1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 68 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 69 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 70 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 71 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 72 73 static cl::opt<bool> DisableBranchOpts( 74 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 75 cl::desc("Disable branch optimizations in CodeGenPrepare")); 76 77 static cl::opt<bool> 78 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 79 cl::desc("Disable GC optimizations in CodeGenPrepare")); 80 81 static cl::opt<bool> DisableSelectToBranch( 82 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 83 cl::desc("Disable select to branch conversion.")); 84 85 static cl::opt<bool> AddrSinkUsingGEPs( 86 "addr-sink-using-gep", cl::Hidden, cl::init(false), 87 cl::desc("Address sinking in CGP using GEPs.")); 88 89 static cl::opt<bool> EnableAndCmpSinking( 90 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 91 cl::desc("Enable sinkinig and/cmp into branches.")); 92 93 static cl::opt<bool> DisableStoreExtract( 94 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 95 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 96 97 static cl::opt<bool> StressStoreExtract( 98 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 99 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 100 101 static cl::opt<bool> DisableExtLdPromotion( 102 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 103 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 104 "CodeGenPrepare")); 105 106 static cl::opt<bool> StressExtLdPromotion( 107 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 108 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 109 "optimization in CodeGenPrepare")); 110 111 namespace { 112 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 113 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 114 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 115 class TypePromotionTransaction; 116 117 class CodeGenPrepare : public FunctionPass { 118 const TargetMachine *TM; 119 const TargetLowering *TLI; 120 const TargetTransformInfo *TTI; 121 const TargetLibraryInfo *TLInfo; 122 123 /// As we scan instructions optimizing them, this is the next instruction 124 /// to optimize. Transforms that can invalidate this should update it. 125 BasicBlock::iterator CurInstIterator; 126 127 /// Keeps track of non-local addresses that have been sunk into a block. 128 /// This allows us to avoid inserting duplicate code for blocks with 129 /// multiple load/stores of the same address. 130 ValueMap<Value*, Value*> SunkAddrs; 131 132 /// Keeps track of all instructions inserted for the current function. 133 SetOfInstrs InsertedInsts; 134 /// Keeps track of the type of the related instruction before their 135 /// promotion for the current function. 136 InstrToOrigTy PromotedInsts; 137 138 /// True if CFG is modified in any way. 139 bool ModifiedDT; 140 141 /// True if optimizing for size. 142 bool OptSize; 143 144 /// DataLayout for the Function being processed. 145 const DataLayout *DL; 146 147 public: 148 static char ID; // Pass identification, replacement for typeid 149 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 150 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 151 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 152 } 153 bool runOnFunction(Function &F) override; 154 155 const char *getPassName() const override { return "CodeGen Prepare"; } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetLibraryInfoWrapperPass>(); 160 AU.addRequired<TargetTransformInfoWrapperPass>(); 161 } 162 163 private: 164 bool eliminateFallThrough(Function &F); 165 bool eliminateMostlyEmptyBlocks(Function &F); 166 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 167 void eliminateMostlyEmptyBlock(BasicBlock *BB); 168 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 169 bool optimizeInst(Instruction *I, bool& ModifiedDT); 170 bool optimizeMemoryInst(Instruction *I, Value *Addr, 171 Type *AccessTy, unsigned AS); 172 bool optimizeInlineAsmInst(CallInst *CS); 173 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 174 bool moveExtToFormExtLoad(Instruction *&I); 175 bool optimizeExtUses(Instruction *I); 176 bool optimizeSelectInst(SelectInst *SI); 177 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 178 bool optimizeExtractElementInst(Instruction *Inst); 179 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 180 bool placeDbgValues(Function &F); 181 bool sinkAndCmp(Function &F); 182 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 183 Instruction *&Inst, 184 const SmallVectorImpl<Instruction *> &Exts, 185 unsigned CreatedInstCost); 186 bool splitBranchCondition(Function &F); 187 bool simplifyOffsetableRelocate(Instruction &I); 188 void stripInvariantGroupMetadata(Instruction &I); 189 }; 190 } 191 192 char CodeGenPrepare::ID = 0; 193 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 194 "Optimize for code generation", false, false) 195 196 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 197 return new CodeGenPrepare(TM); 198 } 199 200 bool CodeGenPrepare::runOnFunction(Function &F) { 201 if (skipOptnoneFunction(F)) 202 return false; 203 204 DL = &F.getParent()->getDataLayout(); 205 206 bool EverMadeChange = false; 207 // Clear per function information. 208 InsertedInsts.clear(); 209 PromotedInsts.clear(); 210 211 ModifiedDT = false; 212 if (TM) 213 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 214 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 215 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 216 OptSize = F.optForSize(); 217 218 /// This optimization identifies DIV instructions that can be 219 /// profitably bypassed and carried out with a shorter, faster divide. 220 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 221 const DenseMap<unsigned int, unsigned int> &BypassWidths = 222 TLI->getBypassSlowDivWidths(); 223 for (Function::iterator I = F.begin(); I != F.end(); I++) 224 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 225 } 226 227 // Eliminate blocks that contain only PHI nodes and an 228 // unconditional branch. 229 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 230 231 // llvm.dbg.value is far away from the value then iSel may not be able 232 // handle it properly. iSel will drop llvm.dbg.value if it can not 233 // find a node corresponding to the value. 234 EverMadeChange |= placeDbgValues(F); 235 236 // If there is a mask, compare against zero, and branch that can be combined 237 // into a single target instruction, push the mask and compare into branch 238 // users. Do this before OptimizeBlock -> OptimizeInst -> 239 // OptimizeCmpExpression, which perturbs the pattern being searched for. 240 if (!DisableBranchOpts) { 241 EverMadeChange |= sinkAndCmp(F); 242 EverMadeChange |= splitBranchCondition(F); 243 } 244 245 bool MadeChange = true; 246 while (MadeChange) { 247 MadeChange = false; 248 for (Function::iterator I = F.begin(); I != F.end(); ) { 249 BasicBlock *BB = &*I++; 250 bool ModifiedDTOnIteration = false; 251 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 252 253 // Restart BB iteration if the dominator tree of the Function was changed 254 if (ModifiedDTOnIteration) 255 break; 256 } 257 EverMadeChange |= MadeChange; 258 } 259 260 SunkAddrs.clear(); 261 262 if (!DisableBranchOpts) { 263 MadeChange = false; 264 SmallPtrSet<BasicBlock*, 8> WorkList; 265 for (BasicBlock &BB : F) { 266 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 267 MadeChange |= ConstantFoldTerminator(&BB, true); 268 if (!MadeChange) continue; 269 270 for (SmallVectorImpl<BasicBlock*>::iterator 271 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 272 if (pred_begin(*II) == pred_end(*II)) 273 WorkList.insert(*II); 274 } 275 276 // Delete the dead blocks and any of their dead successors. 277 MadeChange |= !WorkList.empty(); 278 while (!WorkList.empty()) { 279 BasicBlock *BB = *WorkList.begin(); 280 WorkList.erase(BB); 281 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 282 283 DeleteDeadBlock(BB); 284 285 for (SmallVectorImpl<BasicBlock*>::iterator 286 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 287 if (pred_begin(*II) == pred_end(*II)) 288 WorkList.insert(*II); 289 } 290 291 // Merge pairs of basic blocks with unconditional branches, connected by 292 // a single edge. 293 if (EverMadeChange || MadeChange) 294 MadeChange |= eliminateFallThrough(F); 295 296 EverMadeChange |= MadeChange; 297 } 298 299 if (!DisableGCOpts) { 300 SmallVector<Instruction *, 2> Statepoints; 301 for (BasicBlock &BB : F) 302 for (Instruction &I : BB) 303 if (isStatepoint(I)) 304 Statepoints.push_back(&I); 305 for (auto &I : Statepoints) 306 EverMadeChange |= simplifyOffsetableRelocate(*I); 307 } 308 309 return EverMadeChange; 310 } 311 312 /// Merge basic blocks which are connected by a single edge, where one of the 313 /// basic blocks has a single successor pointing to the other basic block, 314 /// which has a single predecessor. 315 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 316 bool Changed = false; 317 // Scan all of the blocks in the function, except for the entry block. 318 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 319 BasicBlock *BB = &*I++; 320 // If the destination block has a single pred, then this is a trivial 321 // edge, just collapse it. 322 BasicBlock *SinglePred = BB->getSinglePredecessor(); 323 324 // Don't merge if BB's address is taken. 325 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 326 327 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 328 if (Term && !Term->isConditional()) { 329 Changed = true; 330 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 331 // Remember if SinglePred was the entry block of the function. 332 // If so, we will need to move BB back to the entry position. 333 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 334 MergeBasicBlockIntoOnlyPred(BB, nullptr); 335 336 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 337 BB->moveBefore(&BB->getParent()->getEntryBlock()); 338 339 // We have erased a block. Update the iterator. 340 I = BB->getIterator(); 341 } 342 } 343 return Changed; 344 } 345 346 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 347 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 348 /// edges in ways that are non-optimal for isel. Start by eliminating these 349 /// blocks so we can split them the way we want them. 350 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 351 bool MadeChange = false; 352 // Note that this intentionally skips the entry block. 353 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 354 BasicBlock *BB = &*I++; 355 356 // If this block doesn't end with an uncond branch, ignore it. 357 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 358 if (!BI || !BI->isUnconditional()) 359 continue; 360 361 // If the instruction before the branch (skipping debug info) isn't a phi 362 // node, then other stuff is happening here. 363 BasicBlock::iterator BBI = BI->getIterator(); 364 if (BBI != BB->begin()) { 365 --BBI; 366 while (isa<DbgInfoIntrinsic>(BBI)) { 367 if (BBI == BB->begin()) 368 break; 369 --BBI; 370 } 371 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 372 continue; 373 } 374 375 // Do not break infinite loops. 376 BasicBlock *DestBB = BI->getSuccessor(0); 377 if (DestBB == BB) 378 continue; 379 380 if (!canMergeBlocks(BB, DestBB)) 381 continue; 382 383 eliminateMostlyEmptyBlock(BB); 384 MadeChange = true; 385 } 386 return MadeChange; 387 } 388 389 /// Return true if we can merge BB into DestBB if there is a single 390 /// unconditional branch between them, and BB contains no other non-phi 391 /// instructions. 392 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 393 const BasicBlock *DestBB) const { 394 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 395 // the successor. If there are more complex condition (e.g. preheaders), 396 // don't mess around with them. 397 BasicBlock::const_iterator BBI = BB->begin(); 398 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 399 for (const User *U : PN->users()) { 400 const Instruction *UI = cast<Instruction>(U); 401 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 402 return false; 403 // If User is inside DestBB block and it is a PHINode then check 404 // incoming value. If incoming value is not from BB then this is 405 // a complex condition (e.g. preheaders) we want to avoid here. 406 if (UI->getParent() == DestBB) { 407 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 408 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 409 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 410 if (Insn && Insn->getParent() == BB && 411 Insn->getParent() != UPN->getIncomingBlock(I)) 412 return false; 413 } 414 } 415 } 416 } 417 418 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 419 // and DestBB may have conflicting incoming values for the block. If so, we 420 // can't merge the block. 421 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 422 if (!DestBBPN) return true; // no conflict. 423 424 // Collect the preds of BB. 425 SmallPtrSet<const BasicBlock*, 16> BBPreds; 426 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 427 // It is faster to get preds from a PHI than with pred_iterator. 428 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 429 BBPreds.insert(BBPN->getIncomingBlock(i)); 430 } else { 431 BBPreds.insert(pred_begin(BB), pred_end(BB)); 432 } 433 434 // Walk the preds of DestBB. 435 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 436 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 437 if (BBPreds.count(Pred)) { // Common predecessor? 438 BBI = DestBB->begin(); 439 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 440 const Value *V1 = PN->getIncomingValueForBlock(Pred); 441 const Value *V2 = PN->getIncomingValueForBlock(BB); 442 443 // If V2 is a phi node in BB, look up what the mapped value will be. 444 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 445 if (V2PN->getParent() == BB) 446 V2 = V2PN->getIncomingValueForBlock(Pred); 447 448 // If there is a conflict, bail out. 449 if (V1 != V2) return false; 450 } 451 } 452 } 453 454 return true; 455 } 456 457 458 /// Eliminate a basic block that has only phi's and an unconditional branch in 459 /// it. 460 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 461 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 462 BasicBlock *DestBB = BI->getSuccessor(0); 463 464 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 465 466 // If the destination block has a single pred, then this is a trivial edge, 467 // just collapse it. 468 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 469 if (SinglePred != DestBB) { 470 // Remember if SinglePred was the entry block of the function. If so, we 471 // will need to move BB back to the entry position. 472 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 473 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 474 475 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 476 BB->moveBefore(&BB->getParent()->getEntryBlock()); 477 478 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 479 return; 480 } 481 } 482 483 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 484 // to handle the new incoming edges it is about to have. 485 PHINode *PN; 486 for (BasicBlock::iterator BBI = DestBB->begin(); 487 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 488 // Remove the incoming value for BB, and remember it. 489 Value *InVal = PN->removeIncomingValue(BB, false); 490 491 // Two options: either the InVal is a phi node defined in BB or it is some 492 // value that dominates BB. 493 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 494 if (InValPhi && InValPhi->getParent() == BB) { 495 // Add all of the input values of the input PHI as inputs of this phi. 496 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 497 PN->addIncoming(InValPhi->getIncomingValue(i), 498 InValPhi->getIncomingBlock(i)); 499 } else { 500 // Otherwise, add one instance of the dominating value for each edge that 501 // we will be adding. 502 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 503 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 504 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 505 } else { 506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 507 PN->addIncoming(InVal, *PI); 508 } 509 } 510 } 511 512 // The PHIs are now updated, change everything that refers to BB to use 513 // DestBB and remove BB. 514 BB->replaceAllUsesWith(DestBB); 515 BB->eraseFromParent(); 516 ++NumBlocksElim; 517 518 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 519 } 520 521 // Computes a map of base pointer relocation instructions to corresponding 522 // derived pointer relocation instructions given a vector of all relocate calls 523 static void computeBaseDerivedRelocateMap( 524 const SmallVectorImpl<User *> &AllRelocateCalls, 525 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 526 RelocateInstMap) { 527 // Collect information in two maps: one primarily for locating the base object 528 // while filling the second map; the second map is the final structure holding 529 // a mapping between Base and corresponding Derived relocate calls 530 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 531 for (auto &U : AllRelocateCalls) { 532 GCRelocateOperands ThisRelocate(U); 533 IntrinsicInst *I = cast<IntrinsicInst>(U); 534 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 535 ThisRelocate.getDerivedPtrIndex()); 536 RelocateIdxMap.insert(std::make_pair(K, I)); 537 } 538 for (auto &Item : RelocateIdxMap) { 539 std::pair<unsigned, unsigned> Key = Item.first; 540 if (Key.first == Key.second) 541 // Base relocation: nothing to insert 542 continue; 543 544 IntrinsicInst *I = Item.second; 545 auto BaseKey = std::make_pair(Key.first, Key.first); 546 547 // We're iterating over RelocateIdxMap so we cannot modify it. 548 auto MaybeBase = RelocateIdxMap.find(BaseKey); 549 if (MaybeBase == RelocateIdxMap.end()) 550 // TODO: We might want to insert a new base object relocate and gep off 551 // that, if there are enough derived object relocates. 552 continue; 553 554 RelocateInstMap[MaybeBase->second].push_back(I); 555 } 556 } 557 558 // Accepts a GEP and extracts the operands into a vector provided they're all 559 // small integer constants 560 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 561 SmallVectorImpl<Value *> &OffsetV) { 562 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 563 // Only accept small constant integer operands 564 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 565 if (!Op || Op->getZExtValue() > 20) 566 return false; 567 } 568 569 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 570 OffsetV.push_back(GEP->getOperand(i)); 571 return true; 572 } 573 574 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 575 // replace, computes a replacement, and affects it. 576 static bool 577 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 578 const SmallVectorImpl<IntrinsicInst *> &Targets) { 579 bool MadeChange = false; 580 for (auto &ToReplace : Targets) { 581 GCRelocateOperands MasterRelocate(RelocatedBase); 582 GCRelocateOperands ThisRelocate(ToReplace); 583 584 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 585 "Not relocating a derived object of the original base object"); 586 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 587 // A duplicate relocate call. TODO: coalesce duplicates. 588 continue; 589 } 590 591 Value *Base = ThisRelocate.getBasePtr(); 592 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 593 if (!Derived || Derived->getPointerOperand() != Base) 594 continue; 595 596 SmallVector<Value *, 2> OffsetV; 597 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 598 continue; 599 600 // Create a Builder and replace the target callsite with a gep 601 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 602 603 // Insert after RelocatedBase 604 IRBuilder<> Builder(RelocatedBase->getNextNode()); 605 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 606 607 // If gc_relocate does not match the actual type, cast it to the right type. 608 // In theory, there must be a bitcast after gc_relocate if the type does not 609 // match, and we should reuse it to get the derived pointer. But it could be 610 // cases like this: 611 // bb1: 612 // ... 613 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 614 // br label %merge 615 // 616 // bb2: 617 // ... 618 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 619 // br label %merge 620 // 621 // merge: 622 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 623 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 624 // 625 // In this case, we can not find the bitcast any more. So we insert a new bitcast 626 // no matter there is already one or not. In this way, we can handle all cases, and 627 // the extra bitcast should be optimized away in later passes. 628 Instruction *ActualRelocatedBase = RelocatedBase; 629 if (RelocatedBase->getType() != Base->getType()) { 630 ActualRelocatedBase = 631 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 632 } 633 Value *Replacement = Builder.CreateGEP( 634 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 635 Instruction *ReplacementInst = cast<Instruction>(Replacement); 636 Replacement->takeName(ToReplace); 637 // If the newly generated derived pointer's type does not match the original derived 638 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 639 Instruction *ActualReplacement = ReplacementInst; 640 if (ReplacementInst->getType() != ToReplace->getType()) { 641 ActualReplacement = 642 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 643 } 644 ToReplace->replaceAllUsesWith(ActualReplacement); 645 ToReplace->eraseFromParent(); 646 647 MadeChange = true; 648 } 649 return MadeChange; 650 } 651 652 // Turns this: 653 // 654 // %base = ... 655 // %ptr = gep %base + 15 656 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 657 // %base' = relocate(%tok, i32 4, i32 4) 658 // %ptr' = relocate(%tok, i32 4, i32 5) 659 // %val = load %ptr' 660 // 661 // into this: 662 // 663 // %base = ... 664 // %ptr = gep %base + 15 665 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 666 // %base' = gc.relocate(%tok, i32 4, i32 4) 667 // %ptr' = gep %base' + 15 668 // %val = load %ptr' 669 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 670 bool MadeChange = false; 671 SmallVector<User *, 2> AllRelocateCalls; 672 673 for (auto *U : I.users()) 674 if (isGCRelocate(dyn_cast<Instruction>(U))) 675 // Collect all the relocate calls associated with a statepoint 676 AllRelocateCalls.push_back(U); 677 678 // We need atleast one base pointer relocation + one derived pointer 679 // relocation to mangle 680 if (AllRelocateCalls.size() < 2) 681 return false; 682 683 // RelocateInstMap is a mapping from the base relocate instruction to the 684 // corresponding derived relocate instructions 685 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 686 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 687 if (RelocateInstMap.empty()) 688 return false; 689 690 for (auto &Item : RelocateInstMap) 691 // Item.first is the RelocatedBase to offset against 692 // Item.second is the vector of Targets to replace 693 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 694 return MadeChange; 695 } 696 697 /// SinkCast - Sink the specified cast instruction into its user blocks 698 static bool SinkCast(CastInst *CI) { 699 BasicBlock *DefBB = CI->getParent(); 700 701 /// InsertedCasts - Only insert a cast in each block once. 702 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 703 704 bool MadeChange = false; 705 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 706 UI != E; ) { 707 Use &TheUse = UI.getUse(); 708 Instruction *User = cast<Instruction>(*UI); 709 710 // Figure out which BB this cast is used in. For PHI's this is the 711 // appropriate predecessor block. 