1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateAssumptions(Function &F); 381 bool eliminateFallThrough(Function &F); 382 bool eliminateMostlyEmptyBlocks(Function &F); 383 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 384 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 385 void eliminateMostlyEmptyBlock(BasicBlock *BB); 386 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 387 bool isPreheader); 388 bool makeBitReverse(Instruction &I); 389 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 390 bool optimizeInst(Instruction *I, bool &ModifiedDT); 391 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 392 Type *AccessTy, unsigned AddrSpace); 393 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 394 bool optimizeInlineAsmInst(CallInst *CS); 395 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 396 bool optimizeExt(Instruction *&I); 397 bool optimizeExtUses(Instruction *I); 398 bool optimizeLoadExt(LoadInst *Load); 399 bool optimizeShiftInst(BinaryOperator *BO); 400 bool optimizeFunnelShift(IntrinsicInst *Fsh); 401 bool optimizeSelectInst(SelectInst *SI); 402 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 403 bool optimizeSwitchInst(SwitchInst *SI); 404 bool optimizeExtractElementInst(Instruction *Inst); 405 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 406 bool fixupDbgValue(Instruction *I); 407 bool placeDbgValues(Function &F); 408 bool placePseudoProbes(Function &F); 409 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 410 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 411 bool tryToPromoteExts(TypePromotionTransaction &TPT, 412 const SmallVectorImpl<Instruction *> &Exts, 413 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 414 unsigned CreatedInstsCost = 0); 415 bool mergeSExts(Function &F); 416 bool splitLargeGEPOffsets(); 417 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 418 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 419 bool optimizePhiTypes(Function &F); 420 bool performAddressTypePromotion( 421 Instruction *&Inst, 422 bool AllowPromotionWithoutCommonHeader, 423 bool HasPromoted, TypePromotionTransaction &TPT, 424 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 425 bool splitBranchCondition(Function &F, bool &ModifiedDT); 426 bool simplifyOffsetableRelocate(GCStatepointInst &I); 427 428 bool tryToSinkFreeOperands(Instruction *I); 429 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 430 Value *Arg1, CmpInst *Cmp, 431 Intrinsic::ID IID); 432 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 void verifyBFIUpdates(Function &F); 436 }; 437 438 } // end anonymous namespace 439 440 char CodeGenPrepare::ID = 0; 441 442 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 443 "Optimize for code generation", false, false) 444 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 448 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 449 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 450 "Optimize for code generation", false, false) 451 452 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 453 454 bool CodeGenPrepare::runOnFunction(Function &F) { 455 if (skipFunction(F)) 456 return false; 457 458 DL = &F.getParent()->getDataLayout(); 459 460 bool EverMadeChange = false; 461 // Clear per function information. 462 InsertedInsts.clear(); 463 PromotedInsts.clear(); 464 465 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 466 SubtargetInfo = TM->getSubtargetImpl(F); 467 TLI = SubtargetInfo->getTargetLowering(); 468 TRI = SubtargetInfo->getRegisterInfo(); 469 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 470 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 471 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 472 BPI.reset(new BranchProbabilityInfo(F, *LI)); 473 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 474 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 475 OptSize = F.hasOptSize(); 476 if (ProfileGuidedSectionPrefix) { 477 // The hot attribute overwrites profile count based hotness while profile 478 // counts based hotness overwrite the cold attribute. 479 // This is a conservative behabvior. 480 if (F.hasFnAttribute(Attribute::Hot) || 481 PSI->isFunctionHotInCallGraph(&F, *BFI)) 482 F.setSectionPrefix("hot"); 483 // If PSI shows this function is not hot, we will placed the function 484 // into unlikely section if (1) PSI shows this is a cold function, or 485 // (2) the function has a attribute of cold. 486 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 487 F.hasFnAttribute(Attribute::Cold)) 488 F.setSectionPrefix("unlikely"); 489 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 490 PSI->isFunctionHotnessUnknown(F)) 491 F.setSectionPrefix("unknown"); 492 } 493 494 /// This optimization identifies DIV instructions that can be 495 /// profitably bypassed and carried out with a shorter, faster divide. 496 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 497 const DenseMap<unsigned int, unsigned int> &BypassWidths = 498 TLI->getBypassSlowDivWidths(); 499 BasicBlock* BB = &*F.begin(); 500 while (BB != nullptr) { 501 // bypassSlowDivision may create new BBs, but we don't want to reapply the 502 // optimization to those blocks. 503 BasicBlock* Next = BB->getNextNode(); 504 // F.hasOptSize is already checked in the outer if statement. 505 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 506 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 507 BB = Next; 508 } 509 } 510 511 // Get rid of @llvm.assume builtins before attempting to eliminate empty 512 // blocks, since there might be blocks that only contain @llvm.assume calls 513 // (plus arguments that we can get rid of). 514 EverMadeChange |= eliminateAssumptions(F); 515 516 // Eliminate blocks that contain only PHI nodes and an 517 // unconditional branch. 518 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 519 520 bool ModifiedDT = false; 521 if (!DisableBranchOpts) 522 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 523 524 // Split some critical edges where one of the sources is an indirect branch, 525 // to help generate sane code for PHIs involving such edges. 526 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 527 528 bool MadeChange = true; 529 while (MadeChange) { 530 MadeChange = false; 531 DT.reset(); 532 for (Function::iterator I = F.begin(); I != F.end(); ) { 533 BasicBlock *BB = &*I++; 534 bool ModifiedDTOnIteration = false; 535 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 536 537 // Restart BB iteration if the dominator tree of the Function was changed 538 if (ModifiedDTOnIteration) 539 break; 540 } 541 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 542 MadeChange |= mergeSExts(F); 543 if (!LargeOffsetGEPMap.empty()) 544 MadeChange |= splitLargeGEPOffsets(); 545 MadeChange |= optimizePhiTypes(F); 546 547 if (MadeChange) 548 eliminateFallThrough(F); 549 550 // Really free removed instructions during promotion. 551 for (Instruction *I : RemovedInsts) 552 I->deleteValue(); 553 554 EverMadeChange |= MadeChange; 555 SeenChainsForSExt.clear(); 556 ValToSExtendedUses.clear(); 557 RemovedInsts.clear(); 558 LargeOffsetGEPMap.clear(); 559 LargeOffsetGEPID.clear(); 560 } 561 562 NewGEPBases.clear(); 563 SunkAddrs.clear(); 564 565 if (!DisableBranchOpts) { 566 MadeChange = false; 567 // Use a set vector to get deterministic iteration order. The order the 568 // blocks are removed may affect whether or not PHI nodes in successors 569 // are removed. 570 SmallSetVector<BasicBlock*, 8> WorkList; 571 for (BasicBlock &BB : F) { 572 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 573 MadeChange |= ConstantFoldTerminator(&BB, true); 574 if (!MadeChange) continue; 575 576 for (BasicBlock *Succ : Successors) 577 if (pred_empty(Succ)) 578 WorkList.insert(Succ); 579 } 580 581 // Delete the dead blocks and any of their dead successors. 582 MadeChange |= !WorkList.empty(); 583 while (!WorkList.empty()) { 584 BasicBlock *BB = WorkList.pop_back_val(); 585 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 586 587 DeleteDeadBlock(BB); 588 589 for (BasicBlock *Succ : Successors) 590 if (pred_empty(Succ)) 591 WorkList.insert(Succ); 592 } 593 594 // Merge pairs of basic blocks with unconditional branches, connected by 595 // a single edge. 596 if (EverMadeChange || MadeChange) 597 MadeChange |= eliminateFallThrough(F); 598 599 EverMadeChange |= MadeChange; 600 } 601 602 if (!DisableGCOpts) { 603 SmallVector<GCStatepointInst *, 2> Statepoints; 604 for (BasicBlock &BB : F) 605 for (Instruction &I : BB) 606 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 607 Statepoints.push_back(SP); 608 for (auto &I : Statepoints) 609 EverMadeChange |= simplifyOffsetableRelocate(*I); 610 } 611 612 // Do this last to clean up use-before-def scenarios introduced by other 613 // preparatory transforms. 614 EverMadeChange |= placeDbgValues(F); 615 EverMadeChange |= placePseudoProbes(F); 616 617 #ifndef NDEBUG 618 if (VerifyBFIUpdates) 619 verifyBFIUpdates(F); 620 #endif 621 622 return EverMadeChange; 623 } 624 625 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 626 bool MadeChange = false; 627 for (BasicBlock &BB : F) { 628 CurInstIterator = BB.begin(); 629 while (CurInstIterator != BB.end()) { 630 Instruction *I = &*(CurInstIterator++); 631 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 632 MadeChange = true; 633 Value *Operand = Assume->getOperand(0); 634 Assume->eraseFromParent(); 635 636 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 637 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 638 }); 639 } 640 } 641 } 642 return MadeChange; 643 } 644 645 /// An instruction is about to be deleted, so remove all references to it in our 646 /// GEP-tracking data strcutures. 647 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 648 LargeOffsetGEPMap.erase(V); 649 NewGEPBases.erase(V); 650 651 auto GEP = dyn_cast<GetElementPtrInst>(V); 652 if (!GEP) 653 return; 654 655 LargeOffsetGEPID.erase(GEP); 656 657 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 658 if (VecI == LargeOffsetGEPMap.end()) 659 return; 660 661 auto &GEPVector = VecI->second; 662 const auto &I = 663 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 664 if (I == GEPVector.end()) 665 return; 666 667 GEPVector.erase(I); 668 if (GEPVector.empty()) 669 LargeOffsetGEPMap.erase(VecI); 670 } 671 672 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 673 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 674 DominatorTree NewDT(F); 675 LoopInfo NewLI(NewDT); 676 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 677 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 678 NewBFI.verifyMatch(*BFI); 679 } 680 681 /// Merge basic blocks which are connected by a single edge, where one of the 682 /// basic blocks has a single successor pointing to the other basic block, 683 /// which has a single predecessor. 684 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 685 bool Changed = false; 686 // Scan all of the blocks in the function, except for the entry block. 687 // Use a temporary array to avoid iterator being invalidated when 688 // deleting blocks. 689 SmallVector<WeakTrackingVH, 16> Blocks; 690 for (auto &Block : llvm::drop_begin(F)) 691 Blocks.push_back(&Block); 692 693 SmallSet<WeakTrackingVH, 16> Preds; 694 for (auto &Block : Blocks) { 695 auto *BB = cast_or_null<BasicBlock>(Block); 696 if (!BB) 697 continue; 698 // If the destination block has a single pred, then this is a trivial 699 // edge, just collapse it. 700 BasicBlock *SinglePred = BB->getSinglePredecessor(); 701 702 // Don't merge if BB's address is taken. 703 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 704 705 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 706 if (Term && !Term->isConditional()) { 707 Changed = true; 708 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 709 710 // Merge BB into SinglePred and delete it. 711 MergeBlockIntoPredecessor(BB); 712 Preds.insert(SinglePred); 713 } 714 } 715 716 // (Repeatedly) merging blocks into their predecessors can create redundant 717 // debug intrinsics. 718 for (auto &Pred : Preds) 719 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 720 RemoveRedundantDbgInstrs(BB); 721 722 return Changed; 723 } 724 725 /// Find a destination block from BB if BB is mergeable empty block. 726 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 727 // If this block doesn't end with an uncond branch, ignore it. 728 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 729 if (!BI || !BI->isUnconditional()) 730 return nullptr; 731 732 // If the instruction before the branch (skipping debug info) isn't a phi 733 // node, then other stuff is happening here. 734 BasicBlock::iterator BBI = BI->getIterator(); 735 if (BBI != BB->begin()) { 736 --BBI; 737 while (isa<DbgInfoIntrinsic>(BBI)) { 738 if (BBI == BB->begin()) 739 break; 740 --BBI; 741 } 742 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 743 return nullptr; 744 } 745 746 // Do not break infinite loops. 747 BasicBlock *DestBB = BI->getSuccessor(0); 748 if (DestBB == BB) 749 return nullptr; 750 751 if (!canMergeBlocks(BB, DestBB)) 752 DestBB = nullptr; 753 754 return DestBB; 755 } 756 757 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 758 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 759 /// edges in ways that are non-optimal for isel. Start by eliminating these 760 /// blocks so we can split them the way we want them. 761 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 762 SmallPtrSet<BasicBlock *, 16> Preheaders; 763 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 764 while (!LoopList.empty()) { 765 Loop *L = LoopList.pop_back_val(); 766 llvm::append_range(LoopList, *L); 767 if (BasicBlock *Preheader = L->getLoopPreheader()) 768 Preheaders.insert(Preheader); 769 } 770 771 bool MadeChange = false; 772 // Copy blocks into a temporary array to avoid iterator invalidation issues 773 // as we remove them. 774 // Note that this intentionally skips the entry block. 775 SmallVector<WeakTrackingVH, 16> Blocks; 776 for (auto &Block : llvm::drop_begin(F)) 777 Blocks.push_back(&Block); 778 779 for (auto &Block : Blocks) { 780 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 781 if (!BB) 782 continue; 783 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 784 if (!DestBB || 785 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 786 continue; 787 788 eliminateMostlyEmptyBlock(BB); 789 MadeChange = true; 790 } 791 return MadeChange; 792 } 793 794 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 795 BasicBlock *DestBB, 796 bool isPreheader) { 797 // Do not delete loop preheaders if doing so would create a critical edge. 798 // Loop preheaders can be good locations to spill registers. If the 799 // preheader is deleted and we create a critical edge, registers may be 800 // spilled in the loop body instead. 801 if (!DisablePreheaderProtect && isPreheader && 802 !(BB->getSinglePredecessor() && 803 BB->getSinglePredecessor()->getSingleSuccessor())) 804 return false; 805 806 // Skip merging if the block's successor is also a successor to any callbr 807 // that leads to this block. 808 // FIXME: Is this really needed? Is this a correctness issue? 809 for (BasicBlock *Pred : predecessors(BB)) { 810 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 811 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 812 if (DestBB == CBI->getSuccessor(i)) 813 return false; 814 } 815 816 // Try to skip merging if the unique predecessor of BB is terminated by a 817 // switch or indirect branch instruction, and BB is used as an incoming block 818 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 819 // add COPY instructions in the predecessor of BB instead of BB (if it is not 820 // merged). Note that the critical edge created by merging such blocks wont be 821 // split in MachineSink because the jump table is not analyzable. By keeping 822 // such empty block (BB), ISel will place COPY instructions in BB, not in the 823 // predecessor of BB. 824 BasicBlock *Pred = BB->getUniquePredecessor(); 825 if (!Pred || 826 !(isa<SwitchInst>(Pred->getTerminator()) || 827 isa<IndirectBrInst>(Pred->getTerminator()))) 828 return true; 829 830 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 831 return true; 832 833 // We use a simple cost heuristic which determine skipping merging is 834 // profitable if the cost of skipping merging is less than the cost of 835 // merging : Cost(skipping merging) < Cost(merging BB), where the 836 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 837 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 838 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 839 // Freq(Pred) / Freq(BB) > 2. 840 // Note that if there are multiple empty blocks sharing the same incoming 841 // value for the PHIs in the DestBB, we consider them together. In such 842 // case, Cost(merging BB) will be the sum of their frequencies. 843 844 if (!isa<PHINode>(DestBB->begin())) 845 return true; 846 847 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 848 849 // Find all other incoming blocks from which incoming values of all PHIs in 850 // DestBB are the same as the ones from BB. 851 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 852 if (DestBBPred == BB) 853 continue; 854 855 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 856 return DestPN.getIncomingValueForBlock(BB) == 857 DestPN.getIncomingValueForBlock(DestBBPred); 858 })) 859 SameIncomingValueBBs.insert(DestBBPred); 860 } 861 862 // See if all BB's incoming values are same as the value from Pred. In this 863 // case, no reason to skip merging because COPYs are expected to be place in 864 // Pred already. 865 if (SameIncomingValueBBs.count(Pred)) 866 return true; 867 868 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 869 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 870 871 for (auto *SameValueBB : SameIncomingValueBBs) 872 if (SameValueBB->getUniquePredecessor() == Pred && 873 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 874 BBFreq += BFI->getBlockFreq(SameValueBB); 875 876 return PredFreq.getFrequency() <= 877 BBFreq.getFrequency() * FreqRatioToSkipMerge; 878 } 879 880 /// Return true if we can merge BB into DestBB if there is a single 881 /// unconditional branch between them, and BB contains no other non-phi 882 /// instructions. 883 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 884 const BasicBlock *DestBB) const { 885 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 886 // the successor. If there are more complex condition (e.g. preheaders), 887 // don't mess around with them. 888 for (const PHINode &PN : BB->phis()) { 889 for (const User *U : PN.users()) { 890 const Instruction *UI = cast<Instruction>(U); 891 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 892 return false; 893 // If User is inside DestBB block and it is a PHINode then check 894 // incoming value. If incoming value is not from BB then this is 895 // a complex condition (e.g. preheaders) we want to avoid here. 896 if (UI->getParent() == DestBB) { 897 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 898 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 899 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 900 if (Insn && Insn->getParent() == BB && 901 Insn->getParent() != UPN->getIncomingBlock(I)) 902 return false; 903 } 904 } 905 } 906 } 907 908 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 909 // and DestBB may have conflicting incoming values for the block. If so, we 910 // can't merge the block. 911 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 912 if (!DestBBPN) return true; // no conflict. 913 914 // Collect the preds of BB. 915 SmallPtrSet<const BasicBlock*, 16> BBPreds; 916 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 917 // It is faster to get preds from a PHI than with pred_iterator. 918 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 919 BBPreds.insert(BBPN->getIncomingBlock(i)); 920 } else { 921 BBPreds.insert(pred_begin(BB), pred_end(BB)); 922 } 923 924 // Walk the preds of DestBB. 925 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 926 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 927 if (BBPreds.count(Pred)) { // Common predecessor? 928 for (const PHINode &PN : DestBB->phis()) { 929 const Value *V1 = PN.getIncomingValueForBlock(Pred); 930 const Value *V2 = PN.getIncomingValueForBlock(BB); 931 932 // If V2 is a phi node in BB, look up what the mapped value will be. 933 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 934 if (V2PN->getParent() == BB) 935 V2 = V2PN->getIncomingValueForBlock(Pred); 936 937 // If there is a conflict, bail out. 938 if (V1 != V2) return false; 939 } 940 } 941 } 942 943 return true; 944 } 945 946 /// Eliminate a basic block that has only phi's and an unconditional branch in 947 /// it. 948 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 949 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 950 BasicBlock *DestBB = BI->getSuccessor(0); 951 952 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 953 << *BB << *DestBB); 954 955 // If the destination block has a single pred, then this is a trivial edge, 956 // just collapse it. 957 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 958 if (SinglePred != DestBB) { 959 assert(SinglePred == BB && 960 "Single predecessor not the same as predecessor"); 961 // Merge DestBB into SinglePred/BB and delete it. 962 MergeBlockIntoPredecessor(DestBB); 963 // Note: BB(=SinglePred) will not be deleted on this path. 964 // DestBB(=its single successor) is the one that was deleted. 965 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 966 return; 967 } 968 } 969 970 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 971 // to handle the new incoming edges it is about to have. 972 for (PHINode &PN : DestBB->phis()) { 973 // Remove the incoming value for BB, and remember it. 974 Value *InVal = PN.removeIncomingValue(BB, false); 975 976 // Two options: either the InVal is a phi node defined in BB or it is some 977 // value that dominates BB. 978 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 979 if (InValPhi && InValPhi->getParent() == BB) { 980 // Add all of the input values of the input PHI as inputs of this phi. 981 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 982 PN.addIncoming(InValPhi->getIncomingValue(i), 983 InValPhi->getIncomingBlock(i)); 984 } else { 985 // Otherwise, add one instance of the dominating value for each edge that 986 // we will be adding. 987 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 988 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 989 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 990 } else { 991 for (BasicBlock *Pred : predecessors(BB)) 992 PN.addIncoming(InVal, Pred); 993 } 994 } 995 } 996 997 // The PHIs are now updated, change everything that refers to BB to use 998 // DestBB and remove BB. 999 BB->replaceAllUsesWith(DestBB); 1000 BB->eraseFromParent(); 1001 ++NumBlocksElim; 1002 1003 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1004 } 1005 1006 // Computes a map of base pointer relocation instructions to corresponding 1007 // derived pointer relocation instructions given a vector of all relocate calls 1008 static void computeBaseDerivedRelocateMap( 1009 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1011 &RelocateInstMap) { 1012 // Collect information in two maps: one primarily for locating the base object 1013 // while filling the second map; the second map is the final structure holding 1014 // a mapping between Base and corresponding Derived relocate calls 1015 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1016 for (auto *ThisRelocate : AllRelocateCalls) { 1017 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1018 ThisRelocate->getDerivedPtrIndex()); 1019 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1020 } 1021 for (auto &Item : RelocateIdxMap) { 1022 std::pair<unsigned, unsigned> Key = Item.first; 1023 if (Key.first == Key.second) 1024 // Base relocation: nothing to insert 1025 continue; 1026 1027 GCRelocateInst *I = Item.second; 1028 auto BaseKey = std::make_pair(Key.first, Key.first); 1029 1030 // We're iterating over RelocateIdxMap so we cannot modify it. 1031 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1032 if (MaybeBase == RelocateIdxMap.end()) 1033 // TODO: We might want to insert a new base object relocate and gep off 1034 // that, if there are enough derived object relocates. 1035 continue; 1036 1037 RelocateInstMap[MaybeBase->second].push_back(I); 1038 } 1039 } 1040 1041 // Accepts a GEP and extracts the operands into a vector provided they're all 1042 // small integer constants 1043 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1044 SmallVectorImpl<Value *> &OffsetV) { 1045 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1046 // Only accept small constant integer operands 1047 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1048 if (!Op || Op->getZExtValue() > 20) 1049 return false; 1050 } 1051 1052 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1053 OffsetV.push_back(GEP->getOperand(i)); 1054 return true; 1055 } 1056 1057 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1058 // replace, computes a replacement, and affects it. 1059 static bool 1060 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1061 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1062 bool MadeChange = false; 1063 // We must ensure the relocation of derived pointer is defined after 1064 // relocation of base pointer. If we find a relocation corresponding to base 1065 // defined earlier than relocation of base then we move relocation of base 1066 // right before found relocation. We consider only relocation in the same 1067 // basic block as relocation of base. Relocations from other basic block will 1068 // be skipped by optimization and we do not care about them. 1069 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1070 &*R != RelocatedBase; ++R) 1071 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1072 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1073 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1074 RelocatedBase->moveBefore(RI); 1075 break; 1076 } 1077 1078 for (GCRelocateInst *ToReplace : Targets) { 1079 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1080 "Not relocating a derived object of the original base object"); 1081 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1082 // A duplicate relocate call. TODO: coalesce duplicates. 1083 continue; 1084 } 1085 1086 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1087 // Base and derived relocates are in different basic blocks. 1088 // In this case transform is only valid when base dominates derived 1089 // relocate. However it would be too expensive to check dominance 1090 // for each such relocate, so we skip the whole transformation. 1091 continue; 1092 } 1093 1094 Value *Base = ToReplace->getBasePtr(); 1095 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1096 if (!Derived || Derived->getPointerOperand() != Base) 1097 continue; 1098 1099 SmallVector<Value *, 2> OffsetV; 1100 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1101 continue; 1102 1103 // Create a Builder and replace the target callsite with a gep 1104 assert(RelocatedBase->getNextNode() && 1105 "Should always have one since it's not a terminator"); 1106 1107 // Insert after RelocatedBase 1108 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1109 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1110 1111 // If gc_relocate does not match the actual type, cast it to the right type. 1112 // In theory, there must be a bitcast after gc_relocate if the type does not 1113 // match, and we should reuse it to get the derived pointer. But it could be 1114 // cases like this: 1115 // bb1: 1116 // ... 1117 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1118 // br label %merge 1119 // 1120 // bb2: 1121 // ... 1122 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1123 // br label %merge 1124 // 1125 // merge: 1126 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1127 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1128 // 1129 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1130 // no matter there is already one or not. In this way, we can handle all cases, and 1131 // the extra bitcast should be optimized away in later passes. 1132 Value *ActualRelocatedBase = RelocatedBase; 1133 if (RelocatedBase->getType() != Base->getType()) { 1134 ActualRelocatedBase = 1135 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1136 } 1137 Value *Replacement = Builder.CreateGEP( 1138 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1139 Replacement->takeName(ToReplace); 1140 // If the newly generated derived pointer's type does not match the original derived 1141 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1142 Value *ActualReplacement = Replacement; 1143 if (Replacement->getType() != ToReplace->getType()) { 1144 ActualReplacement = 1145 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1146 } 1147 ToReplace->replaceAllUsesWith(ActualReplacement); 1148 ToReplace->eraseFromParent(); 1149 1150 MadeChange = true; 1151 } 1152 return MadeChange; 1153 } 1154 1155 // Turns this: 1156 // 1157 // %base = ... 1158 // %ptr = gep %base + 15 1159 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1160 // %base' = relocate(%tok, i32 4, i32 4) 1161 // %ptr' = relocate(%tok, i32 4, i32 5) 1162 // %val = load %ptr' 1163 // 1164 // into this: 1165 // 1166 // %base = ... 1167 // %ptr = gep %base + 15 1168 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1169 // %base' = gc.relocate(%tok, i32 4, i32 4) 1170 // %ptr' = gep %base' + 15 1171 // %val = load %ptr' 1172 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1173 bool MadeChange = false; 1174 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1175 for (auto *U : I.users()) 1176 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1177 // Collect all the relocate calls associated with a statepoint 1178 AllRelocateCalls.push_back(Relocate); 1179 1180 // We need at least one base pointer relocation + one derived pointer 1181 // relocation to mangle 1182 if (AllRelocateCalls.size() < 2) 1183 return false; 1184 1185 // RelocateInstMap is a mapping from the base relocate instruction to the 1186 // corresponding derived relocate instructions 1187 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1188 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1189 if (RelocateInstMap.empty()) 1190 return false; 1191 1192 for (auto &Item : RelocateInstMap) 1193 // Item.first is the RelocatedBase to offset against 1194 // Item.second is the vector of Targets to replace 1195 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1196 return MadeChange; 1197 } 1198 1199 /// Sink the specified cast instruction into its user blocks. 1200 static bool SinkCast(CastInst *CI) { 1201 BasicBlock *DefBB = CI->getParent(); 1202 1203 /// InsertedCasts - Only insert a cast in each block once. 1204 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1205 1206 bool MadeChange = false; 1207 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1208 UI != E; ) { 1209 Use &TheUse = UI.getUse(); 1210 Instruction *User = cast<Instruction>(*UI); 1211 1212 // Figure out which BB this cast is used in. For PHI's this is the 1213 // appropriate predecessor block. 1214 BasicBlock *UserBB = User->getParent(); 1215 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1216 UserBB = PN->getIncomingBlock(TheUse); 1217 } 1218 1219 // Preincrement use iterator so we don't invalidate it. 1220 ++UI; 1221 1222 // The first insertion point of a block containing an EH pad is after the 1223 // pad. If the pad is the user, we cannot sink the cast past the pad. 1224 if (User->isEHPad()) 1225 continue; 1226 1227 // If the block selected to receive the cast is an EH pad that does not 1228 // allow non-PHI instructions before the terminator, we can't sink the 1229 // cast. 1230 if (UserBB->getTerminator()->isEHPad()) 1231 continue; 1232 1233 // If this user is in the same block as the cast, don't change the cast. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cast into this block, use it. 1237 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1238 1239 if (!InsertedCast) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1243 CI->getType(), "", &*InsertPt); 1244 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1245 } 1246 1247 // Replace a use of the cast with a use of the new cast. 1248 TheUse = InsertedCast; 1249 MadeChange = true; 1250 ++NumCastUses; 1251 } 1252 1253 // If we removed all uses, nuke the cast. 1254 if (CI->use_empty()) { 1255 salvageDebugInfo(*CI); 1256 CI->eraseFromParent(); 1257 MadeChange = true; 1258 } 1259 1260 return MadeChange; 1261 } 1262 1263 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1264 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1265 /// reduce the number of virtual registers that must be created and coalesced. 1266 /// 1267 /// Return true if any changes are made. 1268 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1269 const DataLayout &DL) { 1270 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1271 // than sinking only nop casts, but is helpful on some platforms. 1272 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1273 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1274 ASC->getDestAddressSpace())) 1275 return false; 1276 } 1277 1278 // If this is a noop copy, 1279 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1280 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1281 1282 // This is an fp<->int conversion? 1283 if (SrcVT.isInteger() != DstVT.isInteger()) 1284 return false; 1285 1286 // If this is an extension, it will be a zero or sign extension, which 1287 // isn't a noop. 1288 if (SrcVT.bitsLT(DstVT)) return false; 1289 1290 // If these values will be promoted, find out what they will be promoted 1291 // to. This helps us consider truncates on PPC as noop copies when they 1292 // are. 1293 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1294 TargetLowering::TypePromoteInteger) 1295 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1296 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1297 TargetLowering::TypePromoteInteger) 1298 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1299 1300 // If, after promotion, these are the same types, this is a noop copy. 1301 if (SrcVT != DstVT) 1302 return false; 1303 1304 return SinkCast(CI); 1305 } 1306 1307 // Match a simple increment by constant operation. Note that if a sub is 1308 // matched, the step is negated (as if the step had been canonicalized to 1309 // an add, even though we leave the instruction alone.) 1310 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1311 Constant *&Step) { 1312 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1313 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1314 m_Instruction(LHS), m_Constant(Step))))) 1315 return true; 1316 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1317 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1318 m_Instruction(LHS), m_Constant(Step))))) { 1319 Step = ConstantExpr::getNeg(Step); 1320 return true; 1321 } 1322 return false; 1323 } 1324 1325 /// If given \p PN is an inductive variable with value IVInc coming from the 1326 /// backedge, and on each iteration it gets increased by Step, return pair 1327 /// <IVInc, Step>. Otherwise, return None. 1328 static Optional<std::pair<Instruction *, Constant *> > 1329 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1330 const Loop *L = LI->getLoopFor(PN->getParent()); 1331 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1332 return None; 1333 auto *IVInc = 1334 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1335 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1336 return None; 1337 Instruction *LHS = nullptr; 1338 Constant *Step = nullptr; 1339 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1340 return std::make_pair(IVInc, Step); 1341 return None; 1342 } 1343 1344 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1345 auto *I = dyn_cast<Instruction>(V); 1346 if (!I) 1347 return false; 1348 Instruction *LHS = nullptr; 1349 Constant *Step = nullptr; 1350 if (!matchIncrement(I, LHS, Step)) 1351 return false; 1352 if (auto *PN = dyn_cast<PHINode>(LHS)) 1353 if (auto IVInc = getIVIncrement(PN, LI)) 1354 return IVInc->first == I; 1355 return false; 1356 } 1357 1358 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1359 Value *Arg0, Value *Arg1, 1360 CmpInst *Cmp, 1361 Intrinsic::ID IID) { 1362 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1363 if (!isIVIncrement(BO, LI)) 1364 return false; 1365 const Loop *L = LI->getLoopFor(BO->getParent()); 1366 assert(L && "L should not be null after isIVIncrement()"); 1367 // Do not risk on moving increment into a child loop. 1368 if (LI->getLoopFor(Cmp->getParent()) != L) 1369 return false; 1370 1371 // Finally, we need to ensure that the insert point will dominate all 1372 // existing uses of the increment. 