1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if optimizing for size. 295 bool OptSize; 296 297 /// DataLayout for the Function being processed. 298 const DataLayout *DL = nullptr; 299 300 public: 301 static char ID; // Pass identification, replacement for typeid 302 303 CodeGenPrepare() : FunctionPass(ID) { 304 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 305 } 306 307 bool runOnFunction(Function &F) override; 308 309 StringRef getPassName() const override { return "CodeGen Prepare"; } 310 311 void getAnalysisUsage(AnalysisUsage &AU) const override { 312 // FIXME: When we can selectively preserve passes, preserve the domtree. 313 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 314 AU.addRequired<TargetLibraryInfoWrapperPass>(); 315 AU.addRequired<TargetTransformInfoWrapperPass>(); 316 AU.addRequired<LoopInfoWrapperPass>(); 317 } 318 319 private: 320 template <typename F> 321 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 322 // Substituting can cause recursive simplifications, which can invalidate 323 // our iterator. Use a WeakTrackingVH to hold onto it in case this 324 // happens. 325 Value *CurValue = &*CurInstIterator; 326 WeakTrackingVH IterHandle(CurValue); 327 328 f(); 329 330 // If the iterator instruction was recursively deleted, start over at the 331 // start of the block. 332 if (IterHandle != CurValue) { 333 CurInstIterator = BB->begin(); 334 SunkAddrs.clear(); 335 } 336 } 337 338 bool eliminateFallThrough(Function &F); 339 bool eliminateMostlyEmptyBlocks(Function &F); 340 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 341 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 342 void eliminateMostlyEmptyBlock(BasicBlock *BB); 343 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 344 bool isPreheader); 345 bool optimizeBlock(BasicBlock &BB, DominatorTree &DT, bool &ModifiedDT); 346 bool optimizeInst(Instruction *I, DominatorTree &DT, bool &ModifiedDT); 347 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 348 Type *AccessTy, unsigned AddrSpace); 349 bool optimizeInlineAsmInst(CallInst *CS); 350 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 351 bool optimizeExt(Instruction *&I); 352 bool optimizeExtUses(Instruction *I); 353 bool optimizeLoadExt(LoadInst *Load); 354 bool optimizeSelectInst(SelectInst *SI, bool &ModifiedDT); 355 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 356 bool optimizeSwitchInst(SwitchInst *SI); 357 bool optimizeExtractElementInst(Instruction *Inst); 358 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 359 bool placeDbgValues(Function &F); 360 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 361 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 362 bool tryToPromoteExts(TypePromotionTransaction &TPT, 363 const SmallVectorImpl<Instruction *> &Exts, 364 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 365 unsigned CreatedInstsCost = 0); 366 bool mergeSExts(Function &F, DominatorTree &DT); 367 bool splitLargeGEPOffsets(); 368 bool performAddressTypePromotion( 369 Instruction *&Inst, 370 bool AllowPromotionWithoutCommonHeader, 371 bool HasPromoted, TypePromotionTransaction &TPT, 372 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 373 bool splitBranchCondition(Function &F, bool &ModifiedDT); 374 bool simplifyOffsetableRelocate(Instruction &I); 375 376 bool tryToSinkFreeOperands(Instruction *I); 377 }; 378 379 } // end anonymous namespace 380 381 char CodeGenPrepare::ID = 0; 382 383 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 384 "Optimize for code generation", false, false) 385 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 386 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 387 "Optimize for code generation", false, false) 388 389 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 390 391 bool CodeGenPrepare::runOnFunction(Function &F) { 392 if (skipFunction(F)) 393 return false; 394 395 DL = &F.getParent()->getDataLayout(); 396 397 bool EverMadeChange = false; 398 // Clear per function information. 399 InsertedInsts.clear(); 400 PromotedInsts.clear(); 401 402 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 403 TM = &TPC->getTM<TargetMachine>(); 404 SubtargetInfo = TM->getSubtargetImpl(F); 405 TLI = SubtargetInfo->getTargetLowering(); 406 TRI = SubtargetInfo->getRegisterInfo(); 407 } 408 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 409 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 410 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 411 BPI.reset(new BranchProbabilityInfo(F, *LI)); 412 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 413 OptSize = F.optForSize(); 414 415 ProfileSummaryInfo *PSI = 416 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 417 if (ProfileGuidedSectionPrefix) { 418 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 419 F.setSectionPrefix(".hot"); 420 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 421 F.setSectionPrefix(".unlikely"); 422 } 423 424 /// This optimization identifies DIV instructions that can be 425 /// profitably bypassed and carried out with a shorter, faster divide. 426 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 427 TLI->isSlowDivBypassed()) { 428 const DenseMap<unsigned int, unsigned int> &BypassWidths = 429 TLI->getBypassSlowDivWidths(); 430 BasicBlock* BB = &*F.begin(); 431 while (BB != nullptr) { 432 // bypassSlowDivision may create new BBs, but we don't want to reapply the 433 // optimization to those blocks. 434 BasicBlock* Next = BB->getNextNode(); 435 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 436 BB = Next; 437 } 438 } 439 440 // Eliminate blocks that contain only PHI nodes and an 441 // unconditional branch. 442 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 443 444 bool ModifiedDT = false; 445 if (!DisableBranchOpts) 446 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 447 448 // Split some critical edges where one of the sources is an indirect branch, 449 // to help generate sane code for PHIs involving such edges. 450 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 451 452 bool MadeChange = true; 453 while (MadeChange) { 454 MadeChange = false; 455 DominatorTree DT(F); 456 for (Function::iterator I = F.begin(); I != F.end(); ) { 457 BasicBlock *BB = &*I++; 458 bool ModifiedDTOnIteration = false; 459 MadeChange |= optimizeBlock(*BB, DT, ModifiedDTOnIteration); 460 461 // Restart BB iteration if the dominator tree of the Function was changed 462 if (ModifiedDTOnIteration) 463 break; 464 } 465 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 466 MadeChange |= mergeSExts(F, DT); 467 if (!LargeOffsetGEPMap.empty()) 468 MadeChange |= splitLargeGEPOffsets(); 469 470 // Really free removed instructions during promotion. 471 for (Instruction *I : RemovedInsts) 472 I->deleteValue(); 473 474 EverMadeChange |= MadeChange; 475 SeenChainsForSExt.clear(); 476 ValToSExtendedUses.clear(); 477 RemovedInsts.clear(); 478 LargeOffsetGEPMap.clear(); 479 LargeOffsetGEPID.clear(); 480 } 481 482 SunkAddrs.clear(); 483 484 if (!DisableBranchOpts) { 485 MadeChange = false; 486 // Use a set vector to get deterministic iteration order. The order the 487 // blocks are removed may affect whether or not PHI nodes in successors 488 // are removed. 489 SmallSetVector<BasicBlock*, 8> WorkList; 490 for (BasicBlock &BB : F) { 491 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 492 MadeChange |= ConstantFoldTerminator(&BB, true); 493 if (!MadeChange) continue; 494 495 for (SmallVectorImpl<BasicBlock*>::iterator 496 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 497 if (pred_begin(*II) == pred_end(*II)) 498 WorkList.insert(*II); 499 } 500 501 // Delete the dead blocks and any of their dead successors. 502 MadeChange |= !WorkList.empty(); 503 while (!WorkList.empty()) { 504 BasicBlock *BB = WorkList.pop_back_val(); 505 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 506 507 DeleteDeadBlock(BB); 508 509 for (SmallVectorImpl<BasicBlock*>::iterator 510 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 511 if (pred_begin(*II) == pred_end(*II)) 512 WorkList.insert(*II); 513 } 514 515 // Merge pairs of basic blocks with unconditional branches, connected by 516 // a single edge. 517 if (EverMadeChange || MadeChange) 518 MadeChange |= eliminateFallThrough(F); 519 520 EverMadeChange |= MadeChange; 521 } 522 523 if (!DisableGCOpts) { 524 SmallVector<Instruction *, 2> Statepoints; 525 for (BasicBlock &BB : F) 526 for (Instruction &I : BB) 527 if (isStatepoint(I)) 528 Statepoints.push_back(&I); 529 for (auto &I : Statepoints) 530 EverMadeChange |= simplifyOffsetableRelocate(*I); 531 } 532 533 // Do this last to clean up use-before-def scenarios introduced by other 534 // preparatory transforms. 535 EverMadeChange |= placeDbgValues(F); 536 537 return EverMadeChange; 538 } 539 540 /// Merge basic blocks which are connected by a single edge, where one of the 541 /// basic blocks has a single successor pointing to the other basic block, 542 /// which has a single predecessor. 543 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 544 bool Changed = false; 545 // Scan all of the blocks in the function, except for the entry block. 546 // Use a temporary array to avoid iterator being invalidated when 547 // deleting blocks. 548 SmallVector<WeakTrackingVH, 16> Blocks; 549 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 550 Blocks.push_back(&Block); 551 552 for (auto &Block : Blocks) { 553 auto *BB = cast_or_null<BasicBlock>(Block); 554 if (!BB) 555 continue; 556 // If the destination block has a single pred, then this is a trivial 557 // edge, just collapse it. 558 BasicBlock *SinglePred = BB->getSinglePredecessor(); 559 560 // Don't merge if BB's address is taken. 561 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 562 563 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 564 if (Term && !Term->isConditional()) { 565 Changed = true; 566 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 567 568 // Merge BB into SinglePred and delete it. 569 MergeBlockIntoPredecessor(BB); 570 } 571 } 572 return Changed; 573 } 574 575 /// Find a destination block from BB if BB is mergeable empty block. 576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 577 // If this block doesn't end with an uncond branch, ignore it. 578 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 579 if (!BI || !BI->isUnconditional()) 580 return nullptr; 581 582 // If the instruction before the branch (skipping debug info) isn't a phi 583 // node, then other stuff is happening here. 584 BasicBlock::iterator BBI = BI->getIterator(); 585 if (BBI != BB->begin()) { 586 --BBI; 587 while (isa<DbgInfoIntrinsic>(BBI)) { 588 if (BBI == BB->begin()) 589 break; 590 --BBI; 591 } 592 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 593 return nullptr; 594 } 595 596 // Do not break infinite loops. 597 BasicBlock *DestBB = BI->getSuccessor(0); 598 if (DestBB == BB) 599 return nullptr; 600 601 if (!canMergeBlocks(BB, DestBB)) 602 DestBB = nullptr; 603 604 return DestBB; 605 } 606 607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 609 /// edges in ways that are non-optimal for isel. Start by eliminating these 610 /// blocks so we can split them the way we want them. 611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 612 SmallPtrSet<BasicBlock *, 16> Preheaders; 613 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 614 while (!LoopList.empty()) { 615 Loop *L = LoopList.pop_back_val(); 616 LoopList.insert(LoopList.end(), L->begin(), L->end()); 617 if (BasicBlock *Preheader = L->getLoopPreheader()) 618 Preheaders.insert(Preheader); 619 } 620 621 bool MadeChange = false; 622 // Copy blocks into a temporary array to avoid iterator invalidation issues 623 // as we remove them. 624 // Note that this intentionally skips the entry block. 625 SmallVector<WeakTrackingVH, 16> Blocks; 626 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 627 Blocks.push_back(&Block); 628 629 for (auto &Block : Blocks) { 630 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 631 if (!BB) 632 continue; 633 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 634 if (!DestBB || 635 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 636 continue; 637 638 eliminateMostlyEmptyBlock(BB); 639 MadeChange = true; 640 } 641 return MadeChange; 642 } 643 644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 645 BasicBlock *DestBB, 646 bool isPreheader) { 647 // Do not delete loop preheaders if doing so would create a critical edge. 648 // Loop preheaders can be good locations to spill registers. If the 649 // preheader is deleted and we create a critical edge, registers may be 650 // spilled in the loop body instead. 651 if (!DisablePreheaderProtect && isPreheader && 652 !(BB->getSinglePredecessor() && 653 BB->getSinglePredecessor()->getSingleSuccessor())) 654 return false; 655 656 // Skip merging if the block's successor is also a successor to any callbr 657 // that leads to this block. 658 // FIXME: Is this really needed? Is this a correctness issue? 659 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 660 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 661 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 662 if (DestBB == CBI->getSuccessor(i)) 663 return false; 664 } 665 666 // Try to skip merging if the unique predecessor of BB is terminated by a 667 // switch or indirect branch instruction, and BB is used as an incoming block 668 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 669 // add COPY instructions in the predecessor of BB instead of BB (if it is not 670 // merged). Note that the critical edge created by merging such blocks wont be 671 // split in MachineSink because the jump table is not analyzable. By keeping 672 // such empty block (BB), ISel will place COPY instructions in BB, not in the 673 // predecessor of BB. 674 BasicBlock *Pred = BB->getUniquePredecessor(); 675 if (!Pred || 676 !(isa<SwitchInst>(Pred->getTerminator()) || 677 isa<IndirectBrInst>(Pred->getTerminator()))) 678 return true; 679 680 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 681 return true; 682 683 // We use a simple cost heuristic which determine skipping merging is 684 // profitable if the cost of skipping merging is less than the cost of 685 // merging : Cost(skipping merging) < Cost(merging BB), where the 686 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 687 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 688 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 689 // Freq(Pred) / Freq(BB) > 2. 690 // Note that if there are multiple empty blocks sharing the same incoming 691 // value for the PHIs in the DestBB, we consider them together. In such 692 // case, Cost(merging BB) will be the sum of their frequencies. 693 694 if (!isa<PHINode>(DestBB->begin())) 695 return true; 696 697 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 698 699 // Find all other incoming blocks from which incoming values of all PHIs in 700 // DestBB are the same as the ones from BB. 701 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 702 ++PI) { 703 BasicBlock *DestBBPred = *PI; 704 if (DestBBPred == BB) 705 continue; 706 707 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 708 return DestPN.getIncomingValueForBlock(BB) == 709 DestPN.getIncomingValueForBlock(DestBBPred); 710 })) 711 SameIncomingValueBBs.insert(DestBBPred); 712 } 713 714 // See if all BB's incoming values are same as the value from Pred. In this 715 // case, no reason to skip merging because COPYs are expected to be place in 716 // Pred already. 717 if (SameIncomingValueBBs.count(Pred)) 718 return true; 719 720 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 721 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 722 723 for (auto SameValueBB : SameIncomingValueBBs) 724 if (SameValueBB->getUniquePredecessor() == Pred && 725 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 726 BBFreq += BFI->getBlockFreq(SameValueBB); 727 728 return PredFreq.getFrequency() <= 729 BBFreq.getFrequency() * FreqRatioToSkipMerge; 730 } 731 732 /// Return true if we can merge BB into DestBB if there is a single 733 /// unconditional branch between them, and BB contains no other non-phi 734 /// instructions. 735 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 736 const BasicBlock *DestBB) const { 737 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 738 // the successor. If there are more complex condition (e.g. preheaders), 739 // don't mess around with them. 740 for (const PHINode &PN : BB->phis()) { 741 for (const User *U : PN.users()) { 742 const Instruction *UI = cast<Instruction>(U); 743 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 744 return false; 745 // If User is inside DestBB block and it is a PHINode then check 746 // incoming value. If incoming value is not from BB then this is 747 // a complex condition (e.g. preheaders) we want to avoid here. 748 if (UI->getParent() == DestBB) { 749 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 750 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 751 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 752 if (Insn && Insn->getParent() == BB && 753 Insn->getParent() != UPN->getIncomingBlock(I)) 754 return false; 755 } 756 } 757 } 758 } 759 760 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 761 // and DestBB may have conflicting incoming values for the block. If so, we 762 // can't merge the block. 763 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 764 if (!DestBBPN) return true; // no conflict. 765 766 // Collect the preds of BB. 767 SmallPtrSet<const BasicBlock*, 16> BBPreds; 768 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 769 // It is faster to get preds from a PHI than with pred_iterator. 770 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 771 BBPreds.insert(BBPN->getIncomingBlock(i)); 772 } else { 773 BBPreds.insert(pred_begin(BB), pred_end(BB)); 774 } 775 776 // Walk the preds of DestBB. 777 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 778 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 779 if (BBPreds.count(Pred)) { // Common predecessor? 780 for (const PHINode &PN : DestBB->phis()) { 781 const Value *V1 = PN.getIncomingValueForBlock(Pred); 782 const Value *V2 = PN.getIncomingValueForBlock(BB); 783 784 // If V2 is a phi node in BB, look up what the mapped value will be. 785 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 786 if (V2PN->getParent() == BB) 787 V2 = V2PN->getIncomingValueForBlock(Pred); 788 789 // If there is a conflict, bail out. 790 if (V1 != V2) return false; 791 } 792 } 793 } 794 795 return true; 796 } 797 798 /// Eliminate a basic block that has only phi's and an unconditional branch in 799 /// it. 800 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 801 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 802 BasicBlock *DestBB = BI->getSuccessor(0); 803 804 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 805 << *BB << *DestBB); 806 807 // If the destination block has a single pred, then this is a trivial edge, 808 // just collapse it. 809 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 810 if (SinglePred != DestBB) { 811 assert(SinglePred == BB && 812 "Single predecessor not the same as predecessor"); 813 // Merge DestBB into SinglePred/BB and delete it. 814 MergeBlockIntoPredecessor(DestBB); 815 // Note: BB(=SinglePred) will not be deleted on this path. 816 // DestBB(=its single successor) is the one that was deleted. 817 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 818 return; 819 } 820 } 821 822 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 823 // to handle the new incoming edges it is about to have. 824 for (PHINode &PN : DestBB->phis()) { 825 // Remove the incoming value for BB, and remember it. 826 Value *InVal = PN.removeIncomingValue(BB, false); 827 828 // Two options: either the InVal is a phi node defined in BB or it is some 829 // value that dominates BB. 830 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 831 if (InValPhi && InValPhi->getParent() == BB) { 832 // Add all of the input values of the input PHI as inputs of this phi. 833 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 834 PN.addIncoming(InValPhi->getIncomingValue(i), 835 InValPhi->getIncomingBlock(i)); 836 } else { 837 // Otherwise, add one instance of the dominating value for each edge that 838 // we will be adding. 839 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 840 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 841 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 842 } else { 843 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 844 PN.addIncoming(InVal, *PI); 845 } 846 } 847 } 848 849 // The PHIs are now updated, change everything that refers to BB to use 850 // DestBB and remove BB. 851 BB->replaceAllUsesWith(DestBB); 852 BB->eraseFromParent(); 853 ++NumBlocksElim; 854 855 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 856 } 857 858 // Computes a map of base pointer relocation instructions to corresponding 859 // derived pointer relocation instructions given a vector of all relocate calls 860 static void computeBaseDerivedRelocateMap( 861 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 862 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 863 &RelocateInstMap) { 864 // Collect information in two maps: one primarily for locating the base object 865 // while filling the second map; the second map is the final structure holding 866 // a mapping between Base and corresponding Derived relocate calls 867 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 868 for (auto *ThisRelocate : AllRelocateCalls) { 869 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 870 ThisRelocate->getDerivedPtrIndex()); 871 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 872 } 873 for (auto &Item : RelocateIdxMap) { 874 std::pair<unsigned, unsigned> Key = Item.first; 875 if (Key.first == Key.second) 876 // Base relocation: nothing to insert 877 continue; 878 879 GCRelocateInst *I = Item.second; 880 auto BaseKey = std::make_pair(Key.first, Key.first); 881 882 // We're iterating over RelocateIdxMap so we cannot modify it. 883 auto MaybeBase = RelocateIdxMap.find(BaseKey); 884 if (MaybeBase == RelocateIdxMap.end()) 885 // TODO: We might want to insert a new base object relocate and gep off 886 // that, if there are enough derived object relocates. 887 continue; 888 889 RelocateInstMap[MaybeBase->second].push_back(I); 890 } 891 } 892 893 // Accepts a GEP and extracts the operands into a vector provided they're all 894 // small integer constants 895 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 896 SmallVectorImpl<Value *> &OffsetV) { 897 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 898 // Only accept small constant integer operands 899 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 900 if (!Op || Op->getZExtValue() > 20) 901 return false; 902 } 903 904 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 905 OffsetV.push_back(GEP->getOperand(i)); 906 return true; 907 } 908 909 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 910 // replace, computes a replacement, and affects it. 911 static bool 912 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 913 const SmallVectorImpl<GCRelocateInst *> &Targets) { 914 bool MadeChange = false; 915 // We must ensure the relocation of derived pointer is defined after 916 // relocation of base pointer. If we find a relocation corresponding to base 917 // defined earlier than relocation of base then we move relocation of base 918 // right before found relocation. We consider only relocation in the same 919 // basic block as relocation of base. Relocations from other basic block will 920 // be skipped by optimization and we do not care about them. 921 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 922 &*R != RelocatedBase; ++R) 923 if (auto RI = dyn_cast<GCRelocateInst>(R)) 924 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 925 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 926 RelocatedBase->moveBefore(RI); 927 break; 928 } 929 930 for (GCRelocateInst *ToReplace : Targets) { 931 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 932 "Not relocating a derived object of the original base object"); 933 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 934 // A duplicate relocate call. TODO: coalesce duplicates. 935 continue; 936 } 937 938 if (RelocatedBase->getParent() != ToReplace->getParent()) { 939 // Base and derived relocates are in different basic blocks. 940 // In this case transform is only valid when base dominates derived 941 // relocate. However it would be too expensive to check dominance 942 // for each such relocate, so we skip the whole transformation. 943 continue; 944 } 945 946 Value *Base = ToReplace->getBasePtr(); 947 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 948 if (!Derived || Derived->getPointerOperand() != Base) 949 continue; 950 951 SmallVector<Value *, 2> OffsetV; 952 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 953 continue; 954 955 // Create a Builder and replace the target callsite with a gep 956 assert(RelocatedBase->getNextNode() && 957 "Should always have one since it's not a terminator"); 958 959 // Insert after RelocatedBase 960 IRBuilder<> Builder(RelocatedBase->getNextNode()); 961 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 962 963 // If gc_relocate does not match the actual type, cast it to the right type. 964 // In theory, there must be a bitcast after gc_relocate if the type does not 965 // match, and we should reuse it to get the derived pointer. But it could be 966 // cases like this: 967 // bb1: 968 // ... 969 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 970 // br label %merge 971 // 972 // bb2: 973 // ... 974 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 975 // br label %merge 976 // 977 // merge: 978 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 979 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 980 // 981 // In this case, we can not find the bitcast any more. So we insert a new bitcast 982 // no matter there is already one or not. In this way, we can handle all cases, and 983 // the extra bitcast should be optimized away in later passes. 984 Value *ActualRelocatedBase = RelocatedBase; 985 if (RelocatedBase->getType() != Base->getType()) { 986 ActualRelocatedBase = 987 Builder.CreateBitCast(RelocatedBase, Base->getType()); 988 } 989 Value *Replacement = Builder.CreateGEP( 990 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 991 Replacement->takeName(ToReplace); 992 // If the newly generated derived pointer's type does not match the original derived 993 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 994 Value *ActualReplacement = Replacement; 995 if (Replacement->getType() != ToReplace->getType()) { 996 ActualReplacement = 997 Builder.CreateBitCast(Replacement, ToReplace->getType()); 998 } 999 ToReplace->replaceAllUsesWith(ActualReplacement); 1000 ToReplace->eraseFromParent(); 1001 1002 MadeChange = true; 1003 } 1004 return MadeChange; 1005 } 1006 1007 // Turns this: 1008 // 1009 // %base = ... 1010 // %ptr = gep %base + 15 1011 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1012 // %base' = relocate(%tok, i32 4, i32 4) 1013 // %ptr' = relocate(%tok, i32 4, i32 5) 1014 // %val = load %ptr' 1015 // 1016 // into this: 1017 // 1018 // %base = ... 1019 // %ptr = gep %base + 15 1020 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1021 // %base' = gc.relocate(%tok, i32 4, i32 4) 1022 // %ptr' = gep %base' + 15 1023 // %val = load %ptr' 1024 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1025 bool MadeChange = false; 1026 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1027 1028 for (auto *U : I.users()) 1029 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1030 // Collect all the relocate calls associated with a statepoint 1031 AllRelocateCalls.push_back(Relocate); 1032 1033 // We need atleast one base pointer relocation + one derived pointer 1034 // relocation to mangle 1035 if (AllRelocateCalls.size() < 2) 1036 return false; 1037 1038 // RelocateInstMap is a mapping from the base relocate instruction to the 1039 // corresponding derived relocate instructions 1040 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1041 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1042 if (RelocateInstMap.empty()) 1043 return false; 1044 1045 for (auto &Item : RelocateInstMap) 1046 // Item.first is the RelocatedBase to offset against 1047 // Item.second is the vector of Targets to replace 1048 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1049 return MadeChange; 1050 } 1051 1052 /// Sink the specified cast instruction into its user blocks. 1053 static bool SinkCast(CastInst *CI) { 1054 BasicBlock *DefBB = CI->getParent(); 1055 1056 /// InsertedCasts - Only insert a cast in each block once. 1057 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1058 1059 bool MadeChange = false; 1060 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1061 UI != E; ) { 1062 Use &TheUse = UI.getUse(); 1063 Instruction *User = cast<Instruction>(*UI); 1064 1065 // Figure out which BB this cast is used in. For PHI's this is the 1066 // appropriate predecessor block. 1067 BasicBlock *UserBB = User->getParent(); 1068 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1069 UserBB = PN->getIncomingBlock(TheUse); 1070 } 1071 1072 // Preincrement use iterator so we don't invalidate it. 1073 ++UI; 1074 1075 // The first insertion point of a block containing an EH pad is after the 1076 // pad. If the pad is the user, we cannot sink the cast past the pad. 1077 if (User->isEHPad()) 1078 continue; 1079 1080 // If the block selected to receive the cast is an EH pad that does not 1081 // allow non-PHI instructions before the terminator, we can't sink the 1082 // cast. 1083 if (UserBB->getTerminator()->isEHPad()) 1084 continue; 1085 1086 // If this user is in the same block as the cast, don't change the cast. 1087 if (UserBB == DefBB) continue; 1088 1089 // If we have already inserted a cast into this block, use it. 1090 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1091 1092 if (!InsertedCast) { 1093 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1094 assert(InsertPt != UserBB->end()); 1095 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1096 CI->getType(), "", &*InsertPt); 1097 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1098 } 1099 1100 // Replace a use of the cast with a use of the new cast. 1101 TheUse = InsertedCast; 1102 MadeChange = true; 1103 ++NumCastUses; 1104 } 1105 1106 // If we removed all uses, nuke the cast. 1107 if (CI->use_empty()) { 1108 salvageDebugInfo(*CI); 1109 CI->eraseFromParent(); 1110 MadeChange = true; 1111 } 1112 1113 return MadeChange; 1114 } 1115 1116 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1117 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1118 /// reduce the number of virtual registers that must be created and coalesced. 1119 /// 1120 /// Return true if any changes are made. 1121 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1122 const DataLayout &DL) { 1123 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1124 // than sinking only nop casts, but is helpful on some platforms. 1125 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1126 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1127 ASC->getDestAddressSpace())) 1128 return false; 1129 } 1130 1131 // If this is a noop copy, 1132 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1133 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1134 1135 // This is an fp<->int conversion? 