1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 128 /// CurInstIterator - As we scan instructions optimizing them, this is the 129 /// next instruction to optimize. Xforms that can invalidate this should 130 /// update it. 131 BasicBlock::iterator CurInstIterator; 132 133 /// Keeps track of non-local addresses that have been sunk into a block. 134 /// This allows us to avoid inserting duplicate code for blocks with 135 /// multiple load/stores of the same address. 136 ValueMap<Value*, Value*> SunkAddrs; 137 138 /// Keeps track of all truncates inserted for the current function. 139 SetOfInstrs InsertedTruncsSet; 140 /// Keeps track of the type of the related instruction before their 141 /// promotion for the current function. 142 InstrToOrigTy PromotedInsts; 143 144 /// ModifiedDT - If CFG is modified in anyway. 145 bool ModifiedDT; 146 147 /// OptSize - True if optimizing for size. 148 bool OptSize; 149 150 public: 151 static char ID; // Pass identification, replacement for typeid 152 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 153 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 154 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 155 } 156 bool runOnFunction(Function &F) override; 157 158 const char *getPassName() const override { return "CodeGen Prepare"; } 159 160 void getAnalysisUsage(AnalysisUsage &AU) const override { 161 AU.addPreserved<DominatorTreeWrapperPass>(); 162 AU.addRequired<TargetLibraryInfoWrapperPass>(); 163 AU.addRequired<TargetTransformInfoWrapperPass>(); 164 } 165 166 private: 167 bool EliminateFallThrough(Function &F); 168 bool EliminateMostlyEmptyBlocks(Function &F); 169 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 170 void EliminateMostlyEmptyBlock(BasicBlock *BB); 171 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 172 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 173 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 174 bool OptimizeInlineAsmInst(CallInst *CS); 175 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 176 bool MoveExtToFormExtLoad(Instruction *&I); 177 bool OptimizeExtUses(Instruction *I); 178 bool OptimizeSelectInst(SelectInst *SI); 179 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 180 bool OptimizeExtractElementInst(Instruction *Inst); 181 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 182 bool PlaceDbgValues(Function &F); 183 bool sinkAndCmp(Function &F); 184 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 185 Instruction *&Inst, 186 const SmallVectorImpl<Instruction *> &Exts, 187 unsigned CreatedInstCost); 188 bool splitBranchCondition(Function &F); 189 bool simplifyOffsetableRelocate(Instruction &I); 190 }; 191 } 192 193 char CodeGenPrepare::ID = 0; 194 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 195 "Optimize for code generation", false, false) 196 197 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 198 return new CodeGenPrepare(TM); 199 } 200 201 bool CodeGenPrepare::runOnFunction(Function &F) { 202 if (skipOptnoneFunction(F)) 203 return false; 204 205 bool EverMadeChange = false; 206 // Clear per function information. 207 InsertedTruncsSet.clear(); 208 PromotedInsts.clear(); 209 210 ModifiedDT = false; 211 if (TM) 212 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 213 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 214 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 215 OptSize = F.hasFnAttribute(Attribute::OptimizeForSize); 216 217 /// This optimization identifies DIV instructions that can be 218 /// profitably bypassed and carried out with a shorter, faster divide. 219 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 220 const DenseMap<unsigned int, unsigned int> &BypassWidths = 221 TLI->getBypassSlowDivWidths(); 222 for (Function::iterator I = F.begin(); I != F.end(); I++) 223 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 224 } 225 226 // Eliminate blocks that contain only PHI nodes and an 227 // unconditional branch. 228 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 229 230 // llvm.dbg.value is far away from the value then iSel may not be able 231 // handle it properly. iSel will drop llvm.dbg.value if it can not 232 // find a node corresponding to the value. 233 EverMadeChange |= PlaceDbgValues(F); 234 235 // If there is a mask, compare against zero, and branch that can be combined 236 // into a single target instruction, push the mask and compare into branch 237 // users. Do this before OptimizeBlock -> OptimizeInst -> 238 // OptimizeCmpExpression, which perturbs the pattern being searched for. 239 if (!DisableBranchOpts) { 240 EverMadeChange |= sinkAndCmp(F); 241 EverMadeChange |= splitBranchCondition(F); 242 } 243 244 bool MadeChange = true; 245 while (MadeChange) { 246 MadeChange = false; 247 for (Function::iterator I = F.begin(); I != F.end(); ) { 248 BasicBlock *BB = I++; 249 bool ModifiedDTOnIteration = false; 250 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 251 252 // Restart BB iteration if the dominator tree of the Function was changed 253 if (ModifiedDTOnIteration) 254 break; 255 } 256 EverMadeChange |= MadeChange; 257 } 258 259 SunkAddrs.clear(); 260 261 if (!DisableBranchOpts) { 262 MadeChange = false; 263 SmallPtrSet<BasicBlock*, 8> WorkList; 264 for (BasicBlock &BB : F) { 265 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 266 MadeChange |= ConstantFoldTerminator(&BB, true); 267 if (!MadeChange) continue; 268 269 for (SmallVectorImpl<BasicBlock*>::iterator 270 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 271 if (pred_begin(*II) == pred_end(*II)) 272 WorkList.insert(*II); 273 } 274 275 // Delete the dead blocks and any of their dead successors. 276 MadeChange |= !WorkList.empty(); 277 while (!WorkList.empty()) { 278 BasicBlock *BB = *WorkList.begin(); 279 WorkList.erase(BB); 280 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 281 282 DeleteDeadBlock(BB); 283 284 for (SmallVectorImpl<BasicBlock*>::iterator 285 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 286 if (pred_begin(*II) == pred_end(*II)) 287 WorkList.insert(*II); 288 } 289 290 // Merge pairs of basic blocks with unconditional branches, connected by 291 // a single edge. 292 if (EverMadeChange || MadeChange) 293 MadeChange |= EliminateFallThrough(F); 294 295 EverMadeChange |= MadeChange; 296 } 297 298 if (!DisableGCOpts) { 299 SmallVector<Instruction *, 2> Statepoints; 300 for (BasicBlock &BB : F) 301 for (Instruction &I : BB) 302 if (isStatepoint(I)) 303 Statepoints.push_back(&I); 304 for (auto &I : Statepoints) 305 EverMadeChange |= simplifyOffsetableRelocate(*I); 306 } 307 308 return EverMadeChange; 309 } 310 311 /// EliminateFallThrough - Merge basic blocks which are connected 312 /// by a single edge, where one of the basic blocks has a single successor 313 /// pointing to the other basic block, which has a single predecessor. 314 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 315 bool Changed = false; 316 // Scan all of the blocks in the function, except for the entry block. 317 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 318 BasicBlock *BB = I++; 319 // If the destination block has a single pred, then this is a trivial 320 // edge, just collapse it. 321 BasicBlock *SinglePred = BB->getSinglePredecessor(); 322 323 // Don't merge if BB's address is taken. 324 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 325 326 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 327 if (Term && !Term->isConditional()) { 328 Changed = true; 329 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 330 // Remember if SinglePred was the entry block of the function. 331 // If so, we will need to move BB back to the entry position. 332 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 333 MergeBasicBlockIntoOnlyPred(BB, nullptr); 334 335 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 336 BB->moveBefore(&BB->getParent()->getEntryBlock()); 337 338 // We have erased a block. Update the iterator. 339 I = BB; 340 } 341 } 342 return Changed; 343 } 344 345 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 346 /// debug info directives, and an unconditional branch. Passes before isel 347 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 348 /// isel. Start by eliminating these blocks so we can split them the way we 349 /// want them. 350 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 351 bool MadeChange = false; 352 // Note that this intentionally skips the entry block. 353 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 354 BasicBlock *BB = I++; 355 356 // If this block doesn't end with an uncond branch, ignore it. 357 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 358 if (!BI || !BI->isUnconditional()) 359 continue; 360 361 // If the instruction before the branch (skipping debug info) isn't a phi 362 // node, then other stuff is happening here. 363 BasicBlock::iterator BBI = BI; 364 if (BBI != BB->begin()) { 365 --BBI; 366 while (isa<DbgInfoIntrinsic>(BBI)) { 367 if (BBI == BB->begin()) 368 break; 369 --BBI; 370 } 371 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 372 continue; 373 } 374 375 // Do not break infinite loops. 376 BasicBlock *DestBB = BI->getSuccessor(0); 377 if (DestBB == BB) 378 continue; 379 380 if (!CanMergeBlocks(BB, DestBB)) 381 continue; 382 383 EliminateMostlyEmptyBlock(BB); 384 MadeChange = true; 385 } 386 return MadeChange; 387 } 388 389 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 390 /// single uncond branch between them, and BB contains no other non-phi 391 /// instructions. 392 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 393 const BasicBlock *DestBB) const { 394 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 395 // the successor. If there are more complex condition (e.g. preheaders), 396 // don't mess around with them. 397 BasicBlock::const_iterator BBI = BB->begin(); 398 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 399 for (const User *U : PN->users()) { 400 const Instruction *UI = cast<Instruction>(U); 401 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 402 return false; 403 // If User is inside DestBB block and it is a PHINode then check 404 // incoming value. If incoming value is not from BB then this is 405 // a complex condition (e.g. preheaders) we want to avoid here. 406 if (UI->getParent() == DestBB) { 407 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 408 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 409 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 410 if (Insn && Insn->getParent() == BB && 411 Insn->getParent() != UPN->getIncomingBlock(I)) 412 return false; 413 } 414 } 415 } 416 } 417 418 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 419 // and DestBB may have conflicting incoming values for the block. If so, we 420 // can't merge the block. 