1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetPassConfig>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<LoopInfoWrapperPass>(); 333 } 334 335 private: 336 template <typename F> 337 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 338 // Substituting can cause recursive simplifications, which can invalidate 339 // our iterator. Use a WeakTrackingVH to hold onto it in case this 340 // happens. 341 Value *CurValue = &*CurInstIterator; 342 WeakTrackingVH IterHandle(CurValue); 343 344 f(); 345 346 // If the iterator instruction was recursively deleted, start over at the 347 // start of the block. 348 if (IterHandle != CurValue) { 349 CurInstIterator = BB->begin(); 350 SunkAddrs.clear(); 351 } 352 } 353 354 // Get the DominatorTree, building if necessary. 355 DominatorTree &getDT(Function &F) { 356 if (!DT) 357 DT = std::make_unique<DominatorTree>(F); 358 return *DT; 359 } 360 361 bool eliminateFallThrough(Function &F); 362 bool eliminateMostlyEmptyBlocks(Function &F); 363 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 364 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 365 void eliminateMostlyEmptyBlock(BasicBlock *BB); 366 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 367 bool isPreheader); 368 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 369 bool optimizeInst(Instruction *I, bool &ModifiedDT); 370 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 371 Type *AccessTy, unsigned AddrSpace); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 403 Intrinsic::ID IID); 404 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 405 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 }; 408 409 } // end anonymous namespace 410 411 char CodeGenPrepare::ID = 0; 412 413 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 414 "Optimize for code generation", false, false) 415 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 416 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 417 "Optimize for code generation", false, false) 418 419 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 420 421 bool CodeGenPrepare::runOnFunction(Function &F) { 422 if (skipFunction(F)) 423 return false; 424 425 DL = &F.getParent()->getDataLayout(); 426 427 bool EverMadeChange = false; 428 // Clear per function information. 429 InsertedInsts.clear(); 430 PromotedInsts.clear(); 431 432 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 433 SubtargetInfo = TM->getSubtargetImpl(F); 434 TLI = SubtargetInfo->getTargetLowering(); 435 TRI = SubtargetInfo->getRegisterInfo(); 436 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 437 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 438 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 439 BPI.reset(new BranchProbabilityInfo(F, *LI)); 440 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 441 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 442 OptSize = F.hasOptSize(); 443 if (ProfileGuidedSectionPrefix) { 444 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 445 F.setSectionPrefix(".hot"); 446 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 447 F.setSectionPrefix(".unlikely"); 448 } 449 450 /// This optimization identifies DIV instructions that can be 451 /// profitably bypassed and carried out with a shorter, faster divide. 452 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 453 const DenseMap<unsigned int, unsigned int> &BypassWidths = 454 TLI->getBypassSlowDivWidths(); 455 BasicBlock* BB = &*F.begin(); 456 while (BB != nullptr) { 457 // bypassSlowDivision may create new BBs, but we don't want to reapply the 458 // optimization to those blocks. 459 BasicBlock* Next = BB->getNextNode(); 460 // F.hasOptSize is already checked in the outer if statement. 461 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 462 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 463 BB = Next; 464 } 465 } 466 467 // Eliminate blocks that contain only PHI nodes and an 468 // unconditional branch. 469 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 470 471 bool ModifiedDT = false; 472 if (!DisableBranchOpts) 473 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 474 475 // Split some critical edges where one of the sources is an indirect branch, 476 // to help generate sane code for PHIs involving such edges. 477 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 478 479 bool MadeChange = true; 480 while (MadeChange) { 481 MadeChange = false; 482 DT.reset(); 483 for (Function::iterator I = F.begin(); I != F.end(); ) { 484 BasicBlock *BB = &*I++; 485 bool ModifiedDTOnIteration = false; 486 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 487 488 // Restart BB iteration if the dominator tree of the Function was changed 489 if (ModifiedDTOnIteration) 490 break; 491 } 492 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 493 MadeChange |= mergeSExts(F); 494 if (!LargeOffsetGEPMap.empty()) 495 MadeChange |= splitLargeGEPOffsets(); 496 497 // Really free removed instructions during promotion. 498 for (Instruction *I : RemovedInsts) 499 I->deleteValue(); 500 501 EverMadeChange |= MadeChange; 502 SeenChainsForSExt.clear(); 503 ValToSExtendedUses.clear(); 504 RemovedInsts.clear(); 505 LargeOffsetGEPMap.clear(); 506 LargeOffsetGEPID.clear(); 507 } 508 509 SunkAddrs.clear(); 510 511 if (!DisableBranchOpts) { 512 MadeChange = false; 513 // Use a set vector to get deterministic iteration order. The order the 514 // blocks are removed may affect whether or not PHI nodes in successors 515 // are removed. 516 SmallSetVector<BasicBlock*, 8> WorkList; 517 for (BasicBlock &BB : F) { 518 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 519 MadeChange |= ConstantFoldTerminator(&BB, true); 520 if (!MadeChange) continue; 521 522 for (SmallVectorImpl<BasicBlock*>::iterator 523 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 524 if (pred_begin(*II) == pred_end(*II)) 525 WorkList.insert(*II); 526 } 527 528 // Delete the dead blocks and any of their dead successors. 529 MadeChange |= !WorkList.empty(); 530 while (!WorkList.empty()) { 531 BasicBlock *BB = WorkList.pop_back_val(); 532 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 533 534 DeleteDeadBlock(BB); 535 536 for (SmallVectorImpl<BasicBlock*>::iterator 537 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 538 if (pred_begin(*II) == pred_end(*II)) 539 WorkList.insert(*II); 540 } 541 542 // Merge pairs of basic blocks with unconditional branches, connected by 543 // a single edge. 544 if (EverMadeChange || MadeChange) 545 MadeChange |= eliminateFallThrough(F); 546 547 EverMadeChange |= MadeChange; 548 } 549 550 if (!DisableGCOpts) { 551 SmallVector<Instruction *, 2> Statepoints; 552 for (BasicBlock &BB : F) 553 for (Instruction &I : BB) 554 if (isStatepoint(I)) 555 Statepoints.push_back(&I); 556 for (auto &I : Statepoints) 557 EverMadeChange |= simplifyOffsetableRelocate(*I); 558 } 559 560 // Do this last to clean up use-before-def scenarios introduced by other 561 // preparatory transforms. 562 EverMadeChange |= placeDbgValues(F); 563 564 return EverMadeChange; 565 } 566 567 /// Merge basic blocks which are connected by a single edge, where one of the 568 /// basic blocks has a single successor pointing to the other basic block, 569 /// which has a single predecessor. 570 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 571 bool Changed = false; 572 // Scan all of the blocks in the function, except for the entry block. 573 // Use a temporary array to avoid iterator being invalidated when 574 // deleting blocks. 575 SmallVector<WeakTrackingVH, 16> Blocks; 576 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 577 Blocks.push_back(&Block); 578 579 for (auto &Block : Blocks) { 580 auto *BB = cast_or_null<BasicBlock>(Block); 581 if (!BB) 582 continue; 583 // If the destination block has a single pred, then this is a trivial 584 // edge, just collapse it. 585 BasicBlock *SinglePred = BB->getSinglePredecessor(); 586 587 // Don't merge if BB's address is taken. 588 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 589 590 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 591 if (Term && !Term->isConditional()) { 592 Changed = true; 593 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 594 595 // Merge BB into SinglePred and delete it. 596 MergeBlockIntoPredecessor(BB); 597 } 598 } 599 return Changed; 600 } 601 602 /// Find a destination block from BB if BB is mergeable empty block. 603 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 604 // If this block doesn't end with an uncond branch, ignore it. 605 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 606 if (!BI || !BI->isUnconditional()) 607 return nullptr; 608 609 // If the instruction before the branch (skipping debug info) isn't a phi 610 // node, then other stuff is happening here. 611 BasicBlock::iterator BBI = BI->getIterator(); 612 if (BBI != BB->begin()) { 613 --BBI; 614 while (isa<DbgInfoIntrinsic>(BBI)) { 615 if (BBI == BB->begin()) 616 break; 617 --BBI; 618 } 619 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 620 return nullptr; 621 } 622 623 // Do not break infinite loops. 624 BasicBlock *DestBB = BI->getSuccessor(0); 625 if (DestBB == BB) 626 return nullptr; 627 628 if (!canMergeBlocks(BB, DestBB)) 629 DestBB = nullptr; 630 631 return DestBB; 632 } 633 634 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 635 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 636 /// edges in ways that are non-optimal for isel. Start by eliminating these 637 /// blocks so we can split them the way we want them. 638 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 639 SmallPtrSet<BasicBlock *, 16> Preheaders; 640 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 641 while (!LoopList.empty()) { 642 Loop *L = LoopList.pop_back_val(); 643 LoopList.insert(LoopList.end(), L->begin(), L->end()); 644 if (BasicBlock *Preheader = L->getLoopPreheader()) 645 Preheaders.insert(Preheader); 646 } 647 648 bool MadeChange = false; 649 // Copy blocks into a temporary array to avoid iterator invalidation issues 650 // as we remove them. 651 // Note that this intentionally skips the entry block. 652 SmallVector<WeakTrackingVH, 16> Blocks; 653 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 654 Blocks.push_back(&Block); 655 656 for (auto &Block : Blocks) { 657 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 658 if (!BB) 659 continue; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Skip merging if the block's successor is also a successor to any callbr 684 // that leads to this block. 685 // FIXME: Is this really needed? Is this a correctness issue? 686 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 687 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 688 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 689 if (DestBB == CBI->getSuccessor(i)) 690 return false; 691 } 692 693 // Try to skip merging if the unique predecessor of BB is terminated by a 694 // switch or indirect branch instruction, and BB is used as an incoming block 695 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 696 // add COPY instructions in the predecessor of BB instead of BB (if it is not 697 // merged). Note that the critical edge created by merging such blocks wont be 698 // split in MachineSink because the jump table is not analyzable. By keeping 699 // such empty block (BB), ISel will place COPY instructions in BB, not in the 700 // predecessor of BB. 701 BasicBlock *Pred = BB->getUniquePredecessor(); 702 if (!Pred || 703 !(isa<SwitchInst>(Pred->getTerminator()) || 704 isa<IndirectBrInst>(Pred->getTerminator()))) 705 return true; 706 707 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 708 return true; 709 710 // We use a simple cost heuristic which determine skipping merging is 711 // profitable if the cost of skipping merging is less than the cost of 712 // merging : Cost(skipping merging) < Cost(merging BB), where the 713 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 714 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 715 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 716 // Freq(Pred) / Freq(BB) > 2. 717 // Note that if there are multiple empty blocks sharing the same incoming 718 // value for the PHIs in the DestBB, we consider them together. In such 719 // case, Cost(merging BB) will be the sum of their frequencies. 720 721 if (!isa<PHINode>(DestBB->begin())) 722 return true; 723 724 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 725 726 // Find all other incoming blocks from which incoming values of all PHIs in 727 // DestBB are the same as the ones from BB. 728 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 729 ++PI) { 730 BasicBlock *DestBBPred = *PI; 731 if (DestBBPred == BB) 732 continue; 733 734 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 735 return DestPN.getIncomingValueForBlock(BB) == 736 DestPN.getIncomingValueForBlock(DestBBPred); 737 })) 738 SameIncomingValueBBs.insert(DestBBPred); 739 } 740 741 // See if all BB's incoming values are same as the value from Pred. In this 742 // case, no reason to skip merging because COPYs are expected to be place in 743 // Pred already. 744 if (SameIncomingValueBBs.count(Pred)) 745 return true; 746 747 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 748 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 749 750 for (auto SameValueBB : SameIncomingValueBBs) 751 if (SameValueBB->getUniquePredecessor() == Pred && 752 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 753 BBFreq += BFI->getBlockFreq(SameValueBB); 754 755 return PredFreq.getFrequency() <= 756 BBFreq.getFrequency() * FreqRatioToSkipMerge; 757 } 758 759 /// Return true if we can merge BB into DestBB if there is a single 760 /// unconditional branch between them, and BB contains no other non-phi 761 /// instructions. 762 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 763 const BasicBlock *DestBB) const { 764 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 765 // the successor. If there are more complex condition (e.g. preheaders), 766 // don't mess around with them. 767 for (const PHINode &PN : BB->phis()) { 768 for (const User *U : PN.users()) { 769 const Instruction *UI = cast<Instruction>(U); 770 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 771 return false; 772 // If User is inside DestBB block and it is a PHINode then check 773 // incoming value. If incoming value is not from BB then this is 774 // a complex condition (e.g. preheaders) we want to avoid here. 775 if (UI->getParent() == DestBB) { 776 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 777 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 778 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 779 if (Insn && Insn->getParent() == BB && 780 Insn->getParent() != UPN->getIncomingBlock(I)) 781 return false; 782 } 783 } 784 } 785 } 786 787 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 788 // and DestBB may have conflicting incoming values for the block. If so, we 789 // can't merge the block. 790 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 791 if (!DestBBPN) return true; // no conflict. 792 793 // Collect the preds of BB. 794 SmallPtrSet<const BasicBlock*, 16> BBPreds; 795 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 796 // It is faster to get preds from a PHI than with pred_iterator. 797 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 798 BBPreds.insert(BBPN->getIncomingBlock(i)); 799 } else { 800 BBPreds.insert(pred_begin(BB), pred_end(BB)); 801 } 802 803 // Walk the preds of DestBB. 804 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 805 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 806 if (BBPreds.count(Pred)) { // Common predecessor? 807 for (const PHINode &PN : DestBB->phis()) { 808 const Value *V1 = PN.getIncomingValueForBlock(Pred); 809 const Value *V2 = PN.getIncomingValueForBlock(BB); 810 811 // If V2 is a phi node in BB, look up what the mapped value will be. 812 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 813 if (V2PN->getParent() == BB) 814 V2 = V2PN->getIncomingValueForBlock(Pred); 815 816 // If there is a conflict, bail out. 817 if (V1 != V2) return false; 818 } 819 } 820 } 821 822 return true; 823 } 824 825 /// Eliminate a basic block that has only phi's and an unconditional branch in 826 /// it. 827 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 828 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 829 BasicBlock *DestBB = BI->getSuccessor(0); 830 831 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 832 << *BB << *DestBB); 833 834 // If the destination block has a single pred, then this is a trivial edge, 835 // just collapse it. 836 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 837 if (SinglePred != DestBB) { 838 assert(SinglePred == BB && 839 "Single predecessor not the same as predecessor"); 840 // Merge DestBB into SinglePred/BB and delete it. 841 MergeBlockIntoPredecessor(DestBB); 842 // Note: BB(=SinglePred) will not be deleted on this path. 843 // DestBB(=its single successor) is the one that was deleted. 844 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 845 return; 846 } 847 } 848 849 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 850 // to handle the new incoming edges it is about to have. 851 for (PHINode &PN : DestBB->phis()) { 852 // Remove the incoming value for BB, and remember it. 853 Value *InVal = PN.removeIncomingValue(BB, false); 854 855 // Two options: either the InVal is a phi node defined in BB or it is some 856 // value that dominates BB. 857 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 858 if (InValPhi && InValPhi->getParent() == BB) { 859 // Add all of the input values of the input PHI as inputs of this phi. 860 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 861 PN.addIncoming(InValPhi->getIncomingValue(i), 862 InValPhi->getIncomingBlock(i)); 863 } else { 864 // Otherwise, add one instance of the dominating value for each edge that 865 // we will be adding. 866 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 867 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 868 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 869 } else { 870 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 871 PN.addIncoming(InVal, *PI); 872 } 873 } 874 } 875 876 // The PHIs are now updated, change everything that refers to BB to use 877 // DestBB and remove BB. 878 BB->replaceAllUsesWith(DestBB); 879 BB->eraseFromParent(); 880 ++NumBlocksElim; 881 882 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 883 } 884 885 // Computes a map of base pointer relocation instructions to corresponding 886 // derived pointer relocation instructions given a vector of all relocate calls 887 static void computeBaseDerivedRelocateMap( 888 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 889 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 890 &RelocateInstMap) { 891 // Collect information in two maps: one primarily for locating the base object 892 // while filling the second map; the second map is the final structure holding 893 // a mapping between Base and corresponding Derived relocate calls 894 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 895 for (auto *ThisRelocate : AllRelocateCalls) { 896 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 897 ThisRelocate->getDerivedPtrIndex()); 898 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 899 } 900 for (auto &Item : RelocateIdxMap) { 901 std::pair<unsigned, unsigned> Key = Item.first; 902 if (Key.first == Key.second) 903 // Base relocation: nothing to insert 904 continue; 905 906 GCRelocateInst *I = Item.second; 907 auto BaseKey = std::make_pair(Key.first, Key.first); 908 909 // We're iterating over RelocateIdxMap so we cannot modify it. 910 auto MaybeBase = RelocateIdxMap.find(BaseKey); 911 if (MaybeBase == RelocateIdxMap.end()) 912 // TODO: We might want to insert a new base object relocate and gep off 913 // that, if there are enough derived object relocates. 914 continue; 915 916 RelocateInstMap[MaybeBase->second].push_back(I); 917 } 918 } 919 920 // Accepts a GEP and extracts the operands into a vector provided they're all 921 // small integer constants 922 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 923 SmallVectorImpl<Value *> &OffsetV) { 924 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 925 // Only accept small constant integer operands 926 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 927 if (!Op || Op->getZExtValue() > 20) 928 return false; 929 } 930 931 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 932 OffsetV.push_back(GEP->getOperand(i)); 933 return true; 934 } 935 936 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 937 // replace, computes a replacement, and affects it. 938 static bool 939 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 940 const SmallVectorImpl<GCRelocateInst *> &Targets) { 941 bool MadeChange = false; 942 // We must ensure the relocation of derived pointer is defined after 943 // relocation of base pointer. If we find a relocation corresponding to base 944 // defined earlier than relocation of base then we move relocation of base 945 // right before found relocation. We consider only relocation in the same 946 // basic block as relocation of base. Relocations from other basic block will 947 // be skipped by optimization and we do not care about them. 948 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 949 &*R != RelocatedBase; ++R) 950 if (auto RI = dyn_cast<GCRelocateInst>(R)) 951 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 952 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 953 RelocatedBase->moveBefore(RI); 954 break; 955 } 956 957 for (GCRelocateInst *ToReplace : Targets) { 958 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 959 "Not relocating a derived object of the original base object"); 960 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 961 // A duplicate relocate call. TODO: coalesce duplicates. 962 continue; 963 } 964 965 if (RelocatedBase->getParent() != ToReplace->getParent()) { 966 // Base and derived relocates are in different basic blocks. 967 // In this case transform is only valid when base dominates derived 968 // relocate. However it would be too expensive to check dominance 969 // for each such relocate, so we skip the whole transformation. 970 continue; 971 } 972 973 Value *Base = ToReplace->getBasePtr(); 974 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 975 if (!Derived || Derived->getPointerOperand() != Base) 976 continue; 977 978 SmallVector<Value *, 2> OffsetV; 979 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 980 continue; 981 982 // Create a Builder and replace the target callsite with a gep 983 assert(RelocatedBase->getNextNode() && 984 "Should always have one since it's not a terminator"); 985 986 // Insert after RelocatedBase 987 IRBuilder<> Builder(RelocatedBase->getNextNode()); 988 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 989 990 // If gc_relocate does not match the actual type, cast it to the right type. 991 // In theory, there must be a bitcast after gc_relocate if the type does not 992 // match, and we should reuse it to get the derived pointer. But it could be 993 // cases like this: 994 // bb1: 995 // ... 996 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 997 // br label %merge 998 // 999 // bb2: 1000 // ... 1001 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1002 // br label %merge 1003 // 1004 // merge: 1005 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1006 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1007 // 1008 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1009 // no matter there is already one or not. In this way, we can handle all cases, and 1010 // the extra bitcast should be optimized away in later passes. 1011 Value *ActualRelocatedBase = RelocatedBase; 1012 if (RelocatedBase->getType() != Base->getType()) { 1013 ActualRelocatedBase = 1014 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1015 } 1016 Value *Replacement = Builder.CreateGEP( 1017 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1018 Replacement->takeName(ToReplace); 1019 // If the newly generated derived pointer's type does not match the original derived 1020 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1021 Value *ActualReplacement = Replacement; 1022 if (Replacement->getType() != ToReplace->getType()) { 1023 ActualReplacement = 1024 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1025 } 1026 ToReplace->replaceAllUsesWith(ActualReplacement); 1027 ToReplace->eraseFromParent(); 1028 1029 MadeChange = true; 1030 } 1031 return MadeChange; 1032 } 1033 1034 // Turns this: 1035 // 1036 // %base = ... 1037 // %ptr = gep %base + 15 1038 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1039 // %base' = relocate(%tok, i32 4, i32 4) 1040 // %ptr' = relocate(%tok, i32 4, i32 5) 1041 // %val = load %ptr' 1042 // 1043 // into this: 1044 // 1045 // %base = ... 1046 // %ptr = gep %base + 15 1047 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1048 // %base' = gc.relocate(%tok, i32 4, i32 4) 1049 // %ptr' = gep %base' + 15 1050 // %val = load %ptr' 1051 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1052 bool MadeChange = false; 1053 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1054 1055 for (auto *U : I.users()) 1056 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1057 // Collect all the relocate calls associated with a statepoint 1058 AllRelocateCalls.push_back(Relocate); 1059 1060 // We need at least one base pointer relocation + one derived pointer 1061 // relocation to mangle 1062 if (AllRelocateCalls.size() < 2) 1063 return false; 1064 1065 // RelocateInstMap is a mapping from the base relocate instruction to the 1066 // corresponding derived relocate instructions 1067 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1068 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1069 if (RelocateInstMap.empty()) 1070 return false; 1071 1072 for (auto &Item : RelocateInstMap) 1073 // Item.first is the RelocatedBase to offset against 1074 // Item.second is the vector of Targets to replace 1075 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1076 return MadeChange; 1077 } 1078 1079 /// Sink the specified cast instruction into its user blocks. 1080 static bool SinkCast(CastInst *CI) { 1081 BasicBlock *DefBB = CI->getParent(); 1082 1083 /// InsertedCasts - Only insert a cast in each block once. 1084 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1085 1086 bool MadeChange = false; 1087 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1088 UI != E; ) { 1089 Use &TheUse = UI.getUse(); 1090 Instruction *User = cast<Instruction>(*UI); 1091 1092 // Figure out which BB this cast is used in. For PHI's this is the 1093 // appropriate predecessor block. 1094 BasicBlock *UserBB = User->getParent(); 1095 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1096 UserBB = PN->getIncomingBlock(TheUse); 1097 } 1098 1099 // Preincrement use iterator so we don't invalidate it. 1100 ++UI; 1101 1102 // The first insertion point of a block containing an EH pad is after the 1103 // pad. If the pad is the user, we cannot sink the cast past the pad. 1104 if (User->isEHPad()) 1105 continue; 1106 1107 // If the block selected to receive the cast is an EH pad that does not 1108 // allow non-PHI instructions before the terminator, we can't sink the 1109 // cast. 1110 if (UserBB->getTerminator()->isEHPad()) 1111 continue; 1112 1113 // If this user is in the same block as the cast, don't change the cast. 1114 if (UserBB == DefBB) continue; 1115 1116 // If we have already inserted a cast into this block, use it. 1117 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1118 1119 if (!InsertedCast) { 1120 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1121 assert(InsertPt != UserBB->end()); 1122 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1123 CI->getType(), "", &*InsertPt); 1124 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1125 } 1126 1127 // Replace a use of the cast with a use of the new cast. 1128 TheUse = InsertedCast; 1129 MadeChange = true; 1130 ++NumCastUses; 1131 } 1132 1133 // If we removed all uses, nuke the cast. 1134 if (CI->use_empty()) { 1135 salvageDebugInfo(*CI); 1136 CI->eraseFromParent(); 1137 MadeChange = true; 1138 } 1139 1140 return MadeChange; 1141 } 1142 1143 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1144 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1145 /// reduce the number of virtual registers that must be created and coalesced. 1146 /// 1147 /// Return true if any changes are made. 1148 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1149 const DataLayout &DL) { 1150 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1151 // than sinking only nop casts, but is helpful on some platforms. 1152 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1153 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1154 ASC->getDestAddressSpace())) 1155 return false; 1156 } 1157 1158 // If this is a noop copy, 1159 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1160 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1161 1162 // This is an fp<->int conversion? 1163 if (SrcVT.isInteger() != DstVT.isInteger()) 1164 return false; 1165 1166 // If this is an extension, it will be a zero or sign extension, which 1167 // isn't a noop. 1168 if (SrcVT.bitsLT(DstVT)) return false; 1169 1170 // If these values will be promoted, find out what they will be promoted 1171 // to. This helps us consider truncates on PPC as noop copies when they 1172 // are. 1173 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1174 TargetLowering::TypePromoteInteger) 1175 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1176 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1177 TargetLowering::TypePromoteInteger) 1178 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1179 1180 // If, after promotion, these are the same types, this is a noop copy. 1181 if (SrcVT != DstVT) 1182 return false; 1183 1184 return SinkCast(CI); 1185 } 1186 1187 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1188 CmpInst *Cmp, 1189 Intrinsic::ID IID) { 1190 if (BO->getParent() != Cmp->getParent()) { 1191 // We used to use a dominator tree here to allow multi-block optimization. 1192 // But that was problematic because: 1193 // 1. It could cause a perf regression by hoisting the math op into the 1194 // critical path. 1195 // 2. It could cause a perf regression by creating a value that was live 1196 // across multiple blocks and increasing register pressure. 1197 // 3. Use of a dominator tree could cause large compile-time regression. 1198 // This is because we recompute the DT on every change in the main CGP 1199 // run-loop. The recomputing is probably unnecessary in many cases, so if 1200 // that was fixed, using a DT here would be ok. 1201 return false; 1202 } 1203 1204 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1205 Value *Arg0 = BO->getOperand(0); 1206 Value *Arg1 = BO->getOperand(1); 1207 if (BO->getOpcode() == Instruction::Add && 1208 IID == Intrinsic::usub_with_overflow) { 1209 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1210 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1211 } 1212 1213 // Insert at the first instruction of the pair. 1214 Instruction *InsertPt = nullptr; 1215 for (Instruction &Iter : *Cmp->getParent()) { 1216 if (&Iter == BO || &Iter == Cmp) { 1217 InsertPt = &Iter; 1218 break; 1219 } 1220 } 1221 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1222 1223 IRBuilder<> Builder(InsertPt); 1224 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1225 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1226 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1227 BO->replaceAllUsesWith(Math); 1228 Cmp->replaceAllUsesWith(OV); 1229 BO->eraseFromParent(); 1230 Cmp->eraseFromParent(); 1231 return true; 1232 } 1233 1234 /// Match special-case patterns that check for unsigned add overflow. 1235 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1236 BinaryOperator *&Add) { 1237 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1238 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1239 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1240 1241 // We are not expecting non-canonical/degenerate code. Just bail out. 1242 if (isa<Constant>(A)) 1243 return false; 1244 1245 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1246 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1247 B = ConstantInt::get(B->getType(), 1); 1248 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1249 B = ConstantInt::get(B->getType(), -1); 1250 else 1251 return false; 1252 1253 // Check the users of the variable operand of the compare looking for an add 1254 // with the adjusted constant. 