruction until the true/false value is not defined in \p Selects.
6004 static Value *getTrueOrFalseValue(
6005     SelectInst *SI, bool isTrue,
6006     const SmallPtrSet<const Instruction *, 2> &Selects) {
6007   Value *V = nullptr;
6008 
6009   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6010        DefSI = dyn_cast<SelectInst>(V)) {
6011     assert(DefSI->getCondition() == SI->getCondition() &&
6012            "The condition of DefSI does not match with SI");
6013     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6014   }
6015 
6016   assert(V && "Failed to get select true/false value");
6017   return V;
6018 }
6019 
6020 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6021   assert(Shift->isShift() && "Expected a shift");
6022 
6023   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6024   // general vector shifts, and (3) the shift amount is a select-of-splatted
6025   // values, hoist the shifts before the select:
6026   //   shift Op0, (select Cond, TVal, FVal) -->
6027   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6028   //
6029   // This is inverting a generic IR transform when we know that the cost of a
6030   // general vector shift is more than the cost of 2 shift-by-scalars.
6031   // We can't do this effectively in SDAG because we may not be able to
6032   // determine if the select operands are splats from within a basic block.
6033   Type *Ty = Shift->getType();
6034   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6035     return false;
6036   Value *Cond, *TVal, *FVal;
6037   if (!match(Shift->getOperand(1),
6038              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6039     return false;
6040   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6041     return false;
6042 
6043   IRBuilder<> Builder(Shift);
6044   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6045   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6046   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6047   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6048   Shift->replaceAllUsesWith(NewSel);
6049   Shift->eraseFromParent();
6050   return true;
6051 }
6052 
6053 /// If we have a SelectInst that will likely profit from branch prediction,
6054 /// turn it into a branch.
6055 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6056   // If branch conversion isn't desirable, exit early.
6057   if (DisableSelectToBranch || OptSize ||
6058       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))
6059     return false;
6060 
6061   // Find all consecutive select instructions that share the same condition.
6062   SmallVector<SelectInst *, 2> ASI;
6063   ASI.push_back(SI);
6064   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6065        It != SI->getParent()->end(); ++It) {
6066     SelectInst *I = dyn_cast<SelectInst>(&*It);
6067     if (I && SI->getCondition() == I->getCondition()) {
6068       ASI.push_back(I);
6069     } else {
6070       break;
6071     }
6072   }
6073 
6074   SelectInst *LastSI = ASI.back();
6075   // Increment the current iterator to skip all the rest of select instructions
6076   // because they will be either "not lowered" or "all lowered" to branch.
6077   CurInstIterator = std::next(LastSI->getIterator());
6078 
6079   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6080 
6081   // Can we convert the 'select' to CF ?
6082   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6083     return false;
6084 
6085   TargetLowering::SelectSupportKind SelectKind;
6086   if (VectorCond)
6087     SelectKind = TargetLowering::VectorMaskSelect;
6088   else if (SI->getType()->isVectorTy())
6089     SelectKind = TargetLowering::ScalarCondVectorVal;
6090   else
6091     SelectKind = TargetLowering::ScalarValSelect;
6092 
6093   if (TLI->isSelectSupported(SelectKind) &&
6094       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
6095     return false;
6096 
6097   // The DominatorTree needs to be rebuilt by any consumers after this
6098   // transformation. We simply reset here rather than setting the ModifiedDT
6099   // flag to avoid restarting the function walk in runOnFunction for each
6100   // select optimized.
6101   DT.reset();
6102 
6103   // Transform a sequence like this:
6104   //    start:
6105   //       %cmp = cmp uge i32 %a, %b
6106   //       %sel = select i1 %cmp, i32 %c, i32 %d
6107   //
6108   // Into:
6109   //    start:
6110   //       %cmp = cmp uge i32 %a, %b
6111   //       br i1 %cmp, label %select.true, label %select.false
6112   //    select.true:
6113   //       br label %select.end
6114   //    select.false:
6115   //       br label %select.end
6116   //    select.end:
6117   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6118   //
6119   // In addition, we may sink instructions that produce %c or %d from
6120   // the entry block into the destination(s) of the new branch.
6121   // If the true or false blocks do not contain a sunken instruction, that
6122   // block and its branch may be optimized away. In that case, one side of the
6123   // first branch will point directly to select.end, and the corresponding PHI
6124   // predecessor block will be the start block.
6125 
6126   // First, we split the block containing the select into 2 blocks.
6127   BasicBlock *StartBlock = SI->getParent();
6128   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6129   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6130   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6131 
6132   // Delete the unconditional branch that was just created by the split.
6133   StartBlock->getTerminator()->eraseFromParent();
6134 
6135   // These are the new basic blocks for the conditional branch.
6136   // At least one will become an actual new basic block.
6137   BasicBlock *TrueBlock = nullptr;
6138   BasicBlock *FalseBlock = nullptr;
6139   BranchInst *TrueBranch = nullptr;
6140   BranchInst *FalseBranch = nullptr;
6141 
6142   // Sink expensive instructions into the conditional blocks to avoid executing
6143   // them speculatively.
6144   for (SelectInst *SI : ASI) {
6145     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6146       if (TrueBlock == nullptr) {
6147         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6148                                        EndBlock->getParent(), EndBlock);
6149         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6150         TrueBranch->setDebugLoc(SI->getDebugLoc());
6151       }
6152       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6153       TrueInst->moveBefore(TrueBranch);
6154     }
6155     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6156       if (FalseBlock == nullptr) {
6157         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6158                                         EndBlock->getParent(), EndBlock);
6159         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6160         FalseBranch->setDebugLoc(SI->getDebugLoc());
6161       }
6162       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6163       FalseInst->moveBefore(FalseBranch);
6164     }
6165   }
6166 
6167   // If there was nothing to sink, then arbitrarily choose the 'false' side
6168   // for a new input value to the PHI.
6169   if (TrueBlock == FalseBlock) {
6170     assert(TrueBlock == nullptr &&
6171            "Unexpected basic block transform while optimizing select");
6172 
6173     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6174                                     EndBlock->getParent(), EndBlock);
6175     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6176     FalseBranch->setDebugLoc(SI->getDebugLoc());
6177   }
6178 
6179   // Insert the real conditional branch based on the original condition.
6180   // If we did not create a new block for one of the 'true' or 'false' paths
6181   // of the condition, it means that side of the branch goes to the end block
6182   // directly and the path originates from the start block from the point of
6183   // view of the new PHI.