1373 1374 auto &DT = getDT(*BO->getParent()->getParent()); 1375 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1376 // If we're moving up the dom tree, all uses are trivially dominated. 1377 // (This is the common case for code produced by LSR.) 1378 return true; 1379 1380 // Otherwise, special case the single use in the phi recurrence. 1381 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1382 }; 1383 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1384 // We used to use a dominator tree here to allow multi-block optimization. 1385 // But that was problematic because: 1386 // 1. It could cause a perf regression by hoisting the math op into the 1387 // critical path. 1388 // 2. It could cause a perf regression by creating a value that was live 1389 // across multiple blocks and increasing register pressure. 1390 // 3. Use of a dominator tree could cause large compile-time regression. 1391 // This is because we recompute the DT on every change in the main CGP 1392 // run-loop. The recomputing is probably unnecessary in many cases, so if 1393 // that was fixed, using a DT here would be ok. 1394 // 1395 // There is one important particular case we still want to handle: if BO is 1396 // the IV increment. Important properties that make it profitable: 1397 // - We can speculate IV increment anywhere in the loop (as long as the 1398 // indvar Phi is its only user); 1399 // - Upon computing Cmp, we effectively compute something equivalent to the 1400 // IV increment (despite it loops differently in the IR). So moving it up 1401 // to the cmp point does not really increase register pressure. 1402 return false; 1403 } 1404 1405 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1406 if (BO->getOpcode() == Instruction::Add && 1407 IID == Intrinsic::usub_with_overflow) { 1408 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1409 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1410 } 1411 1412 // Insert at the first instruction of the pair. 1413 Instruction *InsertPt = nullptr; 1414 for (Instruction &Iter : *Cmp->getParent()) { 1415 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1416 // the overflow intrinsic are defined. 1417 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1418 InsertPt = &Iter; 1419 break; 1420 } 1421 } 1422 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1423 1424 IRBuilder<> Builder(InsertPt); 1425 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1426 if (BO->getOpcode() != Instruction::Xor) { 1427 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1428 BO->replaceAllUsesWith(Math); 1429 } else 1430 assert(BO->hasOneUse() && 1431 "Patterns with XOr should use the BO only in the compare"); 1432 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1433 Cmp->replaceAllUsesWith(OV); 1434 Cmp->eraseFromParent(); 1435 BO->eraseFromParent(); 1436 return true; 1437 } 1438 1439 /// Match special-case patterns that check for unsigned add overflow. 1440 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1441 BinaryOperator *&Add) { 1442 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1443 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1444 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1445 1446 // We are not expecting non-canonical/degenerate code. Just bail out. 1447 if (isa<Constant>(A)) 1448 return false; 1449 1450 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1451 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1452 B = ConstantInt::get(B->getType(), 1); 1453 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1454 B = ConstantInt::get(B->getType(), -1); 1455 else 1456 return false; 1457 1458 // Check the users of the variable operand of the compare looking for an add 1459 // with the adjusted constant. 1460 for (User *U : A->users()) { 1461 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1462 Add = cast<BinaryOperator>(U); 1463 return true; 1464 } 1465 } 1466 return false; 1467 } 1468 1469 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1470 /// intrinsic. Return true if any changes were made. 1471 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1472 bool &ModifiedDT) { 1473 Value *A, *B; 1474 BinaryOperator *Add; 1475 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1476 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1477 return false; 1478 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1479 A = Add->getOperand(0); 1480 B = Add->getOperand(1); 1481 } 1482 1483 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1484 TLI->getValueType(*DL, Add->getType()), 1485 Add->hasNUsesOrMore(2))) 1486 return false; 1487 1488 // We don't want to move around uses of condition values this late, so we 1489 // check if it is legal to create the call to the intrinsic in the basic 1490 // block containing the icmp. 1491 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1492 return false; 1493 1494 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1495 Intrinsic::uadd_with_overflow)) 1496 return false; 1497 1498 // Reset callers - do not crash by iterating over a dead instruction. 1499 ModifiedDT = true; 1500 return true; 1501 } 1502 1503 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1504 bool &ModifiedDT) { 1505 // We are not expecting non-canonical/degenerate code. Just bail out. 1506 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1507 if (isa<Constant>(A) && isa<Constant>(B)) 1508 return false; 1509 1510 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1511 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1512 if (Pred == ICmpInst::ICMP_UGT) { 1513 std::swap(A, B); 1514 Pred = ICmpInst::ICMP_ULT; 1515 } 1516 // Convert special-case: (A == 0) is the same as (A u< 1). 1517 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1518 B = ConstantInt::get(B->getType(), 1); 1519 Pred = ICmpInst::ICMP_ULT; 1520 } 1521 // Convert special-case: (A != 0) is the same as (0 u< A). 1522 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1523 std::swap(A, B); 1524 Pred = ICmpInst::ICMP_ULT; 1525 } 1526 if (Pred != ICmpInst::ICMP_ULT) 1527 return false; 1528 1529 // Walk the users of a variable operand of a compare looking for a subtract or 1530 // add with that same operand. Also match the 2nd operand of the compare to 1531 // the add/sub, but that may be a negated constant operand of an add. 1532 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1533 BinaryOperator *Sub = nullptr; 1534 for (User *U : CmpVariableOperand->users()) { 1535 // A - B, A u< B --> usubo(A, B) 1536 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1537 Sub = cast<BinaryOperator>(U); 1538 break; 1539 } 1540 1541 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1542 const APInt *CmpC, *AddC; 1543 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1544 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1545 Sub = cast<BinaryOperator>(U); 1546 break; 1547 } 1548 } 1549 if (!Sub) 1550 return false; 1551 1552 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1553 TLI->getValueType(*DL, Sub->getType()), 1554 Sub->hasNUsesOrMore(2))) 1555 return false; 1556 1557 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1558 Cmp, Intrinsic::usub_with_overflow)) 1559 return false; 1560 1561 // Reset callers - do not crash by iterating over a dead instruction. 1562 ModifiedDT = true; 1563 return true; 1564 } 1565 1566 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1567 /// registers that must be created and coalesced. This is a clear win except on 1568 /// targets with multiple condition code registers (PowerPC), where it might 1569 /// lose; some adjustment may be wanted there. 1570 /// 1571 /// Return true if any changes are made. 1572 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1573 if (TLI.hasMultipleConditionRegisters()) 1574 return false; 1575 1576 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1577 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1578 return false; 1579 1580 // Only insert a cmp in each block once. 1581 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1582 1583 bool MadeChange = false; 1584 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1585 UI != E; ) { 1586 Use &TheUse = UI.getUse(); 1587 Instruction *User = cast<Instruction>(*UI); 1588 1589 // Preincrement use iterator so we don't invalidate it. 1590 ++UI; 1591 1592 // Don't bother for PHI nodes. 1593 if (isa<PHINode>(User)) 1594 continue; 1595 1596 // Figure out which BB this cmp is used in. 1597 BasicBlock *UserBB = User->getParent(); 1598 BasicBlock *DefBB = Cmp->getParent(); 1599 1600 // If this user is in the same block as the cmp, don't change the cmp. 1601 if (UserBB == DefBB) continue; 1602 1603 // If we have already inserted a cmp into this block, use it. 1604 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1605 1606 if (!InsertedCmp) { 1607 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1608 assert(InsertPt != UserBB->end()); 1609 InsertedCmp = 1610 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1611 Cmp->getOperand(0), Cmp->getOperand(1), "", 1612 &*InsertPt); 1613 // Propagate the debug info. 1614 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1615 } 1616 1617 // Replace a use of the cmp with a use of the new cmp. 1618 TheUse = InsertedCmp; 1619 MadeChange = true; 1620 ++NumCmpUses; 1621 } 1622 1623 // If we removed all uses, nuke the cmp. 1624 if (Cmp->use_empty()) { 1625 Cmp->eraseFromParent(); 1626 MadeChange = true; 1627 } 1628 1629 return MadeChange; 1630 } 1631 1632 /// For pattern like: 1633 /// 1634 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1635 /// ... 1636 /// DomBB: 1637 /// ... 1638 /// br DomCond, TrueBB, CmpBB 1639 /// CmpBB: (with DomBB being the single predecessor) 1640 /// ... 1641 /// Cmp = icmp eq CmpOp0, CmpOp1 1642 /// ... 1643 /// 1644 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1645 /// different from lowering of icmp eq (PowerPC). This function try to convert 1646 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1647 /// After that, DomCond and Cmp can use the same comparison so reduce one 1648 /// comparison. 1649 /// 1650 /// Return true if any changes are made. 1651 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1652 const TargetLowering &TLI) { 1653 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1654 return false; 1655 1656 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1657 if (Pred != ICmpInst::ICMP_EQ) 1658 return false; 1659 1660 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1661 // icmp slt/sgt would introduce more redundant LLVM IR. 1662 for (User *U : Cmp->users()) { 1663 if (isa<BranchInst>(U)) 1664 continue; 1665 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1666 continue; 1667 return false; 1668 } 1669 1670 // This is a cheap/incomplete check for dominance - just match a single 1671 // predecessor with a conditional branch. 1672 BasicBlock *CmpBB = Cmp->getParent(); 1673 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1674 if (!DomBB) 1675 return false; 1676 1677 // We want to ensure that the only way control gets to the comparison of 1678 // interest is that a less/greater than comparison on the same operands is 1679 // false. 1680 Value *DomCond; 1681 BasicBlock *TrueBB, *FalseBB; 1682 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1683 return false; 1684 if (CmpBB != FalseBB) 1685 return false; 1686 1687 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1688 ICmpInst::Predicate DomPred; 1689 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1690 return false; 1691 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1692 return false; 1693 1694 // Convert the equality comparison to the opposite of the dominating 1695 // comparison and swap the direction for all branch/select users. 1696 // We have conceptually converted: 1697 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1698 // to 1699 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1700 // And similarly for branches. 1701 for (User *U : Cmp->users()) { 1702 if (auto *BI = dyn_cast<BranchInst>(U)) { 1703 assert(BI->isConditional() && "Must be conditional"); 1704 BI->swapSuccessors(); 1705 continue; 1706 } 1707 if (auto *SI = dyn_cast<SelectInst>(U)) { 1708 // Swap operands 1709 SI->swapValues(); 1710 SI->swapProfMetadata(); 1711 continue; 1712 } 1713 llvm_unreachable("Must be a branch or a select"); 1714 } 1715 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1716 return true; 1717 } 1718 1719 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1720 if (sinkCmpExpression(Cmp, *TLI)) 1721 return true; 1722 1723 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1724 return true; 1725 1726 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1727 return true; 1728 1729 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1730 return true; 1731 1732 return false; 1733 } 1734 1735 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1736 /// used in a compare to allow isel to generate better code for targets where 1737 /// this operation can be combined. 1738 /// 1739 /// Return true if any changes are made. 1740 static bool sinkAndCmp0Expression(Instruction *AndI, 1741 const TargetLowering &TLI, 1742 SetOfInstrs &InsertedInsts) { 1743 // Double-check that we're not trying to optimize an instruction that was 1744 // already optimized by some other part of this pass. 1745 assert(!InsertedInsts.count(AndI) && 1746 "Attempting to optimize already optimized and instruction"); 1747 (void) InsertedInsts; 1748 1749 // Nothing to do for single use in same basic block. 1750 if (AndI->hasOneUse() && 1751 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1752 return false; 1753 1754 // Try to avoid cases where sinking/duplicating is likely to increase register 1755 // pressure. 1756 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1757 !isa<ConstantInt>(AndI->getOperand(1)) && 1758 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1759 return false; 1760 1761 for (auto *U : AndI->users()) { 1762 Instruction *User = cast<Instruction>(U); 1763 1764 // Only sink 'and' feeding icmp with 0. 1765 if (!isa<ICmpInst>(User)) 1766 return false; 1767 1768 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1769 if (!CmpC || !CmpC->isZero()) 1770 return false; 1771 } 1772 1773 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1774 return false; 1775 1776 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1777 LLVM_DEBUG(AndI->getParent()->dump()); 1778 1779 // Push the 'and' into the same block as the icmp 0. There should only be 1780 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1781 // others, so we don't need to keep track of which BBs we insert into. 1782 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1783 UI != E; ) { 1784 Use &TheUse = UI.getUse(); 1785 Instruction *User = cast<Instruction>(*UI); 1786 1787 // Preincrement use iterator so we don't invalidate it. 1788 ++UI; 1789 1790 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1791 1792 // Keep the 'and' in the same place if the use is already in the same block. 1793 Instruction *InsertPt = 1794 User->getParent() == AndI->getParent() ? AndI : User; 1795 Instruction *InsertedAnd = 1796 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1797 AndI->getOperand(1), "", InsertPt); 1798 // Propagate the debug info. 1799 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1800 1801 // Replace a use of the 'and' with a use of the new 'and'. 1802 TheUse = InsertedAnd; 1803 ++NumAndUses; 1804 LLVM_DEBUG(User->getParent()->dump()); 1805 } 1806 1807 // We removed all uses, nuke the and. 1808 AndI->eraseFromParent(); 1809 return true; 1810 } 1811 1812 /// Check if the candidates could be combined with a shift instruction, which 1813 /// includes: 1814 /// 1. Truncate instruction 1815 /// 2. And instruction and the imm is a mask of the low bits: 1816 /// imm & (imm+1) == 0 1817 static bool isExtractBitsCandidateUse(Instruction *User) { 1818 if (!isa<TruncInst>(User)) { 1819 if (User->getOpcode() != Instruction::And || 1820 !isa<ConstantInt>(User->getOperand(1))) 1821 return false; 1822 1823 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1824 1825 if ((Cimm & (Cimm + 1)).getBoolValue()) 1826 return false; 1827 } 1828 return true; 1829 } 1830 1831 /// Sink both shift and truncate instruction to the use of truncate's BB. 1832 static bool 1833 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1834 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1835 const TargetLowering &TLI, const DataLayout &DL) { 1836 BasicBlock *UserBB = User->getParent(); 1837 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1838 auto *TruncI = cast<TruncInst>(User); 1839 bool MadeChange = false; 1840 1841 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1842 TruncE = TruncI->user_end(); 1843 TruncUI != TruncE;) { 1844 1845 Use &TruncTheUse = TruncUI.getUse(); 1846 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1847 // Preincrement use iterator so we don't invalidate it. 1848 1849 ++TruncUI; 1850 1851 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1852 if (!ISDOpcode) 1853 continue; 1854 1855 // If the use is actually a legal node, there will not be an 1856 // implicit truncate. 1857 // FIXME: always querying the result type is just an 1858 // approximation; some nodes' legality is determined by the 1859 // operand or other means. There's no good way to find out though. 1860 if (TLI.isOperationLegalOrCustom( 1861 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1862 continue; 1863 1864 // Don't bother for PHI nodes. 1865 if (isa<PHINode>(TruncUser)) 1866 continue; 1867 1868 BasicBlock *TruncUserBB = TruncUser->getParent(); 1869 1870 if (UserBB == TruncUserBB) 1871 continue; 1872 1873 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1874 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1875 1876 if (!InsertedShift && !InsertedTrunc) { 1877 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1878 assert(InsertPt != TruncUserBB->end()); 1879 // Sink the shift 1880 if (ShiftI->getOpcode() == Instruction::AShr) 1881 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1882 "", &*InsertPt); 1883 else 1884 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1885 "", &*InsertPt); 1886 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1887 1888 // Sink the trunc 1889 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1890 TruncInsertPt++; 1891 assert(TruncInsertPt != TruncUserBB->end()); 1892 1893 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1894 TruncI->getType(), "", &*TruncInsertPt); 1895 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1896 1897 MadeChange = true; 1898 1899 TruncTheUse = InsertedTrunc; 1900 } 1901 } 1902 return MadeChange; 1903 } 1904 1905 /// Sink the shift *right* instruction into user blocks if the uses could 1906 /// potentially be combined with this shift instruction and generate BitExtract 1907 /// instruction. It will only be applied if the architecture supports BitExtract 1908 /// instruction. Here is an example: 1909 /// BB1: 1910 /// %x.extract.shift = lshr i64 %arg1, 32 1911 /// BB2: 1912 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1913 /// ==> 1914 /// 1915 /// BB2: 1916 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1917 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1918 /// 1919 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1920 /// instruction. 1921 /// Return true if any changes are made. 1922 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1923 const TargetLowering &TLI, 1924 const DataLayout &DL) { 1925 BasicBlock *DefBB = ShiftI->getParent(); 1926 1927 /// Only insert instructions in each block once. 1928 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1929 1930 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1931 1932 bool MadeChange = false; 1933 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1934 UI != E;) { 1935 Use &TheUse = UI.getUse(); 1936 Instruction *User = cast<Instruction>(*UI); 1937 // Preincrement use iterator so we don't invalidate it. 1938 ++UI; 1939 1940 // Don't bother for PHI nodes. 1941 if (isa<PHINode>(User)) 1942 continue; 1943 1944 if (!isExtractBitsCandidateUse(User)) 1945 continue; 1946 1947 BasicBlock *UserBB = User->getParent(); 1948 1949 if (UserBB == DefBB) { 1950 // If the shift and truncate instruction are in the same BB. The use of 1951 // the truncate(TruncUse) may still introduce another truncate if not 1952 // legal. In this case, we would like to sink both shift and truncate 1953 // instruction to the BB of TruncUse. 1954 // for example: 1955 // BB1: 1956 // i64 shift.result = lshr i64 opnd, imm 1957 // trunc.result = trunc shift.result to i16 1958 // 1959 // BB2: 1960 // ----> We will have an implicit truncate here if the architecture does 1961 // not have i16 compare. 1962 // cmp i16 trunc.result, opnd2 1963 // 1964 if (isa<TruncInst>(User) && shiftIsLegal 1965 // If the type of the truncate is legal, no truncate will be 1966 // introduced in other basic blocks. 1967 && 1968 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1969 MadeChange = 1970 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1971 1972 continue; 1973 } 1974 // If we have already inserted a shift into this block, use it. 1975 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1976 1977 if (!InsertedShift) { 1978 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1979 assert(InsertPt != UserBB->end()); 1980 1981 if (ShiftI->getOpcode() == Instruction::AShr) 1982 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1983 "", &*InsertPt); 1984 else 1985 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1986 "", &*InsertPt); 1987 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1988 1989 MadeChange = true; 1990 } 1991 1992 // Replace a use of the shift with a use of the new shift. 1993 TheUse = InsertedShift; 1994 } 1995 1996 // If we removed all uses, or there are none, nuke the shift. 1997 if (ShiftI->use_empty()) { 1998 salvageDebugInfo(*ShiftI); 1999 ShiftI->eraseFromParent(); 2000 MadeChange = true; 2001 } 2002 2003 return MadeChange; 2004 } 2005 2006 /// If counting leading or trailing zeros is an expensive operation and a zero 2007 /// input is defined, add a check for zero to avoid calling the intrinsic. 2008 /// 2009 /// We want to transform: 2010 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2011 /// 2012 /// into: 2013 /// entry: 2014 /// %cmpz = icmp eq i64 %A, 0 2015 /// br i1 %cmpz, label %cond.end, label %cond.false 2016 /// cond.false: 2017 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2018 /// br label %cond.end 2019 /// cond.end: 2020 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2021 /// 2022 /// If the transform is performed, return true and set ModifiedDT to true. 2023 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2024 const TargetLowering *TLI, 2025 const DataLayout *DL, 2026 bool &ModifiedDT) { 2027 // If a zero input is undefined, it doesn't make sense to despeculate that. 2028 if (match(CountZeros->getOperand(1), m_One())) 2029 return false; 2030 2031 // If it's cheap to speculate, there's nothing to do. 2032 auto IntrinsicID = CountZeros->getIntrinsicID(); 2033 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2034 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2035 return false; 2036 2037 // Only handle legal scalar cases. Anything else requires too much work. 2038 Type *Ty = CountZeros->getType(); 2039 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2040 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2041 return false; 2042 2043 // The intrinsic will be sunk behind a compare against zero and branch. 2044 BasicBlock *StartBlock = CountZeros->getParent(); 2045 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2046 2047 // Create another block after the count zero intrinsic. A PHI will be added 2048 // in this block to select the result of the intrinsic or the bit-width 2049 // constant if the input to the intrinsic is zero. 2050 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2051 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2052 2053 // Set up a builder to create a compare, conditional branch, and PHI. 2054 IRBuilder<> Builder(CountZeros->getContext()); 2055 Builder.SetInsertPoint(StartBlock->getTerminator()); 2056 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2057 2058 // Replace the unconditional branch that was created by the first split with 2059 // a compare against zero and a conditional branch. 2060 Value *Zero = Constant::getNullValue(Ty); 2061 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2062 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2063 StartBlock->getTerminator()->eraseFromParent(); 2064 2065 // Create a PHI in the end block to select either the output of the intrinsic 2066 // or the bit width of the operand. 2067 Builder.SetInsertPoint(&EndBlock->front()); 2068 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2069 CountZeros->replaceAllUsesWith(PN); 2070 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2071 PN->addIncoming(BitWidth, StartBlock); 2072 PN->addIncoming(CountZeros, CallBlock); 2073 2074 // We are explicitly handling the zero case, so we can set the intrinsic's 2075 // undefined zero argument to 'true'. This will also prevent reprocessing the 2076 // intrinsic; we only despeculate when a zero input is defined. 2077 CountZeros->setArgOperand(1, Builder.getTrue()); 2078 ModifiedDT = true; 2079 return true; 2080 } 2081 2082 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2083 BasicBlock *BB = CI->getParent(); 2084 2085 // Lower inline assembly if we can. 2086 // If we found an inline asm expession, and if the target knows how to 2087 // lower it to normal LLVM code, do so now. 2088 if (CI->isInlineAsm()) { 2089 if (TLI->ExpandInlineAsm(CI)) { 2090 // Avoid invalidating the iterator. 2091 CurInstIterator = BB->begin(); 2092 // Avoid processing instructions out of order, which could cause 2093 // reuse before a value is defined. 2094 SunkAddrs.clear(); 2095 return true; 2096 } 2097 // Sink address computing for memory operands into the block. 2098 if (optimizeInlineAsmInst(CI)) 2099 return true; 2100 } 2101 2102 // Align the pointer arguments to this call if the target thinks it's a good 2103 // idea 2104 unsigned MinSize, PrefAlign; 2105 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2106 for (auto &Arg : CI->arg_operands()) { 2107 // We want to align both objects whose address is used directly and 2108 // objects whose address is used in casts and GEPs, though it only makes 2109 // sense for GEPs if the offset is a multiple of the desired alignment and 2110 // if size - offset meets the size threshold. 2111 if (!Arg->getType()->isPointerTy()) 2112 continue; 2113 APInt Offset(DL->getIndexSizeInBits( 2114 cast<PointerType>(Arg->getType())->getAddressSpace()), 2115 0); 2116 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2117 uint64_t Offset2 = Offset.getLimitedValue(); 2118 if ((Offset2 & (PrefAlign-1)) != 0) 2119 continue; 2120 AllocaInst *AI; 2121 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2122 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2123 AI->setAlignment(Align(PrefAlign)); 2124 // Global variables can only be aligned if they are defined in this 2125 // object (i.e. they are uniquely initialized in this object), and 2126 // over-aligning global variables that have an explicit section is 2127 // forbidden. 2128 GlobalVariable *GV; 2129 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2130 GV->getPointerAlignment(*DL) < PrefAlign && 2131 DL->getTypeAllocSize(GV->getValueType()) >= 2132 MinSize + Offset2) 2133 GV->setAlignment(MaybeAlign(PrefAlign)); 2134 } 2135 // If this is a memcpy (or similar) then we may be able to improve the 2136 // alignment 2137 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2138 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2139 MaybeAlign MIDestAlign = MI->getDestAlign(); 2140 if (!MIDestAlign || DestAlign > *MIDestAlign) 2141 MI->setDestAlignment(DestAlign); 2142 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2143 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2144 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2145 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2146 MTI->setSourceAlignment(SrcAlign); 2147 } 2148 } 2149 } 2150 2151 // If we have a cold call site, try to sink addressing computation into the 2152 // cold block. This interacts with our handling for loads and stores to 2153 // ensure that we can fold all uses of a potential addressing computation 2154 // into their uses. TODO: generalize this to work over profiling data 2155 if (CI->hasFnAttr(Attribute::Cold) && 2156 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2157 for (auto &Arg : CI->arg_operands()) { 2158 if (!Arg->getType()->isPointerTy()) 2159 continue; 2160 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2161 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2162 } 2163 2164 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2165 if (II) { 2166 switch (II->getIntrinsicID()) { 2167 default: break; 2168 case Intrinsic::assume: 2169 llvm_unreachable("llvm.assume should have been removed already"); 2170 case Intrinsic::experimental_widenable_condition: { 2171 // Give up on future widening oppurtunties so that we can fold away dead 2172 // paths and merge blocks before going into block-local instruction 2173 // selection. 2174 if (II->use_empty()) { 2175 II->eraseFromParent(); 2176 return true; 2177 } 2178 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2179 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2180 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2181 }); 2182 return true; 2183 } 2184 case Intrinsic::objectsize: 2185 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2186 case Intrinsic::is_constant: 2187 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2188 case Intrinsic::aarch64_stlxr: 2189 case Intrinsic::aarch64_stxr: { 2190 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2191 if (!ExtVal || !ExtVal->hasOneUse() || 2192 ExtVal->getParent() == CI->getParent()) 2193 return false; 2194 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2195 ExtVal->moveBefore(CI); 2196 // Mark this instruction as "inserted by CGP", so that other 2197 // optimizations don't touch it. 2198 InsertedInsts.insert(ExtVal); 2199 return true; 2200 } 2201 2202 case Intrinsic::launder_invariant_group: 2203 case Intrinsic::strip_invariant_group: { 2204 Value *ArgVal = II->getArgOperand(0); 2205 auto it = LargeOffsetGEPMap.find(II); 2206 if (it != LargeOffsetGEPMap.end()) { 2207 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2208 // Make sure not to have to deal with iterator invalidation 2209 // after possibly adding ArgVal to LargeOffsetGEPMap. 2210 auto GEPs = std::move(it->second); 2211 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2212 LargeOffsetGEPMap.erase(II); 2213 } 2214 2215 II->replaceAllUsesWith(ArgVal); 2216 II->eraseFromParent(); 2217 return true; 2218 } 2219 case Intrinsic::cttz: 2220 case Intrinsic::ctlz: 2221 // If counting zeros is expensive, try to avoid it. 2222 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2223 case Intrinsic::fshl: 2224 case Intrinsic::fshr: 2225 return optimizeFunnelShift(II); 2226 case Intrinsic::dbg_value: 2227 return fixupDbgValue(II); 2228 case Intrinsic::vscale: { 2229 // If datalayout has no special restrictions on vector data layout, 2230 // replace `llvm.vscale` by an equivalent constant expression 2231 // to benefit from cheap constant propagation. 2232 Type *ScalableVectorTy = 2233 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2234 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2235 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2236 auto *One = ConstantInt::getSigned(II->getType(), 1); 2237 auto *CGep = 2238 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2239 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2240 II->eraseFromParent(); 2241 return true; 2242 } 2243 break; 2244 } 2245 case Intrinsic::masked_gather: 2246 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2247 case Intrinsic::masked_scatter: 2248 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2249 } 2250 2251 SmallVector<Value *, 2> PtrOps; 2252 Type *AccessTy; 2253 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2254 while (!PtrOps.empty()) { 2255 Value *PtrVal = PtrOps.pop_back_val(); 2256 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2257 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2258 return true; 2259 } 2260 } 2261 2262 // From here on out we're working with named functions. 2263 if (!CI->getCalledFunction()) return false; 2264 2265 // Lower all default uses of _chk calls. This is very similar 2266 // to what InstCombineCalls does, but here we are only lowering calls 2267 // to fortified library functions (e.g. __memcpy_chk) that have the default 2268 // "don't know" as the objectsize. Anything else should be left alone. 2269 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2270 IRBuilder<> Builder(CI); 2271 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2272 CI->replaceAllUsesWith(V); 2273 CI->eraseFromParent(); 2274 return true; 2275 } 2276 2277 return false; 2278 } 2279 2280 /// Look for opportunities to duplicate return instructions to the predecessor 2281 /// to enable tail call optimizations. The case it is currently looking for is: 2282 /// @code 2283 /// bb0: 2284 /// %tmp0 = tail call i32 @f0() 2285 /// br label %return 2286 /// bb1: 2287 /// %tmp1 = tail call i32 @f1() 2288 /// br label %return 2289 /// bb2: 2290 /// %tmp2 = tail call i32 @f2() 2291 /// br label %return 2292 /// return: 2293 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2294 /// ret i32 %retval 2295 /// @endcode 2296 /// 2297 /// => 2298 /// 2299 /// @code 2300 /// bb0: 2301 /// %tmp0 = tail call i32 @f0() 2302 /// ret i32 %tmp0 2303 /// bb1: 2304 /// %tmp1 = tail call i32 @f1() 2305 /// ret i32 %tmp1 2306 /// bb2: 2307 /// %tmp2 = tail call i32 @f2() 2308 /// ret i32 %tmp2 2309 /// @endcode 2310 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2311 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2312 if (!RetI) 2313 return false; 2314 2315 PHINode *PN = nullptr; 2316 ExtractValueInst *EVI = nullptr; 2317 BitCastInst *BCI = nullptr; 2318 Value *V = RetI->getReturnValue(); 2319 if (V) { 2320 BCI = dyn_cast<BitCastInst>(V); 2321 if (BCI) 2322 V = BCI->getOperand(0); 2323 2324 EVI = dyn_cast<ExtractValueInst>(V); 2325 if (EVI) { 2326 V = EVI->getOperand(0); 2327 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2328 return false; 2329 } 2330 2331 PN = dyn_cast<PHINode>(V); 2332 if (!PN) 2333 return false; 2334 } 2335 2336 if (PN && PN->getParent() != BB) 2337 return false; 2338 2339 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2340 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2341 if (BC && BC->hasOneUse()) 2342 Inst = BC->user_back(); 2343 2344 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2345 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2346 return false; 2347 }; 2348 2349 // Make sure there are no instructions between the first instruction 2350 // and return. 2351 const Instruction *BI = BB->getFirstNonPHI(); 2352 // Skip over debug and the bitcast. 2353 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2354 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2355 BI = BI->getNextNode(); 2356 if (BI != RetI) 2357 return false; 2358 2359 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2360 /// call. 2361 const Function *F = BB->getParent(); 2362 SmallVector<BasicBlock*, 4> TailCallBBs; 2363 if (PN) { 2364 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2365 // Look through bitcasts. 