1255 for (User *U : A->users()) { 1256 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1257 Add = cast<BinaryOperator>(U); 1258 return true; 1259 } 1260 } 1261 return false; 1262 } 1263 1264 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1265 /// intrinsic. Return true if any changes were made. 1266 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1267 bool &ModifiedDT) { 1268 Value *A, *B; 1269 BinaryOperator *Add; 1270 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1271 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1272 return false; 1273 1274 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1275 TLI->getValueType(*DL, Add->getType()), 1276 Add->hasNUsesOrMore(2))) 1277 return false; 1278 1279 // We don't want to move around uses of condition values this late, so we 1280 // check if it is legal to create the call to the intrinsic in the basic 1281 // block containing the icmp. 1282 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1283 return false; 1284 1285 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1286 return false; 1287 1288 // Reset callers - do not crash by iterating over a dead instruction. 1289 ModifiedDT = true; 1290 return true; 1291 } 1292 1293 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1294 bool &ModifiedDT) { 1295 // We are not expecting non-canonical/degenerate code. Just bail out. 1296 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1297 if (isa<Constant>(A) && isa<Constant>(B)) 1298 return false; 1299 1300 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1301 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1302 if (Pred == ICmpInst::ICMP_UGT) { 1303 std::swap(A, B); 1304 Pred = ICmpInst::ICMP_ULT; 1305 } 1306 // Convert special-case: (A == 0) is the same as (A u< 1). 1307 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1308 B = ConstantInt::get(B->getType(), 1); 1309 Pred = ICmpInst::ICMP_ULT; 1310 } 1311 // Convert special-case: (A != 0) is the same as (0 u< A). 1312 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1313 std::swap(A, B); 1314 Pred = ICmpInst::ICMP_ULT; 1315 } 1316 if (Pred != ICmpInst::ICMP_ULT) 1317 return false; 1318 1319 // Walk the users of a variable operand of a compare looking for a subtract or 1320 // add with that same operand. Also match the 2nd operand of the compare to 1321 // the add/sub, but that may be a negated constant operand of an add. 1322 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1323 BinaryOperator *Sub = nullptr; 1324 for (User *U : CmpVariableOperand->users()) { 1325 // A - B, A u< B --> usubo(A, B) 1326 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1327 Sub = cast<BinaryOperator>(U); 1328 break; 1329 } 1330 1331 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1332 const APInt *CmpC, *AddC; 1333 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1334 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1335 Sub = cast<BinaryOperator>(U); 1336 break; 1337 } 1338 } 1339 if (!Sub) 1340 return false; 1341 1342 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1343 TLI->getValueType(*DL, Sub->getType()), 1344 Sub->hasNUsesOrMore(2))) 1345 return false; 1346 1347 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1348 return false; 1349 1350 // Reset callers - do not crash by iterating over a dead instruction. 1351 ModifiedDT = true; 1352 return true; 1353 } 1354 1355 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1356 /// registers that must be created and coalesced. This is a clear win except on 1357 /// targets with multiple condition code registers (PowerPC), where it might 1358 /// lose; some adjustment may be wanted there. 1359 /// 1360 /// Return true if any changes are made. 1361 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1362 if (TLI.hasMultipleConditionRegisters()) 1363 return false; 1364 1365 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1366 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1367 return false; 1368 1369 // Only insert a cmp in each block once. 1370 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1371 1372 bool MadeChange = false; 1373 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1374 UI != E; ) { 1375 Use &TheUse = UI.getUse(); 1376 Instruction *User = cast<Instruction>(*UI); 1377 1378 // Preincrement use iterator so we don't invalidate it. 1379 ++UI; 1380 1381 // Don't bother for PHI nodes. 1382 if (isa<PHINode>(User)) 1383 continue; 1384 1385 // Figure out which BB this cmp is used in. 1386 BasicBlock *UserBB = User->getParent(); 1387 BasicBlock *DefBB = Cmp->getParent(); 1388 1389 // If this user is in the same block as the cmp, don't change the cmp. 1390 if (UserBB == DefBB) continue; 1391 1392 // If we have already inserted a cmp into this block, use it. 1393 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1394 1395 if (!InsertedCmp) { 1396 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1397 assert(InsertPt != UserBB->end()); 1398 InsertedCmp = 1399 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1400 Cmp->getOperand(0), Cmp->getOperand(1), "", 1401 &*InsertPt); 1402 // Propagate the debug info. 1403 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1404 } 1405 1406 // Replace a use of the cmp with a use of the new cmp. 1407 TheUse = InsertedCmp; 1408 MadeChange = true; 1409 ++NumCmpUses; 1410 } 1411 1412 // If we removed all uses, nuke the cmp. 1413 if (Cmp->use_empty()) { 1414 Cmp->eraseFromParent(); 1415 MadeChange = true; 1416 } 1417 1418 return MadeChange; 1419 } 1420 1421 /// For pattern like: 1422 /// 1423 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1424 /// ... 1425 /// DomBB: 1426 /// ... 1427 /// br DomCond, TrueBB, CmpBB 1428 /// CmpBB: (with DomBB being the single predecessor) 1429 /// ... 1430 /// Cmp = icmp eq CmpOp0, CmpOp1 1431 /// ... 1432 /// 1433 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1434 /// different from lowering of icmp eq (PowerPC). This function try to convert 1435 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1436 /// After that, DomCond and Cmp can use the same comparison so reduce one 1437 /// comparison. 1438 /// 1439 /// Return true if any changes are made. 1440 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1441 const TargetLowering &TLI) { 1442 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1443 return false; 1444 1445 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1446 if (Pred != ICmpInst::ICMP_EQ) 1447 return false; 1448 1449 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1450 // icmp slt/sgt would introduce more redundant LLVM IR. 1451 for (User *U : Cmp->users()) { 1452 if (isa<BranchInst>(U)) 1453 continue; 1454 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1455 continue; 1456 return false; 1457 } 1458 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp->getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return false; 1465 1466 // We want to ensure that the only way control gets to the comparison of 1467 // interest is that a less/greater than comparison on the same operands is 1468 // false. 1469 Value *DomCond; 1470 BasicBlock *TrueBB, *FalseBB; 1471 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1472 return false; 1473 if (CmpBB != FalseBB) 1474 return false; 1475 1476 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1477 ICmpInst::Predicate DomPred; 1478 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1479 return false; 1480 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1481 return false; 1482 1483 // Convert the equality comparison to the opposite of the dominating 1484 // comparison and swap the direction for all branch/select users. 1485 // We have conceptually converted: 1486 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1487 // to 1488 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1489 // And similarly for branches. 1490 for (User *U : Cmp->users()) { 1491 if (auto *BI = dyn_cast<BranchInst>(U)) { 1492 assert(BI->isConditional() && "Must be conditional"); 1493 BI->swapSuccessors(); 1494 continue; 1495 } 1496 if (auto *SI = dyn_cast<SelectInst>(U)) { 1497 // Swap operands 1498 SI->swapValues(); 1499 SI->swapProfMetadata(); 1500 continue; 1501 } 1502 llvm_unreachable("Must be a branch or a select"); 1503 } 1504 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1505 return true; 1506 } 1507 1508 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1509 if (sinkCmpExpression(Cmp, *TLI)) 1510 return true; 1511 1512 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1513 return true; 1514 1515 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1516 return true; 1517 1518 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1519 return true; 1520 1521 return false; 1522 } 1523 1524 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1525 /// used in a compare to allow isel to generate better code for targets where 1526 /// this operation can be combined. 1527 /// 1528 /// Return true if any changes are made. 1529 static bool sinkAndCmp0Expression(Instruction *AndI, 1530 const TargetLowering &TLI, 1531 SetOfInstrs &InsertedInsts) { 1532 // Double-check that we're not trying to optimize an instruction that was 1533 // already optimized by some other part of this pass. 1534 assert(!InsertedInsts.count(AndI) && 1535 "Attempting to optimize already optimized and instruction"); 1536 (void) InsertedInsts; 1537 1538 // Nothing to do for single use in same basic block. 1539 if (AndI->hasOneUse() && 1540 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1541 return false; 1542 1543 // Try to avoid cases where sinking/duplicating is likely to increase register 1544 // pressure. 1545 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1546 !isa<ConstantInt>(AndI->getOperand(1)) && 1547 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1548 return false; 1549 1550 for (auto *U : AndI->users()) { 1551 Instruction *User = cast<Instruction>(U); 1552 1553 // Only sink 'and' feeding icmp with 0. 1554 if (!isa<ICmpInst>(User)) 1555 return false; 1556 1557 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1558 if (!CmpC || !CmpC->isZero()) 1559 return false; 1560 } 1561 1562 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1563 return false; 1564 1565 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1566 LLVM_DEBUG(AndI->getParent()->dump()); 1567 1568 // Push the 'and' into the same block as the icmp 0. There should only be 1569 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1570 // others, so we don't need to keep track of which BBs we insert into. 1571 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1572 UI != E; ) { 1573 Use &TheUse = UI.getUse(); 1574 Instruction *User = cast<Instruction>(*UI); 1575 1576 // Preincrement use iterator so we don't invalidate it. 1577 ++UI; 1578 1579 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1580 1581 // Keep the 'and' in the same place if the use is already in the same block. 1582 Instruction *InsertPt = 1583 User->getParent() == AndI->getParent() ? AndI : User; 1584 Instruction *InsertedAnd = 1585 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1586 AndI->getOperand(1), "", InsertPt); 1587 // Propagate the debug info. 1588 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1589 1590 // Replace a use of the 'and' with a use of the new 'and'. 1591 TheUse = InsertedAnd; 1592 ++NumAndUses; 1593 LLVM_DEBUG(User->getParent()->dump()); 1594 } 1595 1596 // We removed all uses, nuke the and. 1597 AndI->eraseFromParent(); 1598 return true; 1599 } 1600 1601 /// Check if the candidates could be combined with a shift instruction, which 1602 /// includes: 1603 /// 1. Truncate instruction 1604 /// 2. And instruction and the imm is a mask of the low bits: 1605 /// imm & (imm+1) == 0 1606 static bool isExtractBitsCandidateUse(Instruction *User) { 1607 if (!isa<TruncInst>(User)) { 1608 if (User->getOpcode() != Instruction::And || 1609 !isa<ConstantInt>(User->getOperand(1))) 1610 return false; 1611 1612 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1613 1614 if ((Cimm & (Cimm + 1)).getBoolValue()) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 /// Sink both shift and truncate instruction to the use of truncate's BB. 1621 static bool 1622 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1623 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1624 const TargetLowering &TLI, const DataLayout &DL) { 1625 BasicBlock *UserBB = User->getParent(); 1626 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1627 auto *TruncI = cast<TruncInst>(User); 1628 bool MadeChange = false; 1629 1630 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1631 TruncE = TruncI->user_end(); 1632 TruncUI != TruncE;) { 1633 1634 Use &TruncTheUse = TruncUI.getUse(); 1635 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1636 // Preincrement use iterator so we don't invalidate it. 1637 1638 ++TruncUI; 1639 1640 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1641 if (!ISDOpcode) 1642 continue; 1643 1644 // If the use is actually a legal node, there will not be an 1645 // implicit truncate. 1646 // FIXME: always querying the result type is just an 1647 // approximation; some nodes' legality is determined by the 1648 // operand or other means. There's no good way to find out though. 1649 if (TLI.isOperationLegalOrCustom( 1650 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1651 continue; 1652 1653 // Don't bother for PHI nodes. 1654 if (isa<PHINode>(TruncUser)) 1655 continue; 1656 1657 BasicBlock *TruncUserBB = TruncUser->getParent(); 1658 1659 if (UserBB == TruncUserBB) 1660 continue; 1661 1662 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1663 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1664 1665 if (!InsertedShift && !InsertedTrunc) { 1666 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1667 assert(InsertPt != TruncUserBB->end()); 1668 // Sink the shift 1669 if (ShiftI->getOpcode() == Instruction::AShr) 1670 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1671 "", &*InsertPt); 1672 else 1673 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1674 "", &*InsertPt); 1675 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1676 1677 // Sink the trunc 1678 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1679 TruncInsertPt++; 1680 assert(TruncInsertPt != TruncUserBB->end()); 1681 1682 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1683 TruncI->getType(), "", &*TruncInsertPt); 1684 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1685 1686 MadeChange = true; 1687 1688 TruncTheUse = InsertedTrunc; 1689 } 1690 } 1691 return MadeChange; 1692 } 1693 1694 /// Sink the shift *right* instruction into user blocks if the uses could 1695 /// potentially be combined with this shift instruction and generate BitExtract 1696 /// instruction. It will only be applied if the architecture supports BitExtract 1697 /// instruction. Here is an example: 1698 /// BB1: 1699 /// %x.extract.shift = lshr i64 %arg1, 32 1700 /// BB2: 1701 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1702 /// ==> 1703 /// 1704 /// BB2: 1705 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1706 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1707 /// 1708 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1709 /// instruction. 1710 /// Return true if any changes are made. 1711 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1712 const TargetLowering &TLI, 1713 const DataLayout &DL) { 1714 BasicBlock *DefBB = ShiftI->getParent(); 1715 1716 /// Only insert instructions in each block once. 1717 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1718 1719 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1720 1721 bool MadeChange = false; 1722 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1723 UI != E;) { 1724 Use &TheUse = UI.getUse(); 1725 Instruction *User = cast<Instruction>(*UI); 1726 // Preincrement use iterator so we don't invalidate it. 1727 ++UI; 1728 1729 // Don't bother for PHI nodes. 1730 if (isa<PHINode>(User)) 1731 continue; 1732 1733 if (!isExtractBitsCandidateUse(User)) 1734 continue; 1735 1736 BasicBlock *UserBB = User->getParent(); 1737 1738 if (UserBB == DefBB) { 1739 // If the shift and truncate instruction are in the same BB. The use of 1740 // the truncate(TruncUse) may still introduce another truncate if not 1741 // legal. In this case, we would like to sink both shift and truncate 1742 // instruction to the BB of TruncUse. 1743 // for example: 1744 // BB1: 1745 // i64 shift.result = lshr i64 opnd, imm 1746 // trunc.result = trunc shift.result to i16 1747 // 1748 // BB2: 1749 // ----> We will have an implicit truncate here if the architecture does 1750 // not have i16 compare. 1751 // cmp i16 trunc.result, opnd2 1752 // 1753 if (isa<TruncInst>(User) && shiftIsLegal 1754 // If the type of the truncate is legal, no truncate will be 1755 // introduced in other basic blocks. 1756 && 1757 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1758 MadeChange = 1759 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1760 1761 continue; 1762 } 1763 // If we have already inserted a shift into this block, use it. 1764 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1765 1766 if (!InsertedShift) { 1767 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1768 assert(InsertPt != UserBB->end()); 1769 1770 if (ShiftI->getOpcode() == Instruction::AShr) 1771 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1772 "", &*InsertPt); 1773 else 1774 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1775 "", &*InsertPt); 1776 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1777 1778 MadeChange = true; 1779 } 1780 1781 // Replace a use of the shift with a use of the new shift. 1782 TheUse = InsertedShift; 1783 } 1784 1785 // If we removed all uses, or there are none, nuke the shift. 1786 if (ShiftI->use_empty()) { 1787 salvageDebugInfo(*ShiftI); 1788 ShiftI->eraseFromParent(); 1789 MadeChange = true; 1790 } 1791 1792 return MadeChange; 1793 } 1794 1795 /// If counting leading or trailing zeros is an expensive operation and a zero 1796 /// input is defined, add a check for zero to avoid calling the intrinsic. 1797 /// 1798 /// We want to transform: 1799 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1800 /// 1801 /// into: 1802 /// entry: 1803 /// %cmpz = icmp eq i64 %A, 0 1804 /// br i1 %cmpz, label %cond.end, label %cond.false 1805 /// cond.false: 1806 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1807 /// br label %cond.end 1808 /// cond.end: 1809 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1810 /// 1811 /// If the transform is performed, return true and set ModifiedDT to true. 1812 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1813 const TargetLowering *TLI, 1814 const DataLayout *DL, 1815 bool &ModifiedDT) { 1816 // If a zero input is undefined, it doesn't make sense to despeculate that. 1817 if (match(CountZeros->getOperand(1), m_One())) 1818 return false; 1819 1820 // If it's cheap to speculate, there's nothing to do. 1821 auto IntrinsicID = CountZeros->getIntrinsicID(); 1822 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1823 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1824 return false; 1825 1826 // Only handle legal scalar cases. Anything else requires too much work. 1827 Type *Ty = CountZeros->getType(); 1828 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1829 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1830 return false; 1831 1832 // The intrinsic will be sunk behind a compare against zero and branch. 1833 BasicBlock *StartBlock = CountZeros->getParent(); 1834 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1835 1836 // Create another block after the count zero intrinsic. A PHI will be added 1837 // in this block to select the result of the intrinsic or the bit-width 1838 // constant if the input to the intrinsic is zero. 1839 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1840 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1841 1842 // Set up a builder to create a compare, conditional branch, and PHI. 1843 IRBuilder<> Builder(CountZeros->getContext()); 1844 Builder.SetInsertPoint(StartBlock->getTerminator()); 1845 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1846 1847 // Replace the unconditional branch that was created by the first split with 1848 // a compare against zero and a conditional branch. 1849 Value *Zero = Constant::getNullValue(Ty); 1850 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1851 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1852 StartBlock->getTerminator()->eraseFromParent(); 1853 1854 // Create a PHI in the end block to select either the output of the intrinsic 1855 // or the bit width of the operand. 1856 Builder.SetInsertPoint(&EndBlock->front()); 1857 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1858 CountZeros->replaceAllUsesWith(PN); 1859 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1860 PN->addIncoming(BitWidth, StartBlock); 1861 PN->addIncoming(CountZeros, CallBlock); 1862 1863 // We are explicitly handling the zero case, so we can set the intrinsic's 1864 // undefined zero argument to 'true'. This will also prevent reprocessing the 1865 // intrinsic; we only despeculate when a zero input is defined. 1866 CountZeros->setArgOperand(1, Builder.getTrue()); 1867 ModifiedDT = true; 1868 return true; 1869 } 1870 1871 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1872 BasicBlock *BB = CI->getParent(); 1873 1874 // Lower inline assembly if we can. 1875 // If we found an inline asm expession, and if the target knows how to 1876 // lower it to normal LLVM code, do so now. 1877 if (isa<InlineAsm>(CI->getCalledValue())) { 1878 if (TLI->ExpandInlineAsm(CI)) { 1879 // Avoid invalidating the iterator. 1880 CurInstIterator = BB->begin(); 1881 // Avoid processing instructions out of order, which could cause 1882 // reuse before a value is defined. 1883 SunkAddrs.clear(); 1884 return true; 1885 } 1886 // Sink address computing for memory operands into the block. 1887 if (optimizeInlineAsmInst(CI)) 1888 return true; 1889 } 1890 1891 // Align the pointer arguments to this call if the target thinks it's a good 1892 // idea 1893 unsigned MinSize, PrefAlign; 1894 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1895 for (auto &Arg : CI->arg_operands()) { 1896 // We want to align both objects whose address is used directly and 1897 // objects whose address is used in casts and GEPs, though it only makes 1898 // sense for GEPs if the offset is a multiple of the desired alignment and 1899 // if size - offset meets the size threshold. 1900 if (!Arg->getType()->isPointerTy()) 1901 continue; 1902 APInt Offset(DL->getIndexSizeInBits( 1903 cast<PointerType>(Arg->getType())->getAddressSpace()), 1904 0); 1905 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1906 uint64_t Offset2 = Offset.getLimitedValue(); 1907 if ((Offset2 & (PrefAlign-1)) != 0) 1908 continue; 1909 AllocaInst *AI; 1910 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1911 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1912 AI->setAlignment(MaybeAlign(PrefAlign)); 1913 // Global variables can only be aligned if they are defined in this 1914 // object (i.e. they are uniquely initialized in this object), and 1915 // over-aligning global variables that have an explicit section is 1916 // forbidden. 1917 GlobalVariable *GV; 1918 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1919 GV->getPointerAlignment(*DL) < PrefAlign && 1920 DL->getTypeAllocSize(GV->getValueType()) >= 1921 MinSize + Offset2) 1922 GV->setAlignment(MaybeAlign(PrefAlign)); 1923 } 1924 // If this is a memcpy (or similar) then we may be able to improve the 1925 // alignment 1926 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1927 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1928 if (DestAlign > MI->getDestAlignment()) 1929 MI->setDestAlignment(DestAlign); 1930 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1931 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1932 if (SrcAlign > MTI->getSourceAlignment()) 1933 MTI->setSourceAlignment(SrcAlign); 1934 } 1935 } 1936 } 1937 1938 // If we have a cold call site, try to sink addressing computation into the 1939 // cold block. This interacts with our handling for loads and stores to 1940 // ensure that we can fold all uses of a potential addressing computation 1941 // into their uses. TODO: generalize this to work over profiling data 1942 if (CI->hasFnAttr(Attribute::Cold) && 1943 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1944 for (auto &Arg : CI->arg_operands()) { 1945 if (!Arg->getType()->isPointerTy()) 1946 continue; 1947 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1948 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1949 } 1950 1951 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1952 if (II) { 1953 switch (II->getIntrinsicID()) { 1954 default: break; 1955 case Intrinsic::experimental_widenable_condition: { 1956 // Give up on future widening oppurtunties so that we can fold away dead 1957 // paths and merge blocks before going into block-local instruction 1958 // selection. 1959 if (II->use_empty()) { 1960 II->eraseFromParent(); 1961 return true; 1962 } 1963 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1964 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1965 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1966 }); 1967 return true; 1968 } 1969 case Intrinsic::objectsize: 1970 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1971 case Intrinsic::is_constant: 1972 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1973 case Intrinsic::aarch64_stlxr: 1974 case Intrinsic::aarch64_stxr: { 1975 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1976 if (!ExtVal || !ExtVal->hasOneUse() || 1977 ExtVal->getParent() == CI->getParent()) 1978 return false; 1979 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1980 ExtVal->moveBefore(CI); 1981 // Mark this instruction as "inserted by CGP", so that other 1982 // optimizations don't touch it. 1983 InsertedInsts.insert(ExtVal); 1984 return true; 1985 } 1986 1987 case Intrinsic::launder_invariant_group: 1988 case Intrinsic::strip_invariant_group: { 1989 Value *ArgVal = II->getArgOperand(0); 1990 auto it = LargeOffsetGEPMap.find(II); 1991 if (it != LargeOffsetGEPMap.end()) { 1992 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1993 // Make sure not to have to deal with iterator invalidation 1994 // after possibly adding ArgVal to LargeOffsetGEPMap. 1995 auto GEPs = std::move(it->second); 1996 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1997 LargeOffsetGEPMap.erase(II); 1998 } 1999 2000 II->replaceAllUsesWith(ArgVal); 2001 II->eraseFromParent(); 2002 return true; 2003 } 2004 case Intrinsic::cttz: 2005 case Intrinsic::ctlz: 2006 // If counting zeros is expensive, try to avoid it. 2007 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2008 case Intrinsic::dbg_value: 2009 return fixupDbgValue(II); 2010 case Intrinsic::vscale: { 2011 // If datalayout has no special restrictions on vector data layout, 2012 // replace `llvm.vscale` by an equivalent constant expression 2013 // to benefit from cheap constant propagation. 2014 Type *ScalableVectorTy = 2015 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2016 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2017 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2018 auto One = ConstantInt::getSigned(II->getType(), 1); 2019 auto *CGep = 2020 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2021 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2022 II->eraseFromParent(); 2023 return true; 2024 } 2025 } 2026 } 2027 2028 SmallVector<Value *, 2> PtrOps; 2029 Type *AccessTy; 2030 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2031 while (!PtrOps.empty()) { 2032 Value *PtrVal = PtrOps.pop_back_val(); 2033 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2034 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2035 return true; 2036 } 2037 } 2038 2039 // From here on out we're working with named functions. 2040 if (!CI->getCalledFunction()) return false; 2041 2042 // Lower all default uses of _chk calls. This is very similar 2043 // to what InstCombineCalls does, but here we are only lowering calls 2044 // to fortified library functions (e.g. __memcpy_chk) that have the default 2045 // "don't know" as the objectsize. Anything else should be left alone. 2046 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2047 IRBuilder<> Builder(CI); 2048 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2049 CI->replaceAllUsesWith(V); 2050 CI->eraseFromParent(); 2051 return true; 2052 } 2053 2054 return false; 2055 } 2056 2057 /// Look for opportunities to duplicate return instructions to the predecessor 2058 /// to enable tail call optimizations. The case it is currently looking for is: 2059 /// @code 2060 /// bb0: 2061 /// %tmp0 = tail call i32 @f0() 2062 /// br label %return 2063 /// bb1: 2064 /// %tmp1 = tail call i32 @f1() 2065 /// br label %return 2066 /// bb2: 2067 /// %tmp2 = tail call i32 @f2() 2068 /// br label %return 2069 /// return: 2070 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2071 /// ret i32 %retval 2072 /// @endcode 2073 /// 2074 /// => 2075 /// 2076 /// @code 2077 /// bb0: 2078 /// %tmp0 = tail call i32 @f0() 2079 /// ret i32 %tmp0 2080 /// bb1: 2081 /// %tmp1 = tail call i32 @f1() 2082 /// ret i32 %tmp1 2083 /// bb2: 2084 /// %tmp2 = tail call i32 @f2() 2085 /// ret i32 %tmp2 2086 /// @endcode 2087 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2088 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2089 if (!RetI) 2090 return false; 2091 2092 PHINode *PN = nullptr; 2093 BitCastInst *BCI = nullptr; 2094 Value *V = RetI->getReturnValue(); 2095 if (V) { 2096 BCI = dyn_cast<BitCastInst>(V); 2097 if (BCI) 2098 V = BCI->getOperand(0); 2099 2100 PN = dyn_cast<PHINode>(V); 2101 if (!PN) 2102 return false; 2103 } 2104 2105 if (PN && PN->getParent() != BB) 2106 return false; 2107 2108 // Make sure there are no instructions between the PHI and return, or that the 2109 // return is the first instruction in the block. 2110 if (PN) { 2111 BasicBlock::iterator BI = BB->begin(); 2112 // Skip over debug and the bitcast. 2113 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2114 if (&*BI != RetI) 2115 return false; 2116 } else { 2117 BasicBlock::iterator BI = BB->begin(); 2118 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2119 if (&*BI != RetI) 2120 return false; 2121 } 2122 2123 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2124 /// call. 2125 const Function *F = BB->getParent(); 2126 SmallVector<BasicBlock*, 4> TailCallBBs; 2127 if (PN) { 2128 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2129 // Look through bitcasts. 2130 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2131 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2132 BasicBlock *PredBB = PN->getIncomingBlock(I); 2133 // Make sure the phi value is indeed produced by the tail call. 2134 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2135 TLI->mayBeEmittedAsTailCall(CI) && 2136 attributesPermitTailCall(F, CI, RetI, *TLI)) 2137 TailCallBBs.push_back(PredBB); 2138 } 2139 } else { 2140 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2141 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2142 if (!VisitedBBs.insert(*PI).second) 2143 continue; 2144 2145 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2146 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2147 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2148 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2149 if (RI == RE) 2150 continue; 2151 2152 CallInst *CI = dyn_cast<CallInst>(&*RI); 2153 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2154 attributesPermitTailCall(F, CI, RetI, *TLI)) 2155 TailCallBBs.push_back(*PI); 2156 } 2157 } 2158 2159 bool Changed = false; 2160 for (auto const &TailCallBB : TailCallBBs) { 2161 // Make sure the call instruction is followed by an unconditional branch to 2162 // the return block. 2163 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2164 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2165 continue; 2166 2167 // Duplicate the return into TailCallBB. 2168 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2169 ModifiedDT = Changed = true; 2170 ++NumRetsDup; 2171 } 2172 2173 // If we eliminated all predecessors of the block, delete the block now. 2174 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2175 BB->eraseFromParent(); 2176 2177 return Changed; 2178 } 2179 2180 //===----------------------------------------------------------------------===// 2181 // Memory Optimization 2182 //===----------------------------------------------------------------------===// 2183 2184 namespace { 2185 2186 /// This is an extended version of TargetLowering::AddrMode 2187 /// which holds actual Value*'s for register values. 