6184   BasicBlock *TT, *FT;
6185   if (TrueBlock == nullptr) {
6186     TT = EndBlock;
6187     FT = FalseBlock;
6188     TrueBlock = StartBlock;
6189   } else if (FalseBlock == nullptr) {
6190     TT = TrueBlock;
6191     FT = EndBlock;
6192     FalseBlock = StartBlock;
6193   } else {
6194     TT = TrueBlock;
6195     FT = FalseBlock;
6196   }
6197   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6198 
6199   SmallPtrSet<const Instruction *, 2> INS;
6200   INS.insert(ASI.begin(), ASI.end());
6201   // Use reverse iterator because later select may use the value of the
6202   // earlier select, and we need to propagate value through earlier select
6203   // to get the PHI operand.
6204   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6205     SelectInst *SI = *It;
6206     // The select itself is replaced with a PHI Node.
6207     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6208     PN->takeName(SI);
6209     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6210     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6211     PN->setDebugLoc(SI->getDebugLoc());
6212 
6213     SI->replaceAllUsesWith(PN);
6214     SI->eraseFromParent();
6215     INS.erase(SI);
6216     ++NumSelectsExpanded;
6217   }
6218 
6219   // Instruct OptimizeBlock to skip to the next block.
6220   CurInstIterator = StartBlock->end();
6221   return true;
6222 }
6223 
6224 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6225   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6226   int SplatElem = -1;
6227   for (unsigned i = 0; i < Mask.size(); ++i) {
6228     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6229       return false;
6230     SplatElem = Mask[i];
6231   }
6232 
6233   return true;
6234 }
6235 
6236 /// Some targets have expensive vector shifts if the lanes aren't all the same
6237 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6238 /// it's often worth sinking a shufflevector splat down to its use so that
6239 /// codegen can spot all lanes are identical.
6240 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6241   BasicBlock *DefBB = SVI->getParent();
6242 
6243   // Only do this xform if variable vector shifts are particularly expensive.
6244   if (!TLI->isVectorShiftByScalarCheap(SVI->getType()))
6245     return false;
6246 
6247   // We only expect better codegen by sinking a shuffle if we can recognise a
6248   // constant splat.
6249   if (!isBroadcastShuffle(SVI))
6250     return false;
6251 
6252   // InsertedShuffles - Only insert a shuffle in each block once.
6253   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6254 
6255   bool MadeChange = false;
6256   for (User *U : SVI->users()) {
6257     Instruction *UI = cast<Instruction>(U);
6258 
6259     // Figure out which BB this ext is used in.
6260     BasicBlock *UserBB = UI->getParent();
6261     if (UserBB == DefBB) continue;
6262 
6263     // For now only apply this when the splat is used by a shift instruction.
6264     if (!UI->isShift()) continue;
6265 
6266     // Everything checks out, sink the shuffle if the user's block doesn't
6267     // already have a copy.
6268     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6269 
6270     if (!InsertedShuffle) {
6271       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6272       assert(InsertPt != UserBB->end());
6273       InsertedShuffle =
6274           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6275                                 SVI->getOperand(2), "", &*InsertPt);
6276       InsertedShuffle->setDebugLoc(SVI->getDebugLoc());
6277     }
6278 
6279     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6280     MadeChange = true;
6281   }
6282 
6283   // If we removed all uses, nuke the shuffle.
6284   if (SVI->use_empty()) {
6285     SVI->eraseFromParent();
6286     MadeChange = true;
6287   }
6288 
6289   return MadeChange;
6290 }
6291 
6292 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6293   // If the operands of I can be folded into a target instruction together with
6294   // I, duplicate and sink them.
6295   SmallVector<Use *, 4> OpsToSink;
6296   if (!TLI->shouldSinkOperands(I, OpsToSink))
6297     return false;
6298 
6299   // OpsToSink can contain multiple uses in a use chain (e.g.
6300   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6301   // uses must come first, so we process the ops in reverse order so as to not
6302   // create invalid IR.
6303   BasicBlock *TargetBB = I->getParent();
6304   bool Changed = false;
6305   SmallVector<Use *, 4> ToReplace;
6306   for (Use *U : reverse(OpsToSink)) {
6307     auto *UI = cast<Instruction>(U->get());
6308     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6309       continue;
6310     ToReplace.push_back(U);
6311   }
6312 
6313   SetVector<Instruction *> MaybeDead;
6314   DenseMap<Instruction *, Instruction *> NewInstructions;
6315   Instruction *InsertPoint = I;
6316   for (Use *U : ToReplace) {
6317     auto *UI = cast<Instruction>(U->get());
6318     Instruction *NI = UI->clone();
6319     NewInstructions[UI] = NI;
6320     MaybeDead.insert(UI);
6321     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6322     NI->insertBefore(InsertPoint);
6323     InsertPoint = NI;
6324     InsertedInsts.insert(NI);
6325 
6326     // Update the use for the new instruction, making sure that we update the
6327     // sunk instruction uses, if it is part of a chain that has already been
6328     // sunk.
6329     Instruction *OldI = cast<Instruction>(U->getUser());
6330     if (NewInstructions.count(OldI))
6331       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6332     else
6333       U->set(NI);
6334     Changed = true;
6335   }
6336 
6337   // Remove instructions that are dead after sinking.
6338   for (auto *I : MaybeDead) {
6339     if (!I->hasNUsesOrMore(1)) {
6340       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6341       I->eraseFromParent();
6342     }
6343   }
6344 
6345   return Changed;
6346 }
6347 
6348 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6349   Value *Cond = SI->getCondition();
6350   Type *OldType = Cond->getType();
6351   LLVMContext &Context = Cond->getContext();
6352   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6353   unsigned RegWidth = RegType.getSizeInBits();
6354 
6355   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6356     return false;
6357 
6358   // If the register width is greater than the type width, expand the condition
6359   // of the switch instruction and each case constant to the width of the
6360   // register. By widening the type of the switch condition, subsequent
6361   // comparisons (for case comparisons) will not need to be extended to the
6362   // preferred register width, so we will potentially eliminate N-1 extends,
6363   // where N is the number of cases in the switch.
6364   auto *NewType = Type::getIntNTy(Context, RegWidth);
6365 
6366   // Zero-extend the switch condition and case constants unless the switch
6367   // condition is a function argument that is already being sign-extended.