1136 if (SrcVT.isInteger() != DstVT.isInteger()) 1137 return false; 1138 1139 // If this is an extension, it will be a zero or sign extension, which 1140 // isn't a noop. 1141 if (SrcVT.bitsLT(DstVT)) return false; 1142 1143 // If these values will be promoted, find out what they will be promoted 1144 // to. This helps us consider truncates on PPC as noop copies when they 1145 // are. 1146 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1147 TargetLowering::TypePromoteInteger) 1148 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1149 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1150 TargetLowering::TypePromoteInteger) 1151 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1152 1153 // If, after promotion, these are the same types, this is a noop copy. 1154 if (SrcVT != DstVT) 1155 return false; 1156 1157 return SinkCast(CI); 1158 } 1159 1160 static bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 1161 Intrinsic::ID IID, DominatorTree &DT) { 1162 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1163 Value *Arg0 = BO->getOperand(0); 1164 Value *Arg1 = BO->getOperand(1); 1165 if (BO->getOpcode() == Instruction::Add && 1166 IID == Intrinsic::usub_with_overflow) { 1167 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1168 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1169 } 1170 1171 Instruction *InsertPt; 1172 if (BO->hasOneUse() && BO->user_back() == Cmp) { 1173 // If the math is only used by the compare, insert at the compare to keep 1174 // the condition in the same block as its users. (CGP aggressively sinks 1175 // compares to help out SDAG.) 1176 InsertPt = Cmp; 1177 } else { 1178 // The math and compare may be independent instructions. Check dominance to 1179 // determine the insertion point for the intrinsic. 1180 bool MathDominates = DT.dominates(BO, Cmp); 1181 if (!MathDominates && !DT.dominates(Cmp, BO)) 1182 return false; 1183 1184 // Check that the insertion doesn't create a value that is live across more 1185 // than two blocks, so to minimise the increase in register pressure. 1186 if (BO->getParent() != Cmp->getParent()) { 1187 BasicBlock *Dominator = MathDominates ? BO->getParent() : Cmp->getParent(); 1188 BasicBlock *Dominated = MathDominates ? Cmp->getParent() : BO->getParent(); 1189 auto Successors = successors(Dominator); 1190 if (llvm::find(Successors, Dominated) == Successors.end()) 1191 return false; 1192 } 1193 1194 InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp); 1195 } 1196 1197 IRBuilder<> Builder(InsertPt); 1198 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1199 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1200 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1201 BO->replaceAllUsesWith(Math); 1202 Cmp->replaceAllUsesWith(OV); 1203 BO->eraseFromParent(); 1204 Cmp->eraseFromParent(); 1205 return true; 1206 } 1207 1208 /// Match special-case patterns that check for unsigned add overflow. 1209 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1210 BinaryOperator *&Add) { 1211 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1212 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1213 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1214 1215 // We are not expecting non-canonical/degenerate code. Just bail out. 1216 if (isa<Constant>(A)) 1217 return false; 1218 1219 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1220 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1221 B = ConstantInt::get(B->getType(), 1); 1222 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1223 B = ConstantInt::get(B->getType(), -1); 1224 else 1225 return false; 1226 1227 // Check the users of the variable operand of the compare looking for an add 1228 // with the adjusted constant. 1229 for (User *U : A->users()) { 1230 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1231 Add = cast<BinaryOperator>(U); 1232 return true; 1233 } 1234 } 1235 return false; 1236 } 1237 1238 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1239 /// intrinsic. Return true if any changes were made. 1240 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1241 const DataLayout &DL, DominatorTree &DT, 1242 bool &ModifiedDT) { 1243 Value *A, *B; 1244 BinaryOperator *Add; 1245 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1246 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1247 return false; 1248 1249 if (!TLI.shouldFormOverflowOp(ISD::UADDO, 1250 TLI.getValueType(DL, Add->getType()))) 1251 return false; 1252 1253 // We don't want to move around uses of condition values this late, so we 1254 // check if it is legal to create the call to the intrinsic in the basic 1255 // block containing the icmp. 1256 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1257 return false; 1258 1259 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow, DT)) 1260 return false; 1261 1262 // Reset callers - do not crash by iterating over a dead instruction. 1263 ModifiedDT = true; 1264 return true; 1265 } 1266 1267 static bool combineToUSubWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1268 const DataLayout &DL, DominatorTree &DT, 1269 bool &ModifiedDT) { 1270 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1271 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1272 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1273 if (Pred == ICmpInst::ICMP_UGT) { 1274 std::swap(A, B); 1275 Pred = ICmpInst::ICMP_ULT; 1276 } 1277 // Convert special-case: (A == 0) is the same as (A u< 1). 1278 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1279 B = ConstantInt::get(B->getType(), 1); 1280 Pred = ICmpInst::ICMP_ULT; 1281 } 1282 // Convert special-case: (A != 0) is the same as (0 u< A). 1283 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1284 std::swap(A, B); 1285 Pred = ICmpInst::ICMP_ULT; 1286 } 1287 if (Pred != ICmpInst::ICMP_ULT) 1288 return false; 1289 1290 // Walk the users of a variable operand of a compare looking for a subtract or 1291 // add with that same operand. Also match the 2nd operand of the compare to 1292 // the add/sub, but that may be a negated constant operand of an add. 1293 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1294 BinaryOperator *Sub = nullptr; 1295 for (User *U : CmpVariableOperand->users()) { 1296 // A - B, A u< B --> usubo(A, B) 1297 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1298 Sub = cast<BinaryOperator>(U); 1299 break; 1300 } 1301 1302 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1303 const APInt *CmpC, *AddC; 1304 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1305 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1306 Sub = cast<BinaryOperator>(U); 1307 break; 1308 } 1309 } 1310 if (!Sub) 1311 return false; 1312 1313 if (!TLI.shouldFormOverflowOp(ISD::USUBO, 1314 TLI.getValueType(DL, Sub->getType()))) 1315 return false; 1316 1317 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow, DT)) 1318 return false; 1319 1320 // Reset callers - do not crash by iterating over a dead instruction. 1321 ModifiedDT = true; 1322 return true; 1323 } 1324 1325 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1326 /// registers that must be created and coalesced. This is a clear win except on 1327 /// targets with multiple condition code registers (PowerPC), where it might 1328 /// lose; some adjustment may be wanted there. 1329 /// 1330 /// Return true if any changes are made. 1331 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1332 if (TLI.hasMultipleConditionRegisters()) 1333 return false; 1334 1335 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1336 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1337 return false; 1338 1339 // Only insert a cmp in each block once. 1340 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1341 1342 bool MadeChange = false; 1343 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1344 UI != E; ) { 1345 Use &TheUse = UI.getUse(); 1346 Instruction *User = cast<Instruction>(*UI); 1347 1348 // Preincrement use iterator so we don't invalidate it. 1349 ++UI; 1350 1351 // Don't bother for PHI nodes. 1352 if (isa<PHINode>(User)) 1353 continue; 1354 1355 // Figure out which BB this cmp is used in. 1356 BasicBlock *UserBB = User->getParent(); 1357 BasicBlock *DefBB = Cmp->getParent(); 1358 1359 // If this user is in the same block as the cmp, don't change the cmp. 1360 if (UserBB == DefBB) continue; 1361 1362 // If we have already inserted a cmp into this block, use it. 1363 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1364 1365 if (!InsertedCmp) { 1366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1367 assert(InsertPt != UserBB->end()); 1368 InsertedCmp = 1369 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1370 Cmp->getOperand(0), Cmp->getOperand(1), "", 1371 &*InsertPt); 1372 // Propagate the debug info. 1373 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1374 } 1375 1376 // Replace a use of the cmp with a use of the new cmp. 1377 TheUse = InsertedCmp; 1378 MadeChange = true; 1379 ++NumCmpUses; 1380 } 1381 1382 // If we removed all uses, nuke the cmp. 1383 if (Cmp->use_empty()) { 1384 Cmp->eraseFromParent(); 1385 MadeChange = true; 1386 } 1387 1388 return MadeChange; 1389 } 1390 1391 static bool optimizeCmp(CmpInst *Cmp, const TargetLowering &TLI, 1392 const DataLayout &DL, DominatorTree &DT, 1393 bool &ModifiedDT) { 1394 if (sinkCmpExpression(Cmp, TLI)) 1395 return true; 1396 1397 if (combineToUAddWithOverflow(Cmp, TLI, DL, DT, ModifiedDT)) 1398 return true; 1399 1400 if (combineToUSubWithOverflow(Cmp, TLI, DL, DT, ModifiedDT)) 1401 return true; 1402 1403 return false; 1404 } 1405 1406 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1407 /// used in a compare to allow isel to generate better code for targets where 1408 /// this operation can be combined. 1409 /// 1410 /// Return true if any changes are made. 1411 static bool sinkAndCmp0Expression(Instruction *AndI, 1412 const TargetLowering &TLI, 1413 SetOfInstrs &InsertedInsts) { 1414 // Double-check that we're not trying to optimize an instruction that was 1415 // already optimized by some other part of this pass. 1416 assert(!InsertedInsts.count(AndI) && 1417 "Attempting to optimize already optimized and instruction"); 1418 (void) InsertedInsts; 1419 1420 // Nothing to do for single use in same basic block. 1421 if (AndI->hasOneUse() && 1422 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1423 return false; 1424 1425 // Try to avoid cases where sinking/duplicating is likely to increase register 1426 // pressure. 1427 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1428 !isa<ConstantInt>(AndI->getOperand(1)) && 1429 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1430 return false; 1431 1432 for (auto *U : AndI->users()) { 1433 Instruction *User = cast<Instruction>(U); 1434 1435 // Only sink 'and' feeding icmp with 0. 1436 if (!isa<ICmpInst>(User)) 1437 return false; 1438 1439 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1440 if (!CmpC || !CmpC->isZero()) 1441 return false; 1442 } 1443 1444 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1445 return false; 1446 1447 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1448 LLVM_DEBUG(AndI->getParent()->dump()); 1449 1450 // Push the 'and' into the same block as the icmp 0. There should only be 1451 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1452 // others, so we don't need to keep track of which BBs we insert into. 1453 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1454 UI != E; ) { 1455 Use &TheUse = UI.getUse(); 1456 Instruction *User = cast<Instruction>(*UI); 1457 1458 // Preincrement use iterator so we don't invalidate it. 1459 ++UI; 1460 1461 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1462 1463 // Keep the 'and' in the same place if the use is already in the same block. 1464 Instruction *InsertPt = 1465 User->getParent() == AndI->getParent() ? AndI : User; 1466 Instruction *InsertedAnd = 1467 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1468 AndI->getOperand(1), "", InsertPt); 1469 // Propagate the debug info. 1470 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1471 1472 // Replace a use of the 'and' with a use of the new 'and'. 1473 TheUse = InsertedAnd; 1474 ++NumAndUses; 1475 LLVM_DEBUG(User->getParent()->dump()); 1476 } 1477 1478 // We removed all uses, nuke the and. 1479 AndI->eraseFromParent(); 1480 return true; 1481 } 1482 1483 /// Check if the candidates could be combined with a shift instruction, which 1484 /// includes: 1485 /// 1. Truncate instruction 1486 /// 2. And instruction and the imm is a mask of the low bits: 1487 /// imm & (imm+1) == 0 1488 static bool isExtractBitsCandidateUse(Instruction *User) { 1489 if (!isa<TruncInst>(User)) { 1490 if (User->getOpcode() != Instruction::And || 1491 !isa<ConstantInt>(User->getOperand(1))) 1492 return false; 1493 1494 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1495 1496 if ((Cimm & (Cimm + 1)).getBoolValue()) 1497 return false; 1498 } 1499 return true; 1500 } 1501 1502 /// Sink both shift and truncate instruction to the use of truncate's BB. 1503 static bool 1504 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1505 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1506 const TargetLowering &TLI, const DataLayout &DL) { 1507 BasicBlock *UserBB = User->getParent(); 1508 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1509 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1510 bool MadeChange = false; 1511 1512 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1513 TruncE = TruncI->user_end(); 1514 TruncUI != TruncE;) { 1515 1516 Use &TruncTheUse = TruncUI.getUse(); 1517 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1518 // Preincrement use iterator so we don't invalidate it. 1519 1520 ++TruncUI; 1521 1522 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1523 if (!ISDOpcode) 1524 continue; 1525 1526 // If the use is actually a legal node, there will not be an 1527 // implicit truncate. 1528 // FIXME: always querying the result type is just an 1529 // approximation; some nodes' legality is determined by the 1530 // operand or other means. There's no good way to find out though. 1531 if (TLI.isOperationLegalOrCustom( 1532 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1533 continue; 1534 1535 // Don't bother for PHI nodes. 1536 if (isa<PHINode>(TruncUser)) 1537 continue; 1538 1539 BasicBlock *TruncUserBB = TruncUser->getParent(); 1540 1541 if (UserBB == TruncUserBB) 1542 continue; 1543 1544 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1545 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1546 1547 if (!InsertedShift && !InsertedTrunc) { 1548 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1549 assert(InsertPt != TruncUserBB->end()); 1550 // Sink the shift 1551 if (ShiftI->getOpcode() == Instruction::AShr) 1552 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1553 "", &*InsertPt); 1554 else 1555 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1556 "", &*InsertPt); 1557 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1558 1559 // Sink the trunc 1560 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1561 TruncInsertPt++; 1562 assert(TruncInsertPt != TruncUserBB->end()); 1563 1564 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1565 TruncI->getType(), "", &*TruncInsertPt); 1566 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1567 1568 MadeChange = true; 1569 1570 TruncTheUse = InsertedTrunc; 1571 } 1572 } 1573 return MadeChange; 1574 } 1575 1576 /// Sink the shift *right* instruction into user blocks if the uses could 1577 /// potentially be combined with this shift instruction and generate BitExtract 1578 /// instruction. It will only be applied if the architecture supports BitExtract 1579 /// instruction. Here is an example: 1580 /// BB1: 1581 /// %x.extract.shift = lshr i64 %arg1, 32 1582 /// BB2: 1583 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1584 /// ==> 1585 /// 1586 /// BB2: 1587 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1588 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1589 /// 1590 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1591 /// instruction. 1592 /// Return true if any changes are made. 1593 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1594 const TargetLowering &TLI, 1595 const DataLayout &DL) { 1596 BasicBlock *DefBB = ShiftI->getParent(); 1597 1598 /// Only insert instructions in each block once. 1599 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1600 1601 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1602 1603 bool MadeChange = false; 1604 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1605 UI != E;) { 1606 Use &TheUse = UI.getUse(); 1607 Instruction *User = cast<Instruction>(*UI); 1608 // Preincrement use iterator so we don't invalidate it. 1609 ++UI; 1610 1611 // Don't bother for PHI nodes. 1612 if (isa<PHINode>(User)) 1613 continue; 1614 1615 if (!isExtractBitsCandidateUse(User)) 1616 continue; 1617 1618 BasicBlock *UserBB = User->getParent(); 1619 1620 if (UserBB == DefBB) { 1621 // If the shift and truncate instruction are in the same BB. The use of 1622 // the truncate(TruncUse) may still introduce another truncate if not 1623 // legal. In this case, we would like to sink both shift and truncate 1624 // instruction to the BB of TruncUse. 1625 // for example: 1626 // BB1: 1627 // i64 shift.result = lshr i64 opnd, imm 1628 // trunc.result = trunc shift.result to i16 1629 // 1630 // BB2: 1631 // ----> We will have an implicit truncate here if the architecture does 1632 // not have i16 compare. 1633 // cmp i16 trunc.result, opnd2 1634 // 1635 if (isa<TruncInst>(User) && shiftIsLegal 1636 // If the type of the truncate is legal, no truncate will be 1637 // introduced in other basic blocks. 1638 && 1639 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1640 MadeChange = 1641 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1642 1643 continue; 1644 } 1645 // If we have already inserted a shift into this block, use it. 1646 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1647 1648 if (!InsertedShift) { 1649 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1650 assert(InsertPt != UserBB->end()); 1651 1652 if (ShiftI->getOpcode() == Instruction::AShr) 1653 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1654 "", &*InsertPt); 1655 else 1656 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1657 "", &*InsertPt); 1658 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1659 1660 MadeChange = true; 1661 } 1662 1663 // Replace a use of the shift with a use of the new shift. 1664 TheUse = InsertedShift; 1665 } 1666 1667 // If we removed all uses, nuke the shift. 1668 if (ShiftI->use_empty()) { 1669 salvageDebugInfo(*ShiftI); 1670 ShiftI->eraseFromParent(); 1671 } 1672 1673 return MadeChange; 1674 } 1675 1676 /// If counting leading or trailing zeros is an expensive operation and a zero 1677 /// input is defined, add a check for zero to avoid calling the intrinsic. 1678 /// 1679 /// We want to transform: 1680 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1681 /// 1682 /// into: 1683 /// entry: 1684 /// %cmpz = icmp eq i64 %A, 0 1685 /// br i1 %cmpz, label %cond.end, label %cond.false 1686 /// cond.false: 1687 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1688 /// br label %cond.end 1689 /// cond.end: 1690 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1691 /// 1692 /// If the transform is performed, return true and set ModifiedDT to true. 1693 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1694 const TargetLowering *TLI, 1695 const DataLayout *DL, 1696 bool &ModifiedDT) { 1697 if (!TLI || !DL) 1698 return false; 1699 1700 // If a zero input is undefined, it doesn't make sense to despeculate that. 1701 if (match(CountZeros->getOperand(1), m_One())) 1702 return false; 1703 1704 // If it's cheap to speculate, there's nothing to do. 1705 auto IntrinsicID = CountZeros->getIntrinsicID(); 1706 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1707 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1708 return false; 1709 1710 // Only handle legal scalar cases. Anything else requires too much work. 1711 Type *Ty = CountZeros->getType(); 1712 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1713 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1714 return false; 1715 1716 // The intrinsic will be sunk behind a compare against zero and branch. 1717 BasicBlock *StartBlock = CountZeros->getParent(); 1718 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1719 1720 // Create another block after the count zero intrinsic. A PHI will be added 1721 // in this block to select the result of the intrinsic or the bit-width 1722 // constant if the input to the intrinsic is zero. 1723 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1724 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1725 1726 // Set up a builder to create a compare, conditional branch, and PHI. 1727 IRBuilder<> Builder(CountZeros->getContext()); 1728 Builder.SetInsertPoint(StartBlock->getTerminator()); 1729 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1730 1731 // Replace the unconditional branch that was created by the first split with 1732 // a compare against zero and a conditional branch. 1733 Value *Zero = Constant::getNullValue(Ty); 1734 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1735 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1736 StartBlock->getTerminator()->eraseFromParent(); 1737 1738 // Create a PHI in the end block to select either the output of the intrinsic 1739 // or the bit width of the operand. 1740 Builder.SetInsertPoint(&EndBlock->front()); 1741 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1742 CountZeros->replaceAllUsesWith(PN); 1743 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1744 PN->addIncoming(BitWidth, StartBlock); 1745 PN->addIncoming(CountZeros, CallBlock); 1746 1747 // We are explicitly handling the zero case, so we can set the intrinsic's 1748 // undefined zero argument to 'true'. This will also prevent reprocessing the 1749 // intrinsic; we only despeculate when a zero input is defined. 1750 CountZeros->setArgOperand(1, Builder.getTrue()); 1751 ModifiedDT = true; 1752 return true; 1753 } 1754 1755 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1756 BasicBlock *BB = CI->getParent(); 1757 1758 // Lower inline assembly if we can. 1759 // If we found an inline asm expession, and if the target knows how to 1760 // lower it to normal LLVM code, do so now. 1761 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1762 if (TLI->ExpandInlineAsm(CI)) { 1763 // Avoid invalidating the iterator. 1764 CurInstIterator = BB->begin(); 1765 // Avoid processing instructions out of order, which could cause 1766 // reuse before a value is defined. 1767 SunkAddrs.clear(); 1768 return true; 1769 } 1770 // Sink address computing for memory operands into the block. 1771 if (optimizeInlineAsmInst(CI)) 1772 return true; 1773 } 1774 1775 // Align the pointer arguments to this call if the target thinks it's a good 1776 // idea 1777 unsigned MinSize, PrefAlign; 1778 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1779 for (auto &Arg : CI->arg_operands()) { 1780 // We want to align both objects whose address is used directly and 1781 // objects whose address is used in casts and GEPs, though it only makes 1782 // sense for GEPs if the offset is a multiple of the desired alignment and 1783 // if size - offset meets the size threshold. 1784 if (!Arg->getType()->isPointerTy()) 1785 continue; 1786 APInt Offset(DL->getIndexSizeInBits( 1787 cast<PointerType>(Arg->getType())->getAddressSpace()), 1788 0); 1789 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1790 uint64_t Offset2 = Offset.getLimitedValue(); 1791 if ((Offset2 & (PrefAlign-1)) != 0) 1792 continue; 1793 AllocaInst *AI; 1794 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1795 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1796 AI->setAlignment(PrefAlign); 1797 // Global variables can only be aligned if they are defined in this 1798 // object (i.e. they are uniquely initialized in this object), and 1799 // over-aligning global variables that have an explicit section is 1800 // forbidden. 1801 GlobalVariable *GV; 1802 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1803 GV->getPointerAlignment(*DL) < PrefAlign && 1804 DL->getTypeAllocSize(GV->getValueType()) >= 1805 MinSize + Offset2) 1806 GV->setAlignment(PrefAlign); 1807 } 1808 // If this is a memcpy (or similar) then we may be able to improve the 1809 // alignment 1810 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1811 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1812 if (DestAlign > MI->getDestAlignment()) 1813 MI->setDestAlignment(DestAlign); 1814 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1815 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1816 if (SrcAlign > MTI->getSourceAlignment()) 1817 MTI->setSourceAlignment(SrcAlign); 1818 } 1819 } 1820 } 1821 1822 // If we have a cold call site, try to sink addressing computation into the 1823 // cold block. This interacts with our handling for loads and stores to 1824 // ensure that we can fold all uses of a potential addressing computation 1825 // into their uses. TODO: generalize this to work over profiling data 1826 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1827 for (auto &Arg : CI->arg_operands()) { 1828 if (!Arg->getType()->isPointerTy()) 1829 continue; 1830 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1831 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1832 } 1833 1834 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1835 if (II) { 1836 switch (II->getIntrinsicID()) { 1837 default: break; 1838 case Intrinsic::experimental_widenable_condition: { 1839 // Give up on future widening oppurtunties so that we can fold away dead 1840 // paths and merge blocks before going into block-local instruction 1841 // selection. 1842 if (II->use_empty()) { 1843 II->eraseFromParent(); 1844 return true; 1845 } 1846 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1847 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1848 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1849 }); 1850 return true; 1851 } 1852 case Intrinsic::objectsize: { 1853 // Lower all uses of llvm.objectsize.* 1854 Value *RetVal = 1855 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1856 1857 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1858 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1859 }); 1860 return true; 1861 } 1862 case Intrinsic::is_constant: { 1863 // If is_constant hasn't folded away yet, lower it to false now. 1864 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1865 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1866 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1867 }); 1868 return true; 1869 } 1870 case Intrinsic::aarch64_stlxr: 1871 case Intrinsic::aarch64_stxr: { 1872 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1873 if (!ExtVal || !ExtVal->hasOneUse() || 1874 ExtVal->getParent() == CI->getParent()) 1875 return false; 1876 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1877 ExtVal->moveBefore(CI); 1878 // Mark this instruction as "inserted by CGP", so that other 1879 // optimizations don't touch it. 1880 InsertedInsts.insert(ExtVal); 1881 return true; 1882 } 1883 1884 case Intrinsic::launder_invariant_group: 1885 case Intrinsic::strip_invariant_group: { 1886 Value *ArgVal = II->getArgOperand(0); 1887 auto it = LargeOffsetGEPMap.find(II); 1888 if (it != LargeOffsetGEPMap.end()) { 1889 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1890 // Make sure not to have to deal with iterator invalidation 1891 // after possibly adding ArgVal to LargeOffsetGEPMap. 1892 auto GEPs = std::move(it->second); 1893 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1894 LargeOffsetGEPMap.erase(II); 1895 } 1896 1897 II->replaceAllUsesWith(ArgVal); 1898 II->eraseFromParent(); 1899 return true; 1900 } 1901 case Intrinsic::cttz: 1902 case Intrinsic::ctlz: 1903 // If counting zeros is expensive, try to avoid it. 1904 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1905 } 1906 1907 if (TLI) { 1908 SmallVector<Value*, 2> PtrOps; 1909 Type *AccessTy; 1910 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1911 while (!PtrOps.empty()) { 1912 Value *PtrVal = PtrOps.pop_back_val(); 1913 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1914 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1915 return true; 1916 } 1917 } 1918 } 1919 1920 // From here on out we're working with named functions. 1921 if (!CI->getCalledFunction()) return false; 1922 1923 // Lower all default uses of _chk calls. This is very similar 1924 // to what InstCombineCalls does, but here we are only lowering calls 1925 // to fortified library functions (e.g. __memcpy_chk) that have the default 1926 // "don't know" as the objectsize. Anything else should be left alone. 1927 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1928 if (Value *V = Simplifier.optimizeCall(CI)) { 1929 CI->replaceAllUsesWith(V); 1930 CI->eraseFromParent(); 1931 return true; 1932 } 1933 1934 return false; 1935 } 1936 1937 /// Look for opportunities to duplicate return instructions to the predecessor 1938 /// to enable tail call optimizations. The case it is currently looking for is: 1939 /// @code 1940 /// bb0: 1941 /// %tmp0 = tail call i32 @f0() 1942 /// br label %return 1943 /// bb1: 1944 /// %tmp1 = tail call i32 @f1() 1945 /// br label %return 1946 /// bb2: 1947 /// %tmp2 = tail call i32 @f2() 1948 /// br label %return 1949 /// return: 1950 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1951 /// ret i32 %retval 1952 /// @endcode 1953 /// 1954 /// => 1955 /// 1956 /// @code 1957 /// bb0: 1958 /// %tmp0 = tail call i32 @f0() 1959 /// ret i32 %tmp0 1960 /// bb1: 1961 /// %tmp1 = tail call i32 @f1() 1962 /// ret i32 %tmp1 1963 /// bb2: 1964 /// %tmp2 = tail call i32 @f2() 1965 /// ret i32 %tmp2 1966 /// @endcode 1967 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1968 if (!TLI) 1969 return false; 1970 1971 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1972 if (!RetI) 1973 return false; 1974 1975 PHINode *PN = nullptr; 1976 BitCastInst *BCI = nullptr; 1977 Value *V = RetI->getReturnValue(); 1978 if (V) { 1979 BCI = dyn_cast<BitCastInst>(V); 1980 if (BCI) 1981 V = BCI->getOperand(0); 1982 1983 PN = dyn_cast<PHINode>(V); 1984 if (!PN) 1985 return false; 1986 } 1987 1988 if (PN && PN->getParent() != BB) 1989 return false; 1990 1991 // Make sure there are no instructions between the PHI and return, or that the 1992 // return is the first instruction in the block. 1993 if (PN) { 1994 BasicBlock::iterator BI = BB->begin(); 1995 // Skip over debug and the bitcast. 1996 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 1997 if (&*BI != RetI) 1998 return false; 1999 } else { 2000 BasicBlock::iterator BI = BB->begin(); 2001 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2002 if (&*BI != RetI) 2003 return false; 2004 } 2005 2006 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2007 /// call. 2008 const Function *F = BB->getParent(); 2009 SmallVector<CallInst*, 4> TailCalls; 2010 if (PN) { 2011 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2012 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2013 // Make sure the phi value is indeed produced by the tail call. 2014 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2015 TLI->mayBeEmittedAsTailCall(CI) && 2016 attributesPermitTailCall(F, CI, RetI, *TLI)) 2017 TailCalls.push_back(CI); 2018 } 2019 } else { 2020 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2021 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2022 if (!VisitedBBs.insert(*PI).second) 2023 continue; 2024 2025 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2026 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2027 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2028 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2029 if (RI == RE) 2030 continue; 2031 2032 CallInst *CI = dyn_cast<CallInst>(&*RI); 2033 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2034 attributesPermitTailCall(F, CI, RetI, *TLI)) 2035 TailCalls.push_back(CI); 2036 } 2037 } 2038 2039 bool Changed = false; 2040 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2041 CallInst *CI = TailCalls[i]; 2042 CallSite CS(CI); 2043 2044 // Make sure the call instruction is followed by an unconditional branch to 2045 // the return block. 2046 BasicBlock *CallBB = CI->getParent(); 2047 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2048 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2049 continue; 2050 2051 // Duplicate the return into CallBB. 2052 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2053 ModifiedDT = Changed = true; 2054 ++NumRetsDup; 2055 } 2056 2057 // If we eliminated all predecessors of the block, delete the block now. 2058 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2059 BB->eraseFromParent(); 2060 2061 return Changed; 2062 } 2063 2064 //===----------------------------------------------------------------------===// 2065 // Memory Optimization 2066 //===----------------------------------------------------------------------===// 2067 2068 namespace { 2069 2070 /// This is an extended version of TargetLowering::AddrMode 2071 /// which holds actual Value*'s for register values. 