421 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 422 if (!DestBBPN) return true; // no conflict. 423 424 // Collect the preds of BB. 425 SmallPtrSet<const BasicBlock*, 16> BBPreds; 426 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 427 // It is faster to get preds from a PHI than with pred_iterator. 428 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 429 BBPreds.insert(BBPN->getIncomingBlock(i)); 430 } else { 431 BBPreds.insert(pred_begin(BB), pred_end(BB)); 432 } 433 434 // Walk the preds of DestBB. 435 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 436 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 437 if (BBPreds.count(Pred)) { // Common predecessor? 438 BBI = DestBB->begin(); 439 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 440 const Value *V1 = PN->getIncomingValueForBlock(Pred); 441 const Value *V2 = PN->getIncomingValueForBlock(BB); 442 443 // If V2 is a phi node in BB, look up what the mapped value will be. 444 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 445 if (V2PN->getParent() == BB) 446 V2 = V2PN->getIncomingValueForBlock(Pred); 447 448 // If there is a conflict, bail out. 449 if (V1 != V2) return false; 450 } 451 } 452 } 453 454 return true; 455 } 456 457 458 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 459 /// an unconditional branch in it. 460 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 461 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 462 BasicBlock *DestBB = BI->getSuccessor(0); 463 464 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 465 466 // If the destination block has a single pred, then this is a trivial edge, 467 // just collapse it. 468 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 469 if (SinglePred != DestBB) { 470 // Remember if SinglePred was the entry block of the function. If so, we 471 // will need to move BB back to the entry position. 472 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 473 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 474 475 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 476 BB->moveBefore(&BB->getParent()->getEntryBlock()); 477 478 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 479 return; 480 } 481 } 482 483 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 484 // to handle the new incoming edges it is about to have. 485 PHINode *PN; 486 for (BasicBlock::iterator BBI = DestBB->begin(); 487 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 488 // Remove the incoming value for BB, and remember it. 489 Value *InVal = PN->removeIncomingValue(BB, false); 490 491 // Two options: either the InVal is a phi node defined in BB or it is some 492 // value that dominates BB. 493 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 494 if (InValPhi && InValPhi->getParent() == BB) { 495 // Add all of the input values of the input PHI as inputs of this phi. 496 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 497 PN->addIncoming(InValPhi->getIncomingValue(i), 498 InValPhi->getIncomingBlock(i)); 499 } else { 500 // Otherwise, add one instance of the dominating value for each edge that 501 // we will be adding. 502 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 503 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 504 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 505 } else { 506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 507 PN->addIncoming(InVal, *PI); 508 } 509 } 510 } 511 512 // The PHIs are now updated, change everything that refers to BB to use 513 // DestBB and remove BB. 514 BB->replaceAllUsesWith(DestBB); 515 BB->eraseFromParent(); 516 ++NumBlocksElim; 517 518 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 519 } 520 521 // Computes a map of base pointer relocation instructions to corresponding 522 // derived pointer relocation instructions given a vector of all relocate calls 523 static void computeBaseDerivedRelocateMap( 524 const SmallVectorImpl<User *> &AllRelocateCalls, 525 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 526 RelocateInstMap) { 527 // Collect information in two maps: one primarily for locating the base object 528 // while filling the second map; the second map is the final structure holding 529 // a mapping between Base and corresponding Derived relocate calls 530 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 531 for (auto &U : AllRelocateCalls) { 532 GCRelocateOperands ThisRelocate(U); 533 IntrinsicInst *I = cast<IntrinsicInst>(U); 534 auto K = std::make_pair(ThisRelocate.basePtrIndex(), 535 ThisRelocate.derivedPtrIndex()); 536 RelocateIdxMap.insert(std::make_pair(K, I)); 537 } 538 for (auto &Item : RelocateIdxMap) { 539 std::pair<unsigned, unsigned> Key = Item.first; 540 if (Key.first == Key.second) 541 // Base relocation: nothing to insert 542 continue; 543 544 IntrinsicInst *I = Item.second; 545 auto BaseKey = std::make_pair(Key.first, Key.first); 546 547 // We're iterating over RelocateIdxMap so we cannot modify it. 548 auto MaybeBase = RelocateIdxMap.find(BaseKey); 549 if (MaybeBase == RelocateIdxMap.end()) 550 // TODO: We might want to insert a new base object relocate and gep off 551 // that, if there are enough derived object relocates. 552 continue; 553 554 RelocateInstMap[MaybeBase->second].push_back(I); 555 } 556 } 557 558 // Accepts a GEP and extracts the operands into a vector provided they're all 559 // small integer constants 560 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 561 SmallVectorImpl<Value *> &OffsetV) { 562 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 563 // Only accept small constant integer operands 564 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 565 if (!Op || Op->getZExtValue() > 20) 566 return false; 567 } 568 569 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 570 OffsetV.push_back(GEP->getOperand(i)); 571 return true; 572 } 573 574 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 575 // replace, computes a replacement, and affects it. 576 static bool 577 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 578 const SmallVectorImpl<IntrinsicInst *> &Targets) { 579 bool MadeChange = false; 580 for (auto &ToReplace : Targets) { 581 GCRelocateOperands MasterRelocate(RelocatedBase); 582 GCRelocateOperands ThisRelocate(ToReplace); 583 584 assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() && 585 "Not relocating a derived object of the original base object"); 586 if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) { 587 // A duplicate relocate call. TODO: coalesce duplicates. 588 continue; 589 } 590 591 Value *Base = ThisRelocate.basePtr(); 592 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr()); 593 if (!Derived || Derived->getPointerOperand() != Base) 594 continue; 595 596 SmallVector<Value *, 2> OffsetV; 597 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 598 continue; 599 600 // Create a Builder and replace the target callsite with a gep 601 IRBuilder<> Builder(ToReplace); 602 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 603 Value *Replacement = Builder.CreateGEP( 604 Derived->getSourceElementType(), RelocatedBase, makeArrayRef(OffsetV)); 605 Instruction *ReplacementInst = cast<Instruction>(Replacement); 606 ReplacementInst->removeFromParent(); 607 ReplacementInst->insertAfter(RelocatedBase); 608 Replacement->takeName(ToReplace); 609 ToReplace->replaceAllUsesWith(Replacement); 610 ToReplace->eraseFromParent(); 611 612 MadeChange = true; 613 } 614 return MadeChange; 615 } 616 617 // Turns this: 618 // 619 // %base = ... 620 // %ptr = gep %base + 15 621 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 622 // %base' = relocate(%tok, i32 4, i32 4) 623 // %ptr' = relocate(%tok, i32 4, i32 5) 624 // %val = load %ptr' 625 // 626 // into this: 627 // 628 // %base = ... 629 // %ptr = gep %base + 15 630 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 631 // %base' = gc.relocate(%tok, i32 4, i32 4) 632 // %ptr' = gep %base' + 15 633 // %val = load %ptr' 634 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 635 bool MadeChange = false; 636 SmallVector<User *, 2> AllRelocateCalls; 637 638 for (auto *U : I.users()) 639 if (isGCRelocate(dyn_cast<Instruction>(U))) 640 // Collect all the relocate calls associated with a statepoint 641 AllRelocateCalls.push_back(U); 642 643 // We need atleast one base pointer relocation + one derived pointer 644 // relocation to mangle 645 if (AllRelocateCalls.size() < 2) 646 return false; 647 648 // RelocateInstMap is a mapping from the base relocate instruction to the 649 // corresponding derived relocate instructions 650 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 651 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 652 if (RelocateInstMap.empty()) 653 return false; 654 655 for (auto &Item : RelocateInstMap) 656 // Item.first is the RelocatedBase to offset against 657 // Item.second is the vector of Targets to replace 658 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 659 return MadeChange; 660 } 661 662 /// SinkCast - Sink the specified cast instruction into its user blocks 663 static bool SinkCast(CastInst *CI) { 664 BasicBlock *DefBB = CI->getParent(); 665 666 /// InsertedCasts - Only insert a cast in each block once. 667 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 668 669 bool MadeChange = false; 670 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 671 UI != E; ) { 672 Use &TheUse = UI.getUse(); 673 Instruction *User = cast<Instruction>(*UI); 674 675 // Figure out which BB this cast is used in. For PHI's this is the 676 // appropriate predecessor block. 