6368   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6369   // everything instead.
6370   Instruction::CastOps ExtType = Instruction::ZExt;
6371   if (auto *Arg = dyn_cast<Argument>(Cond))
6372     if (Arg->hasSExtAttr())
6373       ExtType = Instruction::SExt;
6374 
6375   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6376   ExtInst->insertBefore(SI);
6377   ExtInst->setDebugLoc(SI->getDebugLoc());
6378   SI->setCondition(ExtInst);
6379   for (auto Case : SI->cases()) {
6380     APInt NarrowConst = Case.getCaseValue()->getValue();
6381     APInt WideConst = (ExtType == Instruction::ZExt) ?
6382                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6383     Case.setValue(ConstantInt::get(Context, WideConst));
6384   }
6385 
6386   return true;
6387 }
6388 
6389 
6390 namespace {
6391 
6392 /// Helper class to promote a scalar operation to a vector one.
6393 /// This class is used to move downward extractelement transition.
6394 /// E.g.,
6395 /// a = vector_op <2 x i32>
6396 /// b = extractelement <2 x i32> a, i32 0
6397 /// c = scalar_op b
6398 /// store c
6399 ///
6400 /// =>
6401 /// a = vector_op <2 x i32>
6402 /// c = vector_op a (equivalent to scalar_op on the related lane)
6403 /// * d = extractelement <2 x i32> c, i32 0
6404 /// * store d
6405 /// Assuming both extractelement and store can be combine, we get rid of the
6406 /// transition.
6407 class VectorPromoteHelper {
6408   /// DataLayout associated with the current module.
6409   const DataLayout &DL;
6410 
6411   /// Used to perform some checks on the legality of vector operations.
6412   const TargetLowering &TLI;
6413 
6414   /// Used to estimated the cost of the promoted chain.
6415   const TargetTransformInfo &TTI;
6416 
6417   /// The transition being moved downwards.
6418   Instruction *Transition;
6419 
6420   /// The sequence of instructions to be promoted.
6421   SmallVector<Instruction *, 4> InstsToBePromoted;
6422 
6423   /// Cost of combining a store and an extract.
6424   unsigned StoreExtractCombineCost;
6425 
6426   /// Instruction that will be combined with the transition.
6427   Instruction *CombineInst = nullptr;
6428 
6429   /// The instruction that represents the current end of the transition.
6430   /// Since we are faking the promotion until we reach the end of the chain
6431   /// of computation, we need a way to get the current end of the transition.
6432   Instruction *getEndOfTransition() const {
6433     if (InstsToBePromoted.empty())
6434       return Transition;
6435     return InstsToBePromoted.back();
6436   }
6437 
6438   /// Return the index of the original value in the transition.
6439   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6440   /// c, is at index 0.
6441   unsigned getTransitionOriginalValueIdx() const {
6442     assert(isa<ExtractElementInst>(Transition) &&
6443            "Other kind of transitions are not supported yet");
6444     return 0;
6445   }
6446 
6447   /// Return the index of the index in the transition.
6448   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6449   /// is at index 1.
6450   unsigned getTransitionIdx() const {
6451     assert(isa<ExtractElementInst>(Transition) &&
6452            "Other kind of transitions are not supported yet");
6453     return 1;
6454   }
6455 
6456   /// Get the type of the transition.
6457   /// This is the type of the original value.
6458   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6459   /// transition is <2 x i32>.
6460   Type *getTransitionType() const {
6461     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6462   }
6463 
6464   /// Promote \p ToBePromoted by moving \p Def downward through.
6465   /// I.e., we have the following sequence:
6466   /// Def = Transition <ty1> a to <ty2>
6467   /// b = ToBePromoted <ty2> Def, ...
6468   /// =>
6469   /// b = ToBePromoted <ty1> a, ...
6470   /// Def = Transition <ty1> ToBePromoted to <ty2>
6471   void promoteImpl(Instruction *ToBePromoted);
6472 
6473   /// Check whether or not it is profitable to promote all the
6474   /// instructions enqueued to be promoted.
6475   bool isProfitableToPromote() {
6476     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6477     unsigned Index = isa<ConstantInt>(ValIdx)
6478                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6479                          : -1;
6480     Type *PromotedType = getTransitionType();
6481 
6482     StoreInst *ST = cast<StoreInst>(CombineInst);
6483     unsigned AS = ST->getPointerAddressSpace();
6484     unsigned Align = ST->getAlignment();
6485     // Check if this store is supported.
6486     if (!TLI.allowsMisalignedMemoryAccesses(
6487             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6488             Align)) {
6489       // If this is not supported, there is no way we can combine
6490       // the extract with the store.
6491       return false;
6492     }
6493 
6494     // The scalar chain of computation has to pay for the transition
6495     // scalar to vector.
6496     // The vector chain has to account for the combining cost.
6497     uint64_t ScalarCost =
6498         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6499     uint64_t VectorCost = StoreExtractCombineCost;
6500     for (const auto &Inst : InstsToBePromoted) {
6501       // Compute the cost.
6502       // By construction, all instructions being promoted are arithmetic ones.
6503       // Moreover, one argument is a constant that can be viewed as a splat
6504       // constant.
6505       Value *Arg0 = Inst->getOperand(0);
6506       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6507                             isa<ConstantFP>(Arg0);
6508       TargetTransformInfo::OperandValueKind Arg0OVK =
6509           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6510                          : TargetTransformInfo::OK_AnyValue;
6511       TargetTransformInfo::OperandValueKind Arg1OVK =
6512           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6513                           : TargetTransformInfo::OK_AnyValue;
6514       ScalarCost += TTI.getArithmeticInstrCost(
6515           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6516       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6517                                                Arg0OVK, Arg1OVK);
6518     }
6519     LLVM_DEBUG(
6520         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6521                << ScalarCost << "\nVector: " << VectorCost << '\n');
6522     return ScalarCost > VectorCost;
6523   }
6524 
6525   /// Generate a constant vector with \p Val with the same
6526   /// number of elements as the transition.
6527   /// \p UseSplat defines whether or not \p Val should be replicated
6528   /// across the whole vector.
6529   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6530   /// otherwise we generate a vector with as many undef as possible:
6531   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6532   /// used at the index of the extract.
6533   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6534     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6535     if (!UseSplat) {
6536       // If we cannot determine where the constant must be, we have to
6537       // use a splat constant.