2072 struct ExtAddrMode : public TargetLowering::AddrMode { 2073 Value *BaseReg = nullptr; 2074 Value *ScaledReg = nullptr; 2075 Value *OriginalValue = nullptr; 2076 bool InBounds = true; 2077 2078 enum FieldName { 2079 NoField = 0x00, 2080 BaseRegField = 0x01, 2081 BaseGVField = 0x02, 2082 BaseOffsField = 0x04, 2083 ScaledRegField = 0x08, 2084 ScaleField = 0x10, 2085 MultipleFields = 0xff 2086 }; 2087 2088 2089 ExtAddrMode() = default; 2090 2091 void print(raw_ostream &OS) const; 2092 void dump() const; 2093 2094 FieldName compare(const ExtAddrMode &other) { 2095 // First check that the types are the same on each field, as differing types 2096 // is something we can't cope with later on. 2097 if (BaseReg && other.BaseReg && 2098 BaseReg->getType() != other.BaseReg->getType()) 2099 return MultipleFields; 2100 if (BaseGV && other.BaseGV && 2101 BaseGV->getType() != other.BaseGV->getType()) 2102 return MultipleFields; 2103 if (ScaledReg && other.ScaledReg && 2104 ScaledReg->getType() != other.ScaledReg->getType()) 2105 return MultipleFields; 2106 2107 // Conservatively reject 'inbounds' mismatches. 2108 if (InBounds != other.InBounds) 2109 return MultipleFields; 2110 2111 // Check each field to see if it differs. 2112 unsigned Result = NoField; 2113 if (BaseReg != other.BaseReg) 2114 Result |= BaseRegField; 2115 if (BaseGV != other.BaseGV) 2116 Result |= BaseGVField; 2117 if (BaseOffs != other.BaseOffs) 2118 Result |= BaseOffsField; 2119 if (ScaledReg != other.ScaledReg) 2120 Result |= ScaledRegField; 2121 // Don't count 0 as being a different scale, because that actually means 2122 // unscaled (which will already be counted by having no ScaledReg). 2123 if (Scale && other.Scale && Scale != other.Scale) 2124 Result |= ScaleField; 2125 2126 if (countPopulation(Result) > 1) 2127 return MultipleFields; 2128 else 2129 return static_cast<FieldName>(Result); 2130 } 2131 2132 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2133 // with no offset. 2134 bool isTrivial() { 2135 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2136 // trivial if at most one of these terms is nonzero, except that BaseGV and 2137 // BaseReg both being zero actually means a null pointer value, which we 2138 // consider to be 'non-zero' here. 2139 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2140 } 2141 2142 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2143 switch (Field) { 2144 default: 2145 return nullptr; 2146 case BaseRegField: 2147 return BaseReg; 2148 case BaseGVField: 2149 return BaseGV; 2150 case ScaledRegField: 2151 return ScaledReg; 2152 case BaseOffsField: 2153 return ConstantInt::get(IntPtrTy, BaseOffs); 2154 } 2155 } 2156 2157 void SetCombinedField(FieldName Field, Value *V, 2158 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2159 switch (Field) { 2160 default: 2161 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2162 break; 2163 case ExtAddrMode::BaseRegField: 2164 BaseReg = V; 2165 break; 2166 case ExtAddrMode::BaseGVField: 2167 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2168 // in the BaseReg field. 2169 assert(BaseReg == nullptr); 2170 BaseReg = V; 2171 BaseGV = nullptr; 2172 break; 2173 case ExtAddrMode::ScaledRegField: 2174 ScaledReg = V; 2175 // If we have a mix of scaled and unscaled addrmodes then we want scale 2176 // to be the scale and not zero. 2177 if (!Scale) 2178 for (const ExtAddrMode &AM : AddrModes) 2179 if (AM.Scale) { 2180 Scale = AM.Scale; 2181 break; 2182 } 2183 break; 2184 case ExtAddrMode::BaseOffsField: 2185 // The offset is no longer a constant, so it goes in ScaledReg with a 2186 // scale of 1. 2187 assert(ScaledReg == nullptr); 2188 ScaledReg = V; 2189 Scale = 1; 2190 BaseOffs = 0; 2191 break; 2192 } 2193 } 2194 }; 2195 2196 } // end anonymous namespace 2197 2198 #ifndef NDEBUG 2199 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2200 AM.print(OS); 2201 return OS; 2202 } 2203 #endif 2204 2205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2206 void ExtAddrMode::print(raw_ostream &OS) const { 2207 bool NeedPlus = false; 2208 OS << "["; 2209 if (InBounds) 2210 OS << "inbounds "; 2211 if (BaseGV) { 2212 OS << (NeedPlus ? " + " : "") 2213 << "GV:"; 2214 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2215 NeedPlus = true; 2216 } 2217 2218 if (BaseOffs) { 2219 OS << (NeedPlus ? " + " : "") 2220 << BaseOffs; 2221 NeedPlus = true; 2222 } 2223 2224 if (BaseReg) { 2225 OS << (NeedPlus ? " + " : "") 2226 << "Base:"; 2227 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2228 NeedPlus = true; 2229 } 2230 if (Scale) { 2231 OS << (NeedPlus ? " + " : "") 2232 << Scale << "*"; 2233 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2234 } 2235 2236 OS << ']'; 2237 } 2238 2239 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2240 print(dbgs()); 2241 dbgs() << '\n'; 2242 } 2243 #endif 2244 2245 namespace { 2246 2247 /// This class provides transaction based operation on the IR. 2248 /// Every change made through this class is recorded in the internal state and 2249 /// can be undone (rollback) until commit is called. 2250 class TypePromotionTransaction { 2251 /// This represents the common interface of the individual transaction. 2252 /// Each class implements the logic for doing one specific modification on 2253 /// the IR via the TypePromotionTransaction. 2254 class TypePromotionAction { 2255 protected: 2256 /// The Instruction modified. 2257 Instruction *Inst; 2258 2259 public: 2260 /// Constructor of the action. 2261 /// The constructor performs the related action on the IR. 2262 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2263 2264 virtual ~TypePromotionAction() = default; 2265 2266 /// Undo the modification done by this action. 2267 /// When this method is called, the IR must be in the same state as it was 2268 /// before this action was applied. 2269 /// \pre Undoing the action works if and only if the IR is in the exact same 2270 /// state as it was directly after this action was applied. 2271 virtual void undo() = 0; 2272 2273 /// Advocate every change made by this action. 2274 /// When the results on the IR of the action are to be kept, it is important 2275 /// to call this function, otherwise hidden information may be kept forever. 2276 virtual void commit() { 2277 // Nothing to be done, this action is not doing anything. 2278 } 2279 }; 2280 2281 /// Utility to remember the position of an instruction. 2282 class InsertionHandler { 2283 /// Position of an instruction. 2284 /// Either an instruction: 2285 /// - Is the first in a basic block: BB is used. 2286 /// - Has a previous instruction: PrevInst is used. 2287 union { 2288 Instruction *PrevInst; 2289 BasicBlock *BB; 2290 } Point; 2291 2292 /// Remember whether or not the instruction had a previous instruction. 2293 bool HasPrevInstruction; 2294 2295 public: 2296 /// Record the position of \p Inst. 2297 InsertionHandler(Instruction *Inst) { 2298 BasicBlock::iterator It = Inst->getIterator(); 2299 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2300 if (HasPrevInstruction) 2301 Point.PrevInst = &*--It; 2302 else 2303 Point.BB = Inst->getParent(); 2304 } 2305 2306 /// Insert \p Inst at the recorded position. 2307 void insert(Instruction *Inst) { 2308 if (HasPrevInstruction) { 2309 if (Inst->getParent()) 2310 Inst->removeFromParent(); 2311 Inst->insertAfter(Point.PrevInst); 2312 } else { 2313 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2314 if (Inst->getParent()) 2315 Inst->moveBefore(Position); 2316 else 2317 Inst->insertBefore(Position); 2318 } 2319 } 2320 }; 2321 2322 /// Move an instruction before another. 2323 class InstructionMoveBefore : public TypePromotionAction { 2324 /// Original position of the instruction. 2325 InsertionHandler Position; 2326 2327 public: 2328 /// Move \p Inst before \p Before. 2329 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2330 : TypePromotionAction(Inst), Position(Inst) { 2331 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2332 << "\n"); 2333 Inst->moveBefore(Before); 2334 } 2335 2336 /// Move the instruction back to its original position. 2337 void undo() override { 2338 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2339 Position.insert(Inst); 2340 } 2341 }; 2342 2343 /// Set the operand of an instruction with a new value. 2344 class OperandSetter : public TypePromotionAction { 2345 /// Original operand of the instruction. 2346 Value *Origin; 2347 2348 /// Index of the modified instruction. 2349 unsigned Idx; 2350 2351 public: 2352 /// Set \p Idx operand of \p Inst with \p NewVal. 2353 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2354 : TypePromotionAction(Inst), Idx(Idx) { 2355 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2356 << "for:" << *Inst << "\n" 2357 << "with:" << *NewVal << "\n"); 2358 Origin = Inst->getOperand(Idx); 2359 Inst->setOperand(Idx, NewVal); 2360 } 2361 2362 /// Restore the original value of the instruction. 2363 void undo() override { 2364 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2365 << "for: " << *Inst << "\n" 2366 << "with: " << *Origin << "\n"); 2367 Inst->setOperand(Idx, Origin); 2368 } 2369 }; 2370 2371 /// Hide the operands of an instruction. 2372 /// Do as if this instruction was not using any of its operands. 2373 class OperandsHider : public TypePromotionAction { 2374 /// The list of original operands. 2375 SmallVector<Value *, 4> OriginalValues; 2376 2377 public: 2378 /// Remove \p Inst from the uses of the operands of \p Inst. 2379 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2380 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2381 unsigned NumOpnds = Inst->getNumOperands(); 2382 OriginalValues.reserve(NumOpnds); 2383 for (unsigned It = 0; It < NumOpnds; ++It) { 2384 // Save the current operand. 2385 Value *Val = Inst->getOperand(It); 2386 OriginalValues.push_back(Val); 2387 // Set a dummy one. 2388 // We could use OperandSetter here, but that would imply an overhead 2389 // that we are not willing to pay. 2390 Inst->setOperand(It, UndefValue::get(Val->getType())); 2391 } 2392 } 2393 2394 /// Restore the original list of uses. 2395 void undo() override { 2396 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2397 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2398 Inst->setOperand(It, OriginalValues[It]); 2399 } 2400 }; 2401 2402 /// Build a truncate instruction. 2403 class TruncBuilder : public TypePromotionAction { 2404 Value *Val; 2405 2406 public: 2407 /// Build a truncate instruction of \p Opnd producing a \p Ty 2408 /// result. 2409 /// trunc Opnd to Ty. 2410 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2411 IRBuilder<> Builder(Opnd); 2412 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2413 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2414 } 2415 2416 /// Get the built value. 2417 Value *getBuiltValue() { return Val; } 2418 2419 /// Remove the built instruction. 2420 void undo() override { 2421 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2422 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2423 IVal->eraseFromParent(); 2424 } 2425 }; 2426 2427 /// Build a sign extension instruction. 2428 class SExtBuilder : public TypePromotionAction { 2429 Value *Val; 2430 2431 public: 2432 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2433 /// result. 2434 /// sext Opnd to Ty. 2435 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2436 : TypePromotionAction(InsertPt) { 2437 IRBuilder<> Builder(InsertPt); 2438 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2439 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2440 } 2441 2442 /// Get the built value. 2443 Value *getBuiltValue() { return Val; } 2444 2445 /// Remove the built instruction. 2446 void undo() override { 2447 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2448 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2449 IVal->eraseFromParent(); 2450 } 2451 }; 2452 2453 /// Build a zero extension instruction. 2454 class ZExtBuilder : public TypePromotionAction { 2455 Value *Val; 2456 2457 public: 2458 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2459 /// result. 2460 /// zext Opnd to Ty. 2461 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2462 : TypePromotionAction(InsertPt) { 2463 IRBuilder<> Builder(InsertPt); 2464 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2465 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2466 } 2467 2468 /// Get the built value. 2469 Value *getBuiltValue() { return Val; } 2470 2471 /// Remove the built instruction. 2472 void undo() override { 2473 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2474 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2475 IVal->eraseFromParent(); 2476 } 2477 }; 2478 2479 /// Mutate an instruction to another type. 2480 class TypeMutator : public TypePromotionAction { 2481 /// Record the original type. 2482 Type *OrigTy; 2483 2484 public: 2485 /// Mutate the type of \p Inst into \p NewTy. 2486 TypeMutator(Instruction *Inst, Type *NewTy) 2487 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2488 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2489 << "\n"); 2490 Inst->mutateType(NewTy); 2491 } 2492 2493 /// Mutate the instruction back to its original type. 2494 void undo() override { 2495 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2496 << "\n"); 2497 Inst->mutateType(OrigTy); 2498 } 2499 }; 2500 2501 /// Replace the uses of an instruction by another instruction. 2502 class UsesReplacer : public TypePromotionAction { 2503 /// Helper structure to keep track of the replaced uses. 2504 struct InstructionAndIdx { 2505 /// The instruction using the instruction. 2506 Instruction *Inst; 2507 2508 /// The index where this instruction is used for Inst. 2509 unsigned Idx; 2510 2511 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2512 : Inst(Inst), Idx(Idx) {} 2513 }; 2514 2515 /// Keep track of the original uses (pair Instruction, Index). 2516 SmallVector<InstructionAndIdx, 4> OriginalUses; 2517 /// Keep track of the debug users. 2518 SmallVector<DbgValueInst *, 1> DbgValues; 2519 2520 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2521 2522 public: 2523 /// Replace all the use of \p Inst by \p New. 2524 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2525 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2526 << "\n"); 2527 // Record the original uses. 2528 for (Use &U : Inst->uses()) { 2529 Instruction *UserI = cast<Instruction>(U.getUser()); 2530 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2531 } 2532 // Record the debug uses separately. They are not in the instruction's 2533 // use list, but they are replaced by RAUW. 2534 findDbgValues(DbgValues, Inst); 2535 2536 // Now, we can replace the uses. 2537 Inst->replaceAllUsesWith(New); 2538 } 2539 2540 /// Reassign the original uses of Inst to Inst. 2541 void undo() override { 2542 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2543 for (use_iterator UseIt = OriginalUses.begin(), 2544 EndIt = OriginalUses.end(); 2545 UseIt != EndIt; ++UseIt) { 2546 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2547 } 2548 // RAUW has replaced all original uses with references to the new value, 2549 // including the debug uses. Since we are undoing the replacements, 2550 // the original debug uses must also be reinstated to maintain the 2551 // correctness and utility of debug value instructions. 2552 for (auto *DVI: DbgValues) { 2553 LLVMContext &Ctx = Inst->getType()->getContext(); 2554 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2555 DVI->setOperand(0, MV); 2556 } 2557 } 2558 }; 2559 2560 /// Remove an instruction from the IR. 2561 class InstructionRemover : public TypePromotionAction { 2562 /// Original position of the instruction. 2563 InsertionHandler Inserter; 2564 2565 /// Helper structure to hide all the link to the instruction. In other 2566 /// words, this helps to do as if the instruction was removed. 2567 OperandsHider Hider; 2568 2569 /// Keep track of the uses replaced, if any. 2570 UsesReplacer *Replacer = nullptr; 2571 2572 /// Keep track of instructions removed. 2573 SetOfInstrs &RemovedInsts; 2574 2575 public: 2576 /// Remove all reference of \p Inst and optionally replace all its 2577 /// uses with New. 2578 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2579 /// \pre If !Inst->use_empty(), then New != nullptr 2580 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2581 Value *New = nullptr) 2582 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2583 RemovedInsts(RemovedInsts) { 2584 if (New) 2585 Replacer = new UsesReplacer(Inst, New); 2586 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2587 RemovedInsts.insert(Inst); 2588 /// The instructions removed here will be freed after completing 2589 /// optimizeBlock() for all blocks as we need to keep track of the 2590 /// removed instructions during promotion. 2591 Inst->removeFromParent(); 2592 } 2593 2594 ~InstructionRemover() override { delete Replacer; } 2595 2596 /// Resurrect the instruction and reassign it to the proper uses if 2597 /// new value was provided when build this action. 2598 void undo() override { 2599 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2600 Inserter.insert(Inst); 2601 if (Replacer) 2602 Replacer->undo(); 2603 Hider.undo(); 2604 RemovedInsts.erase(Inst); 2605 } 2606 }; 2607 2608 public: 2609 /// Restoration point. 2610 /// The restoration point is a pointer to an action instead of an iterator 2611 /// because the iterator may be invalidated but not the pointer. 2612 using ConstRestorationPt = const TypePromotionAction *; 2613 2614 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2615 : RemovedInsts(RemovedInsts) {} 2616 2617 /// Advocate every changes made in that transaction. 2618 void commit(); 2619 2620 /// Undo all the changes made after the given point. 2621 void rollback(ConstRestorationPt Point); 2622 2623 /// Get the current restoration point. 2624 ConstRestorationPt getRestorationPoint() const; 2625 2626 /// \name API for IR modification with state keeping to support rollback. 2627 /// @{ 2628 /// Same as Instruction::setOperand. 2629 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2630 2631 /// Same as Instruction::eraseFromParent. 2632 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2633 2634 /// Same as Value::replaceAllUsesWith. 2635 void replaceAllUsesWith(Instruction *Inst, Value *New); 2636 2637 /// Same as Value::mutateType. 2638 void mutateType(Instruction *Inst, Type *NewTy); 2639 2640 /// Same as IRBuilder::createTrunc. 2641 Value *createTrunc(Instruction *Opnd, Type *Ty); 2642 2643 /// Same as IRBuilder::createSExt. 2644 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2645 2646 /// Same as IRBuilder::createZExt. 2647 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2648 2649 /// Same as Instruction::moveBefore. 2650 void moveBefore(Instruction *Inst, Instruction *Before); 2651 /// @} 2652 2653 private: 2654 /// The ordered list of actions made so far. 2655 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2656 2657 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2658 2659 SetOfInstrs &RemovedInsts; 2660 }; 2661 2662 } // end anonymous namespace 2663 2664 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2665 Value *NewVal) { 2666 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2667 Inst, Idx, NewVal)); 2668 } 2669 2670 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2671 Value *NewVal) { 2672 Actions.push_back( 2673 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2674 Inst, RemovedInsts, NewVal)); 2675 } 2676 2677 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2678 Value *New) { 2679 Actions.push_back( 2680 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2681 } 2682 2683 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2684 Actions.push_back( 2685 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2686 } 2687 2688 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2689 Type *Ty) { 2690 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2691 Value *Val = Ptr->getBuiltValue(); 2692 Actions.push_back(std::move(Ptr)); 2693 return Val; 2694 } 2695 2696 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2697 Value *Opnd, Type *Ty) { 2698 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2699 Value *Val = Ptr->getBuiltValue(); 2700 Actions.push_back(std::move(Ptr)); 2701 return Val; 2702 } 2703 2704 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2705 Value *Opnd, Type *Ty) { 2706 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2707 Value *Val = Ptr->getBuiltValue(); 2708 Actions.push_back(std::move(Ptr)); 2709 return Val; 2710 } 2711 2712 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2713 Instruction *Before) { 2714 Actions.push_back( 2715 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2716 Inst, Before)); 2717 } 2718 2719 TypePromotionTransaction::ConstRestorationPt 2720 TypePromotionTransaction::getRestorationPoint() const { 2721 return !Actions.empty() ? Actions.back().get() : nullptr; 2722 } 2723 2724 void TypePromotionTransaction::commit() { 2725 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2726 ++It) 2727 (*It)->commit(); 2728 Actions.clear(); 2729 } 2730 2731 void TypePromotionTransaction::rollback( 2732 TypePromotionTransaction::ConstRestorationPt Point) { 2733 while (!Actions.empty() && Point != Actions.back().get()) { 2734 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2735 Curr->undo(); 2736 } 2737 } 2738 2739 namespace { 2740 2741 /// A helper class for matching addressing modes. 2742 /// 2743 /// This encapsulates the logic for matching the target-legal addressing modes. 2744 class AddressingModeMatcher { 2745 SmallVectorImpl<Instruction*> &AddrModeInsts; 2746 const TargetLowering &TLI; 2747 const TargetRegisterInfo &TRI; 2748 const DataLayout &DL; 2749 2750 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2751 /// the memory instruction that we're computing this address for. 2752 Type *AccessTy; 2753 unsigned AddrSpace; 2754 Instruction *MemoryInst; 2755 2756 /// This is the addressing mode that we're building up. This is 2757 /// part of the return value of this addressing mode matching stuff. 2758 ExtAddrMode &AddrMode; 2759 2760 /// The instructions inserted by other CodeGenPrepare optimizations. 2761 const SetOfInstrs &InsertedInsts; 2762 2763 /// A map from the instructions to their type before promotion. 2764 InstrToOrigTy &PromotedInsts; 2765 2766 /// The ongoing transaction where every action should be registered. 2767 TypePromotionTransaction &TPT; 2768 2769 // A GEP which has too large offset to be folded into the addressing mode. 2770 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2771 2772 /// This is set to true when we should not do profitability checks. 2773 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2774 bool IgnoreProfitability; 2775 2776 AddressingModeMatcher( 2777 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2778 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2779 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2780 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2781 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2782 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2783 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2784 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2785 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2786 IgnoreProfitability = false; 2787 } 2788 2789 public: 2790 /// Find the maximal addressing mode that a load/store of V can fold, 2791 /// give an access type of AccessTy. This returns a list of involved 2792 /// instructions in AddrModeInsts. 2793 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2794 /// optimizations. 2795 /// \p PromotedInsts maps the instructions to their type before promotion. 2796 /// \p The ongoing transaction where every action should be registered. 2797 static ExtAddrMode 2798 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2799 SmallVectorImpl<Instruction *> &AddrModeInsts, 2800 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2801 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2802 TypePromotionTransaction &TPT, 2803 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2804 ExtAddrMode Result; 2805 2806 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2807 MemoryInst, Result, InsertedInsts, 2808 PromotedInsts, TPT, LargeOffsetGEP) 2809 .matchAddr(V, 0); 2810 (void)Success; assert(Success && "Couldn't select *anything*?"); 2811 return Result; 2812 } 2813 2814 private: 2815 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2816 bool matchAddr(Value *Addr, unsigned Depth); 2817 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2818 bool *MovedAway = nullptr); 2819 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2820 ExtAddrMode &AMBefore, 2821 ExtAddrMode &AMAfter); 2822 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2823 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2824 Value *PromotedOperand) const; 2825 }; 2826 2827 class PhiNodeSet; 2828 2829 /// An iterator for PhiNodeSet. 2830 class PhiNodeSetIterator { 2831 PhiNodeSet * const Set; 2832 size_t CurrentIndex = 0; 2833 2834 public: 2835 /// The constructor. Start should point to either a valid element, or be equal 2836 /// to the size of the underlying SmallVector of the PhiNodeSet. 2837 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2838 PHINode * operator*() const; 2839 PhiNodeSetIterator& operator++(); 2840 bool operator==(const PhiNodeSetIterator &RHS) const; 2841 bool operator!=(const PhiNodeSetIterator &RHS) const; 2842 }; 2843 2844 /// Keeps a set of PHINodes. 2845 /// 2846 /// This is a minimal set implementation for a specific use case: 2847 /// It is very fast when there are very few elements, but also provides good 2848 /// performance when there are many. It is similar to SmallPtrSet, but also 2849 /// provides iteration by insertion order, which is deterministic and stable 2850 /// across runs. It is also similar to SmallSetVector, but provides removing 2851 /// elements in O(1) time. This is achieved by not actually removing the element 2852 /// from the underlying vector, so comes at the cost of using more memory, but 2853 /// that is fine, since PhiNodeSets are used as short lived objects. 2854 class PhiNodeSet { 2855 friend class PhiNodeSetIterator; 2856 2857 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2858 using iterator = PhiNodeSetIterator; 2859 2860 /// Keeps the elements in the order of their insertion in the underlying 2861 /// vector. To achieve constant time removal, it never deletes any element. 2862 SmallVector<PHINode *, 32> NodeList; 2863 2864 /// Keeps the elements in the underlying set implementation. This (and not the 2865 /// NodeList defined above) is the source of truth on whether an element 2866 /// is actually in the collection. 2867 MapType NodeMap; 2868 2869 /// Points to the first valid (not deleted) element when the set is not empty 2870 /// and the value is not zero. Equals to the size of the underlying vector 2871 /// when the set is empty. When the value is 0, as in the beginning, the 2872 /// first element may or may not be valid. 2873 size_t FirstValidElement = 0; 2874 2875 public: 2876 /// Inserts a new element to the collection. 2877 /// \returns true if the element is actually added, i.e. was not in the 2878 /// collection before the operation. 2879 bool insert(PHINode *Ptr) { 2880 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2881 NodeList.push_back(Ptr); 2882 return true; 2883 } 2884 return false; 2885 } 2886 2887 /// Removes the element from the collection. 2888 /// \returns whether the element is actually removed, i.e. was in the 2889 /// collection before the operation. 2890 bool erase(PHINode *Ptr) { 2891 auto it = NodeMap.find(Ptr); 2892 if (it != NodeMap.end()) { 2893 NodeMap.erase(Ptr); 2894 SkipRemovedElements(FirstValidElement); 2895 return true; 2896 } 2897 return false; 2898 } 2899 2900 /// Removes all elements and clears the collection. 2901 void clear() { 2902 NodeMap.clear(); 2903 NodeList.clear(); 2904 FirstValidElement = 0; 2905 } 2906 2907 /// \returns an iterator that will iterate the elements in the order of 2908 /// insertion. 2909 iterator begin() { 2910 if (FirstValidElement == 0) 2911 SkipRemovedElements(FirstValidElement); 2912 return PhiNodeSetIterator(this, FirstValidElement); 2913 } 2914 2915 /// \returns an iterator that points to the end of the collection. 2916 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2917 2918 /// Returns the number of elements in the collection. 2919 size_t size() const { 2920 return NodeMap.size(); 2921 } 2922 2923 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2924 size_t count(PHINode *Ptr) const { 2925 return NodeMap.count(Ptr); 2926 } 2927 2928 private: 2929 /// Updates the CurrentIndex so that it will point to a valid element. 2930 /// 2931 /// If the element of NodeList at CurrentIndex is valid, it does not 2932 /// change it. If there are no more valid elements, it updates CurrentIndex 2933 /// to point to the end of the NodeList. 2934 void SkipRemovedElements(size_t &CurrentIndex) { 2935 while (CurrentIndex < NodeList.size()) { 2936 auto it = NodeMap.find(NodeList[CurrentIndex]); 2937 // If the element has been deleted and added again later, NodeMap will 2938 // point to a different index, so CurrentIndex will still be invalid. 2939 if (it != NodeMap.end() && it->second == CurrentIndex) 2940 break; 2941 ++CurrentIndex; 2942 } 2943 } 2944 }; 2945 2946 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2947 : Set(Set), CurrentIndex(Start) {} 2948 2949 PHINode * PhiNodeSetIterator::operator*() const { 2950 assert(CurrentIndex < Set->NodeList.size() && 2951 "PhiNodeSet access out of range"); 2952 return Set->NodeList[CurrentIndex]; 2953 } 2954 2955 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2956 assert(CurrentIndex < Set->NodeList.size() && 2957 "PhiNodeSet access out of range"); 2958 ++CurrentIndex; 2959 Set->SkipRemovedElements(CurrentIndex); 2960 return *this; 2961 } 2962 2963 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2964 return CurrentIndex == RHS.CurrentIndex; 2965 } 2966 2967 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2968 return !((*this) == RHS); 2969 } 2970 2971 /// Keep track of simplification of Phi nodes. 2972 /// Accept the set of all phi nodes and erase phi node from this set 2973 /// if it is simplified. 2974 class SimplificationTracker { 2975 DenseMap<Value *, Value *> Storage; 2976 const SimplifyQuery &SQ; 2977 // Tracks newly created Phi nodes. The elements are iterated by insertion 2978 // order. 2979 PhiNodeSet AllPhiNodes; 2980 // Tracks newly created Select nodes. 2981 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2982 2983 public: 2984 SimplificationTracker(const SimplifyQuery &sq) 2985 : SQ(sq) {} 2986 2987 Value *Get(Value *V) { 2988 do { 2989 auto SV = Storage.find(V); 2990 if (SV == Storage.end()) 2991 return V; 2992 V = SV->second; 2993 } while (true); 2994 } 2995 2996 Value *Simplify(Value *Val) { 2997 SmallVector<Value *, 32> WorkList; 2998 SmallPtrSet<Value *, 32> Visited; 2999 WorkList.push_back(Val); 3000 while (!WorkList.empty()) { 3001 auto P = WorkList.pop_back_val(); 3002 if (!Visited.insert(P).second) 3003 continue; 3004 if (auto *PI = dyn_cast<Instruction>(P)) 3005 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3006 for (auto *U : PI->users()) 3007 WorkList.push_back(cast<Value>(U)); 3008 Put(PI, V); 3009 PI->replaceAllUsesWith(V); 3010 if (auto *PHI = dyn_cast<PHINode>(PI)) 3011 AllPhiNodes.erase(PHI); 3012 if (auto *Select = dyn_cast<SelectInst>(PI)) 3013 AllSelectNodes.erase(Select); 3014 PI->eraseFromParent(); 3015 } 3016 } 3017 return Get(Val); 3018 } 3019 3020 void Put(Value *From, Value *To) { 3021 Storage.insert({ From, To }); 3022 } 3023 3024 void ReplacePhi(PHINode *From, PHINode *To) { 3025 Value* OldReplacement = Get(From); 3026 while (OldReplacement != From) { 3027 From = To; 3028 To = dyn_cast<PHINode>(OldReplacement); 3029 OldReplacement = Get(From); 3030 } 3031 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3032 Put(From, To); 3033 From->replaceAllUsesWith(To); 3034 AllPhiNodes.erase(From); 3035 From->eraseFromParent(); 3036 } 3037 3038 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3039 3040 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3041 3042 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3043 3044 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3045 3046 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3047 3048 void destroyNewNodes(Type *CommonType) { 3049 // For safe erasing, replace the uses with dummy value first. 