1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 476 F.setSectionPrefix("hot"); 477 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 478 F.setSectionPrefix("unlikely"); 479 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 480 PSI->isFunctionHotnessUnknown(F)) 481 F.setSectionPrefix("unknown"); 482 } 483 484 /// This optimization identifies DIV instructions that can be 485 /// profitably bypassed and carried out with a shorter, faster divide. 486 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 487 const DenseMap<unsigned int, unsigned int> &BypassWidths = 488 TLI->getBypassSlowDivWidths(); 489 BasicBlock* BB = &*F.begin(); 490 while (BB != nullptr) { 491 // bypassSlowDivision may create new BBs, but we don't want to reapply the 492 // optimization to those blocks. 493 BasicBlock* Next = BB->getNextNode(); 494 // F.hasOptSize is already checked in the outer if statement. 495 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 496 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 497 BB = Next; 498 } 499 } 500 501 // Eliminate blocks that contain only PHI nodes and an 502 // unconditional branch. 503 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 504 505 bool ModifiedDT = false; 506 if (!DisableBranchOpts) 507 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 508 509 // Split some critical edges where one of the sources is an indirect branch, 510 // to help generate sane code for PHIs involving such edges. 511 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 512 513 bool MadeChange = true; 514 while (MadeChange) { 515 MadeChange = false; 516 DT.reset(); 517 for (Function::iterator I = F.begin(); I != F.end(); ) { 518 BasicBlock *BB = &*I++; 519 bool ModifiedDTOnIteration = false; 520 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 521 522 // Restart BB iteration if the dominator tree of the Function was changed 523 if (ModifiedDTOnIteration) 524 break; 525 } 526 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 527 MadeChange |= mergeSExts(F); 528 if (!LargeOffsetGEPMap.empty()) 529 MadeChange |= splitLargeGEPOffsets(); 530 MadeChange |= optimizePhiTypes(F); 531 532 if (MadeChange) 533 eliminateFallThrough(F); 534 535 // Really free removed instructions during promotion. 536 for (Instruction *I : RemovedInsts) 537 I->deleteValue(); 538 539 EverMadeChange |= MadeChange; 540 SeenChainsForSExt.clear(); 541 ValToSExtendedUses.clear(); 542 RemovedInsts.clear(); 543 LargeOffsetGEPMap.clear(); 544 LargeOffsetGEPID.clear(); 545 } 546 547 NewGEPBases.clear(); 548 SunkAddrs.clear(); 549 550 if (!DisableBranchOpts) { 551 MadeChange = false; 552 // Use a set vector to get deterministic iteration order. The order the 553 // blocks are removed may affect whether or not PHI nodes in successors 554 // are removed. 555 SmallSetVector<BasicBlock*, 8> WorkList; 556 for (BasicBlock &BB : F) { 557 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 558 MadeChange |= ConstantFoldTerminator(&BB, true); 559 if (!MadeChange) continue; 560 561 for (SmallVectorImpl<BasicBlock*>::iterator 562 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 563 if (pred_empty(*II)) 564 WorkList.insert(*II); 565 } 566 567 // Delete the dead blocks and any of their dead successors. 568 MadeChange |= !WorkList.empty(); 569 while (!WorkList.empty()) { 570 BasicBlock *BB = WorkList.pop_back_val(); 571 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 572 573 DeleteDeadBlock(BB); 574 575 for (SmallVectorImpl<BasicBlock*>::iterator 576 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 577 if (pred_empty(*II)) 578 WorkList.insert(*II); 579 } 580 581 // Merge pairs of basic blocks with unconditional branches, connected by 582 // a single edge. 583 if (EverMadeChange || MadeChange) 584 MadeChange |= eliminateFallThrough(F); 585 586 EverMadeChange |= MadeChange; 587 } 588 589 if (!DisableGCOpts) { 590 SmallVector<GCStatepointInst *, 2> Statepoints; 591 for (BasicBlock &BB : F) 592 for (Instruction &I : BB) 593 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 594 Statepoints.push_back(SP); 595 for (auto &I : Statepoints) 596 EverMadeChange |= simplifyOffsetableRelocate(*I); 597 } 598 599 // Do this last to clean up use-before-def scenarios introduced by other 600 // preparatory transforms. 601 EverMadeChange |= placeDbgValues(F); 602 603 #ifndef NDEBUG 604 if (VerifyBFIUpdates) 605 verifyBFIUpdates(F); 606 #endif 607 608 return EverMadeChange; 609 } 610 611 /// An instruction is about to be deleted, so remove all references to it in our 612 /// GEP-tracking data strcutures. 613 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 614 LargeOffsetGEPMap.erase(V); 615 NewGEPBases.erase(V); 616 617 auto GEP = dyn_cast<GetElementPtrInst>(V); 618 if (!GEP) 619 return; 620 621 LargeOffsetGEPID.erase(GEP); 622 623 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 624 if (VecI == LargeOffsetGEPMap.end()) 625 return; 626 627 auto &GEPVector = VecI->second; 628 const auto &I = std::find_if(GEPVector.begin(), GEPVector.end(), 629 [=](auto &Elt) { return Elt.first == GEP; }); 630 if (I == GEPVector.end()) 631 return; 632 633 GEPVector.erase(I); 634 if (GEPVector.empty()) 635 LargeOffsetGEPMap.erase(VecI); 636 } 637 638 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 639 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 640 DominatorTree NewDT(F); 641 LoopInfo NewLI(NewDT); 642 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 643 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 644 NewBFI.verifyMatch(*BFI); 645 } 646 647 /// Merge basic blocks which are connected by a single edge, where one of the 648 /// basic blocks has a single successor pointing to the other basic block, 649 /// which has a single predecessor. 650 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 651 bool Changed = false; 652 // Scan all of the blocks in the function, except for the entry block. 653 // Use a temporary array to avoid iterator being invalidated when 654 // deleting blocks. 655 SmallVector<WeakTrackingVH, 16> Blocks; 656 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 657 Blocks.push_back(&Block); 658 659 SmallSet<WeakTrackingVH, 16> Preds; 660 for (auto &Block : Blocks) { 661 auto *BB = cast_or_null<BasicBlock>(Block); 662 if (!BB) 663 continue; 664 // If the destination block has a single pred, then this is a trivial 665 // edge, just collapse it. 666 BasicBlock *SinglePred = BB->getSinglePredecessor(); 667 668 // Don't merge if BB's address is taken. 669 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 670 671 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 672 if (Term && !Term->isConditional()) { 673 Changed = true; 674 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 675 676 // Merge BB into SinglePred and delete it. 677 MergeBlockIntoPredecessor(BB); 678 Preds.insert(SinglePred); 679 } 680 } 681 682 // (Repeatedly) merging blocks into their predecessors can create redundant 683 // debug intrinsics. 684 for (auto &Pred : Preds) 685 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 686 RemoveRedundantDbgInstrs(BB); 687 688 return Changed; 689 } 690 691 /// Find a destination block from BB if BB is mergeable empty block. 692 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 693 // If this block doesn't end with an uncond branch, ignore it. 694 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 695 if (!BI || !BI->isUnconditional()) 696 return nullptr; 697 698 // If the instruction before the branch (skipping debug info) isn't a phi 699 // node, then other stuff is happening here. 700 BasicBlock::iterator BBI = BI->getIterator(); 701 if (BBI != BB->begin()) { 702 --BBI; 703 while (isa<DbgInfoIntrinsic>(BBI)) { 704 if (BBI == BB->begin()) 705 break; 706 --BBI; 707 } 708 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 709 return nullptr; 710 } 711 712 // Do not break infinite loops. 713 BasicBlock *DestBB = BI->getSuccessor(0); 714 if (DestBB == BB) 715 return nullptr; 716 717 if (!canMergeBlocks(BB, DestBB)) 718 DestBB = nullptr; 719 720 return DestBB; 721 } 722 723 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 724 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 725 /// edges in ways that are non-optimal for isel. Start by eliminating these 726 /// blocks so we can split them the way we want them. 727 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 728 SmallPtrSet<BasicBlock *, 16> Preheaders; 729 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 730 while (!LoopList.empty()) { 731 Loop *L = LoopList.pop_back_val(); 732 LoopList.insert(LoopList.end(), L->begin(), L->end()); 733 if (BasicBlock *Preheader = L->getLoopPreheader()) 734 Preheaders.insert(Preheader); 735 } 736 737 bool MadeChange = false; 738 // Copy blocks into a temporary array to avoid iterator invalidation issues 739 // as we remove them. 740 // Note that this intentionally skips the entry block. 741 SmallVector<WeakTrackingVH, 16> Blocks; 742 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 743 Blocks.push_back(&Block); 744 745 for (auto &Block : Blocks) { 746 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 747 if (!BB) 748 continue; 749 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 750 if (!DestBB || 751 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 752 continue; 753 754 eliminateMostlyEmptyBlock(BB); 755 MadeChange = true; 756 } 757 return MadeChange; 758 } 759 760 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 761 BasicBlock *DestBB, 762 bool isPreheader) { 763 // Do not delete loop preheaders if doing so would create a critical edge. 764 // Loop preheaders can be good locations to spill registers. If the 765 // preheader is deleted and we create a critical edge, registers may be 766 // spilled in the loop body instead. 767 if (!DisablePreheaderProtect && isPreheader && 768 !(BB->getSinglePredecessor() && 769 BB->getSinglePredecessor()->getSingleSuccessor())) 770 return false; 771 772 // Skip merging if the block's successor is also a successor to any callbr 773 // that leads to this block. 774 // FIXME: Is this really needed? Is this a correctness issue? 775 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 776 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 777 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 778 if (DestBB == CBI->getSuccessor(i)) 779 return false; 780 } 781 782 // Try to skip merging if the unique predecessor of BB is terminated by a 783 // switch or indirect branch instruction, and BB is used as an incoming block 784 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 785 // add COPY instructions in the predecessor of BB instead of BB (if it is not 786 // merged). Note that the critical edge created by merging such blocks wont be 787 // split in MachineSink because the jump table is not analyzable. By keeping 788 // such empty block (BB), ISel will place COPY instructions in BB, not in the 789 // predecessor of BB. 790 BasicBlock *Pred = BB->getUniquePredecessor(); 791 if (!Pred || 792 !(isa<SwitchInst>(Pred->getTerminator()) || 793 isa<IndirectBrInst>(Pred->getTerminator()))) 794 return true; 795 796 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 797 return true; 798 799 // We use a simple cost heuristic which determine skipping merging is 800 // profitable if the cost of skipping merging is less than the cost of 801 // merging : Cost(skipping merging) < Cost(merging BB), where the 802 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 803 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 804 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 805 // Freq(Pred) / Freq(BB) > 2. 806 // Note that if there are multiple empty blocks sharing the same incoming 807 // value for the PHIs in the DestBB, we consider them together. In such 808 // case, Cost(merging BB) will be the sum of their frequencies. 809 810 if (!isa<PHINode>(DestBB->begin())) 811 return true; 812 813 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 814 815 // Find all other incoming blocks from which incoming values of all PHIs in 816 // DestBB are the same as the ones from BB. 817 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 818 ++PI) { 819 BasicBlock *DestBBPred = *PI; 820 if (DestBBPred == BB) 821 continue; 822 823 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 824 return DestPN.getIncomingValueForBlock(BB) == 825 DestPN.getIncomingValueForBlock(DestBBPred); 826 })) 827 SameIncomingValueBBs.insert(DestBBPred); 828 } 829 830 // See if all BB's incoming values are same as the value from Pred. In this 831 // case, no reason to skip merging because COPYs are expected to be place in 832 // Pred already. 833 if (SameIncomingValueBBs.count(Pred)) 834 return true; 835 836 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 837 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 838 839 for (auto *SameValueBB : SameIncomingValueBBs) 840 if (SameValueBB->getUniquePredecessor() == Pred && 841 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 842 BBFreq += BFI->getBlockFreq(SameValueBB); 843 844 return PredFreq.getFrequency() <= 845 BBFreq.getFrequency() * FreqRatioToSkipMerge; 846 } 847 848 /// Return true if we can merge BB into DestBB if there is a single 849 /// unconditional branch between them, and BB contains no other non-phi 850 /// instructions. 851 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 852 const BasicBlock *DestBB) const { 853 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 854 // the successor. If there are more complex condition (e.g. preheaders), 855 // don't mess around with them. 856 for (const PHINode &PN : BB->phis()) { 857 for (const User *U : PN.users()) { 858 const Instruction *UI = cast<Instruction>(U); 859 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 860 return false; 861 // If User is inside DestBB block and it is a PHINode then check 862 // incoming value. If incoming value is not from BB then this is 863 // a complex condition (e.g. preheaders) we want to avoid here. 864 if (UI->getParent() == DestBB) { 865 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 866 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 867 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 868 if (Insn && Insn->getParent() == BB && 869 Insn->getParent() != UPN->getIncomingBlock(I)) 870 return false; 871 } 872 } 873 } 874 } 875 876 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 877 // and DestBB may have conflicting incoming values for the block. If so, we 878 // can't merge the block. 879 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 880 if (!DestBBPN) return true; // no conflict. 881 882 // Collect the preds of BB. 883 SmallPtrSet<const BasicBlock*, 16> BBPreds; 884 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 885 // It is faster to get preds from a PHI than with pred_iterator. 886 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 887 BBPreds.insert(BBPN->getIncomingBlock(i)); 888 } else { 889 BBPreds.insert(pred_begin(BB), pred_end(BB)); 890 } 891 892 // Walk the preds of DestBB. 893 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 894 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 895 if (BBPreds.count(Pred)) { // Common predecessor? 896 for (const PHINode &PN : DestBB->phis()) { 897 const Value *V1 = PN.getIncomingValueForBlock(Pred); 898 const Value *V2 = PN.getIncomingValueForBlock(BB); 899 900 // If V2 is a phi node in BB, look up what the mapped value will be. 901 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 902 if (V2PN->getParent() == BB) 903 V2 = V2PN->getIncomingValueForBlock(Pred); 904 905 // If there is a conflict, bail out. 906 if (V1 != V2) return false; 907 } 908 } 909 } 910 911 return true; 912 } 913 914 /// Eliminate a basic block that has only phi's and an unconditional branch in 915 /// it. 916 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 917 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 918 BasicBlock *DestBB = BI->getSuccessor(0); 919 920 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 921 << *BB << *DestBB); 922 923 // If the destination block has a single pred, then this is a trivial edge, 924 // just collapse it. 925 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 926 if (SinglePred != DestBB) { 927 assert(SinglePred == BB && 928 "Single predecessor not the same as predecessor"); 929 // Merge DestBB into SinglePred/BB and delete it. 930 MergeBlockIntoPredecessor(DestBB); 931 // Note: BB(=SinglePred) will not be deleted on this path. 932 // DestBB(=its single successor) is the one that was deleted. 933 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 934 return; 935 } 936 } 937 938 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 939 // to handle the new incoming edges it is about to have. 940 for (PHINode &PN : DestBB->phis()) { 941 // Remove the incoming value for BB, and remember it. 942 Value *InVal = PN.removeIncomingValue(BB, false); 943 944 // Two options: either the InVal is a phi node defined in BB or it is some 945 // value that dominates BB. 946 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 947 if (InValPhi && InValPhi->getParent() == BB) { 948 // Add all of the input values of the input PHI as inputs of this phi. 949 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 950 PN.addIncoming(InValPhi->getIncomingValue(i), 951 InValPhi->getIncomingBlock(i)); 952 } else { 953 // Otherwise, add one instance of the dominating value for each edge that 954 // we will be adding. 955 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 956 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 957 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 958 } else { 959 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 960 PN.addIncoming(InVal, *PI); 961 } 962 } 963 } 964 965 // The PHIs are now updated, change everything that refers to BB to use 966 // DestBB and remove BB. 967 BB->replaceAllUsesWith(DestBB); 968 BB->eraseFromParent(); 969 ++NumBlocksElim; 970 971 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 972 } 973 974 // Computes a map of base pointer relocation instructions to corresponding 975 // derived pointer relocation instructions given a vector of all relocate calls 976 static void computeBaseDerivedRelocateMap( 977 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 978 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 979 &RelocateInstMap) { 980 // Collect information in two maps: one primarily for locating the base object 981 // while filling the second map; the second map is the final structure holding 982 // a mapping between Base and corresponding Derived relocate calls 983 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 984 for (auto *ThisRelocate : AllRelocateCalls) { 985 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 986 ThisRelocate->getDerivedPtrIndex()); 987 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 988 } 989 for (auto &Item : RelocateIdxMap) { 990 std::pair<unsigned, unsigned> Key = Item.first; 991 if (Key.first == Key.second) 992 // Base relocation: nothing to insert 993 continue; 994 995 GCRelocateInst *I = Item.second; 996 auto BaseKey = std::make_pair(Key.first, Key.first); 997 998 // We're iterating over RelocateIdxMap so we cannot modify it. 999 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1000 if (MaybeBase == RelocateIdxMap.end()) 1001 // TODO: We might want to insert a new base object relocate and gep off 1002 // that, if there are enough derived object relocates. 1003 continue; 1004 1005 RelocateInstMap[MaybeBase->second].push_back(I); 1006 } 1007 } 1008 1009 // Accepts a GEP and extracts the operands into a vector provided they're all 1010 // small integer constants 1011 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1012 SmallVectorImpl<Value *> &OffsetV) { 1013 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1014 // Only accept small constant integer operands 1015 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1016 if (!Op || Op->getZExtValue() > 20) 1017 return false; 1018 } 1019 1020 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1021 OffsetV.push_back(GEP->getOperand(i)); 1022 return true; 1023 } 1024 1025 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1026 // replace, computes a replacement, and affects it. 1027 static bool 1028 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1029 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1030 bool MadeChange = false; 1031 // We must ensure the relocation of derived pointer is defined after 1032 // relocation of base pointer. If we find a relocation corresponding to base 1033 // defined earlier than relocation of base then we move relocation of base 1034 // right before found relocation. We consider only relocation in the same 1035 // basic block as relocation of base. Relocations from other basic block will 1036 // be skipped by optimization and we do not care about them. 1037 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1038 &*R != RelocatedBase; ++R) 1039 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1040 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1041 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1042 RelocatedBase->moveBefore(RI); 1043 break; 1044 } 1045 1046 for (GCRelocateInst *ToReplace : Targets) { 1047 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1048 "Not relocating a derived object of the original base object"); 1049 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1050 // A duplicate relocate call. TODO: coalesce duplicates. 1051 continue; 1052 } 1053 1054 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1055 // Base and derived relocates are in different basic blocks. 1056 // In this case transform is only valid when base dominates derived 1057 // relocate. However it would be too expensive to check dominance 1058 // for each such relocate, so we skip the whole transformation. 1059 continue; 1060 } 1061 1062 Value *Base = ToReplace->getBasePtr(); 1063 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1064 if (!Derived || Derived->getPointerOperand() != Base) 1065 continue; 1066 1067 SmallVector<Value *, 2> OffsetV; 1068 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1069 continue; 1070 1071 // Create a Builder and replace the target callsite with a gep 1072 assert(RelocatedBase->getNextNode() && 1073 "Should always have one since it's not a terminator"); 1074 1075 // Insert after RelocatedBase 1076 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1077 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1078 1079 // If gc_relocate does not match the actual type, cast it to the right type. 1080 // In theory, there must be a bitcast after gc_relocate if the type does not 1081 // match, and we should reuse it to get the derived pointer. But it could be 1082 // cases like this: 1083 // bb1: 1084 // ... 1085 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1086 // br label %merge 1087 // 1088 // bb2: 1089 // ... 1090 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1091 // br label %merge 1092 // 1093 // merge: 1094 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1095 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1096 // 1097 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1098 // no matter there is already one or not. In this way, we can handle all cases, and 1099 // the extra bitcast should be optimized away in later passes. 1100 Value *ActualRelocatedBase = RelocatedBase; 1101 if (RelocatedBase->getType() != Base->getType()) { 1102 ActualRelocatedBase = 1103 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1104 } 1105 Value *Replacement = Builder.CreateGEP( 1106 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1107 Replacement->takeName(ToReplace); 1108 // If the newly generated derived pointer's type does not match the original derived 1109 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1110 Value *ActualReplacement = Replacement; 1111 if (Replacement->getType() != ToReplace->getType()) { 1112 ActualReplacement = 1113 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1114 } 1115 ToReplace->replaceAllUsesWith(ActualReplacement); 1116 ToReplace->eraseFromParent(); 1117 1118 MadeChange = true; 1119 } 1120 return MadeChange; 1121 } 1122 1123 // Turns this: 1124 // 1125 // %base = ... 1126 // %ptr = gep %base + 15 1127 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1128 // %base' = relocate(%tok, i32 4, i32 4) 1129 // %ptr' = relocate(%tok, i32 4, i32 5) 1130 // %val = load %ptr' 1131 // 1132 // into this: 1133 // 1134 // %base = ... 1135 // %ptr = gep %base + 15 1136 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1137 // %base' = gc.relocate(%tok, i32 4, i32 4) 1138 // %ptr' = gep %base' + 15 1139 // %val = load %ptr' 1140 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1141 bool MadeChange = false; 1142 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1143 for (auto *U : I.users()) 1144 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1145 // Collect all the relocate calls associated with a statepoint 1146 AllRelocateCalls.push_back(Relocate); 1147 1148 // We need at least one base pointer relocation + one derived pointer 1149 // relocation to mangle 1150 if (AllRelocateCalls.size() < 2) 1151 return false; 1152 1153 // RelocateInstMap is a mapping from the base relocate instruction to the 1154 // corresponding derived relocate instructions 1155 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1156 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1157 if (RelocateInstMap.empty()) 1158 return false; 1159 1160 for (auto &Item : RelocateInstMap) 1161 // Item.first is the RelocatedBase to offset against 1162 // Item.second is the vector of Targets to replace 1163 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1164 return MadeChange; 1165 } 1166 1167 /// Sink the specified cast instruction into its user blocks. 1168 static bool SinkCast(CastInst *CI) { 1169 BasicBlock *DefBB = CI->getParent(); 1170 1171 /// InsertedCasts - Only insert a cast in each block once. 1172 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1173 1174 bool MadeChange = false; 1175 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1176 UI != E; ) { 1177 Use &TheUse = UI.getUse(); 1178 Instruction *User = cast<Instruction>(*UI); 1179 1180 // Figure out which BB this cast is used in. For PHI's this is the 1181 // appropriate predecessor block. 1182 BasicBlock *UserBB = User->getParent(); 1183 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1184 UserBB = PN->getIncomingBlock(TheUse); 1185 } 1186 1187 // Preincrement use iterator so we don't invalidate it. 1188 ++UI; 1189 1190 // The first insertion point of a block containing an EH pad is after the 1191 // pad. If the pad is the user, we cannot sink the cast past the pad. 1192 if (User->isEHPad()) 1193 continue; 1194 1195 // If the block selected to receive the cast is an EH pad that does not 1196 // allow non-PHI instructions before the terminator, we can't sink the 1197 // cast. 1198 if (UserBB->getTerminator()->isEHPad()) 1199 continue; 1200 1201 // If this user is in the same block as the cast, don't change the cast. 1202 if (UserBB == DefBB) continue; 1203 1204 // If we have already inserted a cast into this block, use it. 1205 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1206 1207 if (!InsertedCast) { 1208 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1209 assert(InsertPt != UserBB->end()); 1210 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1211 CI->getType(), "", &*InsertPt); 1212 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1213 } 1214 1215 // Replace a use of the cast with a use of the new cast. 1216 TheUse = InsertedCast; 1217 MadeChange = true; 1218 ++NumCastUses; 1219 } 1220 1221 // If we removed all uses, nuke the cast. 1222 if (CI->use_empty()) { 1223 salvageDebugInfo(*CI); 1224 CI->eraseFromParent(); 1225 MadeChange = true; 1226 } 1227 1228 return MadeChange; 1229 } 1230 1231 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1232 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1233 /// reduce the number of virtual registers that must be created and coalesced. 1234 /// 1235 /// Return true if any changes are made. 1236 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1237 const DataLayout &DL) { 1238 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1239 // than sinking only nop casts, but is helpful on some platforms. 1240 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1241 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1242 ASC->getDestAddressSpace())) 1243 return false; 1244 } 1245 1246 // If this is a noop copy, 1247 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1248 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1249 1250 // This is an fp<->int conversion? 1251 if (SrcVT.isInteger() != DstVT.isInteger()) 1252 return false; 1253 1254 // If this is an extension, it will be a zero or sign extension, which 1255 // isn't a noop. 1256 if (SrcVT.bitsLT(DstVT)) return false; 1257 1258 // If these values will be promoted, find out what they will be promoted 1259 // to. This helps us consider truncates on PPC as noop copies when they 1260 // are. 1261 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1262 TargetLowering::TypePromoteInteger) 1263 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1264 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1265 TargetLowering::TypePromoteInteger) 1266 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1267 1268 // If, after promotion, these are the same types, this is a noop copy. 1269 if (SrcVT != DstVT) 1270 return false; 1271 1272 return SinkCast(CI); 1273 } 1274 1275 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1276 Value *Arg0, Value *Arg1, 1277 CmpInst *Cmp, 1278 Intrinsic::ID IID) { 1279 if (BO->getParent() != Cmp->getParent()) { 1280 // We used to use a dominator tree here to allow multi-block optimization. 1281 // But that was problematic because: 1282 // 1. It could cause a perf regression by hoisting the math op into the 1283 // critical path. 1284 // 2. It could cause a perf regression by creating a value that was live 1285 // across multiple blocks and increasing register pressure. 1286 // 3. Use of a dominator tree could cause large compile-time regression. 1287 // This is because we recompute the DT on every change in the main CGP 1288 // run-loop. The recomputing is probably unnecessary in many cases, so if 1289 // that was fixed, using a DT here would be ok. 1290 return false; 1291 } 1292 1293 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1294 if (BO->getOpcode() == Instruction::Add && 1295 IID == Intrinsic::usub_with_overflow) { 1296 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1297 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1298 } 1299 1300 // Insert at the first instruction of the pair. 1301 Instruction *InsertPt = nullptr; 1302 for (Instruction &Iter : *Cmp->getParent()) { 1303 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1304 // the overflow intrinsic are defined. 1305 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1306 InsertPt = &Iter; 1307 break; 1308 } 1309 } 1310 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1311 1312 IRBuilder<> Builder(InsertPt); 1313 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1314 if (BO->getOpcode() != Instruction::Xor) { 1315 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1316 BO->replaceAllUsesWith(Math); 1317 } else 1318 assert(BO->hasOneUse() && 1319 "Patterns with XOr should use the BO only in the compare"); 1320 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1321 Cmp->replaceAllUsesWith(OV); 1322 Cmp->eraseFromParent(); 1323 BO->eraseFromParent(); 1324 return true; 1325 } 1326 1327 /// Match special-case patterns that check for unsigned add overflow. 1328 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1329 BinaryOperator *&Add) { 1330 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1331 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1332 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1333 1334 // We are not expecting non-canonical/degenerate code. Just bail out. 1335 if (isa<Constant>(A)) 1336 return false; 1337 1338 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1339 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1340 B = ConstantInt::get(B->getType(), 1); 1341 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1342 B = ConstantInt::get(B->getType(), -1); 1343 else 1344 return false; 1345 1346 // Check the users of the variable operand of the compare looking for an add 1347 // with the adjusted constant. 1348 for (User *U : A->users()) { 1349 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1350 Add = cast<BinaryOperator>(U); 1351 return true; 1352 } 1353 } 1354 return false; 1355 } 1356 1357 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1358 /// intrinsic. Return true if any changes were made. 1359 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1360 bool &ModifiedDT) { 1361 Value *A, *B; 1362 BinaryOperator *Add; 1363 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1364 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1365 return false; 1366 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1367 A = Add->getOperand(0); 1368 B = Add->getOperand(1); 1369 } 1370 1371 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1372 TLI->getValueType(*DL, Add->getType()), 1373 Add->hasNUsesOrMore(2))) 1374 return false; 1375 1376 // We don't want to move around uses of condition values this late, so we 1377 // check if it is legal to create the call to the intrinsic in the basic 1378 // block containing the icmp. 1379 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1380 return false; 1381 1382 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1383 Intrinsic::uadd_with_overflow)) 1384 return false; 1385 1386 // Reset callers - do not crash by iterating over a dead instruction. 1387 ModifiedDT = true; 1388 return true; 1389 } 1390 1391 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1392 bool &ModifiedDT) { 1393 // We are not expecting non-canonical/degenerate code. Just bail out. 1394 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1395 if (isa<Constant>(A) && isa<Constant>(B)) 1396 return false; 1397 1398 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1399 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1400 if (Pred == ICmpInst::ICMP_UGT) { 1401 std::swap(A, B); 1402 Pred = ICmpInst::ICMP_ULT; 1403 } 1404 // Convert special-case: (A == 0) is the same as (A u< 1). 