712 BasicBlock *UserBB = User->getParent(); 713 if (PHINode *PN = dyn_cast<PHINode>(User)) { 714 UserBB = PN->getIncomingBlock(TheUse); 715 } 716 717 // Preincrement use iterator so we don't invalidate it. 718 ++UI; 719 720 // If this user is in the same block as the cast, don't change the cast. 721 if (UserBB == DefBB) continue; 722 723 // If we have already inserted a cast into this block, use it. 724 CastInst *&InsertedCast = InsertedCasts[UserBB]; 725 726 if (!InsertedCast) { 727 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 728 assert(InsertPt != UserBB->end()); 729 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 730 CI->getType(), "", &*InsertPt); 731 } 732 733 // Replace a use of the cast with a use of the new cast. 734 TheUse = InsertedCast; 735 MadeChange = true; 736 ++NumCastUses; 737 } 738 739 // If we removed all uses, nuke the cast. 740 if (CI->use_empty()) { 741 CI->eraseFromParent(); 742 MadeChange = true; 743 } 744 745 return MadeChange; 746 } 747 748 /// If the specified cast instruction is a noop copy (e.g. it's casting from 749 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 750 /// reduce the number of virtual registers that must be created and coalesced. 751 /// 752 /// Return true if any changes are made. 753 /// 754 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 755 const DataLayout &DL) { 756 // If this is a noop copy, 757 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 758 EVT DstVT = TLI.getValueType(DL, CI->getType()); 759 760 // This is an fp<->int conversion? 761 if (SrcVT.isInteger() != DstVT.isInteger()) 762 return false; 763 764 // If this is an extension, it will be a zero or sign extension, which 765 // isn't a noop. 766 if (SrcVT.bitsLT(DstVT)) return false; 767 768 // If these values will be promoted, find out what they will be promoted 769 // to. This helps us consider truncates on PPC as noop copies when they 770 // are. 771 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 772 TargetLowering::TypePromoteInteger) 773 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 774 if (TLI.getTypeAction(CI->getContext(), DstVT) == 775 TargetLowering::TypePromoteInteger) 776 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 777 778 // If, after promotion, these are the same types, this is a noop copy. 779 if (SrcVT != DstVT) 780 return false; 781 782 return SinkCast(CI); 783 } 784 785 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 786 /// possible. 787 /// 788 /// Return true if any changes were made. 789 static bool CombineUAddWithOverflow(CmpInst *CI) { 790 Value *A, *B; 791 Instruction *AddI; 792 if (!match(CI, 793 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 794 return false; 795 796 Type *Ty = AddI->getType(); 797 if (!isa<IntegerType>(Ty)) 798 return false; 799 800 // We don't want to move around uses of condition values this late, so we we 801 // check if it is legal to create the call to the intrinsic in the basic 802 // block containing the icmp: 803 804 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 805 return false; 806 807 #ifndef NDEBUG 808 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 809 // for now: 810 if (AddI->hasOneUse()) 811 assert(*AddI->user_begin() == CI && "expected!"); 812 #endif 813 814 Module *M = CI->getParent()->getParent()->getParent(); 815 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 816 817 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 818 819 auto *UAddWithOverflow = 820 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 821 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 822 auto *Overflow = 823 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 824 825 CI->replaceAllUsesWith(Overflow); 826 AddI->replaceAllUsesWith(UAdd); 827 CI->eraseFromParent(); 828 AddI->eraseFromParent(); 829 return true; 830 } 831 832 /// Sink the given CmpInst into user blocks to reduce the number of virtual 833 /// registers that must be created and coalesced. This is a clear win except on 834 /// targets with multiple condition code registers (PowerPC), where it might 835 /// lose; some adjustment may be wanted there. 836 /// 837 /// Return true if any changes are made. 838 static bool SinkCmpExpression(CmpInst *CI) { 839 BasicBlock *DefBB = CI->getParent(); 840 841 /// Only insert a cmp in each block once. 842 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 843 844 bool MadeChange = false; 845 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 846 UI != E; ) { 847 Use &TheUse = UI.getUse(); 848 Instruction *User = cast<Instruction>(*UI); 849 850 // Preincrement use iterator so we don't invalidate it. 851 ++UI; 852 853 // Don't bother for PHI nodes. 854 if (isa<PHINode>(User)) 855 continue; 856 857 // Figure out which BB this cmp is used in. 858 BasicBlock *UserBB = User->getParent(); 859 860 // If this user is in the same block as the cmp, don't change the cmp. 861 if (UserBB == DefBB) continue; 862 863 // If we have already inserted a cmp into this block, use it. 864 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 865 866 if (!InsertedCmp) { 867 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 868 assert(InsertPt != UserBB->end()); 869 InsertedCmp = 870 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 871 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 872 } 873 874 // Replace a use of the cmp with a use of the new cmp. 875 TheUse = InsertedCmp; 876 MadeChange = true; 877 ++NumCmpUses; 878 } 879 880 // If we removed all uses, nuke the cmp. 881 if (CI->use_empty()) { 882 CI->eraseFromParent(); 883 MadeChange = true; 884 } 885 886 return MadeChange; 887 } 888 889 static bool OptimizeCmpExpression(CmpInst *CI) { 890 if (SinkCmpExpression(CI)) 891 return true; 892 893 if (CombineUAddWithOverflow(CI)) 894 return true; 895 896 return false; 897 } 898 899 /// Check if the candidates could be combined with a shift instruction, which 900 /// includes: 901 /// 1. Truncate instruction 902 /// 2. And instruction and the imm is a mask of the low bits: 903 /// imm & (imm+1) == 0 904 static bool isExtractBitsCandidateUse(Instruction *User) { 905 if (!isa<TruncInst>(User)) { 906 if (User->getOpcode() != Instruction::And || 907 !isa<ConstantInt>(User->getOperand(1))) 908 return false; 909 910 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 911 912 if ((Cimm & (Cimm + 1)).getBoolValue()) 913 return false; 914 } 915 return true; 916 } 917 918 /// Sink both shift and truncate instruction to the use of truncate's BB. 919 static bool 920 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 921 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 922 const TargetLowering &TLI, const DataLayout &DL) { 923 BasicBlock *UserBB = User->getParent(); 924 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 925 TruncInst *TruncI = dyn_cast<TruncInst>(User); 926 bool MadeChange = false; 927 928 for (Value::user_iterator TruncUI = TruncI->user_begin(), 929 TruncE = TruncI->user_end(); 930 TruncUI != TruncE;) { 931 932 Use &TruncTheUse = TruncUI.getUse(); 933 Instruction *TruncUser = cast<Instruction>(*TruncUI); 934 // Preincrement use iterator so we don't invalidate it. 935 936 ++TruncUI; 937 938 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 939 if (!ISDOpcode) 940 continue; 941 942 // If the use is actually a legal node, there will not be an 943 // implicit truncate. 944 // FIXME: always querying the result type is just an 945 // approximation; some nodes' legality is determined by the 946 // operand or other means. There's no good way to find out though. 947 if (TLI.isOperationLegalOrCustom( 948 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 949 continue; 950 951 // Don't bother for PHI nodes. 952 if (isa<PHINode>(TruncUser)) 953 continue; 954 955 BasicBlock *TruncUserBB = TruncUser->getParent(); 956 957 if (UserBB == TruncUserBB) 958 continue; 959 960 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 961 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 962 963 if (!InsertedShift && !InsertedTrunc) { 964 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 965 assert(InsertPt != TruncUserBB->end()); 966 // Sink the shift 967 if (ShiftI->getOpcode() == Instruction::AShr) 968 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 969 "", &*InsertPt); 970 else 971 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 972 "", &*InsertPt); 973 974 // Sink the trunc 975 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 976 TruncInsertPt++; 977 assert(TruncInsertPt != TruncUserBB->end()); 978 979 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 980 TruncI->getType(), "", &*TruncInsertPt); 981 982 MadeChange = true; 983 984 TruncTheUse = InsertedTrunc; 985 } 986 } 987 return MadeChange; 988 } 989 990 /// Sink the shift *right* instruction into user blocks if the uses could 991 /// potentially be combined with this shift instruction and generate BitExtract 992 /// instruction. It will only be applied if the architecture supports BitExtract 993 /// instruction. Here is an example: 994 /// BB1: 995 /// %x.extract.shift = lshr i64 %arg1, 32 996 /// BB2: 997 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 998 /// ==> 999 /// 1000 /// BB2: 1001 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1002 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1003 /// 1004 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1005 /// instruction. 1006 /// Return true if any changes are made. 1007 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1008 const TargetLowering &TLI, 1009 const DataLayout &DL) { 1010 BasicBlock *DefBB = ShiftI->getParent(); 1011 1012 /// Only insert instructions in each block once. 1013 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1014 1015 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1016 1017 bool MadeChange = false; 1018 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1019 UI != E;) { 1020 Use &TheUse = UI.getUse(); 1021 Instruction *User = cast<Instruction>(*UI); 1022 // Preincrement use iterator so we don't invalidate it. 1023 ++UI; 1024 1025 // Don't bother for PHI nodes. 1026 if (isa<PHINode>(User)) 1027 continue; 1028 1029 if (!isExtractBitsCandidateUse(User)) 1030 continue; 1031 1032 BasicBlock *UserBB = User->getParent(); 1033 1034 if (UserBB == DefBB) { 1035 // If the shift and truncate instruction are in the same BB. The use of 1036 // the truncate(TruncUse) may still introduce another truncate if not 1037 // legal. In this case, we would like to sink both shift and truncate 1038 // instruction to the BB of TruncUse. 1039 // for example: 1040 // BB1: 1041 // i64 shift.result = lshr i64 opnd, imm 1042 // trunc.result = trunc shift.result to i16 1043 // 1044 // BB2: 1045 // ----> We will have an implicit truncate here if the architecture does 1046 // not have i16 compare. 1047 // cmp i16 trunc.result, opnd2 1048 // 1049 if (isa<TruncInst>(User) && shiftIsLegal 1050 // If the type of the truncate is legal, no trucate will be 1051 // introduced in other basic blocks. 1052 && 1053 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1054 MadeChange = 1055 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1056 1057 continue; 1058 } 1059 // If we have already inserted a shift into this block, use it. 1060 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1061 1062 if (!InsertedShift) { 1063 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1064 assert(InsertPt != UserBB->end()); 1065 1066 if (ShiftI->getOpcode() == Instruction::AShr) 1067 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1068 "", &*InsertPt); 1069 else 1070 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1071 "", &*InsertPt); 1072 1073 MadeChange = true; 1074 } 1075 1076 // Replace a use of the shift with a use of the new shift. 1077 TheUse = InsertedShift; 1078 } 1079 1080 // If we removed all uses, nuke the shift. 1081 if (ShiftI->use_empty()) 1082 ShiftI->eraseFromParent(); 1083 1084 return MadeChange; 1085 } 1086 1087 // Translate a masked load intrinsic like 1088 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1089 // <16 x i1> %mask, <16 x i32> %passthru) 1090 // to a chain of basic blocks, with loading element one-by-one if 1091 // the appropriate mask bit is set 1092 // 1093 // %1 = bitcast i8* %addr to i32* 1094 // %2 = extractelement <16 x i1> %mask, i32 0 1095 // %3 = icmp eq i1 %2, true 1096 // br i1 %3, label %cond.load, label %else 1097 // 1098 //cond.load: ; preds = %0 1099 // %4 = getelementptr i32* %1, i32 0 1100 // %5 = load i32* %4 1101 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1102 // br label %else 1103 // 1104 //else: ; preds = %0, %cond.load 1105 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1106 // %7 = extractelement <16 x i1> %mask, i32 1 1107 // %8 = icmp eq i1 %7, true 1108 // br i1 %8, label %cond.load1, label %else2 1109 // 1110 //cond.load1: ; preds = %else 1111 // %9 = getelementptr i32* %1, i32 1 1112 // %10 = load i32* %9 1113 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1114 // br label %else2 1115 // 1116 //else2: ; preds = %else, %cond.load1 1117 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1118 // %12 = extractelement <16 x i1> %mask, i32 2 1119 // %13 = icmp eq i1 %12, true 1120 // br i1 %13, label %cond.load4, label %else5 1121 // 1122 static void ScalarizeMaskedLoad(CallInst *CI) { 1123 Value *Ptr = CI->getArgOperand(0); 1124 Value *Alignment = CI->getArgOperand(1); 1125 Value *Mask = CI->getArgOperand(2); 1126 Value *Src0 = CI->getArgOperand(3); 1127 1128 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1129 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1130 assert(VecType && "Unexpected return type of masked load intrinsic"); 1131 1132 Type *EltTy = CI->getType()->getVectorElementType(); 1133 1134 IRBuilder<> Builder(CI->getContext()); 1135 Instruction *InsertPt = CI; 1136 BasicBlock *IfBlock = CI->getParent(); 1137 BasicBlock *CondBlock = nullptr; 1138 BasicBlock *PrevIfBlock = CI->getParent(); 1139 1140 Builder.SetInsertPoint(InsertPt); 1141 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1142 1143 // Short-cut if the mask is all-true. 1144 bool IsAllOnesMask = isa<Constant>(Mask) && 1145 cast<Constant>(Mask)->isAllOnesValue(); 1146 1147 if (IsAllOnesMask) { 1148 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1149 CI->replaceAllUsesWith(NewI); 1150 CI->eraseFromParent(); 1151 return; 1152 } 1153 1154 // Adjust alignment for the scalar instruction. 1155 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1156 // Bitcast %addr fron i8* to EltTy* 1157 Type *NewPtrType = 1158 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1159 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1160 unsigned VectorWidth = VecType->getNumElements(); 1161 1162 Value *UndefVal = UndefValue::get(VecType); 1163 1164 // The result vector 1165 Value *VResult = UndefVal; 1166 1167 if (isa<ConstantVector>(Mask)) { 1168 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1169 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1170 continue; 1171 Value *Gep = 1172 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1173 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1174 VResult = Builder.CreateInsertElement(VResult, Load, 1175 Builder.getInt32(Idx)); 1176 } 1177 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1178 CI->replaceAllUsesWith(NewI); 1179 CI->eraseFromParent(); 1180 return; 1181 } 1182 1183 PHINode *Phi = nullptr; 1184 Value *PrevPhi = UndefVal; 1185 1186 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1187 1188 // Fill the "else" block, created in the previous iteration 1189 // 1190 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1191 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1192 // %to_load = icmp eq i1 %mask_1, true 1193 // br i1 %to_load, label %cond.load, label %else 1194 // 1195 if (Idx > 0) { 1196 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1197 Phi->addIncoming(VResult, CondBlock); 1198 Phi->addIncoming(PrevPhi, PrevIfBlock); 1199 PrevPhi = Phi; 1200 VResult = Phi; 1201 } 1202 1203 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1204 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1205 ConstantInt::get(Predicate->getType(), 1)); 1206 1207 // Create "cond" block 1208 // 1209 // %EltAddr = getelementptr i32* %1, i32 0 1210 // %Elt = load i32* %EltAddr 1211 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1212 // 1213 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1214 Builder.SetInsertPoint(InsertPt); 1215 1216 Value *Gep = 1217 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1218 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1219 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1220 1221 // Create "else" block, fill it in the next iteration 1222 BasicBlock *NewIfBlock = 1223 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1224 Builder.SetInsertPoint(InsertPt); 1225 Instruction *OldBr = IfBlock->getTerminator(); 1226 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1227 OldBr->eraseFromParent(); 1228 PrevIfBlock = IfBlock; 1229 IfBlock = NewIfBlock; 1230 } 1231 1232 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1233 Phi->addIncoming(VResult, CondBlock); 1234 Phi->addIncoming(PrevPhi, PrevIfBlock); 1235 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1236 CI->replaceAllUsesWith(NewI); 1237 CI->eraseFromParent(); 1238 } 1239 1240 // Translate a masked store intrinsic, like 1241 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1242 // <16 x i1> %mask) 1243 // to a chain of basic blocks, that stores element one-by-one if 1244 // the appropriate mask bit is set 1245 // 1246 // %1 = bitcast i8* %addr to i32* 1247 // %2 = extractelement <16 x i1> %mask, i32 0 1248 // %3 = icmp eq i1 %2, true 1249 // br i1 %3, label %cond.store, label %else 1250 // 1251 // cond.store: ; preds = %0 1252 // %4 = extractelement <16 x i32> %val, i32 0 1253 // %5 = getelementptr i32* %1, i32 0 1254 // store i32 %4, i32* %5 1255 // br label %else 1256 // 1257 // else: ; preds = %0, %cond.store 1258 // %6 = extractelement <16 x i1> %mask, i32 1 1259 // %7 = icmp eq i1 %6, true 1260 // br i1 %7, label %cond.store1, label %else2 1261 // 1262 // cond.store1: ; preds = %else 1263 // %8 = extractelement <16 x i32> %val, i32 1 1264 // %9 = getelementptr i32* %1, i32 1 1265 // store i32 %8, i32* %9 1266 // br label %else2 1267 // . . . 1268 static void ScalarizeMaskedStore(CallInst *CI) { 1269 Value *Src = CI->getArgOperand(0); 1270 Value *Ptr = CI->getArgOperand(1); 1271 Value *Alignment = CI->getArgOperand(2); 1272 Value *Mask = CI->getArgOperand(3); 1273 1274 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1275 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1276 assert(VecType && "Unexpected data type in masked store intrinsic"); 1277 1278 Type *EltTy = VecType->getElementType(); 1279 1280 IRBuilder<> Builder(CI->getContext()); 1281 Instruction *InsertPt = CI; 1282 BasicBlock *IfBlock = CI->getParent(); 1283 Builder.SetInsertPoint(InsertPt); 1284 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1285 1286 // Short-cut if the mask is all-true. 1287 bool IsAllOnesMask = isa<Constant>(Mask) && 1288 cast<Constant>(Mask)->isAllOnesValue(); 1289 1290 if (IsAllOnesMask) { 1291 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1292 CI->eraseFromParent(); 1293 return; 1294 } 1295 1296 // Adjust alignment for the scalar instruction. 1297 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1298 // Bitcast %addr fron i8* to EltTy* 1299 Type *NewPtrType = 1300 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1301 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1302 unsigned VectorWidth = VecType->getNumElements(); 1303 1304 if (isa<ConstantVector>(Mask)) { 1305 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1306 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1307 continue; 1308 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1309 Value *Gep = 1310 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1311 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1312 } 1313 CI->eraseFromParent(); 1314 return; 1315 } 1316 1317 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1318 1319 // Fill the "else" block, created in the previous iteration 1320 // 1321 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1322 // %to_store = icmp eq i1 %mask_1, true 1323 // br i1 %to_store, label %cond.store, label %else 1324 // 1325 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1326 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1327 ConstantInt::get(Predicate->getType(), 1)); 1328 1329 // Create "cond" block 1330 // 1331 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1332 // %EltAddr = getelementptr i32* %1, i32 0 1333 // %store i32 %OneElt, i32* %EltAddr 1334 // 1335 BasicBlock *CondBlock = 1336 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1337 Builder.SetInsertPoint(InsertPt); 1338 1339 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1340 Value *Gep = 1341 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1342 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1343 1344 // Create "else" block, fill it in the next iteration 1345 BasicBlock *NewIfBlock = 1346 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1347 Builder.SetInsertPoint(InsertPt); 1348 Instruction *OldBr = IfBlock->getTerminator(); 1349 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1350 OldBr->eraseFromParent(); 1351 IfBlock = NewIfBlock; 1352 } 1353 CI->eraseFromParent(); 1354 } 1355 1356 // Translate a masked gather intrinsic like 1357 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1358 // <16 x i1> %Mask, <16 x i32> %Src) 1359 // to a chain of basic blocks, with loading element one-by-one if 1360 // the appropriate mask bit is set 1361 // 1362 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1363 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1364 // % ToLoad0 = icmp eq i1 % Mask0, true 1365 // br i1 % ToLoad0, label %cond.load, label %else 1366 // 1367 // cond.load: 1368 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1369 // % Load0 = load i32, i32* % Ptr0, align 4 1370 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1371 // br label %else 1372 // 1373 // else: 1374 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1375 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1376 // % ToLoad1 = icmp eq i1 % Mask1, true 1377 // br i1 % ToLoad1, label %cond.load1, label %else2 1378 // 1379 // cond.load1: 1380 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1381 // % Load1 = load i32, i32* % Ptr1, align 4 1382 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1383 // br label %else2 1384 // . . . 1385 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1386 // ret <16 x i32> %Result 1387 static void ScalarizeMaskedGather(CallInst *CI) { 1388 Value *Ptrs = CI->getArgOperand(0); 1389 Value *Alignment = CI->getArgOperand(1); 1390 Value *Mask = CI->getArgOperand(2); 1391 Value *Src0 = CI->getArgOperand(3); 1392 1393 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1394 1395 assert(VecType && "Unexpected return type of masked load intrinsic"); 1396 1397 IRBuilder<> Builder(CI->getContext()); 1398 Instruction *InsertPt = CI; 1399 BasicBlock *IfBlock = CI->getParent(); 1400 BasicBlock *CondBlock = nullptr; 1401 BasicBlock *PrevIfBlock = CI->getParent(); 1402 Builder.SetInsertPoint(InsertPt); 1403 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1404 1405 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1406 1407 Value *UndefVal = UndefValue::get(VecType); 1408 1409 // The result vector 1410 Value *VResult = UndefVal; 1411 unsigned VectorWidth = VecType->getNumElements(); 1412 1413 // Shorten the way if the mask is a vector of constants. 