2188 struct ExtAddrMode : public TargetLowering::AddrMode { 2189 Value *BaseReg = nullptr; 2190 Value *ScaledReg = nullptr; 2191 Value *OriginalValue = nullptr; 2192 bool InBounds = true; 2193 2194 enum FieldName { 2195 NoField = 0x00, 2196 BaseRegField = 0x01, 2197 BaseGVField = 0x02, 2198 BaseOffsField = 0x04, 2199 ScaledRegField = 0x08, 2200 ScaleField = 0x10, 2201 MultipleFields = 0xff 2202 }; 2203 2204 2205 ExtAddrMode() = default; 2206 2207 void print(raw_ostream &OS) const; 2208 void dump() const; 2209 2210 FieldName compare(const ExtAddrMode &other) { 2211 // First check that the types are the same on each field, as differing types 2212 // is something we can't cope with later on. 2213 if (BaseReg && other.BaseReg && 2214 BaseReg->getType() != other.BaseReg->getType()) 2215 return MultipleFields; 2216 if (BaseGV && other.BaseGV && 2217 BaseGV->getType() != other.BaseGV->getType()) 2218 return MultipleFields; 2219 if (ScaledReg && other.ScaledReg && 2220 ScaledReg->getType() != other.ScaledReg->getType()) 2221 return MultipleFields; 2222 2223 // Conservatively reject 'inbounds' mismatches. 2224 if (InBounds != other.InBounds) 2225 return MultipleFields; 2226 2227 // Check each field to see if it differs. 2228 unsigned Result = NoField; 2229 if (BaseReg != other.BaseReg) 2230 Result |= BaseRegField; 2231 if (BaseGV != other.BaseGV) 2232 Result |= BaseGVField; 2233 if (BaseOffs != other.BaseOffs) 2234 Result |= BaseOffsField; 2235 if (ScaledReg != other.ScaledReg) 2236 Result |= ScaledRegField; 2237 // Don't count 0 as being a different scale, because that actually means 2238 // unscaled (which will already be counted by having no ScaledReg). 2239 if (Scale && other.Scale && Scale != other.Scale) 2240 Result |= ScaleField; 2241 2242 if (countPopulation(Result) > 1) 2243 return MultipleFields; 2244 else 2245 return static_cast<FieldName>(Result); 2246 } 2247 2248 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2249 // with no offset. 2250 bool isTrivial() { 2251 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2252 // trivial if at most one of these terms is nonzero, except that BaseGV and 2253 // BaseReg both being zero actually means a null pointer value, which we 2254 // consider to be 'non-zero' here. 2255 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2256 } 2257 2258 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2259 switch (Field) { 2260 default: 2261 return nullptr; 2262 case BaseRegField: 2263 return BaseReg; 2264 case BaseGVField: 2265 return BaseGV; 2266 case ScaledRegField: 2267 return ScaledReg; 2268 case BaseOffsField: 2269 return ConstantInt::get(IntPtrTy, BaseOffs); 2270 } 2271 } 2272 2273 void SetCombinedField(FieldName Field, Value *V, 2274 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2275 switch (Field) { 2276 default: 2277 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2278 break; 2279 case ExtAddrMode::BaseRegField: 2280 BaseReg = V; 2281 break; 2282 case ExtAddrMode::BaseGVField: 2283 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2284 // in the BaseReg field. 2285 assert(BaseReg == nullptr); 2286 BaseReg = V; 2287 BaseGV = nullptr; 2288 break; 2289 case ExtAddrMode::ScaledRegField: 2290 ScaledReg = V; 2291 // If we have a mix of scaled and unscaled addrmodes then we want scale 2292 // to be the scale and not zero. 2293 if (!Scale) 2294 for (const ExtAddrMode &AM : AddrModes) 2295 if (AM.Scale) { 2296 Scale = AM.Scale; 2297 break; 2298 } 2299 break; 2300 case ExtAddrMode::BaseOffsField: 2301 // The offset is no longer a constant, so it goes in ScaledReg with a 2302 // scale of 1. 2303 assert(ScaledReg == nullptr); 2304 ScaledReg = V; 2305 Scale = 1; 2306 BaseOffs = 0; 2307 break; 2308 } 2309 } 2310 }; 2311 2312 } // end anonymous namespace 2313 2314 #ifndef NDEBUG 2315 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2316 AM.print(OS); 2317 return OS; 2318 } 2319 #endif 2320 2321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2322 void ExtAddrMode::print(raw_ostream &OS) const { 2323 bool NeedPlus = false; 2324 OS << "["; 2325 if (InBounds) 2326 OS << "inbounds "; 2327 if (BaseGV) { 2328 OS << (NeedPlus ? " + " : "") 2329 << "GV:"; 2330 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2331 NeedPlus = true; 2332 } 2333 2334 if (BaseOffs) { 2335 OS << (NeedPlus ? " + " : "") 2336 << BaseOffs; 2337 NeedPlus = true; 2338 } 2339 2340 if (BaseReg) { 2341 OS << (NeedPlus ? " + " : "") 2342 << "Base:"; 2343 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2344 NeedPlus = true; 2345 } 2346 if (Scale) { 2347 OS << (NeedPlus ? " + " : "") 2348 << Scale << "*"; 2349 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2350 } 2351 2352 OS << ']'; 2353 } 2354 2355 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2356 print(dbgs()); 2357 dbgs() << '\n'; 2358 } 2359 #endif 2360 2361 namespace { 2362 2363 /// This class provides transaction based operation on the IR. 2364 /// Every change made through this class is recorded in the internal state and 2365 /// can be undone (rollback) until commit is called. 2366 class TypePromotionTransaction { 2367 /// This represents the common interface of the individual transaction. 2368 /// Each class implements the logic for doing one specific modification on 2369 /// the IR via the TypePromotionTransaction. 2370 class TypePromotionAction { 2371 protected: 2372 /// The Instruction modified. 2373 Instruction *Inst; 2374 2375 public: 2376 /// Constructor of the action. 2377 /// The constructor performs the related action on the IR. 2378 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2379 2380 virtual ~TypePromotionAction() = default; 2381 2382 /// Undo the modification done by this action. 2383 /// When this method is called, the IR must be in the same state as it was 2384 /// before this action was applied. 2385 /// \pre Undoing the action works if and only if the IR is in the exact same 2386 /// state as it was directly after this action was applied. 2387 virtual void undo() = 0; 2388 2389 /// Advocate every change made by this action. 2390 /// When the results on the IR of the action are to be kept, it is important 2391 /// to call this function, otherwise hidden information may be kept forever. 2392 virtual void commit() { 2393 // Nothing to be done, this action is not doing anything. 2394 } 2395 }; 2396 2397 /// Utility to remember the position of an instruction. 2398 class InsertionHandler { 2399 /// Position of an instruction. 2400 /// Either an instruction: 2401 /// - Is the first in a basic block: BB is used. 2402 /// - Has a previous instruction: PrevInst is used. 2403 union { 2404 Instruction *PrevInst; 2405 BasicBlock *BB; 2406 } Point; 2407 2408 /// Remember whether or not the instruction had a previous instruction. 2409 bool HasPrevInstruction; 2410 2411 public: 2412 /// Record the position of \p Inst. 2413 InsertionHandler(Instruction *Inst) { 2414 BasicBlock::iterator It = Inst->getIterator(); 2415 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2416 if (HasPrevInstruction) 2417 Point.PrevInst = &*--It; 2418 else 2419 Point.BB = Inst->getParent(); 2420 } 2421 2422 /// Insert \p Inst at the recorded position. 2423 void insert(Instruction *Inst) { 2424 if (HasPrevInstruction) { 2425 if (Inst->getParent()) 2426 Inst->removeFromParent(); 2427 Inst->insertAfter(Point.PrevInst); 2428 } else { 2429 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2430 if (Inst->getParent()) 2431 Inst->moveBefore(Position); 2432 else 2433 Inst->insertBefore(Position); 2434 } 2435 } 2436 }; 2437 2438 /// Move an instruction before another. 2439 class InstructionMoveBefore : public TypePromotionAction { 2440 /// Original position of the instruction. 2441 InsertionHandler Position; 2442 2443 public: 2444 /// Move \p Inst before \p Before. 2445 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2446 : TypePromotionAction(Inst), Position(Inst) { 2447 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2448 << "\n"); 2449 Inst->moveBefore(Before); 2450 } 2451 2452 /// Move the instruction back to its original position. 2453 void undo() override { 2454 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2455 Position.insert(Inst); 2456 } 2457 }; 2458 2459 /// Set the operand of an instruction with a new value. 2460 class OperandSetter : public TypePromotionAction { 2461 /// Original operand of the instruction. 2462 Value *Origin; 2463 2464 /// Index of the modified instruction. 2465 unsigned Idx; 2466 2467 public: 2468 /// Set \p Idx operand of \p Inst with \p NewVal. 2469 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2470 : TypePromotionAction(Inst), Idx(Idx) { 2471 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2472 << "for:" << *Inst << "\n" 2473 << "with:" << *NewVal << "\n"); 2474 Origin = Inst->getOperand(Idx); 2475 Inst->setOperand(Idx, NewVal); 2476 } 2477 2478 /// Restore the original value of the instruction. 2479 void undo() override { 2480 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2481 << "for: " << *Inst << "\n" 2482 << "with: " << *Origin << "\n"); 2483 Inst->setOperand(Idx, Origin); 2484 } 2485 }; 2486 2487 /// Hide the operands of an instruction. 2488 /// Do as if this instruction was not using any of its operands. 2489 class OperandsHider : public TypePromotionAction { 2490 /// The list of original operands. 2491 SmallVector<Value *, 4> OriginalValues; 2492 2493 public: 2494 /// Remove \p Inst from the uses of the operands of \p Inst. 2495 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2496 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2497 unsigned NumOpnds = Inst->getNumOperands(); 2498 OriginalValues.reserve(NumOpnds); 2499 for (unsigned It = 0; It < NumOpnds; ++It) { 2500 // Save the current operand. 2501 Value *Val = Inst->getOperand(It); 2502 OriginalValues.push_back(Val); 2503 // Set a dummy one. 2504 // We could use OperandSetter here, but that would imply an overhead 2505 // that we are not willing to pay. 2506 Inst->setOperand(It, UndefValue::get(Val->getType())); 2507 } 2508 } 2509 2510 /// Restore the original list of uses. 2511 void undo() override { 2512 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2513 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2514 Inst->setOperand(It, OriginalValues[It]); 2515 } 2516 }; 2517 2518 /// Build a truncate instruction. 2519 class TruncBuilder : public TypePromotionAction { 2520 Value *Val; 2521 2522 public: 2523 /// Build a truncate instruction of \p Opnd producing a \p Ty 2524 /// result. 2525 /// trunc Opnd to Ty. 2526 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2527 IRBuilder<> Builder(Opnd); 2528 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2529 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2530 } 2531 2532 /// Get the built value. 2533 Value *getBuiltValue() { return Val; } 2534 2535 /// Remove the built instruction. 2536 void undo() override { 2537 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2538 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2539 IVal->eraseFromParent(); 2540 } 2541 }; 2542 2543 /// Build a sign extension instruction. 2544 class SExtBuilder : public TypePromotionAction { 2545 Value *Val; 2546 2547 public: 2548 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2549 /// result. 2550 /// sext Opnd to Ty. 2551 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2552 : TypePromotionAction(InsertPt) { 2553 IRBuilder<> Builder(InsertPt); 2554 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2555 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2556 } 2557 2558 /// Get the built value. 2559 Value *getBuiltValue() { return Val; } 2560 2561 /// Remove the built instruction. 2562 void undo() override { 2563 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2564 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2565 IVal->eraseFromParent(); 2566 } 2567 }; 2568 2569 /// Build a zero extension instruction. 2570 class ZExtBuilder : public TypePromotionAction { 2571 Value *Val; 2572 2573 public: 2574 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2575 /// result. 2576 /// zext Opnd to Ty. 2577 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2578 : TypePromotionAction(InsertPt) { 2579 IRBuilder<> Builder(InsertPt); 2580 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2581 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2582 } 2583 2584 /// Get the built value. 2585 Value *getBuiltValue() { return Val; } 2586 2587 /// Remove the built instruction. 2588 void undo() override { 2589 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2590 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2591 IVal->eraseFromParent(); 2592 } 2593 }; 2594 2595 /// Mutate an instruction to another type. 2596 class TypeMutator : public TypePromotionAction { 2597 /// Record the original type. 2598 Type *OrigTy; 2599 2600 public: 2601 /// Mutate the type of \p Inst into \p NewTy. 2602 TypeMutator(Instruction *Inst, Type *NewTy) 2603 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2604 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2605 << "\n"); 2606 Inst->mutateType(NewTy); 2607 } 2608 2609 /// Mutate the instruction back to its original type. 2610 void undo() override { 2611 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2612 << "\n"); 2613 Inst->mutateType(OrigTy); 2614 } 2615 }; 2616 2617 /// Replace the uses of an instruction by another instruction. 2618 class UsesReplacer : public TypePromotionAction { 2619 /// Helper structure to keep track of the replaced uses. 2620 struct InstructionAndIdx { 2621 /// The instruction using the instruction. 2622 Instruction *Inst; 2623 2624 /// The index where this instruction is used for Inst. 2625 unsigned Idx; 2626 2627 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2628 : Inst(Inst), Idx(Idx) {} 2629 }; 2630 2631 /// Keep track of the original uses (pair Instruction, Index). 2632 SmallVector<InstructionAndIdx, 4> OriginalUses; 2633 /// Keep track of the debug users. 2634 SmallVector<DbgValueInst *, 1> DbgValues; 2635 2636 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2637 2638 public: 2639 /// Replace all the use of \p Inst by \p New. 2640 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2641 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2642 << "\n"); 2643 // Record the original uses. 2644 for (Use &U : Inst->uses()) { 2645 Instruction *UserI = cast<Instruction>(U.getUser()); 2646 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2647 } 2648 // Record the debug uses separately. They are not in the instruction's 2649 // use list, but they are replaced by RAUW. 2650 findDbgValues(DbgValues, Inst); 2651 2652 // Now, we can replace the uses. 2653 Inst->replaceAllUsesWith(New); 2654 } 2655 2656 /// Reassign the original uses of Inst to Inst. 2657 void undo() override { 2658 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2659 for (use_iterator UseIt = OriginalUses.begin(), 2660 EndIt = OriginalUses.end(); 2661 UseIt != EndIt; ++UseIt) { 2662 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2663 } 2664 // RAUW has replaced all original uses with references to the new value, 2665 // including the debug uses. Since we are undoing the replacements, 2666 // the original debug uses must also be reinstated to maintain the 2667 // correctness and utility of debug value instructions. 2668 for (auto *DVI: DbgValues) { 2669 LLVMContext &Ctx = Inst->getType()->getContext(); 2670 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2671 DVI->setOperand(0, MV); 2672 } 2673 } 2674 }; 2675 2676 /// Remove an instruction from the IR. 2677 class InstructionRemover : public TypePromotionAction { 2678 /// Original position of the instruction. 2679 InsertionHandler Inserter; 2680 2681 /// Helper structure to hide all the link to the instruction. In other 2682 /// words, this helps to do as if the instruction was removed. 2683 OperandsHider Hider; 2684 2685 /// Keep track of the uses replaced, if any. 2686 UsesReplacer *Replacer = nullptr; 2687 2688 /// Keep track of instructions removed. 2689 SetOfInstrs &RemovedInsts; 2690 2691 public: 2692 /// Remove all reference of \p Inst and optionally replace all its 2693 /// uses with New. 2694 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2695 /// \pre If !Inst->use_empty(), then New != nullptr 2696 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2697 Value *New = nullptr) 2698 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2699 RemovedInsts(RemovedInsts) { 2700 if (New) 2701 Replacer = new UsesReplacer(Inst, New); 2702 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2703 RemovedInsts.insert(Inst); 2704 /// The instructions removed here will be freed after completing 2705 /// optimizeBlock() for all blocks as we need to keep track of the 2706 /// removed instructions during promotion. 2707 Inst->removeFromParent(); 2708 } 2709 2710 ~InstructionRemover() override { delete Replacer; } 2711 2712 /// Resurrect the instruction and reassign it to the proper uses if 2713 /// new value was provided when build this action. 2714 void undo() override { 2715 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2716 Inserter.insert(Inst); 2717 if (Replacer) 2718 Replacer->undo(); 2719 Hider.undo(); 2720 RemovedInsts.erase(Inst); 2721 } 2722 }; 2723 2724 public: 2725 /// Restoration point. 2726 /// The restoration point is a pointer to an action instead of an iterator 2727 /// because the iterator may be invalidated but not the pointer. 2728 using ConstRestorationPt = const TypePromotionAction *; 2729 2730 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2731 : RemovedInsts(RemovedInsts) {} 2732 2733 /// Advocate every changes made in that transaction. 2734 void commit(); 2735 2736 /// Undo all the changes made after the given point. 2737 void rollback(ConstRestorationPt Point); 2738 2739 /// Get the current restoration point. 2740 ConstRestorationPt getRestorationPoint() const; 2741 2742 /// \name API for IR modification with state keeping to support rollback. 2743 /// @{ 2744 /// Same as Instruction::setOperand. 2745 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2746 2747 /// Same as Instruction::eraseFromParent. 2748 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2749 2750 /// Same as Value::replaceAllUsesWith. 2751 void replaceAllUsesWith(Instruction *Inst, Value *New); 2752 2753 /// Same as Value::mutateType. 2754 void mutateType(Instruction *Inst, Type *NewTy); 2755 2756 /// Same as IRBuilder::createTrunc. 2757 Value *createTrunc(Instruction *Opnd, Type *Ty); 2758 2759 /// Same as IRBuilder::createSExt. 2760 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2761 2762 /// Same as IRBuilder::createZExt. 2763 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2764 2765 /// Same as Instruction::moveBefore. 2766 void moveBefore(Instruction *Inst, Instruction *Before); 2767 /// @} 2768 2769 private: 2770 /// The ordered list of actions made so far. 2771 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2772 2773 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2774 2775 SetOfInstrs &RemovedInsts; 2776 }; 2777 2778 } // end anonymous namespace 2779 2780 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2781 Value *NewVal) { 2782 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2783 Inst, Idx, NewVal)); 2784 } 2785 2786 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2787 Value *NewVal) { 2788 Actions.push_back( 2789 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2790 Inst, RemovedInsts, NewVal)); 2791 } 2792 2793 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2794 Value *New) { 2795 Actions.push_back( 2796 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2797 } 2798 2799 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2800 Actions.push_back( 2801 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2802 } 2803 2804 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2805 Type *Ty) { 2806 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2807 Value *Val = Ptr->getBuiltValue(); 2808 Actions.push_back(std::move(Ptr)); 2809 return Val; 2810 } 2811 2812 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2813 Value *Opnd, Type *Ty) { 2814 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2815 Value *Val = Ptr->getBuiltValue(); 2816 Actions.push_back(std::move(Ptr)); 2817 return Val; 2818 } 2819 2820 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2821 Value *Opnd, Type *Ty) { 2822 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2823 Value *Val = Ptr->getBuiltValue(); 2824 Actions.push_back(std::move(Ptr)); 2825 return Val; 2826 } 2827 2828 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2829 Instruction *Before) { 2830 Actions.push_back( 2831 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2832 Inst, Before)); 2833 } 2834 2835 TypePromotionTransaction::ConstRestorationPt 2836 TypePromotionTransaction::getRestorationPoint() const { 2837 return !Actions.empty() ? Actions.back().get() : nullptr; 2838 } 2839 2840 void TypePromotionTransaction::commit() { 2841 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2842 ++It) 2843 (*It)->commit(); 2844 Actions.clear(); 2845 } 2846 2847 void TypePromotionTransaction::rollback( 2848 TypePromotionTransaction::ConstRestorationPt Point) { 2849 while (!Actions.empty() && Point != Actions.back().get()) { 2850 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2851 Curr->undo(); 2852 } 2853 } 2854 2855 namespace { 2856 2857 /// A helper class for matching addressing modes. 2858 /// 2859 /// This encapsulates the logic for matching the target-legal addressing modes. 2860 class AddressingModeMatcher { 2861 SmallVectorImpl<Instruction*> &AddrModeInsts; 2862 const TargetLowering &TLI; 2863 const TargetRegisterInfo &TRI; 2864 const DataLayout &DL; 2865 2866 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2867 /// the memory instruction that we're computing this address for. 2868 Type *AccessTy; 2869 unsigned AddrSpace; 2870 Instruction *MemoryInst; 2871 2872 /// This is the addressing mode that we're building up. This is 2873 /// part of the return value of this addressing mode matching stuff. 2874 ExtAddrMode &AddrMode; 2875 2876 /// The instructions inserted by other CodeGenPrepare optimizations. 2877 const SetOfInstrs &InsertedInsts; 2878 2879 /// A map from the instructions to their type before promotion. 2880 InstrToOrigTy &PromotedInsts; 2881 2882 /// The ongoing transaction where every action should be registered. 2883 TypePromotionTransaction &TPT; 2884 2885 // A GEP which has too large offset to be folded into the addressing mode. 2886 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2887 2888 /// This is set to true when we should not do profitability checks. 2889 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2890 bool IgnoreProfitability; 2891 2892 /// True if we are optimizing for size. 2893 bool OptSize; 2894 2895 ProfileSummaryInfo *PSI; 2896 BlockFrequencyInfo *BFI; 2897 2898 AddressingModeMatcher( 2899 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2900 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2901 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2902 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2903 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2904 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2905 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2906 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2907 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2908 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2909 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2910 IgnoreProfitability = false; 2911 } 2912 2913 public: 2914 /// Find the maximal addressing mode that a load/store of V can fold, 2915 /// give an access type of AccessTy. This returns a list of involved 2916 /// instructions in AddrModeInsts. 2917 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2918 /// optimizations. 2919 /// \p PromotedInsts maps the instructions to their type before promotion. 2920 /// \p The ongoing transaction where every action should be registered. 2921 static ExtAddrMode 2922 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2923 SmallVectorImpl<Instruction *> &AddrModeInsts, 2924 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2925 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2926 TypePromotionTransaction &TPT, 2927 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2928 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2929 ExtAddrMode Result; 2930 2931 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2932 MemoryInst, Result, InsertedInsts, 2933 PromotedInsts, TPT, LargeOffsetGEP, 2934 OptSize, PSI, BFI) 2935 .matchAddr(V, 0); 2936 (void)Success; assert(Success && "Couldn't select *anything*?"); 2937 return Result; 2938 } 2939 2940 private: 2941 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2942 bool matchAddr(Value *Addr, unsigned Depth); 2943 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2944 bool *MovedAway = nullptr); 2945 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2946 ExtAddrMode &AMBefore, 2947 ExtAddrMode &AMAfter); 2948 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2949 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2950 Value *PromotedOperand) const; 2951 }; 2952 2953 class PhiNodeSet; 2954 2955 /// An iterator for PhiNodeSet. 2956 class PhiNodeSetIterator { 2957 PhiNodeSet * const Set; 2958 size_t CurrentIndex = 0; 2959 2960 public: 2961 /// The constructor. Start should point to either a valid element, or be equal 2962 /// to the size of the underlying SmallVector of the PhiNodeSet. 2963 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2964 PHINode * operator*() const; 2965 PhiNodeSetIterator& operator++(); 2966 bool operator==(const PhiNodeSetIterator &RHS) const; 2967 bool operator!=(const PhiNodeSetIterator &RHS) const; 2968 }; 2969 2970 /// Keeps a set of PHINodes. 2971 /// 2972 /// This is a minimal set implementation for a specific use case: 2973 /// It is very fast when there are very few elements, but also provides good 2974 /// performance when there are many. It is similar to SmallPtrSet, but also 2975 /// provides iteration by insertion order, which is deterministic and stable 2976 /// across runs. It is also similar to SmallSetVector, but provides removing 2977 /// elements in O(1) time. This is achieved by not actually removing the element 2978 /// from the underlying vector, so comes at the cost of using more memory, but 2979 /// that is fine, since PhiNodeSets are used as short lived objects. 2980 class PhiNodeSet { 2981 friend class PhiNodeSetIterator; 2982 2983 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2984 using iterator = PhiNodeSetIterator; 2985 2986 /// Keeps the elements in the order of their insertion in the underlying 2987 /// vector. To achieve constant time removal, it never deletes any element. 2988 SmallVector<PHINode *, 32> NodeList; 2989 2990 /// Keeps the elements in the underlying set implementation. This (and not the 2991 /// NodeList defined above) is the source of truth on whether an element 2992 /// is actually in the collection. 2993 MapType NodeMap; 2994 2995 /// Points to the first valid (not deleted) element when the set is not empty 2996 /// and the value is not zero. Equals to the size of the underlying vector 2997 /// when the set is empty. When the value is 0, as in the beginning, the 2998 /// first element may or may not be valid. 2999 size_t FirstValidElement = 0; 3000 3001 public: 3002 /// Inserts a new element to the collection. 3003 /// \returns true if the element is actually added, i.e. was not in the 3004 /// collection before the operation. 3005 bool insert(PHINode *Ptr) { 3006 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3007 NodeList.push_back(Ptr); 3008 return true; 3009 } 3010 return false; 3011 } 3012 3013 /// Removes the element from the collection. 3014 /// \returns whether the element is actually removed, i.e. was in the 3015 /// collection before the operation. 3016 bool erase(PHINode *Ptr) { 3017 auto it = NodeMap.find(Ptr); 3018 if (it != NodeMap.end()) { 3019 NodeMap.erase(Ptr); 3020 SkipRemovedElements(FirstValidElement); 3021 return true; 3022 } 3023 return false; 3024 } 3025 3026 /// Removes all elements and clears the collection. 3027 void clear() { 3028 NodeMap.clear(); 3029 NodeList.clear(); 3030 FirstValidElement = 0; 3031 } 3032 3033 /// \returns an iterator that will iterate the elements in the order of 3034 /// insertion. 3035 iterator begin() { 3036 if (FirstValidElement == 0) 3037 SkipRemovedElements(FirstValidElement); 3038 return PhiNodeSetIterator(this, FirstValidElement); 3039 } 3040 3041 /// \returns an iterator that points to the end of the collection. 3042 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3043 3044 /// Returns the number of elements in the collection. 3045 size_t size() const { 3046 return NodeMap.size(); 3047 } 3048 3049 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3050 size_t count(PHINode *Ptr) const { 3051 return NodeMap.count(Ptr); 3052 } 3053 3054 private: 3055 /// Updates the CurrentIndex so that it will point to a valid element. 3056 /// 3057 /// If the element of NodeList at CurrentIndex is valid, it does not 3058 /// change it. If there are no more valid elements, it updates CurrentIndex 3059 /// to point to the end of the NodeList. 3060 void SkipRemovedElements(size_t &CurrentIndex) { 3061 while (CurrentIndex < NodeList.size()) { 3062 auto it = NodeMap.find(NodeList[CurrentIndex]); 3063 // If the element has been deleted and added again later, NodeMap will 3064 // point to a different index, so CurrentIndex will still be invalid. 3065 if (it != NodeMap.end() && it->second == CurrentIndex) 3066 break; 3067 ++CurrentIndex; 3068 } 3069 } 3070 }; 3071 3072 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3073 : Set(Set), CurrentIndex(Start) {} 3074 3075 PHINode * PhiNodeSetIterator::operator*() const { 3076 assert(CurrentIndex < Set->NodeList.size() && 3077 "PhiNodeSet access out of range"); 3078 return Set->NodeList[CurrentIndex]; 3079 } 3080 3081 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3082 assert(CurrentIndex < Set->NodeList.size() && 3083 "PhiNodeSet access out of range"); 3084 ++CurrentIndex; 3085 Set->SkipRemovedElements(CurrentIndex); 3086 return *this; 3087 } 3088 3089 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3090 return CurrentIndex == RHS.CurrentIndex; 3091 } 3092 3093 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3094 return !((*this) == RHS); 3095 } 3096 3097 /// Keep track of simplification of Phi nodes. 3098 /// Accept the set of all phi nodes and erase phi node from this set 3099 /// if it is simplified. 3100 class SimplificationTracker { 3101 DenseMap<Value *, Value *> Storage; 3102 const SimplifyQuery &SQ; 3103 // Tracks newly created Phi nodes. The elements are iterated by insertion 3104 // order. 3105 PhiNodeSet AllPhiNodes; 3106 // Tracks newly created Select nodes. 3107 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3108 3109 public: 3110 SimplificationTracker(const SimplifyQuery &sq) 3111 : SQ(sq) {} 3112 3113 Value *Get(Value *V) { 3114 do { 3115 auto SV = Storage.find(V); 3116 if (SV == Storage.end()) 3117 return V; 3118 V = SV->second; 3119 } while (true); 3120 } 3121 3122 Value *Simplify(Value *Val) { 3123 SmallVector<Value *, 32> WorkList; 3124 SmallPtrSet<Value *, 32> Visited; 3125 WorkList.push_back(Val); 3126 while (!WorkList.empty()) { 3127 auto P = WorkList.pop_back_val(); 3128 if (!Visited.insert(P).second) 3129 continue; 3130 if (auto *PI = dyn_cast<Instruction>(P)) 3131 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3132 for (auto *U : PI->users()) 3133 WorkList.push_back(cast<Value>(U)); 3134 Put(PI, V); 3135 PI->replaceAllUsesWith(V); 3136 if (auto *PHI = dyn_cast<PHINode>(PI)) 3137 AllPhiNodes.erase(PHI); 3138 if (auto *Select = dyn_cast<SelectInst>(PI)) 3139 AllSelectNodes.erase(Select); 3140 PI->eraseFromParent(); 3141 } 3142 } 3143 return Get(Val); 3144 } 3145 3146 void Put(Value *From, Value *To) { 3147 Storage.insert({ From, To }); 3148 } 3149 3150 void ReplacePhi(PHINode *From, PHINode *To) { 3151 Value* OldReplacement = Get(From); 3152 while (OldReplacement != From) { 3153 From = To; 3154 To = dyn_cast<PHINode>(OldReplacement); 3155 OldReplacement = Get(From); 3156 } 3157 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3158 Put(From, To); 3159 From->replaceAllUsesWith(To); 3160 AllPhiNodes.erase(From); 3161 From->eraseFromParent(); 3162 } 3163 3164 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3165 3166 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3167 3168 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3169 3170 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3171 3172 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3173 3174 void destroyNewNodes(Type *CommonType) { 3175 // For safe erasing, replace the uses with dummy value first. 