2366 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2367 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2368 BasicBlock *PredBB = PN->getIncomingBlock(I); 2369 // Make sure the phi value is indeed produced by the tail call. 2370 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2371 TLI->mayBeEmittedAsTailCall(CI) && 2372 attributesPermitTailCall(F, CI, RetI, *TLI)) 2373 TailCallBBs.push_back(PredBB); 2374 } 2375 } else { 2376 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2377 for (BasicBlock *Pred : predecessors(BB)) { 2378 if (!VisitedBBs.insert(Pred).second) 2379 continue; 2380 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2381 CallInst *CI = dyn_cast<CallInst>(I); 2382 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2383 attributesPermitTailCall(F, CI, RetI, *TLI)) 2384 TailCallBBs.push_back(Pred); 2385 } 2386 } 2387 } 2388 2389 bool Changed = false; 2390 for (auto const &TailCallBB : TailCallBBs) { 2391 // Make sure the call instruction is followed by an unconditional branch to 2392 // the return block. 2393 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2394 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2395 continue; 2396 2397 // Duplicate the return into TailCallBB. 2398 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2399 assert(!VerifyBFIUpdates || 2400 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2401 BFI->setBlockFreq( 2402 BB, 2403 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2404 ModifiedDT = Changed = true; 2405 ++NumRetsDup; 2406 } 2407 2408 // If we eliminated all predecessors of the block, delete the block now. 2409 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2410 BB->eraseFromParent(); 2411 2412 return Changed; 2413 } 2414 2415 //===----------------------------------------------------------------------===// 2416 // Memory Optimization 2417 //===----------------------------------------------------------------------===// 2418 2419 namespace { 2420 2421 /// This is an extended version of TargetLowering::AddrMode 2422 /// which holds actual Value*'s for register values. 2423 struct ExtAddrMode : public TargetLowering::AddrMode { 2424 Value *BaseReg = nullptr; 2425 Value *ScaledReg = nullptr; 2426 Value *OriginalValue = nullptr; 2427 bool InBounds = true; 2428 2429 enum FieldName { 2430 NoField = 0x00, 2431 BaseRegField = 0x01, 2432 BaseGVField = 0x02, 2433 BaseOffsField = 0x04, 2434 ScaledRegField = 0x08, 2435 ScaleField = 0x10, 2436 MultipleFields = 0xff 2437 }; 2438 2439 2440 ExtAddrMode() = default; 2441 2442 void print(raw_ostream &OS) const; 2443 void dump() const; 2444 2445 FieldName compare(const ExtAddrMode &other) { 2446 // First check that the types are the same on each field, as differing types 2447 // is something we can't cope with later on. 2448 if (BaseReg && other.BaseReg && 2449 BaseReg->getType() != other.BaseReg->getType()) 2450 return MultipleFields; 2451 if (BaseGV && other.BaseGV && 2452 BaseGV->getType() != other.BaseGV->getType()) 2453 return MultipleFields; 2454 if (ScaledReg && other.ScaledReg && 2455 ScaledReg->getType() != other.ScaledReg->getType()) 2456 return MultipleFields; 2457 2458 // Conservatively reject 'inbounds' mismatches. 2459 if (InBounds != other.InBounds) 2460 return MultipleFields; 2461 2462 // Check each field to see if it differs. 2463 unsigned Result = NoField; 2464 if (BaseReg != other.BaseReg) 2465 Result |= BaseRegField; 2466 if (BaseGV != other.BaseGV) 2467 Result |= BaseGVField; 2468 if (BaseOffs != other.BaseOffs) 2469 Result |= BaseOffsField; 2470 if (ScaledReg != other.ScaledReg) 2471 Result |= ScaledRegField; 2472 // Don't count 0 as being a different scale, because that actually means 2473 // unscaled (which will already be counted by having no ScaledReg). 2474 if (Scale && other.Scale && Scale != other.Scale) 2475 Result |= ScaleField; 2476 2477 if (countPopulation(Result) > 1) 2478 return MultipleFields; 2479 else 2480 return static_cast<FieldName>(Result); 2481 } 2482 2483 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2484 // with no offset. 2485 bool isTrivial() { 2486 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2487 // trivial if at most one of these terms is nonzero, except that BaseGV and 2488 // BaseReg both being zero actually means a null pointer value, which we 2489 // consider to be 'non-zero' here. 2490 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2491 } 2492 2493 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2494 switch (Field) { 2495 default: 2496 return nullptr; 2497 case BaseRegField: 2498 return BaseReg; 2499 case BaseGVField: 2500 return BaseGV; 2501 case ScaledRegField: 2502 return ScaledReg; 2503 case BaseOffsField: 2504 return ConstantInt::get(IntPtrTy, BaseOffs); 2505 } 2506 } 2507 2508 void SetCombinedField(FieldName Field, Value *V, 2509 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2510 switch (Field) { 2511 default: 2512 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2513 break; 2514 case ExtAddrMode::BaseRegField: 2515 BaseReg = V; 2516 break; 2517 case ExtAddrMode::BaseGVField: 2518 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2519 // in the BaseReg field. 2520 assert(BaseReg == nullptr); 2521 BaseReg = V; 2522 BaseGV = nullptr; 2523 break; 2524 case ExtAddrMode::ScaledRegField: 2525 ScaledReg = V; 2526 // If we have a mix of scaled and unscaled addrmodes then we want scale 2527 // to be the scale and not zero. 2528 if (!Scale) 2529 for (const ExtAddrMode &AM : AddrModes) 2530 if (AM.Scale) { 2531 Scale = AM.Scale; 2532 break; 2533 } 2534 break; 2535 case ExtAddrMode::BaseOffsField: 2536 // The offset is no longer a constant, so it goes in ScaledReg with a 2537 // scale of 1. 2538 assert(ScaledReg == nullptr); 2539 ScaledReg = V; 2540 Scale = 1; 2541 BaseOffs = 0; 2542 break; 2543 } 2544 } 2545 }; 2546 2547 } // end anonymous namespace 2548 2549 #ifndef NDEBUG 2550 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2551 AM.print(OS); 2552 return OS; 2553 } 2554 #endif 2555 2556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2557 void ExtAddrMode::print(raw_ostream &OS) const { 2558 bool NeedPlus = false; 2559 OS << "["; 2560 if (InBounds) 2561 OS << "inbounds "; 2562 if (BaseGV) { 2563 OS << (NeedPlus ? " + " : "") 2564 << "GV:"; 2565 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2566 NeedPlus = true; 2567 } 2568 2569 if (BaseOffs) { 2570 OS << (NeedPlus ? " + " : "") 2571 << BaseOffs; 2572 NeedPlus = true; 2573 } 2574 2575 if (BaseReg) { 2576 OS << (NeedPlus ? " + " : "") 2577 << "Base:"; 2578 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2579 NeedPlus = true; 2580 } 2581 if (Scale) { 2582 OS << (NeedPlus ? " + " : "") 2583 << Scale << "*"; 2584 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2585 } 2586 2587 OS << ']'; 2588 } 2589 2590 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2591 print(dbgs()); 2592 dbgs() << '\n'; 2593 } 2594 #endif 2595 2596 namespace { 2597 2598 /// This class provides transaction based operation on the IR. 2599 /// Every change made through this class is recorded in the internal state and 2600 /// can be undone (rollback) until commit is called. 2601 /// CGP does not check if instructions could be speculatively executed when 2602 /// moved. Preserving the original location would pessimize the debugging 2603 /// experience, as well as negatively impact the quality of sample PGO. 2604 class TypePromotionTransaction { 2605 /// This represents the common interface of the individual transaction. 2606 /// Each class implements the logic for doing one specific modification on 2607 /// the IR via the TypePromotionTransaction. 2608 class TypePromotionAction { 2609 protected: 2610 /// The Instruction modified. 2611 Instruction *Inst; 2612 2613 public: 2614 /// Constructor of the action. 2615 /// The constructor performs the related action on the IR. 2616 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2617 2618 virtual ~TypePromotionAction() = default; 2619 2620 /// Undo the modification done by this action. 2621 /// When this method is called, the IR must be in the same state as it was 2622 /// before this action was applied. 2623 /// \pre Undoing the action works if and only if the IR is in the exact same 2624 /// state as it was directly after this action was applied. 2625 virtual void undo() = 0; 2626 2627 /// Advocate every change made by this action. 2628 /// When the results on the IR of the action are to be kept, it is important 2629 /// to call this function, otherwise hidden information may be kept forever. 2630 virtual void commit() { 2631 // Nothing to be done, this action is not doing anything. 2632 } 2633 }; 2634 2635 /// Utility to remember the position of an instruction. 2636 class InsertionHandler { 2637 /// Position of an instruction. 2638 /// Either an instruction: 2639 /// - Is the first in a basic block: BB is used. 2640 /// - Has a previous instruction: PrevInst is used. 2641 union { 2642 Instruction *PrevInst; 2643 BasicBlock *BB; 2644 } Point; 2645 2646 /// Remember whether or not the instruction had a previous instruction. 2647 bool HasPrevInstruction; 2648 2649 public: 2650 /// Record the position of \p Inst. 2651 InsertionHandler(Instruction *Inst) { 2652 BasicBlock::iterator It = Inst->getIterator(); 2653 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2654 if (HasPrevInstruction) 2655 Point.PrevInst = &*--It; 2656 else 2657 Point.BB = Inst->getParent(); 2658 } 2659 2660 /// Insert \p Inst at the recorded position. 2661 void insert(Instruction *Inst) { 2662 if (HasPrevInstruction) { 2663 if (Inst->getParent()) 2664 Inst->removeFromParent(); 2665 Inst->insertAfter(Point.PrevInst); 2666 } else { 2667 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2668 if (Inst->getParent()) 2669 Inst->moveBefore(Position); 2670 else 2671 Inst->insertBefore(Position); 2672 } 2673 } 2674 }; 2675 2676 /// Move an instruction before another. 2677 class InstructionMoveBefore : public TypePromotionAction { 2678 /// Original position of the instruction. 2679 InsertionHandler Position; 2680 2681 public: 2682 /// Move \p Inst before \p Before. 2683 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2684 : TypePromotionAction(Inst), Position(Inst) { 2685 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2686 << "\n"); 2687 Inst->moveBefore(Before); 2688 } 2689 2690 /// Move the instruction back to its original position. 2691 void undo() override { 2692 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2693 Position.insert(Inst); 2694 } 2695 }; 2696 2697 /// Set the operand of an instruction with a new value. 2698 class OperandSetter : public TypePromotionAction { 2699 /// Original operand of the instruction. 2700 Value *Origin; 2701 2702 /// Index of the modified instruction. 2703 unsigned Idx; 2704 2705 public: 2706 /// Set \p Idx operand of \p Inst with \p NewVal. 2707 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2708 : TypePromotionAction(Inst), Idx(Idx) { 2709 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2710 << "for:" << *Inst << "\n" 2711 << "with:" << *NewVal << "\n"); 2712 Origin = Inst->getOperand(Idx); 2713 Inst->setOperand(Idx, NewVal); 2714 } 2715 2716 /// Restore the original value of the instruction. 2717 void undo() override { 2718 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2719 << "for: " << *Inst << "\n" 2720 << "with: " << *Origin << "\n"); 2721 Inst->setOperand(Idx, Origin); 2722 } 2723 }; 2724 2725 /// Hide the operands of an instruction. 2726 /// Do as if this instruction was not using any of its operands. 2727 class OperandsHider : public TypePromotionAction { 2728 /// The list of original operands. 2729 SmallVector<Value *, 4> OriginalValues; 2730 2731 public: 2732 /// Remove \p Inst from the uses of the operands of \p Inst. 2733 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2734 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2735 unsigned NumOpnds = Inst->getNumOperands(); 2736 OriginalValues.reserve(NumOpnds); 2737 for (unsigned It = 0; It < NumOpnds; ++It) { 2738 // Save the current operand. 2739 Value *Val = Inst->getOperand(It); 2740 OriginalValues.push_back(Val); 2741 // Set a dummy one. 2742 // We could use OperandSetter here, but that would imply an overhead 2743 // that we are not willing to pay. 2744 Inst->setOperand(It, UndefValue::get(Val->getType())); 2745 } 2746 } 2747 2748 /// Restore the original list of uses. 2749 void undo() override { 2750 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2751 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2752 Inst->setOperand(It, OriginalValues[It]); 2753 } 2754 }; 2755 2756 /// Build a truncate instruction. 2757 class TruncBuilder : public TypePromotionAction { 2758 Value *Val; 2759 2760 public: 2761 /// Build a truncate instruction of \p Opnd producing a \p Ty 2762 /// result. 2763 /// trunc Opnd to Ty. 2764 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2765 IRBuilder<> Builder(Opnd); 2766 Builder.SetCurrentDebugLocation(DebugLoc()); 2767 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2768 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2769 } 2770 2771 /// Get the built value. 2772 Value *getBuiltValue() { return Val; } 2773 2774 /// Remove the built instruction. 2775 void undo() override { 2776 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2777 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2778 IVal->eraseFromParent(); 2779 } 2780 }; 2781 2782 /// Build a sign extension instruction. 2783 class SExtBuilder : public TypePromotionAction { 2784 Value *Val; 2785 2786 public: 2787 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2788 /// result. 2789 /// sext Opnd to Ty. 2790 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2791 : TypePromotionAction(InsertPt) { 2792 IRBuilder<> Builder(InsertPt); 2793 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2794 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2795 } 2796 2797 /// Get the built value. 2798 Value *getBuiltValue() { return Val; } 2799 2800 /// Remove the built instruction. 2801 void undo() override { 2802 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2803 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2804 IVal->eraseFromParent(); 2805 } 2806 }; 2807 2808 /// Build a zero extension instruction. 2809 class ZExtBuilder : public TypePromotionAction { 2810 Value *Val; 2811 2812 public: 2813 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2814 /// result. 2815 /// zext Opnd to Ty. 2816 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2817 : TypePromotionAction(InsertPt) { 2818 IRBuilder<> Builder(InsertPt); 2819 Builder.SetCurrentDebugLocation(DebugLoc()); 2820 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2821 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2822 } 2823 2824 /// Get the built value. 2825 Value *getBuiltValue() { return Val; } 2826 2827 /// Remove the built instruction. 2828 void undo() override { 2829 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2830 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2831 IVal->eraseFromParent(); 2832 } 2833 }; 2834 2835 /// Mutate an instruction to another type. 2836 class TypeMutator : public TypePromotionAction { 2837 /// Record the original type. 2838 Type *OrigTy; 2839 2840 public: 2841 /// Mutate the type of \p Inst into \p NewTy. 2842 TypeMutator(Instruction *Inst, Type *NewTy) 2843 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2844 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2845 << "\n"); 2846 Inst->mutateType(NewTy); 2847 } 2848 2849 /// Mutate the instruction back to its original type. 2850 void undo() override { 2851 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2852 << "\n"); 2853 Inst->mutateType(OrigTy); 2854 } 2855 }; 2856 2857 /// Replace the uses of an instruction by another instruction. 2858 class UsesReplacer : public TypePromotionAction { 2859 /// Helper structure to keep track of the replaced uses. 2860 struct InstructionAndIdx { 2861 /// The instruction using the instruction. 2862 Instruction *Inst; 2863 2864 /// The index where this instruction is used for Inst. 2865 unsigned Idx; 2866 2867 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2868 : Inst(Inst), Idx(Idx) {} 2869 }; 2870 2871 /// Keep track of the original uses (pair Instruction, Index). 2872 SmallVector<InstructionAndIdx, 4> OriginalUses; 2873 /// Keep track of the debug users. 2874 SmallVector<DbgValueInst *, 1> DbgValues; 2875 2876 /// Keep track of the new value so that we can undo it by replacing 2877 /// instances of the new value with the original value. 2878 Value *New; 2879 2880 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2881 2882 public: 2883 /// Replace all the use of \p Inst by \p New. 2884 UsesReplacer(Instruction *Inst, Value *New) 2885 : TypePromotionAction(Inst), New(New) { 2886 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2887 << "\n"); 2888 // Record the original uses. 2889 for (Use &U : Inst->uses()) { 2890 Instruction *UserI = cast<Instruction>(U.getUser()); 2891 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2892 } 2893 // Record the debug uses separately. They are not in the instruction's 2894 // use list, but they are replaced by RAUW. 2895 findDbgValues(DbgValues, Inst); 2896 2897 // Now, we can replace the uses. 2898 Inst->replaceAllUsesWith(New); 2899 } 2900 2901 /// Reassign the original uses of Inst to Inst. 2902 void undo() override { 2903 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2904 for (InstructionAndIdx &Use : OriginalUses) 2905 Use.Inst->setOperand(Use.Idx, Inst); 2906 // RAUW has replaced all original uses with references to the new value, 2907 // including the debug uses. Since we are undoing the replacements, 2908 // the original debug uses must also be reinstated to maintain the 2909 // correctness and utility of debug value instructions. 2910 for (auto *DVI : DbgValues) 2911 DVI->replaceVariableLocationOp(New, Inst); 2912 } 2913 }; 2914 2915 /// Remove an instruction from the IR. 2916 class InstructionRemover : public TypePromotionAction { 2917 /// Original position of the instruction. 2918 InsertionHandler Inserter; 2919 2920 /// Helper structure to hide all the link to the instruction. In other 2921 /// words, this helps to do as if the instruction was removed. 2922 OperandsHider Hider; 2923 2924 /// Keep track of the uses replaced, if any. 2925 UsesReplacer *Replacer = nullptr; 2926 2927 /// Keep track of instructions removed. 2928 SetOfInstrs &RemovedInsts; 2929 2930 public: 2931 /// Remove all reference of \p Inst and optionally replace all its 2932 /// uses with New. 2933 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2934 /// \pre If !Inst->use_empty(), then New != nullptr 2935 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2936 Value *New = nullptr) 2937 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2938 RemovedInsts(RemovedInsts) { 2939 if (New) 2940 Replacer = new UsesReplacer(Inst, New); 2941 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2942 RemovedInsts.insert(Inst); 2943 /// The instructions removed here will be freed after completing 2944 /// optimizeBlock() for all blocks as we need to keep track of the 2945 /// removed instructions during promotion. 2946 Inst->removeFromParent(); 2947 } 2948 2949 ~InstructionRemover() override { delete Replacer; } 2950 2951 /// Resurrect the instruction and reassign it to the proper uses if 2952 /// new value was provided when build this action. 2953 void undo() override { 2954 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2955 Inserter.insert(Inst); 2956 if (Replacer) 2957 Replacer->undo(); 2958 Hider.undo(); 2959 RemovedInsts.erase(Inst); 2960 } 2961 }; 2962 2963 public: 2964 /// Restoration point. 2965 /// The restoration point is a pointer to an action instead of an iterator 2966 /// because the iterator may be invalidated but not the pointer. 2967 using ConstRestorationPt = const TypePromotionAction *; 2968 2969 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2970 : RemovedInsts(RemovedInsts) {} 2971 2972 /// Advocate every changes made in that transaction. Return true if any change 2973 /// happen. 2974 bool commit(); 2975 2976 /// Undo all the changes made after the given point. 2977 void rollback(ConstRestorationPt Point); 2978 2979 /// Get the current restoration point. 2980 ConstRestorationPt getRestorationPoint() const; 2981 2982 /// \name API for IR modification with state keeping to support rollback. 2983 /// @{ 2984 /// Same as Instruction::setOperand. 2985 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2986 2987 /// Same as Instruction::eraseFromParent. 2988 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2989 2990 /// Same as Value::replaceAllUsesWith. 2991 void replaceAllUsesWith(Instruction *Inst, Value *New); 2992 2993 /// Same as Value::mutateType. 2994 void mutateType(Instruction *Inst, Type *NewTy); 2995 2996 /// Same as IRBuilder::createTrunc. 2997 Value *createTrunc(Instruction *Opnd, Type *Ty); 2998 2999 /// Same as IRBuilder::createSExt. 3000 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3001 3002 /// Same as IRBuilder::createZExt. 3003 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3004 3005 /// Same as Instruction::moveBefore. 3006 void moveBefore(Instruction *Inst, Instruction *Before); 3007 /// @} 3008 3009 private: 3010 /// The ordered list of actions made so far. 3011 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3012 3013 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3014 3015 SetOfInstrs &RemovedInsts; 3016 }; 3017 3018 } // end anonymous namespace 3019 3020 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3021 Value *NewVal) { 3022 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3023 Inst, Idx, NewVal)); 3024 } 3025 3026 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3027 Value *NewVal) { 3028 Actions.push_back( 3029 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3030 Inst, RemovedInsts, NewVal)); 3031 } 3032 3033 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3034 Value *New) { 3035 Actions.push_back( 3036 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3037 } 3038 3039 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3040 Actions.push_back( 3041 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3042 } 3043 3044 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3045 Type *Ty) { 3046 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3047 Value *Val = Ptr->getBuiltValue(); 3048 Actions.push_back(std::move(Ptr)); 3049 return Val; 3050 } 3051 3052 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3053 Value *Opnd, Type *Ty) { 3054 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3055 Value *Val = Ptr->getBuiltValue(); 3056 Actions.push_back(std::move(Ptr)); 3057 return Val; 3058 } 3059 3060 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3061 Value *Opnd, Type *Ty) { 3062 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3063 Value *Val = Ptr->getBuiltValue(); 3064 Actions.push_back(std::move(Ptr)); 3065 return Val; 3066 } 3067 3068 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3069 Instruction *Before) { 3070 Actions.push_back( 3071 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3072 Inst, Before)); 3073 } 3074 3075 TypePromotionTransaction::ConstRestorationPt 3076 TypePromotionTransaction::getRestorationPoint() const { 3077 return !Actions.empty() ? Actions.back().get() : nullptr; 3078 } 3079 3080 bool TypePromotionTransaction::commit() { 3081 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3082 Action->commit(); 3083 bool Modified = !Actions.empty(); 3084 Actions.clear(); 3085 return Modified; 3086 } 3087 3088 void TypePromotionTransaction::rollback( 3089 TypePromotionTransaction::ConstRestorationPt Point) { 3090 while (!Actions.empty() && Point != Actions.back().get()) { 3091 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3092 Curr->undo(); 3093 } 3094 } 3095 3096 namespace { 3097 3098 /// A helper class for matching addressing modes. 3099 /// 3100 /// This encapsulates the logic for matching the target-legal addressing modes. 3101 class AddressingModeMatcher { 3102 SmallVectorImpl<Instruction*> &AddrModeInsts; 3103 const TargetLowering &TLI; 3104 const TargetRegisterInfo &TRI; 3105 const DataLayout &DL; 3106 const LoopInfo &LI; 3107 const std::function<const DominatorTree &()> getDTFn; 3108 3109 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3110 /// the memory instruction that we're computing this address for. 3111 Type *AccessTy; 3112 unsigned AddrSpace; 3113 Instruction *MemoryInst; 3114 3115 /// This is the addressing mode that we're building up. This is 3116 /// part of the return value of this addressing mode matching stuff. 3117 ExtAddrMode &AddrMode; 3118 3119 /// The instructions inserted by other CodeGenPrepare optimizations. 3120 const SetOfInstrs &InsertedInsts; 3121 3122 /// A map from the instructions to their type before promotion. 3123 InstrToOrigTy &PromotedInsts; 3124 3125 /// The ongoing transaction where every action should be registered. 3126 TypePromotionTransaction &TPT; 3127 3128 // A GEP which has too large offset to be folded into the addressing mode. 3129 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3130 3131 /// This is set to true when we should not do profitability checks. 3132 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3133 bool IgnoreProfitability; 3134 3135 /// True if we are optimizing for size. 3136 bool OptSize; 3137 3138 ProfileSummaryInfo *PSI; 3139 BlockFrequencyInfo *BFI; 3140 3141 AddressingModeMatcher( 3142 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3143 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3144 const std::function<const DominatorTree &()> getDTFn, 3145 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3146 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3147 TypePromotionTransaction &TPT, 3148 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3149 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3150 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3151 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3152 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3153 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3154 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3155 IgnoreProfitability = false; 3156 } 3157 3158 public: 3159 /// Find the maximal addressing mode that a load/store of V can fold, 3160 /// give an access type of AccessTy. This returns a list of involved 3161 /// instructions in AddrModeInsts. 3162 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3163 /// optimizations. 3164 /// \p PromotedInsts maps the instructions to their type before promotion. 3165 /// \p The ongoing transaction where every action should be registered. 3166 static ExtAddrMode 3167 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3168 SmallVectorImpl<Instruction *> &AddrModeInsts, 3169 const TargetLowering &TLI, const LoopInfo &LI, 3170 const std::function<const DominatorTree &()> getDTFn, 3171 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3172 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3173 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3174 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3175 ExtAddrMode Result; 3176 3177 bool Success = AddressingModeMatcher( 3178 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3179 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3180 BFI).matchAddr(V, 0); 3181 (void)Success; assert(Success && "Couldn't select *anything*?"); 3182 return Result; 3183 } 3184 3185 private: 3186 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3187 bool matchAddr(Value *Addr, unsigned Depth); 3188 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3189 bool *MovedAway = nullptr); 3190 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3191 ExtAddrMode &AMBefore, 3192 ExtAddrMode &AMAfter); 3193 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3194 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3195 Value *PromotedOperand) const; 3196 }; 3197 3198 class PhiNodeSet; 3199 3200 /// An iterator for PhiNodeSet. 3201 class PhiNodeSetIterator { 3202 PhiNodeSet * const Set; 3203 size_t CurrentIndex = 0; 3204 3205 public: 3206 /// The constructor. Start should point to either a valid element, or be equal 3207 /// to the size of the underlying SmallVector of the PhiNodeSet. 3208 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3209 PHINode * operator*() const; 3210 PhiNodeSetIterator& operator++(); 3211 bool operator==(const PhiNodeSetIterator &RHS) const; 3212 bool operator!=(const PhiNodeSetIterator &RHS) const; 3213 }; 3214 3215 /// Keeps a set of PHINodes. 3216 /// 3217 /// This is a minimal set implementation for a specific use case: 3218 /// It is very fast when there are very few elements, but also provides good 3219 /// performance when there are many. It is similar to SmallPtrSet, but also 3220 /// provides iteration by insertion order, which is deterministic and stable 3221 /// across runs. It is also similar to SmallSetVector, but provides removing 3222 /// elements in O(1) time. This is achieved by not actually removing the element 3223 /// from the underlying vector, so comes at the cost of using more memory, but 3224 /// that is fine, since PhiNodeSets are used as short lived objects. 3225 class PhiNodeSet { 3226 friend class PhiNodeSetIterator; 3227 3228 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3229 using iterator = PhiNodeSetIterator; 3230 3231 /// Keeps the elements in the order of their insertion in the underlying 3232 /// vector. To achieve constant time removal, it never deletes any element. 3233 SmallVector<PHINode *, 32> NodeList; 3234 3235 /// Keeps the elements in the underlying set implementation. This (and not the 3236 /// NodeList defined above) is the source of truth on whether an element 3237 /// is actually in the collection. 3238 MapType NodeMap; 3239 3240 /// Points to the first valid (not deleted) element when the set is not empty 3241 /// and the value is not zero. Equals to the size of the underlying vector 3242 /// when the set is empty. When the value is 0, as in the beginning, the 3243 /// first element may or may not be valid. 3244 size_t FirstValidElement = 0; 3245 3246 public: 3247 /// Inserts a new element to the collection. 3248 /// \returns true if the element is actually added, i.e. was not in the 3249 /// collection before the operation. 3250 bool insert(PHINode *Ptr) { 3251 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3252 NodeList.push_back(Ptr); 3253 return true; 3254 } 3255 return false; 3256 } 3257 3258 /// Removes the element from the collection. 3259 /// \returns whether the element is actually removed, i.e. was in the 3260 /// collection before the operation. 3261 bool erase(PHINode *Ptr) { 3262 if (NodeMap.erase(Ptr)) { 3263 SkipRemovedElements(FirstValidElement); 3264 return true; 3265 } 3266 return false; 3267 } 3268 3269 /// Removes all elements and clears the collection. 3270 void clear() { 3271 NodeMap.clear(); 3272 NodeList.clear(); 3273 FirstValidElement = 0; 3274 } 3275 3276 /// \returns an iterator that will iterate the elements in the order of 3277 /// insertion. 3278 iterator begin() { 3279 if (FirstValidElement == 0) 3280 SkipRemovedElements(FirstValidElement); 3281 return PhiNodeSetIterator(this, FirstValidElement); 3282 } 3283 3284 /// \returns an iterator that points to the end of the collection. 3285 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3286 3287 /// Returns the number of elements in the collection. 3288 size_t size() const { 3289 return NodeMap.size(); 3290 } 3291 3292 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3293 size_t count(PHINode *Ptr) const { 3294 return NodeMap.count(Ptr); 3295 } 3296 3297 private: 3298 /// Updates the CurrentIndex so that it will point to a valid element. 3299 /// 3300 /// If the element of NodeList at CurrentIndex is valid, it does not 3301 /// change it. If there are no more valid elements, it updates CurrentIndex 3302 /// to point to the end of the NodeList. 3303 void SkipRemovedElements(size_t &CurrentIndex) { 3304 while (CurrentIndex < NodeList.size()) { 3305 auto it = NodeMap.find(NodeList[CurrentIndex]); 3306 // If the element has been deleted and added again later, NodeMap will 3307 // point to a different index, so CurrentIndex will still be invalid. 3308 if (it != NodeMap.end() && it->second == CurrentIndex) 3309 break; 3310 ++CurrentIndex; 3311 } 3312 } 3313 }; 3314 3315 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3316 : Set(Set), CurrentIndex(Start) {} 3317 3318 PHINode * PhiNodeSetIterator::operator*() const { 3319 assert(CurrentIndex < Set->NodeList.size() && 3320 "PhiNodeSet access out of range"); 3321 return Set->NodeList[CurrentIndex]; 3322 } 3323 3324 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3325 assert(CurrentIndex < Set->NodeList.size() && 3326 "PhiNodeSet access out of range"); 3327 ++CurrentIndex; 3328 Set->SkipRemovedElements(CurrentIndex); 3329 return *this; 3330 } 3331 3332 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3333 return CurrentIndex == RHS.CurrentIndex; 3334 } 3335 3336 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3337 return !((*this) == RHS); 3338 } 3339 3340 /// Keep track of simplification of Phi nodes. 3341 /// Accept the set of all phi nodes and erase phi node from this set 3342 /// if it is simplified. 3343 class SimplificationTracker { 3344 DenseMap<Value *, Value *> Storage; 3345 const SimplifyQuery &SQ; 3346 // Tracks newly created Phi nodes. The elements are iterated by insertion 3347 // order. 3348 PhiNodeSet AllPhiNodes; 3349 // Tracks newly created Select nodes. 3350 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3351 3352 public: 3353 SimplificationTracker(const SimplifyQuery &sq) 3354 : SQ(sq) {} 3355 3356 Value *Get(Value *V) { 3357 do { 3358 auto SV = Storage.find(V); 3359 if (SV == Storage.end()) 3360 return V; 3361 V = SV->second; 3362 } while (true); 3363 } 3364 3365 Value *Simplify(Value *Val) { 3366 SmallVector<Value *, 32> WorkList; 3367 SmallPtrSet<Value *, 32> Visited; 3368 WorkList.push_back(Val); 3369 while (!WorkList.empty()) { 3370 auto *P = WorkList.pop_back_val(); 3371 if (!Visited.insert(P).second) 3372 continue; 3373 if (auto *PI = dyn_cast<Instruction>(P)) 3374 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3375 for (auto *U : PI->users()) 3376 WorkList.push_back(cast<Value>(U)); 3377 Put(PI, V); 3378 PI->replaceAllUsesWith(V); 3379 if (auto *PHI = dyn_cast<PHINode>(PI)) 3380 AllPhiNodes.erase(PHI); 3381 if (auto *Select = dyn_cast<SelectInst>(PI)) 3382 AllSelectNodes.erase(Select); 3383 PI->eraseFromParent(); 3384 } 3385 } 3386 return Get(Val); 3387 } 3388 3389 void Put(Value *From, Value *To) { 3390 Storage.insert({ From, To }); 3391 } 3392 3393 void ReplacePhi(PHINode *From, PHINode *To) { 3394 Value* OldReplacement = Get(From); 3395 while (OldReplacement != From) { 3396 From = To; 3397 To = dyn_cast<PHINode>(OldReplacement); 3398 OldReplacement = Get(From); 3399 } 3400 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3401 Put(From, To); 3402 From->replaceAllUsesWith(To); 3403 AllPhiNodes.erase(From); 3404 From->eraseFromParent(); 3405 } 3406 3407 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3408 3409 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3410 3411 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3412 3413 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3414 3415 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3416 3417 void destroyNewNodes(Type *CommonType) { 3418 // For safe erasing, replace the uses with dummy value first. 3419 auto *Dummy = UndefValue::get(CommonType); 3420 for (auto *I : AllPhiNodes) { 3421 I->replaceAllUsesWith(Dummy); 3422 I->eraseFromParent(); 3423 } 3424 AllPhiNodes.clear(); 3425 for (auto *I : AllSelectNodes) { 3426 I->replaceAllUsesWith(Dummy); 3427 I->eraseFromParent(); 3428 } 3429 AllSelectNodes.clear(); 3430 } 3431 }; 3432 3433 /// A helper class for combining addressing modes. 