1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumAndsAdded, 68 "Number of and mask instructions added to form ext loads"); 69 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 70 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 71 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 72 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 73 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 74 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 75 76 static cl::opt<bool> DisableBranchOpts( 77 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable branch optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> 81 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 82 cl::desc("Disable GC optimizations in CodeGenPrepare")); 83 84 static cl::opt<bool> DisableSelectToBranch( 85 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 86 cl::desc("Disable select to branch conversion.")); 87 88 static cl::opt<bool> AddrSinkUsingGEPs( 89 "addr-sink-using-gep", cl::Hidden, cl::init(false), 90 cl::desc("Address sinking in CGP using GEPs.")); 91 92 static cl::opt<bool> EnableAndCmpSinking( 93 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 94 cl::desc("Enable sinkinig and/cmp into branches.")); 95 96 static cl::opt<bool> DisableStoreExtract( 97 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> StressStoreExtract( 101 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 102 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 103 104 static cl::opt<bool> DisableExtLdPromotion( 105 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 106 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 107 "CodeGenPrepare")); 108 109 static cl::opt<bool> StressExtLdPromotion( 110 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 111 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 112 "optimization in CodeGenPrepare")); 113 114 namespace { 115 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 116 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 const TargetMachine *TM; 122 const TargetLowering *TLI; 123 const TargetTransformInfo *TTI; 124 const TargetLibraryInfo *TLInfo; 125 126 /// As we scan instructions optimizing them, this is the next instruction 127 /// to optimize. Transforms that can invalidate this should update it. 128 BasicBlock::iterator CurInstIterator; 129 130 /// Keeps track of non-local addresses that have been sunk into a block. 131 /// This allows us to avoid inserting duplicate code for blocks with 132 /// multiple load/stores of the same address. 133 ValueMap<Value*, Value*> SunkAddrs; 134 135 /// Keeps track of all instructions inserted for the current function. 136 SetOfInstrs InsertedInsts; 137 /// Keeps track of the type of the related instruction before their 138 /// promotion for the current function. 139 InstrToOrigTy PromotedInsts; 140 141 /// True if CFG is modified in any way. 142 bool ModifiedDT; 143 144 /// True if optimizing for size. 145 bool OptSize; 146 147 /// DataLayout for the Function being processed. 148 const DataLayout *DL; 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 155 } 156 bool runOnFunction(Function &F) override; 157 158 const char *getPassName() const override { return "CodeGen Prepare"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.addPreserved<DominatorTreeWrapperPass>(); 162 AU.addRequired<TargetLibraryInfoWrapperPass>(); 163 AU.addRequired<TargetTransformInfoWrapperPass>(); 164 } 165 166 private: 167 bool eliminateFallThrough(Function &F); 168 bool eliminateMostlyEmptyBlocks(Function &F); 169 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 170 void eliminateMostlyEmptyBlock(BasicBlock *BB); 171 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 172 bool optimizeInst(Instruction *I, bool& ModifiedDT); 173 bool optimizeMemoryInst(Instruction *I, Value *Addr, 174 Type *AccessTy, unsigned AS); 175 bool optimizeInlineAsmInst(CallInst *CS); 176 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 177 bool moveExtToFormExtLoad(Instruction *&I); 178 bool optimizeExtUses(Instruction *I); 179 bool optimizeLoadExt(LoadInst *I); 180 bool optimizeSelectInst(SelectInst *SI); 181 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 182 bool optimizeSwitchInst(SwitchInst *CI); 183 bool optimizeExtractElementInst(Instruction *Inst); 184 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 185 bool placeDbgValues(Function &F); 186 bool sinkAndCmp(Function &F); 187 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 188 Instruction *&Inst, 189 const SmallVectorImpl<Instruction *> &Exts, 190 unsigned CreatedInstCost); 191 bool splitBranchCondition(Function &F); 192 bool simplifyOffsetableRelocate(Instruction &I); 193 void stripInvariantGroupMetadata(Instruction &I); 194 }; 195 } 196 197 char CodeGenPrepare::ID = 0; 198 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 199 "Optimize for code generation", false, false) 200 201 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 202 return new CodeGenPrepare(TM); 203 } 204 205 bool CodeGenPrepare::runOnFunction(Function &F) { 206 if (skipOptnoneFunction(F)) 207 return false; 208 209 DL = &F.getParent()->getDataLayout(); 210 211 bool EverMadeChange = false; 212 // Clear per function information. 213 InsertedInsts.clear(); 214 PromotedInsts.clear(); 215 216 ModifiedDT = false; 217 if (TM) 218 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 219 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 220 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 221 OptSize = F.optForSize(); 222 223 /// This optimization identifies DIV instructions that can be 224 /// profitably bypassed and carried out with a shorter, faster divide. 225 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 226 const DenseMap<unsigned int, unsigned int> &BypassWidths = 227 TLI->getBypassSlowDivWidths(); 228 for (Function::iterator I = F.begin(); I != F.end(); I++) 229 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 230 } 231 232 // Eliminate blocks that contain only PHI nodes and an 233 // unconditional branch. 234 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 235 236 // llvm.dbg.value is far away from the value then iSel may not be able 237 // handle it properly. iSel will drop llvm.dbg.value if it can not 238 // find a node corresponding to the value. 239 EverMadeChange |= placeDbgValues(F); 240 241 // If there is a mask, compare against zero, and branch that can be combined 242 // into a single target instruction, push the mask and compare into branch 243 // users. Do this before OptimizeBlock -> OptimizeInst -> 244 // OptimizeCmpExpression, which perturbs the pattern being searched for. 245 if (!DisableBranchOpts) { 246 EverMadeChange |= sinkAndCmp(F); 247 EverMadeChange |= splitBranchCondition(F); 248 } 249 250 bool MadeChange = true; 251 while (MadeChange) { 252 MadeChange = false; 253 for (Function::iterator I = F.begin(); I != F.end(); ) { 254 BasicBlock *BB = &*I++; 255 bool ModifiedDTOnIteration = false; 256 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 257 258 // Restart BB iteration if the dominator tree of the Function was changed 259 if (ModifiedDTOnIteration) 260 break; 261 } 262 EverMadeChange |= MadeChange; 263 } 264 265 SunkAddrs.clear(); 266 267 if (!DisableBranchOpts) { 268 MadeChange = false; 269 SmallPtrSet<BasicBlock*, 8> WorkList; 270 for (BasicBlock &BB : F) { 271 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 272 MadeChange |= ConstantFoldTerminator(&BB, true); 273 if (!MadeChange) continue; 274 275 for (SmallVectorImpl<BasicBlock*>::iterator 276 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 277 if (pred_begin(*II) == pred_end(*II)) 278 WorkList.insert(*II); 279 } 280 281 // Delete the dead blocks and any of their dead successors. 282 MadeChange |= !WorkList.empty(); 283 while (!WorkList.empty()) { 284 BasicBlock *BB = *WorkList.begin(); 285 WorkList.erase(BB); 286 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 287 288 DeleteDeadBlock(BB); 289 290 for (SmallVectorImpl<BasicBlock*>::iterator 291 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 292 if (pred_begin(*II) == pred_end(*II)) 293 WorkList.insert(*II); 294 } 295 296 // Merge pairs of basic blocks with unconditional branches, connected by 297 // a single edge. 298 if (EverMadeChange || MadeChange) 299 MadeChange |= eliminateFallThrough(F); 300 301 EverMadeChange |= MadeChange; 302 } 303 304 if (!DisableGCOpts) { 305 SmallVector<Instruction *, 2> Statepoints; 306 for (BasicBlock &BB : F) 307 for (Instruction &I : BB) 308 if (isStatepoint(I)) 309 Statepoints.push_back(&I); 310 for (auto &I : Statepoints) 311 EverMadeChange |= simplifyOffsetableRelocate(*I); 312 } 313 314 return EverMadeChange; 315 } 316 317 /// Merge basic blocks which are connected by a single edge, where one of the 318 /// basic blocks has a single successor pointing to the other basic block, 319 /// which has a single predecessor. 320 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 321 bool Changed = false; 322 // Scan all of the blocks in the function, except for the entry block. 323 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 324 BasicBlock *BB = &*I++; 325 // If the destination block has a single pred, then this is a trivial 326 // edge, just collapse it. 327 BasicBlock *SinglePred = BB->getSinglePredecessor(); 328 329 // Don't merge if BB's address is taken. 330 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 331 332 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 333 if (Term && !Term->isConditional()) { 334 Changed = true; 335 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 336 // Remember if SinglePred was the entry block of the function. 337 // If so, we will need to move BB back to the entry position. 338 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 339 MergeBasicBlockIntoOnlyPred(BB, nullptr); 340 341 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 342 BB->moveBefore(&BB->getParent()->getEntryBlock()); 343 344 // We have erased a block. Update the iterator. 345 I = BB->getIterator(); 346 } 347 } 348 return Changed; 349 } 350 351 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 352 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 353 /// edges in ways that are non-optimal for isel. Start by eliminating these 354 /// blocks so we can split them the way we want them. 355 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 356 bool MadeChange = false; 357 // Note that this intentionally skips the entry block. 358 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 359 BasicBlock *BB = &*I++; 360 361 // If this block doesn't end with an uncond branch, ignore it. 362 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 363 if (!BI || !BI->isUnconditional()) 364 continue; 365 366 // If the instruction before the branch (skipping debug info) isn't a phi 367 // node, then other stuff is happening here. 368 BasicBlock::iterator BBI = BI->getIterator(); 369 if (BBI != BB->begin()) { 370 --BBI; 371 while (isa<DbgInfoIntrinsic>(BBI)) { 372 if (BBI == BB->begin()) 373 break; 374 --BBI; 375 } 376 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 377 continue; 378 } 379 380 // Do not break infinite loops. 381 BasicBlock *DestBB = BI->getSuccessor(0); 382 if (DestBB == BB) 383 continue; 384 385 if (!canMergeBlocks(BB, DestBB)) 386 continue; 387 388 eliminateMostlyEmptyBlock(BB); 389 MadeChange = true; 390 } 391 return MadeChange; 392 } 393 394 /// Return true if we can merge BB into DestBB if there is a single 395 /// unconditional branch between them, and BB contains no other non-phi 396 /// instructions. 397 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 398 const BasicBlock *DestBB) const { 399 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 400 // the successor. If there are more complex condition (e.g. preheaders), 401 // don't mess around with them. 402 BasicBlock::const_iterator BBI = BB->begin(); 403 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 404 for (const User *U : PN->users()) { 405 const Instruction *UI = cast<Instruction>(U); 406 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 407 return false; 408 // If User is inside DestBB block and it is a PHINode then check 409 // incoming value. If incoming value is not from BB then this is 410 // a complex condition (e.g. preheaders) we want to avoid here. 411 if (UI->getParent() == DestBB) { 412 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 413 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 414 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 415 if (Insn && Insn->getParent() == BB && 416 Insn->getParent() != UPN->getIncomingBlock(I)) 417 return false; 418 } 419 } 420 } 421 } 422 423 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 424 // and DestBB may have conflicting incoming values for the block. If so, we 425 // can't merge the block. 426 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 427 if (!DestBBPN) return true; // no conflict. 428 429 // Collect the preds of BB. 430 SmallPtrSet<const BasicBlock*, 16> BBPreds; 431 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 432 // It is faster to get preds from a PHI than with pred_iterator. 433 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 434 BBPreds.insert(BBPN->getIncomingBlock(i)); 435 } else { 436 BBPreds.insert(pred_begin(BB), pred_end(BB)); 437 } 438 439 // Walk the preds of DestBB. 440 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 441 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 442 if (BBPreds.count(Pred)) { // Common predecessor? 443 BBI = DestBB->begin(); 444 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 445 const Value *V1 = PN->getIncomingValueForBlock(Pred); 446 const Value *V2 = PN->getIncomingValueForBlock(BB); 447 448 // If V2 is a phi node in BB, look up what the mapped value will be. 449 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 450 if (V2PN->getParent() == BB) 451 V2 = V2PN->getIncomingValueForBlock(Pred); 452 453 // If there is a conflict, bail out. 454 if (V1 != V2) return false; 455 } 456 } 457 } 458 459 return true; 460 } 461 462 463 /// Eliminate a basic block that has only phi's and an unconditional branch in 464 /// it. 465 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 466 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 467 BasicBlock *DestBB = BI->getSuccessor(0); 468 469 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 470 471 // If the destination block has a single pred, then this is a trivial edge, 472 // just collapse it. 473 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 474 if (SinglePred != DestBB) { 475 // Remember if SinglePred was the entry block of the function. If so, we 476 // will need to move BB back to the entry position. 477 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 478 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 479 480 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 481 BB->moveBefore(&BB->getParent()->getEntryBlock()); 482 483 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 484 return; 485 } 486 } 487 488 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 489 // to handle the new incoming edges it is about to have. 490 PHINode *PN; 491 for (BasicBlock::iterator BBI = DestBB->begin(); 492 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 493 // Remove the incoming value for BB, and remember it. 494 Value *InVal = PN->removeIncomingValue(BB, false); 495 496 // Two options: either the InVal is a phi node defined in BB or it is some 497 // value that dominates BB. 498 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 499 if (InValPhi && InValPhi->getParent() == BB) { 500 // Add all of the input values of the input PHI as inputs of this phi. 501 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 502 PN->addIncoming(InValPhi->getIncomingValue(i), 503 InValPhi->getIncomingBlock(i)); 504 } else { 505 // Otherwise, add one instance of the dominating value for each edge that 506 // we will be adding. 507 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 508 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 509 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 510 } else { 511 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 512 PN->addIncoming(InVal, *PI); 513 } 514 } 515 } 516 517 // The PHIs are now updated, change everything that refers to BB to use 518 // DestBB and remove BB. 519 BB->replaceAllUsesWith(DestBB); 520 BB->eraseFromParent(); 521 ++NumBlocksElim; 522 523 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 524 } 525 526 // Computes a map of base pointer relocation instructions to corresponding 527 // derived pointer relocation instructions given a vector of all relocate calls 528 static void computeBaseDerivedRelocateMap( 529 const SmallVectorImpl<User *> &AllRelocateCalls, 530 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 531 RelocateInstMap) { 532 // Collect information in two maps: one primarily for locating the base object 533 // while filling the second map; the second map is the final structure holding 534 // a mapping between Base and corresponding Derived relocate calls 535 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 536 for (auto &U : AllRelocateCalls) { 537 GCRelocateOperands ThisRelocate(U); 538 IntrinsicInst *I = cast<IntrinsicInst>(U); 539 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 540 ThisRelocate.getDerivedPtrIndex()); 541 RelocateIdxMap.insert(std::make_pair(K, I)); 542 } 543 for (auto &Item : RelocateIdxMap) { 544 std::pair<unsigned, unsigned> Key = Item.first; 545 if (Key.first == Key.second) 546 // Base relocation: nothing to insert 547 continue; 548 549 IntrinsicInst *I = Item.second; 550 auto BaseKey = std::make_pair(Key.first, Key.first); 551 552 // We're iterating over RelocateIdxMap so we cannot modify it. 553 auto MaybeBase = RelocateIdxMap.find(BaseKey); 554 if (MaybeBase == RelocateIdxMap.end()) 555 // TODO: We might want to insert a new base object relocate and gep off 556 // that, if there are enough derived object relocates. 557 continue; 558 559 RelocateInstMap[MaybeBase->second].push_back(I); 560 } 561 } 562 563 // Accepts a GEP and extracts the operands into a vector provided they're all 564 // small integer constants 565 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 566 SmallVectorImpl<Value *> &OffsetV) { 567 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 568 // Only accept small constant integer operands 569 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 570 if (!Op || Op->getZExtValue() > 20) 571 return false; 572 } 573 574 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 575 OffsetV.push_back(GEP->getOperand(i)); 576 return true; 577 } 578 579 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 580 // replace, computes a replacement, and affects it. 581 static bool 582 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 583 const SmallVectorImpl<IntrinsicInst *> &Targets) { 584 bool MadeChange = false; 585 for (auto &ToReplace : Targets) { 586 GCRelocateOperands MasterRelocate(RelocatedBase); 587 GCRelocateOperands ThisRelocate(ToReplace); 588 589 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 590 "Not relocating a derived object of the original base object"); 591 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 592 // A duplicate relocate call. TODO: coalesce duplicates. 593 continue; 594 } 595 596 if (RelocatedBase->getParent() != ToReplace->getParent()) { 597 // Base and derived relocates are in different basic blocks. 598 // In this case transform is only valid when base dominates derived 599 // relocate. However it would be too expensive to check dominance 600 // for each such relocate, so we skip the whole transformation. 601 continue; 602 } 603 604 Value *Base = ThisRelocate.getBasePtr(); 605 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 606 if (!Derived || Derived->getPointerOperand() != Base) 607 continue; 608 609 SmallVector<Value *, 2> OffsetV; 610 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 611 continue; 612 613 // Create a Builder and replace the target callsite with a gep 614 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 615 616 // Insert after RelocatedBase 617 IRBuilder<> Builder(RelocatedBase->getNextNode()); 618 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 619 620 // If gc_relocate does not match the actual type, cast it to the right type. 621 // In theory, there must be a bitcast after gc_relocate if the type does not 622 // match, and we should reuse it to get the derived pointer. But it could be 623 // cases like this: 624 // bb1: 625 // ... 626 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 627 // br label %merge 628 // 629 // bb2: 630 // ... 631 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 632 // br label %merge 633 // 634 // merge: 635 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 636 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 637 // 638 // In this case, we can not find the bitcast any more. So we insert a new bitcast 639 // no matter there is already one or not. In this way, we can handle all cases, and 640 // the extra bitcast should be optimized away in later passes. 641 Instruction *ActualRelocatedBase = RelocatedBase; 642 if (RelocatedBase->getType() != Base->getType()) { 643 ActualRelocatedBase = 644 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 645 } 646 Value *Replacement = Builder.CreateGEP( 647 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 648 Instruction *ReplacementInst = cast<Instruction>(Replacement); 649 Replacement->takeName(ToReplace); 650 // If the newly generated derived pointer's type does not match the original derived 651 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 652 Instruction *ActualReplacement = ReplacementInst; 653 if (ReplacementInst->getType() != ToReplace->getType()) { 654 ActualReplacement = 655 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 656 } 657 ToReplace->replaceAllUsesWith(ActualReplacement); 658 ToReplace->eraseFromParent(); 659 660 MadeChange = true; 661 } 662 return MadeChange; 663 } 664 665 // Turns this: 666 // 667 // %base = ... 668 // %ptr = gep %base + 15 669 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 670 // %base' = relocate(%tok, i32 4, i32 4) 671 // %ptr' = relocate(%tok, i32 4, i32 5) 672 // %val = load %ptr' 673 // 674 // into this: 675 // 676 // %base = ... 677 // %ptr = gep %base + 15 678 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 679 // %base' = gc.relocate(%tok, i32 4, i32 4) 680 // %ptr' = gep %base' + 15 681 // %val = load %ptr' 682 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 683 bool MadeChange = false; 684 SmallVector<User *, 2> AllRelocateCalls; 685 686 for (auto *U : I.users()) 687 if (isGCRelocate(dyn_cast<Instruction>(U))) 688 // Collect all the relocate calls associated with a statepoint 689 AllRelocateCalls.push_back(U); 690 691 // We need atleast one base pointer relocation + one derived pointer 692 // relocation to mangle 693 if (AllRelocateCalls.size() < 2) 694 return false; 695 696 // RelocateInstMap is a mapping from the base relocate instruction to the 697 // corresponding derived relocate instructions 698 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 699 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 700 if (RelocateInstMap.empty()) 701 return false; 702 703 for (auto &Item : RelocateInstMap) 704 // Item.first is the RelocatedBase to offset against 705 // Item.second is the vector of Targets to replace 706 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 707 return MadeChange; 708 } 709 710 /// SinkCast - Sink the specified cast instruction into its user blocks 711 static bool SinkCast(CastInst *CI) { 712 BasicBlock *DefBB = CI->getParent(); 713 714 /// InsertedCasts - Only insert a cast in each block once. 715 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 716 717 bool MadeChange = false; 718 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 719 UI != E; ) { 720 Use &TheUse = UI.getUse(); 721 Instruction *User = cast<Instruction>(*UI); 722 723 // Figure out which BB this cast is used in. For PHI's this is the 724 // appropriate predecessor block. 725 BasicBlock *UserBB = User->getParent(); 726 if (PHINode *PN = dyn_cast<PHINode>(User)) { 727 UserBB = PN->getIncomingBlock(TheUse); 728 } 729 730 // Preincrement use iterator so we don't invalidate it. 731 ++UI; 732 733 // If this user is in the same block as the cast, don't change the cast. 734 if (UserBB == DefBB) continue; 735 736 // If we have already inserted a cast into this block, use it. 737 CastInst *&InsertedCast = InsertedCasts[UserBB]; 738 739 if (!InsertedCast) { 740 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 741 assert(InsertPt != UserBB->end()); 742 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 743 CI->getType(), "", &*InsertPt); 744 } 745 746 // Replace a use of the cast with a use of the new cast. 747 TheUse = InsertedCast; 748 MadeChange = true; 749 ++NumCastUses; 750 } 751 752 // If we removed all uses, nuke the cast. 753 if (CI->use_empty()) { 754 CI->eraseFromParent(); 755 MadeChange = true; 756 } 757 758 return MadeChange; 759 } 760 761 /// If the specified cast instruction is a noop copy (e.g. it's casting from 762 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 763 /// reduce the number of virtual registers that must be created and coalesced. 