1405 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1406 B = ConstantInt::get(B->getType(), 1); 1407 Pred = ICmpInst::ICMP_ULT; 1408 } 1409 // Convert special-case: (A != 0) is the same as (0 u< A). 1410 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1411 std::swap(A, B); 1412 Pred = ICmpInst::ICMP_ULT; 1413 } 1414 if (Pred != ICmpInst::ICMP_ULT) 1415 return false; 1416 1417 // Walk the users of a variable operand of a compare looking for a subtract or 1418 // add with that same operand. Also match the 2nd operand of the compare to 1419 // the add/sub, but that may be a negated constant operand of an add. 1420 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1421 BinaryOperator *Sub = nullptr; 1422 for (User *U : CmpVariableOperand->users()) { 1423 // A - B, A u< B --> usubo(A, B) 1424 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1425 Sub = cast<BinaryOperator>(U); 1426 break; 1427 } 1428 1429 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1430 const APInt *CmpC, *AddC; 1431 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1432 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1433 Sub = cast<BinaryOperator>(U); 1434 break; 1435 } 1436 } 1437 if (!Sub) 1438 return false; 1439 1440 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1441 TLI->getValueType(*DL, Sub->getType()), 1442 Sub->hasNUsesOrMore(2))) 1443 return false; 1444 1445 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1446 Cmp, Intrinsic::usub_with_overflow)) 1447 return false; 1448 1449 // Reset callers - do not crash by iterating over a dead instruction. 1450 ModifiedDT = true; 1451 return true; 1452 } 1453 1454 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1455 /// registers that must be created and coalesced. This is a clear win except on 1456 /// targets with multiple condition code registers (PowerPC), where it might 1457 /// lose; some adjustment may be wanted there. 1458 /// 1459 /// Return true if any changes are made. 1460 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1461 if (TLI.hasMultipleConditionRegisters()) 1462 return false; 1463 1464 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1465 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1466 return false; 1467 1468 // Only insert a cmp in each block once. 1469 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1470 1471 bool MadeChange = false; 1472 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1473 UI != E; ) { 1474 Use &TheUse = UI.getUse(); 1475 Instruction *User = cast<Instruction>(*UI); 1476 1477 // Preincrement use iterator so we don't invalidate it. 1478 ++UI; 1479 1480 // Don't bother for PHI nodes. 1481 if (isa<PHINode>(User)) 1482 continue; 1483 1484 // Figure out which BB this cmp is used in. 1485 BasicBlock *UserBB = User->getParent(); 1486 BasicBlock *DefBB = Cmp->getParent(); 1487 1488 // If this user is in the same block as the cmp, don't change the cmp. 1489 if (UserBB == DefBB) continue; 1490 1491 // If we have already inserted a cmp into this block, use it. 1492 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1493 1494 if (!InsertedCmp) { 1495 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1496 assert(InsertPt != UserBB->end()); 1497 InsertedCmp = 1498 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1499 Cmp->getOperand(0), Cmp->getOperand(1), "", 1500 &*InsertPt); 1501 // Propagate the debug info. 1502 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1503 } 1504 1505 // Replace a use of the cmp with a use of the new cmp. 1506 TheUse = InsertedCmp; 1507 MadeChange = true; 1508 ++NumCmpUses; 1509 } 1510 1511 // If we removed all uses, nuke the cmp. 1512 if (Cmp->use_empty()) { 1513 Cmp->eraseFromParent(); 1514 MadeChange = true; 1515 } 1516 1517 return MadeChange; 1518 } 1519 1520 /// For pattern like: 1521 /// 1522 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1523 /// ... 1524 /// DomBB: 1525 /// ... 1526 /// br DomCond, TrueBB, CmpBB 1527 /// CmpBB: (with DomBB being the single predecessor) 1528 /// ... 1529 /// Cmp = icmp eq CmpOp0, CmpOp1 1530 /// ... 1531 /// 1532 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1533 /// different from lowering of icmp eq (PowerPC). This function try to convert 1534 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1535 /// After that, DomCond and Cmp can use the same comparison so reduce one 1536 /// comparison. 1537 /// 1538 /// Return true if any changes are made. 1539 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1540 const TargetLowering &TLI) { 1541 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1542 return false; 1543 1544 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1545 if (Pred != ICmpInst::ICMP_EQ) 1546 return false; 1547 1548 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1549 // icmp slt/sgt would introduce more redundant LLVM IR. 1550 for (User *U : Cmp->users()) { 1551 if (isa<BranchInst>(U)) 1552 continue; 1553 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1554 continue; 1555 return false; 1556 } 1557 1558 // This is a cheap/incomplete check for dominance - just match a single 1559 // predecessor with a conditional branch. 1560 BasicBlock *CmpBB = Cmp->getParent(); 1561 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1562 if (!DomBB) 1563 return false; 1564 1565 // We want to ensure that the only way control gets to the comparison of 1566 // interest is that a less/greater than comparison on the same operands is 1567 // false. 1568 Value *DomCond; 1569 BasicBlock *TrueBB, *FalseBB; 1570 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1571 return false; 1572 if (CmpBB != FalseBB) 1573 return false; 1574 1575 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1576 ICmpInst::Predicate DomPred; 1577 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1578 return false; 1579 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1580 return false; 1581 1582 // Convert the equality comparison to the opposite of the dominating 1583 // comparison and swap the direction for all branch/select users. 1584 // We have conceptually converted: 1585 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1586 // to 1587 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1588 // And similarly for branches. 1589 for (User *U : Cmp->users()) { 1590 if (auto *BI = dyn_cast<BranchInst>(U)) { 1591 assert(BI->isConditional() && "Must be conditional"); 1592 BI->swapSuccessors(); 1593 continue; 1594 } 1595 if (auto *SI = dyn_cast<SelectInst>(U)) { 1596 // Swap operands 1597 SI->swapValues(); 1598 SI->swapProfMetadata(); 1599 continue; 1600 } 1601 llvm_unreachable("Must be a branch or a select"); 1602 } 1603 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1604 return true; 1605 } 1606 1607 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1608 if (sinkCmpExpression(Cmp, *TLI)) 1609 return true; 1610 1611 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1612 return true; 1613 1614 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1615 return true; 1616 1617 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1618 return true; 1619 1620 return false; 1621 } 1622 1623 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1624 /// used in a compare to allow isel to generate better code for targets where 1625 /// this operation can be combined. 1626 /// 1627 /// Return true if any changes are made. 1628 static bool sinkAndCmp0Expression(Instruction *AndI, 1629 const TargetLowering &TLI, 1630 SetOfInstrs &InsertedInsts) { 1631 // Double-check that we're not trying to optimize an instruction that was 1632 // already optimized by some other part of this pass. 1633 assert(!InsertedInsts.count(AndI) && 1634 "Attempting to optimize already optimized and instruction"); 1635 (void) InsertedInsts; 1636 1637 // Nothing to do for single use in same basic block. 1638 if (AndI->hasOneUse() && 1639 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1640 return false; 1641 1642 // Try to avoid cases where sinking/duplicating is likely to increase register 1643 // pressure. 1644 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1645 !isa<ConstantInt>(AndI->getOperand(1)) && 1646 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1647 return false; 1648 1649 for (auto *U : AndI->users()) { 1650 Instruction *User = cast<Instruction>(U); 1651 1652 // Only sink 'and' feeding icmp with 0. 1653 if (!isa<ICmpInst>(User)) 1654 return false; 1655 1656 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1657 if (!CmpC || !CmpC->isZero()) 1658 return false; 1659 } 1660 1661 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1662 return false; 1663 1664 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1665 LLVM_DEBUG(AndI->getParent()->dump()); 1666 1667 // Push the 'and' into the same block as the icmp 0. There should only be 1668 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1669 // others, so we don't need to keep track of which BBs we insert into. 1670 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1671 UI != E; ) { 1672 Use &TheUse = UI.getUse(); 1673 Instruction *User = cast<Instruction>(*UI); 1674 1675 // Preincrement use iterator so we don't invalidate it. 1676 ++UI; 1677 1678 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1679 1680 // Keep the 'and' in the same place if the use is already in the same block. 1681 Instruction *InsertPt = 1682 User->getParent() == AndI->getParent() ? AndI : User; 1683 Instruction *InsertedAnd = 1684 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1685 AndI->getOperand(1), "", InsertPt); 1686 // Propagate the debug info. 1687 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1688 1689 // Replace a use of the 'and' with a use of the new 'and'. 1690 TheUse = InsertedAnd; 1691 ++NumAndUses; 1692 LLVM_DEBUG(User->getParent()->dump()); 1693 } 1694 1695 // We removed all uses, nuke the and. 1696 AndI->eraseFromParent(); 1697 return true; 1698 } 1699 1700 /// Check if the candidates could be combined with a shift instruction, which 1701 /// includes: 1702 /// 1. Truncate instruction 1703 /// 2. And instruction and the imm is a mask of the low bits: 1704 /// imm & (imm+1) == 0 1705 static bool isExtractBitsCandidateUse(Instruction *User) { 1706 if (!isa<TruncInst>(User)) { 1707 if (User->getOpcode() != Instruction::And || 1708 !isa<ConstantInt>(User->getOperand(1))) 1709 return false; 1710 1711 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1712 1713 if ((Cimm & (Cimm + 1)).getBoolValue()) 1714 return false; 1715 } 1716 return true; 1717 } 1718 1719 /// Sink both shift and truncate instruction to the use of truncate's BB. 1720 static bool 1721 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1722 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1723 const TargetLowering &TLI, const DataLayout &DL) { 1724 BasicBlock *UserBB = User->getParent(); 1725 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1726 auto *TruncI = cast<TruncInst>(User); 1727 bool MadeChange = false; 1728 1729 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1730 TruncE = TruncI->user_end(); 1731 TruncUI != TruncE;) { 1732 1733 Use &TruncTheUse = TruncUI.getUse(); 1734 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1735 // Preincrement use iterator so we don't invalidate it. 1736 1737 ++TruncUI; 1738 1739 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1740 if (!ISDOpcode) 1741 continue; 1742 1743 // If the use is actually a legal node, there will not be an 1744 // implicit truncate. 1745 // FIXME: always querying the result type is just an 1746 // approximation; some nodes' legality is determined by the 1747 // operand or other means. There's no good way to find out though. 1748 if (TLI.isOperationLegalOrCustom( 1749 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1750 continue; 1751 1752 // Don't bother for PHI nodes. 1753 if (isa<PHINode>(TruncUser)) 1754 continue; 1755 1756 BasicBlock *TruncUserBB = TruncUser->getParent(); 1757 1758 if (UserBB == TruncUserBB) 1759 continue; 1760 1761 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1762 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1763 1764 if (!InsertedShift && !InsertedTrunc) { 1765 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1766 assert(InsertPt != TruncUserBB->end()); 1767 // Sink the shift 1768 if (ShiftI->getOpcode() == Instruction::AShr) 1769 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1770 "", &*InsertPt); 1771 else 1772 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1773 "", &*InsertPt); 1774 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1775 1776 // Sink the trunc 1777 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1778 TruncInsertPt++; 1779 assert(TruncInsertPt != TruncUserBB->end()); 1780 1781 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1782 TruncI->getType(), "", &*TruncInsertPt); 1783 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1784 1785 MadeChange = true; 1786 1787 TruncTheUse = InsertedTrunc; 1788 } 1789 } 1790 return MadeChange; 1791 } 1792 1793 /// Sink the shift *right* instruction into user blocks if the uses could 1794 /// potentially be combined with this shift instruction and generate BitExtract 1795 /// instruction. It will only be applied if the architecture supports BitExtract 1796 /// instruction. Here is an example: 1797 /// BB1: 1798 /// %x.extract.shift = lshr i64 %arg1, 32 1799 /// BB2: 1800 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1801 /// ==> 1802 /// 1803 /// BB2: 1804 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1805 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1806 /// 1807 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1808 /// instruction. 1809 /// Return true if any changes are made. 1810 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1811 const TargetLowering &TLI, 1812 const DataLayout &DL) { 1813 BasicBlock *DefBB = ShiftI->getParent(); 1814 1815 /// Only insert instructions in each block once. 1816 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1817 1818 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1819 1820 bool MadeChange = false; 1821 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1822 UI != E;) { 1823 Use &TheUse = UI.getUse(); 1824 Instruction *User = cast<Instruction>(*UI); 1825 // Preincrement use iterator so we don't invalidate it. 1826 ++UI; 1827 1828 // Don't bother for PHI nodes. 1829 if (isa<PHINode>(User)) 1830 continue; 1831 1832 if (!isExtractBitsCandidateUse(User)) 1833 continue; 1834 1835 BasicBlock *UserBB = User->getParent(); 1836 1837 if (UserBB == DefBB) { 1838 // If the shift and truncate instruction are in the same BB. The use of 1839 // the truncate(TruncUse) may still introduce another truncate if not 1840 // legal. In this case, we would like to sink both shift and truncate 1841 // instruction to the BB of TruncUse. 1842 // for example: 1843 // BB1: 1844 // i64 shift.result = lshr i64 opnd, imm 1845 // trunc.result = trunc shift.result to i16 1846 // 1847 // BB2: 1848 // ----> We will have an implicit truncate here if the architecture does 1849 // not have i16 compare. 1850 // cmp i16 trunc.result, opnd2 1851 // 1852 if (isa<TruncInst>(User) && shiftIsLegal 1853 // If the type of the truncate is legal, no truncate will be 1854 // introduced in other basic blocks. 1855 && 1856 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1857 MadeChange = 1858 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1859 1860 continue; 1861 } 1862 // If we have already inserted a shift into this block, use it. 1863 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1864 1865 if (!InsertedShift) { 1866 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1867 assert(InsertPt != UserBB->end()); 1868 1869 if (ShiftI->getOpcode() == Instruction::AShr) 1870 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1871 "", &*InsertPt); 1872 else 1873 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1874 "", &*InsertPt); 1875 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1876 1877 MadeChange = true; 1878 } 1879 1880 // Replace a use of the shift with a use of the new shift. 1881 TheUse = InsertedShift; 1882 } 1883 1884 // If we removed all uses, or there are none, nuke the shift. 1885 if (ShiftI->use_empty()) { 1886 salvageDebugInfo(*ShiftI); 1887 ShiftI->eraseFromParent(); 1888 MadeChange = true; 1889 } 1890 1891 return MadeChange; 1892 } 1893 1894 /// If counting leading or trailing zeros is an expensive operation and a zero 1895 /// input is defined, add a check for zero to avoid calling the intrinsic. 1896 /// 1897 /// We want to transform: 1898 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1899 /// 1900 /// into: 1901 /// entry: 1902 /// %cmpz = icmp eq i64 %A, 0 1903 /// br i1 %cmpz, label %cond.end, label %cond.false 1904 /// cond.false: 1905 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1906 /// br label %cond.end 1907 /// cond.end: 1908 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1909 /// 1910 /// If the transform is performed, return true and set ModifiedDT to true. 1911 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1912 const TargetLowering *TLI, 1913 const DataLayout *DL, 1914 bool &ModifiedDT) { 1915 // If a zero input is undefined, it doesn't make sense to despeculate that. 1916 if (match(CountZeros->getOperand(1), m_One())) 1917 return false; 1918 1919 // If it's cheap to speculate, there's nothing to do. 1920 auto IntrinsicID = CountZeros->getIntrinsicID(); 1921 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1922 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1923 return false; 1924 1925 // Only handle legal scalar cases. Anything else requires too much work. 1926 Type *Ty = CountZeros->getType(); 1927 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1928 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1929 return false; 1930 1931 // The intrinsic will be sunk behind a compare against zero and branch. 1932 BasicBlock *StartBlock = CountZeros->getParent(); 1933 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1934 1935 // Create another block after the count zero intrinsic. A PHI will be added 1936 // in this block to select the result of the intrinsic or the bit-width 1937 // constant if the input to the intrinsic is zero. 1938 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1939 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1940 1941 // Set up a builder to create a compare, conditional branch, and PHI. 1942 IRBuilder<> Builder(CountZeros->getContext()); 1943 Builder.SetInsertPoint(StartBlock->getTerminator()); 1944 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1945 1946 // Replace the unconditional branch that was created by the first split with 1947 // a compare against zero and a conditional branch. 1948 Value *Zero = Constant::getNullValue(Ty); 1949 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1950 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1951 StartBlock->getTerminator()->eraseFromParent(); 1952 1953 // Create a PHI in the end block to select either the output of the intrinsic 1954 // or the bit width of the operand. 1955 Builder.SetInsertPoint(&EndBlock->front()); 1956 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1957 CountZeros->replaceAllUsesWith(PN); 1958 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1959 PN->addIncoming(BitWidth, StartBlock); 1960 PN->addIncoming(CountZeros, CallBlock); 1961 1962 // We are explicitly handling the zero case, so we can set the intrinsic's 1963 // undefined zero argument to 'true'. This will also prevent reprocessing the 1964 // intrinsic; we only despeculate when a zero input is defined. 1965 CountZeros->setArgOperand(1, Builder.getTrue()); 1966 ModifiedDT = true; 1967 return true; 1968 } 1969 1970 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1971 BasicBlock *BB = CI->getParent(); 1972 1973 // Lower inline assembly if we can. 1974 // If we found an inline asm expession, and if the target knows how to 1975 // lower it to normal LLVM code, do so now. 1976 if (CI->isInlineAsm()) { 1977 if (TLI->ExpandInlineAsm(CI)) { 1978 // Avoid invalidating the iterator. 1979 CurInstIterator = BB->begin(); 1980 // Avoid processing instructions out of order, which could cause 1981 // reuse before a value is defined. 1982 SunkAddrs.clear(); 1983 return true; 1984 } 1985 // Sink address computing for memory operands into the block. 1986 if (optimizeInlineAsmInst(CI)) 1987 return true; 1988 } 1989 1990 // Align the pointer arguments to this call if the target thinks it's a good 1991 // idea 1992 unsigned MinSize, PrefAlign; 1993 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1994 for (auto &Arg : CI->arg_operands()) { 1995 // We want to align both objects whose address is used directly and 1996 // objects whose address is used in casts and GEPs, though it only makes 1997 // sense for GEPs if the offset is a multiple of the desired alignment and 1998 // if size - offset meets the size threshold. 1999 if (!Arg->getType()->isPointerTy()) 2000 continue; 2001 APInt Offset(DL->getIndexSizeInBits( 2002 cast<PointerType>(Arg->getType())->getAddressSpace()), 2003 0); 2004 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2005 uint64_t Offset2 = Offset.getLimitedValue(); 2006 if ((Offset2 & (PrefAlign-1)) != 0) 2007 continue; 2008 AllocaInst *AI; 2009 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2010 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2011 AI->setAlignment(Align(PrefAlign)); 2012 // Global variables can only be aligned if they are defined in this 2013 // object (i.e. they are uniquely initialized in this object), and 2014 // over-aligning global variables that have an explicit section is 2015 // forbidden. 2016 GlobalVariable *GV; 2017 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2018 GV->getPointerAlignment(*DL) < PrefAlign && 2019 DL->getTypeAllocSize(GV->getValueType()) >= 2020 MinSize + Offset2) 2021 GV->setAlignment(MaybeAlign(PrefAlign)); 2022 } 2023 // If this is a memcpy (or similar) then we may be able to improve the 2024 // alignment 2025 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2026 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2027 MaybeAlign MIDestAlign = MI->getDestAlign(); 2028 if (!MIDestAlign || DestAlign > *MIDestAlign) 2029 MI->setDestAlignment(DestAlign); 2030 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2031 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2032 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2033 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2034 MTI->setSourceAlignment(SrcAlign); 2035 } 2036 } 2037 } 2038 2039 // If we have a cold call site, try to sink addressing computation into the 2040 // cold block. This interacts with our handling for loads and stores to 2041 // ensure that we can fold all uses of a potential addressing computation 2042 // into their uses. TODO: generalize this to work over profiling data 2043 if (CI->hasFnAttr(Attribute::Cold) && 2044 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2045 for (auto &Arg : CI->arg_operands()) { 2046 if (!Arg->getType()->isPointerTy()) 2047 continue; 2048 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2049 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2050 } 2051 2052 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2053 if (II) { 2054 switch (II->getIntrinsicID()) { 2055 default: break; 2056 case Intrinsic::assume: { 2057 Value *Operand = II->getOperand(0); 2058 II->eraseFromParent(); 2059 // Prune the operand, it's most likely dead. 2060 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2061 RecursivelyDeleteTriviallyDeadInstructions( 2062 Operand, TLInfo, nullptr, 2063 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2064 }); 2065 return true; 2066 } 2067 2068 case Intrinsic::experimental_widenable_condition: { 2069 // Give up on future widening oppurtunties so that we can fold away dead 2070 // paths and merge blocks before going into block-local instruction 2071 // selection. 2072 if (II->use_empty()) { 2073 II->eraseFromParent(); 2074 return true; 2075 } 2076 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2077 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2078 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2079 }); 2080 return true; 2081 } 2082 case Intrinsic::objectsize: 2083 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2084 case Intrinsic::is_constant: 2085 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2086 case Intrinsic::aarch64_stlxr: 2087 case Intrinsic::aarch64_stxr: { 2088 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2089 if (!ExtVal || !ExtVal->hasOneUse() || 2090 ExtVal->getParent() == CI->getParent()) 2091 return false; 2092 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2093 ExtVal->moveBefore(CI); 2094 // Mark this instruction as "inserted by CGP", so that other 2095 // optimizations don't touch it. 2096 InsertedInsts.insert(ExtVal); 2097 return true; 2098 } 2099 2100 case Intrinsic::launder_invariant_group: 2101 case Intrinsic::strip_invariant_group: { 2102 Value *ArgVal = II->getArgOperand(0); 2103 auto it = LargeOffsetGEPMap.find(II); 2104 if (it != LargeOffsetGEPMap.end()) { 2105 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2106 // Make sure not to have to deal with iterator invalidation 2107 // after possibly adding ArgVal to LargeOffsetGEPMap. 2108 auto GEPs = std::move(it->second); 2109 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2110 LargeOffsetGEPMap.erase(II); 2111 } 2112 2113 II->replaceAllUsesWith(ArgVal); 2114 II->eraseFromParent(); 2115 return true; 2116 } 2117 case Intrinsic::cttz: 2118 case Intrinsic::ctlz: 2119 // If counting zeros is expensive, try to avoid it. 2120 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2121 case Intrinsic::fshl: 2122 case Intrinsic::fshr: 2123 return optimizeFunnelShift(II); 2124 case Intrinsic::dbg_value: 2125 return fixupDbgValue(II); 2126 case Intrinsic::vscale: { 2127 // If datalayout has no special restrictions on vector data layout, 2128 // replace `llvm.vscale` by an equivalent constant expression 2129 // to benefit from cheap constant propagation. 2130 Type *ScalableVectorTy = 2131 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2132 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2133 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2134 auto *One = ConstantInt::getSigned(II->getType(), 1); 2135 auto *CGep = 2136 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2137 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2138 II->eraseFromParent(); 2139 return true; 2140 } 2141 break; 2142 } 2143 case Intrinsic::masked_gather: 2144 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2145 case Intrinsic::masked_scatter: 2146 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2147 } 2148 2149 SmallVector<Value *, 2> PtrOps; 2150 Type *AccessTy; 2151 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2152 while (!PtrOps.empty()) { 2153 Value *PtrVal = PtrOps.pop_back_val(); 2154 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2155 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2156 return true; 2157 } 2158 } 2159 2160 // From here on out we're working with named functions. 2161 if (!CI->getCalledFunction()) return false; 2162 2163 // Lower all default uses of _chk calls. This is very similar 2164 // to what InstCombineCalls does, but here we are only lowering calls 2165 // to fortified library functions (e.g. __memcpy_chk) that have the default 2166 // "don't know" as the objectsize. Anything else should be left alone. 2167 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2168 IRBuilder<> Builder(CI); 2169 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2170 CI->replaceAllUsesWith(V); 2171 CI->eraseFromParent(); 2172 return true; 2173 } 2174 2175 return false; 2176 } 2177 2178 /// Look for opportunities to duplicate return instructions to the predecessor 2179 /// to enable tail call optimizations. The case it is currently looking for is: 2180 /// @code 2181 /// bb0: 2182 /// %tmp0 = tail call i32 @f0() 2183 /// br label %return 2184 /// bb1: 2185 /// %tmp1 = tail call i32 @f1() 2186 /// br label %return 2187 /// bb2: 2188 /// %tmp2 = tail call i32 @f2() 2189 /// br label %return 2190 /// return: 2191 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2192 /// ret i32 %retval 2193 /// @endcode 2194 /// 2195 /// => 2196 /// 2197 /// @code 2198 /// bb0: 2199 /// %tmp0 = tail call i32 @f0() 2200 /// ret i32 %tmp0 2201 /// bb1: 2202 /// %tmp1 = tail call i32 @f1() 2203 /// ret i32 %tmp1 2204 /// bb2: 2205 /// %tmp2 = tail call i32 @f2() 2206 /// ret i32 %tmp2 2207 /// @endcode 2208 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2209 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2210 if (!RetI) 2211 return false; 2212 2213 PHINode *PN = nullptr; 2214 ExtractValueInst *EVI = nullptr; 2215 BitCastInst *BCI = nullptr; 2216 Value *V = RetI->getReturnValue(); 2217 if (V) { 2218 BCI = dyn_cast<BitCastInst>(V); 2219 if (BCI) 2220 V = BCI->getOperand(0); 2221 2222 EVI = dyn_cast<ExtractValueInst>(V); 2223 if (EVI) { 2224 V = EVI->getOperand(0); 2225 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2226 [](unsigned idx) { return idx == 0; })) 2227 return false; 2228 } 2229 2230 PN = dyn_cast<PHINode>(V); 2231 if (!PN) 2232 return false; 2233 } 2234 2235 if (PN && PN->getParent() != BB) 2236 return false; 2237 2238 // Make sure there are no instructions between the PHI and return, or that the 2239 // return is the first instruction in the block. 2240 if (PN) { 2241 BasicBlock::iterator BI = BB->begin(); 2242 // Skip over debug and the bitcast. 2243 do { 2244 ++BI; 2245 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI || 2246 isa<PseudoProbeInst>(BI)); 2247 if (&*BI != RetI) 2248 return false; 2249 } else { 2250 if (BB->getFirstNonPHIOrDbg(true) != RetI) 2251 return false; 2252 } 2253 2254 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2255 /// call. 2256 const Function *F = BB->getParent(); 2257 SmallVector<BasicBlock*, 4> TailCallBBs; 2258 if (PN) { 2259 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2260 // Look through bitcasts. 2261 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2262 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2263 BasicBlock *PredBB = PN->getIncomingBlock(I); 2264 // Make sure the phi value is indeed produced by the tail call. 2265 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2266 TLI->mayBeEmittedAsTailCall(CI) && 2267 attributesPermitTailCall(F, CI, RetI, *TLI)) 2268 TailCallBBs.push_back(PredBB); 2269 } 2270 } else { 2271 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2272 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2273 if (!VisitedBBs.insert(*PI).second) 2274 continue; 2275 if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) { 2276 CallInst *CI = dyn_cast<CallInst>(I); 2277 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2278 attributesPermitTailCall(F, CI, RetI, *TLI)) 2279 TailCallBBs.push_back(*PI); 2280 } 2281 } 2282 } 2283 2284 bool Changed = false; 2285 for (auto const &TailCallBB : TailCallBBs) { 2286 // Make sure the call instruction is followed by an unconditional branch to 2287 // the return block. 2288 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2289 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2290 continue; 2291 2292 // Duplicate the return into TailCallBB. 2293 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2294 assert(!VerifyBFIUpdates || 2295 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2296 BFI->setBlockFreq( 2297 BB, 2298 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2299 ModifiedDT = Changed = true; 2300 ++NumRetsDup; 2301 } 2302 2303 // If we eliminated all predecessors of the block, delete the block now. 2304 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2305 BB->eraseFromParent(); 2306 2307 return Changed; 2308 } 2309 2310 //===----------------------------------------------------------------------===// 2311 // Memory Optimization 2312 //===----------------------------------------------------------------------===// 2313 2314 namespace { 2315 2316 /// This is an extended version of TargetLowering::AddrMode 2317 /// which holds actual Value*'s for register values. 2318 struct ExtAddrMode : public TargetLowering::AddrMode { 2319 Value *BaseReg = nullptr; 2320 Value *ScaledReg = nullptr; 2321 Value *OriginalValue = nullptr; 2322 bool InBounds = true; 2323 2324 enum FieldName { 2325 NoField = 0x00, 2326 BaseRegField = 0x01, 2327 BaseGVField = 0x02, 2328 BaseOffsField = 0x04, 2329 ScaledRegField = 0x08, 2330 ScaleField = 0x10, 2331 MultipleFields = 0xff 2332 }; 2333 2334 2335 ExtAddrMode() = default; 2336 2337 void print(raw_ostream &OS) const; 2338 void dump() const; 2339 2340 FieldName compare(const ExtAddrMode &other) { 2341 // First check that the types are the same on each field, as differing types 2342 // is something we can't cope with later on. 2343 if (BaseReg && other.BaseReg && 2344 BaseReg->getType() != other.BaseReg->getType()) 2345 return MultipleFields; 2346 if (BaseGV && other.BaseGV && 2347 BaseGV->getType() != other.BaseGV->getType()) 2348 return MultipleFields; 2349 if (ScaledReg && other.ScaledReg && 2350 ScaledReg->getType() != other.ScaledReg->getType()) 2351 return MultipleFields; 2352 2353 // Conservatively reject 'inbounds' mismatches. 2354 if (InBounds != other.InBounds) 2355 return MultipleFields; 2356 2357 // Check each field to see if it differs. 2358 unsigned Result = NoField; 2359 if (BaseReg != other.BaseReg) 2360 Result |= BaseRegField; 2361 if (BaseGV != other.BaseGV) 2362 Result |= BaseGVField; 2363 if (BaseOffs != other.BaseOffs) 2364 Result |= BaseOffsField; 2365 if (ScaledReg != other.ScaledReg) 2366 Result |= ScaledRegField; 2367 // Don't count 0 as being a different scale, because that actually means 2368 // unscaled (which will already be counted by having no ScaledReg). 2369 if (Scale && other.Scale && Scale != other.Scale) 2370 Result |= ScaleField; 2371 2372 if (countPopulation(Result) > 1) 2373 return MultipleFields; 2374 else 2375 return static_cast<FieldName>(Result); 2376 } 2377 2378 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2379 // with no offset. 