6538       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6539       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6540         ExtractIdx = CstVal->getSExtValue();
6541       else
6542         UseSplat = true;
6543     }
6544 
6545     unsigned End = getTransitionType()->getVectorNumElements();
6546     if (UseSplat)
6547       return ConstantVector::getSplat(End, Val);
6548 
6549     SmallVector<Constant *, 4> ConstVec;
6550     UndefValue *UndefVal = UndefValue::get(Val->getType());
6551     for (unsigned Idx = 0; Idx != End; ++Idx) {
6552       if (Idx == ExtractIdx)
6553         ConstVec.push_back(Val);
6554       else
6555         ConstVec.push_back(UndefVal);
6556     }
6557     return ConstantVector::get(ConstVec);
6558   }
6559 
6560   /// Check if promoting to a vector type an operand at \p OperandIdx
6561   /// in \p Use can trigger undefined behavior.
6562   static bool canCauseUndefinedBehavior(const Instruction *Use,
6563                                         unsigned OperandIdx) {
6564     // This is not safe to introduce undef when the operand is on
6565     // the right hand side of a division-like instruction.
6566     if (OperandIdx != 1)
6567       return false;
6568     switch (Use->getOpcode()) {
6569     default:
6570       return false;
6571     case Instruction::SDiv:
6572     case Instruction::UDiv:
6573     case Instruction::SRem:
6574     case Instruction::URem:
6575       return true;
6576     case Instruction::FDiv:
6577     case Instruction::FRem:
6578       return !Use->hasNoNaNs();
6579     }
6580     llvm_unreachable(nullptr);
6581   }
6582 
6583 public:
6584   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6585                       const TargetTransformInfo &TTI, Instruction *Transition,
6586                       unsigned CombineCost)
6587       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6588         StoreExtractCombineCost(CombineCost) {
6589     assert(Transition && "Do not know how to promote null");
6590   }
6591 
6592   /// Check if we can promote \p ToBePromoted to \p Type.
6593   bool canPromote(const Instruction *ToBePromoted) const {
6594     // We could support CastInst too.
6595     return isa<BinaryOperator>(ToBePromoted);
6596   }
6597 
6598   /// Check if it is profitable to promote \p ToBePromoted
6599   /// by moving downward the transition through.
6600   bool shouldPromote(const Instruction *ToBePromoted) const {
6601     // Promote only if all the operands can be statically expanded.
6602     // Indeed, we do not want to introduce any new kind of transitions.
6603     for (const Use &U : ToBePromoted->operands()) {
6604       const Value *Val = U.get();
6605       if (Val == getEndOfTransition()) {
6606         // If the use is a division and the transition is on the rhs,
6607         // we cannot promote the operation, otherwise we may create a
6608         // division by zero.
6609         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6610           return false;
6611         continue;
6612       }
6613       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6614           !isa<ConstantFP>(Val))
6615         return false;
6616     }
6617     // Check that the resulting operation is legal.
6618     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6619     if (!ISDOpcode)
6620       return false;
6621     return StressStoreExtract ||
6622            TLI.isOperationLegalOrCustom(
6623                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6624   }
6625 
6626   /// Check whether or not \p Use can be combined
6627   /// with the transition.
6628   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6629   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6630 
6631   /// Record \p ToBePromoted as part of the chain to be promoted.
6632   void enqueueForPromotion(Instruction *ToBePromoted) {
6633     InstsToBePromoted.push_back(ToBePromoted);
6634   }
6635 
6636   /// Set the instruction that will be combined with the transition.
6637   void recordCombineInstruction(Instruction *ToBeCombined) {
6638     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6639     CombineInst = ToBeCombined;
6640   }
6641 
6642   /// Promote all the instructions enqueued for promotion if it is
6643   /// is profitable.
6644   /// \return True if the promotion happened, false otherwise.
6645   bool promote() {
6646     // Check if there is something to promote.
6647     // Right now, if we do not have anything to combine with,
6648     // we assume the promotion is not profitable.
6649     if (InstsToBePromoted.empty() || !CombineInst)
6650       return false;
6651 
6652     // Check cost.
6653     if (!StressStoreExtract && !isProfitableToPromote())
6654       return false;
6655 
6656     // Promote.
6657     for (auto &ToBePromoted : InstsToBePromoted)
6658       promoteImpl(ToBePromoted);
6659     InstsToBePromoted.clear();
6660     return true;
6661   }
6662 };
6663 
6664 } // end anonymous namespace
6665 
6666 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6667   // At this point, we know that all the operands of ToBePromoted but Def
6668   // can be statically promoted.
6669   // For Def, we need to use its parameter in ToBePromoted:
6670   // b = ToBePromoted ty1 a
6671   // Def = Transition ty1 b to ty2
6672   // Move the transition down.
6673   // 1. Replace all uses of the promoted operation by the transition.
6674   // = ... b => = ... Def.
6675   assert(ToBePromoted->getType() == Transition->getType() &&
6676          "The type of the result of the transition does not match "
6677          "the final type");
6678   ToBePromoted->replaceAllUsesWith(Transition);
6679   // 2. Update the type of the uses.
6680   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6681   Type *TransitionTy = getTransitionType();
6682   ToBePromoted->mutateType(TransitionTy);
6683   // 3. Update all the operands of the promoted operation with promoted
6684   // operands.
6685   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6686   for (Use &U : ToBePromoted->operands()) {
6687     Value *Val = U.get();
6688     Value *NewVal = nullptr;
6689     if (Val == Transition)
6690       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6691     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6692              isa<ConstantFP>(Val)) {
6693       // Use a splat constant if it is not safe to use undef.
6694       NewVal = getConstantVector(
6695           cast<Constant>(Val),
6696           isa<UndefValue>(Val) ||
6697               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6698     } else
6699       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6700                        "this?");
6701     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6702   }
6703   Transition->moveAfter(ToBePromoted);
6704   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6705 }
6706 
6707 /// Some targets can do store(extractelement) with one instruction.
6708 /// Try to push the extractelement towards the stores when the target
6709 /// has this feature and this is profitable.
6710 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6711   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6712   if (DisableStoreExtract ||
6713       (!StressStoreExtract &&
6714        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6715                                        Inst->getOperand(1), CombineCost)))
6716     return false;
6717 
6718   // At this point we know that Inst is a vector to scalar transition.
