1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/ProfileSummaryInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineValueType.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Argument.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/CallSite.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/Constants.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GetElementPtrTypeIterator.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InlineAsm.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/IR/MDBuilder.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Statepoint.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/IR/ValueHandle.h"
72 #include "llvm/IR/ValueMap.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/BlockFrequency.h"
75 #include "llvm/Support/BranchProbability.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetLowering.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Target/TargetOptions.h"
86 #include "llvm/Target/TargetSubtargetInfo.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
92 #include "llvm/Transforms/Utils/ValueMapper.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <iterator>
97 #include <limits>
98 #include <memory>
99 #include <utility>
100 #include <vector>
101 
102 using namespace llvm;
103 using namespace llvm::PatternMatch;
104 
105 #define DEBUG_TYPE "codegenprepare"
106 
107 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
108 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
109 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
111                       "sunken Cmps");
112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
113                        "of sunken Casts");
114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
115                           "computations were sunk");
116 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
117 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
118 STATISTIC(NumAndsAdded,
119           "Number of and mask instructions added to form ext loads");
120 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
121 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
122 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
123 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
124 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
125 
126 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
127 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
128 STATISTIC(NumMemCmpGreaterThanMax,
129           "Number of memcmp calls with size greater than max size");
130 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
131 
132 static cl::opt<bool> DisableBranchOpts(
133   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
134   cl::desc("Disable branch optimizations in CodeGenPrepare"));
135 
136 static cl::opt<bool>
137     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
138                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
139 
140 static cl::opt<bool> DisableSelectToBranch(
141   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
142   cl::desc("Disable select to branch conversion."));
143 
144 static cl::opt<bool> AddrSinkUsingGEPs(
145   "addr-sink-using-gep", cl::Hidden, cl::init(true),
146   cl::desc("Address sinking in CGP using GEPs."));
147 
148 static cl::opt<bool> EnableAndCmpSinking(
149    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
150    cl::desc("Enable sinkinig and/cmp into branches."));
151 
152 static cl::opt<bool> DisableStoreExtract(
153     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
154     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
155 
156 static cl::opt<bool> StressStoreExtract(
157     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
158     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
159 
160 static cl::opt<bool> DisableExtLdPromotion(
161     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
162     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
163              "CodeGenPrepare"));
164 
165 static cl::opt<bool> StressExtLdPromotion(
166     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
167     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
168              "optimization in CodeGenPrepare"));
169 
170 static cl::opt<bool> DisablePreheaderProtect(
171     "disable-preheader-prot", cl::Hidden, cl::init(false),
172     cl::desc("Disable protection against removing loop preheaders"));
173 
174 static cl::opt<bool> ProfileGuidedSectionPrefix(
175     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
176     cl::desc("Use profile info to add section prefix for hot/cold functions"));
177 
178 static cl::opt<unsigned> FreqRatioToSkipMerge(
179     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
180     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
181              "(frequency of destination block) is greater than this ratio"));
182 
183 static cl::opt<bool> ForceSplitStore(
184     "force-split-store", cl::Hidden, cl::init(false),
185     cl::desc("Force store splitting no matter what the target query says."));
186 
187 static cl::opt<bool>
188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
189     cl::desc("Enable merging of redundant sexts when one is dominating"
190     " the other."), cl::init(true));
191 
192 static cl::opt<unsigned> MemCmpNumLoadsPerBlock(
193     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
194     cl::desc("The number of loads per basic block for inline expansion of "
195              "memcmp that is only being compared against zero."));
196 
197 namespace {
198 
199 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
200 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
201 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
202 using SExts = SmallVector<Instruction *, 16>;
203 using ValueToSExts = DenseMap<Value *, SExts>;
204 
205 class TypePromotionTransaction;
206 
207   class CodeGenPrepare : public FunctionPass {
208     const TargetMachine *TM = nullptr;
209     const TargetSubtargetInfo *SubtargetInfo;
210     const TargetLowering *TLI = nullptr;
211     const TargetRegisterInfo *TRI;
212     const TargetTransformInfo *TTI = nullptr;
213     const TargetLibraryInfo *TLInfo;
214     const LoopInfo *LI;
215     std::unique_ptr<BlockFrequencyInfo> BFI;
216     std::unique_ptr<BranchProbabilityInfo> BPI;
217 
218     /// As we scan instructions optimizing them, this is the next instruction
219     /// to optimize. Transforms that can invalidate this should update it.
220     BasicBlock::iterator CurInstIterator;
221 
222     /// Keeps track of non-local addresses that have been sunk into a block.
223     /// This allows us to avoid inserting duplicate code for blocks with
224     /// multiple load/stores of the same address.
225     ValueMap<Value*, Value*> SunkAddrs;
226 
227     /// Keeps track of all instructions inserted for the current function.
228     SetOfInstrs InsertedInsts;
229 
230     /// Keeps track of the type of the related instruction before their
231     /// promotion for the current function.
232     InstrToOrigTy PromotedInsts;
233 
234     /// Keep track of instructions removed during promotion.
235     SetOfInstrs RemovedInsts;
236 
237     /// Keep track of sext chains based on their initial value.
238     DenseMap<Value *, Instruction *> SeenChainsForSExt;
239 
240     /// Keep track of SExt promoted.
241     ValueToSExts ValToSExtendedUses;
242 
243     /// True if CFG is modified in any way.
244     bool ModifiedDT;
245 
246     /// True if optimizing for size.
247     bool OptSize;
248 
249     /// DataLayout for the Function being processed.
250     const DataLayout *DL = nullptr;
251 
252   public:
253     static char ID; // Pass identification, replacement for typeid
254 
255     CodeGenPrepare() : FunctionPass(ID) {
256       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
257     }
258 
259     bool runOnFunction(Function &F) override;
260 
261     StringRef getPassName() const override { return "CodeGen Prepare"; }
262 
263     void getAnalysisUsage(AnalysisUsage &AU) const override {
264       // FIXME: When we can selectively preserve passes, preserve the domtree.
265       AU.addRequired<ProfileSummaryInfoWrapperPass>();
266       AU.addRequired<TargetLibraryInfoWrapperPass>();
267       AU.addRequired<TargetTransformInfoWrapperPass>();
268       AU.addRequired<LoopInfoWrapperPass>();
269     }
270 
271   private:
272     bool eliminateFallThrough(Function &F);
273     bool eliminateMostlyEmptyBlocks(Function &F);
274     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
275     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
276     void eliminateMostlyEmptyBlock(BasicBlock *BB);
277     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
278                                        bool isPreheader);
279     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
280     bool optimizeInst(Instruction *I, bool &ModifiedDT);
281     bool optimizeMemoryInst(Instruction *I, Value *Addr,
282                             Type *AccessTy, unsigned AS);
283     bool optimizeInlineAsmInst(CallInst *CS);
284     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
285     bool optimizeExt(Instruction *&I);
286     bool optimizeExtUses(Instruction *I);
287     bool optimizeLoadExt(LoadInst *I);
288     bool optimizeSelectInst(SelectInst *SI);
289     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
290     bool optimizeSwitchInst(SwitchInst *CI);
291     bool optimizeExtractElementInst(Instruction *Inst);
292     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
293     bool placeDbgValues(Function &F);
294     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
295                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
296     bool tryToPromoteExts(TypePromotionTransaction &TPT,
297                           const SmallVectorImpl<Instruction *> &Exts,
298                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
299                           unsigned CreatedInstsCost = 0);
300     bool mergeSExts(Function &F);
301     bool performAddressTypePromotion(
302         Instruction *&Inst,
303         bool AllowPromotionWithoutCommonHeader,
304         bool HasPromoted, TypePromotionTransaction &TPT,
305         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
306     bool splitBranchCondition(Function &F);
307     bool simplifyOffsetableRelocate(Instruction &I);
308     bool splitIndirectCriticalEdges(Function &F);
309   };
310 
311 } // end anonymous namespace
312 
313 char CodeGenPrepare::ID = 0;
314 
315 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
316                       "Optimize for code generation", false, false)
317 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
318 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
319                     "Optimize for code generation", false, false)
320 
321 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
322 
323 bool CodeGenPrepare::runOnFunction(Function &F) {
324   if (skipFunction(F))
325     return false;
326 
327   DL = &F.getParent()->getDataLayout();
328 
329   bool EverMadeChange = false;
330   // Clear per function information.
331   InsertedInsts.clear();
332   PromotedInsts.clear();
333   BFI.reset();
334   BPI.reset();
335 
336   ModifiedDT = false;
337   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
338     TM = &TPC->getTM<TargetMachine>();
339     SubtargetInfo = TM->getSubtargetImpl(F);
340     TLI = SubtargetInfo->getTargetLowering();
341     TRI = SubtargetInfo->getRegisterInfo();
342   }
343   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
344   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
345   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
346   OptSize = F.optForSize();
347 
348   if (ProfileGuidedSectionPrefix) {
349     ProfileSummaryInfo *PSI =
350         getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
351     if (PSI->isFunctionHotInCallGraph(&F))
352       F.setSectionPrefix(".hot");
353     else if (PSI->isFunctionColdInCallGraph(&F))
354       F.setSectionPrefix(".unlikely");
355   }
356 
357   /// This optimization identifies DIV instructions that can be
358   /// profitably bypassed and carried out with a shorter, faster divide.
359   if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
360     const DenseMap<unsigned int, unsigned int> &BypassWidths =
361        TLI->getBypassSlowDivWidths();
362     BasicBlock* BB = &*F.begin();
363     while (BB != nullptr) {
364       // bypassSlowDivision may create new BBs, but we don't want to reapply the
365       // optimization to those blocks.
366       BasicBlock* Next = BB->getNextNode();
367       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
368       BB = Next;
369     }
370   }
371 
372   // Eliminate blocks that contain only PHI nodes and an
373   // unconditional branch.
374   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
375 
376   // llvm.dbg.value is far away from the value then iSel may not be able
377   // handle it properly. iSel will drop llvm.dbg.value if it can not
378   // find a node corresponding to the value.
379   EverMadeChange |= placeDbgValues(F);
380 
381   if (!DisableBranchOpts)
382     EverMadeChange |= splitBranchCondition(F);
383 
384   // Split some critical edges where one of the sources is an indirect branch,
385   // to help generate sane code for PHIs involving such edges.
386   EverMadeChange |= splitIndirectCriticalEdges(F);
387 
388   bool MadeChange = true;
389   while (MadeChange) {
390     MadeChange = false;
391     SeenChainsForSExt.clear();
392     ValToSExtendedUses.clear();
393     RemovedInsts.clear();
394     for (Function::iterator I = F.begin(); I != F.end(); ) {
395       BasicBlock *BB = &*I++;
396       bool ModifiedDTOnIteration = false;
397       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
398 
399       // Restart BB iteration if the dominator tree of the Function was changed
400       if (ModifiedDTOnIteration)
401         break;
402     }
403     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
404       MadeChange |= mergeSExts(F);
405 
406     // Really free removed instructions during promotion.
407     for (Instruction *I : RemovedInsts)
408       I->deleteValue();
409 
410     EverMadeChange |= MadeChange;
411   }
412 
413   SunkAddrs.clear();
414 
415   if (!DisableBranchOpts) {
416     MadeChange = false;
417     SmallPtrSet<BasicBlock*, 8> WorkList;
418     for (BasicBlock &BB : F) {
419       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
420       MadeChange |= ConstantFoldTerminator(&BB, true);
421       if (!MadeChange) continue;
422 
423       for (SmallVectorImpl<BasicBlock*>::iterator
424              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
425         if (pred_begin(*II) == pred_end(*II))
426           WorkList.insert(*II);
427     }
428 
429     // Delete the dead blocks and any of their dead successors.
430     MadeChange |= !WorkList.empty();
431     while (!WorkList.empty()) {
432       BasicBlock *BB = *WorkList.begin();
433       WorkList.erase(BB);
434       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
435 
436       DeleteDeadBlock(BB);
437 
438       for (SmallVectorImpl<BasicBlock*>::iterator
439              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
440         if (pred_begin(*II) == pred_end(*II))
441           WorkList.insert(*II);
442     }
443 
444     // Merge pairs of basic blocks with unconditional branches, connected by
445     // a single edge.
446     if (EverMadeChange || MadeChange)
447       MadeChange |= eliminateFallThrough(F);
448 
449     EverMadeChange |= MadeChange;
450   }
451 
452   if (!DisableGCOpts) {
453     SmallVector<Instruction *, 2> Statepoints;
454     for (BasicBlock &BB : F)
455       for (Instruction &I : BB)
456         if (isStatepoint(I))
457           Statepoints.push_back(&I);
458     for (auto &I : Statepoints)
459       EverMadeChange |= simplifyOffsetableRelocate(*I);
460   }
461 
462   return EverMadeChange;
463 }
464 
465 /// Merge basic blocks which are connected by a single edge, where one of the
466 /// basic blocks has a single successor pointing to the other basic block,
467 /// which has a single predecessor.
468 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
469   bool Changed = false;
470   // Scan all of the blocks in the function, except for the entry block.
471   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
472     BasicBlock *BB = &*I++;
473     // If the destination block has a single pred, then this is a trivial
474     // edge, just collapse it.
475     BasicBlock *SinglePred = BB->getSinglePredecessor();
476 
477     // Don't merge if BB's address is taken.
478     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
479 
480     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
481     if (Term && !Term->isConditional()) {
482       Changed = true;
483       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
484       // Remember if SinglePred was the entry block of the function.
485       // If so, we will need to move BB back to the entry position.
486       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
487       MergeBasicBlockIntoOnlyPred(BB, nullptr);
488 
489       if (isEntry && BB != &BB->getParent()->getEntryBlock())
490         BB->moveBefore(&BB->getParent()->getEntryBlock());
491 
492       // We have erased a block. Update the iterator.
493       I = BB->getIterator();
494     }
495   }
496   return Changed;
497 }
498 
499 /// Find a destination block from BB if BB is mergeable empty block.
500 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
501   // If this block doesn't end with an uncond branch, ignore it.
502   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
503   if (!BI || !BI->isUnconditional())
504     return nullptr;
505 
506   // If the instruction before the branch (skipping debug info) isn't a phi
507   // node, then other stuff is happening here.
508   BasicBlock::iterator BBI = BI->getIterator();
509   if (BBI != BB->begin()) {
510     --BBI;
511     while (isa<DbgInfoIntrinsic>(BBI)) {
512       if (BBI == BB->begin())
513         break;
514       --BBI;
515     }
516     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
517       return nullptr;
518   }
519 
520   // Do not break infinite loops.
521   BasicBlock *DestBB = BI->getSuccessor(0);
522   if (DestBB == BB)
523     return nullptr;
524 
525   if (!canMergeBlocks(BB, DestBB))
526     DestBB = nullptr;
527 
528   return DestBB;
529 }
530 
531 // Return the unique indirectbr predecessor of a block. This may return null
532 // even if such a predecessor exists, if it's not useful for splitting.
533 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
534 // predecessors of BB.
535 static BasicBlock *
536 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
537   // If the block doesn't have any PHIs, we don't care about it, since there's
538   // no point in splitting it.
539   PHINode *PN = dyn_cast<PHINode>(BB->begin());
540   if (!PN)
541     return nullptr;
542 
543   // Verify we have exactly one IBR predecessor.
544   // Conservatively bail out if one of the other predecessors is not a "regular"
545   // terminator (that is, not a switch or a br).
546   BasicBlock *IBB = nullptr;
547   for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
548     BasicBlock *PredBB = PN->getIncomingBlock(Pred);
549     TerminatorInst *PredTerm = PredBB->getTerminator();
550     switch (PredTerm->getOpcode()) {
551     case Instruction::IndirectBr:
552       if (IBB)
553         return nullptr;
554       IBB = PredBB;
555       break;
556     case Instruction::Br:
557     case Instruction::Switch:
558       OtherPreds.push_back(PredBB);
559       continue;
560     default:
561       return nullptr;
562     }
563   }
564 
565   return IBB;
566 }
567 
568 // Split critical edges where the source of the edge is an indirectbr
569 // instruction. This isn't always possible, but we can handle some easy cases.
570 // This is useful because MI is unable to split such critical edges,
571 // which means it will not be able to sink instructions along those edges.
572 // This is especially painful for indirect branches with many successors, where
573 // we end up having to prepare all outgoing values in the origin block.
574 //
575 // Our normal algorithm for splitting critical edges requires us to update
576 // the outgoing edges of the edge origin block, but for an indirectbr this
577 // is hard, since it would require finding and updating the block addresses
578 // the indirect branch uses. But if a block only has a single indirectbr
579 // predecessor, with the others being regular branches, we can do it in a
580 // different way.
581 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr.
582 // We can split D into D0 and D1, where D0 contains only the PHIs from D,
583 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and
584 // create the following structure:
585 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1
586 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) {
587   // Check whether the function has any indirectbrs, and collect which blocks
588   // they may jump to. Since most functions don't have indirect branches,
589   // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
590   SmallSetVector<BasicBlock *, 16> Targets;
591   for (auto &BB : F) {
592     auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
593     if (!IBI)
594       continue;
595 
596     for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
597       Targets.insert(IBI->getSuccessor(Succ));
598   }
599 
600   if (Targets.empty())
601     return false;
602 
603   bool Changed = false;
604   for (BasicBlock *Target : Targets) {
605     SmallVector<BasicBlock *, 16> OtherPreds;
606     BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
607     // If we did not found an indirectbr, or the indirectbr is the only
608     // incoming edge, this isn't the kind of edge we're looking for.
609     if (!IBRPred || OtherPreds.empty())
610       continue;
611 
612     // Don't even think about ehpads/landingpads.
613     Instruction *FirstNonPHI = Target->getFirstNonPHI();
614     if (FirstNonPHI->isEHPad() || Target->isLandingPad())
615       continue;
616 
617     BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
618     // It's possible Target was its own successor through an indirectbr.
619     // In this case, the indirectbr now comes from BodyBlock.
620     if (IBRPred == Target)
621       IBRPred = BodyBlock;
622 
623     // At this point Target only has PHIs, and BodyBlock has the rest of the
624     // block's body. Create a copy of Target that will be used by the "direct"
625     // preds.
626     ValueToValueMapTy VMap;
627     BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
628 
629     for (BasicBlock *Pred : OtherPreds) {
630       // If the target is a loop to itself, then the terminator of the split
631       // block needs to be updated.
632       if (Pred == Target)
633         BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
634       else
635         Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
636     }
637 
638     // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
639     // they are clones, so the number of PHIs are the same.
640     // (a) Remove the edge coming from IBRPred from the "Direct" PHI
641     // (b) Leave that as the only edge in the "Indirect" PHI.
642     // (c) Merge the two in the body block.
643     BasicBlock::iterator Indirect = Target->begin(),
644                          End = Target->getFirstNonPHI()->getIterator();
645     BasicBlock::iterator Direct = DirectSucc->begin();
646     BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
647 
648     assert(&*End == Target->getTerminator() &&
649            "Block was expected to only contain PHIs");
650 
651     while (Indirect != End) {
652       PHINode *DirPHI = cast<PHINode>(Direct);
653       PHINode *IndPHI = cast<PHINode>(Indirect);
654 
655       // Now, clean up - the direct block shouldn't get the indirect value,
656       // and vice versa.
657       DirPHI->removeIncomingValue(IBRPred);
658       Direct++;
659 
660       // Advance the pointer here, to avoid invalidation issues when the old
661       // PHI is erased.
662       Indirect++;
663 
664       PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
665       NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
666                              IBRPred);
667 
668       // Create a PHI in the body block, to merge the direct and indirect
669       // predecessors.
670       PHINode *MergePHI =
671           PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
672       MergePHI->addIncoming(NewIndPHI, Target);
673       MergePHI->addIncoming(DirPHI, DirectSucc);
674 
675       IndPHI->replaceAllUsesWith(MergePHI);
676       IndPHI->eraseFromParent();
677     }
678 
679     Changed = true;
680   }
681 
682   return Changed;
683 }
684 
685 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
686 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
687 /// edges in ways that are non-optimal for isel. Start by eliminating these
688 /// blocks so we can split them the way we want them.
689 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
690   SmallPtrSet<BasicBlock *, 16> Preheaders;
691   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
692   while (!LoopList.empty()) {
693     Loop *L = LoopList.pop_back_val();
694     LoopList.insert(LoopList.end(), L->begin(), L->end());
695     if (BasicBlock *Preheader = L->getLoopPreheader())
696       Preheaders.insert(Preheader);
697   }
698 
699   bool MadeChange = false;
700   // Note that this intentionally skips the entry block.
701   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
702     BasicBlock *BB = &*I++;
703     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
704     if (!DestBB ||
705         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
706       continue;
707 
708     eliminateMostlyEmptyBlock(BB);
709     MadeChange = true;
710   }
711   return MadeChange;
712 }
713 
714 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
715                                                    BasicBlock *DestBB,
716                                                    bool isPreheader) {
717   // Do not delete loop preheaders if doing so would create a critical edge.
718   // Loop preheaders can be good locations to spill registers. If the
719   // preheader is deleted and we create a critical edge, registers may be
720   // spilled in the loop body instead.
721   if (!DisablePreheaderProtect && isPreheader &&
722       !(BB->getSinglePredecessor() &&
723         BB->getSinglePredecessor()->getSingleSuccessor()))
724     return false;
725 
726   // Try to skip merging if the unique predecessor of BB is terminated by a
727   // switch or indirect branch instruction, and BB is used as an incoming block
728   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
729   // add COPY instructions in the predecessor of BB instead of BB (if it is not
730   // merged). Note that the critical edge created by merging such blocks wont be
731   // split in MachineSink because the jump table is not analyzable. By keeping
732   // such empty block (BB), ISel will place COPY instructions in BB, not in the
733   // predecessor of BB.
734   BasicBlock *Pred = BB->getUniquePredecessor();
735   if (!Pred ||
736       !(isa<SwitchInst>(Pred->getTerminator()) ||
737         isa<IndirectBrInst>(Pred->getTerminator())))
738     return true;
739 
740   if (BB->getTerminator() != BB->getFirstNonPHI())
741     return true;
742 
743   // We use a simple cost heuristic which determine skipping merging is
744   // profitable if the cost of skipping merging is less than the cost of
745   // merging : Cost(skipping merging) < Cost(merging BB), where the
746   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
747   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
748   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
749   //   Freq(Pred) / Freq(BB) > 2.
750   // Note that if there are multiple empty blocks sharing the same incoming
751   // value for the PHIs in the DestBB, we consider them together. In such
752   // case, Cost(merging BB) will be the sum of their frequencies.
753 
754   if (!isa<PHINode>(DestBB->begin()))
755     return true;
756 
757   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
758 
759   // Find all other incoming blocks from which incoming values of all PHIs in
760   // DestBB are the same as the ones from BB.
761   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
762        ++PI) {
763     BasicBlock *DestBBPred = *PI;
764     if (DestBBPred == BB)
765       continue;
766 
767     bool HasAllSameValue = true;
768     BasicBlock::const_iterator DestBBI = DestBB->begin();
769     while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) {
770       if (DestPN->getIncomingValueForBlock(BB) !=
771           DestPN->getIncomingValueForBlock(DestBBPred)) {
772         HasAllSameValue = false;
773         break;
774       }
775     }
776     if (HasAllSameValue)
777       SameIncomingValueBBs.insert(DestBBPred);
778   }
779 
780   // See if all BB's incoming values are same as the value from Pred. In this
781   // case, no reason to skip merging because COPYs are expected to be place in
782   // Pred already.
783   if (SameIncomingValueBBs.count(Pred))
784     return true;
785 
786   if (!BFI) {
787     Function &F = *BB->getParent();
788     LoopInfo LI{DominatorTree(F)};
789     BPI.reset(new BranchProbabilityInfo(F, LI));
790     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
791   }
792 
793   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
794   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
795 
796   for (auto SameValueBB : SameIncomingValueBBs)
797     if (SameValueBB->getUniquePredecessor() == Pred &&
798         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
799       BBFreq += BFI->getBlockFreq(SameValueBB);
800 
801   return PredFreq.getFrequency() <=
802          BBFreq.getFrequency() * FreqRatioToSkipMerge;
803 }
804 
805 /// Return true if we can merge BB into DestBB if there is a single
806 /// unconditional branch between them, and BB contains no other non-phi
807 /// instructions.
808 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
809                                     const BasicBlock *DestBB) const {
810   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
811   // the successor.  If there are more complex condition (e.g. preheaders),
812   // don't mess around with them.
813   BasicBlock::const_iterator BBI = BB->begin();
814   while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
815     for (const User *U : PN->users()) {
816       const Instruction *UI = cast<Instruction>(U);
817       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
818         return false;
819       // If User is inside DestBB block and it is a PHINode then check
820       // incoming value. If incoming value is not from BB then this is
821       // a complex condition (e.g. preheaders) we want to avoid here.
822       if (UI->getParent() == DestBB) {
823         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
824           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
825             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
826             if (Insn && Insn->getParent() == BB &&
827                 Insn->getParent() != UPN->getIncomingBlock(I))
828               return false;
829           }
830       }
831     }
832   }
833 
834   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
835   // and DestBB may have conflicting incoming values for the block.  If so, we
836   // can't merge the block.
837   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
838   if (!DestBBPN) return true;  // no conflict.
839 
840   // Collect the preds of BB.
841   SmallPtrSet<const BasicBlock*, 16> BBPreds;
842   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
843     // It is faster to get preds from a PHI than with pred_iterator.
844     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
845       BBPreds.insert(BBPN->getIncomingBlock(i));
846   } else {
847     BBPreds.insert(pred_begin(BB), pred_end(BB));
848   }
849 
850   // Walk the preds of DestBB.
851   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
852     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
853     if (BBPreds.count(Pred)) {   // Common predecessor?
854       BBI = DestBB->begin();
855       while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
856         const Value *V1 = PN->getIncomingValueForBlock(Pred);
857         const Value *V2 = PN->getIncomingValueForBlock(BB);
858 
859         // If V2 is a phi node in BB, look up what the mapped value will be.
860         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
861           if (V2PN->getParent() == BB)
862             V2 = V2PN->getIncomingValueForBlock(Pred);
863 
864         // If there is a conflict, bail out.
865         if (V1 != V2) return false;
866       }
867     }
868   }
869 
870   return true;
871 }
872 
873 /// Eliminate a basic block that has only phi's and an unconditional branch in
874 /// it.
875 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
876   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
877   BasicBlock *DestBB = BI->getSuccessor(0);
878 
879   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
880 
881   // If the destination block has a single pred, then this is a trivial edge,
882   // just collapse it.
883   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
884     if (SinglePred != DestBB) {
885       // Remember if SinglePred was the entry block of the function.  If so, we
886       // will need to move BB back to the entry position.
887       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
888       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
889 
890       if (isEntry && BB != &BB->getParent()->getEntryBlock())
891         BB->moveBefore(&BB->getParent()->getEntryBlock());
892 
893       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
894       return;
895     }
896   }
897 
898   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
899   // to handle the new incoming edges it is about to have.
900   PHINode *PN;
901   for (BasicBlock::iterator BBI = DestBB->begin();
902        (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
903     // Remove the incoming value for BB, and remember it.
904     Value *InVal = PN->removeIncomingValue(BB, false);
905 
906     // Two options: either the InVal is a phi node defined in BB or it is some
907     // value that dominates BB.
908     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
909     if (InValPhi && InValPhi->getParent() == BB) {
910       // Add all of the input values of the input PHI as inputs of this phi.
911       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
912         PN->addIncoming(InValPhi->getIncomingValue(i),
913                         InValPhi->getIncomingBlock(i));
914     } else {
915       // Otherwise, add one instance of the dominating value for each edge that
916       // we will be adding.
917       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
919           PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
920       } else {
921         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
922           PN->addIncoming(InVal, *PI);
923       }
924     }
925   }
926 
927   // The PHIs are now updated, change everything that refers to BB to use
928   // DestBB and remove BB.
929   BB->replaceAllUsesWith(DestBB);
930   BB->eraseFromParent();
931   ++NumBlocksElim;
932 
933   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
934 }
935 
936 // Computes a map of base pointer relocation instructions to corresponding
937 // derived pointer relocation instructions given a vector of all relocate calls
938 static void computeBaseDerivedRelocateMap(
939     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
940     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
941         &RelocateInstMap) {
942   // Collect information in two maps: one primarily for locating the base object
943   // while filling the second map; the second map is the final structure holding
944   // a mapping between Base and corresponding Derived relocate calls
945   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
946   for (auto *ThisRelocate : AllRelocateCalls) {
947     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
948                             ThisRelocate->getDerivedPtrIndex());
949     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
950   }
951   for (auto &Item : RelocateIdxMap) {
952     std::pair<unsigned, unsigned> Key = Item.first;
953     if (Key.first == Key.second)
954       // Base relocation: nothing to insert
955       continue;
956 
957     GCRelocateInst *I = Item.second;
958     auto BaseKey = std::make_pair(Key.first, Key.first);
959 
960     // We're iterating over RelocateIdxMap so we cannot modify it.