2380 bool isTrivial() { 2381 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2382 // trivial if at most one of these terms is nonzero, except that BaseGV and 2383 // BaseReg both being zero actually means a null pointer value, which we 2384 // consider to be 'non-zero' here. 2385 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2386 } 2387 2388 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2389 switch (Field) { 2390 default: 2391 return nullptr; 2392 case BaseRegField: 2393 return BaseReg; 2394 case BaseGVField: 2395 return BaseGV; 2396 case ScaledRegField: 2397 return ScaledReg; 2398 case BaseOffsField: 2399 return ConstantInt::get(IntPtrTy, BaseOffs); 2400 } 2401 } 2402 2403 void SetCombinedField(FieldName Field, Value *V, 2404 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2405 switch (Field) { 2406 default: 2407 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2408 break; 2409 case ExtAddrMode::BaseRegField: 2410 BaseReg = V; 2411 break; 2412 case ExtAddrMode::BaseGVField: 2413 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2414 // in the BaseReg field. 2415 assert(BaseReg == nullptr); 2416 BaseReg = V; 2417 BaseGV = nullptr; 2418 break; 2419 case ExtAddrMode::ScaledRegField: 2420 ScaledReg = V; 2421 // If we have a mix of scaled and unscaled addrmodes then we want scale 2422 // to be the scale and not zero. 2423 if (!Scale) 2424 for (const ExtAddrMode &AM : AddrModes) 2425 if (AM.Scale) { 2426 Scale = AM.Scale; 2427 break; 2428 } 2429 break; 2430 case ExtAddrMode::BaseOffsField: 2431 // The offset is no longer a constant, so it goes in ScaledReg with a 2432 // scale of 1. 2433 assert(ScaledReg == nullptr); 2434 ScaledReg = V; 2435 Scale = 1; 2436 BaseOffs = 0; 2437 break; 2438 } 2439 } 2440 }; 2441 2442 } // end anonymous namespace 2443 2444 #ifndef NDEBUG 2445 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2446 AM.print(OS); 2447 return OS; 2448 } 2449 #endif 2450 2451 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2452 void ExtAddrMode::print(raw_ostream &OS) const { 2453 bool NeedPlus = false; 2454 OS << "["; 2455 if (InBounds) 2456 OS << "inbounds "; 2457 if (BaseGV) { 2458 OS << (NeedPlus ? " + " : "") 2459 << "GV:"; 2460 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2461 NeedPlus = true; 2462 } 2463 2464 if (BaseOffs) { 2465 OS << (NeedPlus ? " + " : "") 2466 << BaseOffs; 2467 NeedPlus = true; 2468 } 2469 2470 if (BaseReg) { 2471 OS << (NeedPlus ? " + " : "") 2472 << "Base:"; 2473 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2474 NeedPlus = true; 2475 } 2476 if (Scale) { 2477 OS << (NeedPlus ? " + " : "") 2478 << Scale << "*"; 2479 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2480 } 2481 2482 OS << ']'; 2483 } 2484 2485 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2486 print(dbgs()); 2487 dbgs() << '\n'; 2488 } 2489 #endif 2490 2491 namespace { 2492 2493 /// This class provides transaction based operation on the IR. 2494 /// Every change made through this class is recorded in the internal state and 2495 /// can be undone (rollback) until commit is called. 2496 /// CGP does not check if instructions could be speculatively executed when 2497 /// moved. Preserving the original location would pessimize the debugging 2498 /// experience, as well as negatively impact the quality of sample PGO. 2499 class TypePromotionTransaction { 2500 /// This represents the common interface of the individual transaction. 2501 /// Each class implements the logic for doing one specific modification on 2502 /// the IR via the TypePromotionTransaction. 2503 class TypePromotionAction { 2504 protected: 2505 /// The Instruction modified. 2506 Instruction *Inst; 2507 2508 public: 2509 /// Constructor of the action. 2510 /// The constructor performs the related action on the IR. 2511 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2512 2513 virtual ~TypePromotionAction() = default; 2514 2515 /// Undo the modification done by this action. 2516 /// When this method is called, the IR must be in the same state as it was 2517 /// before this action was applied. 2518 /// \pre Undoing the action works if and only if the IR is in the exact same 2519 /// state as it was directly after this action was applied. 2520 virtual void undo() = 0; 2521 2522 /// Advocate every change made by this action. 2523 /// When the results on the IR of the action are to be kept, it is important 2524 /// to call this function, otherwise hidden information may be kept forever. 2525 virtual void commit() { 2526 // Nothing to be done, this action is not doing anything. 2527 } 2528 }; 2529 2530 /// Utility to remember the position of an instruction. 2531 class InsertionHandler { 2532 /// Position of an instruction. 2533 /// Either an instruction: 2534 /// - Is the first in a basic block: BB is used. 2535 /// - Has a previous instruction: PrevInst is used. 2536 union { 2537 Instruction *PrevInst; 2538 BasicBlock *BB; 2539 } Point; 2540 2541 /// Remember whether or not the instruction had a previous instruction. 2542 bool HasPrevInstruction; 2543 2544 public: 2545 /// Record the position of \p Inst. 2546 InsertionHandler(Instruction *Inst) { 2547 BasicBlock::iterator It = Inst->getIterator(); 2548 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2549 if (HasPrevInstruction) 2550 Point.PrevInst = &*--It; 2551 else 2552 Point.BB = Inst->getParent(); 2553 } 2554 2555 /// Insert \p Inst at the recorded position. 2556 void insert(Instruction *Inst) { 2557 if (HasPrevInstruction) { 2558 if (Inst->getParent()) 2559 Inst->removeFromParent(); 2560 Inst->insertAfter(Point.PrevInst); 2561 } else { 2562 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2563 if (Inst->getParent()) 2564 Inst->moveBefore(Position); 2565 else 2566 Inst->insertBefore(Position); 2567 } 2568 } 2569 }; 2570 2571 /// Move an instruction before another. 2572 class InstructionMoveBefore : public TypePromotionAction { 2573 /// Original position of the instruction. 2574 InsertionHandler Position; 2575 2576 public: 2577 /// Move \p Inst before \p Before. 2578 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2579 : TypePromotionAction(Inst), Position(Inst) { 2580 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2581 << "\n"); 2582 Inst->moveBefore(Before); 2583 } 2584 2585 /// Move the instruction back to its original position. 2586 void undo() override { 2587 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2588 Position.insert(Inst); 2589 } 2590 }; 2591 2592 /// Set the operand of an instruction with a new value. 2593 class OperandSetter : public TypePromotionAction { 2594 /// Original operand of the instruction. 2595 Value *Origin; 2596 2597 /// Index of the modified instruction. 2598 unsigned Idx; 2599 2600 public: 2601 /// Set \p Idx operand of \p Inst with \p NewVal. 2602 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2603 : TypePromotionAction(Inst), Idx(Idx) { 2604 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2605 << "for:" << *Inst << "\n" 2606 << "with:" << *NewVal << "\n"); 2607 Origin = Inst->getOperand(Idx); 2608 Inst->setOperand(Idx, NewVal); 2609 } 2610 2611 /// Restore the original value of the instruction. 2612 void undo() override { 2613 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2614 << "for: " << *Inst << "\n" 2615 << "with: " << *Origin << "\n"); 2616 Inst->setOperand(Idx, Origin); 2617 } 2618 }; 2619 2620 /// Hide the operands of an instruction. 2621 /// Do as if this instruction was not using any of its operands. 2622 class OperandsHider : public TypePromotionAction { 2623 /// The list of original operands. 2624 SmallVector<Value *, 4> OriginalValues; 2625 2626 public: 2627 /// Remove \p Inst from the uses of the operands of \p Inst. 2628 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2629 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2630 unsigned NumOpnds = Inst->getNumOperands(); 2631 OriginalValues.reserve(NumOpnds); 2632 for (unsigned It = 0; It < NumOpnds; ++It) { 2633 // Save the current operand. 2634 Value *Val = Inst->getOperand(It); 2635 OriginalValues.push_back(Val); 2636 // Set a dummy one. 2637 // We could use OperandSetter here, but that would imply an overhead 2638 // that we are not willing to pay. 2639 Inst->setOperand(It, UndefValue::get(Val->getType())); 2640 } 2641 } 2642 2643 /// Restore the original list of uses. 2644 void undo() override { 2645 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2646 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2647 Inst->setOperand(It, OriginalValues[It]); 2648 } 2649 }; 2650 2651 /// Build a truncate instruction. 2652 class TruncBuilder : public TypePromotionAction { 2653 Value *Val; 2654 2655 public: 2656 /// Build a truncate instruction of \p Opnd producing a \p Ty 2657 /// result. 2658 /// trunc Opnd to Ty. 2659 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2660 IRBuilder<> Builder(Opnd); 2661 Builder.SetCurrentDebugLocation(DebugLoc()); 2662 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2663 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2664 } 2665 2666 /// Get the built value. 2667 Value *getBuiltValue() { return Val; } 2668 2669 /// Remove the built instruction. 2670 void undo() override { 2671 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2672 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2673 IVal->eraseFromParent(); 2674 } 2675 }; 2676 2677 /// Build a sign extension instruction. 2678 class SExtBuilder : public TypePromotionAction { 2679 Value *Val; 2680 2681 public: 2682 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2683 /// result. 2684 /// sext Opnd to Ty. 2685 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2686 : TypePromotionAction(InsertPt) { 2687 IRBuilder<> Builder(InsertPt); 2688 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2689 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2690 } 2691 2692 /// Get the built value. 2693 Value *getBuiltValue() { return Val; } 2694 2695 /// Remove the built instruction. 2696 void undo() override { 2697 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2698 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2699 IVal->eraseFromParent(); 2700 } 2701 }; 2702 2703 /// Build a zero extension instruction. 2704 class ZExtBuilder : public TypePromotionAction { 2705 Value *Val; 2706 2707 public: 2708 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2709 /// result. 2710 /// zext Opnd to Ty. 2711 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2712 : TypePromotionAction(InsertPt) { 2713 IRBuilder<> Builder(InsertPt); 2714 Builder.SetCurrentDebugLocation(DebugLoc()); 2715 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2716 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2717 } 2718 2719 /// Get the built value. 2720 Value *getBuiltValue() { return Val; } 2721 2722 /// Remove the built instruction. 2723 void undo() override { 2724 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2725 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2726 IVal->eraseFromParent(); 2727 } 2728 }; 2729 2730 /// Mutate an instruction to another type. 2731 class TypeMutator : public TypePromotionAction { 2732 /// Record the original type. 2733 Type *OrigTy; 2734 2735 public: 2736 /// Mutate the type of \p Inst into \p NewTy. 2737 TypeMutator(Instruction *Inst, Type *NewTy) 2738 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2739 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2740 << "\n"); 2741 Inst->mutateType(NewTy); 2742 } 2743 2744 /// Mutate the instruction back to its original type. 2745 void undo() override { 2746 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2747 << "\n"); 2748 Inst->mutateType(OrigTy); 2749 } 2750 }; 2751 2752 /// Replace the uses of an instruction by another instruction. 2753 class UsesReplacer : public TypePromotionAction { 2754 /// Helper structure to keep track of the replaced uses. 2755 struct InstructionAndIdx { 2756 /// The instruction using the instruction. 2757 Instruction *Inst; 2758 2759 /// The index where this instruction is used for Inst. 2760 unsigned Idx; 2761 2762 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2763 : Inst(Inst), Idx(Idx) {} 2764 }; 2765 2766 /// Keep track of the original uses (pair Instruction, Index). 2767 SmallVector<InstructionAndIdx, 4> OriginalUses; 2768 /// Keep track of the debug users. 2769 SmallVector<DbgValueInst *, 1> DbgValues; 2770 2771 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2772 2773 public: 2774 /// Replace all the use of \p Inst by \p New. 2775 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2776 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2777 << "\n"); 2778 // Record the original uses. 2779 for (Use &U : Inst->uses()) { 2780 Instruction *UserI = cast<Instruction>(U.getUser()); 2781 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2782 } 2783 // Record the debug uses separately. They are not in the instruction's 2784 // use list, but they are replaced by RAUW. 2785 findDbgValues(DbgValues, Inst); 2786 2787 // Now, we can replace the uses. 2788 Inst->replaceAllUsesWith(New); 2789 } 2790 2791 /// Reassign the original uses of Inst to Inst. 2792 void undo() override { 2793 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2794 for (use_iterator UseIt = OriginalUses.begin(), 2795 EndIt = OriginalUses.end(); 2796 UseIt != EndIt; ++UseIt) { 2797 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2798 } 2799 // RAUW has replaced all original uses with references to the new value, 2800 // including the debug uses. Since we are undoing the replacements, 2801 // the original debug uses must also be reinstated to maintain the 2802 // correctness and utility of debug value instructions. 2803 for (auto *DVI: DbgValues) { 2804 LLVMContext &Ctx = Inst->getType()->getContext(); 2805 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2806 DVI->setOperand(0, MV); 2807 } 2808 } 2809 }; 2810 2811 /// Remove an instruction from the IR. 2812 class InstructionRemover : public TypePromotionAction { 2813 /// Original position of the instruction. 2814 InsertionHandler Inserter; 2815 2816 /// Helper structure to hide all the link to the instruction. In other 2817 /// words, this helps to do as if the instruction was removed. 2818 OperandsHider Hider; 2819 2820 /// Keep track of the uses replaced, if any. 2821 UsesReplacer *Replacer = nullptr; 2822 2823 /// Keep track of instructions removed. 2824 SetOfInstrs &RemovedInsts; 2825 2826 public: 2827 /// Remove all reference of \p Inst and optionally replace all its 2828 /// uses with New. 2829 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2830 /// \pre If !Inst->use_empty(), then New != nullptr 2831 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2832 Value *New = nullptr) 2833 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2834 RemovedInsts(RemovedInsts) { 2835 if (New) 2836 Replacer = new UsesReplacer(Inst, New); 2837 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2838 RemovedInsts.insert(Inst); 2839 /// The instructions removed here will be freed after completing 2840 /// optimizeBlock() for all blocks as we need to keep track of the 2841 /// removed instructions during promotion. 2842 Inst->removeFromParent(); 2843 } 2844 2845 ~InstructionRemover() override { delete Replacer; } 2846 2847 /// Resurrect the instruction and reassign it to the proper uses if 2848 /// new value was provided when build this action. 2849 void undo() override { 2850 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2851 Inserter.insert(Inst); 2852 if (Replacer) 2853 Replacer->undo(); 2854 Hider.undo(); 2855 RemovedInsts.erase(Inst); 2856 } 2857 }; 2858 2859 public: 2860 /// Restoration point. 2861 /// The restoration point is a pointer to an action instead of an iterator 2862 /// because the iterator may be invalidated but not the pointer. 2863 using ConstRestorationPt = const TypePromotionAction *; 2864 2865 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2866 : RemovedInsts(RemovedInsts) {} 2867 2868 /// Advocate every changes made in that transaction. Return true if any change 2869 /// happen. 2870 bool commit(); 2871 2872 /// Undo all the changes made after the given point. 2873 void rollback(ConstRestorationPt Point); 2874 2875 /// Get the current restoration point. 2876 ConstRestorationPt getRestorationPoint() const; 2877 2878 /// \name API for IR modification with state keeping to support rollback. 2879 /// @{ 2880 /// Same as Instruction::setOperand. 2881 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2882 2883 /// Same as Instruction::eraseFromParent. 2884 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2885 2886 /// Same as Value::replaceAllUsesWith. 2887 void replaceAllUsesWith(Instruction *Inst, Value *New); 2888 2889 /// Same as Value::mutateType. 2890 void mutateType(Instruction *Inst, Type *NewTy); 2891 2892 /// Same as IRBuilder::createTrunc. 2893 Value *createTrunc(Instruction *Opnd, Type *Ty); 2894 2895 /// Same as IRBuilder::createSExt. 2896 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2897 2898 /// Same as IRBuilder::createZExt. 2899 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2900 2901 /// Same as Instruction::moveBefore. 2902 void moveBefore(Instruction *Inst, Instruction *Before); 2903 /// @} 2904 2905 private: 2906 /// The ordered list of actions made so far. 2907 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2908 2909 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2910 2911 SetOfInstrs &RemovedInsts; 2912 }; 2913 2914 } // end anonymous namespace 2915 2916 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2917 Value *NewVal) { 2918 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2919 Inst, Idx, NewVal)); 2920 } 2921 2922 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2923 Value *NewVal) { 2924 Actions.push_back( 2925 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2926 Inst, RemovedInsts, NewVal)); 2927 } 2928 2929 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2930 Value *New) { 2931 Actions.push_back( 2932 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2933 } 2934 2935 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2936 Actions.push_back( 2937 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2938 } 2939 2940 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2941 Type *Ty) { 2942 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2943 Value *Val = Ptr->getBuiltValue(); 2944 Actions.push_back(std::move(Ptr)); 2945 return Val; 2946 } 2947 2948 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2949 Value *Opnd, Type *Ty) { 2950 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2951 Value *Val = Ptr->getBuiltValue(); 2952 Actions.push_back(std::move(Ptr)); 2953 return Val; 2954 } 2955 2956 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2957 Value *Opnd, Type *Ty) { 2958 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2959 Value *Val = Ptr->getBuiltValue(); 2960 Actions.push_back(std::move(Ptr)); 2961 return Val; 2962 } 2963 2964 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2965 Instruction *Before) { 2966 Actions.push_back( 2967 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2968 Inst, Before)); 2969 } 2970 2971 TypePromotionTransaction::ConstRestorationPt 2972 TypePromotionTransaction::getRestorationPoint() const { 2973 return !Actions.empty() ? Actions.back().get() : nullptr; 2974 } 2975 2976 bool TypePromotionTransaction::commit() { 2977 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2978 ++It) 2979 (*It)->commit(); 2980 bool Modified = !Actions.empty(); 2981 Actions.clear(); 2982 return Modified; 2983 } 2984 2985 void TypePromotionTransaction::rollback( 2986 TypePromotionTransaction::ConstRestorationPt Point) { 2987 while (!Actions.empty() && Point != Actions.back().get()) { 2988 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2989 Curr->undo(); 2990 } 2991 } 2992 2993 namespace { 2994 2995 /// A helper class for matching addressing modes. 2996 /// 2997 /// This encapsulates the logic for matching the target-legal addressing modes. 2998 class AddressingModeMatcher { 2999 SmallVectorImpl<Instruction*> &AddrModeInsts; 3000 const TargetLowering &TLI; 3001 const TargetRegisterInfo &TRI; 3002 const DataLayout &DL; 3003 3004 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3005 /// the memory instruction that we're computing this address for. 3006 Type *AccessTy; 3007 unsigned AddrSpace; 3008 Instruction *MemoryInst; 3009 3010 /// This is the addressing mode that we're building up. This is 3011 /// part of the return value of this addressing mode matching stuff. 3012 ExtAddrMode &AddrMode; 3013 3014 /// The instructions inserted by other CodeGenPrepare optimizations. 3015 const SetOfInstrs &InsertedInsts; 3016 3017 /// A map from the instructions to their type before promotion. 3018 InstrToOrigTy &PromotedInsts; 3019 3020 /// The ongoing transaction where every action should be registered. 3021 TypePromotionTransaction &TPT; 3022 3023 // A GEP which has too large offset to be folded into the addressing mode. 3024 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3025 3026 /// This is set to true when we should not do profitability checks. 3027 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3028 bool IgnoreProfitability; 3029 3030 /// True if we are optimizing for size. 3031 bool OptSize; 3032 3033 ProfileSummaryInfo *PSI; 3034 BlockFrequencyInfo *BFI; 3035 3036 AddressingModeMatcher( 3037 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3038 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3039 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3040 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3041 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3042 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3043 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3044 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3045 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3046 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3047 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3048 IgnoreProfitability = false; 3049 } 3050 3051 public: 3052 /// Find the maximal addressing mode that a load/store of V can fold, 3053 /// give an access type of AccessTy. This returns a list of involved 3054 /// instructions in AddrModeInsts. 3055 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3056 /// optimizations. 3057 /// \p PromotedInsts maps the instructions to their type before promotion. 3058 /// \p The ongoing transaction where every action should be registered. 3059 static ExtAddrMode 3060 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3061 SmallVectorImpl<Instruction *> &AddrModeInsts, 3062 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3063 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3064 TypePromotionTransaction &TPT, 3065 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3066 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3067 ExtAddrMode Result; 3068 3069 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3070 MemoryInst, Result, InsertedInsts, 3071 PromotedInsts, TPT, LargeOffsetGEP, 3072 OptSize, PSI, BFI) 3073 .matchAddr(V, 0); 3074 (void)Success; assert(Success && "Couldn't select *anything*?"); 3075 return Result; 3076 } 3077 3078 private: 3079 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3080 bool matchAddr(Value *Addr, unsigned Depth); 3081 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3082 bool *MovedAway = nullptr); 3083 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3084 ExtAddrMode &AMBefore, 3085 ExtAddrMode &AMAfter); 3086 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3087 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3088 Value *PromotedOperand) const; 3089 }; 3090 3091 class PhiNodeSet; 3092 3093 /// An iterator for PhiNodeSet. 3094 class PhiNodeSetIterator { 3095 PhiNodeSet * const Set; 3096 size_t CurrentIndex = 0; 3097 3098 public: 3099 /// The constructor. Start should point to either a valid element, or be equal 3100 /// to the size of the underlying SmallVector of the PhiNodeSet. 3101 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3102 PHINode * operator*() const; 3103 PhiNodeSetIterator& operator++(); 3104 bool operator==(const PhiNodeSetIterator &RHS) const; 3105 bool operator!=(const PhiNodeSetIterator &RHS) const; 3106 }; 3107 3108 /// Keeps a set of PHINodes. 3109 /// 3110 /// This is a minimal set implementation for a specific use case: 3111 /// It is very fast when there are very few elements, but also provides good 3112 /// performance when there are many. It is similar to SmallPtrSet, but also 3113 /// provides iteration by insertion order, which is deterministic and stable 3114 /// across runs. It is also similar to SmallSetVector, but provides removing 3115 /// elements in O(1) time. This is achieved by not actually removing the element 3116 /// from the underlying vector, so comes at the cost of using more memory, but 3117 /// that is fine, since PhiNodeSets are used as short lived objects. 3118 class PhiNodeSet { 3119 friend class PhiNodeSetIterator; 3120 3121 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3122 using iterator = PhiNodeSetIterator; 3123 3124 /// Keeps the elements in the order of their insertion in the underlying 3125 /// vector. To achieve constant time removal, it never deletes any element. 3126 SmallVector<PHINode *, 32> NodeList; 3127 3128 /// Keeps the elements in the underlying set implementation. This (and not the 3129 /// NodeList defined above) is the source of truth on whether an element 3130 /// is actually in the collection. 3131 MapType NodeMap; 3132 3133 /// Points to the first valid (not deleted) element when the set is not empty 3134 /// and the value is not zero. Equals to the size of the underlying vector 3135 /// when the set is empty. When the value is 0, as in the beginning, the 3136 /// first element may or may not be valid. 3137 size_t FirstValidElement = 0; 3138 3139 public: 3140 /// Inserts a new element to the collection. 3141 /// \returns true if the element is actually added, i.e. was not in the 3142 /// collection before the operation. 3143 bool insert(PHINode *Ptr) { 3144 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3145 NodeList.push_back(Ptr); 3146 return true; 3147 } 3148 return false; 3149 } 3150 3151 /// Removes the element from the collection. 3152 /// \returns whether the element is actually removed, i.e. was in the 3153 /// collection before the operation. 3154 bool erase(PHINode *Ptr) { 3155 auto it = NodeMap.find(Ptr); 3156 if (it != NodeMap.end()) { 3157 NodeMap.erase(Ptr); 3158 SkipRemovedElements(FirstValidElement); 3159 return true; 3160 } 3161 return false; 3162 } 3163 3164 /// Removes all elements and clears the collection. 3165 void clear() { 3166 NodeMap.clear(); 3167 NodeList.clear(); 3168 FirstValidElement = 0; 3169 } 3170 3171 /// \returns an iterator that will iterate the elements in the order of 3172 /// insertion. 3173 iterator begin() { 3174 if (FirstValidElement == 0) 3175 SkipRemovedElements(FirstValidElement); 3176 return PhiNodeSetIterator(this, FirstValidElement); 3177 } 3178 3179 /// \returns an iterator that points to the end of the collection. 3180 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3181 3182 /// Returns the number of elements in the collection. 3183 size_t size() const { 3184 return NodeMap.size(); 3185 } 3186 3187 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3188 size_t count(PHINode *Ptr) const { 3189 return NodeMap.count(Ptr); 3190 } 3191 3192 private: 3193 /// Updates the CurrentIndex so that it will point to a valid element. 3194 /// 3195 /// If the element of NodeList at CurrentIndex is valid, it does not 3196 /// change it. If there are no more valid elements, it updates CurrentIndex 3197 /// to point to the end of the NodeList. 3198 void SkipRemovedElements(size_t &CurrentIndex) { 3199 while (CurrentIndex < NodeList.size()) { 3200 auto it = NodeMap.find(NodeList[CurrentIndex]); 3201 // If the element has been deleted and added again later, NodeMap will 3202 // point to a different index, so CurrentIndex will still be invalid. 3203 if (it != NodeMap.end() && it->second == CurrentIndex) 3204 break; 3205 ++CurrentIndex; 3206 } 3207 } 3208 }; 3209 3210 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3211 : Set(Set), CurrentIndex(Start) {} 3212 3213 PHINode * PhiNodeSetIterator::operator*() const { 3214 assert(CurrentIndex < Set->NodeList.size() && 3215 "PhiNodeSet access out of range"); 3216 return Set->NodeList[CurrentIndex]; 3217 } 3218 3219 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3220 assert(CurrentIndex < Set->NodeList.size() && 3221 "PhiNodeSet access out of range"); 3222 ++CurrentIndex; 3223 Set->SkipRemovedElements(CurrentIndex); 3224 return *this; 3225 } 3226 3227 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3228 return CurrentIndex == RHS.CurrentIndex; 3229 } 3230 3231 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3232 return !((*this) == RHS); 3233 } 3234 3235 /// Keep track of simplification of Phi nodes. 3236 /// Accept the set of all phi nodes and erase phi node from this set 3237 /// if it is simplified. 3238 class SimplificationTracker { 3239 DenseMap<Value *, Value *> Storage; 3240 const SimplifyQuery &SQ; 3241 // Tracks newly created Phi nodes. The elements are iterated by insertion 3242 // order. 3243 PhiNodeSet AllPhiNodes; 3244 // Tracks newly created Select nodes. 3245 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3246 3247 public: 3248 SimplificationTracker(const SimplifyQuery &sq) 3249 : SQ(sq) {} 3250 3251 Value *Get(Value *V) { 3252 do { 3253 auto SV = Storage.find(V); 3254 if (SV == Storage.end()) 3255 return V; 3256 V = SV->second; 3257 } while (true); 3258 } 3259 3260 Value *Simplify(Value *Val) { 3261 SmallVector<Value *, 32> WorkList; 3262 SmallPtrSet<Value *, 32> Visited; 3263 WorkList.push_back(Val); 3264 while (!WorkList.empty()) { 3265 auto *P = WorkList.pop_back_val(); 3266 if (!Visited.insert(P).second) 3267 continue; 3268 if (auto *PI = dyn_cast<Instruction>(P)) 3269 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3270 for (auto *U : PI->users()) 3271 WorkList.push_back(cast<Value>(U)); 3272 Put(PI, V); 3273 PI->replaceAllUsesWith(V); 3274 if (auto *PHI = dyn_cast<PHINode>(PI)) 3275 AllPhiNodes.erase(PHI); 3276 if (auto *Select = dyn_cast<SelectInst>(PI)) 3277 AllSelectNodes.erase(Select); 3278 PI->eraseFromParent(); 3279 } 3280 } 3281 return Get(Val); 3282 } 3283 3284 void Put(Value *From, Value *To) { 3285 Storage.insert({ From, To }); 3286 } 3287 3288 void ReplacePhi(PHINode *From, PHINode *To) { 3289 Value* OldReplacement = Get(From); 3290 while (OldReplacement != From) { 3291 From = To; 3292 To = dyn_cast<PHINode>(OldReplacement); 3293 OldReplacement = Get(From); 3294 } 3295 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3296 Put(From, To); 3297 From->replaceAllUsesWith(To); 3298 AllPhiNodes.erase(From); 3299 From->eraseFromParent(); 3300 } 3301 3302 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3303 3304 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3305 3306 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3307 3308 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3309 3310 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3311 3312 void destroyNewNodes(Type *CommonType) { 3313 // For safe erasing, replace the uses with dummy value first. 3314 auto *Dummy = UndefValue::get(CommonType); 3315 for (auto *I : AllPhiNodes) { 3316 I->replaceAllUsesWith(Dummy); 3317 I->eraseFromParent(); 3318 } 3319 AllPhiNodes.clear(); 3320 for (auto *I : AllSelectNodes) { 3321 I->replaceAllUsesWith(Dummy); 3322 I->eraseFromParent(); 3323 } 3324 AllSelectNodes.clear(); 3325 } 3326 }; 3327 3328 /// A helper class for combining addressing modes. 3329 class AddressingModeCombiner { 3330 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3331 typedef std::pair<PHINode *, PHINode *> PHIPair; 3332 3333 private: 3334 /// The addressing modes we've collected. 3335 SmallVector<ExtAddrMode, 16> AddrModes; 3336 3337 /// The field in which the AddrModes differ, when we have more than one. 3338 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3339 3340 /// Are the AddrModes that we have all just equal to their original values? 3341 bool AllAddrModesTrivial = true; 3342 3343 /// Common Type for all different fields in addressing modes. 3344 Type *CommonType; 3345 3346 /// SimplifyQuery for simplifyInstruction utility. 3347 const SimplifyQuery &SQ; 3348 3349 /// Original Address. 3350 Value *Original; 3351 3352 public: 3353 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3354 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3355 3356 /// Get the combined AddrMode 3357 const ExtAddrMode &getAddrMode() const { 3358 return AddrModes[0]; 3359 } 3360 3361 /// Add a new AddrMode if it's compatible with the AddrModes we already 3362 /// have. 3363 /// \return True iff we succeeded in doing so. 3364 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3365 // Take note of if we have any non-trivial AddrModes, as we need to detect 3366 // when all AddrModes are trivial as then we would introduce a phi or select 3367 // which just duplicates what's already there. 3368 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3369 3370 // If this is the first addrmode then everything is fine. 3371 if (AddrModes.empty()) { 3372 AddrModes.emplace_back(NewAddrMode); 3373 return true; 3374 } 3375 3376 // Figure out how different this is from the other address modes, which we 3377 // can do just by comparing against the first one given that we only care 3378 // about the cumulative difference. 3379 ExtAddrMode::FieldName ThisDifferentField = 3380 AddrModes[0].compare(NewAddrMode); 3381 if (DifferentField == ExtAddrMode::NoField) 3382 DifferentField = ThisDifferentField; 3383 else if (DifferentField != ThisDifferentField) 3384 DifferentField = ExtAddrMode::MultipleFields; 3385 3386 // If NewAddrMode differs in more than one dimension we cannot handle it. 3387 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3388 3389 // If Scale Field is different then we reject. 3390 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3391 3392 // We also must reject the case when base offset is different and 3393 // scale reg is not null, we cannot handle this case due to merge of 3394 // different offsets will be used as ScaleReg. 3395 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3396 !NewAddrMode.ScaledReg); 3397 3398 // We also must reject the case when GV is different and BaseReg installed 3399 // due to we want to use base reg as a merge of GV values. 3400 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3401 !NewAddrMode.HasBaseReg); 3402 3403 // Even if NewAddMode is the same we still need to collect it due to 3404 // original value is different. And later we will need all original values 3405 // as anchors during finding the common Phi node. 3406 if (CanHandle) 3407 AddrModes.emplace_back(NewAddrMode); 3408 else 3409 AddrModes.clear(); 3410 3411 return CanHandle; 3412 } 3413 3414 /// Combine the addressing modes we've collected into a single 3415 /// addressing mode. 3416 /// \return True iff we successfully combined them or we only had one so 3417 /// didn't need to combine them anyway. 