3434 class AddressingModeCombiner { 3435 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3436 typedef std::pair<PHINode *, PHINode *> PHIPair; 3437 3438 private: 3439 /// The addressing modes we've collected. 3440 SmallVector<ExtAddrMode, 16> AddrModes; 3441 3442 /// The field in which the AddrModes differ, when we have more than one. 3443 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3444 3445 /// Are the AddrModes that we have all just equal to their original values? 3446 bool AllAddrModesTrivial = true; 3447 3448 /// Common Type for all different fields in addressing modes. 3449 Type *CommonType; 3450 3451 /// SimplifyQuery for simplifyInstruction utility. 3452 const SimplifyQuery &SQ; 3453 3454 /// Original Address. 3455 Value *Original; 3456 3457 public: 3458 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3459 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3460 3461 /// Get the combined AddrMode 3462 const ExtAddrMode &getAddrMode() const { 3463 return AddrModes[0]; 3464 } 3465 3466 /// Add a new AddrMode if it's compatible with the AddrModes we already 3467 /// have. 3468 /// \return True iff we succeeded in doing so. 3469 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3470 // Take note of if we have any non-trivial AddrModes, as we need to detect 3471 // when all AddrModes are trivial as then we would introduce a phi or select 3472 // which just duplicates what's already there. 3473 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3474 3475 // If this is the first addrmode then everything is fine. 3476 if (AddrModes.empty()) { 3477 AddrModes.emplace_back(NewAddrMode); 3478 return true; 3479 } 3480 3481 // Figure out how different this is from the other address modes, which we 3482 // can do just by comparing against the first one given that we only care 3483 // about the cumulative difference. 3484 ExtAddrMode::FieldName ThisDifferentField = 3485 AddrModes[0].compare(NewAddrMode); 3486 if (DifferentField == ExtAddrMode::NoField) 3487 DifferentField = ThisDifferentField; 3488 else if (DifferentField != ThisDifferentField) 3489 DifferentField = ExtAddrMode::MultipleFields; 3490 3491 // If NewAddrMode differs in more than one dimension we cannot handle it. 3492 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3493 3494 // If Scale Field is different then we reject. 3495 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3496 3497 // We also must reject the case when base offset is different and 3498 // scale reg is not null, we cannot handle this case due to merge of 3499 // different offsets will be used as ScaleReg. 3500 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3501 !NewAddrMode.ScaledReg); 3502 3503 // We also must reject the case when GV is different and BaseReg installed 3504 // due to we want to use base reg as a merge of GV values. 3505 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3506 !NewAddrMode.HasBaseReg); 3507 3508 // Even if NewAddMode is the same we still need to collect it due to 3509 // original value is different. And later we will need all original values 3510 // as anchors during finding the common Phi node. 3511 if (CanHandle) 3512 AddrModes.emplace_back(NewAddrMode); 3513 else 3514 AddrModes.clear(); 3515 3516 return CanHandle; 3517 } 3518 3519 /// Combine the addressing modes we've collected into a single 3520 /// addressing mode. 3521 /// \return True iff we successfully combined them or we only had one so 3522 /// didn't need to combine them anyway. 3523 bool combineAddrModes() { 3524 // If we have no AddrModes then they can't be combined. 3525 if (AddrModes.size() == 0) 3526 return false; 3527 3528 // A single AddrMode can trivially be combined. 3529 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3530 return true; 3531 3532 // If the AddrModes we collected are all just equal to the value they are 3533 // derived from then combining them wouldn't do anything useful. 3534 if (AllAddrModesTrivial) 3535 return false; 3536 3537 if (!addrModeCombiningAllowed()) 3538 return false; 3539 3540 // Build a map between <original value, basic block where we saw it> to 3541 // value of base register. 3542 // Bail out if there is no common type. 3543 FoldAddrToValueMapping Map; 3544 if (!initializeMap(Map)) 3545 return false; 3546 3547 Value *CommonValue = findCommon(Map); 3548 if (CommonValue) 3549 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3550 return CommonValue != nullptr; 3551 } 3552 3553 private: 3554 /// Initialize Map with anchor values. For address seen 3555 /// we set the value of different field saw in this address. 3556 /// At the same time we find a common type for different field we will 3557 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3558 /// Return false if there is no common type found. 3559 bool initializeMap(FoldAddrToValueMapping &Map) { 3560 // Keep track of keys where the value is null. We will need to replace it 3561 // with constant null when we know the common type. 3562 SmallVector<Value *, 2> NullValue; 3563 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3564 for (auto &AM : AddrModes) { 3565 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3566 if (DV) { 3567 auto *Type = DV->getType(); 3568 if (CommonType && CommonType != Type) 3569 return false; 3570 CommonType = Type; 3571 Map[AM.OriginalValue] = DV; 3572 } else { 3573 NullValue.push_back(AM.OriginalValue); 3574 } 3575 } 3576 assert(CommonType && "At least one non-null value must be!"); 3577 for (auto *V : NullValue) 3578 Map[V] = Constant::getNullValue(CommonType); 3579 return true; 3580 } 3581 3582 /// We have mapping between value A and other value B where B was a field in 3583 /// addressing mode represented by A. Also we have an original value C 3584 /// representing an address we start with. Traversing from C through phi and 3585 /// selects we ended up with A's in a map. This utility function tries to find 3586 /// a value V which is a field in addressing mode C and traversing through phi 3587 /// nodes and selects we will end up in corresponded values B in a map. 3588 /// The utility will create a new Phi/Selects if needed. 3589 // The simple example looks as follows: 3590 // BB1: 3591 // p1 = b1 + 40 3592 // br cond BB2, BB3 3593 // BB2: 3594 // p2 = b2 + 40 3595 // br BB3 3596 // BB3: 3597 // p = phi [p1, BB1], [p2, BB2] 3598 // v = load p 3599 // Map is 3600 // p1 -> b1 3601 // p2 -> b2 3602 // Request is 3603 // p -> ? 3604 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3605 Value *findCommon(FoldAddrToValueMapping &Map) { 3606 // Tracks the simplification of newly created phi nodes. The reason we use 3607 // this mapping is because we will add new created Phi nodes in AddrToBase. 3608 // Simplification of Phi nodes is recursive, so some Phi node may 3609 // be simplified after we added it to AddrToBase. In reality this 3610 // simplification is possible only if original phi/selects were not 3611 // simplified yet. 3612 // Using this mapping we can find the current value in AddrToBase. 3613 SimplificationTracker ST(SQ); 3614 3615 // First step, DFS to create PHI nodes for all intermediate blocks. 3616 // Also fill traverse order for the second step. 3617 SmallVector<Value *, 32> TraverseOrder; 3618 InsertPlaceholders(Map, TraverseOrder, ST); 3619 3620 // Second Step, fill new nodes by merged values and simplify if possible. 3621 FillPlaceholders(Map, TraverseOrder, ST); 3622 3623 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3624 ST.destroyNewNodes(CommonType); 3625 return nullptr; 3626 } 3627 3628 // Now we'd like to match New Phi nodes to existed ones. 3629 unsigned PhiNotMatchedCount = 0; 3630 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3631 ST.destroyNewNodes(CommonType); 3632 return nullptr; 3633 } 3634 3635 auto *Result = ST.Get(Map.find(Original)->second); 3636 if (Result) { 3637 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3638 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3639 } 3640 return Result; 3641 } 3642 3643 /// Try to match PHI node to Candidate. 3644 /// Matcher tracks the matched Phi nodes. 3645 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3646 SmallSetVector<PHIPair, 8> &Matcher, 3647 PhiNodeSet &PhiNodesToMatch) { 3648 SmallVector<PHIPair, 8> WorkList; 3649 Matcher.insert({ PHI, Candidate }); 3650 SmallSet<PHINode *, 8> MatchedPHIs; 3651 MatchedPHIs.insert(PHI); 3652 WorkList.push_back({ PHI, Candidate }); 3653 SmallSet<PHIPair, 8> Visited; 3654 while (!WorkList.empty()) { 3655 auto Item = WorkList.pop_back_val(); 3656 if (!Visited.insert(Item).second) 3657 continue; 3658 // We iterate over all incoming values to Phi to compare them. 3659 // If values are different and both of them Phi and the first one is a 3660 // Phi we added (subject to match) and both of them is in the same basic 3661 // block then we can match our pair if values match. So we state that 3662 // these values match and add it to work list to verify that. 3663 for (auto B : Item.first->blocks()) { 3664 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3665 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3666 if (FirstValue == SecondValue) 3667 continue; 3668 3669 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3670 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3671 3672 // One of them is not Phi or 3673 // The first one is not Phi node from the set we'd like to match or 3674 // Phi nodes from different basic blocks then 3675 // we will not be able to match. 3676 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3677 FirstPhi->getParent() != SecondPhi->getParent()) 3678 return false; 3679 3680 // If we already matched them then continue. 3681 if (Matcher.count({ FirstPhi, SecondPhi })) 3682 continue; 3683 // So the values are different and does not match. So we need them to 3684 // match. (But we register no more than one match per PHI node, so that 3685 // we won't later try to replace them twice.) 3686 if (MatchedPHIs.insert(FirstPhi).second) 3687 Matcher.insert({ FirstPhi, SecondPhi }); 3688 // But me must check it. 3689 WorkList.push_back({ FirstPhi, SecondPhi }); 3690 } 3691 } 3692 return true; 3693 } 3694 3695 /// For the given set of PHI nodes (in the SimplificationTracker) try 3696 /// to find their equivalents. 3697 /// Returns false if this matching fails and creation of new Phi is disabled. 3698 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3699 unsigned &PhiNotMatchedCount) { 3700 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3701 // order, so the replacements (ReplacePhi) are also done in a deterministic 3702 // order. 3703 SmallSetVector<PHIPair, 8> Matched; 3704 SmallPtrSet<PHINode *, 8> WillNotMatch; 3705 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3706 while (PhiNodesToMatch.size()) { 3707 PHINode *PHI = *PhiNodesToMatch.begin(); 3708 3709 // Add us, if no Phi nodes in the basic block we do not match. 3710 WillNotMatch.clear(); 3711 WillNotMatch.insert(PHI); 3712 3713 // Traverse all Phis until we found equivalent or fail to do that. 3714 bool IsMatched = false; 3715 for (auto &P : PHI->getParent()->phis()) { 3716 if (&P == PHI) 3717 continue; 3718 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3719 break; 3720 // If it does not match, collect all Phi nodes from matcher. 3721 // if we end up with no match, them all these Phi nodes will not match 3722 // later. 3723 for (auto M : Matched) 3724 WillNotMatch.insert(M.first); 3725 Matched.clear(); 3726 } 3727 if (IsMatched) { 3728 // Replace all matched values and erase them. 3729 for (auto MV : Matched) 3730 ST.ReplacePhi(MV.first, MV.second); 3731 Matched.clear(); 3732 continue; 3733 } 3734 // If we are not allowed to create new nodes then bail out. 3735 if (!AllowNewPhiNodes) 3736 return false; 3737 // Just remove all seen values in matcher. They will not match anything. 3738 PhiNotMatchedCount += WillNotMatch.size(); 3739 for (auto *P : WillNotMatch) 3740 PhiNodesToMatch.erase(P); 3741 } 3742 return true; 3743 } 3744 /// Fill the placeholders with values from predecessors and simplify them. 3745 void FillPlaceholders(FoldAddrToValueMapping &Map, 3746 SmallVectorImpl<Value *> &TraverseOrder, 3747 SimplificationTracker &ST) { 3748 while (!TraverseOrder.empty()) { 3749 Value *Current = TraverseOrder.pop_back_val(); 3750 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3751 Value *V = Map[Current]; 3752 3753 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3754 // CurrentValue also must be Select. 3755 auto *CurrentSelect = cast<SelectInst>(Current); 3756 auto *TrueValue = CurrentSelect->getTrueValue(); 3757 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3758 Select->setTrueValue(ST.Get(Map[TrueValue])); 3759 auto *FalseValue = CurrentSelect->getFalseValue(); 3760 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3761 Select->setFalseValue(ST.Get(Map[FalseValue])); 3762 } else { 3763 // Must be a Phi node then. 3764 auto *PHI = cast<PHINode>(V); 3765 // Fill the Phi node with values from predecessors. 3766 for (auto *B : predecessors(PHI->getParent())) { 3767 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3768 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3769 PHI->addIncoming(ST.Get(Map[PV]), B); 3770 } 3771 } 3772 Map[Current] = ST.Simplify(V); 3773 } 3774 } 3775 3776 /// Starting from original value recursively iterates over def-use chain up to 3777 /// known ending values represented in a map. For each traversed phi/select 3778 /// inserts a placeholder Phi or Select. 3779 /// Reports all new created Phi/Select nodes by adding them to set. 3780 /// Also reports and order in what values have been traversed. 3781 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3782 SmallVectorImpl<Value *> &TraverseOrder, 3783 SimplificationTracker &ST) { 3784 SmallVector<Value *, 32> Worklist; 3785 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3786 "Address must be a Phi or Select node"); 3787 auto *Dummy = UndefValue::get(CommonType); 3788 Worklist.push_back(Original); 3789 while (!Worklist.empty()) { 3790 Value *Current = Worklist.pop_back_val(); 3791 // if it is already visited or it is an ending value then skip it. 3792 if (Map.find(Current) != Map.end()) 3793 continue; 3794 TraverseOrder.push_back(Current); 3795 3796 // CurrentValue must be a Phi node or select. All others must be covered 3797 // by anchors. 3798 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3799 // Is it OK to get metadata from OrigSelect?! 3800 // Create a Select placeholder with dummy value. 3801 SelectInst *Select = SelectInst::Create( 3802 CurrentSelect->getCondition(), Dummy, Dummy, 3803 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3804 Map[Current] = Select; 3805 ST.insertNewSelect(Select); 3806 // We are interested in True and False values. 3807 Worklist.push_back(CurrentSelect->getTrueValue()); 3808 Worklist.push_back(CurrentSelect->getFalseValue()); 3809 } else { 3810 // It must be a Phi node then. 3811 PHINode *CurrentPhi = cast<PHINode>(Current); 3812 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3813 PHINode *PHI = 3814 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3815 Map[Current] = PHI; 3816 ST.insertNewPhi(PHI); 3817 append_range(Worklist, CurrentPhi->incoming_values()); 3818 } 3819 } 3820 } 3821 3822 bool addrModeCombiningAllowed() { 3823 if (DisableComplexAddrModes) 3824 return false; 3825 switch (DifferentField) { 3826 default: 3827 return false; 3828 case ExtAddrMode::BaseRegField: 3829 return AddrSinkCombineBaseReg; 3830 case ExtAddrMode::BaseGVField: 3831 return AddrSinkCombineBaseGV; 3832 case ExtAddrMode::BaseOffsField: 3833 return AddrSinkCombineBaseOffs; 3834 case ExtAddrMode::ScaledRegField: 3835 return AddrSinkCombineScaledReg; 3836 } 3837 } 3838 }; 3839 } // end anonymous namespace 3840 3841 /// Try adding ScaleReg*Scale to the current addressing mode. 3842 /// Return true and update AddrMode if this addr mode is legal for the target, 3843 /// false if not. 3844 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3845 unsigned Depth) { 3846 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3847 // mode. Just process that directly. 3848 if (Scale == 1) 3849 return matchAddr(ScaleReg, Depth); 3850 3851 // If the scale is 0, it takes nothing to add this. 3852 if (Scale == 0) 3853 return true; 3854 3855 // If we already have a scale of this value, we can add to it, otherwise, we 3856 // need an available scale field. 3857 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3858 return false; 3859 3860 ExtAddrMode TestAddrMode = AddrMode; 3861 3862 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3863 // [A+B + A*7] -> [B+A*8]. 3864 TestAddrMode.Scale += Scale; 3865 TestAddrMode.ScaledReg = ScaleReg; 3866 3867 // If the new address isn't legal, bail out. 3868 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3869 return false; 3870 3871 // It was legal, so commit it. 3872 AddrMode = TestAddrMode; 3873 3874 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3875 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3876 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3877 // go any further: we can reuse it and cannot eliminate it. 3878 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3879 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3880 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3881 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3882 TestAddrMode.InBounds = false; 3883 TestAddrMode.ScaledReg = AddLHS; 3884 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3885 3886 // If this addressing mode is legal, commit it and remember that we folded 3887 // this instruction. 3888 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3889 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3890 AddrMode = TestAddrMode; 3891 return true; 3892 } 3893 // Restore status quo. 3894 TestAddrMode = AddrMode; 3895 } 3896 3897 // If this is an add recurrence with a constant step, return the increment 3898 // instruction and the canonicalized step. 3899 auto GetConstantStep = [this](const Value * V) 3900 ->Optional<std::pair<Instruction *, APInt> > { 3901 auto *PN = dyn_cast<PHINode>(V); 3902 if (!PN) 3903 return None; 3904 auto IVInc = getIVIncrement(PN, &LI); 3905 if (!IVInc) 3906 return None; 3907 // TODO: The result of the intrinsics above is two-compliment. However when 3908 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3909 // If it has nuw or nsw flags, we need to make sure that these flags are 3910 // inferrable at the point of memory instruction. Otherwise we are replacing 3911 // well-defined two-compliment computation with poison. Currently, to avoid 3912 // potentially complex analysis needed to prove this, we reject such cases. 3913 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3914 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3915 return None; 3916 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3917 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3918 return None; 3919 }; 3920 3921 // Try to account for the following special case: 3922 // 1. ScaleReg is an inductive variable; 3923 // 2. We use it with non-zero offset; 3924 // 3. IV's increment is available at the point of memory instruction. 3925 // 3926 // In this case, we may reuse the IV increment instead of the IV Phi to 3927 // achieve the following advantages: 3928 // 1. If IV step matches the offset, we will have no need in the offset; 3929 // 2. Even if they don't match, we will reduce the overlap of living IV 3930 // and IV increment, that will potentially lead to better register 3931 // assignment. 3932 if (AddrMode.BaseOffs) { 3933 if (auto IVStep = GetConstantStep(ScaleReg)) { 3934 Instruction *IVInc = IVStep->first; 3935 // The following assert is important to ensure a lack of infinite loops. 3936 // This transforms is (intentionally) the inverse of the one just above. 3937 // If they don't agree on the definition of an increment, we'd alternate 3938 // back and forth indefinitely. 3939 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3940 APInt Step = IVStep->second; 3941 APInt Offset = Step * AddrMode.Scale; 3942 if (Offset.isSignedIntN(64)) { 3943 TestAddrMode.InBounds = false; 3944 TestAddrMode.ScaledReg = IVInc; 3945 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3946 // If this addressing mode is legal, commit it.. 3947 // (Note that we defer the (expensive) domtree base legality check 3948 // to the very last possible point.) 3949 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3950 getDTFn().dominates(IVInc, MemoryInst)) { 3951 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3952 AddrMode = TestAddrMode; 3953 return true; 3954 } 3955 // Restore status quo. 3956 TestAddrMode = AddrMode; 3957 } 3958 } 3959 } 3960 3961 // Otherwise, just return what we have. 3962 return true; 3963 } 3964 3965 /// This is a little filter, which returns true if an addressing computation 3966 /// involving I might be folded into a load/store accessing it. 3967 /// This doesn't need to be perfect, but needs to accept at least 3968 /// the set of instructions that MatchOperationAddr can. 3969 static bool MightBeFoldableInst(Instruction *I) { 3970 switch (I->getOpcode()) { 3971 case Instruction::BitCast: 3972 case Instruction::AddrSpaceCast: 3973 // Don't touch identity bitcasts. 3974 if (I->getType() == I->getOperand(0)->getType()) 3975 return false; 3976 return I->getType()->isIntOrPtrTy(); 3977 case Instruction::PtrToInt: 3978 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3979 return true; 3980 case Instruction::IntToPtr: 3981 // We know the input is intptr_t, so this is foldable. 3982 return true; 3983 case Instruction::Add: 3984 return true; 3985 case Instruction::Mul: 3986 case Instruction::Shl: 3987 // Can only handle X*C and X << C. 3988 return isa<ConstantInt>(I->getOperand(1)); 3989 case Instruction::GetElementPtr: 3990 return true; 3991 default: 3992 return false; 3993 } 3994 } 3995 3996 /// Check whether or not \p Val is a legal instruction for \p TLI. 3997 /// \note \p Val is assumed to be the product of some type promotion. 3998 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3999 /// to be legal, as the non-promoted value would have had the same state. 4000 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4001 const DataLayout &DL, Value *Val) { 4002 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4003 if (!PromotedInst) 4004 return false; 4005 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4006 // If the ISDOpcode is undefined, it was undefined before the promotion. 4007 if (!ISDOpcode) 4008 return true; 4009 // Otherwise, check if the promoted instruction is legal or not. 4010 return TLI.isOperationLegalOrCustom( 4011 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4012 } 4013 4014 namespace { 4015 4016 /// Hepler class to perform type promotion. 4017 class TypePromotionHelper { 4018 /// Utility function to add a promoted instruction \p ExtOpnd to 4019 /// \p PromotedInsts and record the type of extension we have seen. 4020 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4021 Instruction *ExtOpnd, 4022 bool IsSExt) { 4023 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4024 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4025 if (It != PromotedInsts.end()) { 4026 // If the new extension is same as original, the information in 4027 // PromotedInsts[ExtOpnd] is still correct. 4028 if (It->second.getInt() == ExtTy) 4029 return; 4030 4031 // Now the new extension is different from old extension, we make 4032 // the type information invalid by setting extension type to 4033 // BothExtension. 4034 ExtTy = BothExtension; 4035 } 4036 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4037 } 4038 4039 /// Utility function to query the original type of instruction \p Opnd 4040 /// with a matched extension type. If the extension doesn't match, we 4041 /// cannot use the information we had on the original type. 4042 /// BothExtension doesn't match any extension type. 4043 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4044 Instruction *Opnd, 4045 bool IsSExt) { 4046 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4047 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4048 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4049 return It->second.getPointer(); 4050 return nullptr; 4051 } 4052 4053 /// Utility function to check whether or not a sign or zero extension 4054 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4055 /// either using the operands of \p Inst or promoting \p Inst. 4056 /// The type of the extension is defined by \p IsSExt. 4057 /// In other words, check if: 4058 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4059 /// #1 Promotion applies: 4060 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4061 /// #2 Operand reuses: 4062 /// ext opnd1 to ConsideredExtType. 4063 /// \p PromotedInsts maps the instructions to their type before promotion. 4064 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4065 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4066 4067 /// Utility function to determine if \p OpIdx should be promoted when 4068 /// promoting \p Inst. 4069 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4070 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4071 } 4072 4073 /// Utility function to promote the operand of \p Ext when this 4074 /// operand is a promotable trunc or sext or zext. 4075 /// \p PromotedInsts maps the instructions to their type before promotion. 4076 /// \p CreatedInstsCost[out] contains the cost of all instructions 4077 /// created to promote the operand of Ext. 4078 /// Newly added extensions are inserted in \p Exts. 4079 /// Newly added truncates are inserted in \p Truncs. 4080 /// Should never be called directly. 4081 /// \return The promoted value which is used instead of Ext. 4082 static Value *promoteOperandForTruncAndAnyExt( 4083 Instruction *Ext, TypePromotionTransaction &TPT, 4084 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4085 SmallVectorImpl<Instruction *> *Exts, 4086 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4087 4088 /// Utility function to promote the operand of \p Ext when this 4089 /// operand is promotable and is not a supported trunc or sext. 4090 /// \p PromotedInsts maps the instructions to their type before promotion. 4091 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4092 /// created to promote the operand of Ext. 4093 /// Newly added extensions are inserted in \p Exts. 4094 /// Newly added truncates are inserted in \p Truncs. 4095 /// Should never be called directly. 4096 /// \return The promoted value which is used instead of Ext. 4097 static Value *promoteOperandForOther(Instruction *Ext, 4098 TypePromotionTransaction &TPT, 4099 InstrToOrigTy &PromotedInsts, 4100 unsigned &CreatedInstsCost, 4101 SmallVectorImpl<Instruction *> *Exts, 4102 SmallVectorImpl<Instruction *> *Truncs, 4103 const TargetLowering &TLI, bool IsSExt); 4104 4105 /// \see promoteOperandForOther. 4106 static Value *signExtendOperandForOther( 4107 Instruction *Ext, TypePromotionTransaction &TPT, 4108 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4109 SmallVectorImpl<Instruction *> *Exts, 4110 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4111 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4112 Exts, Truncs, TLI, true); 4113 } 4114 4115 /// \see promoteOperandForOther. 4116 static Value *zeroExtendOperandForOther( 4117 Instruction *Ext, TypePromotionTransaction &TPT, 4118 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4119 SmallVectorImpl<Instruction *> *Exts, 4120 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4121 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4122 Exts, Truncs, TLI, false); 4123 } 4124 4125 public: 4126 /// Type for the utility function that promotes the operand of Ext. 4127 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4128 InstrToOrigTy &PromotedInsts, 4129 unsigned &CreatedInstsCost, 4130 SmallVectorImpl<Instruction *> *Exts, 4131 SmallVectorImpl<Instruction *> *Truncs, 4132 const TargetLowering &TLI); 4133 4134 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4135 /// action to promote the operand of \p Ext instead of using Ext. 4136 /// \return NULL if no promotable action is possible with the current 4137 /// sign extension. 4138 /// \p InsertedInsts keeps track of all the instructions inserted by the 4139 /// other CodeGenPrepare optimizations. This information is important 4140 /// because we do not want to promote these instructions as CodeGenPrepare 4141 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4142 /// \p PromotedInsts maps the instructions to their type before promotion. 4143 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4144 const TargetLowering &TLI, 4145 const InstrToOrigTy &PromotedInsts); 4146 }; 4147 4148 } // end anonymous namespace 4149 4150 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4151 Type *ConsideredExtType, 4152 const InstrToOrigTy &PromotedInsts, 4153 bool IsSExt) { 4154 // The promotion helper does not know how to deal with vector types yet. 4155 // To be able to fix that, we would need to fix the places where we 4156 // statically extend, e.g., constants and such. 4157 if (Inst->getType()->isVectorTy()) 4158 return false; 4159 4160 // We can always get through zext. 4161 if (isa<ZExtInst>(Inst)) 4162 return true; 4163 4164 // sext(sext) is ok too. 4165 if (IsSExt && isa<SExtInst>(Inst)) 4166 return true; 4167 4168 // We can get through binary operator, if it is legal. In other words, the 4169 // binary operator must have a nuw or nsw flag. 4170 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4171 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4172 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4173 (IsSExt && BinOp->hasNoSignedWrap()))) 4174 return true; 4175 4176 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4177 if ((Inst->getOpcode() == Instruction::And || 4178 Inst->getOpcode() == Instruction::Or)) 4179 return true; 4180 4181 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4182 if (Inst->getOpcode() == Instruction::Xor) { 4183 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4184 // Make sure it is not a NOT. 4185 if (Cst && !Cst->getValue().isAllOnesValue()) 4186 return true; 4187 } 4188 4189 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4190 // It may change a poisoned value into a regular value, like 4191 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4192 // poisoned value regular value 4193 // It should be OK since undef covers valid value. 4194 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4195 return true; 4196 4197 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4198 // It may change a poisoned value into a regular value, like 4199 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4200 // poisoned value regular value 4201 // It should be OK since undef covers valid value. 4202 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4203 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4204 if (ExtInst->hasOneUse()) { 4205 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4206 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4207 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4208 if (Cst && 4209 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4210 return true; 4211 } 4212 } 4213 } 4214 4215 // Check if we can do the following simplification. 4216 // ext(trunc(opnd)) --> ext(opnd) 4217 if (!isa<TruncInst>(Inst)) 4218 return false; 4219 4220 Value *OpndVal = Inst->getOperand(0); 4221 // Check if we can use this operand in the extension. 4222 // If the type is larger than the result type of the extension, we cannot. 4223 if (!OpndVal->getType()->isIntegerTy() || 4224 OpndVal->getType()->getIntegerBitWidth() > 4225 ConsideredExtType->getIntegerBitWidth()) 4226 return false; 4227 4228 // If the operand of the truncate is not an instruction, we will not have 4229 // any information on the dropped bits. 4230 // (Actually we could for constant but it is not worth the extra logic). 4231 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4232 if (!Opnd) 4233 return false; 4234 4235 // Check if the source of the type is narrow enough. 4236 // I.e., check that trunc just drops extended bits of the same kind of 4237 // the extension. 4238 // #1 get the type of the operand and check the kind of the extended bits. 4239 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4240 if (OpndType) 4241 ; 4242 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4243 OpndType = Opnd->getOperand(0)->getType(); 4244 else 4245 return false; 4246 4247 // #2 check that the truncate just drops extended bits. 4248 return Inst->getType()->getIntegerBitWidth() >= 4249 OpndType->getIntegerBitWidth(); 4250 } 4251 4252 TypePromotionHelper::Action TypePromotionHelper::getAction( 4253 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4254 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4255 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4256 "Unexpected instruction type"); 4257 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4258 Type *ExtTy = Ext->getType(); 4259 bool IsSExt = isa<SExtInst>(Ext); 4260 // If the operand of the extension is not an instruction, we cannot 4261 // get through. 4262 // If it, check we can get through. 4263 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4264 return nullptr; 4265 4266 // Do not promote if the operand has been added by codegenprepare. 4267 // Otherwise, it means we are undoing an optimization that is likely to be 4268 // redone, thus causing potential infinite loop. 4269 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4270 return nullptr; 4271 4272 // SExt or Trunc instructions. 4273 // Return the related handler. 4274 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4275 isa<ZExtInst>(ExtOpnd)) 4276 return promoteOperandForTruncAndAnyExt; 4277 4278 // Regular instruction. 4279 // Abort early if we will have to insert non-free instructions. 4280 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4281 return nullptr; 4282 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4283 } 4284 4285 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4286 Instruction *SExt, TypePromotionTransaction &TPT, 4287 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4288 SmallVectorImpl<Instruction *> *Exts, 4289 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4290 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4291 // get through it and this method should not be called. 4292 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4293 Value *ExtVal = SExt; 4294 bool HasMergedNonFreeExt = false; 4295 if (isa<ZExtInst>(SExtOpnd)) { 4296 // Replace s|zext(zext(opnd)) 4297 // => zext(opnd). 4298 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4299 Value *ZExt = 4300 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4301 TPT.replaceAllUsesWith(SExt, ZExt); 4302 TPT.eraseInstruction(SExt); 4303 ExtVal = ZExt; 4304 } else { 4305 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4306 // => z|sext(opnd). 4307 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4308 } 4309 CreatedInstsCost = 0; 4310 4311 // Remove dead code. 4312 if (SExtOpnd->use_empty()) 4313 TPT.eraseInstruction(SExtOpnd); 4314 4315 // Check if the extension is still needed. 4316 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4317 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4318 if (ExtInst) { 4319 if (Exts) 4320 Exts->push_back(ExtInst); 4321 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4322 } 4323 return ExtVal; 4324 } 4325 4326 // At this point we have: ext ty opnd to ty. 4327 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4328 Value *NextVal = ExtInst->getOperand(0); 4329 TPT.eraseInstruction(ExtInst, NextVal); 4330 return NextVal; 4331 } 4332 4333 Value *TypePromotionHelper::promoteOperandForOther( 4334 Instruction *Ext, TypePromotionTransaction &TPT, 4335 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4336 SmallVectorImpl<Instruction *> *Exts, 4337 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4338 bool IsSExt) { 4339 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4340 // get through it and this method should not be called. 