6719   // Try to move it down the def-use chain, until:
6720   // - We can combine the transition with its single use
6721   //   => we got rid of the transition.
6722   // - We escape the current basic block
6723   //   => we would need to check that we are moving it at a cheaper place and
6724   //      we do not do that for now.
6725   BasicBlock *Parent = Inst->getParent();
6726   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6727   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6728   // If the transition has more than one use, assume this is not going to be
6729   // beneficial.
6730   while (Inst->hasOneUse()) {
6731     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6732     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6733 
6734     if (ToBePromoted->getParent() != Parent) {
6735       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6736                         << ToBePromoted->getParent()->getName()
6737                         << ") than the transition (" << Parent->getName()
6738                         << ").\n");
6739       return false;
6740     }
6741 
6742     if (VPH.canCombine(ToBePromoted)) {
6743       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6744                         << "will be combined with: " << *ToBePromoted << '\n');
6745       VPH.recordCombineInstruction(ToBePromoted);
6746       bool Changed = VPH.promote();
6747       NumStoreExtractExposed += Changed;
6748       return Changed;
6749     }
6750 
6751     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6752     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6753       return false;
6754 
6755     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6756 
6757     VPH.enqueueForPromotion(ToBePromoted);
6758     Inst = ToBePromoted;
6759   }
6760   return false;
6761 }
6762 
6763 /// For the instruction sequence of store below, F and I values
6764 /// are bundled together as an i64 value before being stored into memory.
6765 /// Sometimes it is more efficient to generate separate stores for F and I,
6766 /// which can remove the bitwise instructions or sink them to colder places.
6767 ///
6768 ///   (store (or (zext (bitcast F to i32) to i64),
6769 ///              (shl (zext I to i64), 32)), addr)  -->
6770 ///   (store F, addr) and (store I, addr+4)
6771 ///
6772 /// Similarly, splitting for other merged store can also be beneficial, like:
6773 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6774 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6775 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6776 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6777 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6778 ///
6779 /// We allow each target to determine specifically which kind of splitting is
6780 /// supported.
6781 ///
6782 /// The store patterns are commonly seen from the simple code snippet below
6783 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6784 ///   void goo(const std::pair<int, float> &);
6785 ///   hoo() {
6786 ///     ...
6787 ///     goo(std::make_pair(tmp, ftmp));
6788 ///     ...
6789 ///   }
6790 ///
6791 /// Although we already have similar splitting in DAG Combine, we duplicate
6792 /// it in CodeGenPrepare to catch the case in which pattern is across
6793 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6794 /// during code expansion.
6795 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6796                                 const TargetLowering &TLI) {
6797   // Handle simple but common cases only.
6798   Type *StoreType = SI.getValueOperand()->getType();
6799 
6800   // The code below assumes shifting a value by <number of bits>,
6801   // whereas scalable vectors would have to be shifted by
6802   // <2log(vscale) + number of bits> in order to store the
6803   // low/high parts. Bailing out for now.
6804   if (StoreType->isVectorTy() && StoreType->getVectorIsScalable())
6805     return false;
6806 
6807   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
6808       DL.getTypeSizeInBits(StoreType) == 0)
6809     return false;
6810 
6811   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6812   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6813   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
6814     return false;
6815 
6816   // Don't split the store if it is volatile.
6817   if (SI.isVolatile())
6818     return false;
6819 
6820   // Match the following patterns:
6821   // (store (or (zext LValue to i64),
6822   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6823   //  or
6824   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6825   //            (zext LValue to i64),
6826   // Expect both operands of OR and the first operand of SHL have only
6827   // one use.
6828   Value *LValue, *HValue;
6829   if (!match(SI.getValueOperand(),
6830              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6831                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6832                                    m_SpecificInt(HalfValBitSize))))))
6833     return false;
6834 
6835   // Check LValue and HValue are int with size less or equal than 32.
6836   if (!LValue->getType()->isIntegerTy() ||
6837       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6838       !HValue->getType()->isIntegerTy() ||
6839       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6840     return false;
6841 
6842   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6843   // as the input of target query.
6844   auto *LBC = dyn_cast<BitCastInst>(LValue);
6845   auto *HBC = dyn_cast<BitCastInst>(HValue);
6846   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6847                   : EVT::getEVT(LValue->getType());
6848   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6849                    : EVT::getEVT(HValue->getType());
6850   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6851     return false;
6852 
6853   // Start to split store.
6854   IRBuilder<> Builder(SI.getContext());
6855   Builder.SetInsertPoint(&SI);
6856 
6857   // If LValue/HValue is a bitcast in another BB, create a new one in current
6858   // BB so it may be merged with the splitted stores by dag combiner.
6859   if (LBC && LBC->getParent() != SI.getParent())
6860     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6861   if (HBC && HBC->getParent() != SI.getParent())
6862     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6863 
6864   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6865   auto CreateSplitStore = [&](Value *V, bool Upper) {
6866     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6867     Value *Addr = Builder.CreateBitCast(
6868         SI.getOperand(1),
6869         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6870     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
6871     if (IsOffsetStore)
6872       Addr = Builder.CreateGEP(
6873           SplitStoreType, Addr,
6874           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6875     MaybeAlign Alignment = SI.getAlign();
6876     if (IsOffsetStore && Alignment) {
6877       // When splitting the store in half, naturally one half will retain the
6878       // alignment of the original wider store, regardless of whether it was
6879       // over-aligned or not, while the other will require adjustment.
6880       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
6881     }
6882     Builder.CreateAlignedStore(V, Addr, Alignment);
6883   };
6884 
6885   CreateSplitStore(LValue, false);
6886   CreateSplitStore(HValue, true);
6887 
6888   // Delete the old store.
6889   SI.eraseFromParent();
6890   return true;
6891 }
6892 
6893 // Return true if the GEP has two operands, the first operand is of a sequential
6894 // type, and the second operand is a constant.
6895 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6896   gep_type_iterator I = gep_type_begin(*GEP);
6897   return GEP->getNumOperands() == 2 &&
6898       I.isSequential() &&
6899       isa<ConstantInt>(GEP->getOperand(1));
6900 }
6901 
6902 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6903 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6904 // reducing liveness interference across those edges benefits global register
6905 // allocation. Currently handles only certain cases.
6906 //
6907 // For example, unmerge %GEPI and %UGEPI as below.
6908 //
6909 // ---------- BEFORE ----------
6910 // SrcBlock:
6911 //   ...