3176 auto Dummy = UndefValue::get(CommonType); 3177 for (auto I : AllPhiNodes) { 3178 I->replaceAllUsesWith(Dummy); 3179 I->eraseFromParent(); 3180 } 3181 AllPhiNodes.clear(); 3182 for (auto I : AllSelectNodes) { 3183 I->replaceAllUsesWith(Dummy); 3184 I->eraseFromParent(); 3185 } 3186 AllSelectNodes.clear(); 3187 } 3188 }; 3189 3190 /// A helper class for combining addressing modes. 3191 class AddressingModeCombiner { 3192 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3193 typedef std::pair<PHINode *, PHINode *> PHIPair; 3194 3195 private: 3196 /// The addressing modes we've collected. 3197 SmallVector<ExtAddrMode, 16> AddrModes; 3198 3199 /// The field in which the AddrModes differ, when we have more than one. 3200 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3201 3202 /// Are the AddrModes that we have all just equal to their original values? 3203 bool AllAddrModesTrivial = true; 3204 3205 /// Common Type for all different fields in addressing modes. 3206 Type *CommonType; 3207 3208 /// SimplifyQuery for simplifyInstruction utility. 3209 const SimplifyQuery &SQ; 3210 3211 /// Original Address. 3212 Value *Original; 3213 3214 public: 3215 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3216 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3217 3218 /// Get the combined AddrMode 3219 const ExtAddrMode &getAddrMode() const { 3220 return AddrModes[0]; 3221 } 3222 3223 /// Add a new AddrMode if it's compatible with the AddrModes we already 3224 /// have. 3225 /// \return True iff we succeeded in doing so. 3226 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3227 // Take note of if we have any non-trivial AddrModes, as we need to detect 3228 // when all AddrModes are trivial as then we would introduce a phi or select 3229 // which just duplicates what's already there. 3230 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3231 3232 // If this is the first addrmode then everything is fine. 3233 if (AddrModes.empty()) { 3234 AddrModes.emplace_back(NewAddrMode); 3235 return true; 3236 } 3237 3238 // Figure out how different this is from the other address modes, which we 3239 // can do just by comparing against the first one given that we only care 3240 // about the cumulative difference. 3241 ExtAddrMode::FieldName ThisDifferentField = 3242 AddrModes[0].compare(NewAddrMode); 3243 if (DifferentField == ExtAddrMode::NoField) 3244 DifferentField = ThisDifferentField; 3245 else if (DifferentField != ThisDifferentField) 3246 DifferentField = ExtAddrMode::MultipleFields; 3247 3248 // If NewAddrMode differs in more than one dimension we cannot handle it. 3249 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3250 3251 // If Scale Field is different then we reject. 3252 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3253 3254 // We also must reject the case when base offset is different and 3255 // scale reg is not null, we cannot handle this case due to merge of 3256 // different offsets will be used as ScaleReg. 3257 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3258 !NewAddrMode.ScaledReg); 3259 3260 // We also must reject the case when GV is different and BaseReg installed 3261 // due to we want to use base reg as a merge of GV values. 3262 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3263 !NewAddrMode.HasBaseReg); 3264 3265 // Even if NewAddMode is the same we still need to collect it due to 3266 // original value is different. And later we will need all original values 3267 // as anchors during finding the common Phi node. 3268 if (CanHandle) 3269 AddrModes.emplace_back(NewAddrMode); 3270 else 3271 AddrModes.clear(); 3272 3273 return CanHandle; 3274 } 3275 3276 /// Combine the addressing modes we've collected into a single 3277 /// addressing mode. 3278 /// \return True iff we successfully combined them or we only had one so 3279 /// didn't need to combine them anyway. 3280 bool combineAddrModes() { 3281 // If we have no AddrModes then they can't be combined. 3282 if (AddrModes.size() == 0) 3283 return false; 3284 3285 // A single AddrMode can trivially be combined. 3286 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3287 return true; 3288 3289 // If the AddrModes we collected are all just equal to the value they are 3290 // derived from then combining them wouldn't do anything useful. 3291 if (AllAddrModesTrivial) 3292 return false; 3293 3294 if (!addrModeCombiningAllowed()) 3295 return false; 3296 3297 // Build a map between <original value, basic block where we saw it> to 3298 // value of base register. 3299 // Bail out if there is no common type. 3300 FoldAddrToValueMapping Map; 3301 if (!initializeMap(Map)) 3302 return false; 3303 3304 Value *CommonValue = findCommon(Map); 3305 if (CommonValue) 3306 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3307 return CommonValue != nullptr; 3308 } 3309 3310 private: 3311 /// Initialize Map with anchor values. For address seen 3312 /// we set the value of different field saw in this address. 3313 /// At the same time we find a common type for different field we will 3314 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3315 /// Return false if there is no common type found. 3316 bool initializeMap(FoldAddrToValueMapping &Map) { 3317 // Keep track of keys where the value is null. We will need to replace it 3318 // with constant null when we know the common type. 3319 SmallVector<Value *, 2> NullValue; 3320 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3321 for (auto &AM : AddrModes) { 3322 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3323 if (DV) { 3324 auto *Type = DV->getType(); 3325 if (CommonType && CommonType != Type) 3326 return false; 3327 CommonType = Type; 3328 Map[AM.OriginalValue] = DV; 3329 } else { 3330 NullValue.push_back(AM.OriginalValue); 3331 } 3332 } 3333 assert(CommonType && "At least one non-null value must be!"); 3334 for (auto *V : NullValue) 3335 Map[V] = Constant::getNullValue(CommonType); 3336 return true; 3337 } 3338 3339 /// We have mapping between value A and other value B where B was a field in 3340 /// addressing mode represented by A. Also we have an original value C 3341 /// representing an address we start with. Traversing from C through phi and 3342 /// selects we ended up with A's in a map. This utility function tries to find 3343 /// a value V which is a field in addressing mode C and traversing through phi 3344 /// nodes and selects we will end up in corresponded values B in a map. 3345 /// The utility will create a new Phi/Selects if needed. 3346 // The simple example looks as follows: 3347 // BB1: 3348 // p1 = b1 + 40 3349 // br cond BB2, BB3 3350 // BB2: 3351 // p2 = b2 + 40 3352 // br BB3 3353 // BB3: 3354 // p = phi [p1, BB1], [p2, BB2] 3355 // v = load p 3356 // Map is 3357 // p1 -> b1 3358 // p2 -> b2 3359 // Request is 3360 // p -> ? 3361 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3362 Value *findCommon(FoldAddrToValueMapping &Map) { 3363 // Tracks the simplification of newly created phi nodes. The reason we use 3364 // this mapping is because we will add new created Phi nodes in AddrToBase. 3365 // Simplification of Phi nodes is recursive, so some Phi node may 3366 // be simplified after we added it to AddrToBase. In reality this 3367 // simplification is possible only if original phi/selects were not 3368 // simplified yet. 3369 // Using this mapping we can find the current value in AddrToBase. 3370 SimplificationTracker ST(SQ); 3371 3372 // First step, DFS to create PHI nodes for all intermediate blocks. 3373 // Also fill traverse order for the second step. 3374 SmallVector<Value *, 32> TraverseOrder; 3375 InsertPlaceholders(Map, TraverseOrder, ST); 3376 3377 // Second Step, fill new nodes by merged values and simplify if possible. 3378 FillPlaceholders(Map, TraverseOrder, ST); 3379 3380 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3381 ST.destroyNewNodes(CommonType); 3382 return nullptr; 3383 } 3384 3385 // Now we'd like to match New Phi nodes to existed ones. 3386 unsigned PhiNotMatchedCount = 0; 3387 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3388 ST.destroyNewNodes(CommonType); 3389 return nullptr; 3390 } 3391 3392 auto *Result = ST.Get(Map.find(Original)->second); 3393 if (Result) { 3394 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3395 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3396 } 3397 return Result; 3398 } 3399 3400 /// Try to match PHI node to Candidate. 3401 /// Matcher tracks the matched Phi nodes. 3402 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3403 SmallSetVector<PHIPair, 8> &Matcher, 3404 PhiNodeSet &PhiNodesToMatch) { 3405 SmallVector<PHIPair, 8> WorkList; 3406 Matcher.insert({ PHI, Candidate }); 3407 SmallSet<PHINode *, 8> MatchedPHIs; 3408 MatchedPHIs.insert(PHI); 3409 WorkList.push_back({ PHI, Candidate }); 3410 SmallSet<PHIPair, 8> Visited; 3411 while (!WorkList.empty()) { 3412 auto Item = WorkList.pop_back_val(); 3413 if (!Visited.insert(Item).second) 3414 continue; 3415 // We iterate over all incoming values to Phi to compare them. 3416 // If values are different and both of them Phi and the first one is a 3417 // Phi we added (subject to match) and both of them is in the same basic 3418 // block then we can match our pair if values match. So we state that 3419 // these values match and add it to work list to verify that. 3420 for (auto B : Item.first->blocks()) { 3421 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3422 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3423 if (FirstValue == SecondValue) 3424 continue; 3425 3426 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3427 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3428 3429 // One of them is not Phi or 3430 // The first one is not Phi node from the set we'd like to match or 3431 // Phi nodes from different basic blocks then 3432 // we will not be able to match. 3433 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3434 FirstPhi->getParent() != SecondPhi->getParent()) 3435 return false; 3436 3437 // If we already matched them then continue. 3438 if (Matcher.count({ FirstPhi, SecondPhi })) 3439 continue; 3440 // So the values are different and does not match. So we need them to 3441 // match. (But we register no more than one match per PHI node, so that 3442 // we won't later try to replace them twice.) 3443 if (MatchedPHIs.insert(FirstPhi).second) 3444 Matcher.insert({ FirstPhi, SecondPhi }); 3445 // But me must check it. 3446 WorkList.push_back({ FirstPhi, SecondPhi }); 3447 } 3448 } 3449 return true; 3450 } 3451 3452 /// For the given set of PHI nodes (in the SimplificationTracker) try 3453 /// to find their equivalents. 3454 /// Returns false if this matching fails and creation of new Phi is disabled. 3455 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3456 unsigned &PhiNotMatchedCount) { 3457 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3458 // order, so the replacements (ReplacePhi) are also done in a deterministic 3459 // order. 3460 SmallSetVector<PHIPair, 8> Matched; 3461 SmallPtrSet<PHINode *, 8> WillNotMatch; 3462 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3463 while (PhiNodesToMatch.size()) { 3464 PHINode *PHI = *PhiNodesToMatch.begin(); 3465 3466 // Add us, if no Phi nodes in the basic block we do not match. 3467 WillNotMatch.clear(); 3468 WillNotMatch.insert(PHI); 3469 3470 // Traverse all Phis until we found equivalent or fail to do that. 3471 bool IsMatched = false; 3472 for (auto &P : PHI->getParent()->phis()) { 3473 if (&P == PHI) 3474 continue; 3475 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3476 break; 3477 // If it does not match, collect all Phi nodes from matcher. 3478 // if we end up with no match, them all these Phi nodes will not match 3479 // later. 3480 for (auto M : Matched) 3481 WillNotMatch.insert(M.first); 3482 Matched.clear(); 3483 } 3484 if (IsMatched) { 3485 // Replace all matched values and erase them. 3486 for (auto MV : Matched) 3487 ST.ReplacePhi(MV.first, MV.second); 3488 Matched.clear(); 3489 continue; 3490 } 3491 // If we are not allowed to create new nodes then bail out. 3492 if (!AllowNewPhiNodes) 3493 return false; 3494 // Just remove all seen values in matcher. They will not match anything. 3495 PhiNotMatchedCount += WillNotMatch.size(); 3496 for (auto *P : WillNotMatch) 3497 PhiNodesToMatch.erase(P); 3498 } 3499 return true; 3500 } 3501 /// Fill the placeholders with values from predecessors and simplify them. 3502 void FillPlaceholders(FoldAddrToValueMapping &Map, 3503 SmallVectorImpl<Value *> &TraverseOrder, 3504 SimplificationTracker &ST) { 3505 while (!TraverseOrder.empty()) { 3506 Value *Current = TraverseOrder.pop_back_val(); 3507 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3508 Value *V = Map[Current]; 3509 3510 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3511 // CurrentValue also must be Select. 3512 auto *CurrentSelect = cast<SelectInst>(Current); 3513 auto *TrueValue = CurrentSelect->getTrueValue(); 3514 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3515 Select->setTrueValue(ST.Get(Map[TrueValue])); 3516 auto *FalseValue = CurrentSelect->getFalseValue(); 3517 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3518 Select->setFalseValue(ST.Get(Map[FalseValue])); 3519 } else { 3520 // Must be a Phi node then. 3521 auto *PHI = cast<PHINode>(V); 3522 // Fill the Phi node with values from predecessors. 3523 for (auto B : predecessors(PHI->getParent())) { 3524 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3525 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3526 PHI->addIncoming(ST.Get(Map[PV]), B); 3527 } 3528 } 3529 Map[Current] = ST.Simplify(V); 3530 } 3531 } 3532 3533 /// Starting from original value recursively iterates over def-use chain up to 3534 /// known ending values represented in a map. For each traversed phi/select 3535 /// inserts a placeholder Phi or Select. 3536 /// Reports all new created Phi/Select nodes by adding them to set. 3537 /// Also reports and order in what values have been traversed. 3538 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3539 SmallVectorImpl<Value *> &TraverseOrder, 3540 SimplificationTracker &ST) { 3541 SmallVector<Value *, 32> Worklist; 3542 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3543 "Address must be a Phi or Select node"); 3544 auto *Dummy = UndefValue::get(CommonType); 3545 Worklist.push_back(Original); 3546 while (!Worklist.empty()) { 3547 Value *Current = Worklist.pop_back_val(); 3548 // if it is already visited or it is an ending value then skip it. 3549 if (Map.find(Current) != Map.end()) 3550 continue; 3551 TraverseOrder.push_back(Current); 3552 3553 // CurrentValue must be a Phi node or select. All others must be covered 3554 // by anchors. 3555 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3556 // Is it OK to get metadata from OrigSelect?! 3557 // Create a Select placeholder with dummy value. 3558 SelectInst *Select = SelectInst::Create( 3559 CurrentSelect->getCondition(), Dummy, Dummy, 3560 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3561 Map[Current] = Select; 3562 ST.insertNewSelect(Select); 3563 // We are interested in True and False values. 3564 Worklist.push_back(CurrentSelect->getTrueValue()); 3565 Worklist.push_back(CurrentSelect->getFalseValue()); 3566 } else { 3567 // It must be a Phi node then. 3568 PHINode *CurrentPhi = cast<PHINode>(Current); 3569 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3570 PHINode *PHI = 3571 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3572 Map[Current] = PHI; 3573 ST.insertNewPhi(PHI); 3574 for (Value *P : CurrentPhi->incoming_values()) 3575 Worklist.push_back(P); 3576 } 3577 } 3578 } 3579 3580 bool addrModeCombiningAllowed() { 3581 if (DisableComplexAddrModes) 3582 return false; 3583 switch (DifferentField) { 3584 default: 3585 return false; 3586 case ExtAddrMode::BaseRegField: 3587 return AddrSinkCombineBaseReg; 3588 case ExtAddrMode::BaseGVField: 3589 return AddrSinkCombineBaseGV; 3590 case ExtAddrMode::BaseOffsField: 3591 return AddrSinkCombineBaseOffs; 3592 case ExtAddrMode::ScaledRegField: 3593 return AddrSinkCombineScaledReg; 3594 } 3595 } 3596 }; 3597 } // end anonymous namespace 3598 3599 /// Try adding ScaleReg*Scale to the current addressing mode. 3600 /// Return true and update AddrMode if this addr mode is legal for the target, 3601 /// false if not. 3602 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3603 unsigned Depth) { 3604 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3605 // mode. Just process that directly. 3606 if (Scale == 1) 3607 return matchAddr(ScaleReg, Depth); 3608 3609 // If the scale is 0, it takes nothing to add this. 3610 if (Scale == 0) 3611 return true; 3612 3613 // If we already have a scale of this value, we can add to it, otherwise, we 3614 // need an available scale field. 3615 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3616 return false; 3617 3618 ExtAddrMode TestAddrMode = AddrMode; 3619 3620 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3621 // [A+B + A*7] -> [B+A*8]. 3622 TestAddrMode.Scale += Scale; 3623 TestAddrMode.ScaledReg = ScaleReg; 3624 3625 // If the new address isn't legal, bail out. 3626 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3627 return false; 3628 3629 // It was legal, so commit it. 3630 AddrMode = TestAddrMode; 3631 3632 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3633 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3634 // X*Scale + C*Scale to addr mode. 3635 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3636 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3637 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3638 TestAddrMode.InBounds = false; 3639 TestAddrMode.ScaledReg = AddLHS; 3640 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3641 3642 // If this addressing mode is legal, commit it and remember that we folded 3643 // this instruction. 3644 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3645 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3646 AddrMode = TestAddrMode; 3647 return true; 3648 } 3649 } 3650 3651 // Otherwise, not (x+c)*scale, just return what we have. 3652 return true; 3653 } 3654 3655 /// This is a little filter, which returns true if an addressing computation 3656 /// involving I might be folded into a load/store accessing it. 3657 /// This doesn't need to be perfect, but needs to accept at least 3658 /// the set of instructions that MatchOperationAddr can. 3659 static bool MightBeFoldableInst(Instruction *I) { 3660 switch (I->getOpcode()) { 3661 case Instruction::BitCast: 3662 case Instruction::AddrSpaceCast: 3663 // Don't touch identity bitcasts. 3664 if (I->getType() == I->getOperand(0)->getType()) 3665 return false; 3666 return I->getType()->isIntOrPtrTy(); 3667 case Instruction::PtrToInt: 3668 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3669 return true; 3670 case Instruction::IntToPtr: 3671 // We know the input is intptr_t, so this is foldable. 3672 return true; 3673 case Instruction::Add: 3674 return true; 3675 case Instruction::Mul: 3676 case Instruction::Shl: 3677 // Can only handle X*C and X << C. 3678 return isa<ConstantInt>(I->getOperand(1)); 3679 case Instruction::GetElementPtr: 3680 return true; 3681 default: 3682 return false; 3683 } 3684 } 3685 3686 /// Check whether or not \p Val is a legal instruction for \p TLI. 3687 /// \note \p Val is assumed to be the product of some type promotion. 3688 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3689 /// to be legal, as the non-promoted value would have had the same state. 3690 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3691 const DataLayout &DL, Value *Val) { 3692 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3693 if (!PromotedInst) 3694 return false; 3695 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3696 // If the ISDOpcode is undefined, it was undefined before the promotion. 3697 if (!ISDOpcode) 3698 return true; 3699 // Otherwise, check if the promoted instruction is legal or not. 3700 return TLI.isOperationLegalOrCustom( 3701 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3702 } 3703 3704 namespace { 3705 3706 /// Hepler class to perform type promotion. 3707 class TypePromotionHelper { 3708 /// Utility function to add a promoted instruction \p ExtOpnd to 3709 /// \p PromotedInsts and record the type of extension we have seen. 3710 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3711 Instruction *ExtOpnd, 3712 bool IsSExt) { 3713 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3714 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3715 if (It != PromotedInsts.end()) { 3716 // If the new extension is same as original, the information in 3717 // PromotedInsts[ExtOpnd] is still correct. 3718 if (It->second.getInt() == ExtTy) 3719 return; 3720 3721 // Now the new extension is different from old extension, we make 3722 // the type information invalid by setting extension type to 3723 // BothExtension. 3724 ExtTy = BothExtension; 3725 } 3726 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3727 } 3728 3729 /// Utility function to query the original type of instruction \p Opnd 3730 /// with a matched extension type. If the extension doesn't match, we 3731 /// cannot use the information we had on the original type. 3732 /// BothExtension doesn't match any extension type. 3733 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3734 Instruction *Opnd, 3735 bool IsSExt) { 3736 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3737 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3738 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3739 return It->second.getPointer(); 3740 return nullptr; 3741 } 3742 3743 /// Utility function to check whether or not a sign or zero extension 3744 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3745 /// either using the operands of \p Inst or promoting \p Inst. 3746 /// The type of the extension is defined by \p IsSExt. 3747 /// In other words, check if: 3748 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3749 /// #1 Promotion applies: 3750 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3751 /// #2 Operand reuses: 3752 /// ext opnd1 to ConsideredExtType. 3753 /// \p PromotedInsts maps the instructions to their type before promotion. 3754 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3755 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3756 3757 /// Utility function to determine if \p OpIdx should be promoted when 3758 /// promoting \p Inst. 3759 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3760 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3761 } 3762 3763 /// Utility function to promote the operand of \p Ext when this 3764 /// operand is a promotable trunc or sext or zext. 3765 /// \p PromotedInsts maps the instructions to their type before promotion. 3766 /// \p CreatedInstsCost[out] contains the cost of all instructions 3767 /// created to promote the operand of Ext. 3768 /// Newly added extensions are inserted in \p Exts. 3769 /// Newly added truncates are inserted in \p Truncs. 3770 /// Should never be called directly. 3771 /// \return The promoted value which is used instead of Ext. 3772 static Value *promoteOperandForTruncAndAnyExt( 3773 Instruction *Ext, TypePromotionTransaction &TPT, 3774 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3775 SmallVectorImpl<Instruction *> *Exts, 3776 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3777 3778 /// Utility function to promote the operand of \p Ext when this 3779 /// operand is promotable and is not a supported trunc or sext. 3780 /// \p PromotedInsts maps the instructions to their type before promotion. 3781 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3782 /// created to promote the operand of Ext. 3783 /// Newly added extensions are inserted in \p Exts. 3784 /// Newly added truncates are inserted in \p Truncs. 3785 /// Should never be called directly. 3786 /// \return The promoted value which is used instead of Ext. 3787 static Value *promoteOperandForOther(Instruction *Ext, 3788 TypePromotionTransaction &TPT, 3789 InstrToOrigTy &PromotedInsts, 3790 unsigned &CreatedInstsCost, 3791 SmallVectorImpl<Instruction *> *Exts, 3792 SmallVectorImpl<Instruction *> *Truncs, 3793 const TargetLowering &TLI, bool IsSExt); 3794 3795 /// \see promoteOperandForOther. 3796 static Value *signExtendOperandForOther( 3797 Instruction *Ext, TypePromotionTransaction &TPT, 3798 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3799 SmallVectorImpl<Instruction *> *Exts, 3800 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3801 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3802 Exts, Truncs, TLI, true); 3803 } 3804 3805 /// \see promoteOperandForOther. 3806 static Value *zeroExtendOperandForOther( 3807 Instruction *Ext, TypePromotionTransaction &TPT, 3808 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3809 SmallVectorImpl<Instruction *> *Exts, 3810 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3811 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3812 Exts, Truncs, TLI, false); 3813 } 3814 3815 public: 3816 /// Type for the utility function that promotes the operand of Ext. 3817 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3818 InstrToOrigTy &PromotedInsts, 3819 unsigned &CreatedInstsCost, 3820 SmallVectorImpl<Instruction *> *Exts, 3821 SmallVectorImpl<Instruction *> *Truncs, 3822 const TargetLowering &TLI); 3823 3824 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3825 /// action to promote the operand of \p Ext instead of using Ext. 3826 /// \return NULL if no promotable action is possible with the current 3827 /// sign extension. 3828 /// \p InsertedInsts keeps track of all the instructions inserted by the 3829 /// other CodeGenPrepare optimizations. This information is important 3830 /// because we do not want to promote these instructions as CodeGenPrepare 3831 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3832 /// \p PromotedInsts maps the instructions to their type before promotion. 3833 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3834 const TargetLowering &TLI, 3835 const InstrToOrigTy &PromotedInsts); 3836 }; 3837 3838 } // end anonymous namespace 3839 3840 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3841 Type *ConsideredExtType, 3842 const InstrToOrigTy &PromotedInsts, 3843 bool IsSExt) { 3844 // The promotion helper does not know how to deal with vector types yet. 3845 // To be able to fix that, we would need to fix the places where we 3846 // statically extend, e.g., constants and such. 3847 if (Inst->getType()->isVectorTy()) 3848 return false; 3849 3850 // We can always get through zext. 3851 if (isa<ZExtInst>(Inst)) 3852 return true; 3853 3854 // sext(sext) is ok too. 3855 if (IsSExt && isa<SExtInst>(Inst)) 3856 return true; 3857 3858 // We can get through binary operator, if it is legal. In other words, the 3859 // binary operator must have a nuw or nsw flag. 3860 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3861 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3862 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3863 (IsSExt && BinOp->hasNoSignedWrap()))) 3864 return true; 3865 3866 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3867 if ((Inst->getOpcode() == Instruction::And || 3868 Inst->getOpcode() == Instruction::Or)) 3869 return true; 3870 3871 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3872 if (Inst->getOpcode() == Instruction::Xor) { 3873 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3874 // Make sure it is not a NOT. 3875 if (Cst && !Cst->getValue().isAllOnesValue()) 3876 return true; 3877 } 3878 3879 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3880 // It may change a poisoned value into a regular value, like 3881 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3882 // poisoned value regular value 3883 // It should be OK since undef covers valid value. 3884 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3885 return true; 3886 3887 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3888 // It may change a poisoned value into a regular value, like 3889 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3890 // poisoned value regular value 3891 // It should be OK since undef covers valid value. 3892 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3893 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3894 if (ExtInst->hasOneUse()) { 3895 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3896 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3897 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3898 if (Cst && 3899 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3900 return true; 3901 } 3902 } 3903 } 3904 3905 // Check if we can do the following simplification. 3906 // ext(trunc(opnd)) --> ext(opnd) 3907 if (!isa<TruncInst>(Inst)) 3908 return false; 3909 3910 Value *OpndVal = Inst->getOperand(0); 3911 // Check if we can use this operand in the extension. 3912 // If the type is larger than the result type of the extension, we cannot. 3913 if (!OpndVal->getType()->isIntegerTy() || 3914 OpndVal->getType()->getIntegerBitWidth() > 3915 ConsideredExtType->getIntegerBitWidth()) 3916 return false; 3917 3918 // If the operand of the truncate is not an instruction, we will not have 3919 // any information on the dropped bits. 3920 // (Actually we could for constant but it is not worth the extra logic). 3921 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3922 if (!Opnd) 3923 return false; 3924 3925 // Check if the source of the type is narrow enough. 3926 // I.e., check that trunc just drops extended bits of the same kind of 3927 // the extension. 3928 // #1 get the type of the operand and check the kind of the extended bits. 3929 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3930 if (OpndType) 3931 ; 3932 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3933 OpndType = Opnd->getOperand(0)->getType(); 3934 else 3935 return false; 3936 3937 // #2 check that the truncate just drops extended bits. 3938 return Inst->getType()->getIntegerBitWidth() >= 3939 OpndType->getIntegerBitWidth(); 3940 } 3941 3942 TypePromotionHelper::Action TypePromotionHelper::getAction( 3943 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3944 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3945 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3946 "Unexpected instruction type"); 3947 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3948 Type *ExtTy = Ext->getType(); 3949 bool IsSExt = isa<SExtInst>(Ext); 3950 // If the operand of the extension is not an instruction, we cannot 3951 // get through. 3952 // If it, check we can get through. 3953 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3954 return nullptr; 3955 3956 // Do not promote if the operand has been added by codegenprepare. 3957 // Otherwise, it means we are undoing an optimization that is likely to be 3958 // redone, thus causing potential infinite loop. 3959 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3960 return nullptr; 3961 3962 // SExt or Trunc instructions. 3963 // Return the related handler. 3964 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3965 isa<ZExtInst>(ExtOpnd)) 3966 return promoteOperandForTruncAndAnyExt; 3967 3968 // Regular instruction. 3969 // Abort early if we will have to insert non-free instructions. 3970 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3971 return nullptr; 3972 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3973 } 3974 3975 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3976 Instruction *SExt, TypePromotionTransaction &TPT, 3977 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3978 SmallVectorImpl<Instruction *> *Exts, 3979 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3980 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3981 // get through it and this method should not be called. 3982 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3983 Value *ExtVal = SExt; 3984 bool HasMergedNonFreeExt = false; 3985 if (isa<ZExtInst>(SExtOpnd)) { 3986 // Replace s|zext(zext(opnd)) 3987 // => zext(opnd). 3988 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3989 Value *ZExt = 3990 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3991 TPT.replaceAllUsesWith(SExt, ZExt); 3992 TPT.eraseInstruction(SExt); 3993 ExtVal = ZExt; 3994 } else { 3995 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3996 // => z|sext(opnd). 3997 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3998 } 3999 CreatedInstsCost = 0; 4000 4001 // Remove dead code. 4002 if (SExtOpnd->use_empty()) 4003 TPT.eraseInstruction(SExtOpnd); 4004 4005 // Check if the extension is still needed. 