764 /// 765 /// Return true if any changes are made. 766 /// 767 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 768 const DataLayout &DL) { 769 // If this is a noop copy, 770 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 771 EVT DstVT = TLI.getValueType(DL, CI->getType()); 772 773 // This is an fp<->int conversion? 774 if (SrcVT.isInteger() != DstVT.isInteger()) 775 return false; 776 777 // If this is an extension, it will be a zero or sign extension, which 778 // isn't a noop. 779 if (SrcVT.bitsLT(DstVT)) return false; 780 781 // If these values will be promoted, find out what they will be promoted 782 // to. This helps us consider truncates on PPC as noop copies when they 783 // are. 784 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 785 TargetLowering::TypePromoteInteger) 786 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 787 if (TLI.getTypeAction(CI->getContext(), DstVT) == 788 TargetLowering::TypePromoteInteger) 789 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 790 791 // If, after promotion, these are the same types, this is a noop copy. 792 if (SrcVT != DstVT) 793 return false; 794 795 return SinkCast(CI); 796 } 797 798 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 799 /// possible. 800 /// 801 /// Return true if any changes were made. 802 static bool CombineUAddWithOverflow(CmpInst *CI) { 803 Value *A, *B; 804 Instruction *AddI; 805 if (!match(CI, 806 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 807 return false; 808 809 Type *Ty = AddI->getType(); 810 if (!isa<IntegerType>(Ty)) 811 return false; 812 813 // We don't want to move around uses of condition values this late, so we we 814 // check if it is legal to create the call to the intrinsic in the basic 815 // block containing the icmp: 816 817 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 818 return false; 819 820 #ifndef NDEBUG 821 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 822 // for now: 823 if (AddI->hasOneUse()) 824 assert(*AddI->user_begin() == CI && "expected!"); 825 #endif 826 827 Module *M = CI->getParent()->getParent()->getParent(); 828 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 829 830 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 831 832 auto *UAddWithOverflow = 833 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 834 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 835 auto *Overflow = 836 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 837 838 CI->replaceAllUsesWith(Overflow); 839 AddI->replaceAllUsesWith(UAdd); 840 CI->eraseFromParent(); 841 AddI->eraseFromParent(); 842 return true; 843 } 844 845 /// Sink the given CmpInst into user blocks to reduce the number of virtual 846 /// registers that must be created and coalesced. This is a clear win except on 847 /// targets with multiple condition code registers (PowerPC), where it might 848 /// lose; some adjustment may be wanted there. 849 /// 850 /// Return true if any changes are made. 851 static bool SinkCmpExpression(CmpInst *CI) { 852 BasicBlock *DefBB = CI->getParent(); 853 854 /// Only insert a cmp in each block once. 855 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 856 857 bool MadeChange = false; 858 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 859 UI != E; ) { 860 Use &TheUse = UI.getUse(); 861 Instruction *User = cast<Instruction>(*UI); 862 863 // Preincrement use iterator so we don't invalidate it. 864 ++UI; 865 866 // Don't bother for PHI nodes. 867 if (isa<PHINode>(User)) 868 continue; 869 870 // Figure out which BB this cmp is used in. 871 BasicBlock *UserBB = User->getParent(); 872 873 // If this user is in the same block as the cmp, don't change the cmp. 874 if (UserBB == DefBB) continue; 875 876 // If we have already inserted a cmp into this block, use it. 877 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 878 879 if (!InsertedCmp) { 880 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 881 assert(InsertPt != UserBB->end()); 882 InsertedCmp = 883 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 884 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 885 } 886 887 // Replace a use of the cmp with a use of the new cmp. 888 TheUse = InsertedCmp; 889 MadeChange = true; 890 ++NumCmpUses; 891 } 892 893 // If we removed all uses, nuke the cmp. 894 if (CI->use_empty()) { 895 CI->eraseFromParent(); 896 MadeChange = true; 897 } 898 899 return MadeChange; 900 } 901 902 static bool OptimizeCmpExpression(CmpInst *CI) { 903 if (SinkCmpExpression(CI)) 904 return true; 905 906 if (CombineUAddWithOverflow(CI)) 907 return true; 908 909 return false; 910 } 911 912 /// Check if the candidates could be combined with a shift instruction, which 913 /// includes: 914 /// 1. Truncate instruction 915 /// 2. And instruction and the imm is a mask of the low bits: 916 /// imm & (imm+1) == 0 917 static bool isExtractBitsCandidateUse(Instruction *User) { 918 if (!isa<TruncInst>(User)) { 919 if (User->getOpcode() != Instruction::And || 920 !isa<ConstantInt>(User->getOperand(1))) 921 return false; 922 923 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 924 925 if ((Cimm & (Cimm + 1)).getBoolValue()) 926 return false; 927 } 928 return true; 929 } 930 931 /// Sink both shift and truncate instruction to the use of truncate's BB. 932 static bool 933 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 934 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 935 const TargetLowering &TLI, const DataLayout &DL) { 936 BasicBlock *UserBB = User->getParent(); 937 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 938 TruncInst *TruncI = dyn_cast<TruncInst>(User); 939 bool MadeChange = false; 940 941 for (Value::user_iterator TruncUI = TruncI->user_begin(), 942 TruncE = TruncI->user_end(); 943 TruncUI != TruncE;) { 944 945 Use &TruncTheUse = TruncUI.getUse(); 946 Instruction *TruncUser = cast<Instruction>(*TruncUI); 947 // Preincrement use iterator so we don't invalidate it. 948 949 ++TruncUI; 950 951 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 952 if (!ISDOpcode) 953 continue; 954 955 // If the use is actually a legal node, there will not be an 956 // implicit truncate. 957 // FIXME: always querying the result type is just an 958 // approximation; some nodes' legality is determined by the 959 // operand or other means. There's no good way to find out though. 960 if (TLI.isOperationLegalOrCustom( 961 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 962 continue; 963 964 // Don't bother for PHI nodes. 965 if (isa<PHINode>(TruncUser)) 966 continue; 967 968 BasicBlock *TruncUserBB = TruncUser->getParent(); 969 970 if (UserBB == TruncUserBB) 971 continue; 972 973 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 974 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 975 976 if (!InsertedShift && !InsertedTrunc) { 977 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 978 assert(InsertPt != TruncUserBB->end()); 979 // Sink the shift 980 if (ShiftI->getOpcode() == Instruction::AShr) 981 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 982 "", &*InsertPt); 983 else 984 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 985 "", &*InsertPt); 986 987 // Sink the trunc 988 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 989 TruncInsertPt++; 990 assert(TruncInsertPt != TruncUserBB->end()); 991 992 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 993 TruncI->getType(), "", &*TruncInsertPt); 994 995 MadeChange = true; 996 997 TruncTheUse = InsertedTrunc; 998 } 999 } 1000 return MadeChange; 1001 } 1002 1003 /// Sink the shift *right* instruction into user blocks if the uses could 1004 /// potentially be combined with this shift instruction and generate BitExtract 1005 /// instruction. It will only be applied if the architecture supports BitExtract 1006 /// instruction. Here is an example: 1007 /// BB1: 1008 /// %x.extract.shift = lshr i64 %arg1, 32 1009 /// BB2: 1010 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1011 /// ==> 1012 /// 1013 /// BB2: 1014 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1015 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1016 /// 1017 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1018 /// instruction. 1019 /// Return true if any changes are made. 1020 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1021 const TargetLowering &TLI, 1022 const DataLayout &DL) { 1023 BasicBlock *DefBB = ShiftI->getParent(); 1024 1025 /// Only insert instructions in each block once. 1026 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1027 1028 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1029 1030 bool MadeChange = false; 1031 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1032 UI != E;) { 1033 Use &TheUse = UI.getUse(); 1034 Instruction *User = cast<Instruction>(*UI); 1035 // Preincrement use iterator so we don't invalidate it. 1036 ++UI; 1037 1038 // Don't bother for PHI nodes. 1039 if (isa<PHINode>(User)) 1040 continue; 1041 1042 if (!isExtractBitsCandidateUse(User)) 1043 continue; 1044 1045 BasicBlock *UserBB = User->getParent(); 1046 1047 if (UserBB == DefBB) { 1048 // If the shift and truncate instruction are in the same BB. The use of 1049 // the truncate(TruncUse) may still introduce another truncate if not 1050 // legal. In this case, we would like to sink both shift and truncate 1051 // instruction to the BB of TruncUse. 1052 // for example: 1053 // BB1: 1054 // i64 shift.result = lshr i64 opnd, imm 1055 // trunc.result = trunc shift.result to i16 1056 // 1057 // BB2: 1058 // ----> We will have an implicit truncate here if the architecture does 1059 // not have i16 compare. 1060 // cmp i16 trunc.result, opnd2 1061 // 1062 if (isa<TruncInst>(User) && shiftIsLegal 1063 // If the type of the truncate is legal, no trucate will be 1064 // introduced in other basic blocks. 1065 && 1066 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1067 MadeChange = 1068 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1069 1070 continue; 1071 } 1072 // If we have already inserted a shift into this block, use it. 1073 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1074 1075 if (!InsertedShift) { 1076 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1077 assert(InsertPt != UserBB->end()); 1078 1079 if (ShiftI->getOpcode() == Instruction::AShr) 1080 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1081 "", &*InsertPt); 1082 else 1083 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1084 "", &*InsertPt); 1085 1086 MadeChange = true; 1087 } 1088 1089 // Replace a use of the shift with a use of the new shift. 1090 TheUse = InsertedShift; 1091 } 1092 1093 // If we removed all uses, nuke the shift. 1094 if (ShiftI->use_empty()) 1095 ShiftI->eraseFromParent(); 1096 1097 return MadeChange; 1098 } 1099 1100 // Translate a masked load intrinsic like 1101 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1102 // <16 x i1> %mask, <16 x i32> %passthru) 1103 // to a chain of basic blocks, with loading element one-by-one if 1104 // the appropriate mask bit is set 1105 // 1106 // %1 = bitcast i8* %addr to i32* 1107 // %2 = extractelement <16 x i1> %mask, i32 0 1108 // %3 = icmp eq i1 %2, true 1109 // br i1 %3, label %cond.load, label %else 1110 // 1111 //cond.load: ; preds = %0 1112 // %4 = getelementptr i32* %1, i32 0 1113 // %5 = load i32* %4 1114 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1115 // br label %else 1116 // 1117 //else: ; preds = %0, %cond.load 1118 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1119 // %7 = extractelement <16 x i1> %mask, i32 1 1120 // %8 = icmp eq i1 %7, true 1121 // br i1 %8, label %cond.load1, label %else2 1122 // 1123 //cond.load1: ; preds = %else 1124 // %9 = getelementptr i32* %1, i32 1 1125 // %10 = load i32* %9 1126 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1127 // br label %else2 1128 // 1129 //else2: ; preds = %else, %cond.load1 1130 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1131 // %12 = extractelement <16 x i1> %mask, i32 2 1132 // %13 = icmp eq i1 %12, true 1133 // br i1 %13, label %cond.load4, label %else5 1134 // 1135 static void ScalarizeMaskedLoad(CallInst *CI) { 1136 Value *Ptr = CI->getArgOperand(0); 1137 Value *Alignment = CI->getArgOperand(1); 1138 Value *Mask = CI->getArgOperand(2); 1139 Value *Src0 = CI->getArgOperand(3); 1140 1141 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1142 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1143 assert(VecType && "Unexpected return type of masked load intrinsic"); 1144 1145 Type *EltTy = CI->getType()->getVectorElementType(); 1146 1147 IRBuilder<> Builder(CI->getContext()); 1148 Instruction *InsertPt = CI; 1149 BasicBlock *IfBlock = CI->getParent(); 1150 BasicBlock *CondBlock = nullptr; 1151 BasicBlock *PrevIfBlock = CI->getParent(); 1152 1153 Builder.SetInsertPoint(InsertPt); 1154 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1155 1156 // Short-cut if the mask is all-true. 1157 bool IsAllOnesMask = isa<Constant>(Mask) && 1158 cast<Constant>(Mask)->isAllOnesValue(); 1159 1160 if (IsAllOnesMask) { 1161 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1162 CI->replaceAllUsesWith(NewI); 1163 CI->eraseFromParent(); 1164 return; 1165 } 1166 1167 // Adjust alignment for the scalar instruction. 1168 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1169 // Bitcast %addr fron i8* to EltTy* 1170 Type *NewPtrType = 1171 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1172 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1173 unsigned VectorWidth = VecType->getNumElements(); 1174 1175 Value *UndefVal = UndefValue::get(VecType); 1176 1177 // The result vector 1178 Value *VResult = UndefVal; 1179 1180 if (isa<ConstantVector>(Mask)) { 1181 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1182 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1183 continue; 1184 Value *Gep = 1185 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1186 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1187 VResult = Builder.CreateInsertElement(VResult, Load, 1188 Builder.getInt32(Idx)); 1189 } 1190 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1191 CI->replaceAllUsesWith(NewI); 1192 CI->eraseFromParent(); 1193 return; 1194 } 1195 1196 PHINode *Phi = nullptr; 1197 Value *PrevPhi = UndefVal; 1198 1199 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1200 1201 // Fill the "else" block, created in the previous iteration 1202 // 1203 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1204 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1205 // %to_load = icmp eq i1 %mask_1, true 1206 // br i1 %to_load, label %cond.load, label %else 1207 // 1208 if (Idx > 0) { 1209 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1210 Phi->addIncoming(VResult, CondBlock); 1211 Phi->addIncoming(PrevPhi, PrevIfBlock); 1212 PrevPhi = Phi; 1213 VResult = Phi; 1214 } 1215 1216 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1217 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1218 ConstantInt::get(Predicate->getType(), 1)); 1219 1220 // Create "cond" block 1221 // 1222 // %EltAddr = getelementptr i32* %1, i32 0 1223 // %Elt = load i32* %EltAddr 1224 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1225 // 1226 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1227 Builder.SetInsertPoint(InsertPt); 1228 1229 Value *Gep = 1230 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1231 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1232 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1233 1234 // Create "else" block, fill it in the next iteration 1235 BasicBlock *NewIfBlock = 1236 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1237 Builder.SetInsertPoint(InsertPt); 1238 Instruction *OldBr = IfBlock->getTerminator(); 1239 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1240 OldBr->eraseFromParent(); 1241 PrevIfBlock = IfBlock; 1242 IfBlock = NewIfBlock; 1243 } 1244 1245 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1246 Phi->addIncoming(VResult, CondBlock); 1247 Phi->addIncoming(PrevPhi, PrevIfBlock); 1248 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1249 CI->replaceAllUsesWith(NewI); 1250 CI->eraseFromParent(); 1251 } 1252 1253 // Translate a masked store intrinsic, like 1254 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1255 // <16 x i1> %mask) 1256 // to a chain of basic blocks, that stores element one-by-one if 1257 // the appropriate mask bit is set 1258 // 1259 // %1 = bitcast i8* %addr to i32* 1260 // %2 = extractelement <16 x i1> %mask, i32 0 1261 // %3 = icmp eq i1 %2, true 1262 // br i1 %3, label %cond.store, label %else 1263 // 1264 // cond.store: ; preds = %0 1265 // %4 = extractelement <16 x i32> %val, i32 0 1266 // %5 = getelementptr i32* %1, i32 0 1267 // store i32 %4, i32* %5 1268 // br label %else 1269 // 1270 // else: ; preds = %0, %cond.store 1271 // %6 = extractelement <16 x i1> %mask, i32 1 1272 // %7 = icmp eq i1 %6, true 1273 // br i1 %7, label %cond.store1, label %else2 1274 // 1275 // cond.store1: ; preds = %else 1276 // %8 = extractelement <16 x i32> %val, i32 1 1277 // %9 = getelementptr i32* %1, i32 1 1278 // store i32 %8, i32* %9 1279 // br label %else2 1280 // . . . 1281 static void ScalarizeMaskedStore(CallInst *CI) { 1282 Value *Src = CI->getArgOperand(0); 1283 Value *Ptr = CI->getArgOperand(1); 1284 Value *Alignment = CI->getArgOperand(2); 1285 Value *Mask = CI->getArgOperand(3); 1286 1287 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1288 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1289 assert(VecType && "Unexpected data type in masked store intrinsic"); 1290 1291 Type *EltTy = VecType->getElementType(); 1292 1293 IRBuilder<> Builder(CI->getContext()); 1294 Instruction *InsertPt = CI; 1295 BasicBlock *IfBlock = CI->getParent(); 1296 Builder.SetInsertPoint(InsertPt); 1297 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1298 1299 // Short-cut if the mask is all-true. 1300 bool IsAllOnesMask = isa<Constant>(Mask) && 1301 cast<Constant>(Mask)->isAllOnesValue(); 1302 1303 if (IsAllOnesMask) { 1304 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1305 CI->eraseFromParent(); 1306 return; 1307 } 1308 1309 // Adjust alignment for the scalar instruction. 1310 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1311 // Bitcast %addr fron i8* to EltTy* 1312 Type *NewPtrType = 1313 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1314 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1315 unsigned VectorWidth = VecType->getNumElements(); 1316 1317 if (isa<ConstantVector>(Mask)) { 1318 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1319 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1320 continue; 1321 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1322 Value *Gep = 1323 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1324 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1325 } 1326 CI->eraseFromParent(); 1327 return; 1328 } 1329 1330 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1331 1332 // Fill the "else" block, created in the previous iteration 1333 // 1334 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1335 // %to_store = icmp eq i1 %mask_1, true 1336 // br i1 %to_store, label %cond.store, label %else 1337 // 1338 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1339 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1340 ConstantInt::get(Predicate->getType(), 1)); 1341 1342 // Create "cond" block 1343 // 1344 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1345 // %EltAddr = getelementptr i32* %1, i32 0 1346 // %store i32 %OneElt, i32* %EltAddr 1347 // 1348 BasicBlock *CondBlock = 1349 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1350 Builder.SetInsertPoint(InsertPt); 1351 1352 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1353 Value *Gep = 1354 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1355 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1356 1357 // Create "else" block, fill it in the next iteration 1358 BasicBlock *NewIfBlock = 1359 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1360 Builder.SetInsertPoint(InsertPt); 1361 Instruction *OldBr = IfBlock->getTerminator(); 1362 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1363 OldBr->eraseFromParent(); 1364 IfBlock = NewIfBlock; 1365 } 1366 CI->eraseFromParent(); 1367 } 1368 1369 // Translate a masked gather intrinsic like 1370 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1371 // <16 x i1> %Mask, <16 x i32> %Src) 1372 // to a chain of basic blocks, with loading element one-by-one if 1373 // the appropriate mask bit is set 1374 // 1375 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1376 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1377 // % ToLoad0 = icmp eq i1 % Mask0, true 1378 // br i1 % ToLoad0, label %cond.load, label %else 1379 // 1380 // cond.load: 1381 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1382 // % Load0 = load i32, i32* % Ptr0, align 4 1383 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1384 // br label %else 1385 // 1386 // else: 1387 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1388 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1389 // % ToLoad1 = icmp eq i1 % Mask1, true 1390 // br i1 % ToLoad1, label %cond.load1, label %else2 1391 // 1392 // cond.load1: 1393 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1394 // % Load1 = load i32, i32* % Ptr1, align 4 1395 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1396 // br label %else2 1397 // . . . 1398 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1399 // ret <16 x i32> %Result 1400 static void ScalarizeMaskedGather(CallInst *CI) { 1401 Value *Ptrs = CI->getArgOperand(0); 1402 Value *Alignment = CI->getArgOperand(1); 1403 Value *Mask = CI->getArgOperand(2); 1404 Value *Src0 = CI->getArgOperand(3); 1405 1406 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1407 1408 assert(VecType && "Unexpected return type of masked load intrinsic"); 1409 1410 IRBuilder<> Builder(CI->getContext()); 1411 Instruction *InsertPt = CI; 1412 BasicBlock *IfBlock = CI->getParent(); 1413 BasicBlock *CondBlock = nullptr; 1414 BasicBlock *PrevIfBlock = CI->getParent(); 1415 Builder.SetInsertPoint(InsertPt); 1416 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1417 1418 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1419 1420 Value *UndefVal = UndefValue::get(VecType); 1421 1422 // The result vector 1423 Value *VResult = UndefVal; 1424 unsigned VectorWidth = VecType->getNumElements(); 1425 1426 // Shorten the way if the mask is a vector of constants. 1427 bool IsConstMask = isa<ConstantVector>(Mask); 1428 1429 if (IsConstMask) { 1430 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1431 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1432 continue; 1433 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1434 "Ptr" + Twine(Idx)); 1435 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1436 "Load" + Twine(Idx)); 1437 VResult = Builder.CreateInsertElement(VResult, Load, 1438 Builder.getInt32(Idx), 1439 "Res" + Twine(Idx)); 1440 } 1441 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1442 CI->replaceAllUsesWith(NewI); 1443 CI->eraseFromParent(); 1444 return; 1445 } 1446 1447 PHINode *Phi = nullptr; 1448 Value *PrevPhi = UndefVal; 1449 1450 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1451 1452 // Fill the "else" block, created in the previous iteration 1453 // 1454 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1455 // %ToLoad1 = icmp eq i1 %Mask1, true 1456 // br i1 %ToLoad1, label %cond.load, label %else 1457 // 1458 if (Idx > 0) { 1459 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1460 Phi->addIncoming(VResult, CondBlock); 1461 Phi->addIncoming(PrevPhi, PrevIfBlock); 1462 PrevPhi = Phi; 1463 VResult = Phi; 1464 } 1465 1466 Value *Predicate = Builder.CreateExtractElement(Mask, 1467 Builder.getInt32(Idx), 1468 "Mask" + Twine(Idx)); 1469 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1470 ConstantInt::get(Predicate->getType(), 1), 1471 "ToLoad" + Twine(Idx)); 1472 1473 // Create "cond" block 1474 // 1475 // %EltAddr = getelementptr i32* %1, i32 0 1476 // %Elt = load i32* %EltAddr 1477 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1478 // 1479 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1480 Builder.SetInsertPoint(InsertPt); 1481 1482 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1483 "Ptr" + Twine(Idx)); 1484 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1485 "Load" + Twine(Idx)); 1486 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1487 "Res" + Twine(Idx)); 1488 1489 // Create "else" block, fill it in the next iteration 1490 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1491 Builder.SetInsertPoint(InsertPt); 1492 Instruction *OldBr = IfBlock->getTerminator(); 1493 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1494 OldBr->eraseFromParent(); 1495 PrevIfBlock = IfBlock; 1496 IfBlock = NewIfBlock; 1497 } 1498 1499 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1500 Phi->addIncoming(VResult, CondBlock); 1501 Phi->addIncoming(PrevPhi, PrevIfBlock); 1502 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1503 CI->replaceAllUsesWith(NewI); 1504 CI->eraseFromParent(); 1505 } 1506 1507 // Translate a masked scatter intrinsic, like 1508 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1509 // <16 x i1> %Mask) 1510 // to a chain of basic blocks, that stores element one-by-one if 1511 // the appropriate mask bit is set. 1512 // 1513 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1514 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1515 // % ToStore0 = icmp eq i1 % Mask0, true 1516 // br i1 %ToStore0, label %cond.store, label %else 1517 // 1518 // cond.store: 1519 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1520 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1521 // store i32 %Elt0, i32* % Ptr0, align 4 1522 // br label %else 1523 // 1524 // else: 1525 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1526 // % ToStore1 = icmp eq i1 % Mask1, true 1527 // br i1 % ToStore1, label %cond.store1, label %else2 1528 // 1529 // cond.store1: 1530 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1531 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1532 // store i32 % Elt1, i32* % Ptr1, align 4 1533 // br label %else2 1534 // . . . 