3050 auto Dummy = UndefValue::get(CommonType); 3051 for (auto I : AllPhiNodes) { 3052 I->replaceAllUsesWith(Dummy); 3053 I->eraseFromParent(); 3054 } 3055 AllPhiNodes.clear(); 3056 for (auto I : AllSelectNodes) { 3057 I->replaceAllUsesWith(Dummy); 3058 I->eraseFromParent(); 3059 } 3060 AllSelectNodes.clear(); 3061 } 3062 }; 3063 3064 /// A helper class for combining addressing modes. 3065 class AddressingModeCombiner { 3066 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3067 typedef std::pair<PHINode *, PHINode *> PHIPair; 3068 3069 private: 3070 /// The addressing modes we've collected. 3071 SmallVector<ExtAddrMode, 16> AddrModes; 3072 3073 /// The field in which the AddrModes differ, when we have more than one. 3074 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3075 3076 /// Are the AddrModes that we have all just equal to their original values? 3077 bool AllAddrModesTrivial = true; 3078 3079 /// Common Type for all different fields in addressing modes. 3080 Type *CommonType; 3081 3082 /// SimplifyQuery for simplifyInstruction utility. 3083 const SimplifyQuery &SQ; 3084 3085 /// Original Address. 3086 Value *Original; 3087 3088 public: 3089 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3090 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3091 3092 /// Get the combined AddrMode 3093 const ExtAddrMode &getAddrMode() const { 3094 return AddrModes[0]; 3095 } 3096 3097 /// Add a new AddrMode if it's compatible with the AddrModes we already 3098 /// have. 3099 /// \return True iff we succeeded in doing so. 3100 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3101 // Take note of if we have any non-trivial AddrModes, as we need to detect 3102 // when all AddrModes are trivial as then we would introduce a phi or select 3103 // which just duplicates what's already there. 3104 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3105 3106 // If this is the first addrmode then everything is fine. 3107 if (AddrModes.empty()) { 3108 AddrModes.emplace_back(NewAddrMode); 3109 return true; 3110 } 3111 3112 // Figure out how different this is from the other address modes, which we 3113 // can do just by comparing against the first one given that we only care 3114 // about the cumulative difference. 3115 ExtAddrMode::FieldName ThisDifferentField = 3116 AddrModes[0].compare(NewAddrMode); 3117 if (DifferentField == ExtAddrMode::NoField) 3118 DifferentField = ThisDifferentField; 3119 else if (DifferentField != ThisDifferentField) 3120 DifferentField = ExtAddrMode::MultipleFields; 3121 3122 // If NewAddrMode differs in more than one dimension we cannot handle it. 3123 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3124 3125 // If Scale Field is different then we reject. 3126 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3127 3128 // We also must reject the case when base offset is different and 3129 // scale reg is not null, we cannot handle this case due to merge of 3130 // different offsets will be used as ScaleReg. 3131 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3132 !NewAddrMode.ScaledReg); 3133 3134 // We also must reject the case when GV is different and BaseReg installed 3135 // due to we want to use base reg as a merge of GV values. 3136 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3137 !NewAddrMode.HasBaseReg); 3138 3139 // Even if NewAddMode is the same we still need to collect it due to 3140 // original value is different. And later we will need all original values 3141 // as anchors during finding the common Phi node. 3142 if (CanHandle) 3143 AddrModes.emplace_back(NewAddrMode); 3144 else 3145 AddrModes.clear(); 3146 3147 return CanHandle; 3148 } 3149 3150 /// Combine the addressing modes we've collected into a single 3151 /// addressing mode. 3152 /// \return True iff we successfully combined them or we only had one so 3153 /// didn't need to combine them anyway. 3154 bool combineAddrModes() { 3155 // If we have no AddrModes then they can't be combined. 3156 if (AddrModes.size() == 0) 3157 return false; 3158 3159 // A single AddrMode can trivially be combined. 3160 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3161 return true; 3162 3163 // If the AddrModes we collected are all just equal to the value they are 3164 // derived from then combining them wouldn't do anything useful. 3165 if (AllAddrModesTrivial) 3166 return false; 3167 3168 if (!addrModeCombiningAllowed()) 3169 return false; 3170 3171 // Build a map between <original value, basic block where we saw it> to 3172 // value of base register. 3173 // Bail out if there is no common type. 3174 FoldAddrToValueMapping Map; 3175 if (!initializeMap(Map)) 3176 return false; 3177 3178 Value *CommonValue = findCommon(Map); 3179 if (CommonValue) 3180 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3181 return CommonValue != nullptr; 3182 } 3183 3184 private: 3185 /// Initialize Map with anchor values. For address seen 3186 /// we set the value of different field saw in this address. 3187 /// At the same time we find a common type for different field we will 3188 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3189 /// Return false if there is no common type found. 3190 bool initializeMap(FoldAddrToValueMapping &Map) { 3191 // Keep track of keys where the value is null. We will need to replace it 3192 // with constant null when we know the common type. 3193 SmallVector<Value *, 2> NullValue; 3194 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3195 for (auto &AM : AddrModes) { 3196 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3197 if (DV) { 3198 auto *Type = DV->getType(); 3199 if (CommonType && CommonType != Type) 3200 return false; 3201 CommonType = Type; 3202 Map[AM.OriginalValue] = DV; 3203 } else { 3204 NullValue.push_back(AM.OriginalValue); 3205 } 3206 } 3207 assert(CommonType && "At least one non-null value must be!"); 3208 for (auto *V : NullValue) 3209 Map[V] = Constant::getNullValue(CommonType); 3210 return true; 3211 } 3212 3213 /// We have mapping between value A and other value B where B was a field in 3214 /// addressing mode represented by A. Also we have an original value C 3215 /// representing an address we start with. Traversing from C through phi and 3216 /// selects we ended up with A's in a map. This utility function tries to find 3217 /// a value V which is a field in addressing mode C and traversing through phi 3218 /// nodes and selects we will end up in corresponded values B in a map. 3219 /// The utility will create a new Phi/Selects if needed. 3220 // The simple example looks as follows: 3221 // BB1: 3222 // p1 = b1 + 40 3223 // br cond BB2, BB3 3224 // BB2: 3225 // p2 = b2 + 40 3226 // br BB3 3227 // BB3: 3228 // p = phi [p1, BB1], [p2, BB2] 3229 // v = load p 3230 // Map is 3231 // p1 -> b1 3232 // p2 -> b2 3233 // Request is 3234 // p -> ? 3235 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3236 Value *findCommon(FoldAddrToValueMapping &Map) { 3237 // Tracks the simplification of newly created phi nodes. The reason we use 3238 // this mapping is because we will add new created Phi nodes in AddrToBase. 3239 // Simplification of Phi nodes is recursive, so some Phi node may 3240 // be simplified after we added it to AddrToBase. In reality this 3241 // simplification is possible only if original phi/selects were not 3242 // simplified yet. 3243 // Using this mapping we can find the current value in AddrToBase. 3244 SimplificationTracker ST(SQ); 3245 3246 // First step, DFS to create PHI nodes for all intermediate blocks. 3247 // Also fill traverse order for the second step. 3248 SmallVector<Value *, 32> TraverseOrder; 3249 InsertPlaceholders(Map, TraverseOrder, ST); 3250 3251 // Second Step, fill new nodes by merged values and simplify if possible. 3252 FillPlaceholders(Map, TraverseOrder, ST); 3253 3254 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3255 ST.destroyNewNodes(CommonType); 3256 return nullptr; 3257 } 3258 3259 // Now we'd like to match New Phi nodes to existed ones. 3260 unsigned PhiNotMatchedCount = 0; 3261 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3262 ST.destroyNewNodes(CommonType); 3263 return nullptr; 3264 } 3265 3266 auto *Result = ST.Get(Map.find(Original)->second); 3267 if (Result) { 3268 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3269 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3270 } 3271 return Result; 3272 } 3273 3274 /// Try to match PHI node to Candidate. 3275 /// Matcher tracks the matched Phi nodes. 3276 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3277 SmallSetVector<PHIPair, 8> &Matcher, 3278 PhiNodeSet &PhiNodesToMatch) { 3279 SmallVector<PHIPair, 8> WorkList; 3280 Matcher.insert({ PHI, Candidate }); 3281 WorkList.push_back({ PHI, Candidate }); 3282 SmallSet<PHIPair, 8> Visited; 3283 while (!WorkList.empty()) { 3284 auto Item = WorkList.pop_back_val(); 3285 if (!Visited.insert(Item).second) 3286 continue; 3287 // We iterate over all incoming values to Phi to compare them. 3288 // If values are different and both of them Phi and the first one is a 3289 // Phi we added (subject to match) and both of them is in the same basic 3290 // block then we can match our pair if values match. So we state that 3291 // these values match and add it to work list to verify that. 3292 for (auto B : Item.first->blocks()) { 3293 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3294 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3295 if (FirstValue == SecondValue) 3296 continue; 3297 3298 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3299 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3300 3301 // One of them is not Phi or 3302 // The first one is not Phi node from the set we'd like to match or 3303 // Phi nodes from different basic blocks then 3304 // we will not be able to match. 3305 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3306 FirstPhi->getParent() != SecondPhi->getParent()) 3307 return false; 3308 3309 // If we already matched them then continue. 3310 if (Matcher.count({ FirstPhi, SecondPhi })) 3311 continue; 3312 // So the values are different and does not match. So we need them to 3313 // match. 3314 Matcher.insert({ FirstPhi, SecondPhi }); 3315 // But me must check it. 3316 WorkList.push_back({ FirstPhi, SecondPhi }); 3317 } 3318 } 3319 return true; 3320 } 3321 3322 /// For the given set of PHI nodes (in the SimplificationTracker) try 3323 /// to find their equivalents. 3324 /// Returns false if this matching fails and creation of new Phi is disabled. 3325 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3326 unsigned &PhiNotMatchedCount) { 3327 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3328 // order, so the replacements (ReplacePhi) are also done in a deterministic 3329 // order. 3330 SmallSetVector<PHIPair, 8> Matched; 3331 SmallPtrSet<PHINode *, 8> WillNotMatch; 3332 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3333 while (PhiNodesToMatch.size()) { 3334 PHINode *PHI = *PhiNodesToMatch.begin(); 3335 3336 // Add us, if no Phi nodes in the basic block we do not match. 3337 WillNotMatch.clear(); 3338 WillNotMatch.insert(PHI); 3339 3340 // Traverse all Phis until we found equivalent or fail to do that. 3341 bool IsMatched = false; 3342 for (auto &P : PHI->getParent()->phis()) { 3343 if (&P == PHI) 3344 continue; 3345 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3346 break; 3347 // If it does not match, collect all Phi nodes from matcher. 3348 // if we end up with no match, them all these Phi nodes will not match 3349 // later. 3350 for (auto M : Matched) 3351 WillNotMatch.insert(M.first); 3352 Matched.clear(); 3353 } 3354 if (IsMatched) { 3355 // Replace all matched values and erase them. 3356 for (auto MV : Matched) 3357 ST.ReplacePhi(MV.first, MV.second); 3358 Matched.clear(); 3359 continue; 3360 } 3361 // If we are not allowed to create new nodes then bail out. 3362 if (!AllowNewPhiNodes) 3363 return false; 3364 // Just remove all seen values in matcher. They will not match anything. 3365 PhiNotMatchedCount += WillNotMatch.size(); 3366 for (auto *P : WillNotMatch) 3367 PhiNodesToMatch.erase(P); 3368 } 3369 return true; 3370 } 3371 /// Fill the placeholders with values from predecessors and simplify them. 3372 void FillPlaceholders(FoldAddrToValueMapping &Map, 3373 SmallVectorImpl<Value *> &TraverseOrder, 3374 SimplificationTracker &ST) { 3375 while (!TraverseOrder.empty()) { 3376 Value *Current = TraverseOrder.pop_back_val(); 3377 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3378 Value *V = Map[Current]; 3379 3380 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3381 // CurrentValue also must be Select. 3382 auto *CurrentSelect = cast<SelectInst>(Current); 3383 auto *TrueValue = CurrentSelect->getTrueValue(); 3384 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3385 Select->setTrueValue(ST.Get(Map[TrueValue])); 3386 auto *FalseValue = CurrentSelect->getFalseValue(); 3387 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3388 Select->setFalseValue(ST.Get(Map[FalseValue])); 3389 } else { 3390 // Must be a Phi node then. 3391 PHINode *PHI = cast<PHINode>(V); 3392 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3393 // Fill the Phi node with values from predecessors. 3394 for (auto B : predecessors(PHI->getParent())) { 3395 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3396 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3397 PHI->addIncoming(ST.Get(Map[PV]), B); 3398 } 3399 } 3400 Map[Current] = ST.Simplify(V); 3401 } 3402 } 3403 3404 /// Starting from original value recursively iterates over def-use chain up to 3405 /// known ending values represented in a map. For each traversed phi/select 3406 /// inserts a placeholder Phi or Select. 3407 /// Reports all new created Phi/Select nodes by adding them to set. 3408 /// Also reports and order in what values have been traversed. 3409 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3410 SmallVectorImpl<Value *> &TraverseOrder, 3411 SimplificationTracker &ST) { 3412 SmallVector<Value *, 32> Worklist; 3413 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3414 "Address must be a Phi or Select node"); 3415 auto *Dummy = UndefValue::get(CommonType); 3416 Worklist.push_back(Original); 3417 while (!Worklist.empty()) { 3418 Value *Current = Worklist.pop_back_val(); 3419 // if it is already visited or it is an ending value then skip it. 3420 if (Map.find(Current) != Map.end()) 3421 continue; 3422 TraverseOrder.push_back(Current); 3423 3424 // CurrentValue must be a Phi node or select. All others must be covered 3425 // by anchors. 3426 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3427 // Is it OK to get metadata from OrigSelect?! 3428 // Create a Select placeholder with dummy value. 3429 SelectInst *Select = SelectInst::Create( 3430 CurrentSelect->getCondition(), Dummy, Dummy, 3431 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3432 Map[Current] = Select; 3433 ST.insertNewSelect(Select); 3434 // We are interested in True and False values. 3435 Worklist.push_back(CurrentSelect->getTrueValue()); 3436 Worklist.push_back(CurrentSelect->getFalseValue()); 3437 } else { 3438 // It must be a Phi node then. 3439 PHINode *CurrentPhi = cast<PHINode>(Current); 3440 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3441 PHINode *PHI = 3442 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3443 Map[Current] = PHI; 3444 ST.insertNewPhi(PHI); 3445 for (Value *P : CurrentPhi->incoming_values()) 3446 Worklist.push_back(P); 3447 } 3448 } 3449 } 3450 3451 bool addrModeCombiningAllowed() { 3452 if (DisableComplexAddrModes) 3453 return false; 3454 switch (DifferentField) { 3455 default: 3456 return false; 3457 case ExtAddrMode::BaseRegField: 3458 return AddrSinkCombineBaseReg; 3459 case ExtAddrMode::BaseGVField: 3460 return AddrSinkCombineBaseGV; 3461 case ExtAddrMode::BaseOffsField: 3462 return AddrSinkCombineBaseOffs; 3463 case ExtAddrMode::ScaledRegField: 3464 return AddrSinkCombineScaledReg; 3465 } 3466 } 3467 }; 3468 } // end anonymous namespace 3469 3470 /// Try adding ScaleReg*Scale to the current addressing mode. 3471 /// Return true and update AddrMode if this addr mode is legal for the target, 3472 /// false if not. 3473 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3474 unsigned Depth) { 3475 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3476 // mode. Just process that directly. 3477 if (Scale == 1) 3478 return matchAddr(ScaleReg, Depth); 3479 3480 // If the scale is 0, it takes nothing to add this. 3481 if (Scale == 0) 3482 return true; 3483 3484 // If we already have a scale of this value, we can add to it, otherwise, we 3485 // need an available scale field. 3486 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3487 return false; 3488 3489 ExtAddrMode TestAddrMode = AddrMode; 3490 3491 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3492 // [A+B + A*7] -> [B+A*8]. 3493 TestAddrMode.Scale += Scale; 3494 TestAddrMode.ScaledReg = ScaleReg; 3495 3496 // If the new address isn't legal, bail out. 3497 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3498 return false; 3499 3500 // It was legal, so commit it. 3501 AddrMode = TestAddrMode; 3502 3503 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3504 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3505 // X*Scale + C*Scale to addr mode. 3506 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3507 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3508 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3509 TestAddrMode.InBounds = false; 3510 TestAddrMode.ScaledReg = AddLHS; 3511 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3512 3513 // If this addressing mode is legal, commit it and remember that we folded 3514 // this instruction. 3515 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3516 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3517 AddrMode = TestAddrMode; 3518 return true; 3519 } 3520 } 3521 3522 // Otherwise, not (x+c)*scale, just return what we have. 3523 return true; 3524 } 3525 3526 /// This is a little filter, which returns true if an addressing computation 3527 /// involving I might be folded into a load/store accessing it. 3528 /// This doesn't need to be perfect, but needs to accept at least 3529 /// the set of instructions that MatchOperationAddr can. 3530 static bool MightBeFoldableInst(Instruction *I) { 3531 switch (I->getOpcode()) { 3532 case Instruction::BitCast: 3533 case Instruction::AddrSpaceCast: 3534 // Don't touch identity bitcasts. 3535 if (I->getType() == I->getOperand(0)->getType()) 3536 return false; 3537 return I->getType()->isIntOrPtrTy(); 3538 case Instruction::PtrToInt: 3539 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3540 return true; 3541 case Instruction::IntToPtr: 3542 // We know the input is intptr_t, so this is foldable. 3543 return true; 3544 case Instruction::Add: 3545 return true; 3546 case Instruction::Mul: 3547 case Instruction::Shl: 3548 // Can only handle X*C and X << C. 3549 return isa<ConstantInt>(I->getOperand(1)); 3550 case Instruction::GetElementPtr: 3551 return true; 3552 default: 3553 return false; 3554 } 3555 } 3556 3557 /// Check whether or not \p Val is a legal instruction for \p TLI. 3558 /// \note \p Val is assumed to be the product of some type promotion. 3559 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3560 /// to be legal, as the non-promoted value would have had the same state. 3561 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3562 const DataLayout &DL, Value *Val) { 3563 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3564 if (!PromotedInst) 3565 return false; 3566 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3567 // If the ISDOpcode is undefined, it was undefined before the promotion. 3568 if (!ISDOpcode) 3569 return true; 3570 // Otherwise, check if the promoted instruction is legal or not. 3571 return TLI.isOperationLegalOrCustom( 3572 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3573 } 3574 3575 namespace { 3576 3577 /// Hepler class to perform type promotion. 3578 class TypePromotionHelper { 3579 /// Utility function to add a promoted instruction \p ExtOpnd to 3580 /// \p PromotedInsts and record the type of extension we have seen. 3581 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3582 Instruction *ExtOpnd, 3583 bool IsSExt) { 3584 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3585 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3586 if (It != PromotedInsts.end()) { 3587 // If the new extension is same as original, the information in 3588 // PromotedInsts[ExtOpnd] is still correct. 3589 if (It->second.getInt() == ExtTy) 3590 return; 3591 3592 // Now the new extension is different from old extension, we make 3593 // the type information invalid by setting extension type to 3594 // BothExtension. 3595 ExtTy = BothExtension; 3596 } 3597 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3598 } 3599 3600 /// Utility function to query the original type of instruction \p Opnd 3601 /// with a matched extension type. If the extension doesn't match, we 3602 /// cannot use the information we had on the original type. 3603 /// BothExtension doesn't match any extension type. 3604 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3605 Instruction *Opnd, 3606 bool IsSExt) { 3607 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3608 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3609 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3610 return It->second.getPointer(); 3611 return nullptr; 3612 } 3613 3614 /// Utility function to check whether or not a sign or zero extension 3615 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3616 /// either using the operands of \p Inst or promoting \p Inst. 3617 /// The type of the extension is defined by \p IsSExt. 3618 /// In other words, check if: 3619 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3620 /// #1 Promotion applies: 3621 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3622 /// #2 Operand reuses: 3623 /// ext opnd1 to ConsideredExtType. 3624 /// \p PromotedInsts maps the instructions to their type before promotion. 3625 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3626 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3627 3628 /// Utility function to determine if \p OpIdx should be promoted when 3629 /// promoting \p Inst. 3630 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3631 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3632 } 3633 3634 /// Utility function to promote the operand of \p Ext when this 3635 /// operand is a promotable trunc or sext or zext. 3636 /// \p PromotedInsts maps the instructions to their type before promotion. 3637 /// \p CreatedInstsCost[out] contains the cost of all instructions 3638 /// created to promote the operand of Ext. 3639 /// Newly added extensions are inserted in \p Exts. 3640 /// Newly added truncates are inserted in \p Truncs. 3641 /// Should never be called directly. 3642 /// \return The promoted value which is used instead of Ext. 3643 static Value *promoteOperandForTruncAndAnyExt( 3644 Instruction *Ext, TypePromotionTransaction &TPT, 3645 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3646 SmallVectorImpl<Instruction *> *Exts, 3647 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3648 3649 /// Utility function to promote the operand of \p Ext when this 3650 /// operand is promotable and is not a supported trunc or sext. 3651 /// \p PromotedInsts maps the instructions to their type before promotion. 3652 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3653 /// created to promote the operand of Ext. 3654 /// Newly added extensions are inserted in \p Exts. 3655 /// Newly added truncates are inserted in \p Truncs. 3656 /// Should never be called directly. 3657 /// \return The promoted value which is used instead of Ext. 3658 static Value *promoteOperandForOther(Instruction *Ext, 3659 TypePromotionTransaction &TPT, 3660 InstrToOrigTy &PromotedInsts, 3661 unsigned &CreatedInstsCost, 3662 SmallVectorImpl<Instruction *> *Exts, 3663 SmallVectorImpl<Instruction *> *Truncs, 3664 const TargetLowering &TLI, bool IsSExt); 3665 3666 /// \see promoteOperandForOther. 3667 static Value *signExtendOperandForOther( 3668 Instruction *Ext, TypePromotionTransaction &TPT, 3669 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3670 SmallVectorImpl<Instruction *> *Exts, 3671 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3672 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3673 Exts, Truncs, TLI, true); 3674 } 3675 3676 /// \see promoteOperandForOther. 3677 static Value *zeroExtendOperandForOther( 3678 Instruction *Ext, TypePromotionTransaction &TPT, 3679 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3680 SmallVectorImpl<Instruction *> *Exts, 3681 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3682 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3683 Exts, Truncs, TLI, false); 3684 } 3685 3686 public: 3687 /// Type for the utility function that promotes the operand of Ext. 3688 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3689 InstrToOrigTy &PromotedInsts, 3690 unsigned &CreatedInstsCost, 3691 SmallVectorImpl<Instruction *> *Exts, 3692 SmallVectorImpl<Instruction *> *Truncs, 3693 const TargetLowering &TLI); 3694 3695 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3696 /// action to promote the operand of \p Ext instead of using Ext. 3697 /// \return NULL if no promotable action is possible with the current 3698 /// sign extension. 3699 /// \p InsertedInsts keeps track of all the instructions inserted by the 3700 /// other CodeGenPrepare optimizations. This information is important 3701 /// because we do not want to promote these instructions as CodeGenPrepare 3702 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3703 /// \p PromotedInsts maps the instructions to their type before promotion. 3704 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3705 const TargetLowering &TLI, 3706 const InstrToOrigTy &PromotedInsts); 3707 }; 3708 3709 } // end anonymous namespace 3710 3711 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3712 Type *ConsideredExtType, 3713 const InstrToOrigTy &PromotedInsts, 3714 bool IsSExt) { 3715 // The promotion helper does not know how to deal with vector types yet. 3716 // To be able to fix that, we would need to fix the places where we 3717 // statically extend, e.g., constants and such. 3718 if (Inst->getType()->isVectorTy()) 3719 return false; 3720 3721 // We can always get through zext. 3722 if (isa<ZExtInst>(Inst)) 3723 return true; 3724 3725 // sext(sext) is ok too. 3726 if (IsSExt && isa<SExtInst>(Inst)) 3727 return true; 3728 3729 // We can get through binary operator, if it is legal. In other words, the 3730 // binary operator must have a nuw or nsw flag. 3731 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3732 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3733 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3734 (IsSExt && BinOp->hasNoSignedWrap()))) 3735 return true; 3736 3737 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3738 if ((Inst->getOpcode() == Instruction::And || 3739 Inst->getOpcode() == Instruction::Or)) 3740 return true; 3741 3742 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3743 if (Inst->getOpcode() == Instruction::Xor) { 3744 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3745 // Make sure it is not a NOT. 3746 if (Cst && !Cst->getValue().isAllOnesValue()) 3747 return true; 3748 } 3749 3750 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3751 // It may change a poisoned value into a regular value, like 3752 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3753 // poisoned value regular value 3754 // It should be OK since undef covers valid value. 3755 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3756 return true; 3757 3758 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3759 // It may change a poisoned value into a regular value, like 3760 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3761 // poisoned value regular value 3762 // It should be OK since undef covers valid value. 3763 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3764 const Instruction *ExtInst = 3765 dyn_cast<const Instruction>(*Inst->user_begin()); 3766 if (ExtInst->hasOneUse()) { 3767 const Instruction *AndInst = 3768 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3769 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3770 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3771 if (Cst && 3772 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3773 return true; 3774 } 3775 } 3776 } 3777 3778 // Check if we can do the following simplification. 3779 // ext(trunc(opnd)) --> ext(opnd) 3780 if (!isa<TruncInst>(Inst)) 3781 return false; 3782 3783 Value *OpndVal = Inst->getOperand(0); 3784 // Check if we can use this operand in the extension. 3785 // If the type is larger than the result type of the extension, we cannot. 3786 if (!OpndVal->getType()->isIntegerTy() || 3787 OpndVal->getType()->getIntegerBitWidth() > 3788 ConsideredExtType->getIntegerBitWidth()) 3789 return false; 3790 3791 // If the operand of the truncate is not an instruction, we will not have 3792 // any information on the dropped bits. 3793 // (Actually we could for constant but it is not worth the extra logic). 3794 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3795 if (!Opnd) 3796 return false; 3797 3798 // Check if the source of the type is narrow enough. 3799 // I.e., check that trunc just drops extended bits of the same kind of 3800 // the extension. 3801 // #1 get the type of the operand and check the kind of the extended bits. 3802 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3803 if (OpndType) 3804 ; 3805 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3806 OpndType = Opnd->getOperand(0)->getType(); 3807 else 3808 return false; 3809 3810 // #2 check that the truncate just drops extended bits. 3811 return Inst->getType()->getIntegerBitWidth() >= 3812 OpndType->getIntegerBitWidth(); 3813 } 3814 3815 TypePromotionHelper::Action TypePromotionHelper::getAction( 3816 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3817 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3818 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3819 "Unexpected instruction type"); 3820 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3821 Type *ExtTy = Ext->getType(); 3822 bool IsSExt = isa<SExtInst>(Ext); 3823 // If the operand of the extension is not an instruction, we cannot 3824 // get through. 3825 // If it, check we can get through. 3826 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3827 return nullptr; 3828 3829 // Do not promote if the operand has been added by codegenprepare. 3830 // Otherwise, it means we are undoing an optimization that is likely to be 3831 // redone, thus causing potential infinite loop. 3832 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3833 return nullptr; 3834 3835 // SExt or Trunc instructions. 3836 // Return the related handler. 3837 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3838 isa<ZExtInst>(ExtOpnd)) 3839 return promoteOperandForTruncAndAnyExt; 3840 3841 // Regular instruction. 3842 // Abort early if we will have to insert non-free instructions. 3843 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3844 return nullptr; 3845 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3846 } 3847 3848 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3849 Instruction *SExt, TypePromotionTransaction &TPT, 3850 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3851 SmallVectorImpl<Instruction *> *Exts, 3852 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3853 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3854 // get through it and this method should not be called. 