4006 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4007 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4008 if (ExtInst) { 4009 if (Exts) 4010 Exts->push_back(ExtInst); 4011 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4012 } 4013 return ExtVal; 4014 } 4015 4016 // At this point we have: ext ty opnd to ty. 4017 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4018 Value *NextVal = ExtInst->getOperand(0); 4019 TPT.eraseInstruction(ExtInst, NextVal); 4020 return NextVal; 4021 } 4022 4023 Value *TypePromotionHelper::promoteOperandForOther( 4024 Instruction *Ext, TypePromotionTransaction &TPT, 4025 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4026 SmallVectorImpl<Instruction *> *Exts, 4027 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4028 bool IsSExt) { 4029 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4030 // get through it and this method should not be called. 4031 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4032 CreatedInstsCost = 0; 4033 if (!ExtOpnd->hasOneUse()) { 4034 // ExtOpnd will be promoted. 4035 // All its uses, but Ext, will need to use a truncated value of the 4036 // promoted version. 4037 // Create the truncate now. 4038 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4039 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4040 // Insert it just after the definition. 4041 ITrunc->moveAfter(ExtOpnd); 4042 if (Truncs) 4043 Truncs->push_back(ITrunc); 4044 } 4045 4046 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4047 // Restore the operand of Ext (which has been replaced by the previous call 4048 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4049 TPT.setOperand(Ext, 0, ExtOpnd); 4050 } 4051 4052 // Get through the Instruction: 4053 // 1. Update its type. 4054 // 2. Replace the uses of Ext by Inst. 4055 // 3. Extend each operand that needs to be extended. 4056 4057 // Remember the original type of the instruction before promotion. 4058 // This is useful to know that the high bits are sign extended bits. 4059 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4060 // Step #1. 4061 TPT.mutateType(ExtOpnd, Ext->getType()); 4062 // Step #2. 4063 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4064 // Step #3. 4065 Instruction *ExtForOpnd = Ext; 4066 4067 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4068 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4069 ++OpIdx) { 4070 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4071 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4072 !shouldExtOperand(ExtOpnd, OpIdx)) { 4073 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4074 continue; 4075 } 4076 // Check if we can statically extend the operand. 4077 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4078 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4079 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4080 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4081 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4082 : Cst->getValue().zext(BitWidth); 4083 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4084 continue; 4085 } 4086 // UndefValue are typed, so we have to statically sign extend them. 4087 if (isa<UndefValue>(Opnd)) { 4088 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4089 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4090 continue; 4091 } 4092 4093 // Otherwise we have to explicitly sign extend the operand. 4094 // Check if Ext was reused to extend an operand. 4095 if (!ExtForOpnd) { 4096 // If yes, create a new one. 4097 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4098 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4099 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4100 if (!isa<Instruction>(ValForExtOpnd)) { 4101 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4102 continue; 4103 } 4104 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4105 } 4106 if (Exts) 4107 Exts->push_back(ExtForOpnd); 4108 TPT.setOperand(ExtForOpnd, 0, Opnd); 4109 4110 // Move the sign extension before the insertion point. 4111 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4112 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4113 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4114 // If more sext are required, new instructions will have to be created. 4115 ExtForOpnd = nullptr; 4116 } 4117 if (ExtForOpnd == Ext) { 4118 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4119 TPT.eraseInstruction(Ext); 4120 } 4121 return ExtOpnd; 4122 } 4123 4124 /// Check whether or not promoting an instruction to a wider type is profitable. 4125 /// \p NewCost gives the cost of extension instructions created by the 4126 /// promotion. 4127 /// \p OldCost gives the cost of extension instructions before the promotion 4128 /// plus the number of instructions that have been 4129 /// matched in the addressing mode the promotion. 4130 /// \p PromotedOperand is the value that has been promoted. 4131 /// \return True if the promotion is profitable, false otherwise. 4132 bool AddressingModeMatcher::isPromotionProfitable( 4133 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4134 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4135 << '\n'); 4136 // The cost of the new extensions is greater than the cost of the 4137 // old extension plus what we folded. 4138 // This is not profitable. 4139 if (NewCost > OldCost) 4140 return false; 4141 if (NewCost < OldCost) 4142 return true; 4143 // The promotion is neutral but it may help folding the sign extension in 4144 // loads for instance. 4145 // Check that we did not create an illegal instruction. 4146 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4147 } 4148 4149 /// Given an instruction or constant expr, see if we can fold the operation 4150 /// into the addressing mode. If so, update the addressing mode and return 4151 /// true, otherwise return false without modifying AddrMode. 4152 /// If \p MovedAway is not NULL, it contains the information of whether or 4153 /// not AddrInst has to be folded into the addressing mode on success. 4154 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4155 /// because it has been moved away. 4156 /// Thus AddrInst must not be added in the matched instructions. 4157 /// This state can happen when AddrInst is a sext, since it may be moved away. 4158 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4159 /// not be referenced anymore. 4160 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4161 unsigned Depth, 4162 bool *MovedAway) { 4163 // Avoid exponential behavior on extremely deep expression trees. 4164 if (Depth >= 5) return false; 4165 4166 // By default, all matched instructions stay in place. 4167 if (MovedAway) 4168 *MovedAway = false; 4169 4170 switch (Opcode) { 4171 case Instruction::PtrToInt: 4172 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4173 return matchAddr(AddrInst->getOperand(0), Depth); 4174 case Instruction::IntToPtr: { 4175 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4176 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4177 // This inttoptr is a no-op if the integer type is pointer sized. 4178 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4179 return matchAddr(AddrInst->getOperand(0), Depth); 4180 return false; 4181 } 4182 case Instruction::BitCast: 4183 // BitCast is always a noop, and we can handle it as long as it is 4184 // int->int or pointer->pointer (we don't want int<->fp or something). 4185 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4186 // Don't touch identity bitcasts. These were probably put here by LSR, 4187 // and we don't want to mess around with them. Assume it knows what it 4188 // is doing. 4189 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4190 return matchAddr(AddrInst->getOperand(0), Depth); 4191 return false; 4192 case Instruction::AddrSpaceCast: { 4193 unsigned SrcAS 4194 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4195 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4196 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4197 return matchAddr(AddrInst->getOperand(0), Depth); 4198 return false; 4199 } 4200 case Instruction::Add: { 4201 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4202 ExtAddrMode BackupAddrMode = AddrMode; 4203 unsigned OldSize = AddrModeInsts.size(); 4204 // Start a transaction at this point. 4205 // The LHS may match but not the RHS. 4206 // Therefore, we need a higher level restoration point to undo partially 4207 // matched operation. 4208 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4209 TPT.getRestorationPoint(); 4210 4211 AddrMode.InBounds = false; 4212 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4213 matchAddr(AddrInst->getOperand(0), Depth+1)) 4214 return true; 4215 4216 // Restore the old addr mode info. 4217 AddrMode = BackupAddrMode; 4218 AddrModeInsts.resize(OldSize); 4219 TPT.rollback(LastKnownGood); 4220 4221 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4222 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4223 matchAddr(AddrInst->getOperand(1), Depth+1)) 4224 return true; 4225 4226 // Otherwise we definitely can't merge the ADD in. 4227 AddrMode = BackupAddrMode; 4228 AddrModeInsts.resize(OldSize); 4229 TPT.rollback(LastKnownGood); 4230 break; 4231 } 4232 //case Instruction::Or: 4233 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4234 //break; 4235 case Instruction::Mul: 4236 case Instruction::Shl: { 4237 // Can only handle X*C and X << C. 4238 AddrMode.InBounds = false; 4239 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4240 if (!RHS || RHS->getBitWidth() > 64) 4241 return false; 4242 int64_t Scale = RHS->getSExtValue(); 4243 if (Opcode == Instruction::Shl) 4244 Scale = 1LL << Scale; 4245 4246 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4247 } 4248 case Instruction::GetElementPtr: { 4249 // Scan the GEP. We check it if it contains constant offsets and at most 4250 // one variable offset. 4251 int VariableOperand = -1; 4252 unsigned VariableScale = 0; 4253 4254 int64_t ConstantOffset = 0; 4255 gep_type_iterator GTI = gep_type_begin(AddrInst); 4256 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4257 if (StructType *STy = GTI.getStructTypeOrNull()) { 4258 const StructLayout *SL = DL.getStructLayout(STy); 4259 unsigned Idx = 4260 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4261 ConstantOffset += SL->getElementOffset(Idx); 4262 } else { 4263 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4264 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4265 const APInt &CVal = CI->getValue(); 4266 if (CVal.getMinSignedBits() <= 64) { 4267 ConstantOffset += CVal.getSExtValue() * TypeSize; 4268 continue; 4269 } 4270 } 4271 if (TypeSize) { // Scales of zero don't do anything. 4272 // We only allow one variable index at the moment. 4273 if (VariableOperand != -1) 4274 return false; 4275 4276 // Remember the variable index. 4277 VariableOperand = i; 4278 VariableScale = TypeSize; 4279 } 4280 } 4281 } 4282 4283 // A common case is for the GEP to only do a constant offset. In this case, 4284 // just add it to the disp field and check validity. 4285 if (VariableOperand == -1) { 4286 AddrMode.BaseOffs += ConstantOffset; 4287 if (ConstantOffset == 0 || 4288 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4289 // Check to see if we can fold the base pointer in too. 4290 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4291 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4292 AddrMode.InBounds = false; 4293 return true; 4294 } 4295 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4296 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4297 ConstantOffset > 0) { 4298 // Record GEPs with non-zero offsets as candidates for splitting in the 4299 // event that the offset cannot fit into the r+i addressing mode. 4300 // Simple and common case that only one GEP is used in calculating the 4301 // address for the memory access. 4302 Value *Base = AddrInst->getOperand(0); 4303 auto *BaseI = dyn_cast<Instruction>(Base); 4304 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4305 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4306 (BaseI && !isa<CastInst>(BaseI) && 4307 !isa<GetElementPtrInst>(BaseI))) { 4308 // Make sure the parent block allows inserting non-PHI instructions 4309 // before the terminator. 4310 BasicBlock *Parent = 4311 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4312 if (!Parent->getTerminator()->isEHPad()) 4313 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4314 } 4315 } 4316 AddrMode.BaseOffs -= ConstantOffset; 4317 return false; 4318 } 4319 4320 // Save the valid addressing mode in case we can't match. 4321 ExtAddrMode BackupAddrMode = AddrMode; 4322 unsigned OldSize = AddrModeInsts.size(); 4323 4324 // See if the scale and offset amount is valid for this target. 4325 AddrMode.BaseOffs += ConstantOffset; 4326 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4327 AddrMode.InBounds = false; 4328 4329 // Match the base operand of the GEP. 4330 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4331 // If it couldn't be matched, just stuff the value in a register. 4332 if (AddrMode.HasBaseReg) { 4333 AddrMode = BackupAddrMode; 4334 AddrModeInsts.resize(OldSize); 4335 return false; 4336 } 4337 AddrMode.HasBaseReg = true; 4338 AddrMode.BaseReg = AddrInst->getOperand(0); 4339 } 4340 4341 // Match the remaining variable portion of the GEP. 4342 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4343 Depth)) { 4344 // If it couldn't be matched, try stuffing the base into a register 4345 // instead of matching it, and retrying the match of the scale. 4346 AddrMode = BackupAddrMode; 4347 AddrModeInsts.resize(OldSize); 4348 if (AddrMode.HasBaseReg) 4349 return false; 4350 AddrMode.HasBaseReg = true; 4351 AddrMode.BaseReg = AddrInst->getOperand(0); 4352 AddrMode.BaseOffs += ConstantOffset; 4353 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4354 VariableScale, Depth)) { 4355 // If even that didn't work, bail. 4356 AddrMode = BackupAddrMode; 4357 AddrModeInsts.resize(OldSize); 4358 return false; 4359 } 4360 } 4361 4362 return true; 4363 } 4364 case Instruction::SExt: 4365 case Instruction::ZExt: { 4366 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4367 if (!Ext) 4368 return false; 4369 4370 // Try to move this ext out of the way of the addressing mode. 4371 // Ask for a method for doing so. 4372 TypePromotionHelper::Action TPH = 4373 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4374 if (!TPH) 4375 return false; 4376 4377 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4378 TPT.getRestorationPoint(); 4379 unsigned CreatedInstsCost = 0; 4380 unsigned ExtCost = !TLI.isExtFree(Ext); 4381 Value *PromotedOperand = 4382 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4383 // SExt has been moved away. 4384 // Thus either it will be rematched later in the recursive calls or it is 4385 // gone. Anyway, we must not fold it into the addressing mode at this point. 4386 // E.g., 4387 // op = add opnd, 1 4388 // idx = ext op 4389 // addr = gep base, idx 4390 // is now: 4391 // promotedOpnd = ext opnd <- no match here 4392 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4393 // addr = gep base, op <- match 4394 if (MovedAway) 4395 *MovedAway = true; 4396 4397 assert(PromotedOperand && 4398 "TypePromotionHelper should have filtered out those cases"); 4399 4400 ExtAddrMode BackupAddrMode = AddrMode; 4401 unsigned OldSize = AddrModeInsts.size(); 4402 4403 if (!matchAddr(PromotedOperand, Depth) || 4404 // The total of the new cost is equal to the cost of the created 4405 // instructions. 4406 // The total of the old cost is equal to the cost of the extension plus 4407 // what we have saved in the addressing mode. 4408 !isPromotionProfitable(CreatedInstsCost, 4409 ExtCost + (AddrModeInsts.size() - OldSize), 4410 PromotedOperand)) { 4411 AddrMode = BackupAddrMode; 4412 AddrModeInsts.resize(OldSize); 4413 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4414 TPT.rollback(LastKnownGood); 4415 return false; 4416 } 4417 return true; 4418 } 4419 } 4420 return false; 4421 } 4422 4423 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4424 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4425 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4426 /// for the target. 4427 /// 4428 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4429 // Start a transaction at this point that we will rollback if the matching 4430 // fails. 4431 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4432 TPT.getRestorationPoint(); 4433 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4434 // Fold in immediates if legal for the target. 4435 AddrMode.BaseOffs += CI->getSExtValue(); 4436 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4437 return true; 4438 AddrMode.BaseOffs -= CI->getSExtValue(); 4439 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4440 // If this is a global variable, try to fold it into the addressing mode. 4441 if (!AddrMode.BaseGV) { 4442 AddrMode.BaseGV = GV; 4443 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4444 return true; 4445 AddrMode.BaseGV = nullptr; 4446 } 4447 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4448 ExtAddrMode BackupAddrMode = AddrMode; 4449 unsigned OldSize = AddrModeInsts.size(); 4450 4451 // Check to see if it is possible to fold this operation. 4452 bool MovedAway = false; 4453 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4454 // This instruction may have been moved away. If so, there is nothing 4455 // to check here. 4456 if (MovedAway) 4457 return true; 4458 // Okay, it's possible to fold this. Check to see if it is actually 4459 // *profitable* to do so. We use a simple cost model to avoid increasing 4460 // register pressure too much. 4461 if (I->hasOneUse() || 4462 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4463 AddrModeInsts.push_back(I); 4464 return true; 4465 } 4466 4467 // It isn't profitable to do this, roll back. 4468 //cerr << "NOT FOLDING: " << *I; 4469 AddrMode = BackupAddrMode; 4470 AddrModeInsts.resize(OldSize); 4471 TPT.rollback(LastKnownGood); 4472 } 4473 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4474 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4475 return true; 4476 TPT.rollback(LastKnownGood); 4477 } else if (isa<ConstantPointerNull>(Addr)) { 4478 // Null pointer gets folded without affecting the addressing mode. 4479 return true; 4480 } 4481 4482 // Worse case, the target should support [reg] addressing modes. :) 4483 if (!AddrMode.HasBaseReg) { 4484 AddrMode.HasBaseReg = true; 4485 AddrMode.BaseReg = Addr; 4486 // Still check for legality in case the target supports [imm] but not [i+r]. 4487 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4488 return true; 4489 AddrMode.HasBaseReg = false; 4490 AddrMode.BaseReg = nullptr; 4491 } 4492 4493 // If the base register is already taken, see if we can do [r+r]. 4494 if (AddrMode.Scale == 0) { 4495 AddrMode.Scale = 1; 4496 AddrMode.ScaledReg = Addr; 4497 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4498 return true; 4499 AddrMode.Scale = 0; 4500 AddrMode.ScaledReg = nullptr; 4501 } 4502 // Couldn't match. 4503 TPT.rollback(LastKnownGood); 4504 return false; 4505 } 4506 4507 /// Check to see if all uses of OpVal by the specified inline asm call are due 4508 /// to memory operands. If so, return true, otherwise return false. 4509 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4510 const TargetLowering &TLI, 4511 const TargetRegisterInfo &TRI) { 4512 const Function *F = CI->getFunction(); 4513 TargetLowering::AsmOperandInfoVector TargetConstraints = 4514 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4515 ImmutableCallSite(CI)); 4516 4517 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4518 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4519 4520 // Compute the constraint code and ConstraintType to use. 4521 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4522 4523 // If this asm operand is our Value*, and if it isn't an indirect memory 4524 // operand, we can't fold it! 4525 if (OpInfo.CallOperandVal == OpVal && 4526 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4527 !OpInfo.isIndirect)) 4528 return false; 4529 } 4530 4531 return true; 4532 } 4533 4534 // Max number of memory uses to look at before aborting the search to conserve 4535 // compile time. 4536 static constexpr int MaxMemoryUsesToScan = 20; 4537 4538 /// Recursively walk all the uses of I until we find a memory use. 4539 /// If we find an obviously non-foldable instruction, return true. 4540 /// Add the ultimately found memory instructions to MemoryUses. 4541 static bool FindAllMemoryUses( 4542 Instruction *I, 4543 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4544 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4545 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4546 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4547 // If we already considered this instruction, we're done. 4548 if (!ConsideredInsts.insert(I).second) 4549 return false; 4550 4551 // If this is an obviously unfoldable instruction, bail out. 4552 if (!MightBeFoldableInst(I)) 4553 return true; 4554 4555 // Loop over all the uses, recursively processing them. 4556 for (Use &U : I->uses()) { 4557 // Conservatively return true if we're seeing a large number or a deep chain 4558 // of users. This avoids excessive compilation times in pathological cases. 4559 if (SeenInsts++ >= MaxMemoryUsesToScan) 4560 return true; 4561 4562 Instruction *UserI = cast<Instruction>(U.getUser()); 4563 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4564 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4565 continue; 4566 } 4567 4568 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4569 unsigned opNo = U.getOperandNo(); 4570 if (opNo != StoreInst::getPointerOperandIndex()) 4571 return true; // Storing addr, not into addr. 4572 MemoryUses.push_back(std::make_pair(SI, opNo)); 4573 continue; 4574 } 4575 4576 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4577 unsigned opNo = U.getOperandNo(); 4578 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4579 return true; // Storing addr, not into addr. 4580 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4581 continue; 4582 } 4583 4584 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4585 unsigned opNo = U.getOperandNo(); 4586 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4587 return true; // Storing addr, not into addr. 4588 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4589 continue; 4590 } 4591 4592 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4593 if (CI->hasFnAttr(Attribute::Cold)) { 4594 // If this is a cold call, we can sink the addressing calculation into 4595 // the cold path. See optimizeCallInst 4596 bool OptForSize = OptSize || 4597 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4598 if (!OptForSize) 4599 continue; 4600 } 4601 4602 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4603 if (!IA) return true; 4604 4605 // If this is a memory operand, we're cool, otherwise bail out. 4606 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4607 return true; 4608 continue; 4609 } 4610 4611 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4612 PSI, BFI, SeenInsts)) 4613 return true; 4614 } 4615 4616 return false; 4617 } 4618 4619 /// Return true if Val is already known to be live at the use site that we're 4620 /// folding it into. If so, there is no cost to include it in the addressing 4621 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4622 /// instruction already. 4623 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4624 Value *KnownLive2) { 4625 // If Val is either of the known-live values, we know it is live! 4626 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4627 return true; 4628 4629 // All values other than instructions and arguments (e.g. constants) are live. 4630 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4631 4632 // If Val is a constant sized alloca in the entry block, it is live, this is 4633 // true because it is just a reference to the stack/frame pointer, which is 4634 // live for the whole function. 4635 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4636 if (AI->isStaticAlloca()) 4637 return true; 4638 4639 // Check to see if this value is already used in the memory instruction's 4640 // block. If so, it's already live into the block at the very least, so we 4641 // can reasonably fold it. 4642 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4643 } 4644 4645 /// It is possible for the addressing mode of the machine to fold the specified 4646 /// instruction into a load or store that ultimately uses it. 4647 /// However, the specified instruction has multiple uses. 4648 /// Given this, it may actually increase register pressure to fold it 4649 /// into the load. For example, consider this code: 4650 /// 4651 /// X = ... 4652 /// Y = X+1 4653 /// use(Y) -> nonload/store 4654 /// Z = Y+1 4655 /// load Z 4656 /// 4657 /// In this case, Y has multiple uses, and can be folded into the load of Z 4658 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4659 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4660 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4661 /// number of computations either. 4662 /// 4663 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4664 /// X was live across 'load Z' for other reasons, we actually *would* want to 4665 /// fold the addressing mode in the Z case. This would make Y die earlier. 4666 bool AddressingModeMatcher:: 4667 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4668 ExtAddrMode &AMAfter) { 4669 if (IgnoreProfitability) return true; 4670 4671 // AMBefore is the addressing mode before this instruction was folded into it, 4672 // and AMAfter is the addressing mode after the instruction was folded. Get 4673 // the set of registers referenced by AMAfter and subtract out those 4674 // referenced by AMBefore: this is the set of values which folding in this 4675 // address extends the lifetime of. 4676 // 4677 // Note that there are only two potential values being referenced here, 4678 // BaseReg and ScaleReg (global addresses are always available, as are any 4679 // folded immediates). 4680 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4681 4682 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4683 // lifetime wasn't extended by adding this instruction. 4684 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4685 BaseReg = nullptr; 4686 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4687 ScaledReg = nullptr; 4688 4689 // If folding this instruction (and it's subexprs) didn't extend any live 4690 // ranges, we're ok with it. 4691 if (!BaseReg && !ScaledReg) 4692 return true; 4693 4694 // If all uses of this instruction can have the address mode sunk into them, 4695 // we can remove the addressing mode and effectively trade one live register 4696 // for another (at worst.) In this context, folding an addressing mode into 4697 // the use is just a particularly nice way of sinking it. 4698 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4699 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4700 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4701 PSI, BFI)) 4702 return false; // Has a non-memory, non-foldable use! 4703 4704 // Now that we know that all uses of this instruction are part of a chain of 4705 // computation involving only operations that could theoretically be folded 4706 // into a memory use, loop over each of these memory operation uses and see 4707 // if they could *actually* fold the instruction. The assumption is that 4708 // addressing modes are cheap and that duplicating the computation involved 4709 // many times is worthwhile, even on a fastpath. For sinking candidates 4710 // (i.e. cold call sites), this serves as a way to prevent excessive code 4711 // growth since most architectures have some reasonable small and fast way to 4712 // compute an effective address. (i.e LEA on x86) 4713 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4714 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4715 Instruction *User = MemoryUses[i].first; 4716 unsigned OpNo = MemoryUses[i].second; 4717 4718 // Get the access type of this use. If the use isn't a pointer, we don't 4719 // know what it accesses. 4720 Value *Address = User->getOperand(OpNo); 4721 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4722 if (!AddrTy) 4723 return false; 4724 Type *AddressAccessTy = AddrTy->getElementType(); 4725 unsigned AS = AddrTy->getAddressSpace(); 4726 4727 // Do a match against the root of this address, ignoring profitability. This 4728 // will tell us if the addressing mode for the memory operation will 4729 // *actually* cover the shared instruction. 4730 ExtAddrMode Result; 4731 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4732 0); 4733 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4734 TPT.getRestorationPoint(); 4735 AddressingModeMatcher Matcher( 4736 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4737 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4738 Matcher.IgnoreProfitability = true; 4739 bool Success = Matcher.matchAddr(Address, 0); 4740 (void)Success; assert(Success && "Couldn't select *anything*?"); 4741 4742 // The match was to check the profitability, the changes made are not 4743 // part of the original matcher. Therefore, they should be dropped 4744 // otherwise the original matcher will not present the right state. 4745 TPT.rollback(LastKnownGood); 4746 4747 // If the match didn't cover I, then it won't be shared by it. 4748 if (!is_contained(MatchedAddrModeInsts, I)) 4749 return false; 4750 4751 MatchedAddrModeInsts.clear(); 4752 } 4753 4754 return true; 4755 } 4756 4757 /// Return true if the specified values are defined in a 4758 /// different basic block than BB. 4759 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4760 if (Instruction *I = dyn_cast<Instruction>(V)) 4761 return I->getParent() != BB; 4762 return false; 4763 } 4764 4765 /// Sink addressing mode computation immediate before MemoryInst if doing so 4766 /// can be done without increasing register pressure. The need for the 4767 /// register pressure constraint means this can end up being an all or nothing 4768 /// decision for all uses of the same addressing computation. 4769 /// 4770 /// Load and Store Instructions often have addressing modes that can do 4771 /// significant amounts of computation. As such, instruction selection will try 4772 /// to get the load or store to do as much computation as possible for the 4773 /// program. The problem is that isel can only see within a single block. As 4774 /// such, we sink as much legal addressing mode work into the block as possible. 4775 /// 4776 /// This method is used to optimize both load/store and inline asms with memory 4777 /// operands. It's also used to sink addressing computations feeding into cold 4778 /// call sites into their (cold) basic block. 4779 /// 4780 /// The motivation for handling sinking into cold blocks is that doing so can 4781 /// both enable other address mode sinking (by satisfying the register pressure 4782 /// constraint above), and reduce register pressure globally (by removing the 4783 /// addressing mode computation from the fast path entirely.). 4784 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4785 Type *AccessTy, unsigned AddrSpace) { 4786 Value *Repl = Addr; 4787 4788 // Try to collapse single-value PHI nodes. This is necessary to undo 4789 // unprofitable PRE transformations. 4790 SmallVector<Value*, 8> worklist; 4791 SmallPtrSet<Value*, 16> Visited; 4792 worklist.push_back(Addr); 4793 4794 // Use a worklist to iteratively look through PHI and select nodes, and 4795 // ensure that the addressing mode obtained from the non-PHI/select roots of 4796 // the graph are compatible. 4797 bool PhiOrSelectSeen = false; 4798 SmallVector<Instruction*, 16> AddrModeInsts; 4799 const SimplifyQuery SQ(*DL, TLInfo); 4800 AddressingModeCombiner AddrModes(SQ, Addr); 4801 TypePromotionTransaction TPT(RemovedInsts); 4802 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4803 TPT.getRestorationPoint(); 4804 while (!worklist.empty()) { 4805 Value *V = worklist.back(); 4806 worklist.pop_back(); 4807 4808 // We allow traversing cyclic Phi nodes. 4809 // In case of success after this loop we ensure that traversing through 4810 // Phi nodes ends up with all cases to compute address of the form 4811 // BaseGV + Base + Scale * Index + Offset 4812 // where Scale and Offset are constans and BaseGV, Base and Index 4813 // are exactly the same Values in all cases. 4814 // It means that BaseGV, Scale and Offset dominate our memory instruction 4815 // and have the same value as they had in address computation represented 4816 // as Phi. So we can safely sink address computation to memory instruction. 4817 if (!Visited.insert(V).second) 4818 continue; 4819 4820 // For a PHI node, push all of its incoming values. 4821 if (PHINode *P = dyn_cast<PHINode>(V)) { 4822 for (Value *IncValue : P->incoming_values()) 4823 worklist.push_back(IncValue); 4824 PhiOrSelectSeen = true; 4825 continue; 4826 } 4827 // Similar for select. 