677 BasicBlock *UserBB = User->getParent(); 678 if (PHINode *PN = dyn_cast<PHINode>(User)) { 679 UserBB = PN->getIncomingBlock(TheUse); 680 } 681 682 // Preincrement use iterator so we don't invalidate it. 683 ++UI; 684 685 // If this user is in the same block as the cast, don't change the cast. 686 if (UserBB == DefBB) continue; 687 688 // If we have already inserted a cast into this block, use it. 689 CastInst *&InsertedCast = InsertedCasts[UserBB]; 690 691 if (!InsertedCast) { 692 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 693 InsertedCast = 694 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 695 InsertPt); 696 MadeChange = true; 697 } 698 699 // Replace a use of the cast with a use of the new cast. 700 TheUse = InsertedCast; 701 ++NumCastUses; 702 } 703 704 // If we removed all uses, nuke the cast. 705 if (CI->use_empty()) { 706 CI->eraseFromParent(); 707 MadeChange = true; 708 } 709 710 return MadeChange; 711 } 712 713 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 714 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 715 /// sink it into user blocks to reduce the number of virtual 716 /// registers that must be created and coalesced. 717 /// 718 /// Return true if any changes are made. 719 /// 720 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 721 // If this is a noop copy, 722 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 723 EVT DstVT = TLI.getValueType(CI->getType()); 724 725 // This is an fp<->int conversion? 726 if (SrcVT.isInteger() != DstVT.isInteger()) 727 return false; 728 729 // If this is an extension, it will be a zero or sign extension, which 730 // isn't a noop. 731 if (SrcVT.bitsLT(DstVT)) return false; 732 733 // If these values will be promoted, find out what they will be promoted 734 // to. This helps us consider truncates on PPC as noop copies when they 735 // are. 736 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 737 TargetLowering::TypePromoteInteger) 738 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 739 if (TLI.getTypeAction(CI->getContext(), DstVT) == 740 TargetLowering::TypePromoteInteger) 741 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 742 743 // If, after promotion, these are the same types, this is a noop copy. 744 if (SrcVT != DstVT) 745 return false; 746 747 return SinkCast(CI); 748 } 749 750 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 751 /// the number of virtual registers that must be created and coalesced. This is 752 /// a clear win except on targets with multiple condition code registers 753 /// (PowerPC), where it might lose; some adjustment may be wanted there. 754 /// 755 /// Return true if any changes are made. 756 static bool OptimizeCmpExpression(CmpInst *CI) { 757 BasicBlock *DefBB = CI->getParent(); 758 759 /// InsertedCmp - Only insert a cmp in each block once. 760 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 761 762 bool MadeChange = false; 763 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 764 UI != E; ) { 765 Use &TheUse = UI.getUse(); 766 Instruction *User = cast<Instruction>(*UI); 767 768 // Preincrement use iterator so we don't invalidate it. 769 ++UI; 770 771 // Don't bother for PHI nodes. 772 if (isa<PHINode>(User)) 773 continue; 774 775 // Figure out which BB this cmp is used in. 776 BasicBlock *UserBB = User->getParent(); 777 778 // If this user is in the same block as the cmp, don't change the cmp. 779 if (UserBB == DefBB) continue; 780 781 // If we have already inserted a cmp into this block, use it. 782 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 783 784 if (!InsertedCmp) { 785 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 786 InsertedCmp = 787 CmpInst::Create(CI->getOpcode(), 788 CI->getPredicate(), CI->getOperand(0), 789 CI->getOperand(1), "", InsertPt); 790 MadeChange = true; 791 } 792 793 // Replace a use of the cmp with a use of the new cmp. 794 TheUse = InsertedCmp; 795 ++NumCmpUses; 796 } 797 798 // If we removed all uses, nuke the cmp. 799 if (CI->use_empty()) 800 CI->eraseFromParent(); 801 802 return MadeChange; 803 } 804 805 /// isExtractBitsCandidateUse - Check if the candidates could 806 /// be combined with shift instruction, which includes: 807 /// 1. Truncate instruction 808 /// 2. And instruction and the imm is a mask of the low bits: 809 /// imm & (imm+1) == 0 810 static bool isExtractBitsCandidateUse(Instruction *User) { 811 if (!isa<TruncInst>(User)) { 812 if (User->getOpcode() != Instruction::And || 813 !isa<ConstantInt>(User->getOperand(1))) 814 return false; 815 816 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 817 818 if ((Cimm & (Cimm + 1)).getBoolValue()) 819 return false; 820 } 821 return true; 822 } 823 824 /// SinkShiftAndTruncate - sink both shift and truncate instruction 825 /// to the use of truncate's BB. 826 static bool 827 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 828 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 829 const TargetLowering &TLI) { 830 BasicBlock *UserBB = User->getParent(); 831 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 832 TruncInst *TruncI = dyn_cast<TruncInst>(User); 833 bool MadeChange = false; 834 835 for (Value::user_iterator TruncUI = TruncI->user_begin(), 836 TruncE = TruncI->user_end(); 837 TruncUI != TruncE;) { 838 839 Use &TruncTheUse = TruncUI.getUse(); 840 Instruction *TruncUser = cast<Instruction>(*TruncUI); 841 // Preincrement use iterator so we don't invalidate it. 842 843 ++TruncUI; 844 845 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 846 if (!ISDOpcode) 847 continue; 848 849 // If the use is actually a legal node, there will not be an 850 // implicit truncate. 851 // FIXME: always querying the result type is just an 852 // approximation; some nodes' legality is determined by the 853 // operand or other means. There's no good way to find out though. 854 if (TLI.isOperationLegalOrCustom( 855 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 856 continue; 857 858 // Don't bother for PHI nodes. 859 if (isa<PHINode>(TruncUser)) 860 continue; 861 862 BasicBlock *TruncUserBB = TruncUser->getParent(); 863 864 if (UserBB == TruncUserBB) 865 continue; 866 867 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 868 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 869 870 if (!InsertedShift && !InsertedTrunc) { 871 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 872 // Sink the shift 873 if (ShiftI->getOpcode() == Instruction::AShr) 874 InsertedShift = 875 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 876 else 877 InsertedShift = 878 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 879 880 // Sink the trunc 881 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 882 TruncInsertPt++; 883 884 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 885 TruncI->getType(), "", TruncInsertPt); 886 887 MadeChange = true; 888 889 TruncTheUse = InsertedTrunc; 890 } 891 } 892 return MadeChange; 893 } 894 895 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 896 /// the uses could potentially be combined with this shift instruction and 897 /// generate BitExtract instruction. It will only be applied if the architecture 898 /// supports BitExtract instruction. Here is an example: 899 /// BB1: 900 /// %x.extract.shift = lshr i64 %arg1, 32 901 /// BB2: 902 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 903 /// ==> 904 /// 905 /// BB2: 906 /// %x.extract.shift.1 = lshr i64 %arg1, 32 907 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 908 /// 909 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 910 /// instruction. 911 /// Return true if any changes are made. 912 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 913 const TargetLowering &TLI) { 914 BasicBlock *DefBB = ShiftI->getParent(); 915 916 /// Only insert instructions in each block once. 917 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 918 919 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 920 921 bool MadeChange = false; 922 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 923 UI != E;) { 924 Use &TheUse = UI.getUse(); 925 Instruction *User = cast<Instruction>(*UI); 926 // Preincrement use iterator so we don't invalidate it. 927 ++UI; 928 929 // Don't bother for PHI nodes. 930 if (isa<PHINode>(User)) 931 continue; 932 933 if (!isExtractBitsCandidateUse(User)) 934 continue; 935 936 BasicBlock *UserBB = User->getParent(); 937 938 if (UserBB == DefBB) { 939 // If the shift and truncate instruction are in the same BB. The use of 940 // the truncate(TruncUse) may still introduce another truncate if not 941 // legal. In this case, we would like to sink both shift and truncate 942 // instruction to the BB of TruncUse. 943 // for example: 944 // BB1: 945 // i64 shift.result = lshr i64 opnd, imm 946 // trunc.result = trunc shift.result to i16 947 // 948 // BB2: 949 // ----> We will have an implicit truncate here if the architecture does 950 // not have i16 compare. 951 // cmp i16 trunc.result, opnd2 952 // 953 if (isa<TruncInst>(User) && shiftIsLegal 954 // If the type of the truncate is legal, no trucate will be 955 // introduced in other basic blocks. 956 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 957 MadeChange = 958 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 959 960 continue; 961 } 962 // If we have already inserted a shift into this block, use it. 963 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 964 965 if (!InsertedShift) { 966 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 967 968 if (ShiftI->getOpcode() == Instruction::AShr) 969 InsertedShift = 970 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 971 else 972 InsertedShift = 973 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 974 975 MadeChange = true; 976 } 977 978 // Replace a use of the shift with a use of the new shift. 979 TheUse = InsertedShift; 980 } 981 982 // If we removed all uses, nuke the shift. 