1535 static void ScalarizeMaskedScatter(CallInst *CI) { 1536 Value *Src = CI->getArgOperand(0); 1537 Value *Ptrs = CI->getArgOperand(1); 1538 Value *Alignment = CI->getArgOperand(2); 1539 Value *Mask = CI->getArgOperand(3); 1540 1541 assert(isa<VectorType>(Src->getType()) && 1542 "Unexpected data type in masked scatter intrinsic"); 1543 assert(isa<VectorType>(Ptrs->getType()) && 1544 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1545 "Vector of pointers is expected in masked scatter intrinsic"); 1546 1547 IRBuilder<> Builder(CI->getContext()); 1548 Instruction *InsertPt = CI; 1549 BasicBlock *IfBlock = CI->getParent(); 1550 Builder.SetInsertPoint(InsertPt); 1551 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1552 1553 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1554 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1555 1556 // Shorten the way if the mask is a vector of constants. 1557 bool IsConstMask = isa<ConstantVector>(Mask); 1558 1559 if (IsConstMask) { 1560 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1561 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1562 continue; 1563 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1564 "Elt" + Twine(Idx)); 1565 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1566 "Ptr" + Twine(Idx)); 1567 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1568 } 1569 CI->eraseFromParent(); 1570 return; 1571 } 1572 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1573 // Fill the "else" block, created in the previous iteration 1574 // 1575 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1576 // % ToStore = icmp eq i1 % Mask1, true 1577 // br i1 % ToStore, label %cond.store, label %else 1578 // 1579 Value *Predicate = Builder.CreateExtractElement(Mask, 1580 Builder.getInt32(Idx), 1581 "Mask" + Twine(Idx)); 1582 Value *Cmp = 1583 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1584 ConstantInt::get(Predicate->getType(), 1), 1585 "ToStore" + Twine(Idx)); 1586 1587 // Create "cond" block 1588 // 1589 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1590 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1591 // %store i32 % Elt1, i32* % Ptr1 1592 // 1593 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1594 Builder.SetInsertPoint(InsertPt); 1595 1596 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1597 "Elt" + Twine(Idx)); 1598 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1599 "Ptr" + Twine(Idx)); 1600 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1601 1602 // Create "else" block, fill it in the next iteration 1603 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1604 Builder.SetInsertPoint(InsertPt); 1605 Instruction *OldBr = IfBlock->getTerminator(); 1606 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1607 OldBr->eraseFromParent(); 1608 IfBlock = NewIfBlock; 1609 } 1610 CI->eraseFromParent(); 1611 } 1612 1613 /// If counting leading or trailing zeros is an expensive operation and a zero 1614 /// input is defined, add a check for zero to avoid calling the intrinsic. 1615 /// 1616 /// We want to transform: 1617 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1618 /// 1619 /// into: 1620 /// entry: 1621 /// %cmpz = icmp eq i64 %A, 0 1622 /// br i1 %cmpz, label %cond.end, label %cond.false 1623 /// cond.false: 1624 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1625 /// br label %cond.end 1626 /// cond.end: 1627 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1628 /// 1629 /// If the transform is performed, return true and set ModifiedDT to true. 1630 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1631 const TargetLowering *TLI, 1632 const DataLayout *DL, 1633 bool &ModifiedDT) { 1634 if (!TLI || !DL) 1635 return false; 1636 1637 // If a zero input is undefined, it doesn't make sense to despeculate that. 1638 if (match(CountZeros->getOperand(1), m_One())) 1639 return false; 1640 1641 // If it's cheap to speculate, there's nothing to do. 1642 auto IntrinsicID = CountZeros->getIntrinsicID(); 1643 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1644 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1645 return false; 1646 1647 // Only handle legal scalar cases. Anything else requires too much work. 1648 Type *Ty = CountZeros->getType(); 1649 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1650 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSize()) 1651 return false; 1652 1653 // The intrinsic will be sunk behind a compare against zero and branch. 1654 BasicBlock *StartBlock = CountZeros->getParent(); 1655 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1656 1657 // Create another block after the count zero intrinsic. A PHI will be added 1658 // in this block to select the result of the intrinsic or the bit-width 1659 // constant if the input to the intrinsic is zero. 1660 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1661 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1662 1663 // Set up a builder to create a compare, conditional branch, and PHI. 1664 IRBuilder<> Builder(CountZeros->getContext()); 1665 Builder.SetInsertPoint(StartBlock->getTerminator()); 1666 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1667 1668 // Replace the unconditional branch that was created by the first split with 1669 // a compare against zero and a conditional branch. 1670 Value *Zero = Constant::getNullValue(Ty); 1671 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1672 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1673 StartBlock->getTerminator()->eraseFromParent(); 1674 1675 // Create a PHI in the end block to select either the output of the intrinsic 1676 // or the bit width of the operand. 1677 Builder.SetInsertPoint(&EndBlock->front()); 1678 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1679 CountZeros->replaceAllUsesWith(PN); 1680 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1681 PN->addIncoming(BitWidth, StartBlock); 1682 PN->addIncoming(CountZeros, CallBlock); 1683 1684 // We are explicitly handling the zero case, so we can set the intrinsic's 1685 // undefined zero argument to 'true'. This will also prevent reprocessing the 1686 // intrinsic; we only despeculate when a zero input is defined. 1687 CountZeros->setArgOperand(1, Builder.getTrue()); 1688 ModifiedDT = true; 1689 return true; 1690 } 1691 1692 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1693 BasicBlock *BB = CI->getParent(); 1694 1695 // Lower inline assembly if we can. 1696 // If we found an inline asm expession, and if the target knows how to 1697 // lower it to normal LLVM code, do so now. 1698 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1699 if (TLI->ExpandInlineAsm(CI)) { 1700 // Avoid invalidating the iterator. 1701 CurInstIterator = BB->begin(); 1702 // Avoid processing instructions out of order, which could cause 1703 // reuse before a value is defined. 1704 SunkAddrs.clear(); 1705 return true; 1706 } 1707 // Sink address computing for memory operands into the block. 1708 if (optimizeInlineAsmInst(CI)) 1709 return true; 1710 } 1711 1712 // Align the pointer arguments to this call if the target thinks it's a good 1713 // idea 1714 unsigned MinSize, PrefAlign; 1715 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1716 for (auto &Arg : CI->arg_operands()) { 1717 // We want to align both objects whose address is used directly and 1718 // objects whose address is used in casts and GEPs, though it only makes 1719 // sense for GEPs if the offset is a multiple of the desired alignment and 1720 // if size - offset meets the size threshold. 1721 if (!Arg->getType()->isPointerTy()) 1722 continue; 1723 APInt Offset(DL->getPointerSizeInBits( 1724 cast<PointerType>(Arg->getType())->getAddressSpace()), 1725 0); 1726 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1727 uint64_t Offset2 = Offset.getLimitedValue(); 1728 if ((Offset2 & (PrefAlign-1)) != 0) 1729 continue; 1730 AllocaInst *AI; 1731 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1732 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1733 AI->setAlignment(PrefAlign); 1734 // Global variables can only be aligned if they are defined in this 1735 // object (i.e. they are uniquely initialized in this object), and 1736 // over-aligning global variables that have an explicit section is 1737 // forbidden. 1738 GlobalVariable *GV; 1739 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1740 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1741 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1742 MinSize + Offset2) 1743 GV->setAlignment(PrefAlign); 1744 } 1745 // If this is a memcpy (or similar) then we may be able to improve the 1746 // alignment 1747 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1748 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1749 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1750 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1751 if (Align > MI->getAlignment()) 1752 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1753 } 1754 } 1755 1756 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1757 if (II) { 1758 switch (II->getIntrinsicID()) { 1759 default: break; 1760 case Intrinsic::objectsize: { 1761 // Lower all uses of llvm.objectsize.* 1762 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1763 Type *ReturnTy = CI->getType(); 1764 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1765 1766 // Substituting this can cause recursive simplifications, which can 1767 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1768 // happens. 1769 WeakVH IterHandle(&*CurInstIterator); 1770 1771 replaceAndRecursivelySimplify(CI, RetVal, 1772 TLInfo, nullptr); 1773 1774 // If the iterator instruction was recursively deleted, start over at the 1775 // start of the block. 1776 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1777 CurInstIterator = BB->begin(); 1778 SunkAddrs.clear(); 1779 } 1780 return true; 1781 } 1782 case Intrinsic::masked_load: { 1783 // Scalarize unsupported vector masked load 1784 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1785 ScalarizeMaskedLoad(CI); 1786 ModifiedDT = true; 1787 return true; 1788 } 1789 return false; 1790 } 1791 case Intrinsic::masked_store: { 1792 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1793 ScalarizeMaskedStore(CI); 1794 ModifiedDT = true; 1795 return true; 1796 } 1797 return false; 1798 } 1799 case Intrinsic::masked_gather: { 1800 if (!TTI->isLegalMaskedGather(CI->getType())) { 1801 ScalarizeMaskedGather(CI); 1802 ModifiedDT = true; 1803 return true; 1804 } 1805 return false; 1806 } 1807 case Intrinsic::masked_scatter: { 1808 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1809 ScalarizeMaskedScatter(CI); 1810 ModifiedDT = true; 1811 return true; 1812 } 1813 return false; 1814 } 1815 case Intrinsic::aarch64_stlxr: 1816 case Intrinsic::aarch64_stxr: { 1817 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1818 if (!ExtVal || !ExtVal->hasOneUse() || 1819 ExtVal->getParent() == CI->getParent()) 1820 return false; 1821 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1822 ExtVal->moveBefore(CI); 1823 // Mark this instruction as "inserted by CGP", so that other 1824 // optimizations don't touch it. 1825 InsertedInsts.insert(ExtVal); 1826 return true; 1827 } 1828 case Intrinsic::invariant_group_barrier: 1829 II->replaceAllUsesWith(II->getArgOperand(0)); 1830 II->eraseFromParent(); 1831 return true; 1832 1833 case Intrinsic::cttz: 1834 case Intrinsic::ctlz: 1835 // If counting zeros is expensive, try to avoid it. 1836 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1837 } 1838 1839 if (TLI) { 1840 // Unknown address space. 1841 // TODO: Target hook to pick which address space the intrinsic cares 1842 // about? 1843 unsigned AddrSpace = ~0u; 1844 SmallVector<Value*, 2> PtrOps; 1845 Type *AccessTy; 1846 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1847 while (!PtrOps.empty()) 1848 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1849 return true; 1850 } 1851 } 1852 1853 // From here on out we're working with named functions. 1854 if (!CI->getCalledFunction()) return false; 1855 1856 // Lower all default uses of _chk calls. This is very similar 1857 // to what InstCombineCalls does, but here we are only lowering calls 1858 // to fortified library functions (e.g. __memcpy_chk) that have the default 1859 // "don't know" as the objectsize. Anything else should be left alone. 1860 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1861 if (Value *V = Simplifier.optimizeCall(CI)) { 1862 CI->replaceAllUsesWith(V); 1863 CI->eraseFromParent(); 1864 return true; 1865 } 1866 return false; 1867 } 1868 1869 /// Look for opportunities to duplicate return instructions to the predecessor 1870 /// to enable tail call optimizations. The case it is currently looking for is: 1871 /// @code 1872 /// bb0: 1873 /// %tmp0 = tail call i32 @f0() 1874 /// br label %return 1875 /// bb1: 1876 /// %tmp1 = tail call i32 @f1() 1877 /// br label %return 1878 /// bb2: 1879 /// %tmp2 = tail call i32 @f2() 1880 /// br label %return 1881 /// return: 1882 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1883 /// ret i32 %retval 1884 /// @endcode 1885 /// 1886 /// => 1887 /// 1888 /// @code 1889 /// bb0: 1890 /// %tmp0 = tail call i32 @f0() 1891 /// ret i32 %tmp0 1892 /// bb1: 1893 /// %tmp1 = tail call i32 @f1() 1894 /// ret i32 %tmp1 1895 /// bb2: 1896 /// %tmp2 = tail call i32 @f2() 1897 /// ret i32 %tmp2 1898 /// @endcode 1899 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1900 if (!TLI) 1901 return false; 1902 1903 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1904 if (!RI) 1905 return false; 1906 1907 PHINode *PN = nullptr; 1908 BitCastInst *BCI = nullptr; 1909 Value *V = RI->getReturnValue(); 1910 if (V) { 1911 BCI = dyn_cast<BitCastInst>(V); 1912 if (BCI) 1913 V = BCI->getOperand(0); 1914 1915 PN = dyn_cast<PHINode>(V); 1916 if (!PN) 1917 return false; 1918 } 1919 1920 if (PN && PN->getParent() != BB) 1921 return false; 1922 1923 // It's not safe to eliminate the sign / zero extension of the return value. 1924 // See llvm::isInTailCallPosition(). 1925 const Function *F = BB->getParent(); 1926 AttributeSet CallerAttrs = F->getAttributes(); 1927 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1928 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1929 return false; 1930 1931 // Make sure there are no instructions between the PHI and return, or that the 1932 // return is the first instruction in the block. 1933 if (PN) { 1934 BasicBlock::iterator BI = BB->begin(); 1935 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1936 if (&*BI == BCI) 1937 // Also skip over the bitcast. 1938 ++BI; 1939 if (&*BI != RI) 1940 return false; 1941 } else { 1942 BasicBlock::iterator BI = BB->begin(); 1943 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1944 if (&*BI != RI) 1945 return false; 1946 } 1947 1948 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1949 /// call. 1950 SmallVector<CallInst*, 4> TailCalls; 1951 if (PN) { 1952 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1953 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1954 // Make sure the phi value is indeed produced by the tail call. 1955 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1956 TLI->mayBeEmittedAsTailCall(CI)) 1957 TailCalls.push_back(CI); 1958 } 1959 } else { 1960 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1961 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1962 if (!VisitedBBs.insert(*PI).second) 1963 continue; 1964 1965 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1966 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1967 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1968 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1969 if (RI == RE) 1970 continue; 1971 1972 CallInst *CI = dyn_cast<CallInst>(&*RI); 1973 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1974 TailCalls.push_back(CI); 1975 } 1976 } 1977 1978 bool Changed = false; 1979 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1980 CallInst *CI = TailCalls[i]; 1981 CallSite CS(CI); 1982 1983 // Conservatively require the attributes of the call to match those of the 1984 // return. Ignore noalias because it doesn't affect the call sequence. 1985 AttributeSet CalleeAttrs = CS.getAttributes(); 1986 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1987 removeAttribute(Attribute::NoAlias) != 1988 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1989 removeAttribute(Attribute::NoAlias)) 1990 continue; 1991 1992 // Make sure the call instruction is followed by an unconditional branch to 1993 // the return block. 1994 BasicBlock *CallBB = CI->getParent(); 1995 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1996 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1997 continue; 1998 1999 // Duplicate the return into CallBB. 2000 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 2001 ModifiedDT = Changed = true; 2002 ++NumRetsDup; 2003 } 2004 2005 // If we eliminated all predecessors of the block, delete the block now. 2006 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2007 BB->eraseFromParent(); 2008 2009 return Changed; 2010 } 2011 2012 //===----------------------------------------------------------------------===// 2013 // Memory Optimization 2014 //===----------------------------------------------------------------------===// 2015 2016 namespace { 2017 2018 /// This is an extended version of TargetLowering::AddrMode 2019 /// which holds actual Value*'s for register values. 2020 struct ExtAddrMode : public TargetLowering::AddrMode { 2021 Value *BaseReg; 2022 Value *ScaledReg; 2023 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2024 void print(raw_ostream &OS) const; 2025 void dump() const; 2026 2027 bool operator==(const ExtAddrMode& O) const { 2028 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2029 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2030 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2031 } 2032 }; 2033 2034 #ifndef NDEBUG 2035 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2036 AM.print(OS); 2037 return OS; 2038 } 2039 #endif 2040 2041 void ExtAddrMode::print(raw_ostream &OS) const { 2042 bool NeedPlus = false; 2043 OS << "["; 2044 if (BaseGV) { 2045 OS << (NeedPlus ? " + " : "") 2046 << "GV:"; 2047 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2048 NeedPlus = true; 2049 } 2050 2051 if (BaseOffs) { 2052 OS << (NeedPlus ? " + " : "") 2053 << BaseOffs; 2054 NeedPlus = true; 2055 } 2056 2057 if (BaseReg) { 2058 OS << (NeedPlus ? " + " : "") 2059 << "Base:"; 2060 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2061 NeedPlus = true; 2062 } 2063 if (Scale) { 2064 OS << (NeedPlus ? " + " : "") 2065 << Scale << "*"; 2066 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2067 } 2068 2069 OS << ']'; 2070 } 2071 2072 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2073 void ExtAddrMode::dump() const { 2074 print(dbgs()); 2075 dbgs() << '\n'; 2076 } 2077 #endif 2078 2079 /// \brief This class provides transaction based operation on the IR. 2080 /// Every change made through this class is recorded in the internal state and 2081 /// can be undone (rollback) until commit is called. 2082 class TypePromotionTransaction { 2083 2084 /// \brief This represents the common interface of the individual transaction. 2085 /// Each class implements the logic for doing one specific modification on 2086 /// the IR via the TypePromotionTransaction. 2087 class TypePromotionAction { 2088 protected: 2089 /// The Instruction modified. 2090 Instruction *Inst; 2091 2092 public: 2093 /// \brief Constructor of the action. 2094 /// The constructor performs the related action on the IR. 2095 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2096 2097 virtual ~TypePromotionAction() {} 2098 2099 /// \brief Undo the modification done by this action. 2100 /// When this method is called, the IR must be in the same state as it was 2101 /// before this action was applied. 2102 /// \pre Undoing the action works if and only if the IR is in the exact same 2103 /// state as it was directly after this action was applied. 2104 virtual void undo() = 0; 2105 2106 /// \brief Advocate every change made by this action. 2107 /// When the results on the IR of the action are to be kept, it is important 2108 /// to call this function, otherwise hidden information may be kept forever. 2109 virtual void commit() { 2110 // Nothing to be done, this action is not doing anything. 2111 } 2112 }; 2113 2114 /// \brief Utility to remember the position of an instruction. 2115 class InsertionHandler { 2116 /// Position of an instruction. 2117 /// Either an instruction: 2118 /// - Is the first in a basic block: BB is used. 2119 /// - Has a previous instructon: PrevInst is used. 2120 union { 2121 Instruction *PrevInst; 2122 BasicBlock *BB; 2123 } Point; 2124 /// Remember whether or not the instruction had a previous instruction. 2125 bool HasPrevInstruction; 2126 2127 public: 2128 /// \brief Record the position of \p Inst. 2129 InsertionHandler(Instruction *Inst) { 2130 BasicBlock::iterator It = Inst->getIterator(); 2131 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2132 if (HasPrevInstruction) 2133 Point.PrevInst = &*--It; 2134 else 2135 Point.BB = Inst->getParent(); 2136 } 2137 2138 /// \brief Insert \p Inst at the recorded position. 2139 void insert(Instruction *Inst) { 2140 if (HasPrevInstruction) { 2141 if (Inst->getParent()) 2142 Inst->removeFromParent(); 2143 Inst->insertAfter(Point.PrevInst); 2144 } else { 2145 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2146 if (Inst->getParent()) 2147 Inst->moveBefore(Position); 2148 else 2149 Inst->insertBefore(Position); 2150 } 2151 } 2152 }; 2153 2154 /// \brief Move an instruction before another. 2155 class InstructionMoveBefore : public TypePromotionAction { 2156 /// Original position of the instruction. 2157 InsertionHandler Position; 2158 2159 public: 2160 /// \brief Move \p Inst before \p Before. 2161 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2162 : TypePromotionAction(Inst), Position(Inst) { 2163 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2164 Inst->moveBefore(Before); 2165 } 2166 2167 /// \brief Move the instruction back to its original position. 2168 void undo() override { 2169 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2170 Position.insert(Inst); 2171 } 2172 }; 2173 2174 /// \brief Set the operand of an instruction with a new value. 2175 class OperandSetter : public TypePromotionAction { 2176 /// Original operand of the instruction. 2177 Value *Origin; 2178 /// Index of the modified instruction. 2179 unsigned Idx; 2180 2181 public: 2182 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2183 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2184 : TypePromotionAction(Inst), Idx(Idx) { 2185 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2186 << "for:" << *Inst << "\n" 2187 << "with:" << *NewVal << "\n"); 2188 Origin = Inst->getOperand(Idx); 2189 Inst->setOperand(Idx, NewVal); 2190 } 2191 2192 /// \brief Restore the original value of the instruction. 2193 void undo() override { 2194 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2195 << "for: " << *Inst << "\n" 2196 << "with: " << *Origin << "\n"); 2197 Inst->setOperand(Idx, Origin); 2198 } 2199 }; 2200 2201 /// \brief Hide the operands of an instruction. 2202 /// Do as if this instruction was not using any of its operands. 2203 class OperandsHider : public TypePromotionAction { 2204 /// The list of original operands. 