4828 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4829 worklist.push_back(SI->getFalseValue()); 4830 worklist.push_back(SI->getTrueValue()); 4831 PhiOrSelectSeen = true; 4832 continue; 4833 } 4834 4835 // For non-PHIs, determine the addressing mode being computed. Note that 4836 // the result may differ depending on what other uses our candidate 4837 // addressing instructions might have. 4838 AddrModeInsts.clear(); 4839 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4840 0); 4841 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4842 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4843 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4844 BFI.get()); 4845 4846 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4847 if (GEP && !NewGEPBases.count(GEP)) { 4848 // If splitting the underlying data structure can reduce the offset of a 4849 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4850 // previously split data structures. 4851 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4852 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4853 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4854 } 4855 4856 NewAddrMode.OriginalValue = V; 4857 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4858 break; 4859 } 4860 4861 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4862 // or we have multiple but either couldn't combine them or combining them 4863 // wouldn't do anything useful, bail out now. 4864 if (!AddrModes.combineAddrModes()) { 4865 TPT.rollback(LastKnownGood); 4866 return false; 4867 } 4868 TPT.commit(); 4869 4870 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4871 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4872 4873 // If all the instructions matched are already in this BB, don't do anything. 4874 // If we saw a Phi node then it is not local definitely, and if we saw a select 4875 // then we want to push the address calculation past it even if it's already 4876 // in this BB. 4877 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4878 return IsNonLocalValue(V, MemoryInst->getParent()); 4879 })) { 4880 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4881 << "\n"); 4882 return false; 4883 } 4884 4885 // Insert this computation right after this user. Since our caller is 4886 // scanning from the top of the BB to the bottom, reuse of the expr are 4887 // guaranteed to happen later. 4888 IRBuilder<> Builder(MemoryInst); 4889 4890 // Now that we determined the addressing expression we want to use and know 4891 // that we have to sink it into this block. Check to see if we have already 4892 // done this for some other load/store instr in this block. If so, reuse 4893 // the computation. Before attempting reuse, check if the address is valid 4894 // as it may have been erased. 4895 4896 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4897 4898 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4899 if (SunkAddr) { 4900 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4901 << " for " << *MemoryInst << "\n"); 4902 if (SunkAddr->getType() != Addr->getType()) 4903 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4904 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4905 SubtargetInfo->addrSinkUsingGEPs())) { 4906 // By default, we use the GEP-based method when AA is used later. This 4907 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4908 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4909 << " for " << *MemoryInst << "\n"); 4910 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4911 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4912 4913 // First, find the pointer. 4914 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4915 ResultPtr = AddrMode.BaseReg; 4916 AddrMode.BaseReg = nullptr; 4917 } 4918 4919 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4920 // We can't add more than one pointer together, nor can we scale a 4921 // pointer (both of which seem meaningless). 4922 if (ResultPtr || AddrMode.Scale != 1) 4923 return false; 4924 4925 ResultPtr = AddrMode.ScaledReg; 4926 AddrMode.Scale = 0; 4927 } 4928 4929 // It is only safe to sign extend the BaseReg if we know that the math 4930 // required to create it did not overflow before we extend it. Since 4931 // the original IR value was tossed in favor of a constant back when 4932 // the AddrMode was created we need to bail out gracefully if widths 4933 // do not match instead of extending it. 4934 // 4935 // (See below for code to add the scale.) 4936 if (AddrMode.Scale) { 4937 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4938 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4939 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4940 return false; 4941 } 4942 4943 if (AddrMode.BaseGV) { 4944 if (ResultPtr) 4945 return false; 4946 4947 ResultPtr = AddrMode.BaseGV; 4948 } 4949 4950 // If the real base value actually came from an inttoptr, then the matcher 4951 // will look through it and provide only the integer value. In that case, 4952 // use it here. 4953 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4954 if (!ResultPtr && AddrMode.BaseReg) { 4955 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4956 "sunkaddr"); 4957 AddrMode.BaseReg = nullptr; 4958 } else if (!ResultPtr && AddrMode.Scale == 1) { 4959 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4960 "sunkaddr"); 4961 AddrMode.Scale = 0; 4962 } 4963 } 4964 4965 if (!ResultPtr && 4966 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4967 SunkAddr = Constant::getNullValue(Addr->getType()); 4968 } else if (!ResultPtr) { 4969 return false; 4970 } else { 4971 Type *I8PtrTy = 4972 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4973 Type *I8Ty = Builder.getInt8Ty(); 4974 4975 // Start with the base register. Do this first so that subsequent address 4976 // matching finds it last, which will prevent it from trying to match it 4977 // as the scaled value in case it happens to be a mul. That would be 4978 // problematic if we've sunk a different mul for the scale, because then 4979 // we'd end up sinking both muls. 4980 if (AddrMode.BaseReg) { 4981 Value *V = AddrMode.BaseReg; 4982 if (V->getType() != IntPtrTy) 4983 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4984 4985 ResultIndex = V; 4986 } 4987 4988 // Add the scale value. 4989 if (AddrMode.Scale) { 4990 Value *V = AddrMode.ScaledReg; 4991 if (V->getType() == IntPtrTy) { 4992 // done. 4993 } else { 4994 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4995 cast<IntegerType>(V->getType())->getBitWidth() && 4996 "We can't transform if ScaledReg is too narrow"); 4997 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4998 } 4999 5000 if (AddrMode.Scale != 1) 5001 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5002 "sunkaddr"); 5003 if (ResultIndex) 5004 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5005 else 5006 ResultIndex = V; 5007 } 5008 5009 // Add in the Base Offset if present. 5010 if (AddrMode.BaseOffs) { 5011 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5012 if (ResultIndex) { 5013 // We need to add this separately from the scale above to help with 5014 // SDAG consecutive load/store merging. 5015 if (ResultPtr->getType() != I8PtrTy) 5016 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5017 ResultPtr = 5018 AddrMode.InBounds 5019 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5020 "sunkaddr") 5021 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5022 } 5023 5024 ResultIndex = V; 5025 } 5026 5027 if (!ResultIndex) { 5028 SunkAddr = ResultPtr; 5029 } else { 5030 if (ResultPtr->getType() != I8PtrTy) 5031 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5032 SunkAddr = 5033 AddrMode.InBounds 5034 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5035 "sunkaddr") 5036 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5037 } 5038 5039 if (SunkAddr->getType() != Addr->getType()) 5040 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5041 } 5042 } else { 5043 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5044 // non-integral pointers, so in that case bail out now. 5045 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5046 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5047 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5048 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5049 if (DL->isNonIntegralPointerType(Addr->getType()) || 5050 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5051 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5052 (AddrMode.BaseGV && 5053 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5054 return false; 5055 5056 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5057 << " for " << *MemoryInst << "\n"); 5058 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5059 Value *Result = nullptr; 5060 5061 // Start with the base register. Do this first so that subsequent address 5062 // matching finds it last, which will prevent it from trying to match it 5063 // as the scaled value in case it happens to be a mul. That would be 5064 // problematic if we've sunk a different mul for the scale, because then 5065 // we'd end up sinking both muls. 5066 if (AddrMode.BaseReg) { 5067 Value *V = AddrMode.BaseReg; 5068 if (V->getType()->isPointerTy()) 5069 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5070 if (V->getType() != IntPtrTy) 5071 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5072 Result = V; 5073 } 5074 5075 // Add the scale value. 5076 if (AddrMode.Scale) { 5077 Value *V = AddrMode.ScaledReg; 5078 if (V->getType() == IntPtrTy) { 5079 // done. 5080 } else if (V->getType()->isPointerTy()) { 5081 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5082 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5083 cast<IntegerType>(V->getType())->getBitWidth()) { 5084 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5085 } else { 5086 // It is only safe to sign extend the BaseReg if we know that the math 5087 // required to create it did not overflow before we extend it. Since 5088 // the original IR value was tossed in favor of a constant back when 5089 // the AddrMode was created we need to bail out gracefully if widths 5090 // do not match instead of extending it. 5091 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5092 if (I && (Result != AddrMode.BaseReg)) 5093 I->eraseFromParent(); 5094 return false; 5095 } 5096 if (AddrMode.Scale != 1) 5097 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5098 "sunkaddr"); 5099 if (Result) 5100 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5101 else 5102 Result = V; 5103 } 5104 5105 // Add in the BaseGV if present. 5106 if (AddrMode.BaseGV) { 5107 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5108 if (Result) 5109 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5110 else 5111 Result = V; 5112 } 5113 5114 // Add in the Base Offset if present. 5115 if (AddrMode.BaseOffs) { 5116 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5117 if (Result) 5118 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5119 else 5120 Result = V; 5121 } 5122 5123 if (!Result) 5124 SunkAddr = Constant::getNullValue(Addr->getType()); 5125 else 5126 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5127 } 5128 5129 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5130 // Store the newly computed address into the cache. In the case we reused a 5131 // value, this should be idempotent. 5132 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5133 5134 // If we have no uses, recursively delete the value and all dead instructions 5135 // using it. 5136 if (Repl->use_empty()) { 5137 // This can cause recursive deletion, which can invalidate our iterator. 5138 // Use a WeakTrackingVH to hold onto it in case this happens. 5139 Value *CurValue = &*CurInstIterator; 5140 WeakTrackingVH IterHandle(CurValue); 5141 BasicBlock *BB = CurInstIterator->getParent(); 5142 5143 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5144 5145 if (IterHandle != CurValue) { 5146 // If the iterator instruction was recursively deleted, start over at the 5147 // start of the block. 5148 CurInstIterator = BB->begin(); 5149 SunkAddrs.clear(); 5150 } 5151 } 5152 ++NumMemoryInsts; 5153 return true; 5154 } 5155 5156 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5157 /// address computing into the block when possible / profitable. 5158 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5159 bool MadeChange = false; 5160 5161 const TargetRegisterInfo *TRI = 5162 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5163 TargetLowering::AsmOperandInfoVector TargetConstraints = 5164 TLI->ParseConstraints(*DL, TRI, CS); 5165 unsigned ArgNo = 0; 5166 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5167 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5168 5169 // Compute the constraint code and ConstraintType to use. 5170 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5171 5172 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5173 OpInfo.isIndirect) { 5174 Value *OpVal = CS->getArgOperand(ArgNo++); 5175 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5176 } else if (OpInfo.Type == InlineAsm::isInput) 5177 ArgNo++; 5178 } 5179 5180 return MadeChange; 5181 } 5182 5183 /// Check if all the uses of \p Val are equivalent (or free) zero or 5184 /// sign extensions. 5185 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5186 assert(!Val->use_empty() && "Input must have at least one use"); 5187 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5188 bool IsSExt = isa<SExtInst>(FirstUser); 5189 Type *ExtTy = FirstUser->getType(); 5190 for (const User *U : Val->users()) { 5191 const Instruction *UI = cast<Instruction>(U); 5192 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5193 return false; 5194 Type *CurTy = UI->getType(); 5195 // Same input and output types: Same instruction after CSE. 5196 if (CurTy == ExtTy) 5197 continue; 5198 5199 // If IsSExt is true, we are in this situation: 5200 // a = Val 5201 // b = sext ty1 a to ty2 5202 // c = sext ty1 a to ty3 5203 // Assuming ty2 is shorter than ty3, this could be turned into: 5204 // a = Val 5205 // b = sext ty1 a to ty2 5206 // c = sext ty2 b to ty3 5207 // However, the last sext is not free. 5208 if (IsSExt) 5209 return false; 5210 5211 // This is a ZExt, maybe this is free to extend from one type to another. 5212 // In that case, we would not account for a different use. 5213 Type *NarrowTy; 5214 Type *LargeTy; 5215 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5216 CurTy->getScalarType()->getIntegerBitWidth()) { 5217 NarrowTy = CurTy; 5218 LargeTy = ExtTy; 5219 } else { 5220 NarrowTy = ExtTy; 5221 LargeTy = CurTy; 5222 } 5223 5224 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5225 return false; 5226 } 5227 // All uses are the same or can be derived from one another for free. 5228 return true; 5229 } 5230 5231 /// Try to speculatively promote extensions in \p Exts and continue 5232 /// promoting through newly promoted operands recursively as far as doing so is 5233 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5234 /// When some promotion happened, \p TPT contains the proper state to revert 5235 /// them. 5236 /// 5237 /// \return true if some promotion happened, false otherwise. 5238 bool CodeGenPrepare::tryToPromoteExts( 5239 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5240 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5241 unsigned CreatedInstsCost) { 5242 bool Promoted = false; 5243 5244 // Iterate over all the extensions to try to promote them. 5245 for (auto I : Exts) { 5246 // Early check if we directly have ext(load). 5247 if (isa<LoadInst>(I->getOperand(0))) { 5248 ProfitablyMovedExts.push_back(I); 5249 continue; 5250 } 5251 5252 // Check whether or not we want to do any promotion. The reason we have 5253 // this check inside the for loop is to catch the case where an extension 5254 // is directly fed by a load because in such case the extension can be moved 5255 // up without any promotion on its operands. 5256 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5257 return false; 5258 5259 // Get the action to perform the promotion. 5260 TypePromotionHelper::Action TPH = 5261 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5262 // Check if we can promote. 5263 if (!TPH) { 5264 // Save the current extension as we cannot move up through its operand. 5265 ProfitablyMovedExts.push_back(I); 5266 continue; 5267 } 5268 5269 // Save the current state. 5270 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5271 TPT.getRestorationPoint(); 5272 SmallVector<Instruction *, 4> NewExts; 5273 unsigned NewCreatedInstsCost = 0; 5274 unsigned ExtCost = !TLI->isExtFree(I); 5275 // Promote. 5276 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5277 &NewExts, nullptr, *TLI); 5278 assert(PromotedVal && 5279 "TypePromotionHelper should have filtered out those cases"); 5280 5281 // We would be able to merge only one extension in a load. 5282 // Therefore, if we have more than 1 new extension we heuristically 5283 // cut this search path, because it means we degrade the code quality. 5284 // With exactly 2, the transformation is neutral, because we will merge 5285 // one extension but leave one. However, we optimistically keep going, 5286 // because the new extension may be removed too. 5287 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5288 // FIXME: It would be possible to propagate a negative value instead of 5289 // conservatively ceiling it to 0. 5290 TotalCreatedInstsCost = 5291 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5292 if (!StressExtLdPromotion && 5293 (TotalCreatedInstsCost > 1 || 5294 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5295 // This promotion is not profitable, rollback to the previous state, and 5296 // save the current extension in ProfitablyMovedExts as the latest 5297 // speculative promotion turned out to be unprofitable. 5298 TPT.rollback(LastKnownGood); 5299 ProfitablyMovedExts.push_back(I); 5300 continue; 5301 } 5302 // Continue promoting NewExts as far as doing so is profitable. 5303 SmallVector<Instruction *, 2> NewlyMovedExts; 5304 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5305 bool NewPromoted = false; 5306 for (auto ExtInst : NewlyMovedExts) { 5307 Instruction *MovedExt = cast<Instruction>(ExtInst); 5308 Value *ExtOperand = MovedExt->getOperand(0); 5309 // If we have reached to a load, we need this extra profitability check 5310 // as it could potentially be merged into an ext(load). 5311 if (isa<LoadInst>(ExtOperand) && 5312 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5313 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5314 continue; 5315 5316 ProfitablyMovedExts.push_back(MovedExt); 5317 NewPromoted = true; 5318 } 5319 5320 // If none of speculative promotions for NewExts is profitable, rollback 5321 // and save the current extension (I) as the last profitable extension. 5322 if (!NewPromoted) { 5323 TPT.rollback(LastKnownGood); 5324 ProfitablyMovedExts.push_back(I); 5325 continue; 5326 } 5327 // The promotion is profitable. 5328 Promoted = true; 5329 } 5330 return Promoted; 5331 } 5332 5333 /// Merging redundant sexts when one is dominating the other. 5334 bool CodeGenPrepare::mergeSExts(Function &F) { 5335 bool Changed = false; 5336 for (auto &Entry : ValToSExtendedUses) { 5337 SExts &Insts = Entry.second; 5338 SExts CurPts; 5339 for (Instruction *Inst : Insts) { 5340 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5341 Inst->getOperand(0) != Entry.first) 5342 continue; 5343 bool inserted = false; 5344 for (auto &Pt : CurPts) { 5345 if (getDT(F).dominates(Inst, Pt)) { 5346 Pt->replaceAllUsesWith(Inst); 5347 RemovedInsts.insert(Pt); 5348 Pt->removeFromParent(); 5349 Pt = Inst; 5350 inserted = true; 5351 Changed = true; 5352 break; 5353 } 5354 if (!getDT(F).dominates(Pt, Inst)) 5355 // Give up if we need to merge in a common dominator as the 5356 // experiments show it is not profitable. 5357 continue; 5358 Inst->replaceAllUsesWith(Pt); 5359 RemovedInsts.insert(Inst); 5360 Inst->removeFromParent(); 5361 inserted = true; 5362 Changed = true; 5363 break; 5364 } 5365 if (!inserted) 5366 CurPts.push_back(Inst); 5367 } 5368 } 5369 return Changed; 5370 } 5371 5372 // Spliting large data structures so that the GEPs accessing them can have 5373 // smaller offsets so that they can be sunk to the same blocks as their users. 5374 // For example, a large struct starting from %base is splitted into two parts 5375 // where the second part starts from %new_base. 5376 // 5377 // Before: 5378 // BB0: 5379 // %base = 5380 // 5381 // BB1: 5382 // %gep0 = gep %base, off0 5383 // %gep1 = gep %base, off1 5384 // %gep2 = gep %base, off2 5385 // 5386 // BB2: 5387 // %load1 = load %gep0 5388 // %load2 = load %gep1 5389 // %load3 = load %gep2 5390 // 5391 // After: 5392 // BB0: 5393 // %base = 5394 // %new_base = gep %base, off0 5395 // 5396 // BB1: 5397 // %new_gep0 = %new_base 5398 // %new_gep1 = gep %new_base, off1 - off0 5399 // %new_gep2 = gep %new_base, off2 - off0 5400 // 5401 // BB2: 5402 // %load1 = load i32, i32* %new_gep0 5403 // %load2 = load i32, i32* %new_gep1 5404 // %load3 = load i32, i32* %new_gep2 5405 // 5406 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5407 // their offsets are smaller enough to fit into the addressing mode. 5408 bool CodeGenPrepare::splitLargeGEPOffsets() { 5409 bool Changed = false; 5410 for (auto &Entry : LargeOffsetGEPMap) { 5411 Value *OldBase = Entry.first; 5412 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5413 &LargeOffsetGEPs = Entry.second; 5414 auto compareGEPOffset = 5415 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5416 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5417 if (LHS.first == RHS.first) 5418 return false; 5419 if (LHS.second != RHS.second) 5420 return LHS.second < RHS.second; 5421 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5422 }; 5423 // Sorting all the GEPs of the same data structures based on the offsets. 5424 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5425 LargeOffsetGEPs.erase( 5426 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5427 LargeOffsetGEPs.end()); 5428 // Skip if all the GEPs have the same offsets. 5429 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5430 continue; 5431 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5432 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5433 Value *NewBaseGEP = nullptr; 5434 5435 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5436 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5437 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5438 int64_t Offset = LargeOffsetGEP->second; 5439 if (Offset != BaseOffset) { 5440 TargetLowering::AddrMode AddrMode; 5441 AddrMode.BaseOffs = Offset - BaseOffset; 5442 // The result type of the GEP might not be the type of the memory 5443 // access. 5444 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5445 GEP->getResultElementType(), 5446 GEP->getAddressSpace())) { 5447 // We need to create a new base if the offset to the current base is 5448 // too large to fit into the addressing mode. So, a very large struct 5449 // may be splitted into several parts. 5450 BaseGEP = GEP; 5451 BaseOffset = Offset; 5452 NewBaseGEP = nullptr; 5453 } 5454 } 5455 5456 // Generate a new GEP to replace the current one. 5457 LLVMContext &Ctx = GEP->getContext(); 5458 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5459 Type *I8PtrTy = 5460 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5461 Type *I8Ty = Type::getInt8Ty(Ctx); 5462 5463 if (!NewBaseGEP) { 5464 // Create a new base if we don't have one yet. Find the insertion 5465 // pointer for the new base first. 5466 BasicBlock::iterator NewBaseInsertPt; 5467 BasicBlock *NewBaseInsertBB; 5468 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5469 // If the base of the struct is an instruction, the new base will be 5470 // inserted close to it. 5471 NewBaseInsertBB = BaseI->getParent(); 5472 if (isa<PHINode>(BaseI)) 5473 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5474 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5475 NewBaseInsertBB = 5476 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5477 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5478 } else 5479 NewBaseInsertPt = std::next(BaseI->getIterator()); 5480 } else { 5481 // If the current base is an argument or global value, the new base 5482 // will be inserted to the entry block. 5483 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5484 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5485 } 5486 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5487 // Create a new base. 5488 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5489 NewBaseGEP = OldBase; 5490 if (NewBaseGEP->getType() != I8PtrTy) 5491 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5492 NewBaseGEP = 5493 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5494 NewGEPBases.insert(NewBaseGEP); 5495 } 5496 5497 IRBuilder<> Builder(GEP); 5498 Value *NewGEP = NewBaseGEP; 5499 if (Offset == BaseOffset) { 5500 if (GEP->getType() != I8PtrTy) 5501 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5502 } else { 5503 // Calculate the new offset for the new GEP. 5504 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5505 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5506 5507 if (GEP->getType() != I8PtrTy) 5508 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5509 } 5510 GEP->replaceAllUsesWith(NewGEP); 5511 LargeOffsetGEPID.erase(GEP); 5512 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5513 GEP->eraseFromParent(); 5514 Changed = true; 5515 } 5516 } 5517 return Changed; 5518 } 5519 5520 /// Return true, if an ext(load) can be formed from an extension in 5521 /// \p MovedExts. 5522 bool CodeGenPrepare::canFormExtLd( 5523 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5524 Instruction *&Inst, bool HasPromoted) { 5525 for (auto *MovedExtInst : MovedExts) { 5526 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5527 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5528 Inst = MovedExtInst; 5529 break; 5530 } 5531 } 5532 if (!LI) 5533 return false; 5534 5535 // If they're already in the same block, there's nothing to do. 5536 // Make the cheap checks first if we did not promote. 5537 // If we promoted, we need to check if it is indeed profitable. 5538 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5539 return false; 5540 5541 return TLI->isExtLoad(LI, Inst, *DL); 5542 } 5543 5544 /// Move a zext or sext fed by a load into the same basic block as the load, 5545 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5546 /// extend into the load. 5547 /// 5548 /// E.g., 5549 /// \code 5550 /// %ld = load i32* %addr 5551 /// %add = add nuw i32 %ld, 4 5552 /// %zext = zext i32 %add to i64 5553 // \endcode 5554 /// => 5555 /// \code 5556 /// %ld = load i32* %addr 5557 /// %zext = zext i32 %ld to i64 5558 /// %add = add nuw i64 %zext, 4 5559 /// \encode 5560 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5561 /// allow us to match zext(load i32*) to i64. 5562 /// 5563 /// Also, try to promote the computations used to obtain a sign extended 5564 /// value used into memory accesses. 5565 /// E.g., 5566 /// \code 5567 /// a = add nsw i32 b, 3 5568 /// d = sext i32 a to i64 5569 /// e = getelementptr ..., i64 d 5570 /// \endcode 5571 /// => 5572 /// \code 5573 /// f = sext i32 b to i64 5574 /// a = add nsw i64 f, 3 5575 /// e = getelementptr ..., i64 a 5576 /// \endcode 5577 /// 5578 /// \p Inst[in/out] the extension may be modified during the process if some 5579 /// promotions apply. 5580 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5581 bool AllowPromotionWithoutCommonHeader = false; 5582 /// See if it is an interesting sext operations for the address type 5583 /// promotion before trying to promote it, e.g., the ones with the right 5584 /// type and used in memory accesses. 5585 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5586 *Inst, AllowPromotionWithoutCommonHeader); 5587 TypePromotionTransaction TPT(RemovedInsts); 5588 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5589 TPT.getRestorationPoint(); 5590 SmallVector<Instruction *, 1> Exts; 5591 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5592 Exts.push_back(Inst); 5593 5594 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5595 5596 // Look for a load being extended. 5597 LoadInst *LI = nullptr; 5598 Instruction *ExtFedByLoad; 5599 5600 // Try to promote a chain of computation if it allows to form an extended 5601 // load. 5602 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5603 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5604 TPT.commit(); 5605 // Move the extend into the same block as the load 5606 ExtFedByLoad->moveAfter(LI); 5607 // CGP does not check if the zext would be speculatively executed when moved 5608 // to the same basic block as the load. Preserving its original location 5609 // would pessimize the debugging experience, as well as negatively impact 5610 // the quality of sample pgo. We don't want to use "line 0" as that has a 5611 // size cost in the line-table section and logically the zext can be seen as 5612 // part of the load. Therefore we conservatively reuse the same debug 5613 // location for the load and the zext. 5614 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5615 ++NumExtsMoved; 5616 Inst = ExtFedByLoad; 5617 return true; 5618 } 5619 5620 // Continue promoting SExts if known as considerable depending on targets. 5621 if (ATPConsiderable && 5622 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5623 HasPromoted, TPT, SpeculativelyMovedExts)) 5624 return true; 5625 5626 TPT.rollback(LastKnownGood); 5627 return false; 5628 } 5629 5630 // Perform address type promotion if doing so is profitable. 5631 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5632 // instructions that sign extended the same initial value. However, if 5633 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5634 // extension is just profitable. 5635 bool CodeGenPrepare::performAddressTypePromotion( 5636 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5637 bool HasPromoted, TypePromotionTransaction &TPT, 5638 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5639 bool Promoted = false; 5640 SmallPtrSet<Instruction *, 1> UnhandledExts; 5641 bool AllSeenFirst = true; 5642 for (auto I : SpeculativelyMovedExts) { 5643 Value *HeadOfChain = I->getOperand(0); 5644 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5645 SeenChainsForSExt.find(HeadOfChain); 5646 // If there is an unhandled SExt which has the same header, try to promote 5647 // it as well. 5648 if (AlreadySeen != SeenChainsForSExt.end()) { 5649 if (AlreadySeen->second != nullptr) 5650 UnhandledExts.insert(AlreadySeen->second); 5651 AllSeenFirst = false; 5652 } 5653 } 5654 5655 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5656 SpeculativelyMovedExts.size() == 1)) { 5657 TPT.commit(); 5658 if (HasPromoted) 5659 Promoted = true; 5660 for (auto I : SpeculativelyMovedExts) { 5661 Value *HeadOfChain = I->getOperand(0); 5662 SeenChainsForSExt[HeadOfChain] = nullptr; 5663 ValToSExtendedUses[HeadOfChain].push_back(I); 5664 } 5665 // Update Inst as promotion happen. 5666 Inst = SpeculativelyMovedExts.pop_back_val(); 5667 } else { 5668 // This is the first chain visited from the header, keep the current chain 5669 // as unhandled. Defer to promote this until we encounter another SExt 5670 // chain derived from the same header. 5671 for (auto I : SpeculativelyMovedExts) { 5672 Value *HeadOfChain = I->getOperand(0); 5673 SeenChainsForSExt[HeadOfChain] = Inst; 5674 } 5675 return false; 5676 } 5677 5678 if (!AllSeenFirst && !UnhandledExts.empty()) 5679 for (auto VisitedSExt : UnhandledExts) { 5680 if (RemovedInsts.count(VisitedSExt)) 5681 continue; 5682 TypePromotionTransaction TPT(RemovedInsts); 5683 SmallVector<Instruction *, 1> Exts; 5684 SmallVector<Instruction *, 2> Chains; 5685 Exts.push_back(VisitedSExt); 5686 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5687 TPT.commit(); 5688 if (HasPromoted) 5689 Promoted = true; 5690 for (auto I : Chains) { 5691 Value *HeadOfChain = I->getOperand(0); 5692 // Mark this as handled. 5693 SeenChainsForSExt[HeadOfChain] = nullptr; 5694 ValToSExtendedUses[HeadOfChain].push_back(I); 5695 } 5696 } 5697 return Promoted; 5698 } 5699 5700 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5701 BasicBlock *DefBB = I->getParent(); 5702 5703 // If the result of a {s|z}ext and its source are both live out, rewrite all 5704 // other uses of the source with result of extension. 5705 Value *Src = I->getOperand(0); 5706 if (Src->hasOneUse()) 5707 return false; 5708 5709 // Only do this xform if truncating is free. 5710 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5711 return false; 5712 5713 // Only safe to perform the optimization if the source is also defined in 5714 // this block. 