961     auto MaybeBase = RelocateIdxMap.find(BaseKey);
962     if (MaybeBase == RelocateIdxMap.end())
963       // TODO: We might want to insert a new base object relocate and gep off
964       // that, if there are enough derived object relocates.
965       continue;
966 
967     RelocateInstMap[MaybeBase->second].push_back(I);
968   }
969 }
970 
971 // Accepts a GEP and extracts the operands into a vector provided they're all
972 // small integer constants
973 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
974                                           SmallVectorImpl<Value *> &OffsetV) {
975   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
976     // Only accept small constant integer operands
977     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
978     if (!Op || Op->getZExtValue() > 20)
979       return false;
980   }
981 
982   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
983     OffsetV.push_back(GEP->getOperand(i));
984   return true;
985 }
986 
987 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
988 // replace, computes a replacement, and affects it.
989 static bool
990 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
991                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
992   bool MadeChange = false;
993   // We must ensure the relocation of derived pointer is defined after
994   // relocation of base pointer. If we find a relocation corresponding to base
995   // defined earlier than relocation of base then we move relocation of base
996   // right before found relocation. We consider only relocation in the same
997   // basic block as relocation of base. Relocations from other basic block will
998   // be skipped by optimization and we do not care about them.
999   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1000        &*R != RelocatedBase; ++R)
1001     if (auto RI = dyn_cast<GCRelocateInst>(R))
1002       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1003         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1004           RelocatedBase->moveBefore(RI);
1005           break;
1006         }
1007 
1008   for (GCRelocateInst *ToReplace : Targets) {
1009     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1010            "Not relocating a derived object of the original base object");
1011     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1012       // A duplicate relocate call. TODO: coalesce duplicates.
1013       continue;
1014     }
1015 
1016     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1017       // Base and derived relocates are in different basic blocks.
1018       // In this case transform is only valid when base dominates derived
1019       // relocate. However it would be too expensive to check dominance
1020       // for each such relocate, so we skip the whole transformation.
1021       continue;
1022     }
1023 
1024     Value *Base = ToReplace->getBasePtr();
1025     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1026     if (!Derived || Derived->getPointerOperand() != Base)
1027       continue;
1028 
1029     SmallVector<Value *, 2> OffsetV;
1030     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1031       continue;
1032 
1033     // Create a Builder and replace the target callsite with a gep
1034     assert(RelocatedBase->getNextNode() &&
1035            "Should always have one since it's not a terminator");
1036 
1037     // Insert after RelocatedBase
1038     IRBuilder<> Builder(RelocatedBase->getNextNode());
1039     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1040 
1041     // If gc_relocate does not match the actual type, cast it to the right type.
1042     // In theory, there must be a bitcast after gc_relocate if the type does not
1043     // match, and we should reuse it to get the derived pointer. But it could be
1044     // cases like this:
1045     // bb1:
1046     //  ...
1047     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1048     //  br label %merge
1049     //
1050     // bb2:
1051     //  ...
1052     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1053     //  br label %merge
1054     //
1055     // merge:
1056     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1057     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1058     //
1059     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1060     // no matter there is already one or not. In this way, we can handle all cases, and
1061     // the extra bitcast should be optimized away in later passes.
1062     Value *ActualRelocatedBase = RelocatedBase;
1063     if (RelocatedBase->getType() != Base->getType()) {
1064       ActualRelocatedBase =
1065           Builder.CreateBitCast(RelocatedBase, Base->getType());
1066     }
1067     Value *Replacement = Builder.CreateGEP(
1068         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1069     Replacement->takeName(ToReplace);
1070     // If the newly generated derived pointer's type does not match the original derived
1071     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1072     Value *ActualReplacement = Replacement;
1073     if (Replacement->getType() != ToReplace->getType()) {
1074       ActualReplacement =
1075           Builder.CreateBitCast(Replacement, ToReplace->getType());
1076     }
1077     ToReplace->replaceAllUsesWith(ActualReplacement);
1078     ToReplace->eraseFromParent();
1079 
1080     MadeChange = true;
1081   }
1082   return MadeChange;
1083 }
1084 
1085 // Turns this:
1086 //
1087 // %base = ...
1088 // %ptr = gep %base + 15
1089 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1090 // %base' = relocate(%tok, i32 4, i32 4)
1091 // %ptr' = relocate(%tok, i32 4, i32 5)
1092 // %val = load %ptr'
1093 //
1094 // into this:
1095 //
1096 // %base = ...
1097 // %ptr = gep %base + 15
1098 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1099 // %base' = gc.relocate(%tok, i32 4, i32 4)
1100 // %ptr' = gep %base' + 15
1101 // %val = load %ptr'
1102 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1103   bool MadeChange = false;
1104   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1105 
1106   for (auto *U : I.users())
1107     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1108       // Collect all the relocate calls associated with a statepoint
1109       AllRelocateCalls.push_back(Relocate);
1110 
1111   // We need atleast one base pointer relocation + one derived pointer
1112   // relocation to mangle
1113   if (AllRelocateCalls.size() < 2)
1114     return false;
1115 
1116   // RelocateInstMap is a mapping from the base relocate instruction to the
1117   // corresponding derived relocate instructions
1118   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1119   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1120   if (RelocateInstMap.empty())
1121     return false;
1122 
1123   for (auto &Item : RelocateInstMap)
1124     // Item.first is the RelocatedBase to offset against
1125     // Item.second is the vector of Targets to replace
1126     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1127   return MadeChange;
1128 }
1129 
1130 /// SinkCast - Sink the specified cast instruction into its user blocks
1131 static bool SinkCast(CastInst *CI) {
1132   BasicBlock *DefBB = CI->getParent();
1133 
1134   /// InsertedCasts - Only insert a cast in each block once.
1135   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1136 
1137   bool MadeChange = false;
1138   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1139        UI != E; ) {
1140     Use &TheUse = UI.getUse();
1141     Instruction *User = cast<Instruction>(*UI);
1142 
1143     // Figure out which BB this cast is used in.  For PHI's this is the
1144     // appropriate predecessor block.
1145     BasicBlock *UserBB = User->getParent();
1146     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1147       UserBB = PN->getIncomingBlock(TheUse);
1148     }
1149 
1150     // Preincrement use iterator so we don't invalidate it.
1151     ++UI;
1152 
1153     // The first insertion point of a block containing an EH pad is after the
1154     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1155     if (User->isEHPad())
1156       continue;
1157 
1158     // If the block selected to receive the cast is an EH pad that does not
1159     // allow non-PHI instructions before the terminator, we can't sink the
1160     // cast.
1161     if (UserBB->getTerminator()->isEHPad())
1162       continue;
1163 
1164     // If this user is in the same block as the cast, don't change the cast.
1165     if (UserBB == DefBB) continue;
1166 
1167     // If we have already inserted a cast into this block, use it.
1168     CastInst *&InsertedCast = InsertedCasts[UserBB];
1169 
1170     if (!InsertedCast) {
1171       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1172       assert(InsertPt != UserBB->end());
1173       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1174                                       CI->getType(), "", &*InsertPt);
1175     }
1176 
1177     // Replace a use of the cast with a use of the new cast.
1178     TheUse = InsertedCast;
1179     MadeChange = true;
1180     ++NumCastUses;
1181   }
1182 
1183   // If we removed all uses, nuke the cast.
1184   if (CI->use_empty()) {
1185     CI->eraseFromParent();
1186     MadeChange = true;
1187   }
1188 
1189   return MadeChange;
1190 }
1191 
1192 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1193 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1194 /// reduce the number of virtual registers that must be created and coalesced.
1195 ///
1196 /// Return true if any changes are made.
1197 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1198                                        const DataLayout &DL) {
1199   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1200   // than sinking only nop casts, but is helpful on some platforms.
1201   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1202     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1203                                   ASC->getDestAddressSpace()))
1204       return false;
1205   }
1206 
1207   // If this is a noop copy,
1208   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1209   EVT DstVT = TLI.getValueType(DL, CI->getType());
1210 
1211   // This is an fp<->int conversion?
1212   if (SrcVT.isInteger() != DstVT.isInteger())
1213     return false;
1214 
1215   // If this is an extension, it will be a zero or sign extension, which
1216   // isn't a noop.
1217   if (SrcVT.bitsLT(DstVT)) return false;
1218 
1219   // If these values will be promoted, find out what they will be promoted
1220   // to.  This helps us consider truncates on PPC as noop copies when they
1221   // are.
1222   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1223       TargetLowering::TypePromoteInteger)
1224     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1225   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1226       TargetLowering::TypePromoteInteger)
1227     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1228 
1229   // If, after promotion, these are the same types, this is a noop copy.
1230   if (SrcVT != DstVT)
1231     return false;
1232 
1233   return SinkCast(CI);
1234 }
1235 
1236 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1237 /// possible.
1238 ///
1239 /// Return true if any changes were made.
1240 static bool CombineUAddWithOverflow(CmpInst *CI) {
1241   Value *A, *B;
1242   Instruction *AddI;
1243   if (!match(CI,
1244              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1245     return false;
1246 
1247   Type *Ty = AddI->getType();
1248   if (!isa<IntegerType>(Ty))
1249     return false;
1250 
1251   // We don't want to move around uses of condition values this late, so we we
1252   // check if it is legal to create the call to the intrinsic in the basic
1253   // block containing the icmp:
1254 
1255   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1256     return false;
1257 
1258 #ifndef NDEBUG
1259   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1260   // for now:
1261   if (AddI->hasOneUse())
1262     assert(*AddI->user_begin() == CI && "expected!");
1263 #endif
1264 
1265   Module *M = CI->getModule();
1266   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1267 
1268   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1269 
1270   auto *UAddWithOverflow =
1271       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1272   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1273   auto *Overflow =
1274       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1275 
1276   CI->replaceAllUsesWith(Overflow);
1277   AddI->replaceAllUsesWith(UAdd);
1278   CI->eraseFromParent();
1279   AddI->eraseFromParent();
1280   return true;
1281 }
1282 
1283 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1284 /// registers that must be created and coalesced. This is a clear win except on
1285 /// targets with multiple condition code registers (PowerPC), where it might
1286 /// lose; some adjustment may be wanted there.
1287 ///
1288 /// Return true if any changes are made.
1289 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1290   BasicBlock *DefBB = CI->getParent();
1291 
1292   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1293   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1294     return false;
1295 
1296   // Only insert a cmp in each block once.
1297   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1298 
1299   bool MadeChange = false;
1300   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1301        UI != E; ) {
1302     Use &TheUse = UI.getUse();
1303     Instruction *User = cast<Instruction>(*UI);
1304 
1305     // Preincrement use iterator so we don't invalidate it.
1306     ++UI;
1307 
1308     // Don't bother for PHI nodes.
1309     if (isa<PHINode>(User))
1310       continue;
1311 
1312     // Figure out which BB this cmp is used in.
1313     BasicBlock *UserBB = User->getParent();
1314 
1315     // If this user is in the same block as the cmp, don't change the cmp.
1316     if (UserBB == DefBB) continue;
1317 
1318     // If we have already inserted a cmp into this block, use it.
1319     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1320 
1321     if (!InsertedCmp) {
1322       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1323       assert(InsertPt != UserBB->end());
1324       InsertedCmp =
1325           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1326                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1327       // Propagate the debug info.
1328       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1329     }
1330 
1331     // Replace a use of the cmp with a use of the new cmp.
1332     TheUse = InsertedCmp;
1333     MadeChange = true;
1334     ++NumCmpUses;
1335   }
1336 
1337   // If we removed all uses, nuke the cmp.
1338   if (CI->use_empty()) {
1339     CI->eraseFromParent();
1340     MadeChange = true;
1341   }
1342 
1343   return MadeChange;
1344 }
1345 
1346 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1347   if (SinkCmpExpression(CI, TLI))
1348     return true;
1349 
1350   if (CombineUAddWithOverflow(CI))
1351     return true;
1352 
1353   return false;
1354 }
1355 
1356 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1357 /// used in a compare to allow isel to generate better code for targets where
1358 /// this operation can be combined.
1359 ///
1360 /// Return true if any changes are made.
1361 static bool sinkAndCmp0Expression(Instruction *AndI,
1362                                   const TargetLowering &TLI,
1363                                   SetOfInstrs &InsertedInsts) {
1364   // Double-check that we're not trying to optimize an instruction that was
1365   // already optimized by some other part of this pass.
1366   assert(!InsertedInsts.count(AndI) &&
1367          "Attempting to optimize already optimized and instruction");
1368   (void) InsertedInsts;
1369 
1370   // Nothing to do for single use in same basic block.
1371   if (AndI->hasOneUse() &&
1372       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1373     return false;
1374 
1375   // Try to avoid cases where sinking/duplicating is likely to increase register
1376   // pressure.
1377   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1378       !isa<ConstantInt>(AndI->getOperand(1)) &&
1379       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1380     return false;
1381 
1382   for (auto *U : AndI->users()) {
1383     Instruction *User = cast<Instruction>(U);
1384 
1385     // Only sink for and mask feeding icmp with 0.
1386     if (!isa<ICmpInst>(User))
1387       return false;
1388 
1389     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1390     if (!CmpC || !CmpC->isZero())
1391       return false;
1392   }
1393 
1394   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1395     return false;
1396 
1397   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1398   DEBUG(AndI->getParent()->dump());
1399 
1400   // Push the 'and' into the same block as the icmp 0.  There should only be
1401   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1402   // others, so we don't need to keep track of which BBs we insert into.
1403   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1404        UI != E; ) {
1405     Use &TheUse = UI.getUse();
1406     Instruction *User = cast<Instruction>(*UI);
1407 
1408     // Preincrement use iterator so we don't invalidate it.
1409     ++UI;
1410 
1411     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1412 
1413     // Keep the 'and' in the same place if the use is already in the same block.
1414     Instruction *InsertPt =
1415         User->getParent() == AndI->getParent() ? AndI : User;
1416     Instruction *InsertedAnd =
1417         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1418                                AndI->getOperand(1), "", InsertPt);
1419     // Propagate the debug info.
1420     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1421 
1422     // Replace a use of the 'and' with a use of the new 'and'.
1423     TheUse = InsertedAnd;
1424     ++NumAndUses;
1425     DEBUG(User->getParent()->dump());
1426   }
1427 
1428   // We removed all uses, nuke the and.
1429   AndI->eraseFromParent();
1430   return true;
1431 }
1432 
1433 /// Check if the candidates could be combined with a shift instruction, which
1434 /// includes:
1435 /// 1. Truncate instruction
1436 /// 2. And instruction and the imm is a mask of the low bits:
1437 /// imm & (imm+1) == 0
1438 static bool isExtractBitsCandidateUse(Instruction *User) {
1439   if (!isa<TruncInst>(User)) {
1440     if (User->getOpcode() != Instruction::And ||
1441         !isa<ConstantInt>(User->getOperand(1)))
1442       return false;
1443 
1444     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1445 
1446     if ((Cimm & (Cimm + 1)).getBoolValue())
1447       return false;
1448   }
1449   return true;
1450 }
1451 
1452 /// Sink both shift and truncate instruction to the use of truncate's BB.
1453 static bool
1454 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1455                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1456                      const TargetLowering &TLI, const DataLayout &DL) {
1457   BasicBlock *UserBB = User->getParent();
1458   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1459   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1460   bool MadeChange = false;
1461 
1462   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1463                             TruncE = TruncI->user_end();
1464        TruncUI != TruncE;) {
1465 
1466     Use &TruncTheUse = TruncUI.getUse();
1467     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1468     // Preincrement use iterator so we don't invalidate it.
1469 
1470     ++TruncUI;
1471 
1472     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1473     if (!ISDOpcode)
1474       continue;
1475 
1476     // If the use is actually a legal node, there will not be an
1477     // implicit truncate.
1478     // FIXME: always querying the result type is just an
1479     // approximation; some nodes' legality is determined by the
1480     // operand or other means. There's no good way to find out though.
1481     if (TLI.isOperationLegalOrCustom(
1482             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1483       continue;
1484 
1485     // Don't bother for PHI nodes.
1486     if (isa<PHINode>(TruncUser))
1487       continue;
1488 
1489     BasicBlock *TruncUserBB = TruncUser->getParent();
1490 
1491     if (UserBB == TruncUserBB)
1492       continue;
1493 
1494     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1495     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1496 
1497     if (!InsertedShift && !InsertedTrunc) {
1498       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1499       assert(InsertPt != TruncUserBB->end());
1500       // Sink the shift
1501       if (ShiftI->getOpcode() == Instruction::AShr)
1502         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1503                                                    "", &*InsertPt);
1504       else
1505         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1506                                                    "", &*InsertPt);
1507 
1508       // Sink the trunc
1509       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1510       TruncInsertPt++;
1511       assert(TruncInsertPt != TruncUserBB->end());
1512 
1513       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1514                                        TruncI->getType(), "", &*TruncInsertPt);
1515 
1516       MadeChange = true;
1517 
1518       TruncTheUse = InsertedTrunc;
1519     }
1520   }
1521   return MadeChange;
1522 }
1523 
1524 /// Sink the shift *right* instruction into user blocks if the uses could
1525 /// potentially be combined with this shift instruction and generate BitExtract
1526 /// instruction. It will only be applied if the architecture supports BitExtract
1527 /// instruction. Here is an example:
1528 /// BB1:
1529 ///   %x.extract.shift = lshr i64 %arg1, 32
1530 /// BB2:
1531 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1532 /// ==>
1533 ///
1534 /// BB2:
1535 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1536 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1537 ///
1538 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1539 /// instruction.
1540 /// Return true if any changes are made.
1541 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1542                                 const TargetLowering &TLI,
1543                                 const DataLayout &DL) {
1544   BasicBlock *DefBB = ShiftI->getParent();
1545 
1546   /// Only insert instructions in each block once.
1547   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1548 
1549   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1550 
1551   bool MadeChange = false;
1552   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1553        UI != E;) {
1554     Use &TheUse = UI.getUse();
1555     Instruction *User = cast<Instruction>(*UI);
1556     // Preincrement use iterator so we don't invalidate it.
1557     ++UI;
1558 
1559     // Don't bother for PHI nodes.
1560     if (isa<PHINode>(User))
1561       continue;
1562 
1563     if (!isExtractBitsCandidateUse(User))
1564       continue;
1565 
1566     BasicBlock *UserBB = User->getParent();
1567 
1568     if (UserBB == DefBB) {
1569       // If the shift and truncate instruction are in the same BB. The use of
1570       // the truncate(TruncUse) may still introduce another truncate if not
1571       // legal. In this case, we would like to sink both shift and truncate
1572       // instruction to the BB of TruncUse.
1573       // for example:
1574       // BB1:
1575       // i64 shift.result = lshr i64 opnd, imm
1576       // trunc.result = trunc shift.result to i16
1577       //
1578       // BB2:
1579       //   ----> We will have an implicit truncate here if the architecture does
1580       //   not have i16 compare.
1581       // cmp i16 trunc.result, opnd2
1582       //
1583       if (isa<TruncInst>(User) && shiftIsLegal
1584           // If the type of the truncate is legal, no trucate will be
1585           // introduced in other basic blocks.
1586           &&
1587           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1588         MadeChange =
1589             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1590 
1591       continue;
1592     }
1593     // If we have already inserted a shift into this block, use it.
1594     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1595 
1596     if (!InsertedShift) {
1597       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1598       assert(InsertPt != UserBB->end());
1599 
1600       if (ShiftI->getOpcode() == Instruction::AShr)
1601         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1602                                                    "", &*InsertPt);
1603       else
1604         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1605                                                    "", &*InsertPt);
1606 
1607       MadeChange = true;
1608     }
1609 
1610     // Replace a use of the shift with a use of the new shift.
1611     TheUse = InsertedShift;
1612   }
1613 
1614   // If we removed all uses, nuke the shift.
1615   if (ShiftI->use_empty())
1616     ShiftI->eraseFromParent();
1617 
1618   return MadeChange;
1619 }
1620 
1621 /// If counting leading or trailing zeros is an expensive operation and a zero
1622 /// input is defined, add a check for zero to avoid calling the intrinsic.
1623 ///
1624 /// We want to transform:
1625 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1626 ///
1627 /// into:
1628 ///   entry:
1629 ///     %cmpz = icmp eq i64 %A, 0
1630 ///     br i1 %cmpz, label %cond.end, label %cond.false
1631 ///   cond.false:
1632 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1633 ///     br label %cond.end
1634 ///   cond.end:
1635 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1636 ///
1637 /// If the transform is performed, return true and set ModifiedDT to true.
1638 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1639                                   const TargetLowering *TLI,
1640                                   const DataLayout *DL,
1641                                   bool &ModifiedDT) {
1642   if (!TLI || !DL)
1643     return false;
1644 
1645   // If a zero input is undefined, it doesn't make sense to despeculate that.
1646   if (match(CountZeros->getOperand(1), m_One()))
1647     return false;
1648 
1649   // If it's cheap to speculate, there's nothing to do.
1650   auto IntrinsicID = CountZeros->getIntrinsicID();
1651   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1652       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1653     return false;
1654 
1655   // Only handle legal scalar cases. Anything else requires too much work.
1656   Type *Ty = CountZeros->getType();
1657   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1658   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1659     return false;
1660 
1661   // The intrinsic will be sunk behind a compare against zero and branch.
1662   BasicBlock *StartBlock = CountZeros->getParent();
1663   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1664 
1665   // Create another block after the count zero intrinsic. A PHI will be added
1666   // in this block to select the result of the intrinsic or the bit-width
1667   // constant if the input to the intrinsic is zero.
1668   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1669   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1670 
1671   // Set up a builder to create a compare, conditional branch, and PHI.
1672   IRBuilder<> Builder(CountZeros->getContext());
1673   Builder.SetInsertPoint(StartBlock->getTerminator());
1674   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1675 
1676   // Replace the unconditional branch that was created by the first split with
1677   // a compare against zero and a conditional branch.
1678   Value *Zero = Constant::getNullValue(Ty);
1679   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1680   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1681   StartBlock->getTerminator()->eraseFromParent();
1682 
1683   // Create a PHI in the end block to select either the output of the intrinsic
1684   // or the bit width of the operand.
1685   Builder.SetInsertPoint(&EndBlock->front());
1686   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1687   CountZeros->replaceAllUsesWith(PN);
1688   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1689   PN->addIncoming(BitWidth, StartBlock);
1690   PN->addIncoming(CountZeros, CallBlock);
1691 
1692   // We are explicitly handling the zero case, so we can set the intrinsic's
1693   // undefined zero argument to 'true'. This will also prevent reprocessing the
1694   // intrinsic; we only despeculate when a zero input is defined.
1695   CountZeros->setArgOperand(1, Builder.getTrue());
1696   ModifiedDT = true;
1697   return true;
1698 }
1699 
1700 namespace {
1701 
1702 // This class provides helper functions to expand a memcmp library call into an
1703 // inline expansion.
1704 class MemCmpExpansion {
1705   struct ResultBlock {
1706     BasicBlock *BB = nullptr;
1707     PHINode *PhiSrc1 = nullptr;
1708     PHINode *PhiSrc2 = nullptr;
1709 
1710     ResultBlock() = default;
1711   };
1712 
1713   CallInst *const CI;
1714   ResultBlock ResBlock;
1715   const uint64_t Size;
1716   unsigned MaxLoadSize;
1717   uint64_t NumLoads;
1718   uint64_t NumLoadsNonOneByte;
1719   const uint64_t NumLoadsPerBlock;
1720   std::vector<BasicBlock *> LoadCmpBlocks;
1721   BasicBlock *EndBlock;
1722   PHINode *PhiRes;
1723   const bool IsUsedForZeroCmp;
1724   const DataLayout &DL;
1725   IRBuilder<> Builder;
1726   // Represents the decomposition in blocks of the expansion. For example,
1727   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
1728   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
1729   // TODO(courbet): Involve the target more in this computation. On X86, 7
1730   // bytes can be done more efficiently with two overlaping 4-byte loads than
1731   // covering the interval with [{4, 0},{2, 4},{1, 6}}.
1732   struct LoadEntry {
1733     LoadEntry(unsigned LoadSize, uint64_t Offset)
1734         : LoadSize(LoadSize), Offset(Offset) {
1735       assert(Offset % LoadSize == 0 && "invalid load entry");
1736     }
1737 
1738     uint64_t getGEPIndex() const { return Offset / LoadSize; }
1739 
1740     // The size of the load for this block, in bytes.
1741     const unsigned LoadSize;
1742     // The offset of this load WRT the base pointer, in bytes.
1743     const uint64_t Offset;
1744   };
1745   SmallVector<LoadEntry, 8> LoadSequence;
1746   void computeLoadSequence();
1747 
1748   void createLoadCmpBlocks();
1749   void createResultBlock();
1750   void setupResultBlockPHINodes();
1751   void setupEndBlockPHINodes();
1752   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
1753   void emitLoadCompareBlock(unsigned BlockIndex);
1754   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
1755                                          unsigned &LoadIndex);
1756   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned GEPIndex);
1757   void emitMemCmpResultBlock();
1758   Value *getMemCmpExpansionZeroCase();
1759   Value *getMemCmpEqZeroOneBlock();
1760   Value *getMemCmpOneBlock();
1761 
1762   // Computes the decomposition. THis is the common code to compute the number
1763   // of loads and the actual load sequence. `callback` is called with each load
1764   // size and number of loads for the block size.
1765   template <typename CallBackT>
1766   void getDecomposition(CallBackT callback) const;
1767 
1768  public:
1769   MemCmpExpansion(CallInst *CI, uint64_t Size, unsigned MaxLoadSize,
1770                   unsigned NumLoadsPerBlock, const DataLayout &DL);
1771 
1772   unsigned getNumBlocks();
1773   uint64_t getNumLoads() const { return NumLoads; }
1774 
1775   Value *getMemCmpExpansion();
1776 };
1777 
1778 } // end anonymous namespace
1779 
1780 // Initialize the basic block structure required for expansion of memcmp call
1781 // with given maximum load size and memcmp size parameter.
1782 // This structure includes:
1783 // 1. A list of load compare blocks - LoadCmpBlocks.
1784 // 2. An EndBlock, split from original instruction point, which is the block to
1785 // return from.
1786 // 3. ResultBlock, block to branch to for early exit when a
1787 // LoadCmpBlock finds a difference.
1788 MemCmpExpansion::MemCmpExpansion(CallInst *const CI, uint64_t Size,
1789                                  const unsigned MaxLoadSize,
1790                                  const unsigned LoadsPerBlock,
1791                                  const DataLayout &TheDataLayout)
1792     : CI(CI),
1793       Size(Size),
1794       MaxLoadSize(MaxLoadSize),
1795       NumLoads(0),
1796       NumLoadsNonOneByte(0),
1797       NumLoadsPerBlock(LoadsPerBlock),
1798       IsUsedForZeroCmp(isOnlyUsedInZeroEqualityComparison(CI)),
1799       DL(TheDataLayout),
1800       Builder(CI) {
1801   // Scale the max size down if the target can load more bytes than we need.
1802   while (this->MaxLoadSize > Size) {
1803     this->MaxLoadSize /= 2;
1804   }
1805   // Compute the number of loads. At that point we don't want to compute the
1806   // actual decomposition because it might be too large to fit in memory.
1807   getDecomposition([this](unsigned LoadSize, uint64_t NumLoadsForSize) {
1808     NumLoads += NumLoadsForSize;
1809   });
1810 }
1811 
1812 template <typename CallBackT>
1813 void MemCmpExpansion::getDecomposition(CallBackT callback) const {
1814   unsigned LoadSize = this->MaxLoadSize;
1815   assert(Size > 0 && "zero blocks");
1816   uint64_t CurSize = Size;
1817   while (CurSize) {
1818     assert(LoadSize > 0 && "zero load size");
1819     const uint64_t NumLoadsForThisSize = CurSize / LoadSize;
1820     if (NumLoadsForThisSize > 0) {
1821       callback(LoadSize, NumLoadsForThisSize);
1822       CurSize = CurSize % LoadSize;
1823     }
1824     // FIXME: This can result in a non-native load size (e.g. X86-32+SSE can
1825     // load 16 and 4 but not 8), which throws the load count off (e.g. in the
1826     // aforementioned case, 16 bytes will count for 2 loads but will generate
1827     // 4).