3418 bool combineAddrModes() { 3419 // If we have no AddrModes then they can't be combined. 3420 if (AddrModes.size() == 0) 3421 return false; 3422 3423 // A single AddrMode can trivially be combined. 3424 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3425 return true; 3426 3427 // If the AddrModes we collected are all just equal to the value they are 3428 // derived from then combining them wouldn't do anything useful. 3429 if (AllAddrModesTrivial) 3430 return false; 3431 3432 if (!addrModeCombiningAllowed()) 3433 return false; 3434 3435 // Build a map between <original value, basic block where we saw it> to 3436 // value of base register. 3437 // Bail out if there is no common type. 3438 FoldAddrToValueMapping Map; 3439 if (!initializeMap(Map)) 3440 return false; 3441 3442 Value *CommonValue = findCommon(Map); 3443 if (CommonValue) 3444 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3445 return CommonValue != nullptr; 3446 } 3447 3448 private: 3449 /// Initialize Map with anchor values. For address seen 3450 /// we set the value of different field saw in this address. 3451 /// At the same time we find a common type for different field we will 3452 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3453 /// Return false if there is no common type found. 3454 bool initializeMap(FoldAddrToValueMapping &Map) { 3455 // Keep track of keys where the value is null. We will need to replace it 3456 // with constant null when we know the common type. 3457 SmallVector<Value *, 2> NullValue; 3458 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3459 for (auto &AM : AddrModes) { 3460 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3461 if (DV) { 3462 auto *Type = DV->getType(); 3463 if (CommonType && CommonType != Type) 3464 return false; 3465 CommonType = Type; 3466 Map[AM.OriginalValue] = DV; 3467 } else { 3468 NullValue.push_back(AM.OriginalValue); 3469 } 3470 } 3471 assert(CommonType && "At least one non-null value must be!"); 3472 for (auto *V : NullValue) 3473 Map[V] = Constant::getNullValue(CommonType); 3474 return true; 3475 } 3476 3477 /// We have mapping between value A and other value B where B was a field in 3478 /// addressing mode represented by A. Also we have an original value C 3479 /// representing an address we start with. Traversing from C through phi and 3480 /// selects we ended up with A's in a map. This utility function tries to find 3481 /// a value V which is a field in addressing mode C and traversing through phi 3482 /// nodes and selects we will end up in corresponded values B in a map. 3483 /// The utility will create a new Phi/Selects if needed. 3484 // The simple example looks as follows: 3485 // BB1: 3486 // p1 = b1 + 40 3487 // br cond BB2, BB3 3488 // BB2: 3489 // p2 = b2 + 40 3490 // br BB3 3491 // BB3: 3492 // p = phi [p1, BB1], [p2, BB2] 3493 // v = load p 3494 // Map is 3495 // p1 -> b1 3496 // p2 -> b2 3497 // Request is 3498 // p -> ? 3499 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3500 Value *findCommon(FoldAddrToValueMapping &Map) { 3501 // Tracks the simplification of newly created phi nodes. The reason we use 3502 // this mapping is because we will add new created Phi nodes in AddrToBase. 3503 // Simplification of Phi nodes is recursive, so some Phi node may 3504 // be simplified after we added it to AddrToBase. In reality this 3505 // simplification is possible only if original phi/selects were not 3506 // simplified yet. 3507 // Using this mapping we can find the current value in AddrToBase. 3508 SimplificationTracker ST(SQ); 3509 3510 // First step, DFS to create PHI nodes for all intermediate blocks. 3511 // Also fill traverse order for the second step. 3512 SmallVector<Value *, 32> TraverseOrder; 3513 InsertPlaceholders(Map, TraverseOrder, ST); 3514 3515 // Second Step, fill new nodes by merged values and simplify if possible. 3516 FillPlaceholders(Map, TraverseOrder, ST); 3517 3518 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3519 ST.destroyNewNodes(CommonType); 3520 return nullptr; 3521 } 3522 3523 // Now we'd like to match New Phi nodes to existed ones. 3524 unsigned PhiNotMatchedCount = 0; 3525 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3526 ST.destroyNewNodes(CommonType); 3527 return nullptr; 3528 } 3529 3530 auto *Result = ST.Get(Map.find(Original)->second); 3531 if (Result) { 3532 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3533 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3534 } 3535 return Result; 3536 } 3537 3538 /// Try to match PHI node to Candidate. 3539 /// Matcher tracks the matched Phi nodes. 3540 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3541 SmallSetVector<PHIPair, 8> &Matcher, 3542 PhiNodeSet &PhiNodesToMatch) { 3543 SmallVector<PHIPair, 8> WorkList; 3544 Matcher.insert({ PHI, Candidate }); 3545 SmallSet<PHINode *, 8> MatchedPHIs; 3546 MatchedPHIs.insert(PHI); 3547 WorkList.push_back({ PHI, Candidate }); 3548 SmallSet<PHIPair, 8> Visited; 3549 while (!WorkList.empty()) { 3550 auto Item = WorkList.pop_back_val(); 3551 if (!Visited.insert(Item).second) 3552 continue; 3553 // We iterate over all incoming values to Phi to compare them. 3554 // If values are different and both of them Phi and the first one is a 3555 // Phi we added (subject to match) and both of them is in the same basic 3556 // block then we can match our pair if values match. So we state that 3557 // these values match and add it to work list to verify that. 3558 for (auto B : Item.first->blocks()) { 3559 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3560 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3561 if (FirstValue == SecondValue) 3562 continue; 3563 3564 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3565 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3566 3567 // One of them is not Phi or 3568 // The first one is not Phi node from the set we'd like to match or 3569 // Phi nodes from different basic blocks then 3570 // we will not be able to match. 3571 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3572 FirstPhi->getParent() != SecondPhi->getParent()) 3573 return false; 3574 3575 // If we already matched them then continue. 3576 if (Matcher.count({ FirstPhi, SecondPhi })) 3577 continue; 3578 // So the values are different and does not match. So we need them to 3579 // match. (But we register no more than one match per PHI node, so that 3580 // we won't later try to replace them twice.) 3581 if (MatchedPHIs.insert(FirstPhi).second) 3582 Matcher.insert({ FirstPhi, SecondPhi }); 3583 // But me must check it. 3584 WorkList.push_back({ FirstPhi, SecondPhi }); 3585 } 3586 } 3587 return true; 3588 } 3589 3590 /// For the given set of PHI nodes (in the SimplificationTracker) try 3591 /// to find their equivalents. 3592 /// Returns false if this matching fails and creation of new Phi is disabled. 3593 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3594 unsigned &PhiNotMatchedCount) { 3595 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3596 // order, so the replacements (ReplacePhi) are also done in a deterministic 3597 // order. 3598 SmallSetVector<PHIPair, 8> Matched; 3599 SmallPtrSet<PHINode *, 8> WillNotMatch; 3600 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3601 while (PhiNodesToMatch.size()) { 3602 PHINode *PHI = *PhiNodesToMatch.begin(); 3603 3604 // Add us, if no Phi nodes in the basic block we do not match. 3605 WillNotMatch.clear(); 3606 WillNotMatch.insert(PHI); 3607 3608 // Traverse all Phis until we found equivalent or fail to do that. 3609 bool IsMatched = false; 3610 for (auto &P : PHI->getParent()->phis()) { 3611 if (&P == PHI) 3612 continue; 3613 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3614 break; 3615 // If it does not match, collect all Phi nodes from matcher. 3616 // if we end up with no match, them all these Phi nodes will not match 3617 // later. 3618 for (auto M : Matched) 3619 WillNotMatch.insert(M.first); 3620 Matched.clear(); 3621 } 3622 if (IsMatched) { 3623 // Replace all matched values and erase them. 3624 for (auto MV : Matched) 3625 ST.ReplacePhi(MV.first, MV.second); 3626 Matched.clear(); 3627 continue; 3628 } 3629 // If we are not allowed to create new nodes then bail out. 3630 if (!AllowNewPhiNodes) 3631 return false; 3632 // Just remove all seen values in matcher. They will not match anything. 3633 PhiNotMatchedCount += WillNotMatch.size(); 3634 for (auto *P : WillNotMatch) 3635 PhiNodesToMatch.erase(P); 3636 } 3637 return true; 3638 } 3639 /// Fill the placeholders with values from predecessors and simplify them. 3640 void FillPlaceholders(FoldAddrToValueMapping &Map, 3641 SmallVectorImpl<Value *> &TraverseOrder, 3642 SimplificationTracker &ST) { 3643 while (!TraverseOrder.empty()) { 3644 Value *Current = TraverseOrder.pop_back_val(); 3645 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3646 Value *V = Map[Current]; 3647 3648 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3649 // CurrentValue also must be Select. 3650 auto *CurrentSelect = cast<SelectInst>(Current); 3651 auto *TrueValue = CurrentSelect->getTrueValue(); 3652 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3653 Select->setTrueValue(ST.Get(Map[TrueValue])); 3654 auto *FalseValue = CurrentSelect->getFalseValue(); 3655 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3656 Select->setFalseValue(ST.Get(Map[FalseValue])); 3657 } else { 3658 // Must be a Phi node then. 3659 auto *PHI = cast<PHINode>(V); 3660 // Fill the Phi node with values from predecessors. 3661 for (auto *B : predecessors(PHI->getParent())) { 3662 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3663 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3664 PHI->addIncoming(ST.Get(Map[PV]), B); 3665 } 3666 } 3667 Map[Current] = ST.Simplify(V); 3668 } 3669 } 3670 3671 /// Starting from original value recursively iterates over def-use chain up to 3672 /// known ending values represented in a map. For each traversed phi/select 3673 /// inserts a placeholder Phi or Select. 3674 /// Reports all new created Phi/Select nodes by adding them to set. 3675 /// Also reports and order in what values have been traversed. 3676 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3677 SmallVectorImpl<Value *> &TraverseOrder, 3678 SimplificationTracker &ST) { 3679 SmallVector<Value *, 32> Worklist; 3680 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3681 "Address must be a Phi or Select node"); 3682 auto *Dummy = UndefValue::get(CommonType); 3683 Worklist.push_back(Original); 3684 while (!Worklist.empty()) { 3685 Value *Current = Worklist.pop_back_val(); 3686 // if it is already visited or it is an ending value then skip it. 3687 if (Map.find(Current) != Map.end()) 3688 continue; 3689 TraverseOrder.push_back(Current); 3690 3691 // CurrentValue must be a Phi node or select. All others must be covered 3692 // by anchors. 3693 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3694 // Is it OK to get metadata from OrigSelect?! 3695 // Create a Select placeholder with dummy value. 3696 SelectInst *Select = SelectInst::Create( 3697 CurrentSelect->getCondition(), Dummy, Dummy, 3698 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3699 Map[Current] = Select; 3700 ST.insertNewSelect(Select); 3701 // We are interested in True and False values. 3702 Worklist.push_back(CurrentSelect->getTrueValue()); 3703 Worklist.push_back(CurrentSelect->getFalseValue()); 3704 } else { 3705 // It must be a Phi node then. 3706 PHINode *CurrentPhi = cast<PHINode>(Current); 3707 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3708 PHINode *PHI = 3709 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3710 Map[Current] = PHI; 3711 ST.insertNewPhi(PHI); 3712 for (Value *P : CurrentPhi->incoming_values()) 3713 Worklist.push_back(P); 3714 } 3715 } 3716 } 3717 3718 bool addrModeCombiningAllowed() { 3719 if (DisableComplexAddrModes) 3720 return false; 3721 switch (DifferentField) { 3722 default: 3723 return false; 3724 case ExtAddrMode::BaseRegField: 3725 return AddrSinkCombineBaseReg; 3726 case ExtAddrMode::BaseGVField: 3727 return AddrSinkCombineBaseGV; 3728 case ExtAddrMode::BaseOffsField: 3729 return AddrSinkCombineBaseOffs; 3730 case ExtAddrMode::ScaledRegField: 3731 return AddrSinkCombineScaledReg; 3732 } 3733 } 3734 }; 3735 } // end anonymous namespace 3736 3737 /// Try adding ScaleReg*Scale to the current addressing mode. 3738 /// Return true and update AddrMode if this addr mode is legal for the target, 3739 /// false if not. 3740 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3741 unsigned Depth) { 3742 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3743 // mode. Just process that directly. 3744 if (Scale == 1) 3745 return matchAddr(ScaleReg, Depth); 3746 3747 // If the scale is 0, it takes nothing to add this. 3748 if (Scale == 0) 3749 return true; 3750 3751 // If we already have a scale of this value, we can add to it, otherwise, we 3752 // need an available scale field. 3753 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3754 return false; 3755 3756 ExtAddrMode TestAddrMode = AddrMode; 3757 3758 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3759 // [A+B + A*7] -> [B+A*8]. 3760 TestAddrMode.Scale += Scale; 3761 TestAddrMode.ScaledReg = ScaleReg; 3762 3763 // If the new address isn't legal, bail out. 3764 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3765 return false; 3766 3767 // It was legal, so commit it. 3768 AddrMode = TestAddrMode; 3769 3770 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3771 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3772 // X*Scale + C*Scale to addr mode. 3773 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3774 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3775 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3776 CI->getValue().isSignedIntN(64)) { 3777 TestAddrMode.InBounds = false; 3778 TestAddrMode.ScaledReg = AddLHS; 3779 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3780 3781 // If this addressing mode is legal, commit it and remember that we folded 3782 // this instruction. 3783 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3784 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3785 AddrMode = TestAddrMode; 3786 return true; 3787 } 3788 } 3789 3790 // Otherwise, not (x+c)*scale, just return what we have. 3791 return true; 3792 } 3793 3794 /// This is a little filter, which returns true if an addressing computation 3795 /// involving I might be folded into a load/store accessing it. 3796 /// This doesn't need to be perfect, but needs to accept at least 3797 /// the set of instructions that MatchOperationAddr can. 3798 static bool MightBeFoldableInst(Instruction *I) { 3799 switch (I->getOpcode()) { 3800 case Instruction::BitCast: 3801 case Instruction::AddrSpaceCast: 3802 // Don't touch identity bitcasts. 3803 if (I->getType() == I->getOperand(0)->getType()) 3804 return false; 3805 return I->getType()->isIntOrPtrTy(); 3806 case Instruction::PtrToInt: 3807 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3808 return true; 3809 case Instruction::IntToPtr: 3810 // We know the input is intptr_t, so this is foldable. 3811 return true; 3812 case Instruction::Add: 3813 return true; 3814 case Instruction::Mul: 3815 case Instruction::Shl: 3816 // Can only handle X*C and X << C. 3817 return isa<ConstantInt>(I->getOperand(1)); 3818 case Instruction::GetElementPtr: 3819 return true; 3820 default: 3821 return false; 3822 } 3823 } 3824 3825 /// Check whether or not \p Val is a legal instruction for \p TLI. 3826 /// \note \p Val is assumed to be the product of some type promotion. 3827 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3828 /// to be legal, as the non-promoted value would have had the same state. 3829 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3830 const DataLayout &DL, Value *Val) { 3831 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3832 if (!PromotedInst) 3833 return false; 3834 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3835 // If the ISDOpcode is undefined, it was undefined before the promotion. 3836 if (!ISDOpcode) 3837 return true; 3838 // Otherwise, check if the promoted instruction is legal or not. 3839 return TLI.isOperationLegalOrCustom( 3840 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3841 } 3842 3843 namespace { 3844 3845 /// Hepler class to perform type promotion. 3846 class TypePromotionHelper { 3847 /// Utility function to add a promoted instruction \p ExtOpnd to 3848 /// \p PromotedInsts and record the type of extension we have seen. 3849 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3850 Instruction *ExtOpnd, 3851 bool IsSExt) { 3852 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3853 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3854 if (It != PromotedInsts.end()) { 3855 // If the new extension is same as original, the information in 3856 // PromotedInsts[ExtOpnd] is still correct. 3857 if (It->second.getInt() == ExtTy) 3858 return; 3859 3860 // Now the new extension is different from old extension, we make 3861 // the type information invalid by setting extension type to 3862 // BothExtension. 3863 ExtTy = BothExtension; 3864 } 3865 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3866 } 3867 3868 /// Utility function to query the original type of instruction \p Opnd 3869 /// with a matched extension type. If the extension doesn't match, we 3870 /// cannot use the information we had on the original type. 3871 /// BothExtension doesn't match any extension type. 3872 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3873 Instruction *Opnd, 3874 bool IsSExt) { 3875 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3876 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3877 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3878 return It->second.getPointer(); 3879 return nullptr; 3880 } 3881 3882 /// Utility function to check whether or not a sign or zero extension 3883 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3884 /// either using the operands of \p Inst or promoting \p Inst. 3885 /// The type of the extension is defined by \p IsSExt. 3886 /// In other words, check if: 3887 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3888 /// #1 Promotion applies: 3889 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3890 /// #2 Operand reuses: 3891 /// ext opnd1 to ConsideredExtType. 3892 /// \p PromotedInsts maps the instructions to their type before promotion. 3893 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3894 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3895 3896 /// Utility function to determine if \p OpIdx should be promoted when 3897 /// promoting \p Inst. 3898 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3899 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3900 } 3901 3902 /// Utility function to promote the operand of \p Ext when this 3903 /// operand is a promotable trunc or sext or zext. 3904 /// \p PromotedInsts maps the instructions to their type before promotion. 3905 /// \p CreatedInstsCost[out] contains the cost of all instructions 3906 /// created to promote the operand of Ext. 3907 /// Newly added extensions are inserted in \p Exts. 3908 /// Newly added truncates are inserted in \p Truncs. 3909 /// Should never be called directly. 3910 /// \return The promoted value which is used instead of Ext. 3911 static Value *promoteOperandForTruncAndAnyExt( 3912 Instruction *Ext, TypePromotionTransaction &TPT, 3913 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3914 SmallVectorImpl<Instruction *> *Exts, 3915 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3916 3917 /// Utility function to promote the operand of \p Ext when this 3918 /// operand is promotable and is not a supported trunc or sext. 3919 /// \p PromotedInsts maps the instructions to their type before promotion. 3920 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3921 /// created to promote the operand of Ext. 3922 /// Newly added extensions are inserted in \p Exts. 3923 /// Newly added truncates are inserted in \p Truncs. 3924 /// Should never be called directly. 3925 /// \return The promoted value which is used instead of Ext. 3926 static Value *promoteOperandForOther(Instruction *Ext, 3927 TypePromotionTransaction &TPT, 3928 InstrToOrigTy &PromotedInsts, 3929 unsigned &CreatedInstsCost, 3930 SmallVectorImpl<Instruction *> *Exts, 3931 SmallVectorImpl<Instruction *> *Truncs, 3932 const TargetLowering &TLI, bool IsSExt); 3933 3934 /// \see promoteOperandForOther. 3935 static Value *signExtendOperandForOther( 3936 Instruction *Ext, TypePromotionTransaction &TPT, 3937 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3938 SmallVectorImpl<Instruction *> *Exts, 3939 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3940 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3941 Exts, Truncs, TLI, true); 3942 } 3943 3944 /// \see promoteOperandForOther. 3945 static Value *zeroExtendOperandForOther( 3946 Instruction *Ext, TypePromotionTransaction &TPT, 3947 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3948 SmallVectorImpl<Instruction *> *Exts, 3949 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3950 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3951 Exts, Truncs, TLI, false); 3952 } 3953 3954 public: 3955 /// Type for the utility function that promotes the operand of Ext. 3956 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3957 InstrToOrigTy &PromotedInsts, 3958 unsigned &CreatedInstsCost, 3959 SmallVectorImpl<Instruction *> *Exts, 3960 SmallVectorImpl<Instruction *> *Truncs, 3961 const TargetLowering &TLI); 3962 3963 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3964 /// action to promote the operand of \p Ext instead of using Ext. 3965 /// \return NULL if no promotable action is possible with the current 3966 /// sign extension. 3967 /// \p InsertedInsts keeps track of all the instructions inserted by the 3968 /// other CodeGenPrepare optimizations. This information is important 3969 /// because we do not want to promote these instructions as CodeGenPrepare 3970 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3971 /// \p PromotedInsts maps the instructions to their type before promotion. 3972 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3973 const TargetLowering &TLI, 3974 const InstrToOrigTy &PromotedInsts); 3975 }; 3976 3977 } // end anonymous namespace 3978 3979 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3980 Type *ConsideredExtType, 3981 const InstrToOrigTy &PromotedInsts, 3982 bool IsSExt) { 3983 // The promotion helper does not know how to deal with vector types yet. 3984 // To be able to fix that, we would need to fix the places where we 3985 // statically extend, e.g., constants and such. 3986 if (Inst->getType()->isVectorTy()) 3987 return false; 3988 3989 // We can always get through zext. 3990 if (isa<ZExtInst>(Inst)) 3991 return true; 3992 3993 // sext(sext) is ok too. 3994 if (IsSExt && isa<SExtInst>(Inst)) 3995 return true; 3996 3997 // We can get through binary operator, if it is legal. In other words, the 3998 // binary operator must have a nuw or nsw flag. 3999 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4000 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4001 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4002 (IsSExt && BinOp->hasNoSignedWrap()))) 4003 return true; 4004 4005 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4006 if ((Inst->getOpcode() == Instruction::And || 4007 Inst->getOpcode() == Instruction::Or)) 4008 return true; 4009 4010 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4011 if (Inst->getOpcode() == Instruction::Xor) { 4012 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4013 // Make sure it is not a NOT. 4014 if (Cst && !Cst->getValue().isAllOnesValue()) 4015 return true; 4016 } 4017 4018 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4019 // It may change a poisoned value into a regular value, like 4020 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4021 // poisoned value regular value 4022 // It should be OK since undef covers valid value. 4023 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4024 return true; 4025 4026 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4027 // It may change a poisoned value into a regular value, like 4028 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4029 // poisoned value regular value 4030 // It should be OK since undef covers valid value. 4031 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4032 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4033 if (ExtInst->hasOneUse()) { 4034 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4035 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4036 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4037 if (Cst && 4038 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4039 return true; 4040 } 4041 } 4042 } 4043 4044 // Check if we can do the following simplification. 4045 // ext(trunc(opnd)) --> ext(opnd) 4046 if (!isa<TruncInst>(Inst)) 4047 return false; 4048 4049 Value *OpndVal = Inst->getOperand(0); 4050 // Check if we can use this operand in the extension. 4051 // If the type is larger than the result type of the extension, we cannot. 4052 if (!OpndVal->getType()->isIntegerTy() || 4053 OpndVal->getType()->getIntegerBitWidth() > 4054 ConsideredExtType->getIntegerBitWidth()) 4055 return false; 4056 4057 // If the operand of the truncate is not an instruction, we will not have 4058 // any information on the dropped bits. 4059 // (Actually we could for constant but it is not worth the extra logic). 4060 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4061 if (!Opnd) 4062 return false; 4063 4064 // Check if the source of the type is narrow enough. 4065 // I.e., check that trunc just drops extended bits of the same kind of 4066 // the extension. 4067 // #1 get the type of the operand and check the kind of the extended bits. 4068 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4069 if (OpndType) 4070 ; 4071 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4072 OpndType = Opnd->getOperand(0)->getType(); 4073 else 4074 return false; 4075 4076 // #2 check that the truncate just drops extended bits. 4077 return Inst->getType()->getIntegerBitWidth() >= 4078 OpndType->getIntegerBitWidth(); 4079 } 4080 4081 TypePromotionHelper::Action TypePromotionHelper::getAction( 4082 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4083 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4084 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4085 "Unexpected instruction type"); 4086 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4087 Type *ExtTy = Ext->getType(); 4088 bool IsSExt = isa<SExtInst>(Ext); 4089 // If the operand of the extension is not an instruction, we cannot 4090 // get through. 4091 // If it, check we can get through. 4092 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4093 return nullptr; 4094 4095 // Do not promote if the operand has been added by codegenprepare. 4096 // Otherwise, it means we are undoing an optimization that is likely to be 4097 // redone, thus causing potential infinite loop. 4098 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4099 return nullptr; 4100 4101 // SExt or Trunc instructions. 4102 // Return the related handler. 4103 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4104 isa<ZExtInst>(ExtOpnd)) 4105 return promoteOperandForTruncAndAnyExt; 4106 4107 // Regular instruction. 4108 // Abort early if we will have to insert non-free instructions. 4109 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4110 return nullptr; 4111 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4112 } 4113 4114 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4115 Instruction *SExt, TypePromotionTransaction &TPT, 4116 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4117 SmallVectorImpl<Instruction *> *Exts, 4118 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4119 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4120 // get through it and this method should not be called. 4121 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4122 Value *ExtVal = SExt; 4123 bool HasMergedNonFreeExt = false; 4124 if (isa<ZExtInst>(SExtOpnd)) { 4125 // Replace s|zext(zext(opnd)) 4126 // => zext(opnd). 4127 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4128 Value *ZExt = 4129 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4130 TPT.replaceAllUsesWith(SExt, ZExt); 4131 TPT.eraseInstruction(SExt); 4132 ExtVal = ZExt; 4133 } else { 4134 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4135 // => z|sext(opnd). 4136 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4137 } 4138 CreatedInstsCost = 0; 4139 4140 // Remove dead code. 4141 if (SExtOpnd->use_empty()) 4142 TPT.eraseInstruction(SExtOpnd); 4143 4144 // Check if the extension is still needed. 4145 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4146 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4147 if (ExtInst) { 4148 if (Exts) 4149 Exts->push_back(ExtInst); 4150 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4151 } 4152 return ExtVal; 4153 } 4154 4155 // At this point we have: ext ty opnd to ty. 4156 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4157 Value *NextVal = ExtInst->getOperand(0); 4158 TPT.eraseInstruction(ExtInst, NextVal); 4159 return NextVal; 4160 } 4161 4162 Value *TypePromotionHelper::promoteOperandForOther( 4163 Instruction *Ext, TypePromotionTransaction &TPT, 4164 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4165 SmallVectorImpl<Instruction *> *Exts, 4166 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4167 bool IsSExt) { 4168 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4169 // get through it and this method should not be called. 4170 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4171 CreatedInstsCost = 0; 4172 if (!ExtOpnd->hasOneUse()) { 4173 // ExtOpnd will be promoted. 4174 // All its uses, but Ext, will need to use a truncated value of the 4175 // promoted version. 4176 // Create the truncate now. 4177 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4178 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4179 // Insert it just after the definition. 4180 ITrunc->moveAfter(ExtOpnd); 4181 if (Truncs) 4182 Truncs->push_back(ITrunc); 4183 } 4184 4185 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4186 // Restore the operand of Ext (which has been replaced by the previous call 4187 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4188 TPT.setOperand(Ext, 0, ExtOpnd); 4189 } 4190 4191 // Get through the Instruction: 4192 // 1. Update its type. 4193 // 2. Replace the uses of Ext by Inst. 4194 // 3. Extend each operand that needs to be extended. 4195 4196 // Remember the original type of the instruction before promotion. 4197 // This is useful to know that the high bits are sign extended bits. 4198 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4199 // Step #1. 4200 TPT.mutateType(ExtOpnd, Ext->getType()); 4201 // Step #2. 4202 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4203 // Step #3. 4204 Instruction *ExtForOpnd = Ext; 4205 4206 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4207 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4208 ++OpIdx) { 4209 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4210 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4211 !shouldExtOperand(ExtOpnd, OpIdx)) { 4212 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4213 continue; 4214 } 4215 // Check if we can statically extend the operand. 4216 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4217 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4218 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4219 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4220 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4221 : Cst->getValue().zext(BitWidth); 4222 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4223 continue; 4224 } 4225 // UndefValue are typed, so we have to statically sign extend them. 4226 if (isa<UndefValue>(Opnd)) { 4227 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4228 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4229 continue; 4230 } 4231 4232 // Otherwise we have to explicitly sign extend the operand. 4233 // Check if Ext was reused to extend an operand. 4234 if (!ExtForOpnd) { 4235 // If yes, create a new one. 4236 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4237 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4238 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4239 if (!isa<Instruction>(ValForExtOpnd)) { 4240 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4241 continue; 4242 } 4243 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4244 } 4245 if (Exts) 4246 Exts->push_back(ExtForOpnd); 4247 TPT.setOperand(ExtForOpnd, 0, Opnd); 4248 4249 // Move the sign extension before the insertion point. 4250 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4251 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4252 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4253 // If more sext are required, new instructions will have to be created. 4254 ExtForOpnd = nullptr; 4255 } 4256 if (ExtForOpnd == Ext) { 4257 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4258 TPT.eraseInstruction(Ext); 4259 } 4260 return ExtOpnd; 4261 } 4262 4263 /// Check whether or not promoting an instruction to a wider type is profitable. 4264 /// \p NewCost gives the cost of extension instructions created by the 4265 /// promotion. 4266 /// \p OldCost gives the cost of extension instructions before the promotion 4267 /// plus the number of instructions that have been 4268 /// matched in the addressing mode the promotion. 4269 /// \p PromotedOperand is the value that has been promoted. 4270 /// \return True if the promotion is profitable, false otherwise. 4271 bool AddressingModeMatcher::isPromotionProfitable( 4272 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4273 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4274 << '\n'); 4275 // The cost of the new extensions is greater than the cost of the 4276 // old extension plus what we folded. 4277 // This is not profitable. 4278 if (NewCost > OldCost) 4279 return false; 4280 if (NewCost < OldCost) 4281 return true; 4282 // The promotion is neutral but it may help folding the sign extension in 4283 // loads for instance. 4284 // Check that we did not create an illegal instruction. 