1414 bool IsConstMask = isa<ConstantVector>(Mask); 1415 1416 if (IsConstMask) { 1417 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1418 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1419 continue; 1420 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1421 "Ptr" + Twine(Idx)); 1422 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1423 "Load" + Twine(Idx)); 1424 VResult = Builder.CreateInsertElement(VResult, Load, 1425 Builder.getInt32(Idx), 1426 "Res" + Twine(Idx)); 1427 } 1428 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1429 CI->replaceAllUsesWith(NewI); 1430 CI->eraseFromParent(); 1431 return; 1432 } 1433 1434 PHINode *Phi = nullptr; 1435 Value *PrevPhi = UndefVal; 1436 1437 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1438 1439 // Fill the "else" block, created in the previous iteration 1440 // 1441 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1442 // %ToLoad1 = icmp eq i1 %Mask1, true 1443 // br i1 %ToLoad1, label %cond.load, label %else 1444 // 1445 if (Idx > 0) { 1446 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1447 Phi->addIncoming(VResult, CondBlock); 1448 Phi->addIncoming(PrevPhi, PrevIfBlock); 1449 PrevPhi = Phi; 1450 VResult = Phi; 1451 } 1452 1453 Value *Predicate = Builder.CreateExtractElement(Mask, 1454 Builder.getInt32(Idx), 1455 "Mask" + Twine(Idx)); 1456 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1457 ConstantInt::get(Predicate->getType(), 1), 1458 "ToLoad" + Twine(Idx)); 1459 1460 // Create "cond" block 1461 // 1462 // %EltAddr = getelementptr i32* %1, i32 0 1463 // %Elt = load i32* %EltAddr 1464 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1465 // 1466 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1467 Builder.SetInsertPoint(InsertPt); 1468 1469 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1470 "Ptr" + Twine(Idx)); 1471 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1472 "Load" + Twine(Idx)); 1473 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1474 "Res" + Twine(Idx)); 1475 1476 // Create "else" block, fill it in the next iteration 1477 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1478 Builder.SetInsertPoint(InsertPt); 1479 Instruction *OldBr = IfBlock->getTerminator(); 1480 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1481 OldBr->eraseFromParent(); 1482 PrevIfBlock = IfBlock; 1483 IfBlock = NewIfBlock; 1484 } 1485 1486 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1487 Phi->addIncoming(VResult, CondBlock); 1488 Phi->addIncoming(PrevPhi, PrevIfBlock); 1489 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1490 CI->replaceAllUsesWith(NewI); 1491 CI->eraseFromParent(); 1492 } 1493 1494 // Translate a masked scatter intrinsic, like 1495 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1496 // <16 x i1> %Mask) 1497 // to a chain of basic blocks, that stores element one-by-one if 1498 // the appropriate mask bit is set. 1499 // 1500 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1501 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1502 // % ToStore0 = icmp eq i1 % Mask0, true 1503 // br i1 %ToStore0, label %cond.store, label %else 1504 // 1505 // cond.store: 1506 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1507 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1508 // store i32 %Elt0, i32* % Ptr0, align 4 1509 // br label %else 1510 // 1511 // else: 1512 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1513 // % ToStore1 = icmp eq i1 % Mask1, true 1514 // br i1 % ToStore1, label %cond.store1, label %else2 1515 // 1516 // cond.store1: 1517 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1518 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1519 // store i32 % Elt1, i32* % Ptr1, align 4 1520 // br label %else2 1521 // . . . 1522 static void ScalarizeMaskedScatter(CallInst *CI) { 1523 Value *Src = CI->getArgOperand(0); 1524 Value *Ptrs = CI->getArgOperand(1); 1525 Value *Alignment = CI->getArgOperand(2); 1526 Value *Mask = CI->getArgOperand(3); 1527 1528 assert(isa<VectorType>(Src->getType()) && 1529 "Unexpected data type in masked scatter intrinsic"); 1530 assert(isa<VectorType>(Ptrs->getType()) && 1531 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1532 "Vector of pointers is expected in masked scatter intrinsic"); 1533 1534 IRBuilder<> Builder(CI->getContext()); 1535 Instruction *InsertPt = CI; 1536 BasicBlock *IfBlock = CI->getParent(); 1537 Builder.SetInsertPoint(InsertPt); 1538 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1539 1540 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1541 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1542 1543 // Shorten the way if the mask is a vector of constants. 1544 bool IsConstMask = isa<ConstantVector>(Mask); 1545 1546 if (IsConstMask) { 1547 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1548 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1549 continue; 1550 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1551 "Elt" + Twine(Idx)); 1552 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1553 "Ptr" + Twine(Idx)); 1554 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1555 } 1556 CI->eraseFromParent(); 1557 return; 1558 } 1559 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1560 // Fill the "else" block, created in the previous iteration 1561 // 1562 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1563 // % ToStore = icmp eq i1 % Mask1, true 1564 // br i1 % ToStore, label %cond.store, label %else 1565 // 1566 Value *Predicate = Builder.CreateExtractElement(Mask, 1567 Builder.getInt32(Idx), 1568 "Mask" + Twine(Idx)); 1569 Value *Cmp = 1570 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1571 ConstantInt::get(Predicate->getType(), 1), 1572 "ToStore" + Twine(Idx)); 1573 1574 // Create "cond" block 1575 // 1576 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1577 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1578 // %store i32 % Elt1, i32* % Ptr1 1579 // 1580 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1581 Builder.SetInsertPoint(InsertPt); 1582 1583 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1584 "Elt" + Twine(Idx)); 1585 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1586 "Ptr" + Twine(Idx)); 1587 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1588 1589 // Create "else" block, fill it in the next iteration 1590 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1591 Builder.SetInsertPoint(InsertPt); 1592 Instruction *OldBr = IfBlock->getTerminator(); 1593 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1594 OldBr->eraseFromParent(); 1595 IfBlock = NewIfBlock; 1596 } 1597 CI->eraseFromParent(); 1598 } 1599 1600 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1601 BasicBlock *BB = CI->getParent(); 1602 1603 // Lower inline assembly if we can. 1604 // If we found an inline asm expession, and if the target knows how to 1605 // lower it to normal LLVM code, do so now. 1606 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1607 if (TLI->ExpandInlineAsm(CI)) { 1608 // Avoid invalidating the iterator. 1609 CurInstIterator = BB->begin(); 1610 // Avoid processing instructions out of order, which could cause 1611 // reuse before a value is defined. 1612 SunkAddrs.clear(); 1613 return true; 1614 } 1615 // Sink address computing for memory operands into the block. 1616 if (optimizeInlineAsmInst(CI)) 1617 return true; 1618 } 1619 1620 // Align the pointer arguments to this call if the target thinks it's a good 1621 // idea 1622 unsigned MinSize, PrefAlign; 1623 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1624 for (auto &Arg : CI->arg_operands()) { 1625 // We want to align both objects whose address is used directly and 1626 // objects whose address is used in casts and GEPs, though it only makes 1627 // sense for GEPs if the offset is a multiple of the desired alignment and 1628 // if size - offset meets the size threshold. 1629 if (!Arg->getType()->isPointerTy()) 1630 continue; 1631 APInt Offset(DL->getPointerSizeInBits( 1632 cast<PointerType>(Arg->getType())->getAddressSpace()), 1633 0); 1634 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1635 uint64_t Offset2 = Offset.getLimitedValue(); 1636 if ((Offset2 & (PrefAlign-1)) != 0) 1637 continue; 1638 AllocaInst *AI; 1639 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1640 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1641 AI->setAlignment(PrefAlign); 1642 // Global variables can only be aligned if they are defined in this 1643 // object (i.e. they are uniquely initialized in this object), and 1644 // over-aligning global variables that have an explicit section is 1645 // forbidden. 1646 GlobalVariable *GV; 1647 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1648 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1649 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1650 MinSize + Offset2) 1651 GV->setAlignment(PrefAlign); 1652 } 1653 // If this is a memcpy (or similar) then we may be able to improve the 1654 // alignment 1655 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1656 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1657 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1658 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1659 if (Align > MI->getAlignment()) 1660 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1661 } 1662 } 1663 1664 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1665 if (II) { 1666 switch (II->getIntrinsicID()) { 1667 default: break; 1668 case Intrinsic::objectsize: { 1669 // Lower all uses of llvm.objectsize.* 1670 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1671 Type *ReturnTy = CI->getType(); 1672 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1673 1674 // Substituting this can cause recursive simplifications, which can 1675 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1676 // happens. 1677 WeakVH IterHandle(&*CurInstIterator); 1678 1679 replaceAndRecursivelySimplify(CI, RetVal, 1680 TLInfo, nullptr); 1681 1682 // If the iterator instruction was recursively deleted, start over at the 1683 // start of the block. 1684 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1685 CurInstIterator = BB->begin(); 1686 SunkAddrs.clear(); 1687 } 1688 return true; 1689 } 1690 case Intrinsic::masked_load: { 1691 // Scalarize unsupported vector masked load 1692 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1693 ScalarizeMaskedLoad(CI); 1694 ModifiedDT = true; 1695 return true; 1696 } 1697 return false; 1698 } 1699 case Intrinsic::masked_store: { 1700 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1701 ScalarizeMaskedStore(CI); 1702 ModifiedDT = true; 1703 return true; 1704 } 1705 return false; 1706 } 1707 case Intrinsic::masked_gather: { 1708 if (!TTI->isLegalMaskedGather(CI->getType())) { 1709 ScalarizeMaskedGather(CI); 1710 ModifiedDT = true; 1711 return true; 1712 } 1713 return false; 1714 } 1715 case Intrinsic::masked_scatter: { 1716 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 1717 ScalarizeMaskedScatter(CI); 1718 ModifiedDT = true; 1719 return true; 1720 } 1721 return false; 1722 } 1723 case Intrinsic::aarch64_stlxr: 1724 case Intrinsic::aarch64_stxr: { 1725 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1726 if (!ExtVal || !ExtVal->hasOneUse() || 1727 ExtVal->getParent() == CI->getParent()) 1728 return false; 1729 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1730 ExtVal->moveBefore(CI); 1731 // Mark this instruction as "inserted by CGP", so that other 1732 // optimizations don't touch it. 1733 InsertedInsts.insert(ExtVal); 1734 return true; 1735 } 1736 case Intrinsic::invariant_group_barrier: 1737 II->replaceAllUsesWith(II->getArgOperand(0)); 1738 II->eraseFromParent(); 1739 return true; 1740 } 1741 1742 if (TLI) { 1743 // Unknown address space. 1744 // TODO: Target hook to pick which address space the intrinsic cares 1745 // about? 1746 unsigned AddrSpace = ~0u; 1747 SmallVector<Value*, 2> PtrOps; 1748 Type *AccessTy; 1749 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1750 while (!PtrOps.empty()) 1751 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1752 return true; 1753 } 1754 } 1755 1756 // From here on out we're working with named functions. 1757 if (!CI->getCalledFunction()) return false; 1758 1759 // Lower all default uses of _chk calls. This is very similar 1760 // to what InstCombineCalls does, but here we are only lowering calls 1761 // to fortified library functions (e.g. __memcpy_chk) that have the default 1762 // "don't know" as the objectsize. Anything else should be left alone. 1763 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1764 if (Value *V = Simplifier.optimizeCall(CI)) { 1765 CI->replaceAllUsesWith(V); 1766 CI->eraseFromParent(); 1767 return true; 1768 } 1769 return false; 1770 } 1771 1772 /// Look for opportunities to duplicate return instructions to the predecessor 1773 /// to enable tail call optimizations. The case it is currently looking for is: 1774 /// @code 1775 /// bb0: 1776 /// %tmp0 = tail call i32 @f0() 1777 /// br label %return 1778 /// bb1: 1779 /// %tmp1 = tail call i32 @f1() 1780 /// br label %return 1781 /// bb2: 1782 /// %tmp2 = tail call i32 @f2() 1783 /// br label %return 1784 /// return: 1785 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1786 /// ret i32 %retval 1787 /// @endcode 1788 /// 1789 /// => 1790 /// 1791 /// @code 1792 /// bb0: 1793 /// %tmp0 = tail call i32 @f0() 1794 /// ret i32 %tmp0 1795 /// bb1: 1796 /// %tmp1 = tail call i32 @f1() 1797 /// ret i32 %tmp1 1798 /// bb2: 1799 /// %tmp2 = tail call i32 @f2() 1800 /// ret i32 %tmp2 1801 /// @endcode 1802 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1803 if (!TLI) 1804 return false; 1805 1806 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1807 if (!RI) 1808 return false; 1809 1810 PHINode *PN = nullptr; 1811 BitCastInst *BCI = nullptr; 1812 Value *V = RI->getReturnValue(); 1813 if (V) { 1814 BCI = dyn_cast<BitCastInst>(V); 1815 if (BCI) 1816 V = BCI->getOperand(0); 1817 1818 PN = dyn_cast<PHINode>(V); 1819 if (!PN) 1820 return false; 1821 } 1822 1823 if (PN && PN->getParent() != BB) 1824 return false; 1825 1826 // It's not safe to eliminate the sign / zero extension of the return value. 1827 // See llvm::isInTailCallPosition(). 1828 const Function *F = BB->getParent(); 1829 AttributeSet CallerAttrs = F->getAttributes(); 1830 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1831 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1832 return false; 1833 1834 // Make sure there are no instructions between the PHI and return, or that the 1835 // return is the first instruction in the block. 1836 if (PN) { 1837 BasicBlock::iterator BI = BB->begin(); 1838 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1839 if (&*BI == BCI) 1840 // Also skip over the bitcast. 1841 ++BI; 1842 if (&*BI != RI) 1843 return false; 1844 } else { 1845 BasicBlock::iterator BI = BB->begin(); 1846 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1847 if (&*BI != RI) 1848 return false; 1849 } 1850 1851 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1852 /// call. 1853 SmallVector<CallInst*, 4> TailCalls; 1854 if (PN) { 1855 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1856 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1857 // Make sure the phi value is indeed produced by the tail call. 1858 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1859 TLI->mayBeEmittedAsTailCall(CI)) 1860 TailCalls.push_back(CI); 1861 } 1862 } else { 1863 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1864 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1865 if (!VisitedBBs.insert(*PI).second) 1866 continue; 1867 1868 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1869 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1870 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1871 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1872 if (RI == RE) 1873 continue; 1874 1875 CallInst *CI = dyn_cast<CallInst>(&*RI); 1876 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1877 TailCalls.push_back(CI); 1878 } 1879 } 1880 1881 bool Changed = false; 1882 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1883 CallInst *CI = TailCalls[i]; 1884 CallSite CS(CI); 1885 1886 // Conservatively require the attributes of the call to match those of the 1887 // return. Ignore noalias because it doesn't affect the call sequence. 1888 AttributeSet CalleeAttrs = CS.getAttributes(); 1889 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1890 removeAttribute(Attribute::NoAlias) != 1891 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1892 removeAttribute(Attribute::NoAlias)) 1893 continue; 1894 1895 // Make sure the call instruction is followed by an unconditional branch to 1896 // the return block. 1897 BasicBlock *CallBB = CI->getParent(); 1898 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1899 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1900 continue; 1901 1902 // Duplicate the return into CallBB. 1903 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1904 ModifiedDT = Changed = true; 1905 ++NumRetsDup; 1906 } 1907 1908 // If we eliminated all predecessors of the block, delete the block now. 1909 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1910 BB->eraseFromParent(); 1911 1912 return Changed; 1913 } 1914 1915 //===----------------------------------------------------------------------===// 1916 // Memory Optimization 1917 //===----------------------------------------------------------------------===// 1918 1919 namespace { 1920 1921 /// This is an extended version of TargetLowering::AddrMode 1922 /// which holds actual Value*'s for register values. 1923 struct ExtAddrMode : public TargetLowering::AddrMode { 1924 Value *BaseReg; 1925 Value *ScaledReg; 1926 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1927 void print(raw_ostream &OS) const; 1928 void dump() const; 1929 1930 bool operator==(const ExtAddrMode& O) const { 1931 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1932 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1933 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1934 } 1935 }; 1936 1937 #ifndef NDEBUG 1938 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1939 AM.print(OS); 1940 return OS; 1941 } 1942 #endif 1943 1944 void ExtAddrMode::print(raw_ostream &OS) const { 1945 bool NeedPlus = false; 1946 OS << "["; 1947 if (BaseGV) { 1948 OS << (NeedPlus ? " + " : "") 1949 << "GV:"; 1950 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1951 NeedPlus = true; 1952 } 1953 1954 if (BaseOffs) { 1955 OS << (NeedPlus ? " + " : "") 1956 << BaseOffs; 1957 NeedPlus = true; 1958 } 1959 1960 if (BaseReg) { 1961 OS << (NeedPlus ? " + " : "") 1962 << "Base:"; 1963 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1964 NeedPlus = true; 1965 } 1966 if (Scale) { 1967 OS << (NeedPlus ? " + " : "") 1968 << Scale << "*"; 1969 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1970 } 1971 1972 OS << ']'; 1973 } 1974 1975 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1976 void ExtAddrMode::dump() const { 1977 print(dbgs()); 1978 dbgs() << '\n'; 1979 } 1980 #endif 1981 1982 /// \brief This class provides transaction based operation on the IR. 1983 /// Every change made through this class is recorded in the internal state and 1984 /// can be undone (rollback) until commit is called. 1985 class TypePromotionTransaction { 1986 1987 /// \brief This represents the common interface of the individual transaction. 1988 /// Each class implements the logic for doing one specific modification on 1989 /// the IR via the TypePromotionTransaction. 1990 class TypePromotionAction { 1991 protected: 1992 /// The Instruction modified. 1993 Instruction *Inst; 1994 1995 public: 1996 /// \brief Constructor of the action. 1997 /// The constructor performs the related action on the IR. 1998 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1999 2000 virtual ~TypePromotionAction() {} 2001 2002 /// \brief Undo the modification done by this action. 2003 /// When this method is called, the IR must be in the same state as it was 2004 /// before this action was applied. 2005 /// \pre Undoing the action works if and only if the IR is in the exact same 2006 /// state as it was directly after this action was applied. 2007 virtual void undo() = 0; 2008 2009 /// \brief Advocate every change made by this action. 2010 /// When the results on the IR of the action are to be kept, it is important 2011 /// to call this function, otherwise hidden information may be kept forever. 2012 virtual void commit() { 2013 // Nothing to be done, this action is not doing anything. 2014 } 2015 }; 2016 2017 /// \brief Utility to remember the position of an instruction. 2018 class InsertionHandler { 2019 /// Position of an instruction. 2020 /// Either an instruction: 2021 /// - Is the first in a basic block: BB is used. 2022 /// - Has a previous instructon: PrevInst is used. 2023 union { 2024 Instruction *PrevInst; 2025 BasicBlock *BB; 2026 } Point; 2027 /// Remember whether or not the instruction had a previous instruction. 2028 bool HasPrevInstruction; 2029 2030 public: 2031 /// \brief Record the position of \p Inst. 2032 InsertionHandler(Instruction *Inst) { 2033 BasicBlock::iterator It = Inst->getIterator(); 2034 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2035 if (HasPrevInstruction) 2036 Point.PrevInst = &*--It; 2037 else 2038 Point.BB = Inst->getParent(); 2039 } 2040 2041 /// \brief Insert \p Inst at the recorded position. 2042 void insert(Instruction *Inst) { 2043 if (HasPrevInstruction) { 2044 if (Inst->getParent()) 2045 Inst->removeFromParent(); 2046 Inst->insertAfter(Point.PrevInst); 2047 } else { 2048 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2049 if (Inst->getParent()) 2050 Inst->moveBefore(Position); 2051 else 2052 Inst->insertBefore(Position); 2053 } 2054 } 2055 }; 2056 2057 /// \brief Move an instruction before another. 2058 class InstructionMoveBefore : public TypePromotionAction { 2059 /// Original position of the instruction. 2060 InsertionHandler Position; 2061 2062 public: 2063 /// \brief Move \p Inst before \p Before. 2064 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2065 : TypePromotionAction(Inst), Position(Inst) { 2066 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2067 Inst->moveBefore(Before); 2068 } 2069 2070 /// \brief Move the instruction back to its original position. 2071 void undo() override { 2072 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2073 Position.insert(Inst); 2074 } 2075 }; 2076 2077 /// \brief Set the operand of an instruction with a new value. 2078 class OperandSetter : public TypePromotionAction { 2079 /// Original operand of the instruction. 2080 Value *Origin; 2081 /// Index of the modified instruction. 2082 unsigned Idx; 2083 2084 public: 2085 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2086 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2087 : TypePromotionAction(Inst), Idx(Idx) { 2088 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2089 << "for:" << *Inst << "\n" 2090 << "with:" << *NewVal << "\n"); 2091 Origin = Inst->getOperand(Idx); 2092 Inst->setOperand(Idx, NewVal); 2093 } 2094 2095 /// \brief Restore the original value of the instruction. 