1828     LoadSize /= 2;
1829   }
1830 }
1831 
1832 void MemCmpExpansion::computeLoadSequence() {
1833   uint64_t Offset = 0;
1834   getDecomposition(
1835       [this, &Offset](unsigned LoadSize, uint64_t NumLoadsForSize) {
1836         for (uint64_t I = 0; I < NumLoadsForSize; ++I) {
1837           LoadSequence.push_back({LoadSize, Offset});
1838           Offset += LoadSize;
1839         }
1840         if (LoadSize > 1) {
1841           ++NumLoadsNonOneByte;
1842         }
1843       });
1844   assert(LoadSequence.size() == getNumLoads() && "mismatch in numbe rof loads");
1845 }
1846 
1847 unsigned MemCmpExpansion::getNumBlocks() {
1848   if (IsUsedForZeroCmp)
1849     return getNumLoads() / NumLoadsPerBlock +
1850            (getNumLoads() % NumLoadsPerBlock != 0 ? 1 : 0);
1851   return getNumLoads();
1852 }
1853 
1854 void MemCmpExpansion::createLoadCmpBlocks() {
1855   for (unsigned i = 0; i < getNumBlocks(); i++) {
1856     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
1857                                         EndBlock->getParent(), EndBlock);
1858     LoadCmpBlocks.push_back(BB);
1859   }
1860 }
1861 
1862 void MemCmpExpansion::createResultBlock() {
1863   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
1864                                    EndBlock->getParent(), EndBlock);
1865 }
1866 
1867 // This function creates the IR instructions for loading and comparing 1 byte.
1868 // It loads 1 byte from each source of the memcmp parameters with the given
1869 // GEPIndex. It then subtracts the two loaded values and adds this result to the
1870 // final phi node for selecting the memcmp result.
1871 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
1872                                                unsigned GEPIndex) {
1873   Value *Source1 = CI->getArgOperand(0);
1874   Value *Source2 = CI->getArgOperand(1);
1875 
1876   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
1877   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
1878   // Cast source to LoadSizeType*.
1879   if (Source1->getType() != LoadSizeType)
1880     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1881   if (Source2->getType() != LoadSizeType)
1882     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1883 
1884   // Get the base address using the GEPIndex.
1885   if (GEPIndex != 0) {
1886     Source1 = Builder.CreateGEP(LoadSizeType, Source1,
1887                                 ConstantInt::get(LoadSizeType, GEPIndex));
1888     Source2 = Builder.CreateGEP(LoadSizeType, Source2,
1889                                 ConstantInt::get(LoadSizeType, GEPIndex));
1890   }
1891 
1892   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1893   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1894 
1895   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
1896   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
1897   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
1898 
1899   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
1900 
1901   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
1902     // Early exit branch if difference found to EndBlock. Otherwise, continue to
1903     // next LoadCmpBlock,
1904     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
1905                                     ConstantInt::get(Diff->getType(), 0));
1906     BranchInst *CmpBr =
1907         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
1908     Builder.Insert(CmpBr);
1909   } else {
1910     // The last block has an unconditional branch to EndBlock.
1911     BranchInst *CmpBr = BranchInst::Create(EndBlock);
1912     Builder.Insert(CmpBr);
1913   }
1914 }
1915 
1916 /// Generate an equality comparison for one or more pairs of loaded values.
1917 /// This is used in the case where the memcmp() call is compared equal or not
1918 /// equal to zero.
1919 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
1920                                             unsigned &LoadIndex) {
1921   assert(LoadIndex < getNumLoads() &&
1922          "getCompareLoadPairs() called with no remaining loads");
1923   std::vector<Value *> XorList, OrList;
1924   Value *Diff;
1925 
1926   const unsigned NumLoads =
1927       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlock);
1928 
1929   // For a single-block expansion, start inserting before the memcmp call.
1930   if (LoadCmpBlocks.empty())
1931     Builder.SetInsertPoint(CI);
1932   else
1933     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
1934 
1935   Value *Cmp = nullptr;
1936   // If we have multiple loads per block, we need to generate a composite
1937   // comparison using xor+or. The type for the combinations is the largest load
1938   // type.
1939   IntegerType *const MaxLoadType =
1940       NumLoads == 1 ? nullptr
1941                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
1942   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
1943     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
1944 
1945     IntegerType *LoadSizeType =
1946         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
1947 
1948     Value *Source1 = CI->getArgOperand(0);
1949     Value *Source2 = CI->getArgOperand(1);
1950 
1951     // Cast source to LoadSizeType*.
1952     if (Source1->getType() != LoadSizeType)
1953       Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
1954     if (Source2->getType() != LoadSizeType)
1955       Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
1956 
1957     // Get the base address using a GEP.
1958     if (CurLoadEntry.Offset != 0) {
1959       Source1 = Builder.CreateGEP(
1960           LoadSizeType, Source1,
1961           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
1962       Source2 = Builder.CreateGEP(
1963           LoadSizeType, Source2,
1964           ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
1965     }
1966 
1967     // Get a constant or load a value for each source address.
1968     Value *LoadSrc1 = nullptr;
1969     if (auto *Source1C = dyn_cast<Constant>(Source1))
1970       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
1971     if (!LoadSrc1)
1972       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
1973 
1974     Value *LoadSrc2 = nullptr;
1975     if (auto *Source2C = dyn_cast<Constant>(Source2))
1976       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
1977     if (!LoadSrc2)
1978       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
1979 
1980     if (NumLoads != 1) {
1981       if (LoadSizeType != MaxLoadType) {
1982         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
1983         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
1984       }
1985       // If we have multiple loads per block, we need to generate a composite
1986       // comparison using xor+or.
1987       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
1988       Diff = Builder.CreateZExt(Diff, MaxLoadType);
1989       XorList.push_back(Diff);
1990     } else {
1991       // If there's only one load per block, we just compare the loaded values.
1992       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
1993     }
1994   }
1995 
1996   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
1997     std::vector<Value *> OutList;
1998     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
1999       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
2000       OutList.push_back(Or);
2001     }
2002     if (InList.size() % 2 != 0)
2003       OutList.push_back(InList.back());
2004     return OutList;
2005   };
2006 
2007   if (!Cmp) {
2008     // Pairwise OR the XOR results.
2009     OrList = pairWiseOr(XorList);
2010 
2011     // Pairwise OR the OR results until one result left.
2012     while (OrList.size() != 1) {
2013       OrList = pairWiseOr(OrList);
2014     }
2015     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
2016   }
2017 
2018   return Cmp;
2019 }
2020 
2021 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
2022                                                         unsigned &LoadIndex) {
2023   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
2024 
2025   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
2026                            ? EndBlock
2027                            : LoadCmpBlocks[BlockIndex + 1];
2028   // Early exit branch if difference found to ResultBlock. Otherwise,
2029   // continue to next LoadCmpBlock or EndBlock.
2030   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
2031   Builder.Insert(CmpBr);
2032 
2033   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2034   // since early exit to ResultBlock was not taken (no difference was found in
2035   // any of the bytes).
2036   if (BlockIndex == LoadCmpBlocks.size() - 1) {
2037     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2038     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
2039   }
2040 }
2041 
2042 // This function creates the IR intructions for loading and comparing using the
2043 // given LoadSize. It loads the number of bytes specified by LoadSize from each
2044 // source of the memcmp parameters. It then does a subtract to see if there was
2045 // a difference in the loaded values. If a difference is found, it branches
2046 // with an early exit to the ResultBlock for calculating which source was
2047 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
2048 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
2049 // a special case through emitLoadCompareByteBlock. The special handling can
2050 // simply subtract the loaded values and add it to the result phi node.
2051 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
2052   // There is one load per block in this case, BlockIndex == LoadIndex.
2053   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
2054 
2055   if (CurLoadEntry.LoadSize == 1) {
2056     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex,
2057                                               CurLoadEntry.getGEPIndex());
2058     return;
2059   }
2060 
2061   Type *LoadSizeType =
2062       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
2063   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2064   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
2065 
2066   Value *Source1 = CI->getArgOperand(0);
2067   Value *Source2 = CI->getArgOperand(1);
2068 
2069   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
2070   // Cast source to LoadSizeType*.
2071   if (Source1->getType() != LoadSizeType)
2072     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2073   if (Source2->getType() != LoadSizeType)
2074     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2075 
2076   // Get the base address using a GEP.
2077   if (CurLoadEntry.Offset != 0) {
2078     Source1 = Builder.CreateGEP(
2079         LoadSizeType, Source1,
2080         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
2081     Source2 = Builder.CreateGEP(
2082         LoadSizeType, Source2,
2083         ConstantInt::get(LoadSizeType, CurLoadEntry.getGEPIndex()));
2084   }
2085 
2086   // Load LoadSizeType from the base address.
2087   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2088   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2089 
2090   if (DL.isLittleEndian()) {
2091     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2092                                                 Intrinsic::bswap, LoadSizeType);
2093     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2094     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2095   }
2096 
2097   if (LoadSizeType != MaxLoadType) {
2098     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
2099     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
2100   }
2101 
2102   // Add the loaded values to the phi nodes for calculating memcmp result only
2103   // if result is not used in a zero equality.
2104   if (!IsUsedForZeroCmp) {
2105     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
2106     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
2107   }
2108 
2109   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
2110   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
2111                            ? EndBlock
2112                            : LoadCmpBlocks[BlockIndex + 1];
2113   // Early exit branch if difference found to ResultBlock. Otherwise, continue
2114   // to next LoadCmpBlock or EndBlock.
2115   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
2116   Builder.Insert(CmpBr);
2117 
2118   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
2119   // since early exit to ResultBlock was not taken (no difference was found in
2120   // any of the bytes).
2121   if (BlockIndex == LoadCmpBlocks.size() - 1) {
2122     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
2123     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
2124   }
2125 }
2126 
2127 // This function populates the ResultBlock with a sequence to calculate the
2128 // memcmp result. It compares the two loaded source values and returns -1 if
2129 // src1 < src2 and 1 if src1 > src2.
2130 void MemCmpExpansion::emitMemCmpResultBlock() {
2131   // Special case: if memcmp result is used in a zero equality, result does not
2132   // need to be calculated and can simply return 1.
2133   if (IsUsedForZeroCmp) {
2134     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2135     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2136     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
2137     PhiRes->addIncoming(Res, ResBlock.BB);
2138     BranchInst *NewBr = BranchInst::Create(EndBlock);
2139     Builder.Insert(NewBr);
2140     return;
2141   }
2142   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
2143   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
2144 
2145   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
2146                                   ResBlock.PhiSrc2);
2147 
2148   Value *Res =
2149       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
2150                            ConstantInt::get(Builder.getInt32Ty(), 1));
2151 
2152   BranchInst *NewBr = BranchInst::Create(EndBlock);
2153   Builder.Insert(NewBr);
2154   PhiRes->addIncoming(Res, ResBlock.BB);
2155 }
2156 
2157 void MemCmpExpansion::setupResultBlockPHINodes() {
2158   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
2159   Builder.SetInsertPoint(ResBlock.BB);
2160   // Note: this assumes one load per block.
2161   ResBlock.PhiSrc1 =
2162       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
2163   ResBlock.PhiSrc2 =
2164       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
2165 }
2166 
2167 void MemCmpExpansion::setupEndBlockPHINodes() {
2168   Builder.SetInsertPoint(&EndBlock->front());
2169   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
2170 }
2171 
2172 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
2173   unsigned LoadIndex = 0;
2174   // This loop populates each of the LoadCmpBlocks with the IR sequence to
2175   // handle multiple loads per block.
2176   for (unsigned I = 0; I < getNumBlocks(); ++I) {
2177     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
2178   }
2179 
2180   emitMemCmpResultBlock();
2181   return PhiRes;
2182 }
2183 
2184 /// A memcmp expansion that compares equality with 0 and only has one block of
2185 /// load and compare can bypass the compare, branch, and phi IR that is required
2186 /// in the general case.
2187 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
2188   unsigned LoadIndex = 0;
2189   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
2190   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
2191   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
2192 }
2193 
2194 /// A memcmp expansion that only has one block of load and compare can bypass
2195 /// the compare, branch, and phi IR that is required in the general case.
2196 Value *MemCmpExpansion::getMemCmpOneBlock() {
2197   assert(NumLoadsPerBlock == 1 && "Only handles one load pair per block");
2198 
2199   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
2200   Value *Source1 = CI->getArgOperand(0);
2201   Value *Source2 = CI->getArgOperand(1);
2202 
2203   // Cast source to LoadSizeType*.
2204   if (Source1->getType() != LoadSizeType)
2205     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
2206   if (Source2->getType() != LoadSizeType)
2207     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
2208 
2209   // Load LoadSizeType from the base address.
2210   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
2211   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
2212 
2213   if (DL.isLittleEndian() && Size != 1) {
2214     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
2215                                                 Intrinsic::bswap, LoadSizeType);
2216     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
2217     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
2218   }
2219 
2220   if (Size < 4) {
2221     // The i8 and i16 cases don't need compares. We zext the loaded values and
2222     // subtract them to get the suitable negative, zero, or positive i32 result.
2223     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
2224     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
2225     return Builder.CreateSub(LoadSrc1, LoadSrc2);
2226   }
2227 
2228   // The result of memcmp is negative, zero, or positive, so produce that by
2229   // subtracting 2 extended compare bits: sub (ugt, ult).
2230   // If a target prefers to use selects to get -1/0/1, they should be able
2231   // to transform this later. The inverse transform (going from selects to math)
2232   // may not be possible in the DAG because the selects got converted into
2233   // branches before we got there.
2234   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
2235   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
2236   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
2237   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
2238   return Builder.CreateSub(ZextUGT, ZextULT);
2239 }
2240 
2241 // This function expands the memcmp call into an inline expansion and returns
2242 // the memcmp result.
2243 Value *MemCmpExpansion::getMemCmpExpansion() {
2244   computeLoadSequence();
2245   // A memcmp with zero-comparison with only one block of load and compare does
2246   // not need to set up any extra blocks. This case could be handled in the DAG,
2247   // but since we have all of the machinery to flexibly expand any memcpy here,
2248   // we choose to handle this case too to avoid fragmented lowering.
2249   if ((!IsUsedForZeroCmp && NumLoadsPerBlock != 1) || getNumBlocks() != 1) {
2250     BasicBlock *StartBlock = CI->getParent();
2251     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
2252     setupEndBlockPHINodes();
2253     createResultBlock();
2254 
2255     // If return value of memcmp is not used in a zero equality, we need to
2256     // calculate which source was larger. The calculation requires the
2257     // two loaded source values of each load compare block.
2258     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
2259     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
2260 
2261     // Create the number of required load compare basic blocks.
2262     createLoadCmpBlocks();
2263 
2264     // Update the terminator added by splitBasicBlock to branch to the first
2265     // LoadCmpBlock.
2266     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
2267   }
2268 
2269   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
2270 
2271   if (IsUsedForZeroCmp)
2272     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
2273                                : getMemCmpExpansionZeroCase();
2274 
2275   // TODO: Handle more than one load pair per block in getMemCmpOneBlock().
2276   if (getNumBlocks() == 1 && NumLoadsPerBlock == 1) return getMemCmpOneBlock();
2277 
2278   for (unsigned I = 0; I < getNumBlocks(); ++I) {
2279     emitLoadCompareBlock(I);
2280   }
2281 
2282   emitMemCmpResultBlock();
2283   return PhiRes;
2284 }
2285 
2286 // This function checks to see if an expansion of memcmp can be generated.
2287 // It checks for constant compare size that is less than the max inline size.
2288 // If an expansion cannot occur, returns false to leave as a library call.
2289 // Otherwise, the library call is replaced with a new IR instruction sequence.
2290 /// We want to transform:
2291 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
2292 /// To:
2293 /// loadbb:
2294 ///  %0 = bitcast i32* %buffer2 to i8*
2295 ///  %1 = bitcast i32* %buffer1 to i8*
2296 ///  %2 = bitcast i8* %1 to i64*
2297 ///  %3 = bitcast i8* %0 to i64*
2298 ///  %4 = load i64, i64* %2
2299 ///  %5 = load i64, i64* %3
2300 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
2301 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
2302 ///  %8 = sub i64 %6, %7
2303 ///  %9 = icmp ne i64 %8, 0
2304 ///  br i1 %9, label %res_block, label %loadbb1
2305 /// res_block:                                        ; preds = %loadbb2,
2306 /// %loadbb1, %loadbb
2307 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
2308 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
2309 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
2310 ///  %11 = select i1 %10, i32 -1, i32 1
2311 ///  br label %endblock
2312 /// loadbb1:                                          ; preds = %loadbb
2313 ///  %12 = bitcast i32* %buffer2 to i8*
2314 ///  %13 = bitcast i32* %buffer1 to i8*
2315 ///  %14 = bitcast i8* %13 to i32*
2316 ///  %15 = bitcast i8* %12 to i32*
2317 ///  %16 = getelementptr i32, i32* %14, i32 2
2318 ///  %17 = getelementptr i32, i32* %15, i32 2
2319 ///  %18 = load i32, i32* %16
2320 ///  %19 = load i32, i32* %17
2321 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
2322 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
2323 ///  %22 = zext i32 %20 to i64
2324 ///  %23 = zext i32 %21 to i64
2325 ///  %24 = sub i64 %22, %23
2326 ///  %25 = icmp ne i64 %24, 0
2327 ///  br i1 %25, label %res_block, label %loadbb2
2328 /// loadbb2:                                          ; preds = %loadbb1
2329 ///  %26 = bitcast i32* %buffer2 to i8*
2330 ///  %27 = bitcast i32* %buffer1 to i8*
2331 ///  %28 = bitcast i8* %27 to i16*
2332 ///  %29 = bitcast i8* %26 to i16*
2333 ///  %30 = getelementptr i16, i16* %28, i16 6
2334 ///  %31 = getelementptr i16, i16* %29, i16 6
2335 ///  %32 = load i16, i16* %30
2336 ///  %33 = load i16, i16* %31
2337 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
2338 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
2339 ///  %36 = zext i16 %34 to i64
2340 ///  %37 = zext i16 %35 to i64
2341 ///  %38 = sub i64 %36, %37
2342 ///  %39 = icmp ne i64 %38, 0
2343 ///  br i1 %39, label %res_block, label %loadbb3
2344 /// loadbb3:                                          ; preds = %loadbb2
2345 ///  %40 = bitcast i32* %buffer2 to i8*
2346 ///  %41 = bitcast i32* %buffer1 to i8*
2347 ///  %42 = getelementptr i8, i8* %41, i8 14
2348 ///  %43 = getelementptr i8, i8* %40, i8 14
2349 ///  %44 = load i8, i8* %42
2350 ///  %45 = load i8, i8* %43
2351 ///  %46 = zext i8 %44 to i32
2352 ///  %47 = zext i8 %45 to i32
2353 ///  %48 = sub i32 %46, %47
2354 ///  br label %endblock
2355 /// endblock:                                         ; preds = %res_block,
2356 /// %loadbb3
2357 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
2358 ///  ret i32 %phi.res
2359 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
2360                          const TargetLowering *TLI, const DataLayout *DL) {
2361   NumMemCmpCalls++;
2362 
2363   // Early exit from expansion if -Oz.
2364   if (CI->getFunction()->optForMinSize())
2365     return false;
2366 
2367   // Early exit from expansion if size is not a constant.
2368   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2369   if (!SizeCast) {
2370     NumMemCmpNotConstant++;
2371     return false;
2372   }
2373   const uint64_t SizeVal = SizeCast->getZExtValue();
2374 
2375   // TTI call to check if target would like to expand memcmp. Also, get the
2376   // max LoadSize.
2377   unsigned MaxLoadSize;
2378   if (!TTI->enableMemCmpExpansion(MaxLoadSize)) return false;
2379 
2380   MemCmpExpansion Expansion(CI, SizeVal, MaxLoadSize, MemCmpNumLoadsPerBlock,
2381                             *DL);
2382 
2383   // Don't expand if this will require more loads than desired by the target.
2384   if (Expansion.getNumLoads() >
2385       TLI->getMaxExpandSizeMemcmp(CI->getFunction()->optForSize())) {
2386     NumMemCmpGreaterThanMax++;
2387     return false;
2388   }
2389 
2390   NumMemCmpInlined++;
2391 
2392   Value *Res = Expansion.getMemCmpExpansion();
2393 
2394   // Replace call with result of expansion and erase call.
2395   CI->replaceAllUsesWith(Res);
2396   CI->eraseFromParent();
2397 
2398   return true;
2399 }
2400 
2401 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2402   BasicBlock *BB = CI->getParent();
2403 
2404   // Lower inline assembly if we can.
2405   // If we found an inline asm expession, and if the target knows how to
2406   // lower it to normal LLVM code, do so now.
2407   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
2408     if (TLI->ExpandInlineAsm(CI)) {
2409       // Avoid invalidating the iterator.
2410       CurInstIterator = BB->begin();
2411       // Avoid processing instructions out of order, which could cause
2412       // reuse before a value is defined.
2413       SunkAddrs.clear();
2414       return true;
2415     }
2416     // Sink address computing for memory operands into the block.
2417     if (optimizeInlineAsmInst(CI))
2418       return true;
2419   }
2420 
2421   // Align the pointer arguments to this call if the target thinks it's a good
2422   // idea
2423   unsigned MinSize, PrefAlign;
2424   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2425     for (auto &Arg : CI->arg_operands()) {
2426       // We want to align both objects whose address is used directly and
2427       // objects whose address is used in casts and GEPs, though it only makes
2428       // sense for GEPs if the offset is a multiple of the desired alignment and
2429       // if size - offset meets the size threshold.
2430       if (!Arg->getType()->isPointerTy())
2431         continue;
2432       APInt Offset(DL->getPointerSizeInBits(
2433                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2434                    0);
2435       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2436       uint64_t Offset2 = Offset.getLimitedValue();
2437       if ((Offset2 & (PrefAlign-1)) != 0)
2438         continue;
2439       AllocaInst *AI;
2440       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2441           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2442         AI->setAlignment(PrefAlign);
2443       // Global variables can only be aligned if they are defined in this
2444       // object (i.e. they are uniquely initialized in this object), and
2445       // over-aligning global variables that have an explicit section is
2446       // forbidden.
2447       GlobalVariable *GV;
2448       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2449           GV->getPointerAlignment(*DL) < PrefAlign &&
2450           DL->getTypeAllocSize(GV->getValueType()) >=
2451               MinSize + Offset2)
2452         GV->setAlignment(PrefAlign);
2453     }
2454     // If this is a memcpy (or similar) then we may be able to improve the
2455     // alignment
2456     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2457       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
2458       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
2459         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
2460       if (Align > MI->getAlignment())
2461         MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align));
2462     }
2463   }
2464 
2465   // If we have a cold call site, try to sink addressing computation into the
2466   // cold block.  This interacts with our handling for loads and stores to
2467   // ensure that we can fold all uses of a potential addressing computation
2468   // into their uses.  TODO: generalize this to work over profiling data
2469   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
2470     for (auto &Arg : CI->arg_operands()) {
2471       if (!Arg->getType()->isPointerTy())
2472         continue;
2473       unsigned AS = Arg->getType()->getPointerAddressSpace();
2474       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2475     }
2476 
2477   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2478   if (II) {
2479     switch (II->getIntrinsicID()) {
2480     default: break;
2481     case Intrinsic::objectsize: {
2482       // Lower all uses of llvm.objectsize.*
2483       ConstantInt *RetVal =
2484           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
2485       // Substituting this can cause recursive simplifications, which can
2486       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
2487       // this
2488       // happens.
2489       Value *CurValue = &*CurInstIterator;
2490       WeakTrackingVH IterHandle(CurValue);
2491 
2492       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2493 
2494       // If the iterator instruction was recursively deleted, start over at the
2495       // start of the block.
2496       if (IterHandle != CurValue) {
2497         CurInstIterator = BB->begin();
2498         SunkAddrs.clear();
2499       }
2500       return true;
2501     }
2502     case Intrinsic::aarch64_stlxr:
2503     case Intrinsic::aarch64_stxr: {
2504       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2505       if (!ExtVal || !ExtVal->hasOneUse() ||
2506           ExtVal->getParent() == CI->getParent())
2507         return false;
2508       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2509       ExtVal->moveBefore(CI);
2510       // Mark this instruction as "inserted by CGP", so that other
2511       // optimizations don't touch it.
2512       InsertedInsts.insert(ExtVal);
2513       return true;
2514     }
2515     case Intrinsic::invariant_group_barrier:
2516       II->replaceAllUsesWith(II->getArgOperand(0));
2517       II->eraseFromParent();
2518       return true;
2519 
2520     case Intrinsic::cttz:
2521     case Intrinsic::ctlz:
2522       // If counting zeros is expensive, try to avoid it.
2523       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2524     }
2525 
2526     if (TLI) {
2527       SmallVector<Value*, 2> PtrOps;
2528       Type *AccessTy;
2529       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2530         while (!PtrOps.empty()) {
2531           Value *PtrVal = PtrOps.pop_back_val();
2532           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2533           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2534             return true;
2535         }
2536     }
2537   }
2538 
2539   // From here on out we're working with named functions.
2540   if (!CI->getCalledFunction()) return false;
2541 
2542   // Lower all default uses of _chk calls.  This is very similar
2543   // to what InstCombineCalls does, but here we are only lowering calls
2544   // to fortified library functions (e.g. __memcpy_chk) that have the default
2545   // "don't know" as the objectsize.  Anything else should be left alone.
2546   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2547   if (Value *V = Simplifier.optimizeCall(CI)) {
2548     CI->replaceAllUsesWith(V);
2549     CI->eraseFromParent();
2550     return true;
2551   }
2552 
2553   LibFunc Func;
2554   if (TLInfo->getLibFunc(ImmutableCallSite(CI), Func) &&
2555       Func == LibFunc_memcmp && expandMemCmp(CI, TTI, TLI, DL)) {
2556     ModifiedDT = true;
2557     return true;
2558   }
2559   return false;
2560 }
2561 
2562 /// Look for opportunities to duplicate return instructions to the predecessor
2563 /// to enable tail call optimizations. The case it is currently looking for is:
2564 /// @code
2565 /// bb0:
2566 ///   %tmp0 = tail call i32 @f0()
2567 ///   br label %return
2568 /// bb1:
2569 ///   %tmp1 = tail call i32 @f1()
2570 ///   br label %return
2571 /// bb2:
2572 ///   %tmp2 = tail call i32 @f2()
2573 ///   br label %return
2574 /// return:
2575 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2576 ///   ret i32 %retval
2577 /// @endcode
2578 ///
2579 /// =>
2580 ///
2581 /// @code
2582 /// bb0:
2583 ///   %tmp0 = tail call i32 @f0()
2584 ///   ret i32 %tmp0
2585 /// bb1:
2586 ///   %tmp1 = tail call i32 @f1()
2587 ///   ret i32 %tmp1
2588 /// bb2:
2589 ///   %tmp2 = tail call i32 @f2()
2590 ///   ret i32 %tmp2
2591 /// @endcode
2592 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
2593   if (!TLI)
2594     return false;
2595 
2596   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2597   if (!RetI)
2598     return false;
2599 
2600   PHINode *PN = nullptr;
2601   BitCastInst *BCI = nullptr;
2602   Value *V = RetI->getReturnValue();
2603   if (V) {
2604     BCI = dyn_cast<BitCastInst>(V);
2605     if (BCI)
2606       V = BCI->getOperand(0);
2607 
2608     PN = dyn_cast<PHINode>(V);
2609     if (!PN)
2610       return false;
2611   }
2612 
2613   if (PN && PN->getParent() != BB)
2614     return false;
2615 
2616   // Make sure there are no instructions between the PHI and return, or that the
2617   // return is the first instruction in the block.
2618   if (PN) {
2619     BasicBlock::iterator BI = BB->begin();
2620     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
2621     if (&*BI == BCI)
2622       // Also skip over the bitcast.
2623       ++BI;
2624     if (&*BI != RetI)
2625       return false;
2626   } else {
2627     BasicBlock::iterator BI = BB->begin();
2628     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2629     if (&*BI != RetI)
2630       return false;
2631   }
2632 
2633   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2634   /// call.