983 if (ShiftI->use_empty()) 984 ShiftI->eraseFromParent(); 985 986 return MadeChange; 987 } 988 989 // ScalarizeMaskedLoad() translates masked load intrinsic, like 990 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 991 // <16 x i1> %mask, <16 x i32> %passthru) 992 // to a chain of basic blocks, whith loading element one-by-one if 993 // the appropriate mask bit is set 994 // 995 // %1 = bitcast i8* %addr to i32* 996 // %2 = extractelement <16 x i1> %mask, i32 0 997 // %3 = icmp eq i1 %2, true 998 // br i1 %3, label %cond.load, label %else 999 // 1000 //cond.load: ; preds = %0 1001 // %4 = getelementptr i32* %1, i32 0 1002 // %5 = load i32* %4 1003 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1004 // br label %else 1005 // 1006 //else: ; preds = %0, %cond.load 1007 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1008 // %7 = extractelement <16 x i1> %mask, i32 1 1009 // %8 = icmp eq i1 %7, true 1010 // br i1 %8, label %cond.load1, label %else2 1011 // 1012 //cond.load1: ; preds = %else 1013 // %9 = getelementptr i32* %1, i32 1 1014 // %10 = load i32* %9 1015 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1016 // br label %else2 1017 // 1018 //else2: ; preds = %else, %cond.load1 1019 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1020 // %12 = extractelement <16 x i1> %mask, i32 2 1021 // %13 = icmp eq i1 %12, true 1022 // br i1 %13, label %cond.load4, label %else5 1023 // 1024 static void ScalarizeMaskedLoad(CallInst *CI) { 1025 Value *Ptr = CI->getArgOperand(0); 1026 Value *Src0 = CI->getArgOperand(3); 1027 Value *Mask = CI->getArgOperand(2); 1028 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1029 Type *EltTy = VecType->getElementType(); 1030 1031 assert(VecType && "Unexpected return type of masked load intrinsic"); 1032 1033 IRBuilder<> Builder(CI->getContext()); 1034 Instruction *InsertPt = CI; 1035 BasicBlock *IfBlock = CI->getParent(); 1036 BasicBlock *CondBlock = nullptr; 1037 BasicBlock *PrevIfBlock = CI->getParent(); 1038 Builder.SetInsertPoint(InsertPt); 1039 1040 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1041 1042 // Bitcast %addr fron i8* to EltTy* 1043 Type *NewPtrType = 1044 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1045 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1046 Value *UndefVal = UndefValue::get(VecType); 1047 1048 // The result vector 1049 Value *VResult = UndefVal; 1050 1051 PHINode *Phi = nullptr; 1052 Value *PrevPhi = UndefVal; 1053 1054 unsigned VectorWidth = VecType->getNumElements(); 1055 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1056 1057 // Fill the "else" block, created in the previous iteration 1058 // 1059 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1060 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1061 // %to_load = icmp eq i1 %mask_1, true 1062 // br i1 %to_load, label %cond.load, label %else 1063 // 1064 if (Idx > 0) { 1065 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1066 Phi->addIncoming(VResult, CondBlock); 1067 Phi->addIncoming(PrevPhi, PrevIfBlock); 1068 PrevPhi = Phi; 1069 VResult = Phi; 1070 } 1071 1072 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1073 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1074 ConstantInt::get(Predicate->getType(), 1)); 1075 1076 // Create "cond" block 1077 // 1078 // %EltAddr = getelementptr i32* %1, i32 0 1079 // %Elt = load i32* %EltAddr 1080 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1081 // 1082 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1083 Builder.SetInsertPoint(InsertPt); 1084 1085 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1086 LoadInst* Load = Builder.CreateLoad(Gep, false); 1087 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1088 1089 // Create "else" block, fill it in the next iteration 1090 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1091 Builder.SetInsertPoint(InsertPt); 1092 Instruction *OldBr = IfBlock->getTerminator(); 1093 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1094 OldBr->eraseFromParent(); 1095 PrevIfBlock = IfBlock; 1096 IfBlock = NewIfBlock; 1097 } 1098 1099 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1100 Phi->addIncoming(VResult, CondBlock); 1101 Phi->addIncoming(PrevPhi, PrevIfBlock); 1102 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1103 CI->replaceAllUsesWith(NewI); 1104 CI->eraseFromParent(); 1105 } 1106 1107 // ScalarizeMaskedStore() translates masked store intrinsic, like 1108 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1109 // <16 x i1> %mask) 1110 // to a chain of basic blocks, that stores element one-by-one if 1111 // the appropriate mask bit is set 1112 // 1113 // %1 = bitcast i8* %addr to i32* 1114 // %2 = extractelement <16 x i1> %mask, i32 0 1115 // %3 = icmp eq i1 %2, true 1116 // br i1 %3, label %cond.store, label %else 1117 // 1118 // cond.store: ; preds = %0 1119 // %4 = extractelement <16 x i32> %val, i32 0 1120 // %5 = getelementptr i32* %1, i32 0 1121 // store i32 %4, i32* %5 1122 // br label %else 1123 // 1124 // else: ; preds = %0, %cond.store 1125 // %6 = extractelement <16 x i1> %mask, i32 1 1126 // %7 = icmp eq i1 %6, true 1127 // br i1 %7, label %cond.store1, label %else2 1128 // 1129 // cond.store1: ; preds = %else 1130 // %8 = extractelement <16 x i32> %val, i32 1 1131 // %9 = getelementptr i32* %1, i32 1 1132 // store i32 %8, i32* %9 1133 // br label %else2 1134 // . . . 1135 static void ScalarizeMaskedStore(CallInst *CI) { 1136 Value *Ptr = CI->getArgOperand(1); 1137 Value *Src = CI->getArgOperand(0); 1138 Value *Mask = CI->getArgOperand(3); 1139 1140 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1141 Type *EltTy = VecType->getElementType(); 1142 1143 assert(VecType && "Unexpected data type in masked store intrinsic"); 1144 1145 IRBuilder<> Builder(CI->getContext()); 1146 Instruction *InsertPt = CI; 1147 BasicBlock *IfBlock = CI->getParent(); 1148 Builder.SetInsertPoint(InsertPt); 1149 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1150 1151 // Bitcast %addr fron i8* to EltTy* 1152 Type *NewPtrType = 1153 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1154 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1155 1156 unsigned VectorWidth = VecType->getNumElements(); 1157 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1158 1159 // Fill the "else" block, created in the previous iteration 1160 // 1161 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1162 // %to_store = icmp eq i1 %mask_1, true 1163 // br i1 %to_load, label %cond.store, label %else 1164 // 1165 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1166 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1167 ConstantInt::get(Predicate->getType(), 1)); 1168 1169 // Create "cond" block 1170 // 1171 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1172 // %EltAddr = getelementptr i32* %1, i32 0 1173 // %store i32 %OneElt, i32* %EltAddr 1174 // 1175 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1176 Builder.SetInsertPoint(InsertPt); 1177 1178 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1179 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1180 Builder.CreateStore(OneElt, Gep); 1181 1182 // Create "else" block, fill it in the next iteration 1183 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1184 Builder.SetInsertPoint(InsertPt); 1185 Instruction *OldBr = IfBlock->getTerminator(); 1186 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1187 OldBr->eraseFromParent(); 1188 IfBlock = NewIfBlock; 1189 } 1190 CI->eraseFromParent(); 1191 } 1192 1193 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1194 BasicBlock *BB = CI->getParent(); 1195 1196 // Lower inline assembly if we can. 1197 // If we found an inline asm expession, and if the target knows how to 1198 // lower it to normal LLVM code, do so now. 1199 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1200 if (TLI->ExpandInlineAsm(CI)) { 1201 // Avoid invalidating the iterator. 1202 CurInstIterator = BB->begin(); 1203 // Avoid processing instructions out of order, which could cause 1204 // reuse before a value is defined. 1205 SunkAddrs.clear(); 1206 return true; 1207 } 1208 // Sink address computing for memory operands into the block. 1209 if (OptimizeInlineAsmInst(CI)) 1210 return true; 1211 } 1212 1213 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1214 1215 // Align the pointer arguments to this call if the target thinks it's a good 1216 // idea 1217 unsigned MinSize, PrefAlign; 1218 if (TLI && TD && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1219 for (auto &Arg : CI->arg_operands()) { 1220 // We want to align both objects whose address is used directly and 1221 // objects whose address is used in casts and GEPs, though it only makes 1222 // sense for GEPs if the offset is a multiple of the desired alignment and 1223 // if size - offset meets the size threshold. 1224 if (!Arg->getType()->isPointerTy()) 1225 continue; 1226 APInt Offset(TD->getPointerSizeInBits( 1227 cast<PointerType>(Arg->getType())->getAddressSpace()), 0); 1228 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*TD, Offset); 1229 uint64_t Offset2 = Offset.getLimitedValue(); 1230 AllocaInst *AI; 1231 if ((Offset2 & (PrefAlign-1)) == 0 && 1232 (AI = dyn_cast<AllocaInst>(Val)) && 1233 AI->getAlignment() < PrefAlign && 1234 TD->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1235 AI->setAlignment(PrefAlign); 1236 // TODO: Also align GlobalVariables 1237 } 1238 // If this is a memcpy (or similar) then we may be able to improve the 1239 // alignment 1240 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1241 unsigned Align = getKnownAlignment(MI->getDest(), *TD); 1242 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1243 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *TD)); 1244 if (Align > MI->getAlignment()) 1245 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1246 } 1247 } 1248 1249 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1250 if (II) { 1251 switch (II->getIntrinsicID()) { 1252 default: break; 1253 case Intrinsic::objectsize: { 1254 // Lower all uses of llvm.objectsize.* 1255 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1256 Type *ReturnTy = CI->getType(); 1257 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1258 1259 // Substituting this can cause recursive simplifications, which can 1260 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1261 // happens. 1262 WeakVH IterHandle(CurInstIterator); 1263 1264 replaceAndRecursivelySimplify(CI, RetVal, 1265 TLInfo, nullptr); 1266 1267 // If the iterator instruction was recursively deleted, start over at the 1268 // start of the block. 