2205 SmallVector<Value *, 4> OriginalValues; 2206 2207 public: 2208 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2209 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2210 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2211 unsigned NumOpnds = Inst->getNumOperands(); 2212 OriginalValues.reserve(NumOpnds); 2213 for (unsigned It = 0; It < NumOpnds; ++It) { 2214 // Save the current operand. 2215 Value *Val = Inst->getOperand(It); 2216 OriginalValues.push_back(Val); 2217 // Set a dummy one. 2218 // We could use OperandSetter here, but that would imply an overhead 2219 // that we are not willing to pay. 2220 Inst->setOperand(It, UndefValue::get(Val->getType())); 2221 } 2222 } 2223 2224 /// \brief Restore the original list of uses. 2225 void undo() override { 2226 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2227 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2228 Inst->setOperand(It, OriginalValues[It]); 2229 } 2230 }; 2231 2232 /// \brief Build a truncate instruction. 2233 class TruncBuilder : public TypePromotionAction { 2234 Value *Val; 2235 public: 2236 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2237 /// result. 2238 /// trunc Opnd to Ty. 2239 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2240 IRBuilder<> Builder(Opnd); 2241 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2242 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2243 } 2244 2245 /// \brief Get the built value. 2246 Value *getBuiltValue() { return Val; } 2247 2248 /// \brief Remove the built instruction. 2249 void undo() override { 2250 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2251 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2252 IVal->eraseFromParent(); 2253 } 2254 }; 2255 2256 /// \brief Build a sign extension instruction. 2257 class SExtBuilder : public TypePromotionAction { 2258 Value *Val; 2259 public: 2260 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2261 /// result. 2262 /// sext Opnd to Ty. 2263 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2264 : TypePromotionAction(InsertPt) { 2265 IRBuilder<> Builder(InsertPt); 2266 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2267 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2268 } 2269 2270 /// \brief Get the built value. 2271 Value *getBuiltValue() { return Val; } 2272 2273 /// \brief Remove the built instruction. 2274 void undo() override { 2275 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2276 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2277 IVal->eraseFromParent(); 2278 } 2279 }; 2280 2281 /// \brief Build a zero extension instruction. 2282 class ZExtBuilder : public TypePromotionAction { 2283 Value *Val; 2284 public: 2285 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2286 /// result. 2287 /// zext Opnd to Ty. 2288 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2289 : TypePromotionAction(InsertPt) { 2290 IRBuilder<> Builder(InsertPt); 2291 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2292 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2293 } 2294 2295 /// \brief Get the built value. 2296 Value *getBuiltValue() { return Val; } 2297 2298 /// \brief Remove the built instruction. 2299 void undo() override { 2300 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2301 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2302 IVal->eraseFromParent(); 2303 } 2304 }; 2305 2306 /// \brief Mutate an instruction to another type. 2307 class TypeMutator : public TypePromotionAction { 2308 /// Record the original type. 2309 Type *OrigTy; 2310 2311 public: 2312 /// \brief Mutate the type of \p Inst into \p NewTy. 2313 TypeMutator(Instruction *Inst, Type *NewTy) 2314 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2315 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2316 << "\n"); 2317 Inst->mutateType(NewTy); 2318 } 2319 2320 /// \brief Mutate the instruction back to its original type. 2321 void undo() override { 2322 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2323 << "\n"); 2324 Inst->mutateType(OrigTy); 2325 } 2326 }; 2327 2328 /// \brief Replace the uses of an instruction by another instruction. 2329 class UsesReplacer : public TypePromotionAction { 2330 /// Helper structure to keep track of the replaced uses. 2331 struct InstructionAndIdx { 2332 /// The instruction using the instruction. 2333 Instruction *Inst; 2334 /// The index where this instruction is used for Inst. 2335 unsigned Idx; 2336 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2337 : Inst(Inst), Idx(Idx) {} 2338 }; 2339 2340 /// Keep track of the original uses (pair Instruction, Index). 2341 SmallVector<InstructionAndIdx, 4> OriginalUses; 2342 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2343 2344 public: 2345 /// \brief Replace all the use of \p Inst by \p New. 2346 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2347 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2348 << "\n"); 2349 // Record the original uses. 2350 for (Use &U : Inst->uses()) { 2351 Instruction *UserI = cast<Instruction>(U.getUser()); 2352 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2353 } 2354 // Now, we can replace the uses. 2355 Inst->replaceAllUsesWith(New); 2356 } 2357 2358 /// \brief Reassign the original uses of Inst to Inst. 2359 void undo() override { 2360 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2361 for (use_iterator UseIt = OriginalUses.begin(), 2362 EndIt = OriginalUses.end(); 2363 UseIt != EndIt; ++UseIt) { 2364 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2365 } 2366 } 2367 }; 2368 2369 /// \brief Remove an instruction from the IR. 2370 class InstructionRemover : public TypePromotionAction { 2371 /// Original position of the instruction. 2372 InsertionHandler Inserter; 2373 /// Helper structure to hide all the link to the instruction. In other 2374 /// words, this helps to do as if the instruction was removed. 2375 OperandsHider Hider; 2376 /// Keep track of the uses replaced, if any. 2377 UsesReplacer *Replacer; 2378 2379 public: 2380 /// \brief Remove all reference of \p Inst and optinally replace all its 2381 /// uses with New. 2382 /// \pre If !Inst->use_empty(), then New != nullptr 2383 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2384 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2385 Replacer(nullptr) { 2386 if (New) 2387 Replacer = new UsesReplacer(Inst, New); 2388 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2389 Inst->removeFromParent(); 2390 } 2391 2392 ~InstructionRemover() override { delete Replacer; } 2393 2394 /// \brief Really remove the instruction. 2395 void commit() override { delete Inst; } 2396 2397 /// \brief Resurrect the instruction and reassign it to the proper uses if 2398 /// new value was provided when build this action. 2399 void undo() override { 2400 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2401 Inserter.insert(Inst); 2402 if (Replacer) 2403 Replacer->undo(); 2404 Hider.undo(); 2405 } 2406 }; 2407 2408 public: 2409 /// Restoration point. 2410 /// The restoration point is a pointer to an action instead of an iterator 2411 /// because the iterator may be invalidated but not the pointer. 2412 typedef const TypePromotionAction *ConstRestorationPt; 2413 /// Advocate every changes made in that transaction. 2414 void commit(); 2415 /// Undo all the changes made after the given point. 2416 void rollback(ConstRestorationPt Point); 2417 /// Get the current restoration point. 2418 ConstRestorationPt getRestorationPoint() const; 2419 2420 /// \name API for IR modification with state keeping to support rollback. 2421 /// @{ 2422 /// Same as Instruction::setOperand. 2423 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2424 /// Same as Instruction::eraseFromParent. 2425 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2426 /// Same as Value::replaceAllUsesWith. 2427 void replaceAllUsesWith(Instruction *Inst, Value *New); 2428 /// Same as Value::mutateType. 2429 void mutateType(Instruction *Inst, Type *NewTy); 2430 /// Same as IRBuilder::createTrunc. 2431 Value *createTrunc(Instruction *Opnd, Type *Ty); 2432 /// Same as IRBuilder::createSExt. 2433 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2434 /// Same as IRBuilder::createZExt. 2435 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2436 /// Same as Instruction::moveBefore. 2437 void moveBefore(Instruction *Inst, Instruction *Before); 2438 /// @} 2439 2440 private: 2441 /// The ordered list of actions made so far. 2442 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2443 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2444 }; 2445 2446 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2447 Value *NewVal) { 2448 Actions.push_back( 2449 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2450 } 2451 2452 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2453 Value *NewVal) { 2454 Actions.push_back( 2455 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2456 } 2457 2458 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2459 Value *New) { 2460 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2461 } 2462 2463 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2464 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2465 } 2466 2467 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2468 Type *Ty) { 2469 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2470 Value *Val = Ptr->getBuiltValue(); 2471 Actions.push_back(std::move(Ptr)); 2472 return Val; 2473 } 2474 2475 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2476 Value *Opnd, Type *Ty) { 2477 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2478 Value *Val = Ptr->getBuiltValue(); 2479 Actions.push_back(std::move(Ptr)); 2480 return Val; 2481 } 2482 2483 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2484 Value *Opnd, Type *Ty) { 2485 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2486 Value *Val = Ptr->getBuiltValue(); 2487 Actions.push_back(std::move(Ptr)); 2488 return Val; 2489 } 2490 2491 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2492 Instruction *Before) { 2493 Actions.push_back( 2494 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2495 } 2496 2497 TypePromotionTransaction::ConstRestorationPt 2498 TypePromotionTransaction::getRestorationPoint() const { 2499 return !Actions.empty() ? Actions.back().get() : nullptr; 2500 } 2501 2502 void TypePromotionTransaction::commit() { 2503 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2504 ++It) 2505 (*It)->commit(); 2506 Actions.clear(); 2507 } 2508 2509 void TypePromotionTransaction::rollback( 2510 TypePromotionTransaction::ConstRestorationPt Point) { 2511 while (!Actions.empty() && Point != Actions.back().get()) { 2512 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2513 Curr->undo(); 2514 } 2515 } 2516 2517 /// \brief A helper class for matching addressing modes. 2518 /// 2519 /// This encapsulates the logic for matching the target-legal addressing modes. 2520 class AddressingModeMatcher { 2521 SmallVectorImpl<Instruction*> &AddrModeInsts; 2522 const TargetMachine &TM; 2523 const TargetLowering &TLI; 2524 const DataLayout &DL; 2525 2526 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2527 /// the memory instruction that we're computing this address for. 2528 Type *AccessTy; 2529 unsigned AddrSpace; 2530 Instruction *MemoryInst; 2531 2532 /// This is the addressing mode that we're building up. This is 2533 /// part of the return value of this addressing mode matching stuff. 2534 ExtAddrMode &AddrMode; 2535 2536 /// The instructions inserted by other CodeGenPrepare optimizations. 2537 const SetOfInstrs &InsertedInsts; 2538 /// A map from the instructions to their type before promotion. 2539 InstrToOrigTy &PromotedInsts; 2540 /// The ongoing transaction where every action should be registered. 2541 TypePromotionTransaction &TPT; 2542 2543 /// This is set to true when we should not do profitability checks. 2544 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2545 bool IgnoreProfitability; 2546 2547 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2548 const TargetMachine &TM, Type *AT, unsigned AS, 2549 Instruction *MI, ExtAddrMode &AM, 2550 const SetOfInstrs &InsertedInsts, 2551 InstrToOrigTy &PromotedInsts, 2552 TypePromotionTransaction &TPT) 2553 : AddrModeInsts(AMI), TM(TM), 2554 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2555 ->getTargetLowering()), 2556 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2557 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2558 PromotedInsts(PromotedInsts), TPT(TPT) { 2559 IgnoreProfitability = false; 2560 } 2561 public: 2562 2563 /// Find the maximal addressing mode that a load/store of V can fold, 2564 /// give an access type of AccessTy. This returns a list of involved 2565 /// instructions in AddrModeInsts. 2566 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2567 /// optimizations. 2568 /// \p PromotedInsts maps the instructions to their type before promotion. 2569 /// \p The ongoing transaction where every action should be registered. 2570 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2571 Instruction *MemoryInst, 2572 SmallVectorImpl<Instruction*> &AddrModeInsts, 2573 const TargetMachine &TM, 2574 const SetOfInstrs &InsertedInsts, 2575 InstrToOrigTy &PromotedInsts, 2576 TypePromotionTransaction &TPT) { 2577 ExtAddrMode Result; 2578 2579 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2580 MemoryInst, Result, InsertedInsts, 2581 PromotedInsts, TPT).matchAddr(V, 0); 2582 (void)Success; assert(Success && "Couldn't select *anything*?"); 2583 return Result; 2584 } 2585 private: 2586 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2587 bool matchAddr(Value *V, unsigned Depth); 2588 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2589 bool *MovedAway = nullptr); 2590 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2591 ExtAddrMode &AMBefore, 2592 ExtAddrMode &AMAfter); 2593 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2594 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2595 Value *PromotedOperand) const; 2596 }; 2597 2598 /// Try adding ScaleReg*Scale to the current addressing mode. 2599 /// Return true and update AddrMode if this addr mode is legal for the target, 2600 /// false if not. 2601 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2602 unsigned Depth) { 2603 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2604 // mode. Just process that directly. 2605 if (Scale == 1) 2606 return matchAddr(ScaleReg, Depth); 2607 2608 // If the scale is 0, it takes nothing to add this. 2609 if (Scale == 0) 2610 return true; 2611 2612 // If we already have a scale of this value, we can add to it, otherwise, we 2613 // need an available scale field. 2614 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2615 return false; 2616 2617 ExtAddrMode TestAddrMode = AddrMode; 2618 2619 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2620 // [A+B + A*7] -> [B+A*8]. 2621 TestAddrMode.Scale += Scale; 2622 TestAddrMode.ScaledReg = ScaleReg; 2623 2624 // If the new address isn't legal, bail out. 2625 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2626 return false; 2627 2628 // It was legal, so commit it. 2629 AddrMode = TestAddrMode; 2630 2631 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2632 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2633 // X*Scale + C*Scale to addr mode. 2634 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2635 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2636 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2637 TestAddrMode.ScaledReg = AddLHS; 2638 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2639 2640 // If this addressing mode is legal, commit it and remember that we folded 2641 // this instruction. 2642 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2643 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2644 AddrMode = TestAddrMode; 2645 return true; 2646 } 2647 } 2648 2649 // Otherwise, not (x+c)*scale, just return what we have. 2650 return true; 2651 } 2652 2653 /// This is a little filter, which returns true if an addressing computation 2654 /// involving I might be folded into a load/store accessing it. 2655 /// This doesn't need to be perfect, but needs to accept at least 2656 /// the set of instructions that MatchOperationAddr can. 2657 static bool MightBeFoldableInst(Instruction *I) { 2658 switch (I->getOpcode()) { 2659 case Instruction::BitCast: 2660 case Instruction::AddrSpaceCast: 2661 // Don't touch identity bitcasts. 2662 if (I->getType() == I->getOperand(0)->getType()) 2663 return false; 2664 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2665 case Instruction::PtrToInt: 2666 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2667 return true; 2668 case Instruction::IntToPtr: 2669 // We know the input is intptr_t, so this is foldable. 2670 return true; 2671 case Instruction::Add: 2672 return true; 2673 case Instruction::Mul: 2674 case Instruction::Shl: 2675 // Can only handle X*C and X << C. 2676 return isa<ConstantInt>(I->getOperand(1)); 2677 case Instruction::GetElementPtr: 2678 return true; 2679 default: 2680 return false; 2681 } 2682 } 2683 2684 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2685 /// \note \p Val is assumed to be the product of some type promotion. 2686 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2687 /// to be legal, as the non-promoted value would have had the same state. 2688 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2689 const DataLayout &DL, Value *Val) { 2690 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2691 if (!PromotedInst) 2692 return false; 2693 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2694 // If the ISDOpcode is undefined, it was undefined before the promotion. 2695 if (!ISDOpcode) 2696 return true; 2697 // Otherwise, check if the promoted instruction is legal or not. 2698 return TLI.isOperationLegalOrCustom( 2699 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2700 } 2701 2702 /// \brief Hepler class to perform type promotion. 2703 class TypePromotionHelper { 2704 /// \brief Utility function to check whether or not a sign or zero extension 2705 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2706 /// either using the operands of \p Inst or promoting \p Inst. 2707 /// The type of the extension is defined by \p IsSExt. 2708 /// In other words, check if: 2709 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2710 /// #1 Promotion applies: 2711 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2712 /// #2 Operand reuses: 2713 /// ext opnd1 to ConsideredExtType. 2714 /// \p PromotedInsts maps the instructions to their type before promotion. 2715 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2716 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2717 2718 /// \brief Utility function to determine if \p OpIdx should be promoted when 2719 /// promoting \p Inst. 2720 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2721 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2722 } 2723 2724 /// \brief Utility function to promote the operand of \p Ext when this 2725 /// operand is a promotable trunc or sext or zext. 2726 /// \p PromotedInsts maps the instructions to their type before promotion. 2727 /// \p CreatedInstsCost[out] contains the cost of all instructions 2728 /// created to promote the operand of Ext. 2729 /// Newly added extensions are inserted in \p Exts. 2730 /// Newly added truncates are inserted in \p Truncs. 2731 /// Should never be called directly. 2732 /// \return The promoted value which is used instead of Ext. 2733 static Value *promoteOperandForTruncAndAnyExt( 2734 Instruction *Ext, TypePromotionTransaction &TPT, 2735 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2736 SmallVectorImpl<Instruction *> *Exts, 2737 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2738 2739 /// \brief Utility function to promote the operand of \p Ext when this 2740 /// operand is promotable and is not a supported trunc or sext. 2741 /// \p PromotedInsts maps the instructions to their type before promotion. 2742 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2743 /// created to promote the operand of Ext. 2744 /// Newly added extensions are inserted in \p Exts. 2745 /// Newly added truncates are inserted in \p Truncs. 2746 /// Should never be called directly. 2747 /// \return The promoted value which is used instead of Ext. 2748 static Value *promoteOperandForOther(Instruction *Ext, 2749 TypePromotionTransaction &TPT, 2750 InstrToOrigTy &PromotedInsts, 2751 unsigned &CreatedInstsCost, 2752 SmallVectorImpl<Instruction *> *Exts, 2753 SmallVectorImpl<Instruction *> *Truncs, 2754 const TargetLowering &TLI, bool IsSExt); 2755 2756 /// \see promoteOperandForOther. 2757 static Value *signExtendOperandForOther( 2758 Instruction *Ext, TypePromotionTransaction &TPT, 2759 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2760 SmallVectorImpl<Instruction *> *Exts, 2761 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2762 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2763 Exts, Truncs, TLI, true); 2764 } 2765 2766 /// \see promoteOperandForOther. 2767 static Value *zeroExtendOperandForOther( 2768 Instruction *Ext, TypePromotionTransaction &TPT, 2769 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2770 SmallVectorImpl<Instruction *> *Exts, 2771 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2772 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2773 Exts, Truncs, TLI, false); 2774 } 2775 2776 public: 2777 /// Type for the utility function that promotes the operand of Ext. 2778 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2779 InstrToOrigTy &PromotedInsts, 2780 unsigned &CreatedInstsCost, 2781 SmallVectorImpl<Instruction *> *Exts, 2782 SmallVectorImpl<Instruction *> *Truncs, 2783 const TargetLowering &TLI); 2784 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2785 /// action to promote the operand of \p Ext instead of using Ext. 2786 /// \return NULL if no promotable action is possible with the current 2787 /// sign extension. 2788 /// \p InsertedInsts keeps track of all the instructions inserted by the 2789 /// other CodeGenPrepare optimizations. This information is important 2790 /// because we do not want to promote these instructions as CodeGenPrepare 2791 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2792 /// \p PromotedInsts maps the instructions to their type before promotion. 2793 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2794 const TargetLowering &TLI, 2795 const InstrToOrigTy &PromotedInsts); 2796 }; 2797 2798 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2799 Type *ConsideredExtType, 2800 const InstrToOrigTy &PromotedInsts, 2801 bool IsSExt) { 2802 // The promotion helper does not know how to deal with vector types yet. 2803 // To be able to fix that, we would need to fix the places where we 2804 // statically extend, e.g., constants and such. 2805 if (Inst->getType()->isVectorTy()) 2806 return false; 2807 2808 // We can always get through zext. 2809 if (isa<ZExtInst>(Inst)) 2810 return true; 2811 2812 // sext(sext) is ok too. 2813 if (IsSExt && isa<SExtInst>(Inst)) 2814 return true; 2815 2816 // We can get through binary operator, if it is legal. In other words, the 2817 // binary operator must have a nuw or nsw flag. 2818 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2819 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2820 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2821 (IsSExt && BinOp->hasNoSignedWrap()))) 2822 return true; 2823 2824 // Check if we can do the following simplification. 2825 // ext(trunc(opnd)) --> ext(opnd) 2826 if (!isa<TruncInst>(Inst)) 2827 return false; 2828 2829 Value *OpndVal = Inst->getOperand(0); 2830 // Check if we can use this operand in the extension. 2831 // If the type is larger than the result type of the extension, we cannot. 2832 if (!OpndVal->getType()->isIntegerTy() || 2833 OpndVal->getType()->getIntegerBitWidth() > 2834 ConsideredExtType->getIntegerBitWidth()) 2835 return false; 2836 2837 // If the operand of the truncate is not an instruction, we will not have 2838 // any information on the dropped bits. 2839 // (Actually we could for constant but it is not worth the extra logic). 2840 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2841 if (!Opnd) 2842 return false; 2843 2844 // Check if the source of the type is narrow enough. 2845 // I.e., check that trunc just drops extended bits of the same kind of 2846 // the extension. 2847 // #1 get the type of the operand and check the kind of the extended bits. 2848 const Type *OpndType; 2849 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2850 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2851 OpndType = It->second.getPointer(); 2852 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2853 OpndType = Opnd->getOperand(0)->getType(); 2854 else 2855 return false; 2856 2857 // #2 check that the truncate just drops extended bits. 2858 return Inst->getType()->getIntegerBitWidth() >= 2859 OpndType->getIntegerBitWidth(); 2860 } 2861 2862 TypePromotionHelper::Action TypePromotionHelper::getAction( 2863 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2864 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2865 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2866 "Unexpected instruction type"); 2867 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2868 Type *ExtTy = Ext->getType(); 2869 bool IsSExt = isa<SExtInst>(Ext); 2870 // If the operand of the extension is not an instruction, we cannot 2871 // get through. 