6912 //   %GEPIOp = ...
6913 //   ...
6914 //   %GEPI = gep %GEPIOp, Idx
6915 //   ...
6916 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6917 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6918 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6919 //   %UGEPI)
6920 //
6921 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6922 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6923 // ...
6924 //
6925 // DstBi:
6926 //   ...
6927 //   %UGEPI = gep %GEPIOp, UIdx
6928 // ...
6929 // ---------------------------
6930 //
6931 // ---------- AFTER ----------
6932 // SrcBlock:
6933 //   ... (same as above)
6934 //    (* %GEPI is still alive on the indirectbr edges)
6935 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6936 //    unmerging)
6937 // ...
6938 //
6939 // DstBi:
6940 //   ...
6941 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6942 //   ...
6943 // ---------------------------
6944 //
6945 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6946 // no longer alive on them.
6947 //
6948 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6949 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6950 // not to disable further simplications and optimizations as a result of GEP
6951 // merging.
6952 //
6953 // Note this unmerging may increase the length of the data flow critical path
6954 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6955 // between the register pressure and the length of data-flow critical
6956 // path. Restricting this to the uncommon IndirectBr case would minimize the
6957 // impact of potentially longer critical path, if any, and the impact on compile
6958 // time.
6959 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6960                                              const TargetTransformInfo *TTI) {
6961   BasicBlock *SrcBlock = GEPI->getParent();
6962   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6963   // (non-IndirectBr) cases exit early here.
6964   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6965     return false;
6966   // Check that GEPI is a simple gep with a single constant index.
6967   if (!GEPSequentialConstIndexed(GEPI))
6968     return false;
6969   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6970   // Check that GEPI is a cheap one.
6971   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6972       > TargetTransformInfo::TCC_Basic)
6973     return false;
6974   Value *GEPIOp = GEPI->getOperand(0);
6975   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6976   if (!isa<Instruction>(GEPIOp))
6977     return false;
6978   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6979   if (GEPIOpI->getParent() != SrcBlock)
6980     return false;
6981   // Check that GEP is used outside the block, meaning it's alive on the
6982   // IndirectBr edge(s).
6983   if (find_if(GEPI->users(), [&](User *Usr) {
6984         if (auto *I = dyn_cast<Instruction>(Usr)) {
6985           if (I->getParent() != SrcBlock) {
6986             return true;
6987           }
6988         }
6989         return false;
6990       }) == GEPI->users().end())
6991     return false;
6992   // The second elements of the GEP chains to be unmerged.
6993   std::vector<GetElementPtrInst *> UGEPIs;
6994   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6995   // on IndirectBr edges.
6996   for (User *Usr : GEPIOp->users()) {
6997     if (Usr == GEPI) continue;
6998     // Check if Usr is an Instruction. If not, give up.
6999     if (!isa<Instruction>(Usr))
7000       return false;
7001     auto *UI = cast<Instruction>(Usr);
7002     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7003     if (UI->getParent() == SrcBlock)
7004       continue;
7005     // Check if Usr is a GEP. If not, give up.
7006     if (!isa<GetElementPtrInst>(Usr))
7007       return false;
7008     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7009     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7010     // the pointer operand to it. If so, record it in the vector. If not, give
7011     // up.
7012     if (!GEPSequentialConstIndexed(UGEPI))
7013       return false;
7014     if (UGEPI->getOperand(0) != GEPIOp)
7015       return false;
7016     if (GEPIIdx->getType() !=
7017         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7018       return false;
7019     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7020     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
7021         > TargetTransformInfo::TCC_Basic)
7022       return false;
7023     UGEPIs.push_back(UGEPI);
7024   }
7025   if (UGEPIs.size() == 0)
7026     return false;
7027   // Check the materializing cost of (Uidx-Idx).
7028   for (GetElementPtrInst *UGEPI : UGEPIs) {
7029     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7030     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7031     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
7032     if (ImmCost > TargetTransformInfo::TCC_Basic)
7033       return false;
7034   }
7035   // Now unmerge between GEPI and UGEPIs.
7036   for (GetElementPtrInst *UGEPI : UGEPIs) {
7037     UGEPI->setOperand(0, GEPI);
7038     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7039     Constant *NewUGEPIIdx =
7040         ConstantInt::get(GEPIIdx->getType(),
7041                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7042     UGEPI->setOperand(1, NewUGEPIIdx);
7043     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7044     // inbounds to avoid UB.
7045     if (!GEPI->isInBounds()) {
7046       UGEPI->setIsInBounds(false);
7047     }
7048   }
7049   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7050   // alive on IndirectBr edges).
7051   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7052         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7053       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7054   return true;
7055 }
7056 
7057 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7058   // Bail out if we inserted the instruction to prevent optimizations from
7059   // stepping on each other's toes.
7060   if (InsertedInsts.count(I))
7061     return false;
7062 
7063   // TODO: Move into the switch on opcode below here.
7064   if (PHINode *P = dyn_cast<PHINode>(I)) {
7065     // It is possible for very late stage optimizations (such as SimplifyCFG)
7066     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7067     // trivial PHI, go ahead and zap it here.
7068     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7069       LargeOffsetGEPMap.erase(P);
7070       P->replaceAllUsesWith(V);
7071       P->eraseFromParent();
7072       ++NumPHIsElim;
7073       return true;
7074     }
7075     return false;
7076   }
7077 
7078   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7079     // If the source of the cast is a constant, then this should have
7080     // already been constant folded.  The only reason NOT to constant fold
7081     // it is if something (e.g. LSR) was careful to place the constant
7082     // evaluation in a block other than then one that uses it (e.g. to hoist
7083     // the address of globals out of a loop).  If this is the case, we don't
7084     // want to forward-subst the cast.