2096 void undo() override { 2097 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2098 << "for: " << *Inst << "\n" 2099 << "with: " << *Origin << "\n"); 2100 Inst->setOperand(Idx, Origin); 2101 } 2102 }; 2103 2104 /// \brief Hide the operands of an instruction. 2105 /// Do as if this instruction was not using any of its operands. 2106 class OperandsHider : public TypePromotionAction { 2107 /// The list of original operands. 2108 SmallVector<Value *, 4> OriginalValues; 2109 2110 public: 2111 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2112 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2113 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2114 unsigned NumOpnds = Inst->getNumOperands(); 2115 OriginalValues.reserve(NumOpnds); 2116 for (unsigned It = 0; It < NumOpnds; ++It) { 2117 // Save the current operand. 2118 Value *Val = Inst->getOperand(It); 2119 OriginalValues.push_back(Val); 2120 // Set a dummy one. 2121 // We could use OperandSetter here, but that would imply an overhead 2122 // that we are not willing to pay. 2123 Inst->setOperand(It, UndefValue::get(Val->getType())); 2124 } 2125 } 2126 2127 /// \brief Restore the original list of uses. 2128 void undo() override { 2129 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2130 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2131 Inst->setOperand(It, OriginalValues[It]); 2132 } 2133 }; 2134 2135 /// \brief Build a truncate instruction. 2136 class TruncBuilder : public TypePromotionAction { 2137 Value *Val; 2138 public: 2139 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2140 /// result. 2141 /// trunc Opnd to Ty. 2142 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2143 IRBuilder<> Builder(Opnd); 2144 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2145 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2146 } 2147 2148 /// \brief Get the built value. 2149 Value *getBuiltValue() { return Val; } 2150 2151 /// \brief Remove the built instruction. 2152 void undo() override { 2153 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2154 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2155 IVal->eraseFromParent(); 2156 } 2157 }; 2158 2159 /// \brief Build a sign extension instruction. 2160 class SExtBuilder : public TypePromotionAction { 2161 Value *Val; 2162 public: 2163 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2164 /// result. 2165 /// sext Opnd to Ty. 2166 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2167 : TypePromotionAction(InsertPt) { 2168 IRBuilder<> Builder(InsertPt); 2169 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2170 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2171 } 2172 2173 /// \brief Get the built value. 2174 Value *getBuiltValue() { return Val; } 2175 2176 /// \brief Remove the built instruction. 2177 void undo() override { 2178 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2179 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2180 IVal->eraseFromParent(); 2181 } 2182 }; 2183 2184 /// \brief Build a zero extension instruction. 2185 class ZExtBuilder : public TypePromotionAction { 2186 Value *Val; 2187 public: 2188 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2189 /// result. 2190 /// zext Opnd to Ty. 2191 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2192 : TypePromotionAction(InsertPt) { 2193 IRBuilder<> Builder(InsertPt); 2194 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2195 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2196 } 2197 2198 /// \brief Get the built value. 2199 Value *getBuiltValue() { return Val; } 2200 2201 /// \brief Remove the built instruction. 2202 void undo() override { 2203 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2204 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2205 IVal->eraseFromParent(); 2206 } 2207 }; 2208 2209 /// \brief Mutate an instruction to another type. 2210 class TypeMutator : public TypePromotionAction { 2211 /// Record the original type. 2212 Type *OrigTy; 2213 2214 public: 2215 /// \brief Mutate the type of \p Inst into \p NewTy. 2216 TypeMutator(Instruction *Inst, Type *NewTy) 2217 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2218 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2219 << "\n"); 2220 Inst->mutateType(NewTy); 2221 } 2222 2223 /// \brief Mutate the instruction back to its original type. 2224 void undo() override { 2225 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2226 << "\n"); 2227 Inst->mutateType(OrigTy); 2228 } 2229 }; 2230 2231 /// \brief Replace the uses of an instruction by another instruction. 2232 class UsesReplacer : public TypePromotionAction { 2233 /// Helper structure to keep track of the replaced uses. 2234 struct InstructionAndIdx { 2235 /// The instruction using the instruction. 2236 Instruction *Inst; 2237 /// The index where this instruction is used for Inst. 2238 unsigned Idx; 2239 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2240 : Inst(Inst), Idx(Idx) {} 2241 }; 2242 2243 /// Keep track of the original uses (pair Instruction, Index). 2244 SmallVector<InstructionAndIdx, 4> OriginalUses; 2245 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2246 2247 public: 2248 /// \brief Replace all the use of \p Inst by \p New. 2249 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2250 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2251 << "\n"); 2252 // Record the original uses. 2253 for (Use &U : Inst->uses()) { 2254 Instruction *UserI = cast<Instruction>(U.getUser()); 2255 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2256 } 2257 // Now, we can replace the uses. 2258 Inst->replaceAllUsesWith(New); 2259 } 2260 2261 /// \brief Reassign the original uses of Inst to Inst. 2262 void undo() override { 2263 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2264 for (use_iterator UseIt = OriginalUses.begin(), 2265 EndIt = OriginalUses.end(); 2266 UseIt != EndIt; ++UseIt) { 2267 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2268 } 2269 } 2270 }; 2271 2272 /// \brief Remove an instruction from the IR. 2273 class InstructionRemover : public TypePromotionAction { 2274 /// Original position of the instruction. 2275 InsertionHandler Inserter; 2276 /// Helper structure to hide all the link to the instruction. In other 2277 /// words, this helps to do as if the instruction was removed. 2278 OperandsHider Hider; 2279 /// Keep track of the uses replaced, if any. 2280 UsesReplacer *Replacer; 2281 2282 public: 2283 /// \brief Remove all reference of \p Inst and optinally replace all its 2284 /// uses with New. 2285 /// \pre If !Inst->use_empty(), then New != nullptr 2286 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2287 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2288 Replacer(nullptr) { 2289 if (New) 2290 Replacer = new UsesReplacer(Inst, New); 2291 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2292 Inst->removeFromParent(); 2293 } 2294 2295 ~InstructionRemover() override { delete Replacer; } 2296 2297 /// \brief Really remove the instruction. 2298 void commit() override { delete Inst; } 2299 2300 /// \brief Resurrect the instruction and reassign it to the proper uses if 2301 /// new value was provided when build this action. 2302 void undo() override { 2303 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2304 Inserter.insert(Inst); 2305 if (Replacer) 2306 Replacer->undo(); 2307 Hider.undo(); 2308 } 2309 }; 2310 2311 public: 2312 /// Restoration point. 2313 /// The restoration point is a pointer to an action instead of an iterator 2314 /// because the iterator may be invalidated but not the pointer. 2315 typedef const TypePromotionAction *ConstRestorationPt; 2316 /// Advocate every changes made in that transaction. 2317 void commit(); 2318 /// Undo all the changes made after the given point. 2319 void rollback(ConstRestorationPt Point); 2320 /// Get the current restoration point. 2321 ConstRestorationPt getRestorationPoint() const; 2322 2323 /// \name API for IR modification with state keeping to support rollback. 2324 /// @{ 2325 /// Same as Instruction::setOperand. 2326 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2327 /// Same as Instruction::eraseFromParent. 2328 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2329 /// Same as Value::replaceAllUsesWith. 2330 void replaceAllUsesWith(Instruction *Inst, Value *New); 2331 /// Same as Value::mutateType. 2332 void mutateType(Instruction *Inst, Type *NewTy); 2333 /// Same as IRBuilder::createTrunc. 2334 Value *createTrunc(Instruction *Opnd, Type *Ty); 2335 /// Same as IRBuilder::createSExt. 2336 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2337 /// Same as IRBuilder::createZExt. 2338 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2339 /// Same as Instruction::moveBefore. 2340 void moveBefore(Instruction *Inst, Instruction *Before); 2341 /// @} 2342 2343 private: 2344 /// The ordered list of actions made so far. 2345 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2346 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2347 }; 2348 2349 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2350 Value *NewVal) { 2351 Actions.push_back( 2352 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2353 } 2354 2355 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2356 Value *NewVal) { 2357 Actions.push_back( 2358 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2359 } 2360 2361 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2362 Value *New) { 2363 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2364 } 2365 2366 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2367 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2368 } 2369 2370 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2371 Type *Ty) { 2372 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2373 Value *Val = Ptr->getBuiltValue(); 2374 Actions.push_back(std::move(Ptr)); 2375 return Val; 2376 } 2377 2378 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2379 Value *Opnd, Type *Ty) { 2380 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2381 Value *Val = Ptr->getBuiltValue(); 2382 Actions.push_back(std::move(Ptr)); 2383 return Val; 2384 } 2385 2386 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2387 Value *Opnd, Type *Ty) { 2388 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2389 Value *Val = Ptr->getBuiltValue(); 2390 Actions.push_back(std::move(Ptr)); 2391 return Val; 2392 } 2393 2394 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2395 Instruction *Before) { 2396 Actions.push_back( 2397 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2398 } 2399 2400 TypePromotionTransaction::ConstRestorationPt 2401 TypePromotionTransaction::getRestorationPoint() const { 2402 return !Actions.empty() ? Actions.back().get() : nullptr; 2403 } 2404 2405 void TypePromotionTransaction::commit() { 2406 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2407 ++It) 2408 (*It)->commit(); 2409 Actions.clear(); 2410 } 2411 2412 void TypePromotionTransaction::rollback( 2413 TypePromotionTransaction::ConstRestorationPt Point) { 2414 while (!Actions.empty() && Point != Actions.back().get()) { 2415 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2416 Curr->undo(); 2417 } 2418 } 2419 2420 /// \brief A helper class for matching addressing modes. 2421 /// 2422 /// This encapsulates the logic for matching the target-legal addressing modes. 2423 class AddressingModeMatcher { 2424 SmallVectorImpl<Instruction*> &AddrModeInsts; 2425 const TargetMachine &TM; 2426 const TargetLowering &TLI; 2427 const DataLayout &DL; 2428 2429 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2430 /// the memory instruction that we're computing this address for. 2431 Type *AccessTy; 2432 unsigned AddrSpace; 2433 Instruction *MemoryInst; 2434 2435 /// This is the addressing mode that we're building up. This is 2436 /// part of the return value of this addressing mode matching stuff. 2437 ExtAddrMode &AddrMode; 2438 2439 /// The instructions inserted by other CodeGenPrepare optimizations. 2440 const SetOfInstrs &InsertedInsts; 2441 /// A map from the instructions to their type before promotion. 2442 InstrToOrigTy &PromotedInsts; 2443 /// The ongoing transaction where every action should be registered. 2444 TypePromotionTransaction &TPT; 2445 2446 /// This is set to true when we should not do profitability checks. 2447 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2448 bool IgnoreProfitability; 2449 2450 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2451 const TargetMachine &TM, Type *AT, unsigned AS, 2452 Instruction *MI, ExtAddrMode &AM, 2453 const SetOfInstrs &InsertedInsts, 2454 InstrToOrigTy &PromotedInsts, 2455 TypePromotionTransaction &TPT) 2456 : AddrModeInsts(AMI), TM(TM), 2457 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2458 ->getTargetLowering()), 2459 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2460 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2461 PromotedInsts(PromotedInsts), TPT(TPT) { 2462 IgnoreProfitability = false; 2463 } 2464 public: 2465 2466 /// Find the maximal addressing mode that a load/store of V can fold, 2467 /// give an access type of AccessTy. This returns a list of involved 2468 /// instructions in AddrModeInsts. 2469 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2470 /// optimizations. 2471 /// \p PromotedInsts maps the instructions to their type before promotion. 2472 /// \p The ongoing transaction where every action should be registered. 2473 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2474 Instruction *MemoryInst, 2475 SmallVectorImpl<Instruction*> &AddrModeInsts, 2476 const TargetMachine &TM, 2477 const SetOfInstrs &InsertedInsts, 2478 InstrToOrigTy &PromotedInsts, 2479 TypePromotionTransaction &TPT) { 2480 ExtAddrMode Result; 2481 2482 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2483 MemoryInst, Result, InsertedInsts, 2484 PromotedInsts, TPT).matchAddr(V, 0); 2485 (void)Success; assert(Success && "Couldn't select *anything*?"); 2486 return Result; 2487 } 2488 private: 2489 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2490 bool matchAddr(Value *V, unsigned Depth); 2491 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2492 bool *MovedAway = nullptr); 2493 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2494 ExtAddrMode &AMBefore, 2495 ExtAddrMode &AMAfter); 2496 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2497 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2498 Value *PromotedOperand) const; 2499 }; 2500 2501 /// Try adding ScaleReg*Scale to the current addressing mode. 2502 /// Return true and update AddrMode if this addr mode is legal for the target, 2503 /// false if not. 2504 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2505 unsigned Depth) { 2506 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2507 // mode. Just process that directly. 2508 if (Scale == 1) 2509 return matchAddr(ScaleReg, Depth); 2510 2511 // If the scale is 0, it takes nothing to add this. 2512 if (Scale == 0) 2513 return true; 2514 2515 // If we already have a scale of this value, we can add to it, otherwise, we 2516 // need an available scale field. 2517 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2518 return false; 2519 2520 ExtAddrMode TestAddrMode = AddrMode; 2521 2522 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2523 // [A+B + A*7] -> [B+A*8]. 2524 TestAddrMode.Scale += Scale; 2525 TestAddrMode.ScaledReg = ScaleReg; 2526 2527 // If the new address isn't legal, bail out. 2528 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2529 return false; 2530 2531 // It was legal, so commit it. 2532 AddrMode = TestAddrMode; 2533 2534 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2535 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2536 // X*Scale + C*Scale to addr mode. 2537 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2538 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2539 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2540 TestAddrMode.ScaledReg = AddLHS; 2541 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2542 2543 // If this addressing mode is legal, commit it and remember that we folded 2544 // this instruction. 2545 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2546 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2547 AddrMode = TestAddrMode; 2548 return true; 2549 } 2550 } 2551 2552 // Otherwise, not (x+c)*scale, just return what we have. 2553 return true; 2554 } 2555 2556 /// This is a little filter, which returns true if an addressing computation 2557 /// involving I might be folded into a load/store accessing it. 2558 /// This doesn't need to be perfect, but needs to accept at least 2559 /// the set of instructions that MatchOperationAddr can. 2560 static bool MightBeFoldableInst(Instruction *I) { 2561 switch (I->getOpcode()) { 2562 case Instruction::BitCast: 2563 case Instruction::AddrSpaceCast: 2564 // Don't touch identity bitcasts. 2565 if (I->getType() == I->getOperand(0)->getType()) 2566 return false; 2567 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2568 case Instruction::PtrToInt: 2569 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2570 return true; 2571 case Instruction::IntToPtr: 2572 // We know the input is intptr_t, so this is foldable. 2573 return true; 2574 case Instruction::Add: 2575 return true; 2576 case Instruction::Mul: 2577 case Instruction::Shl: 2578 // Can only handle X*C and X << C. 2579 return isa<ConstantInt>(I->getOperand(1)); 2580 case Instruction::GetElementPtr: 2581 return true; 2582 default: 2583 return false; 2584 } 2585 } 2586 2587 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2588 /// \note \p Val is assumed to be the product of some type promotion. 2589 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2590 /// to be legal, as the non-promoted value would have had the same state. 2591 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2592 const DataLayout &DL, Value *Val) { 2593 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2594 if (!PromotedInst) 2595 return false; 2596 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2597 // If the ISDOpcode is undefined, it was undefined before the promotion. 2598 if (!ISDOpcode) 2599 return true; 2600 // Otherwise, check if the promoted instruction is legal or not. 2601 return TLI.isOperationLegalOrCustom( 2602 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2603 } 2604 2605 /// \brief Hepler class to perform type promotion. 2606 class TypePromotionHelper { 2607 /// \brief Utility function to check whether or not a sign or zero extension 2608 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2609 /// either using the operands of \p Inst or promoting \p Inst. 2610 /// The type of the extension is defined by \p IsSExt. 2611 /// In other words, check if: 2612 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2613 /// #1 Promotion applies: 2614 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2615 /// #2 Operand reuses: 2616 /// ext opnd1 to ConsideredExtType. 2617 /// \p PromotedInsts maps the instructions to their type before promotion. 2618 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2619 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2620 2621 /// \brief Utility function to determine if \p OpIdx should be promoted when 2622 /// promoting \p Inst. 2623 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2624 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2625 } 2626 2627 /// \brief Utility function to promote the operand of \p Ext when this 2628 /// operand is a promotable trunc or sext or zext. 2629 /// \p PromotedInsts maps the instructions to their type before promotion. 2630 /// \p CreatedInstsCost[out] contains the cost of all instructions 2631 /// created to promote the operand of Ext. 2632 /// Newly added extensions are inserted in \p Exts. 2633 /// Newly added truncates are inserted in \p Truncs. 2634 /// Should never be called directly. 2635 /// \return The promoted value which is used instead of Ext. 2636 static Value *promoteOperandForTruncAndAnyExt( 2637 Instruction *Ext, TypePromotionTransaction &TPT, 2638 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2639 SmallVectorImpl<Instruction *> *Exts, 2640 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2641 2642 /// \brief Utility function to promote the operand of \p Ext when this 2643 /// operand is promotable and is not a supported trunc or sext. 2644 /// \p PromotedInsts maps the instructions to their type before promotion. 2645 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2646 /// created to promote the operand of Ext. 2647 /// Newly added extensions are inserted in \p Exts. 2648 /// Newly added truncates are inserted in \p Truncs. 2649 /// Should never be called directly. 2650 /// \return The promoted value which is used instead of Ext. 2651 static Value *promoteOperandForOther(Instruction *Ext, 2652 TypePromotionTransaction &TPT, 2653 InstrToOrigTy &PromotedInsts, 2654 unsigned &CreatedInstsCost, 2655 SmallVectorImpl<Instruction *> *Exts, 2656 SmallVectorImpl<Instruction *> *Truncs, 2657 const TargetLowering &TLI, bool IsSExt); 2658 2659 /// \see promoteOperandForOther. 2660 static Value *signExtendOperandForOther( 2661 Instruction *Ext, TypePromotionTransaction &TPT, 2662 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2663 SmallVectorImpl<Instruction *> *Exts, 2664 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2665 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2666 Exts, Truncs, TLI, true); 2667 } 2668 2669 /// \see promoteOperandForOther. 2670 static Value *zeroExtendOperandForOther( 2671 Instruction *Ext, TypePromotionTransaction &TPT, 2672 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2673 SmallVectorImpl<Instruction *> *Exts, 2674 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2675 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2676 Exts, Truncs, TLI, false); 2677 } 2678 2679 public: 2680 /// Type for the utility function that promotes the operand of Ext. 2681 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2682 InstrToOrigTy &PromotedInsts, 2683 unsigned &CreatedInstsCost, 2684 SmallVectorImpl<Instruction *> *Exts, 2685 SmallVectorImpl<Instruction *> *Truncs, 2686 const TargetLowering &TLI); 2687 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2688 /// action to promote the operand of \p Ext instead of using Ext. 2689 /// \return NULL if no promotable action is possible with the current 2690 /// sign extension. 2691 /// \p InsertedInsts keeps track of all the instructions inserted by the 2692 /// other CodeGenPrepare optimizations. This information is important 2693 /// because we do not want to promote these instructions as CodeGenPrepare 2694 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2695 /// \p PromotedInsts maps the instructions to their type before promotion. 2696 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2697 const TargetLowering &TLI, 2698 const InstrToOrigTy &PromotedInsts); 2699 }; 2700 2701 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2702 Type *ConsideredExtType, 2703 const InstrToOrigTy &PromotedInsts, 2704 bool IsSExt) { 2705 // The promotion helper does not know how to deal with vector types yet. 2706 // To be able to fix that, we would need to fix the places where we 2707 // statically extend, e.g., constants and such. 2708 if (Inst->getType()->isVectorTy()) 2709 return false; 2710 2711 // We can always get through zext. 2712 if (isa<ZExtInst>(Inst)) 2713 return true; 2714 2715 // sext(sext) is ok too. 2716 if (IsSExt && isa<SExtInst>(Inst)) 2717 return true; 2718 2719 // We can get through binary operator, if it is legal. In other words, the 2720 // binary operator must have a nuw or nsw flag. 2721 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2722 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2723 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2724 (IsSExt && BinOp->hasNoSignedWrap()))) 2725 return true; 2726 2727 // Check if we can do the following simplification. 