2872 // If it, check we can get through. 2873 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2874 return nullptr; 2875 2876 // Do not promote if the operand has been added by codegenprepare. 2877 // Otherwise, it means we are undoing an optimization that is likely to be 2878 // redone, thus causing potential infinite loop. 2879 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2880 return nullptr; 2881 2882 // SExt or Trunc instructions. 2883 // Return the related handler. 2884 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2885 isa<ZExtInst>(ExtOpnd)) 2886 return promoteOperandForTruncAndAnyExt; 2887 2888 // Regular instruction. 2889 // Abort early if we will have to insert non-free instructions. 2890 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2891 return nullptr; 2892 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2893 } 2894 2895 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2896 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2897 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2898 SmallVectorImpl<Instruction *> *Exts, 2899 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2900 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2901 // get through it and this method should not be called. 2902 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2903 Value *ExtVal = SExt; 2904 bool HasMergedNonFreeExt = false; 2905 if (isa<ZExtInst>(SExtOpnd)) { 2906 // Replace s|zext(zext(opnd)) 2907 // => zext(opnd). 2908 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2909 Value *ZExt = 2910 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2911 TPT.replaceAllUsesWith(SExt, ZExt); 2912 TPT.eraseInstruction(SExt); 2913 ExtVal = ZExt; 2914 } else { 2915 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2916 // => z|sext(opnd). 2917 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2918 } 2919 CreatedInstsCost = 0; 2920 2921 // Remove dead code. 2922 if (SExtOpnd->use_empty()) 2923 TPT.eraseInstruction(SExtOpnd); 2924 2925 // Check if the extension is still needed. 2926 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2927 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2928 if (ExtInst) { 2929 if (Exts) 2930 Exts->push_back(ExtInst); 2931 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2932 } 2933 return ExtVal; 2934 } 2935 2936 // At this point we have: ext ty opnd to ty. 2937 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2938 Value *NextVal = ExtInst->getOperand(0); 2939 TPT.eraseInstruction(ExtInst, NextVal); 2940 return NextVal; 2941 } 2942 2943 Value *TypePromotionHelper::promoteOperandForOther( 2944 Instruction *Ext, TypePromotionTransaction &TPT, 2945 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2946 SmallVectorImpl<Instruction *> *Exts, 2947 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2948 bool IsSExt) { 2949 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2950 // get through it and this method should not be called. 2951 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2952 CreatedInstsCost = 0; 2953 if (!ExtOpnd->hasOneUse()) { 2954 // ExtOpnd will be promoted. 2955 // All its uses, but Ext, will need to use a truncated value of the 2956 // promoted version. 2957 // Create the truncate now. 2958 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2959 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2960 ITrunc->removeFromParent(); 2961 // Insert it just after the definition. 2962 ITrunc->insertAfter(ExtOpnd); 2963 if (Truncs) 2964 Truncs->push_back(ITrunc); 2965 } 2966 2967 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2968 // Restore the operand of Ext (which has been replaced by the previous call 2969 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2970 TPT.setOperand(Ext, 0, ExtOpnd); 2971 } 2972 2973 // Get through the Instruction: 2974 // 1. Update its type. 2975 // 2. Replace the uses of Ext by Inst. 2976 // 3. Extend each operand that needs to be extended. 2977 2978 // Remember the original type of the instruction before promotion. 2979 // This is useful to know that the high bits are sign extended bits. 2980 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2981 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2982 // Step #1. 2983 TPT.mutateType(ExtOpnd, Ext->getType()); 2984 // Step #2. 2985 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2986 // Step #3. 2987 Instruction *ExtForOpnd = Ext; 2988 2989 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2990 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2991 ++OpIdx) { 2992 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2993 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2994 !shouldExtOperand(ExtOpnd, OpIdx)) { 2995 DEBUG(dbgs() << "No need to propagate\n"); 2996 continue; 2997 } 2998 // Check if we can statically extend the operand. 2999 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3000 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3001 DEBUG(dbgs() << "Statically extend\n"); 3002 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3003 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3004 : Cst->getValue().zext(BitWidth); 3005 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3006 continue; 3007 } 3008 // UndefValue are typed, so we have to statically sign extend them. 3009 if (isa<UndefValue>(Opnd)) { 3010 DEBUG(dbgs() << "Statically extend\n"); 3011 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3012 continue; 3013 } 3014 3015 // Otherwise we have to explicity sign extend the operand. 3016 // Check if Ext was reused to extend an operand. 3017 if (!ExtForOpnd) { 3018 // If yes, create a new one. 3019 DEBUG(dbgs() << "More operands to ext\n"); 3020 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3021 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3022 if (!isa<Instruction>(ValForExtOpnd)) { 3023 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3024 continue; 3025 } 3026 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3027 } 3028 if (Exts) 3029 Exts->push_back(ExtForOpnd); 3030 TPT.setOperand(ExtForOpnd, 0, Opnd); 3031 3032 // Move the sign extension before the insertion point. 3033 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3034 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3035 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3036 // If more sext are required, new instructions will have to be created. 3037 ExtForOpnd = nullptr; 3038 } 3039 if (ExtForOpnd == Ext) { 3040 DEBUG(dbgs() << "Extension is useless now\n"); 3041 TPT.eraseInstruction(Ext); 3042 } 3043 return ExtOpnd; 3044 } 3045 3046 /// Check whether or not promoting an instruction to a wider type is profitable. 3047 /// \p NewCost gives the cost of extension instructions created by the 3048 /// promotion. 3049 /// \p OldCost gives the cost of extension instructions before the promotion 3050 /// plus the number of instructions that have been 3051 /// matched in the addressing mode the promotion. 3052 /// \p PromotedOperand is the value that has been promoted. 3053 /// \return True if the promotion is profitable, false otherwise. 3054 bool AddressingModeMatcher::isPromotionProfitable( 3055 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3056 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3057 // The cost of the new extensions is greater than the cost of the 3058 // old extension plus what we folded. 3059 // This is not profitable. 3060 if (NewCost > OldCost) 3061 return false; 3062 if (NewCost < OldCost) 3063 return true; 3064 // The promotion is neutral but it may help folding the sign extension in 3065 // loads for instance. 3066 // Check that we did not create an illegal instruction. 3067 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3068 } 3069 3070 /// Given an instruction or constant expr, see if we can fold the operation 3071 /// into the addressing mode. If so, update the addressing mode and return 3072 /// true, otherwise return false without modifying AddrMode. 3073 /// If \p MovedAway is not NULL, it contains the information of whether or 3074 /// not AddrInst has to be folded into the addressing mode on success. 3075 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3076 /// because it has been moved away. 3077 /// Thus AddrInst must not be added in the matched instructions. 3078 /// This state can happen when AddrInst is a sext, since it may be moved away. 3079 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3080 /// not be referenced anymore. 3081 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3082 unsigned Depth, 3083 bool *MovedAway) { 3084 // Avoid exponential behavior on extremely deep expression trees. 3085 if (Depth >= 5) return false; 3086 3087 // By default, all matched instructions stay in place. 3088 if (MovedAway) 3089 *MovedAway = false; 3090 3091 switch (Opcode) { 3092 case Instruction::PtrToInt: 3093 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3094 return matchAddr(AddrInst->getOperand(0), Depth); 3095 case Instruction::IntToPtr: { 3096 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3097 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3098 // This inttoptr is a no-op if the integer type is pointer sized. 3099 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3100 return matchAddr(AddrInst->getOperand(0), Depth); 3101 return false; 3102 } 3103 case Instruction::BitCast: 3104 // BitCast is always a noop, and we can handle it as long as it is 3105 // int->int or pointer->pointer (we don't want int<->fp or something). 3106 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3107 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3108 // Don't touch identity bitcasts. These were probably put here by LSR, 3109 // and we don't want to mess around with them. Assume it knows what it 3110 // is doing. 3111 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3112 return matchAddr(AddrInst->getOperand(0), Depth); 3113 return false; 3114 case Instruction::AddrSpaceCast: { 3115 unsigned SrcAS 3116 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3117 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3118 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3119 return matchAddr(AddrInst->getOperand(0), Depth); 3120 return false; 3121 } 3122 case Instruction::Add: { 3123 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3124 ExtAddrMode BackupAddrMode = AddrMode; 3125 unsigned OldSize = AddrModeInsts.size(); 3126 // Start a transaction at this point. 3127 // The LHS may match but not the RHS. 3128 // Therefore, we need a higher level restoration point to undo partially 3129 // matched operation. 3130 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3131 TPT.getRestorationPoint(); 3132 3133 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3134 matchAddr(AddrInst->getOperand(0), Depth+1)) 3135 return true; 3136 3137 // Restore the old addr mode info. 3138 AddrMode = BackupAddrMode; 3139 AddrModeInsts.resize(OldSize); 3140 TPT.rollback(LastKnownGood); 3141 3142 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3143 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3144 matchAddr(AddrInst->getOperand(1), Depth+1)) 3145 return true; 3146 3147 // Otherwise we definitely can't merge the ADD in. 3148 AddrMode = BackupAddrMode; 3149 AddrModeInsts.resize(OldSize); 3150 TPT.rollback(LastKnownGood); 3151 break; 3152 } 3153 //case Instruction::Or: 3154 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3155 //break; 3156 case Instruction::Mul: 3157 case Instruction::Shl: { 3158 // Can only handle X*C and X << C. 3159 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3160 if (!RHS) 3161 return false; 3162 int64_t Scale = RHS->getSExtValue(); 3163 if (Opcode == Instruction::Shl) 3164 Scale = 1LL << Scale; 3165 3166 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3167 } 3168 case Instruction::GetElementPtr: { 3169 // Scan the GEP. We check it if it contains constant offsets and at most 3170 // one variable offset. 3171 int VariableOperand = -1; 3172 unsigned VariableScale = 0; 3173 3174 int64_t ConstantOffset = 0; 3175 gep_type_iterator GTI = gep_type_begin(AddrInst); 3176 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3177 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3178 const StructLayout *SL = DL.getStructLayout(STy); 3179 unsigned Idx = 3180 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3181 ConstantOffset += SL->getElementOffset(Idx); 3182 } else { 3183 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3184 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3185 ConstantOffset += CI->getSExtValue()*TypeSize; 3186 } else if (TypeSize) { // Scales of zero don't do anything. 3187 // We only allow one variable index at the moment. 3188 if (VariableOperand != -1) 3189 return false; 3190 3191 // Remember the variable index. 3192 VariableOperand = i; 3193 VariableScale = TypeSize; 3194 } 3195 } 3196 } 3197 3198 // A common case is for the GEP to only do a constant offset. In this case, 3199 // just add it to the disp field and check validity. 3200 if (VariableOperand == -1) { 3201 AddrMode.BaseOffs += ConstantOffset; 3202 if (ConstantOffset == 0 || 3203 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3204 // Check to see if we can fold the base pointer in too. 3205 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3206 return true; 3207 } 3208 AddrMode.BaseOffs -= ConstantOffset; 3209 return false; 3210 } 3211 3212 // Save the valid addressing mode in case we can't match. 3213 ExtAddrMode BackupAddrMode = AddrMode; 3214 unsigned OldSize = AddrModeInsts.size(); 3215 3216 // See if the scale and offset amount is valid for this target. 3217 AddrMode.BaseOffs += ConstantOffset; 3218 3219 // Match the base operand of the GEP. 3220 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3221 // If it couldn't be matched, just stuff the value in a register. 3222 if (AddrMode.HasBaseReg) { 3223 AddrMode = BackupAddrMode; 3224 AddrModeInsts.resize(OldSize); 3225 return false; 3226 } 3227 AddrMode.HasBaseReg = true; 3228 AddrMode.BaseReg = AddrInst->getOperand(0); 3229 } 3230 3231 // Match the remaining variable portion of the GEP. 3232 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3233 Depth)) { 3234 // If it couldn't be matched, try stuffing the base into a register 3235 // instead of matching it, and retrying the match of the scale. 3236 AddrMode = BackupAddrMode; 3237 AddrModeInsts.resize(OldSize); 3238 if (AddrMode.HasBaseReg) 3239 return false; 3240 AddrMode.HasBaseReg = true; 3241 AddrMode.BaseReg = AddrInst->getOperand(0); 3242 AddrMode.BaseOffs += ConstantOffset; 3243 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3244 VariableScale, Depth)) { 3245 // If even that didn't work, bail. 3246 AddrMode = BackupAddrMode; 3247 AddrModeInsts.resize(OldSize); 3248 return false; 3249 } 3250 } 3251 3252 return true; 3253 } 3254 case Instruction::SExt: 3255 case Instruction::ZExt: { 3256 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3257 if (!Ext) 3258 return false; 3259 3260 // Try to move this ext out of the way of the addressing mode. 3261 // Ask for a method for doing so. 3262 TypePromotionHelper::Action TPH = 3263 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3264 if (!TPH) 3265 return false; 3266 3267 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3268 TPT.getRestorationPoint(); 3269 unsigned CreatedInstsCost = 0; 3270 unsigned ExtCost = !TLI.isExtFree(Ext); 3271 Value *PromotedOperand = 3272 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3273 // SExt has been moved away. 3274 // Thus either it will be rematched later in the recursive calls or it is 3275 // gone. Anyway, we must not fold it into the addressing mode at this point. 3276 // E.g., 3277 // op = add opnd, 1 3278 // idx = ext op 3279 // addr = gep base, idx 3280 // is now: 3281 // promotedOpnd = ext opnd <- no match here 3282 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3283 // addr = gep base, op <- match 3284 if (MovedAway) 3285 *MovedAway = true; 3286 3287 assert(PromotedOperand && 3288 "TypePromotionHelper should have filtered out those cases"); 3289 3290 ExtAddrMode BackupAddrMode = AddrMode; 3291 unsigned OldSize = AddrModeInsts.size(); 3292 3293 if (!matchAddr(PromotedOperand, Depth) || 3294 // The total of the new cost is equal to the cost of the created 3295 // instructions. 3296 // The total of the old cost is equal to the cost of the extension plus 3297 // what we have saved in the addressing mode. 3298 !isPromotionProfitable(CreatedInstsCost, 3299 ExtCost + (AddrModeInsts.size() - OldSize), 3300 PromotedOperand)) { 3301 AddrMode = BackupAddrMode; 3302 AddrModeInsts.resize(OldSize); 3303 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3304 TPT.rollback(LastKnownGood); 3305 return false; 3306 } 3307 return true; 3308 } 3309 } 3310 return false; 3311 } 3312 3313 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3314 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3315 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3316 /// for the target. 3317 /// 3318 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3319 // Start a transaction at this point that we will rollback if the matching 3320 // fails. 3321 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3322 TPT.getRestorationPoint(); 3323 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3324 // Fold in immediates if legal for the target. 3325 AddrMode.BaseOffs += CI->getSExtValue(); 3326 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3327 return true; 3328 AddrMode.BaseOffs -= CI->getSExtValue(); 3329 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3330 // If this is a global variable, try to fold it into the addressing mode. 3331 if (!AddrMode.BaseGV) { 3332 AddrMode.BaseGV = GV; 3333 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3334 return true; 3335 AddrMode.BaseGV = nullptr; 3336 } 3337 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3338 ExtAddrMode BackupAddrMode = AddrMode; 3339 unsigned OldSize = AddrModeInsts.size(); 3340 3341 // Check to see if it is possible to fold this operation. 3342 bool MovedAway = false; 3343 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3344 // This instruction may have been moved away. If so, there is nothing 3345 // to check here. 3346 if (MovedAway) 3347 return true; 3348 // Okay, it's possible to fold this. Check to see if it is actually 3349 // *profitable* to do so. We use a simple cost model to avoid increasing 3350 // register pressure too much. 3351 if (I->hasOneUse() || 3352 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3353 AddrModeInsts.push_back(I); 3354 return true; 3355 } 3356 3357 // It isn't profitable to do this, roll back. 3358 //cerr << "NOT FOLDING: " << *I; 3359 AddrMode = BackupAddrMode; 3360 AddrModeInsts.resize(OldSize); 3361 TPT.rollback(LastKnownGood); 3362 } 3363 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3364 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3365 return true; 3366 TPT.rollback(LastKnownGood); 3367 } else if (isa<ConstantPointerNull>(Addr)) { 3368 // Null pointer gets folded without affecting the addressing mode. 3369 return true; 3370 } 3371 3372 // Worse case, the target should support [reg] addressing modes. :) 3373 if (!AddrMode.HasBaseReg) { 3374 AddrMode.HasBaseReg = true; 3375 AddrMode.BaseReg = Addr; 3376 // Still check for legality in case the target supports [imm] but not [i+r]. 3377 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3378 return true; 3379 AddrMode.HasBaseReg = false; 3380 AddrMode.BaseReg = nullptr; 3381 } 3382 3383 // If the base register is already taken, see if we can do [r+r]. 3384 if (AddrMode.Scale == 0) { 3385 AddrMode.Scale = 1; 3386 AddrMode.ScaledReg = Addr; 3387 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3388 return true; 3389 AddrMode.Scale = 0; 3390 AddrMode.ScaledReg = nullptr; 3391 } 3392 // Couldn't match. 3393 TPT.rollback(LastKnownGood); 3394 return false; 3395 } 3396 3397 /// Check to see if all uses of OpVal by the specified inline asm call are due 3398 /// to memory operands. If so, return true, otherwise return false. 3399 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3400 const TargetMachine &TM) { 3401 const Function *F = CI->getParent()->getParent(); 3402 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3403 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3404 TargetLowering::AsmOperandInfoVector TargetConstraints = 3405 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3406 ImmutableCallSite(CI)); 3407 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3408 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3409 3410 // Compute the constraint code and ConstraintType to use. 3411 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3412 3413 // If this asm operand is our Value*, and if it isn't an indirect memory 3414 // operand, we can't fold it! 3415 if (OpInfo.CallOperandVal == OpVal && 3416 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3417 !OpInfo.isIndirect)) 3418 return false; 3419 } 3420 3421 return true; 3422 } 3423 3424 /// Recursively walk all the uses of I until we find a memory use. 3425 /// If we find an obviously non-foldable instruction, return true. 3426 /// Add the ultimately found memory instructions to MemoryUses. 3427 static bool FindAllMemoryUses( 3428 Instruction *I, 3429 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3430 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3431 // If we already considered this instruction, we're done. 3432 if (!ConsideredInsts.insert(I).second) 3433 return false; 3434 3435 // If this is an obviously unfoldable instruction, bail out. 3436 if (!MightBeFoldableInst(I)) 3437 return true; 3438 3439 // Loop over all the uses, recursively processing them. 3440 for (Use &U : I->uses()) { 3441 Instruction *UserI = cast<Instruction>(U.getUser()); 3442 3443 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3444 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3445 continue; 3446 } 3447 3448 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3449 unsigned opNo = U.getOperandNo(); 3450 if (opNo == 0) return true; // Storing addr, not into addr. 3451 MemoryUses.push_back(std::make_pair(SI, opNo)); 3452 continue; 3453 } 3454 3455 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3456 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3457 if (!IA) return true; 3458 3459 // If this is a memory operand, we're cool, otherwise bail out. 3460 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3461 return true; 3462 continue; 3463 } 3464 3465 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3466 return true; 3467 } 3468 3469 return false; 3470 } 3471 3472 /// Return true if Val is already known to be live at the use site that we're 3473 /// folding it into. If so, there is no cost to include it in the addressing 3474 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3475 /// instruction already. 3476 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3477 Value *KnownLive2) { 3478 // If Val is either of the known-live values, we know it is live! 3479 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3480 return true; 3481 3482 // All values other than instructions and arguments (e.g. constants) are live. 3483 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3484 3485 // If Val is a constant sized alloca in the entry block, it is live, this is 3486 // true because it is just a reference to the stack/frame pointer, which is 3487 // live for the whole function. 3488 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3489 if (AI->isStaticAlloca()) 3490 return true; 3491 3492 // Check to see if this value is already used in the memory instruction's 3493 // block. If so, it's already live into the block at the very least, so we 3494 // can reasonably fold it. 3495 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3496 } 3497 3498 /// It is possible for the addressing mode of the machine to fold the specified 3499 /// instruction into a load or store that ultimately uses it. 3500 /// However, the specified instruction has multiple uses. 3501 /// Given this, it may actually increase register pressure to fold it 3502 /// into the load. For example, consider this code: 3503 /// 3504 /// X = ... 3505 /// Y = X+1 3506 /// use(Y) -> nonload/store 3507 /// Z = Y+1 3508 /// load Z 3509 /// 3510 /// In this case, Y has multiple uses, and can be folded into the load of Z 3511 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3512 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3513 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3514 /// number of computations either. 