1269 if (IterHandle != CurInstIterator) { 1270 CurInstIterator = BB->begin(); 1271 SunkAddrs.clear(); 1272 } 1273 return true; 1274 } 1275 case Intrinsic::masked_load: { 1276 // Scalarize unsupported vector masked load 1277 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1278 ScalarizeMaskedLoad(CI); 1279 ModifiedDT = true; 1280 return true; 1281 } 1282 return false; 1283 } 1284 case Intrinsic::masked_store: { 1285 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1286 ScalarizeMaskedStore(CI); 1287 ModifiedDT = true; 1288 return true; 1289 } 1290 return false; 1291 } 1292 } 1293 1294 if (TLI) { 1295 SmallVector<Value*, 2> PtrOps; 1296 Type *AccessTy; 1297 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1298 while (!PtrOps.empty()) 1299 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1300 return true; 1301 } 1302 } 1303 1304 // From here on out we're working with named functions. 1305 if (!CI->getCalledFunction()) return false; 1306 1307 // Lower all default uses of _chk calls. This is very similar 1308 // to what InstCombineCalls does, but here we are only lowering calls 1309 // to fortified library functions (e.g. __memcpy_chk) that have the default 1310 // "don't know" as the objectsize. Anything else should be left alone. 1311 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1312 if (Value *V = Simplifier.optimizeCall(CI)) { 1313 CI->replaceAllUsesWith(V); 1314 CI->eraseFromParent(); 1315 return true; 1316 } 1317 return false; 1318 } 1319 1320 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1321 /// instructions to the predecessor to enable tail call optimizations. The 1322 /// case it is currently looking for is: 1323 /// @code 1324 /// bb0: 1325 /// %tmp0 = tail call i32 @f0() 1326 /// br label %return 1327 /// bb1: 1328 /// %tmp1 = tail call i32 @f1() 1329 /// br label %return 1330 /// bb2: 1331 /// %tmp2 = tail call i32 @f2() 1332 /// br label %return 1333 /// return: 1334 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1335 /// ret i32 %retval 1336 /// @endcode 1337 /// 1338 /// => 1339 /// 1340 /// @code 1341 /// bb0: 1342 /// %tmp0 = tail call i32 @f0() 1343 /// ret i32 %tmp0 1344 /// bb1: 1345 /// %tmp1 = tail call i32 @f1() 1346 /// ret i32 %tmp1 1347 /// bb2: 1348 /// %tmp2 = tail call i32 @f2() 1349 /// ret i32 %tmp2 1350 /// @endcode 1351 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1352 if (!TLI) 1353 return false; 1354 1355 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1356 if (!RI) 1357 return false; 1358 1359 PHINode *PN = nullptr; 1360 BitCastInst *BCI = nullptr; 1361 Value *V = RI->getReturnValue(); 1362 if (V) { 1363 BCI = dyn_cast<BitCastInst>(V); 1364 if (BCI) 1365 V = BCI->getOperand(0); 1366 1367 PN = dyn_cast<PHINode>(V); 1368 if (!PN) 1369 return false; 1370 } 1371 1372 if (PN && PN->getParent() != BB) 1373 return false; 1374 1375 // It's not safe to eliminate the sign / zero extension of the return value. 1376 // See llvm::isInTailCallPosition(). 1377 const Function *F = BB->getParent(); 1378 AttributeSet CallerAttrs = F->getAttributes(); 1379 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1380 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1381 return false; 1382 1383 // Make sure there are no instructions between the PHI and return, or that the 1384 // return is the first instruction in the block. 1385 if (PN) { 1386 BasicBlock::iterator BI = BB->begin(); 1387 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1388 if (&*BI == BCI) 1389 // Also skip over the bitcast. 1390 ++BI; 1391 if (&*BI != RI) 1392 return false; 1393 } else { 1394 BasicBlock::iterator BI = BB->begin(); 1395 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1396 if (&*BI != RI) 1397 return false; 1398 } 1399 1400 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1401 /// call. 1402 SmallVector<CallInst*, 4> TailCalls; 1403 if (PN) { 1404 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1405 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1406 // Make sure the phi value is indeed produced by the tail call. 1407 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1408 TLI->mayBeEmittedAsTailCall(CI)) 1409 TailCalls.push_back(CI); 1410 } 1411 } else { 1412 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1413 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1414 if (!VisitedBBs.insert(*PI).second) 1415 continue; 1416 1417 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1418 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1419 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1420 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1421 if (RI == RE) 1422 continue; 1423 1424 CallInst *CI = dyn_cast<CallInst>(&*RI); 1425 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1426 TailCalls.push_back(CI); 1427 } 1428 } 1429 1430 bool Changed = false; 1431 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1432 CallInst *CI = TailCalls[i]; 1433 CallSite CS(CI); 1434 1435 // Conservatively require the attributes of the call to match those of the 1436 // return. Ignore noalias because it doesn't affect the call sequence. 1437 AttributeSet CalleeAttrs = CS.getAttributes(); 1438 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1439 removeAttribute(Attribute::NoAlias) != 1440 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1441 removeAttribute(Attribute::NoAlias)) 1442 continue; 1443 1444 // Make sure the call instruction is followed by an unconditional branch to 1445 // the return block. 1446 BasicBlock *CallBB = CI->getParent(); 1447 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1448 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1449 continue; 1450 1451 // Duplicate the return into CallBB. 1452 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1453 ModifiedDT = Changed = true; 1454 ++NumRetsDup; 1455 } 1456 1457 // If we eliminated all predecessors of the block, delete the block now. 1458 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1459 BB->eraseFromParent(); 1460 1461 return Changed; 1462 } 1463 1464 //===----------------------------------------------------------------------===// 1465 // Memory Optimization 1466 //===----------------------------------------------------------------------===// 1467 1468 namespace { 1469 1470 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1471 /// which holds actual Value*'s for register values. 1472 struct ExtAddrMode : public TargetLowering::AddrMode { 1473 Value *BaseReg; 1474 Value *ScaledReg; 1475 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1476 void print(raw_ostream &OS) const; 1477 void dump() const; 1478 1479 bool operator==(const ExtAddrMode& O) const { 1480 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1481 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1482 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1483 } 1484 }; 1485 1486 #ifndef NDEBUG 1487 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1488 AM.print(OS); 1489 return OS; 1490 } 1491 #endif 1492 1493 void ExtAddrMode::print(raw_ostream &OS) const { 1494 bool NeedPlus = false; 1495 OS << "["; 1496 if (BaseGV) { 1497 OS << (NeedPlus ? " + " : "") 1498 << "GV:"; 1499 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1500 NeedPlus = true; 1501 } 1502 1503 if (BaseOffs) { 1504 OS << (NeedPlus ? " + " : "") 1505 << BaseOffs; 1506 NeedPlus = true; 1507 } 1508 1509 if (BaseReg) { 1510 OS << (NeedPlus ? " + " : "") 1511 << "Base:"; 1512 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1513 NeedPlus = true; 1514 } 1515 if (Scale) { 1516 OS << (NeedPlus ? " + " : "") 1517 << Scale << "*"; 1518 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1519 } 1520 1521 OS << ']'; 1522 } 1523 1524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1525 void ExtAddrMode::dump() const { 1526 print(dbgs()); 1527 dbgs() << '\n'; 1528 } 1529 #endif 1530 1531 /// \brief This class provides transaction based operation on the IR. 1532 /// Every change made through this class is recorded in the internal state and 1533 /// can be undone (rollback) until commit is called. 1534 class TypePromotionTransaction { 1535 1536 /// \brief This represents the common interface of the individual transaction. 1537 /// Each class implements the logic for doing one specific modification on 1538 /// the IR via the TypePromotionTransaction. 1539 class TypePromotionAction { 1540 protected: 1541 /// The Instruction modified. 1542 Instruction *Inst; 1543 1544 public: 1545 /// \brief Constructor of the action. 1546 /// The constructor performs the related action on the IR. 1547 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1548 1549 virtual ~TypePromotionAction() {} 1550 1551 /// \brief Undo the modification done by this action. 1552 /// When this method is called, the IR must be in the same state as it was 1553 /// before this action was applied. 1554 /// \pre Undoing the action works if and only if the IR is in the exact same 1555 /// state as it was directly after this action was applied. 1556 virtual void undo() = 0; 1557 1558 /// \brief Advocate every change made by this action. 1559 /// When the results on the IR of the action are to be kept, it is important 1560 /// to call this function, otherwise hidden information may be kept forever. 1561 virtual void commit() { 1562 // Nothing to be done, this action is not doing anything. 1563 } 1564 }; 1565 1566 /// \brief Utility to remember the position of an instruction. 1567 class InsertionHandler { 1568 /// Position of an instruction. 1569 /// Either an instruction: 1570 /// - Is the first in a basic block: BB is used. 1571 /// - Has a previous instructon: PrevInst is used. 1572 union { 1573 Instruction *PrevInst; 1574 BasicBlock *BB; 1575 } Point; 1576 /// Remember whether or not the instruction had a previous instruction. 1577 bool HasPrevInstruction; 1578 1579 public: 1580 /// \brief Record the position of \p Inst. 1581 InsertionHandler(Instruction *Inst) { 1582 BasicBlock::iterator It = Inst; 1583 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1584 if (HasPrevInstruction) 1585 Point.PrevInst = --It; 1586 else 1587 Point.BB = Inst->getParent(); 1588 } 1589 1590 /// \brief Insert \p Inst at the recorded position. 1591 void insert(Instruction *Inst) { 1592 if (HasPrevInstruction) { 1593 if (Inst->getParent()) 1594 Inst->removeFromParent(); 1595 Inst->insertAfter(Point.PrevInst); 1596 } else { 1597 Instruction *Position = Point.BB->getFirstInsertionPt(); 1598 if (Inst->getParent()) 1599 Inst->moveBefore(Position); 1600 else 1601 Inst->insertBefore(Position); 1602 } 1603 } 1604 }; 1605 1606 /// \brief Move an instruction before another. 