7085     if (isa<Constant>(CI->getOperand(0)))
7086       return false;
7087 
7088     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7089       return true;
7090 
7091     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7092       /// Sink a zext or sext into its user blocks if the target type doesn't
7093       /// fit in one register
7094       if (TLI->getTypeAction(CI->getContext(),
7095                              TLI->getValueType(*DL, CI->getType())) ==
7096           TargetLowering::TypeExpandInteger) {
7097         return SinkCast(CI);
7098       } else {
7099         bool MadeChange = optimizeExt(I);
7100         return MadeChange | optimizeExtUses(I);
7101       }
7102     }
7103     return false;
7104   }
7105 
7106   if (auto *Cmp = dyn_cast<CmpInst>(I))
7107     if (optimizeCmp(Cmp, ModifiedDT))
7108       return true;
7109 
7110   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7111     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7112     bool Modified = optimizeLoadExt(LI);
7113     unsigned AS = LI->getPointerAddressSpace();
7114     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7115     return Modified;
7116   }
7117 
7118   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7119     if (splitMergedValStore(*SI, *DL, *TLI))
7120       return true;
7121     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7122     unsigned AS = SI->getPointerAddressSpace();
7123     return optimizeMemoryInst(I, SI->getOperand(1),
7124                               SI->getOperand(0)->getType(), AS);
7125   }
7126 
7127   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7128       unsigned AS = RMW->getPointerAddressSpace();
7129       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7130                                 RMW->getType(), AS);
7131   }
7132 
7133   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7134       unsigned AS = CmpX->getPointerAddressSpace();
7135       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7136                                 CmpX->getCompareOperand()->getType(), AS);
7137   }
7138 
7139   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7140 
7141   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7142     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7143 
7144   // TODO: Move this into the switch on opcode - it handles shifts already.
7145   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7146                 BinOp->getOpcode() == Instruction::LShr)) {
7147     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7148     if (CI && TLI->hasExtractBitsInsn())
7149       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7150         return true;
7151   }
7152 
7153   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7154     if (GEPI->hasAllZeroIndices()) {
7155       /// The GEP operand must be a pointer, so must its result -> BitCast
7156       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7157                                         GEPI->getName(), GEPI);
7158       NC->setDebugLoc(GEPI->getDebugLoc());
7159       GEPI->replaceAllUsesWith(NC);
7160       GEPI->eraseFromParent();
7161       ++NumGEPsElim;
7162       optimizeInst(NC, ModifiedDT);
7163       return true;
7164     }
7165     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7166       return true;
7167     }
7168     return false;
7169   }
7170 
7171   if (tryToSinkFreeOperands(I))
7172     return true;
7173 
7174   switch (I->getOpcode()) {
7175   case Instruction::Shl:
7176   case Instruction::LShr:
7177   case Instruction::AShr:
7178     return optimizeShiftInst(cast<BinaryOperator>(I));
7179   case Instruction::Call:
7180     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7181   case Instruction::Select:
7182     return optimizeSelectInst(cast<SelectInst>(I));
7183   case Instruction::ShuffleVector:
7184     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7185   case Instruction::Switch:
7186     return optimizeSwitchInst(cast<SwitchInst>(I));
7187   case Instruction::ExtractElement:
7188     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7189   }
7190 
7191   return false;
7192 }
7193 
7194 /// Given an OR instruction, check to see if this is a bitreverse
7195 /// idiom. If so, insert the new intrinsic and return true.
7196 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7197                            const TargetLowering &TLI) {
7198   if (!I.getType()->isIntegerTy() ||
7199       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7200                                     TLI.getValueType(DL, I.getType(), true)))
7201     return false;
7202 
7203   SmallVector<Instruction*, 4> Insts;
7204   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7205     return false;
7206   Instruction *LastInst = Insts.back();
7207   I.replaceAllUsesWith(LastInst);
7208   RecursivelyDeleteTriviallyDeadInstructions(&I);
7209   return true;
7210 }
7211 
7212 // In this pass we look for GEP and cast instructions that are used
7213 // across basic blocks and rewrite them to improve basic-block-at-a-time
7214 // selection.
7215 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7216   SunkAddrs.clear();
7217   bool MadeChange = false;
7218 
7219   CurInstIterator = BB.begin();
7220   while (CurInstIterator != BB.end()) {
7221     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7222     if (ModifiedDT)
7223       return true;
7224   }
7225 
7226   bool MadeBitReverse = true;
7227   while (MadeBitReverse) {
7228     MadeBitReverse = false;
7229     for (auto &I : reverse(BB)) {
7230       if (makeBitReverse(I, *DL, *TLI)) {
7231         MadeBitReverse = MadeChange = true;
7232         break;
7233       }
7234     }
7235   }
7236   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7237 
7238   return MadeChange;
7239 }
7240 
7241 // Some CGP optimizations may move or alter what's computed in a block. Check
7242 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7243 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7244   assert(isa<DbgValueInst>(I));
7245   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7246 
7247   // Does this dbg.value refer to a sunk address calculation?
7248   Value *Location = DVI.getVariableLocation();
7249   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7250   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7251   if (SunkAddr) {
7252     // Point dbg.value at locally computed address, which should give the best
7253     // opportunity to be accurately lowered. This update may change the type of
7254     // pointer being referred to; however this makes no difference to debugging
7255     // information, and we can't generate bitcasts that may affect codegen.
7256     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7257                                            ValueAsMetadata::get(SunkAddr)));
7258     return true;
7259   }
7260   return false;
7261 }
7262 
7263 // A llvm.dbg.value may be using a value before its definition, due to
7264 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7265 // them by moving the dbg.value to immediately after the value definition.
7266 // FIXME: Ideally this should never be necessary, and this has the potential
7267 // to re-order dbg.value intrinsics.
7268 bool CodeGenPrepare::placeDbgValues(Function &F) {
7269   bool MadeChange = false;
7270   DominatorTree DT(F);
7271 
7272   for (BasicBlock &BB : F) {
7273     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7274       Instruction *Insn = &*BI++;
7275       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7276       if (!DVI)
7277         continue;
7278 
7279       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7280 
7281       if (!VI || VI->isTerminator())
7282         continue;
7283 
7284       // If VI is a phi in a block with an EHPad terminator, we can't insert
7285       // after it.
7286       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7287         continue;
7288 
7289       // If the defining instruction dominates the dbg.value, we do not need
7290       // to move the dbg.value.
7291       if (DT.dominates(VI, DVI))
7292         continue;
7293 
7294       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7295                         << *DVI << ' ' << *VI);
7296       DVI->removeFromParent();
7297       if (isa<PHINode>(VI))
7298         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7299       else
7300         DVI->insertAfter(VI);
7301       MadeChange = true;
7302       ++NumDbgValueMoved;
7303     }
7304   }
7305   return MadeChange;
7306 }
7307 
7308 /// Scale down both weights to fit into uint32_t.