3515 /// 3516 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3517 /// X was live across 'load Z' for other reasons, we actually *would* want to 3518 /// fold the addressing mode in the Z case. This would make Y die earlier. 3519 bool AddressingModeMatcher:: 3520 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3521 ExtAddrMode &AMAfter) { 3522 if (IgnoreProfitability) return true; 3523 3524 // AMBefore is the addressing mode before this instruction was folded into it, 3525 // and AMAfter is the addressing mode after the instruction was folded. Get 3526 // the set of registers referenced by AMAfter and subtract out those 3527 // referenced by AMBefore: this is the set of values which folding in this 3528 // address extends the lifetime of. 3529 // 3530 // Note that there are only two potential values being referenced here, 3531 // BaseReg and ScaleReg (global addresses are always available, as are any 3532 // folded immediates). 3533 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3534 3535 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3536 // lifetime wasn't extended by adding this instruction. 3537 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3538 BaseReg = nullptr; 3539 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3540 ScaledReg = nullptr; 3541 3542 // If folding this instruction (and it's subexprs) didn't extend any live 3543 // ranges, we're ok with it. 3544 if (!BaseReg && !ScaledReg) 3545 return true; 3546 3547 // If all uses of this instruction are ultimately load/store/inlineasm's, 3548 // check to see if their addressing modes will include this instruction. If 3549 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3550 // uses. 3551 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3552 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3553 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3554 return false; // Has a non-memory, non-foldable use! 3555 3556 // Now that we know that all uses of this instruction are part of a chain of 3557 // computation involving only operations that could theoretically be folded 3558 // into a memory use, loop over each of these uses and see if they could 3559 // *actually* fold the instruction. 3560 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3561 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3562 Instruction *User = MemoryUses[i].first; 3563 unsigned OpNo = MemoryUses[i].second; 3564 3565 // Get the access type of this use. If the use isn't a pointer, we don't 3566 // know what it accesses. 3567 Value *Address = User->getOperand(OpNo); 3568 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3569 if (!AddrTy) 3570 return false; 3571 Type *AddressAccessTy = AddrTy->getElementType(); 3572 unsigned AS = AddrTy->getAddressSpace(); 3573 3574 // Do a match against the root of this address, ignoring profitability. This 3575 // will tell us if the addressing mode for the memory operation will 3576 // *actually* cover the shared instruction. 3577 ExtAddrMode Result; 3578 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3579 TPT.getRestorationPoint(); 3580 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3581 MemoryInst, Result, InsertedInsts, 3582 PromotedInsts, TPT); 3583 Matcher.IgnoreProfitability = true; 3584 bool Success = Matcher.matchAddr(Address, 0); 3585 (void)Success; assert(Success && "Couldn't select *anything*?"); 3586 3587 // The match was to check the profitability, the changes made are not 3588 // part of the original matcher. Therefore, they should be dropped 3589 // otherwise the original matcher will not present the right state. 3590 TPT.rollback(LastKnownGood); 3591 3592 // If the match didn't cover I, then it won't be shared by it. 3593 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3594 I) == MatchedAddrModeInsts.end()) 3595 return false; 3596 3597 MatchedAddrModeInsts.clear(); 3598 } 3599 3600 return true; 3601 } 3602 3603 } // end anonymous namespace 3604 3605 /// Return true if the specified values are defined in a 3606 /// different basic block than BB. 3607 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3608 if (Instruction *I = dyn_cast<Instruction>(V)) 3609 return I->getParent() != BB; 3610 return false; 3611 } 3612 3613 /// Load and Store Instructions often have addressing modes that can do 3614 /// significant amounts of computation. As such, instruction selection will try 3615 /// to get the load or store to do as much computation as possible for the 3616 /// program. The problem is that isel can only see within a single block. As 3617 /// such, we sink as much legal addressing mode work into the block as possible. 3618 /// 3619 /// This method is used to optimize both load/store and inline asms with memory 3620 /// operands. 3621 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3622 Type *AccessTy, unsigned AddrSpace) { 3623 Value *Repl = Addr; 3624 3625 // Try to collapse single-value PHI nodes. This is necessary to undo 3626 // unprofitable PRE transformations. 3627 SmallVector<Value*, 8> worklist; 3628 SmallPtrSet<Value*, 16> Visited; 3629 worklist.push_back(Addr); 3630 3631 // Use a worklist to iteratively look through PHI nodes, and ensure that 3632 // the addressing mode obtained from the non-PHI roots of the graph 3633 // are equivalent. 3634 Value *Consensus = nullptr; 3635 unsigned NumUsesConsensus = 0; 3636 bool IsNumUsesConsensusValid = false; 3637 SmallVector<Instruction*, 16> AddrModeInsts; 3638 ExtAddrMode AddrMode; 3639 TypePromotionTransaction TPT; 3640 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3641 TPT.getRestorationPoint(); 3642 while (!worklist.empty()) { 3643 Value *V = worklist.back(); 3644 worklist.pop_back(); 3645 3646 // Break use-def graph loops. 3647 if (!Visited.insert(V).second) { 3648 Consensus = nullptr; 3649 break; 3650 } 3651 3652 // For a PHI node, push all of its incoming values. 3653 if (PHINode *P = dyn_cast<PHINode>(V)) { 3654 for (Value *IncValue : P->incoming_values()) 3655 worklist.push_back(IncValue); 3656 continue; 3657 } 3658 3659 // For non-PHIs, determine the addressing mode being computed. 3660 SmallVector<Instruction*, 16> NewAddrModeInsts; 3661 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3662 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3663 InsertedInsts, PromotedInsts, TPT); 3664 3665 // This check is broken into two cases with very similar code to avoid using 3666 // getNumUses() as much as possible. Some values have a lot of uses, so 3667 // calling getNumUses() unconditionally caused a significant compile-time 3668 // regression. 3669 if (!Consensus) { 3670 Consensus = V; 3671 AddrMode = NewAddrMode; 3672 AddrModeInsts = NewAddrModeInsts; 3673 continue; 3674 } else if (NewAddrMode == AddrMode) { 3675 if (!IsNumUsesConsensusValid) { 3676 NumUsesConsensus = Consensus->getNumUses(); 3677 IsNumUsesConsensusValid = true; 3678 } 3679 3680 // Ensure that the obtained addressing mode is equivalent to that obtained 3681 // for all other roots of the PHI traversal. Also, when choosing one 3682 // such root as representative, select the one with the most uses in order 3683 // to keep the cost modeling heuristics in AddressingModeMatcher 3684 // applicable. 3685 unsigned NumUses = V->getNumUses(); 3686 if (NumUses > NumUsesConsensus) { 3687 Consensus = V; 3688 NumUsesConsensus = NumUses; 3689 AddrModeInsts = NewAddrModeInsts; 3690 } 3691 continue; 3692 } 3693 3694 Consensus = nullptr; 3695 break; 3696 } 3697 3698 // If the addressing mode couldn't be determined, or if multiple different 3699 // ones were determined, bail out now. 3700 if (!Consensus) { 3701 TPT.rollback(LastKnownGood); 3702 return false; 3703 } 3704 TPT.commit(); 3705 3706 // Check to see if any of the instructions supersumed by this addr mode are 3707 // non-local to I's BB. 3708 bool AnyNonLocal = false; 3709 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3710 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3711 AnyNonLocal = true; 3712 break; 3713 } 3714 } 3715 3716 // If all the instructions matched are already in this BB, don't do anything. 3717 if (!AnyNonLocal) { 3718 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3719 return false; 3720 } 3721 3722 // Insert this computation right after this user. Since our caller is 3723 // scanning from the top of the BB to the bottom, reuse of the expr are 3724 // guaranteed to happen later. 3725 IRBuilder<> Builder(MemoryInst); 3726 3727 // Now that we determined the addressing expression we want to use and know 3728 // that we have to sink it into this block. Check to see if we have already 3729 // done this for some other load/store instr in this block. If so, reuse the 3730 // computation. 3731 Value *&SunkAddr = SunkAddrs[Addr]; 3732 if (SunkAddr) { 3733 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3734 << *MemoryInst << "\n"); 3735 if (SunkAddr->getType() != Addr->getType()) 3736 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3737 } else if (AddrSinkUsingGEPs || 3738 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3739 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3740 ->useAA())) { 3741 // By default, we use the GEP-based method when AA is used later. This 3742 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3743 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3744 << *MemoryInst << "\n"); 3745 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3746 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3747 3748 // First, find the pointer. 3749 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3750 ResultPtr = AddrMode.BaseReg; 3751 AddrMode.BaseReg = nullptr; 3752 } 3753 3754 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3755 // We can't add more than one pointer together, nor can we scale a 3756 // pointer (both of which seem meaningless). 3757 if (ResultPtr || AddrMode.Scale != 1) 3758 return false; 3759 3760 ResultPtr = AddrMode.ScaledReg; 3761 AddrMode.Scale = 0; 3762 } 3763 3764 if (AddrMode.BaseGV) { 3765 if (ResultPtr) 3766 return false; 3767 3768 ResultPtr = AddrMode.BaseGV; 3769 } 3770 3771 // If the real base value actually came from an inttoptr, then the matcher 3772 // will look through it and provide only the integer value. In that case, 3773 // use it here. 3774 if (!ResultPtr && AddrMode.BaseReg) { 3775 ResultPtr = 3776 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3777 AddrMode.BaseReg = nullptr; 3778 } else if (!ResultPtr && AddrMode.Scale == 1) { 3779 ResultPtr = 3780 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3781 AddrMode.Scale = 0; 3782 } 3783 3784 if (!ResultPtr && 3785 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3786 SunkAddr = Constant::getNullValue(Addr->getType()); 3787 } else if (!ResultPtr) { 3788 return false; 3789 } else { 3790 Type *I8PtrTy = 3791 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3792 Type *I8Ty = Builder.getInt8Ty(); 3793 3794 // Start with the base register. Do this first so that subsequent address 3795 // matching finds it last, which will prevent it from trying to match it 3796 // as the scaled value in case it happens to be a mul. That would be 3797 // problematic if we've sunk a different mul for the scale, because then 3798 // we'd end up sinking both muls. 3799 if (AddrMode.BaseReg) { 3800 Value *V = AddrMode.BaseReg; 3801 if (V->getType() != IntPtrTy) 3802 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3803 3804 ResultIndex = V; 3805 } 3806 3807 // Add the scale value. 3808 if (AddrMode.Scale) { 3809 Value *V = AddrMode.ScaledReg; 3810 if (V->getType() == IntPtrTy) { 3811 // done. 3812 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3813 cast<IntegerType>(V->getType())->getBitWidth()) { 3814 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3815 } else { 3816 // It is only safe to sign extend the BaseReg if we know that the math 3817 // required to create it did not overflow before we extend it. Since 3818 // the original IR value was tossed in favor of a constant back when 3819 // the AddrMode was created we need to bail out gracefully if widths 3820 // do not match instead of extending it. 3821 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3822 if (I && (ResultIndex != AddrMode.BaseReg)) 3823 I->eraseFromParent(); 3824 return false; 3825 } 3826 3827 if (AddrMode.Scale != 1) 3828 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3829 "sunkaddr"); 3830 if (ResultIndex) 3831 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3832 else 3833 ResultIndex = V; 3834 } 3835 3836 // Add in the Base Offset if present. 3837 if (AddrMode.BaseOffs) { 3838 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3839 if (ResultIndex) { 3840 // We need to add this separately from the scale above to help with 3841 // SDAG consecutive load/store merging. 3842 if (ResultPtr->getType() != I8PtrTy) 3843 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3844 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3845 } 3846 3847 ResultIndex = V; 3848 } 3849 3850 if (!ResultIndex) { 3851 SunkAddr = ResultPtr; 3852 } else { 3853 if (ResultPtr->getType() != I8PtrTy) 3854 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3855 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3856 } 3857 3858 if (SunkAddr->getType() != Addr->getType()) 3859 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3860 } 3861 } else { 3862 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3863 << *MemoryInst << "\n"); 3864 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3865 Value *Result = nullptr; 3866 3867 // Start with the base register. Do this first so that subsequent address 3868 // matching finds it last, which will prevent it from trying to match it 3869 // as the scaled value in case it happens to be a mul. That would be 3870 // problematic if we've sunk a different mul for the scale, because then 3871 // we'd end up sinking both muls. 3872 if (AddrMode.BaseReg) { 3873 Value *V = AddrMode.BaseReg; 3874 if (V->getType()->isPointerTy()) 3875 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3876 if (V->getType() != IntPtrTy) 3877 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3878 Result = V; 3879 } 3880 3881 // Add the scale value. 3882 if (AddrMode.Scale) { 3883 Value *V = AddrMode.ScaledReg; 3884 if (V->getType() == IntPtrTy) { 3885 // done. 3886 } else if (V->getType()->isPointerTy()) { 3887 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3888 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3889 cast<IntegerType>(V->getType())->getBitWidth()) { 3890 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3891 } else { 3892 // It is only safe to sign extend the BaseReg if we know that the math 3893 // required to create it did not overflow before we extend it. Since 3894 // the original IR value was tossed in favor of a constant back when 3895 // the AddrMode was created we need to bail out gracefully if widths 3896 // do not match instead of extending it. 3897 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3898 if (I && (Result != AddrMode.BaseReg)) 3899 I->eraseFromParent(); 3900 return false; 3901 } 3902 if (AddrMode.Scale != 1) 3903 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3904 "sunkaddr"); 3905 if (Result) 3906 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3907 else 3908 Result = V; 3909 } 3910 3911 // Add in the BaseGV if present. 3912 if (AddrMode.BaseGV) { 3913 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3914 if (Result) 3915 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3916 else 3917 Result = V; 3918 } 3919 3920 // Add in the Base Offset if present. 3921 if (AddrMode.BaseOffs) { 3922 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3923 if (Result) 3924 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3925 else 3926 Result = V; 3927 } 3928 3929 if (!Result) 3930 SunkAddr = Constant::getNullValue(Addr->getType()); 3931 else 3932 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3933 } 3934 3935 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3936 3937 // If we have no uses, recursively delete the value and all dead instructions 3938 // using it. 3939 if (Repl->use_empty()) { 3940 // This can cause recursive deletion, which can invalidate our iterator. 3941 // Use a WeakVH to hold onto it in case this happens. 3942 WeakVH IterHandle(&*CurInstIterator); 3943 BasicBlock *BB = CurInstIterator->getParent(); 3944 3945 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3946 3947 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3948 // If the iterator instruction was recursively deleted, start over at the 3949 // start of the block. 3950 CurInstIterator = BB->begin(); 3951 SunkAddrs.clear(); 3952 } 3953 } 3954 ++NumMemoryInsts; 3955 return true; 3956 } 3957 3958 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3959 /// address computing into the block when possible / profitable. 3960 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3961 bool MadeChange = false; 3962 3963 const TargetRegisterInfo *TRI = 3964 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3965 TargetLowering::AsmOperandInfoVector TargetConstraints = 3966 TLI->ParseConstraints(*DL, TRI, CS); 3967 unsigned ArgNo = 0; 3968 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3969 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3970 3971 // Compute the constraint code and ConstraintType to use. 3972 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3973 3974 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3975 OpInfo.isIndirect) { 3976 Value *OpVal = CS->getArgOperand(ArgNo++); 3977 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3978 } else if (OpInfo.Type == InlineAsm::isInput) 3979 ArgNo++; 3980 } 3981 3982 return MadeChange; 3983 } 3984 3985 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3986 /// sign extensions. 3987 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3988 assert(!Inst->use_empty() && "Input must have at least one use"); 3989 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3990 bool IsSExt = isa<SExtInst>(FirstUser); 3991 Type *ExtTy = FirstUser->getType(); 3992 for (const User *U : Inst->users()) { 3993 const Instruction *UI = cast<Instruction>(U); 3994 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3995 return false; 3996 Type *CurTy = UI->getType(); 3997 // Same input and output types: Same instruction after CSE. 3998 if (CurTy == ExtTy) 3999 continue; 4000 4001 // If IsSExt is true, we are in this situation: 4002 // a = Inst 4003 // b = sext ty1 a to ty2 4004 // c = sext ty1 a to ty3 4005 // Assuming ty2 is shorter than ty3, this could be turned into: 4006 // a = Inst 4007 // b = sext ty1 a to ty2 4008 // c = sext ty2 b to ty3 4009 // However, the last sext is not free. 4010 if (IsSExt) 4011 return false; 4012 4013 // This is a ZExt, maybe this is free to extend from one type to another. 4014 // In that case, we would not account for a different use. 4015 Type *NarrowTy; 4016 Type *LargeTy; 4017 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4018 CurTy->getScalarType()->getIntegerBitWidth()) { 4019 NarrowTy = CurTy; 4020 LargeTy = ExtTy; 4021 } else { 4022 NarrowTy = ExtTy; 4023 LargeTy = CurTy; 4024 } 4025 4026 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4027 return false; 4028 } 4029 // All uses are the same or can be derived from one another for free. 4030 return true; 4031 } 4032 4033 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4034 /// load instruction. 4035 /// If an ext(load) can be formed, it is returned via \p LI for the load 4036 /// and \p Inst for the extension. 4037 /// Otherwise LI == nullptr and Inst == nullptr. 4038 /// When some promotion happened, \p TPT contains the proper state to 4039 /// revert them. 4040 /// 4041 /// \return true when promoting was necessary to expose the ext(load) 4042 /// opportunity, false otherwise. 4043 /// 4044 /// Example: 4045 /// \code 4046 /// %ld = load i32* %addr 4047 /// %add = add nuw i32 %ld, 4 4048 /// %zext = zext i32 %add to i64 4049 /// \endcode 4050 /// => 4051 /// \code 4052 /// %ld = load i32* %addr 4053 /// %zext = zext i32 %ld to i64 4054 /// %add = add nuw i64 %zext, 4 4055 /// \encode 4056 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4057 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4058 LoadInst *&LI, Instruction *&Inst, 4059 const SmallVectorImpl<Instruction *> &Exts, 4060 unsigned CreatedInstsCost = 0) { 4061 // Iterate over all the extensions to see if one form an ext(load). 4062 for (auto I : Exts) { 4063 // Check if we directly have ext(load). 4064 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4065 Inst = I; 4066 // No promotion happened here. 4067 return false; 4068 } 4069 // Check whether or not we want to do any promotion. 4070 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4071 continue; 4072 // Get the action to perform the promotion. 4073 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4074 I, InsertedInsts, *TLI, PromotedInsts); 4075 // Check if we can promote. 4076 if (!TPH) 4077 continue; 4078 // Save the current state. 4079 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4080 TPT.getRestorationPoint(); 4081 SmallVector<Instruction *, 4> NewExts; 4082 unsigned NewCreatedInstsCost = 0; 4083 unsigned ExtCost = !TLI->isExtFree(I); 4084 // Promote. 4085 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4086 &NewExts, nullptr, *TLI); 4087 assert(PromotedVal && 4088 "TypePromotionHelper should have filtered out those cases"); 4089 4090 // We would be able to merge only one extension in a load. 4091 // Therefore, if we have more than 1 new extension we heuristically 4092 // cut this search path, because it means we degrade the code quality. 4093 // With exactly 2, the transformation is neutral, because we will merge 4094 // one extension but leave one. However, we optimistically keep going, 4095 // because the new extension may be removed too. 4096 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4097 TotalCreatedInstsCost -= ExtCost; 4098 if (!StressExtLdPromotion && 4099 (TotalCreatedInstsCost > 1 || 4100 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4101 // The promotion is not profitable, rollback to the previous state. 4102 TPT.rollback(LastKnownGood); 4103 continue; 4104 } 4105 // The promotion is profitable. 4106 // Check if it exposes an ext(load). 4107 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4108 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4109 // If we have created a new extension, i.e., now we have two 4110 // extensions. We must make sure one of them is merged with 4111 // the load, otherwise we may degrade the code quality. 4112 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4113 // Promotion happened. 4114 return true; 4115 // If this does not help to expose an ext(load) then, rollback. 4116 TPT.rollback(LastKnownGood); 4117 } 4118 // None of the extension can form an ext(load). 4119 LI = nullptr; 4120 Inst = nullptr; 4121 return false; 4122 } 4123 4124 /// Move a zext or sext fed by a load into the same basic block as the load, 4125 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4126 /// extend into the load. 4127 /// \p I[in/out] the extension may be modified during the process if some 4128 /// promotions apply. 4129 /// 4130 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4131 // Try to promote a chain of computation if it allows to form 4132 // an extended load. 4133 TypePromotionTransaction TPT; 4134 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4135 TPT.getRestorationPoint(); 4136 SmallVector<Instruction *, 1> Exts; 4137 Exts.push_back(I); 4138 // Look for a load being extended. 4139 LoadInst *LI = nullptr; 4140 Instruction *OldExt = I; 4141 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4142 if (!LI || !I) { 4143 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4144 "the code must remain the same"); 4145 I = OldExt; 4146 return false; 4147 } 4148 4149 // If they're already in the same block, there's nothing to do. 4150 // Make the cheap checks first if we did not promote. 4151 // If we promoted, we need to check if it is indeed profitable. 4152 if (!HasPromoted && LI->getParent() == I->getParent()) 4153 return false; 4154 4155 EVT VT = TLI->getValueType(*DL, I->getType()); 4156 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4157 4158 // If the load has other users and the truncate is not free, this probably 4159 // isn't worthwhile. 4160 if (!LI->hasOneUse() && TLI && 4161 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4162 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4163 I = OldExt; 4164 TPT.rollback(LastKnownGood); 4165 return false; 4166 } 4167 4168 // Check whether the target supports casts folded into loads. 