2635   const Function *F = BB->getParent();
2636   SmallVector<CallInst*, 4> TailCalls;
2637   if (PN) {
2638     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2639       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2640       // Make sure the phi value is indeed produced by the tail call.
2641       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2642           TLI->mayBeEmittedAsTailCall(CI) &&
2643           attributesPermitTailCall(F, CI, RetI, *TLI))
2644         TailCalls.push_back(CI);
2645     }
2646   } else {
2647     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2648     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2649       if (!VisitedBBs.insert(*PI).second)
2650         continue;
2651 
2652       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2653       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2654       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2655       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2656       if (RI == RE)
2657         continue;
2658 
2659       CallInst *CI = dyn_cast<CallInst>(&*RI);
2660       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2661           attributesPermitTailCall(F, CI, RetI, *TLI))
2662         TailCalls.push_back(CI);
2663     }
2664   }
2665 
2666   bool Changed = false;
2667   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2668     CallInst *CI = TailCalls[i];
2669     CallSite CS(CI);
2670 
2671     // Conservatively require the attributes of the call to match those of the
2672     // return. Ignore noalias because it doesn't affect the call sequence.
2673     AttributeList CalleeAttrs = CS.getAttributes();
2674     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2675             .removeAttribute(Attribute::NoAlias) !=
2676         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
2677             .removeAttribute(Attribute::NoAlias))
2678       continue;
2679 
2680     // Make sure the call instruction is followed by an unconditional branch to
2681     // the return block.
2682     BasicBlock *CallBB = CI->getParent();
2683     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2684     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2685       continue;
2686 
2687     // Duplicate the return into CallBB.
2688     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2689     ModifiedDT = Changed = true;
2690     ++NumRetsDup;
2691   }
2692 
2693   // If we eliminated all predecessors of the block, delete the block now.
2694   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2695     BB->eraseFromParent();
2696 
2697   return Changed;
2698 }
2699 
2700 //===----------------------------------------------------------------------===//
2701 // Memory Optimization
2702 //===----------------------------------------------------------------------===//
2703 
2704 namespace {
2705 
2706 /// This is an extended version of TargetLowering::AddrMode
2707 /// which holds actual Value*'s for register values.
2708 struct ExtAddrMode : public TargetLowering::AddrMode {
2709   Value *BaseReg = nullptr;
2710   Value *ScaledReg = nullptr;
2711   Value *OriginalValue = nullptr;
2712 
2713   enum FieldName {
2714     NoField        = 0x00,
2715     BaseRegField   = 0x01,
2716     BaseGVField    = 0x02,
2717     BaseOffsField  = 0x04,
2718     ScaledRegField = 0x08,
2719     ScaleField     = 0x10,
2720     MultipleFields = 0xff
2721   };
2722 
2723   ExtAddrMode() = default;
2724 
2725   void print(raw_ostream &OS) const;
2726   void dump() const;
2727 
2728   FieldName compare(const ExtAddrMode &other) {
2729     // First check that the types are the same on each field, as differing types
2730     // is something we can't cope with later on.
2731     if (BaseReg && other.BaseReg &&
2732         BaseReg->getType() != other.BaseReg->getType())
2733       return MultipleFields;
2734     if (BaseGV && other.BaseGV &&
2735         BaseGV->getType() != other.BaseGV->getType())
2736       return MultipleFields;
2737     if (ScaledReg && other.ScaledReg &&
2738         ScaledReg->getType() != other.ScaledReg->getType())
2739       return MultipleFields;
2740 
2741     // Check each field to see if it differs.
2742     unsigned Result = NoField;
2743     if (BaseReg != other.BaseReg)
2744       Result |= BaseRegField;
2745     if (BaseGV != other.BaseGV)
2746       Result |= BaseGVField;
2747     if (BaseOffs != other.BaseOffs)
2748       Result |= BaseOffsField;
2749     if (ScaledReg != other.ScaledReg)
2750       Result |= ScaledRegField;
2751     // Don't count 0 as being a different scale, because that actually means
2752     // unscaled (which will already be counted by having no ScaledReg).
2753     if (Scale && other.Scale && Scale != other.Scale)
2754       Result |= ScaleField;
2755 
2756     if (countPopulation(Result) > 1)
2757       return MultipleFields;
2758     else
2759       return static_cast<FieldName>(Result);
2760   }
2761 
2762   // AddrModes with a base reg or gv where the reg/gv is just the original
2763   // value are trivial.
2764   bool isTrivial() {
2765     bool Trivial = (BaseGV && BaseGV == OriginalValue) ||
2766       (BaseReg && BaseReg == OriginalValue);
2767     // If the AddrMode is trivial it shouldn't have an offset or be scaled.
2768     if (Trivial) {
2769       assert(BaseOffs == 0);
2770       assert(Scale == 0);
2771     }
2772     return Trivial;
2773   }
2774 };
2775 
2776 } // end anonymous namespace
2777 
2778 #ifndef NDEBUG
2779 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2780   AM.print(OS);
2781   return OS;
2782 }
2783 #endif
2784 
2785 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2786 void ExtAddrMode::print(raw_ostream &OS) const {
2787   bool NeedPlus = false;
2788   OS << "[";
2789   if (BaseGV) {
2790     OS << (NeedPlus ? " + " : "")
2791        << "GV:";
2792     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2793     NeedPlus = true;
2794   }
2795 
2796   if (BaseOffs) {
2797     OS << (NeedPlus ? " + " : "")
2798        << BaseOffs;
2799     NeedPlus = true;
2800   }
2801 
2802   if (BaseReg) {
2803     OS << (NeedPlus ? " + " : "")
2804        << "Base:";
2805     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2806     NeedPlus = true;
2807   }
2808   if (Scale) {
2809     OS << (NeedPlus ? " + " : "")
2810        << Scale << "*";
2811     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2812   }
2813 
2814   OS << ']';
2815 }
2816 
2817 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2818   print(dbgs());
2819   dbgs() << '\n';
2820 }
2821 #endif
2822 
2823 namespace {
2824 
2825 /// \brief This class provides transaction based operation on the IR.
2826 /// Every change made through this class is recorded in the internal state and
2827 /// can be undone (rollback) until commit is called.
2828 class TypePromotionTransaction {
2829   /// \brief This represents the common interface of the individual transaction.
2830   /// Each class implements the logic for doing one specific modification on
2831   /// the IR via the TypePromotionTransaction.
2832   class TypePromotionAction {
2833   protected:
2834     /// The Instruction modified.
2835     Instruction *Inst;
2836 
2837   public:
2838     /// \brief Constructor of the action.
2839     /// The constructor performs the related action on the IR.
2840     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2841 
2842     virtual ~TypePromotionAction() = default;
2843 
2844     /// \brief Undo the modification done by this action.
2845     /// When this method is called, the IR must be in the same state as it was
2846     /// before this action was applied.
2847     /// \pre Undoing the action works if and only if the IR is in the exact same
2848     /// state as it was directly after this action was applied.
2849     virtual void undo() = 0;
2850 
2851     /// \brief Advocate every change made by this action.
2852     /// When the results on the IR of the action are to be kept, it is important
2853     /// to call this function, otherwise hidden information may be kept forever.
2854     virtual void commit() {
2855       // Nothing to be done, this action is not doing anything.
2856     }
2857   };
2858 
2859   /// \brief Utility to remember the position of an instruction.
2860   class InsertionHandler {
2861     /// Position of an instruction.
2862     /// Either an instruction:
2863     /// - Is the first in a basic block: BB is used.
2864     /// - Has a previous instructon: PrevInst is used.
2865     union {
2866       Instruction *PrevInst;
2867       BasicBlock *BB;
2868     } Point;
2869 
2870     /// Remember whether or not the instruction had a previous instruction.
2871     bool HasPrevInstruction;
2872 
2873   public:
2874     /// \brief Record the position of \p Inst.
2875     InsertionHandler(Instruction *Inst) {
2876       BasicBlock::iterator It = Inst->getIterator();
2877       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2878       if (HasPrevInstruction)
2879         Point.PrevInst = &*--It;
2880       else
2881         Point.BB = Inst->getParent();
2882     }
2883 
2884     /// \brief Insert \p Inst at the recorded position.
2885     void insert(Instruction *Inst) {
2886       if (HasPrevInstruction) {
2887         if (Inst->getParent())
2888           Inst->removeFromParent();
2889         Inst->insertAfter(Point.PrevInst);
2890       } else {
2891         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2892         if (Inst->getParent())
2893           Inst->moveBefore(Position);
2894         else
2895           Inst->insertBefore(Position);
2896       }
2897     }
2898   };
2899 
2900   /// \brief Move an instruction before another.
2901   class InstructionMoveBefore : public TypePromotionAction {
2902     /// Original position of the instruction.
2903     InsertionHandler Position;
2904 
2905   public:
2906     /// \brief Move \p Inst before \p Before.
2907     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2908         : TypePromotionAction(Inst), Position(Inst) {
2909       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2910       Inst->moveBefore(Before);
2911     }
2912 
2913     /// \brief Move the instruction back to its original position.
2914     void undo() override {
2915       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2916       Position.insert(Inst);
2917     }
2918   };
2919 
2920   /// \brief Set the operand of an instruction with a new value.
2921   class OperandSetter : public TypePromotionAction {
2922     /// Original operand of the instruction.
2923     Value *Origin;
2924 
2925     /// Index of the modified instruction.
2926     unsigned Idx;
2927 
2928   public:
2929     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2930     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2931         : TypePromotionAction(Inst), Idx(Idx) {
2932       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2933                    << "for:" << *Inst << "\n"
2934                    << "with:" << *NewVal << "\n");
2935       Origin = Inst->getOperand(Idx);
2936       Inst->setOperand(Idx, NewVal);
2937     }
2938 
2939     /// \brief Restore the original value of the instruction.
2940     void undo() override {
2941       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2942                    << "for: " << *Inst << "\n"
2943                    << "with: " << *Origin << "\n");
2944       Inst->setOperand(Idx, Origin);
2945     }
2946   };
2947 
2948   /// \brief Hide the operands of an instruction.
2949   /// Do as if this instruction was not using any of its operands.
2950   class OperandsHider : public TypePromotionAction {
2951     /// The list of original operands.
2952     SmallVector<Value *, 4> OriginalValues;
2953 
2954   public:
2955     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2956     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2957       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2958       unsigned NumOpnds = Inst->getNumOperands();
2959       OriginalValues.reserve(NumOpnds);
2960       for (unsigned It = 0; It < NumOpnds; ++It) {
2961         // Save the current operand.
2962         Value *Val = Inst->getOperand(It);
2963         OriginalValues.push_back(Val);
2964         // Set a dummy one.
2965         // We could use OperandSetter here, but that would imply an overhead
2966         // that we are not willing to pay.
2967         Inst->setOperand(It, UndefValue::get(Val->getType()));
2968       }
2969     }
2970 
2971     /// \brief Restore the original list of uses.
2972     void undo() override {
2973       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2974       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2975         Inst->setOperand(It, OriginalValues[It]);
2976     }
2977   };
2978 
2979   /// \brief Build a truncate instruction.
2980   class TruncBuilder : public TypePromotionAction {
2981     Value *Val;
2982 
2983   public:
2984     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2985     /// result.
2986     /// trunc Opnd to Ty.
2987     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2988       IRBuilder<> Builder(Opnd);
2989       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2990       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2991     }
2992 
2993     /// \brief Get the built value.
2994     Value *getBuiltValue() { return Val; }
2995 
2996     /// \brief Remove the built instruction.
2997     void undo() override {
2998       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2999       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3000         IVal->eraseFromParent();
3001     }
3002   };
3003 
3004   /// \brief Build a sign extension instruction.
3005   class SExtBuilder : public TypePromotionAction {
3006     Value *Val;
3007 
3008   public:
3009     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
3010     /// result.
3011     /// sext Opnd to Ty.
3012     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3013         : TypePromotionAction(InsertPt) {
3014       IRBuilder<> Builder(InsertPt);
3015       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
3016       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
3017     }
3018 
3019     /// \brief Get the built value.
3020     Value *getBuiltValue() { return Val; }
3021 
3022     /// \brief Remove the built instruction.
3023     void undo() override {
3024       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
3025       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3026         IVal->eraseFromParent();
3027     }
3028   };
3029 
3030   /// \brief Build a zero extension instruction.
3031   class ZExtBuilder : public TypePromotionAction {
3032     Value *Val;
3033 
3034   public:
3035     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
3036     /// result.
3037     /// zext Opnd to Ty.
3038     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
3039         : TypePromotionAction(InsertPt) {
3040       IRBuilder<> Builder(InsertPt);
3041       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
3042       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
3043     }
3044 
3045     /// \brief Get the built value.
3046     Value *getBuiltValue() { return Val; }
3047 
3048     /// \brief Remove the built instruction.
3049     void undo() override {
3050       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
3051       if (Instruction *IVal = dyn_cast<Instruction>(Val))
3052         IVal->eraseFromParent();
3053     }
3054   };
3055 
3056   /// \brief Mutate an instruction to another type.
3057   class TypeMutator : public TypePromotionAction {
3058     /// Record the original type.
3059     Type *OrigTy;
3060 
3061   public:
3062     /// \brief Mutate the type of \p Inst into \p NewTy.
3063     TypeMutator(Instruction *Inst, Type *NewTy)
3064         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
3065       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
3066                    << "\n");
3067       Inst->mutateType(NewTy);
3068     }
3069 
3070     /// \brief Mutate the instruction back to its original type.
3071     void undo() override {
3072       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
3073                    << "\n");
3074       Inst->mutateType(OrigTy);
3075     }
3076   };
3077 
3078   /// \brief Replace the uses of an instruction by another instruction.
3079   class UsesReplacer : public TypePromotionAction {
3080     /// Helper structure to keep track of the replaced uses.
3081     struct InstructionAndIdx {
3082       /// The instruction using the instruction.
3083       Instruction *Inst;
3084 
3085       /// The index where this instruction is used for Inst.
3086       unsigned Idx;
3087 
3088       InstructionAndIdx(Instruction *Inst, unsigned Idx)
3089           : Inst(Inst), Idx(Idx) {}
3090     };
3091 
3092     /// Keep track of the original uses (pair Instruction, Index).
3093     SmallVector<InstructionAndIdx, 4> OriginalUses;
3094 
3095     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
3096 
3097   public:
3098     /// \brief Replace all the use of \p Inst by \p New.
3099     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
3100       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
3101                    << "\n");
3102       // Record the original uses.
3103       for (Use &U : Inst->uses()) {
3104         Instruction *UserI = cast<Instruction>(U.getUser());
3105         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
3106       }
3107       // Now, we can replace the uses.
3108       Inst->replaceAllUsesWith(New);
3109     }
3110 
3111     /// \brief Reassign the original uses of Inst to Inst.
3112     void undo() override {
3113       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
3114       for (use_iterator UseIt = OriginalUses.begin(),
3115                         EndIt = OriginalUses.end();
3116            UseIt != EndIt; ++UseIt) {
3117         UseIt->Inst->setOperand(UseIt->Idx, Inst);
3118       }
3119     }
3120   };
3121 
3122   /// \brief Remove an instruction from the IR.
3123   class InstructionRemover : public TypePromotionAction {
3124     /// Original position of the instruction.
3125     InsertionHandler Inserter;
3126 
3127     /// Helper structure to hide all the link to the instruction. In other
3128     /// words, this helps to do as if the instruction was removed.
3129     OperandsHider Hider;
3130 
3131     /// Keep track of the uses replaced, if any.
3132     UsesReplacer *Replacer = nullptr;
3133 
3134     /// Keep track of instructions removed.
3135     SetOfInstrs &RemovedInsts;
3136 
3137   public:
3138     /// \brief Remove all reference of \p Inst and optinally replace all its
3139     /// uses with New.
3140     /// \p RemovedInsts Keep track of the instructions removed by this Action.
3141     /// \pre If !Inst->use_empty(), then New != nullptr
3142     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
3143                        Value *New = nullptr)
3144         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
3145           RemovedInsts(RemovedInsts) {
3146       if (New)
3147         Replacer = new UsesReplacer(Inst, New);
3148       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
3149       RemovedInsts.insert(Inst);
3150       /// The instructions removed here will be freed after completing
3151       /// optimizeBlock() for all blocks as we need to keep track of the
3152       /// removed instructions during promotion.
3153       Inst->removeFromParent();
3154     }
3155 
3156     ~InstructionRemover() override { delete Replacer; }
3157 
3158     /// \brief Resurrect the instruction and reassign it to the proper uses if
3159     /// new value was provided when build this action.
3160     void undo() override {
3161       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
3162       Inserter.insert(Inst);
3163       if (Replacer)
3164         Replacer->undo();
3165       Hider.undo();
3166       RemovedInsts.erase(Inst);
3167     }
3168   };
3169 
3170 public:
3171   /// Restoration point.
3172   /// The restoration point is a pointer to an action instead of an iterator
3173   /// because the iterator may be invalidated but not the pointer.
3174   using ConstRestorationPt = const TypePromotionAction *;
3175 
3176   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
3177       : RemovedInsts(RemovedInsts) {}
3178 
3179   /// Advocate every changes made in that transaction.
3180   void commit();
3181 
3182   /// Undo all the changes made after the given point.
3183   void rollback(ConstRestorationPt Point);
3184 
3185   /// Get the current restoration point.
3186   ConstRestorationPt getRestorationPoint() const;
3187 
3188   /// \name API for IR modification with state keeping to support rollback.
3189   /// @{
3190   /// Same as Instruction::setOperand.
3191   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
3192 
3193   /// Same as Instruction::eraseFromParent.
3194   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
3195 
3196   /// Same as Value::replaceAllUsesWith.
3197   void replaceAllUsesWith(Instruction *Inst, Value *New);
3198 
3199   /// Same as Value::mutateType.
3200   void mutateType(Instruction *Inst, Type *NewTy);
3201 
3202   /// Same as IRBuilder::createTrunc.
3203   Value *createTrunc(Instruction *Opnd, Type *Ty);
3204 
3205   /// Same as IRBuilder::createSExt.
3206   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3207 
3208   /// Same as IRBuilder::createZExt.
3209   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3210 
3211   /// Same as Instruction::moveBefore.
3212   void moveBefore(Instruction *Inst, Instruction *Before);
3213   /// @}
3214 
3215 private:
3216   /// The ordered list of actions made so far.
3217   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3218 
3219   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3220 
3221   SetOfInstrs &RemovedInsts;
3222 };
3223 
3224 } // end anonymous namespace
3225 
3226 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3227                                           Value *NewVal) {
3228   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
3229       Inst, Idx, NewVal));
3230 }
3231 
3232 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3233                                                 Value *NewVal) {
3234   Actions.push_back(
3235       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
3236           Inst, RemovedInsts, NewVal));
3237 }
3238 
3239 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3240                                                   Value *New) {
3241   Actions.push_back(
3242       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3243 }
3244 
3245 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3246   Actions.push_back(
3247       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3248 }
3249 
3250 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3251                                              Type *Ty) {
3252   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3253   Value *Val = Ptr->getBuiltValue();
3254   Actions.push_back(std::move(Ptr));
3255   return Val;
3256 }
3257 
3258 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3259                                             Value *Opnd, Type *Ty) {
3260   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3261   Value *Val = Ptr->getBuiltValue();
3262   Actions.push_back(std::move(Ptr));
3263   return Val;
3264 }
3265 
3266 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3267                                             Value *Opnd, Type *Ty) {
3268   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3269   Value *Val = Ptr->getBuiltValue();
3270   Actions.push_back(std::move(Ptr));
3271   return Val;
3272 }
3273 
3274 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3275                                           Instruction *Before) {
3276   Actions.push_back(
3277       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3278           Inst, Before));
3279 }
3280 
3281 TypePromotionTransaction::ConstRestorationPt
3282 TypePromotionTransaction::getRestorationPoint() const {
3283   return !Actions.empty() ? Actions.back().get() : nullptr;
3284 }
3285 
3286 void TypePromotionTransaction::commit() {
3287   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
3288        ++It)
3289     (*It)->commit();
3290   Actions.clear();
3291 }
3292 
3293 void TypePromotionTransaction::rollback(
3294     TypePromotionTransaction::ConstRestorationPt Point) {
3295   while (!Actions.empty() && Point != Actions.back().get()) {
3296     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3297     Curr->undo();
3298   }
3299 }
3300 
3301 namespace {
3302 
3303 /// \brief A helper class for matching addressing modes.
3304 ///
3305 /// This encapsulates the logic for matching the target-legal addressing modes.
3306 class AddressingModeMatcher {
3307   SmallVectorImpl<Instruction*> &AddrModeInsts;
3308   const TargetLowering &TLI;
3309   const TargetRegisterInfo &TRI;
3310   const DataLayout &DL;
3311 
3312   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3313   /// the memory instruction that we're computing this address for.
3314   Type *AccessTy;
3315   unsigned AddrSpace;
3316   Instruction *MemoryInst;
3317 
3318   /// This is the addressing mode that we're building up. This is
3319   /// part of the return value of this addressing mode matching stuff.
3320   ExtAddrMode &AddrMode;
3321 
3322   /// The instructions inserted by other CodeGenPrepare optimizations.
3323   const SetOfInstrs &InsertedInsts;
3324 
3325   /// A map from the instructions to their type before promotion.
3326   InstrToOrigTy &PromotedInsts;
3327 
3328   /// The ongoing transaction where every action should be registered.
3329   TypePromotionTransaction &TPT;
3330 
3331   /// This is set to true when we should not do profitability checks.
3332   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3333   bool IgnoreProfitability;
3334 
3335   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
3336                         const TargetLowering &TLI,
3337                         const TargetRegisterInfo &TRI,
3338                         Type *AT, unsigned AS,
3339                         Instruction *MI, ExtAddrMode &AM,
3340                         const SetOfInstrs &InsertedInsts,
3341                         InstrToOrigTy &PromotedInsts,
3342                         TypePromotionTransaction &TPT)
3343       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3344         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3345         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3346         PromotedInsts(PromotedInsts), TPT(TPT) {
3347     IgnoreProfitability = false;
3348   }
3349 
3350 public:
3351   /// Find the maximal addressing mode that a load/store of V can fold,
3352   /// give an access type of AccessTy.  This returns a list of involved
3353   /// instructions in AddrModeInsts.
3354   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3355   /// optimizations.
3356   /// \p PromotedInsts maps the instructions to their type before promotion.
3357   /// \p The ongoing transaction where every action should be registered.
3358   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
3359                            Instruction *MemoryInst,
3360                            SmallVectorImpl<Instruction*> &AddrModeInsts,
3361                            const TargetLowering &TLI,
3362                            const TargetRegisterInfo &TRI,
3363                            const SetOfInstrs &InsertedInsts,
3364                            InstrToOrigTy &PromotedInsts,
3365                            TypePromotionTransaction &TPT) {
3366     ExtAddrMode Result;
3367 
3368     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
3369                                          AccessTy, AS,
3370                                          MemoryInst, Result, InsertedInsts,
3371                                          PromotedInsts, TPT).matchAddr(V, 0);
3372     (void)Success; assert(Success && "Couldn't select *anything*?");
3373     return Result;
3374   }
3375 
3376 private:
3377   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3378   bool matchAddr(Value *V, unsigned Depth);
3379   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
3380                           bool *MovedAway = nullptr);
3381   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3382                                             ExtAddrMode &AMBefore,
3383                                             ExtAddrMode &AMAfter);
3384   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3385   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3386                              Value *PromotedOperand) const;
3387 };
3388 
3389 /// \brief A helper class for combining addressing modes.
3390 class AddressingModeCombiner {
3391 private:
3392   /// The addressing modes we've collected.
3393   SmallVector<ExtAddrMode, 16> AddrModes;
3394 
3395   /// The field in which the AddrModes differ, when we have more than one.
3396   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3397 
3398   /// Are the AddrModes that we have all just equal to their original values?
3399   bool AllAddrModesTrivial = true;
3400 
3401 public:
3402   /// \brief Get the combined AddrMode
3403   const ExtAddrMode &getAddrMode() const {
3404     return AddrModes[0];
3405   }
3406 
3407   /// \brief Add a new AddrMode if it's compatible with the AddrModes we already
3408   /// have.
3409   /// \return True iff we succeeded in doing so.
3410   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3411     // Take note of if we have any non-trivial AddrModes, as we need to detect
3412     // when all AddrModes are trivial as then we would introduce a phi or select
3413     // which just duplicates what's already there.
3414     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3415 
3416     // If this is the first addrmode then everything is fine.
3417     if (AddrModes.empty()) {
3418       AddrModes.emplace_back(NewAddrMode);
3419       return true;
3420     }
3421 
3422     // Figure out how different this is from the other address modes, which we
3423     // can do just by comparing against the first one given that we only care
3424     // about the cumulative difference.
3425     ExtAddrMode::FieldName ThisDifferentField =
3426       AddrModes[0].compare(NewAddrMode);
3427     if (DifferentField == ExtAddrMode::NoField)
3428       DifferentField = ThisDifferentField;
3429     else if (DifferentField != ThisDifferentField)
3430       DifferentField = ExtAddrMode::MultipleFields;
3431 
3432     // If this AddrMode is the same as all the others then everything is fine
3433     // (which should only happen when there is actually only one AddrMode).
3434     if (DifferentField == ExtAddrMode::NoField) {
3435       assert(AddrModes.size() == 1);
3436       return true;
3437     }
3438 
3439     // If NewAddrMode differs in only one dimension then we can handle it by
3440     // inserting a phi/select later on.
3441     if (DifferentField != ExtAddrMode::MultipleFields) {
3442       AddrModes.emplace_back(NewAddrMode);
3443       return true;
3444     }
3445 
3446     // We couldn't combine NewAddrMode with the rest, so return failure.
3447     AddrModes.clear();
3448     return false;
3449   }
3450 
3451   /// \brief Combine the addressing modes we've collected into a single
3452   /// addressing mode.
3453   /// \return True iff we successfully combined them or we only had one so
3454   /// didn't need to combine them anyway.
3455   bool combineAddrModes() {
3456     // If we have no AddrModes then they can't be combined.
3457     if (AddrModes.size() == 0)
3458       return false;
3459 
3460     // A single AddrMode can trivially be combined.
3461     if (AddrModes.size() == 1)
3462       return true;
3463 
3464     // If the AddrModes we collected are all just equal to the value they are
3465     // derived from then combining them wouldn't do anything useful.
3466     if (AllAddrModesTrivial)
3467       return false;
3468 
3469     // TODO: Combine multiple AddrModes by inserting a select or phi for the
3470     // field in which the AddrModes differ.
3471     return false;
3472   }
3473 };
3474 
3475 } // end anonymous namespace
3476 
3477 /// Try adding ScaleReg*Scale to the current addressing mode.
3478 /// Return true and update AddrMode if this addr mode is legal for the target,
3479 /// false if not.
3480 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3481                                              unsigned Depth) {
3482   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3483   // mode.  Just process that directly.
3484   if (Scale == 1)
3485     return matchAddr(ScaleReg, Depth);
3486 
3487   // If the scale is 0, it takes nothing to add this.
3488   if (Scale == 0)
3489     return true;
3490 
3491   // If we already have a scale of this value, we can add to it, otherwise, we
3492   // need an available scale field.
3493   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3494     return false;
3495 
3496   ExtAddrMode TestAddrMode = AddrMode;
3497 
3498   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3499   // [A+B + A*7] -> [B+A*8].
3500   TestAddrMode.Scale += Scale;
3501   TestAddrMode.ScaledReg = ScaleReg;
3502 
3503   // If the new address isn't legal, bail out.
3504   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3505     return false;
3506 
3507   // It was legal, so commit it.
3508   AddrMode = TestAddrMode;
3509 
3510   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3511   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3512   // X*Scale + C*Scale to addr mode.
3513   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3514   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3515       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3516     TestAddrMode.ScaledReg = AddLHS;
3517     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3518 
3519     // If this addressing mode is legal, commit it and remember that we folded
3520     // this instruction.
3521     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3522       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3523       AddrMode = TestAddrMode;
3524       return true;
3525     }
3526   }
3527 
3528   // Otherwise, not (x+c)*scale, just return what we have.
3529   return true;
3530 }
3531 
3532 /// This is a little filter, which returns true if an addressing computation
3533 /// involving I might be folded into a load/store accessing it.
3534 /// This doesn't need to be perfect, but needs to accept at least
3535 /// the set of instructions that MatchOperationAddr can.
3536 static bool MightBeFoldableInst(Instruction *I) {
3537   switch (I->getOpcode()) {
3538   case Instruction::BitCast:
3539   case Instruction::AddrSpaceCast:
3540     // Don't touch identity bitcasts.