4341 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4342 CreatedInstsCost = 0; 4343 if (!ExtOpnd->hasOneUse()) { 4344 // ExtOpnd will be promoted. 4345 // All its uses, but Ext, will need to use a truncated value of the 4346 // promoted version. 4347 // Create the truncate now. 4348 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4349 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4350 // Insert it just after the definition. 4351 ITrunc->moveAfter(ExtOpnd); 4352 if (Truncs) 4353 Truncs->push_back(ITrunc); 4354 } 4355 4356 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4357 // Restore the operand of Ext (which has been replaced by the previous call 4358 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4359 TPT.setOperand(Ext, 0, ExtOpnd); 4360 } 4361 4362 // Get through the Instruction: 4363 // 1. Update its type. 4364 // 2. Replace the uses of Ext by Inst. 4365 // 3. Extend each operand that needs to be extended. 4366 4367 // Remember the original type of the instruction before promotion. 4368 // This is useful to know that the high bits are sign extended bits. 4369 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4370 // Step #1. 4371 TPT.mutateType(ExtOpnd, Ext->getType()); 4372 // Step #2. 4373 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4374 // Step #3. 4375 Instruction *ExtForOpnd = Ext; 4376 4377 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4378 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4379 ++OpIdx) { 4380 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4381 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4382 !shouldExtOperand(ExtOpnd, OpIdx)) { 4383 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4384 continue; 4385 } 4386 // Check if we can statically extend the operand. 4387 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4388 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4389 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4390 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4391 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4392 : Cst->getValue().zext(BitWidth); 4393 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4394 continue; 4395 } 4396 // UndefValue are typed, so we have to statically sign extend them. 4397 if (isa<UndefValue>(Opnd)) { 4398 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4399 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4400 continue; 4401 } 4402 4403 // Otherwise we have to explicitly sign extend the operand. 4404 // Check if Ext was reused to extend an operand. 4405 if (!ExtForOpnd) { 4406 // If yes, create a new one. 4407 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4408 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4409 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4410 if (!isa<Instruction>(ValForExtOpnd)) { 4411 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4412 continue; 4413 } 4414 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4415 } 4416 if (Exts) 4417 Exts->push_back(ExtForOpnd); 4418 TPT.setOperand(ExtForOpnd, 0, Opnd); 4419 4420 // Move the sign extension before the insertion point. 4421 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4422 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4423 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4424 // If more sext are required, new instructions will have to be created. 4425 ExtForOpnd = nullptr; 4426 } 4427 if (ExtForOpnd == Ext) { 4428 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4429 TPT.eraseInstruction(Ext); 4430 } 4431 return ExtOpnd; 4432 } 4433 4434 /// Check whether or not promoting an instruction to a wider type is profitable. 4435 /// \p NewCost gives the cost of extension instructions created by the 4436 /// promotion. 4437 /// \p OldCost gives the cost of extension instructions before the promotion 4438 /// plus the number of instructions that have been 4439 /// matched in the addressing mode the promotion. 4440 /// \p PromotedOperand is the value that has been promoted. 4441 /// \return True if the promotion is profitable, false otherwise. 4442 bool AddressingModeMatcher::isPromotionProfitable( 4443 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4444 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4445 << '\n'); 4446 // The cost of the new extensions is greater than the cost of the 4447 // old extension plus what we folded. 4448 // This is not profitable. 4449 if (NewCost > OldCost) 4450 return false; 4451 if (NewCost < OldCost) 4452 return true; 4453 // The promotion is neutral but it may help folding the sign extension in 4454 // loads for instance. 4455 // Check that we did not create an illegal instruction. 4456 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4457 } 4458 4459 /// Given an instruction or constant expr, see if we can fold the operation 4460 /// into the addressing mode. If so, update the addressing mode and return 4461 /// true, otherwise return false without modifying AddrMode. 4462 /// If \p MovedAway is not NULL, it contains the information of whether or 4463 /// not AddrInst has to be folded into the addressing mode on success. 4464 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4465 /// because it has been moved away. 4466 /// Thus AddrInst must not be added in the matched instructions. 4467 /// This state can happen when AddrInst is a sext, since it may be moved away. 4468 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4469 /// not be referenced anymore. 4470 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4471 unsigned Depth, 4472 bool *MovedAway) { 4473 // Avoid exponential behavior on extremely deep expression trees. 4474 if (Depth >= 5) return false; 4475 4476 // By default, all matched instructions stay in place. 4477 if (MovedAway) 4478 *MovedAway = false; 4479 4480 switch (Opcode) { 4481 case Instruction::PtrToInt: 4482 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4483 return matchAddr(AddrInst->getOperand(0), Depth); 4484 case Instruction::IntToPtr: { 4485 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4486 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4487 // This inttoptr is a no-op if the integer type is pointer sized. 4488 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4489 return matchAddr(AddrInst->getOperand(0), Depth); 4490 return false; 4491 } 4492 case Instruction::BitCast: 4493 // BitCast is always a noop, and we can handle it as long as it is 4494 // int->int or pointer->pointer (we don't want int<->fp or something). 4495 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4496 // Don't touch identity bitcasts. These were probably put here by LSR, 4497 // and we don't want to mess around with them. Assume it knows what it 4498 // is doing. 4499 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4500 return matchAddr(AddrInst->getOperand(0), Depth); 4501 return false; 4502 case Instruction::AddrSpaceCast: { 4503 unsigned SrcAS 4504 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4505 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4506 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4507 return matchAddr(AddrInst->getOperand(0), Depth); 4508 return false; 4509 } 4510 case Instruction::Add: { 4511 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4512 ExtAddrMode BackupAddrMode = AddrMode; 4513 unsigned OldSize = AddrModeInsts.size(); 4514 // Start a transaction at this point. 4515 // The LHS may match but not the RHS. 4516 // Therefore, we need a higher level restoration point to undo partially 4517 // matched operation. 4518 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4519 TPT.getRestorationPoint(); 4520 4521 AddrMode.InBounds = false; 4522 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4523 matchAddr(AddrInst->getOperand(0), Depth+1)) 4524 return true; 4525 4526 // Restore the old addr mode info. 4527 AddrMode = BackupAddrMode; 4528 AddrModeInsts.resize(OldSize); 4529 TPT.rollback(LastKnownGood); 4530 4531 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4532 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4533 matchAddr(AddrInst->getOperand(1), Depth+1)) 4534 return true; 4535 4536 // Otherwise we definitely can't merge the ADD in. 4537 AddrMode = BackupAddrMode; 4538 AddrModeInsts.resize(OldSize); 4539 TPT.rollback(LastKnownGood); 4540 break; 4541 } 4542 //case Instruction::Or: 4543 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4544 //break; 4545 case Instruction::Mul: 4546 case Instruction::Shl: { 4547 // Can only handle X*C and X << C. 4548 AddrMode.InBounds = false; 4549 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4550 if (!RHS || RHS->getBitWidth() > 64) 4551 return false; 4552 int64_t Scale = RHS->getSExtValue(); 4553 if (Opcode == Instruction::Shl) 4554 Scale = 1LL << Scale; 4555 4556 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4557 } 4558 case Instruction::GetElementPtr: { 4559 // Scan the GEP. We check it if it contains constant offsets and at most 4560 // one variable offset. 4561 int VariableOperand = -1; 4562 unsigned VariableScale = 0; 4563 4564 int64_t ConstantOffset = 0; 4565 gep_type_iterator GTI = gep_type_begin(AddrInst); 4566 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4567 if (StructType *STy = GTI.getStructTypeOrNull()) { 4568 const StructLayout *SL = DL.getStructLayout(STy); 4569 unsigned Idx = 4570 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4571 ConstantOffset += SL->getElementOffset(Idx); 4572 } else { 4573 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4574 if (TS.isNonZero()) { 4575 // The optimisations below currently only work for fixed offsets. 4576 if (TS.isScalable()) 4577 return false; 4578 int64_t TypeSize = TS.getFixedSize(); 4579 if (ConstantInt *CI = 4580 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4581 const APInt &CVal = CI->getValue(); 4582 if (CVal.getMinSignedBits() <= 64) { 4583 ConstantOffset += CVal.getSExtValue() * TypeSize; 4584 continue; 4585 } 4586 } 4587 // We only allow one variable index at the moment. 4588 if (VariableOperand != -1) 4589 return false; 4590 4591 // Remember the variable index. 4592 VariableOperand = i; 4593 VariableScale = TypeSize; 4594 } 4595 } 4596 } 4597 4598 // A common case is for the GEP to only do a constant offset. In this case, 4599 // just add it to the disp field and check validity. 4600 if (VariableOperand == -1) { 4601 AddrMode.BaseOffs += ConstantOffset; 4602 if (ConstantOffset == 0 || 4603 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4604 // Check to see if we can fold the base pointer in too. 4605 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4606 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4607 AddrMode.InBounds = false; 4608 return true; 4609 } 4610 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4611 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4612 ConstantOffset > 0) { 4613 // Record GEPs with non-zero offsets as candidates for splitting in the 4614 // event that the offset cannot fit into the r+i addressing mode. 4615 // Simple and common case that only one GEP is used in calculating the 4616 // address for the memory access. 4617 Value *Base = AddrInst->getOperand(0); 4618 auto *BaseI = dyn_cast<Instruction>(Base); 4619 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4620 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4621 (BaseI && !isa<CastInst>(BaseI) && 4622 !isa<GetElementPtrInst>(BaseI))) { 4623 // Make sure the parent block allows inserting non-PHI instructions 4624 // before the terminator. 4625 BasicBlock *Parent = 4626 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4627 if (!Parent->getTerminator()->isEHPad()) 4628 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4629 } 4630 } 4631 AddrMode.BaseOffs -= ConstantOffset; 4632 return false; 4633 } 4634 4635 // Save the valid addressing mode in case we can't match. 4636 ExtAddrMode BackupAddrMode = AddrMode; 4637 unsigned OldSize = AddrModeInsts.size(); 4638 4639 // See if the scale and offset amount is valid for this target. 4640 AddrMode.BaseOffs += ConstantOffset; 4641 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4642 AddrMode.InBounds = false; 4643 4644 // Match the base operand of the GEP. 4645 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4646 // If it couldn't be matched, just stuff the value in a register. 4647 if (AddrMode.HasBaseReg) { 4648 AddrMode = BackupAddrMode; 4649 AddrModeInsts.resize(OldSize); 4650 return false; 4651 } 4652 AddrMode.HasBaseReg = true; 4653 AddrMode.BaseReg = AddrInst->getOperand(0); 4654 } 4655 4656 // Match the remaining variable portion of the GEP. 4657 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4658 Depth)) { 4659 // If it couldn't be matched, try stuffing the base into a register 4660 // instead of matching it, and retrying the match of the scale. 4661 AddrMode = BackupAddrMode; 4662 AddrModeInsts.resize(OldSize); 4663 if (AddrMode.HasBaseReg) 4664 return false; 4665 AddrMode.HasBaseReg = true; 4666 AddrMode.BaseReg = AddrInst->getOperand(0); 4667 AddrMode.BaseOffs += ConstantOffset; 4668 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4669 VariableScale, Depth)) { 4670 // If even that didn't work, bail. 4671 AddrMode = BackupAddrMode; 4672 AddrModeInsts.resize(OldSize); 4673 return false; 4674 } 4675 } 4676 4677 return true; 4678 } 4679 case Instruction::SExt: 4680 case Instruction::ZExt: { 4681 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4682 if (!Ext) 4683 return false; 4684 4685 // Try to move this ext out of the way of the addressing mode. 4686 // Ask for a method for doing so. 4687 TypePromotionHelper::Action TPH = 4688 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4689 if (!TPH) 4690 return false; 4691 4692 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4693 TPT.getRestorationPoint(); 4694 unsigned CreatedInstsCost = 0; 4695 unsigned ExtCost = !TLI.isExtFree(Ext); 4696 Value *PromotedOperand = 4697 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4698 // SExt has been moved away. 4699 // Thus either it will be rematched later in the recursive calls or it is 4700 // gone. Anyway, we must not fold it into the addressing mode at this point. 4701 // E.g., 4702 // op = add opnd, 1 4703 // idx = ext op 4704 // addr = gep base, idx 4705 // is now: 4706 // promotedOpnd = ext opnd <- no match here 4707 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4708 // addr = gep base, op <- match 4709 if (MovedAway) 4710 *MovedAway = true; 4711 4712 assert(PromotedOperand && 4713 "TypePromotionHelper should have filtered out those cases"); 4714 4715 ExtAddrMode BackupAddrMode = AddrMode; 4716 unsigned OldSize = AddrModeInsts.size(); 4717 4718 if (!matchAddr(PromotedOperand, Depth) || 4719 // The total of the new cost is equal to the cost of the created 4720 // instructions. 4721 // The total of the old cost is equal to the cost of the extension plus 4722 // what we have saved in the addressing mode. 4723 !isPromotionProfitable(CreatedInstsCost, 4724 ExtCost + (AddrModeInsts.size() - OldSize), 4725 PromotedOperand)) { 4726 AddrMode = BackupAddrMode; 4727 AddrModeInsts.resize(OldSize); 4728 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4729 TPT.rollback(LastKnownGood); 4730 return false; 4731 } 4732 return true; 4733 } 4734 } 4735 return false; 4736 } 4737 4738 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4739 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4740 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4741 /// for the target. 4742 /// 4743 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4744 // Start a transaction at this point that we will rollback if the matching 4745 // fails. 4746 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4747 TPT.getRestorationPoint(); 4748 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4749 if (CI->getValue().isSignedIntN(64)) { 4750 // Fold in immediates if legal for the target. 4751 AddrMode.BaseOffs += CI->getSExtValue(); 4752 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4753 return true; 4754 AddrMode.BaseOffs -= CI->getSExtValue(); 4755 } 4756 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4757 // If this is a global variable, try to fold it into the addressing mode. 4758 if (!AddrMode.BaseGV) { 4759 AddrMode.BaseGV = GV; 4760 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4761 return true; 4762 AddrMode.BaseGV = nullptr; 4763 } 4764 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4765 ExtAddrMode BackupAddrMode = AddrMode; 4766 unsigned OldSize = AddrModeInsts.size(); 4767 4768 // Check to see if it is possible to fold this operation. 4769 bool MovedAway = false; 4770 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4771 // This instruction may have been moved away. If so, there is nothing 4772 // to check here. 4773 if (MovedAway) 4774 return true; 4775 // Okay, it's possible to fold this. Check to see if it is actually 4776 // *profitable* to do so. We use a simple cost model to avoid increasing 4777 // register pressure too much. 4778 if (I->hasOneUse() || 4779 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4780 AddrModeInsts.push_back(I); 4781 return true; 4782 } 4783 4784 // It isn't profitable to do this, roll back. 4785 //cerr << "NOT FOLDING: " << *I; 4786 AddrMode = BackupAddrMode; 4787 AddrModeInsts.resize(OldSize); 4788 TPT.rollback(LastKnownGood); 4789 } 4790 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4791 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4792 return true; 4793 TPT.rollback(LastKnownGood); 4794 } else if (isa<ConstantPointerNull>(Addr)) { 4795 // Null pointer gets folded without affecting the addressing mode. 4796 return true; 4797 } 4798 4799 // Worse case, the target should support [reg] addressing modes. :) 4800 if (!AddrMode.HasBaseReg) { 4801 AddrMode.HasBaseReg = true; 4802 AddrMode.BaseReg = Addr; 4803 // Still check for legality in case the target supports [imm] but not [i+r]. 4804 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4805 return true; 4806 AddrMode.HasBaseReg = false; 4807 AddrMode.BaseReg = nullptr; 4808 } 4809 4810 // If the base register is already taken, see if we can do [r+r]. 4811 if (AddrMode.Scale == 0) { 4812 AddrMode.Scale = 1; 4813 AddrMode.ScaledReg = Addr; 4814 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4815 return true; 4816 AddrMode.Scale = 0; 4817 AddrMode.ScaledReg = nullptr; 4818 } 4819 // Couldn't match. 4820 TPT.rollback(LastKnownGood); 4821 return false; 4822 } 4823 4824 /// Check to see if all uses of OpVal by the specified inline asm call are due 4825 /// to memory operands. If so, return true, otherwise return false. 4826 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4827 const TargetLowering &TLI, 4828 const TargetRegisterInfo &TRI) { 4829 const Function *F = CI->getFunction(); 4830 TargetLowering::AsmOperandInfoVector TargetConstraints = 4831 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4832 4833 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4834 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4835 4836 // Compute the constraint code and ConstraintType to use. 4837 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4838 4839 // If this asm operand is our Value*, and if it isn't an indirect memory 4840 // operand, we can't fold it! 4841 if (OpInfo.CallOperandVal == OpVal && 4842 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4843 !OpInfo.isIndirect)) 4844 return false; 4845 } 4846 4847 return true; 4848 } 4849 4850 // Max number of memory uses to look at before aborting the search to conserve 4851 // compile time. 4852 static constexpr int MaxMemoryUsesToScan = 20; 4853 4854 /// Recursively walk all the uses of I until we find a memory use. 4855 /// If we find an obviously non-foldable instruction, return true. 4856 /// Add the ultimately found memory instructions to MemoryUses. 4857 static bool FindAllMemoryUses( 4858 Instruction *I, 4859 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4860 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4861 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4862 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4863 // If we already considered this instruction, we're done. 4864 if (!ConsideredInsts.insert(I).second) 4865 return false; 4866 4867 // If this is an obviously unfoldable instruction, bail out. 4868 if (!MightBeFoldableInst(I)) 4869 return true; 4870 4871 // Loop over all the uses, recursively processing them. 4872 for (Use &U : I->uses()) { 4873 // Conservatively return true if we're seeing a large number or a deep chain 4874 // of users. This avoids excessive compilation times in pathological cases. 4875 if (SeenInsts++ >= MaxMemoryUsesToScan) 4876 return true; 4877 4878 Instruction *UserI = cast<Instruction>(U.getUser()); 4879 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4880 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4881 continue; 4882 } 4883 4884 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4885 unsigned opNo = U.getOperandNo(); 4886 if (opNo != StoreInst::getPointerOperandIndex()) 4887 return true; // Storing addr, not into addr. 4888 MemoryUses.push_back(std::make_pair(SI, opNo)); 4889 continue; 4890 } 4891 4892 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4893 unsigned opNo = U.getOperandNo(); 4894 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4895 return true; // Storing addr, not into addr. 4896 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4897 continue; 4898 } 4899 4900 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4901 unsigned opNo = U.getOperandNo(); 4902 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4903 return true; // Storing addr, not into addr. 4904 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4905 continue; 4906 } 4907 4908 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4909 if (CI->hasFnAttr(Attribute::Cold)) { 4910 // If this is a cold call, we can sink the addressing calculation into 4911 // the cold path. See optimizeCallInst 4912 bool OptForSize = OptSize || 4913 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4914 if (!OptForSize) 4915 continue; 4916 } 4917 4918 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4919 if (!IA) return true; 4920 4921 // If this is a memory operand, we're cool, otherwise bail out. 4922 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4923 return true; 4924 continue; 4925 } 4926 4927 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4928 PSI, BFI, SeenInsts)) 4929 return true; 4930 } 4931 4932 return false; 4933 } 4934 4935 /// Return true if Val is already known to be live at the use site that we're 4936 /// folding it into. If so, there is no cost to include it in the addressing 4937 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4938 /// instruction already. 4939 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4940 Value *KnownLive2) { 4941 // If Val is either of the known-live values, we know it is live! 4942 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4943 return true; 4944 4945 // All values other than instructions and arguments (e.g. constants) are live. 4946 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4947 4948 // If Val is a constant sized alloca in the entry block, it is live, this is 4949 // true because it is just a reference to the stack/frame pointer, which is 4950 // live for the whole function. 4951 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4952 if (AI->isStaticAlloca()) 4953 return true; 4954 4955 // Check to see if this value is already used in the memory instruction's 4956 // block. If so, it's already live into the block at the very least, so we 4957 // can reasonably fold it. 4958 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4959 } 4960 4961 /// It is possible for the addressing mode of the machine to fold the specified 4962 /// instruction into a load or store that ultimately uses it. 4963 /// However, the specified instruction has multiple uses. 4964 /// Given this, it may actually increase register pressure to fold it 4965 /// into the load. For example, consider this code: 4966 /// 4967 /// X = ... 4968 /// Y = X+1 4969 /// use(Y) -> nonload/store 4970 /// Z = Y+1 4971 /// load Z 4972 /// 4973 /// In this case, Y has multiple uses, and can be folded into the load of Z 4974 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4975 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4976 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4977 /// number of computations either. 4978 /// 4979 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4980 /// X was live across 'load Z' for other reasons, we actually *would* want to 4981 /// fold the addressing mode in the Z case. This would make Y die earlier. 4982 bool AddressingModeMatcher:: 4983 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4984 ExtAddrMode &AMAfter) { 4985 if (IgnoreProfitability) return true; 4986 4987 // AMBefore is the addressing mode before this instruction was folded into it, 4988 // and AMAfter is the addressing mode after the instruction was folded. Get 4989 // the set of registers referenced by AMAfter and subtract out those 4990 // referenced by AMBefore: this is the set of values which folding in this 4991 // address extends the lifetime of. 4992 // 4993 // Note that there are only two potential values being referenced here, 4994 // BaseReg and ScaleReg (global addresses are always available, as are any 4995 // folded immediates). 4996 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4997 4998 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4999 // lifetime wasn't extended by adding this instruction. 5000 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5001 BaseReg = nullptr; 5002 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5003 ScaledReg = nullptr; 5004 5005 // If folding this instruction (and it's subexprs) didn't extend any live 5006 // ranges, we're ok with it. 5007 if (!BaseReg && !ScaledReg) 5008 return true; 5009 5010 // If all uses of this instruction can have the address mode sunk into them, 5011 // we can remove the addressing mode and effectively trade one live register 5012 // for another (at worst.) In this context, folding an addressing mode into 5013 // the use is just a particularly nice way of sinking it. 5014 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 5015 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5016 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5017 PSI, BFI)) 5018 return false; // Has a non-memory, non-foldable use! 5019 5020 // Now that we know that all uses of this instruction are part of a chain of 5021 // computation involving only operations that could theoretically be folded 5022 // into a memory use, loop over each of these memory operation uses and see 5023 // if they could *actually* fold the instruction. The assumption is that 5024 // addressing modes are cheap and that duplicating the computation involved 5025 // many times is worthwhile, even on a fastpath. For sinking candidates 5026 // (i.e. cold call sites), this serves as a way to prevent excessive code 5027 // growth since most architectures have some reasonable small and fast way to 5028 // compute an effective address. (i.e LEA on x86) 5029 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5030 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5031 Instruction *User = MemoryUses[i].first; 5032 unsigned OpNo = MemoryUses[i].second; 5033 5034 // Get the access type of this use. If the use isn't a pointer, we don't 5035 // know what it accesses. 5036 Value *Address = User->getOperand(OpNo); 5037 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5038 if (!AddrTy) 5039 return false; 5040 Type *AddressAccessTy = AddrTy->getElementType(); 5041 unsigned AS = AddrTy->getAddressSpace(); 5042 5043 // Do a match against the root of this address, ignoring profitability. This 5044 // will tell us if the addressing mode for the memory operation will 5045 // *actually* cover the shared instruction. 5046 ExtAddrMode Result; 5047 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5048 0); 5049 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5050 TPT.getRestorationPoint(); 5051 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5052 AddressAccessTy, AS, MemoryInst, Result, 5053 InsertedInsts, PromotedInsts, TPT, 5054 LargeOffsetGEP, OptSize, PSI, BFI); 5055 Matcher.IgnoreProfitability = true; 5056 bool Success = Matcher.matchAddr(Address, 0); 5057 (void)Success; assert(Success && "Couldn't select *anything*?"); 5058 5059 // The match was to check the profitability, the changes made are not 5060 // part of the original matcher. Therefore, they should be dropped 5061 // otherwise the original matcher will not present the right state. 5062 TPT.rollback(LastKnownGood); 5063 5064 // If the match didn't cover I, then it won't be shared by it. 5065 if (!is_contained(MatchedAddrModeInsts, I)) 5066 return false; 5067 5068 MatchedAddrModeInsts.clear(); 5069 } 5070 5071 return true; 5072 } 5073 5074 /// Return true if the specified values are defined in a 5075 /// different basic block than BB. 5076 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5077 if (Instruction *I = dyn_cast<Instruction>(V)) 5078 return I->getParent() != BB; 5079 return false; 5080 } 5081 5082 /// Sink addressing mode computation immediate before MemoryInst if doing so 5083 /// can be done without increasing register pressure. The need for the 5084 /// register pressure constraint means this can end up being an all or nothing 5085 /// decision for all uses of the same addressing computation. 5086 /// 5087 /// Load and Store Instructions often have addressing modes that can do 5088 /// significant amounts of computation. As such, instruction selection will try 5089 /// to get the load or store to do as much computation as possible for the 5090 /// program. The problem is that isel can only see within a single block. As 5091 /// such, we sink as much legal addressing mode work into the block as possible. 5092 /// 5093 /// This method is used to optimize both load/store and inline asms with memory 5094 /// operands. It's also used to sink addressing computations feeding into cold 5095 /// call sites into their (cold) basic block. 5096 /// 5097 /// The motivation for handling sinking into cold blocks is that doing so can 5098 /// both enable other address mode sinking (by satisfying the register pressure 5099 /// constraint above), and reduce register pressure globally (by removing the 5100 /// addressing mode computation from the fast path entirely.). 5101 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5102 Type *AccessTy, unsigned AddrSpace) { 5103 Value *Repl = Addr; 5104 5105 // Try to collapse single-value PHI nodes. This is necessary to undo 5106 // unprofitable PRE transformations. 5107 SmallVector<Value*, 8> worklist; 5108 SmallPtrSet<Value*, 16> Visited; 5109 worklist.push_back(Addr); 5110 5111 // Use a worklist to iteratively look through PHI and select nodes, and 5112 // ensure that the addressing mode obtained from the non-PHI/select roots of 5113 // the graph are compatible. 5114 bool PhiOrSelectSeen = false; 5115 SmallVector<Instruction*, 16> AddrModeInsts; 5116 const SimplifyQuery SQ(*DL, TLInfo); 5117 AddressingModeCombiner AddrModes(SQ, Addr); 5118 TypePromotionTransaction TPT(RemovedInsts); 5119 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5120 TPT.getRestorationPoint(); 5121 while (!worklist.empty()) { 5122 Value *V = worklist.back(); 5123 worklist.pop_back(); 5124 5125 // We allow traversing cyclic Phi nodes. 5126 // In case of success after this loop we ensure that traversing through 5127 // Phi nodes ends up with all cases to compute address of the form 5128 // BaseGV + Base + Scale * Index + Offset 5129 // where Scale and Offset are constans and BaseGV, Base and Index 5130 // are exactly the same Values in all cases. 5131 // It means that BaseGV, Scale and Offset dominate our memory instruction 5132 // and have the same value as they had in address computation represented 5133 // as Phi. So we can safely sink address computation to memory instruction. 5134 if (!Visited.insert(V).second) 5135 continue; 5136 5137 // For a PHI node, push all of its incoming values. 5138 if (PHINode *P = dyn_cast<PHINode>(V)) { 5139 append_range(worklist, P->incoming_values()); 5140 PhiOrSelectSeen = true; 5141 continue; 5142 } 5143 // Similar for select. 5144 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5145 worklist.push_back(SI->getFalseValue()); 5146 worklist.push_back(SI->getTrueValue()); 5147 PhiOrSelectSeen = true; 5148 continue; 5149 } 5150 5151 // For non-PHIs, determine the addressing mode being computed. Note that 5152 // the result may differ depending on what other uses our candidate 5153 // addressing instructions might have. 5154 AddrModeInsts.clear(); 5155 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5156 0); 5157 // Defer the query (and possible computation of) the dom tree to point of 5158 // actual use. It's expected that most address matches don't actually need 5159 // the domtree. 5160 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5161 Function *F = MemoryInst->getParent()->getParent(); 5162 return this->getDT(*F); 5163 }; 5164 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5165 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5166 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5167 BFI.get()); 5168 5169 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5170 if (GEP && !NewGEPBases.count(GEP)) { 5171 // If splitting the underlying data structure can reduce the offset of a 5172 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5173 // previously split data structures. 5174 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5175 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5176 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5177 } 5178 5179 NewAddrMode.OriginalValue = V; 5180 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5181 break; 5182 } 5183 5184 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5185 // or we have multiple but either couldn't combine them or combining them 5186 // wouldn't do anything useful, bail out now. 5187 if (!AddrModes.combineAddrModes()) { 5188 TPT.rollback(LastKnownGood); 5189 return false; 5190 } 5191 bool Modified = TPT.commit(); 5192 5193 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5194 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5195 5196 // If all the instructions matched are already in this BB, don't do anything. 5197 // If we saw a Phi node then it is not local definitely, and if we saw a select 5198 // then we want to push the address calculation past it even if it's already 5199 // in this BB. 5200 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5201 return IsNonLocalValue(V, MemoryInst->getParent()); 5202 })) { 5203 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5204 << "\n"); 5205 return Modified; 5206 } 5207 5208 // Insert this computation right after this user. Since our caller is 5209 // scanning from the top of the BB to the bottom, reuse of the expr are 5210 // guaranteed to happen later. 5211 IRBuilder<> Builder(MemoryInst); 5212 5213 // Now that we determined the addressing expression we want to use and know 5214 // that we have to sink it into this block. Check to see if we have already 5215 // done this for some other load/store instr in this block. If so, reuse 5216 // the computation. Before attempting reuse, check if the address is valid 5217 // as it may have been erased. 5218 5219 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5220 5221 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5222 if (SunkAddr) { 5223 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5224 << " for " << *MemoryInst << "\n"); 5225 if (SunkAddr->getType() != Addr->getType()) 5226 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5227 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5228 SubtargetInfo->addrSinkUsingGEPs())) { 5229 // By default, we use the GEP-based method when AA is used later. This 5230 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5231 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5232 << " for " << *MemoryInst << "\n"); 5233 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5234 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5235 5236 // First, find the pointer. 