4169 unsigned LType; 4170 if (isa<ZExtInst>(I)) 4171 LType = ISD::ZEXTLOAD; 4172 else { 4173 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4174 LType = ISD::SEXTLOAD; 4175 } 4176 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4177 I = OldExt; 4178 TPT.rollback(LastKnownGood); 4179 return false; 4180 } 4181 4182 // Move the extend into the same block as the load, so that SelectionDAG 4183 // can fold it. 4184 TPT.commit(); 4185 I->removeFromParent(); 4186 I->insertAfter(LI); 4187 ++NumExtsMoved; 4188 return true; 4189 } 4190 4191 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4192 BasicBlock *DefBB = I->getParent(); 4193 4194 // If the result of a {s|z}ext and its source are both live out, rewrite all 4195 // other uses of the source with result of extension. 4196 Value *Src = I->getOperand(0); 4197 if (Src->hasOneUse()) 4198 return false; 4199 4200 // Only do this xform if truncating is free. 4201 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4202 return false; 4203 4204 // Only safe to perform the optimization if the source is also defined in 4205 // this block. 4206 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4207 return false; 4208 4209 bool DefIsLiveOut = false; 4210 for (User *U : I->users()) { 4211 Instruction *UI = cast<Instruction>(U); 4212 4213 // Figure out which BB this ext is used in. 4214 BasicBlock *UserBB = UI->getParent(); 4215 if (UserBB == DefBB) continue; 4216 DefIsLiveOut = true; 4217 break; 4218 } 4219 if (!DefIsLiveOut) 4220 return false; 4221 4222 // Make sure none of the uses are PHI nodes. 4223 for (User *U : Src->users()) { 4224 Instruction *UI = cast<Instruction>(U); 4225 BasicBlock *UserBB = UI->getParent(); 4226 if (UserBB == DefBB) continue; 4227 // Be conservative. We don't want this xform to end up introducing 4228 // reloads just before load / store instructions. 4229 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4230 return false; 4231 } 4232 4233 // InsertedTruncs - Only insert one trunc in each block once. 4234 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4235 4236 bool MadeChange = false; 4237 for (Use &U : Src->uses()) { 4238 Instruction *User = cast<Instruction>(U.getUser()); 4239 4240 // Figure out which BB this ext is used in. 4241 BasicBlock *UserBB = User->getParent(); 4242 if (UserBB == DefBB) continue; 4243 4244 // Both src and def are live in this block. Rewrite the use. 4245 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4246 4247 if (!InsertedTrunc) { 4248 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4249 assert(InsertPt != UserBB->end()); 4250 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4251 InsertedInsts.insert(InsertedTrunc); 4252 } 4253 4254 // Replace a use of the {s|z}ext source with a use of the result. 4255 U = InsertedTrunc; 4256 ++NumExtUses; 4257 MadeChange = true; 4258 } 4259 4260 return MadeChange; 4261 } 4262 4263 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4264 // just after the load if the target can fold this into one extload instruction, 4265 // with the hope of eliminating some of the other later "and" instructions using 4266 // the loaded value. "and"s that are made trivially redundant by the insertion 4267 // of the new "and" are removed by this function, while others (e.g. those whose 4268 // path from the load goes through a phi) are left for isel to potentially 4269 // remove. 4270 // 4271 // For example: 4272 // 4273 // b0: 4274 // x = load i32 4275 // ... 4276 // b1: 4277 // y = and x, 0xff 4278 // z = use y 4279 // 4280 // becomes: 4281 // 4282 // b0: 4283 // x = load i32 4284 // x' = and x, 0xff 4285 // ... 4286 // b1: 4287 // z = use x' 4288 // 4289 // whereas: 4290 // 4291 // b0: 4292 // x1 = load i32 4293 // ... 4294 // b1: 4295 // x2 = load i32 4296 // ... 4297 // b2: 4298 // x = phi x1, x2 4299 // y = and x, 0xff 4300 // 4301 // becomes (after a call to optimizeLoadExt for each load): 4302 // 4303 // b0: 4304 // x1 = load i32 4305 // x1' = and x1, 0xff 4306 // ... 4307 // b1: 4308 // x2 = load i32 4309 // x2' = and x2, 0xff 4310 // ... 4311 // b2: 4312 // x = phi x1', x2' 4313 // y = and x, 0xff 4314 // 4315 4316 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4317 4318 if (!Load->isSimple() || 4319 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4320 return false; 4321 4322 // Skip loads we've already transformed or have no reason to transform. 4323 if (Load->hasOneUse()) { 4324 User *LoadUser = *Load->user_begin(); 4325 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4326 !dyn_cast<PHINode>(LoadUser)) 4327 return false; 4328 } 4329 4330 // Look at all uses of Load, looking through phis, to determine how many bits 4331 // of the loaded value are needed. 4332 SmallVector<Instruction *, 8> WorkList; 4333 SmallPtrSet<Instruction *, 16> Visited; 4334 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4335 for (auto *U : Load->users()) 4336 WorkList.push_back(cast<Instruction>(U)); 4337 4338 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4339 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4340 APInt DemandBits(BitWidth, 0); 4341 APInt WidestAndBits(BitWidth, 0); 4342 4343 while (!WorkList.empty()) { 4344 Instruction *I = WorkList.back(); 4345 WorkList.pop_back(); 4346 4347 // Break use-def graph loops. 4348 if (!Visited.insert(I).second) 4349 continue; 4350 4351 // For a PHI node, push all of its users. 4352 if (auto *Phi = dyn_cast<PHINode>(I)) { 4353 for (auto *U : Phi->users()) 4354 WorkList.push_back(cast<Instruction>(U)); 4355 continue; 4356 } 4357 4358 switch (I->getOpcode()) { 4359 case llvm::Instruction::And: { 4360 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4361 if (!AndC) 4362 return false; 4363 APInt AndBits = AndC->getValue(); 4364 DemandBits |= AndBits; 4365 // Keep track of the widest and mask we see. 4366 if (AndBits.ugt(WidestAndBits)) 4367 WidestAndBits = AndBits; 4368 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4369 AndsToMaybeRemove.push_back(I); 4370 break; 4371 } 4372 4373 case llvm::Instruction::Shl: { 4374 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4375 if (!ShlC) 4376 return false; 4377 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4378 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4379 DemandBits |= ShlDemandBits; 4380 break; 4381 } 4382 4383 case llvm::Instruction::Trunc: { 4384 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4385 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4386 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4387 DemandBits |= TruncBits; 4388 break; 4389 } 4390 4391 default: 4392 return false; 4393 } 4394 } 4395 4396 uint32_t ActiveBits = DemandBits.getActiveBits(); 4397 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4398 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4399 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4400 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4401 // followed by an AND. 4402 // TODO: Look into removing this restriction by fixing backends to either 4403 // return false for isLoadExtLegal for i1 or have them select this pattern to 4404 // a single instruction. 4405 // 4406 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4407 // mask, since these are the only ands that will be removed by isel. 4408 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4409 WidestAndBits != DemandBits) 4410 return false; 4411 4412 LLVMContext &Ctx = Load->getType()->getContext(); 4413 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4414 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4415 4416 // Reject cases that won't be matched as extloads. 4417 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4418 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4419 return false; 4420 4421 IRBuilder<> Builder(Load->getNextNode()); 4422 auto *NewAnd = dyn_cast<Instruction>( 4423 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4424 4425 // Replace all uses of load with new and (except for the use of load in the 4426 // new and itself). 4427 Load->replaceAllUsesWith(NewAnd); 4428 NewAnd->setOperand(0, Load); 4429 4430 // Remove any and instructions that are now redundant. 4431 for (auto *And : AndsToMaybeRemove) 4432 // Check that the and mask is the same as the one we decided to put on the 4433 // new and. 4434 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4435 And->replaceAllUsesWith(NewAnd); 4436 if (&*CurInstIterator == And) 4437 CurInstIterator = std::next(And->getIterator()); 4438 And->eraseFromParent(); 4439 ++NumAndUses; 4440 } 4441 4442 ++NumAndsAdded; 4443 return true; 4444 } 4445 4446 /// Check if V (an operand of a select instruction) is an expensive instruction 4447 /// that is only used once. 4448 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4449 auto *I = dyn_cast<Instruction>(V); 4450 // If it's safe to speculatively execute, then it should not have side 4451 // effects; therefore, it's safe to sink and possibly *not* execute. 4452 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4453 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4454 } 4455 4456 /// Returns true if a SelectInst should be turned into an explicit branch. 4457 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4458 SelectInst *SI) { 4459 // FIXME: This should use the same heuristics as IfConversion to determine 4460 // whether a select is better represented as a branch. This requires that 4461 // branch probability metadata is preserved for the select, which is not the 4462 // case currently. 4463 4464 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4465 4466 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4467 // comparison condition. If the compare has more than one use, there's 4468 // probably another cmov or setcc around, so it's not worth emitting a branch. 4469 if (!Cmp || !Cmp->hasOneUse()) 4470 return false; 4471 4472 Value *CmpOp0 = Cmp->getOperand(0); 4473 Value *CmpOp1 = Cmp->getOperand(1); 4474 4475 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 4476 // on a load from memory. But if the load is used more than once, do not 4477 // change the select to a branch because the load is probably needed 4478 // regardless of whether the branch is taken or not. 4479 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 4480 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 4481 return true; 4482 4483 // If either operand of the select is expensive and only needed on one side 4484 // of the select, we should form a branch. 4485 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4486 sinkSelectOperand(TTI, SI->getFalseValue())) 4487 return true; 4488 4489 return false; 4490 } 4491 4492 4493 /// If we have a SelectInst that will likely profit from branch prediction, 4494 /// turn it into a branch. 4495 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4496 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4497 4498 // Can we convert the 'select' to CF ? 4499 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4500 return false; 4501 4502 TargetLowering::SelectSupportKind SelectKind; 4503 if (VectorCond) 4504 SelectKind = TargetLowering::VectorMaskSelect; 4505 else if (SI->getType()->isVectorTy()) 4506 SelectKind = TargetLowering::ScalarCondVectorVal; 4507 else 4508 SelectKind = TargetLowering::ScalarValSelect; 4509 4510 // Do we have efficient codegen support for this kind of 'selects' ? 4511 if (TLI->isSelectSupported(SelectKind)) { 4512 // We have efficient codegen support for the select instruction. 4513 // Check if it is profitable to keep this 'select'. 4514 if (!TLI->isPredictableSelectExpensive() || 4515 !isFormingBranchFromSelectProfitable(TTI, SI)) 4516 return false; 4517 } 4518 4519 ModifiedDT = true; 4520 4521 // Transform a sequence like this: 4522 // start: 4523 // %cmp = cmp uge i32 %a, %b 4524 // %sel = select i1 %cmp, i32 %c, i32 %d 4525 // 4526 // Into: 4527 // start: 4528 // %cmp = cmp uge i32 %a, %b 4529 // br i1 %cmp, label %select.true, label %select.false 4530 // select.true: 4531 // br label %select.end 4532 // select.false: 4533 // br label %select.end 4534 // select.end: 4535 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4536 // 4537 // In addition, we may sink instructions that produce %c or %d from 4538 // the entry block into the destination(s) of the new branch. 4539 // If the true or false blocks do not contain a sunken instruction, that 4540 // block and its branch may be optimized away. In that case, one side of the 4541 // first branch will point directly to select.end, and the corresponding PHI 4542 // predecessor block will be the start block. 4543 4544 // First, we split the block containing the select into 2 blocks. 4545 BasicBlock *StartBlock = SI->getParent(); 4546 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4547 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4548 4549 // Delete the unconditional branch that was just created by the split. 4550 StartBlock->getTerminator()->eraseFromParent(); 4551 4552 // These are the new basic blocks for the conditional branch. 4553 // At least one will become an actual new basic block. 4554 BasicBlock *TrueBlock = nullptr; 4555 BasicBlock *FalseBlock = nullptr; 4556 4557 // Sink expensive instructions into the conditional blocks to avoid executing 4558 // them speculatively. 4559 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4560 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4561 EndBlock->getParent(), EndBlock); 4562 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4563 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4564 TrueInst->moveBefore(TrueBranch); 4565 } 4566 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4567 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4568 EndBlock->getParent(), EndBlock); 4569 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4570 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4571 FalseInst->moveBefore(FalseBranch); 4572 } 4573 4574 // If there was nothing to sink, then arbitrarily choose the 'false' side 4575 // for a new input value to the PHI. 4576 if (TrueBlock == FalseBlock) { 4577 assert(TrueBlock == nullptr && 4578 "Unexpected basic block transform while optimizing select"); 4579 4580 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4581 EndBlock->getParent(), EndBlock); 4582 BranchInst::Create(EndBlock, FalseBlock); 4583 } 4584 4585 // Insert the real conditional branch based on the original condition. 4586 // If we did not create a new block for one of the 'true' or 'false' paths 4587 // of the condition, it means that side of the branch goes to the end block 4588 // directly and the path originates from the start block from the point of 4589 // view of the new PHI. 4590 if (TrueBlock == nullptr) { 4591 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4592 TrueBlock = StartBlock; 4593 } else if (FalseBlock == nullptr) { 4594 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4595 FalseBlock = StartBlock; 4596 } else { 4597 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4598 } 4599 4600 // The select itself is replaced with a PHI Node. 4601 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4602 PN->takeName(SI); 4603 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4604 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4605 4606 SI->replaceAllUsesWith(PN); 4607 SI->eraseFromParent(); 4608 4609 // Instruct OptimizeBlock to skip to the next block. 4610 CurInstIterator = StartBlock->end(); 4611 ++NumSelectsExpanded; 4612 return true; 4613 } 4614 4615 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4616 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4617 int SplatElem = -1; 4618 for (unsigned i = 0; i < Mask.size(); ++i) { 4619 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4620 return false; 4621 SplatElem = Mask[i]; 4622 } 4623 4624 return true; 4625 } 4626 4627 /// Some targets have expensive vector shifts if the lanes aren't all the same 4628 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4629 /// it's often worth sinking a shufflevector splat down to its use so that 4630 /// codegen can spot all lanes are identical. 4631 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4632 BasicBlock *DefBB = SVI->getParent(); 4633 4634 // Only do this xform if variable vector shifts are particularly expensive. 4635 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4636 return false; 4637 4638 // We only expect better codegen by sinking a shuffle if we can recognise a 4639 // constant splat. 4640 if (!isBroadcastShuffle(SVI)) 4641 return false; 4642 4643 // InsertedShuffles - Only insert a shuffle in each block once. 4644 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4645 4646 bool MadeChange = false; 4647 for (User *U : SVI->users()) { 4648 Instruction *UI = cast<Instruction>(U); 4649 4650 // Figure out which BB this ext is used in. 4651 BasicBlock *UserBB = UI->getParent(); 4652 if (UserBB == DefBB) continue; 4653 4654 // For now only apply this when the splat is used by a shift instruction. 4655 if (!UI->isShift()) continue; 4656 4657 // Everything checks out, sink the shuffle if the user's block doesn't 4658 // already have a copy. 4659 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4660 4661 if (!InsertedShuffle) { 4662 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4663 assert(InsertPt != UserBB->end()); 4664 InsertedShuffle = 4665 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4666 SVI->getOperand(2), "", &*InsertPt); 4667 } 4668 4669 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4670 MadeChange = true; 4671 } 4672 4673 // If we removed all uses, nuke the shuffle. 4674 if (SVI->use_empty()) { 4675 SVI->eraseFromParent(); 4676 MadeChange = true; 4677 } 4678 4679 return MadeChange; 4680 } 4681 4682 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4683 if (!TLI || !DL) 4684 return false; 4685 4686 Value *Cond = SI->getCondition(); 4687 Type *OldType = Cond->getType(); 4688 LLVMContext &Context = Cond->getContext(); 4689 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4690 unsigned RegWidth = RegType.getSizeInBits(); 4691 4692 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4693 return false; 4694 4695 // If the register width is greater than the type width, expand the condition 4696 // of the switch instruction and each case constant to the width of the 4697 // register. By widening the type of the switch condition, subsequent 4698 // comparisons (for case comparisons) will not need to be extended to the 4699 // preferred register width, so we will potentially eliminate N-1 extends, 4700 // where N is the number of cases in the switch. 4701 auto *NewType = Type::getIntNTy(Context, RegWidth); 4702 4703 // Zero-extend the switch condition and case constants unless the switch 4704 // condition is a function argument that is already being sign-extended. 4705 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4706 // everything instead. 4707 Instruction::CastOps ExtType = Instruction::ZExt; 4708 if (auto *Arg = dyn_cast<Argument>(Cond)) 4709 if (Arg->hasSExtAttr()) 4710 ExtType = Instruction::SExt; 4711 4712 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4713 ExtInst->insertBefore(SI); 4714 SI->setCondition(ExtInst); 4715 for (SwitchInst::CaseIt Case : SI->cases()) { 4716 APInt NarrowConst = Case.getCaseValue()->getValue(); 4717 APInt WideConst = (ExtType == Instruction::ZExt) ? 4718 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 4719 Case.setValue(ConstantInt::get(Context, WideConst)); 4720 } 4721 4722 return true; 4723 } 4724 4725 namespace { 4726 /// \brief Helper class to promote a scalar operation to a vector one. 4727 /// This class is used to move downward extractelement transition. 4728 /// E.g., 4729 /// a = vector_op <2 x i32> 4730 /// b = extractelement <2 x i32> a, i32 0 4731 /// c = scalar_op b 4732 /// store c 4733 /// 4734 /// => 4735 /// a = vector_op <2 x i32> 4736 /// c = vector_op a (equivalent to scalar_op on the related lane) 4737 /// * d = extractelement <2 x i32> c, i32 0 4738 /// * store d 4739 /// Assuming both extractelement and store can be combine, we get rid of the 4740 /// transition. 4741 class VectorPromoteHelper { 4742 /// DataLayout associated with the current module. 4743 const DataLayout &DL; 4744 4745 /// Used to perform some checks on the legality of vector operations. 4746 const TargetLowering &TLI; 4747 4748 /// Used to estimated the cost of the promoted chain. 4749 const TargetTransformInfo &TTI; 4750 4751 /// The transition being moved downwards. 4752 Instruction *Transition; 4753 /// The sequence of instructions to be promoted. 4754 SmallVector<Instruction *, 4> InstsToBePromoted; 4755 /// Cost of combining a store and an extract. 4756 unsigned StoreExtractCombineCost; 4757 /// Instruction that will be combined with the transition. 4758 Instruction *CombineInst; 4759 4760 /// \brief The instruction that represents the current end of the transition. 4761 /// Since we are faking the promotion until we reach the end of the chain 4762 /// of computation, we need a way to get the current end of the transition. 4763 Instruction *getEndOfTransition() const { 4764 if (InstsToBePromoted.empty()) 4765 return Transition; 4766 return InstsToBePromoted.back(); 4767 } 4768 4769 /// \brief Return the index of the original value in the transition. 4770 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4771 /// c, is at index 0. 4772 unsigned getTransitionOriginalValueIdx() const { 4773 assert(isa<ExtractElementInst>(Transition) && 4774 "Other kind of transitions are not supported yet"); 4775 return 0; 4776 } 4777 4778 /// \brief Return the index of the index in the transition. 4779 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4780 /// is at index 1. 4781 unsigned getTransitionIdx() const { 4782 assert(isa<ExtractElementInst>(Transition) && 4783 "Other kind of transitions are not supported yet"); 4784 return 1; 4785 } 4786 4787 /// \brief Get the type of the transition. 4788 /// This is the type of the original value. 4789 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4790 /// transition is <2 x i32>. 4791 Type *getTransitionType() const { 4792 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4793 } 4794 4795 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4796 /// I.e., we have the following sequence: 4797 /// Def = Transition <ty1> a to <ty2> 4798 /// b = ToBePromoted <ty2> Def, ... 4799 /// => 4800 /// b = ToBePromoted <ty1> a, ... 4801 /// Def = Transition <ty1> ToBePromoted to <ty2> 4802 void promoteImpl(Instruction *ToBePromoted); 4803 4804 /// \brief Check whether or not it is profitable to promote all the 4805 /// instructions enqueued to be promoted. 4806 bool isProfitableToPromote() { 4807 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4808 unsigned Index = isa<ConstantInt>(ValIdx) 4809 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4810 : -1; 4811 Type *PromotedType = getTransitionType(); 4812 4813 StoreInst *ST = cast<StoreInst>(CombineInst); 4814 unsigned AS = ST->getPointerAddressSpace(); 4815 unsigned Align = ST->getAlignment(); 4816 // Check if this store is supported. 4817 if (!TLI.allowsMisalignedMemoryAccesses( 4818 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4819 Align)) { 4820 // If this is not supported, there is no way we can combine 4821 // the extract with the store. 4822 return false; 4823 } 4824 4825 // The scalar chain of computation has to pay for the transition 4826 // scalar to vector. 4827 // The vector chain has to account for the combining cost. 4828 uint64_t ScalarCost = 4829 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4830 uint64_t VectorCost = StoreExtractCombineCost; 4831 for (const auto &Inst : InstsToBePromoted) { 4832 // Compute the cost. 4833 // By construction, all instructions being promoted are arithmetic ones. 4834 // Moreover, one argument is a constant that can be viewed as a splat 4835 // constant. 4836 Value *Arg0 = Inst->getOperand(0); 4837 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4838 isa<ConstantFP>(Arg0); 4839 TargetTransformInfo::OperandValueKind Arg0OVK = 4840 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4841 : TargetTransformInfo::OK_AnyValue; 4842 TargetTransformInfo::OperandValueKind Arg1OVK = 4843 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4844 : TargetTransformInfo::OK_AnyValue; 4845 ScalarCost += TTI.getArithmeticInstrCost( 4846 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4847 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4848 Arg0OVK, Arg1OVK); 4849 } 4850 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4851 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4852 return ScalarCost > VectorCost; 4853 } 4854 4855 /// \brief Generate a constant vector with \p Val with the same 4856 /// number of elements as the transition. 4857 /// \p UseSplat defines whether or not \p Val should be replicated 4858 /// across the whole vector. 4859 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4860 /// otherwise we generate a vector with as many undef as possible: 4861 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4862 /// used at the index of the extract. 4863 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4864 unsigned ExtractIdx = UINT_MAX; 4865 if (!UseSplat) { 4866 // If we cannot determine where the constant must be, we have to 4867 // use a splat constant. 