3541     if (I->getType() == I->getOperand(0)->getType())
3542       return false;
3543     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3544   case Instruction::PtrToInt:
3545     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3546     return true;
3547   case Instruction::IntToPtr:
3548     // We know the input is intptr_t, so this is foldable.
3549     return true;
3550   case Instruction::Add:
3551     return true;
3552   case Instruction::Mul:
3553   case Instruction::Shl:
3554     // Can only handle X*C and X << C.
3555     return isa<ConstantInt>(I->getOperand(1));
3556   case Instruction::GetElementPtr:
3557     return true;
3558   default:
3559     return false;
3560   }
3561 }
3562 
3563 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3564 /// \note \p Val is assumed to be the product of some type promotion.
3565 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3566 /// to be legal, as the non-promoted value would have had the same state.
3567 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3568                                        const DataLayout &DL, Value *Val) {
3569   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3570   if (!PromotedInst)
3571     return false;
3572   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3573   // If the ISDOpcode is undefined, it was undefined before the promotion.
3574   if (!ISDOpcode)
3575     return true;
3576   // Otherwise, check if the promoted instruction is legal or not.
3577   return TLI.isOperationLegalOrCustom(
3578       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3579 }
3580 
3581 namespace {
3582 
3583 /// \brief Hepler class to perform type promotion.
3584 class TypePromotionHelper {
3585   /// \brief Utility function to check whether or not a sign or zero extension
3586   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3587   /// either using the operands of \p Inst or promoting \p Inst.
3588   /// The type of the extension is defined by \p IsSExt.
3589   /// In other words, check if:
3590   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3591   /// #1 Promotion applies:
3592   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3593   /// #2 Operand reuses:
3594   /// ext opnd1 to ConsideredExtType.
3595   /// \p PromotedInsts maps the instructions to their type before promotion.
3596   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3597                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3598 
3599   /// \brief Utility function to determine if \p OpIdx should be promoted when
3600   /// promoting \p Inst.
3601   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3602     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3603   }
3604 
3605   /// \brief Utility function to promote the operand of \p Ext when this
3606   /// operand is a promotable trunc or sext or zext.
3607   /// \p PromotedInsts maps the instructions to their type before promotion.
3608   /// \p CreatedInstsCost[out] contains the cost of all instructions
3609   /// created to promote the operand of Ext.
3610   /// Newly added extensions are inserted in \p Exts.
3611   /// Newly added truncates are inserted in \p Truncs.
3612   /// Should never be called directly.
3613   /// \return The promoted value which is used instead of Ext.
3614   static Value *promoteOperandForTruncAndAnyExt(
3615       Instruction *Ext, TypePromotionTransaction &TPT,
3616       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3617       SmallVectorImpl<Instruction *> *Exts,
3618       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3619 
3620   /// \brief Utility function to promote the operand of \p Ext when this
3621   /// operand is promotable and is not a supported trunc or sext.
3622   /// \p PromotedInsts maps the instructions to their type before promotion.
3623   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3624   /// created to promote the operand of Ext.
3625   /// Newly added extensions are inserted in \p Exts.
3626   /// Newly added truncates are inserted in \p Truncs.
3627   /// Should never be called directly.
3628   /// \return The promoted value which is used instead of Ext.
3629   static Value *promoteOperandForOther(Instruction *Ext,
3630                                        TypePromotionTransaction &TPT,
3631                                        InstrToOrigTy &PromotedInsts,
3632                                        unsigned &CreatedInstsCost,
3633                                        SmallVectorImpl<Instruction *> *Exts,
3634                                        SmallVectorImpl<Instruction *> *Truncs,
3635                                        const TargetLowering &TLI, bool IsSExt);
3636 
3637   /// \see promoteOperandForOther.
3638   static Value *signExtendOperandForOther(
3639       Instruction *Ext, TypePromotionTransaction &TPT,
3640       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3641       SmallVectorImpl<Instruction *> *Exts,
3642       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3643     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3644                                   Exts, Truncs, TLI, true);
3645   }
3646 
3647   /// \see promoteOperandForOther.
3648   static Value *zeroExtendOperandForOther(
3649       Instruction *Ext, TypePromotionTransaction &TPT,
3650       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3651       SmallVectorImpl<Instruction *> *Exts,
3652       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3653     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3654                                   Exts, Truncs, TLI, false);
3655   }
3656 
3657 public:
3658   /// Type for the utility function that promotes the operand of Ext.
3659   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3660                             InstrToOrigTy &PromotedInsts,
3661                             unsigned &CreatedInstsCost,
3662                             SmallVectorImpl<Instruction *> *Exts,
3663                             SmallVectorImpl<Instruction *> *Truncs,
3664                             const TargetLowering &TLI);
3665 
3666   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3667   /// action to promote the operand of \p Ext instead of using Ext.
3668   /// \return NULL if no promotable action is possible with the current
3669   /// sign extension.
3670   /// \p InsertedInsts keeps track of all the instructions inserted by the
3671   /// other CodeGenPrepare optimizations. This information is important
3672   /// because we do not want to promote these instructions as CodeGenPrepare
3673   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3674   /// \p PromotedInsts maps the instructions to their type before promotion.
3675   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3676                           const TargetLowering &TLI,
3677                           const InstrToOrigTy &PromotedInsts);
3678 };
3679 
3680 } // end anonymous namespace
3681 
3682 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3683                                         Type *ConsideredExtType,
3684                                         const InstrToOrigTy &PromotedInsts,
3685                                         bool IsSExt) {
3686   // The promotion helper does not know how to deal with vector types yet.
3687   // To be able to fix that, we would need to fix the places where we
3688   // statically extend, e.g., constants and such.
3689   if (Inst->getType()->isVectorTy())
3690     return false;
3691 
3692   // We can always get through zext.
3693   if (isa<ZExtInst>(Inst))
3694     return true;
3695 
3696   // sext(sext) is ok too.
3697   if (IsSExt && isa<SExtInst>(Inst))
3698     return true;
3699 
3700   // We can get through binary operator, if it is legal. In other words, the
3701   // binary operator must have a nuw or nsw flag.
3702   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3703   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3704       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3705        (IsSExt && BinOp->hasNoSignedWrap())))
3706     return true;
3707 
3708   // Check if we can do the following simplification.
3709   // ext(trunc(opnd)) --> ext(opnd)
3710   if (!isa<TruncInst>(Inst))
3711     return false;
3712 
3713   Value *OpndVal = Inst->getOperand(0);
3714   // Check if we can use this operand in the extension.
3715   // If the type is larger than the result type of the extension, we cannot.
3716   if (!OpndVal->getType()->isIntegerTy() ||
3717       OpndVal->getType()->getIntegerBitWidth() >
3718           ConsideredExtType->getIntegerBitWidth())
3719     return false;
3720 
3721   // If the operand of the truncate is not an instruction, we will not have
3722   // any information on the dropped bits.
3723   // (Actually we could for constant but it is not worth the extra logic).
3724   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3725   if (!Opnd)
3726     return false;
3727 
3728   // Check if the source of the type is narrow enough.
3729   // I.e., check that trunc just drops extended bits of the same kind of
3730   // the extension.
3731   // #1 get the type of the operand and check the kind of the extended bits.
3732   const Type *OpndType;
3733   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3734   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3735     OpndType = It->second.getPointer();
3736   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3737     OpndType = Opnd->getOperand(0)->getType();
3738   else
3739     return false;
3740 
3741   // #2 check that the truncate just drops extended bits.
3742   return Inst->getType()->getIntegerBitWidth() >=
3743          OpndType->getIntegerBitWidth();
3744 }
3745 
3746 TypePromotionHelper::Action TypePromotionHelper::getAction(
3747     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3748     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3749   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3750          "Unexpected instruction type");
3751   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3752   Type *ExtTy = Ext->getType();
3753   bool IsSExt = isa<SExtInst>(Ext);
3754   // If the operand of the extension is not an instruction, we cannot
3755   // get through.
3756   // If it, check we can get through.
3757   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3758     return nullptr;
3759 
3760   // Do not promote if the operand has been added by codegenprepare.
3761   // Otherwise, it means we are undoing an optimization that is likely to be
3762   // redone, thus causing potential infinite loop.
3763   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3764     return nullptr;
3765 
3766   // SExt or Trunc instructions.
3767   // Return the related handler.
3768   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3769       isa<ZExtInst>(ExtOpnd))
3770     return promoteOperandForTruncAndAnyExt;
3771 
3772   // Regular instruction.
3773   // Abort early if we will have to insert non-free instructions.
3774   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3775     return nullptr;
3776   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3777 }
3778 
3779 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3780     Instruction *SExt, TypePromotionTransaction &TPT,
3781     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3782     SmallVectorImpl<Instruction *> *Exts,
3783     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3784   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3785   // get through it and this method should not be called.
3786   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3787   Value *ExtVal = SExt;
3788   bool HasMergedNonFreeExt = false;
3789   if (isa<ZExtInst>(SExtOpnd)) {
3790     // Replace s|zext(zext(opnd))
3791     // => zext(opnd).
3792     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3793     Value *ZExt =
3794         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3795     TPT.replaceAllUsesWith(SExt, ZExt);
3796     TPT.eraseInstruction(SExt);
3797     ExtVal = ZExt;
3798   } else {
3799     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3800     // => z|sext(opnd).
3801     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3802   }
3803   CreatedInstsCost = 0;
3804 
3805   // Remove dead code.
3806   if (SExtOpnd->use_empty())
3807     TPT.eraseInstruction(SExtOpnd);
3808 
3809   // Check if the extension is still needed.
3810   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3811   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3812     if (ExtInst) {
3813       if (Exts)
3814         Exts->push_back(ExtInst);
3815       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3816     }
3817     return ExtVal;
3818   }
3819 
3820   // At this point we have: ext ty opnd to ty.
3821   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3822   Value *NextVal = ExtInst->getOperand(0);
3823   TPT.eraseInstruction(ExtInst, NextVal);
3824   return NextVal;
3825 }
3826 
3827 Value *TypePromotionHelper::promoteOperandForOther(
3828     Instruction *Ext, TypePromotionTransaction &TPT,
3829     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3830     SmallVectorImpl<Instruction *> *Exts,
3831     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3832     bool IsSExt) {
3833   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3834   // get through it and this method should not be called.
3835   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3836   CreatedInstsCost = 0;
3837   if (!ExtOpnd->hasOneUse()) {
3838     // ExtOpnd will be promoted.
3839     // All its uses, but Ext, will need to use a truncated value of the
3840     // promoted version.
3841     // Create the truncate now.
3842     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3843     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3844       // Insert it just after the definition.
3845       ITrunc->moveAfter(ExtOpnd);
3846       if (Truncs)
3847         Truncs->push_back(ITrunc);
3848     }
3849 
3850     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3851     // Restore the operand of Ext (which has been replaced by the previous call
3852     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3853     TPT.setOperand(Ext, 0, ExtOpnd);
3854   }
3855 
3856   // Get through the Instruction:
3857   // 1. Update its type.
3858   // 2. Replace the uses of Ext by Inst.
3859   // 3. Extend each operand that needs to be extended.
3860 
3861   // Remember the original type of the instruction before promotion.
3862   // This is useful to know that the high bits are sign extended bits.
3863   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3864       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3865   // Step #1.
3866   TPT.mutateType(ExtOpnd, Ext->getType());
3867   // Step #2.
3868   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3869   // Step #3.
3870   Instruction *ExtForOpnd = Ext;
3871 
3872   DEBUG(dbgs() << "Propagate Ext to operands\n");
3873   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3874        ++OpIdx) {
3875     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3876     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3877         !shouldExtOperand(ExtOpnd, OpIdx)) {
3878       DEBUG(dbgs() << "No need to propagate\n");
3879       continue;
3880     }
3881     // Check if we can statically extend the operand.
3882     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3883     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3884       DEBUG(dbgs() << "Statically extend\n");
3885       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3886       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3887                             : Cst->getValue().zext(BitWidth);
3888       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3889       continue;
3890     }
3891     // UndefValue are typed, so we have to statically sign extend them.
3892     if (isa<UndefValue>(Opnd)) {
3893       DEBUG(dbgs() << "Statically extend\n");
3894       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3895       continue;
3896     }
3897 
3898     // Otherwise we have to explicity sign extend the operand.
3899     // Check if Ext was reused to extend an operand.
3900     if (!ExtForOpnd) {
3901       // If yes, create a new one.
3902       DEBUG(dbgs() << "More operands to ext\n");
3903       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3904         : TPT.createZExt(Ext, Opnd, Ext->getType());
3905       if (!isa<Instruction>(ValForExtOpnd)) {
3906         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3907         continue;
3908       }
3909       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3910     }
3911     if (Exts)
3912       Exts->push_back(ExtForOpnd);
3913     TPT.setOperand(ExtForOpnd, 0, Opnd);
3914 
3915     // Move the sign extension before the insertion point.
3916     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3917     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3918     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3919     // If more sext are required, new instructions will have to be created.
3920     ExtForOpnd = nullptr;
3921   }
3922   if (ExtForOpnd == Ext) {
3923     DEBUG(dbgs() << "Extension is useless now\n");
3924     TPT.eraseInstruction(Ext);
3925   }
3926   return ExtOpnd;
3927 }
3928 
3929 /// Check whether or not promoting an instruction to a wider type is profitable.
3930 /// \p NewCost gives the cost of extension instructions created by the
3931 /// promotion.
3932 /// \p OldCost gives the cost of extension instructions before the promotion
3933 /// plus the number of instructions that have been
3934 /// matched in the addressing mode the promotion.
3935 /// \p PromotedOperand is the value that has been promoted.
3936 /// \return True if the promotion is profitable, false otherwise.
3937 bool AddressingModeMatcher::isPromotionProfitable(
3938     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3939   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3940   // The cost of the new extensions is greater than the cost of the
3941   // old extension plus what we folded.
3942   // This is not profitable.
3943   if (NewCost > OldCost)
3944     return false;
3945   if (NewCost < OldCost)
3946     return true;
3947   // The promotion is neutral but it may help folding the sign extension in
3948   // loads for instance.
3949   // Check that we did not create an illegal instruction.
3950   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3951 }
3952 
3953 /// Given an instruction or constant expr, see if we can fold the operation
3954 /// into the addressing mode. If so, update the addressing mode and return
3955 /// true, otherwise return false without modifying AddrMode.
3956 /// If \p MovedAway is not NULL, it contains the information of whether or
3957 /// not AddrInst has to be folded into the addressing mode on success.
3958 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3959 /// because it has been moved away.
3960 /// Thus AddrInst must not be added in the matched instructions.
3961 /// This state can happen when AddrInst is a sext, since it may be moved away.
3962 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3963 /// not be referenced anymore.
3964 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3965                                                unsigned Depth,
3966                                                bool *MovedAway) {
3967   // Avoid exponential behavior on extremely deep expression trees.
3968   if (Depth >= 5) return false;
3969 
3970   // By default, all matched instructions stay in place.
3971   if (MovedAway)
3972     *MovedAway = false;
3973 
3974   switch (Opcode) {
3975   case Instruction::PtrToInt:
3976     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3977     return matchAddr(AddrInst->getOperand(0), Depth);
3978   case Instruction::IntToPtr: {
3979     auto AS = AddrInst->getType()->getPointerAddressSpace();
3980     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3981     // This inttoptr is a no-op if the integer type is pointer sized.
3982     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3983       return matchAddr(AddrInst->getOperand(0), Depth);
3984     return false;
3985   }
3986   case Instruction::BitCast:
3987     // BitCast is always a noop, and we can handle it as long as it is
3988     // int->int or pointer->pointer (we don't want int<->fp or something).
3989     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3990          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3991         // Don't touch identity bitcasts.  These were probably put here by LSR,
3992         // and we don't want to mess around with them.  Assume it knows what it
3993         // is doing.
3994         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3995       return matchAddr(AddrInst->getOperand(0), Depth);
3996     return false;
3997   case Instruction::AddrSpaceCast: {
3998     unsigned SrcAS
3999       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4000     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4001     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4002       return matchAddr(AddrInst->getOperand(0), Depth);
4003     return false;
4004   }
4005   case Instruction::Add: {
4006     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4007     ExtAddrMode BackupAddrMode = AddrMode;
4008     unsigned OldSize = AddrModeInsts.size();
4009     // Start a transaction at this point.
4010     // The LHS may match but not the RHS.
4011     // Therefore, we need a higher level restoration point to undo partially
4012     // matched operation.
4013     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4014         TPT.getRestorationPoint();
4015 
4016     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4017         matchAddr(AddrInst->getOperand(0), Depth+1))
4018       return true;
4019 
4020     // Restore the old addr mode info.
4021     AddrMode = BackupAddrMode;
4022     AddrModeInsts.resize(OldSize);
4023     TPT.rollback(LastKnownGood);
4024 
4025     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4026     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4027         matchAddr(AddrInst->getOperand(1), Depth+1))
4028       return true;
4029 
4030     // Otherwise we definitely can't merge the ADD in.
4031     AddrMode = BackupAddrMode;
4032     AddrModeInsts.resize(OldSize);
4033     TPT.rollback(LastKnownGood);
4034     break;
4035   }
4036   //case Instruction::Or:
4037   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4038   //break;
4039   case Instruction::Mul:
4040   case Instruction::Shl: {
4041     // Can only handle X*C and X << C.
4042     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4043     if (!RHS)
4044       return false;
4045     int64_t Scale = RHS->getSExtValue();
4046     if (Opcode == Instruction::Shl)
4047       Scale = 1LL << Scale;
4048 
4049     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4050   }
4051   case Instruction::GetElementPtr: {
4052     // Scan the GEP.  We check it if it contains constant offsets and at most
4053     // one variable offset.
4054     int VariableOperand = -1;
4055     unsigned VariableScale = 0;
4056 
4057     int64_t ConstantOffset = 0;
4058     gep_type_iterator GTI = gep_type_begin(AddrInst);
4059     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4060       if (StructType *STy = GTI.getStructTypeOrNull()) {
4061         const StructLayout *SL = DL.getStructLayout(STy);
4062         unsigned Idx =
4063           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4064         ConstantOffset += SL->getElementOffset(Idx);
4065       } else {
4066         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4067         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4068           ConstantOffset += CI->getSExtValue()*TypeSize;
4069         } else if (TypeSize) {  // Scales of zero don't do anything.
4070           // We only allow one variable index at the moment.
4071           if (VariableOperand != -1)
4072             return false;
4073 
4074           // Remember the variable index.
4075           VariableOperand = i;
4076           VariableScale = TypeSize;
4077         }
4078       }
4079     }
4080 
4081     // A common case is for the GEP to only do a constant offset.  In this case,
4082     // just add it to the disp field and check validity.
4083     if (VariableOperand == -1) {
4084       AddrMode.BaseOffs += ConstantOffset;
4085       if (ConstantOffset == 0 ||
4086           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4087         // Check to see if we can fold the base pointer in too.
4088         if (matchAddr(AddrInst->getOperand(0), Depth+1))
4089           return true;
4090       }
4091       AddrMode.BaseOffs -= ConstantOffset;
4092       return false;
4093     }
4094 
4095     // Save the valid addressing mode in case we can't match.
4096     ExtAddrMode BackupAddrMode = AddrMode;
4097     unsigned OldSize = AddrModeInsts.size();
4098 
4099     // See if the scale and offset amount is valid for this target.
4100     AddrMode.BaseOffs += ConstantOffset;
4101 
4102     // Match the base operand of the GEP.
4103     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4104       // If it couldn't be matched, just stuff the value in a register.
4105       if (AddrMode.HasBaseReg) {
4106         AddrMode = BackupAddrMode;
4107         AddrModeInsts.resize(OldSize);
4108         return false;
4109       }
4110       AddrMode.HasBaseReg = true;
4111       AddrMode.BaseReg = AddrInst->getOperand(0);
4112     }
4113 
4114     // Match the remaining variable portion of the GEP.
4115     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4116                           Depth)) {
4117       // If it couldn't be matched, try stuffing the base into a register
4118       // instead of matching it, and retrying the match of the scale.
4119       AddrMode = BackupAddrMode;
4120       AddrModeInsts.resize(OldSize);
4121       if (AddrMode.HasBaseReg)
4122         return false;
4123       AddrMode.HasBaseReg = true;
4124       AddrMode.BaseReg = AddrInst->getOperand(0);
4125       AddrMode.BaseOffs += ConstantOffset;
4126       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4127                             VariableScale, Depth)) {
4128         // If even that didn't work, bail.
4129         AddrMode = BackupAddrMode;
4130         AddrModeInsts.resize(OldSize);
4131         return false;
4132       }
4133     }
4134 
4135     return true;
4136   }
4137   case Instruction::SExt:
4138   case Instruction::ZExt: {
4139     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4140     if (!Ext)
4141       return false;
4142 
4143     // Try to move this ext out of the way of the addressing mode.
4144     // Ask for a method for doing so.
4145     TypePromotionHelper::Action TPH =
4146         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4147     if (!TPH)
4148       return false;
4149 
4150     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4151         TPT.getRestorationPoint();
4152     unsigned CreatedInstsCost = 0;
4153     unsigned ExtCost = !TLI.isExtFree(Ext);
4154     Value *PromotedOperand =
4155         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4156     // SExt has been moved away.
4157     // Thus either it will be rematched later in the recursive calls or it is
4158     // gone. Anyway, we must not fold it into the addressing mode at this point.
4159     // E.g.,
4160     // op = add opnd, 1
4161     // idx = ext op
4162     // addr = gep base, idx
4163     // is now:
4164     // promotedOpnd = ext opnd            <- no match here
4165     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4166     // addr = gep base, op                <- match
4167     if (MovedAway)
4168       *MovedAway = true;
4169 
4170     assert(PromotedOperand &&
4171            "TypePromotionHelper should have filtered out those cases");
4172 
4173     ExtAddrMode BackupAddrMode = AddrMode;
4174     unsigned OldSize = AddrModeInsts.size();
4175 
4176     if (!matchAddr(PromotedOperand, Depth) ||
4177         // The total of the new cost is equal to the cost of the created
4178         // instructions.
4179         // The total of the old cost is equal to the cost of the extension plus
4180         // what we have saved in the addressing mode.
4181         !isPromotionProfitable(CreatedInstsCost,
4182                                ExtCost + (AddrModeInsts.size() - OldSize),
4183                                PromotedOperand)) {
4184       AddrMode = BackupAddrMode;
4185       AddrModeInsts.resize(OldSize);
4186       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4187       TPT.rollback(LastKnownGood);
4188       return false;
4189     }
4190     return true;
4191   }
4192   }
4193   return false;
4194 }
4195 
4196 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4197 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4198 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4199 /// for the target.
4200 ///
4201 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4202   // Start a transaction at this point that we will rollback if the matching
4203   // fails.
4204   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4205       TPT.getRestorationPoint();
4206   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4207     // Fold in immediates if legal for the target.
4208     AddrMode.BaseOffs += CI->getSExtValue();
4209     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4210       return true;
4211     AddrMode.BaseOffs -= CI->getSExtValue();
4212   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4213     // If this is a global variable, try to fold it into the addressing mode.
4214     if (!AddrMode.BaseGV) {
4215       AddrMode.BaseGV = GV;
4216       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4217         return true;
4218       AddrMode.BaseGV = nullptr;
4219     }
4220   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4221     ExtAddrMode BackupAddrMode = AddrMode;
4222     unsigned OldSize = AddrModeInsts.size();
4223 
4224     // Check to see if it is possible to fold this operation.
4225     bool MovedAway = false;
4226     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4227       // This instruction may have been moved away. If so, there is nothing
4228       // to check here.
4229       if (MovedAway)
4230         return true;
4231       // Okay, it's possible to fold this.  Check to see if it is actually
4232       // *profitable* to do so.  We use a simple cost model to avoid increasing
4233       // register pressure too much.
4234       if (I->hasOneUse() ||
4235           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4236         AddrModeInsts.push_back(I);
4237         return true;
4238       }
4239 
4240       // It isn't profitable to do this, roll back.
4241       //cerr << "NOT FOLDING: " << *I;
4242       AddrMode = BackupAddrMode;
4243       AddrModeInsts.resize(OldSize);
4244       TPT.rollback(LastKnownGood);
4245     }
4246   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4247     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4248       return true;
4249     TPT.rollback(LastKnownGood);
4250   } else if (isa<ConstantPointerNull>(Addr)) {
4251     // Null pointer gets folded without affecting the addressing mode.
4252     return true;
4253   }
4254 
4255   // Worse case, the target should support [reg] addressing modes. :)
4256   if (!AddrMode.HasBaseReg) {
4257     AddrMode.HasBaseReg = true;
4258     AddrMode.BaseReg = Addr;
4259     // Still check for legality in case the target supports [imm] but not [i+r].
4260     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4261       return true;
4262     AddrMode.HasBaseReg = false;
4263     AddrMode.BaseReg = nullptr;
4264   }
4265 
4266   // If the base register is already taken, see if we can do [r+r].
4267   if (AddrMode.Scale == 0) {
4268     AddrMode.Scale = 1;
4269     AddrMode.ScaledReg = Addr;
4270     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4271       return true;
4272     AddrMode.Scale = 0;
4273     AddrMode.ScaledReg = nullptr;
4274   }
4275   // Couldn't match.
4276   TPT.rollback(LastKnownGood);
4277   return false;
4278 }
4279 
4280 /// Check to see if all uses of OpVal by the specified inline asm call are due
4281 /// to memory operands. If so, return true, otherwise return false.
4282 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4283                                     const TargetLowering &TLI,
4284                                     const TargetRegisterInfo &TRI) {
4285   const Function *F = CI->getFunction();
4286   TargetLowering::AsmOperandInfoVector TargetConstraints =
4287       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4288                             ImmutableCallSite(CI));
4289 
4290   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4291     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4292 
4293     // Compute the constraint code and ConstraintType to use.
4294     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4295 
4296     // If this asm operand is our Value*, and if it isn't an indirect memory
4297     // operand, we can't fold it!
4298     if (OpInfo.CallOperandVal == OpVal &&
4299         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4300          !OpInfo.isIndirect))
4301       return false;
4302   }
4303 
4304   return true;
4305 }
4306 
4307 // Max number of memory uses to look at before aborting the search to conserve
4308 // compile time.
4309 static constexpr int MaxMemoryUsesToScan = 20;
4310 
4311 /// Recursively walk all the uses of I until we find a memory use.
4312 /// If we find an obviously non-foldable instruction, return true.
4313 /// Add the ultimately found memory instructions to MemoryUses.
4314 static bool FindAllMemoryUses(
4315     Instruction *I,
4316     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4317     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4318     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4319   // If we already considered this instruction, we're done.
4320   if (!ConsideredInsts.insert(I).second)
4321     return false;
4322 
4323   // If this is an obviously unfoldable instruction, bail out.
4324   if (!MightBeFoldableInst(I))
4325     return true;
4326 
4327   const bool OptSize = I->getFunction()->optForSize();
4328 
4329   // Loop over all the uses, recursively processing them.
4330   for (Use &U : I->uses()) {
4331     // Conservatively return true if we're seeing a large number or a deep chain
4332     // of users. This avoids excessive compilation times in pathological cases.
4333     if (SeenInsts++ >= MaxMemoryUsesToScan)
4334       return true;
4335 
4336     Instruction *UserI = cast<Instruction>(U.getUser());
4337     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4338       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4339       continue;
4340     }
4341 
4342     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4343       unsigned opNo = U.getOperandNo();
4344       if (opNo != StoreInst::getPointerOperandIndex())
4345         return true; // Storing addr, not into addr.
4346       MemoryUses.push_back(std::make_pair(SI, opNo));
4347       continue;
4348     }
4349 
4350     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4351       unsigned opNo = U.getOperandNo();
4352       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4353         return true; // Storing addr, not into addr.
4354       MemoryUses.push_back(std::make_pair(RMW, opNo));
4355       continue;
4356     }
4357 
4358     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4359       unsigned opNo = U.getOperandNo();
4360       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4361         return true; // Storing addr, not into addr.
4362       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4363       continue;
4364     }
4365 
4366     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4367       // If this is a cold call, we can sink the addressing calculation into
4368       // the cold path.  See optimizeCallInst
4369       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4370         continue;
4371 
4372       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4373       if (!IA) return true;
4374 
4375       // If this is a memory operand, we're cool, otherwise bail out.