5715 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5716 return false; 5717 5718 bool DefIsLiveOut = false; 5719 for (User *U : I->users()) { 5720 Instruction *UI = cast<Instruction>(U); 5721 5722 // Figure out which BB this ext is used in. 5723 BasicBlock *UserBB = UI->getParent(); 5724 if (UserBB == DefBB) continue; 5725 DefIsLiveOut = true; 5726 break; 5727 } 5728 if (!DefIsLiveOut) 5729 return false; 5730 5731 // Make sure none of the uses are PHI nodes. 5732 for (User *U : Src->users()) { 5733 Instruction *UI = cast<Instruction>(U); 5734 BasicBlock *UserBB = UI->getParent(); 5735 if (UserBB == DefBB) continue; 5736 // Be conservative. We don't want this xform to end up introducing 5737 // reloads just before load / store instructions. 5738 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5739 return false; 5740 } 5741 5742 // InsertedTruncs - Only insert one trunc in each block once. 5743 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5744 5745 bool MadeChange = false; 5746 for (Use &U : Src->uses()) { 5747 Instruction *User = cast<Instruction>(U.getUser()); 5748 5749 // Figure out which BB this ext is used in. 5750 BasicBlock *UserBB = User->getParent(); 5751 if (UserBB == DefBB) continue; 5752 5753 // Both src and def are live in this block. Rewrite the use. 5754 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5755 5756 if (!InsertedTrunc) { 5757 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5758 assert(InsertPt != UserBB->end()); 5759 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5760 InsertedInsts.insert(InsertedTrunc); 5761 } 5762 5763 // Replace a use of the {s|z}ext source with a use of the result. 5764 U = InsertedTrunc; 5765 ++NumExtUses; 5766 MadeChange = true; 5767 } 5768 5769 return MadeChange; 5770 } 5771 5772 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5773 // just after the load if the target can fold this into one extload instruction, 5774 // with the hope of eliminating some of the other later "and" instructions using 5775 // the loaded value. "and"s that are made trivially redundant by the insertion 5776 // of the new "and" are removed by this function, while others (e.g. those whose 5777 // path from the load goes through a phi) are left for isel to potentially 5778 // remove. 5779 // 5780 // For example: 5781 // 5782 // b0: 5783 // x = load i32 5784 // ... 5785 // b1: 5786 // y = and x, 0xff 5787 // z = use y 5788 // 5789 // becomes: 5790 // 5791 // b0: 5792 // x = load i32 5793 // x' = and x, 0xff 5794 // ... 5795 // b1: 5796 // z = use x' 5797 // 5798 // whereas: 5799 // 5800 // b0: 5801 // x1 = load i32 5802 // ... 5803 // b1: 5804 // x2 = load i32 5805 // ... 5806 // b2: 5807 // x = phi x1, x2 5808 // y = and x, 0xff 5809 // 5810 // becomes (after a call to optimizeLoadExt for each load): 5811 // 5812 // b0: 5813 // x1 = load i32 5814 // x1' = and x1, 0xff 5815 // ... 5816 // b1: 5817 // x2 = load i32 5818 // x2' = and x2, 0xff 5819 // ... 5820 // b2: 5821 // x = phi x1', x2' 5822 // y = and x, 0xff 5823 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5824 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5825 return false; 5826 5827 // Skip loads we've already transformed. 5828 if (Load->hasOneUse() && 5829 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5830 return false; 5831 5832 // Look at all uses of Load, looking through phis, to determine how many bits 5833 // of the loaded value are needed. 5834 SmallVector<Instruction *, 8> WorkList; 5835 SmallPtrSet<Instruction *, 16> Visited; 5836 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5837 for (auto *U : Load->users()) 5838 WorkList.push_back(cast<Instruction>(U)); 5839 5840 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5841 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5842 APInt DemandBits(BitWidth, 0); 5843 APInt WidestAndBits(BitWidth, 0); 5844 5845 while (!WorkList.empty()) { 5846 Instruction *I = WorkList.back(); 5847 WorkList.pop_back(); 5848 5849 // Break use-def graph loops. 5850 if (!Visited.insert(I).second) 5851 continue; 5852 5853 // For a PHI node, push all of its users. 5854 if (auto *Phi = dyn_cast<PHINode>(I)) { 5855 for (auto *U : Phi->users()) 5856 WorkList.push_back(cast<Instruction>(U)); 5857 continue; 5858 } 5859 5860 switch (I->getOpcode()) { 5861 case Instruction::And: { 5862 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5863 if (!AndC) 5864 return false; 5865 APInt AndBits = AndC->getValue(); 5866 DemandBits |= AndBits; 5867 // Keep track of the widest and mask we see. 5868 if (AndBits.ugt(WidestAndBits)) 5869 WidestAndBits = AndBits; 5870 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5871 AndsToMaybeRemove.push_back(I); 5872 break; 5873 } 5874 5875 case Instruction::Shl: { 5876 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5877 if (!ShlC) 5878 return false; 5879 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5880 DemandBits.setLowBits(BitWidth - ShiftAmt); 5881 break; 5882 } 5883 5884 case Instruction::Trunc: { 5885 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5886 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5887 DemandBits.setLowBits(TruncBitWidth); 5888 break; 5889 } 5890 5891 default: 5892 return false; 5893 } 5894 } 5895 5896 uint32_t ActiveBits = DemandBits.getActiveBits(); 5897 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5898 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5899 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5900 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5901 // followed by an AND. 5902 // TODO: Look into removing this restriction by fixing backends to either 5903 // return false for isLoadExtLegal for i1 or have them select this pattern to 5904 // a single instruction. 5905 // 5906 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5907 // mask, since these are the only ands that will be removed by isel. 5908 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5909 WidestAndBits != DemandBits) 5910 return false; 5911 5912 LLVMContext &Ctx = Load->getType()->getContext(); 5913 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5914 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5915 5916 // Reject cases that won't be matched as extloads. 5917 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5918 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5919 return false; 5920 5921 IRBuilder<> Builder(Load->getNextNode()); 5922 auto *NewAnd = cast<Instruction>( 5923 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5924 // Mark this instruction as "inserted by CGP", so that other 5925 // optimizations don't touch it. 5926 InsertedInsts.insert(NewAnd); 5927 5928 // Replace all uses of load with new and (except for the use of load in the 5929 // new and itself). 5930 Load->replaceAllUsesWith(NewAnd); 5931 NewAnd->setOperand(0, Load); 5932 5933 // Remove any and instructions that are now redundant. 5934 for (auto *And : AndsToMaybeRemove) 5935 // Check that the and mask is the same as the one we decided to put on the 5936 // new and. 5937 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5938 And->replaceAllUsesWith(NewAnd); 5939 if (&*CurInstIterator == And) 5940 CurInstIterator = std::next(And->getIterator()); 5941 And->eraseFromParent(); 5942 ++NumAndUses; 5943 } 5944 5945 ++NumAndsAdded; 5946 return true; 5947 } 5948 5949 /// Check if V (an operand of a select instruction) is an expensive instruction 5950 /// that is only used once. 5951 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5952 auto *I = dyn_cast<Instruction>(V); 5953 // If it's safe to speculatively execute, then it should not have side 5954 // effects; therefore, it's safe to sink and possibly *not* execute. 5955 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5956 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5957 } 5958 5959 /// Returns true if a SelectInst should be turned into an explicit branch. 5960 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5961 const TargetLowering *TLI, 5962 SelectInst *SI) { 5963 // If even a predictable select is cheap, then a branch can't be cheaper. 5964 if (!TLI->isPredictableSelectExpensive()) 5965 return false; 5966 5967 // FIXME: This should use the same heuristics as IfConversion to determine 5968 // whether a select is better represented as a branch. 5969 5970 // If metadata tells us that the select condition is obviously predictable, 5971 // then we want to replace the select with a branch. 5972 uint64_t TrueWeight, FalseWeight; 5973 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5974 uint64_t Max = std::max(TrueWeight, FalseWeight); 5975 uint64_t Sum = TrueWeight + FalseWeight; 5976 if (Sum != 0) { 5977 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5978 if (Probability > TLI->getPredictableBranchThreshold()) 5979 return true; 5980 } 5981 } 5982 5983 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5984 5985 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5986 // comparison condition. If the compare has more than one use, there's 5987 // probably another cmov or setcc around, so it's not worth emitting a branch. 5988 if (!Cmp || !Cmp->hasOneUse()) 5989 return false; 5990 5991 // If either operand of the select is expensive and only needed on one side 5992 // of the select, we should form a branch. 5993 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5994 sinkSelectOperand(TTI, SI->getFalseValue())) 5995 return true; 5996 5997 return false; 5998 } 5999 6000 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6001 /// false value of \p SI. If the true/false value of \p SI is defined by any 6002 /// select instructions in \p Selects, look through the defining select 6003 /// instruction until the true/false value is not defined in \p Selects. 6004 static Value *getTrueOrFalseValue( 6005 SelectInst *SI, bool isTrue, 6006 const SmallPtrSet<const Instruction *, 2> &Selects) { 6007 Value *V = nullptr; 6008 6009 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6010 DefSI = dyn_cast<SelectInst>(V)) { 6011 assert(DefSI->getCondition() == SI->getCondition() && 6012 "The condition of DefSI does not match with SI"); 6013 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6014 } 6015 6016 assert(V && "Failed to get select true/false value"); 6017 return V; 6018 } 6019 6020 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6021 assert(Shift->isShift() && "Expected a shift"); 6022 6023 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6024 // general vector shifts, and (3) the shift amount is a select-of-splatted 6025 // values, hoist the shifts before the select: 6026 // shift Op0, (select Cond, TVal, FVal) --> 6027 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6028 // 6029 // This is inverting a generic IR transform when we know that the cost of a 6030 // general vector shift is more than the cost of 2 shift-by-scalars. 6031 // We can't do this effectively in SDAG because we may not be able to 6032 // determine if the select operands are splats from within a basic block. 6033 Type *Ty = Shift->getType(); 6034 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6035 return false; 6036 Value *Cond, *TVal, *FVal; 6037 if (!match(Shift->getOperand(1), 6038 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6039 return false; 6040 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6041 return false; 6042 6043 IRBuilder<> Builder(Shift); 6044 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6045 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6046 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6047 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6048 Shift->replaceAllUsesWith(NewSel); 6049 Shift->eraseFromParent(); 6050 return true; 6051 } 6052 6053 /// If we have a SelectInst that will likely profit from branch prediction, 6054 /// turn it into a branch. 6055 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6056 // If branch conversion isn't desirable, exit early. 6057 if (DisableSelectToBranch || OptSize || 6058 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6059 return false; 6060 6061 // Find all consecutive select instructions that share the same condition. 6062 SmallVector<SelectInst *, 2> ASI; 6063 ASI.push_back(SI); 6064 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6065 It != SI->getParent()->end(); ++It) { 6066 SelectInst *I = dyn_cast<SelectInst>(&*It); 6067 if (I && SI->getCondition() == I->getCondition()) { 6068 ASI.push_back(I); 6069 } else { 6070 break; 6071 } 6072 } 6073 6074 SelectInst *LastSI = ASI.back(); 6075 // Increment the current iterator to skip all the rest of select instructions 6076 // because they will be either "not lowered" or "all lowered" to branch. 6077 CurInstIterator = std::next(LastSI->getIterator()); 6078 6079 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6080 6081 // Can we convert the 'select' to CF ? 6082 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6083 return false; 6084 6085 TargetLowering::SelectSupportKind SelectKind; 6086 if (VectorCond) 6087 SelectKind = TargetLowering::VectorMaskSelect; 6088 else if (SI->getType()->isVectorTy()) 6089 SelectKind = TargetLowering::ScalarCondVectorVal; 6090 else 6091 SelectKind = TargetLowering::ScalarValSelect; 6092 6093 if (TLI->isSelectSupported(SelectKind) && 6094 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6095 return false; 6096 6097 // The DominatorTree needs to be rebuilt by any consumers after this 6098 // transformation. We simply reset here rather than setting the ModifiedDT 6099 // flag to avoid restarting the function walk in runOnFunction for each 6100 // select optimized. 6101 DT.reset(); 6102 6103 // Transform a sequence like this: 6104 // start: 6105 // %cmp = cmp uge i32 %a, %b 6106 // %sel = select i1 %cmp, i32 %c, i32 %d 6107 // 6108 // Into: 6109 // start: 6110 // %cmp = cmp uge i32 %a, %b 6111 // br i1 %cmp, label %select.true, label %select.false 6112 // select.true: 6113 // br label %select.end 6114 // select.false: 6115 // br label %select.end 6116 // select.end: 6117 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6118 // 6119 // In addition, we may sink instructions that produce %c or %d from 6120 // the entry block into the destination(s) of the new branch. 6121 // If the true or false blocks do not contain a sunken instruction, that 6122 // block and its branch may be optimized away. In that case, one side of the 6123 // first branch will point directly to select.end, and the corresponding PHI 6124 // predecessor block will be the start block. 6125 6126 // First, we split the block containing the select into 2 blocks. 6127 BasicBlock *StartBlock = SI->getParent(); 6128 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6129 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6130 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6131 6132 // Delete the unconditional branch that was just created by the split. 6133 StartBlock->getTerminator()->eraseFromParent(); 6134 6135 // These are the new basic blocks for the conditional branch. 6136 // At least one will become an actual new basic block. 6137 BasicBlock *TrueBlock = nullptr; 6138 BasicBlock *FalseBlock = nullptr; 6139 BranchInst *TrueBranch = nullptr; 6140 BranchInst *FalseBranch = nullptr; 6141 6142 // Sink expensive instructions into the conditional blocks to avoid executing 6143 // them speculatively. 6144 for (SelectInst *SI : ASI) { 6145 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6146 if (TrueBlock == nullptr) { 6147 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6148 EndBlock->getParent(), EndBlock); 6149 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6150 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6151 } 6152 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6153 TrueInst->moveBefore(TrueBranch); 6154 } 6155 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6156 if (FalseBlock == nullptr) { 6157 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6158 EndBlock->getParent(), EndBlock); 6159 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6160 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6161 } 6162 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6163 FalseInst->moveBefore(FalseBranch); 6164 } 6165 } 6166 6167 // If there was nothing to sink, then arbitrarily choose the 'false' side 6168 // for a new input value to the PHI. 6169 if (TrueBlock == FalseBlock) { 6170 assert(TrueBlock == nullptr && 6171 "Unexpected basic block transform while optimizing select"); 6172 6173 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6174 EndBlock->getParent(), EndBlock); 6175 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6176 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6177 } 6178 6179 // Insert the real conditional branch based on the original condition. 6180 // If we did not create a new block for one of the 'true' or 'false' paths 6181 // of the condition, it means that side of the branch goes to the end block 6182 // directly and the path originates from the start block from the point of 6183 // view of the new PHI. 6184 BasicBlock *TT, *FT; 6185 if (TrueBlock == nullptr) { 6186 TT = EndBlock; 6187 FT = FalseBlock; 6188 TrueBlock = StartBlock; 6189 } else if (FalseBlock == nullptr) { 6190 TT = TrueBlock; 6191 FT = EndBlock; 6192 FalseBlock = StartBlock; 6193 } else { 6194 TT = TrueBlock; 6195 FT = FalseBlock; 6196 } 6197 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6198 6199 SmallPtrSet<const Instruction *, 2> INS; 6200 INS.insert(ASI.begin(), ASI.end()); 6201 // Use reverse iterator because later select may use the value of the 6202 // earlier select, and we need to propagate value through earlier select 6203 // to get the PHI operand. 6204 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6205 SelectInst *SI = *It; 6206 // The select itself is replaced with a PHI Node. 6207 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6208 PN->takeName(SI); 6209 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6210 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6211 PN->setDebugLoc(SI->getDebugLoc()); 6212 6213 SI->replaceAllUsesWith(PN); 6214 SI->eraseFromParent(); 6215 INS.erase(SI); 6216 ++NumSelectsExpanded; 6217 } 6218 6219 // Instruct OptimizeBlock to skip to the next block. 6220 CurInstIterator = StartBlock->end(); 6221 return true; 6222 } 6223 6224 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6225 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6226 int SplatElem = -1; 6227 for (unsigned i = 0; i < Mask.size(); ++i) { 6228 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6229 return false; 6230 SplatElem = Mask[i]; 6231 } 6232 6233 return true; 6234 } 6235 6236 /// Some targets have expensive vector shifts if the lanes aren't all the same 6237 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6238 /// it's often worth sinking a shufflevector splat down to its use so that 6239 /// codegen can spot all lanes are identical. 6240 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6241 BasicBlock *DefBB = SVI->getParent(); 6242 6243 // Only do this xform if variable vector shifts are particularly expensive. 6244 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6245 return false; 6246 6247 // We only expect better codegen by sinking a shuffle if we can recognise a 6248 // constant splat. 6249 if (!isBroadcastShuffle(SVI)) 6250 return false; 6251 6252 // InsertedShuffles - Only insert a shuffle in each block once. 6253 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6254 6255 bool MadeChange = false; 6256 for (User *U : SVI->users()) { 6257 Instruction *UI = cast<Instruction>(U); 6258 6259 // Figure out which BB this ext is used in. 6260 BasicBlock *UserBB = UI->getParent(); 6261 if (UserBB == DefBB) continue; 6262 6263 // For now only apply this when the splat is used by a shift instruction. 6264 if (!UI->isShift()) continue; 6265 6266 // Everything checks out, sink the shuffle if the user's block doesn't 6267 // already have a copy. 6268 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6269 6270 if (!InsertedShuffle) { 6271 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6272 assert(InsertPt != UserBB->end()); 6273 InsertedShuffle = 6274 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6275 SVI->getOperand(2), "", &*InsertPt); 6276 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6277 } 6278 6279 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6280 MadeChange = true; 6281 } 6282 6283 // If we removed all uses, nuke the shuffle. 6284 if (SVI->use_empty()) { 6285 SVI->eraseFromParent(); 6286 MadeChange = true; 6287 } 6288 6289 return MadeChange; 6290 } 6291 6292 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6293 // If the operands of I can be folded into a target instruction together with 6294 // I, duplicate and sink them. 6295 SmallVector<Use *, 4> OpsToSink; 6296 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6297 return false; 6298 6299 // OpsToSink can contain multiple uses in a use chain (e.g. 6300 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6301 // uses must come first, so we process the ops in reverse order so as to not 6302 // create invalid IR. 6303 BasicBlock *TargetBB = I->getParent(); 6304 bool Changed = false; 6305 SmallVector<Use *, 4> ToReplace; 6306 for (Use *U : reverse(OpsToSink)) { 6307 auto *UI = cast<Instruction>(U->get()); 6308 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6309 continue; 6310 ToReplace.push_back(U); 6311 } 6312 6313 SetVector<Instruction *> MaybeDead; 6314 DenseMap<Instruction *, Instruction *> NewInstructions; 6315 Instruction *InsertPoint = I; 6316 for (Use *U : ToReplace) { 6317 auto *UI = cast<Instruction>(U->get()); 6318 Instruction *NI = UI->clone(); 6319 NewInstructions[UI] = NI; 6320 MaybeDead.insert(UI); 6321 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6322 NI->insertBefore(InsertPoint); 6323 InsertPoint = NI; 6324 InsertedInsts.insert(NI); 6325 6326 // Update the use for the new instruction, making sure that we update the 6327 // sunk instruction uses, if it is part of a chain that has already been 6328 // sunk. 6329 Instruction *OldI = cast<Instruction>(U->getUser()); 6330 if (NewInstructions.count(OldI)) 6331 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6332 else 6333 U->set(NI); 6334 Changed = true; 6335 } 6336 6337 // Remove instructions that are dead after sinking. 6338 for (auto *I : MaybeDead) { 6339 if (!I->hasNUsesOrMore(1)) { 6340 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6341 I->eraseFromParent(); 6342 } 6343 } 6344 6345 return Changed; 6346 } 6347 6348 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6349 Value *Cond = SI->getCondition(); 6350 Type *OldType = Cond->getType(); 6351 LLVMContext &Context = Cond->getContext(); 6352 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6353 unsigned RegWidth = RegType.getSizeInBits(); 6354 6355 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6356 return false; 6357 6358 // If the register width is greater than the type width, expand the condition 6359 // of the switch instruction and each case constant to the width of the 6360 // register. By widening the type of the switch condition, subsequent 6361 // comparisons (for case comparisons) will not need to be extended to the 6362 // preferred register width, so we will potentially eliminate N-1 extends, 6363 // where N is the number of cases in the switch. 6364 auto *NewType = Type::getIntNTy(Context, RegWidth); 6365 6366 // Zero-extend the switch condition and case constants unless the switch 6367 // condition is a function argument that is already being sign-extended. 6368 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6369 // everything instead. 6370 Instruction::CastOps ExtType = Instruction::ZExt; 6371 if (auto *Arg = dyn_cast<Argument>(Cond)) 6372 if (Arg->hasSExtAttr()) 6373 ExtType = Instruction::SExt; 6374 6375 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6376 ExtInst->insertBefore(SI); 6377 ExtInst->setDebugLoc(SI->getDebugLoc()); 6378 SI->setCondition(ExtInst); 6379 for (auto Case : SI->cases()) { 6380 APInt NarrowConst = Case.getCaseValue()->getValue(); 6381 APInt WideConst = (ExtType == Instruction::ZExt) ? 6382 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6383 Case.setValue(ConstantInt::get(Context, WideConst)); 6384 } 6385 6386 return true; 6387 } 6388 6389 6390 namespace { 6391 6392 /// Helper class to promote a scalar operation to a vector one. 6393 /// This class is used to move downward extractelement transition. 6394 /// E.g., 6395 /// a = vector_op <2 x i32> 6396 /// b = extractelement <2 x i32> a, i32 0 6397 /// c = scalar_op b 6398 /// store c 6399 /// 6400 /// => 6401 /// a = vector_op <2 x i32> 6402 /// c = vector_op a (equivalent to scalar_op on the related lane) 6403 /// * d = extractelement <2 x i32> c, i32 0 6404 /// * store d 6405 /// Assuming both extractelement and store can be combine, we get rid of the 6406 /// transition. 6407 class VectorPromoteHelper { 6408 /// DataLayout associated with the current module. 6409 const DataLayout &DL; 6410 6411 /// Used to perform some checks on the legality of vector operations. 6412 const TargetLowering &TLI; 6413 6414 /// Used to estimated the cost of the promoted chain. 6415 const TargetTransformInfo &TTI; 6416 6417 /// The transition being moved downwards. 6418 Instruction *Transition; 6419 6420 /// The sequence of instructions to be promoted. 6421 SmallVector<Instruction *, 4> InstsToBePromoted; 6422 6423 /// Cost of combining a store and an extract. 6424 unsigned StoreExtractCombineCost; 6425 6426 /// Instruction that will be combined with the transition. 6427 Instruction *CombineInst = nullptr; 6428 6429 /// The instruction that represents the current end of the transition. 6430 /// Since we are faking the promotion until we reach the end of the chain 6431 /// of computation, we need a way to get the current end of the transition. 6432 Instruction *getEndOfTransition() const { 6433 if (InstsToBePromoted.empty()) 6434 return Transition; 6435 return InstsToBePromoted.back(); 6436 } 6437 6438 /// Return the index of the original value in the transition. 6439 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6440 /// c, is at index 0. 6441 unsigned getTransitionOriginalValueIdx() const { 6442 assert(isa<ExtractElementInst>(Transition) && 6443 "Other kind of transitions are not supported yet"); 6444 return 0; 6445 } 6446 6447 /// Return the index of the index in the transition. 6448 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6449 /// is at index 1. 6450 unsigned getTransitionIdx() const { 6451 assert(isa<ExtractElementInst>(Transition) && 6452 "Other kind of transitions are not supported yet"); 6453 return 1; 6454 } 6455 6456 /// Get the type of the transition. 6457 /// This is the type of the original value. 6458 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6459 /// transition is <2 x i32>. 6460 Type *getTransitionType() const { 6461 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6462 } 6463 6464 /// Promote \p ToBePromoted by moving \p Def downward through. 6465 /// I.e., we have the following sequence: 6466 /// Def = Transition <ty1> a to <ty2> 6467 /// b = ToBePromoted <ty2> Def, ... 6468 /// => 6469 /// b = ToBePromoted <ty1> a, ... 6470 /// Def = Transition <ty1> ToBePromoted to <ty2> 6471 void promoteImpl(Instruction *ToBePromoted); 6472 6473 /// Check whether or not it is profitable to promote all the 6474 /// instructions enqueued to be promoted. 6475 bool isProfitableToPromote() { 6476 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6477 unsigned Index = isa<ConstantInt>(ValIdx) 6478 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6479 : -1; 6480 Type *PromotedType = getTransitionType(); 6481 6482 StoreInst *ST = cast<StoreInst>(CombineInst); 6483 unsigned AS = ST->getPointerAddressSpace(); 6484 unsigned Align = ST->getAlignment(); 6485 // Check if this store is supported. 6486 if (!TLI.allowsMisalignedMemoryAccesses( 6487 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6488 Align)) { 6489 // If this is not supported, there is no way we can combine 6490 // the extract with the store. 6491 return false; 6492 } 6493 6494 // The scalar chain of computation has to pay for the transition 6495 // scalar to vector. 6496 // The vector chain has to account for the combining cost. 6497 uint64_t ScalarCost = 6498 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6499 uint64_t VectorCost = StoreExtractCombineCost; 6500 for (const auto &Inst : InstsToBePromoted) { 6501 // Compute the cost. 6502 // By construction, all instructions being promoted are arithmetic ones. 6503 // Moreover, one argument is a constant that can be viewed as a splat 6504 // constant. 6505 Value *Arg0 = Inst->getOperand(0); 6506 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6507 isa<ConstantFP>(Arg0); 6508 TargetTransformInfo::OperandValueKind Arg0OVK = 6509 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6510 : TargetTransformInfo::OK_AnyValue; 6511 TargetTransformInfo::OperandValueKind Arg1OVK = 6512 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6513 : TargetTransformInfo::OK_AnyValue; 6514 ScalarCost += TTI.getArithmeticInstrCost( 6515 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6516 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6517 Arg0OVK, Arg1OVK); 6518 } 6519 LLVM_DEBUG( 6520 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6521 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6522 return ScalarCost > VectorCost; 6523 } 6524 6525 /// Generate a constant vector with \p Val with the same 6526 /// number of elements as the transition. 6527 /// \p UseSplat defines whether or not \p Val should be replicated 6528 /// across the whole vector. 6529 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6530 /// otherwise we generate a vector with as many undef as possible: 6531 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6532 /// used at the index of the extract. 6533 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6534 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6535 if (!UseSplat) { 6536 // If we cannot determine where the constant must be, we have to 6537 // use a splat constant. 6538 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6539 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6540 ExtractIdx = CstVal->getSExtValue(); 6541 else 6542 UseSplat = true; 6543 } 6544 6545 unsigned End = getTransitionType()->getVectorNumElements(); 6546 if (UseSplat) 6547 return ConstantVector::getSplat(End, Val); 6548 6549 SmallVector<Constant *, 4> ConstVec; 6550 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6551 for (unsigned Idx = 0; Idx != End; ++Idx) { 6552 if (Idx == ExtractIdx) 6553 ConstVec.push_back(Val); 6554 else 6555 ConstVec.push_back(UndefVal); 6556 } 6557 return ConstantVector::get(ConstVec); 6558 } 6559 6560 /// Check if promoting to a vector type an operand at \p OperandIdx 6561 /// in \p Use can trigger undefined behavior. 6562 static bool canCauseUndefinedBehavior(const Instruction *Use, 6563 unsigned OperandIdx) { 6564 // This is not safe to introduce undef when the operand is on 6565 // the right hand side of a division-like instruction. 6566 if (OperandIdx != 1) 6567 return false; 6568 switch (Use->getOpcode()) { 6569 default: 6570 return false; 6571 case Instruction::SDiv: 6572 case Instruction::UDiv: 6573 case Instruction::SRem: 6574 case Instruction::URem: 6575 return true; 6576 case Instruction::FDiv: 6577 case Instruction::FRem: 6578 return !Use->hasNoNaNs(); 6579 } 6580 llvm_unreachable(nullptr); 6581 } 6582 6583 public: 6584 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6585 const TargetTransformInfo &TTI, Instruction *Transition, 6586 unsigned CombineCost) 6587 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6588 StoreExtractCombineCost(CombineCost) { 6589 assert(Transition && "Do not know how to promote null"); 6590 } 6591 6592 /// Check if we can promote \p ToBePromoted to \p Type. 6593 bool canPromote(const Instruction *ToBePromoted) const { 6594 // We could support CastInst too. 6595 return isa<BinaryOperator>(ToBePromoted); 6596 } 6597 6598 /// Check if it is profitable to promote \p ToBePromoted 6599 /// by moving downward the transition through. 6600 bool shouldPromote(const Instruction *ToBePromoted) const { 6601 // Promote only if all the operands can be statically expanded. 6602 // Indeed, we do not want to introduce any new kind of transitions. 6603 for (const Use &U : ToBePromoted->operands()) { 6604 const Value *Val = U.get(); 6605 if (Val == getEndOfTransition()) { 6606 // If the use is a division and the transition is on the rhs, 6607 // we cannot promote the operation, otherwise we may create a 6608 // division by zero. 6609 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6610 return false; 6611 continue; 6612 } 6613 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6614 !isa<ConstantFP>(Val)) 6615 return false; 6616 } 6617 // Check that the resulting operation is legal. 