1607 class InstructionMoveBefore : public TypePromotionAction { 1608 /// Original position of the instruction. 1609 InsertionHandler Position; 1610 1611 public: 1612 /// \brief Move \p Inst before \p Before. 1613 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1614 : TypePromotionAction(Inst), Position(Inst) { 1615 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1616 Inst->moveBefore(Before); 1617 } 1618 1619 /// \brief Move the instruction back to its original position. 1620 void undo() override { 1621 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1622 Position.insert(Inst); 1623 } 1624 }; 1625 1626 /// \brief Set the operand of an instruction with a new value. 1627 class OperandSetter : public TypePromotionAction { 1628 /// Original operand of the instruction. 1629 Value *Origin; 1630 /// Index of the modified instruction. 1631 unsigned Idx; 1632 1633 public: 1634 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1635 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1636 : TypePromotionAction(Inst), Idx(Idx) { 1637 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1638 << "for:" << *Inst << "\n" 1639 << "with:" << *NewVal << "\n"); 1640 Origin = Inst->getOperand(Idx); 1641 Inst->setOperand(Idx, NewVal); 1642 } 1643 1644 /// \brief Restore the original value of the instruction. 1645 void undo() override { 1646 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1647 << "for: " << *Inst << "\n" 1648 << "with: " << *Origin << "\n"); 1649 Inst->setOperand(Idx, Origin); 1650 } 1651 }; 1652 1653 /// \brief Hide the operands of an instruction. 1654 /// Do as if this instruction was not using any of its operands. 1655 class OperandsHider : public TypePromotionAction { 1656 /// The list of original operands. 1657 SmallVector<Value *, 4> OriginalValues; 1658 1659 public: 1660 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1661 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1662 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1663 unsigned NumOpnds = Inst->getNumOperands(); 1664 OriginalValues.reserve(NumOpnds); 1665 for (unsigned It = 0; It < NumOpnds; ++It) { 1666 // Save the current operand. 1667 Value *Val = Inst->getOperand(It); 1668 OriginalValues.push_back(Val); 1669 // Set a dummy one. 1670 // We could use OperandSetter here, but that would implied an overhead 1671 // that we are not willing to pay. 1672 Inst->setOperand(It, UndefValue::get(Val->getType())); 1673 } 1674 } 1675 1676 /// \brief Restore the original list of uses. 1677 void undo() override { 1678 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1679 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1680 Inst->setOperand(It, OriginalValues[It]); 1681 } 1682 }; 1683 1684 /// \brief Build a truncate instruction. 1685 class TruncBuilder : public TypePromotionAction { 1686 Value *Val; 1687 public: 1688 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1689 /// result. 1690 /// trunc Opnd to Ty. 1691 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1692 IRBuilder<> Builder(Opnd); 1693 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1694 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1695 } 1696 1697 /// \brief Get the built value. 1698 Value *getBuiltValue() { return Val; } 1699 1700 /// \brief Remove the built instruction. 1701 void undo() override { 1702 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1703 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1704 IVal->eraseFromParent(); 1705 } 1706 }; 1707 1708 /// \brief Build a sign extension instruction. 1709 class SExtBuilder : public TypePromotionAction { 1710 Value *Val; 1711 public: 1712 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1713 /// result. 1714 /// sext Opnd to Ty. 1715 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1716 : TypePromotionAction(InsertPt) { 1717 IRBuilder<> Builder(InsertPt); 1718 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1719 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1720 } 1721 1722 /// \brief Get the built value. 1723 Value *getBuiltValue() { return Val; } 1724 1725 /// \brief Remove the built instruction. 1726 void undo() override { 1727 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1728 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1729 IVal->eraseFromParent(); 1730 } 1731 }; 1732 1733 /// \brief Build a zero extension instruction. 1734 class ZExtBuilder : public TypePromotionAction { 1735 Value *Val; 1736 public: 1737 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1738 /// result. 1739 /// zext Opnd to Ty. 1740 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1741 : TypePromotionAction(InsertPt) { 1742 IRBuilder<> Builder(InsertPt); 1743 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1744 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1745 } 1746 1747 /// \brief Get the built value. 1748 Value *getBuiltValue() { return Val; } 1749 1750 /// \brief Remove the built instruction. 1751 void undo() override { 1752 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1753 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1754 IVal->eraseFromParent(); 1755 } 1756 }; 1757 1758 /// \brief Mutate an instruction to another type. 1759 class TypeMutator : public TypePromotionAction { 1760 /// Record the original type. 1761 Type *OrigTy; 1762 1763 public: 1764 /// \brief Mutate the type of \p Inst into \p NewTy. 1765 TypeMutator(Instruction *Inst, Type *NewTy) 1766 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1767 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1768 << "\n"); 1769 Inst->mutateType(NewTy); 1770 } 1771 1772 /// \brief Mutate the instruction back to its original type. 1773 void undo() override { 1774 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1775 << "\n"); 1776 Inst->mutateType(OrigTy); 1777 } 1778 }; 1779 1780 /// \brief Replace the uses of an instruction by another instruction. 1781 class UsesReplacer : public TypePromotionAction { 1782 /// Helper structure to keep track of the replaced uses. 1783 struct InstructionAndIdx { 1784 /// The instruction using the instruction. 1785 Instruction *Inst; 1786 /// The index where this instruction is used for Inst. 1787 unsigned Idx; 1788 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1789 : Inst(Inst), Idx(Idx) {} 1790 }; 1791 1792 /// Keep track of the original uses (pair Instruction, Index). 1793 SmallVector<InstructionAndIdx, 4> OriginalUses; 1794 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1795 1796 public: 1797 /// \brief Replace all the use of \p Inst by \p New. 1798 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1799 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1800 << "\n"); 1801 // Record the original uses. 1802 for (Use &U : Inst->uses()) { 1803 Instruction *UserI = cast<Instruction>(U.getUser()); 1804 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1805 } 1806 // Now, we can replace the uses. 1807 Inst->replaceAllUsesWith(New); 1808 } 1809 1810 /// \brief Reassign the original uses of Inst to Inst. 1811 void undo() override { 1812 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1813 for (use_iterator UseIt = OriginalUses.begin(), 1814 EndIt = OriginalUses.end(); 1815 UseIt != EndIt; ++UseIt) { 1816 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1817 } 1818 } 1819 }; 1820 1821 /// \brief Remove an instruction from the IR. 1822 class InstructionRemover : public TypePromotionAction { 1823 /// Original position of the instruction. 1824 InsertionHandler Inserter; 1825 /// Helper structure to hide all the link to the instruction. In other 1826 /// words, this helps to do as if the instruction was removed. 1827 OperandsHider Hider; 1828 /// Keep track of the uses replaced, if any. 1829 UsesReplacer *Replacer; 1830 1831 public: 1832 /// \brief Remove all reference of \p Inst and optinally replace all its 1833 /// uses with New. 1834 /// \pre If !Inst->use_empty(), then New != nullptr 1835 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1836 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1837 Replacer(nullptr) { 1838 if (New) 1839 Replacer = new UsesReplacer(Inst, New); 1840 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1841 Inst->removeFromParent(); 1842 } 1843 1844 ~InstructionRemover() { delete Replacer; } 1845 1846 /// \brief Really remove the instruction. 1847 void commit() override { delete Inst; } 1848 1849 /// \brief Resurrect the instruction and reassign it to the proper uses if 1850 /// new value was provided when build this action. 1851 void undo() override { 1852 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1853 Inserter.insert(Inst); 1854 if (Replacer) 1855 Replacer->undo(); 1856 Hider.undo(); 1857 } 1858 }; 1859 1860 public: 1861 /// Restoration point. 1862 /// The restoration point is a pointer to an action instead of an iterator 1863 /// because the iterator may be invalidated but not the pointer. 1864 typedef const TypePromotionAction *ConstRestorationPt; 1865 /// Advocate every changes made in that transaction. 1866 void commit(); 1867 /// Undo all the changes made after the given point. 1868 void rollback(ConstRestorationPt Point); 1869 /// Get the current restoration point. 1870 ConstRestorationPt getRestorationPoint() const; 1871 1872 /// \name API for IR modification with state keeping to support rollback. 1873 /// @{ 1874 /// Same as Instruction::setOperand. 1875 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1876 /// Same as Instruction::eraseFromParent. 1877 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1878 /// Same as Value::replaceAllUsesWith. 1879 void replaceAllUsesWith(Instruction *Inst, Value *New); 1880 /// Same as Value::mutateType. 1881 void mutateType(Instruction *Inst, Type *NewTy); 1882 /// Same as IRBuilder::createTrunc. 1883 Value *createTrunc(Instruction *Opnd, Type *Ty); 1884 /// Same as IRBuilder::createSExt. 1885 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1886 /// Same as IRBuilder::createZExt. 1887 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1888 /// Same as Instruction::moveBefore. 