4376       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4377         return true;
4378       continue;
4379     }
4380 
4381     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4382                           SeenInsts))
4383       return true;
4384   }
4385 
4386   return false;
4387 }
4388 
4389 /// Return true if Val is already known to be live at the use site that we're
4390 /// folding it into. If so, there is no cost to include it in the addressing
4391 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4392 /// instruction already.
4393 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4394                                                    Value *KnownLive2) {
4395   // If Val is either of the known-live values, we know it is live!
4396   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4397     return true;
4398 
4399   // All values other than instructions and arguments (e.g. constants) are live.
4400   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4401 
4402   // If Val is a constant sized alloca in the entry block, it is live, this is
4403   // true because it is just a reference to the stack/frame pointer, which is
4404   // live for the whole function.
4405   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4406     if (AI->isStaticAlloca())
4407       return true;
4408 
4409   // Check to see if this value is already used in the memory instruction's
4410   // block.  If so, it's already live into the block at the very least, so we
4411   // can reasonably fold it.
4412   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4413 }
4414 
4415 /// It is possible for the addressing mode of the machine to fold the specified
4416 /// instruction into a load or store that ultimately uses it.
4417 /// However, the specified instruction has multiple uses.
4418 /// Given this, it may actually increase register pressure to fold it
4419 /// into the load. For example, consider this code:
4420 ///
4421 ///     X = ...
4422 ///     Y = X+1
4423 ///     use(Y)   -> nonload/store
4424 ///     Z = Y+1
4425 ///     load Z
4426 ///
4427 /// In this case, Y has multiple uses, and can be folded into the load of Z
4428 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4429 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4430 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4431 /// number of computations either.
4432 ///
4433 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4434 /// X was live across 'load Z' for other reasons, we actually *would* want to
4435 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4436 bool AddressingModeMatcher::
4437 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4438                                      ExtAddrMode &AMAfter) {
4439   if (IgnoreProfitability) return true;
4440 
4441   // AMBefore is the addressing mode before this instruction was folded into it,
4442   // and AMAfter is the addressing mode after the instruction was folded.  Get
4443   // the set of registers referenced by AMAfter and subtract out those
4444   // referenced by AMBefore: this is the set of values which folding in this
4445   // address extends the lifetime of.
4446   //
4447   // Note that there are only two potential values being referenced here,
4448   // BaseReg and ScaleReg (global addresses are always available, as are any
4449   // folded immediates).
4450   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4451 
4452   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4453   // lifetime wasn't extended by adding this instruction.
4454   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4455     BaseReg = nullptr;
4456   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4457     ScaledReg = nullptr;
4458 
4459   // If folding this instruction (and it's subexprs) didn't extend any live
4460   // ranges, we're ok with it.
4461   if (!BaseReg && !ScaledReg)
4462     return true;
4463 
4464   // If all uses of this instruction can have the address mode sunk into them,
4465   // we can remove the addressing mode and effectively trade one live register
4466   // for another (at worst.)  In this context, folding an addressing mode into
4467   // the use is just a particularly nice way of sinking it.
4468   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4469   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4470   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4471     return false;  // Has a non-memory, non-foldable use!
4472 
4473   // Now that we know that all uses of this instruction are part of a chain of
4474   // computation involving only operations that could theoretically be folded
4475   // into a memory use, loop over each of these memory operation uses and see
4476   // if they could  *actually* fold the instruction.  The assumption is that
4477   // addressing modes are cheap and that duplicating the computation involved
4478   // many times is worthwhile, even on a fastpath. For sinking candidates
4479   // (i.e. cold call sites), this serves as a way to prevent excessive code
4480   // growth since most architectures have some reasonable small and fast way to
4481   // compute an effective address.  (i.e LEA on x86)
4482   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4483   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4484     Instruction *User = MemoryUses[i].first;
4485     unsigned OpNo = MemoryUses[i].second;
4486 
4487     // Get the access type of this use.  If the use isn't a pointer, we don't
4488     // know what it accesses.
4489     Value *Address = User->getOperand(OpNo);
4490     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4491     if (!AddrTy)
4492       return false;
4493     Type *AddressAccessTy = AddrTy->getElementType();
4494     unsigned AS = AddrTy->getAddressSpace();
4495 
4496     // Do a match against the root of this address, ignoring profitability. This
4497     // will tell us if the addressing mode for the memory operation will
4498     // *actually* cover the shared instruction.
4499     ExtAddrMode Result;
4500     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4501         TPT.getRestorationPoint();
4502     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4503                                   AddressAccessTy, AS,
4504                                   MemoryInst, Result, InsertedInsts,
4505                                   PromotedInsts, TPT);
4506     Matcher.IgnoreProfitability = true;
4507     bool Success = Matcher.matchAddr(Address, 0);
4508     (void)Success; assert(Success && "Couldn't select *anything*?");
4509 
4510     // The match was to check the profitability, the changes made are not
4511     // part of the original matcher. Therefore, they should be dropped
4512     // otherwise the original matcher will not present the right state.
4513     TPT.rollback(LastKnownGood);
4514 
4515     // If the match didn't cover I, then it won't be shared by it.
4516     if (!is_contained(MatchedAddrModeInsts, I))
4517       return false;
4518 
4519     MatchedAddrModeInsts.clear();
4520   }
4521 
4522   return true;
4523 }
4524 
4525 /// Return true if the specified values are defined in a
4526 /// different basic block than BB.
4527 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4528   if (Instruction *I = dyn_cast<Instruction>(V))
4529     return I->getParent() != BB;
4530   return false;
4531 }
4532 
4533 /// Sink addressing mode computation immediate before MemoryInst if doing so
4534 /// can be done without increasing register pressure.  The need for the
4535 /// register pressure constraint means this can end up being an all or nothing
4536 /// decision for all uses of the same addressing computation.
4537 ///
4538 /// Load and Store Instructions often have addressing modes that can do
4539 /// significant amounts of computation. As such, instruction selection will try
4540 /// to get the load or store to do as much computation as possible for the
4541 /// program. The problem is that isel can only see within a single block. As
4542 /// such, we sink as much legal addressing mode work into the block as possible.
4543 ///
4544 /// This method is used to optimize both load/store and inline asms with memory
4545 /// operands.  It's also used to sink addressing computations feeding into cold
4546 /// call sites into their (cold) basic block.
4547 ///
4548 /// The motivation for handling sinking into cold blocks is that doing so can
4549 /// both enable other address mode sinking (by satisfying the register pressure
4550 /// constraint above), and reduce register pressure globally (by removing the
4551 /// addressing mode computation from the fast path entirely.).
4552 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4553                                         Type *AccessTy, unsigned AddrSpace) {
4554   Value *Repl = Addr;
4555 
4556   // Try to collapse single-value PHI nodes.  This is necessary to undo
4557   // unprofitable PRE transformations.
4558   SmallVector<Value*, 8> worklist;
4559   SmallPtrSet<Value*, 16> Visited;
4560   worklist.push_back(Addr);
4561 
4562   // Use a worklist to iteratively look through PHI and select nodes, and
4563   // ensure that the addressing mode obtained from the non-PHI/select roots of
4564   // the graph are compatible.
4565   bool PhiOrSelectSeen = false;
4566   SmallVector<Instruction*, 16> AddrModeInsts;
4567   AddressingModeCombiner AddrModes;
4568   TypePromotionTransaction TPT(RemovedInsts);
4569   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4570       TPT.getRestorationPoint();
4571   while (!worklist.empty()) {
4572     Value *V = worklist.back();
4573     worklist.pop_back();
4574 
4575     // We allow traversing cyclic Phi nodes.
4576     // In case of success after this loop we ensure that traversing through
4577     // Phi nodes ends up with all cases to compute address of the form
4578     //    BaseGV + Base + Scale * Index + Offset
4579     // where Scale and Offset are constans and BaseGV, Base and Index
4580     // are exactly the same Values in all cases.
4581     // It means that BaseGV, Scale and Offset dominate our memory instruction
4582     // and have the same value as they had in address computation represented
4583     // as Phi. So we can safely sink address computation to memory instruction.
4584     if (!Visited.insert(V).second)
4585       continue;
4586 
4587     // For a PHI node, push all of its incoming values.
4588     if (PHINode *P = dyn_cast<PHINode>(V)) {
4589       for (Value *IncValue : P->incoming_values())
4590         worklist.push_back(IncValue);
4591       PhiOrSelectSeen = true;
4592       continue;
4593     }
4594     // Similar for select.
4595     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4596       worklist.push_back(SI->getFalseValue());
4597       worklist.push_back(SI->getTrueValue());
4598       PhiOrSelectSeen = true;
4599       continue;
4600     }
4601 
4602     // For non-PHIs, determine the addressing mode being computed.  Note that
4603     // the result may differ depending on what other uses our candidate
4604     // addressing instructions might have.
4605     AddrModeInsts.clear();
4606     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4607         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4608         InsertedInsts, PromotedInsts, TPT);
4609     NewAddrMode.OriginalValue = V;
4610 
4611     if (!AddrModes.addNewAddrMode(NewAddrMode))
4612       break;
4613   }
4614 
4615   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4616   // or we have multiple but either couldn't combine them or combining them
4617   // wouldn't do anything useful, bail out now.
4618   if (!AddrModes.combineAddrModes()) {
4619     TPT.rollback(LastKnownGood);
4620     return false;
4621   }
4622   TPT.commit();
4623 
4624   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4625   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4626 
4627   // If all the instructions matched are already in this BB, don't do anything.
4628   // If we saw a Phi node then it is not local definitely, and if we saw a select
4629   // then we want to push the address calculation past it even if it's already
4630   // in this BB.
4631   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4632         return IsNonLocalValue(V, MemoryInst->getParent());
4633                   })) {
4634     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4635     return false;
4636   }
4637 
4638   // Insert this computation right after this user.  Since our caller is
4639   // scanning from the top of the BB to the bottom, reuse of the expr are
4640   // guaranteed to happen later.
4641   IRBuilder<> Builder(MemoryInst);
4642 
4643   // Now that we determined the addressing expression we want to use and know
4644   // that we have to sink it into this block.  Check to see if we have already
4645   // done this for some other load/store instr in this block.  If so, reuse the
4646   // computation.
4647   Value *&SunkAddr = SunkAddrs[Addr];
4648   if (SunkAddr) {
4649     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4650                  << *MemoryInst << "\n");
4651     if (SunkAddr->getType() != Addr->getType())
4652       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4653   } else if (AddrSinkUsingGEPs ||
4654              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4655               SubtargetInfo->useAA())) {
4656     // By default, we use the GEP-based method when AA is used later. This
4657     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4658     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4659                  << *MemoryInst << "\n");
4660     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4661     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4662 
4663     // First, find the pointer.
4664     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4665       ResultPtr = AddrMode.BaseReg;
4666       AddrMode.BaseReg = nullptr;
4667     }
4668 
4669     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4670       // We can't add more than one pointer together, nor can we scale a
4671       // pointer (both of which seem meaningless).
4672       if (ResultPtr || AddrMode.Scale != 1)
4673         return false;
4674 
4675       ResultPtr = AddrMode.ScaledReg;
4676       AddrMode.Scale = 0;
4677     }
4678 
4679     // It is only safe to sign extend the BaseReg if we know that the math
4680     // required to create it did not overflow before we extend it. Since
4681     // the original IR value was tossed in favor of a constant back when
4682     // the AddrMode was created we need to bail out gracefully if widths
4683     // do not match instead of extending it.
4684     //
4685     // (See below for code to add the scale.)
4686     if (AddrMode.Scale) {
4687       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4688       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4689           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4690         return false;
4691     }
4692 
4693     if (AddrMode.BaseGV) {
4694       if (ResultPtr)
4695         return false;
4696 
4697       ResultPtr = AddrMode.BaseGV;
4698     }
4699 
4700     // If the real base value actually came from an inttoptr, then the matcher
4701     // will look through it and provide only the integer value. In that case,
4702     // use it here.
4703     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4704       if (!ResultPtr && AddrMode.BaseReg) {
4705         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4706                                            "sunkaddr");
4707         AddrMode.BaseReg = nullptr;
4708       } else if (!ResultPtr && AddrMode.Scale == 1) {
4709         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4710                                            "sunkaddr");
4711         AddrMode.Scale = 0;
4712       }
4713     }
4714 
4715     if (!ResultPtr &&
4716         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4717       SunkAddr = Constant::getNullValue(Addr->getType());
4718     } else if (!ResultPtr) {
4719       return false;
4720     } else {
4721       Type *I8PtrTy =
4722           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4723       Type *I8Ty = Builder.getInt8Ty();
4724 
4725       // Start with the base register. Do this first so that subsequent address
4726       // matching finds it last, which will prevent it from trying to match it
4727       // as the scaled value in case it happens to be a mul. That would be
4728       // problematic if we've sunk a different mul for the scale, because then
4729       // we'd end up sinking both muls.
4730       if (AddrMode.BaseReg) {
4731         Value *V = AddrMode.BaseReg;
4732         if (V->getType() != IntPtrTy)
4733           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4734 
4735         ResultIndex = V;
4736       }
4737 
4738       // Add the scale value.
4739       if (AddrMode.Scale) {
4740         Value *V = AddrMode.ScaledReg;
4741         if (V->getType() == IntPtrTy) {
4742           // done.
4743         } else {
4744           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4745                  cast<IntegerType>(V->getType())->getBitWidth() &&
4746                  "We can't transform if ScaledReg is too narrow");
4747           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4748         }
4749 
4750         if (AddrMode.Scale != 1)
4751           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4752                                 "sunkaddr");
4753         if (ResultIndex)
4754           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4755         else
4756           ResultIndex = V;
4757       }
4758 
4759       // Add in the Base Offset if present.
4760       if (AddrMode.BaseOffs) {
4761         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4762         if (ResultIndex) {
4763           // We need to add this separately from the scale above to help with
4764           // SDAG consecutive load/store merging.
4765           if (ResultPtr->getType() != I8PtrTy)
4766             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4767           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4768         }
4769 
4770         ResultIndex = V;
4771       }
4772 
4773       if (!ResultIndex) {
4774         SunkAddr = ResultPtr;
4775       } else {
4776         if (ResultPtr->getType() != I8PtrTy)
4777           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4778         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4779       }
4780 
4781       if (SunkAddr->getType() != Addr->getType())
4782         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4783     }
4784   } else {
4785     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4786     // non-integral pointers, so in that case bail out now.
4787     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4788     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4789     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4790     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4791     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4792         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4793         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4794         (AddrMode.BaseGV &&
4795          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4796       return false;
4797 
4798     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4799                  << *MemoryInst << "\n");
4800     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4801     Value *Result = nullptr;
4802 
4803     // Start with the base register. Do this first so that subsequent address
4804     // matching finds it last, which will prevent it from trying to match it
4805     // as the scaled value in case it happens to be a mul. That would be
4806     // problematic if we've sunk a different mul for the scale, because then
4807     // we'd end up sinking both muls.
4808     if (AddrMode.BaseReg) {
4809       Value *V = AddrMode.BaseReg;
4810       if (V->getType()->isPointerTy())
4811         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4812       if (V->getType() != IntPtrTy)
4813         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4814       Result = V;
4815     }
4816 
4817     // Add the scale value.
4818     if (AddrMode.Scale) {
4819       Value *V = AddrMode.ScaledReg;
4820       if (V->getType() == IntPtrTy) {
4821         // done.
4822       } else if (V->getType()->isPointerTy()) {
4823         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4824       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4825                  cast<IntegerType>(V->getType())->getBitWidth()) {
4826         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4827       } else {
4828         // It is only safe to sign extend the BaseReg if we know that the math
4829         // required to create it did not overflow before we extend it. Since
4830         // the original IR value was tossed in favor of a constant back when
4831         // the AddrMode was created we need to bail out gracefully if widths
4832         // do not match instead of extending it.
4833         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4834         if (I && (Result != AddrMode.BaseReg))
4835           I->eraseFromParent();
4836         return false;
4837       }
4838       if (AddrMode.Scale != 1)
4839         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4840                               "sunkaddr");
4841       if (Result)
4842         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4843       else
4844         Result = V;
4845     }
4846 
4847     // Add in the BaseGV if present.
4848     if (AddrMode.BaseGV) {
4849       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4850       if (Result)
4851         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4852       else
4853         Result = V;
4854     }
4855 
4856     // Add in the Base Offset if present.
4857     if (AddrMode.BaseOffs) {
4858       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4859       if (Result)
4860         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4861       else
4862         Result = V;
4863     }
4864 
4865     if (!Result)
4866       SunkAddr = Constant::getNullValue(Addr->getType());
4867     else
4868       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4869   }
4870 
4871   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4872 
4873   // If we have no uses, recursively delete the value and all dead instructions
4874   // using it.
4875   if (Repl->use_empty()) {
4876     // This can cause recursive deletion, which can invalidate our iterator.
4877     // Use a WeakTrackingVH to hold onto it in case this happens.
4878     Value *CurValue = &*CurInstIterator;
4879     WeakTrackingVH IterHandle(CurValue);
4880     BasicBlock *BB = CurInstIterator->getParent();
4881 
4882     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4883 
4884     if (IterHandle != CurValue) {
4885       // If the iterator instruction was recursively deleted, start over at the
4886       // start of the block.
4887       CurInstIterator = BB->begin();
4888       SunkAddrs.clear();
4889     }
4890   }
4891   ++NumMemoryInsts;
4892   return true;
4893 }
4894 
4895 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4896 /// address computing into the block when possible / profitable.
4897 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4898   bool MadeChange = false;
4899 
4900   const TargetRegisterInfo *TRI =
4901       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4902   TargetLowering::AsmOperandInfoVector TargetConstraints =
4903       TLI->ParseConstraints(*DL, TRI, CS);
4904   unsigned ArgNo = 0;
4905   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4906     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4907 
4908     // Compute the constraint code and ConstraintType to use.
4909     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4910 
4911     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4912         OpInfo.isIndirect) {
4913       Value *OpVal = CS->getArgOperand(ArgNo++);
4914       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4915     } else if (OpInfo.Type == InlineAsm::isInput)
4916       ArgNo++;
4917   }
4918 
4919   return MadeChange;
4920 }
4921 
4922 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4923 /// sign extensions.
4924 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4925   assert(!Val->use_empty() && "Input must have at least one use");
4926   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4927   bool IsSExt = isa<SExtInst>(FirstUser);
4928   Type *ExtTy = FirstUser->getType();
4929   for (const User *U : Val->users()) {
4930     const Instruction *UI = cast<Instruction>(U);
4931     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4932       return false;
4933     Type *CurTy = UI->getType();
4934     // Same input and output types: Same instruction after CSE.
4935     if (CurTy == ExtTy)
4936       continue;
4937 
4938     // If IsSExt is true, we are in this situation:
4939     // a = Val
4940     // b = sext ty1 a to ty2
4941     // c = sext ty1 a to ty3
4942     // Assuming ty2 is shorter than ty3, this could be turned into:
4943     // a = Val
4944     // b = sext ty1 a to ty2
4945     // c = sext ty2 b to ty3
4946     // However, the last sext is not free.
4947     if (IsSExt)
4948       return false;
4949 
4950     // This is a ZExt, maybe this is free to extend from one type to another.
4951     // In that case, we would not account for a different use.
4952     Type *NarrowTy;
4953     Type *LargeTy;
4954     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4955         CurTy->getScalarType()->getIntegerBitWidth()) {
4956       NarrowTy = CurTy;
4957       LargeTy = ExtTy;
4958     } else {
4959       NarrowTy = ExtTy;
4960       LargeTy = CurTy;
4961     }
4962 
4963     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4964       return false;
4965   }
4966   // All uses are the same or can be derived from one another for free.
4967   return true;
4968 }
4969 
4970 /// \brief Try to speculatively promote extensions in \p Exts and continue
4971 /// promoting through newly promoted operands recursively as far as doing so is
4972 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4973 /// When some promotion happened, \p TPT contains the proper state to revert
4974 /// them.
4975 ///
4976 /// \return true if some promotion happened, false otherwise.
4977 bool CodeGenPrepare::tryToPromoteExts(
4978     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4979     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4980     unsigned CreatedInstsCost) {
4981   bool Promoted = false;
4982 
4983   // Iterate over all the extensions to try to promote them.
4984   for (auto I : Exts) {
4985     // Early check if we directly have ext(load).
4986     if (isa<LoadInst>(I->getOperand(0))) {
4987       ProfitablyMovedExts.push_back(I);
4988       continue;
4989     }
4990 
4991     // Check whether or not we want to do any promotion.  The reason we have
4992     // this check inside the for loop is to catch the case where an extension
4993     // is directly fed by a load because in such case the extension can be moved
4994     // up without any promotion on its operands.
4995     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4996       return false;
4997 
4998     // Get the action to perform the promotion.
4999     TypePromotionHelper::Action TPH =
5000         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5001     // Check if we can promote.
5002     if (!TPH) {
5003       // Save the current extension as we cannot move up through its operand.
5004       ProfitablyMovedExts.push_back(I);
5005       continue;
5006     }
5007 
5008     // Save the current state.
5009     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5010         TPT.getRestorationPoint();
5011     SmallVector<Instruction *, 4> NewExts;
5012     unsigned NewCreatedInstsCost = 0;
5013     unsigned ExtCost = !TLI->isExtFree(I);
5014     // Promote.
5015     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5016                              &NewExts, nullptr, *TLI);
5017     assert(PromotedVal &&
5018            "TypePromotionHelper should have filtered out those cases");
5019 
5020     // We would be able to merge only one extension in a load.
5021     // Therefore, if we have more than 1 new extension we heuristically
5022     // cut this search path, because it means we degrade the code quality.
5023     // With exactly 2, the transformation is neutral, because we will merge
5024     // one extension but leave one. However, we optimistically keep going,
5025     // because the new extension may be removed too.
5026     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5027     // FIXME: It would be possible to propagate a negative value instead of
5028     // conservatively ceiling it to 0.
5029     TotalCreatedInstsCost =
5030         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5031     if (!StressExtLdPromotion &&
5032         (TotalCreatedInstsCost > 1 ||
5033          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5034       // This promotion is not profitable, rollback to the previous state, and
5035       // save the current extension in ProfitablyMovedExts as the latest
5036       // speculative promotion turned out to be unprofitable.
5037       TPT.rollback(LastKnownGood);
5038       ProfitablyMovedExts.push_back(I);
5039       continue;
5040     }
5041     // Continue promoting NewExts as far as doing so is profitable.
5042     SmallVector<Instruction *, 2> NewlyMovedExts;
5043     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5044     bool NewPromoted = false;
5045     for (auto ExtInst : NewlyMovedExts) {
5046       Instruction *MovedExt = cast<Instruction>(ExtInst);
5047       Value *ExtOperand = MovedExt->getOperand(0);
5048       // If we have reached to a load, we need this extra profitability check
5049       // as it could potentially be merged into an ext(load).
5050       if (isa<LoadInst>(ExtOperand) &&
5051           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5052             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5053         continue;
5054 
5055       ProfitablyMovedExts.push_back(MovedExt);
5056       NewPromoted = true;
5057     }
5058 
5059     // If none of speculative promotions for NewExts is profitable, rollback
5060     // and save the current extension (I) as the last profitable extension.
5061     if (!NewPromoted) {
5062       TPT.rollback(LastKnownGood);
5063       ProfitablyMovedExts.push_back(I);
5064       continue;
5065     }
5066     // The promotion is profitable.
5067     Promoted = true;
5068   }
5069   return Promoted;
5070 }
5071 
5072 /// Merging redundant sexts when one is dominating the other.
5073 bool CodeGenPrepare::mergeSExts(Function &F) {
5074   DominatorTree DT(F);
5075   bool Changed = false;
5076   for (auto &Entry : ValToSExtendedUses) {
5077     SExts &Insts = Entry.second;
5078     SExts CurPts;
5079     for (Instruction *Inst : Insts) {
5080       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5081           Inst->getOperand(0) != Entry.first)
5082         continue;
5083       bool inserted = false;
5084       for (auto &Pt : CurPts) {
5085         if (DT.dominates(Inst, Pt)) {
5086           Pt->replaceAllUsesWith(Inst);
5087           RemovedInsts.insert(Pt);
5088           Pt->removeFromParent();
5089           Pt = Inst;
5090           inserted = true;
5091           Changed = true;
5092           break;
5093         }
5094         if (!DT.dominates(Pt, Inst))
5095           // Give up if we need to merge in a common dominator as the
5096           // expermients show it is not profitable.
5097           continue;
5098         Inst->replaceAllUsesWith(Pt);
5099         RemovedInsts.insert(Inst);
5100         Inst->removeFromParent();
5101         inserted = true;
5102         Changed = true;
5103         break;
5104       }
5105       if (!inserted)
5106         CurPts.push_back(Inst);
5107     }
5108   }
5109   return Changed;
5110 }
5111 
5112 /// Return true, if an ext(load) can be formed from an extension in
5113 /// \p MovedExts.
5114 bool CodeGenPrepare::canFormExtLd(
5115     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5116     Instruction *&Inst, bool HasPromoted) {
5117   for (auto *MovedExtInst : MovedExts) {
5118     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5119       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5120       Inst = MovedExtInst;
5121       break;
5122     }
5123   }
5124   if (!LI)
5125     return false;
5126 
5127   // If they're already in the same block, there's nothing to do.
5128   // Make the cheap checks first if we did not promote.
5129   // If we promoted, we need to check if it is indeed profitable.
5130   if (!HasPromoted && LI->getParent() == Inst->getParent())
5131     return false;
5132 
5133   return TLI->isExtLoad(LI, Inst, *DL);
5134 }
5135 
5136 /// Move a zext or sext fed by a load into the same basic block as the load,
5137 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5138 /// extend into the load.
5139 ///
5140 /// E.g.,
5141 /// \code
5142 /// %ld = load i32* %addr
5143 /// %add = add nuw i32 %ld, 4
5144 /// %zext = zext i32 %add to i64
5145 // \endcode
5146 /// =>
5147 /// \code
5148 /// %ld = load i32* %addr
5149 /// %zext = zext i32 %ld to i64
5150 /// %add = add nuw i64 %zext, 4
5151 /// \encode
5152 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5153 /// allow us to match zext(load i32*) to i64.
5154 ///
5155 /// Also, try to promote the computations used to obtain a sign extended
5156 /// value used into memory accesses.
5157 /// E.g.,
5158 /// \code
5159 /// a = add nsw i32 b, 3
5160 /// d = sext i32 a to i64
5161 /// e = getelementptr ..., i64 d
5162 /// \endcode
5163 /// =>
5164 /// \code
5165 /// f = sext i32 b to i64
5166 /// a = add nsw i64 f, 3
5167 /// e = getelementptr ..., i64 a
5168 /// \endcode
5169 ///
5170 /// \p Inst[in/out] the extension may be modified during the process if some
5171 /// promotions apply.
5172 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5173   // ExtLoad formation and address type promotion infrastructure requires TLI to
5174   // be effective.
5175   if (!TLI)
5176     return false;
5177 
5178   bool AllowPromotionWithoutCommonHeader = false;
5179   /// See if it is an interesting sext operations for the address type
5180   /// promotion before trying to promote it, e.g., the ones with the right
5181   /// type and used in memory accesses.
5182   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5183       *Inst, AllowPromotionWithoutCommonHeader);
5184   TypePromotionTransaction TPT(RemovedInsts);
5185   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5186       TPT.getRestorationPoint();
5187   SmallVector<Instruction *, 1> Exts;
5188   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5189   Exts.push_back(Inst);
5190 
5191   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5192 
5193   // Look for a load being extended.
5194   LoadInst *LI = nullptr;
5195   Instruction *ExtFedByLoad;
5196 
5197   // Try to promote a chain of computation if it allows to form an extended
5198   // load.
5199   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5200     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5201     TPT.commit();
5202     // Move the extend into the same block as the load
5203     ExtFedByLoad->moveAfter(LI);
5204     // CGP does not check if the zext would be speculatively executed when moved
5205     // to the same basic block as the load. Preserving its original location
5206     // would pessimize the debugging experience, as well as negatively impact
5207     // the quality of sample pgo. We don't want to use "line 0" as that has a
5208     // size cost in the line-table section and logically the zext can be seen as
5209     // part of the load. Therefore we conservatively reuse the same debug
5210     // location for the load and the zext.
5211     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5212     ++NumExtsMoved;
5213     Inst = ExtFedByLoad;
5214     return true;
5215   }
5216 
5217   // Continue promoting SExts if known as considerable depending on targets.