6618 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6619 if (!ISDOpcode) 6620 return false; 6621 return StressStoreExtract || 6622 TLI.isOperationLegalOrCustom( 6623 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6624 } 6625 6626 /// Check whether or not \p Use can be combined 6627 /// with the transition. 6628 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6629 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6630 6631 /// Record \p ToBePromoted as part of the chain to be promoted. 6632 void enqueueForPromotion(Instruction *ToBePromoted) { 6633 InstsToBePromoted.push_back(ToBePromoted); 6634 } 6635 6636 /// Set the instruction that will be combined with the transition. 6637 void recordCombineInstruction(Instruction *ToBeCombined) { 6638 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6639 CombineInst = ToBeCombined; 6640 } 6641 6642 /// Promote all the instructions enqueued for promotion if it is 6643 /// is profitable. 6644 /// \return True if the promotion happened, false otherwise. 6645 bool promote() { 6646 // Check if there is something to promote. 6647 // Right now, if we do not have anything to combine with, 6648 // we assume the promotion is not profitable. 6649 if (InstsToBePromoted.empty() || !CombineInst) 6650 return false; 6651 6652 // Check cost. 6653 if (!StressStoreExtract && !isProfitableToPromote()) 6654 return false; 6655 6656 // Promote. 6657 for (auto &ToBePromoted : InstsToBePromoted) 6658 promoteImpl(ToBePromoted); 6659 InstsToBePromoted.clear(); 6660 return true; 6661 } 6662 }; 6663 6664 } // end anonymous namespace 6665 6666 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6667 // At this point, we know that all the operands of ToBePromoted but Def 6668 // can be statically promoted. 6669 // For Def, we need to use its parameter in ToBePromoted: 6670 // b = ToBePromoted ty1 a 6671 // Def = Transition ty1 b to ty2 6672 // Move the transition down. 6673 // 1. Replace all uses of the promoted operation by the transition. 6674 // = ... b => = ... Def. 6675 assert(ToBePromoted->getType() == Transition->getType() && 6676 "The type of the result of the transition does not match " 6677 "the final type"); 6678 ToBePromoted->replaceAllUsesWith(Transition); 6679 // 2. Update the type of the uses. 6680 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6681 Type *TransitionTy = getTransitionType(); 6682 ToBePromoted->mutateType(TransitionTy); 6683 // 3. Update all the operands of the promoted operation with promoted 6684 // operands. 6685 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6686 for (Use &U : ToBePromoted->operands()) { 6687 Value *Val = U.get(); 6688 Value *NewVal = nullptr; 6689 if (Val == Transition) 6690 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6691 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6692 isa<ConstantFP>(Val)) { 6693 // Use a splat constant if it is not safe to use undef. 6694 NewVal = getConstantVector( 6695 cast<Constant>(Val), 6696 isa<UndefValue>(Val) || 6697 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6698 } else 6699 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6700 "this?"); 6701 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6702 } 6703 Transition->moveAfter(ToBePromoted); 6704 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6705 } 6706 6707 /// Some targets can do store(extractelement) with one instruction. 6708 /// Try to push the extractelement towards the stores when the target 6709 /// has this feature and this is profitable. 6710 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6711 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6712 if (DisableStoreExtract || 6713 (!StressStoreExtract && 6714 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6715 Inst->getOperand(1), CombineCost))) 6716 return false; 6717 6718 // At this point we know that Inst is a vector to scalar transition. 6719 // Try to move it down the def-use chain, until: 6720 // - We can combine the transition with its single use 6721 // => we got rid of the transition. 6722 // - We escape the current basic block 6723 // => we would need to check that we are moving it at a cheaper place and 6724 // we do not do that for now. 6725 BasicBlock *Parent = Inst->getParent(); 6726 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6727 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6728 // If the transition has more than one use, assume this is not going to be 6729 // beneficial. 6730 while (Inst->hasOneUse()) { 6731 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6732 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6733 6734 if (ToBePromoted->getParent() != Parent) { 6735 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6736 << ToBePromoted->getParent()->getName() 6737 << ") than the transition (" << Parent->getName() 6738 << ").\n"); 6739 return false; 6740 } 6741 6742 if (VPH.canCombine(ToBePromoted)) { 6743 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6744 << "will be combined with: " << *ToBePromoted << '\n'); 6745 VPH.recordCombineInstruction(ToBePromoted); 6746 bool Changed = VPH.promote(); 6747 NumStoreExtractExposed += Changed; 6748 return Changed; 6749 } 6750 6751 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6752 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6753 return false; 6754 6755 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6756 6757 VPH.enqueueForPromotion(ToBePromoted); 6758 Inst = ToBePromoted; 6759 } 6760 return false; 6761 } 6762 6763 /// For the instruction sequence of store below, F and I values 6764 /// are bundled together as an i64 value before being stored into memory. 6765 /// Sometimes it is more efficient to generate separate stores for F and I, 6766 /// which can remove the bitwise instructions or sink them to colder places. 6767 /// 6768 /// (store (or (zext (bitcast F to i32) to i64), 6769 /// (shl (zext I to i64), 32)), addr) --> 6770 /// (store F, addr) and (store I, addr+4) 6771 /// 6772 /// Similarly, splitting for other merged store can also be beneficial, like: 6773 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6774 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6775 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6776 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6777 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6778 /// 6779 /// We allow each target to determine specifically which kind of splitting is 6780 /// supported. 6781 /// 6782 /// The store patterns are commonly seen from the simple code snippet below 6783 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6784 /// void goo(const std::pair<int, float> &); 6785 /// hoo() { 6786 /// ... 6787 /// goo(std::make_pair(tmp, ftmp)); 6788 /// ... 6789 /// } 6790 /// 6791 /// Although we already have similar splitting in DAG Combine, we duplicate 6792 /// it in CodeGenPrepare to catch the case in which pattern is across 6793 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6794 /// during code expansion. 6795 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6796 const TargetLowering &TLI) { 6797 // Handle simple but common cases only. 6798 Type *StoreType = SI.getValueOperand()->getType(); 6799 6800 // The code below assumes shifting a value by <number of bits>, 6801 // whereas scalable vectors would have to be shifted by 6802 // <2log(vscale) + number of bits> in order to store the 6803 // low/high parts. Bailing out for now. 6804 if (StoreType->isVectorTy() && StoreType->getVectorIsScalable()) 6805 return false; 6806 6807 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6808 DL.getTypeSizeInBits(StoreType) == 0) 6809 return false; 6810 6811 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6812 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6813 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6814 return false; 6815 6816 // Don't split the store if it is volatile. 6817 if (SI.isVolatile()) 6818 return false; 6819 6820 // Match the following patterns: 6821 // (store (or (zext LValue to i64), 6822 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6823 // or 6824 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6825 // (zext LValue to i64), 6826 // Expect both operands of OR and the first operand of SHL have only 6827 // one use. 6828 Value *LValue, *HValue; 6829 if (!match(SI.getValueOperand(), 6830 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6831 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6832 m_SpecificInt(HalfValBitSize)))))) 6833 return false; 6834 6835 // Check LValue and HValue are int with size less or equal than 32. 6836 if (!LValue->getType()->isIntegerTy() || 6837 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6838 !HValue->getType()->isIntegerTy() || 6839 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6840 return false; 6841 6842 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6843 // as the input of target query. 6844 auto *LBC = dyn_cast<BitCastInst>(LValue); 6845 auto *HBC = dyn_cast<BitCastInst>(HValue); 6846 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6847 : EVT::getEVT(LValue->getType()); 6848 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6849 : EVT::getEVT(HValue->getType()); 6850 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6851 return false; 6852 6853 // Start to split store. 6854 IRBuilder<> Builder(SI.getContext()); 6855 Builder.SetInsertPoint(&SI); 6856 6857 // If LValue/HValue is a bitcast in another BB, create a new one in current 6858 // BB so it may be merged with the splitted stores by dag combiner. 6859 if (LBC && LBC->getParent() != SI.getParent()) 6860 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6861 if (HBC && HBC->getParent() != SI.getParent()) 6862 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6863 6864 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6865 auto CreateSplitStore = [&](Value *V, bool Upper) { 6866 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6867 Value *Addr = Builder.CreateBitCast( 6868 SI.getOperand(1), 6869 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6870 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 6871 if (IsOffsetStore) 6872 Addr = Builder.CreateGEP( 6873 SplitStoreType, Addr, 6874 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6875 MaybeAlign Alignment = SI.getAlign(); 6876 if (IsOffsetStore && Alignment) { 6877 // When splitting the store in half, naturally one half will retain the 6878 // alignment of the original wider store, regardless of whether it was 6879 // over-aligned or not, while the other will require adjustment. 6880 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 6881 } 6882 Builder.CreateAlignedStore(V, Addr, Alignment); 6883 }; 6884 6885 CreateSplitStore(LValue, false); 6886 CreateSplitStore(HValue, true); 6887 6888 // Delete the old store. 6889 SI.eraseFromParent(); 6890 return true; 6891 } 6892 6893 // Return true if the GEP has two operands, the first operand is of a sequential 6894 // type, and the second operand is a constant. 6895 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6896 gep_type_iterator I = gep_type_begin(*GEP); 6897 return GEP->getNumOperands() == 2 && 6898 I.isSequential() && 6899 isa<ConstantInt>(GEP->getOperand(1)); 6900 } 6901 6902 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6903 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6904 // reducing liveness interference across those edges benefits global register 6905 // allocation. Currently handles only certain cases. 6906 // 6907 // For example, unmerge %GEPI and %UGEPI as below. 6908 // 6909 // ---------- BEFORE ---------- 6910 // SrcBlock: 6911 // ... 6912 // %GEPIOp = ... 6913 // ... 6914 // %GEPI = gep %GEPIOp, Idx 6915 // ... 6916 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6917 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6918 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6919 // %UGEPI) 6920 // 6921 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6922 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6923 // ... 6924 // 6925 // DstBi: 6926 // ... 6927 // %UGEPI = gep %GEPIOp, UIdx 6928 // ... 6929 // --------------------------- 6930 // 6931 // ---------- AFTER ---------- 6932 // SrcBlock: 6933 // ... (same as above) 6934 // (* %GEPI is still alive on the indirectbr edges) 6935 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6936 // unmerging) 6937 // ... 6938 // 6939 // DstBi: 6940 // ... 6941 // %UGEPI = gep %GEPI, (UIdx-Idx) 6942 // ... 6943 // --------------------------- 6944 // 6945 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6946 // no longer alive on them. 6947 // 6948 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6949 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6950 // not to disable further simplications and optimizations as a result of GEP 6951 // merging. 6952 // 6953 // Note this unmerging may increase the length of the data flow critical path 6954 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6955 // between the register pressure and the length of data-flow critical 6956 // path. Restricting this to the uncommon IndirectBr case would minimize the 6957 // impact of potentially longer critical path, if any, and the impact on compile 6958 // time. 6959 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6960 const TargetTransformInfo *TTI) { 6961 BasicBlock *SrcBlock = GEPI->getParent(); 6962 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6963 // (non-IndirectBr) cases exit early here. 6964 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6965 return false; 6966 // Check that GEPI is a simple gep with a single constant index. 6967 if (!GEPSequentialConstIndexed(GEPI)) 6968 return false; 6969 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6970 // Check that GEPI is a cheap one. 6971 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6972 > TargetTransformInfo::TCC_Basic) 6973 return false; 6974 Value *GEPIOp = GEPI->getOperand(0); 6975 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6976 if (!isa<Instruction>(GEPIOp)) 6977 return false; 6978 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6979 if (GEPIOpI->getParent() != SrcBlock) 6980 return false; 6981 // Check that GEP is used outside the block, meaning it's alive on the 6982 // IndirectBr edge(s). 6983 if (find_if(GEPI->users(), [&](User *Usr) { 6984 if (auto *I = dyn_cast<Instruction>(Usr)) { 6985 if (I->getParent() != SrcBlock) { 6986 return true; 6987 } 6988 } 6989 return false; 6990 }) == GEPI->users().end()) 6991 return false; 6992 // The second elements of the GEP chains to be unmerged. 6993 std::vector<GetElementPtrInst *> UGEPIs; 6994 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6995 // on IndirectBr edges. 6996 for (User *Usr : GEPIOp->users()) { 6997 if (Usr == GEPI) continue; 6998 // Check if Usr is an Instruction. If not, give up. 6999 if (!isa<Instruction>(Usr)) 7000 return false; 7001 auto *UI = cast<Instruction>(Usr); 7002 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7003 if (UI->getParent() == SrcBlock) 7004 continue; 7005 // Check if Usr is a GEP. If not, give up. 7006 if (!isa<GetElementPtrInst>(Usr)) 7007 return false; 7008 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7009 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7010 // the pointer operand to it. If so, record it in the vector. If not, give 7011 // up. 7012 if (!GEPSequentialConstIndexed(UGEPI)) 7013 return false; 7014 if (UGEPI->getOperand(0) != GEPIOp) 7015 return false; 7016 if (GEPIIdx->getType() != 7017 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7018 return false; 7019 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7020 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7021 > TargetTransformInfo::TCC_Basic) 7022 return false; 7023 UGEPIs.push_back(UGEPI); 7024 } 7025 if (UGEPIs.size() == 0) 7026 return false; 7027 // Check the materializing cost of (Uidx-Idx). 7028 for (GetElementPtrInst *UGEPI : UGEPIs) { 7029 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7030 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7031 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7032 if (ImmCost > TargetTransformInfo::TCC_Basic) 7033 return false; 7034 } 7035 // Now unmerge between GEPI and UGEPIs. 7036 for (GetElementPtrInst *UGEPI : UGEPIs) { 7037 UGEPI->setOperand(0, GEPI); 7038 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7039 Constant *NewUGEPIIdx = 7040 ConstantInt::get(GEPIIdx->getType(), 7041 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7042 UGEPI->setOperand(1, NewUGEPIIdx); 7043 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7044 // inbounds to avoid UB. 7045 if (!GEPI->isInBounds()) { 7046 UGEPI->setIsInBounds(false); 7047 } 7048 } 7049 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7050 // alive on IndirectBr edges). 7051 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7052 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7053 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7054 return true; 7055 } 7056 7057 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7058 // Bail out if we inserted the instruction to prevent optimizations from 7059 // stepping on each other's toes. 7060 if (InsertedInsts.count(I)) 7061 return false; 7062 7063 // TODO: Move into the switch on opcode below here. 7064 if (PHINode *P = dyn_cast<PHINode>(I)) { 7065 // It is possible for very late stage optimizations (such as SimplifyCFG) 7066 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7067 // trivial PHI, go ahead and zap it here. 7068 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7069 LargeOffsetGEPMap.erase(P); 7070 P->replaceAllUsesWith(V); 7071 P->eraseFromParent(); 7072 ++NumPHIsElim; 7073 return true; 7074 } 7075 return false; 7076 } 7077 7078 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7079 // If the source of the cast is a constant, then this should have 7080 // already been constant folded. The only reason NOT to constant fold 7081 // it is if something (e.g. LSR) was careful to place the constant 7082 // evaluation in a block other than then one that uses it (e.g. to hoist 7083 // the address of globals out of a loop). If this is the case, we don't 7084 // want to forward-subst the cast. 7085 if (isa<Constant>(CI->getOperand(0))) 7086 return false; 7087 7088 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7089 return true; 7090 7091 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7092 /// Sink a zext or sext into its user blocks if the target type doesn't 7093 /// fit in one register 7094 if (TLI->getTypeAction(CI->getContext(), 7095 TLI->getValueType(*DL, CI->getType())) == 7096 TargetLowering::TypeExpandInteger) { 7097 return SinkCast(CI); 7098 } else { 7099 bool MadeChange = optimizeExt(I); 7100 return MadeChange | optimizeExtUses(I); 7101 } 7102 } 7103 return false; 7104 } 7105 7106 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7107 if (optimizeCmp(Cmp, ModifiedDT)) 7108 return true; 7109 7110 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7111 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7112 bool Modified = optimizeLoadExt(LI); 7113 unsigned AS = LI->getPointerAddressSpace(); 7114 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7115 return Modified; 7116 } 7117 7118 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7119 if (splitMergedValStore(*SI, *DL, *TLI)) 7120 return true; 7121 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7122 unsigned AS = SI->getPointerAddressSpace(); 7123 return optimizeMemoryInst(I, SI->getOperand(1), 7124 SI->getOperand(0)->getType(), AS); 7125 } 7126 7127 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7128 unsigned AS = RMW->getPointerAddressSpace(); 7129 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7130 RMW->getType(), AS); 7131 } 7132 7133 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7134 unsigned AS = CmpX->getPointerAddressSpace(); 7135 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7136 CmpX->getCompareOperand()->getType(), AS); 7137 } 7138 7139 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7140 7141 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7142 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7143 7144 // TODO: Move this into the switch on opcode - it handles shifts already. 7145 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7146 BinOp->getOpcode() == Instruction::LShr)) { 7147 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7148 if (CI && TLI->hasExtractBitsInsn()) 7149 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7150 return true; 7151 } 7152 7153 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7154 if (GEPI->hasAllZeroIndices()) { 7155 /// The GEP operand must be a pointer, so must its result -> BitCast 7156 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7157 GEPI->getName(), GEPI); 7158 NC->setDebugLoc(GEPI->getDebugLoc()); 7159 GEPI->replaceAllUsesWith(NC); 7160 GEPI->eraseFromParent(); 7161 ++NumGEPsElim; 7162 optimizeInst(NC, ModifiedDT); 7163 return true; 7164 } 7165 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7166 return true; 7167 } 7168 return false; 7169 } 7170 7171 if (tryToSinkFreeOperands(I)) 7172 return true; 7173 7174 switch (I->getOpcode()) { 7175 case Instruction::Shl: 7176 case Instruction::LShr: 7177 case Instruction::AShr: 7178 return optimizeShiftInst(cast<BinaryOperator>(I)); 7179 case Instruction::Call: 7180 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7181 case Instruction::Select: 7182 return optimizeSelectInst(cast<SelectInst>(I)); 7183 case Instruction::ShuffleVector: 7184 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7185 case Instruction::Switch: 7186 return optimizeSwitchInst(cast<SwitchInst>(I)); 7187 case Instruction::ExtractElement: 7188 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7189 } 7190 7191 return false; 7192 } 7193 7194 /// Given an OR instruction, check to see if this is a bitreverse 7195 /// idiom. If so, insert the new intrinsic and return true. 7196 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7197 const TargetLowering &TLI) { 7198 if (!I.getType()->isIntegerTy() || 7199 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7200 TLI.getValueType(DL, I.getType(), true))) 7201 return false; 7202 7203 SmallVector<Instruction*, 4> Insts; 7204 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7205 return false; 7206 Instruction *LastInst = Insts.back(); 7207 I.replaceAllUsesWith(LastInst); 7208 RecursivelyDeleteTriviallyDeadInstructions(&I); 7209 return true; 7210 } 7211 7212 // In this pass we look for GEP and cast instructions that are used 7213 // across basic blocks and rewrite them to improve basic-block-at-a-time 7214 // selection. 7215 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7216 SunkAddrs.clear(); 7217 bool MadeChange = false; 7218 7219 CurInstIterator = BB.begin(); 7220 while (CurInstIterator != BB.end()) { 7221 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7222 if (ModifiedDT) 7223 return true; 7224 } 7225 7226 bool MadeBitReverse = true; 7227 while (MadeBitReverse) { 7228 MadeBitReverse = false; 7229 for (auto &I : reverse(BB)) { 7230 if (makeBitReverse(I, *DL, *TLI)) { 7231 MadeBitReverse = MadeChange = true; 7232 break; 7233 } 7234 } 7235 } 7236 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7237 7238 return MadeChange; 7239 } 7240 7241 // Some CGP optimizations may move or alter what's computed in a block. Check 7242 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7243 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7244 assert(isa<DbgValueInst>(I)); 7245 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7246 7247 // Does this dbg.value refer to a sunk address calculation? 7248 Value *Location = DVI.getVariableLocation(); 7249 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7250 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7251 if (SunkAddr) { 7252 // Point dbg.value at locally computed address, which should give the best 7253 // opportunity to be accurately lowered. This update may change the type of 7254 // pointer being referred to; however this makes no difference to debugging 7255 // information, and we can't generate bitcasts that may affect codegen. 7256 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7257 ValueAsMetadata::get(SunkAddr))); 7258 return true; 7259 } 7260 return false; 7261 } 7262 7263 // A llvm.dbg.value may be using a value before its definition, due to 7264 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7265 // them by moving the dbg.value to immediately after the value definition. 7266 // FIXME: Ideally this should never be necessary, and this has the potential 7267 // to re-order dbg.value intrinsics. 7268 bool CodeGenPrepare::placeDbgValues(Function &F) { 7269 bool MadeChange = false; 7270 DominatorTree DT(F); 7271 7272 for (BasicBlock &BB : F) { 7273 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7274 Instruction *Insn = &*BI++; 7275 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7276 if (!DVI) 7277 continue; 7278 7279 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7280 7281 if (!VI || VI->isTerminator()) 7282 continue; 7283 7284 // If VI is a phi in a block with an EHPad terminator, we can't insert 7285 // after it. 7286 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7287 continue; 7288 7289 // If the defining instruction dominates the dbg.value, we do not need 7290 // to move the dbg.value. 7291 if (DT.dominates(VI, DVI)) 7292 continue; 7293 7294 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7295 << *DVI << ' ' << *VI); 7296 DVI->removeFromParent(); 7297 if (isa<PHINode>(VI)) 7298 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7299 else 7300 DVI->insertAfter(VI); 7301 MadeChange = true; 7302 ++NumDbgValueMoved; 7303 } 7304 } 7305 return MadeChange; 7306 } 7307 7308 /// Scale down both weights to fit into uint32_t. 7309 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7310 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7311 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7312 NewTrue = NewTrue / Scale; 7313 NewFalse = NewFalse / Scale; 7314 } 7315 7316 /// Some targets prefer to split a conditional branch like: 7317 /// \code 7318 /// %0 = icmp ne i32 %a, 0 7319 /// %1 = icmp ne i32 %b, 0 7320 /// %or.cond = or i1 %0, %1 7321 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7322 /// \endcode 7323 /// into multiple branch instructions like: 7324 /// \code 7325 /// bb1: 7326 /// %0 = icmp ne i32 %a, 0 7327 /// br i1 %0, label %TrueBB, label %bb2 7328 /// bb2: 7329 /// %1 = icmp ne i32 %b, 0 7330 /// br i1 %1, label %TrueBB, label %FalseBB 7331 /// \endcode 7332 /// This usually allows instruction selection to do even further optimizations 7333 /// and combine the compare with the branch instruction. Currently this is 7334 /// applied for targets which have "cheap" jump instructions. 7335 /// 7336 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7337 /// 7338 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7339 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7340 return false; 7341 7342 bool MadeChange = false; 7343 for (auto &BB : F) { 7344 // Does this BB end with the following? 7345 // %cond1 = icmp|fcmp|binary instruction ... 7346 // %cond2 = icmp|fcmp|binary instruction ... 7347 // %cond.or = or|and i1 %cond1, cond2 7348 // br i1 %cond.or label %dest1, label %dest2" 7349 BinaryOperator *LogicOp; 7350 BasicBlock *TBB, *FBB; 7351 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7352 continue; 7353 7354 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7355 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7356 continue; 7357 7358 // The merging of mostly empty BB can cause a degenerate branch. 7359 if (TBB == FBB) 7360 continue; 7361 7362 unsigned Opc; 7363 Value *Cond1, *Cond2; 7364 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7365 m_OneUse(m_Value(Cond2))))) 7366 Opc = Instruction::And; 7367 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7368 m_OneUse(m_Value(Cond2))))) 7369 Opc = Instruction::Or; 7370 else 7371 continue; 7372 7373 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7374 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7375 continue; 7376 7377 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7378 7379 // Create a new BB. 7380 auto TmpBB = 7381 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7382 BB.getParent(), BB.getNextNode()); 7383 7384 // Update original basic block by using the first condition directly by the 7385 // branch instruction and removing the no longer needed and/or instruction. 7386 Br1->setCondition(Cond1); 7387 LogicOp->eraseFromParent(); 7388 7389 // Depending on the condition we have to either replace the true or the 7390 // false successor of the original branch instruction. 7391 if (Opc == Instruction::And) 7392 Br1->setSuccessor(0, TmpBB); 7393 else 7394 Br1->setSuccessor(1, TmpBB); 7395 7396 // Fill in the new basic block. 7397 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7398 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7399 I->removeFromParent(); 7400 I->insertBefore(Br2); 7401 } 7402 7403 // Update PHI nodes in both successors. The original BB needs to be 7404 // replaced in one successor's PHI nodes, because the branch comes now from 7405 // the newly generated BB (NewBB). In the other successor we need to add one 7406 // incoming edge to the PHI nodes, because both branch instructions target 7407 // now the same successor. Depending on the original branch condition 7408 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7409 // we perform the correct update for the PHI nodes. 7410 // This doesn't change the successor order of the just created branch 7411 // instruction (or any other instruction). 7412 if (Opc == Instruction::Or) 7413 std::swap(TBB, FBB); 7414 7415 // Replace the old BB with the new BB. 7416 TBB->replacePhiUsesWith(&BB, TmpBB); 7417 7418 // Add another incoming edge form the new BB. 7419 for (PHINode &PN : FBB->phis()) { 7420 auto *Val = PN.getIncomingValueForBlock(&BB); 7421 PN.addIncoming(Val, TmpBB); 7422 } 7423 7424 // Update the branch weights (from SelectionDAGBuilder:: 7425 // FindMergedConditions). 7426 if (Opc == Instruction::Or) { 7427 // Codegen X | Y as: 7428 // BB1: 7429 // jmp_if_X TBB 7430 // jmp TmpBB 7431 // TmpBB: 7432 // jmp_if_Y TBB 7433 // jmp FBB 7434 // 7435 7436 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7437 // The requirement is that 7438 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7439 // = TrueProb for original BB. 7440 // Assuming the original weights are A and B, one choice is to set BB1's 7441 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7442 // assumes that 7443 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7444 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7445 // TmpBB, but the math is more complicated. 7446 uint64_t TrueWeight, FalseWeight; 7447 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7448 uint64_t NewTrueWeight = TrueWeight; 7449 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7450 scaleWeights(NewTrueWeight, NewFalseWeight); 7451 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7452 .createBranchWeights(TrueWeight, FalseWeight)); 7453 7454 NewTrueWeight = TrueWeight; 7455 NewFalseWeight = 2 * FalseWeight; 7456 scaleWeights(NewTrueWeight, NewFalseWeight); 7457 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7458 .createBranchWeights(TrueWeight, FalseWeight)); 7459 } 7460 } else { 7461 // Codegen X & Y as: 7462 // BB1: 7463 // jmp_if_X TmpBB 7464 // jmp FBB 7465 // TmpBB: 7466 // jmp_if_Y TBB 7467 // jmp FBB 7468 // 7469 // This requires creation of TmpBB after CurBB. 7470 7471 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7472 // The requirement is that 7473 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7474 // = FalseProb for original BB. 7475 // Assuming the original weights are A and B, one choice is to set BB1's 7476 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7477 // assumes that 7478 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7479 uint64_t TrueWeight, FalseWeight; 7480 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7481 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7482 uint64_t NewFalseWeight = FalseWeight; 7483 scaleWeights(NewTrueWeight, NewFalseWeight); 7484 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7485 .createBranchWeights(TrueWeight, FalseWeight)); 7486 7487 NewTrueWeight = 2 * TrueWeight; 7488 NewFalseWeight = FalseWeight; 7489 scaleWeights(NewTrueWeight, NewFalseWeight); 7490 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7491 .createBranchWeights(TrueWeight, FalseWeight)); 7492 } 7493 } 7494 7495 ModifiedDT = true; 7496 MadeChange = true; 7497 7498 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7499 TmpBB->dump()); 7500 } 7501 return MadeChange; 7502 } 7503