5237 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5238 ResultPtr = AddrMode.BaseReg; 5239 AddrMode.BaseReg = nullptr; 5240 } 5241 5242 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5243 // We can't add more than one pointer together, nor can we scale a 5244 // pointer (both of which seem meaningless). 5245 if (ResultPtr || AddrMode.Scale != 1) 5246 return Modified; 5247 5248 ResultPtr = AddrMode.ScaledReg; 5249 AddrMode.Scale = 0; 5250 } 5251 5252 // It is only safe to sign extend the BaseReg if we know that the math 5253 // required to create it did not overflow before we extend it. Since 5254 // the original IR value was tossed in favor of a constant back when 5255 // the AddrMode was created we need to bail out gracefully if widths 5256 // do not match instead of extending it. 5257 // 5258 // (See below for code to add the scale.) 5259 if (AddrMode.Scale) { 5260 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5261 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5262 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5263 return Modified; 5264 } 5265 5266 if (AddrMode.BaseGV) { 5267 if (ResultPtr) 5268 return Modified; 5269 5270 ResultPtr = AddrMode.BaseGV; 5271 } 5272 5273 // If the real base value actually came from an inttoptr, then the matcher 5274 // will look through it and provide only the integer value. In that case, 5275 // use it here. 5276 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5277 if (!ResultPtr && AddrMode.BaseReg) { 5278 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5279 "sunkaddr"); 5280 AddrMode.BaseReg = nullptr; 5281 } else if (!ResultPtr && AddrMode.Scale == 1) { 5282 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5283 "sunkaddr"); 5284 AddrMode.Scale = 0; 5285 } 5286 } 5287 5288 if (!ResultPtr && 5289 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5290 SunkAddr = Constant::getNullValue(Addr->getType()); 5291 } else if (!ResultPtr) { 5292 return Modified; 5293 } else { 5294 Type *I8PtrTy = 5295 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5296 Type *I8Ty = Builder.getInt8Ty(); 5297 5298 // Start with the base register. Do this first so that subsequent address 5299 // matching finds it last, which will prevent it from trying to match it 5300 // as the scaled value in case it happens to be a mul. That would be 5301 // problematic if we've sunk a different mul for the scale, because then 5302 // we'd end up sinking both muls. 5303 if (AddrMode.BaseReg) { 5304 Value *V = AddrMode.BaseReg; 5305 if (V->getType() != IntPtrTy) 5306 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5307 5308 ResultIndex = V; 5309 } 5310 5311 // Add the scale value. 5312 if (AddrMode.Scale) { 5313 Value *V = AddrMode.ScaledReg; 5314 if (V->getType() == IntPtrTy) { 5315 // done. 5316 } else { 5317 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5318 cast<IntegerType>(V->getType())->getBitWidth() && 5319 "We can't transform if ScaledReg is too narrow"); 5320 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5321 } 5322 5323 if (AddrMode.Scale != 1) 5324 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5325 "sunkaddr"); 5326 if (ResultIndex) 5327 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5328 else 5329 ResultIndex = V; 5330 } 5331 5332 // Add in the Base Offset if present. 5333 if (AddrMode.BaseOffs) { 5334 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5335 if (ResultIndex) { 5336 // We need to add this separately from the scale above to help with 5337 // SDAG consecutive load/store merging. 5338 if (ResultPtr->getType() != I8PtrTy) 5339 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5340 ResultPtr = 5341 AddrMode.InBounds 5342 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5343 "sunkaddr") 5344 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5345 } 5346 5347 ResultIndex = V; 5348 } 5349 5350 if (!ResultIndex) { 5351 SunkAddr = ResultPtr; 5352 } else { 5353 if (ResultPtr->getType() != I8PtrTy) 5354 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5355 SunkAddr = 5356 AddrMode.InBounds 5357 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5358 "sunkaddr") 5359 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5360 } 5361 5362 if (SunkAddr->getType() != Addr->getType()) 5363 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5364 } 5365 } else { 5366 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5367 // non-integral pointers, so in that case bail out now. 5368 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5369 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5370 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5371 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5372 if (DL->isNonIntegralPointerType(Addr->getType()) || 5373 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5374 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5375 (AddrMode.BaseGV && 5376 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5377 return Modified; 5378 5379 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5380 << " for " << *MemoryInst << "\n"); 5381 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5382 Value *Result = nullptr; 5383 5384 // Start with the base register. Do this first so that subsequent address 5385 // matching finds it last, which will prevent it from trying to match it 5386 // as the scaled value in case it happens to be a mul. That would be 5387 // problematic if we've sunk a different mul for the scale, because then 5388 // we'd end up sinking both muls. 5389 if (AddrMode.BaseReg) { 5390 Value *V = AddrMode.BaseReg; 5391 if (V->getType()->isPointerTy()) 5392 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5393 if (V->getType() != IntPtrTy) 5394 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5395 Result = V; 5396 } 5397 5398 // Add the scale value. 5399 if (AddrMode.Scale) { 5400 Value *V = AddrMode.ScaledReg; 5401 if (V->getType() == IntPtrTy) { 5402 // done. 5403 } else if (V->getType()->isPointerTy()) { 5404 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5405 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5406 cast<IntegerType>(V->getType())->getBitWidth()) { 5407 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5408 } else { 5409 // It is only safe to sign extend the BaseReg if we know that the math 5410 // required to create it did not overflow before we extend it. Since 5411 // the original IR value was tossed in favor of a constant back when 5412 // the AddrMode was created we need to bail out gracefully if widths 5413 // do not match instead of extending it. 5414 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5415 if (I && (Result != AddrMode.BaseReg)) 5416 I->eraseFromParent(); 5417 return Modified; 5418 } 5419 if (AddrMode.Scale != 1) 5420 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5421 "sunkaddr"); 5422 if (Result) 5423 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5424 else 5425 Result = V; 5426 } 5427 5428 // Add in the BaseGV if present. 5429 if (AddrMode.BaseGV) { 5430 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5431 if (Result) 5432 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5433 else 5434 Result = V; 5435 } 5436 5437 // Add in the Base Offset if present. 5438 if (AddrMode.BaseOffs) { 5439 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5440 if (Result) 5441 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5442 else 5443 Result = V; 5444 } 5445 5446 if (!Result) 5447 SunkAddr = Constant::getNullValue(Addr->getType()); 5448 else 5449 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5450 } 5451 5452 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5453 // Store the newly computed address into the cache. In the case we reused a 5454 // value, this should be idempotent. 5455 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5456 5457 // If we have no uses, recursively delete the value and all dead instructions 5458 // using it. 5459 if (Repl->use_empty()) { 5460 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5461 RecursivelyDeleteTriviallyDeadInstructions( 5462 Repl, TLInfo, nullptr, 5463 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5464 }); 5465 } 5466 ++NumMemoryInsts; 5467 return true; 5468 } 5469 5470 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5471 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5472 /// only handle a 2 operand GEP in the same basic block or a splat constant 5473 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5474 /// index. 5475 /// 5476 /// If the existing GEP has a vector base pointer that is splat, we can look 5477 /// through the splat to find the scalar pointer. If we can't find a scalar 5478 /// pointer there's nothing we can do. 5479 /// 5480 /// If we have a GEP with more than 2 indices where the middle indices are all 5481 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5482 /// 5483 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5484 /// followed by a GEP with an all zeroes vector index. This will enable 5485 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5486 /// zero index. 5487 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5488 Value *Ptr) { 5489 Value *NewAddr; 5490 5491 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5492 // Don't optimize GEPs that don't have indices. 5493 if (!GEP->hasIndices()) 5494 return false; 5495 5496 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5497 // FIXME: We should support this by sinking the GEP. 5498 if (MemoryInst->getParent() != GEP->getParent()) 5499 return false; 5500 5501 SmallVector<Value *, 2> Ops(GEP->operands()); 5502 5503 bool RewriteGEP = false; 5504 5505 if (Ops[0]->getType()->isVectorTy()) { 5506 Ops[0] = getSplatValue(Ops[0]); 5507 if (!Ops[0]) 5508 return false; 5509 RewriteGEP = true; 5510 } 5511 5512 unsigned FinalIndex = Ops.size() - 1; 5513 5514 // Ensure all but the last index is 0. 5515 // FIXME: This isn't strictly required. All that's required is that they are 5516 // all scalars or splats. 5517 for (unsigned i = 1; i < FinalIndex; ++i) { 5518 auto *C = dyn_cast<Constant>(Ops[i]); 5519 if (!C) 5520 return false; 5521 if (isa<VectorType>(C->getType())) 5522 C = C->getSplatValue(); 5523 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5524 if (!CI || !CI->isZero()) 5525 return false; 5526 // Scalarize the index if needed. 5527 Ops[i] = CI; 5528 } 5529 5530 // Try to scalarize the final index. 5531 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5532 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5533 auto *C = dyn_cast<ConstantInt>(V); 5534 // Don't scalarize all zeros vector. 5535 if (!C || !C->isZero()) { 5536 Ops[FinalIndex] = V; 5537 RewriteGEP = true; 5538 } 5539 } 5540 } 5541 5542 // If we made any changes or the we have extra operands, we need to generate 5543 // new instructions. 5544 if (!RewriteGEP && Ops.size() == 2) 5545 return false; 5546 5547 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5548 5549 IRBuilder<> Builder(MemoryInst); 5550 5551 Type *SourceTy = GEP->getSourceElementType(); 5552 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5553 5554 // If the final index isn't a vector, emit a scalar GEP containing all ops 5555 // and a vector GEP with all zeroes final index. 5556 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5557 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5558 makeArrayRef(Ops).drop_front()); 5559 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5560 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5561 } else { 5562 Value *Base = Ops[0]; 5563 Value *Index = Ops[FinalIndex]; 5564 5565 // Create a scalar GEP if there are more than 2 operands. 5566 if (Ops.size() != 2) { 5567 // Replace the last index with 0. 5568 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5569 Base = Builder.CreateGEP(SourceTy, Base, 5570 makeArrayRef(Ops).drop_front()); 5571 } 5572 5573 // Now create the GEP with scalar pointer and vector index. 5574 NewAddr = Builder.CreateGEP(Base, Index); 5575 } 5576 } else if (!isa<Constant>(Ptr)) { 5577 // Not a GEP, maybe its a splat and we can create a GEP to enable 5578 // SelectionDAGBuilder to use it as a uniform base. 5579 Value *V = getSplatValue(Ptr); 5580 if (!V) 5581 return false; 5582 5583 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5584 5585 IRBuilder<> Builder(MemoryInst); 5586 5587 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5588 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5589 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5590 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5591 } else { 5592 // Constant, SelectionDAGBuilder knows to check if its a splat. 5593 return false; 5594 } 5595 5596 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5597 5598 // If we have no uses, recursively delete the value and all dead instructions 5599 // using it. 5600 if (Ptr->use_empty()) 5601 RecursivelyDeleteTriviallyDeadInstructions( 5602 Ptr, TLInfo, nullptr, 5603 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5604 5605 return true; 5606 } 5607 5608 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5609 /// address computing into the block when possible / profitable. 5610 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5611 bool MadeChange = false; 5612 5613 const TargetRegisterInfo *TRI = 5614 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5615 TargetLowering::AsmOperandInfoVector TargetConstraints = 5616 TLI->ParseConstraints(*DL, TRI, *CS); 5617 unsigned ArgNo = 0; 5618 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5619 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5620 5621 // Compute the constraint code and ConstraintType to use. 5622 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5623 5624 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5625 OpInfo.isIndirect) { 5626 Value *OpVal = CS->getArgOperand(ArgNo++); 5627 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5628 } else if (OpInfo.Type == InlineAsm::isInput) 5629 ArgNo++; 5630 } 5631 5632 return MadeChange; 5633 } 5634 5635 /// Check if all the uses of \p Val are equivalent (or free) zero or 5636 /// sign extensions. 5637 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5638 assert(!Val->use_empty() && "Input must have at least one use"); 5639 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5640 bool IsSExt = isa<SExtInst>(FirstUser); 5641 Type *ExtTy = FirstUser->getType(); 5642 for (const User *U : Val->users()) { 5643 const Instruction *UI = cast<Instruction>(U); 5644 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5645 return false; 5646 Type *CurTy = UI->getType(); 5647 // Same input and output types: Same instruction after CSE. 5648 if (CurTy == ExtTy) 5649 continue; 5650 5651 // If IsSExt is true, we are in this situation: 5652 // a = Val 5653 // b = sext ty1 a to ty2 5654 // c = sext ty1 a to ty3 5655 // Assuming ty2 is shorter than ty3, this could be turned into: 5656 // a = Val 5657 // b = sext ty1 a to ty2 5658 // c = sext ty2 b to ty3 5659 // However, the last sext is not free. 5660 if (IsSExt) 5661 return false; 5662 5663 // This is a ZExt, maybe this is free to extend from one type to another. 5664 // In that case, we would not account for a different use. 5665 Type *NarrowTy; 5666 Type *LargeTy; 5667 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5668 CurTy->getScalarType()->getIntegerBitWidth()) { 5669 NarrowTy = CurTy; 5670 LargeTy = ExtTy; 5671 } else { 5672 NarrowTy = ExtTy; 5673 LargeTy = CurTy; 5674 } 5675 5676 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5677 return false; 5678 } 5679 // All uses are the same or can be derived from one another for free. 5680 return true; 5681 } 5682 5683 /// Try to speculatively promote extensions in \p Exts and continue 5684 /// promoting through newly promoted operands recursively as far as doing so is 5685 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5686 /// When some promotion happened, \p TPT contains the proper state to revert 5687 /// them. 5688 /// 5689 /// \return true if some promotion happened, false otherwise. 5690 bool CodeGenPrepare::tryToPromoteExts( 5691 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5692 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5693 unsigned CreatedInstsCost) { 5694 bool Promoted = false; 5695 5696 // Iterate over all the extensions to try to promote them. 5697 for (auto *I : Exts) { 5698 // Early check if we directly have ext(load). 5699 if (isa<LoadInst>(I->getOperand(0))) { 5700 ProfitablyMovedExts.push_back(I); 5701 continue; 5702 } 5703 5704 // Check whether or not we want to do any promotion. The reason we have 5705 // this check inside the for loop is to catch the case where an extension 5706 // is directly fed by a load because in such case the extension can be moved 5707 // up without any promotion on its operands. 5708 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5709 return false; 5710 5711 // Get the action to perform the promotion. 5712 TypePromotionHelper::Action TPH = 5713 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5714 // Check if we can promote. 5715 if (!TPH) { 5716 // Save the current extension as we cannot move up through its operand. 5717 ProfitablyMovedExts.push_back(I); 5718 continue; 5719 } 5720 5721 // Save the current state. 5722 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5723 TPT.getRestorationPoint(); 5724 SmallVector<Instruction *, 4> NewExts; 5725 unsigned NewCreatedInstsCost = 0; 5726 unsigned ExtCost = !TLI->isExtFree(I); 5727 // Promote. 5728 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5729 &NewExts, nullptr, *TLI); 5730 assert(PromotedVal && 5731 "TypePromotionHelper should have filtered out those cases"); 5732 5733 // We would be able to merge only one extension in a load. 5734 // Therefore, if we have more than 1 new extension we heuristically 5735 // cut this search path, because it means we degrade the code quality. 5736 // With exactly 2, the transformation is neutral, because we will merge 5737 // one extension but leave one. However, we optimistically keep going, 5738 // because the new extension may be removed too. 5739 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5740 // FIXME: It would be possible to propagate a negative value instead of 5741 // conservatively ceiling it to 0. 5742 TotalCreatedInstsCost = 5743 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5744 if (!StressExtLdPromotion && 5745 (TotalCreatedInstsCost > 1 || 5746 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5747 // This promotion is not profitable, rollback to the previous state, and 5748 // save the current extension in ProfitablyMovedExts as the latest 5749 // speculative promotion turned out to be unprofitable. 5750 TPT.rollback(LastKnownGood); 5751 ProfitablyMovedExts.push_back(I); 5752 continue; 5753 } 5754 // Continue promoting NewExts as far as doing so is profitable. 5755 SmallVector<Instruction *, 2> NewlyMovedExts; 5756 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5757 bool NewPromoted = false; 5758 for (auto *ExtInst : NewlyMovedExts) { 5759 Instruction *MovedExt = cast<Instruction>(ExtInst); 5760 Value *ExtOperand = MovedExt->getOperand(0); 5761 // If we have reached to a load, we need this extra profitability check 5762 // as it could potentially be merged into an ext(load). 5763 if (isa<LoadInst>(ExtOperand) && 5764 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5765 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5766 continue; 5767 5768 ProfitablyMovedExts.push_back(MovedExt); 5769 NewPromoted = true; 5770 } 5771 5772 // If none of speculative promotions for NewExts is profitable, rollback 5773 // and save the current extension (I) as the last profitable extension. 5774 if (!NewPromoted) { 5775 TPT.rollback(LastKnownGood); 5776 ProfitablyMovedExts.push_back(I); 5777 continue; 5778 } 5779 // The promotion is profitable. 5780 Promoted = true; 5781 } 5782 return Promoted; 5783 } 5784 5785 /// Merging redundant sexts when one is dominating the other. 5786 bool CodeGenPrepare::mergeSExts(Function &F) { 5787 bool Changed = false; 5788 for (auto &Entry : ValToSExtendedUses) { 5789 SExts &Insts = Entry.second; 5790 SExts CurPts; 5791 for (Instruction *Inst : Insts) { 5792 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5793 Inst->getOperand(0) != Entry.first) 5794 continue; 5795 bool inserted = false; 5796 for (auto &Pt : CurPts) { 5797 if (getDT(F).dominates(Inst, Pt)) { 5798 Pt->replaceAllUsesWith(Inst); 5799 RemovedInsts.insert(Pt); 5800 Pt->removeFromParent(); 5801 Pt = Inst; 5802 inserted = true; 5803 Changed = true; 5804 break; 5805 } 5806 if (!getDT(F).dominates(Pt, Inst)) 5807 // Give up if we need to merge in a common dominator as the 5808 // experiments show it is not profitable. 5809 continue; 5810 Inst->replaceAllUsesWith(Pt); 5811 RemovedInsts.insert(Inst); 5812 Inst->removeFromParent(); 5813 inserted = true; 5814 Changed = true; 5815 break; 5816 } 5817 if (!inserted) 5818 CurPts.push_back(Inst); 5819 } 5820 } 5821 return Changed; 5822 } 5823 5824 // Splitting large data structures so that the GEPs accessing them can have 5825 // smaller offsets so that they can be sunk to the same blocks as their users. 5826 // For example, a large struct starting from %base is split into two parts 5827 // where the second part starts from %new_base. 5828 // 5829 // Before: 5830 // BB0: 5831 // %base = 5832 // 5833 // BB1: 5834 // %gep0 = gep %base, off0 5835 // %gep1 = gep %base, off1 5836 // %gep2 = gep %base, off2 5837 // 5838 // BB2: 5839 // %load1 = load %gep0 5840 // %load2 = load %gep1 5841 // %load3 = load %gep2 5842 // 5843 // After: 5844 // BB0: 5845 // %base = 5846 // %new_base = gep %base, off0 5847 // 5848 // BB1: 5849 // %new_gep0 = %new_base 5850 // %new_gep1 = gep %new_base, off1 - off0 5851 // %new_gep2 = gep %new_base, off2 - off0 5852 // 5853 // BB2: 5854 // %load1 = load i32, i32* %new_gep0 5855 // %load2 = load i32, i32* %new_gep1 5856 // %load3 = load i32, i32* %new_gep2 5857 // 5858 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5859 // their offsets are smaller enough to fit into the addressing mode. 5860 bool CodeGenPrepare::splitLargeGEPOffsets() { 5861 bool Changed = false; 5862 for (auto &Entry : LargeOffsetGEPMap) { 5863 Value *OldBase = Entry.first; 5864 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5865 &LargeOffsetGEPs = Entry.second; 5866 auto compareGEPOffset = 5867 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5868 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5869 if (LHS.first == RHS.first) 5870 return false; 5871 if (LHS.second != RHS.second) 5872 return LHS.second < RHS.second; 5873 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5874 }; 5875 // Sorting all the GEPs of the same data structures based on the offsets. 5876 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5877 LargeOffsetGEPs.erase( 5878 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5879 LargeOffsetGEPs.end()); 5880 // Skip if all the GEPs have the same offsets. 5881 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5882 continue; 5883 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5884 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5885 Value *NewBaseGEP = nullptr; 5886 5887 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5888 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5889 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5890 int64_t Offset = LargeOffsetGEP->second; 5891 if (Offset != BaseOffset) { 5892 TargetLowering::AddrMode AddrMode; 5893 AddrMode.BaseOffs = Offset - BaseOffset; 5894 // The result type of the GEP might not be the type of the memory 5895 // access. 5896 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5897 GEP->getResultElementType(), 5898 GEP->getAddressSpace())) { 5899 // We need to create a new base if the offset to the current base is 5900 // too large to fit into the addressing mode. So, a very large struct 5901 // may be split into several parts. 5902 BaseGEP = GEP; 5903 BaseOffset = Offset; 5904 NewBaseGEP = nullptr; 5905 } 5906 } 5907 5908 // Generate a new GEP to replace the current one. 5909 LLVMContext &Ctx = GEP->getContext(); 5910 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5911 Type *I8PtrTy = 5912 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5913 Type *I8Ty = Type::getInt8Ty(Ctx); 5914 5915 if (!NewBaseGEP) { 5916 // Create a new base if we don't have one yet. Find the insertion 5917 // pointer for the new base first. 5918 BasicBlock::iterator NewBaseInsertPt; 5919 BasicBlock *NewBaseInsertBB; 5920 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5921 // If the base of the struct is an instruction, the new base will be 5922 // inserted close to it. 5923 NewBaseInsertBB = BaseI->getParent(); 5924 if (isa<PHINode>(BaseI)) 5925 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5926 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5927 NewBaseInsertBB = 5928 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5929 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5930 } else 5931 NewBaseInsertPt = std::next(BaseI->getIterator()); 5932 } else { 5933 // If the current base is an argument or global value, the new base 5934 // will be inserted to the entry block. 5935 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5936 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5937 } 5938 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5939 // Create a new base. 5940 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5941 NewBaseGEP = OldBase; 5942 if (NewBaseGEP->getType() != I8PtrTy) 5943 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5944 NewBaseGEP = 5945 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5946 NewGEPBases.insert(NewBaseGEP); 5947 } 5948 5949 IRBuilder<> Builder(GEP); 5950 Value *NewGEP = NewBaseGEP; 5951 if (Offset == BaseOffset) { 5952 if (GEP->getType() != I8PtrTy) 5953 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5954 } else { 5955 // Calculate the new offset for the new GEP. 5956 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5957 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5958 5959 if (GEP->getType() != I8PtrTy) 5960 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5961 } 5962 GEP->replaceAllUsesWith(NewGEP); 5963 LargeOffsetGEPID.erase(GEP); 5964 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5965 GEP->eraseFromParent(); 5966 Changed = true; 5967 } 5968 } 5969 return Changed; 5970 } 5971 5972 bool CodeGenPrepare::optimizePhiType( 5973 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5974 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5975 // We are looking for a collection on interconnected phi nodes that together 5976 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5977 // are of the same type. Convert the whole set of nodes to the type of the 5978 // bitcast. 5979 Type *PhiTy = I->getType(); 5980 Type *ConvertTy = nullptr; 5981 if (Visited.count(I) || 5982 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5983 return false; 5984 5985 SmallVector<Instruction *, 4> Worklist; 5986 Worklist.push_back(cast<Instruction>(I)); 5987 SmallPtrSet<PHINode *, 4> PhiNodes; 5988 PhiNodes.insert(I); 5989 Visited.insert(I); 5990 SmallPtrSet<Instruction *, 4> Defs; 5991 SmallPtrSet<Instruction *, 4> Uses; 5992 // This works by adding extra bitcasts between load/stores and removing 5993 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5994 // we can get in the situation where we remove a bitcast in one iteration 5995 // just to add it again in the next. We need to ensure that at least one 5996 // bitcast we remove are anchored to something that will not change back. 5997 bool AnyAnchored = false; 5998 5999 while (!Worklist.empty()) { 6000 Instruction *II = Worklist.pop_back_val(); 6001 6002 if (auto *Phi = dyn_cast<PHINode>(II)) { 6003 // Handle Defs, which might also be PHI's 6004 for (Value *V : Phi->incoming_values()) { 6005 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6006 if (!PhiNodes.count(OpPhi)) { 6007 if (Visited.count(OpPhi)) 6008 return false; 6009 PhiNodes.insert(OpPhi); 6010 Visited.insert(OpPhi); 6011 Worklist.push_back(OpPhi); 6012 } 6013 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6014 if (!OpLoad->isSimple()) 6015 return false; 6016 if (!Defs.count(OpLoad)) { 6017 Defs.insert(OpLoad); 6018 Worklist.push_back(OpLoad); 6019 } 6020 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6021 if (!Defs.count(OpEx)) { 6022 Defs.insert(OpEx); 6023 Worklist.push_back(OpEx); 6024 } 6025 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6026 if (!ConvertTy) 6027 ConvertTy = OpBC->getOperand(0)->getType(); 6028 if (OpBC->getOperand(0)->getType() != ConvertTy) 6029 return false; 6030 if (!Defs.count(OpBC)) { 6031 Defs.insert(OpBC); 6032 Worklist.push_back(OpBC); 6033 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6034 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6035 } 6036 } else if (!isa<UndefValue>(V)) { 6037 return false; 6038 } 6039 } 6040 } 6041 6042 // Handle uses which might also be phi's 6043 for (User *V : II->users()) { 6044 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6045 if (!PhiNodes.count(OpPhi)) { 6046 if (Visited.count(OpPhi)) 6047 return false; 6048 PhiNodes.insert(OpPhi); 6049 Visited.insert(OpPhi); 6050 Worklist.push_back(OpPhi); 6051 } 6052 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6053 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6054 return false; 6055 Uses.insert(OpStore); 6056 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6057 if (!ConvertTy) 6058 ConvertTy = OpBC->getType(); 6059 if (OpBC->getType() != ConvertTy) 6060 return false; 6061 Uses.insert(OpBC); 6062 AnyAnchored |= 6063 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6064 } else { 6065 return false; 6066 } 6067 } 6068 } 6069 6070 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6071 return false; 6072 6073 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6074 << *ConvertTy << "\n"); 6075 6076 // Create all the new phi nodes of the new type, and bitcast any loads to the 6077 // correct type. 6078 ValueToValueMap ValMap; 6079 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6080 for (Instruction *D : Defs) { 6081 if (isa<BitCastInst>(D)) { 6082 ValMap[D] = D->getOperand(0); 6083 DeletedInstrs.insert(D); 6084 } else { 6085 ValMap[D] = 6086 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6087 } 6088 } 6089 for (PHINode *Phi : PhiNodes) 6090 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6091 Phi->getName() + ".tc", Phi); 6092 // Pipe together all the PhiNodes. 6093 for (PHINode *Phi : PhiNodes) { 6094 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6095 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6096 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6097 Phi->getIncomingBlock(i)); 6098 Visited.insert(NewPhi); 6099 } 6100 // And finally pipe up the stores and bitcasts 6101 for (Instruction *U : Uses) { 6102 if (isa<BitCastInst>(U)) { 6103 DeletedInstrs.insert(U); 6104 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6105 } else { 6106 U->setOperand(0, 6107 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6108 } 6109 } 6110 6111 // Save the removed phis to be deleted later. 6112 for (PHINode *Phi : PhiNodes) 6113 DeletedInstrs.insert(Phi); 6114 return true; 6115 } 6116 6117 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6118 if (!OptimizePhiTypes) 6119 return false; 6120 6121 bool Changed = false; 6122 SmallPtrSet<PHINode *, 4> Visited; 6123 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6124 6125 // Attempt to optimize all the phis in the functions to the correct type. 6126 for (auto &BB : F) 6127 for (auto &Phi : BB.phis()) 6128 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6129 6130 // Remove any old phi's that have been converted. 6131 for (auto *I : DeletedInstrs) { 6132 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6133 I->eraseFromParent(); 6134 } 6135 6136 return Changed; 6137 } 6138 6139 /// Return true, if an ext(load) can be formed from an extension in 6140 /// \p MovedExts. 6141 bool CodeGenPrepare::canFormExtLd( 6142 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6143 Instruction *&Inst, bool HasPromoted) { 6144 for (auto *MovedExtInst : MovedExts) { 6145 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6146 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6147 Inst = MovedExtInst; 6148 break; 6149 } 6150 } 6151 if (!LI) 6152 return false; 6153 6154 // If they're already in the same block, there's nothing to do. 6155 // Make the cheap checks first if we did not promote. 6156 // If we promoted, we need to check if it is indeed profitable. 6157 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6158 return false; 6159 6160 return TLI->isExtLoad(LI, Inst, *DL); 6161 } 6162 6163 /// Move a zext or sext fed by a load into the same basic block as the load, 6164 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6165 /// extend into the load. 6166 /// 6167 /// E.g., 6168 /// \code 6169 /// %ld = load i32* %addr 6170 /// %add = add nuw i32 %ld, 4 6171 /// %zext = zext i32 %add to i64 6172 // \endcode 6173 /// => 6174 /// \code 6175 /// %ld = load i32* %addr 6176 /// %zext = zext i32 %ld to i64 6177 /// %add = add nuw i64 %zext, 4 6178 /// \encode 6179 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6180 /// allow us to match zext(load i32*) to i64. 6181 /// 6182 /// Also, try to promote the computations used to obtain a sign extended 6183 /// value used into memory accesses. 6184 /// E.g., 6185 /// \code 6186 /// a = add nsw i32 b, 3 6187 /// d = sext i32 a to i64 6188 /// e = getelementptr ..., i64 d 6189 /// \endcode 6190 /// => 6191 /// \code 6192 /// f = sext i32 b to i64 6193 /// a = add nsw i64 f, 3 6194 /// e = getelementptr ..., i64 a 6195 /// \endcode 6196 /// 6197 /// \p Inst[in/out] the extension may be modified during the process if some 6198 /// promotions apply. 6199 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6200 bool AllowPromotionWithoutCommonHeader = false; 6201 /// See if it is an interesting sext operations for the address type 6202 /// promotion before trying to promote it, e.g., the ones with the right 6203 /// type and used in memory accesses. 6204 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6205 *Inst, AllowPromotionWithoutCommonHeader); 6206 TypePromotionTransaction TPT(RemovedInsts); 6207 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6208 TPT.getRestorationPoint(); 6209 SmallVector<Instruction *, 1> Exts; 6210 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6211 Exts.push_back(Inst); 6212 6213 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6214 6215 // Look for a load being extended. 6216 LoadInst *LI = nullptr; 6217 Instruction *ExtFedByLoad; 6218 6219 // Try to promote a chain of computation if it allows to form an extended 6220 // load. 6221 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6222 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6223 TPT.commit(); 6224 // Move the extend into the same block as the load. 6225 ExtFedByLoad->moveAfter(LI); 6226 ++NumExtsMoved; 6227 Inst = ExtFedByLoad; 6228 return true; 6229 } 6230 6231 // Continue promoting SExts if known as considerable depending on targets. 6232 if (ATPConsiderable && 6233 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6234 HasPromoted, TPT, SpeculativelyMovedExts)) 6235 return true; 6236 6237 TPT.rollback(LastKnownGood); 6238 return false; 6239 } 6240 6241 // Perform address type promotion if doing so is profitable. 6242 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6243 // instructions that sign extended the same initial value. However, if 6244 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6245 // extension is just profitable. 