2728 // ext(trunc(opnd)) --> ext(opnd) 2729 if (!isa<TruncInst>(Inst)) 2730 return false; 2731 2732 Value *OpndVal = Inst->getOperand(0); 2733 // Check if we can use this operand in the extension. 2734 // If the type is larger than the result type of the extension, we cannot. 2735 if (!OpndVal->getType()->isIntegerTy() || 2736 OpndVal->getType()->getIntegerBitWidth() > 2737 ConsideredExtType->getIntegerBitWidth()) 2738 return false; 2739 2740 // If the operand of the truncate is not an instruction, we will not have 2741 // any information on the dropped bits. 2742 // (Actually we could for constant but it is not worth the extra logic). 2743 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2744 if (!Opnd) 2745 return false; 2746 2747 // Check if the source of the type is narrow enough. 2748 // I.e., check that trunc just drops extended bits of the same kind of 2749 // the extension. 2750 // #1 get the type of the operand and check the kind of the extended bits. 2751 const Type *OpndType; 2752 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2753 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2754 OpndType = It->second.getPointer(); 2755 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2756 OpndType = Opnd->getOperand(0)->getType(); 2757 else 2758 return false; 2759 2760 // #2 check that the truncate just drops extended bits. 2761 return Inst->getType()->getIntegerBitWidth() >= 2762 OpndType->getIntegerBitWidth(); 2763 } 2764 2765 TypePromotionHelper::Action TypePromotionHelper::getAction( 2766 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2767 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2768 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2769 "Unexpected instruction type"); 2770 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2771 Type *ExtTy = Ext->getType(); 2772 bool IsSExt = isa<SExtInst>(Ext); 2773 // If the operand of the extension is not an instruction, we cannot 2774 // get through. 2775 // If it, check we can get through. 2776 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2777 return nullptr; 2778 2779 // Do not promote if the operand has been added by codegenprepare. 2780 // Otherwise, it means we are undoing an optimization that is likely to be 2781 // redone, thus causing potential infinite loop. 2782 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2783 return nullptr; 2784 2785 // SExt or Trunc instructions. 2786 // Return the related handler. 2787 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2788 isa<ZExtInst>(ExtOpnd)) 2789 return promoteOperandForTruncAndAnyExt; 2790 2791 // Regular instruction. 2792 // Abort early if we will have to insert non-free instructions. 2793 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2794 return nullptr; 2795 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2796 } 2797 2798 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2799 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2800 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2801 SmallVectorImpl<Instruction *> *Exts, 2802 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2803 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2804 // get through it and this method should not be called. 2805 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2806 Value *ExtVal = SExt; 2807 bool HasMergedNonFreeExt = false; 2808 if (isa<ZExtInst>(SExtOpnd)) { 2809 // Replace s|zext(zext(opnd)) 2810 // => zext(opnd). 2811 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2812 Value *ZExt = 2813 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2814 TPT.replaceAllUsesWith(SExt, ZExt); 2815 TPT.eraseInstruction(SExt); 2816 ExtVal = ZExt; 2817 } else { 2818 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2819 // => z|sext(opnd). 2820 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2821 } 2822 CreatedInstsCost = 0; 2823 2824 // Remove dead code. 2825 if (SExtOpnd->use_empty()) 2826 TPT.eraseInstruction(SExtOpnd); 2827 2828 // Check if the extension is still needed. 2829 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2830 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2831 if (ExtInst) { 2832 if (Exts) 2833 Exts->push_back(ExtInst); 2834 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2835 } 2836 return ExtVal; 2837 } 2838 2839 // At this point we have: ext ty opnd to ty. 2840 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2841 Value *NextVal = ExtInst->getOperand(0); 2842 TPT.eraseInstruction(ExtInst, NextVal); 2843 return NextVal; 2844 } 2845 2846 Value *TypePromotionHelper::promoteOperandForOther( 2847 Instruction *Ext, TypePromotionTransaction &TPT, 2848 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2849 SmallVectorImpl<Instruction *> *Exts, 2850 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2851 bool IsSExt) { 2852 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2853 // get through it and this method should not be called. 2854 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2855 CreatedInstsCost = 0; 2856 if (!ExtOpnd->hasOneUse()) { 2857 // ExtOpnd will be promoted. 2858 // All its uses, but Ext, will need to use a truncated value of the 2859 // promoted version. 2860 // Create the truncate now. 2861 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2862 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2863 ITrunc->removeFromParent(); 2864 // Insert it just after the definition. 2865 ITrunc->insertAfter(ExtOpnd); 2866 if (Truncs) 2867 Truncs->push_back(ITrunc); 2868 } 2869 2870 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2871 // Restore the operand of Ext (which has been replaced by the previous call 2872 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2873 TPT.setOperand(Ext, 0, ExtOpnd); 2874 } 2875 2876 // Get through the Instruction: 2877 // 1. Update its type. 2878 // 2. Replace the uses of Ext by Inst. 2879 // 3. Extend each operand that needs to be extended. 2880 2881 // Remember the original type of the instruction before promotion. 2882 // This is useful to know that the high bits are sign extended bits. 2883 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2884 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2885 // Step #1. 2886 TPT.mutateType(ExtOpnd, Ext->getType()); 2887 // Step #2. 2888 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2889 // Step #3. 2890 Instruction *ExtForOpnd = Ext; 2891 2892 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2893 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2894 ++OpIdx) { 2895 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2896 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2897 !shouldExtOperand(ExtOpnd, OpIdx)) { 2898 DEBUG(dbgs() << "No need to propagate\n"); 2899 continue; 2900 } 2901 // Check if we can statically extend the operand. 2902 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2903 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2904 DEBUG(dbgs() << "Statically extend\n"); 2905 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2906 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2907 : Cst->getValue().zext(BitWidth); 2908 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2909 continue; 2910 } 2911 // UndefValue are typed, so we have to statically sign extend them. 2912 if (isa<UndefValue>(Opnd)) { 2913 DEBUG(dbgs() << "Statically extend\n"); 2914 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2915 continue; 2916 } 2917 2918 // Otherwise we have to explicity sign extend the operand. 2919 // Check if Ext was reused to extend an operand. 2920 if (!ExtForOpnd) { 2921 // If yes, create a new one. 2922 DEBUG(dbgs() << "More operands to ext\n"); 2923 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2924 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2925 if (!isa<Instruction>(ValForExtOpnd)) { 2926 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2927 continue; 2928 } 2929 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2930 } 2931 if (Exts) 2932 Exts->push_back(ExtForOpnd); 2933 TPT.setOperand(ExtForOpnd, 0, Opnd); 2934 2935 // Move the sign extension before the insertion point. 2936 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2937 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2938 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2939 // If more sext are required, new instructions will have to be created. 2940 ExtForOpnd = nullptr; 2941 } 2942 if (ExtForOpnd == Ext) { 2943 DEBUG(dbgs() << "Extension is useless now\n"); 2944 TPT.eraseInstruction(Ext); 2945 } 2946 return ExtOpnd; 2947 } 2948 2949 /// Check whether or not promoting an instruction to a wider type is profitable. 2950 /// \p NewCost gives the cost of extension instructions created by the 2951 /// promotion. 2952 /// \p OldCost gives the cost of extension instructions before the promotion 2953 /// plus the number of instructions that have been 2954 /// matched in the addressing mode the promotion. 2955 /// \p PromotedOperand is the value that has been promoted. 2956 /// \return True if the promotion is profitable, false otherwise. 2957 bool AddressingModeMatcher::isPromotionProfitable( 2958 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2959 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2960 // The cost of the new extensions is greater than the cost of the 2961 // old extension plus what we folded. 2962 // This is not profitable. 2963 if (NewCost > OldCost) 2964 return false; 2965 if (NewCost < OldCost) 2966 return true; 2967 // The promotion is neutral but it may help folding the sign extension in 2968 // loads for instance. 2969 // Check that we did not create an illegal instruction. 2970 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2971 } 2972 2973 /// Given an instruction or constant expr, see if we can fold the operation 2974 /// into the addressing mode. If so, update the addressing mode and return 2975 /// true, otherwise return false without modifying AddrMode. 2976 /// If \p MovedAway is not NULL, it contains the information of whether or 2977 /// not AddrInst has to be folded into the addressing mode on success. 2978 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2979 /// because it has been moved away. 2980 /// Thus AddrInst must not be added in the matched instructions. 2981 /// This state can happen when AddrInst is a sext, since it may be moved away. 2982 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2983 /// not be referenced anymore. 2984 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 2985 unsigned Depth, 2986 bool *MovedAway) { 2987 // Avoid exponential behavior on extremely deep expression trees. 2988 if (Depth >= 5) return false; 2989 2990 // By default, all matched instructions stay in place. 2991 if (MovedAway) 2992 *MovedAway = false; 2993 2994 switch (Opcode) { 2995 case Instruction::PtrToInt: 2996 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2997 return matchAddr(AddrInst->getOperand(0), Depth); 2998 case Instruction::IntToPtr: { 2999 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3000 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3001 // This inttoptr is a no-op if the integer type is pointer sized. 3002 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3003 return matchAddr(AddrInst->getOperand(0), Depth); 3004 return false; 3005 } 3006 case Instruction::BitCast: 3007 // BitCast is always a noop, and we can handle it as long as it is 3008 // int->int or pointer->pointer (we don't want int<->fp or something). 3009 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3010 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3011 // Don't touch identity bitcasts. These were probably put here by LSR, 3012 // and we don't want to mess around with them. Assume it knows what it 3013 // is doing. 3014 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3015 return matchAddr(AddrInst->getOperand(0), Depth); 3016 return false; 3017 case Instruction::AddrSpaceCast: { 3018 unsigned SrcAS 3019 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3020 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3021 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3022 return matchAddr(AddrInst->getOperand(0), Depth); 3023 return false; 3024 } 3025 case Instruction::Add: { 3026 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3027 ExtAddrMode BackupAddrMode = AddrMode; 3028 unsigned OldSize = AddrModeInsts.size(); 3029 // Start a transaction at this point. 3030 // The LHS may match but not the RHS. 3031 // Therefore, we need a higher level restoration point to undo partially 3032 // matched operation. 3033 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3034 TPT.getRestorationPoint(); 3035 3036 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3037 matchAddr(AddrInst->getOperand(0), Depth+1)) 3038 return true; 3039 3040 // Restore the old addr mode info. 3041 AddrMode = BackupAddrMode; 3042 AddrModeInsts.resize(OldSize); 3043 TPT.rollback(LastKnownGood); 3044 3045 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3046 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3047 matchAddr(AddrInst->getOperand(1), Depth+1)) 3048 return true; 3049 3050 // Otherwise we definitely can't merge the ADD in. 3051 AddrMode = BackupAddrMode; 3052 AddrModeInsts.resize(OldSize); 3053 TPT.rollback(LastKnownGood); 3054 break; 3055 } 3056 //case Instruction::Or: 3057 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3058 //break; 3059 case Instruction::Mul: 3060 case Instruction::Shl: { 3061 // Can only handle X*C and X << C. 3062 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3063 if (!RHS) 3064 return false; 3065 int64_t Scale = RHS->getSExtValue(); 3066 if (Opcode == Instruction::Shl) 3067 Scale = 1LL << Scale; 3068 3069 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3070 } 3071 case Instruction::GetElementPtr: { 3072 // Scan the GEP. We check it if it contains constant offsets and at most 3073 // one variable offset. 3074 int VariableOperand = -1; 3075 unsigned VariableScale = 0; 3076 3077 int64_t ConstantOffset = 0; 3078 gep_type_iterator GTI = gep_type_begin(AddrInst); 3079 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3080 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 3081 const StructLayout *SL = DL.getStructLayout(STy); 3082 unsigned Idx = 3083 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3084 ConstantOffset += SL->getElementOffset(Idx); 3085 } else { 3086 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3087 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3088 ConstantOffset += CI->getSExtValue()*TypeSize; 3089 } else if (TypeSize) { // Scales of zero don't do anything. 3090 // We only allow one variable index at the moment. 3091 if (VariableOperand != -1) 3092 return false; 3093 3094 // Remember the variable index. 3095 VariableOperand = i; 3096 VariableScale = TypeSize; 3097 } 3098 } 3099 } 3100 3101 // A common case is for the GEP to only do a constant offset. In this case, 3102 // just add it to the disp field and check validity. 3103 if (VariableOperand == -1) { 3104 AddrMode.BaseOffs += ConstantOffset; 3105 if (ConstantOffset == 0 || 3106 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3107 // Check to see if we can fold the base pointer in too. 3108 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3109 return true; 3110 } 3111 AddrMode.BaseOffs -= ConstantOffset; 3112 return false; 3113 } 3114 3115 // Save the valid addressing mode in case we can't match. 3116 ExtAddrMode BackupAddrMode = AddrMode; 3117 unsigned OldSize = AddrModeInsts.size(); 3118 3119 // See if the scale and offset amount is valid for this target. 3120 AddrMode.BaseOffs += ConstantOffset; 3121 3122 // Match the base operand of the GEP. 3123 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3124 // If it couldn't be matched, just stuff the value in a register. 3125 if (AddrMode.HasBaseReg) { 3126 AddrMode = BackupAddrMode; 3127 AddrModeInsts.resize(OldSize); 3128 return false; 3129 } 3130 AddrMode.HasBaseReg = true; 3131 AddrMode.BaseReg = AddrInst->getOperand(0); 3132 } 3133 3134 // Match the remaining variable portion of the GEP. 3135 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3136 Depth)) { 3137 // If it couldn't be matched, try stuffing the base into a register 3138 // instead of matching it, and retrying the match of the scale. 3139 AddrMode = BackupAddrMode; 3140 AddrModeInsts.resize(OldSize); 3141 if (AddrMode.HasBaseReg) 3142 return false; 3143 AddrMode.HasBaseReg = true; 3144 AddrMode.BaseReg = AddrInst->getOperand(0); 3145 AddrMode.BaseOffs += ConstantOffset; 3146 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3147 VariableScale, Depth)) { 3148 // If even that didn't work, bail. 3149 AddrMode = BackupAddrMode; 3150 AddrModeInsts.resize(OldSize); 3151 return false; 3152 } 3153 } 3154 3155 return true; 3156 } 3157 case Instruction::SExt: 3158 case Instruction::ZExt: { 3159 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3160 if (!Ext) 3161 return false; 3162 3163 // Try to move this ext out of the way of the addressing mode. 3164 // Ask for a method for doing so. 3165 TypePromotionHelper::Action TPH = 3166 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3167 if (!TPH) 3168 return false; 3169 3170 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3171 TPT.getRestorationPoint(); 3172 unsigned CreatedInstsCost = 0; 3173 unsigned ExtCost = !TLI.isExtFree(Ext); 3174 Value *PromotedOperand = 3175 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3176 // SExt has been moved away. 3177 // Thus either it will be rematched later in the recursive calls or it is 3178 // gone. Anyway, we must not fold it into the addressing mode at this point. 3179 // E.g., 3180 // op = add opnd, 1 3181 // idx = ext op 3182 // addr = gep base, idx 3183 // is now: 3184 // promotedOpnd = ext opnd <- no match here 3185 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3186 // addr = gep base, op <- match 3187 if (MovedAway) 3188 *MovedAway = true; 3189 3190 assert(PromotedOperand && 3191 "TypePromotionHelper should have filtered out those cases"); 3192 3193 ExtAddrMode BackupAddrMode = AddrMode; 3194 unsigned OldSize = AddrModeInsts.size(); 3195 3196 if (!matchAddr(PromotedOperand, Depth) || 3197 // The total of the new cost is equal to the cost of the created 3198 // instructions. 3199 // The total of the old cost is equal to the cost of the extension plus 3200 // what we have saved in the addressing mode. 3201 !isPromotionProfitable(CreatedInstsCost, 3202 ExtCost + (AddrModeInsts.size() - OldSize), 3203 PromotedOperand)) { 3204 AddrMode = BackupAddrMode; 3205 AddrModeInsts.resize(OldSize); 3206 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3207 TPT.rollback(LastKnownGood); 3208 return false; 3209 } 3210 return true; 3211 } 3212 } 3213 return false; 3214 } 3215 3216 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3217 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3218 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3219 /// for the target. 3220 /// 3221 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3222 // Start a transaction at this point that we will rollback if the matching 3223 // fails. 3224 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3225 TPT.getRestorationPoint(); 3226 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3227 // Fold in immediates if legal for the target. 3228 AddrMode.BaseOffs += CI->getSExtValue(); 3229 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3230 return true; 3231 AddrMode.BaseOffs -= CI->getSExtValue(); 3232 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3233 // If this is a global variable, try to fold it into the addressing mode. 3234 if (!AddrMode.BaseGV) { 3235 AddrMode.BaseGV = GV; 3236 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3237 return true; 3238 AddrMode.BaseGV = nullptr; 3239 } 3240 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3241 ExtAddrMode BackupAddrMode = AddrMode; 3242 unsigned OldSize = AddrModeInsts.size(); 3243 3244 // Check to see if it is possible to fold this operation. 3245 bool MovedAway = false; 3246 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3247 // This instruction may have been moved away. If so, there is nothing 3248 // to check here. 3249 if (MovedAway) 3250 return true; 3251 // Okay, it's possible to fold this. Check to see if it is actually 3252 // *profitable* to do so. We use a simple cost model to avoid increasing 3253 // register pressure too much. 3254 if (I->hasOneUse() || 3255 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3256 AddrModeInsts.push_back(I); 3257 return true; 3258 } 3259 3260 // It isn't profitable to do this, roll back. 3261 //cerr << "NOT FOLDING: " << *I; 3262 AddrMode = BackupAddrMode; 3263 AddrModeInsts.resize(OldSize); 3264 TPT.rollback(LastKnownGood); 3265 } 3266 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3267 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3268 return true; 3269 TPT.rollback(LastKnownGood); 3270 } else if (isa<ConstantPointerNull>(Addr)) { 3271 // Null pointer gets folded without affecting the addressing mode. 3272 return true; 3273 } 3274 3275 // Worse case, the target should support [reg] addressing modes. :) 3276 if (!AddrMode.HasBaseReg) { 3277 AddrMode.HasBaseReg = true; 3278 AddrMode.BaseReg = Addr; 3279 // Still check for legality in case the target supports [imm] but not [i+r]. 3280 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3281 return true; 3282 AddrMode.HasBaseReg = false; 3283 AddrMode.BaseReg = nullptr; 3284 } 3285 3286 // If the base register is already taken, see if we can do [r+r]. 3287 if (AddrMode.Scale == 0) { 3288 AddrMode.Scale = 1; 3289 AddrMode.ScaledReg = Addr; 3290 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3291 return true; 3292 AddrMode.Scale = 0; 3293 AddrMode.ScaledReg = nullptr; 3294 } 3295 // Couldn't match. 3296 TPT.rollback(LastKnownGood); 3297 return false; 3298 } 3299 3300 /// Check to see if all uses of OpVal by the specified inline asm call are due 3301 /// to memory operands. If so, return true, otherwise return false. 3302 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3303 const TargetMachine &TM) { 3304 const Function *F = CI->getParent()->getParent(); 3305 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3306 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3307 TargetLowering::AsmOperandInfoVector TargetConstraints = 3308 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3309 ImmutableCallSite(CI)); 3310 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3311 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3312 3313 // Compute the constraint code and ConstraintType to use. 3314 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3315 3316 // If this asm operand is our Value*, and if it isn't an indirect memory 3317 // operand, we can't fold it! 3318 if (OpInfo.CallOperandVal == OpVal && 3319 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3320 !OpInfo.isIndirect)) 3321 return false; 3322 } 3323 3324 return true; 3325 } 3326 3327 /// Recursively walk all the uses of I until we find a memory use. 3328 /// If we find an obviously non-foldable instruction, return true. 3329 /// Add the ultimately found memory instructions to MemoryUses. 