4285 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4286 } 4287 4288 /// Given an instruction or constant expr, see if we can fold the operation 4289 /// into the addressing mode. If so, update the addressing mode and return 4290 /// true, otherwise return false without modifying AddrMode. 4291 /// If \p MovedAway is not NULL, it contains the information of whether or 4292 /// not AddrInst has to be folded into the addressing mode on success. 4293 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4294 /// because it has been moved away. 4295 /// Thus AddrInst must not be added in the matched instructions. 4296 /// This state can happen when AddrInst is a sext, since it may be moved away. 4297 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4298 /// not be referenced anymore. 4299 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4300 unsigned Depth, 4301 bool *MovedAway) { 4302 // Avoid exponential behavior on extremely deep expression trees. 4303 if (Depth >= 5) return false; 4304 4305 // By default, all matched instructions stay in place. 4306 if (MovedAway) 4307 *MovedAway = false; 4308 4309 switch (Opcode) { 4310 case Instruction::PtrToInt: 4311 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4312 return matchAddr(AddrInst->getOperand(0), Depth); 4313 case Instruction::IntToPtr: { 4314 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4315 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4316 // This inttoptr is a no-op if the integer type is pointer sized. 4317 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4318 return matchAddr(AddrInst->getOperand(0), Depth); 4319 return false; 4320 } 4321 case Instruction::BitCast: 4322 // BitCast is always a noop, and we can handle it as long as it is 4323 // int->int or pointer->pointer (we don't want int<->fp or something). 4324 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4325 // Don't touch identity bitcasts. These were probably put here by LSR, 4326 // and we don't want to mess around with them. Assume it knows what it 4327 // is doing. 4328 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4329 return matchAddr(AddrInst->getOperand(0), Depth); 4330 return false; 4331 case Instruction::AddrSpaceCast: { 4332 unsigned SrcAS 4333 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4334 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4335 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4336 return matchAddr(AddrInst->getOperand(0), Depth); 4337 return false; 4338 } 4339 case Instruction::Add: { 4340 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4341 ExtAddrMode BackupAddrMode = AddrMode; 4342 unsigned OldSize = AddrModeInsts.size(); 4343 // Start a transaction at this point. 4344 // The LHS may match but not the RHS. 4345 // Therefore, we need a higher level restoration point to undo partially 4346 // matched operation. 4347 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4348 TPT.getRestorationPoint(); 4349 4350 AddrMode.InBounds = false; 4351 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4352 matchAddr(AddrInst->getOperand(0), Depth+1)) 4353 return true; 4354 4355 // Restore the old addr mode info. 4356 AddrMode = BackupAddrMode; 4357 AddrModeInsts.resize(OldSize); 4358 TPT.rollback(LastKnownGood); 4359 4360 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4361 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4362 matchAddr(AddrInst->getOperand(1), Depth+1)) 4363 return true; 4364 4365 // Otherwise we definitely can't merge the ADD in. 4366 AddrMode = BackupAddrMode; 4367 AddrModeInsts.resize(OldSize); 4368 TPT.rollback(LastKnownGood); 4369 break; 4370 } 4371 //case Instruction::Or: 4372 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4373 //break; 4374 case Instruction::Mul: 4375 case Instruction::Shl: { 4376 // Can only handle X*C and X << C. 4377 AddrMode.InBounds = false; 4378 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4379 if (!RHS || RHS->getBitWidth() > 64) 4380 return false; 4381 int64_t Scale = RHS->getSExtValue(); 4382 if (Opcode == Instruction::Shl) 4383 Scale = 1LL << Scale; 4384 4385 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4386 } 4387 case Instruction::GetElementPtr: { 4388 // Scan the GEP. We check it if it contains constant offsets and at most 4389 // one variable offset. 4390 int VariableOperand = -1; 4391 unsigned VariableScale = 0; 4392 4393 int64_t ConstantOffset = 0; 4394 gep_type_iterator GTI = gep_type_begin(AddrInst); 4395 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4396 if (StructType *STy = GTI.getStructTypeOrNull()) { 4397 const StructLayout *SL = DL.getStructLayout(STy); 4398 unsigned Idx = 4399 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4400 ConstantOffset += SL->getElementOffset(Idx); 4401 } else { 4402 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4403 if (TS.isNonZero()) { 4404 // The optimisations below currently only work for fixed offsets. 4405 if (TS.isScalable()) 4406 return false; 4407 int64_t TypeSize = TS.getFixedSize(); 4408 if (ConstantInt *CI = 4409 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4410 const APInt &CVal = CI->getValue(); 4411 if (CVal.getMinSignedBits() <= 64) { 4412 ConstantOffset += CVal.getSExtValue() * TypeSize; 4413 continue; 4414 } 4415 } 4416 // We only allow one variable index at the moment. 4417 if (VariableOperand != -1) 4418 return false; 4419 4420 // Remember the variable index. 4421 VariableOperand = i; 4422 VariableScale = TypeSize; 4423 } 4424 } 4425 } 4426 4427 // A common case is for the GEP to only do a constant offset. In this case, 4428 // just add it to the disp field and check validity. 4429 if (VariableOperand == -1) { 4430 AddrMode.BaseOffs += ConstantOffset; 4431 if (ConstantOffset == 0 || 4432 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4433 // Check to see if we can fold the base pointer in too. 4434 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4435 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4436 AddrMode.InBounds = false; 4437 return true; 4438 } 4439 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4440 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4441 ConstantOffset > 0) { 4442 // Record GEPs with non-zero offsets as candidates for splitting in the 4443 // event that the offset cannot fit into the r+i addressing mode. 4444 // Simple and common case that only one GEP is used in calculating the 4445 // address for the memory access. 4446 Value *Base = AddrInst->getOperand(0); 4447 auto *BaseI = dyn_cast<Instruction>(Base); 4448 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4449 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4450 (BaseI && !isa<CastInst>(BaseI) && 4451 !isa<GetElementPtrInst>(BaseI))) { 4452 // Make sure the parent block allows inserting non-PHI instructions 4453 // before the terminator. 4454 BasicBlock *Parent = 4455 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4456 if (!Parent->getTerminator()->isEHPad()) 4457 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4458 } 4459 } 4460 AddrMode.BaseOffs -= ConstantOffset; 4461 return false; 4462 } 4463 4464 // Save the valid addressing mode in case we can't match. 4465 ExtAddrMode BackupAddrMode = AddrMode; 4466 unsigned OldSize = AddrModeInsts.size(); 4467 4468 // See if the scale and offset amount is valid for this target. 4469 AddrMode.BaseOffs += ConstantOffset; 4470 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4471 AddrMode.InBounds = false; 4472 4473 // Match the base operand of the GEP. 4474 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4475 // If it couldn't be matched, just stuff the value in a register. 4476 if (AddrMode.HasBaseReg) { 4477 AddrMode = BackupAddrMode; 4478 AddrModeInsts.resize(OldSize); 4479 return false; 4480 } 4481 AddrMode.HasBaseReg = true; 4482 AddrMode.BaseReg = AddrInst->getOperand(0); 4483 } 4484 4485 // Match the remaining variable portion of the GEP. 4486 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4487 Depth)) { 4488 // If it couldn't be matched, try stuffing the base into a register 4489 // instead of matching it, and retrying the match of the scale. 4490 AddrMode = BackupAddrMode; 4491 AddrModeInsts.resize(OldSize); 4492 if (AddrMode.HasBaseReg) 4493 return false; 4494 AddrMode.HasBaseReg = true; 4495 AddrMode.BaseReg = AddrInst->getOperand(0); 4496 AddrMode.BaseOffs += ConstantOffset; 4497 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4498 VariableScale, Depth)) { 4499 // If even that didn't work, bail. 4500 AddrMode = BackupAddrMode; 4501 AddrModeInsts.resize(OldSize); 4502 return false; 4503 } 4504 } 4505 4506 return true; 4507 } 4508 case Instruction::SExt: 4509 case Instruction::ZExt: { 4510 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4511 if (!Ext) 4512 return false; 4513 4514 // Try to move this ext out of the way of the addressing mode. 4515 // Ask for a method for doing so. 4516 TypePromotionHelper::Action TPH = 4517 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4518 if (!TPH) 4519 return false; 4520 4521 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4522 TPT.getRestorationPoint(); 4523 unsigned CreatedInstsCost = 0; 4524 unsigned ExtCost = !TLI.isExtFree(Ext); 4525 Value *PromotedOperand = 4526 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4527 // SExt has been moved away. 4528 // Thus either it will be rematched later in the recursive calls or it is 4529 // gone. Anyway, we must not fold it into the addressing mode at this point. 4530 // E.g., 4531 // op = add opnd, 1 4532 // idx = ext op 4533 // addr = gep base, idx 4534 // is now: 4535 // promotedOpnd = ext opnd <- no match here 4536 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4537 // addr = gep base, op <- match 4538 if (MovedAway) 4539 *MovedAway = true; 4540 4541 assert(PromotedOperand && 4542 "TypePromotionHelper should have filtered out those cases"); 4543 4544 ExtAddrMode BackupAddrMode = AddrMode; 4545 unsigned OldSize = AddrModeInsts.size(); 4546 4547 if (!matchAddr(PromotedOperand, Depth) || 4548 // The total of the new cost is equal to the cost of the created 4549 // instructions. 4550 // The total of the old cost is equal to the cost of the extension plus 4551 // what we have saved in the addressing mode. 4552 !isPromotionProfitable(CreatedInstsCost, 4553 ExtCost + (AddrModeInsts.size() - OldSize), 4554 PromotedOperand)) { 4555 AddrMode = BackupAddrMode; 4556 AddrModeInsts.resize(OldSize); 4557 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4558 TPT.rollback(LastKnownGood); 4559 return false; 4560 } 4561 return true; 4562 } 4563 } 4564 return false; 4565 } 4566 4567 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4568 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4569 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4570 /// for the target. 4571 /// 4572 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4573 // Start a transaction at this point that we will rollback if the matching 4574 // fails. 4575 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4576 TPT.getRestorationPoint(); 4577 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4578 if (CI->getValue().isSignedIntN(64)) { 4579 // Fold in immediates if legal for the target. 4580 AddrMode.BaseOffs += CI->getSExtValue(); 4581 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4582 return true; 4583 AddrMode.BaseOffs -= CI->getSExtValue(); 4584 } 4585 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4586 // If this is a global variable, try to fold it into the addressing mode. 4587 if (!AddrMode.BaseGV) { 4588 AddrMode.BaseGV = GV; 4589 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4590 return true; 4591 AddrMode.BaseGV = nullptr; 4592 } 4593 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4594 ExtAddrMode BackupAddrMode = AddrMode; 4595 unsigned OldSize = AddrModeInsts.size(); 4596 4597 // Check to see if it is possible to fold this operation. 4598 bool MovedAway = false; 4599 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4600 // This instruction may have been moved away. If so, there is nothing 4601 // to check here. 4602 if (MovedAway) 4603 return true; 4604 // Okay, it's possible to fold this. Check to see if it is actually 4605 // *profitable* to do so. We use a simple cost model to avoid increasing 4606 // register pressure too much. 4607 if (I->hasOneUse() || 4608 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4609 AddrModeInsts.push_back(I); 4610 return true; 4611 } 4612 4613 // It isn't profitable to do this, roll back. 4614 //cerr << "NOT FOLDING: " << *I; 4615 AddrMode = BackupAddrMode; 4616 AddrModeInsts.resize(OldSize); 4617 TPT.rollback(LastKnownGood); 4618 } 4619 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4620 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4621 return true; 4622 TPT.rollback(LastKnownGood); 4623 } else if (isa<ConstantPointerNull>(Addr)) { 4624 // Null pointer gets folded without affecting the addressing mode. 4625 return true; 4626 } 4627 4628 // Worse case, the target should support [reg] addressing modes. :) 4629 if (!AddrMode.HasBaseReg) { 4630 AddrMode.HasBaseReg = true; 4631 AddrMode.BaseReg = Addr; 4632 // Still check for legality in case the target supports [imm] but not [i+r]. 4633 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4634 return true; 4635 AddrMode.HasBaseReg = false; 4636 AddrMode.BaseReg = nullptr; 4637 } 4638 4639 // If the base register is already taken, see if we can do [r+r]. 4640 if (AddrMode.Scale == 0) { 4641 AddrMode.Scale = 1; 4642 AddrMode.ScaledReg = Addr; 4643 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4644 return true; 4645 AddrMode.Scale = 0; 4646 AddrMode.ScaledReg = nullptr; 4647 } 4648 // Couldn't match. 4649 TPT.rollback(LastKnownGood); 4650 return false; 4651 } 4652 4653 /// Check to see if all uses of OpVal by the specified inline asm call are due 4654 /// to memory operands. If so, return true, otherwise return false. 4655 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4656 const TargetLowering &TLI, 4657 const TargetRegisterInfo &TRI) { 4658 const Function *F = CI->getFunction(); 4659 TargetLowering::AsmOperandInfoVector TargetConstraints = 4660 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4661 4662 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4663 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4664 4665 // Compute the constraint code and ConstraintType to use. 4666 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4667 4668 // If this asm operand is our Value*, and if it isn't an indirect memory 4669 // operand, we can't fold it! 4670 if (OpInfo.CallOperandVal == OpVal && 4671 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4672 !OpInfo.isIndirect)) 4673 return false; 4674 } 4675 4676 return true; 4677 } 4678 4679 // Max number of memory uses to look at before aborting the search to conserve 4680 // compile time. 4681 static constexpr int MaxMemoryUsesToScan = 20; 4682 4683 /// Recursively walk all the uses of I until we find a memory use. 4684 /// If we find an obviously non-foldable instruction, return true. 4685 /// Add the ultimately found memory instructions to MemoryUses. 4686 static bool FindAllMemoryUses( 4687 Instruction *I, 4688 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4689 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4690 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4691 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4692 // If we already considered this instruction, we're done. 4693 if (!ConsideredInsts.insert(I).second) 4694 return false; 4695 4696 // If this is an obviously unfoldable instruction, bail out. 4697 if (!MightBeFoldableInst(I)) 4698 return true; 4699 4700 // Loop over all the uses, recursively processing them. 4701 for (Use &U : I->uses()) { 4702 // Conservatively return true if we're seeing a large number or a deep chain 4703 // of users. This avoids excessive compilation times in pathological cases. 4704 if (SeenInsts++ >= MaxMemoryUsesToScan) 4705 return true; 4706 4707 Instruction *UserI = cast<Instruction>(U.getUser()); 4708 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4709 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4710 continue; 4711 } 4712 4713 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4714 unsigned opNo = U.getOperandNo(); 4715 if (opNo != StoreInst::getPointerOperandIndex()) 4716 return true; // Storing addr, not into addr. 4717 MemoryUses.push_back(std::make_pair(SI, opNo)); 4718 continue; 4719 } 4720 4721 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4722 unsigned opNo = U.getOperandNo(); 4723 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4724 return true; // Storing addr, not into addr. 4725 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4726 continue; 4727 } 4728 4729 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4730 unsigned opNo = U.getOperandNo(); 4731 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4732 return true; // Storing addr, not into addr. 4733 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4734 continue; 4735 } 4736 4737 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4738 if (CI->hasFnAttr(Attribute::Cold)) { 4739 // If this is a cold call, we can sink the addressing calculation into 4740 // the cold path. See optimizeCallInst 4741 bool OptForSize = OptSize || 4742 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4743 if (!OptForSize) 4744 continue; 4745 } 4746 4747 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4748 if (!IA) return true; 4749 4750 // If this is a memory operand, we're cool, otherwise bail out. 4751 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4752 return true; 4753 continue; 4754 } 4755 4756 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4757 PSI, BFI, SeenInsts)) 4758 return true; 4759 } 4760 4761 return false; 4762 } 4763 4764 /// Return true if Val is already known to be live at the use site that we're 4765 /// folding it into. If so, there is no cost to include it in the addressing 4766 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4767 /// instruction already. 4768 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4769 Value *KnownLive2) { 4770 // If Val is either of the known-live values, we know it is live! 4771 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4772 return true; 4773 4774 // All values other than instructions and arguments (e.g. constants) are live. 4775 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4776 4777 // If Val is a constant sized alloca in the entry block, it is live, this is 4778 // true because it is just a reference to the stack/frame pointer, which is 4779 // live for the whole function. 4780 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4781 if (AI->isStaticAlloca()) 4782 return true; 4783 4784 // Check to see if this value is already used in the memory instruction's 4785 // block. If so, it's already live into the block at the very least, so we 4786 // can reasonably fold it. 4787 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4788 } 4789 4790 /// It is possible for the addressing mode of the machine to fold the specified 4791 /// instruction into a load or store that ultimately uses it. 4792 /// However, the specified instruction has multiple uses. 4793 /// Given this, it may actually increase register pressure to fold it 4794 /// into the load. For example, consider this code: 4795 /// 4796 /// X = ... 4797 /// Y = X+1 4798 /// use(Y) -> nonload/store 4799 /// Z = Y+1 4800 /// load Z 4801 /// 4802 /// In this case, Y has multiple uses, and can be folded into the load of Z 4803 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4804 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4805 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4806 /// number of computations either. 4807 /// 4808 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4809 /// X was live across 'load Z' for other reasons, we actually *would* want to 4810 /// fold the addressing mode in the Z case. This would make Y die earlier. 4811 bool AddressingModeMatcher:: 4812 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4813 ExtAddrMode &AMAfter) { 4814 if (IgnoreProfitability) return true; 4815 4816 // AMBefore is the addressing mode before this instruction was folded into it, 4817 // and AMAfter is the addressing mode after the instruction was folded. Get 4818 // the set of registers referenced by AMAfter and subtract out those 4819 // referenced by AMBefore: this is the set of values which folding in this 4820 // address extends the lifetime of. 4821 // 4822 // Note that there are only two potential values being referenced here, 4823 // BaseReg and ScaleReg (global addresses are always available, as are any 4824 // folded immediates). 4825 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4826 4827 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4828 // lifetime wasn't extended by adding this instruction. 4829 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4830 BaseReg = nullptr; 4831 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4832 ScaledReg = nullptr; 4833 4834 // If folding this instruction (and it's subexprs) didn't extend any live 4835 // ranges, we're ok with it. 4836 if (!BaseReg && !ScaledReg) 4837 return true; 4838 4839 // If all uses of this instruction can have the address mode sunk into them, 4840 // we can remove the addressing mode and effectively trade one live register 4841 // for another (at worst.) In this context, folding an addressing mode into 4842 // the use is just a particularly nice way of sinking it. 4843 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4844 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4845 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4846 PSI, BFI)) 4847 return false; // Has a non-memory, non-foldable use! 4848 4849 // Now that we know that all uses of this instruction are part of a chain of 4850 // computation involving only operations that could theoretically be folded 4851 // into a memory use, loop over each of these memory operation uses and see 4852 // if they could *actually* fold the instruction. The assumption is that 4853 // addressing modes are cheap and that duplicating the computation involved 4854 // many times is worthwhile, even on a fastpath. For sinking candidates 4855 // (i.e. cold call sites), this serves as a way to prevent excessive code 4856 // growth since most architectures have some reasonable small and fast way to 4857 // compute an effective address. (i.e LEA on x86) 4858 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4859 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4860 Instruction *User = MemoryUses[i].first; 4861 unsigned OpNo = MemoryUses[i].second; 4862 4863 // Get the access type of this use. If the use isn't a pointer, we don't 4864 // know what it accesses. 4865 Value *Address = User->getOperand(OpNo); 4866 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4867 if (!AddrTy) 4868 return false; 4869 Type *AddressAccessTy = AddrTy->getElementType(); 4870 unsigned AS = AddrTy->getAddressSpace(); 4871 4872 // Do a match against the root of this address, ignoring profitability. This 4873 // will tell us if the addressing mode for the memory operation will 4874 // *actually* cover the shared instruction. 4875 ExtAddrMode Result; 4876 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4877 0); 4878 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4879 TPT.getRestorationPoint(); 4880 AddressingModeMatcher Matcher( 4881 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4882 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4883 Matcher.IgnoreProfitability = true; 4884 bool Success = Matcher.matchAddr(Address, 0); 4885 (void)Success; assert(Success && "Couldn't select *anything*?"); 4886 4887 // The match was to check the profitability, the changes made are not 4888 // part of the original matcher. Therefore, they should be dropped 4889 // otherwise the original matcher will not present the right state. 4890 TPT.rollback(LastKnownGood); 4891 4892 // If the match didn't cover I, then it won't be shared by it. 4893 if (!is_contained(MatchedAddrModeInsts, I)) 4894 return false; 4895 4896 MatchedAddrModeInsts.clear(); 4897 } 4898 4899 return true; 4900 } 4901 4902 /// Return true if the specified values are defined in a 4903 /// different basic block than BB. 4904 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4905 if (Instruction *I = dyn_cast<Instruction>(V)) 4906 return I->getParent() != BB; 4907 return false; 4908 } 4909 4910 /// Sink addressing mode computation immediate before MemoryInst if doing so 4911 /// can be done without increasing register pressure. The need for the 4912 /// register pressure constraint means this can end up being an all or nothing 4913 /// decision for all uses of the same addressing computation. 4914 /// 4915 /// Load and Store Instructions often have addressing modes that can do 4916 /// significant amounts of computation. As such, instruction selection will try 4917 /// to get the load or store to do as much computation as possible for the 4918 /// program. The problem is that isel can only see within a single block. As 4919 /// such, we sink as much legal addressing mode work into the block as possible. 4920 /// 4921 /// This method is used to optimize both load/store and inline asms with memory 4922 /// operands. It's also used to sink addressing computations feeding into cold 4923 /// call sites into their (cold) basic block. 4924 /// 4925 /// The motivation for handling sinking into cold blocks is that doing so can 4926 /// both enable other address mode sinking (by satisfying the register pressure 4927 /// constraint above), and reduce register pressure globally (by removing the 4928 /// addressing mode computation from the fast path entirely.). 4929 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4930 Type *AccessTy, unsigned AddrSpace) { 4931 Value *Repl = Addr; 4932 4933 // Try to collapse single-value PHI nodes. This is necessary to undo 4934 // unprofitable PRE transformations. 4935 SmallVector<Value*, 8> worklist; 4936 SmallPtrSet<Value*, 16> Visited; 4937 worklist.push_back(Addr); 4938 4939 // Use a worklist to iteratively look through PHI and select nodes, and 4940 // ensure that the addressing mode obtained from the non-PHI/select roots of 4941 // the graph are compatible. 4942 bool PhiOrSelectSeen = false; 4943 SmallVector<Instruction*, 16> AddrModeInsts; 4944 const SimplifyQuery SQ(*DL, TLInfo); 4945 AddressingModeCombiner AddrModes(SQ, Addr); 4946 TypePromotionTransaction TPT(RemovedInsts); 4947 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4948 TPT.getRestorationPoint(); 4949 while (!worklist.empty()) { 4950 Value *V = worklist.back(); 4951 worklist.pop_back(); 4952 4953 // We allow traversing cyclic Phi nodes. 4954 // In case of success after this loop we ensure that traversing through 4955 // Phi nodes ends up with all cases to compute address of the form 4956 // BaseGV + Base + Scale * Index + Offset 4957 // where Scale and Offset are constans and BaseGV, Base and Index 4958 // are exactly the same Values in all cases. 4959 // It means that BaseGV, Scale and Offset dominate our memory instruction 4960 // and have the same value as they had in address computation represented 4961 // as Phi. So we can safely sink address computation to memory instruction. 4962 if (!Visited.insert(V).second) 4963 continue; 4964 4965 // For a PHI node, push all of its incoming values. 4966 if (PHINode *P = dyn_cast<PHINode>(V)) { 4967 for (Value *IncValue : P->incoming_values()) 4968 worklist.push_back(IncValue); 4969 PhiOrSelectSeen = true; 4970 continue; 4971 } 4972 // Similar for select. 4973 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4974 worklist.push_back(SI->getFalseValue()); 4975 worklist.push_back(SI->getTrueValue()); 4976 PhiOrSelectSeen = true; 4977 continue; 4978 } 4979 4980 // For non-PHIs, determine the addressing mode being computed. Note that 4981 // the result may differ depending on what other uses our candidate 4982 // addressing instructions might have. 4983 AddrModeInsts.clear(); 4984 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4985 0); 4986 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4987 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4988 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4989 BFI.get()); 4990 4991 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4992 if (GEP && !NewGEPBases.count(GEP)) { 4993 // If splitting the underlying data structure can reduce the offset of a 4994 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4995 // previously split data structures. 4996 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4997 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4998 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4999 } 5000 5001 NewAddrMode.OriginalValue = V; 5002 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5003 break; 5004 } 5005 5006 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5007 // or we have multiple but either couldn't combine them or combining them 5008 // wouldn't do anything useful, bail out now. 5009 if (!AddrModes.combineAddrModes()) { 5010 TPT.rollback(LastKnownGood); 5011 return false; 5012 } 5013 bool Modified = TPT.commit(); 5014 5015 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5016 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5017 5018 // If all the instructions matched are already in this BB, don't do anything. 5019 // If we saw a Phi node then it is not local definitely, and if we saw a select 5020 // then we want to push the address calculation past it even if it's already 5021 // in this BB. 5022 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5023 return IsNonLocalValue(V, MemoryInst->getParent()); 5024 })) { 5025 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5026 << "\n"); 5027 return Modified; 5028 } 5029 5030 // Insert this computation right after this user. Since our caller is 5031 // scanning from the top of the BB to the bottom, reuse of the expr are 5032 // guaranteed to happen later. 5033 IRBuilder<> Builder(MemoryInst); 5034 5035 // Now that we determined the addressing expression we want to use and know 5036 // that we have to sink it into this block. Check to see if we have already 5037 // done this for some other load/store instr in this block. If so, reuse 5038 // the computation. Before attempting reuse, check if the address is valid 5039 // as it may have been erased. 5040 5041 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5042 5043 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5044 if (SunkAddr) { 5045 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5046 << " for " << *MemoryInst << "\n"); 5047 if (SunkAddr->getType() != Addr->getType()) 5048 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5049 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5050 SubtargetInfo->addrSinkUsingGEPs())) { 5051 // By default, we use the GEP-based method when AA is used later. This 5052 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5053 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5054 << " for " << *MemoryInst << "\n"); 5055 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5056 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5057 5058 // First, find the pointer. 5059 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5060 ResultPtr = AddrMode.BaseReg; 5061 AddrMode.BaseReg = nullptr; 5062 } 5063 5064 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5065 // We can't add more than one pointer together, nor can we scale a 5066 // pointer (both of which seem meaningless). 5067 if (ResultPtr || AddrMode.Scale != 1) 5068 return Modified; 5069 5070 ResultPtr = AddrMode.ScaledReg; 5071 AddrMode.Scale = 0; 5072 } 5073 5074 // It is only safe to sign extend the BaseReg if we know that the math 5075 // required to create it did not overflow before we extend it. Since 5076 // the original IR value was tossed in favor of a constant back when 5077 // the AddrMode was created we need to bail out gracefully if widths 5078 // do not match instead of extending it. 5079 // 5080 // (See below for code to add the scale.) 5081 if (AddrMode.Scale) { 5082 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5083 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5084 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5085 return Modified; 5086 } 5087 5088 if (AddrMode.BaseGV) { 5089 if (ResultPtr) 5090 return Modified; 5091 5092 ResultPtr = AddrMode.BaseGV; 5093 } 5094 5095 // If the real base value actually came from an inttoptr, then the matcher 5096 // will look through it and provide only the integer value. In that case, 5097 // use it here. 5098 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5099 if (!ResultPtr && AddrMode.BaseReg) { 5100 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5101 "sunkaddr"); 5102 AddrMode.BaseReg = nullptr; 5103 } else if (!ResultPtr && AddrMode.Scale == 1) { 5104 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5105 "sunkaddr"); 5106 AddrMode.Scale = 0; 5107 } 5108 } 5109 5110 if (!ResultPtr && 5111 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5112 SunkAddr = Constant::getNullValue(Addr->getType()); 5113 } else if (!ResultPtr) { 5114 return Modified; 5115 } else { 5116 Type *I8PtrTy = 5117 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5118 Type *I8Ty = Builder.getInt8Ty(); 5119 5120 // Start with the base register. Do this first so that subsequent address 5121 // matching finds it last, which will prevent it from trying to match it 5122 // as the scaled value in case it happens to be a mul. That would be 5123 // problematic if we've sunk a different mul for the scale, because then 5124 // we'd end up sinking both muls. 5125 if (AddrMode.BaseReg) { 5126 Value *V = AddrMode.BaseReg; 5127 if (V->getType() != IntPtrTy) 5128 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5129 5130 ResultIndex = V; 5131 } 5132 5133 // Add the scale value. 5134 if (AddrMode.Scale) { 5135 Value *V = AddrMode.ScaledReg; 5136 if (V->getType() == IntPtrTy) { 5137 // done. 5138 } else { 5139 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5140 cast<IntegerType>(V->getType())->getBitWidth() && 5141 "We can't transform if ScaledReg is too narrow"); 5142 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5143 } 5144 5145 if (AddrMode.Scale != 1) 5146 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5147 "sunkaddr"); 5148 if (ResultIndex) 5149 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5150 else 5151 ResultIndex = V; 5152 } 5153 5154 // Add in the Base Offset if present. 