5218   if (ATPConsiderable &&
5219       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5220                                   HasPromoted, TPT, SpeculativelyMovedExts))
5221     return true;
5222 
5223   TPT.rollback(LastKnownGood);
5224   return false;
5225 }
5226 
5227 // Perform address type promotion if doing so is profitable.
5228 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5229 // instructions that sign extended the same initial value. However, if
5230 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5231 // extension is just profitable.
5232 bool CodeGenPrepare::performAddressTypePromotion(
5233     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5234     bool HasPromoted, TypePromotionTransaction &TPT,
5235     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5236   bool Promoted = false;
5237   SmallPtrSet<Instruction *, 1> UnhandledExts;
5238   bool AllSeenFirst = true;
5239   for (auto I : SpeculativelyMovedExts) {
5240     Value *HeadOfChain = I->getOperand(0);
5241     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5242         SeenChainsForSExt.find(HeadOfChain);
5243     // If there is an unhandled SExt which has the same header, try to promote
5244     // it as well.
5245     if (AlreadySeen != SeenChainsForSExt.end()) {
5246       if (AlreadySeen->second != nullptr)
5247         UnhandledExts.insert(AlreadySeen->second);
5248       AllSeenFirst = false;
5249     }
5250   }
5251 
5252   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5253                         SpeculativelyMovedExts.size() == 1)) {
5254     TPT.commit();
5255     if (HasPromoted)
5256       Promoted = true;
5257     for (auto I : SpeculativelyMovedExts) {
5258       Value *HeadOfChain = I->getOperand(0);
5259       SeenChainsForSExt[HeadOfChain] = nullptr;
5260       ValToSExtendedUses[HeadOfChain].push_back(I);
5261     }
5262     // Update Inst as promotion happen.
5263     Inst = SpeculativelyMovedExts.pop_back_val();
5264   } else {
5265     // This is the first chain visited from the header, keep the current chain
5266     // as unhandled. Defer to promote this until we encounter another SExt
5267     // chain derived from the same header.
5268     for (auto I : SpeculativelyMovedExts) {
5269       Value *HeadOfChain = I->getOperand(0);
5270       SeenChainsForSExt[HeadOfChain] = Inst;
5271     }
5272     return false;
5273   }
5274 
5275   if (!AllSeenFirst && !UnhandledExts.empty())
5276     for (auto VisitedSExt : UnhandledExts) {
5277       if (RemovedInsts.count(VisitedSExt))
5278         continue;
5279       TypePromotionTransaction TPT(RemovedInsts);
5280       SmallVector<Instruction *, 1> Exts;
5281       SmallVector<Instruction *, 2> Chains;
5282       Exts.push_back(VisitedSExt);
5283       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5284       TPT.commit();
5285       if (HasPromoted)
5286         Promoted = true;
5287       for (auto I : Chains) {
5288         Value *HeadOfChain = I->getOperand(0);
5289         // Mark this as handled.
5290         SeenChainsForSExt[HeadOfChain] = nullptr;
5291         ValToSExtendedUses[HeadOfChain].push_back(I);
5292       }
5293     }
5294   return Promoted;
5295 }
5296 
5297 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5298   BasicBlock *DefBB = I->getParent();
5299 
5300   // If the result of a {s|z}ext and its source are both live out, rewrite all
5301   // other uses of the source with result of extension.
5302   Value *Src = I->getOperand(0);
5303   if (Src->hasOneUse())
5304     return false;
5305 
5306   // Only do this xform if truncating is free.
5307   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5308     return false;
5309 
5310   // Only safe to perform the optimization if the source is also defined in
5311   // this block.
5312   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5313     return false;
5314 
5315   bool DefIsLiveOut = false;
5316   for (User *U : I->users()) {
5317     Instruction *UI = cast<Instruction>(U);
5318 
5319     // Figure out which BB this ext is used in.
5320     BasicBlock *UserBB = UI->getParent();
5321     if (UserBB == DefBB) continue;
5322     DefIsLiveOut = true;
5323     break;
5324   }
5325   if (!DefIsLiveOut)
5326     return false;
5327 
5328   // Make sure none of the uses are PHI nodes.
5329   for (User *U : Src->users()) {
5330     Instruction *UI = cast<Instruction>(U);
5331     BasicBlock *UserBB = UI->getParent();
5332     if (UserBB == DefBB) continue;
5333     // Be conservative. We don't want this xform to end up introducing
5334     // reloads just before load / store instructions.
5335     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5336       return false;
5337   }
5338 
5339   // InsertedTruncs - Only insert one trunc in each block once.
5340   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5341 
5342   bool MadeChange = false;
5343   for (Use &U : Src->uses()) {
5344     Instruction *User = cast<Instruction>(U.getUser());
5345 
5346     // Figure out which BB this ext is used in.
5347     BasicBlock *UserBB = User->getParent();
5348     if (UserBB == DefBB) continue;
5349 
5350     // Both src and def are live in this block. Rewrite the use.
5351     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5352 
5353     if (!InsertedTrunc) {
5354       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5355       assert(InsertPt != UserBB->end());
5356       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5357       InsertedInsts.insert(InsertedTrunc);
5358     }
5359 
5360     // Replace a use of the {s|z}ext source with a use of the result.
5361     U = InsertedTrunc;
5362     ++NumExtUses;
5363     MadeChange = true;
5364   }
5365 
5366   return MadeChange;
5367 }
5368 
5369 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5370 // just after the load if the target can fold this into one extload instruction,
5371 // with the hope of eliminating some of the other later "and" instructions using
5372 // the loaded value.  "and"s that are made trivially redundant by the insertion
5373 // of the new "and" are removed by this function, while others (e.g. those whose
5374 // path from the load goes through a phi) are left for isel to potentially
5375 // remove.
5376 //
5377 // For example:
5378 //
5379 // b0:
5380 //   x = load i32
5381 //   ...
5382 // b1:
5383 //   y = and x, 0xff
5384 //   z = use y
5385 //
5386 // becomes:
5387 //
5388 // b0:
5389 //   x = load i32
5390 //   x' = and x, 0xff
5391 //   ...
5392 // b1:
5393 //   z = use x'
5394 //
5395 // whereas:
5396 //
5397 // b0:
5398 //   x1 = load i32
5399 //   ...
5400 // b1:
5401 //   x2 = load i32
5402 //   ...
5403 // b2:
5404 //   x = phi x1, x2
5405 //   y = and x, 0xff
5406 //
5407 // becomes (after a call to optimizeLoadExt for each load):
5408 //
5409 // b0:
5410 //   x1 = load i32
5411 //   x1' = and x1, 0xff
5412 //   ...
5413 // b1:
5414 //   x2 = load i32
5415 //   x2' = and x2, 0xff
5416 //   ...
5417 // b2:
5418 //   x = phi x1', x2'
5419 //   y = and x, 0xff
5420 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5421   if (!Load->isSimple() ||
5422       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5423     return false;
5424 
5425   // Skip loads we've already transformed.
5426   if (Load->hasOneUse() &&
5427       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5428     return false;
5429 
5430   // Look at all uses of Load, looking through phis, to determine how many bits
5431   // of the loaded value are needed.
5432   SmallVector<Instruction *, 8> WorkList;
5433   SmallPtrSet<Instruction *, 16> Visited;
5434   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5435   for (auto *U : Load->users())
5436     WorkList.push_back(cast<Instruction>(U));
5437 
5438   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5439   unsigned BitWidth = LoadResultVT.getSizeInBits();
5440   APInt DemandBits(BitWidth, 0);
5441   APInt WidestAndBits(BitWidth, 0);
5442 
5443   while (!WorkList.empty()) {
5444     Instruction *I = WorkList.back();
5445     WorkList.pop_back();
5446 
5447     // Break use-def graph loops.
5448     if (!Visited.insert(I).second)
5449       continue;
5450 
5451     // For a PHI node, push all of its users.
5452     if (auto *Phi = dyn_cast<PHINode>(I)) {
5453       for (auto *U : Phi->users())
5454         WorkList.push_back(cast<Instruction>(U));
5455       continue;
5456     }
5457 
5458     switch (I->getOpcode()) {
5459     case Instruction::And: {
5460       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5461       if (!AndC)
5462         return false;
5463       APInt AndBits = AndC->getValue();
5464       DemandBits |= AndBits;
5465       // Keep track of the widest and mask we see.
5466       if (AndBits.ugt(WidestAndBits))
5467         WidestAndBits = AndBits;
5468       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5469         AndsToMaybeRemove.push_back(I);
5470       break;
5471     }
5472 
5473     case Instruction::Shl: {
5474       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5475       if (!ShlC)
5476         return false;
5477       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5478       DemandBits.setLowBits(BitWidth - ShiftAmt);
5479       break;
5480     }
5481 
5482     case Instruction::Trunc: {
5483       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5484       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5485       DemandBits.setLowBits(TruncBitWidth);
5486       break;
5487     }
5488 
5489     default:
5490       return false;
5491     }
5492   }
5493 
5494   uint32_t ActiveBits = DemandBits.getActiveBits();
5495   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5496   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5497   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5498   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5499   // followed by an AND.
5500   // TODO: Look into removing this restriction by fixing backends to either
5501   // return false for isLoadExtLegal for i1 or have them select this pattern to
5502   // a single instruction.
5503   //
5504   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5505   // mask, since these are the only ands that will be removed by isel.
5506   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5507       WidestAndBits != DemandBits)
5508     return false;
5509 
5510   LLVMContext &Ctx = Load->getType()->getContext();
5511   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5512   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5513 
5514   // Reject cases that won't be matched as extloads.
5515   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5516       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5517     return false;
5518 
5519   IRBuilder<> Builder(Load->getNextNode());
5520   auto *NewAnd = dyn_cast<Instruction>(
5521       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5522   // Mark this instruction as "inserted by CGP", so that other
5523   // optimizations don't touch it.
5524   InsertedInsts.insert(NewAnd);
5525 
5526   // Replace all uses of load with new and (except for the use of load in the
5527   // new and itself).
5528   Load->replaceAllUsesWith(NewAnd);
5529   NewAnd->setOperand(0, Load);
5530 
5531   // Remove any and instructions that are now redundant.
5532   for (auto *And : AndsToMaybeRemove)
5533     // Check that the and mask is the same as the one we decided to put on the
5534     // new and.
5535     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5536       And->replaceAllUsesWith(NewAnd);
5537       if (&*CurInstIterator == And)
5538         CurInstIterator = std::next(And->getIterator());
5539       And->eraseFromParent();
5540       ++NumAndUses;
5541     }
5542 
5543   ++NumAndsAdded;
5544   return true;
5545 }
5546 
5547 /// Check if V (an operand of a select instruction) is an expensive instruction
5548 /// that is only used once.
5549 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5550   auto *I = dyn_cast<Instruction>(V);
5551   // If it's safe to speculatively execute, then it should not have side
5552   // effects; therefore, it's safe to sink and possibly *not* execute.
5553   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5554          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5555 }
5556 
5557 /// Returns true if a SelectInst should be turned into an explicit branch.
5558 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5559                                                 const TargetLowering *TLI,
5560                                                 SelectInst *SI) {
5561   // If even a predictable select is cheap, then a branch can't be cheaper.
5562   if (!TLI->isPredictableSelectExpensive())
5563     return false;
5564 
5565   // FIXME: This should use the same heuristics as IfConversion to determine
5566   // whether a select is better represented as a branch.
5567 
5568   // If metadata tells us that the select condition is obviously predictable,
5569   // then we want to replace the select with a branch.
5570   uint64_t TrueWeight, FalseWeight;
5571   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5572     uint64_t Max = std::max(TrueWeight, FalseWeight);
5573     uint64_t Sum = TrueWeight + FalseWeight;
5574     if (Sum != 0) {
5575       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5576       if (Probability > TLI->getPredictableBranchThreshold())
5577         return true;
5578     }
5579   }
5580 
5581   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5582 
5583   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5584   // comparison condition. If the compare has more than one use, there's
5585   // probably another cmov or setcc around, so it's not worth emitting a branch.
5586   if (!Cmp || !Cmp->hasOneUse())
5587     return false;
5588 
5589   // If either operand of the select is expensive and only needed on one side
5590   // of the select, we should form a branch.
5591   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5592       sinkSelectOperand(TTI, SI->getFalseValue()))
5593     return true;
5594 
5595   return false;
5596 }
5597 
5598 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5599 /// false value of \p SI. If the true/false value of \p SI is defined by any
5600 /// select instructions in \p Selects, look through the defining select
5601 /// instruction until the true/false value is not defined in \p Selects.
5602 static Value *getTrueOrFalseValue(
5603     SelectInst *SI, bool isTrue,
5604     const SmallPtrSet<const Instruction *, 2> &Selects) {
5605   Value *V;
5606 
5607   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5608        DefSI = dyn_cast<SelectInst>(V)) {
5609     assert(DefSI->getCondition() == SI->getCondition() &&
5610            "The condition of DefSI does not match with SI");
5611     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5612   }
5613   return V;
5614 }
5615 
5616 /// If we have a SelectInst that will likely profit from branch prediction,
5617 /// turn it into a branch.
5618 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5619   // Find all consecutive select instructions that share the same condition.
5620   SmallVector<SelectInst *, 2> ASI;
5621   ASI.push_back(SI);
5622   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5623        It != SI->getParent()->end(); ++It) {
5624     SelectInst *I = dyn_cast<SelectInst>(&*It);
5625     if (I && SI->getCondition() == I->getCondition()) {
5626       ASI.push_back(I);
5627     } else {
5628       break;
5629     }
5630   }
5631 
5632   SelectInst *LastSI = ASI.back();
5633   // Increment the current iterator to skip all the rest of select instructions
5634   // because they will be either "not lowered" or "all lowered" to branch.
5635   CurInstIterator = std::next(LastSI->getIterator());
5636 
5637   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5638 
5639   // Can we convert the 'select' to CF ?
5640   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5641       SI->getMetadata(LLVMContext::MD_unpredictable))
5642     return false;
5643 
5644   TargetLowering::SelectSupportKind SelectKind;
5645   if (VectorCond)
5646     SelectKind = TargetLowering::VectorMaskSelect;
5647   else if (SI->getType()->isVectorTy())
5648     SelectKind = TargetLowering::ScalarCondVectorVal;
5649   else
5650     SelectKind = TargetLowering::ScalarValSelect;
5651 
5652   if (TLI->isSelectSupported(SelectKind) &&
5653       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5654     return false;
5655 
5656   ModifiedDT = true;
5657 
5658   // Transform a sequence like this:
5659   //    start:
5660   //       %cmp = cmp uge i32 %a, %b
5661   //       %sel = select i1 %cmp, i32 %c, i32 %d
5662   //
5663   // Into:
5664   //    start:
5665   //       %cmp = cmp uge i32 %a, %b
5666   //       br i1 %cmp, label %select.true, label %select.false
5667   //    select.true:
5668   //       br label %select.end
5669   //    select.false:
5670   //       br label %select.end
5671   //    select.end:
5672   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5673   //
5674   // In addition, we may sink instructions that produce %c or %d from
5675   // the entry block into the destination(s) of the new branch.
5676   // If the true or false blocks do not contain a sunken instruction, that
5677   // block and its branch may be optimized away. In that case, one side of the
5678   // first branch will point directly to select.end, and the corresponding PHI
5679   // predecessor block will be the start block.
5680 
5681   // First, we split the block containing the select into 2 blocks.
5682   BasicBlock *StartBlock = SI->getParent();
5683   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5684   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5685 
5686   // Delete the unconditional branch that was just created by the split.
5687   StartBlock->getTerminator()->eraseFromParent();
5688 
5689   // These are the new basic blocks for the conditional branch.
5690   // At least one will become an actual new basic block.
5691   BasicBlock *TrueBlock = nullptr;
5692   BasicBlock *FalseBlock = nullptr;
5693   BranchInst *TrueBranch = nullptr;
5694   BranchInst *FalseBranch = nullptr;
5695 
5696   // Sink expensive instructions into the conditional blocks to avoid executing
5697   // them speculatively.
5698   for (SelectInst *SI : ASI) {
5699     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5700       if (TrueBlock == nullptr) {
5701         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5702                                        EndBlock->getParent(), EndBlock);
5703         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5704       }
5705       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5706       TrueInst->moveBefore(TrueBranch);
5707     }
5708     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5709       if (FalseBlock == nullptr) {
5710         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5711                                         EndBlock->getParent(), EndBlock);
5712         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5713       }
5714       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5715       FalseInst->moveBefore(FalseBranch);
5716     }
5717   }
5718 
5719   // If there was nothing to sink, then arbitrarily choose the 'false' side
5720   // for a new input value to the PHI.
5721   if (TrueBlock == FalseBlock) {
5722     assert(TrueBlock == nullptr &&
5723            "Unexpected basic block transform while optimizing select");
5724 
5725     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5726                                     EndBlock->getParent(), EndBlock);
5727     BranchInst::Create(EndBlock, FalseBlock);
5728   }
5729 
5730   // Insert the real conditional branch based on the original condition.
5731   // If we did not create a new block for one of the 'true' or 'false' paths
5732   // of the condition, it means that side of the branch goes to the end block
5733   // directly and the path originates from the start block from the point of
5734   // view of the new PHI.
5735   BasicBlock *TT, *FT;
5736   if (TrueBlock == nullptr) {
5737     TT = EndBlock;
5738     FT = FalseBlock;
5739     TrueBlock = StartBlock;
5740   } else if (FalseBlock == nullptr) {
5741     TT = TrueBlock;
5742     FT = EndBlock;
5743     FalseBlock = StartBlock;
5744   } else {
5745     TT = TrueBlock;
5746     FT = FalseBlock;
5747   }
5748   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5749 
5750   SmallPtrSet<const Instruction *, 2> INS;
5751   INS.insert(ASI.begin(), ASI.end());
5752   // Use reverse iterator because later select may use the value of the
5753   // earlier select, and we need to propagate value through earlier select
5754   // to get the PHI operand.
5755   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5756     SelectInst *SI = *It;
5757     // The select itself is replaced with a PHI Node.
5758     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5759     PN->takeName(SI);
5760     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5761     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5762 
5763     SI->replaceAllUsesWith(PN);
5764     SI->eraseFromParent();
5765     INS.erase(SI);
5766     ++NumSelectsExpanded;
5767   }
5768 
5769   // Instruct OptimizeBlock to skip to the next block.
5770   CurInstIterator = StartBlock->end();
5771   return true;
5772 }
5773 
5774 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5775   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5776   int SplatElem = -1;
5777   for (unsigned i = 0; i < Mask.size(); ++i) {
5778     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5779       return false;
5780     SplatElem = Mask[i];
5781   }
5782 
5783   return true;
5784 }
5785 
5786 /// Some targets have expensive vector shifts if the lanes aren't all the same
5787 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5788 /// it's often worth sinking a shufflevector splat down to its use so that
5789 /// codegen can spot all lanes are identical.
5790 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5791   BasicBlock *DefBB = SVI->getParent();
5792 
5793   // Only do this xform if variable vector shifts are particularly expensive.
5794   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5795     return false;
5796 
5797   // We only expect better codegen by sinking a shuffle if we can recognise a
5798   // constant splat.
5799   if (!isBroadcastShuffle(SVI))
5800     return false;
5801 
5802   // InsertedShuffles - Only insert a shuffle in each block once.
5803   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5804 
5805   bool MadeChange = false;
5806   for (User *U : SVI->users()) {
5807     Instruction *UI = cast<Instruction>(U);
5808 
5809     // Figure out which BB this ext is used in.
5810     BasicBlock *UserBB = UI->getParent();
5811     if (UserBB == DefBB) continue;
5812 
5813     // For now only apply this when the splat is used by a shift instruction.
5814     if (!UI->isShift()) continue;
5815 
5816     // Everything checks out, sink the shuffle if the user's block doesn't
5817     // already have a copy.
5818     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5819 
5820     if (!InsertedShuffle) {
5821       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5822       assert(InsertPt != UserBB->end());
5823       InsertedShuffle =
5824           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5825                                 SVI->getOperand(2), "", &*InsertPt);
5826     }
5827 
5828     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5829     MadeChange = true;
5830   }
5831 
5832   // If we removed all uses, nuke the shuffle.
5833   if (SVI->use_empty()) {
5834     SVI->eraseFromParent();
5835     MadeChange = true;
5836   }
5837 
5838   return MadeChange;
5839 }
5840 
5841 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5842   if (!TLI || !DL)
5843     return false;
5844 
5845   Value *Cond = SI->getCondition();
5846   Type *OldType = Cond->getType();
5847   LLVMContext &Context = Cond->getContext();
5848   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5849   unsigned RegWidth = RegType.getSizeInBits();
5850 
5851   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5852     return false;
5853 
5854   // If the register width is greater than the type width, expand the condition
5855   // of the switch instruction and each case constant to the width of the
5856   // register. By widening the type of the switch condition, subsequent
5857   // comparisons (for case comparisons) will not need to be extended to the
5858   // preferred register width, so we will potentially eliminate N-1 extends,
5859   // where N is the number of cases in the switch.
5860   auto *NewType = Type::getIntNTy(Context, RegWidth);
5861 
5862   // Zero-extend the switch condition and case constants unless the switch
5863   // condition is a function argument that is already being sign-extended.
5864   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5865   // everything instead.
5866   Instruction::CastOps ExtType = Instruction::ZExt;
5867   if (auto *Arg = dyn_cast<Argument>(Cond))
5868     if (Arg->hasSExtAttr())
5869       ExtType = Instruction::SExt;
5870 
5871   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5872   ExtInst->insertBefore(SI);
5873   SI->setCondition(ExtInst);
5874   for (auto Case : SI->cases()) {
5875     APInt NarrowConst = Case.getCaseValue()->getValue();
5876     APInt WideConst = (ExtType == Instruction::ZExt) ?
5877                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5878     Case.setValue(ConstantInt::get(Context, WideConst));
5879   }
5880 
5881   return true;
5882 }
5883 
5884 
5885 namespace {
5886 
5887 /// \brief Helper class to promote a scalar operation to a vector one.
5888 /// This class is used to move downward extractelement transition.
5889 /// E.g.,
5890 /// a = vector_op <2 x i32>
5891 /// b = extractelement <2 x i32> a, i32 0
5892 /// c = scalar_op b
5893 /// store c
5894 ///
5895 /// =>
5896 /// a = vector_op <2 x i32>
5897 /// c = vector_op a (equivalent to scalar_op on the related lane)
5898 /// * d = extractelement <2 x i32> c, i32 0
5899 /// * store d
5900 /// Assuming both extractelement and store can be combine, we get rid of the
5901 /// transition.
5902 class VectorPromoteHelper {
5903   /// DataLayout associated with the current module.
5904   const DataLayout &DL;
5905 
5906   /// Used to perform some checks on the legality of vector operations.
5907   const TargetLowering &TLI;
5908 
5909   /// Used to estimated the cost of the promoted chain.
5910   const TargetTransformInfo &TTI;
5911 
5912   /// The transition being moved downwards.
5913   Instruction *Transition;
5914 
5915   /// The sequence of instructions to be promoted.
5916   SmallVector<Instruction *, 4> InstsToBePromoted;
5917 
5918   /// Cost of combining a store and an extract.
5919   unsigned StoreExtractCombineCost;
5920 
5921   /// Instruction that will be combined with the transition.
5922   Instruction *CombineInst = nullptr;
5923 
5924   /// \brief The instruction that represents the current end of the transition.
5925   /// Since we are faking the promotion until we reach the end of the chain
5926   /// of computation, we need a way to get the current end of the transition.
5927   Instruction *getEndOfTransition() const {
5928     if (InstsToBePromoted.empty())
5929       return Transition;
5930     return InstsToBePromoted.back();
5931   }
5932 
5933   /// \brief Return the index of the original value in the transition.
5934   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5935   /// c, is at index 0.
5936   unsigned getTransitionOriginalValueIdx() const {
5937     assert(isa<ExtractElementInst>(Transition) &&
5938            "Other kind of transitions are not supported yet");
5939     return 0;
5940   }
5941 
5942   /// \brief Return the index of the index in the transition.
5943   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5944   /// is at index 1.
5945   unsigned getTransitionIdx() const {
5946     assert(isa<ExtractElementInst>(Transition) &&
5947            "Other kind of transitions are not supported yet");
5948     return 1;
5949   }
5950 
5951   /// \brief Get the type of the transition.
5952   /// This is the type of the original value.
5953   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5954   /// transition is <2 x i32>.
5955   Type *getTransitionType() const {
5956     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5957   }
5958 
5959   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5960   /// I.e., we have the following sequence:
5961   /// Def = Transition <ty1> a to <ty2>
5962   /// b = ToBePromoted <ty2> Def, ...
5963   /// =>
5964   /// b = ToBePromoted <ty1> a, ...
5965   /// Def = Transition <ty1> ToBePromoted to <ty2>
5966   void promoteImpl(Instruction *ToBePromoted);
5967 
5968   /// \brief Check whether or not it is profitable to promote all the
5969   /// instructions enqueued to be promoted.
5970   bool isProfitableToPromote() {
5971     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5972     unsigned Index = isa<ConstantInt>(ValIdx)
5973                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5974                          : -1;
5975     Type *PromotedType = getTransitionType();
5976 
5977     StoreInst *ST = cast<StoreInst>(CombineInst);
5978     unsigned AS = ST->getPointerAddressSpace();
5979     unsigned Align = ST->getAlignment();
5980     // Check if this store is supported.
5981     if (!TLI.allowsMisalignedMemoryAccesses(
5982             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5983             Align)) {
5984       // If this is not supported, there is no way we can combine
5985       // the extract with the store.
5986       return false;
5987     }
5988 
5989     // The scalar chain of computation has to pay for the transition
5990     // scalar to vector.
5991     // The vector chain has to account for the combining cost.
5992     uint64_t ScalarCost =
5993         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5994     uint64_t VectorCost = StoreExtractCombineCost;
5995     for (const auto &Inst : InstsToBePromoted) {
5996       // Compute the cost.
5997       // By construction, all instructions being promoted are arithmetic ones.
5998       // Moreover, one argument is a constant that can be viewed as a splat
5999       // constant.
6000       Value *Arg0 = Inst->getOperand(0);
6001       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6002                             isa<ConstantFP>(Arg0);
6003       TargetTransformInfo::OperandValueKind Arg0OVK =
6004           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6005                          : TargetTransformInfo::OK_AnyValue;
6006       TargetTransformInfo::OperandValueKind Arg1OVK =
6007           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6008                           : TargetTransformInfo::OK_AnyValue;
6009       ScalarCost += TTI.getArithmeticInstrCost(
6010           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6011       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6012                                                Arg0OVK, Arg1OVK);
6013     }
6014     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6015                  << ScalarCost << "\nVector: " << VectorCost << '\n');
6016     return ScalarCost > VectorCost;
6017   }
6018 
6019   /// \brief Generate a constant vector with \p Val with the same
6020   /// number of elements as the transition.
6021   /// \p UseSplat defines whether or not \p Val should be replicated
6022   /// across the whole vector.
6023   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6024   /// otherwise we generate a vector with as many undef as possible:
6025   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6026   /// used at the index of the extract.
6027   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6028     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6029     if (!UseSplat) {
6030       // If we cannot determine where the constant must be, we have to
6031       // use a splat constant.
6032       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6033       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6034         ExtractIdx = CstVal->getSExtValue();
6035       else
6036         UseSplat = true;
6037     }
6038 
6039     unsigned End = getTransitionType()->getVectorNumElements();
6040     if (UseSplat)
6041       return ConstantVector::getSplat(End, Val);
6042 
6043     SmallVector<Constant *, 4> ConstVec;
6044     UndefValue *UndefVal = UndefValue::get(Val->getType());
6045     for (unsigned Idx = 0; Idx != End; ++Idx) {
6046       if (Idx == ExtractIdx)
6047         ConstVec.push_back(Val);
6048       else
6049         ConstVec.push_back(UndefVal);
6050     }
6051     return ConstantVector::get(ConstVec);
6052   }
6053 
6054   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
6055   /// in \p Use can trigger undefined behavior.
6056   static bool canCauseUndefinedBehavior(const Instruction *Use,
6057                                         unsigned OperandIdx) {
6058     // This is not safe to introduce undef when the operand is on
6059     // the right hand side of a division-like instruction.