3855 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3856 Value *ExtVal = SExt; 3857 bool HasMergedNonFreeExt = false; 3858 if (isa<ZExtInst>(SExtOpnd)) { 3859 // Replace s|zext(zext(opnd)) 3860 // => zext(opnd). 3861 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3862 Value *ZExt = 3863 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3864 TPT.replaceAllUsesWith(SExt, ZExt); 3865 TPT.eraseInstruction(SExt); 3866 ExtVal = ZExt; 3867 } else { 3868 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3869 // => z|sext(opnd). 3870 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3871 } 3872 CreatedInstsCost = 0; 3873 3874 // Remove dead code. 3875 if (SExtOpnd->use_empty()) 3876 TPT.eraseInstruction(SExtOpnd); 3877 3878 // Check if the extension is still needed. 3879 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3880 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3881 if (ExtInst) { 3882 if (Exts) 3883 Exts->push_back(ExtInst); 3884 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3885 } 3886 return ExtVal; 3887 } 3888 3889 // At this point we have: ext ty opnd to ty. 3890 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3891 Value *NextVal = ExtInst->getOperand(0); 3892 TPT.eraseInstruction(ExtInst, NextVal); 3893 return NextVal; 3894 } 3895 3896 Value *TypePromotionHelper::promoteOperandForOther( 3897 Instruction *Ext, TypePromotionTransaction &TPT, 3898 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3899 SmallVectorImpl<Instruction *> *Exts, 3900 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3901 bool IsSExt) { 3902 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3903 // get through it and this method should not be called. 3904 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3905 CreatedInstsCost = 0; 3906 if (!ExtOpnd->hasOneUse()) { 3907 // ExtOpnd will be promoted. 3908 // All its uses, but Ext, will need to use a truncated value of the 3909 // promoted version. 3910 // Create the truncate now. 3911 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3912 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3913 // Insert it just after the definition. 3914 ITrunc->moveAfter(ExtOpnd); 3915 if (Truncs) 3916 Truncs->push_back(ITrunc); 3917 } 3918 3919 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3920 // Restore the operand of Ext (which has been replaced by the previous call 3921 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3922 TPT.setOperand(Ext, 0, ExtOpnd); 3923 } 3924 3925 // Get through the Instruction: 3926 // 1. Update its type. 3927 // 2. Replace the uses of Ext by Inst. 3928 // 3. Extend each operand that needs to be extended. 3929 3930 // Remember the original type of the instruction before promotion. 3931 // This is useful to know that the high bits are sign extended bits. 3932 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3933 // Step #1. 3934 TPT.mutateType(ExtOpnd, Ext->getType()); 3935 // Step #2. 3936 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3937 // Step #3. 3938 Instruction *ExtForOpnd = Ext; 3939 3940 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3941 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3942 ++OpIdx) { 3943 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3944 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3945 !shouldExtOperand(ExtOpnd, OpIdx)) { 3946 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3947 continue; 3948 } 3949 // Check if we can statically extend the operand. 3950 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3951 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3952 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3953 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3954 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3955 : Cst->getValue().zext(BitWidth); 3956 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3957 continue; 3958 } 3959 // UndefValue are typed, so we have to statically sign extend them. 3960 if (isa<UndefValue>(Opnd)) { 3961 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3962 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3963 continue; 3964 } 3965 3966 // Otherwise we have to explicitly sign extend the operand. 3967 // Check if Ext was reused to extend an operand. 3968 if (!ExtForOpnd) { 3969 // If yes, create a new one. 3970 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3971 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3972 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3973 if (!isa<Instruction>(ValForExtOpnd)) { 3974 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3975 continue; 3976 } 3977 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3978 } 3979 if (Exts) 3980 Exts->push_back(ExtForOpnd); 3981 TPT.setOperand(ExtForOpnd, 0, Opnd); 3982 3983 // Move the sign extension before the insertion point. 3984 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3985 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3986 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3987 // If more sext are required, new instructions will have to be created. 3988 ExtForOpnd = nullptr; 3989 } 3990 if (ExtForOpnd == Ext) { 3991 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3992 TPT.eraseInstruction(Ext); 3993 } 3994 return ExtOpnd; 3995 } 3996 3997 /// Check whether or not promoting an instruction to a wider type is profitable. 3998 /// \p NewCost gives the cost of extension instructions created by the 3999 /// promotion. 4000 /// \p OldCost gives the cost of extension instructions before the promotion 4001 /// plus the number of instructions that have been 4002 /// matched in the addressing mode the promotion. 4003 /// \p PromotedOperand is the value that has been promoted. 4004 /// \return True if the promotion is profitable, false otherwise. 4005 bool AddressingModeMatcher::isPromotionProfitable( 4006 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4007 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4008 << '\n'); 4009 // The cost of the new extensions is greater than the cost of the 4010 // old extension plus what we folded. 4011 // This is not profitable. 4012 if (NewCost > OldCost) 4013 return false; 4014 if (NewCost < OldCost) 4015 return true; 4016 // The promotion is neutral but it may help folding the sign extension in 4017 // loads for instance. 4018 // Check that we did not create an illegal instruction. 4019 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4020 } 4021 4022 /// Given an instruction or constant expr, see if we can fold the operation 4023 /// into the addressing mode. If so, update the addressing mode and return 4024 /// true, otherwise return false without modifying AddrMode. 4025 /// If \p MovedAway is not NULL, it contains the information of whether or 4026 /// not AddrInst has to be folded into the addressing mode on success. 4027 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4028 /// because it has been moved away. 4029 /// Thus AddrInst must not be added in the matched instructions. 4030 /// This state can happen when AddrInst is a sext, since it may be moved away. 4031 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4032 /// not be referenced anymore. 4033 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4034 unsigned Depth, 4035 bool *MovedAway) { 4036 // Avoid exponential behavior on extremely deep expression trees. 4037 if (Depth >= 5) return false; 4038 4039 // By default, all matched instructions stay in place. 4040 if (MovedAway) 4041 *MovedAway = false; 4042 4043 switch (Opcode) { 4044 case Instruction::PtrToInt: 4045 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4046 return matchAddr(AddrInst->getOperand(0), Depth); 4047 case Instruction::IntToPtr: { 4048 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4049 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4050 // This inttoptr is a no-op if the integer type is pointer sized. 4051 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4052 return matchAddr(AddrInst->getOperand(0), Depth); 4053 return false; 4054 } 4055 case Instruction::BitCast: 4056 // BitCast is always a noop, and we can handle it as long as it is 4057 // int->int or pointer->pointer (we don't want int<->fp or something). 4058 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4059 // Don't touch identity bitcasts. These were probably put here by LSR, 4060 // and we don't want to mess around with them. Assume it knows what it 4061 // is doing. 4062 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4063 return matchAddr(AddrInst->getOperand(0), Depth); 4064 return false; 4065 case Instruction::AddrSpaceCast: { 4066 unsigned SrcAS 4067 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4068 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4069 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4070 return matchAddr(AddrInst->getOperand(0), Depth); 4071 return false; 4072 } 4073 case Instruction::Add: { 4074 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4075 ExtAddrMode BackupAddrMode = AddrMode; 4076 unsigned OldSize = AddrModeInsts.size(); 4077 // Start a transaction at this point. 4078 // The LHS may match but not the RHS. 4079 // Therefore, we need a higher level restoration point to undo partially 4080 // matched operation. 4081 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4082 TPT.getRestorationPoint(); 4083 4084 AddrMode.InBounds = false; 4085 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4086 matchAddr(AddrInst->getOperand(0), Depth+1)) 4087 return true; 4088 4089 // Restore the old addr mode info. 4090 AddrMode = BackupAddrMode; 4091 AddrModeInsts.resize(OldSize); 4092 TPT.rollback(LastKnownGood); 4093 4094 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4095 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4096 matchAddr(AddrInst->getOperand(1), Depth+1)) 4097 return true; 4098 4099 // Otherwise we definitely can't merge the ADD in. 4100 AddrMode = BackupAddrMode; 4101 AddrModeInsts.resize(OldSize); 4102 TPT.rollback(LastKnownGood); 4103 break; 4104 } 4105 //case Instruction::Or: 4106 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4107 //break; 4108 case Instruction::Mul: 4109 case Instruction::Shl: { 4110 // Can only handle X*C and X << C. 4111 AddrMode.InBounds = false; 4112 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4113 if (!RHS || RHS->getBitWidth() > 64) 4114 return false; 4115 int64_t Scale = RHS->getSExtValue(); 4116 if (Opcode == Instruction::Shl) 4117 Scale = 1LL << Scale; 4118 4119 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4120 } 4121 case Instruction::GetElementPtr: { 4122 // Scan the GEP. We check it if it contains constant offsets and at most 4123 // one variable offset. 4124 int VariableOperand = -1; 4125 unsigned VariableScale = 0; 4126 4127 int64_t ConstantOffset = 0; 4128 gep_type_iterator GTI = gep_type_begin(AddrInst); 4129 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4130 if (StructType *STy = GTI.getStructTypeOrNull()) { 4131 const StructLayout *SL = DL.getStructLayout(STy); 4132 unsigned Idx = 4133 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4134 ConstantOffset += SL->getElementOffset(Idx); 4135 } else { 4136 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4137 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4138 const APInt &CVal = CI->getValue(); 4139 if (CVal.getMinSignedBits() <= 64) { 4140 ConstantOffset += CVal.getSExtValue() * TypeSize; 4141 continue; 4142 } 4143 } 4144 if (TypeSize) { // Scales of zero don't do anything. 4145 // We only allow one variable index at the moment. 4146 if (VariableOperand != -1) 4147 return false; 4148 4149 // Remember the variable index. 4150 VariableOperand = i; 4151 VariableScale = TypeSize; 4152 } 4153 } 4154 } 4155 4156 // A common case is for the GEP to only do a constant offset. In this case, 4157 // just add it to the disp field and check validity. 4158 if (VariableOperand == -1) { 4159 AddrMode.BaseOffs += ConstantOffset; 4160 if (ConstantOffset == 0 || 4161 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4162 // Check to see if we can fold the base pointer in too. 4163 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4164 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4165 AddrMode.InBounds = false; 4166 return true; 4167 } 4168 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4169 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4170 ConstantOffset > 0) { 4171 // Record GEPs with non-zero offsets as candidates for splitting in the 4172 // event that the offset cannot fit into the r+i addressing mode. 4173 // Simple and common case that only one GEP is used in calculating the 4174 // address for the memory access. 4175 Value *Base = AddrInst->getOperand(0); 4176 auto *BaseI = dyn_cast<Instruction>(Base); 4177 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4178 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4179 (BaseI && !isa<CastInst>(BaseI) && 4180 !isa<GetElementPtrInst>(BaseI))) { 4181 // If the base is an instruction, make sure the GEP is not in the same 4182 // basic block as the base. If the base is an argument or global 4183 // value, make sure the GEP is not in the entry block. Otherwise, 4184 // instruction selection can undo the split. Also make sure the 4185 // parent block allows inserting non-PHI instructions before the 4186 // terminator. 4187 BasicBlock *Parent = 4188 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4189 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4190 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4191 } 4192 } 4193 AddrMode.BaseOffs -= ConstantOffset; 4194 return false; 4195 } 4196 4197 // Save the valid addressing mode in case we can't match. 4198 ExtAddrMode BackupAddrMode = AddrMode; 4199 unsigned OldSize = AddrModeInsts.size(); 4200 4201 // See if the scale and offset amount is valid for this target. 4202 AddrMode.BaseOffs += ConstantOffset; 4203 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4204 AddrMode.InBounds = false; 4205 4206 // Match the base operand of the GEP. 4207 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4208 // If it couldn't be matched, just stuff the value in a register. 4209 if (AddrMode.HasBaseReg) { 4210 AddrMode = BackupAddrMode; 4211 AddrModeInsts.resize(OldSize); 4212 return false; 4213 } 4214 AddrMode.HasBaseReg = true; 4215 AddrMode.BaseReg = AddrInst->getOperand(0); 4216 } 4217 4218 // Match the remaining variable portion of the GEP. 4219 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4220 Depth)) { 4221 // If it couldn't be matched, try stuffing the base into a register 4222 // instead of matching it, and retrying the match of the scale. 4223 AddrMode = BackupAddrMode; 4224 AddrModeInsts.resize(OldSize); 4225 if (AddrMode.HasBaseReg) 4226 return false; 4227 AddrMode.HasBaseReg = true; 4228 AddrMode.BaseReg = AddrInst->getOperand(0); 4229 AddrMode.BaseOffs += ConstantOffset; 4230 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4231 VariableScale, Depth)) { 4232 // If even that didn't work, bail. 4233 AddrMode = BackupAddrMode; 4234 AddrModeInsts.resize(OldSize); 4235 return false; 4236 } 4237 } 4238 4239 return true; 4240 } 4241 case Instruction::SExt: 4242 case Instruction::ZExt: { 4243 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4244 if (!Ext) 4245 return false; 4246 4247 // Try to move this ext out of the way of the addressing mode. 4248 // Ask for a method for doing so. 4249 TypePromotionHelper::Action TPH = 4250 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4251 if (!TPH) 4252 return false; 4253 4254 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4255 TPT.getRestorationPoint(); 4256 unsigned CreatedInstsCost = 0; 4257 unsigned ExtCost = !TLI.isExtFree(Ext); 4258 Value *PromotedOperand = 4259 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4260 // SExt has been moved away. 4261 // Thus either it will be rematched later in the recursive calls or it is 4262 // gone. Anyway, we must not fold it into the addressing mode at this point. 4263 // E.g., 4264 // op = add opnd, 1 4265 // idx = ext op 4266 // addr = gep base, idx 4267 // is now: 4268 // promotedOpnd = ext opnd <- no match here 4269 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4270 // addr = gep base, op <- match 4271 if (MovedAway) 4272 *MovedAway = true; 4273 4274 assert(PromotedOperand && 4275 "TypePromotionHelper should have filtered out those cases"); 4276 4277 ExtAddrMode BackupAddrMode = AddrMode; 4278 unsigned OldSize = AddrModeInsts.size(); 4279 4280 if (!matchAddr(PromotedOperand, Depth) || 4281 // The total of the new cost is equal to the cost of the created 4282 // instructions. 4283 // The total of the old cost is equal to the cost of the extension plus 4284 // what we have saved in the addressing mode. 4285 !isPromotionProfitable(CreatedInstsCost, 4286 ExtCost + (AddrModeInsts.size() - OldSize), 4287 PromotedOperand)) { 4288 AddrMode = BackupAddrMode; 4289 AddrModeInsts.resize(OldSize); 4290 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4291 TPT.rollback(LastKnownGood); 4292 return false; 4293 } 4294 return true; 4295 } 4296 } 4297 return false; 4298 } 4299 4300 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4301 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4302 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4303 /// for the target. 4304 /// 4305 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4306 // Start a transaction at this point that we will rollback if the matching 4307 // fails. 4308 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4309 TPT.getRestorationPoint(); 4310 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4311 // Fold in immediates if legal for the target. 4312 AddrMode.BaseOffs += CI->getSExtValue(); 4313 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4314 return true; 4315 AddrMode.BaseOffs -= CI->getSExtValue(); 4316 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4317 // If this is a global variable, try to fold it into the addressing mode. 4318 if (!AddrMode.BaseGV) { 4319 AddrMode.BaseGV = GV; 4320 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4321 return true; 4322 AddrMode.BaseGV = nullptr; 4323 } 4324 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4325 ExtAddrMode BackupAddrMode = AddrMode; 4326 unsigned OldSize = AddrModeInsts.size(); 4327 4328 // Check to see if it is possible to fold this operation. 4329 bool MovedAway = false; 4330 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4331 // This instruction may have been moved away. If so, there is nothing 4332 // to check here. 4333 if (MovedAway) 4334 return true; 4335 // Okay, it's possible to fold this. Check to see if it is actually 4336 // *profitable* to do so. We use a simple cost model to avoid increasing 4337 // register pressure too much. 4338 if (I->hasOneUse() || 4339 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4340 AddrModeInsts.push_back(I); 4341 return true; 4342 } 4343 4344 // It isn't profitable to do this, roll back. 4345 //cerr << "NOT FOLDING: " << *I; 4346 AddrMode = BackupAddrMode; 4347 AddrModeInsts.resize(OldSize); 4348 TPT.rollback(LastKnownGood); 4349 } 4350 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4351 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4352 return true; 4353 TPT.rollback(LastKnownGood); 4354 } else if (isa<ConstantPointerNull>(Addr)) { 4355 // Null pointer gets folded without affecting the addressing mode. 4356 return true; 4357 } 4358 4359 // Worse case, the target should support [reg] addressing modes. :) 4360 if (!AddrMode.HasBaseReg) { 4361 AddrMode.HasBaseReg = true; 4362 AddrMode.BaseReg = Addr; 4363 // Still check for legality in case the target supports [imm] but not [i+r]. 4364 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4365 return true; 4366 AddrMode.HasBaseReg = false; 4367 AddrMode.BaseReg = nullptr; 4368 } 4369 4370 // If the base register is already taken, see if we can do [r+r]. 4371 if (AddrMode.Scale == 0) { 4372 AddrMode.Scale = 1; 4373 AddrMode.ScaledReg = Addr; 4374 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4375 return true; 4376 AddrMode.Scale = 0; 4377 AddrMode.ScaledReg = nullptr; 4378 } 4379 // Couldn't match. 4380 TPT.rollback(LastKnownGood); 4381 return false; 4382 } 4383 4384 /// Check to see if all uses of OpVal by the specified inline asm call are due 4385 /// to memory operands. If so, return true, otherwise return false. 4386 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4387 const TargetLowering &TLI, 4388 const TargetRegisterInfo &TRI) { 4389 const Function *F = CI->getFunction(); 4390 TargetLowering::AsmOperandInfoVector TargetConstraints = 4391 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4392 ImmutableCallSite(CI)); 4393 4394 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4395 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4396 4397 // Compute the constraint code and ConstraintType to use. 4398 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4399 4400 // If this asm operand is our Value*, and if it isn't an indirect memory 4401 // operand, we can't fold it! 4402 if (OpInfo.CallOperandVal == OpVal && 4403 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4404 !OpInfo.isIndirect)) 4405 return false; 4406 } 4407 4408 return true; 4409 } 4410 4411 // Max number of memory uses to look at before aborting the search to conserve 4412 // compile time. 4413 static constexpr int MaxMemoryUsesToScan = 20; 4414 4415 /// Recursively walk all the uses of I until we find a memory use. 4416 /// If we find an obviously non-foldable instruction, return true. 4417 /// Add the ultimately found memory instructions to MemoryUses. 4418 static bool FindAllMemoryUses( 4419 Instruction *I, 4420 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4421 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4422 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4423 // If we already considered this instruction, we're done. 4424 if (!ConsideredInsts.insert(I).second) 4425 return false; 4426 4427 // If this is an obviously unfoldable instruction, bail out. 4428 if (!MightBeFoldableInst(I)) 4429 return true; 4430 4431 const bool OptSize = I->getFunction()->optForSize(); 4432 4433 // Loop over all the uses, recursively processing them. 4434 for (Use &U : I->uses()) { 4435 // Conservatively return true if we're seeing a large number or a deep chain 4436 // of users. This avoids excessive compilation times in pathological cases. 4437 if (SeenInsts++ >= MaxMemoryUsesToScan) 4438 return true; 4439 4440 Instruction *UserI = cast<Instruction>(U.getUser()); 4441 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4442 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4443 continue; 4444 } 4445 4446 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4447 unsigned opNo = U.getOperandNo(); 4448 if (opNo != StoreInst::getPointerOperandIndex()) 4449 return true; // Storing addr, not into addr. 4450 MemoryUses.push_back(std::make_pair(SI, opNo)); 4451 continue; 4452 } 4453 4454 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4455 unsigned opNo = U.getOperandNo(); 4456 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4457 return true; // Storing addr, not into addr. 4458 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4459 continue; 4460 } 4461 4462 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4463 unsigned opNo = U.getOperandNo(); 4464 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4465 return true; // Storing addr, not into addr. 4466 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4467 continue; 4468 } 4469 4470 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4471 // If this is a cold call, we can sink the addressing calculation into 4472 // the cold path. See optimizeCallInst 4473 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4474 continue; 4475 4476 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4477 if (!IA) return true; 4478 4479 // If this is a memory operand, we're cool, otherwise bail out. 4480 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4481 return true; 4482 continue; 4483 } 4484 4485 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4486 SeenInsts)) 4487 return true; 4488 } 4489 4490 return false; 4491 } 4492 4493 /// Return true if Val is already known to be live at the use site that we're 4494 /// folding it into. If so, there is no cost to include it in the addressing 4495 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4496 /// instruction already. 4497 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4498 Value *KnownLive2) { 4499 // If Val is either of the known-live values, we know it is live! 4500 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4501 return true; 4502 4503 // All values other than instructions and arguments (e.g. constants) are live. 4504 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4505 4506 // If Val is a constant sized alloca in the entry block, it is live, this is 4507 // true because it is just a reference to the stack/frame pointer, which is 4508 // live for the whole function. 4509 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4510 if (AI->isStaticAlloca()) 4511 return true; 4512 4513 // Check to see if this value is already used in the memory instruction's 4514 // block. If so, it's already live into the block at the very least, so we 4515 // can reasonably fold it. 4516 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4517 } 4518 4519 /// It is possible for the addressing mode of the machine to fold the specified 4520 /// instruction into a load or store that ultimately uses it. 4521 /// However, the specified instruction has multiple uses. 4522 /// Given this, it may actually increase register pressure to fold it 4523 /// into the load. For example, consider this code: 4524 /// 4525 /// X = ... 4526 /// Y = X+1 4527 /// use(Y) -> nonload/store 4528 /// Z = Y+1 4529 /// load Z 4530 /// 4531 /// In this case, Y has multiple uses, and can be folded into the load of Z 4532 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4533 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4534 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4535 /// number of computations either. 4536 /// 4537 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4538 /// X was live across 'load Z' for other reasons, we actually *would* want to 4539 /// fold the addressing mode in the Z case. This would make Y die earlier. 4540 bool AddressingModeMatcher:: 4541 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4542 ExtAddrMode &AMAfter) { 4543 if (IgnoreProfitability) return true; 4544 4545 // AMBefore is the addressing mode before this instruction was folded into it, 4546 // and AMAfter is the addressing mode after the instruction was folded. Get 4547 // the set of registers referenced by AMAfter and subtract out those 4548 // referenced by AMBefore: this is the set of values which folding in this 4549 // address extends the lifetime of. 4550 // 4551 // Note that there are only two potential values being referenced here, 4552 // BaseReg and ScaleReg (global addresses are always available, as are any 4553 // folded immediates). 4554 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4555 4556 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4557 // lifetime wasn't extended by adding this instruction. 4558 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4559 BaseReg = nullptr; 4560 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4561 ScaledReg = nullptr; 4562 4563 // If folding this instruction (and it's subexprs) didn't extend any live 4564 // ranges, we're ok with it. 4565 if (!BaseReg && !ScaledReg) 4566 return true; 4567 4568 // If all uses of this instruction can have the address mode sunk into them, 4569 // we can remove the addressing mode and effectively trade one live register 4570 // for another (at worst.) In this context, folding an addressing mode into 4571 // the use is just a particularly nice way of sinking it. 4572 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4573 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4574 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4575 return false; // Has a non-memory, non-foldable use! 4576 4577 // Now that we know that all uses of this instruction are part of a chain of 4578 // computation involving only operations that could theoretically be folded 4579 // into a memory use, loop over each of these memory operation uses and see 4580 // if they could *actually* fold the instruction. The assumption is that 4581 // addressing modes are cheap and that duplicating the computation involved 4582 // many times is worthwhile, even on a fastpath. For sinking candidates 4583 // (i.e. cold call sites), this serves as a way to prevent excessive code 4584 // growth since most architectures have some reasonable small and fast way to 4585 // compute an effective address. (i.e LEA on x86) 4586 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4587 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4588 Instruction *User = MemoryUses[i].first; 4589 unsigned OpNo = MemoryUses[i].second; 4590 4591 // Get the access type of this use. If the use isn't a pointer, we don't 4592 // know what it accesses. 4593 Value *Address = User->getOperand(OpNo); 4594 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4595 if (!AddrTy) 4596 return false; 4597 Type *AddressAccessTy = AddrTy->getElementType(); 4598 unsigned AS = AddrTy->getAddressSpace(); 4599 4600 // Do a match against the root of this address, ignoring profitability. This 4601 // will tell us if the addressing mode for the memory operation will 4602 // *actually* cover the shared instruction. 4603 ExtAddrMode Result; 4604 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4605 0); 4606 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4607 TPT.getRestorationPoint(); 4608 AddressingModeMatcher Matcher( 4609 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4610 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4611 Matcher.IgnoreProfitability = true; 4612 bool Success = Matcher.matchAddr(Address, 0); 4613 (void)Success; assert(Success && "Couldn't select *anything*?"); 4614 4615 // The match was to check the profitability, the changes made are not 4616 // part of the original matcher. Therefore, they should be dropped 4617 // otherwise the original matcher will not present the right state. 4618 TPT.rollback(LastKnownGood); 4619 4620 // If the match didn't cover I, then it won't be shared by it. 4621 if (!is_contained(MatchedAddrModeInsts, I)) 4622 return false; 4623 4624 MatchedAddrModeInsts.clear(); 4625 } 4626 4627 return true; 4628 } 4629 4630 /// Return true if the specified values are defined in a 4631 /// different basic block than BB. 4632 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4633 if (Instruction *I = dyn_cast<Instruction>(V)) 4634 return I->getParent() != BB; 4635 return false; 4636 } 4637 4638 /// Sink addressing mode computation immediate before MemoryInst if doing so 4639 /// can be done without increasing register pressure. The need for the 4640 /// register pressure constraint means this can end up being an all or nothing 4641 /// decision for all uses of the same addressing computation. 4642 /// 4643 /// Load and Store Instructions often have addressing modes that can do 4644 /// significant amounts of computation. As such, instruction selection will try 4645 /// to get the load or store to do as much computation as possible for the 4646 /// program. The problem is that isel can only see within a single block. As 4647 /// such, we sink as much legal addressing mode work into the block as possible. 4648 /// 4649 /// This method is used to optimize both load/store and inline asms with memory 4650 /// operands. It's also used to sink addressing computations feeding into cold 4651 /// call sites into their (cold) basic block. 4652 /// 4653 /// The motivation for handling sinking into cold blocks is that doing so can 4654 /// both enable other address mode sinking (by satisfying the register pressure 4655 /// constraint above), and reduce register pressure globally (by removing the 4656 /// addressing mode computation from the fast path entirely.). 