1889 void moveBefore(Instruction *Inst, Instruction *Before); 1890 /// @} 1891 1892 private: 1893 /// The ordered list of actions made so far. 1894 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1895 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1896 }; 1897 1898 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1899 Value *NewVal) { 1900 Actions.push_back( 1901 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1902 } 1903 1904 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1905 Value *NewVal) { 1906 Actions.push_back( 1907 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1908 } 1909 1910 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1911 Value *New) { 1912 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1913 } 1914 1915 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1916 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1917 } 1918 1919 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1920 Type *Ty) { 1921 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1922 Value *Val = Ptr->getBuiltValue(); 1923 Actions.push_back(std::move(Ptr)); 1924 return Val; 1925 } 1926 1927 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1928 Value *Opnd, Type *Ty) { 1929 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1930 Value *Val = Ptr->getBuiltValue(); 1931 Actions.push_back(std::move(Ptr)); 1932 return Val; 1933 } 1934 1935 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1936 Value *Opnd, Type *Ty) { 1937 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1938 Value *Val = Ptr->getBuiltValue(); 1939 Actions.push_back(std::move(Ptr)); 1940 return Val; 1941 } 1942 1943 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1944 Instruction *Before) { 1945 Actions.push_back( 1946 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1947 } 1948 1949 TypePromotionTransaction::ConstRestorationPt 1950 TypePromotionTransaction::getRestorationPoint() const { 1951 return !Actions.empty() ? Actions.back().get() : nullptr; 1952 } 1953 1954 void TypePromotionTransaction::commit() { 1955 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1956 ++It) 1957 (*It)->commit(); 1958 Actions.clear(); 1959 } 1960 1961 void TypePromotionTransaction::rollback( 1962 TypePromotionTransaction::ConstRestorationPt Point) { 1963 while (!Actions.empty() && Point != Actions.back().get()) { 1964 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1965 Curr->undo(); 1966 } 1967 } 1968 1969 /// \brief A helper class for matching addressing modes. 1970 /// 1971 /// This encapsulates the logic for matching the target-legal addressing modes. 1972 class AddressingModeMatcher { 1973 SmallVectorImpl<Instruction*> &AddrModeInsts; 1974 const TargetMachine &TM; 1975 const TargetLowering &TLI; 1976 1977 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1978 /// the memory instruction that we're computing this address for. 1979 Type *AccessTy; 1980 Instruction *MemoryInst; 1981 1982 /// AddrMode - This is the addressing mode that we're building up. This is 1983 /// part of the return value of this addressing mode matching stuff. 1984 ExtAddrMode &AddrMode; 1985 1986 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1987 const SetOfInstrs &InsertedTruncs; 1988 /// A map from the instructions to their type before promotion. 1989 InstrToOrigTy &PromotedInsts; 1990 /// The ongoing transaction where every action should be registered. 1991 TypePromotionTransaction &TPT; 1992 1993 /// IgnoreProfitability - This is set to true when we should not do 1994 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1995 /// always returns true. 1996 bool IgnoreProfitability; 1997 1998 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 1999 const TargetMachine &TM, Type *AT, Instruction *MI, 2000 ExtAddrMode &AM, const SetOfInstrs &InsertedTruncs, 2001 InstrToOrigTy &PromotedInsts, 2002 TypePromotionTransaction &TPT) 2003 : AddrModeInsts(AMI), TM(TM), 2004 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2005 ->getTargetLowering()), 2006 AccessTy(AT), MemoryInst(MI), AddrMode(AM), 2007 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 2008 IgnoreProfitability = false; 2009 } 2010 public: 2011 2012 /// Match - Find the maximal addressing mode that a load/store of V can fold, 2013 /// give an access type of AccessTy. This returns a list of involved 2014 /// instructions in AddrModeInsts. 2015 /// \p InsertedTruncs The truncate instruction inserted by other 2016 /// CodeGenPrepare 2017 /// optimizations. 2018 /// \p PromotedInsts maps the instructions to their type before promotion. 2019 /// \p The ongoing transaction where every action should be registered. 2020 static ExtAddrMode Match(Value *V, Type *AccessTy, 2021 Instruction *MemoryInst, 2022 SmallVectorImpl<Instruction*> &AddrModeInsts, 2023 const TargetMachine &TM, 2024 const SetOfInstrs &InsertedTruncs, 2025 InstrToOrigTy &PromotedInsts, 2026 TypePromotionTransaction &TPT) { 2027 ExtAddrMode Result; 2028 2029 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, 2030 MemoryInst, Result, InsertedTruncs, 2031 PromotedInsts, TPT).MatchAddr(V, 0); 2032 (void)Success; assert(Success && "Couldn't select *anything*?"); 2033 return Result; 2034 } 2035 private: 2036 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2037 bool MatchAddr(Value *V, unsigned Depth); 2038 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2039 bool *MovedAway = nullptr); 2040 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2041 ExtAddrMode &AMBefore, 2042 ExtAddrMode &AMAfter); 2043 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2044 bool IsPromotionProfitable(unsigned NewCost, unsigned OldCost, 2045 Value *PromotedOperand) const; 2046 }; 2047 2048 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2049 /// Return true and update AddrMode if this addr mode is legal for the target, 2050 /// false if not. 2051 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2052 unsigned Depth) { 2053 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2054 // mode. Just process that directly. 2055 if (Scale == 1) 2056 return MatchAddr(ScaleReg, Depth); 2057 2058 // If the scale is 0, it takes nothing to add this. 2059 if (Scale == 0) 2060 return true; 2061 2062 // If we already have a scale of this value, we can add to it, otherwise, we 2063 // need an available scale field. 2064 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2065 return false; 2066 2067 ExtAddrMode TestAddrMode = AddrMode; 2068 2069 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2070 // [A+B + A*7] -> [B+A*8]. 2071 TestAddrMode.Scale += Scale; 2072 TestAddrMode.ScaledReg = ScaleReg; 2073 2074 // If the new address isn't legal, bail out. 2075 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 2076 return false; 2077 2078 // It was legal, so commit it. 2079 AddrMode = TestAddrMode; 2080 2081 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2082 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2083 // X*Scale + C*Scale to addr mode. 2084 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2085 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2086 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2087 TestAddrMode.ScaledReg = AddLHS; 2088 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2089 2090 // If this addressing mode is legal, commit it and remember that we folded 2091 // this instruction. 2092 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 2093 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2094 AddrMode = TestAddrMode; 2095 return true; 2096 } 2097 } 2098 2099 // Otherwise, not (x+c)*scale, just return what we have. 2100 return true; 2101 } 2102 2103 /// MightBeFoldableInst - This is a little filter, which returns true if an 2104 /// addressing computation involving I might be folded into a load/store 2105 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2106 /// the set of instructions that MatchOperationAddr can. 2107 static bool MightBeFoldableInst(Instruction *I) { 2108 switch (I->getOpcode()) { 2109 case Instruction::BitCast: 2110 case Instruction::AddrSpaceCast: 2111 // Don't touch identity bitcasts. 2112 if (I->getType() == I->getOperand(0)->getType()) 2113 return false; 2114 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2115 case Instruction::PtrToInt: 2116 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2117 return true; 2118 case Instruction::IntToPtr: 2119 // We know the input is intptr_t, so this is foldable. 2120 return true; 2121 case Instruction::Add: 2122 return true; 2123 case Instruction::Mul: 2124 case Instruction::Shl: 2125 // Can only handle X*C and X << C. 2126 return isa<ConstantInt>(I->getOperand(1)); 2127 case Instruction::GetElementPtr: 2128 return true; 2129 default: 2130 return false; 2131 } 2132 } 2133 2134 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2135 /// \note \p Val is assumed to be the product of some type promotion. 2136 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2137 /// to be legal, as the non-promoted value would have had the same state. 2138 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 2139 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2140 if (!PromotedInst) 2141 return false; 2142 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2143 // If the ISDOpcode is undefined, it was undefined before the promotion. 2144 if (!ISDOpcode) 2145 return true; 2146 // Otherwise, check if the promoted instruction is legal or not. 2147 return TLI.isOperationLegalOrCustom( 2148 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 2149 } 2150 2151 /// \brief Hepler class to perform type promotion. 2152 class TypePromotionHelper { 2153 /// \brief Utility function to check whether or not a sign or zero extension 2154 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2155 /// either using the operands of \p Inst or promoting \p Inst. 2156 /// The type of the extension is defined by \p IsSExt. 2157 /// In other words, check if: 2158 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2159 /// #1 Promotion applies: 2160 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2161 /// #2 Operand reuses: 2162 /// ext opnd1 to ConsideredExtType. 2163 /// \p PromotedInsts maps the instructions to their type before promotion. 