6060     if (OperandIdx != 1)
6061       return false;
6062     switch (Use->getOpcode()) {
6063     default:
6064       return false;
6065     case Instruction::SDiv:
6066     case Instruction::UDiv:
6067     case Instruction::SRem:
6068     case Instruction::URem:
6069       return true;
6070     case Instruction::FDiv:
6071     case Instruction::FRem:
6072       return !Use->hasNoNaNs();
6073     }
6074     llvm_unreachable(nullptr);
6075   }
6076 
6077 public:
6078   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6079                       const TargetTransformInfo &TTI, Instruction *Transition,
6080                       unsigned CombineCost)
6081       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6082         StoreExtractCombineCost(CombineCost) {
6083     assert(Transition && "Do not know how to promote null");
6084   }
6085 
6086   /// \brief Check if we can promote \p ToBePromoted to \p Type.
6087   bool canPromote(const Instruction *ToBePromoted) const {
6088     // We could support CastInst too.
6089     return isa<BinaryOperator>(ToBePromoted);
6090   }
6091 
6092   /// \brief Check if it is profitable to promote \p ToBePromoted
6093   /// by moving downward the transition through.
6094   bool shouldPromote(const Instruction *ToBePromoted) const {
6095     // Promote only if all the operands can be statically expanded.
6096     // Indeed, we do not want to introduce any new kind of transitions.
6097     for (const Use &U : ToBePromoted->operands()) {
6098       const Value *Val = U.get();
6099       if (Val == getEndOfTransition()) {
6100         // If the use is a division and the transition is on the rhs,
6101         // we cannot promote the operation, otherwise we may create a
6102         // division by zero.
6103         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6104           return false;
6105         continue;
6106       }
6107       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6108           !isa<ConstantFP>(Val))
6109         return false;
6110     }
6111     // Check that the resulting operation is legal.
6112     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6113     if (!ISDOpcode)
6114       return false;
6115     return StressStoreExtract ||
6116            TLI.isOperationLegalOrCustom(
6117                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6118   }
6119 
6120   /// \brief Check whether or not \p Use can be combined
6121   /// with the transition.
6122   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6123   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6124 
6125   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
6126   void enqueueForPromotion(Instruction *ToBePromoted) {
6127     InstsToBePromoted.push_back(ToBePromoted);
6128   }
6129 
6130   /// \brief Set the instruction that will be combined with the transition.
6131   void recordCombineInstruction(Instruction *ToBeCombined) {
6132     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6133     CombineInst = ToBeCombined;
6134   }
6135 
6136   /// \brief Promote all the instructions enqueued for promotion if it is
6137   /// is profitable.
6138   /// \return True if the promotion happened, false otherwise.
6139   bool promote() {
6140     // Check if there is something to promote.
6141     // Right now, if we do not have anything to combine with,
6142     // we assume the promotion is not profitable.
6143     if (InstsToBePromoted.empty() || !CombineInst)
6144       return false;
6145 
6146     // Check cost.
6147     if (!StressStoreExtract && !isProfitableToPromote())
6148       return false;
6149 
6150     // Promote.
6151     for (auto &ToBePromoted : InstsToBePromoted)
6152       promoteImpl(ToBePromoted);
6153     InstsToBePromoted.clear();
6154     return true;
6155   }
6156 };
6157 
6158 } // end anonymous namespace
6159 
6160 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6161   // At this point, we know that all the operands of ToBePromoted but Def
6162   // can be statically promoted.
6163   // For Def, we need to use its parameter in ToBePromoted:
6164   // b = ToBePromoted ty1 a
6165   // Def = Transition ty1 b to ty2
6166   // Move the transition down.
6167   // 1. Replace all uses of the promoted operation by the transition.
6168   // = ... b => = ... Def.
6169   assert(ToBePromoted->getType() == Transition->getType() &&
6170          "The type of the result of the transition does not match "
6171          "the final type");
6172   ToBePromoted->replaceAllUsesWith(Transition);
6173   // 2. Update the type of the uses.
6174   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6175   Type *TransitionTy = getTransitionType();
6176   ToBePromoted->mutateType(TransitionTy);
6177   // 3. Update all the operands of the promoted operation with promoted
6178   // operands.
6179   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6180   for (Use &U : ToBePromoted->operands()) {
6181     Value *Val = U.get();
6182     Value *NewVal = nullptr;
6183     if (Val == Transition)
6184       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6185     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6186              isa<ConstantFP>(Val)) {
6187       // Use a splat constant if it is not safe to use undef.
6188       NewVal = getConstantVector(
6189           cast<Constant>(Val),
6190           isa<UndefValue>(Val) ||
6191               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6192     } else
6193       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6194                        "this?");
6195     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6196   }
6197   Transition->moveAfter(ToBePromoted);
6198   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6199 }
6200 
6201 /// Some targets can do store(extractelement) with one instruction.
6202 /// Try to push the extractelement towards the stores when the target
6203 /// has this feature and this is profitable.
6204 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6205   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6206   if (DisableStoreExtract || !TLI ||
6207       (!StressStoreExtract &&
6208        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6209                                        Inst->getOperand(1), CombineCost)))
6210     return false;
6211 
6212   // At this point we know that Inst is a vector to scalar transition.
6213   // Try to move it down the def-use chain, until:
6214   // - We can combine the transition with its single use
6215   //   => we got rid of the transition.
6216   // - We escape the current basic block
6217   //   => we would need to check that we are moving it at a cheaper place and
6218   //      we do not do that for now.
6219   BasicBlock *Parent = Inst->getParent();
6220   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6221   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6222   // If the transition has more than one use, assume this is not going to be
6223   // beneficial.
6224   while (Inst->hasOneUse()) {
6225     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6226     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6227 
6228     if (ToBePromoted->getParent() != Parent) {
6229       DEBUG(dbgs() << "Instruction to promote is in a different block ("
6230                    << ToBePromoted->getParent()->getName()
6231                    << ") than the transition (" << Parent->getName() << ").\n");
6232       return false;
6233     }
6234 
6235     if (VPH.canCombine(ToBePromoted)) {
6236       DEBUG(dbgs() << "Assume " << *Inst << '\n'
6237                    << "will be combined with: " << *ToBePromoted << '\n');
6238       VPH.recordCombineInstruction(ToBePromoted);
6239       bool Changed = VPH.promote();
6240       NumStoreExtractExposed += Changed;
6241       return Changed;
6242     }
6243 
6244     DEBUG(dbgs() << "Try promoting.\n");
6245     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6246       return false;
6247 
6248     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6249 
6250     VPH.enqueueForPromotion(ToBePromoted);
6251     Inst = ToBePromoted;
6252   }
6253   return false;
6254 }
6255 
6256 /// For the instruction sequence of store below, F and I values
6257 /// are bundled together as an i64 value before being stored into memory.
6258 /// Sometimes it is more efficent to generate separate stores for F and I,
6259 /// which can remove the bitwise instructions or sink them to colder places.
6260 ///
6261 ///   (store (or (zext (bitcast F to i32) to i64),
6262 ///              (shl (zext I to i64), 32)), addr)  -->
6263 ///   (store F, addr) and (store I, addr+4)
6264 ///
6265 /// Similarly, splitting for other merged store can also be beneficial, like:
6266 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6267 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6268 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6269 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6270 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6271 ///
6272 /// We allow each target to determine specifically which kind of splitting is
6273 /// supported.
6274 ///
6275 /// The store patterns are commonly seen from the simple code snippet below
6276 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6277 ///   void goo(const std::pair<int, float> &);
6278 ///   hoo() {
6279 ///     ...
6280 ///     goo(std::make_pair(tmp, ftmp));
6281 ///     ...
6282 ///   }
6283 ///
6284 /// Although we already have similar splitting in DAG Combine, we duplicate
6285 /// it in CodeGenPrepare to catch the case in which pattern is across
6286 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6287 /// during code expansion.
6288 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6289                                 const TargetLowering &TLI) {
6290   // Handle simple but common cases only.
6291   Type *StoreType = SI.getValueOperand()->getType();
6292   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6293       DL.getTypeSizeInBits(StoreType) == 0)
6294     return false;
6295 
6296   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6297   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6298   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6299       DL.getTypeSizeInBits(SplitStoreType))
6300     return false;
6301 
6302   // Match the following patterns:
6303   // (store (or (zext LValue to i64),
6304   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6305   //  or
6306   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6307   //            (zext LValue to i64),
6308   // Expect both operands of OR and the first operand of SHL have only
6309   // one use.
6310   Value *LValue, *HValue;
6311   if (!match(SI.getValueOperand(),
6312              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6313                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6314                                    m_SpecificInt(HalfValBitSize))))))
6315     return false;
6316 
6317   // Check LValue and HValue are int with size less or equal than 32.
6318   if (!LValue->getType()->isIntegerTy() ||
6319       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6320       !HValue->getType()->isIntegerTy() ||
6321       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6322     return false;
6323 
6324   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6325   // as the input of target query.
6326   auto *LBC = dyn_cast<BitCastInst>(LValue);
6327   auto *HBC = dyn_cast<BitCastInst>(HValue);
6328   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6329                   : EVT::getEVT(LValue->getType());
6330   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6331                    : EVT::getEVT(HValue->getType());
6332   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6333     return false;
6334 
6335   // Start to split store.
6336   IRBuilder<> Builder(SI.getContext());
6337   Builder.SetInsertPoint(&SI);
6338 
6339   // If LValue/HValue is a bitcast in another BB, create a new one in current
6340   // BB so it may be merged with the splitted stores by dag combiner.
6341   if (LBC && LBC->getParent() != SI.getParent())
6342     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6343   if (HBC && HBC->getParent() != SI.getParent())
6344     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6345 
6346   auto CreateSplitStore = [&](Value *V, bool Upper) {
6347     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6348     Value *Addr = Builder.CreateBitCast(
6349         SI.getOperand(1),
6350         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6351     if (Upper)
6352       Addr = Builder.CreateGEP(
6353           SplitStoreType, Addr,
6354           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6355     Builder.CreateAlignedStore(
6356         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6357   };
6358 
6359   CreateSplitStore(LValue, false);
6360   CreateSplitStore(HValue, true);
6361 
6362   // Delete the old store.
6363   SI.eraseFromParent();
6364   return true;
6365 }
6366 
6367 // Return true if the GEP has two operands, the first operand is of a sequential
6368 // type, and the second operand is a constant.
6369 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6370   gep_type_iterator I = gep_type_begin(*GEP);
6371   return GEP->getNumOperands() == 2 &&
6372       I.isSequential() &&
6373       isa<ConstantInt>(GEP->getOperand(1));
6374 }
6375 
6376 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6377 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6378 // reducing liveness interference across those edges benefits global register
6379 // allocation. Currently handles only certain cases.
6380 //
6381 // For example, unmerge %GEPI and %UGEPI as below.
6382 //
6383 // ---------- BEFORE ----------
6384 // SrcBlock:
6385 //   ...
6386 //   %GEPIOp = ...
6387 //   ...
6388 //   %GEPI = gep %GEPIOp, Idx
6389 //   ...
6390 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6391 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6392 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6393 //   %UGEPI)
6394 //
6395 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6396 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6397 // ...
6398 //
6399 // DstBi:
6400 //   ...
6401 //   %UGEPI = gep %GEPIOp, UIdx
6402 // ...
6403 // ---------------------------
6404 //
6405 // ---------- AFTER ----------
6406 // SrcBlock:
6407 //   ... (same as above)
6408 //    (* %GEPI is still alive on the indirectbr edges)
6409 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6410 //    unmerging)
6411 // ...
6412 //
6413 // DstBi:
6414 //   ...
6415 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6416 //   ...
6417 // ---------------------------
6418 //
6419 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6420 // no longer alive on them.
6421 //
6422 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6423 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6424 // not to disable further simplications and optimizations as a result of GEP
6425 // merging.
6426 //
6427 // Note this unmerging may increase the length of the data flow critical path
6428 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6429 // between the register pressure and the length of data-flow critical
6430 // path. Restricting this to the uncommon IndirectBr case would minimize the
6431 // impact of potentially longer critical path, if any, and the impact on compile
6432 // time.
6433 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6434                                              const TargetTransformInfo *TTI) {
6435   BasicBlock *SrcBlock = GEPI->getParent();
6436   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6437   // (non-IndirectBr) cases exit early here.
6438   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6439     return false;
6440   // Check that GEPI is a simple gep with a single constant index.
6441   if (!GEPSequentialConstIndexed(GEPI))
6442     return false;
6443   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6444   // Check that GEPI is a cheap one.
6445   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6446       > TargetTransformInfo::TCC_Basic)
6447     return false;
6448   Value *GEPIOp = GEPI->getOperand(0);
6449   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6450   if (!isa<Instruction>(GEPIOp))
6451     return false;
6452   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6453   if (GEPIOpI->getParent() != SrcBlock)
6454     return false;
6455   // Check that GEP is used outside the block, meaning it's alive on the
6456   // IndirectBr edge(s).
6457   if (find_if(GEPI->users(), [&](User *Usr) {
6458         if (auto *I = dyn_cast<Instruction>(Usr)) {
6459           if (I->getParent() != SrcBlock) {
6460             return true;
6461           }
6462         }
6463         return false;
6464       }) == GEPI->users().end())
6465     return false;
6466   // The second elements of the GEP chains to be unmerged.
6467   std::vector<GetElementPtrInst *> UGEPIs;
6468   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6469   // on IndirectBr edges.
6470   for (User *Usr : GEPIOp->users()) {
6471     if (Usr == GEPI) continue;
6472     // Check if Usr is an Instruction. If not, give up.
6473     if (!isa<Instruction>(Usr))
6474       return false;
6475     auto *UI = cast<Instruction>(Usr);
6476     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6477     if (UI->getParent() == SrcBlock)
6478       continue;
6479     // Check if Usr is a GEP. If not, give up.
6480     if (!isa<GetElementPtrInst>(Usr))
6481       return false;
6482     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6483     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6484     // the pointer operand to it. If so, record it in the vector. If not, give
6485     // up.
6486     if (!GEPSequentialConstIndexed(UGEPI))
6487       return false;
6488     if (UGEPI->getOperand(0) != GEPIOp)
6489       return false;
6490     if (GEPIIdx->getType() !=
6491         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6492       return false;
6493     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6494     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6495         > TargetTransformInfo::TCC_Basic)
6496       return false;
6497     UGEPIs.push_back(UGEPI);
6498   }
6499   if (UGEPIs.size() == 0)
6500     return false;
6501   // Check the materializing cost of (Uidx-Idx).
6502   for (GetElementPtrInst *UGEPI : UGEPIs) {
6503     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6504     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6505     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6506     if (ImmCost > TargetTransformInfo::TCC_Basic)
6507       return false;
6508   }
6509   // Now unmerge between GEPI and UGEPIs.
6510   for (GetElementPtrInst *UGEPI : UGEPIs) {
6511     UGEPI->setOperand(0, GEPI);
6512     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6513     Constant *NewUGEPIIdx =
6514         ConstantInt::get(GEPIIdx->getType(),
6515                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6516     UGEPI->setOperand(1, NewUGEPIIdx);
6517     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6518     // inbounds to avoid UB.
6519     if (!GEPI->isInBounds()) {
6520       UGEPI->setIsInBounds(false);
6521     }
6522   }
6523   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6524   // alive on IndirectBr edges).
6525   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6526         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6527       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6528   return true;
6529 }
6530 
6531 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6532   // Bail out if we inserted the instruction to prevent optimizations from
6533   // stepping on each other's toes.
6534   if (InsertedInsts.count(I))
6535     return false;
6536 
6537   if (PHINode *P = dyn_cast<PHINode>(I)) {
6538     // It is possible for very late stage optimizations (such as SimplifyCFG)
6539     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6540     // trivial PHI, go ahead and zap it here.
6541     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6542       P->replaceAllUsesWith(V);
6543       P->eraseFromParent();
6544       ++NumPHIsElim;
6545       return true;
6546     }
6547     return false;
6548   }
6549 
6550   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6551     // If the source of the cast is a constant, then this should have
6552     // already been constant folded.  The only reason NOT to constant fold
6553     // it is if something (e.g. LSR) was careful to place the constant
6554     // evaluation in a block other than then one that uses it (e.g. to hoist
6555     // the address of globals out of a loop).  If this is the case, we don't
6556     // want to forward-subst the cast.
6557     if (isa<Constant>(CI->getOperand(0)))
6558       return false;
6559 
6560     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6561       return true;
6562 
6563     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6564       /// Sink a zext or sext into its user blocks if the target type doesn't
6565       /// fit in one register
6566       if (TLI &&
6567           TLI->getTypeAction(CI->getContext(),
6568                              TLI->getValueType(*DL, CI->getType())) ==
6569               TargetLowering::TypeExpandInteger) {
6570         return SinkCast(CI);
6571       } else {
6572         bool MadeChange = optimizeExt(I);
6573         return MadeChange | optimizeExtUses(I);
6574       }
6575     }
6576     return false;
6577   }
6578 
6579   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6580     if (!TLI || !TLI->hasMultipleConditionRegisters())
6581       return OptimizeCmpExpression(CI, TLI);
6582 
6583   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6584     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6585     if (TLI) {
6586       bool Modified = optimizeLoadExt(LI);
6587       unsigned AS = LI->getPointerAddressSpace();
6588       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6589       return Modified;
6590     }
6591     return false;
6592   }
6593 
6594   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6595     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6596       return true;
6597     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6598     if (TLI) {
6599       unsigned AS = SI->getPointerAddressSpace();
6600       return optimizeMemoryInst(I, SI->getOperand(1),
6601                                 SI->getOperand(0)->getType(), AS);
6602     }
6603     return false;
6604   }
6605 
6606   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6607       unsigned AS = RMW->getPointerAddressSpace();
6608       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6609                                 RMW->getType(), AS);
6610   }
6611 
6612   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6613       unsigned AS = CmpX->getPointerAddressSpace();
6614       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6615                                 CmpX->getCompareOperand()->getType(), AS);
6616   }
6617 
6618   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6619 
6620   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6621       EnableAndCmpSinking && TLI)
6622     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6623 
6624   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6625                 BinOp->getOpcode() == Instruction::LShr)) {
6626     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6627     if (TLI && CI && TLI->hasExtractBitsInsn())
6628       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6629 
6630     return false;
6631   }
6632 
6633   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6634     if (GEPI->hasAllZeroIndices()) {
6635       /// The GEP operand must be a pointer, so must its result -> BitCast
6636       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6637                                         GEPI->getName(), GEPI);
6638       GEPI->replaceAllUsesWith(NC);
6639       GEPI->eraseFromParent();
6640       ++NumGEPsElim;
6641       optimizeInst(NC, ModifiedDT);
6642       return true;
6643     }
6644     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6645       return true;
6646     }
6647     return false;
6648   }
6649 
6650   if (CallInst *CI = dyn_cast<CallInst>(I))
6651     return optimizeCallInst(CI, ModifiedDT);
6652 
6653   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6654     return optimizeSelectInst(SI);
6655 
6656   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6657     return optimizeShuffleVectorInst(SVI);
6658 
6659   if (auto *Switch = dyn_cast<SwitchInst>(I))
6660     return optimizeSwitchInst(Switch);
6661 
6662   if (isa<ExtractElementInst>(I))
6663     return optimizeExtractElementInst(I);
6664 
6665   return false;
6666 }
6667 
6668 /// Given an OR instruction, check to see if this is a bitreverse
6669 /// idiom. If so, insert the new intrinsic and return true.
6670 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6671                            const TargetLowering &TLI) {
6672   if (!I.getType()->isIntegerTy() ||
6673       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6674                                     TLI.getValueType(DL, I.getType(), true)))
6675     return false;
6676 
6677   SmallVector<Instruction*, 4> Insts;
6678   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6679     return false;
6680   Instruction *LastInst = Insts.back();
6681   I.replaceAllUsesWith(LastInst);
6682   RecursivelyDeleteTriviallyDeadInstructions(&I);
6683   return true;
6684 }
6685 
6686 // In this pass we look for GEP and cast instructions that are used
6687 // across basic blocks and rewrite them to improve basic-block-at-a-time
6688 // selection.
6689 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6690   SunkAddrs.clear();
6691   bool MadeChange = false;
6692 
6693   CurInstIterator = BB.begin();
6694   while (CurInstIterator != BB.end()) {
6695     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6696     if (ModifiedDT)
6697       return true;
6698   }
6699 
6700   bool MadeBitReverse = true;
6701   while (TLI && MadeBitReverse) {
6702     MadeBitReverse = false;
6703     for (auto &I : reverse(BB)) {
6704       if (makeBitReverse(I, *DL, *TLI)) {
6705         MadeBitReverse = MadeChange = true;
6706         ModifiedDT = true;
6707         break;
6708       }
6709     }
6710   }
6711   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6712 
6713   return MadeChange;
6714 }
6715 
6716 // llvm.dbg.value is far away from the value then iSel may not be able
6717 // handle it properly. iSel will drop llvm.dbg.value if it can not
6718 // find a node corresponding to the value.
6719 bool CodeGenPrepare::placeDbgValues(Function &F) {
6720   bool MadeChange = false;
6721   for (BasicBlock &BB : F) {
6722     Instruction *PrevNonDbgInst = nullptr;
6723     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6724       Instruction *Insn = &*BI++;
6725       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6726       // Leave dbg.values that refer to an alloca alone. These
6727       // instrinsics describe the address of a variable (= the alloca)
6728       // being taken.  They should not be moved next to the alloca
6729       // (and to the beginning of the scope), but rather stay close to
6730       // where said address is used.
6731       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6732         PrevNonDbgInst = Insn;
6733         continue;
6734       }
6735 
6736       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6737       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6738         // If VI is a phi in a block with an EHPad terminator, we can't insert
6739         // after it.
6740         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6741           continue;
6742         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6743         DVI->removeFromParent();
6744         if (isa<PHINode>(VI))
6745           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6746         else
6747           DVI->insertAfter(VI);
6748         MadeChange = true;
6749         ++NumDbgValueMoved;
6750       }
6751     }
6752   }
6753   return MadeChange;
6754 }
6755 
6756 /// \brief Scale down both weights to fit into uint32_t.
6757 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6758   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6759   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6760   NewTrue = NewTrue / Scale;
6761   NewFalse = NewFalse / Scale;
6762 }
6763 
6764 /// \brief Some targets prefer to split a conditional branch like:
6765 /// \code
6766 ///   %0 = icmp ne i32 %a, 0
6767 ///   %1 = icmp ne i32 %b, 0
6768 ///   %or.cond = or i1 %0, %1
6769 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6770 /// \endcode
6771 /// into multiple branch instructions like:
6772 /// \code
6773 ///   bb1:
6774 ///     %0 = icmp ne i32 %a, 0
6775 ///     br i1 %0, label %TrueBB, label %bb2
6776 ///   bb2:
6777 ///     %1 = icmp ne i32 %b, 0
6778 ///     br i1 %1, label %TrueBB, label %FalseBB
6779 /// \endcode
6780 /// This usually allows instruction selection to do even further optimizations
6781 /// and combine the compare with the branch instruction. Currently this is
6782 /// applied for targets which have "cheap" jump instructions.
6783 ///
6784 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6785 ///
6786 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6787   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6788     return false;
6789 
6790   bool MadeChange = false;
6791   for (auto &BB : F) {
6792     // Does this BB end with the following?
6793     //   %cond1 = icmp|fcmp|binary instruction ...
6794     //   %cond2 = icmp|fcmp|binary instruction ...
6795     //   %cond.or = or|and i1 %cond1, cond2
6796     //   br i1 %cond.or label %dest1, label %dest2"
6797     BinaryOperator *LogicOp;
6798     BasicBlock *TBB, *FBB;
6799     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6800       continue;
6801 
6802     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6803     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6804       continue;
6805 
6806     unsigned Opc;
6807     Value *Cond1, *Cond2;
6808     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6809                              m_OneUse(m_Value(Cond2)))))
6810       Opc = Instruction::And;
6811     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6812                                  m_OneUse(m_Value(Cond2)))))
6813       Opc = Instruction::Or;
6814     else
6815       continue;
6816 
6817     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6818         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6819       continue;
6820 
6821     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6822 
6823     // Create a new BB.
6824     auto TmpBB =
6825         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6826                            BB.getParent(), BB.getNextNode());
6827 
6828     // Update original basic block by using the first condition directly by the
6829     // branch instruction and removing the no longer needed and/or instruction.
6830     Br1->setCondition(Cond1);
6831     LogicOp->eraseFromParent();
6832 
6833     // Depending on the conditon we have to either replace the true or the false
6834     // successor of the original branch instruction.
6835     if (Opc == Instruction::And)
6836       Br1->setSuccessor(0, TmpBB);
6837     else
6838       Br1->setSuccessor(1, TmpBB);
6839 
6840     // Fill in the new basic block.
6841     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6842     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6843       I->removeFromParent();
6844       I->insertBefore(Br2);
6845     }
6846 
6847     // Update PHI nodes in both successors. The original BB needs to be
6848     // replaced in one successor's PHI nodes, because the branch comes now from
6849     // the newly generated BB (NewBB). In the other successor we need to add one
6850     // incoming edge to the PHI nodes, because both branch instructions target
6851     // now the same successor. Depending on the original branch condition
6852     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6853     // we perform the correct update for the PHI nodes.
6854     // This doesn't change the successor order of the just created branch
6855     // instruction (or any other instruction).
6856     if (Opc == Instruction::Or)
6857       std::swap(TBB, FBB);
6858 
6859     // Replace the old BB with the new BB.
6860     for (auto &I : *TBB) {
6861       PHINode *PN = dyn_cast<PHINode>(&I);
6862       if (!PN)
6863         break;
6864       int i;
6865       while ((i = PN->getBasicBlockIndex(&BB)) >= 0)
6866         PN->setIncomingBlock(i, TmpBB);
6867     }
6868 
6869     // Add another incoming edge form the new BB.
6870     for (auto &I : *FBB) {
6871       PHINode *PN = dyn_cast<PHINode>(&I);
6872       if (!PN)
6873         break;
6874       auto *Val = PN->getIncomingValueForBlock(&BB);
6875       PN->addIncoming(Val, TmpBB);
6876     }
6877 
6878     // Update the branch weights (from SelectionDAGBuilder::
6879     // FindMergedConditions).
6880     if (Opc == Instruction::Or) {
6881       // Codegen X | Y as:
6882       // BB1:
6883       //   jmp_if_X TBB
6884       //   jmp TmpBB
6885       // TmpBB:
6886       //   jmp_if_Y TBB
6887       //   jmp FBB
6888       //
6889 
6890       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6891       // The requirement is that
6892       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6893       //     = TrueProb for orignal BB.
6894       // Assuming the orignal weights are A and B, one choice is to set BB1's
6895       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6896       // assumes that
6897       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6898       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6899       // TmpBB, but the math is more complicated.
6900       uint64_t TrueWeight, FalseWeight;
6901       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6902         uint64_t NewTrueWeight = TrueWeight;
6903         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6904         scaleWeights(NewTrueWeight, NewFalseWeight);
6905         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6906                          .createBranchWeights(TrueWeight, FalseWeight));
6907 
6908         NewTrueWeight = TrueWeight;
6909         NewFalseWeight = 2 * FalseWeight;
6910         scaleWeights(NewTrueWeight, NewFalseWeight);
6911         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6912                          .createBranchWeights(TrueWeight, FalseWeight));
6913       }
6914     } else {
6915       // Codegen X & Y as:
6916       // BB1:
6917       //   jmp_if_X TmpBB
6918       //   jmp FBB
6919       // TmpBB:
6920       //   jmp_if_Y TBB
6921       //   jmp FBB
6922       //
6923       //  This requires creation of TmpBB after CurBB.
6924 
6925       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6926       // The requirement is that
6927       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6928       //     = FalseProb for orignal BB.
6929       // Assuming the orignal weights are A and B, one choice is to set BB1's
6930       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6931       // assumes that
6932       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6933       uint64_t TrueWeight, FalseWeight;
6934       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6935         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6936         uint64_t NewFalseWeight = FalseWeight;
6937         scaleWeights(NewTrueWeight, NewFalseWeight);
6938         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6939                          .createBranchWeights(TrueWeight, FalseWeight));
6940 
6941         NewTrueWeight = 2 * TrueWeight;
6942         NewFalseWeight = FalseWeight;
6943         scaleWeights(NewTrueWeight, NewFalseWeight);
6944         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6945                          .createBranchWeights(TrueWeight, FalseWeight));
6946       }
6947     }
6948 
6949     // Note: No point in getting fancy here, since the DT info is never
6950     // available to CodeGenPrepare.
6951     ModifiedDT = true;
6952 
6953     MadeChange = true;
6954 
6955     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6956           TmpBB->dump());
6957   }
6958   return MadeChange;
6959 }
6960