4657 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4658 Type *AccessTy, unsigned AddrSpace) { 4659 Value *Repl = Addr; 4660 4661 // Try to collapse single-value PHI nodes. This is necessary to undo 4662 // unprofitable PRE transformations. 4663 SmallVector<Value*, 8> worklist; 4664 SmallPtrSet<Value*, 16> Visited; 4665 worklist.push_back(Addr); 4666 4667 // Use a worklist to iteratively look through PHI and select nodes, and 4668 // ensure that the addressing mode obtained from the non-PHI/select roots of 4669 // the graph are compatible. 4670 bool PhiOrSelectSeen = false; 4671 SmallVector<Instruction*, 16> AddrModeInsts; 4672 const SimplifyQuery SQ(*DL, TLInfo); 4673 AddressingModeCombiner AddrModes(SQ, Addr); 4674 TypePromotionTransaction TPT(RemovedInsts); 4675 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4676 TPT.getRestorationPoint(); 4677 while (!worklist.empty()) { 4678 Value *V = worklist.back(); 4679 worklist.pop_back(); 4680 4681 // We allow traversing cyclic Phi nodes. 4682 // In case of success after this loop we ensure that traversing through 4683 // Phi nodes ends up with all cases to compute address of the form 4684 // BaseGV + Base + Scale * Index + Offset 4685 // where Scale and Offset are constans and BaseGV, Base and Index 4686 // are exactly the same Values in all cases. 4687 // It means that BaseGV, Scale and Offset dominate our memory instruction 4688 // and have the same value as they had in address computation represented 4689 // as Phi. So we can safely sink address computation to memory instruction. 4690 if (!Visited.insert(V).second) 4691 continue; 4692 4693 // For a PHI node, push all of its incoming values. 4694 if (PHINode *P = dyn_cast<PHINode>(V)) { 4695 for (Value *IncValue : P->incoming_values()) 4696 worklist.push_back(IncValue); 4697 PhiOrSelectSeen = true; 4698 continue; 4699 } 4700 // Similar for select. 4701 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4702 worklist.push_back(SI->getFalseValue()); 4703 worklist.push_back(SI->getTrueValue()); 4704 PhiOrSelectSeen = true; 4705 continue; 4706 } 4707 4708 // For non-PHIs, determine the addressing mode being computed. Note that 4709 // the result may differ depending on what other uses our candidate 4710 // addressing instructions might have. 4711 AddrModeInsts.clear(); 4712 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4713 0); 4714 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4715 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4716 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4717 4718 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4719 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4720 !NewGEPBases.count(GEP)) { 4721 // If splitting the underlying data structure can reduce the offset of a 4722 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4723 // previously split data structures. 4724 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4725 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4726 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4727 } 4728 4729 NewAddrMode.OriginalValue = V; 4730 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4731 break; 4732 } 4733 4734 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4735 // or we have multiple but either couldn't combine them or combining them 4736 // wouldn't do anything useful, bail out now. 4737 if (!AddrModes.combineAddrModes()) { 4738 TPT.rollback(LastKnownGood); 4739 return false; 4740 } 4741 TPT.commit(); 4742 4743 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4744 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4745 4746 // If all the instructions matched are already in this BB, don't do anything. 4747 // If we saw a Phi node then it is not local definitely, and if we saw a select 4748 // then we want to push the address calculation past it even if it's already 4749 // in this BB. 4750 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4751 return IsNonLocalValue(V, MemoryInst->getParent()); 4752 })) { 4753 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4754 << "\n"); 4755 return false; 4756 } 4757 4758 // Insert this computation right after this user. Since our caller is 4759 // scanning from the top of the BB to the bottom, reuse of the expr are 4760 // guaranteed to happen later. 4761 IRBuilder<> Builder(MemoryInst); 4762 4763 // Now that we determined the addressing expression we want to use and know 4764 // that we have to sink it into this block. Check to see if we have already 4765 // done this for some other load/store instr in this block. If so, reuse 4766 // the computation. Before attempting reuse, check if the address is valid 4767 // as it may have been erased. 4768 4769 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4770 4771 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4772 if (SunkAddr) { 4773 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4774 << " for " << *MemoryInst << "\n"); 4775 if (SunkAddr->getType() != Addr->getType()) 4776 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4777 } else if (AddrSinkUsingGEPs || 4778 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4779 // By default, we use the GEP-based method when AA is used later. This 4780 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4781 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4782 << " for " << *MemoryInst << "\n"); 4783 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4784 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4785 4786 // First, find the pointer. 4787 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4788 ResultPtr = AddrMode.BaseReg; 4789 AddrMode.BaseReg = nullptr; 4790 } 4791 4792 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4793 // We can't add more than one pointer together, nor can we scale a 4794 // pointer (both of which seem meaningless). 4795 if (ResultPtr || AddrMode.Scale != 1) 4796 return false; 4797 4798 ResultPtr = AddrMode.ScaledReg; 4799 AddrMode.Scale = 0; 4800 } 4801 4802 // It is only safe to sign extend the BaseReg if we know that the math 4803 // required to create it did not overflow before we extend it. Since 4804 // the original IR value was tossed in favor of a constant back when 4805 // the AddrMode was created we need to bail out gracefully if widths 4806 // do not match instead of extending it. 4807 // 4808 // (See below for code to add the scale.) 4809 if (AddrMode.Scale) { 4810 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4811 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4812 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4813 return false; 4814 } 4815 4816 if (AddrMode.BaseGV) { 4817 if (ResultPtr) 4818 return false; 4819 4820 ResultPtr = AddrMode.BaseGV; 4821 } 4822 4823 // If the real base value actually came from an inttoptr, then the matcher 4824 // will look through it and provide only the integer value. In that case, 4825 // use it here. 4826 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4827 if (!ResultPtr && AddrMode.BaseReg) { 4828 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4829 "sunkaddr"); 4830 AddrMode.BaseReg = nullptr; 4831 } else if (!ResultPtr && AddrMode.Scale == 1) { 4832 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4833 "sunkaddr"); 4834 AddrMode.Scale = 0; 4835 } 4836 } 4837 4838 if (!ResultPtr && 4839 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4840 SunkAddr = Constant::getNullValue(Addr->getType()); 4841 } else if (!ResultPtr) { 4842 return false; 4843 } else { 4844 Type *I8PtrTy = 4845 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4846 Type *I8Ty = Builder.getInt8Ty(); 4847 4848 // Start with the base register. Do this first so that subsequent address 4849 // matching finds it last, which will prevent it from trying to match it 4850 // as the scaled value in case it happens to be a mul. That would be 4851 // problematic if we've sunk a different mul for the scale, because then 4852 // we'd end up sinking both muls. 4853 if (AddrMode.BaseReg) { 4854 Value *V = AddrMode.BaseReg; 4855 if (V->getType() != IntPtrTy) 4856 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4857 4858 ResultIndex = V; 4859 } 4860 4861 // Add the scale value. 4862 if (AddrMode.Scale) { 4863 Value *V = AddrMode.ScaledReg; 4864 if (V->getType() == IntPtrTy) { 4865 // done. 4866 } else { 4867 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4868 cast<IntegerType>(V->getType())->getBitWidth() && 4869 "We can't transform if ScaledReg is too narrow"); 4870 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4871 } 4872 4873 if (AddrMode.Scale != 1) 4874 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4875 "sunkaddr"); 4876 if (ResultIndex) 4877 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4878 else 4879 ResultIndex = V; 4880 } 4881 4882 // Add in the Base Offset if present. 4883 if (AddrMode.BaseOffs) { 4884 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4885 if (ResultIndex) { 4886 // We need to add this separately from the scale above to help with 4887 // SDAG consecutive load/store merging. 4888 if (ResultPtr->getType() != I8PtrTy) 4889 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4890 ResultPtr = 4891 AddrMode.InBounds 4892 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4893 "sunkaddr") 4894 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4895 } 4896 4897 ResultIndex = V; 4898 } 4899 4900 if (!ResultIndex) { 4901 SunkAddr = ResultPtr; 4902 } else { 4903 if (ResultPtr->getType() != I8PtrTy) 4904 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4905 SunkAddr = 4906 AddrMode.InBounds 4907 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4908 "sunkaddr") 4909 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4910 } 4911 4912 if (SunkAddr->getType() != Addr->getType()) 4913 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4914 } 4915 } else { 4916 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4917 // non-integral pointers, so in that case bail out now. 4918 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4919 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4920 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4921 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4922 if (DL->isNonIntegralPointerType(Addr->getType()) || 4923 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4924 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4925 (AddrMode.BaseGV && 4926 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4927 return false; 4928 4929 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4930 << " for " << *MemoryInst << "\n"); 4931 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4932 Value *Result = nullptr; 4933 4934 // Start with the base register. Do this first so that subsequent address 4935 // matching finds it last, which will prevent it from trying to match it 4936 // as the scaled value in case it happens to be a mul. That would be 4937 // problematic if we've sunk a different mul for the scale, because then 4938 // we'd end up sinking both muls. 4939 if (AddrMode.BaseReg) { 4940 Value *V = AddrMode.BaseReg; 4941 if (V->getType()->isPointerTy()) 4942 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4943 if (V->getType() != IntPtrTy) 4944 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4945 Result = V; 4946 } 4947 4948 // Add the scale value. 4949 if (AddrMode.Scale) { 4950 Value *V = AddrMode.ScaledReg; 4951 if (V->getType() == IntPtrTy) { 4952 // done. 4953 } else if (V->getType()->isPointerTy()) { 4954 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4955 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4956 cast<IntegerType>(V->getType())->getBitWidth()) { 4957 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4958 } else { 4959 // It is only safe to sign extend the BaseReg if we know that the math 4960 // required to create it did not overflow before we extend it. Since 4961 // the original IR value was tossed in favor of a constant back when 4962 // the AddrMode was created we need to bail out gracefully if widths 4963 // do not match instead of extending it. 4964 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4965 if (I && (Result != AddrMode.BaseReg)) 4966 I->eraseFromParent(); 4967 return false; 4968 } 4969 if (AddrMode.Scale != 1) 4970 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4971 "sunkaddr"); 4972 if (Result) 4973 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4974 else 4975 Result = V; 4976 } 4977 4978 // Add in the BaseGV if present. 4979 if (AddrMode.BaseGV) { 4980 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4981 if (Result) 4982 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4983 else 4984 Result = V; 4985 } 4986 4987 // Add in the Base Offset if present. 4988 if (AddrMode.BaseOffs) { 4989 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4990 if (Result) 4991 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4992 else 4993 Result = V; 4994 } 4995 4996 if (!Result) 4997 SunkAddr = Constant::getNullValue(Addr->getType()); 4998 else 4999 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5000 } 5001 5002 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5003 // Store the newly computed address into the cache. In the case we reused a 5004 // value, this should be idempotent. 5005 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5006 5007 // If we have no uses, recursively delete the value and all dead instructions 5008 // using it. 5009 if (Repl->use_empty()) { 5010 // This can cause recursive deletion, which can invalidate our iterator. 5011 // Use a WeakTrackingVH to hold onto it in case this happens. 5012 Value *CurValue = &*CurInstIterator; 5013 WeakTrackingVH IterHandle(CurValue); 5014 BasicBlock *BB = CurInstIterator->getParent(); 5015 5016 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5017 5018 if (IterHandle != CurValue) { 5019 // If the iterator instruction was recursively deleted, start over at the 5020 // start of the block. 5021 CurInstIterator = BB->begin(); 5022 SunkAddrs.clear(); 5023 } 5024 } 5025 ++NumMemoryInsts; 5026 return true; 5027 } 5028 5029 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5030 /// address computing into the block when possible / profitable. 5031 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5032 bool MadeChange = false; 5033 5034 const TargetRegisterInfo *TRI = 5035 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5036 TargetLowering::AsmOperandInfoVector TargetConstraints = 5037 TLI->ParseConstraints(*DL, TRI, CS); 5038 unsigned ArgNo = 0; 5039 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5040 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5041 5042 // Compute the constraint code and ConstraintType to use. 5043 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5044 5045 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5046 OpInfo.isIndirect) { 5047 Value *OpVal = CS->getArgOperand(ArgNo++); 5048 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5049 } else if (OpInfo.Type == InlineAsm::isInput) 5050 ArgNo++; 5051 } 5052 5053 return MadeChange; 5054 } 5055 5056 /// Check if all the uses of \p Val are equivalent (or free) zero or 5057 /// sign extensions. 5058 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5059 assert(!Val->use_empty() && "Input must have at least one use"); 5060 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5061 bool IsSExt = isa<SExtInst>(FirstUser); 5062 Type *ExtTy = FirstUser->getType(); 5063 for (const User *U : Val->users()) { 5064 const Instruction *UI = cast<Instruction>(U); 5065 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5066 return false; 5067 Type *CurTy = UI->getType(); 5068 // Same input and output types: Same instruction after CSE. 5069 if (CurTy == ExtTy) 5070 continue; 5071 5072 // If IsSExt is true, we are in this situation: 5073 // a = Val 5074 // b = sext ty1 a to ty2 5075 // c = sext ty1 a to ty3 5076 // Assuming ty2 is shorter than ty3, this could be turned into: 5077 // a = Val 5078 // b = sext ty1 a to ty2 5079 // c = sext ty2 b to ty3 5080 // However, the last sext is not free. 5081 if (IsSExt) 5082 return false; 5083 5084 // This is a ZExt, maybe this is free to extend from one type to another. 5085 // In that case, we would not account for a different use. 5086 Type *NarrowTy; 5087 Type *LargeTy; 5088 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5089 CurTy->getScalarType()->getIntegerBitWidth()) { 5090 NarrowTy = CurTy; 5091 LargeTy = ExtTy; 5092 } else { 5093 NarrowTy = ExtTy; 5094 LargeTy = CurTy; 5095 } 5096 5097 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5098 return false; 5099 } 5100 // All uses are the same or can be derived from one another for free. 5101 return true; 5102 } 5103 5104 /// Try to speculatively promote extensions in \p Exts and continue 5105 /// promoting through newly promoted operands recursively as far as doing so is 5106 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5107 /// When some promotion happened, \p TPT contains the proper state to revert 5108 /// them. 5109 /// 5110 /// \return true if some promotion happened, false otherwise. 5111 bool CodeGenPrepare::tryToPromoteExts( 5112 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5113 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5114 unsigned CreatedInstsCost) { 5115 bool Promoted = false; 5116 5117 // Iterate over all the extensions to try to promote them. 5118 for (auto I : Exts) { 5119 // Early check if we directly have ext(load). 5120 if (isa<LoadInst>(I->getOperand(0))) { 5121 ProfitablyMovedExts.push_back(I); 5122 continue; 5123 } 5124 5125 // Check whether or not we want to do any promotion. The reason we have 5126 // this check inside the for loop is to catch the case where an extension 5127 // is directly fed by a load because in such case the extension can be moved 5128 // up without any promotion on its operands. 5129 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5130 return false; 5131 5132 // Get the action to perform the promotion. 5133 TypePromotionHelper::Action TPH = 5134 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5135 // Check if we can promote. 5136 if (!TPH) { 5137 // Save the current extension as we cannot move up through its operand. 5138 ProfitablyMovedExts.push_back(I); 5139 continue; 5140 } 5141 5142 // Save the current state. 5143 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5144 TPT.getRestorationPoint(); 5145 SmallVector<Instruction *, 4> NewExts; 5146 unsigned NewCreatedInstsCost = 0; 5147 unsigned ExtCost = !TLI->isExtFree(I); 5148 // Promote. 5149 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5150 &NewExts, nullptr, *TLI); 5151 assert(PromotedVal && 5152 "TypePromotionHelper should have filtered out those cases"); 5153 5154 // We would be able to merge only one extension in a load. 5155 // Therefore, if we have more than 1 new extension we heuristically 5156 // cut this search path, because it means we degrade the code quality. 5157 // With exactly 2, the transformation is neutral, because we will merge 5158 // one extension but leave one. However, we optimistically keep going, 5159 // because the new extension may be removed too. 5160 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5161 // FIXME: It would be possible to propagate a negative value instead of 5162 // conservatively ceiling it to 0. 5163 TotalCreatedInstsCost = 5164 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5165 if (!StressExtLdPromotion && 5166 (TotalCreatedInstsCost > 1 || 5167 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5168 // This promotion is not profitable, rollback to the previous state, and 5169 // save the current extension in ProfitablyMovedExts as the latest 5170 // speculative promotion turned out to be unprofitable. 5171 TPT.rollback(LastKnownGood); 5172 ProfitablyMovedExts.push_back(I); 5173 continue; 5174 } 5175 // Continue promoting NewExts as far as doing so is profitable. 5176 SmallVector<Instruction *, 2> NewlyMovedExts; 5177 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5178 bool NewPromoted = false; 5179 for (auto ExtInst : NewlyMovedExts) { 5180 Instruction *MovedExt = cast<Instruction>(ExtInst); 5181 Value *ExtOperand = MovedExt->getOperand(0); 5182 // If we have reached to a load, we need this extra profitability check 5183 // as it could potentially be merged into an ext(load). 5184 if (isa<LoadInst>(ExtOperand) && 5185 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5186 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5187 continue; 5188 5189 ProfitablyMovedExts.push_back(MovedExt); 5190 NewPromoted = true; 5191 } 5192 5193 // If none of speculative promotions for NewExts is profitable, rollback 5194 // and save the current extension (I) as the last profitable extension. 5195 if (!NewPromoted) { 5196 TPT.rollback(LastKnownGood); 5197 ProfitablyMovedExts.push_back(I); 5198 continue; 5199 } 5200 // The promotion is profitable. 5201 Promoted = true; 5202 } 5203 return Promoted; 5204 } 5205 5206 /// Merging redundant sexts when one is dominating the other. 5207 bool CodeGenPrepare::mergeSExts(Function &F, DominatorTree &DT) { 5208 bool Changed = false; 5209 for (auto &Entry : ValToSExtendedUses) { 5210 SExts &Insts = Entry.second; 5211 SExts CurPts; 5212 for (Instruction *Inst : Insts) { 5213 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5214 Inst->getOperand(0) != Entry.first) 5215 continue; 5216 bool inserted = false; 5217 for (auto &Pt : CurPts) { 5218 if (DT.dominates(Inst, Pt)) { 5219 Pt->replaceAllUsesWith(Inst); 5220 RemovedInsts.insert(Pt); 5221 Pt->removeFromParent(); 5222 Pt = Inst; 5223 inserted = true; 5224 Changed = true; 5225 break; 5226 } 5227 if (!DT.dominates(Pt, Inst)) 5228 // Give up if we need to merge in a common dominator as the 5229 // experiments show it is not profitable. 5230 continue; 5231 Inst->replaceAllUsesWith(Pt); 5232 RemovedInsts.insert(Inst); 5233 Inst->removeFromParent(); 5234 inserted = true; 5235 Changed = true; 5236 break; 5237 } 5238 if (!inserted) 5239 CurPts.push_back(Inst); 5240 } 5241 } 5242 return Changed; 5243 } 5244 5245 // Spliting large data structures so that the GEPs accessing them can have 5246 // smaller offsets so that they can be sunk to the same blocks as their users. 5247 // For example, a large struct starting from %base is splitted into two parts 5248 // where the second part starts from %new_base. 5249 // 5250 // Before: 5251 // BB0: 5252 // %base = 5253 // 5254 // BB1: 5255 // %gep0 = gep %base, off0 5256 // %gep1 = gep %base, off1 5257 // %gep2 = gep %base, off2 5258 // 5259 // BB2: 5260 // %load1 = load %gep0 5261 // %load2 = load %gep1 5262 // %load3 = load %gep2 5263 // 5264 // After: 5265 // BB0: 5266 // %base = 5267 // %new_base = gep %base, off0 5268 // 5269 // BB1: 5270 // %new_gep0 = %new_base 5271 // %new_gep1 = gep %new_base, off1 - off0 5272 // %new_gep2 = gep %new_base, off2 - off0 5273 // 5274 // BB2: 5275 // %load1 = load i32, i32* %new_gep0 5276 // %load2 = load i32, i32* %new_gep1 5277 // %load3 = load i32, i32* %new_gep2 5278 // 5279 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5280 // their offsets are smaller enough to fit into the addressing mode. 5281 bool CodeGenPrepare::splitLargeGEPOffsets() { 5282 bool Changed = false; 5283 for (auto &Entry : LargeOffsetGEPMap) { 5284 Value *OldBase = Entry.first; 5285 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5286 &LargeOffsetGEPs = Entry.second; 5287 auto compareGEPOffset = 5288 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5289 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5290 if (LHS.first == RHS.first) 5291 return false; 5292 if (LHS.second != RHS.second) 5293 return LHS.second < RHS.second; 5294 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5295 }; 5296 // Sorting all the GEPs of the same data structures based on the offsets. 5297 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5298 LargeOffsetGEPs.erase( 5299 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5300 LargeOffsetGEPs.end()); 5301 // Skip if all the GEPs have the same offsets. 5302 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5303 continue; 5304 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5305 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5306 Value *NewBaseGEP = nullptr; 5307 5308 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5309 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5310 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5311 int64_t Offset = LargeOffsetGEP->second; 5312 if (Offset != BaseOffset) { 5313 TargetLowering::AddrMode AddrMode; 5314 AddrMode.BaseOffs = Offset - BaseOffset; 5315 // The result type of the GEP might not be the type of the memory 5316 // access. 5317 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5318 GEP->getResultElementType(), 5319 GEP->getAddressSpace())) { 5320 // We need to create a new base if the offset to the current base is 5321 // too large to fit into the addressing mode. So, a very large struct 5322 // may be splitted into several parts. 5323 BaseGEP = GEP; 5324 BaseOffset = Offset; 5325 NewBaseGEP = nullptr; 5326 } 5327 } 5328 5329 // Generate a new GEP to replace the current one. 5330 LLVMContext &Ctx = GEP->getContext(); 5331 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5332 Type *I8PtrTy = 5333 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5334 Type *I8Ty = Type::getInt8Ty(Ctx); 5335 5336 if (!NewBaseGEP) { 5337 // Create a new base if we don't have one yet. Find the insertion 5338 // pointer for the new base first. 5339 BasicBlock::iterator NewBaseInsertPt; 5340 BasicBlock *NewBaseInsertBB; 5341 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5342 // If the base of the struct is an instruction, the new base will be 5343 // inserted close to it. 5344 NewBaseInsertBB = BaseI->getParent(); 5345 if (isa<PHINode>(BaseI)) 5346 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5347 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5348 NewBaseInsertBB = 5349 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5350 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5351 } else 5352 NewBaseInsertPt = std::next(BaseI->getIterator()); 5353 } else { 5354 // If the current base is an argument or global value, the new base 5355 // will be inserted to the entry block. 5356 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5357 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5358 } 5359 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5360 // Create a new base. 5361 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5362 NewBaseGEP = OldBase; 5363 if (NewBaseGEP->getType() != I8PtrTy) 5364 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5365 NewBaseGEP = 5366 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5367 NewGEPBases.insert(NewBaseGEP); 5368 } 5369 5370 IRBuilder<> Builder(GEP); 5371 Value *NewGEP = NewBaseGEP; 5372 if (Offset == BaseOffset) { 5373 if (GEP->getType() != I8PtrTy) 5374 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5375 } else { 5376 // Calculate the new offset for the new GEP. 5377 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5378 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5379 5380 if (GEP->getType() != I8PtrTy) 5381 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5382 } 5383 GEP->replaceAllUsesWith(NewGEP); 5384 LargeOffsetGEPID.erase(GEP); 5385 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5386 GEP->eraseFromParent(); 5387 Changed = true; 5388 } 5389 } 5390 return Changed; 5391 } 5392 5393 /// Return true, if an ext(load) can be formed from an extension in 5394 /// \p MovedExts. 5395 bool CodeGenPrepare::canFormExtLd( 5396 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5397 Instruction *&Inst, bool HasPromoted) { 5398 for (auto *MovedExtInst : MovedExts) { 5399 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5400 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5401 Inst = MovedExtInst; 5402 break; 5403 } 5404 } 5405 if (!LI) 5406 return false; 5407 5408 // If they're already in the same block, there's nothing to do. 5409 // Make the cheap checks first if we did not promote. 5410 // If we promoted, we need to check if it is indeed profitable. 5411 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5412 return false; 5413 5414 return TLI->isExtLoad(LI, Inst, *DL); 5415 } 5416 5417 /// Move a zext or sext fed by a load into the same basic block as the load, 5418 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5419 /// extend into the load. 5420 /// 5421 /// E.g., 5422 /// \code 5423 /// %ld = load i32* %addr 5424 /// %add = add nuw i32 %ld, 4 5425 /// %zext = zext i32 %add to i64 5426 // \endcode 5427 /// => 5428 /// \code 5429 /// %ld = load i32* %addr 5430 /// %zext = zext i32 %ld to i64 5431 /// %add = add nuw i64 %zext, 4 5432 /// \encode 5433 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5434 /// allow us to match zext(load i32*) to i64. 5435 /// 5436 /// Also, try to promote the computations used to obtain a sign extended 5437 /// value used into memory accesses. 5438 /// E.g., 5439 /// \code 5440 /// a = add nsw i32 b, 3 5441 /// d = sext i32 a to i64 5442 /// e = getelementptr ..., i64 d 5443 /// \endcode 5444 /// => 5445 /// \code 5446 /// f = sext i32 b to i64 5447 /// a = add nsw i64 f, 3 5448 /// e = getelementptr ..., i64 a 5449 /// \endcode 5450 /// 5451 /// \p Inst[in/out] the extension may be modified during the process if some 5452 /// promotions apply. 5453 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5454 // ExtLoad formation and address type promotion infrastructure requires TLI to 5455 // be effective. 5456 if (!TLI) 5457 return false; 5458 5459 bool AllowPromotionWithoutCommonHeader = false; 5460 /// See if it is an interesting sext operations for the address type 5461 /// promotion before trying to promote it, e.g., the ones with the right 5462 /// type and used in memory accesses. 5463 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5464 *Inst, AllowPromotionWithoutCommonHeader); 5465 TypePromotionTransaction TPT(RemovedInsts); 5466 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5467 TPT.getRestorationPoint(); 5468 SmallVector<Instruction *, 1> Exts; 5469 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5470 Exts.push_back(Inst); 5471 5472 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5473 5474 // Look for a load being extended. 5475 LoadInst *LI = nullptr; 5476 Instruction *ExtFedByLoad; 5477 5478 // Try to promote a chain of computation if it allows to form an extended 5479 // load. 5480 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5481 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5482 TPT.commit(); 5483 // Move the extend into the same block as the load 5484 ExtFedByLoad->moveAfter(LI); 5485 // CGP does not check if the zext would be speculatively executed when moved 5486 // to the same basic block as the load. Preserving its original location 5487 // would pessimize the debugging experience, as well as negatively impact 5488 // the quality of sample pgo. We don't want to use "line 0" as that has a 5489 // size cost in the line-table section and logically the zext can be seen as 5490 // part of the load. Therefore we conservatively reuse the same debug 5491 // location for the load and the zext. 5492 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5493 ++NumExtsMoved; 5494 Inst = ExtFedByLoad; 5495 return true; 5496 } 5497 5498 // Continue promoting SExts if known as considerable depending on targets. 5499 if (ATPConsiderable && 5500 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5501 HasPromoted, TPT, SpeculativelyMovedExts)) 5502 return true; 5503 5504 TPT.rollback(LastKnownGood); 5505 return false; 5506 } 5507 5508 // Perform address type promotion if doing so is profitable. 5509 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5510 // instructions that sign extended the same initial value. However, if 5511 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5512 // extension is just profitable. 