5155 if (AddrMode.BaseOffs) { 5156 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5157 if (ResultIndex) { 5158 // We need to add this separately from the scale above to help with 5159 // SDAG consecutive load/store merging. 5160 if (ResultPtr->getType() != I8PtrTy) 5161 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5162 ResultPtr = 5163 AddrMode.InBounds 5164 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5165 "sunkaddr") 5166 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5167 } 5168 5169 ResultIndex = V; 5170 } 5171 5172 if (!ResultIndex) { 5173 SunkAddr = ResultPtr; 5174 } else { 5175 if (ResultPtr->getType() != I8PtrTy) 5176 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5177 SunkAddr = 5178 AddrMode.InBounds 5179 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5180 "sunkaddr") 5181 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5182 } 5183 5184 if (SunkAddr->getType() != Addr->getType()) 5185 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5186 } 5187 } else { 5188 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5189 // non-integral pointers, so in that case bail out now. 5190 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5191 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5192 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5193 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5194 if (DL->isNonIntegralPointerType(Addr->getType()) || 5195 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5196 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5197 (AddrMode.BaseGV && 5198 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5199 return Modified; 5200 5201 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5202 << " for " << *MemoryInst << "\n"); 5203 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5204 Value *Result = nullptr; 5205 5206 // Start with the base register. Do this first so that subsequent address 5207 // matching finds it last, which will prevent it from trying to match it 5208 // as the scaled value in case it happens to be a mul. That would be 5209 // problematic if we've sunk a different mul for the scale, because then 5210 // we'd end up sinking both muls. 5211 if (AddrMode.BaseReg) { 5212 Value *V = AddrMode.BaseReg; 5213 if (V->getType()->isPointerTy()) 5214 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5215 if (V->getType() != IntPtrTy) 5216 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5217 Result = V; 5218 } 5219 5220 // Add the scale value. 5221 if (AddrMode.Scale) { 5222 Value *V = AddrMode.ScaledReg; 5223 if (V->getType() == IntPtrTy) { 5224 // done. 5225 } else if (V->getType()->isPointerTy()) { 5226 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5227 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5228 cast<IntegerType>(V->getType())->getBitWidth()) { 5229 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5230 } else { 5231 // It is only safe to sign extend the BaseReg if we know that the math 5232 // required to create it did not overflow before we extend it. Since 5233 // the original IR value was tossed in favor of a constant back when 5234 // the AddrMode was created we need to bail out gracefully if widths 5235 // do not match instead of extending it. 5236 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5237 if (I && (Result != AddrMode.BaseReg)) 5238 I->eraseFromParent(); 5239 return Modified; 5240 } 5241 if (AddrMode.Scale != 1) 5242 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5243 "sunkaddr"); 5244 if (Result) 5245 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5246 else 5247 Result = V; 5248 } 5249 5250 // Add in the BaseGV if present. 5251 if (AddrMode.BaseGV) { 5252 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5253 if (Result) 5254 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5255 else 5256 Result = V; 5257 } 5258 5259 // Add in the Base Offset if present. 5260 if (AddrMode.BaseOffs) { 5261 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5262 if (Result) 5263 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5264 else 5265 Result = V; 5266 } 5267 5268 if (!Result) 5269 SunkAddr = Constant::getNullValue(Addr->getType()); 5270 else 5271 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5272 } 5273 5274 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5275 // Store the newly computed address into the cache. In the case we reused a 5276 // value, this should be idempotent. 5277 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5278 5279 // If we have no uses, recursively delete the value and all dead instructions 5280 // using it. 5281 if (Repl->use_empty()) { 5282 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5283 RecursivelyDeleteTriviallyDeadInstructions( 5284 Repl, TLInfo, nullptr, 5285 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5286 }); 5287 } 5288 ++NumMemoryInsts; 5289 return true; 5290 } 5291 5292 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5293 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5294 /// only handle a 2 operand GEP in the same basic block or a splat constant 5295 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5296 /// index. 5297 /// 5298 /// If the existing GEP has a vector base pointer that is splat, we can look 5299 /// through the splat to find the scalar pointer. If we can't find a scalar 5300 /// pointer there's nothing we can do. 5301 /// 5302 /// If we have a GEP with more than 2 indices where the middle indices are all 5303 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5304 /// 5305 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5306 /// followed by a GEP with an all zeroes vector index. This will enable 5307 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5308 /// zero index. 5309 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5310 Value *Ptr) { 5311 Value *NewAddr; 5312 5313 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5314 // Don't optimize GEPs that don't have indices. 5315 if (!GEP->hasIndices()) 5316 return false; 5317 5318 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5319 // FIXME: We should support this by sinking the GEP. 5320 if (MemoryInst->getParent() != GEP->getParent()) 5321 return false; 5322 5323 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5324 5325 bool RewriteGEP = false; 5326 5327 if (Ops[0]->getType()->isVectorTy()) { 5328 Ops[0] = getSplatValue(Ops[0]); 5329 if (!Ops[0]) 5330 return false; 5331 RewriteGEP = true; 5332 } 5333 5334 unsigned FinalIndex = Ops.size() - 1; 5335 5336 // Ensure all but the last index is 0. 5337 // FIXME: This isn't strictly required. All that's required is that they are 5338 // all scalars or splats. 5339 for (unsigned i = 1; i < FinalIndex; ++i) { 5340 auto *C = dyn_cast<Constant>(Ops[i]); 5341 if (!C) 5342 return false; 5343 if (isa<VectorType>(C->getType())) 5344 C = C->getSplatValue(); 5345 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5346 if (!CI || !CI->isZero()) 5347 return false; 5348 // Scalarize the index if needed. 5349 Ops[i] = CI; 5350 } 5351 5352 // Try to scalarize the final index. 5353 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5354 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5355 auto *C = dyn_cast<ConstantInt>(V); 5356 // Don't scalarize all zeros vector. 5357 if (!C || !C->isZero()) { 5358 Ops[FinalIndex] = V; 5359 RewriteGEP = true; 5360 } 5361 } 5362 } 5363 5364 // If we made any changes or the we have extra operands, we need to generate 5365 // new instructions. 5366 if (!RewriteGEP && Ops.size() == 2) 5367 return false; 5368 5369 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5370 5371 IRBuilder<> Builder(MemoryInst); 5372 5373 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5374 5375 // If the final index isn't a vector, emit a scalar GEP containing all ops 5376 // and a vector GEP with all zeroes final index. 5377 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5378 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5379 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5380 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5381 } else { 5382 Value *Base = Ops[0]; 5383 Value *Index = Ops[FinalIndex]; 5384 5385 // Create a scalar GEP if there are more than 2 operands. 5386 if (Ops.size() != 2) { 5387 // Replace the last index with 0. 5388 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5389 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5390 } 5391 5392 // Now create the GEP with scalar pointer and vector index. 5393 NewAddr = Builder.CreateGEP(Base, Index); 5394 } 5395 } else if (!isa<Constant>(Ptr)) { 5396 // Not a GEP, maybe its a splat and we can create a GEP to enable 5397 // SelectionDAGBuilder to use it as a uniform base. 5398 Value *V = getSplatValue(Ptr); 5399 if (!V) 5400 return false; 5401 5402 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5403 5404 IRBuilder<> Builder(MemoryInst); 5405 5406 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5407 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5408 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5409 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5410 } else { 5411 // Constant, SelectionDAGBuilder knows to check if its a splat. 5412 return false; 5413 } 5414 5415 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5416 5417 // If we have no uses, recursively delete the value and all dead instructions 5418 // using it. 5419 if (Ptr->use_empty()) 5420 RecursivelyDeleteTriviallyDeadInstructions( 5421 Ptr, TLInfo, nullptr, 5422 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5423 5424 return true; 5425 } 5426 5427 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5428 /// address computing into the block when possible / profitable. 5429 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5430 bool MadeChange = false; 5431 5432 const TargetRegisterInfo *TRI = 5433 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5434 TargetLowering::AsmOperandInfoVector TargetConstraints = 5435 TLI->ParseConstraints(*DL, TRI, *CS); 5436 unsigned ArgNo = 0; 5437 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5438 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5439 5440 // Compute the constraint code and ConstraintType to use. 5441 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5442 5443 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5444 OpInfo.isIndirect) { 5445 Value *OpVal = CS->getArgOperand(ArgNo++); 5446 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5447 } else if (OpInfo.Type == InlineAsm::isInput) 5448 ArgNo++; 5449 } 5450 5451 return MadeChange; 5452 } 5453 5454 /// Check if all the uses of \p Val are equivalent (or free) zero or 5455 /// sign extensions. 5456 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5457 assert(!Val->use_empty() && "Input must have at least one use"); 5458 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5459 bool IsSExt = isa<SExtInst>(FirstUser); 5460 Type *ExtTy = FirstUser->getType(); 5461 for (const User *U : Val->users()) { 5462 const Instruction *UI = cast<Instruction>(U); 5463 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5464 return false; 5465 Type *CurTy = UI->getType(); 5466 // Same input and output types: Same instruction after CSE. 5467 if (CurTy == ExtTy) 5468 continue; 5469 5470 // If IsSExt is true, we are in this situation: 5471 // a = Val 5472 // b = sext ty1 a to ty2 5473 // c = sext ty1 a to ty3 5474 // Assuming ty2 is shorter than ty3, this could be turned into: 5475 // a = Val 5476 // b = sext ty1 a to ty2 5477 // c = sext ty2 b to ty3 5478 // However, the last sext is not free. 5479 if (IsSExt) 5480 return false; 5481 5482 // This is a ZExt, maybe this is free to extend from one type to another. 5483 // In that case, we would not account for a different use. 5484 Type *NarrowTy; 5485 Type *LargeTy; 5486 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5487 CurTy->getScalarType()->getIntegerBitWidth()) { 5488 NarrowTy = CurTy; 5489 LargeTy = ExtTy; 5490 } else { 5491 NarrowTy = ExtTy; 5492 LargeTy = CurTy; 5493 } 5494 5495 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5496 return false; 5497 } 5498 // All uses are the same or can be derived from one another for free. 5499 return true; 5500 } 5501 5502 /// Try to speculatively promote extensions in \p Exts and continue 5503 /// promoting through newly promoted operands recursively as far as doing so is 5504 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5505 /// When some promotion happened, \p TPT contains the proper state to revert 5506 /// them. 5507 /// 5508 /// \return true if some promotion happened, false otherwise. 5509 bool CodeGenPrepare::tryToPromoteExts( 5510 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5511 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5512 unsigned CreatedInstsCost) { 5513 bool Promoted = false; 5514 5515 // Iterate over all the extensions to try to promote them. 5516 for (auto *I : Exts) { 5517 // Early check if we directly have ext(load). 5518 if (isa<LoadInst>(I->getOperand(0))) { 5519 ProfitablyMovedExts.push_back(I); 5520 continue; 5521 } 5522 5523 // Check whether or not we want to do any promotion. The reason we have 5524 // this check inside the for loop is to catch the case where an extension 5525 // is directly fed by a load because in such case the extension can be moved 5526 // up without any promotion on its operands. 5527 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5528 return false; 5529 5530 // Get the action to perform the promotion. 5531 TypePromotionHelper::Action TPH = 5532 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5533 // Check if we can promote. 5534 if (!TPH) { 5535 // Save the current extension as we cannot move up through its operand. 5536 ProfitablyMovedExts.push_back(I); 5537 continue; 5538 } 5539 5540 // Save the current state. 5541 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5542 TPT.getRestorationPoint(); 5543 SmallVector<Instruction *, 4> NewExts; 5544 unsigned NewCreatedInstsCost = 0; 5545 unsigned ExtCost = !TLI->isExtFree(I); 5546 // Promote. 5547 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5548 &NewExts, nullptr, *TLI); 5549 assert(PromotedVal && 5550 "TypePromotionHelper should have filtered out those cases"); 5551 5552 // We would be able to merge only one extension in a load. 5553 // Therefore, if we have more than 1 new extension we heuristically 5554 // cut this search path, because it means we degrade the code quality. 5555 // With exactly 2, the transformation is neutral, because we will merge 5556 // one extension but leave one. However, we optimistically keep going, 5557 // because the new extension may be removed too. 5558 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5559 // FIXME: It would be possible to propagate a negative value instead of 5560 // conservatively ceiling it to 0. 5561 TotalCreatedInstsCost = 5562 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5563 if (!StressExtLdPromotion && 5564 (TotalCreatedInstsCost > 1 || 5565 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5566 // This promotion is not profitable, rollback to the previous state, and 5567 // save the current extension in ProfitablyMovedExts as the latest 5568 // speculative promotion turned out to be unprofitable. 5569 TPT.rollback(LastKnownGood); 5570 ProfitablyMovedExts.push_back(I); 5571 continue; 5572 } 5573 // Continue promoting NewExts as far as doing so is profitable. 5574 SmallVector<Instruction *, 2> NewlyMovedExts; 5575 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5576 bool NewPromoted = false; 5577 for (auto *ExtInst : NewlyMovedExts) { 5578 Instruction *MovedExt = cast<Instruction>(ExtInst); 5579 Value *ExtOperand = MovedExt->getOperand(0); 5580 // If we have reached to a load, we need this extra profitability check 5581 // as it could potentially be merged into an ext(load). 5582 if (isa<LoadInst>(ExtOperand) && 5583 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5584 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5585 continue; 5586 5587 ProfitablyMovedExts.push_back(MovedExt); 5588 NewPromoted = true; 5589 } 5590 5591 // If none of speculative promotions for NewExts is profitable, rollback 5592 // and save the current extension (I) as the last profitable extension. 5593 if (!NewPromoted) { 5594 TPT.rollback(LastKnownGood); 5595 ProfitablyMovedExts.push_back(I); 5596 continue; 5597 } 5598 // The promotion is profitable. 5599 Promoted = true; 5600 } 5601 return Promoted; 5602 } 5603 5604 /// Merging redundant sexts when one is dominating the other. 5605 bool CodeGenPrepare::mergeSExts(Function &F) { 5606 bool Changed = false; 5607 for (auto &Entry : ValToSExtendedUses) { 5608 SExts &Insts = Entry.second; 5609 SExts CurPts; 5610 for (Instruction *Inst : Insts) { 5611 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5612 Inst->getOperand(0) != Entry.first) 5613 continue; 5614 bool inserted = false; 5615 for (auto &Pt : CurPts) { 5616 if (getDT(F).dominates(Inst, Pt)) { 5617 Pt->replaceAllUsesWith(Inst); 5618 RemovedInsts.insert(Pt); 5619 Pt->removeFromParent(); 5620 Pt = Inst; 5621 inserted = true; 5622 Changed = true; 5623 break; 5624 } 5625 if (!getDT(F).dominates(Pt, Inst)) 5626 // Give up if we need to merge in a common dominator as the 5627 // experiments show it is not profitable. 5628 continue; 5629 Inst->replaceAllUsesWith(Pt); 5630 RemovedInsts.insert(Inst); 5631 Inst->removeFromParent(); 5632 inserted = true; 5633 Changed = true; 5634 break; 5635 } 5636 if (!inserted) 5637 CurPts.push_back(Inst); 5638 } 5639 } 5640 return Changed; 5641 } 5642 5643 // Splitting large data structures so that the GEPs accessing them can have 5644 // smaller offsets so that they can be sunk to the same blocks as their users. 5645 // For example, a large struct starting from %base is split into two parts 5646 // where the second part starts from %new_base. 5647 // 5648 // Before: 5649 // BB0: 5650 // %base = 5651 // 5652 // BB1: 5653 // %gep0 = gep %base, off0 5654 // %gep1 = gep %base, off1 5655 // %gep2 = gep %base, off2 5656 // 5657 // BB2: 5658 // %load1 = load %gep0 5659 // %load2 = load %gep1 5660 // %load3 = load %gep2 5661 // 5662 // After: 5663 // BB0: 5664 // %base = 5665 // %new_base = gep %base, off0 5666 // 5667 // BB1: 5668 // %new_gep0 = %new_base 5669 // %new_gep1 = gep %new_base, off1 - off0 5670 // %new_gep2 = gep %new_base, off2 - off0 5671 // 5672 // BB2: 5673 // %load1 = load i32, i32* %new_gep0 5674 // %load2 = load i32, i32* %new_gep1 5675 // %load3 = load i32, i32* %new_gep2 5676 // 5677 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5678 // their offsets are smaller enough to fit into the addressing mode. 5679 bool CodeGenPrepare::splitLargeGEPOffsets() { 5680 bool Changed = false; 5681 for (auto &Entry : LargeOffsetGEPMap) { 5682 Value *OldBase = Entry.first; 5683 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5684 &LargeOffsetGEPs = Entry.second; 5685 auto compareGEPOffset = 5686 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5687 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5688 if (LHS.first == RHS.first) 5689 return false; 5690 if (LHS.second != RHS.second) 5691 return LHS.second < RHS.second; 5692 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5693 }; 5694 // Sorting all the GEPs of the same data structures based on the offsets. 5695 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5696 LargeOffsetGEPs.erase( 5697 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5698 LargeOffsetGEPs.end()); 5699 // Skip if all the GEPs have the same offsets. 5700 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5701 continue; 5702 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5703 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5704 Value *NewBaseGEP = nullptr; 5705 5706 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5707 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5708 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5709 int64_t Offset = LargeOffsetGEP->second; 5710 if (Offset != BaseOffset) { 5711 TargetLowering::AddrMode AddrMode; 5712 AddrMode.BaseOffs = Offset - BaseOffset; 5713 // The result type of the GEP might not be the type of the memory 5714 // access. 5715 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5716 GEP->getResultElementType(), 5717 GEP->getAddressSpace())) { 5718 // We need to create a new base if the offset to the current base is 5719 // too large to fit into the addressing mode. So, a very large struct 5720 // may be split into several parts. 5721 BaseGEP = GEP; 5722 BaseOffset = Offset; 5723 NewBaseGEP = nullptr; 5724 } 5725 } 5726 5727 // Generate a new GEP to replace the current one. 5728 LLVMContext &Ctx = GEP->getContext(); 5729 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5730 Type *I8PtrTy = 5731 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5732 Type *I8Ty = Type::getInt8Ty(Ctx); 5733 5734 if (!NewBaseGEP) { 5735 // Create a new base if we don't have one yet. Find the insertion 5736 // pointer for the new base first. 5737 BasicBlock::iterator NewBaseInsertPt; 5738 BasicBlock *NewBaseInsertBB; 5739 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5740 // If the base of the struct is an instruction, the new base will be 5741 // inserted close to it. 5742 NewBaseInsertBB = BaseI->getParent(); 5743 if (isa<PHINode>(BaseI)) 5744 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5745 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5746 NewBaseInsertBB = 5747 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5748 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5749 } else 5750 NewBaseInsertPt = std::next(BaseI->getIterator()); 5751 } else { 5752 // If the current base is an argument or global value, the new base 5753 // will be inserted to the entry block. 5754 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5755 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5756 } 5757 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5758 // Create a new base. 5759 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5760 NewBaseGEP = OldBase; 5761 if (NewBaseGEP->getType() != I8PtrTy) 5762 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5763 NewBaseGEP = 5764 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5765 NewGEPBases.insert(NewBaseGEP); 5766 } 5767 5768 IRBuilder<> Builder(GEP); 5769 Value *NewGEP = NewBaseGEP; 5770 if (Offset == BaseOffset) { 5771 if (GEP->getType() != I8PtrTy) 5772 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5773 } else { 5774 // Calculate the new offset for the new GEP. 5775 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5776 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5777 5778 if (GEP->getType() != I8PtrTy) 5779 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5780 } 5781 GEP->replaceAllUsesWith(NewGEP); 5782 LargeOffsetGEPID.erase(GEP); 5783 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5784 GEP->eraseFromParent(); 5785 Changed = true; 5786 } 5787 } 5788 return Changed; 5789 } 5790 5791 bool CodeGenPrepare::optimizePhiType( 5792 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5793 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5794 // We are looking for a collection on interconnected phi nodes that together 5795 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5796 // are of the same type. Convert the whole set of nodes to the type of the 5797 // bitcast. 5798 Type *PhiTy = I->getType(); 5799 Type *ConvertTy = nullptr; 5800 if (Visited.count(I) || 5801 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5802 return false; 5803 5804 SmallVector<Instruction *, 4> Worklist; 5805 Worklist.push_back(cast<Instruction>(I)); 5806 SmallPtrSet<PHINode *, 4> PhiNodes; 5807 PhiNodes.insert(I); 5808 Visited.insert(I); 5809 SmallPtrSet<Instruction *, 4> Defs; 5810 SmallPtrSet<Instruction *, 4> Uses; 5811 // This works by adding extra bitcasts between load/stores and removing 5812 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5813 // we can get in the situation where we remove a bitcast in one iteration 5814 // just to add it again in the next. We need to ensure that at least one 5815 // bitcast we remove are anchored to something that will not change back. 5816 bool AnyAnchored = false; 5817 5818 while (!Worklist.empty()) { 5819 Instruction *II = Worklist.pop_back_val(); 5820 5821 if (auto *Phi = dyn_cast<PHINode>(II)) { 5822 // Handle Defs, which might also be PHI's 5823 for (Value *V : Phi->incoming_values()) { 5824 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5825 if (!PhiNodes.count(OpPhi)) { 5826 if (Visited.count(OpPhi)) 5827 return false; 5828 PhiNodes.insert(OpPhi); 5829 Visited.insert(OpPhi); 5830 Worklist.push_back(OpPhi); 5831 } 5832 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5833 if (!OpLoad->isSimple()) 5834 return false; 5835 if (!Defs.count(OpLoad)) { 5836 Defs.insert(OpLoad); 5837 Worklist.push_back(OpLoad); 5838 } 5839 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5840 if (!Defs.count(OpEx)) { 5841 Defs.insert(OpEx); 5842 Worklist.push_back(OpEx); 5843 } 5844 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5845 if (!ConvertTy) 5846 ConvertTy = OpBC->getOperand(0)->getType(); 5847 if (OpBC->getOperand(0)->getType() != ConvertTy) 5848 return false; 5849 if (!Defs.count(OpBC)) { 5850 Defs.insert(OpBC); 5851 Worklist.push_back(OpBC); 5852 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5853 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5854 } 5855 } else if (!isa<UndefValue>(V)) { 5856 return false; 5857 } 5858 } 5859 } 5860 5861 // Handle uses which might also be phi's 5862 for (User *V : II->users()) { 5863 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5864 if (!PhiNodes.count(OpPhi)) { 5865 if (Visited.count(OpPhi)) 5866 return false; 5867 PhiNodes.insert(OpPhi); 5868 Visited.insert(OpPhi); 5869 Worklist.push_back(OpPhi); 5870 } 5871 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5872 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5873 return false; 5874 Uses.insert(OpStore); 5875 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5876 if (!ConvertTy) 5877 ConvertTy = OpBC->getType(); 5878 if (OpBC->getType() != ConvertTy) 5879 return false; 5880 Uses.insert(OpBC); 5881 AnyAnchored |= 5882 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5883 } else { 5884 return false; 5885 } 5886 } 5887 } 5888 5889 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5890 return false; 5891 5892 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5893 << *ConvertTy << "\n"); 5894 5895 // Create all the new phi nodes of the new type, and bitcast any loads to the 5896 // correct type. 5897 ValueToValueMap ValMap; 5898 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5899 for (Instruction *D : Defs) { 5900 if (isa<BitCastInst>(D)) { 5901 ValMap[D] = D->getOperand(0); 5902 DeletedInstrs.insert(D); 5903 } else { 5904 ValMap[D] = 5905 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5906 } 5907 } 5908 for (PHINode *Phi : PhiNodes) 5909 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5910 Phi->getName() + ".tc", Phi); 5911 // Pipe together all the PhiNodes. 5912 for (PHINode *Phi : PhiNodes) { 5913 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5914 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5915 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5916 Phi->getIncomingBlock(i)); 5917 Visited.insert(NewPhi); 5918 } 5919 // And finally pipe up the stores and bitcasts 5920 for (Instruction *U : Uses) { 5921 if (isa<BitCastInst>(U)) { 5922 DeletedInstrs.insert(U); 5923 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5924 } else { 5925 U->setOperand(0, 5926 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5927 } 5928 } 5929 5930 // Save the removed phis to be deleted later. 5931 for (PHINode *Phi : PhiNodes) 5932 DeletedInstrs.insert(Phi); 5933 return true; 5934 } 5935 5936 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5937 if (!OptimizePhiTypes) 5938 return false; 5939 5940 bool Changed = false; 5941 SmallPtrSet<PHINode *, 4> Visited; 5942 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5943 5944 // Attempt to optimize all the phis in the functions to the correct type. 5945 for (auto &BB : F) 5946 for (auto &Phi : BB.phis()) 5947 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5948 5949 // Remove any old phi's that have been converted. 5950 for (auto *I : DeletedInstrs) { 5951 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5952 I->eraseFromParent(); 5953 } 5954 5955 return Changed; 5956 } 5957 5958 /// Return true, if an ext(load) can be formed from an extension in 5959 /// \p MovedExts. 5960 bool CodeGenPrepare::canFormExtLd( 5961 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5962 Instruction *&Inst, bool HasPromoted) { 5963 for (auto *MovedExtInst : MovedExts) { 5964 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5965 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5966 Inst = MovedExtInst; 5967 break; 5968 } 5969 } 5970 if (!LI) 5971 return false; 5972 5973 // If they're already in the same block, there's nothing to do. 5974 // Make the cheap checks first if we did not promote. 5975 // If we promoted, we need to check if it is indeed profitable. 5976 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5977 return false; 5978 5979 return TLI->isExtLoad(LI, Inst, *DL); 5980 } 5981 5982 /// Move a zext or sext fed by a load into the same basic block as the load, 5983 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5984 /// extend into the load. 5985 /// 5986 /// E.g., 5987 /// \code 5988 /// %ld = load i32* %addr 5989 /// %add = add nuw i32 %ld, 4 5990 /// %zext = zext i32 %add to i64 5991 // \endcode 5992 /// => 5993 /// \code 5994 /// %ld = load i32* %addr 5995 /// %zext = zext i32 %ld to i64 5996 /// %add = add nuw i64 %zext, 4 5997 /// \encode 5998 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5999 /// allow us to match zext(load i32*) to i64. 6000 /// 6001 /// Also, try to promote the computations used to obtain a sign extended 6002 /// value used into memory accesses. 6003 /// E.g., 6004 /// \code 6005 /// a = add nsw i32 b, 3 6006 /// d = sext i32 a to i64 6007 /// e = getelementptr ..., i64 d 6008 /// \endcode 6009 /// => 6010 /// \code 6011 /// f = sext i32 b to i64 6012 /// a = add nsw i64 f, 3 6013 /// e = getelementptr ..., i64 a 6014 /// \endcode 6015 /// 6016 /// \p Inst[in/out] the extension may be modified during the process if some 6017 /// promotions apply. 6018 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6019 bool AllowPromotionWithoutCommonHeader = false; 6020 /// See if it is an interesting sext operations for the address type 6021 /// promotion before trying to promote it, e.g., the ones with the right 6022 /// type and used in memory accesses. 6023 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6024 *Inst, AllowPromotionWithoutCommonHeader); 6025 TypePromotionTransaction TPT(RemovedInsts); 6026 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6027 TPT.getRestorationPoint(); 6028 SmallVector<Instruction *, 1> Exts; 6029 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6030 Exts.push_back(Inst); 6031 6032 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6033 6034 // Look for a load being extended. 6035 LoadInst *LI = nullptr; 6036 Instruction *ExtFedByLoad; 6037 6038 // Try to promote a chain of computation if it allows to form an extended 6039 // load. 6040 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6041 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6042 TPT.commit(); 6043 // Move the extend into the same block as the load. 6044 ExtFedByLoad->moveAfter(LI); 6045 ++NumExtsMoved; 6046 Inst = ExtFedByLoad; 6047 return true; 6048 } 6049 6050 // Continue promoting SExts if known as considerable depending on targets. 6051 if (ATPConsiderable && 6052 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6053 HasPromoted, TPT, SpeculativelyMovedExts)) 6054 return true; 6055 6056 TPT.rollback(LastKnownGood); 6057 return false; 6058 } 6059 6060 // Perform address type promotion if doing so is profitable. 6061 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6062 // instructions that sign extended the same initial value. However, if 6063 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6064 // extension is just profitable. 6065 bool CodeGenPrepare::performAddressTypePromotion( 6066 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6067 bool HasPromoted, TypePromotionTransaction &TPT, 6068 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6069 bool Promoted = false; 6070 SmallPtrSet<Instruction *, 1> UnhandledExts; 6071 bool AllSeenFirst = true; 6072 for (auto *I : SpeculativelyMovedExts) { 6073 Value *HeadOfChain = I->getOperand(0); 6074 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6075 SeenChainsForSExt.find(HeadOfChain); 6076 // If there is an unhandled SExt which has the same header, try to promote 6077 // it as well. 6078 if (AlreadySeen != SeenChainsForSExt.end()) { 6079 if (AlreadySeen->second != nullptr) 6080 UnhandledExts.insert(AlreadySeen->second); 6081 AllSeenFirst = false; 6082 } 6083 } 6084 6085 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6086 SpeculativelyMovedExts.size() == 1)) { 6087 TPT.commit(); 6088 if (HasPromoted) 6089 Promoted = true; 6090 for (auto *I : SpeculativelyMovedExts) { 6091 Value *HeadOfChain = I->getOperand(0); 6092 SeenChainsForSExt[HeadOfChain] = nullptr; 6093 ValToSExtendedUses[HeadOfChain].push_back(I); 6094 } 6095 // Update Inst as promotion happen. 6096 Inst = SpeculativelyMovedExts.pop_back_val(); 6097 } else { 6098 // This is the first chain visited from the header, keep the current chain 6099 // as unhandled. Defer to promote this until we encounter another SExt 6100 // chain derived from the same header. 6101 for (auto *I : SpeculativelyMovedExts) { 6102 Value *HeadOfChain = I->getOperand(0); 6103 SeenChainsForSExt[HeadOfChain] = Inst; 6104 } 6105 return false; 6106 } 6107 6108 if (!AllSeenFirst && !UnhandledExts.empty()) 6109 for (auto *VisitedSExt : UnhandledExts) { 6110 if (RemovedInsts.count(VisitedSExt)) 6111 continue; 6112 TypePromotionTransaction TPT(RemovedInsts); 6113 SmallVector<Instruction *, 1> Exts; 6114 SmallVector<Instruction *, 2> Chains; 6115 Exts.push_back(VisitedSExt); 6116 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6117 TPT.commit(); 6118 if (HasPromoted) 6119 Promoted = true; 6120 for (auto *I : Chains) { 6121 Value *HeadOfChain = I->getOperand(0); 6122 // Mark this as handled. 