7309 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7310   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7311   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7312   NewTrue = NewTrue / Scale;
7313   NewFalse = NewFalse / Scale;
7314 }
7315 
7316 /// Some targets prefer to split a conditional branch like:
7317 /// \code
7318 ///   %0 = icmp ne i32 %a, 0
7319 ///   %1 = icmp ne i32 %b, 0
7320 ///   %or.cond = or i1 %0, %1
7321 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7322 /// \endcode
7323 /// into multiple branch instructions like:
7324 /// \code
7325 ///   bb1:
7326 ///     %0 = icmp ne i32 %a, 0
7327 ///     br i1 %0, label %TrueBB, label %bb2
7328 ///   bb2:
7329 ///     %1 = icmp ne i32 %b, 0
7330 ///     br i1 %1, label %TrueBB, label %FalseBB
7331 /// \endcode
7332 /// This usually allows instruction selection to do even further optimizations
7333 /// and combine the compare with the branch instruction. Currently this is
7334 /// applied for targets which have "cheap" jump instructions.
7335 ///
7336 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7337 ///
7338 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7339   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7340     return false;
7341 
7342   bool MadeChange = false;
7343   for (auto &BB : F) {
7344     // Does this BB end with the following?
7345     //   %cond1 = icmp|fcmp|binary instruction ...
7346     //   %cond2 = icmp|fcmp|binary instruction ...
7347     //   %cond.or = or|and i1 %cond1, cond2
7348     //   br i1 %cond.or label %dest1, label %dest2"
7349     BinaryOperator *LogicOp;
7350     BasicBlock *TBB, *FBB;
7351     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7352       continue;
7353 
7354     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7355     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7356       continue;
7357 
7358     // The merging of mostly empty BB can cause a degenerate branch.
7359     if (TBB == FBB)
7360       continue;
7361 
7362     unsigned Opc;
7363     Value *Cond1, *Cond2;
7364     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7365                              m_OneUse(m_Value(Cond2)))))
7366       Opc = Instruction::And;
7367     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7368                                  m_OneUse(m_Value(Cond2)))))
7369       Opc = Instruction::Or;
7370     else
7371       continue;
7372 
7373     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7374         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7375       continue;
7376 
7377     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7378 
7379     // Create a new BB.
7380     auto TmpBB =
7381         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7382                            BB.getParent(), BB.getNextNode());
7383 
7384     // Update original basic block by using the first condition directly by the
7385     // branch instruction and removing the no longer needed and/or instruction.
7386     Br1->setCondition(Cond1);
7387     LogicOp->eraseFromParent();
7388 
7389     // Depending on the condition we have to either replace the true or the
7390     // false successor of the original branch instruction.
7391     if (Opc == Instruction::And)
7392       Br1->setSuccessor(0, TmpBB);
7393     else
7394       Br1->setSuccessor(1, TmpBB);
7395 
7396     // Fill in the new basic block.
7397     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7398     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7399       I->removeFromParent();
7400       I->insertBefore(Br2);
7401     }
7402 
7403     // Update PHI nodes in both successors. The original BB needs to be
7404     // replaced in one successor's PHI nodes, because the branch comes now from
7405     // the newly generated BB (NewBB). In the other successor we need to add one
7406     // incoming edge to the PHI nodes, because both branch instructions target
7407     // now the same successor. Depending on the original branch condition
7408     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7409     // we perform the correct update for the PHI nodes.
7410     // This doesn't change the successor order of the just created branch
7411     // instruction (or any other instruction).
7412     if (Opc == Instruction::Or)
7413       std::swap(TBB, FBB);
7414 
7415     // Replace the old BB with the new BB.
7416     TBB->replacePhiUsesWith(&BB, TmpBB);
7417 
7418     // Add another incoming edge form the new BB.
7419     for (PHINode &PN : FBB->phis()) {
7420       auto *Val = PN.getIncomingValueForBlock(&BB);
7421       PN.addIncoming(Val, TmpBB);
7422     }
7423 
7424     // Update the branch weights (from SelectionDAGBuilder::
7425     // FindMergedConditions).
7426     if (Opc == Instruction::Or) {
7427       // Codegen X | Y as:
7428       // BB1:
7429       //   jmp_if_X TBB
7430       //   jmp TmpBB
7431       // TmpBB:
7432       //   jmp_if_Y TBB
7433       //   jmp FBB
7434       //
7435 
7436       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7437       // The requirement is that
7438       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7439       //     = TrueProb for original BB.
7440       // Assuming the original weights are A and B, one choice is to set BB1's
7441       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7442       // assumes that
7443       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7444       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7445       // TmpBB, but the math is more complicated.
7446       uint64_t TrueWeight, FalseWeight;
7447       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7448         uint64_t NewTrueWeight = TrueWeight;
7449         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7450         scaleWeights(NewTrueWeight, NewFalseWeight);
7451         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7452                          .createBranchWeights(TrueWeight, FalseWeight));
7453 
7454         NewTrueWeight = TrueWeight;
7455         NewFalseWeight = 2 * FalseWeight;
7456         scaleWeights(NewTrueWeight, NewFalseWeight);
7457         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7458                          .createBranchWeights(TrueWeight, FalseWeight));
7459       }
7460     } else {
7461       // Codegen X & Y as:
7462       // BB1:
7463       //   jmp_if_X TmpBB
7464       //   jmp FBB
7465       // TmpBB:
7466       //   jmp_if_Y TBB
7467       //   jmp FBB
7468       //
7469       //  This requires creation of TmpBB after CurBB.
7470 
7471       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7472       // The requirement is that
7473       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7474       //     = FalseProb for original BB.
7475       // Assuming the original weights are A and B, one choice is to set BB1's
7476       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7477       // assumes that
7478       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7479       uint64_t TrueWeight, FalseWeight;
7480       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7481         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7482         uint64_t NewFalseWeight = FalseWeight;
7483         scaleWeights(NewTrueWeight, NewFalseWeight);
7484         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7485                          .createBranchWeights(TrueWeight, FalseWeight));
7486 
7487         NewTrueWeight = 2 * TrueWeight;
7488         NewFalseWeight = FalseWeight;
7489         scaleWeights(NewTrueWeight, NewFalseWeight);
7490         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7491                          .createBranchWeights(TrueWeight, FalseWeight));
7492       }
7493     }
7494 
7495     ModifiedDT = true;
7496     MadeChange = true;
7497 
7498     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7499                TmpBB->dump());
7500   }
7501   return MadeChange;
7502 }
7503