6246 bool CodeGenPrepare::performAddressTypePromotion( 6247 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6248 bool HasPromoted, TypePromotionTransaction &TPT, 6249 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6250 bool Promoted = false; 6251 SmallPtrSet<Instruction *, 1> UnhandledExts; 6252 bool AllSeenFirst = true; 6253 for (auto *I : SpeculativelyMovedExts) { 6254 Value *HeadOfChain = I->getOperand(0); 6255 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6256 SeenChainsForSExt.find(HeadOfChain); 6257 // If there is an unhandled SExt which has the same header, try to promote 6258 // it as well. 6259 if (AlreadySeen != SeenChainsForSExt.end()) { 6260 if (AlreadySeen->second != nullptr) 6261 UnhandledExts.insert(AlreadySeen->second); 6262 AllSeenFirst = false; 6263 } 6264 } 6265 6266 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6267 SpeculativelyMovedExts.size() == 1)) { 6268 TPT.commit(); 6269 if (HasPromoted) 6270 Promoted = true; 6271 for (auto *I : SpeculativelyMovedExts) { 6272 Value *HeadOfChain = I->getOperand(0); 6273 SeenChainsForSExt[HeadOfChain] = nullptr; 6274 ValToSExtendedUses[HeadOfChain].push_back(I); 6275 } 6276 // Update Inst as promotion happen. 6277 Inst = SpeculativelyMovedExts.pop_back_val(); 6278 } else { 6279 // This is the first chain visited from the header, keep the current chain 6280 // as unhandled. Defer to promote this until we encounter another SExt 6281 // chain derived from the same header. 6282 for (auto *I : SpeculativelyMovedExts) { 6283 Value *HeadOfChain = I->getOperand(0); 6284 SeenChainsForSExt[HeadOfChain] = Inst; 6285 } 6286 return false; 6287 } 6288 6289 if (!AllSeenFirst && !UnhandledExts.empty()) 6290 for (auto *VisitedSExt : UnhandledExts) { 6291 if (RemovedInsts.count(VisitedSExt)) 6292 continue; 6293 TypePromotionTransaction TPT(RemovedInsts); 6294 SmallVector<Instruction *, 1> Exts; 6295 SmallVector<Instruction *, 2> Chains; 6296 Exts.push_back(VisitedSExt); 6297 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6298 TPT.commit(); 6299 if (HasPromoted) 6300 Promoted = true; 6301 for (auto *I : Chains) { 6302 Value *HeadOfChain = I->getOperand(0); 6303 // Mark this as handled. 6304 SeenChainsForSExt[HeadOfChain] = nullptr; 6305 ValToSExtendedUses[HeadOfChain].push_back(I); 6306 } 6307 } 6308 return Promoted; 6309 } 6310 6311 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6312 BasicBlock *DefBB = I->getParent(); 6313 6314 // If the result of a {s|z}ext and its source are both live out, rewrite all 6315 // other uses of the source with result of extension. 6316 Value *Src = I->getOperand(0); 6317 if (Src->hasOneUse()) 6318 return false; 6319 6320 // Only do this xform if truncating is free. 6321 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6322 return false; 6323 6324 // Only safe to perform the optimization if the source is also defined in 6325 // this block. 6326 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6327 return false; 6328 6329 bool DefIsLiveOut = false; 6330 for (User *U : I->users()) { 6331 Instruction *UI = cast<Instruction>(U); 6332 6333 // Figure out which BB this ext is used in. 6334 BasicBlock *UserBB = UI->getParent(); 6335 if (UserBB == DefBB) continue; 6336 DefIsLiveOut = true; 6337 break; 6338 } 6339 if (!DefIsLiveOut) 6340 return false; 6341 6342 // Make sure none of the uses are PHI nodes. 6343 for (User *U : Src->users()) { 6344 Instruction *UI = cast<Instruction>(U); 6345 BasicBlock *UserBB = UI->getParent(); 6346 if (UserBB == DefBB) continue; 6347 // Be conservative. We don't want this xform to end up introducing 6348 // reloads just before load / store instructions. 6349 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6350 return false; 6351 } 6352 6353 // InsertedTruncs - Only insert one trunc in each block once. 6354 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6355 6356 bool MadeChange = false; 6357 for (Use &U : Src->uses()) { 6358 Instruction *User = cast<Instruction>(U.getUser()); 6359 6360 // Figure out which BB this ext is used in. 6361 BasicBlock *UserBB = User->getParent(); 6362 if (UserBB == DefBB) continue; 6363 6364 // Both src and def are live in this block. Rewrite the use. 6365 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6366 6367 if (!InsertedTrunc) { 6368 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6369 assert(InsertPt != UserBB->end()); 6370 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6371 InsertedInsts.insert(InsertedTrunc); 6372 } 6373 6374 // Replace a use of the {s|z}ext source with a use of the result. 6375 U = InsertedTrunc; 6376 ++NumExtUses; 6377 MadeChange = true; 6378 } 6379 6380 return MadeChange; 6381 } 6382 6383 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6384 // just after the load if the target can fold this into one extload instruction, 6385 // with the hope of eliminating some of the other later "and" instructions using 6386 // the loaded value. "and"s that are made trivially redundant by the insertion 6387 // of the new "and" are removed by this function, while others (e.g. those whose 6388 // path from the load goes through a phi) are left for isel to potentially 6389 // remove. 6390 // 6391 // For example: 6392 // 6393 // b0: 6394 // x = load i32 6395 // ... 6396 // b1: 6397 // y = and x, 0xff 6398 // z = use y 6399 // 6400 // becomes: 6401 // 6402 // b0: 6403 // x = load i32 6404 // x' = and x, 0xff 6405 // ... 6406 // b1: 6407 // z = use x' 6408 // 6409 // whereas: 6410 // 6411 // b0: 6412 // x1 = load i32 6413 // ... 6414 // b1: 6415 // x2 = load i32 6416 // ... 6417 // b2: 6418 // x = phi x1, x2 6419 // y = and x, 0xff 6420 // 6421 // becomes (after a call to optimizeLoadExt for each load): 6422 // 6423 // b0: 6424 // x1 = load i32 6425 // x1' = and x1, 0xff 6426 // ... 6427 // b1: 6428 // x2 = load i32 6429 // x2' = and x2, 0xff 6430 // ... 6431 // b2: 6432 // x = phi x1', x2' 6433 // y = and x, 0xff 6434 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6435 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6436 return false; 6437 6438 // Skip loads we've already transformed. 6439 if (Load->hasOneUse() && 6440 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6441 return false; 6442 6443 // Look at all uses of Load, looking through phis, to determine how many bits 6444 // of the loaded value are needed. 6445 SmallVector<Instruction *, 8> WorkList; 6446 SmallPtrSet<Instruction *, 16> Visited; 6447 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6448 for (auto *U : Load->users()) 6449 WorkList.push_back(cast<Instruction>(U)); 6450 6451 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6452 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6453 APInt DemandBits(BitWidth, 0); 6454 APInt WidestAndBits(BitWidth, 0); 6455 6456 while (!WorkList.empty()) { 6457 Instruction *I = WorkList.back(); 6458 WorkList.pop_back(); 6459 6460 // Break use-def graph loops. 6461 if (!Visited.insert(I).second) 6462 continue; 6463 6464 // For a PHI node, push all of its users. 6465 if (auto *Phi = dyn_cast<PHINode>(I)) { 6466 for (auto *U : Phi->users()) 6467 WorkList.push_back(cast<Instruction>(U)); 6468 continue; 6469 } 6470 6471 switch (I->getOpcode()) { 6472 case Instruction::And: { 6473 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6474 if (!AndC) 6475 return false; 6476 APInt AndBits = AndC->getValue(); 6477 DemandBits |= AndBits; 6478 // Keep track of the widest and mask we see. 6479 if (AndBits.ugt(WidestAndBits)) 6480 WidestAndBits = AndBits; 6481 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6482 AndsToMaybeRemove.push_back(I); 6483 break; 6484 } 6485 6486 case Instruction::Shl: { 6487 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6488 if (!ShlC) 6489 return false; 6490 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6491 DemandBits.setLowBits(BitWidth - ShiftAmt); 6492 break; 6493 } 6494 6495 case Instruction::Trunc: { 6496 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6497 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6498 DemandBits.setLowBits(TruncBitWidth); 6499 break; 6500 } 6501 6502 default: 6503 return false; 6504 } 6505 } 6506 6507 uint32_t ActiveBits = DemandBits.getActiveBits(); 6508 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6509 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6510 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6511 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6512 // followed by an AND. 6513 // TODO: Look into removing this restriction by fixing backends to either 6514 // return false for isLoadExtLegal for i1 or have them select this pattern to 6515 // a single instruction. 6516 // 6517 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6518 // mask, since these are the only ands that will be removed by isel. 6519 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6520 WidestAndBits != DemandBits) 6521 return false; 6522 6523 LLVMContext &Ctx = Load->getType()->getContext(); 6524 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6525 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6526 6527 // Reject cases that won't be matched as extloads. 6528 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6529 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6530 return false; 6531 6532 IRBuilder<> Builder(Load->getNextNode()); 6533 auto *NewAnd = cast<Instruction>( 6534 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6535 // Mark this instruction as "inserted by CGP", so that other 6536 // optimizations don't touch it. 6537 InsertedInsts.insert(NewAnd); 6538 6539 // Replace all uses of load with new and (except for the use of load in the 6540 // new and itself). 6541 Load->replaceAllUsesWith(NewAnd); 6542 NewAnd->setOperand(0, Load); 6543 6544 // Remove any and instructions that are now redundant. 6545 for (auto *And : AndsToMaybeRemove) 6546 // Check that the and mask is the same as the one we decided to put on the 6547 // new and. 6548 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6549 And->replaceAllUsesWith(NewAnd); 6550 if (&*CurInstIterator == And) 6551 CurInstIterator = std::next(And->getIterator()); 6552 And->eraseFromParent(); 6553 ++NumAndUses; 6554 } 6555 6556 ++NumAndsAdded; 6557 return true; 6558 } 6559 6560 /// Check if V (an operand of a select instruction) is an expensive instruction 6561 /// that is only used once. 6562 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6563 auto *I = dyn_cast<Instruction>(V); 6564 // If it's safe to speculatively execute, then it should not have side 6565 // effects; therefore, it's safe to sink and possibly *not* execute. 6566 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6567 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6568 TargetTransformInfo::TCC_Expensive; 6569 } 6570 6571 /// Returns true if a SelectInst should be turned into an explicit branch. 6572 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6573 const TargetLowering *TLI, 6574 SelectInst *SI) { 6575 // If even a predictable select is cheap, then a branch can't be cheaper. 6576 if (!TLI->isPredictableSelectExpensive()) 6577 return false; 6578 6579 // FIXME: This should use the same heuristics as IfConversion to determine 6580 // whether a select is better represented as a branch. 6581 6582 // If metadata tells us that the select condition is obviously predictable, 6583 // then we want to replace the select with a branch. 6584 uint64_t TrueWeight, FalseWeight; 6585 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6586 uint64_t Max = std::max(TrueWeight, FalseWeight); 6587 uint64_t Sum = TrueWeight + FalseWeight; 6588 if (Sum != 0) { 6589 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6590 if (Probability > TTI->getPredictableBranchThreshold()) 6591 return true; 6592 } 6593 } 6594 6595 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6596 6597 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6598 // comparison condition. If the compare has more than one use, there's 6599 // probably another cmov or setcc around, so it's not worth emitting a branch. 6600 if (!Cmp || !Cmp->hasOneUse()) 6601 return false; 6602 6603 // If either operand of the select is expensive and only needed on one side 6604 // of the select, we should form a branch. 6605 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6606 sinkSelectOperand(TTI, SI->getFalseValue())) 6607 return true; 6608 6609 return false; 6610 } 6611 6612 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6613 /// false value of \p SI. If the true/false value of \p SI is defined by any 6614 /// select instructions in \p Selects, look through the defining select 6615 /// instruction until the true/false value is not defined in \p Selects. 6616 static Value *getTrueOrFalseValue( 6617 SelectInst *SI, bool isTrue, 6618 const SmallPtrSet<const Instruction *, 2> &Selects) { 6619 Value *V = nullptr; 6620 6621 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6622 DefSI = dyn_cast<SelectInst>(V)) { 6623 assert(DefSI->getCondition() == SI->getCondition() && 6624 "The condition of DefSI does not match with SI"); 6625 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6626 } 6627 6628 assert(V && "Failed to get select true/false value"); 6629 return V; 6630 } 6631 6632 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6633 assert(Shift->isShift() && "Expected a shift"); 6634 6635 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6636 // general vector shifts, and (3) the shift amount is a select-of-splatted 6637 // values, hoist the shifts before the select: 6638 // shift Op0, (select Cond, TVal, FVal) --> 6639 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6640 // 6641 // This is inverting a generic IR transform when we know that the cost of a 6642 // general vector shift is more than the cost of 2 shift-by-scalars. 6643 // We can't do this effectively in SDAG because we may not be able to 6644 // determine if the select operands are splats from within a basic block. 6645 Type *Ty = Shift->getType(); 6646 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6647 return false; 6648 Value *Cond, *TVal, *FVal; 6649 if (!match(Shift->getOperand(1), 6650 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6651 return false; 6652 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6653 return false; 6654 6655 IRBuilder<> Builder(Shift); 6656 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6657 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6658 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6659 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6660 Shift->replaceAllUsesWith(NewSel); 6661 Shift->eraseFromParent(); 6662 return true; 6663 } 6664 6665 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6666 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6667 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6668 "Expected a funnel shift"); 6669 6670 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6671 // than general vector shifts, and (3) the shift amount is select-of-splatted 6672 // values, hoist the funnel shifts before the select: 6673 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6674 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6675 // 6676 // This is inverting a generic IR transform when we know that the cost of a 6677 // general vector shift is more than the cost of 2 shift-by-scalars. 6678 // We can't do this effectively in SDAG because we may not be able to 6679 // determine if the select operands are splats from within a basic block. 6680 Type *Ty = Fsh->getType(); 6681 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6682 return false; 6683 Value *Cond, *TVal, *FVal; 6684 if (!match(Fsh->getOperand(2), 6685 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6686 return false; 6687 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6688 return false; 6689 6690 IRBuilder<> Builder(Fsh); 6691 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6692 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6693 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6694 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6695 Fsh->replaceAllUsesWith(NewSel); 6696 Fsh->eraseFromParent(); 6697 return true; 6698 } 6699 6700 /// If we have a SelectInst that will likely profit from branch prediction, 6701 /// turn it into a branch. 6702 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6703 if (DisableSelectToBranch) 6704 return false; 6705 6706 // Find all consecutive select instructions that share the same condition. 6707 SmallVector<SelectInst *, 2> ASI; 6708 ASI.push_back(SI); 6709 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6710 It != SI->getParent()->end(); ++It) { 6711 SelectInst *I = dyn_cast<SelectInst>(&*It); 6712 if (I && SI->getCondition() == I->getCondition()) { 6713 ASI.push_back(I); 6714 } else { 6715 break; 6716 } 6717 } 6718 6719 SelectInst *LastSI = ASI.back(); 6720 // Increment the current iterator to skip all the rest of select instructions 6721 // because they will be either "not lowered" or "all lowered" to branch. 6722 CurInstIterator = std::next(LastSI->getIterator()); 6723 6724 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6725 6726 // Can we convert the 'select' to CF ? 6727 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6728 return false; 6729 6730 TargetLowering::SelectSupportKind SelectKind; 6731 if (VectorCond) 6732 SelectKind = TargetLowering::VectorMaskSelect; 6733 else if (SI->getType()->isVectorTy()) 6734 SelectKind = TargetLowering::ScalarCondVectorVal; 6735 else 6736 SelectKind = TargetLowering::ScalarValSelect; 6737 6738 if (TLI->isSelectSupported(SelectKind) && 6739 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6740 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6741 return false; 6742 6743 // The DominatorTree needs to be rebuilt by any consumers after this 6744 // transformation. We simply reset here rather than setting the ModifiedDT 6745 // flag to avoid restarting the function walk in runOnFunction for each 6746 // select optimized. 6747 DT.reset(); 6748 6749 // Transform a sequence like this: 6750 // start: 6751 // %cmp = cmp uge i32 %a, %b 6752 // %sel = select i1 %cmp, i32 %c, i32 %d 6753 // 6754 // Into: 6755 // start: 6756 // %cmp = cmp uge i32 %a, %b 6757 // %cmp.frozen = freeze %cmp 6758 // br i1 %cmp.frozen, label %select.true, label %select.false 6759 // select.true: 6760 // br label %select.end 6761 // select.false: 6762 // br label %select.end 6763 // select.end: 6764 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6765 // 6766 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6767 // In addition, we may sink instructions that produce %c or %d from 6768 // the entry block into the destination(s) of the new branch. 6769 // If the true or false blocks do not contain a sunken instruction, that 6770 // block and its branch may be optimized away. In that case, one side of the 6771 // first branch will point directly to select.end, and the corresponding PHI 6772 // predecessor block will be the start block. 6773 6774 // First, we split the block containing the select into 2 blocks. 6775 BasicBlock *StartBlock = SI->getParent(); 6776 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6777 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6778 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6779 6780 // Delete the unconditional branch that was just created by the split. 6781 StartBlock->getTerminator()->eraseFromParent(); 6782 6783 // These are the new basic blocks for the conditional branch. 6784 // At least one will become an actual new basic block. 6785 BasicBlock *TrueBlock = nullptr; 6786 BasicBlock *FalseBlock = nullptr; 6787 BranchInst *TrueBranch = nullptr; 6788 BranchInst *FalseBranch = nullptr; 6789 6790 // Sink expensive instructions into the conditional blocks to avoid executing 6791 // them speculatively. 6792 for (SelectInst *SI : ASI) { 6793 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6794 if (TrueBlock == nullptr) { 6795 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6796 EndBlock->getParent(), EndBlock); 6797 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6798 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6799 } 6800 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6801 TrueInst->moveBefore(TrueBranch); 6802 } 6803 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6804 if (FalseBlock == nullptr) { 6805 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6806 EndBlock->getParent(), EndBlock); 6807 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6808 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6809 } 6810 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6811 FalseInst->moveBefore(FalseBranch); 6812 } 6813 } 6814 6815 // If there was nothing to sink, then arbitrarily choose the 'false' side 6816 // for a new input value to the PHI. 6817 if (TrueBlock == FalseBlock) { 6818 assert(TrueBlock == nullptr && 6819 "Unexpected basic block transform while optimizing select"); 6820 6821 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6822 EndBlock->getParent(), EndBlock); 6823 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6824 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6825 } 6826 6827 // Insert the real conditional branch based on the original condition. 6828 // If we did not create a new block for one of the 'true' or 'false' paths 6829 // of the condition, it means that side of the branch goes to the end block 6830 // directly and the path originates from the start block from the point of 6831 // view of the new PHI. 6832 BasicBlock *TT, *FT; 6833 if (TrueBlock == nullptr) { 6834 TT = EndBlock; 6835 FT = FalseBlock; 6836 TrueBlock = StartBlock; 6837 } else if (FalseBlock == nullptr) { 6838 TT = TrueBlock; 6839 FT = EndBlock; 6840 FalseBlock = StartBlock; 6841 } else { 6842 TT = TrueBlock; 6843 FT = FalseBlock; 6844 } 6845 IRBuilder<> IB(SI); 6846 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6847 IB.CreateCondBr(CondFr, TT, FT, SI); 6848 6849 SmallPtrSet<const Instruction *, 2> INS; 6850 INS.insert(ASI.begin(), ASI.end()); 6851 // Use reverse iterator because later select may use the value of the 6852 // earlier select, and we need to propagate value through earlier select 6853 // to get the PHI operand. 6854 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6855 SelectInst *SI = *It; 6856 // The select itself is replaced with a PHI Node. 6857 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6858 PN->takeName(SI); 6859 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6860 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6861 PN->setDebugLoc(SI->getDebugLoc()); 6862 6863 SI->replaceAllUsesWith(PN); 6864 SI->eraseFromParent(); 6865 INS.erase(SI); 6866 ++NumSelectsExpanded; 6867 } 6868 6869 // Instruct OptimizeBlock to skip to the next block. 6870 CurInstIterator = StartBlock->end(); 6871 return true; 6872 } 6873 6874 /// Some targets only accept certain types for splat inputs. For example a VDUP 6875 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6876 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6877 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6878 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6879 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6880 m_Undef(), m_ZeroMask()))) 6881 return false; 6882 Type *NewType = TLI->shouldConvertSplatType(SVI); 6883 if (!NewType) 6884 return false; 6885 6886 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6887 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6888 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6889 "Expected a type of the same size!"); 6890 auto *NewVecType = 6891 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6892 6893 // Create a bitcast (shuffle (insert (bitcast(..)))) 6894 IRBuilder<> Builder(SVI->getContext()); 6895 Builder.SetInsertPoint(SVI); 6896 Value *BC1 = Builder.CreateBitCast( 6897 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6898 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6899 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6900 6901 SVI->replaceAllUsesWith(BC2); 6902 RecursivelyDeleteTriviallyDeadInstructions( 6903 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6904 6905 // Also hoist the bitcast up to its operand if it they are not in the same 6906 // block. 6907 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6908 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6909 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6910 !Op->isTerminator() && !Op->isEHPad()) 6911 BCI->moveAfter(Op); 6912 6913 return true; 6914 } 6915 6916 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6917 // If the operands of I can be folded into a target instruction together with 6918 // I, duplicate and sink them. 6919 SmallVector<Use *, 4> OpsToSink; 6920 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6921 return false; 6922 6923 // OpsToSink can contain multiple uses in a use chain (e.g. 6924 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6925 // uses must come first, so we process the ops in reverse order so as to not 6926 // create invalid IR. 6927 BasicBlock *TargetBB = I->getParent(); 6928 bool Changed = false; 6929 SmallVector<Use *, 4> ToReplace; 6930 for (Use *U : reverse(OpsToSink)) { 6931 auto *UI = cast<Instruction>(U->get()); 6932 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6933 continue; 6934 ToReplace.push_back(U); 6935 } 6936 6937 SetVector<Instruction *> MaybeDead; 6938 DenseMap<Instruction *, Instruction *> NewInstructions; 6939 Instruction *InsertPoint = I; 6940 for (Use *U : ToReplace) { 6941 auto *UI = cast<Instruction>(U->get()); 6942 Instruction *NI = UI->clone(); 6943 NewInstructions[UI] = NI; 6944 MaybeDead.insert(UI); 6945 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6946 NI->insertBefore(InsertPoint); 6947 InsertPoint = NI; 6948 InsertedInsts.insert(NI); 6949 6950 // Update the use for the new instruction, making sure that we update the 6951 // sunk instruction uses, if it is part of a chain that has already been 6952 // sunk. 6953 Instruction *OldI = cast<Instruction>(U->getUser()); 6954 if (NewInstructions.count(OldI)) 6955 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6956 else 6957 U->set(NI); 6958 Changed = true; 6959 } 6960 6961 // Remove instructions that are dead after sinking. 6962 for (auto *I : MaybeDead) { 6963 if (!I->hasNUsesOrMore(1)) { 6964 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6965 I->eraseFromParent(); 6966 } 6967 } 6968 6969 return Changed; 6970 } 6971 6972 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6973 Value *Cond = SI->getCondition(); 6974 Type *OldType = Cond->getType(); 6975 LLVMContext &Context = Cond->getContext(); 6976 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6977 unsigned RegWidth = RegType.getSizeInBits(); 6978 6979 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6980 return false; 6981 6982 // If the register width is greater than the type width, expand the condition 6983 // of the switch instruction and each case constant to the width of the 6984 // register. By widening the type of the switch condition, subsequent 6985 // comparisons (for case comparisons) will not need to be extended to the 6986 // preferred register width, so we will potentially eliminate N-1 extends, 6987 // where N is the number of cases in the switch. 6988 auto *NewType = Type::getIntNTy(Context, RegWidth); 6989 6990 // Zero-extend the switch condition and case constants unless the switch 6991 // condition is a function argument that is already being sign-extended. 6992 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6993 // everything instead. 6994 Instruction::CastOps ExtType = Instruction::ZExt; 6995 if (auto *Arg = dyn_cast<Argument>(Cond)) 6996 if (Arg->hasSExtAttr()) 6997 ExtType = Instruction::SExt; 6998 6999 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7000 ExtInst->insertBefore(SI); 7001 ExtInst->setDebugLoc(SI->getDebugLoc()); 7002 SI->setCondition(ExtInst); 7003 for (auto Case : SI->cases()) { 7004 APInt NarrowConst = Case.getCaseValue()->getValue(); 7005 APInt WideConst = (ExtType == Instruction::ZExt) ? 7006 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7007 Case.setValue(ConstantInt::get(Context, WideConst)); 7008 } 7009 7010 return true; 7011 } 7012 7013 7014 namespace { 7015 7016 /// Helper class to promote a scalar operation to a vector one. 7017 /// This class is used to move downward extractelement transition. 7018 /// E.g., 7019 /// a = vector_op <2 x i32> 7020 /// b = extractelement <2 x i32> a, i32 0 7021 /// c = scalar_op b 7022 /// store c 7023 /// 7024 /// => 7025 /// a = vector_op <2 x i32> 7026 /// c = vector_op a (equivalent to scalar_op on the related lane) 7027 /// * d = extractelement <2 x i32> c, i32 0 7028 /// * store d 7029 /// Assuming both extractelement and store can be combine, we get rid of the 7030 /// transition. 7031 class VectorPromoteHelper { 7032 /// DataLayout associated with the current module. 7033 const DataLayout &DL; 7034 7035 /// Used to perform some checks on the legality of vector operations. 7036 const TargetLowering &TLI; 7037 7038 /// Used to estimated the cost of the promoted chain. 7039 const TargetTransformInfo &TTI; 7040 7041 /// The transition being moved downwards. 7042 Instruction *Transition; 7043 7044 /// The sequence of instructions to be promoted. 7045 SmallVector<Instruction *, 4> InstsToBePromoted; 7046 7047 /// Cost of combining a store and an extract. 7048 unsigned StoreExtractCombineCost; 7049 7050 /// Instruction that will be combined with the transition. 7051 Instruction *CombineInst = nullptr; 7052 7053 /// The instruction that represents the current end of the transition. 7054 /// Since we are faking the promotion until we reach the end of the chain 7055 /// of computation, we need a way to get the current end of the transition. 7056 Instruction *getEndOfTransition() const { 7057 if (InstsToBePromoted.empty()) 7058 return Transition; 7059 return InstsToBePromoted.back(); 7060 } 7061 7062 /// Return the index of the original value in the transition. 7063 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7064 /// c, is at index 0. 7065 unsigned getTransitionOriginalValueIdx() const { 7066 assert(isa<ExtractElementInst>(Transition) && 7067 "Other kind of transitions are not supported yet"); 7068 return 0; 7069 } 7070 7071 /// Return the index of the index in the transition. 7072 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7073 /// is at index 1. 7074 unsigned getTransitionIdx() const { 7075 assert(isa<ExtractElementInst>(Transition) && 7076 "Other kind of transitions are not supported yet"); 7077 return 1; 7078 } 7079 7080 /// Get the type of the transition. 7081 /// This is the type of the original value. 7082 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7083 /// transition is <2 x i32>. 7084 Type *getTransitionType() const { 7085 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7086 } 7087 7088 /// Promote \p ToBePromoted by moving \p Def downward through. 7089 /// I.e., we have the following sequence: 7090 /// Def = Transition <ty1> a to <ty2> 7091 /// b = ToBePromoted <ty2> Def, ... 7092 /// => 7093 /// b = ToBePromoted <ty1> a, ... 7094 /// Def = Transition <ty1> ToBePromoted to <ty2> 7095 void promoteImpl(Instruction *ToBePromoted); 7096 7097 /// Check whether or not it is profitable to promote all the 7098 /// instructions enqueued to be promoted. 7099 bool isProfitableToPromote() { 7100 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7101 unsigned Index = isa<ConstantInt>(ValIdx) 7102 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7103 : -1; 7104 Type *PromotedType = getTransitionType(); 7105 7106 StoreInst *ST = cast<StoreInst>(CombineInst); 7107 unsigned AS = ST->getPointerAddressSpace(); 7108 // Check if this store is supported. 7109 if (!TLI.allowsMisalignedMemoryAccesses( 7110 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7111 ST->getAlign())) { 7112 // If this is not supported, there is no way we can combine 7113 // the extract with the store. 7114 return false; 7115 } 7116 7117 // The scalar chain of computation has to pay for the transition 7118 // scalar to vector. 7119 // The vector chain has to account for the combining cost. 7120 InstructionCost ScalarCost = 7121 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7122 InstructionCost VectorCost = StoreExtractCombineCost; 7123 enum TargetTransformInfo::TargetCostKind CostKind = 7124 TargetTransformInfo::TCK_RecipThroughput; 7125 for (const auto &Inst : InstsToBePromoted) { 7126 // Compute the cost. 7127 // By construction, all instructions being promoted are arithmetic ones. 7128 // Moreover, one argument is a constant that can be viewed as a splat 7129 // constant. 7130 Value *Arg0 = Inst->getOperand(0); 7131 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7132 isa<ConstantFP>(Arg0); 7133 TargetTransformInfo::OperandValueKind Arg0OVK = 7134 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7135 : TargetTransformInfo::OK_AnyValue; 7136 TargetTransformInfo::OperandValueKind Arg1OVK = 7137 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7138 : TargetTransformInfo::OK_AnyValue; 7139 ScalarCost += TTI.getArithmeticInstrCost( 7140 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7141 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7142 CostKind, 7143 Arg0OVK, Arg1OVK); 7144 } 7145 LLVM_DEBUG( 7146 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7147 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7148 return ScalarCost > VectorCost; 7149 } 7150 7151 /// Generate a constant vector with \p Val with the same 7152 /// number of elements as the transition. 7153 /// \p UseSplat defines whether or not \p Val should be replicated 7154 /// across the whole vector. 7155 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7156 /// otherwise we generate a vector with as many undef as possible: 7157 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7158 /// used at the index of the extract. 7159 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7160 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7161 if (!UseSplat) { 7162 // If we cannot determine where the constant must be, we have to 7163 // use a splat constant. 7164 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7165 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7166 ExtractIdx = CstVal->getSExtValue(); 7167 else 7168 UseSplat = true; 7169 } 7170 7171 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7172 if (UseSplat) 7173 return ConstantVector::getSplat(EC, Val); 7174 7175 if (!EC.isScalable()) { 7176 SmallVector<Constant *, 4> ConstVec; 7177 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7178 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7179 if (Idx == ExtractIdx) 7180 ConstVec.push_back(Val); 7181 else 7182 ConstVec.push_back(UndefVal); 7183 } 7184 return ConstantVector::get(ConstVec); 7185 } else 7186 llvm_unreachable( 7187 "Generate scalable vector for non-splat is unimplemented"); 7188 } 7189 7190 /// Check if promoting to a vector type an operand at \p OperandIdx 7191 /// in \p Use can trigger undefined behavior. 7192 static bool canCauseUndefinedBehavior(const Instruction *Use, 7193 unsigned OperandIdx) { 7194 // This is not safe to introduce undef when the operand is on 7195 // the right hand side of a division-like instruction. 7196 if (OperandIdx != 1) 7197 return false; 7198 switch (Use->getOpcode()) { 7199 default: 7200 return false; 7201 case Instruction::SDiv: 7202 case Instruction::UDiv: 7203 case Instruction::SRem: 7204 case Instruction::URem: 7205 return true; 7206 case Instruction::FDiv: 7207 case Instruction::FRem: 7208 return !Use->hasNoNaNs(); 7209 } 7210 llvm_unreachable(nullptr); 7211 } 7212 7213 public: 7214 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7215 const TargetTransformInfo &TTI, Instruction *Transition, 7216 unsigned CombineCost) 7217 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7218 StoreExtractCombineCost(CombineCost) { 7219 assert(Transition && "Do not know how to promote null"); 7220 } 7221 7222 /// Check if we can promote \p ToBePromoted to \p Type. 7223 bool canPromote(const Instruction *ToBePromoted) const { 7224 // We could support CastInst too. 7225 return isa<BinaryOperator>(ToBePromoted); 7226 } 7227 7228 /// Check if it is profitable to promote \p ToBePromoted 7229 /// by moving downward the transition through. 7230 bool shouldPromote(const Instruction *ToBePromoted) const { 7231 // Promote only if all the operands can be statically expanded. 7232 // Indeed, we do not want to introduce any new kind of transitions. 