6123 SeenChainsForSExt[HeadOfChain] = nullptr; 6124 ValToSExtendedUses[HeadOfChain].push_back(I); 6125 } 6126 } 6127 return Promoted; 6128 } 6129 6130 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6131 BasicBlock *DefBB = I->getParent(); 6132 6133 // If the result of a {s|z}ext and its source are both live out, rewrite all 6134 // other uses of the source with result of extension. 6135 Value *Src = I->getOperand(0); 6136 if (Src->hasOneUse()) 6137 return false; 6138 6139 // Only do this xform if truncating is free. 6140 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6141 return false; 6142 6143 // Only safe to perform the optimization if the source is also defined in 6144 // this block. 6145 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6146 return false; 6147 6148 bool DefIsLiveOut = false; 6149 for (User *U : I->users()) { 6150 Instruction *UI = cast<Instruction>(U); 6151 6152 // Figure out which BB this ext is used in. 6153 BasicBlock *UserBB = UI->getParent(); 6154 if (UserBB == DefBB) continue; 6155 DefIsLiveOut = true; 6156 break; 6157 } 6158 if (!DefIsLiveOut) 6159 return false; 6160 6161 // Make sure none of the uses are PHI nodes. 6162 for (User *U : Src->users()) { 6163 Instruction *UI = cast<Instruction>(U); 6164 BasicBlock *UserBB = UI->getParent(); 6165 if (UserBB == DefBB) continue; 6166 // Be conservative. We don't want this xform to end up introducing 6167 // reloads just before load / store instructions. 6168 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6169 return false; 6170 } 6171 6172 // InsertedTruncs - Only insert one trunc in each block once. 6173 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6174 6175 bool MadeChange = false; 6176 for (Use &U : Src->uses()) { 6177 Instruction *User = cast<Instruction>(U.getUser()); 6178 6179 // Figure out which BB this ext is used in. 6180 BasicBlock *UserBB = User->getParent(); 6181 if (UserBB == DefBB) continue; 6182 6183 // Both src and def are live in this block. Rewrite the use. 6184 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6185 6186 if (!InsertedTrunc) { 6187 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6188 assert(InsertPt != UserBB->end()); 6189 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6190 InsertedInsts.insert(InsertedTrunc); 6191 } 6192 6193 // Replace a use of the {s|z}ext source with a use of the result. 6194 U = InsertedTrunc; 6195 ++NumExtUses; 6196 MadeChange = true; 6197 } 6198 6199 return MadeChange; 6200 } 6201 6202 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6203 // just after the load if the target can fold this into one extload instruction, 6204 // with the hope of eliminating some of the other later "and" instructions using 6205 // the loaded value. "and"s that are made trivially redundant by the insertion 6206 // of the new "and" are removed by this function, while others (e.g. those whose 6207 // path from the load goes through a phi) are left for isel to potentially 6208 // remove. 6209 // 6210 // For example: 6211 // 6212 // b0: 6213 // x = load i32 6214 // ... 6215 // b1: 6216 // y = and x, 0xff 6217 // z = use y 6218 // 6219 // becomes: 6220 // 6221 // b0: 6222 // x = load i32 6223 // x' = and x, 0xff 6224 // ... 6225 // b1: 6226 // z = use x' 6227 // 6228 // whereas: 6229 // 6230 // b0: 6231 // x1 = load i32 6232 // ... 6233 // b1: 6234 // x2 = load i32 6235 // ... 6236 // b2: 6237 // x = phi x1, x2 6238 // y = and x, 0xff 6239 // 6240 // becomes (after a call to optimizeLoadExt for each load): 6241 // 6242 // b0: 6243 // x1 = load i32 6244 // x1' = and x1, 0xff 6245 // ... 6246 // b1: 6247 // x2 = load i32 6248 // x2' = and x2, 0xff 6249 // ... 6250 // b2: 6251 // x = phi x1', x2' 6252 // y = and x, 0xff 6253 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6254 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6255 return false; 6256 6257 // Skip loads we've already transformed. 6258 if (Load->hasOneUse() && 6259 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6260 return false; 6261 6262 // Look at all uses of Load, looking through phis, to determine how many bits 6263 // of the loaded value are needed. 6264 SmallVector<Instruction *, 8> WorkList; 6265 SmallPtrSet<Instruction *, 16> Visited; 6266 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6267 for (auto *U : Load->users()) 6268 WorkList.push_back(cast<Instruction>(U)); 6269 6270 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6271 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6272 APInt DemandBits(BitWidth, 0); 6273 APInt WidestAndBits(BitWidth, 0); 6274 6275 while (!WorkList.empty()) { 6276 Instruction *I = WorkList.back(); 6277 WorkList.pop_back(); 6278 6279 // Break use-def graph loops. 6280 if (!Visited.insert(I).second) 6281 continue; 6282 6283 // For a PHI node, push all of its users. 6284 if (auto *Phi = dyn_cast<PHINode>(I)) { 6285 for (auto *U : Phi->users()) 6286 WorkList.push_back(cast<Instruction>(U)); 6287 continue; 6288 } 6289 6290 switch (I->getOpcode()) { 6291 case Instruction::And: { 6292 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6293 if (!AndC) 6294 return false; 6295 APInt AndBits = AndC->getValue(); 6296 DemandBits |= AndBits; 6297 // Keep track of the widest and mask we see. 6298 if (AndBits.ugt(WidestAndBits)) 6299 WidestAndBits = AndBits; 6300 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6301 AndsToMaybeRemove.push_back(I); 6302 break; 6303 } 6304 6305 case Instruction::Shl: { 6306 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6307 if (!ShlC) 6308 return false; 6309 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6310 DemandBits.setLowBits(BitWidth - ShiftAmt); 6311 break; 6312 } 6313 6314 case Instruction::Trunc: { 6315 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6316 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6317 DemandBits.setLowBits(TruncBitWidth); 6318 break; 6319 } 6320 6321 default: 6322 return false; 6323 } 6324 } 6325 6326 uint32_t ActiveBits = DemandBits.getActiveBits(); 6327 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6328 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6329 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6330 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6331 // followed by an AND. 6332 // TODO: Look into removing this restriction by fixing backends to either 6333 // return false for isLoadExtLegal for i1 or have them select this pattern to 6334 // a single instruction. 6335 // 6336 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6337 // mask, since these are the only ands that will be removed by isel. 6338 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6339 WidestAndBits != DemandBits) 6340 return false; 6341 6342 LLVMContext &Ctx = Load->getType()->getContext(); 6343 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6344 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6345 6346 // Reject cases that won't be matched as extloads. 6347 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6348 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6349 return false; 6350 6351 IRBuilder<> Builder(Load->getNextNode()); 6352 auto *NewAnd = cast<Instruction>( 6353 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6354 // Mark this instruction as "inserted by CGP", so that other 6355 // optimizations don't touch it. 6356 InsertedInsts.insert(NewAnd); 6357 6358 // Replace all uses of load with new and (except for the use of load in the 6359 // new and itself). 6360 Load->replaceAllUsesWith(NewAnd); 6361 NewAnd->setOperand(0, Load); 6362 6363 // Remove any and instructions that are now redundant. 6364 for (auto *And : AndsToMaybeRemove) 6365 // Check that the and mask is the same as the one we decided to put on the 6366 // new and. 6367 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6368 And->replaceAllUsesWith(NewAnd); 6369 if (&*CurInstIterator == And) 6370 CurInstIterator = std::next(And->getIterator()); 6371 And->eraseFromParent(); 6372 ++NumAndUses; 6373 } 6374 6375 ++NumAndsAdded; 6376 return true; 6377 } 6378 6379 /// Check if V (an operand of a select instruction) is an expensive instruction 6380 /// that is only used once. 6381 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6382 auto *I = dyn_cast<Instruction>(V); 6383 // If it's safe to speculatively execute, then it should not have side 6384 // effects; therefore, it's safe to sink and possibly *not* execute. 6385 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6386 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6387 TargetTransformInfo::TCC_Expensive; 6388 } 6389 6390 /// Returns true if a SelectInst should be turned into an explicit branch. 6391 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6392 const TargetLowering *TLI, 6393 SelectInst *SI) { 6394 // If even a predictable select is cheap, then a branch can't be cheaper. 6395 if (!TLI->isPredictableSelectExpensive()) 6396 return false; 6397 6398 // FIXME: This should use the same heuristics as IfConversion to determine 6399 // whether a select is better represented as a branch. 6400 6401 // If metadata tells us that the select condition is obviously predictable, 6402 // then we want to replace the select with a branch. 6403 uint64_t TrueWeight, FalseWeight; 6404 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6405 uint64_t Max = std::max(TrueWeight, FalseWeight); 6406 uint64_t Sum = TrueWeight + FalseWeight; 6407 if (Sum != 0) { 6408 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6409 if (Probability > TLI->getPredictableBranchThreshold()) 6410 return true; 6411 } 6412 } 6413 6414 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6415 6416 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6417 // comparison condition. If the compare has more than one use, there's 6418 // probably another cmov or setcc around, so it's not worth emitting a branch. 6419 if (!Cmp || !Cmp->hasOneUse()) 6420 return false; 6421 6422 // If either operand of the select is expensive and only needed on one side 6423 // of the select, we should form a branch. 6424 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6425 sinkSelectOperand(TTI, SI->getFalseValue())) 6426 return true; 6427 6428 return false; 6429 } 6430 6431 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6432 /// false value of \p SI. If the true/false value of \p SI is defined by any 6433 /// select instructions in \p Selects, look through the defining select 6434 /// instruction until the true/false value is not defined in \p Selects. 6435 static Value *getTrueOrFalseValue( 6436 SelectInst *SI, bool isTrue, 6437 const SmallPtrSet<const Instruction *, 2> &Selects) { 6438 Value *V = nullptr; 6439 6440 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6441 DefSI = dyn_cast<SelectInst>(V)) { 6442 assert(DefSI->getCondition() == SI->getCondition() && 6443 "The condition of DefSI does not match with SI"); 6444 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6445 } 6446 6447 assert(V && "Failed to get select true/false value"); 6448 return V; 6449 } 6450 6451 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6452 assert(Shift->isShift() && "Expected a shift"); 6453 6454 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6455 // general vector shifts, and (3) the shift amount is a select-of-splatted 6456 // values, hoist the shifts before the select: 6457 // shift Op0, (select Cond, TVal, FVal) --> 6458 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6459 // 6460 // This is inverting a generic IR transform when we know that the cost of a 6461 // general vector shift is more than the cost of 2 shift-by-scalars. 6462 // We can't do this effectively in SDAG because we may not be able to 6463 // determine if the select operands are splats from within a basic block. 6464 Type *Ty = Shift->getType(); 6465 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6466 return false; 6467 Value *Cond, *TVal, *FVal; 6468 if (!match(Shift->getOperand(1), 6469 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6470 return false; 6471 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6472 return false; 6473 6474 IRBuilder<> Builder(Shift); 6475 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6476 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6477 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6478 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6479 Shift->replaceAllUsesWith(NewSel); 6480 Shift->eraseFromParent(); 6481 return true; 6482 } 6483 6484 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6485 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6486 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6487 "Expected a funnel shift"); 6488 6489 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6490 // than general vector shifts, and (3) the shift amount is select-of-splatted 6491 // values, hoist the funnel shifts before the select: 6492 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6493 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6494 // 6495 // This is inverting a generic IR transform when we know that the cost of a 6496 // general vector shift is more than the cost of 2 shift-by-scalars. 6497 // We can't do this effectively in SDAG because we may not be able to 6498 // determine if the select operands are splats from within a basic block. 6499 Type *Ty = Fsh->getType(); 6500 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6501 return false; 6502 Value *Cond, *TVal, *FVal; 6503 if (!match(Fsh->getOperand(2), 6504 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6505 return false; 6506 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6507 return false; 6508 6509 IRBuilder<> Builder(Fsh); 6510 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6511 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6512 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6513 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6514 Fsh->replaceAllUsesWith(NewSel); 6515 Fsh->eraseFromParent(); 6516 return true; 6517 } 6518 6519 /// If we have a SelectInst that will likely profit from branch prediction, 6520 /// turn it into a branch. 6521 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6522 if (DisableSelectToBranch) 6523 return false; 6524 6525 // Find all consecutive select instructions that share the same condition. 6526 SmallVector<SelectInst *, 2> ASI; 6527 ASI.push_back(SI); 6528 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6529 It != SI->getParent()->end(); ++It) { 6530 SelectInst *I = dyn_cast<SelectInst>(&*It); 6531 if (I && SI->getCondition() == I->getCondition()) { 6532 ASI.push_back(I); 6533 } else { 6534 break; 6535 } 6536 } 6537 6538 SelectInst *LastSI = ASI.back(); 6539 // Increment the current iterator to skip all the rest of select instructions 6540 // because they will be either "not lowered" or "all lowered" to branch. 6541 CurInstIterator = std::next(LastSI->getIterator()); 6542 6543 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6544 6545 // Can we convert the 'select' to CF ? 6546 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6547 return false; 6548 6549 TargetLowering::SelectSupportKind SelectKind; 6550 if (VectorCond) 6551 SelectKind = TargetLowering::VectorMaskSelect; 6552 else if (SI->getType()->isVectorTy()) 6553 SelectKind = TargetLowering::ScalarCondVectorVal; 6554 else 6555 SelectKind = TargetLowering::ScalarValSelect; 6556 6557 if (TLI->isSelectSupported(SelectKind) && 6558 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6559 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6560 return false; 6561 6562 // The DominatorTree needs to be rebuilt by any consumers after this 6563 // transformation. We simply reset here rather than setting the ModifiedDT 6564 // flag to avoid restarting the function walk in runOnFunction for each 6565 // select optimized. 6566 DT.reset(); 6567 6568 // Transform a sequence like this: 6569 // start: 6570 // %cmp = cmp uge i32 %a, %b 6571 // %sel = select i1 %cmp, i32 %c, i32 %d 6572 // 6573 // Into: 6574 // start: 6575 // %cmp = cmp uge i32 %a, %b 6576 // %cmp.frozen = freeze %cmp 6577 // br i1 %cmp.frozen, label %select.true, label %select.false 6578 // select.true: 6579 // br label %select.end 6580 // select.false: 6581 // br label %select.end 6582 // select.end: 6583 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6584 // 6585 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6586 // In addition, we may sink instructions that produce %c or %d from 6587 // the entry block into the destination(s) of the new branch. 6588 // If the true or false blocks do not contain a sunken instruction, that 6589 // block and its branch may be optimized away. In that case, one side of the 6590 // first branch will point directly to select.end, and the corresponding PHI 6591 // predecessor block will be the start block. 6592 6593 // First, we split the block containing the select into 2 blocks. 6594 BasicBlock *StartBlock = SI->getParent(); 6595 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6596 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6597 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6598 6599 // Delete the unconditional branch that was just created by the split. 6600 StartBlock->getTerminator()->eraseFromParent(); 6601 6602 // These are the new basic blocks for the conditional branch. 6603 // At least one will become an actual new basic block. 6604 BasicBlock *TrueBlock = nullptr; 6605 BasicBlock *FalseBlock = nullptr; 6606 BranchInst *TrueBranch = nullptr; 6607 BranchInst *FalseBranch = nullptr; 6608 6609 // Sink expensive instructions into the conditional blocks to avoid executing 6610 // them speculatively. 6611 for (SelectInst *SI : ASI) { 6612 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6613 if (TrueBlock == nullptr) { 6614 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6615 EndBlock->getParent(), EndBlock); 6616 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6617 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6618 } 6619 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6620 TrueInst->moveBefore(TrueBranch); 6621 } 6622 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6623 if (FalseBlock == nullptr) { 6624 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6625 EndBlock->getParent(), EndBlock); 6626 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6627 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6628 } 6629 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6630 FalseInst->moveBefore(FalseBranch); 6631 } 6632 } 6633 6634 // If there was nothing to sink, then arbitrarily choose the 'false' side 6635 // for a new input value to the PHI. 6636 if (TrueBlock == FalseBlock) { 6637 assert(TrueBlock == nullptr && 6638 "Unexpected basic block transform while optimizing select"); 6639 6640 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6641 EndBlock->getParent(), EndBlock); 6642 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6643 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6644 } 6645 6646 // Insert the real conditional branch based on the original condition. 6647 // If we did not create a new block for one of the 'true' or 'false' paths 6648 // of the condition, it means that side of the branch goes to the end block 6649 // directly and the path originates from the start block from the point of 6650 // view of the new PHI. 6651 BasicBlock *TT, *FT; 6652 if (TrueBlock == nullptr) { 6653 TT = EndBlock; 6654 FT = FalseBlock; 6655 TrueBlock = StartBlock; 6656 } else if (FalseBlock == nullptr) { 6657 TT = TrueBlock; 6658 FT = EndBlock; 6659 FalseBlock = StartBlock; 6660 } else { 6661 TT = TrueBlock; 6662 FT = FalseBlock; 6663 } 6664 IRBuilder<> IB(SI); 6665 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6666 IB.CreateCondBr(CondFr, TT, FT, SI); 6667 6668 SmallPtrSet<const Instruction *, 2> INS; 6669 INS.insert(ASI.begin(), ASI.end()); 6670 // Use reverse iterator because later select may use the value of the 6671 // earlier select, and we need to propagate value through earlier select 6672 // to get the PHI operand. 6673 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6674 SelectInst *SI = *It; 6675 // The select itself is replaced with a PHI Node. 6676 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6677 PN->takeName(SI); 6678 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6679 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6680 PN->setDebugLoc(SI->getDebugLoc()); 6681 6682 SI->replaceAllUsesWith(PN); 6683 SI->eraseFromParent(); 6684 INS.erase(SI); 6685 ++NumSelectsExpanded; 6686 } 6687 6688 // Instruct OptimizeBlock to skip to the next block. 6689 CurInstIterator = StartBlock->end(); 6690 return true; 6691 } 6692 6693 /// Some targets only accept certain types for splat inputs. For example a VDUP 6694 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6695 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6696 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6697 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6698 m_Undef(), m_ZeroMask()))) 6699 return false; 6700 Type *NewType = TLI->shouldConvertSplatType(SVI); 6701 if (!NewType) 6702 return false; 6703 6704 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6705 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6706 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6707 "Expected a type of the same size!"); 6708 auto *NewVecType = 6709 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6710 6711 // Create a bitcast (shuffle (insert (bitcast(..)))) 6712 IRBuilder<> Builder(SVI->getContext()); 6713 Builder.SetInsertPoint(SVI); 6714 Value *BC1 = Builder.CreateBitCast( 6715 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6716 Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1, 6717 (uint64_t)0); 6718 Value *Shuffle = Builder.CreateShuffleVector( 6719 Insert, UndefValue::get(NewVecType), SVI->getShuffleMask()); 6720 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6721 6722 SVI->replaceAllUsesWith(BC2); 6723 RecursivelyDeleteTriviallyDeadInstructions( 6724 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6725 6726 // Also hoist the bitcast up to its operand if it they are not in the same 6727 // block. 6728 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6729 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6730 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6731 !Op->isTerminator() && !Op->isEHPad()) 6732 BCI->moveAfter(Op); 6733 6734 return true; 6735 } 6736 6737 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6738 // If the operands of I can be folded into a target instruction together with 6739 // I, duplicate and sink them. 6740 SmallVector<Use *, 4> OpsToSink; 6741 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6742 return false; 6743 6744 // OpsToSink can contain multiple uses in a use chain (e.g. 6745 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6746 // uses must come first, so we process the ops in reverse order so as to not 6747 // create invalid IR. 6748 BasicBlock *TargetBB = I->getParent(); 6749 bool Changed = false; 6750 SmallVector<Use *, 4> ToReplace; 6751 for (Use *U : reverse(OpsToSink)) { 6752 auto *UI = cast<Instruction>(U->get()); 6753 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6754 continue; 6755 ToReplace.push_back(U); 6756 } 6757 6758 SetVector<Instruction *> MaybeDead; 6759 DenseMap<Instruction *, Instruction *> NewInstructions; 6760 Instruction *InsertPoint = I; 6761 for (Use *U : ToReplace) { 6762 auto *UI = cast<Instruction>(U->get()); 6763 Instruction *NI = UI->clone(); 6764 NewInstructions[UI] = NI; 6765 MaybeDead.insert(UI); 6766 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6767 NI->insertBefore(InsertPoint); 6768 InsertPoint = NI; 6769 InsertedInsts.insert(NI); 6770 6771 // Update the use for the new instruction, making sure that we update the 6772 // sunk instruction uses, if it is part of a chain that has already been 6773 // sunk. 6774 Instruction *OldI = cast<Instruction>(U->getUser()); 6775 if (NewInstructions.count(OldI)) 6776 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6777 else 6778 U->set(NI); 6779 Changed = true; 6780 } 6781 6782 // Remove instructions that are dead after sinking. 6783 for (auto *I : MaybeDead) { 6784 if (!I->hasNUsesOrMore(1)) { 6785 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6786 I->eraseFromParent(); 6787 } 6788 } 6789 6790 return Changed; 6791 } 6792 6793 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6794 Value *Cond = SI->getCondition(); 6795 Type *OldType = Cond->getType(); 6796 LLVMContext &Context = Cond->getContext(); 6797 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6798 unsigned RegWidth = RegType.getSizeInBits(); 6799 6800 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6801 return false; 6802 6803 // If the register width is greater than the type width, expand the condition 6804 // of the switch instruction and each case constant to the width of the 6805 // register. By widening the type of the switch condition, subsequent 6806 // comparisons (for case comparisons) will not need to be extended to the 6807 // preferred register width, so we will potentially eliminate N-1 extends, 6808 // where N is the number of cases in the switch. 6809 auto *NewType = Type::getIntNTy(Context, RegWidth); 6810 6811 // Zero-extend the switch condition and case constants unless the switch 6812 // condition is a function argument that is already being sign-extended. 6813 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6814 // everything instead. 6815 Instruction::CastOps ExtType = Instruction::ZExt; 6816 if (auto *Arg = dyn_cast<Argument>(Cond)) 6817 if (Arg->hasSExtAttr()) 6818 ExtType = Instruction::SExt; 6819 6820 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6821 ExtInst->insertBefore(SI); 6822 ExtInst->setDebugLoc(SI->getDebugLoc()); 6823 SI->setCondition(ExtInst); 6824 for (auto Case : SI->cases()) { 6825 APInt NarrowConst = Case.getCaseValue()->getValue(); 6826 APInt WideConst = (ExtType == Instruction::ZExt) ? 6827 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6828 Case.setValue(ConstantInt::get(Context, WideConst)); 6829 } 6830 6831 return true; 6832 } 6833 6834 6835 namespace { 6836 6837 /// Helper class to promote a scalar operation to a vector one. 6838 /// This class is used to move downward extractelement transition. 6839 /// E.g., 6840 /// a = vector_op <2 x i32> 6841 /// b = extractelement <2 x i32> a, i32 0 6842 /// c = scalar_op b 6843 /// store c 6844 /// 6845 /// => 6846 /// a = vector_op <2 x i32> 6847 /// c = vector_op a (equivalent to scalar_op on the related lane) 6848 /// * d = extractelement <2 x i32> c, i32 0 6849 /// * store d 6850 /// Assuming both extractelement and store can be combine, we get rid of the 6851 /// transition. 6852 class VectorPromoteHelper { 6853 /// DataLayout associated with the current module. 6854 const DataLayout &DL; 6855 6856 /// Used to perform some checks on the legality of vector operations. 6857 const TargetLowering &TLI; 6858 6859 /// Used to estimated the cost of the promoted chain. 6860 const TargetTransformInfo &TTI; 6861 6862 /// The transition being moved downwards. 6863 Instruction *Transition; 6864 6865 /// The sequence of instructions to be promoted. 6866 SmallVector<Instruction *, 4> InstsToBePromoted; 6867 6868 /// Cost of combining a store and an extract. 6869 unsigned StoreExtractCombineCost; 6870 6871 /// Instruction that will be combined with the transition. 6872 Instruction *CombineInst = nullptr; 6873 6874 /// The instruction that represents the current end of the transition. 6875 /// Since we are faking the promotion until we reach the end of the chain 6876 /// of computation, we need a way to get the current end of the transition. 6877 Instruction *getEndOfTransition() const { 6878 if (InstsToBePromoted.empty()) 6879 return Transition; 6880 return InstsToBePromoted.back(); 6881 } 6882 6883 /// Return the index of the original value in the transition. 6884 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6885 /// c, is at index 0. 6886 unsigned getTransitionOriginalValueIdx() const { 6887 assert(isa<ExtractElementInst>(Transition) && 6888 "Other kind of transitions are not supported yet"); 6889 return 0; 6890 } 6891 6892 /// Return the index of the index in the transition. 6893 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6894 /// is at index 1. 6895 unsigned getTransitionIdx() const { 6896 assert(isa<ExtractElementInst>(Transition) && 6897 "Other kind of transitions are not supported yet"); 6898 return 1; 6899 } 6900 6901 /// Get the type of the transition. 6902 /// This is the type of the original value. 6903 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6904 /// transition is <2 x i32>. 6905 Type *getTransitionType() const { 6906 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6907 } 6908 6909 /// Promote \p ToBePromoted by moving \p Def downward through. 6910 /// I.e., we have the following sequence: 6911 /// Def = Transition <ty1> a to <ty2> 6912 /// b = ToBePromoted <ty2> Def, ... 6913 /// => 6914 /// b = ToBePromoted <ty1> a, ... 6915 /// Def = Transition <ty1> ToBePromoted to <ty2> 6916 void promoteImpl(Instruction *ToBePromoted); 6917 6918 /// Check whether or not it is profitable to promote all the 6919 /// instructions enqueued to be promoted. 6920 bool isProfitableToPromote() { 6921 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6922 unsigned Index = isa<ConstantInt>(ValIdx) 6923 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6924 : -1; 6925 Type *PromotedType = getTransitionType(); 6926 6927 StoreInst *ST = cast<StoreInst>(CombineInst); 6928 unsigned AS = ST->getPointerAddressSpace(); 6929 unsigned Align = ST->getAlignment(); 6930 // Check if this store is supported. 6931 if (!TLI.allowsMisalignedMemoryAccesses( 6932 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6933 Align)) { 6934 // If this is not supported, there is no way we can combine 6935 // the extract with the store. 6936 return false; 6937 } 6938 6939 // The scalar chain of computation has to pay for the transition 6940 // scalar to vector. 6941 // The vector chain has to account for the combining cost. 6942 uint64_t ScalarCost = 6943 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6944 uint64_t VectorCost = StoreExtractCombineCost; 6945 enum TargetTransformInfo::TargetCostKind CostKind = 6946 TargetTransformInfo::TCK_RecipThroughput; 6947 for (const auto &Inst : InstsToBePromoted) { 6948 // Compute the cost. 6949 // By construction, all instructions being promoted are arithmetic ones. 6950 // Moreover, one argument is a constant that can be viewed as a splat 6951 // constant. 6952 Value *Arg0 = Inst->getOperand(0); 6953 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6954 isa<ConstantFP>(Arg0); 6955 TargetTransformInfo::OperandValueKind Arg0OVK = 6956 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6957 : TargetTransformInfo::OK_AnyValue; 6958 TargetTransformInfo::OperandValueKind Arg1OVK = 6959 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6960 : TargetTransformInfo::OK_AnyValue; 6961 ScalarCost += TTI.getArithmeticInstrCost( 6962 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6963 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6964 CostKind, 6965 Arg0OVK, Arg1OVK); 6966 } 6967 LLVM_DEBUG( 6968 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6969 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6970 return ScalarCost > VectorCost; 6971 } 6972 6973 /// Generate a constant vector with \p Val with the same 6974 /// number of elements as the transition. 6975 /// \p UseSplat defines whether or not \p Val should be replicated 6976 /// across the whole vector. 6977 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6978 /// otherwise we generate a vector with as many undef as possible: 6979 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6980 /// used at the index of the extract. 6981 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6982 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6983 if (!UseSplat) { 6984 // If we cannot determine where the constant must be, we have to 6985 // use a splat constant. 6986 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6987 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6988 ExtractIdx = CstVal->getSExtValue(); 6989 else 6990 UseSplat = true; 6991 } 6992 6993 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6994 if (UseSplat) 6995 return ConstantVector::getSplat(EC, Val); 6996 6997 if (!EC.isScalable()) { 6998 SmallVector<Constant *, 4> ConstVec; 6999 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7000 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7001 if (Idx == ExtractIdx) 7002 ConstVec.push_back(Val); 7003 else 7004 ConstVec.push_back(UndefVal); 7005 } 7006 return ConstantVector::get(ConstVec); 7007 } else 7008 llvm_unreachable( 7009 "Generate scalable vector for non-splat is unimplemented"); 7010 } 7011 7012 /// Check if promoting to a vector type an operand at \p OperandIdx 7013 /// in \p Use can trigger undefined behavior. 7014 static bool canCauseUndefinedBehavior(const Instruction *Use, 7015 unsigned OperandIdx) { 7016 // This is not safe to introduce undef when the operand is on 7017 // the right hand side of a division-like instruction. 7018 if (OperandIdx != 1) 7019 return false; 7020 switch (Use->getOpcode()) { 7021 default: 7022 return false; 7023 case Instruction::SDiv: 7024 case Instruction::UDiv: 7025 case Instruction::SRem: 7026 case Instruction::URem: 7027 return true; 7028 case Instruction::FDiv: 7029 case Instruction::FRem: 7030 return !Use->hasNoNaNs(); 7031 } 7032 llvm_unreachable(nullptr); 7033 } 7034 7035 public: 7036 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7037 const TargetTransformInfo &TTI, Instruction *Transition, 7038 unsigned CombineCost) 7039 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7040 StoreExtractCombineCost(CombineCost) { 7041 assert(Transition && "Do not know how to promote null"); 7042 } 7043 7044 /// Check if we can promote \p ToBePromoted to \p Type. 7045 bool canPromote(const Instruction *ToBePromoted) const { 7046 // We could support CastInst too. 7047 return isa<BinaryOperator>(ToBePromoted); 7048 } 7049 7050 /// Check if it is profitable to promote \p ToBePromoted 7051 /// by moving downward the transition through. 7052 bool shouldPromote(const Instruction *ToBePromoted) const { 7053 // Promote only if all the operands can be statically expanded. 