3330 static bool FindAllMemoryUses( 3331 Instruction *I, 3332 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3333 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3334 // If we already considered this instruction, we're done. 3335 if (!ConsideredInsts.insert(I).second) 3336 return false; 3337 3338 // If this is an obviously unfoldable instruction, bail out. 3339 if (!MightBeFoldableInst(I)) 3340 return true; 3341 3342 // Loop over all the uses, recursively processing them. 3343 for (Use &U : I->uses()) { 3344 Instruction *UserI = cast<Instruction>(U.getUser()); 3345 3346 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3347 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3348 continue; 3349 } 3350 3351 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3352 unsigned opNo = U.getOperandNo(); 3353 if (opNo == 0) return true; // Storing addr, not into addr. 3354 MemoryUses.push_back(std::make_pair(SI, opNo)); 3355 continue; 3356 } 3357 3358 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3359 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3360 if (!IA) return true; 3361 3362 // If this is a memory operand, we're cool, otherwise bail out. 3363 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3364 return true; 3365 continue; 3366 } 3367 3368 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3369 return true; 3370 } 3371 3372 return false; 3373 } 3374 3375 /// Return true if Val is already known to be live at the use site that we're 3376 /// folding it into. If so, there is no cost to include it in the addressing 3377 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3378 /// instruction already. 3379 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3380 Value *KnownLive2) { 3381 // If Val is either of the known-live values, we know it is live! 3382 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3383 return true; 3384 3385 // All values other than instructions and arguments (e.g. constants) are live. 3386 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3387 3388 // If Val is a constant sized alloca in the entry block, it is live, this is 3389 // true because it is just a reference to the stack/frame pointer, which is 3390 // live for the whole function. 3391 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3392 if (AI->isStaticAlloca()) 3393 return true; 3394 3395 // Check to see if this value is already used in the memory instruction's 3396 // block. If so, it's already live into the block at the very least, so we 3397 // can reasonably fold it. 3398 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3399 } 3400 3401 /// It is possible for the addressing mode of the machine to fold the specified 3402 /// instruction into a load or store that ultimately uses it. 3403 /// However, the specified instruction has multiple uses. 3404 /// Given this, it may actually increase register pressure to fold it 3405 /// into the load. For example, consider this code: 3406 /// 3407 /// X = ... 3408 /// Y = X+1 3409 /// use(Y) -> nonload/store 3410 /// Z = Y+1 3411 /// load Z 3412 /// 3413 /// In this case, Y has multiple uses, and can be folded into the load of Z 3414 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3415 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3416 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3417 /// number of computations either. 3418 /// 3419 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3420 /// X was live across 'load Z' for other reasons, we actually *would* want to 3421 /// fold the addressing mode in the Z case. This would make Y die earlier. 3422 bool AddressingModeMatcher:: 3423 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3424 ExtAddrMode &AMAfter) { 3425 if (IgnoreProfitability) return true; 3426 3427 // AMBefore is the addressing mode before this instruction was folded into it, 3428 // and AMAfter is the addressing mode after the instruction was folded. Get 3429 // the set of registers referenced by AMAfter and subtract out those 3430 // referenced by AMBefore: this is the set of values which folding in this 3431 // address extends the lifetime of. 3432 // 3433 // Note that there are only two potential values being referenced here, 3434 // BaseReg and ScaleReg (global addresses are always available, as are any 3435 // folded immediates). 3436 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3437 3438 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3439 // lifetime wasn't extended by adding this instruction. 3440 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3441 BaseReg = nullptr; 3442 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3443 ScaledReg = nullptr; 3444 3445 // If folding this instruction (and it's subexprs) didn't extend any live 3446 // ranges, we're ok with it. 3447 if (!BaseReg && !ScaledReg) 3448 return true; 3449 3450 // If all uses of this instruction are ultimately load/store/inlineasm's, 3451 // check to see if their addressing modes will include this instruction. If 3452 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3453 // uses. 3454 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3455 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3456 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3457 return false; // Has a non-memory, non-foldable use! 3458 3459 // Now that we know that all uses of this instruction are part of a chain of 3460 // computation involving only operations that could theoretically be folded 3461 // into a memory use, loop over each of these uses and see if they could 3462 // *actually* fold the instruction. 3463 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3464 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3465 Instruction *User = MemoryUses[i].first; 3466 unsigned OpNo = MemoryUses[i].second; 3467 3468 // Get the access type of this use. If the use isn't a pointer, we don't 3469 // know what it accesses. 3470 Value *Address = User->getOperand(OpNo); 3471 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3472 if (!AddrTy) 3473 return false; 3474 Type *AddressAccessTy = AddrTy->getElementType(); 3475 unsigned AS = AddrTy->getAddressSpace(); 3476 3477 // Do a match against the root of this address, ignoring profitability. This 3478 // will tell us if the addressing mode for the memory operation will 3479 // *actually* cover the shared instruction. 3480 ExtAddrMode Result; 3481 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3482 TPT.getRestorationPoint(); 3483 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3484 MemoryInst, Result, InsertedInsts, 3485 PromotedInsts, TPT); 3486 Matcher.IgnoreProfitability = true; 3487 bool Success = Matcher.matchAddr(Address, 0); 3488 (void)Success; assert(Success && "Couldn't select *anything*?"); 3489 3490 // The match was to check the profitability, the changes made are not 3491 // part of the original matcher. Therefore, they should be dropped 3492 // otherwise the original matcher will not present the right state. 3493 TPT.rollback(LastKnownGood); 3494 3495 // If the match didn't cover I, then it won't be shared by it. 3496 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3497 I) == MatchedAddrModeInsts.end()) 3498 return false; 3499 3500 MatchedAddrModeInsts.clear(); 3501 } 3502 3503 return true; 3504 } 3505 3506 } // end anonymous namespace 3507 3508 /// Return true if the specified values are defined in a 3509 /// different basic block than BB. 3510 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3511 if (Instruction *I = dyn_cast<Instruction>(V)) 3512 return I->getParent() != BB; 3513 return false; 3514 } 3515 3516 /// Load and Store Instructions often have addressing modes that can do 3517 /// significant amounts of computation. As such, instruction selection will try 3518 /// to get the load or store to do as much computation as possible for the 3519 /// program. The problem is that isel can only see within a single block. As 3520 /// such, we sink as much legal addressing mode work into the block as possible. 3521 /// 3522 /// This method is used to optimize both load/store and inline asms with memory 3523 /// operands. 3524 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3525 Type *AccessTy, unsigned AddrSpace) { 3526 Value *Repl = Addr; 3527 3528 // Try to collapse single-value PHI nodes. This is necessary to undo 3529 // unprofitable PRE transformations. 3530 SmallVector<Value*, 8> worklist; 3531 SmallPtrSet<Value*, 16> Visited; 3532 worklist.push_back(Addr); 3533 3534 // Use a worklist to iteratively look through PHI nodes, and ensure that 3535 // the addressing mode obtained from the non-PHI roots of the graph 3536 // are equivalent. 3537 Value *Consensus = nullptr; 3538 unsigned NumUsesConsensus = 0; 3539 bool IsNumUsesConsensusValid = false; 3540 SmallVector<Instruction*, 16> AddrModeInsts; 3541 ExtAddrMode AddrMode; 3542 TypePromotionTransaction TPT; 3543 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3544 TPT.getRestorationPoint(); 3545 while (!worklist.empty()) { 3546 Value *V = worklist.back(); 3547 worklist.pop_back(); 3548 3549 // Break use-def graph loops. 3550 if (!Visited.insert(V).second) { 3551 Consensus = nullptr; 3552 break; 3553 } 3554 3555 // For a PHI node, push all of its incoming values. 3556 if (PHINode *P = dyn_cast<PHINode>(V)) { 3557 for (Value *IncValue : P->incoming_values()) 3558 worklist.push_back(IncValue); 3559 continue; 3560 } 3561 3562 // For non-PHIs, determine the addressing mode being computed. 3563 SmallVector<Instruction*, 16> NewAddrModeInsts; 3564 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3565 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3566 InsertedInsts, PromotedInsts, TPT); 3567 3568 // This check is broken into two cases with very similar code to avoid using 3569 // getNumUses() as much as possible. Some values have a lot of uses, so 3570 // calling getNumUses() unconditionally caused a significant compile-time 3571 // regression. 3572 if (!Consensus) { 3573 Consensus = V; 3574 AddrMode = NewAddrMode; 3575 AddrModeInsts = NewAddrModeInsts; 3576 continue; 3577 } else if (NewAddrMode == AddrMode) { 3578 if (!IsNumUsesConsensusValid) { 3579 NumUsesConsensus = Consensus->getNumUses(); 3580 IsNumUsesConsensusValid = true; 3581 } 3582 3583 // Ensure that the obtained addressing mode is equivalent to that obtained 3584 // for all other roots of the PHI traversal. Also, when choosing one 3585 // such root as representative, select the one with the most uses in order 3586 // to keep the cost modeling heuristics in AddressingModeMatcher 3587 // applicable. 3588 unsigned NumUses = V->getNumUses(); 3589 if (NumUses > NumUsesConsensus) { 3590 Consensus = V; 3591 NumUsesConsensus = NumUses; 3592 AddrModeInsts = NewAddrModeInsts; 3593 } 3594 continue; 3595 } 3596 3597 Consensus = nullptr; 3598 break; 3599 } 3600 3601 // If the addressing mode couldn't be determined, or if multiple different 3602 // ones were determined, bail out now. 3603 if (!Consensus) { 3604 TPT.rollback(LastKnownGood); 3605 return false; 3606 } 3607 TPT.commit(); 3608 3609 // Check to see if any of the instructions supersumed by this addr mode are 3610 // non-local to I's BB. 3611 bool AnyNonLocal = false; 3612 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3613 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3614 AnyNonLocal = true; 3615 break; 3616 } 3617 } 3618 3619 // If all the instructions matched are already in this BB, don't do anything. 3620 if (!AnyNonLocal) { 3621 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3622 return false; 3623 } 3624 3625 // Insert this computation right after this user. Since our caller is 3626 // scanning from the top of the BB to the bottom, reuse of the expr are 3627 // guaranteed to happen later. 3628 IRBuilder<> Builder(MemoryInst); 3629 3630 // Now that we determined the addressing expression we want to use and know 3631 // that we have to sink it into this block. Check to see if we have already 3632 // done this for some other load/store instr in this block. If so, reuse the 3633 // computation. 3634 Value *&SunkAddr = SunkAddrs[Addr]; 3635 if (SunkAddr) { 3636 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3637 << *MemoryInst << "\n"); 3638 if (SunkAddr->getType() != Addr->getType()) 3639 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3640 } else if (AddrSinkUsingGEPs || 3641 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3642 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3643 ->useAA())) { 3644 // By default, we use the GEP-based method when AA is used later. This 3645 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3646 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3647 << *MemoryInst << "\n"); 3648 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3649 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3650 3651 // First, find the pointer. 3652 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3653 ResultPtr = AddrMode.BaseReg; 3654 AddrMode.BaseReg = nullptr; 3655 } 3656 3657 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3658 // We can't add more than one pointer together, nor can we scale a 3659 // pointer (both of which seem meaningless). 3660 if (ResultPtr || AddrMode.Scale != 1) 3661 return false; 3662 3663 ResultPtr = AddrMode.ScaledReg; 3664 AddrMode.Scale = 0; 3665 } 3666 3667 if (AddrMode.BaseGV) { 3668 if (ResultPtr) 3669 return false; 3670 3671 ResultPtr = AddrMode.BaseGV; 3672 } 3673 3674 // If the real base value actually came from an inttoptr, then the matcher 3675 // will look through it and provide only the integer value. In that case, 3676 // use it here. 3677 if (!ResultPtr && AddrMode.BaseReg) { 3678 ResultPtr = 3679 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3680 AddrMode.BaseReg = nullptr; 3681 } else if (!ResultPtr && AddrMode.Scale == 1) { 3682 ResultPtr = 3683 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3684 AddrMode.Scale = 0; 3685 } 3686 3687 if (!ResultPtr && 3688 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3689 SunkAddr = Constant::getNullValue(Addr->getType()); 3690 } else if (!ResultPtr) { 3691 return false; 3692 } else { 3693 Type *I8PtrTy = 3694 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3695 Type *I8Ty = Builder.getInt8Ty(); 3696 3697 // Start with the base register. Do this first so that subsequent address 3698 // matching finds it last, which will prevent it from trying to match it 3699 // as the scaled value in case it happens to be a mul. That would be 3700 // problematic if we've sunk a different mul for the scale, because then 3701 // we'd end up sinking both muls. 3702 if (AddrMode.BaseReg) { 3703 Value *V = AddrMode.BaseReg; 3704 if (V->getType() != IntPtrTy) 3705 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3706 3707 ResultIndex = V; 3708 } 3709 3710 // Add the scale value. 3711 if (AddrMode.Scale) { 3712 Value *V = AddrMode.ScaledReg; 3713 if (V->getType() == IntPtrTy) { 3714 // done. 3715 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3716 cast<IntegerType>(V->getType())->getBitWidth()) { 3717 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3718 } else { 3719 // It is only safe to sign extend the BaseReg if we know that the math 3720 // required to create it did not overflow before we extend it. Since 3721 // the original IR value was tossed in favor of a constant back when 3722 // the AddrMode was created we need to bail out gracefully if widths 3723 // do not match instead of extending it. 3724 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3725 if (I && (ResultIndex != AddrMode.BaseReg)) 3726 I->eraseFromParent(); 3727 return false; 3728 } 3729 3730 if (AddrMode.Scale != 1) 3731 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3732 "sunkaddr"); 3733 if (ResultIndex) 3734 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3735 else 3736 ResultIndex = V; 3737 } 3738 3739 // Add in the Base Offset if present. 3740 if (AddrMode.BaseOffs) { 3741 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3742 if (ResultIndex) { 3743 // We need to add this separately from the scale above to help with 3744 // SDAG consecutive load/store merging. 3745 if (ResultPtr->getType() != I8PtrTy) 3746 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3747 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3748 } 3749 3750 ResultIndex = V; 3751 } 3752 3753 if (!ResultIndex) { 3754 SunkAddr = ResultPtr; 3755 } else { 3756 if (ResultPtr->getType() != I8PtrTy) 3757 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3758 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3759 } 3760 3761 if (SunkAddr->getType() != Addr->getType()) 3762 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3763 } 3764 } else { 3765 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3766 << *MemoryInst << "\n"); 3767 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3768 Value *Result = nullptr; 3769 3770 // Start with the base register. Do this first so that subsequent address 3771 // matching finds it last, which will prevent it from trying to match it 3772 // as the scaled value in case it happens to be a mul. That would be 3773 // problematic if we've sunk a different mul for the scale, because then 3774 // we'd end up sinking both muls. 3775 if (AddrMode.BaseReg) { 3776 Value *V = AddrMode.BaseReg; 3777 if (V->getType()->isPointerTy()) 3778 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3779 if (V->getType() != IntPtrTy) 3780 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3781 Result = V; 3782 } 3783 3784 // Add the scale value. 3785 if (AddrMode.Scale) { 3786 Value *V = AddrMode.ScaledReg; 3787 if (V->getType() == IntPtrTy) { 3788 // done. 3789 } else if (V->getType()->isPointerTy()) { 3790 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3791 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3792 cast<IntegerType>(V->getType())->getBitWidth()) { 3793 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3794 } else { 3795 // It is only safe to sign extend the BaseReg if we know that the math 3796 // required to create it did not overflow before we extend it. Since 3797 // the original IR value was tossed in favor of a constant back when 3798 // the AddrMode was created we need to bail out gracefully if widths 3799 // do not match instead of extending it. 3800 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3801 if (I && (Result != AddrMode.BaseReg)) 3802 I->eraseFromParent(); 3803 return false; 3804 } 3805 if (AddrMode.Scale != 1) 3806 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3807 "sunkaddr"); 3808 if (Result) 3809 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3810 else 3811 Result = V; 3812 } 3813 3814 // Add in the BaseGV if present. 3815 if (AddrMode.BaseGV) { 3816 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3817 if (Result) 3818 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3819 else 3820 Result = V; 3821 } 3822 3823 // Add in the Base Offset if present. 3824 if (AddrMode.BaseOffs) { 3825 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3826 if (Result) 3827 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3828 else 3829 Result = V; 3830 } 3831 3832 if (!Result) 3833 SunkAddr = Constant::getNullValue(Addr->getType()); 3834 else 3835 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3836 } 3837 3838 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3839 3840 // If we have no uses, recursively delete the value and all dead instructions 3841 // using it. 3842 if (Repl->use_empty()) { 3843 // This can cause recursive deletion, which can invalidate our iterator. 3844 // Use a WeakVH to hold onto it in case this happens. 3845 WeakVH IterHandle(&*CurInstIterator); 3846 BasicBlock *BB = CurInstIterator->getParent(); 3847 3848 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3849 3850 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3851 // If the iterator instruction was recursively deleted, start over at the 3852 // start of the block. 3853 CurInstIterator = BB->begin(); 3854 SunkAddrs.clear(); 3855 } 3856 } 3857 ++NumMemoryInsts; 3858 return true; 3859 } 3860 3861 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3862 /// address computing into the block when possible / profitable. 3863 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3864 bool MadeChange = false; 3865 3866 const TargetRegisterInfo *TRI = 3867 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3868 TargetLowering::AsmOperandInfoVector TargetConstraints = 3869 TLI->ParseConstraints(*DL, TRI, CS); 3870 unsigned ArgNo = 0; 3871 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3872 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3873 3874 // Compute the constraint code and ConstraintType to use. 3875 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3876 3877 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3878 OpInfo.isIndirect) { 3879 Value *OpVal = CS->getArgOperand(ArgNo++); 3880 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3881 } else if (OpInfo.Type == InlineAsm::isInput) 3882 ArgNo++; 3883 } 3884 3885 return MadeChange; 3886 } 3887 3888 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3889 /// sign extensions. 3890 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3891 assert(!Inst->use_empty() && "Input must have at least one use"); 3892 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3893 bool IsSExt = isa<SExtInst>(FirstUser); 3894 Type *ExtTy = FirstUser->getType(); 3895 for (const User *U : Inst->users()) { 3896 const Instruction *UI = cast<Instruction>(U); 3897 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3898 return false; 3899 Type *CurTy = UI->getType(); 3900 // Same input and output types: Same instruction after CSE. 3901 if (CurTy == ExtTy) 3902 continue; 3903 3904 // If IsSExt is true, we are in this situation: 3905 // a = Inst 3906 // b = sext ty1 a to ty2 3907 // c = sext ty1 a to ty3 3908 // Assuming ty2 is shorter than ty3, this could be turned into: 3909 // a = Inst 3910 // b = sext ty1 a to ty2 3911 // c = sext ty2 b to ty3 3912 // However, the last sext is not free. 3913 if (IsSExt) 3914 return false; 3915 3916 // This is a ZExt, maybe this is free to extend from one type to another. 3917 // In that case, we would not account for a different use. 3918 Type *NarrowTy; 3919 Type *LargeTy; 3920 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3921 CurTy->getScalarType()->getIntegerBitWidth()) { 3922 NarrowTy = CurTy; 3923 LargeTy = ExtTy; 3924 } else { 3925 NarrowTy = ExtTy; 3926 LargeTy = CurTy; 3927 } 3928 3929 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3930 return false; 3931 } 3932 // All uses are the same or can be derived from one another for free. 3933 return true; 3934 } 3935 3936 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3937 /// load instruction. 3938 /// If an ext(load) can be formed, it is returned via \p LI for the load 3939 /// and \p Inst for the extension. 3940 /// Otherwise LI == nullptr and Inst == nullptr. 3941 /// When some promotion happened, \p TPT contains the proper state to 3942 /// revert them. 3943 /// 3944 /// \return true when promoting was necessary to expose the ext(load) 3945 /// opportunity, false otherwise. 3946 /// 3947 /// Example: 3948 /// \code 3949 /// %ld = load i32* %addr 3950 /// %add = add nuw i32 %ld, 4 3951 /// %zext = zext i32 %add to i64 3952 /// \endcode 3953 /// => 3954 /// \code 3955 /// %ld = load i32* %addr 3956 /// %zext = zext i32 %ld to i64 3957 /// %add = add nuw i64 %zext, 4 3958 /// \encode 3959 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3960 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 3961 LoadInst *&LI, Instruction *&Inst, 3962 const SmallVectorImpl<Instruction *> &Exts, 3963 unsigned CreatedInstsCost = 0) { 3964 // Iterate over all the extensions to see if one form an ext(load). 