5513 bool CodeGenPrepare::performAddressTypePromotion( 5514 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5515 bool HasPromoted, TypePromotionTransaction &TPT, 5516 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5517 bool Promoted = false; 5518 SmallPtrSet<Instruction *, 1> UnhandledExts; 5519 bool AllSeenFirst = true; 5520 for (auto I : SpeculativelyMovedExts) { 5521 Value *HeadOfChain = I->getOperand(0); 5522 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5523 SeenChainsForSExt.find(HeadOfChain); 5524 // If there is an unhandled SExt which has the same header, try to promote 5525 // it as well. 5526 if (AlreadySeen != SeenChainsForSExt.end()) { 5527 if (AlreadySeen->second != nullptr) 5528 UnhandledExts.insert(AlreadySeen->second); 5529 AllSeenFirst = false; 5530 } 5531 } 5532 5533 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5534 SpeculativelyMovedExts.size() == 1)) { 5535 TPT.commit(); 5536 if (HasPromoted) 5537 Promoted = true; 5538 for (auto I : SpeculativelyMovedExts) { 5539 Value *HeadOfChain = I->getOperand(0); 5540 SeenChainsForSExt[HeadOfChain] = nullptr; 5541 ValToSExtendedUses[HeadOfChain].push_back(I); 5542 } 5543 // Update Inst as promotion happen. 5544 Inst = SpeculativelyMovedExts.pop_back_val(); 5545 } else { 5546 // This is the first chain visited from the header, keep the current chain 5547 // as unhandled. Defer to promote this until we encounter another SExt 5548 // chain derived from the same header. 5549 for (auto I : SpeculativelyMovedExts) { 5550 Value *HeadOfChain = I->getOperand(0); 5551 SeenChainsForSExt[HeadOfChain] = Inst; 5552 } 5553 return false; 5554 } 5555 5556 if (!AllSeenFirst && !UnhandledExts.empty()) 5557 for (auto VisitedSExt : UnhandledExts) { 5558 if (RemovedInsts.count(VisitedSExt)) 5559 continue; 5560 TypePromotionTransaction TPT(RemovedInsts); 5561 SmallVector<Instruction *, 1> Exts; 5562 SmallVector<Instruction *, 2> Chains; 5563 Exts.push_back(VisitedSExt); 5564 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5565 TPT.commit(); 5566 if (HasPromoted) 5567 Promoted = true; 5568 for (auto I : Chains) { 5569 Value *HeadOfChain = I->getOperand(0); 5570 // Mark this as handled. 5571 SeenChainsForSExt[HeadOfChain] = nullptr; 5572 ValToSExtendedUses[HeadOfChain].push_back(I); 5573 } 5574 } 5575 return Promoted; 5576 } 5577 5578 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5579 BasicBlock *DefBB = I->getParent(); 5580 5581 // If the result of a {s|z}ext and its source are both live out, rewrite all 5582 // other uses of the source with result of extension. 5583 Value *Src = I->getOperand(0); 5584 if (Src->hasOneUse()) 5585 return false; 5586 5587 // Only do this xform if truncating is free. 5588 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5589 return false; 5590 5591 // Only safe to perform the optimization if the source is also defined in 5592 // this block. 5593 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5594 return false; 5595 5596 bool DefIsLiveOut = false; 5597 for (User *U : I->users()) { 5598 Instruction *UI = cast<Instruction>(U); 5599 5600 // Figure out which BB this ext is used in. 5601 BasicBlock *UserBB = UI->getParent(); 5602 if (UserBB == DefBB) continue; 5603 DefIsLiveOut = true; 5604 break; 5605 } 5606 if (!DefIsLiveOut) 5607 return false; 5608 5609 // Make sure none of the uses are PHI nodes. 5610 for (User *U : Src->users()) { 5611 Instruction *UI = cast<Instruction>(U); 5612 BasicBlock *UserBB = UI->getParent(); 5613 if (UserBB == DefBB) continue; 5614 // Be conservative. We don't want this xform to end up introducing 5615 // reloads just before load / store instructions. 5616 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5617 return false; 5618 } 5619 5620 // InsertedTruncs - Only insert one trunc in each block once. 5621 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5622 5623 bool MadeChange = false; 5624 for (Use &U : Src->uses()) { 5625 Instruction *User = cast<Instruction>(U.getUser()); 5626 5627 // Figure out which BB this ext is used in. 5628 BasicBlock *UserBB = User->getParent(); 5629 if (UserBB == DefBB) continue; 5630 5631 // Both src and def are live in this block. Rewrite the use. 5632 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5633 5634 if (!InsertedTrunc) { 5635 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5636 assert(InsertPt != UserBB->end()); 5637 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5638 InsertedInsts.insert(InsertedTrunc); 5639 } 5640 5641 // Replace a use of the {s|z}ext source with a use of the result. 5642 U = InsertedTrunc; 5643 ++NumExtUses; 5644 MadeChange = true; 5645 } 5646 5647 return MadeChange; 5648 } 5649 5650 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5651 // just after the load if the target can fold this into one extload instruction, 5652 // with the hope of eliminating some of the other later "and" instructions using 5653 // the loaded value. "and"s that are made trivially redundant by the insertion 5654 // of the new "and" are removed by this function, while others (e.g. those whose 5655 // path from the load goes through a phi) are left for isel to potentially 5656 // remove. 5657 // 5658 // For example: 5659 // 5660 // b0: 5661 // x = load i32 5662 // ... 5663 // b1: 5664 // y = and x, 0xff 5665 // z = use y 5666 // 5667 // becomes: 5668 // 5669 // b0: 5670 // x = load i32 5671 // x' = and x, 0xff 5672 // ... 5673 // b1: 5674 // z = use x' 5675 // 5676 // whereas: 5677 // 5678 // b0: 5679 // x1 = load i32 5680 // ... 5681 // b1: 5682 // x2 = load i32 5683 // ... 5684 // b2: 5685 // x = phi x1, x2 5686 // y = and x, 0xff 5687 // 5688 // becomes (after a call to optimizeLoadExt for each load): 5689 // 5690 // b0: 5691 // x1 = load i32 5692 // x1' = and x1, 0xff 5693 // ... 5694 // b1: 5695 // x2 = load i32 5696 // x2' = and x2, 0xff 5697 // ... 5698 // b2: 5699 // x = phi x1', x2' 5700 // y = and x, 0xff 5701 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5702 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5703 return false; 5704 5705 // Skip loads we've already transformed. 5706 if (Load->hasOneUse() && 5707 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5708 return false; 5709 5710 // Look at all uses of Load, looking through phis, to determine how many bits 5711 // of the loaded value are needed. 5712 SmallVector<Instruction *, 8> WorkList; 5713 SmallPtrSet<Instruction *, 16> Visited; 5714 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5715 for (auto *U : Load->users()) 5716 WorkList.push_back(cast<Instruction>(U)); 5717 5718 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5719 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5720 APInt DemandBits(BitWidth, 0); 5721 APInt WidestAndBits(BitWidth, 0); 5722 5723 while (!WorkList.empty()) { 5724 Instruction *I = WorkList.back(); 5725 WorkList.pop_back(); 5726 5727 // Break use-def graph loops. 5728 if (!Visited.insert(I).second) 5729 continue; 5730 5731 // For a PHI node, push all of its users. 5732 if (auto *Phi = dyn_cast<PHINode>(I)) { 5733 for (auto *U : Phi->users()) 5734 WorkList.push_back(cast<Instruction>(U)); 5735 continue; 5736 } 5737 5738 switch (I->getOpcode()) { 5739 case Instruction::And: { 5740 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5741 if (!AndC) 5742 return false; 5743 APInt AndBits = AndC->getValue(); 5744 DemandBits |= AndBits; 5745 // Keep track of the widest and mask we see. 5746 if (AndBits.ugt(WidestAndBits)) 5747 WidestAndBits = AndBits; 5748 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5749 AndsToMaybeRemove.push_back(I); 5750 break; 5751 } 5752 5753 case Instruction::Shl: { 5754 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5755 if (!ShlC) 5756 return false; 5757 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5758 DemandBits.setLowBits(BitWidth - ShiftAmt); 5759 break; 5760 } 5761 5762 case Instruction::Trunc: { 5763 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5764 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5765 DemandBits.setLowBits(TruncBitWidth); 5766 break; 5767 } 5768 5769 default: 5770 return false; 5771 } 5772 } 5773 5774 uint32_t ActiveBits = DemandBits.getActiveBits(); 5775 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5776 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5777 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5778 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5779 // followed by an AND. 5780 // TODO: Look into removing this restriction by fixing backends to either 5781 // return false for isLoadExtLegal for i1 or have them select this pattern to 5782 // a single instruction. 5783 // 5784 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5785 // mask, since these are the only ands that will be removed by isel. 5786 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5787 WidestAndBits != DemandBits) 5788 return false; 5789 5790 LLVMContext &Ctx = Load->getType()->getContext(); 5791 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5792 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5793 5794 // Reject cases that won't be matched as extloads. 5795 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5796 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5797 return false; 5798 5799 IRBuilder<> Builder(Load->getNextNode()); 5800 auto *NewAnd = dyn_cast<Instruction>( 5801 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5802 // Mark this instruction as "inserted by CGP", so that other 5803 // optimizations don't touch it. 5804 InsertedInsts.insert(NewAnd); 5805 5806 // Replace all uses of load with new and (except for the use of load in the 5807 // new and itself). 5808 Load->replaceAllUsesWith(NewAnd); 5809 NewAnd->setOperand(0, Load); 5810 5811 // Remove any and instructions that are now redundant. 5812 for (auto *And : AndsToMaybeRemove) 5813 // Check that the and mask is the same as the one we decided to put on the 5814 // new and. 5815 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5816 And->replaceAllUsesWith(NewAnd); 5817 if (&*CurInstIterator == And) 5818 CurInstIterator = std::next(And->getIterator()); 5819 And->eraseFromParent(); 5820 ++NumAndUses; 5821 } 5822 5823 ++NumAndsAdded; 5824 return true; 5825 } 5826 5827 /// Check if V (an operand of a select instruction) is an expensive instruction 5828 /// that is only used once. 5829 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5830 auto *I = dyn_cast<Instruction>(V); 5831 // If it's safe to speculatively execute, then it should not have side 5832 // effects; therefore, it's safe to sink and possibly *not* execute. 5833 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5834 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5835 } 5836 5837 /// Returns true if a SelectInst should be turned into an explicit branch. 5838 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5839 const TargetLowering *TLI, 5840 SelectInst *SI) { 5841 // If even a predictable select is cheap, then a branch can't be cheaper. 5842 if (!TLI->isPredictableSelectExpensive()) 5843 return false; 5844 5845 // FIXME: This should use the same heuristics as IfConversion to determine 5846 // whether a select is better represented as a branch. 5847 5848 // If metadata tells us that the select condition is obviously predictable, 5849 // then we want to replace the select with a branch. 5850 uint64_t TrueWeight, FalseWeight; 5851 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5852 uint64_t Max = std::max(TrueWeight, FalseWeight); 5853 uint64_t Sum = TrueWeight + FalseWeight; 5854 if (Sum != 0) { 5855 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5856 if (Probability > TLI->getPredictableBranchThreshold()) 5857 return true; 5858 } 5859 } 5860 5861 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5862 5863 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5864 // comparison condition. If the compare has more than one use, there's 5865 // probably another cmov or setcc around, so it's not worth emitting a branch. 5866 if (!Cmp || !Cmp->hasOneUse()) 5867 return false; 5868 5869 // If either operand of the select is expensive and only needed on one side 5870 // of the select, we should form a branch. 5871 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5872 sinkSelectOperand(TTI, SI->getFalseValue())) 5873 return true; 5874 5875 return false; 5876 } 5877 5878 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5879 /// false value of \p SI. If the true/false value of \p SI is defined by any 5880 /// select instructions in \p Selects, look through the defining select 5881 /// instruction until the true/false value is not defined in \p Selects. 5882 static Value *getTrueOrFalseValue( 5883 SelectInst *SI, bool isTrue, 5884 const SmallPtrSet<const Instruction *, 2> &Selects) { 5885 Value *V; 5886 5887 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5888 DefSI = dyn_cast<SelectInst>(V)) { 5889 assert(DefSI->getCondition() == SI->getCondition() && 5890 "The condition of DefSI does not match with SI"); 5891 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5892 } 5893 return V; 5894 } 5895 5896 /// If we have a SelectInst that will likely profit from branch prediction, 5897 /// turn it into a branch. 5898 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI, bool &ModifiedDT) { 5899 // If branch conversion isn't desirable, exit early. 5900 if (DisableSelectToBranch || OptSize || !TLI) 5901 return false; 5902 5903 // Find all consecutive select instructions that share the same condition. 5904 SmallVector<SelectInst *, 2> ASI; 5905 ASI.push_back(SI); 5906 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5907 It != SI->getParent()->end(); ++It) { 5908 SelectInst *I = dyn_cast<SelectInst>(&*It); 5909 if (I && SI->getCondition() == I->getCondition()) { 5910 ASI.push_back(I); 5911 } else { 5912 break; 5913 } 5914 } 5915 5916 SelectInst *LastSI = ASI.back(); 5917 // Increment the current iterator to skip all the rest of select instructions 5918 // because they will be either "not lowered" or "all lowered" to branch. 5919 CurInstIterator = std::next(LastSI->getIterator()); 5920 5921 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5922 5923 // Can we convert the 'select' to CF ? 5924 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5925 return false; 5926 5927 TargetLowering::SelectSupportKind SelectKind; 5928 if (VectorCond) 5929 SelectKind = TargetLowering::VectorMaskSelect; 5930 else if (SI->getType()->isVectorTy()) 5931 SelectKind = TargetLowering::ScalarCondVectorVal; 5932 else 5933 SelectKind = TargetLowering::ScalarValSelect; 5934 5935 if (TLI->isSelectSupported(SelectKind) && 5936 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5937 return false; 5938 5939 ModifiedDT = true; 5940 5941 // Transform a sequence like this: 5942 // start: 5943 // %cmp = cmp uge i32 %a, %b 5944 // %sel = select i1 %cmp, i32 %c, i32 %d 5945 // 5946 // Into: 5947 // start: 5948 // %cmp = cmp uge i32 %a, %b 5949 // br i1 %cmp, label %select.true, label %select.false 5950 // select.true: 5951 // br label %select.end 5952 // select.false: 5953 // br label %select.end 5954 // select.end: 5955 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5956 // 5957 // In addition, we may sink instructions that produce %c or %d from 5958 // the entry block into the destination(s) of the new branch. 5959 // If the true or false blocks do not contain a sunken instruction, that 5960 // block and its branch may be optimized away. In that case, one side of the 5961 // first branch will point directly to select.end, and the corresponding PHI 5962 // predecessor block will be the start block. 5963 5964 // First, we split the block containing the select into 2 blocks. 5965 BasicBlock *StartBlock = SI->getParent(); 5966 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5967 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5968 5969 // Delete the unconditional branch that was just created by the split. 5970 StartBlock->getTerminator()->eraseFromParent(); 5971 5972 // These are the new basic blocks for the conditional branch. 5973 // At least one will become an actual new basic block. 5974 BasicBlock *TrueBlock = nullptr; 5975 BasicBlock *FalseBlock = nullptr; 5976 BranchInst *TrueBranch = nullptr; 5977 BranchInst *FalseBranch = nullptr; 5978 5979 // Sink expensive instructions into the conditional blocks to avoid executing 5980 // them speculatively. 5981 for (SelectInst *SI : ASI) { 5982 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5983 if (TrueBlock == nullptr) { 5984 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5985 EndBlock->getParent(), EndBlock); 5986 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5987 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5988 } 5989 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5990 TrueInst->moveBefore(TrueBranch); 5991 } 5992 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5993 if (FalseBlock == nullptr) { 5994 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5995 EndBlock->getParent(), EndBlock); 5996 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5997 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5998 } 5999 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6000 FalseInst->moveBefore(FalseBranch); 6001 } 6002 } 6003 6004 // If there was nothing to sink, then arbitrarily choose the 'false' side 6005 // for a new input value to the PHI. 6006 if (TrueBlock == FalseBlock) { 6007 assert(TrueBlock == nullptr && 6008 "Unexpected basic block transform while optimizing select"); 6009 6010 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6011 EndBlock->getParent(), EndBlock); 6012 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6013 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6014 } 6015 6016 // Insert the real conditional branch based on the original condition. 6017 // If we did not create a new block for one of the 'true' or 'false' paths 6018 // of the condition, it means that side of the branch goes to the end block 6019 // directly and the path originates from the start block from the point of 6020 // view of the new PHI. 6021 BasicBlock *TT, *FT; 6022 if (TrueBlock == nullptr) { 6023 TT = EndBlock; 6024 FT = FalseBlock; 6025 TrueBlock = StartBlock; 6026 } else if (FalseBlock == nullptr) { 6027 TT = TrueBlock; 6028 FT = EndBlock; 6029 FalseBlock = StartBlock; 6030 } else { 6031 TT = TrueBlock; 6032 FT = FalseBlock; 6033 } 6034 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6035 6036 SmallPtrSet<const Instruction *, 2> INS; 6037 INS.insert(ASI.begin(), ASI.end()); 6038 // Use reverse iterator because later select may use the value of the 6039 // earlier select, and we need to propagate value through earlier select 6040 // to get the PHI operand. 6041 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6042 SelectInst *SI = *It; 6043 // The select itself is replaced with a PHI Node. 6044 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6045 PN->takeName(SI); 6046 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6047 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6048 PN->setDebugLoc(SI->getDebugLoc()); 6049 6050 SI->replaceAllUsesWith(PN); 6051 SI->eraseFromParent(); 6052 INS.erase(SI); 6053 ++NumSelectsExpanded; 6054 } 6055 6056 // Instruct OptimizeBlock to skip to the next block. 6057 CurInstIterator = StartBlock->end(); 6058 return true; 6059 } 6060 6061 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6062 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6063 int SplatElem = -1; 6064 for (unsigned i = 0; i < Mask.size(); ++i) { 6065 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6066 return false; 6067 SplatElem = Mask[i]; 6068 } 6069 6070 return true; 6071 } 6072 6073 /// Some targets have expensive vector shifts if the lanes aren't all the same 6074 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6075 /// it's often worth sinking a shufflevector splat down to its use so that 6076 /// codegen can spot all lanes are identical. 6077 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6078 BasicBlock *DefBB = SVI->getParent(); 6079 6080 // Only do this xform if variable vector shifts are particularly expensive. 6081 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6082 return false; 6083 6084 // We only expect better codegen by sinking a shuffle if we can recognise a 6085 // constant splat. 6086 if (!isBroadcastShuffle(SVI)) 6087 return false; 6088 6089 // InsertedShuffles - Only insert a shuffle in each block once. 6090 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6091 6092 bool MadeChange = false; 6093 for (User *U : SVI->users()) { 6094 Instruction *UI = cast<Instruction>(U); 6095 6096 // Figure out which BB this ext is used in. 6097 BasicBlock *UserBB = UI->getParent(); 6098 if (UserBB == DefBB) continue; 6099 6100 // For now only apply this when the splat is used by a shift instruction. 6101 if (!UI->isShift()) continue; 6102 6103 // Everything checks out, sink the shuffle if the user's block doesn't 6104 // already have a copy. 6105 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6106 6107 if (!InsertedShuffle) { 6108 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6109 assert(InsertPt != UserBB->end()); 6110 InsertedShuffle = 6111 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6112 SVI->getOperand(2), "", &*InsertPt); 6113 } 6114 6115 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6116 MadeChange = true; 6117 } 6118 6119 // If we removed all uses, nuke the shuffle. 6120 if (SVI->use_empty()) { 6121 SVI->eraseFromParent(); 6122 MadeChange = true; 6123 } 6124 6125 return MadeChange; 6126 } 6127 6128 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6129 // If the operands of I can be folded into a target instruction together with 6130 // I, duplicate and sink them. 6131 SmallVector<Use *, 4> OpsToSink; 6132 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6133 return false; 6134 6135 // OpsToSink can contain multiple uses in a use chain (e.g. 6136 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6137 // uses must come first, which means they are sunk first, temporarily creating 6138 // invalid IR. This will be fixed once their dominated users are sunk and 6139 // updated. 6140 BasicBlock *TargetBB = I->getParent(); 6141 bool Changed = false; 6142 SmallVector<Use *, 4> ToReplace; 6143 for (Use *U : OpsToSink) { 6144 auto *UI = cast<Instruction>(U->get()); 6145 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6146 continue; 6147 ToReplace.push_back(U); 6148 } 6149 6150 SmallPtrSet<Instruction *, 4> MaybeDead; 6151 for (Use *U : ToReplace) { 6152 auto *UI = cast<Instruction>(U->get()); 6153 Instruction *NI = UI->clone(); 6154 MaybeDead.insert(UI); 6155 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6156 NI->insertBefore(I); 6157 InsertedInsts.insert(NI); 6158 U->set(NI); 6159 Changed = true; 6160 } 6161 6162 // Remove instructions that are dead after sinking. 6163 for (auto *I : MaybeDead) 6164 if (!I->hasNUsesOrMore(1)) 6165 I->eraseFromParent(); 6166 6167 return Changed; 6168 } 6169 6170 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6171 if (!TLI || !DL) 6172 return false; 6173 6174 Value *Cond = SI->getCondition(); 6175 Type *OldType = Cond->getType(); 6176 LLVMContext &Context = Cond->getContext(); 6177 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6178 unsigned RegWidth = RegType.getSizeInBits(); 6179 6180 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6181 return false; 6182 6183 // If the register width is greater than the type width, expand the condition 6184 // of the switch instruction and each case constant to the width of the 6185 // register. By widening the type of the switch condition, subsequent 6186 // comparisons (for case comparisons) will not need to be extended to the 6187 // preferred register width, so we will potentially eliminate N-1 extends, 6188 // where N is the number of cases in the switch. 6189 auto *NewType = Type::getIntNTy(Context, RegWidth); 6190 6191 // Zero-extend the switch condition and case constants unless the switch 6192 // condition is a function argument that is already being sign-extended. 6193 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6194 // everything instead. 6195 Instruction::CastOps ExtType = Instruction::ZExt; 6196 if (auto *Arg = dyn_cast<Argument>(Cond)) 6197 if (Arg->hasSExtAttr()) 6198 ExtType = Instruction::SExt; 6199 6200 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6201 ExtInst->insertBefore(SI); 6202 ExtInst->setDebugLoc(SI->getDebugLoc()); 6203 SI->setCondition(ExtInst); 6204 for (auto Case : SI->cases()) { 6205 APInt NarrowConst = Case.getCaseValue()->getValue(); 6206 APInt WideConst = (ExtType == Instruction::ZExt) ? 6207 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6208 Case.setValue(ConstantInt::get(Context, WideConst)); 6209 } 6210 6211 return true; 6212 } 6213 6214 6215 namespace { 6216 6217 /// Helper class to promote a scalar operation to a vector one. 6218 /// This class is used to move downward extractelement transition. 6219 /// E.g., 6220 /// a = vector_op <2 x i32> 6221 /// b = extractelement <2 x i32> a, i32 0 6222 /// c = scalar_op b 6223 /// store c 6224 /// 6225 /// => 6226 /// a = vector_op <2 x i32> 6227 /// c = vector_op a (equivalent to scalar_op on the related lane) 6228 /// * d = extractelement <2 x i32> c, i32 0 6229 /// * store d 6230 /// Assuming both extractelement and store can be combine, we get rid of the 6231 /// transition. 6232 class VectorPromoteHelper { 6233 /// DataLayout associated with the current module. 6234 const DataLayout &DL; 6235 6236 /// Used to perform some checks on the legality of vector operations. 6237 const TargetLowering &TLI; 6238 6239 /// Used to estimated the cost of the promoted chain. 6240 const TargetTransformInfo &TTI; 6241 6242 /// The transition being moved downwards. 6243 Instruction *Transition; 6244 6245 /// The sequence of instructions to be promoted. 6246 SmallVector<Instruction *, 4> InstsToBePromoted; 6247 6248 /// Cost of combining a store and an extract. 6249 unsigned StoreExtractCombineCost; 6250 6251 /// Instruction that will be combined with the transition. 6252 Instruction *CombineInst = nullptr; 6253 6254 /// The instruction that represents the current end of the transition. 6255 /// Since we are faking the promotion until we reach the end of the chain 6256 /// of computation, we need a way to get the current end of the transition. 6257 Instruction *getEndOfTransition() const { 6258 if (InstsToBePromoted.empty()) 6259 return Transition; 6260 return InstsToBePromoted.back(); 6261 } 6262 6263 /// Return the index of the original value in the transition. 6264 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6265 /// c, is at index 0. 6266 unsigned getTransitionOriginalValueIdx() const { 6267 assert(isa<ExtractElementInst>(Transition) && 6268 "Other kind of transitions are not supported yet"); 6269 return 0; 6270 } 6271 6272 /// Return the index of the index in the transition. 6273 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6274 /// is at index 1. 6275 unsigned getTransitionIdx() const { 6276 assert(isa<ExtractElementInst>(Transition) && 6277 "Other kind of transitions are not supported yet"); 6278 return 1; 6279 } 6280 6281 /// Get the type of the transition. 6282 /// This is the type of the original value. 6283 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6284 /// transition is <2 x i32>. 6285 Type *getTransitionType() const { 6286 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6287 } 6288 6289 /// Promote \p ToBePromoted by moving \p Def downward through. 6290 /// I.e., we have the following sequence: 6291 /// Def = Transition <ty1> a to <ty2> 6292 /// b = ToBePromoted <ty2> Def, ... 6293 /// => 6294 /// b = ToBePromoted <ty1> a, ... 6295 /// Def = Transition <ty1> ToBePromoted to <ty2> 6296 void promoteImpl(Instruction *ToBePromoted); 6297 6298 /// Check whether or not it is profitable to promote all the 6299 /// instructions enqueued to be promoted. 6300 bool isProfitableToPromote() { 6301 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6302 unsigned Index = isa<ConstantInt>(ValIdx) 6303 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6304 : -1; 6305 Type *PromotedType = getTransitionType(); 6306 6307 StoreInst *ST = cast<StoreInst>(CombineInst); 6308 unsigned AS = ST->getPointerAddressSpace(); 6309 unsigned Align = ST->getAlignment(); 6310 // Check if this store is supported. 6311 if (!TLI.allowsMisalignedMemoryAccesses( 6312 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6313 Align)) { 6314 // If this is not supported, there is no way we can combine 6315 // the extract with the store. 6316 return false; 6317 } 6318 6319 // The scalar chain of computation has to pay for the transition 6320 // scalar to vector. 6321 // The vector chain has to account for the combining cost. 6322 uint64_t ScalarCost = 6323 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6324 uint64_t VectorCost = StoreExtractCombineCost; 6325 for (const auto &Inst : InstsToBePromoted) { 6326 // Compute the cost. 6327 // By construction, all instructions being promoted are arithmetic ones. 6328 // Moreover, one argument is a constant that can be viewed as a splat 6329 // constant. 6330 Value *Arg0 = Inst->getOperand(0); 6331 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6332 isa<ConstantFP>(Arg0); 6333 TargetTransformInfo::OperandValueKind Arg0OVK = 6334 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6335 : TargetTransformInfo::OK_AnyValue; 6336 TargetTransformInfo::OperandValueKind Arg1OVK = 6337 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6338 : TargetTransformInfo::OK_AnyValue; 6339 ScalarCost += TTI.getArithmeticInstrCost( 6340 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6341 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6342 Arg0OVK, Arg1OVK); 6343 } 6344 LLVM_DEBUG( 6345 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6346 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6347 return ScalarCost > VectorCost; 6348 } 6349 6350 /// Generate a constant vector with \p Val with the same 6351 /// number of elements as the transition. 6352 /// \p UseSplat defines whether or not \p Val should be replicated 6353 /// across the whole vector. 6354 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6355 /// otherwise we generate a vector with as many undef as possible: 6356 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6357 /// used at the index of the extract. 6358 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6359 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6360 if (!UseSplat) { 6361 // If we cannot determine where the constant must be, we have to 6362 // use a splat constant. 6363 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6364 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6365 ExtractIdx = CstVal->getSExtValue(); 6366 else 6367 UseSplat = true; 6368 } 6369 6370 unsigned End = getTransitionType()->getVectorNumElements(); 6371 if (UseSplat) 6372 return ConstantVector::getSplat(End, Val); 6373 6374 SmallVector<Constant *, 4> ConstVec; 6375 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6376 for (unsigned Idx = 0; Idx != End; ++Idx) { 6377 if (Idx == ExtractIdx) 6378 ConstVec.push_back(Val); 6379 else 6380 ConstVec.push_back(UndefVal); 6381 } 6382 return ConstantVector::get(ConstVec); 6383 } 6384 6385 /// Check if promoting to a vector type an operand at \p OperandIdx 6386 /// in \p Use can trigger undefined behavior. 6387 static bool canCauseUndefinedBehavior(const Instruction *Use, 6388 unsigned OperandIdx) { 6389 // This is not safe to introduce undef when the operand is on 6390 // the right hand side of a division-like instruction. 6391 if (OperandIdx != 1) 6392 return false; 6393 switch (Use->getOpcode()) { 6394 default: 6395 return false; 6396 case Instruction::SDiv: 6397 case Instruction::UDiv: 6398 case Instruction::SRem: 6399 case Instruction::URem: 6400 return true; 6401 case Instruction::FDiv: 6402 case Instruction::FRem: 6403 return !Use->hasNoNaNs(); 6404 } 6405 llvm_unreachable(nullptr); 6406 } 6407 6408 public: 6409 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6410 const TargetTransformInfo &TTI, Instruction *Transition, 6411 unsigned CombineCost) 6412 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6413 StoreExtractCombineCost(CombineCost) { 6414 assert(Transition && "Do not know how to promote null"); 6415 } 6416 6417 /// Check if we can promote \p ToBePromoted to \p Type. 6418 bool canPromote(const Instruction *ToBePromoted) const { 6419 // We could support CastInst too. 6420 return isa<BinaryOperator>(ToBePromoted); 6421 } 6422 6423 /// Check if it is profitable to promote \p ToBePromoted 6424 /// by moving downward the transition through. 