7054 // Indeed, we do not want to introduce any new kind of transitions. 7055 for (const Use &U : ToBePromoted->operands()) { 7056 const Value *Val = U.get(); 7057 if (Val == getEndOfTransition()) { 7058 // If the use is a division and the transition is on the rhs, 7059 // we cannot promote the operation, otherwise we may create a 7060 // division by zero. 7061 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7062 return false; 7063 continue; 7064 } 7065 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7066 !isa<ConstantFP>(Val)) 7067 return false; 7068 } 7069 // Check that the resulting operation is legal. 7070 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7071 if (!ISDOpcode) 7072 return false; 7073 return StressStoreExtract || 7074 TLI.isOperationLegalOrCustom( 7075 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7076 } 7077 7078 /// Check whether or not \p Use can be combined 7079 /// with the transition. 7080 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7081 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7082 7083 /// Record \p ToBePromoted as part of the chain to be promoted. 7084 void enqueueForPromotion(Instruction *ToBePromoted) { 7085 InstsToBePromoted.push_back(ToBePromoted); 7086 } 7087 7088 /// Set the instruction that will be combined with the transition. 7089 void recordCombineInstruction(Instruction *ToBeCombined) { 7090 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7091 CombineInst = ToBeCombined; 7092 } 7093 7094 /// Promote all the instructions enqueued for promotion if it is 7095 /// is profitable. 7096 /// \return True if the promotion happened, false otherwise. 7097 bool promote() { 7098 // Check if there is something to promote. 7099 // Right now, if we do not have anything to combine with, 7100 // we assume the promotion is not profitable. 7101 if (InstsToBePromoted.empty() || !CombineInst) 7102 return false; 7103 7104 // Check cost. 7105 if (!StressStoreExtract && !isProfitableToPromote()) 7106 return false; 7107 7108 // Promote. 7109 for (auto &ToBePromoted : InstsToBePromoted) 7110 promoteImpl(ToBePromoted); 7111 InstsToBePromoted.clear(); 7112 return true; 7113 } 7114 }; 7115 7116 } // end anonymous namespace 7117 7118 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7119 // At this point, we know that all the operands of ToBePromoted but Def 7120 // can be statically promoted. 7121 // For Def, we need to use its parameter in ToBePromoted: 7122 // b = ToBePromoted ty1 a 7123 // Def = Transition ty1 b to ty2 7124 // Move the transition down. 7125 // 1. Replace all uses of the promoted operation by the transition. 7126 // = ... b => = ... Def. 7127 assert(ToBePromoted->getType() == Transition->getType() && 7128 "The type of the result of the transition does not match " 7129 "the final type"); 7130 ToBePromoted->replaceAllUsesWith(Transition); 7131 // 2. Update the type of the uses. 7132 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7133 Type *TransitionTy = getTransitionType(); 7134 ToBePromoted->mutateType(TransitionTy); 7135 // 3. Update all the operands of the promoted operation with promoted 7136 // operands. 7137 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7138 for (Use &U : ToBePromoted->operands()) { 7139 Value *Val = U.get(); 7140 Value *NewVal = nullptr; 7141 if (Val == Transition) 7142 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7143 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7144 isa<ConstantFP>(Val)) { 7145 // Use a splat constant if it is not safe to use undef. 7146 NewVal = getConstantVector( 7147 cast<Constant>(Val), 7148 isa<UndefValue>(Val) || 7149 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7150 } else 7151 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7152 "this?"); 7153 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7154 } 7155 Transition->moveAfter(ToBePromoted); 7156 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7157 } 7158 7159 /// Some targets can do store(extractelement) with one instruction. 7160 /// Try to push the extractelement towards the stores when the target 7161 /// has this feature and this is profitable. 7162 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7163 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7164 if (DisableStoreExtract || 7165 (!StressStoreExtract && 7166 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7167 Inst->getOperand(1), CombineCost))) 7168 return false; 7169 7170 // At this point we know that Inst is a vector to scalar transition. 7171 // Try to move it down the def-use chain, until: 7172 // - We can combine the transition with its single use 7173 // => we got rid of the transition. 7174 // - We escape the current basic block 7175 // => we would need to check that we are moving it at a cheaper place and 7176 // we do not do that for now. 7177 BasicBlock *Parent = Inst->getParent(); 7178 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7179 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7180 // If the transition has more than one use, assume this is not going to be 7181 // beneficial. 7182 while (Inst->hasOneUse()) { 7183 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7184 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7185 7186 if (ToBePromoted->getParent() != Parent) { 7187 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7188 << ToBePromoted->getParent()->getName() 7189 << ") than the transition (" << Parent->getName() 7190 << ").\n"); 7191 return false; 7192 } 7193 7194 if (VPH.canCombine(ToBePromoted)) { 7195 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7196 << "will be combined with: " << *ToBePromoted << '\n'); 7197 VPH.recordCombineInstruction(ToBePromoted); 7198 bool Changed = VPH.promote(); 7199 NumStoreExtractExposed += Changed; 7200 return Changed; 7201 } 7202 7203 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7204 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7205 return false; 7206 7207 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7208 7209 VPH.enqueueForPromotion(ToBePromoted); 7210 Inst = ToBePromoted; 7211 } 7212 return false; 7213 } 7214 7215 /// For the instruction sequence of store below, F and I values 7216 /// are bundled together as an i64 value before being stored into memory. 7217 /// Sometimes it is more efficient to generate separate stores for F and I, 7218 /// which can remove the bitwise instructions or sink them to colder places. 7219 /// 7220 /// (store (or (zext (bitcast F to i32) to i64), 7221 /// (shl (zext I to i64), 32)), addr) --> 7222 /// (store F, addr) and (store I, addr+4) 7223 /// 7224 /// Similarly, splitting for other merged store can also be beneficial, like: 7225 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7226 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7227 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7228 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7229 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7230 /// 7231 /// We allow each target to determine specifically which kind of splitting is 7232 /// supported. 7233 /// 7234 /// The store patterns are commonly seen from the simple code snippet below 7235 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7236 /// void goo(const std::pair<int, float> &); 7237 /// hoo() { 7238 /// ... 7239 /// goo(std::make_pair(tmp, ftmp)); 7240 /// ... 7241 /// } 7242 /// 7243 /// Although we already have similar splitting in DAG Combine, we duplicate 7244 /// it in CodeGenPrepare to catch the case in which pattern is across 7245 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7246 /// during code expansion. 7247 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7248 const TargetLowering &TLI) { 7249 // Handle simple but common cases only. 7250 Type *StoreType = SI.getValueOperand()->getType(); 7251 7252 // The code below assumes shifting a value by <number of bits>, 7253 // whereas scalable vectors would have to be shifted by 7254 // <2log(vscale) + number of bits> in order to store the 7255 // low/high parts. Bailing out for now. 7256 if (isa<ScalableVectorType>(StoreType)) 7257 return false; 7258 7259 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7260 DL.getTypeSizeInBits(StoreType) == 0) 7261 return false; 7262 7263 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7264 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7265 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7266 return false; 7267 7268 // Don't split the store if it is volatile. 7269 if (SI.isVolatile()) 7270 return false; 7271 7272 // Match the following patterns: 7273 // (store (or (zext LValue to i64), 7274 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7275 // or 7276 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7277 // (zext LValue to i64), 7278 // Expect both operands of OR and the first operand of SHL have only 7279 // one use. 7280 Value *LValue, *HValue; 7281 if (!match(SI.getValueOperand(), 7282 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7283 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7284 m_SpecificInt(HalfValBitSize)))))) 7285 return false; 7286 7287 // Check LValue and HValue are int with size less or equal than 32. 7288 if (!LValue->getType()->isIntegerTy() || 7289 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7290 !HValue->getType()->isIntegerTy() || 7291 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7292 return false; 7293 7294 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7295 // as the input of target query. 7296 auto *LBC = dyn_cast<BitCastInst>(LValue); 7297 auto *HBC = dyn_cast<BitCastInst>(HValue); 7298 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7299 : EVT::getEVT(LValue->getType()); 7300 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7301 : EVT::getEVT(HValue->getType()); 7302 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7303 return false; 7304 7305 // Start to split store. 7306 IRBuilder<> Builder(SI.getContext()); 7307 Builder.SetInsertPoint(&SI); 7308 7309 // If LValue/HValue is a bitcast in another BB, create a new one in current 7310 // BB so it may be merged with the splitted stores by dag combiner. 7311 if (LBC && LBC->getParent() != SI.getParent()) 7312 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7313 if (HBC && HBC->getParent() != SI.getParent()) 7314 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7315 7316 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7317 auto CreateSplitStore = [&](Value *V, bool Upper) { 7318 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7319 Value *Addr = Builder.CreateBitCast( 7320 SI.getOperand(1), 7321 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7322 Align Alignment = SI.getAlign(); 7323 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7324 if (IsOffsetStore) { 7325 Addr = Builder.CreateGEP( 7326 SplitStoreType, Addr, 7327 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7328 7329 // When splitting the store in half, naturally one half will retain the 7330 // alignment of the original wider store, regardless of whether it was 7331 // over-aligned or not, while the other will require adjustment. 7332 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7333 } 7334 Builder.CreateAlignedStore(V, Addr, Alignment); 7335 }; 7336 7337 CreateSplitStore(LValue, false); 7338 CreateSplitStore(HValue, true); 7339 7340 // Delete the old store. 7341 SI.eraseFromParent(); 7342 return true; 7343 } 7344 7345 // Return true if the GEP has two operands, the first operand is of a sequential 7346 // type, and the second operand is a constant. 7347 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7348 gep_type_iterator I = gep_type_begin(*GEP); 7349 return GEP->getNumOperands() == 2 && 7350 I.isSequential() && 7351 isa<ConstantInt>(GEP->getOperand(1)); 7352 } 7353 7354 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7355 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7356 // reducing liveness interference across those edges benefits global register 7357 // allocation. Currently handles only certain cases. 7358 // 7359 // For example, unmerge %GEPI and %UGEPI as below. 7360 // 7361 // ---------- BEFORE ---------- 7362 // SrcBlock: 7363 // ... 7364 // %GEPIOp = ... 7365 // ... 7366 // %GEPI = gep %GEPIOp, Idx 7367 // ... 7368 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7369 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7370 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7371 // %UGEPI) 7372 // 7373 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7374 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7375 // ... 7376 // 7377 // DstBi: 7378 // ... 7379 // %UGEPI = gep %GEPIOp, UIdx 7380 // ... 7381 // --------------------------- 7382 // 7383 // ---------- AFTER ---------- 7384 // SrcBlock: 7385 // ... (same as above) 7386 // (* %GEPI is still alive on the indirectbr edges) 7387 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7388 // unmerging) 7389 // ... 7390 // 7391 // DstBi: 7392 // ... 7393 // %UGEPI = gep %GEPI, (UIdx-Idx) 7394 // ... 7395 // --------------------------- 7396 // 7397 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7398 // no longer alive on them. 7399 // 7400 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7401 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7402 // not to disable further simplications and optimizations as a result of GEP 7403 // merging. 7404 // 7405 // Note this unmerging may increase the length of the data flow critical path 7406 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7407 // between the register pressure and the length of data-flow critical 7408 // path. Restricting this to the uncommon IndirectBr case would minimize the 7409 // impact of potentially longer critical path, if any, and the impact on compile 7410 // time. 7411 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7412 const TargetTransformInfo *TTI) { 7413 BasicBlock *SrcBlock = GEPI->getParent(); 7414 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7415 // (non-IndirectBr) cases exit early here. 7416 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7417 return false; 7418 // Check that GEPI is a simple gep with a single constant index. 7419 if (!GEPSequentialConstIndexed(GEPI)) 7420 return false; 7421 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7422 // Check that GEPI is a cheap one. 7423 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7424 TargetTransformInfo::TCK_SizeAndLatency) 7425 > TargetTransformInfo::TCC_Basic) 7426 return false; 7427 Value *GEPIOp = GEPI->getOperand(0); 7428 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7429 if (!isa<Instruction>(GEPIOp)) 7430 return false; 7431 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7432 if (GEPIOpI->getParent() != SrcBlock) 7433 return false; 7434 // Check that GEP is used outside the block, meaning it's alive on the 7435 // IndirectBr edge(s). 7436 if (find_if(GEPI->users(), [&](User *Usr) { 7437 if (auto *I = dyn_cast<Instruction>(Usr)) { 7438 if (I->getParent() != SrcBlock) { 7439 return true; 7440 } 7441 } 7442 return false; 7443 }) == GEPI->users().end()) 7444 return false; 7445 // The second elements of the GEP chains to be unmerged. 7446 std::vector<GetElementPtrInst *> UGEPIs; 7447 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7448 // on IndirectBr edges. 7449 for (User *Usr : GEPIOp->users()) { 7450 if (Usr == GEPI) continue; 7451 // Check if Usr is an Instruction. If not, give up. 7452 if (!isa<Instruction>(Usr)) 7453 return false; 7454 auto *UI = cast<Instruction>(Usr); 7455 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7456 if (UI->getParent() == SrcBlock) 7457 continue; 7458 // Check if Usr is a GEP. If not, give up. 7459 if (!isa<GetElementPtrInst>(Usr)) 7460 return false; 7461 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7462 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7463 // the pointer operand to it. If so, record it in the vector. If not, give 7464 // up. 7465 if (!GEPSequentialConstIndexed(UGEPI)) 7466 return false; 7467 if (UGEPI->getOperand(0) != GEPIOp) 7468 return false; 7469 if (GEPIIdx->getType() != 7470 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7471 return false; 7472 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7473 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7474 TargetTransformInfo::TCK_SizeAndLatency) 7475 > TargetTransformInfo::TCC_Basic) 7476 return false; 7477 UGEPIs.push_back(UGEPI); 7478 } 7479 if (UGEPIs.size() == 0) 7480 return false; 7481 // Check the materializing cost of (Uidx-Idx). 7482 for (GetElementPtrInst *UGEPI : UGEPIs) { 7483 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7484 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7485 unsigned ImmCost = 7486 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7487 TargetTransformInfo::TCK_SizeAndLatency); 7488 if (ImmCost > TargetTransformInfo::TCC_Basic) 7489 return false; 7490 } 7491 // Now unmerge between GEPI and UGEPIs. 7492 for (GetElementPtrInst *UGEPI : UGEPIs) { 7493 UGEPI->setOperand(0, GEPI); 7494 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7495 Constant *NewUGEPIIdx = 7496 ConstantInt::get(GEPIIdx->getType(), 7497 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7498 UGEPI->setOperand(1, NewUGEPIIdx); 7499 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7500 // inbounds to avoid UB. 7501 if (!GEPI->isInBounds()) { 7502 UGEPI->setIsInBounds(false); 7503 } 7504 } 7505 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7506 // alive on IndirectBr edges). 7507 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7508 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7509 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7510 return true; 7511 } 7512 7513 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7514 // Bail out if we inserted the instruction to prevent optimizations from 7515 // stepping on each other's toes. 7516 if (InsertedInsts.count(I)) 7517 return false; 7518 7519 // TODO: Move into the switch on opcode below here. 7520 if (PHINode *P = dyn_cast<PHINode>(I)) { 7521 // It is possible for very late stage optimizations (such as SimplifyCFG) 7522 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7523 // trivial PHI, go ahead and zap it here. 7524 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7525 LargeOffsetGEPMap.erase(P); 7526 P->replaceAllUsesWith(V); 7527 P->eraseFromParent(); 7528 ++NumPHIsElim; 7529 return true; 7530 } 7531 return false; 7532 } 7533 7534 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7535 // If the source of the cast is a constant, then this should have 7536 // already been constant folded. The only reason NOT to constant fold 7537 // it is if something (e.g. LSR) was careful to place the constant 7538 // evaluation in a block other than then one that uses it (e.g. to hoist 7539 // the address of globals out of a loop). If this is the case, we don't 7540 // want to forward-subst the cast. 7541 if (isa<Constant>(CI->getOperand(0))) 7542 return false; 7543 7544 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7545 return true; 7546 7547 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7548 /// Sink a zext or sext into its user blocks if the target type doesn't 7549 /// fit in one register 7550 if (TLI->getTypeAction(CI->getContext(), 7551 TLI->getValueType(*DL, CI->getType())) == 7552 TargetLowering::TypeExpandInteger) { 7553 return SinkCast(CI); 7554 } else { 7555 bool MadeChange = optimizeExt(I); 7556 return MadeChange | optimizeExtUses(I); 7557 } 7558 } 7559 return false; 7560 } 7561 7562 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7563 if (optimizeCmp(Cmp, ModifiedDT)) 7564 return true; 7565 7566 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7567 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7568 bool Modified = optimizeLoadExt(LI); 7569 unsigned AS = LI->getPointerAddressSpace(); 7570 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7571 return Modified; 7572 } 7573 7574 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7575 if (splitMergedValStore(*SI, *DL, *TLI)) 7576 return true; 7577 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7578 unsigned AS = SI->getPointerAddressSpace(); 7579 return optimizeMemoryInst(I, SI->getOperand(1), 7580 SI->getOperand(0)->getType(), AS); 7581 } 7582 7583 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7584 unsigned AS = RMW->getPointerAddressSpace(); 7585 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7586 RMW->getType(), AS); 7587 } 7588 7589 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7590 unsigned AS = CmpX->getPointerAddressSpace(); 7591 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7592 CmpX->getCompareOperand()->getType(), AS); 7593 } 7594 7595 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7596 7597 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7598 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7599 7600 // TODO: Move this into the switch on opcode - it handles shifts already. 7601 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7602 BinOp->getOpcode() == Instruction::LShr)) { 7603 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7604 if (CI && TLI->hasExtractBitsInsn()) 7605 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7606 return true; 7607 } 7608 7609 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7610 if (GEPI->hasAllZeroIndices()) { 7611 /// The GEP operand must be a pointer, so must its result -> BitCast 7612 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7613 GEPI->getName(), GEPI); 7614 NC->setDebugLoc(GEPI->getDebugLoc()); 7615 GEPI->replaceAllUsesWith(NC); 7616 GEPI->eraseFromParent(); 7617 ++NumGEPsElim; 7618 optimizeInst(NC, ModifiedDT); 7619 return true; 7620 } 7621 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7622 return true; 7623 } 7624 return false; 7625 } 7626 7627 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7628 // freeze(icmp a, const)) -> icmp (freeze a), const 7629 // This helps generate efficient conditional jumps. 7630 Instruction *CmpI = nullptr; 7631 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7632 CmpI = II; 7633 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7634 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7635 7636 if (CmpI && CmpI->hasOneUse()) { 7637 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7638 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7639 isa<ConstantPointerNull>(Op0); 7640 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7641 isa<ConstantPointerNull>(Op1); 7642 if (Const0 || Const1) { 7643 if (!Const0 || !Const1) { 7644 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7645 F->takeName(FI); 7646 CmpI->setOperand(Const0 ? 1 : 0, F); 7647 } 7648 FI->replaceAllUsesWith(CmpI); 7649 FI->eraseFromParent(); 7650 return true; 7651 } 7652 } 7653 return false; 7654 } 7655 7656 if (tryToSinkFreeOperands(I)) 7657 return true; 7658 7659 switch (I->getOpcode()) { 7660 case Instruction::Shl: 7661 case Instruction::LShr: 7662 case Instruction::AShr: 7663 return optimizeShiftInst(cast<BinaryOperator>(I)); 7664 case Instruction::Call: 7665 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7666 case Instruction::Select: 7667 return optimizeSelectInst(cast<SelectInst>(I)); 7668 case Instruction::ShuffleVector: 7669 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7670 case Instruction::Switch: 7671 return optimizeSwitchInst(cast<SwitchInst>(I)); 7672 case Instruction::ExtractElement: 7673 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7674 } 7675 7676 return false; 7677 } 7678 7679 /// Given an OR instruction, check to see if this is a bitreverse 7680 /// idiom. If so, insert the new intrinsic and return true. 7681 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7682 if (!I.getType()->isIntegerTy() || 7683 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7684 TLI->getValueType(*DL, I.getType(), true))) 7685 return false; 7686 7687 SmallVector<Instruction*, 4> Insts; 7688 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7689 return false; 7690 Instruction *LastInst = Insts.back(); 7691 I.replaceAllUsesWith(LastInst); 7692 RecursivelyDeleteTriviallyDeadInstructions( 7693 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7694 return true; 7695 } 7696 7697 // In this pass we look for GEP and cast instructions that are used 7698 // across basic blocks and rewrite them to improve basic-block-at-a-time 7699 // selection. 7700 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7701 SunkAddrs.clear(); 7702 bool MadeChange = false; 7703 7704 CurInstIterator = BB.begin(); 7705 while (CurInstIterator != BB.end()) { 7706 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7707 if (ModifiedDT) 7708 return true; 7709 } 7710 7711 bool MadeBitReverse = true; 7712 while (MadeBitReverse) { 7713 MadeBitReverse = false; 7714 for (auto &I : reverse(BB)) { 7715 if (makeBitReverse(I)) { 7716 MadeBitReverse = MadeChange = true; 7717 break; 7718 } 7719 } 7720 } 7721 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7722 7723 return MadeChange; 7724 } 7725 7726 // Some CGP optimizations may move or alter what's computed in a block. Check 7727 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7728 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7729 assert(isa<DbgValueInst>(I)); 7730 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7731 7732 // Does this dbg.value refer to a sunk address calculation? 7733 Value *Location = DVI.getVariableLocation(); 7734 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7735 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7736 if (SunkAddr) { 7737 // Point dbg.value at locally computed address, which should give the best 7738 // opportunity to be accurately lowered. This update may change the type of 7739 // pointer being referred to; however this makes no difference to debugging 7740 // information, and we can't generate bitcasts that may affect codegen. 7741 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7742 ValueAsMetadata::get(SunkAddr))); 7743 return true; 7744 } 7745 return false; 7746 } 7747 7748 // A llvm.dbg.value may be using a value before its definition, due to 7749 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7750 // them by moving the dbg.value to immediately after the value definition. 7751 // FIXME: Ideally this should never be necessary, and this has the potential 7752 // to re-order dbg.value intrinsics. 7753 bool CodeGenPrepare::placeDbgValues(Function &F) { 7754 bool MadeChange = false; 7755 DominatorTree DT(F); 7756 7757 for (BasicBlock &BB : F) { 7758 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7759 Instruction *Insn = &*BI++; 7760 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7761 if (!DVI) 7762 continue; 7763 7764 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7765 7766 if (!VI || VI->isTerminator()) 7767 continue; 7768 7769 // If VI is a phi in a block with an EHPad terminator, we can't insert 7770 // after it. 7771 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7772 continue; 7773 7774 // If the defining instruction dominates the dbg.value, we do not need 7775 // to move the dbg.value. 7776 if (DT.dominates(VI, DVI)) 7777 continue; 7778 7779 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7780 << *DVI << ' ' << *VI); 7781 DVI->removeFromParent(); 7782 if (isa<PHINode>(VI)) 7783 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7784 else 7785 DVI->insertAfter(VI); 7786 MadeChange = true; 7787 ++NumDbgValueMoved; 7788 } 7789 } 7790 return MadeChange; 7791 } 7792 7793 /// Scale down both weights to fit into uint32_t. 7794 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7795 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7796 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7797 NewTrue = NewTrue / Scale; 7798 NewFalse = NewFalse / Scale; 7799 } 7800 7801 /// Some targets prefer to split a conditional branch like: 7802 /// \code 7803 /// %0 = icmp ne i32 %a, 0 7804 /// %1 = icmp ne i32 %b, 0 7805 /// %or.cond = or i1 %0, %1 7806 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7807 /// \endcode 7808 /// into multiple branch instructions like: 7809 /// \code 7810 /// bb1: 7811 /// %0 = icmp ne i32 %a, 0 7812 /// br i1 %0, label %TrueBB, label %bb2 7813 /// bb2: 7814 /// %1 = icmp ne i32 %b, 0 7815 /// br i1 %1, label %TrueBB, label %FalseBB 7816 /// \endcode 7817 /// This usually allows instruction selection to do even further optimizations 7818 /// and combine the compare with the branch instruction. Currently this is 7819 /// applied for targets which have "cheap" jump instructions. 7820 /// 7821 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7822 /// 7823 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7824 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7825 return false; 7826 7827 bool MadeChange = false; 7828 for (auto &BB : F) { 7829 // Does this BB end with the following? 7830 // %cond1 = icmp|fcmp|binary instruction ... 7831 // %cond2 = icmp|fcmp|binary instruction ... 7832 // %cond.or = or|and i1 %cond1, cond2 7833 // br i1 %cond.or label %dest1, label %dest2" 7834 BinaryOperator *LogicOp; 7835 BasicBlock *TBB, *FBB; 7836 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7837 continue; 7838 7839 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7840 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7841 continue; 7842 7843 // The merging of mostly empty BB can cause a degenerate branch. 7844 if (TBB == FBB) 7845 continue; 7846 7847 unsigned Opc; 7848 Value *Cond1, *Cond2; 7849 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7850 m_OneUse(m_Value(Cond2))))) 7851 Opc = Instruction::And; 7852 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7853 m_OneUse(m_Value(Cond2))))) 7854 Opc = Instruction::Or; 7855 else 7856 continue; 7857 7858 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7859 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7860 continue; 7861 7862 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7863 7864 // Create a new BB. 7865 auto *TmpBB = 7866 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7867 BB.getParent(), BB.getNextNode()); 7868 7869 // Update original basic block by using the first condition directly by the 7870 // branch instruction and removing the no longer needed and/or instruction. 7871 Br1->setCondition(Cond1); 7872 LogicOp->eraseFromParent(); 7873 7874 // Depending on the condition we have to either replace the true or the 7875 // false successor of the original branch instruction. 7876 if (Opc == Instruction::And) 7877 Br1->setSuccessor(0, TmpBB); 7878 else 7879 Br1->setSuccessor(1, TmpBB); 7880 7881 // Fill in the new basic block. 7882 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7883 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7884 I->removeFromParent(); 7885 I->insertBefore(Br2); 7886 } 7887 7888 // Update PHI nodes in both successors. The original BB needs to be 7889 // replaced in one successor's PHI nodes, because the branch comes now from 7890 // the newly generated BB (NewBB). In the other successor we need to add one 7891 // incoming edge to the PHI nodes, because both branch instructions target 7892 // now the same successor. Depending on the original branch condition 7893 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7894 // we perform the correct update for the PHI nodes. 7895 // This doesn't change the successor order of the just created branch 7896 // instruction (or any other instruction). 7897 if (Opc == Instruction::Or) 7898 std::swap(TBB, FBB); 7899 7900 // Replace the old BB with the new BB. 7901 TBB->replacePhiUsesWith(&BB, TmpBB); 7902 7903 // Add another incoming edge form the new BB. 7904 for (PHINode &PN : FBB->phis()) { 7905 auto *Val = PN.getIncomingValueForBlock(&BB); 7906 PN.addIncoming(Val, TmpBB); 7907 } 7908 7909 // Update the branch weights (from SelectionDAGBuilder:: 7910 // FindMergedConditions). 7911 if (Opc == Instruction::Or) { 7912 // Codegen X | Y as: 7913 // BB1: 7914 // jmp_if_X TBB 7915 // jmp TmpBB 7916 // TmpBB: 7917 // jmp_if_Y TBB 7918 // jmp FBB 7919 // 7920 7921 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7922 // The requirement is that 7923 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7924 // = TrueProb for original BB. 7925 // Assuming the original weights are A and B, one choice is to set BB1's 7926 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7927 // assumes that 7928 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7929 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7930 // TmpBB, but the math is more complicated. 7931 uint64_t TrueWeight, FalseWeight; 7932 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7933 uint64_t NewTrueWeight = TrueWeight; 7934 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7935 scaleWeights(NewTrueWeight, NewFalseWeight); 7936 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7937 .createBranchWeights(TrueWeight, FalseWeight)); 7938 7939 NewTrueWeight = TrueWeight; 7940 NewFalseWeight = 2 * FalseWeight; 7941 scaleWeights(NewTrueWeight, NewFalseWeight); 7942 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7943 .createBranchWeights(TrueWeight, FalseWeight)); 7944 } 7945 } else { 7946 // Codegen X & Y as: 7947 // BB1: 7948 // jmp_if_X TmpBB 7949 // jmp FBB 7950 // TmpBB: 7951 // jmp_if_Y TBB 7952 // jmp FBB 7953 // 7954 // This requires creation of TmpBB after CurBB. 7955 7956 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7957 // The requirement is that 7958 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7959 // = FalseProb for original BB. 7960 // Assuming the original weights are A and B, one choice is to set BB1's 7961 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7962 // assumes that 7963 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7964 uint64_t TrueWeight, FalseWeight; 7965 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7966 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7967 uint64_t NewFalseWeight = FalseWeight; 7968 scaleWeights(NewTrueWeight, NewFalseWeight); 7969 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7970 .createBranchWeights(TrueWeight, FalseWeight)); 7971 7972 NewTrueWeight = 2 * TrueWeight; 7973 NewFalseWeight = FalseWeight; 7974 scaleWeights(NewTrueWeight, NewFalseWeight); 7975 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7976 .createBranchWeights(TrueWeight, FalseWeight)); 7977 } 7978 } 7979 7980 ModifiedDT = true; 7981 MadeChange = true; 7982 7983 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7984 TmpBB->dump()); 7985 } 7986 return MadeChange; 7987 } 7988