4868 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4869 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4870 ExtractIdx = CstVal->getSExtValue(); 4871 else 4872 UseSplat = true; 4873 } 4874 4875 unsigned End = getTransitionType()->getVectorNumElements(); 4876 if (UseSplat) 4877 return ConstantVector::getSplat(End, Val); 4878 4879 SmallVector<Constant *, 4> ConstVec; 4880 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4881 for (unsigned Idx = 0; Idx != End; ++Idx) { 4882 if (Idx == ExtractIdx) 4883 ConstVec.push_back(Val); 4884 else 4885 ConstVec.push_back(UndefVal); 4886 } 4887 return ConstantVector::get(ConstVec); 4888 } 4889 4890 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4891 /// in \p Use can trigger undefined behavior. 4892 static bool canCauseUndefinedBehavior(const Instruction *Use, 4893 unsigned OperandIdx) { 4894 // This is not safe to introduce undef when the operand is on 4895 // the right hand side of a division-like instruction. 4896 if (OperandIdx != 1) 4897 return false; 4898 switch (Use->getOpcode()) { 4899 default: 4900 return false; 4901 case Instruction::SDiv: 4902 case Instruction::UDiv: 4903 case Instruction::SRem: 4904 case Instruction::URem: 4905 return true; 4906 case Instruction::FDiv: 4907 case Instruction::FRem: 4908 return !Use->hasNoNaNs(); 4909 } 4910 llvm_unreachable(nullptr); 4911 } 4912 4913 public: 4914 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4915 const TargetTransformInfo &TTI, Instruction *Transition, 4916 unsigned CombineCost) 4917 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4918 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4919 assert(Transition && "Do not know how to promote null"); 4920 } 4921 4922 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4923 bool canPromote(const Instruction *ToBePromoted) const { 4924 // We could support CastInst too. 4925 return isa<BinaryOperator>(ToBePromoted); 4926 } 4927 4928 /// \brief Check if it is profitable to promote \p ToBePromoted 4929 /// by moving downward the transition through. 4930 bool shouldPromote(const Instruction *ToBePromoted) const { 4931 // Promote only if all the operands can be statically expanded. 4932 // Indeed, we do not want to introduce any new kind of transitions. 4933 for (const Use &U : ToBePromoted->operands()) { 4934 const Value *Val = U.get(); 4935 if (Val == getEndOfTransition()) { 4936 // If the use is a division and the transition is on the rhs, 4937 // we cannot promote the operation, otherwise we may create a 4938 // division by zero. 4939 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4940 return false; 4941 continue; 4942 } 4943 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4944 !isa<ConstantFP>(Val)) 4945 return false; 4946 } 4947 // Check that the resulting operation is legal. 4948 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4949 if (!ISDOpcode) 4950 return false; 4951 return StressStoreExtract || 4952 TLI.isOperationLegalOrCustom( 4953 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4954 } 4955 4956 /// \brief Check whether or not \p Use can be combined 4957 /// with the transition. 4958 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4959 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4960 4961 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4962 void enqueueForPromotion(Instruction *ToBePromoted) { 4963 InstsToBePromoted.push_back(ToBePromoted); 4964 } 4965 4966 /// \brief Set the instruction that will be combined with the transition. 4967 void recordCombineInstruction(Instruction *ToBeCombined) { 4968 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4969 CombineInst = ToBeCombined; 4970 } 4971 4972 /// \brief Promote all the instructions enqueued for promotion if it is 4973 /// is profitable. 4974 /// \return True if the promotion happened, false otherwise. 4975 bool promote() { 4976 // Check if there is something to promote. 4977 // Right now, if we do not have anything to combine with, 4978 // we assume the promotion is not profitable. 4979 if (InstsToBePromoted.empty() || !CombineInst) 4980 return false; 4981 4982 // Check cost. 4983 if (!StressStoreExtract && !isProfitableToPromote()) 4984 return false; 4985 4986 // Promote. 4987 for (auto &ToBePromoted : InstsToBePromoted) 4988 promoteImpl(ToBePromoted); 4989 InstsToBePromoted.clear(); 4990 return true; 4991 } 4992 }; 4993 } // End of anonymous namespace. 4994 4995 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4996 // At this point, we know that all the operands of ToBePromoted but Def 4997 // can be statically promoted. 4998 // For Def, we need to use its parameter in ToBePromoted: 4999 // b = ToBePromoted ty1 a 5000 // Def = Transition ty1 b to ty2 5001 // Move the transition down. 5002 // 1. Replace all uses of the promoted operation by the transition. 5003 // = ... b => = ... Def. 5004 assert(ToBePromoted->getType() == Transition->getType() && 5005 "The type of the result of the transition does not match " 5006 "the final type"); 5007 ToBePromoted->replaceAllUsesWith(Transition); 5008 // 2. Update the type of the uses. 5009 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5010 Type *TransitionTy = getTransitionType(); 5011 ToBePromoted->mutateType(TransitionTy); 5012 // 3. Update all the operands of the promoted operation with promoted 5013 // operands. 5014 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5015 for (Use &U : ToBePromoted->operands()) { 5016 Value *Val = U.get(); 5017 Value *NewVal = nullptr; 5018 if (Val == Transition) 5019 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5020 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5021 isa<ConstantFP>(Val)) { 5022 // Use a splat constant if it is not safe to use undef. 5023 NewVal = getConstantVector( 5024 cast<Constant>(Val), 5025 isa<UndefValue>(Val) || 5026 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5027 } else 5028 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5029 "this?"); 5030 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5031 } 5032 Transition->removeFromParent(); 5033 Transition->insertAfter(ToBePromoted); 5034 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5035 } 5036 5037 /// Some targets can do store(extractelement) with one instruction. 5038 /// Try to push the extractelement towards the stores when the target 5039 /// has this feature and this is profitable. 5040 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5041 unsigned CombineCost = UINT_MAX; 5042 if (DisableStoreExtract || !TLI || 5043 (!StressStoreExtract && 5044 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5045 Inst->getOperand(1), CombineCost))) 5046 return false; 5047 5048 // At this point we know that Inst is a vector to scalar transition. 5049 // Try to move it down the def-use chain, until: 5050 // - We can combine the transition with its single use 5051 // => we got rid of the transition. 5052 // - We escape the current basic block 5053 // => we would need to check that we are moving it at a cheaper place and 5054 // we do not do that for now. 5055 BasicBlock *Parent = Inst->getParent(); 5056 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5057 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5058 // If the transition has more than one use, assume this is not going to be 5059 // beneficial. 5060 while (Inst->hasOneUse()) { 5061 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5062 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5063 5064 if (ToBePromoted->getParent() != Parent) { 5065 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5066 << ToBePromoted->getParent()->getName() 5067 << ") than the transition (" << Parent->getName() << ").\n"); 5068 return false; 5069 } 5070 5071 if (VPH.canCombine(ToBePromoted)) { 5072 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5073 << "will be combined with: " << *ToBePromoted << '\n'); 5074 VPH.recordCombineInstruction(ToBePromoted); 5075 bool Changed = VPH.promote(); 5076 NumStoreExtractExposed += Changed; 5077 return Changed; 5078 } 5079 5080 DEBUG(dbgs() << "Try promoting.\n"); 5081 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5082 return false; 5083 5084 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5085 5086 VPH.enqueueForPromotion(ToBePromoted); 5087 Inst = ToBePromoted; 5088 } 5089 return false; 5090 } 5091 5092 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5093 // Bail out if we inserted the instruction to prevent optimizations from 5094 // stepping on each other's toes. 5095 if (InsertedInsts.count(I)) 5096 return false; 5097 5098 if (PHINode *P = dyn_cast<PHINode>(I)) { 5099 // It is possible for very late stage optimizations (such as SimplifyCFG) 5100 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5101 // trivial PHI, go ahead and zap it here. 5102 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5103 P->replaceAllUsesWith(V); 5104 P->eraseFromParent(); 5105 ++NumPHIsElim; 5106 return true; 5107 } 5108 return false; 5109 } 5110 5111 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5112 // If the source of the cast is a constant, then this should have 5113 // already been constant folded. The only reason NOT to constant fold 5114 // it is if something (e.g. LSR) was careful to place the constant 5115 // evaluation in a block other than then one that uses it (e.g. to hoist 5116 // the address of globals out of a loop). If this is the case, we don't 5117 // want to forward-subst the cast. 5118 if (isa<Constant>(CI->getOperand(0))) 5119 return false; 5120 5121 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5122 return true; 5123 5124 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5125 /// Sink a zext or sext into its user blocks if the target type doesn't 5126 /// fit in one register 5127 if (TLI && 5128 TLI->getTypeAction(CI->getContext(), 5129 TLI->getValueType(*DL, CI->getType())) == 5130 TargetLowering::TypeExpandInteger) { 5131 return SinkCast(CI); 5132 } else { 5133 bool MadeChange = moveExtToFormExtLoad(I); 5134 return MadeChange | optimizeExtUses(I); 5135 } 5136 } 5137 return false; 5138 } 5139 5140 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5141 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5142 return OptimizeCmpExpression(CI); 5143 5144 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5145 stripInvariantGroupMetadata(*LI); 5146 if (TLI) { 5147 bool Modified = optimizeLoadExt(LI); 5148 unsigned AS = LI->getPointerAddressSpace(); 5149 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5150 return Modified; 5151 } 5152 return false; 5153 } 5154 5155 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5156 stripInvariantGroupMetadata(*SI); 5157 if (TLI) { 5158 unsigned AS = SI->getPointerAddressSpace(); 5159 return optimizeMemoryInst(I, SI->getOperand(1), 5160 SI->getOperand(0)->getType(), AS); 5161 } 5162 return false; 5163 } 5164 5165 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5166 5167 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5168 BinOp->getOpcode() == Instruction::LShr)) { 5169 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5170 if (TLI && CI && TLI->hasExtractBitsInsn()) 5171 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5172 5173 return false; 5174 } 5175 5176 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5177 if (GEPI->hasAllZeroIndices()) { 5178 /// The GEP operand must be a pointer, so must its result -> BitCast 5179 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5180 GEPI->getName(), GEPI); 5181 GEPI->replaceAllUsesWith(NC); 5182 GEPI->eraseFromParent(); 5183 ++NumGEPsElim; 5184 optimizeInst(NC, ModifiedDT); 5185 return true; 5186 } 5187 return false; 5188 } 5189 5190 if (CallInst *CI = dyn_cast<CallInst>(I)) 5191 return optimizeCallInst(CI, ModifiedDT); 5192 5193 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5194 return optimizeSelectInst(SI); 5195 5196 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5197 return optimizeShuffleVectorInst(SVI); 5198 5199 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5200 return optimizeSwitchInst(Switch); 5201 5202 if (isa<ExtractElementInst>(I)) 5203 return optimizeExtractElementInst(I); 5204 5205 return false; 5206 } 5207 5208 // In this pass we look for GEP and cast instructions that are used 5209 // across basic blocks and rewrite them to improve basic-block-at-a-time 5210 // selection. 5211 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5212 SunkAddrs.clear(); 5213 bool MadeChange = false; 5214 5215 CurInstIterator = BB.begin(); 5216 while (CurInstIterator != BB.end()) { 5217 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5218 if (ModifiedDT) 5219 return true; 5220 } 5221 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5222 5223 return MadeChange; 5224 } 5225 5226 // llvm.dbg.value is far away from the value then iSel may not be able 5227 // handle it properly. iSel will drop llvm.dbg.value if it can not 5228 // find a node corresponding to the value. 5229 bool CodeGenPrepare::placeDbgValues(Function &F) { 5230 bool MadeChange = false; 5231 for (BasicBlock &BB : F) { 5232 Instruction *PrevNonDbgInst = nullptr; 5233 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5234 Instruction *Insn = &*BI++; 5235 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5236 // Leave dbg.values that refer to an alloca alone. These 5237 // instrinsics describe the address of a variable (= the alloca) 5238 // being taken. They should not be moved next to the alloca 5239 // (and to the beginning of the scope), but rather stay close to 5240 // where said address is used. 5241 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5242 PrevNonDbgInst = Insn; 5243 continue; 5244 } 5245 5246 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5247 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5248 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5249 DVI->removeFromParent(); 5250 if (isa<PHINode>(VI)) 5251 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5252 else 5253 DVI->insertAfter(VI); 5254 MadeChange = true; 5255 ++NumDbgValueMoved; 5256 } 5257 } 5258 } 5259 return MadeChange; 5260 } 5261 5262 // If there is a sequence that branches based on comparing a single bit 5263 // against zero that can be combined into a single instruction, and the 5264 // target supports folding these into a single instruction, sink the 5265 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5266 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5267 // searched for. 5268 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5269 if (!EnableAndCmpSinking) 5270 return false; 5271 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5272 return false; 5273 bool MadeChange = false; 5274 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 5275 BasicBlock *BB = &*I++; 5276 5277 // Does this BB end with the following? 5278 // %andVal = and %val, #single-bit-set 5279 // %icmpVal = icmp %andResult, 0 5280 // br i1 %cmpVal label %dest1, label %dest2" 5281 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 5282 if (!Brcc || !Brcc->isConditional()) 5283 continue; 5284 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5285 if (!Cmp || Cmp->getParent() != BB) 5286 continue; 5287 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5288 if (!Zero || !Zero->isZero()) 5289 continue; 5290 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5291 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 5292 continue; 5293 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5294 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5295 continue; 5296 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 5297 5298 // Push the "and; icmp" for any users that are conditional branches. 5299 // Since there can only be one branch use per BB, we don't need to keep 5300 // track of which BBs we insert into. 5301 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 5302 UI != E; ) { 5303 Use &TheUse = *UI; 5304 // Find brcc use. 5305 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 5306 ++UI; 5307 if (!BrccUser || !BrccUser->isConditional()) 5308 continue; 5309 BasicBlock *UserBB = BrccUser->getParent(); 5310 if (UserBB == BB) continue; 5311 DEBUG(dbgs() << "found Brcc use\n"); 5312 5313 // Sink the "and; icmp" to use. 5314 MadeChange = true; 5315 BinaryOperator *NewAnd = 5316 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5317 BrccUser); 5318 CmpInst *NewCmp = 5319 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5320 "", BrccUser); 5321 TheUse = NewCmp; 5322 ++NumAndCmpsMoved; 5323 DEBUG(BrccUser->getParent()->dump()); 5324 } 5325 } 5326 return MadeChange; 5327 } 5328 5329 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5330 /// success, or returns false if no or invalid metadata was found. 5331 static bool extractBranchMetadata(BranchInst *BI, 5332 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5333 assert(BI->isConditional() && 5334 "Looking for probabilities on unconditional branch?"); 5335 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5336 if (!ProfileData || ProfileData->getNumOperands() != 3) 5337 return false; 5338 5339 const auto *CITrue = 5340 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5341 const auto *CIFalse = 5342 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5343 if (!CITrue || !CIFalse) 5344 return false; 5345 5346 ProbTrue = CITrue->getValue().getZExtValue(); 5347 ProbFalse = CIFalse->getValue().getZExtValue(); 5348 5349 return true; 5350 } 5351 5352 /// \brief Scale down both weights to fit into uint32_t. 5353 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5354 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5355 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5356 NewTrue = NewTrue / Scale; 5357 NewFalse = NewFalse / Scale; 5358 } 5359 5360 /// \brief Some targets prefer to split a conditional branch like: 5361 /// \code 5362 /// %0 = icmp ne i32 %a, 0 5363 /// %1 = icmp ne i32 %b, 0 5364 /// %or.cond = or i1 %0, %1 5365 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5366 /// \endcode 5367 /// into multiple branch instructions like: 5368 /// \code 5369 /// bb1: 5370 /// %0 = icmp ne i32 %a, 0 5371 /// br i1 %0, label %TrueBB, label %bb2 5372 /// bb2: 5373 /// %1 = icmp ne i32 %b, 0 5374 /// br i1 %1, label %TrueBB, label %FalseBB 5375 /// \endcode 5376 /// This usually allows instruction selection to do even further optimizations 5377 /// and combine the compare with the branch instruction. Currently this is 5378 /// applied for targets which have "cheap" jump instructions. 5379 /// 5380 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5381 /// 5382 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5383 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5384 return false; 5385 5386 bool MadeChange = false; 5387 for (auto &BB : F) { 5388 // Does this BB end with the following? 5389 // %cond1 = icmp|fcmp|binary instruction ... 5390 // %cond2 = icmp|fcmp|binary instruction ... 5391 // %cond.or = or|and i1 %cond1, cond2 5392 // br i1 %cond.or label %dest1, label %dest2" 5393 BinaryOperator *LogicOp; 5394 BasicBlock *TBB, *FBB; 5395 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5396 continue; 5397 5398 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5399 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5400 continue; 5401 5402 unsigned Opc; 5403 Value *Cond1, *Cond2; 5404 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5405 m_OneUse(m_Value(Cond2))))) 5406 Opc = Instruction::And; 5407 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5408 m_OneUse(m_Value(Cond2))))) 5409 Opc = Instruction::Or; 5410 else 5411 continue; 5412 5413 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5414 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5415 continue; 5416 5417 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5418 5419 // Create a new BB. 5420 auto *InsertBefore = std::next(Function::iterator(BB)) 5421 .getNodePtrUnchecked(); 5422 auto TmpBB = BasicBlock::Create(BB.getContext(), 5423 BB.getName() + ".cond.split", 5424 BB.getParent(), InsertBefore); 5425 5426 // Update original basic block by using the first condition directly by the 5427 // branch instruction and removing the no longer needed and/or instruction. 5428 Br1->setCondition(Cond1); 5429 LogicOp->eraseFromParent(); 5430 5431 // Depending on the conditon we have to either replace the true or the false 5432 // successor of the original branch instruction. 5433 if (Opc == Instruction::And) 5434 Br1->setSuccessor(0, TmpBB); 5435 else 5436 Br1->setSuccessor(1, TmpBB); 5437 5438 // Fill in the new basic block. 5439 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5440 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5441 I->removeFromParent(); 5442 I->insertBefore(Br2); 5443 } 5444 5445 // Update PHI nodes in both successors. The original BB needs to be 5446 // replaced in one succesor's PHI nodes, because the branch comes now from 5447 // the newly generated BB (NewBB). In the other successor we need to add one 5448 // incoming edge to the PHI nodes, because both branch instructions target 5449 // now the same successor. Depending on the original branch condition 5450 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5451 // we perfrom the correct update for the PHI nodes. 5452 // This doesn't change the successor order of the just created branch 5453 // instruction (or any other instruction). 5454 if (Opc == Instruction::Or) 5455 std::swap(TBB, FBB); 5456 5457 // Replace the old BB with the new BB. 5458 for (auto &I : *TBB) { 5459 PHINode *PN = dyn_cast<PHINode>(&I); 5460 if (!PN) 5461 break; 5462 int i; 5463 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5464 PN->setIncomingBlock(i, TmpBB); 5465 } 5466 5467 // Add another incoming edge form the new BB. 5468 for (auto &I : *FBB) { 5469 PHINode *PN = dyn_cast<PHINode>(&I); 5470 if (!PN) 5471 break; 5472 auto *Val = PN->getIncomingValueForBlock(&BB); 5473 PN->addIncoming(Val, TmpBB); 5474 } 5475 5476 // Update the branch weights (from SelectionDAGBuilder:: 5477 // FindMergedConditions). 5478 if (Opc == Instruction::Or) { 5479 // Codegen X | Y as: 5480 // BB1: 5481 // jmp_if_X TBB 5482 // jmp TmpBB 5483 // TmpBB: 5484 // jmp_if_Y TBB 5485 // jmp FBB 5486 // 5487 5488 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5489 // The requirement is that 5490 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5491 // = TrueProb for orignal BB. 5492 // Assuming the orignal weights are A and B, one choice is to set BB1's 5493 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5494 // assumes that 5495 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5496 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5497 // TmpBB, but the math is more complicated. 5498 uint64_t TrueWeight, FalseWeight; 5499 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5500 uint64_t NewTrueWeight = TrueWeight; 5501 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5502 scaleWeights(NewTrueWeight, NewFalseWeight); 5503 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5504 .createBranchWeights(TrueWeight, FalseWeight)); 5505 5506 NewTrueWeight = TrueWeight; 5507 NewFalseWeight = 2 * FalseWeight; 5508 scaleWeights(NewTrueWeight, NewFalseWeight); 5509 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5510 .createBranchWeights(TrueWeight, FalseWeight)); 5511 } 5512 } else { 5513 // Codegen X & Y as: 5514 // BB1: 5515 // jmp_if_X TmpBB 5516 // jmp FBB 5517 // TmpBB: 5518 // jmp_if_Y TBB 5519 // jmp FBB 5520 // 5521 // This requires creation of TmpBB after CurBB. 5522 5523 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5524 // The requirement is that 5525 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5526 // = FalseProb for orignal BB. 5527 // Assuming the orignal weights are A and B, one choice is to set BB1's 5528 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5529 // assumes that 5530 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5531 uint64_t TrueWeight, FalseWeight; 5532 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5533 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5534 uint64_t NewFalseWeight = FalseWeight; 5535 scaleWeights(NewTrueWeight, NewFalseWeight); 5536 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5537 .createBranchWeights(TrueWeight, FalseWeight)); 5538 5539 NewTrueWeight = 2 * TrueWeight; 5540 NewFalseWeight = FalseWeight; 5541 scaleWeights(NewTrueWeight, NewFalseWeight); 5542 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5543 .createBranchWeights(TrueWeight, FalseWeight)); 5544 } 5545 } 5546 5547 // Note: No point in getting fancy here, since the DT info is never 5548 // available to CodeGenPrepare. 5549 ModifiedDT = true; 5550 5551 MadeChange = true; 5552 5553 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5554 TmpBB->dump()); 5555 } 5556 return MadeChange; 5557 } 5558 5559 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5560 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5561 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5562 } 5563