3965 for (auto I : Exts) { 3966 // Check if we directly have ext(load). 3967 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3968 Inst = I; 3969 // No promotion happened here. 3970 return false; 3971 } 3972 // Check whether or not we want to do any promotion. 3973 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3974 continue; 3975 // Get the action to perform the promotion. 3976 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3977 I, InsertedInsts, *TLI, PromotedInsts); 3978 // Check if we can promote. 3979 if (!TPH) 3980 continue; 3981 // Save the current state. 3982 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3983 TPT.getRestorationPoint(); 3984 SmallVector<Instruction *, 4> NewExts; 3985 unsigned NewCreatedInstsCost = 0; 3986 unsigned ExtCost = !TLI->isExtFree(I); 3987 // Promote. 3988 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3989 &NewExts, nullptr, *TLI); 3990 assert(PromotedVal && 3991 "TypePromotionHelper should have filtered out those cases"); 3992 3993 // We would be able to merge only one extension in a load. 3994 // Therefore, if we have more than 1 new extension we heuristically 3995 // cut this search path, because it means we degrade the code quality. 3996 // With exactly 2, the transformation is neutral, because we will merge 3997 // one extension but leave one. However, we optimistically keep going, 3998 // because the new extension may be removed too. 3999 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4000 TotalCreatedInstsCost -= ExtCost; 4001 if (!StressExtLdPromotion && 4002 (TotalCreatedInstsCost > 1 || 4003 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4004 // The promotion is not profitable, rollback to the previous state. 4005 TPT.rollback(LastKnownGood); 4006 continue; 4007 } 4008 // The promotion is profitable. 4009 // Check if it exposes an ext(load). 4010 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4011 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4012 // If we have created a new extension, i.e., now we have two 4013 // extensions. We must make sure one of them is merged with 4014 // the load, otherwise we may degrade the code quality. 4015 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4016 // Promotion happened. 4017 return true; 4018 // If this does not help to expose an ext(load) then, rollback. 4019 TPT.rollback(LastKnownGood); 4020 } 4021 // None of the extension can form an ext(load). 4022 LI = nullptr; 4023 Inst = nullptr; 4024 return false; 4025 } 4026 4027 /// Move a zext or sext fed by a load into the same basic block as the load, 4028 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4029 /// extend into the load. 4030 /// \p I[in/out] the extension may be modified during the process if some 4031 /// promotions apply. 4032 /// 4033 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4034 // Try to promote a chain of computation if it allows to form 4035 // an extended load. 4036 TypePromotionTransaction TPT; 4037 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4038 TPT.getRestorationPoint(); 4039 SmallVector<Instruction *, 1> Exts; 4040 Exts.push_back(I); 4041 // Look for a load being extended. 4042 LoadInst *LI = nullptr; 4043 Instruction *OldExt = I; 4044 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4045 if (!LI || !I) { 4046 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4047 "the code must remain the same"); 4048 I = OldExt; 4049 return false; 4050 } 4051 4052 // If they're already in the same block, there's nothing to do. 4053 // Make the cheap checks first if we did not promote. 4054 // If we promoted, we need to check if it is indeed profitable. 4055 if (!HasPromoted && LI->getParent() == I->getParent()) 4056 return false; 4057 4058 EVT VT = TLI->getValueType(*DL, I->getType()); 4059 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4060 4061 // If the load has other users and the truncate is not free, this probably 4062 // isn't worthwhile. 4063 if (!LI->hasOneUse() && TLI && 4064 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4065 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4066 I = OldExt; 4067 TPT.rollback(LastKnownGood); 4068 return false; 4069 } 4070 4071 // Check whether the target supports casts folded into loads. 4072 unsigned LType; 4073 if (isa<ZExtInst>(I)) 4074 LType = ISD::ZEXTLOAD; 4075 else { 4076 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4077 LType = ISD::SEXTLOAD; 4078 } 4079 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4080 I = OldExt; 4081 TPT.rollback(LastKnownGood); 4082 return false; 4083 } 4084 4085 // Move the extend into the same block as the load, so that SelectionDAG 4086 // can fold it. 4087 TPT.commit(); 4088 I->removeFromParent(); 4089 I->insertAfter(LI); 4090 ++NumExtsMoved; 4091 return true; 4092 } 4093 4094 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4095 BasicBlock *DefBB = I->getParent(); 4096 4097 // If the result of a {s|z}ext and its source are both live out, rewrite all 4098 // other uses of the source with result of extension. 4099 Value *Src = I->getOperand(0); 4100 if (Src->hasOneUse()) 4101 return false; 4102 4103 // Only do this xform if truncating is free. 4104 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4105 return false; 4106 4107 // Only safe to perform the optimization if the source is also defined in 4108 // this block. 4109 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4110 return false; 4111 4112 bool DefIsLiveOut = false; 4113 for (User *U : I->users()) { 4114 Instruction *UI = cast<Instruction>(U); 4115 4116 // Figure out which BB this ext is used in. 4117 BasicBlock *UserBB = UI->getParent(); 4118 if (UserBB == DefBB) continue; 4119 DefIsLiveOut = true; 4120 break; 4121 } 4122 if (!DefIsLiveOut) 4123 return false; 4124 4125 // Make sure none of the uses are PHI nodes. 4126 for (User *U : Src->users()) { 4127 Instruction *UI = cast<Instruction>(U); 4128 BasicBlock *UserBB = UI->getParent(); 4129 if (UserBB == DefBB) continue; 4130 // Be conservative. We don't want this xform to end up introducing 4131 // reloads just before load / store instructions. 4132 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4133 return false; 4134 } 4135 4136 // InsertedTruncs - Only insert one trunc in each block once. 4137 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4138 4139 bool MadeChange = false; 4140 for (Use &U : Src->uses()) { 4141 Instruction *User = cast<Instruction>(U.getUser()); 4142 4143 // Figure out which BB this ext is used in. 4144 BasicBlock *UserBB = User->getParent(); 4145 if (UserBB == DefBB) continue; 4146 4147 // Both src and def are live in this block. Rewrite the use. 4148 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4149 4150 if (!InsertedTrunc) { 4151 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4152 assert(InsertPt != UserBB->end()); 4153 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4154 InsertedInsts.insert(InsertedTrunc); 4155 } 4156 4157 // Replace a use of the {s|z}ext source with a use of the result. 4158 U = InsertedTrunc; 4159 ++NumExtUses; 4160 MadeChange = true; 4161 } 4162 4163 return MadeChange; 4164 } 4165 4166 /// Check if V (an operand of a select instruction) is an expensive instruction 4167 /// that is only used once. 4168 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4169 auto *I = dyn_cast<Instruction>(V); 4170 // If it's safe to speculatively execute, then it should not have side 4171 // effects; therefore, it's safe to sink and possibly *not* execute. 4172 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4173 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4174 } 4175 4176 /// Returns true if a SelectInst should be turned into an explicit branch. 4177 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4178 SelectInst *SI) { 4179 // FIXME: This should use the same heuristics as IfConversion to determine 4180 // whether a select is better represented as a branch. This requires that 4181 // branch probability metadata is preserved for the select, which is not the 4182 // case currently. 4183 4184 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4185 4186 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4187 // comparison condition. If the compare has more than one use, there's 4188 // probably another cmov or setcc around, so it's not worth emitting a branch. 4189 if (!Cmp || !Cmp->hasOneUse()) 4190 return false; 4191 4192 Value *CmpOp0 = Cmp->getOperand(0); 4193 Value *CmpOp1 = Cmp->getOperand(1); 4194 4195 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 4196 // on a load from memory. But if the load is used more than once, do not 4197 // change the select to a branch because the load is probably needed 4198 // regardless of whether the branch is taken or not. 4199 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 4200 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 4201 return true; 4202 4203 // If either operand of the select is expensive and only needed on one side 4204 // of the select, we should form a branch. 4205 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4206 sinkSelectOperand(TTI, SI->getFalseValue())) 4207 return true; 4208 4209 return false; 4210 } 4211 4212 4213 /// If we have a SelectInst that will likely profit from branch prediction, 4214 /// turn it into a branch. 4215 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4216 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4217 4218 // Can we convert the 'select' to CF ? 4219 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 4220 return false; 4221 4222 TargetLowering::SelectSupportKind SelectKind; 4223 if (VectorCond) 4224 SelectKind = TargetLowering::VectorMaskSelect; 4225 else if (SI->getType()->isVectorTy()) 4226 SelectKind = TargetLowering::ScalarCondVectorVal; 4227 else 4228 SelectKind = TargetLowering::ScalarValSelect; 4229 4230 // Do we have efficient codegen support for this kind of 'selects' ? 4231 if (TLI->isSelectSupported(SelectKind)) { 4232 // We have efficient codegen support for the select instruction. 4233 // Check if it is profitable to keep this 'select'. 4234 if (!TLI->isPredictableSelectExpensive() || 4235 !isFormingBranchFromSelectProfitable(TTI, SI)) 4236 return false; 4237 } 4238 4239 ModifiedDT = true; 4240 4241 // Transform a sequence like this: 4242 // start: 4243 // %cmp = cmp uge i32 %a, %b 4244 // %sel = select i1 %cmp, i32 %c, i32 %d 4245 // 4246 // Into: 4247 // start: 4248 // %cmp = cmp uge i32 %a, %b 4249 // br i1 %cmp, label %select.true, label %select.false 4250 // select.true: 4251 // br label %select.end 4252 // select.false: 4253 // br label %select.end 4254 // select.end: 4255 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4256 // 4257 // In addition, we may sink instructions that produce %c or %d from 4258 // the entry block into the destination(s) of the new branch. 4259 // If the true or false blocks do not contain a sunken instruction, that 4260 // block and its branch may be optimized away. In that case, one side of the 4261 // first branch will point directly to select.end, and the corresponding PHI 4262 // predecessor block will be the start block. 4263 4264 // First, we split the block containing the select into 2 blocks. 4265 BasicBlock *StartBlock = SI->getParent(); 4266 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4267 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4268 4269 // Delete the unconditional branch that was just created by the split. 4270 StartBlock->getTerminator()->eraseFromParent(); 4271 4272 // These are the new basic blocks for the conditional branch. 4273 // At least one will become an actual new basic block. 4274 BasicBlock *TrueBlock = nullptr; 4275 BasicBlock *FalseBlock = nullptr; 4276 4277 // Sink expensive instructions into the conditional blocks to avoid executing 4278 // them speculatively. 4279 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4280 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4281 EndBlock->getParent(), EndBlock); 4282 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4283 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4284 TrueInst->moveBefore(TrueBranch); 4285 } 4286 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4287 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4288 EndBlock->getParent(), EndBlock); 4289 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4290 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4291 FalseInst->moveBefore(FalseBranch); 4292 } 4293 4294 // If there was nothing to sink, then arbitrarily choose the 'false' side 4295 // for a new input value to the PHI. 4296 if (TrueBlock == FalseBlock) { 4297 assert(TrueBlock == nullptr && 4298 "Unexpected basic block transform while optimizing select"); 4299 4300 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4301 EndBlock->getParent(), EndBlock); 4302 BranchInst::Create(EndBlock, FalseBlock); 4303 } 4304 4305 // Insert the real conditional branch based on the original condition. 4306 // If we did not create a new block for one of the 'true' or 'false' paths 4307 // of the condition, it means that side of the branch goes to the end block 4308 // directly and the path originates from the start block from the point of 4309 // view of the new PHI. 4310 if (TrueBlock == nullptr) { 4311 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4312 TrueBlock = StartBlock; 4313 } else if (FalseBlock == nullptr) { 4314 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4315 FalseBlock = StartBlock; 4316 } else { 4317 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4318 } 4319 4320 // The select itself is replaced with a PHI Node. 4321 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4322 PN->takeName(SI); 4323 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4324 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4325 4326 SI->replaceAllUsesWith(PN); 4327 SI->eraseFromParent(); 4328 4329 // Instruct OptimizeBlock to skip to the next block. 4330 CurInstIterator = StartBlock->end(); 4331 ++NumSelectsExpanded; 4332 return true; 4333 } 4334 4335 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4336 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4337 int SplatElem = -1; 4338 for (unsigned i = 0; i < Mask.size(); ++i) { 4339 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4340 return false; 4341 SplatElem = Mask[i]; 4342 } 4343 4344 return true; 4345 } 4346 4347 /// Some targets have expensive vector shifts if the lanes aren't all the same 4348 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4349 /// it's often worth sinking a shufflevector splat down to its use so that 4350 /// codegen can spot all lanes are identical. 4351 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4352 BasicBlock *DefBB = SVI->getParent(); 4353 4354 // Only do this xform if variable vector shifts are particularly expensive. 4355 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4356 return false; 4357 4358 // We only expect better codegen by sinking a shuffle if we can recognise a 4359 // constant splat. 4360 if (!isBroadcastShuffle(SVI)) 4361 return false; 4362 4363 // InsertedShuffles - Only insert a shuffle in each block once. 4364 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4365 4366 bool MadeChange = false; 4367 for (User *U : SVI->users()) { 4368 Instruction *UI = cast<Instruction>(U); 4369 4370 // Figure out which BB this ext is used in. 4371 BasicBlock *UserBB = UI->getParent(); 4372 if (UserBB == DefBB) continue; 4373 4374 // For now only apply this when the splat is used by a shift instruction. 4375 if (!UI->isShift()) continue; 4376 4377 // Everything checks out, sink the shuffle if the user's block doesn't 4378 // already have a copy. 4379 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4380 4381 if (!InsertedShuffle) { 4382 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4383 assert(InsertPt != UserBB->end()); 4384 InsertedShuffle = 4385 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4386 SVI->getOperand(2), "", &*InsertPt); 4387 } 4388 4389 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4390 MadeChange = true; 4391 } 4392 4393 // If we removed all uses, nuke the shuffle. 4394 if (SVI->use_empty()) { 4395 SVI->eraseFromParent(); 4396 MadeChange = true; 4397 } 4398 4399 return MadeChange; 4400 } 4401 4402 namespace { 4403 /// \brief Helper class to promote a scalar operation to a vector one. 4404 /// This class is used to move downward extractelement transition. 4405 /// E.g., 4406 /// a = vector_op <2 x i32> 4407 /// b = extractelement <2 x i32> a, i32 0 4408 /// c = scalar_op b 4409 /// store c 4410 /// 4411 /// => 4412 /// a = vector_op <2 x i32> 4413 /// c = vector_op a (equivalent to scalar_op on the related lane) 4414 /// * d = extractelement <2 x i32> c, i32 0 4415 /// * store d 4416 /// Assuming both extractelement and store can be combine, we get rid of the 4417 /// transition. 4418 class VectorPromoteHelper { 4419 /// DataLayout associated with the current module. 4420 const DataLayout &DL; 4421 4422 /// Used to perform some checks on the legality of vector operations. 4423 const TargetLowering &TLI; 4424 4425 /// Used to estimated the cost of the promoted chain. 4426 const TargetTransformInfo &TTI; 4427 4428 /// The transition being moved downwards. 4429 Instruction *Transition; 4430 /// The sequence of instructions to be promoted. 4431 SmallVector<Instruction *, 4> InstsToBePromoted; 4432 /// Cost of combining a store and an extract. 4433 unsigned StoreExtractCombineCost; 4434 /// Instruction that will be combined with the transition. 4435 Instruction *CombineInst; 4436 4437 /// \brief The instruction that represents the current end of the transition. 4438 /// Since we are faking the promotion until we reach the end of the chain 4439 /// of computation, we need a way to get the current end of the transition. 4440 Instruction *getEndOfTransition() const { 4441 if (InstsToBePromoted.empty()) 4442 return Transition; 4443 return InstsToBePromoted.back(); 4444 } 4445 4446 /// \brief Return the index of the original value in the transition. 4447 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4448 /// c, is at index 0. 4449 unsigned getTransitionOriginalValueIdx() const { 4450 assert(isa<ExtractElementInst>(Transition) && 4451 "Other kind of transitions are not supported yet"); 4452 return 0; 4453 } 4454 4455 /// \brief Return the index of the index in the transition. 4456 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4457 /// is at index 1. 4458 unsigned getTransitionIdx() const { 4459 assert(isa<ExtractElementInst>(Transition) && 4460 "Other kind of transitions are not supported yet"); 4461 return 1; 4462 } 4463 4464 /// \brief Get the type of the transition. 4465 /// This is the type of the original value. 4466 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4467 /// transition is <2 x i32>. 4468 Type *getTransitionType() const { 4469 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4470 } 4471 4472 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4473 /// I.e., we have the following sequence: 4474 /// Def = Transition <ty1> a to <ty2> 4475 /// b = ToBePromoted <ty2> Def, ... 4476 /// => 4477 /// b = ToBePromoted <ty1> a, ... 4478 /// Def = Transition <ty1> ToBePromoted to <ty2> 4479 void promoteImpl(Instruction *ToBePromoted); 4480 4481 /// \brief Check whether or not it is profitable to promote all the 4482 /// instructions enqueued to be promoted. 4483 bool isProfitableToPromote() { 4484 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4485 unsigned Index = isa<ConstantInt>(ValIdx) 4486 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4487 : -1; 4488 Type *PromotedType = getTransitionType(); 4489 4490 StoreInst *ST = cast<StoreInst>(CombineInst); 4491 unsigned AS = ST->getPointerAddressSpace(); 4492 unsigned Align = ST->getAlignment(); 4493 // Check if this store is supported. 4494 if (!TLI.allowsMisalignedMemoryAccesses( 4495 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4496 Align)) { 4497 // If this is not supported, there is no way we can combine 4498 // the extract with the store. 4499 return false; 4500 } 4501 4502 // The scalar chain of computation has to pay for the transition 4503 // scalar to vector. 4504 // The vector chain has to account for the combining cost. 4505 uint64_t ScalarCost = 4506 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4507 uint64_t VectorCost = StoreExtractCombineCost; 4508 for (const auto &Inst : InstsToBePromoted) { 4509 // Compute the cost. 4510 // By construction, all instructions being promoted are arithmetic ones. 4511 // Moreover, one argument is a constant that can be viewed as a splat 4512 // constant. 4513 Value *Arg0 = Inst->getOperand(0); 4514 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4515 isa<ConstantFP>(Arg0); 4516 TargetTransformInfo::OperandValueKind Arg0OVK = 4517 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4518 : TargetTransformInfo::OK_AnyValue; 4519 TargetTransformInfo::OperandValueKind Arg1OVK = 4520 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4521 : TargetTransformInfo::OK_AnyValue; 4522 ScalarCost += TTI.getArithmeticInstrCost( 4523 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4524 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4525 Arg0OVK, Arg1OVK); 4526 } 4527 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4528 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4529 return ScalarCost > VectorCost; 4530 } 4531 4532 /// \brief Generate a constant vector with \p Val with the same 4533 /// number of elements as the transition. 4534 /// \p UseSplat defines whether or not \p Val should be replicated 4535 /// across the whole vector. 4536 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4537 /// otherwise we generate a vector with as many undef as possible: 4538 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4539 /// used at the index of the extract. 4540 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4541 unsigned ExtractIdx = UINT_MAX; 4542 if (!UseSplat) { 4543 // If we cannot determine where the constant must be, we have to 4544 // use a splat constant. 4545 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4546 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4547 ExtractIdx = CstVal->getSExtValue(); 4548 else 4549 UseSplat = true; 4550 } 4551 4552 unsigned End = getTransitionType()->getVectorNumElements(); 4553 if (UseSplat) 4554 return ConstantVector::getSplat(End, Val); 4555 4556 SmallVector<Constant *, 4> ConstVec; 4557 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4558 for (unsigned Idx = 0; Idx != End; ++Idx) { 4559 if (Idx == ExtractIdx) 4560 ConstVec.push_back(Val); 4561 else 4562 ConstVec.push_back(UndefVal); 4563 } 4564 return ConstantVector::get(ConstVec); 4565 } 4566 4567 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4568 /// in \p Use can trigger undefined behavior. 4569 static bool canCauseUndefinedBehavior(const Instruction *Use, 4570 unsigned OperandIdx) { 4571 // This is not safe to introduce undef when the operand is on 4572 // the right hand side of a division-like instruction. 