7233 for (const Use &U : ToBePromoted->operands()) { 7234 const Value *Val = U.get(); 7235 if (Val == getEndOfTransition()) { 7236 // If the use is a division and the transition is on the rhs, 7237 // we cannot promote the operation, otherwise we may create a 7238 // division by zero. 7239 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7240 return false; 7241 continue; 7242 } 7243 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7244 !isa<ConstantFP>(Val)) 7245 return false; 7246 } 7247 // Check that the resulting operation is legal. 7248 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7249 if (!ISDOpcode) 7250 return false; 7251 return StressStoreExtract || 7252 TLI.isOperationLegalOrCustom( 7253 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7254 } 7255 7256 /// Check whether or not \p Use can be combined 7257 /// with the transition. 7258 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7259 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7260 7261 /// Record \p ToBePromoted as part of the chain to be promoted. 7262 void enqueueForPromotion(Instruction *ToBePromoted) { 7263 InstsToBePromoted.push_back(ToBePromoted); 7264 } 7265 7266 /// Set the instruction that will be combined with the transition. 7267 void recordCombineInstruction(Instruction *ToBeCombined) { 7268 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7269 CombineInst = ToBeCombined; 7270 } 7271 7272 /// Promote all the instructions enqueued for promotion if it is 7273 /// is profitable. 7274 /// \return True if the promotion happened, false otherwise. 7275 bool promote() { 7276 // Check if there is something to promote. 7277 // Right now, if we do not have anything to combine with, 7278 // we assume the promotion is not profitable. 7279 if (InstsToBePromoted.empty() || !CombineInst) 7280 return false; 7281 7282 // Check cost. 7283 if (!StressStoreExtract && !isProfitableToPromote()) 7284 return false; 7285 7286 // Promote. 7287 for (auto &ToBePromoted : InstsToBePromoted) 7288 promoteImpl(ToBePromoted); 7289 InstsToBePromoted.clear(); 7290 return true; 7291 } 7292 }; 7293 7294 } // end anonymous namespace 7295 7296 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7297 // At this point, we know that all the operands of ToBePromoted but Def 7298 // can be statically promoted. 7299 // For Def, we need to use its parameter in ToBePromoted: 7300 // b = ToBePromoted ty1 a 7301 // Def = Transition ty1 b to ty2 7302 // Move the transition down. 7303 // 1. Replace all uses of the promoted operation by the transition. 7304 // = ... b => = ... Def. 7305 assert(ToBePromoted->getType() == Transition->getType() && 7306 "The type of the result of the transition does not match " 7307 "the final type"); 7308 ToBePromoted->replaceAllUsesWith(Transition); 7309 // 2. Update the type of the uses. 7310 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7311 Type *TransitionTy = getTransitionType(); 7312 ToBePromoted->mutateType(TransitionTy); 7313 // 3. Update all the operands of the promoted operation with promoted 7314 // operands. 7315 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7316 for (Use &U : ToBePromoted->operands()) { 7317 Value *Val = U.get(); 7318 Value *NewVal = nullptr; 7319 if (Val == Transition) 7320 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7321 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7322 isa<ConstantFP>(Val)) { 7323 // Use a splat constant if it is not safe to use undef. 7324 NewVal = getConstantVector( 7325 cast<Constant>(Val), 7326 isa<UndefValue>(Val) || 7327 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7328 } else 7329 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7330 "this?"); 7331 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7332 } 7333 Transition->moveAfter(ToBePromoted); 7334 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7335 } 7336 7337 /// Some targets can do store(extractelement) with one instruction. 7338 /// Try to push the extractelement towards the stores when the target 7339 /// has this feature and this is profitable. 7340 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7341 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7342 if (DisableStoreExtract || 7343 (!StressStoreExtract && 7344 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7345 Inst->getOperand(1), CombineCost))) 7346 return false; 7347 7348 // At this point we know that Inst is a vector to scalar transition. 7349 // Try to move it down the def-use chain, until: 7350 // - We can combine the transition with its single use 7351 // => we got rid of the transition. 7352 // - We escape the current basic block 7353 // => we would need to check that we are moving it at a cheaper place and 7354 // we do not do that for now. 7355 BasicBlock *Parent = Inst->getParent(); 7356 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7357 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7358 // If the transition has more than one use, assume this is not going to be 7359 // beneficial. 7360 while (Inst->hasOneUse()) { 7361 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7362 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7363 7364 if (ToBePromoted->getParent() != Parent) { 7365 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7366 << ToBePromoted->getParent()->getName() 7367 << ") than the transition (" << Parent->getName() 7368 << ").\n"); 7369 return false; 7370 } 7371 7372 if (VPH.canCombine(ToBePromoted)) { 7373 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7374 << "will be combined with: " << *ToBePromoted << '\n'); 7375 VPH.recordCombineInstruction(ToBePromoted); 7376 bool Changed = VPH.promote(); 7377 NumStoreExtractExposed += Changed; 7378 return Changed; 7379 } 7380 7381 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7382 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7383 return false; 7384 7385 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7386 7387 VPH.enqueueForPromotion(ToBePromoted); 7388 Inst = ToBePromoted; 7389 } 7390 return false; 7391 } 7392 7393 /// For the instruction sequence of store below, F and I values 7394 /// are bundled together as an i64 value before being stored into memory. 7395 /// Sometimes it is more efficient to generate separate stores for F and I, 7396 /// which can remove the bitwise instructions or sink them to colder places. 7397 /// 7398 /// (store (or (zext (bitcast F to i32) to i64), 7399 /// (shl (zext I to i64), 32)), addr) --> 7400 /// (store F, addr) and (store I, addr+4) 7401 /// 7402 /// Similarly, splitting for other merged store can also be beneficial, like: 7403 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7404 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7405 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7406 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7407 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7408 /// 7409 /// We allow each target to determine specifically which kind of splitting is 7410 /// supported. 7411 /// 7412 /// The store patterns are commonly seen from the simple code snippet below 7413 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7414 /// void goo(const std::pair<int, float> &); 7415 /// hoo() { 7416 /// ... 7417 /// goo(std::make_pair(tmp, ftmp)); 7418 /// ... 7419 /// } 7420 /// 7421 /// Although we already have similar splitting in DAG Combine, we duplicate 7422 /// it in CodeGenPrepare to catch the case in which pattern is across 7423 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7424 /// during code expansion. 7425 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7426 const TargetLowering &TLI) { 7427 // Handle simple but common cases only. 7428 Type *StoreType = SI.getValueOperand()->getType(); 7429 7430 // The code below assumes shifting a value by <number of bits>, 7431 // whereas scalable vectors would have to be shifted by 7432 // <2log(vscale) + number of bits> in order to store the 7433 // low/high parts. Bailing out for now. 7434 if (isa<ScalableVectorType>(StoreType)) 7435 return false; 7436 7437 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7438 DL.getTypeSizeInBits(StoreType) == 0) 7439 return false; 7440 7441 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7442 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7443 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7444 return false; 7445 7446 // Don't split the store if it is volatile. 7447 if (SI.isVolatile()) 7448 return false; 7449 7450 // Match the following patterns: 7451 // (store (or (zext LValue to i64), 7452 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7453 // or 7454 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7455 // (zext LValue to i64), 7456 // Expect both operands of OR and the first operand of SHL have only 7457 // one use. 7458 Value *LValue, *HValue; 7459 if (!match(SI.getValueOperand(), 7460 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7461 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7462 m_SpecificInt(HalfValBitSize)))))) 7463 return false; 7464 7465 // Check LValue and HValue are int with size less or equal than 32. 7466 if (!LValue->getType()->isIntegerTy() || 7467 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7468 !HValue->getType()->isIntegerTy() || 7469 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7470 return false; 7471 7472 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7473 // as the input of target query. 7474 auto *LBC = dyn_cast<BitCastInst>(LValue); 7475 auto *HBC = dyn_cast<BitCastInst>(HValue); 7476 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7477 : EVT::getEVT(LValue->getType()); 7478 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7479 : EVT::getEVT(HValue->getType()); 7480 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7481 return false; 7482 7483 // Start to split store. 7484 IRBuilder<> Builder(SI.getContext()); 7485 Builder.SetInsertPoint(&SI); 7486 7487 // If LValue/HValue is a bitcast in another BB, create a new one in current 7488 // BB so it may be merged with the splitted stores by dag combiner. 7489 if (LBC && LBC->getParent() != SI.getParent()) 7490 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7491 if (HBC && HBC->getParent() != SI.getParent()) 7492 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7493 7494 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7495 auto CreateSplitStore = [&](Value *V, bool Upper) { 7496 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7497 Value *Addr = Builder.CreateBitCast( 7498 SI.getOperand(1), 7499 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7500 Align Alignment = SI.getAlign(); 7501 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7502 if (IsOffsetStore) { 7503 Addr = Builder.CreateGEP( 7504 SplitStoreType, Addr, 7505 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7506 7507 // When splitting the store in half, naturally one half will retain the 7508 // alignment of the original wider store, regardless of whether it was 7509 // over-aligned or not, while the other will require adjustment. 7510 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7511 } 7512 Builder.CreateAlignedStore(V, Addr, Alignment); 7513 }; 7514 7515 CreateSplitStore(LValue, false); 7516 CreateSplitStore(HValue, true); 7517 7518 // Delete the old store. 7519 SI.eraseFromParent(); 7520 return true; 7521 } 7522 7523 // Return true if the GEP has two operands, the first operand is of a sequential 7524 // type, and the second operand is a constant. 7525 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7526 gep_type_iterator I = gep_type_begin(*GEP); 7527 return GEP->getNumOperands() == 2 && 7528 I.isSequential() && 7529 isa<ConstantInt>(GEP->getOperand(1)); 7530 } 7531 7532 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7533 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7534 // reducing liveness interference across those edges benefits global register 7535 // allocation. Currently handles only certain cases. 7536 // 7537 // For example, unmerge %GEPI and %UGEPI as below. 7538 // 7539 // ---------- BEFORE ---------- 7540 // SrcBlock: 7541 // ... 7542 // %GEPIOp = ... 7543 // ... 7544 // %GEPI = gep %GEPIOp, Idx 7545 // ... 7546 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7547 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7548 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7549 // %UGEPI) 7550 // 7551 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7552 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7553 // ... 7554 // 7555 // DstBi: 7556 // ... 7557 // %UGEPI = gep %GEPIOp, UIdx 7558 // ... 7559 // --------------------------- 7560 // 7561 // ---------- AFTER ---------- 7562 // SrcBlock: 7563 // ... (same as above) 7564 // (* %GEPI is still alive on the indirectbr edges) 7565 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7566 // unmerging) 7567 // ... 7568 // 7569 // DstBi: 7570 // ... 7571 // %UGEPI = gep %GEPI, (UIdx-Idx) 7572 // ... 7573 // --------------------------- 7574 // 7575 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7576 // no longer alive on them. 7577 // 7578 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7579 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7580 // not to disable further simplications and optimizations as a result of GEP 7581 // merging. 7582 // 7583 // Note this unmerging may increase the length of the data flow critical path 7584 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7585 // between the register pressure and the length of data-flow critical 7586 // path. Restricting this to the uncommon IndirectBr case would minimize the 7587 // impact of potentially longer critical path, if any, and the impact on compile 7588 // time. 7589 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7590 const TargetTransformInfo *TTI) { 7591 BasicBlock *SrcBlock = GEPI->getParent(); 7592 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7593 // (non-IndirectBr) cases exit early here. 7594 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7595 return false; 7596 // Check that GEPI is a simple gep with a single constant index. 7597 if (!GEPSequentialConstIndexed(GEPI)) 7598 return false; 7599 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7600 // Check that GEPI is a cheap one. 7601 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7602 TargetTransformInfo::TCK_SizeAndLatency) 7603 > TargetTransformInfo::TCC_Basic) 7604 return false; 7605 Value *GEPIOp = GEPI->getOperand(0); 7606 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7607 if (!isa<Instruction>(GEPIOp)) 7608 return false; 7609 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7610 if (GEPIOpI->getParent() != SrcBlock) 7611 return false; 7612 // Check that GEP is used outside the block, meaning it's alive on the 7613 // IndirectBr edge(s). 7614 if (find_if(GEPI->users(), [&](User *Usr) { 7615 if (auto *I = dyn_cast<Instruction>(Usr)) { 7616 if (I->getParent() != SrcBlock) { 7617 return true; 7618 } 7619 } 7620 return false; 7621 }) == GEPI->users().end()) 7622 return false; 7623 // The second elements of the GEP chains to be unmerged. 7624 std::vector<GetElementPtrInst *> UGEPIs; 7625 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7626 // on IndirectBr edges. 7627 for (User *Usr : GEPIOp->users()) { 7628 if (Usr == GEPI) continue; 7629 // Check if Usr is an Instruction. If not, give up. 7630 if (!isa<Instruction>(Usr)) 7631 return false; 7632 auto *UI = cast<Instruction>(Usr); 7633 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7634 if (UI->getParent() == SrcBlock) 7635 continue; 7636 // Check if Usr is a GEP. If not, give up. 7637 if (!isa<GetElementPtrInst>(Usr)) 7638 return false; 7639 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7640 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7641 // the pointer operand to it. If so, record it in the vector. If not, give 7642 // up. 7643 if (!GEPSequentialConstIndexed(UGEPI)) 7644 return false; 7645 if (UGEPI->getOperand(0) != GEPIOp) 7646 return false; 7647 if (GEPIIdx->getType() != 7648 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7649 return false; 7650 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7651 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7652 TargetTransformInfo::TCK_SizeAndLatency) 7653 > TargetTransformInfo::TCC_Basic) 7654 return false; 7655 UGEPIs.push_back(UGEPI); 7656 } 7657 if (UGEPIs.size() == 0) 7658 return false; 7659 // Check the materializing cost of (Uidx-Idx). 7660 for (GetElementPtrInst *UGEPI : UGEPIs) { 7661 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7662 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7663 unsigned ImmCost = 7664 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7665 TargetTransformInfo::TCK_SizeAndLatency); 7666 if (ImmCost > TargetTransformInfo::TCC_Basic) 7667 return false; 7668 } 7669 // Now unmerge between GEPI and UGEPIs. 7670 for (GetElementPtrInst *UGEPI : UGEPIs) { 7671 UGEPI->setOperand(0, GEPI); 7672 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7673 Constant *NewUGEPIIdx = 7674 ConstantInt::get(GEPIIdx->getType(), 7675 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7676 UGEPI->setOperand(1, NewUGEPIIdx); 7677 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7678 // inbounds to avoid UB. 7679 if (!GEPI->isInBounds()) { 7680 UGEPI->setIsInBounds(false); 7681 } 7682 } 7683 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7684 // alive on IndirectBr edges). 7685 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7686 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7687 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7688 return true; 7689 } 7690 7691 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7692 // Bail out if we inserted the instruction to prevent optimizations from 7693 // stepping on each other's toes. 7694 if (InsertedInsts.count(I)) 7695 return false; 7696 7697 // TODO: Move into the switch on opcode below here. 7698 if (PHINode *P = dyn_cast<PHINode>(I)) { 7699 // It is possible for very late stage optimizations (such as SimplifyCFG) 7700 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7701 // trivial PHI, go ahead and zap it here. 7702 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7703 LargeOffsetGEPMap.erase(P); 7704 P->replaceAllUsesWith(V); 7705 P->eraseFromParent(); 7706 ++NumPHIsElim; 7707 return true; 7708 } 7709 return false; 7710 } 7711 7712 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7713 // If the source of the cast is a constant, then this should have 7714 // already been constant folded. The only reason NOT to constant fold 7715 // it is if something (e.g. LSR) was careful to place the constant 7716 // evaluation in a block other than then one that uses it (e.g. to hoist 7717 // the address of globals out of a loop). If this is the case, we don't 7718 // want to forward-subst the cast. 7719 if (isa<Constant>(CI->getOperand(0))) 7720 return false; 7721 7722 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7723 return true; 7724 7725 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7726 /// Sink a zext or sext into its user blocks if the target type doesn't 7727 /// fit in one register 7728 if (TLI->getTypeAction(CI->getContext(), 7729 TLI->getValueType(*DL, CI->getType())) == 7730 TargetLowering::TypeExpandInteger) { 7731 return SinkCast(CI); 7732 } else { 7733 bool MadeChange = optimizeExt(I); 7734 return MadeChange | optimizeExtUses(I); 7735 } 7736 } 7737 return false; 7738 } 7739 7740 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7741 if (optimizeCmp(Cmp, ModifiedDT)) 7742 return true; 7743 7744 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7745 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7746 bool Modified = optimizeLoadExt(LI); 7747 unsigned AS = LI->getPointerAddressSpace(); 7748 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7749 return Modified; 7750 } 7751 7752 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7753 if (splitMergedValStore(*SI, *DL, *TLI)) 7754 return true; 7755 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7756 unsigned AS = SI->getPointerAddressSpace(); 7757 return optimizeMemoryInst(I, SI->getOperand(1), 7758 SI->getOperand(0)->getType(), AS); 7759 } 7760 7761 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7762 unsigned AS = RMW->getPointerAddressSpace(); 7763 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7764 RMW->getType(), AS); 7765 } 7766 7767 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7768 unsigned AS = CmpX->getPointerAddressSpace(); 7769 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7770 CmpX->getCompareOperand()->getType(), AS); 7771 } 7772 7773 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7774 7775 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7776 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7777 7778 // TODO: Move this into the switch on opcode - it handles shifts already. 7779 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7780 BinOp->getOpcode() == Instruction::LShr)) { 7781 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7782 if (CI && TLI->hasExtractBitsInsn()) 7783 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7784 return true; 7785 } 7786 7787 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7788 if (GEPI->hasAllZeroIndices()) { 7789 /// The GEP operand must be a pointer, so must its result -> BitCast 7790 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7791 GEPI->getName(), GEPI); 7792 NC->setDebugLoc(GEPI->getDebugLoc()); 7793 GEPI->replaceAllUsesWith(NC); 7794 GEPI->eraseFromParent(); 7795 ++NumGEPsElim; 7796 optimizeInst(NC, ModifiedDT); 7797 return true; 7798 } 7799 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7800 return true; 7801 } 7802 return false; 7803 } 7804 7805 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7806 // freeze(icmp a, const)) -> icmp (freeze a), const 7807 // This helps generate efficient conditional jumps. 7808 Instruction *CmpI = nullptr; 7809 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7810 CmpI = II; 7811 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7812 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7813 7814 if (CmpI && CmpI->hasOneUse()) { 7815 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7816 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7817 isa<ConstantPointerNull>(Op0); 7818 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7819 isa<ConstantPointerNull>(Op1); 7820 if (Const0 || Const1) { 7821 if (!Const0 || !Const1) { 7822 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7823 F->takeName(FI); 7824 CmpI->setOperand(Const0 ? 1 : 0, F); 7825 } 7826 FI->replaceAllUsesWith(CmpI); 7827 FI->eraseFromParent(); 7828 return true; 7829 } 7830 } 7831 return false; 7832 } 7833 7834 if (tryToSinkFreeOperands(I)) 7835 return true; 7836 7837 switch (I->getOpcode()) { 7838 case Instruction::Shl: 7839 case Instruction::LShr: 7840 case Instruction::AShr: 7841 return optimizeShiftInst(cast<BinaryOperator>(I)); 7842 case Instruction::Call: 7843 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7844 case Instruction::Select: 7845 return optimizeSelectInst(cast<SelectInst>(I)); 7846 case Instruction::ShuffleVector: 7847 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7848 case Instruction::Switch: 7849 return optimizeSwitchInst(cast<SwitchInst>(I)); 7850 case Instruction::ExtractElement: 7851 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7852 } 7853 7854 return false; 7855 } 7856 7857 /// Given an OR instruction, check to see if this is a bitreverse 7858 /// idiom. If so, insert the new intrinsic and return true. 7859 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7860 if (!I.getType()->isIntegerTy() || 7861 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7862 TLI->getValueType(*DL, I.getType(), true))) 7863 return false; 7864 7865 SmallVector<Instruction*, 4> Insts; 7866 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7867 return false; 7868 Instruction *LastInst = Insts.back(); 7869 I.replaceAllUsesWith(LastInst); 7870 RecursivelyDeleteTriviallyDeadInstructions( 7871 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7872 return true; 7873 } 7874 7875 // In this pass we look for GEP and cast instructions that are used 7876 // across basic blocks and rewrite them to improve basic-block-at-a-time 7877 // selection. 7878 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7879 SunkAddrs.clear(); 7880 bool MadeChange = false; 7881 7882 CurInstIterator = BB.begin(); 7883 while (CurInstIterator != BB.end()) { 7884 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7885 if (ModifiedDT) 7886 return true; 7887 } 7888 7889 bool MadeBitReverse = true; 7890 while (MadeBitReverse) { 7891 MadeBitReverse = false; 7892 for (auto &I : reverse(BB)) { 7893 if (makeBitReverse(I)) { 7894 MadeBitReverse = MadeChange = true; 7895 break; 7896 } 7897 } 7898 } 7899 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7900 7901 return MadeChange; 7902 } 7903 7904 // Some CGP optimizations may move or alter what's computed in a block. Check 7905 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7906 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7907 assert(isa<DbgValueInst>(I)); 7908 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7909 7910 // Does this dbg.value refer to a sunk address calculation? 7911 bool AnyChange = false; 7912 for (Value *Location : DVI.getValues()) { 7913 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7914 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7915 if (SunkAddr) { 7916 // Point dbg.value at locally computed address, which should give the best 7917 // opportunity to be accurately lowered. This update may change the type 7918 // of pointer being referred to; however this makes no difference to 7919 // debugging information, and we can't generate bitcasts that may affect 7920 // codegen. 7921 DVI.replaceVariableLocationOp(Location, SunkAddr); 7922 AnyChange = true; 7923 } 7924 } 7925 return AnyChange; 7926 } 7927 7928 // A llvm.dbg.value may be using a value before its definition, due to 7929 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7930 // them by moving the dbg.value to immediately after the value definition. 7931 // FIXME: Ideally this should never be necessary, and this has the potential 7932 // to re-order dbg.value intrinsics. 7933 bool CodeGenPrepare::placeDbgValues(Function &F) { 7934 bool MadeChange = false; 7935 DominatorTree DT(F); 7936 7937 for (BasicBlock &BB : F) { 7938 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7939 Instruction *Insn = &*BI++; 7940 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7941 if (!DVI) 7942 continue; 7943 7944 SmallVector<Instruction *, 4> VIs; 7945 for (Value *V : DVI->getValues()) 7946 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 7947 VIs.push_back(VI); 7948 7949 // This DVI may depend on multiple instructions, complicating any 7950 // potential sink. This block takes the defensive approach, opting to 7951 // "undef" the DVI if it has more than one instruction and any of them do 7952 // not dominate DVI. 7953 for (Instruction *VI : VIs) { 7954 if (VI->isTerminator()) 7955 continue; 7956 7957 // If VI is a phi in a block with an EHPad terminator, we can't insert 7958 // after it. 7959 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7960 continue; 7961 7962 // If the defining instruction dominates the dbg.value, we do not need 7963 // to move the dbg.value. 7964 if (DT.dominates(VI, DVI)) 7965 continue; 7966 7967 // If we depend on multiple instructions and any of them doesn't 7968 // dominate this DVI, we probably can't salvage it: moving it to 7969 // after any of the instructions could cause us to lose the others. 7970 if (VIs.size() > 1) { 7971 LLVM_DEBUG( 7972 dbgs() 7973 << "Unable to find valid location for Debug Value, undefing:\n" 7974 << *DVI); 7975 DVI->setUndef(); 7976 break; 7977 } 7978 7979 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7980 << *DVI << ' ' << *VI); 7981 DVI->removeFromParent(); 7982 if (isa<PHINode>(VI)) 7983 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7984 else 7985 DVI->insertAfter(VI); 7986 MadeChange = true; 7987 ++NumDbgValueMoved; 7988 } 7989 } 7990 } 7991 return MadeChange; 7992 } 7993 7994 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 7995 // probes can be chained dependencies of other regular DAG nodes and block DAG 7996 // combine optimizations. 7997 bool CodeGenPrepare::placePseudoProbes(Function &F) { 7998 bool MadeChange = false; 7999 for (auto &Block : F) { 8000 // Move the rest probes to the beginning of the block. 8001 auto FirstInst = Block.getFirstInsertionPt(); 8002 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8003 ++FirstInst; 8004 BasicBlock::iterator I(FirstInst); 8005 I++; 8006 while (I != Block.end()) { 8007 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8008 II->moveBefore(&*FirstInst); 8009 MadeChange = true; 8010 } 8011 } 8012 } 8013 return MadeChange; 8014 } 8015 8016 /// Scale down both weights to fit into uint32_t. 8017 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8018 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8019 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8020 NewTrue = NewTrue / Scale; 8021 NewFalse = NewFalse / Scale; 8022 } 8023 8024 /// Some targets prefer to split a conditional branch like: 8025 /// \code 8026 /// %0 = icmp ne i32 %a, 0 8027 /// %1 = icmp ne i32 %b, 0 8028 /// %or.cond = or i1 %0, %1 8029 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8030 /// \endcode 8031 /// into multiple branch instructions like: 8032 /// \code 8033 /// bb1: 8034 /// %0 = icmp ne i32 %a, 0 8035 /// br i1 %0, label %TrueBB, label %bb2 8036 /// bb2: 8037 /// %1 = icmp ne i32 %b, 0 8038 /// br i1 %1, label %TrueBB, label %FalseBB 8039 /// \endcode 8040 /// This usually allows instruction selection to do even further optimizations 8041 /// and combine the compare with the branch instruction. Currently this is 8042 /// applied for targets which have "cheap" jump instructions. 8043 /// 8044 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8045 /// 8046 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8047 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8048 return false; 8049 8050 bool MadeChange = false; 8051 for (auto &BB : F) { 8052 // Does this BB end with the following? 8053 // %cond1 = icmp|fcmp|binary instruction ... 8054 // %cond2 = icmp|fcmp|binary instruction ... 8055 // %cond.or = or|and i1 %cond1, cond2 8056 // br i1 %cond.or label %dest1, label %dest2" 8057 Instruction *LogicOp; 8058 BasicBlock *TBB, *FBB; 8059 if (!match(BB.getTerminator(), 8060 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8061 continue; 8062 8063 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8064 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8065 continue; 8066 8067 // The merging of mostly empty BB can cause a degenerate branch. 8068 if (TBB == FBB) 8069 continue; 8070 8071 unsigned Opc; 8072 Value *Cond1, *Cond2; 8073 if (match(LogicOp, 8074 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8075 Opc = Instruction::And; 8076 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8077 m_OneUse(m_Value(Cond2))))) 8078 Opc = Instruction::Or; 8079 else 8080 continue; 8081 8082 auto IsGoodCond = [](Value *Cond) { 8083 return match( 8084 Cond, 8085 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8086 m_LogicalOr(m_Value(), m_Value())))); 8087 }; 8088 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8089 continue; 8090 8091 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8092 8093 // Create a new BB. 8094 auto *TmpBB = 8095 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8096 BB.getParent(), BB.getNextNode()); 8097 8098 // Update original basic block by using the first condition directly by the 8099 // branch instruction and removing the no longer needed and/or instruction. 8100 Br1->setCondition(Cond1); 8101 LogicOp->eraseFromParent(); 8102 8103 // Depending on the condition we have to either replace the true or the 8104 // false successor of the original branch instruction. 8105 if (Opc == Instruction::And) 8106 Br1->setSuccessor(0, TmpBB); 8107 else 8108 Br1->setSuccessor(1, TmpBB); 8109 8110 // Fill in the new basic block. 8111 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8112 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8113 I->removeFromParent(); 8114 I->insertBefore(Br2); 8115 } 8116 8117 // Update PHI nodes in both successors. The original BB needs to be 8118 // replaced in one successor's PHI nodes, because the branch comes now from 8119 // the newly generated BB (NewBB). In the other successor we need to add one 8120 // incoming edge to the PHI nodes, because both branch instructions target 8121 // now the same successor. Depending on the original branch condition 8122 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8123 // we perform the correct update for the PHI nodes. 8124 // This doesn't change the successor order of the just created branch 8125 // instruction (or any other instruction). 8126 if (Opc == Instruction::Or) 8127 std::swap(TBB, FBB); 8128 8129 // Replace the old BB with the new BB. 8130 TBB->replacePhiUsesWith(&BB, TmpBB); 8131 8132 // Add another incoming edge form the new BB. 8133 for (PHINode &PN : FBB->phis()) { 8134 auto *Val = PN.getIncomingValueForBlock(&BB); 8135 PN.addIncoming(Val, TmpBB); 8136 } 8137 8138 // Update the branch weights (from SelectionDAGBuilder:: 8139 // FindMergedConditions). 8140 if (Opc == Instruction::Or) { 8141 // Codegen X | Y as: 8142 // BB1: 8143 // jmp_if_X TBB 8144 // jmp TmpBB 8145 // TmpBB: 8146 // jmp_if_Y TBB 8147 // jmp FBB 8148 // 8149 8150 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8151 // The requirement is that 8152 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8153 // = TrueProb for original BB. 8154 // Assuming the original weights are A and B, one choice is to set BB1's 8155 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8156 // assumes that 8157 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8158 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8159 // TmpBB, but the math is more complicated. 8160 uint64_t TrueWeight, FalseWeight; 8161 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8162 uint64_t NewTrueWeight = TrueWeight; 8163 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8164 scaleWeights(NewTrueWeight, NewFalseWeight); 8165 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8166 .createBranchWeights(TrueWeight, FalseWeight)); 8167 8168 NewTrueWeight = TrueWeight; 8169 NewFalseWeight = 2 * FalseWeight; 8170 scaleWeights(NewTrueWeight, NewFalseWeight); 8171 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8172 .createBranchWeights(TrueWeight, FalseWeight)); 8173 } 8174 } else { 8175 // Codegen X & Y as: 8176 // BB1: 8177 // jmp_if_X TmpBB 8178 // jmp FBB 8179 // TmpBB: 8180 // jmp_if_Y TBB 8181 // jmp FBB 8182 // 8183 // This requires creation of TmpBB after CurBB. 8184 8185 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8186 // The requirement is that 8187 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8188 // = FalseProb for original BB. 8189 // Assuming the original weights are A and B, one choice is to set BB1's 8190 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8191 // assumes that 8192 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8193 uint64_t TrueWeight, FalseWeight; 8194 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8195 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8196 uint64_t NewFalseWeight = FalseWeight; 8197 scaleWeights(NewTrueWeight, NewFalseWeight); 8198 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8199 .createBranchWeights(TrueWeight, FalseWeight)); 8200 8201 NewTrueWeight = 2 * TrueWeight; 8202 NewFalseWeight = FalseWeight; 8203 scaleWeights(NewTrueWeight, NewFalseWeight); 8204 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8205 .createBranchWeights(TrueWeight, FalseWeight)); 8206 } 8207 } 8208 8209 ModifiedDT = true; 8210 MadeChange = true; 8211 8212 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8213 TmpBB->dump()); 8214 } 8215 return MadeChange; 8216 } 8217