6425 bool shouldPromote(const Instruction *ToBePromoted) const { 6426 // Promote only if all the operands can be statically expanded. 6427 // Indeed, we do not want to introduce any new kind of transitions. 6428 for (const Use &U : ToBePromoted->operands()) { 6429 const Value *Val = U.get(); 6430 if (Val == getEndOfTransition()) { 6431 // If the use is a division and the transition is on the rhs, 6432 // we cannot promote the operation, otherwise we may create a 6433 // division by zero. 6434 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6435 return false; 6436 continue; 6437 } 6438 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6439 !isa<ConstantFP>(Val)) 6440 return false; 6441 } 6442 // Check that the resulting operation is legal. 6443 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6444 if (!ISDOpcode) 6445 return false; 6446 return StressStoreExtract || 6447 TLI.isOperationLegalOrCustom( 6448 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6449 } 6450 6451 /// Check whether or not \p Use can be combined 6452 /// with the transition. 6453 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6454 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6455 6456 /// Record \p ToBePromoted as part of the chain to be promoted. 6457 void enqueueForPromotion(Instruction *ToBePromoted) { 6458 InstsToBePromoted.push_back(ToBePromoted); 6459 } 6460 6461 /// Set the instruction that will be combined with the transition. 6462 void recordCombineInstruction(Instruction *ToBeCombined) { 6463 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6464 CombineInst = ToBeCombined; 6465 } 6466 6467 /// Promote all the instructions enqueued for promotion if it is 6468 /// is profitable. 6469 /// \return True if the promotion happened, false otherwise. 6470 bool promote() { 6471 // Check if there is something to promote. 6472 // Right now, if we do not have anything to combine with, 6473 // we assume the promotion is not profitable. 6474 if (InstsToBePromoted.empty() || !CombineInst) 6475 return false; 6476 6477 // Check cost. 6478 if (!StressStoreExtract && !isProfitableToPromote()) 6479 return false; 6480 6481 // Promote. 6482 for (auto &ToBePromoted : InstsToBePromoted) 6483 promoteImpl(ToBePromoted); 6484 InstsToBePromoted.clear(); 6485 return true; 6486 } 6487 }; 6488 6489 } // end anonymous namespace 6490 6491 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6492 // At this point, we know that all the operands of ToBePromoted but Def 6493 // can be statically promoted. 6494 // For Def, we need to use its parameter in ToBePromoted: 6495 // b = ToBePromoted ty1 a 6496 // Def = Transition ty1 b to ty2 6497 // Move the transition down. 6498 // 1. Replace all uses of the promoted operation by the transition. 6499 // = ... b => = ... Def. 6500 assert(ToBePromoted->getType() == Transition->getType() && 6501 "The type of the result of the transition does not match " 6502 "the final type"); 6503 ToBePromoted->replaceAllUsesWith(Transition); 6504 // 2. Update the type of the uses. 6505 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6506 Type *TransitionTy = getTransitionType(); 6507 ToBePromoted->mutateType(TransitionTy); 6508 // 3. Update all the operands of the promoted operation with promoted 6509 // operands. 6510 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6511 for (Use &U : ToBePromoted->operands()) { 6512 Value *Val = U.get(); 6513 Value *NewVal = nullptr; 6514 if (Val == Transition) 6515 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6516 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6517 isa<ConstantFP>(Val)) { 6518 // Use a splat constant if it is not safe to use undef. 6519 NewVal = getConstantVector( 6520 cast<Constant>(Val), 6521 isa<UndefValue>(Val) || 6522 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6523 } else 6524 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6525 "this?"); 6526 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6527 } 6528 Transition->moveAfter(ToBePromoted); 6529 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6530 } 6531 6532 /// Some targets can do store(extractelement) with one instruction. 6533 /// Try to push the extractelement towards the stores when the target 6534 /// has this feature and this is profitable. 6535 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6536 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6537 if (DisableStoreExtract || !TLI || 6538 (!StressStoreExtract && 6539 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6540 Inst->getOperand(1), CombineCost))) 6541 return false; 6542 6543 // At this point we know that Inst is a vector to scalar transition. 6544 // Try to move it down the def-use chain, until: 6545 // - We can combine the transition with its single use 6546 // => we got rid of the transition. 6547 // - We escape the current basic block 6548 // => we would need to check that we are moving it at a cheaper place and 6549 // we do not do that for now. 6550 BasicBlock *Parent = Inst->getParent(); 6551 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6552 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6553 // If the transition has more than one use, assume this is not going to be 6554 // beneficial. 6555 while (Inst->hasOneUse()) { 6556 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6557 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6558 6559 if (ToBePromoted->getParent() != Parent) { 6560 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6561 << ToBePromoted->getParent()->getName() 6562 << ") than the transition (" << Parent->getName() 6563 << ").\n"); 6564 return false; 6565 } 6566 6567 if (VPH.canCombine(ToBePromoted)) { 6568 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6569 << "will be combined with: " << *ToBePromoted << '\n'); 6570 VPH.recordCombineInstruction(ToBePromoted); 6571 bool Changed = VPH.promote(); 6572 NumStoreExtractExposed += Changed; 6573 return Changed; 6574 } 6575 6576 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6577 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6578 return false; 6579 6580 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6581 6582 VPH.enqueueForPromotion(ToBePromoted); 6583 Inst = ToBePromoted; 6584 } 6585 return false; 6586 } 6587 6588 /// For the instruction sequence of store below, F and I values 6589 /// are bundled together as an i64 value before being stored into memory. 6590 /// Sometimes it is more efficient to generate separate stores for F and I, 6591 /// which can remove the bitwise instructions or sink them to colder places. 6592 /// 6593 /// (store (or (zext (bitcast F to i32) to i64), 6594 /// (shl (zext I to i64), 32)), addr) --> 6595 /// (store F, addr) and (store I, addr+4) 6596 /// 6597 /// Similarly, splitting for other merged store can also be beneficial, like: 6598 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6599 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6600 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6601 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6602 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6603 /// 6604 /// We allow each target to determine specifically which kind of splitting is 6605 /// supported. 6606 /// 6607 /// The store patterns are commonly seen from the simple code snippet below 6608 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6609 /// void goo(const std::pair<int, float> &); 6610 /// hoo() { 6611 /// ... 6612 /// goo(std::make_pair(tmp, ftmp)); 6613 /// ... 6614 /// } 6615 /// 6616 /// Although we already have similar splitting in DAG Combine, we duplicate 6617 /// it in CodeGenPrepare to catch the case in which pattern is across 6618 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6619 /// during code expansion. 6620 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6621 const TargetLowering &TLI) { 6622 // Handle simple but common cases only. 6623 Type *StoreType = SI.getValueOperand()->getType(); 6624 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6625 DL.getTypeSizeInBits(StoreType) == 0) 6626 return false; 6627 6628 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6629 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6630 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6631 DL.getTypeSizeInBits(SplitStoreType)) 6632 return false; 6633 6634 // Match the following patterns: 6635 // (store (or (zext LValue to i64), 6636 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6637 // or 6638 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6639 // (zext LValue to i64), 6640 // Expect both operands of OR and the first operand of SHL have only 6641 // one use. 6642 Value *LValue, *HValue; 6643 if (!match(SI.getValueOperand(), 6644 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6645 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6646 m_SpecificInt(HalfValBitSize)))))) 6647 return false; 6648 6649 // Check LValue and HValue are int with size less or equal than 32. 6650 if (!LValue->getType()->isIntegerTy() || 6651 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6652 !HValue->getType()->isIntegerTy() || 6653 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6654 return false; 6655 6656 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6657 // as the input of target query. 6658 auto *LBC = dyn_cast<BitCastInst>(LValue); 6659 auto *HBC = dyn_cast<BitCastInst>(HValue); 6660 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6661 : EVT::getEVT(LValue->getType()); 6662 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6663 : EVT::getEVT(HValue->getType()); 6664 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6665 return false; 6666 6667 // Start to split store. 6668 IRBuilder<> Builder(SI.getContext()); 6669 Builder.SetInsertPoint(&SI); 6670 6671 // If LValue/HValue is a bitcast in another BB, create a new one in current 6672 // BB so it may be merged with the splitted stores by dag combiner. 6673 if (LBC && LBC->getParent() != SI.getParent()) 6674 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6675 if (HBC && HBC->getParent() != SI.getParent()) 6676 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6677 6678 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6679 auto CreateSplitStore = [&](Value *V, bool Upper) { 6680 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6681 Value *Addr = Builder.CreateBitCast( 6682 SI.getOperand(1), 6683 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6684 if ((IsLE && Upper) || (!IsLE && !Upper)) 6685 Addr = Builder.CreateGEP( 6686 SplitStoreType, Addr, 6687 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6688 Builder.CreateAlignedStore( 6689 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6690 }; 6691 6692 CreateSplitStore(LValue, false); 6693 CreateSplitStore(HValue, true); 6694 6695 // Delete the old store. 6696 SI.eraseFromParent(); 6697 return true; 6698 } 6699 6700 // Return true if the GEP has two operands, the first operand is of a sequential 6701 // type, and the second operand is a constant. 6702 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6703 gep_type_iterator I = gep_type_begin(*GEP); 6704 return GEP->getNumOperands() == 2 && 6705 I.isSequential() && 6706 isa<ConstantInt>(GEP->getOperand(1)); 6707 } 6708 6709 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6710 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6711 // reducing liveness interference across those edges benefits global register 6712 // allocation. Currently handles only certain cases. 6713 // 6714 // For example, unmerge %GEPI and %UGEPI as below. 6715 // 6716 // ---------- BEFORE ---------- 6717 // SrcBlock: 6718 // ... 6719 // %GEPIOp = ... 6720 // ... 6721 // %GEPI = gep %GEPIOp, Idx 6722 // ... 6723 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6724 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6725 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6726 // %UGEPI) 6727 // 6728 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6729 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6730 // ... 6731 // 6732 // DstBi: 6733 // ... 6734 // %UGEPI = gep %GEPIOp, UIdx 6735 // ... 6736 // --------------------------- 6737 // 6738 // ---------- AFTER ---------- 6739 // SrcBlock: 6740 // ... (same as above) 6741 // (* %GEPI is still alive on the indirectbr edges) 6742 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6743 // unmerging) 6744 // ... 6745 // 6746 // DstBi: 6747 // ... 6748 // %UGEPI = gep %GEPI, (UIdx-Idx) 6749 // ... 6750 // --------------------------- 6751 // 6752 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6753 // no longer alive on them. 6754 // 6755 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6756 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6757 // not to disable further simplications and optimizations as a result of GEP 6758 // merging. 6759 // 6760 // Note this unmerging may increase the length of the data flow critical path 6761 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6762 // between the register pressure and the length of data-flow critical 6763 // path. Restricting this to the uncommon IndirectBr case would minimize the 6764 // impact of potentially longer critical path, if any, and the impact on compile 6765 // time. 6766 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6767 const TargetTransformInfo *TTI) { 6768 BasicBlock *SrcBlock = GEPI->getParent(); 6769 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6770 // (non-IndirectBr) cases exit early here. 6771 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6772 return false; 6773 // Check that GEPI is a simple gep with a single constant index. 6774 if (!GEPSequentialConstIndexed(GEPI)) 6775 return false; 6776 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6777 // Check that GEPI is a cheap one. 6778 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6779 > TargetTransformInfo::TCC_Basic) 6780 return false; 6781 Value *GEPIOp = GEPI->getOperand(0); 6782 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6783 if (!isa<Instruction>(GEPIOp)) 6784 return false; 6785 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6786 if (GEPIOpI->getParent() != SrcBlock) 6787 return false; 6788 // Check that GEP is used outside the block, meaning it's alive on the 6789 // IndirectBr edge(s). 6790 if (find_if(GEPI->users(), [&](User *Usr) { 6791 if (auto *I = dyn_cast<Instruction>(Usr)) { 6792 if (I->getParent() != SrcBlock) { 6793 return true; 6794 } 6795 } 6796 return false; 6797 }) == GEPI->users().end()) 6798 return false; 6799 // The second elements of the GEP chains to be unmerged. 6800 std::vector<GetElementPtrInst *> UGEPIs; 6801 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6802 // on IndirectBr edges. 6803 for (User *Usr : GEPIOp->users()) { 6804 if (Usr == GEPI) continue; 6805 // Check if Usr is an Instruction. If not, give up. 6806 if (!isa<Instruction>(Usr)) 6807 return false; 6808 auto *UI = cast<Instruction>(Usr); 6809 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6810 if (UI->getParent() == SrcBlock) 6811 continue; 6812 // Check if Usr is a GEP. If not, give up. 6813 if (!isa<GetElementPtrInst>(Usr)) 6814 return false; 6815 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6816 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6817 // the pointer operand to it. If so, record it in the vector. If not, give 6818 // up. 6819 if (!GEPSequentialConstIndexed(UGEPI)) 6820 return false; 6821 if (UGEPI->getOperand(0) != GEPIOp) 6822 return false; 6823 if (GEPIIdx->getType() != 6824 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6825 return false; 6826 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6827 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6828 > TargetTransformInfo::TCC_Basic) 6829 return false; 6830 UGEPIs.push_back(UGEPI); 6831 } 6832 if (UGEPIs.size() == 0) 6833 return false; 6834 // Check the materializing cost of (Uidx-Idx). 6835 for (GetElementPtrInst *UGEPI : UGEPIs) { 6836 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6837 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6838 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6839 if (ImmCost > TargetTransformInfo::TCC_Basic) 6840 return false; 6841 } 6842 // Now unmerge between GEPI and UGEPIs. 6843 for (GetElementPtrInst *UGEPI : UGEPIs) { 6844 UGEPI->setOperand(0, GEPI); 6845 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6846 Constant *NewUGEPIIdx = 6847 ConstantInt::get(GEPIIdx->getType(), 6848 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6849 UGEPI->setOperand(1, NewUGEPIIdx); 6850 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6851 // inbounds to avoid UB. 6852 if (!GEPI->isInBounds()) { 6853 UGEPI->setIsInBounds(false); 6854 } 6855 } 6856 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6857 // alive on IndirectBr edges). 6858 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6859 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6860 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6861 return true; 6862 } 6863 6864 bool CodeGenPrepare::optimizeInst(Instruction *I, DominatorTree &DT, 6865 bool &ModifiedDT) { 6866 // Bail out if we inserted the instruction to prevent optimizations from 6867 // stepping on each other's toes. 6868 if (InsertedInsts.count(I)) 6869 return false; 6870 6871 if (PHINode *P = dyn_cast<PHINode>(I)) { 6872 // It is possible for very late stage optimizations (such as SimplifyCFG) 6873 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6874 // trivial PHI, go ahead and zap it here. 6875 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6876 LargeOffsetGEPMap.erase(P); 6877 P->replaceAllUsesWith(V); 6878 P->eraseFromParent(); 6879 ++NumPHIsElim; 6880 return true; 6881 } 6882 return false; 6883 } 6884 6885 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6886 // If the source of the cast is a constant, then this should have 6887 // already been constant folded. The only reason NOT to constant fold 6888 // it is if something (e.g. LSR) was careful to place the constant 6889 // evaluation in a block other than then one that uses it (e.g. to hoist 6890 // the address of globals out of a loop). If this is the case, we don't 6891 // want to forward-subst the cast. 6892 if (isa<Constant>(CI->getOperand(0))) 6893 return false; 6894 6895 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6896 return true; 6897 6898 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6899 /// Sink a zext or sext into its user blocks if the target type doesn't 6900 /// fit in one register 6901 if (TLI && 6902 TLI->getTypeAction(CI->getContext(), 6903 TLI->getValueType(*DL, CI->getType())) == 6904 TargetLowering::TypeExpandInteger) { 6905 return SinkCast(CI); 6906 } else { 6907 bool MadeChange = optimizeExt(I); 6908 return MadeChange | optimizeExtUses(I); 6909 } 6910 } 6911 return false; 6912 } 6913 6914 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6915 if (TLI && optimizeCmp(Cmp, *TLI, *DL, DT, ModifiedDT)) 6916 return true; 6917 6918 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6919 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6920 if (TLI) { 6921 bool Modified = optimizeLoadExt(LI); 6922 unsigned AS = LI->getPointerAddressSpace(); 6923 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6924 return Modified; 6925 } 6926 return false; 6927 } 6928 6929 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6930 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6931 return true; 6932 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6933 if (TLI) { 6934 unsigned AS = SI->getPointerAddressSpace(); 6935 return optimizeMemoryInst(I, SI->getOperand(1), 6936 SI->getOperand(0)->getType(), AS); 6937 } 6938 return false; 6939 } 6940 6941 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6942 unsigned AS = RMW->getPointerAddressSpace(); 6943 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6944 RMW->getType(), AS); 6945 } 6946 6947 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6948 unsigned AS = CmpX->getPointerAddressSpace(); 6949 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6950 CmpX->getCompareOperand()->getType(), AS); 6951 } 6952 6953 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6954 6955 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6956 EnableAndCmpSinking && TLI) 6957 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6958 6959 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6960 BinOp->getOpcode() == Instruction::LShr)) { 6961 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6962 if (TLI && CI && TLI->hasExtractBitsInsn()) 6963 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6964 6965 return false; 6966 } 6967 6968 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6969 if (GEPI->hasAllZeroIndices()) { 6970 /// The GEP operand must be a pointer, so must its result -> BitCast 6971 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6972 GEPI->getName(), GEPI); 6973 NC->setDebugLoc(GEPI->getDebugLoc()); 6974 GEPI->replaceAllUsesWith(NC); 6975 GEPI->eraseFromParent(); 6976 ++NumGEPsElim; 6977 optimizeInst(NC, DT, ModifiedDT); 6978 return true; 6979 } 6980 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6981 return true; 6982 } 6983 return false; 6984 } 6985 6986 if (tryToSinkFreeOperands(I)) 6987 return true; 6988 6989 if (CallInst *CI = dyn_cast<CallInst>(I)) 6990 return optimizeCallInst(CI, ModifiedDT); 6991 6992 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6993 return optimizeSelectInst(SI, ModifiedDT); 6994 6995 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6996 return optimizeShuffleVectorInst(SVI); 6997 6998 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6999 return optimizeSwitchInst(Switch); 7000 7001 if (isa<ExtractElementInst>(I)) 7002 return optimizeExtractElementInst(I); 7003 7004 return false; 7005 } 7006 7007 /// Given an OR instruction, check to see if this is a bitreverse 7008 /// idiom. If so, insert the new intrinsic and return true. 7009 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7010 const TargetLowering &TLI) { 7011 if (!I.getType()->isIntegerTy() || 7012 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7013 TLI.getValueType(DL, I.getType(), true))) 7014 return false; 7015 7016 SmallVector<Instruction*, 4> Insts; 7017 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7018 return false; 7019 Instruction *LastInst = Insts.back(); 7020 I.replaceAllUsesWith(LastInst); 7021 RecursivelyDeleteTriviallyDeadInstructions(&I); 7022 return true; 7023 } 7024 7025 // In this pass we look for GEP and cast instructions that are used 7026 // across basic blocks and rewrite them to improve basic-block-at-a-time 7027 // selection. 7028 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, DominatorTree &DT, 7029 bool &ModifiedDT) { 7030 SunkAddrs.clear(); 7031 bool MadeChange = false; 7032 7033 CurInstIterator = BB.begin(); 7034 while (CurInstIterator != BB.end()) { 7035 MadeChange |= optimizeInst(&*CurInstIterator++, DT, ModifiedDT); 7036 if (ModifiedDT) 7037 return true; 7038 } 7039 7040 bool MadeBitReverse = true; 7041 while (TLI && MadeBitReverse) { 7042 MadeBitReverse = false; 7043 for (auto &I : reverse(BB)) { 7044 if (makeBitReverse(I, *DL, *TLI)) { 7045 MadeBitReverse = MadeChange = true; 7046 ModifiedDT = true; 7047 break; 7048 } 7049 } 7050 } 7051 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7052 7053 return MadeChange; 7054 } 7055 7056 // llvm.dbg.value is far away from the value then iSel may not be able 7057 // handle it properly. iSel will drop llvm.dbg.value if it can not 7058 // find a node corresponding to the value. 7059 bool CodeGenPrepare::placeDbgValues(Function &F) { 7060 bool MadeChange = false; 7061 for (BasicBlock &BB : F) { 7062 Instruction *PrevNonDbgInst = nullptr; 7063 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7064 Instruction *Insn = &*BI++; 7065 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7066 // Leave dbg.values that refer to an alloca alone. These 7067 // intrinsics describe the address of a variable (= the alloca) 7068 // being taken. They should not be moved next to the alloca 7069 // (and to the beginning of the scope), but rather stay close to 7070 // where said address is used. 7071 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7072 PrevNonDbgInst = Insn; 7073 continue; 7074 } 7075 7076 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7077 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7078 // If VI is a phi in a block with an EHPad terminator, we can't insert 7079 // after it. 7080 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7081 continue; 7082 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7083 << *DVI << ' ' << *VI); 7084 DVI->removeFromParent(); 7085 if (isa<PHINode>(VI)) 7086 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7087 else 7088 DVI->insertAfter(VI); 7089 MadeChange = true; 7090 ++NumDbgValueMoved; 7091 } 7092 } 7093 } 7094 return MadeChange; 7095 } 7096 7097 /// Scale down both weights to fit into uint32_t. 7098 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7099 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7100 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7101 NewTrue = NewTrue / Scale; 7102 NewFalse = NewFalse / Scale; 7103 } 7104 7105 /// Some targets prefer to split a conditional branch like: 7106 /// \code 7107 /// %0 = icmp ne i32 %a, 0 7108 /// %1 = icmp ne i32 %b, 0 7109 /// %or.cond = or i1 %0, %1 7110 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7111 /// \endcode 7112 /// into multiple branch instructions like: 7113 /// \code 7114 /// bb1: 7115 /// %0 = icmp ne i32 %a, 0 7116 /// br i1 %0, label %TrueBB, label %bb2 7117 /// bb2: 7118 /// %1 = icmp ne i32 %b, 0 7119 /// br i1 %1, label %TrueBB, label %FalseBB 7120 /// \endcode 7121 /// This usually allows instruction selection to do even further optimizations 7122 /// and combine the compare with the branch instruction. Currently this is 7123 /// applied for targets which have "cheap" jump instructions. 7124 /// 7125 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7126 /// 7127 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7128 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7129 return false; 7130 7131 bool MadeChange = false; 7132 for (auto &BB : F) { 7133 // Does this BB end with the following? 7134 // %cond1 = icmp|fcmp|binary instruction ... 7135 // %cond2 = icmp|fcmp|binary instruction ... 7136 // %cond.or = or|and i1 %cond1, cond2 7137 // br i1 %cond.or label %dest1, label %dest2" 7138 BinaryOperator *LogicOp; 7139 BasicBlock *TBB, *FBB; 7140 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7141 continue; 7142 7143 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7144 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7145 continue; 7146 7147 unsigned Opc; 7148 Value *Cond1, *Cond2; 7149 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7150 m_OneUse(m_Value(Cond2))))) 7151 Opc = Instruction::And; 7152 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7153 m_OneUse(m_Value(Cond2))))) 7154 Opc = Instruction::Or; 7155 else 7156 continue; 7157 7158 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7159 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7160 continue; 7161 7162 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7163 7164 // Create a new BB. 7165 auto TmpBB = 7166 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7167 BB.getParent(), BB.getNextNode()); 7168 7169 // Update original basic block by using the first condition directly by the 7170 // branch instruction and removing the no longer needed and/or instruction. 7171 Br1->setCondition(Cond1); 7172 LogicOp->eraseFromParent(); 7173 7174 // Depending on the condition we have to either replace the true or the 7175 // false successor of the original branch instruction. 7176 if (Opc == Instruction::And) 7177 Br1->setSuccessor(0, TmpBB); 7178 else 7179 Br1->setSuccessor(1, TmpBB); 7180 7181 // Fill in the new basic block. 7182 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7183 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7184 I->removeFromParent(); 7185 I->insertBefore(Br2); 7186 } 7187 7188 // Update PHI nodes in both successors. The original BB needs to be 7189 // replaced in one successor's PHI nodes, because the branch comes now from 7190 // the newly generated BB (NewBB). In the other successor we need to add one 7191 // incoming edge to the PHI nodes, because both branch instructions target 7192 // now the same successor. Depending on the original branch condition 7193 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7194 // we perform the correct update for the PHI nodes. 7195 // This doesn't change the successor order of the just created branch 7196 // instruction (or any other instruction). 7197 if (Opc == Instruction::Or) 7198 std::swap(TBB, FBB); 7199 7200 // Replace the old BB with the new BB. 7201 for (PHINode &PN : TBB->phis()) { 7202 int i; 7203 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7204 PN.setIncomingBlock(i, TmpBB); 7205 } 7206 7207 // Add another incoming edge form the new BB. 7208 for (PHINode &PN : FBB->phis()) { 7209 auto *Val = PN.getIncomingValueForBlock(&BB); 7210 PN.addIncoming(Val, TmpBB); 7211 } 7212 7213 // Update the branch weights (from SelectionDAGBuilder:: 7214 // FindMergedConditions). 7215 if (Opc == Instruction::Or) { 7216 // Codegen X | Y as: 7217 // BB1: 7218 // jmp_if_X TBB 7219 // jmp TmpBB 7220 // TmpBB: 7221 // jmp_if_Y TBB 7222 // jmp FBB 7223 // 7224 7225 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7226 // The requirement is that 7227 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7228 // = TrueProb for original BB. 7229 // Assuming the original weights are A and B, one choice is to set BB1's 7230 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7231 // assumes that 7232 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7233 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7234 // TmpBB, but the math is more complicated. 7235 uint64_t TrueWeight, FalseWeight; 7236 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7237 uint64_t NewTrueWeight = TrueWeight; 7238 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7239 scaleWeights(NewTrueWeight, NewFalseWeight); 7240 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7241 .createBranchWeights(TrueWeight, FalseWeight)); 7242 7243 NewTrueWeight = TrueWeight; 7244 NewFalseWeight = 2 * FalseWeight; 7245 scaleWeights(NewTrueWeight, NewFalseWeight); 7246 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7247 .createBranchWeights(TrueWeight, FalseWeight)); 7248 } 7249 } else { 7250 // Codegen X & Y as: 7251 // BB1: 7252 // jmp_if_X TmpBB 7253 // jmp FBB 7254 // TmpBB: 7255 // jmp_if_Y TBB 7256 // jmp FBB 7257 // 7258 // This requires creation of TmpBB after CurBB. 7259 7260 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7261 // The requirement is that 7262 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7263 // = FalseProb for original BB. 7264 // Assuming the original weights are A and B, one choice is to set BB1's 7265 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7266 // assumes that 7267 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7268 uint64_t TrueWeight, FalseWeight; 7269 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7270 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7271 uint64_t NewFalseWeight = FalseWeight; 7272 scaleWeights(NewTrueWeight, NewFalseWeight); 7273 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7274 .createBranchWeights(TrueWeight, FalseWeight)); 7275 7276 NewTrueWeight = 2 * TrueWeight; 7277 NewFalseWeight = FalseWeight; 7278 scaleWeights(NewTrueWeight, NewFalseWeight); 7279 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7280 .createBranchWeights(TrueWeight, FalseWeight)); 7281 } 7282 } 7283 7284 ModifiedDT = true; 7285 MadeChange = true; 7286 7287 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7288 TmpBB->dump()); 7289 } 7290 return MadeChange; 7291 } 7292