4573 if (OperandIdx != 1) 4574 return false; 4575 switch (Use->getOpcode()) { 4576 default: 4577 return false; 4578 case Instruction::SDiv: 4579 case Instruction::UDiv: 4580 case Instruction::SRem: 4581 case Instruction::URem: 4582 return true; 4583 case Instruction::FDiv: 4584 case Instruction::FRem: 4585 return !Use->hasNoNaNs(); 4586 } 4587 llvm_unreachable(nullptr); 4588 } 4589 4590 public: 4591 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4592 const TargetTransformInfo &TTI, Instruction *Transition, 4593 unsigned CombineCost) 4594 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4595 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4596 assert(Transition && "Do not know how to promote null"); 4597 } 4598 4599 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4600 bool canPromote(const Instruction *ToBePromoted) const { 4601 // We could support CastInst too. 4602 return isa<BinaryOperator>(ToBePromoted); 4603 } 4604 4605 /// \brief Check if it is profitable to promote \p ToBePromoted 4606 /// by moving downward the transition through. 4607 bool shouldPromote(const Instruction *ToBePromoted) const { 4608 // Promote only if all the operands can be statically expanded. 4609 // Indeed, we do not want to introduce any new kind of transitions. 4610 for (const Use &U : ToBePromoted->operands()) { 4611 const Value *Val = U.get(); 4612 if (Val == getEndOfTransition()) { 4613 // If the use is a division and the transition is on the rhs, 4614 // we cannot promote the operation, otherwise we may create a 4615 // division by zero. 4616 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4617 return false; 4618 continue; 4619 } 4620 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4621 !isa<ConstantFP>(Val)) 4622 return false; 4623 } 4624 // Check that the resulting operation is legal. 4625 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4626 if (!ISDOpcode) 4627 return false; 4628 return StressStoreExtract || 4629 TLI.isOperationLegalOrCustom( 4630 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4631 } 4632 4633 /// \brief Check whether or not \p Use can be combined 4634 /// with the transition. 4635 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4636 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4637 4638 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4639 void enqueueForPromotion(Instruction *ToBePromoted) { 4640 InstsToBePromoted.push_back(ToBePromoted); 4641 } 4642 4643 /// \brief Set the instruction that will be combined with the transition. 4644 void recordCombineInstruction(Instruction *ToBeCombined) { 4645 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4646 CombineInst = ToBeCombined; 4647 } 4648 4649 /// \brief Promote all the instructions enqueued for promotion if it is 4650 /// is profitable. 4651 /// \return True if the promotion happened, false otherwise. 4652 bool promote() { 4653 // Check if there is something to promote. 4654 // Right now, if we do not have anything to combine with, 4655 // we assume the promotion is not profitable. 4656 if (InstsToBePromoted.empty() || !CombineInst) 4657 return false; 4658 4659 // Check cost. 4660 if (!StressStoreExtract && !isProfitableToPromote()) 4661 return false; 4662 4663 // Promote. 4664 for (auto &ToBePromoted : InstsToBePromoted) 4665 promoteImpl(ToBePromoted); 4666 InstsToBePromoted.clear(); 4667 return true; 4668 } 4669 }; 4670 } // End of anonymous namespace. 4671 4672 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4673 // At this point, we know that all the operands of ToBePromoted but Def 4674 // can be statically promoted. 4675 // For Def, we need to use its parameter in ToBePromoted: 4676 // b = ToBePromoted ty1 a 4677 // Def = Transition ty1 b to ty2 4678 // Move the transition down. 4679 // 1. Replace all uses of the promoted operation by the transition. 4680 // = ... b => = ... Def. 4681 assert(ToBePromoted->getType() == Transition->getType() && 4682 "The type of the result of the transition does not match " 4683 "the final type"); 4684 ToBePromoted->replaceAllUsesWith(Transition); 4685 // 2. Update the type of the uses. 4686 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4687 Type *TransitionTy = getTransitionType(); 4688 ToBePromoted->mutateType(TransitionTy); 4689 // 3. Update all the operands of the promoted operation with promoted 4690 // operands. 4691 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4692 for (Use &U : ToBePromoted->operands()) { 4693 Value *Val = U.get(); 4694 Value *NewVal = nullptr; 4695 if (Val == Transition) 4696 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4697 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4698 isa<ConstantFP>(Val)) { 4699 // Use a splat constant if it is not safe to use undef. 4700 NewVal = getConstantVector( 4701 cast<Constant>(Val), 4702 isa<UndefValue>(Val) || 4703 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4704 } else 4705 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4706 "this?"); 4707 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4708 } 4709 Transition->removeFromParent(); 4710 Transition->insertAfter(ToBePromoted); 4711 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4712 } 4713 4714 /// Some targets can do store(extractelement) with one instruction. 4715 /// Try to push the extractelement towards the stores when the target 4716 /// has this feature and this is profitable. 4717 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 4718 unsigned CombineCost = UINT_MAX; 4719 if (DisableStoreExtract || !TLI || 4720 (!StressStoreExtract && 4721 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4722 Inst->getOperand(1), CombineCost))) 4723 return false; 4724 4725 // At this point we know that Inst is a vector to scalar transition. 4726 // Try to move it down the def-use chain, until: 4727 // - We can combine the transition with its single use 4728 // => we got rid of the transition. 4729 // - We escape the current basic block 4730 // => we would need to check that we are moving it at a cheaper place and 4731 // we do not do that for now. 4732 BasicBlock *Parent = Inst->getParent(); 4733 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4734 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4735 // If the transition has more than one use, assume this is not going to be 4736 // beneficial. 4737 while (Inst->hasOneUse()) { 4738 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4739 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4740 4741 if (ToBePromoted->getParent() != Parent) { 4742 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4743 << ToBePromoted->getParent()->getName() 4744 << ") than the transition (" << Parent->getName() << ").\n"); 4745 return false; 4746 } 4747 4748 if (VPH.canCombine(ToBePromoted)) { 4749 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4750 << "will be combined with: " << *ToBePromoted << '\n'); 4751 VPH.recordCombineInstruction(ToBePromoted); 4752 bool Changed = VPH.promote(); 4753 NumStoreExtractExposed += Changed; 4754 return Changed; 4755 } 4756 4757 DEBUG(dbgs() << "Try promoting.\n"); 4758 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4759 return false; 4760 4761 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4762 4763 VPH.enqueueForPromotion(ToBePromoted); 4764 Inst = ToBePromoted; 4765 } 4766 return false; 4767 } 4768 4769 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 4770 // Bail out if we inserted the instruction to prevent optimizations from 4771 // stepping on each other's toes. 4772 if (InsertedInsts.count(I)) 4773 return false; 4774 4775 if (PHINode *P = dyn_cast<PHINode>(I)) { 4776 // It is possible for very late stage optimizations (such as SimplifyCFG) 4777 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4778 // trivial PHI, go ahead and zap it here. 4779 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4780 P->replaceAllUsesWith(V); 4781 P->eraseFromParent(); 4782 ++NumPHIsElim; 4783 return true; 4784 } 4785 return false; 4786 } 4787 4788 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4789 // If the source of the cast is a constant, then this should have 4790 // already been constant folded. The only reason NOT to constant fold 4791 // it is if something (e.g. LSR) was careful to place the constant 4792 // evaluation in a block other than then one that uses it (e.g. to hoist 4793 // the address of globals out of a loop). If this is the case, we don't 4794 // want to forward-subst the cast. 4795 if (isa<Constant>(CI->getOperand(0))) 4796 return false; 4797 4798 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4799 return true; 4800 4801 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4802 /// Sink a zext or sext into its user blocks if the target type doesn't 4803 /// fit in one register 4804 if (TLI && 4805 TLI->getTypeAction(CI->getContext(), 4806 TLI->getValueType(*DL, CI->getType())) == 4807 TargetLowering::TypeExpandInteger) { 4808 return SinkCast(CI); 4809 } else { 4810 bool MadeChange = moveExtToFormExtLoad(I); 4811 return MadeChange | optimizeExtUses(I); 4812 } 4813 } 4814 return false; 4815 } 4816 4817 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4818 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4819 return OptimizeCmpExpression(CI); 4820 4821 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4822 stripInvariantGroupMetadata(*LI); 4823 if (TLI) { 4824 unsigned AS = LI->getPointerAddressSpace(); 4825 return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4826 } 4827 return false; 4828 } 4829 4830 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4831 stripInvariantGroupMetadata(*SI); 4832 if (TLI) { 4833 unsigned AS = SI->getPointerAddressSpace(); 4834 return optimizeMemoryInst(I, SI->getOperand(1), 4835 SI->getOperand(0)->getType(), AS); 4836 } 4837 return false; 4838 } 4839 4840 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4841 4842 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4843 BinOp->getOpcode() == Instruction::LShr)) { 4844 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4845 if (TLI && CI && TLI->hasExtractBitsInsn()) 4846 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4847 4848 return false; 4849 } 4850 4851 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4852 if (GEPI->hasAllZeroIndices()) { 4853 /// The GEP operand must be a pointer, so must its result -> BitCast 4854 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4855 GEPI->getName(), GEPI); 4856 GEPI->replaceAllUsesWith(NC); 4857 GEPI->eraseFromParent(); 4858 ++NumGEPsElim; 4859 optimizeInst(NC, ModifiedDT); 4860 return true; 4861 } 4862 return false; 4863 } 4864 4865 if (CallInst *CI = dyn_cast<CallInst>(I)) 4866 return optimizeCallInst(CI, ModifiedDT); 4867 4868 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4869 return optimizeSelectInst(SI); 4870 4871 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4872 return optimizeShuffleVectorInst(SVI); 4873 4874 if (isa<ExtractElementInst>(I)) 4875 return optimizeExtractElementInst(I); 4876 4877 return false; 4878 } 4879 4880 // In this pass we look for GEP and cast instructions that are used 4881 // across basic blocks and rewrite them to improve basic-block-at-a-time 4882 // selection. 4883 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4884 SunkAddrs.clear(); 4885 bool MadeChange = false; 4886 4887 CurInstIterator = BB.begin(); 4888 while (CurInstIterator != BB.end()) { 4889 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 4890 if (ModifiedDT) 4891 return true; 4892 } 4893 MadeChange |= dupRetToEnableTailCallOpts(&BB); 4894 4895 return MadeChange; 4896 } 4897 4898 // llvm.dbg.value is far away from the value then iSel may not be able 4899 // handle it properly. iSel will drop llvm.dbg.value if it can not 4900 // find a node corresponding to the value. 4901 bool CodeGenPrepare::placeDbgValues(Function &F) { 4902 bool MadeChange = false; 4903 for (BasicBlock &BB : F) { 4904 Instruction *PrevNonDbgInst = nullptr; 4905 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4906 Instruction *Insn = &*BI++; 4907 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4908 // Leave dbg.values that refer to an alloca alone. These 4909 // instrinsics describe the address of a variable (= the alloca) 4910 // being taken. They should not be moved next to the alloca 4911 // (and to the beginning of the scope), but rather stay close to 4912 // where said address is used. 4913 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4914 PrevNonDbgInst = Insn; 4915 continue; 4916 } 4917 4918 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4919 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4920 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4921 DVI->removeFromParent(); 4922 if (isa<PHINode>(VI)) 4923 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 4924 else 4925 DVI->insertAfter(VI); 4926 MadeChange = true; 4927 ++NumDbgValueMoved; 4928 } 4929 } 4930 } 4931 return MadeChange; 4932 } 4933 4934 // If there is a sequence that branches based on comparing a single bit 4935 // against zero that can be combined into a single instruction, and the 4936 // target supports folding these into a single instruction, sink the 4937 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4938 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4939 // searched for. 4940 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4941 if (!EnableAndCmpSinking) 4942 return false; 4943 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4944 return false; 4945 bool MadeChange = false; 4946 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4947 BasicBlock *BB = &*I++; 4948 4949 // Does this BB end with the following? 4950 // %andVal = and %val, #single-bit-set 4951 // %icmpVal = icmp %andResult, 0 4952 // br i1 %cmpVal label %dest1, label %dest2" 4953 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4954 if (!Brcc || !Brcc->isConditional()) 4955 continue; 4956 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4957 if (!Cmp || Cmp->getParent() != BB) 4958 continue; 4959 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4960 if (!Zero || !Zero->isZero()) 4961 continue; 4962 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4963 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4964 continue; 4965 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4966 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4967 continue; 4968 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4969 4970 // Push the "and; icmp" for any users that are conditional branches. 4971 // Since there can only be one branch use per BB, we don't need to keep 4972 // track of which BBs we insert into. 4973 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4974 UI != E; ) { 4975 Use &TheUse = *UI; 4976 // Find brcc use. 4977 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4978 ++UI; 4979 if (!BrccUser || !BrccUser->isConditional()) 4980 continue; 4981 BasicBlock *UserBB = BrccUser->getParent(); 4982 if (UserBB == BB) continue; 4983 DEBUG(dbgs() << "found Brcc use\n"); 4984 4985 // Sink the "and; icmp" to use. 4986 MadeChange = true; 4987 BinaryOperator *NewAnd = 4988 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4989 BrccUser); 4990 CmpInst *NewCmp = 4991 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4992 "", BrccUser); 4993 TheUse = NewCmp; 4994 ++NumAndCmpsMoved; 4995 DEBUG(BrccUser->getParent()->dump()); 4996 } 4997 } 4998 return MadeChange; 4999 } 5000 5001 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 5002 /// success, or returns false if no or invalid metadata was found. 5003 static bool extractBranchMetadata(BranchInst *BI, 5004 uint64_t &ProbTrue, uint64_t &ProbFalse) { 5005 assert(BI->isConditional() && 5006 "Looking for probabilities on unconditional branch?"); 5007 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 5008 if (!ProfileData || ProfileData->getNumOperands() != 3) 5009 return false; 5010 5011 const auto *CITrue = 5012 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 5013 const auto *CIFalse = 5014 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 5015 if (!CITrue || !CIFalse) 5016 return false; 5017 5018 ProbTrue = CITrue->getValue().getZExtValue(); 5019 ProbFalse = CIFalse->getValue().getZExtValue(); 5020 5021 return true; 5022 } 5023 5024 /// \brief Scale down both weights to fit into uint32_t. 5025 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5026 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5027 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5028 NewTrue = NewTrue / Scale; 5029 NewFalse = NewFalse / Scale; 5030 } 5031 5032 /// \brief Some targets prefer to split a conditional branch like: 5033 /// \code 5034 /// %0 = icmp ne i32 %a, 0 5035 /// %1 = icmp ne i32 %b, 0 5036 /// %or.cond = or i1 %0, %1 5037 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5038 /// \endcode 5039 /// into multiple branch instructions like: 5040 /// \code 5041 /// bb1: 5042 /// %0 = icmp ne i32 %a, 0 5043 /// br i1 %0, label %TrueBB, label %bb2 5044 /// bb2: 5045 /// %1 = icmp ne i32 %b, 0 5046 /// br i1 %1, label %TrueBB, label %FalseBB 5047 /// \endcode 5048 /// This usually allows instruction selection to do even further optimizations 5049 /// and combine the compare with the branch instruction. Currently this is 5050 /// applied for targets which have "cheap" jump instructions. 5051 /// 5052 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5053 /// 5054 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5055 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5056 return false; 5057 5058 bool MadeChange = false; 5059 for (auto &BB : F) { 5060 // Does this BB end with the following? 5061 // %cond1 = icmp|fcmp|binary instruction ... 5062 // %cond2 = icmp|fcmp|binary instruction ... 5063 // %cond.or = or|and i1 %cond1, cond2 5064 // br i1 %cond.or label %dest1, label %dest2" 5065 BinaryOperator *LogicOp; 5066 BasicBlock *TBB, *FBB; 5067 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5068 continue; 5069 5070 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5071 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5072 continue; 5073 5074 unsigned Opc; 5075 Value *Cond1, *Cond2; 5076 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5077 m_OneUse(m_Value(Cond2))))) 5078 Opc = Instruction::And; 5079 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5080 m_OneUse(m_Value(Cond2))))) 5081 Opc = Instruction::Or; 5082 else 5083 continue; 5084 5085 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5086 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5087 continue; 5088 5089 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5090 5091 // Create a new BB. 5092 auto *InsertBefore = std::next(Function::iterator(BB)) 5093 .getNodePtrUnchecked(); 5094 auto TmpBB = BasicBlock::Create(BB.getContext(), 5095 BB.getName() + ".cond.split", 5096 BB.getParent(), InsertBefore); 5097 5098 // Update original basic block by using the first condition directly by the 5099 // branch instruction and removing the no longer needed and/or instruction. 5100 Br1->setCondition(Cond1); 5101 LogicOp->eraseFromParent(); 5102 5103 // Depending on the conditon we have to either replace the true or the false 5104 // successor of the original branch instruction. 5105 if (Opc == Instruction::And) 5106 Br1->setSuccessor(0, TmpBB); 5107 else 5108 Br1->setSuccessor(1, TmpBB); 5109 5110 // Fill in the new basic block. 5111 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5112 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5113 I->removeFromParent(); 5114 I->insertBefore(Br2); 5115 } 5116 5117 // Update PHI nodes in both successors. The original BB needs to be 5118 // replaced in one succesor's PHI nodes, because the branch comes now from 5119 // the newly generated BB (NewBB). In the other successor we need to add one 5120 // incoming edge to the PHI nodes, because both branch instructions target 5121 // now the same successor. Depending on the original branch condition 5122 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5123 // we perfrom the correct update for the PHI nodes. 5124 // This doesn't change the successor order of the just created branch 5125 // instruction (or any other instruction). 5126 if (Opc == Instruction::Or) 5127 std::swap(TBB, FBB); 5128 5129 // Replace the old BB with the new BB. 5130 for (auto &I : *TBB) { 5131 PHINode *PN = dyn_cast<PHINode>(&I); 5132 if (!PN) 5133 break; 5134 int i; 5135 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5136 PN->setIncomingBlock(i, TmpBB); 5137 } 5138 5139 // Add another incoming edge form the new BB. 5140 for (auto &I : *FBB) { 5141 PHINode *PN = dyn_cast<PHINode>(&I); 5142 if (!PN) 5143 break; 5144 auto *Val = PN->getIncomingValueForBlock(&BB); 5145 PN->addIncoming(Val, TmpBB); 5146 } 5147 5148 // Update the branch weights (from SelectionDAGBuilder:: 5149 // FindMergedConditions). 5150 if (Opc == Instruction::Or) { 5151 // Codegen X | Y as: 5152 // BB1: 5153 // jmp_if_X TBB 5154 // jmp TmpBB 5155 // TmpBB: 5156 // jmp_if_Y TBB 5157 // jmp FBB 5158 // 5159 5160 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5161 // The requirement is that 5162 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5163 // = TrueProb for orignal BB. 5164 // Assuming the orignal weights are A and B, one choice is to set BB1's 5165 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5166 // assumes that 5167 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5168 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5169 // TmpBB, but the math is more complicated. 5170 uint64_t TrueWeight, FalseWeight; 5171 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5172 uint64_t NewTrueWeight = TrueWeight; 5173 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5174 scaleWeights(NewTrueWeight, NewFalseWeight); 5175 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5176 .createBranchWeights(TrueWeight, FalseWeight)); 5177 5178 NewTrueWeight = TrueWeight; 5179 NewFalseWeight = 2 * FalseWeight; 5180 scaleWeights(NewTrueWeight, NewFalseWeight); 5181 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5182 .createBranchWeights(TrueWeight, FalseWeight)); 5183 } 5184 } else { 5185 // Codegen X & Y as: 5186 // BB1: 5187 // jmp_if_X TmpBB 5188 // jmp FBB 5189 // TmpBB: 5190 // jmp_if_Y TBB 5191 // jmp FBB 5192 // 5193 // This requires creation of TmpBB after CurBB. 5194 5195 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5196 // The requirement is that 5197 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5198 // = FalseProb for orignal BB. 5199 // Assuming the orignal weights are A and B, one choice is to set BB1's 5200 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5201 // assumes that 5202 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5203 uint64_t TrueWeight, FalseWeight; 5204 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 5205 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5206 uint64_t NewFalseWeight = FalseWeight; 5207 scaleWeights(NewTrueWeight, NewFalseWeight); 5208 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5209 .createBranchWeights(TrueWeight, FalseWeight)); 5210 5211 NewTrueWeight = 2 * TrueWeight; 5212 NewFalseWeight = FalseWeight; 5213 scaleWeights(NewTrueWeight, NewFalseWeight); 5214 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5215 .createBranchWeights(TrueWeight, FalseWeight)); 5216 } 5217 } 5218 5219 // Note: No point in getting fancy here, since the DT info is never 5220 // available to CodeGenPrepare. 5221 ModifiedDT = true; 5222 5223 MadeChange = true; 5224 5225 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5226 TmpBB->dump()); 5227 } 5228 return MadeChange; 5229 } 5230 5231 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 5232 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 5233 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 5234 } 5235