2164 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2165 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2166 2167 /// \brief Utility function to determine if \p OpIdx should be promoted when 2168 /// promoting \p Inst. 2169 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2170 if (isa<SelectInst>(Inst) && OpIdx == 0) 2171 return false; 2172 return true; 2173 } 2174 2175 /// \brief Utility function to promote the operand of \p Ext when this 2176 /// operand is a promotable trunc or sext or zext. 2177 /// \p PromotedInsts maps the instructions to their type before promotion. 2178 /// \p CreatedInstsCost[out] contains the cost of all instructions 2179 /// created to promote the operand of Ext. 2180 /// Newly added extensions are inserted in \p Exts. 2181 /// Newly added truncates are inserted in \p Truncs. 2182 /// Should never be called directly. 2183 /// \return The promoted value which is used instead of Ext. 2184 static Value *promoteOperandForTruncAndAnyExt( 2185 Instruction *Ext, TypePromotionTransaction &TPT, 2186 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2187 SmallVectorImpl<Instruction *> *Exts, 2188 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2189 2190 /// \brief Utility function to promote the operand of \p Ext when this 2191 /// operand is promotable and is not a supported trunc or sext. 2192 /// \p PromotedInsts maps the instructions to their type before promotion. 2193 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2194 /// created to promote the operand of Ext. 2195 /// Newly added extensions are inserted in \p Exts. 2196 /// Newly added truncates are inserted in \p Truncs. 2197 /// Should never be called directly. 2198 /// \return The promoted value which is used instead of Ext. 2199 static Value *promoteOperandForOther(Instruction *Ext, 2200 TypePromotionTransaction &TPT, 2201 InstrToOrigTy &PromotedInsts, 2202 unsigned &CreatedInstsCost, 2203 SmallVectorImpl<Instruction *> *Exts, 2204 SmallVectorImpl<Instruction *> *Truncs, 2205 const TargetLowering &TLI, bool IsSExt); 2206 2207 /// \see promoteOperandForOther. 2208 static Value *signExtendOperandForOther( 2209 Instruction *Ext, TypePromotionTransaction &TPT, 2210 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2211 SmallVectorImpl<Instruction *> *Exts, 2212 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2213 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2214 Exts, Truncs, TLI, true); 2215 } 2216 2217 /// \see promoteOperandForOther. 2218 static Value *zeroExtendOperandForOther( 2219 Instruction *Ext, TypePromotionTransaction &TPT, 2220 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2221 SmallVectorImpl<Instruction *> *Exts, 2222 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2223 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2224 Exts, Truncs, TLI, false); 2225 } 2226 2227 public: 2228 /// Type for the utility function that promotes the operand of Ext. 2229 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2230 InstrToOrigTy &PromotedInsts, 2231 unsigned &CreatedInstsCost, 2232 SmallVectorImpl<Instruction *> *Exts, 2233 SmallVectorImpl<Instruction *> *Truncs, 2234 const TargetLowering &TLI); 2235 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2236 /// action to promote the operand of \p Ext instead of using Ext. 2237 /// \return NULL if no promotable action is possible with the current 2238 /// sign extension. 2239 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2240 /// the others CodeGenPrepare optimizations. This information is important 2241 /// because we do not want to promote these instructions as CodeGenPrepare 2242 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2243 /// \p PromotedInsts maps the instructions to their type before promotion. 2244 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2245 const TargetLowering &TLI, 2246 const InstrToOrigTy &PromotedInsts); 2247 }; 2248 2249 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2250 Type *ConsideredExtType, 2251 const InstrToOrigTy &PromotedInsts, 2252 bool IsSExt) { 2253 // The promotion helper does not know how to deal with vector types yet. 2254 // To be able to fix that, we would need to fix the places where we 2255 // statically extend, e.g., constants and such. 2256 if (Inst->getType()->isVectorTy()) 2257 return false; 2258 2259 // We can always get through zext. 2260 if (isa<ZExtInst>(Inst)) 2261 return true; 2262 2263 // sext(sext) is ok too. 2264 if (IsSExt && isa<SExtInst>(Inst)) 2265 return true; 2266 2267 // We can get through binary operator, if it is legal. In other words, the 2268 // binary operator must have a nuw or nsw flag. 2269 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2270 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2271 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2272 (IsSExt && BinOp->hasNoSignedWrap()))) 2273 return true; 2274 2275 // Check if we can do the following simplification. 2276 // ext(trunc(opnd)) --> ext(opnd) 2277 if (!isa<TruncInst>(Inst)) 2278 return false; 2279 2280 Value *OpndVal = Inst->getOperand(0); 2281 // Check if we can use this operand in the extension. 2282 // If the type is larger than the result type of the extension, 2283 // we cannot. 2284 if (!OpndVal->getType()->isIntegerTy() || 2285 OpndVal->getType()->getIntegerBitWidth() > 2286 ConsideredExtType->getIntegerBitWidth()) 2287 return false; 2288 2289 // If the operand of the truncate is not an instruction, we will not have 2290 // any information on the dropped bits. 2291 // (Actually we could for constant but it is not worth the extra logic). 2292 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2293 if (!Opnd) 2294 return false; 2295 2296 // Check if the source of the type is narrow enough. 2297 // I.e., check that trunc just drops extended bits of the same kind of 2298 // the extension. 2299 // #1 get the type of the operand and check the kind of the extended bits. 2300 const Type *OpndType; 2301 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2302 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2303 OpndType = It->second.Ty; 2304 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2305 OpndType = Opnd->getOperand(0)->getType(); 2306 else 2307 return false; 2308 2309 // #2 check that the truncate just drop extended bits. 2310 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2311 return true; 2312 2313 return false; 2314 } 2315 2316 TypePromotionHelper::Action TypePromotionHelper::getAction( 2317 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2318 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2319 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2320 "Unexpected instruction type"); 2321 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2322 Type *ExtTy = Ext->getType(); 2323 bool IsSExt = isa<SExtInst>(Ext); 2324 // If the operand of the extension is not an instruction, we cannot 2325 // get through. 2326 // If it, check we can get through. 2327 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2328 return nullptr; 2329 2330 // Do not promote if the operand has been added by codegenprepare. 2331 // Otherwise, it means we are undoing an optimization that is likely to be 2332 // redone, thus causing potential infinite loop. 2333 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2334 return nullptr; 2335 2336 // SExt or Trunc instructions. 2337 // Return the related handler. 2338 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2339 isa<ZExtInst>(ExtOpnd)) 2340 return promoteOperandForTruncAndAnyExt; 2341 2342 // Regular instruction. 2343 // Abort early if we will have to insert non-free instructions. 2344 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2345 return nullptr; 2346 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2347 } 2348 2349 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2350 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2351 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2352 SmallVectorImpl<Instruction *> *Exts, 2353 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2354 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2355 // get through it and this method should not be called. 2356 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2357 Value *ExtVal = SExt; 2358 bool HasMergedNonFreeExt = false; 2359 if (isa<ZExtInst>(SExtOpnd)) { 2360 // Replace s|zext(zext(opnd)) 2361 // => zext(opnd). 2362 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2363 Value *ZExt = 2364 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2365 TPT.replaceAllUsesWith(SExt, ZExt); 2366 TPT.eraseInstruction(SExt); 2367 ExtVal = ZExt; 2368 } else { 2369 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2370 // => z|sext(opnd). 2371 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2372 } 2373 CreatedInstsCost = 0; 2374 2375 // Remove dead code. 2376 if (SExtOpnd->use_empty()) 2377 TPT.eraseInstruction(SExtOpnd); 2378 2379 // Check if the extension is still needed. 2380 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2381 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2382 if (ExtInst) { 2383 if (Exts) 2384 Exts->push_back(ExtInst); 2385 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2386 } 2387 return ExtVal; 2388 } 2389 2390 // At this point we have: ext ty opnd to ty. 2391 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2392 Value *NextVal = ExtInst->getOperand(0); 2393 TPT.eraseInstruction(ExtInst, NextVal); 2394 return NextVal; 2395 } 2396 2397 Value *TypePromotionHelper::promoteOperandForOther( 2398 Instruction *Ext, TypePromotionTransaction &TPT, 2399 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2400 SmallVectorImpl<Instruction *> *Exts, 2401 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2402 bool IsSExt) { 2403 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2404 // get through it and this method should not be called. 2405 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2406 CreatedInstsCost = 0; 2407 if (!ExtOpnd->hasOneUse()) { 2408 // ExtOpnd will be promoted. 2409 // All its uses, but Ext, will need to use a truncated value of the 2410 // promoted version. 2411 // Create the truncate now. 2412 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2413 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2414 ITrunc->removeFromParent(); 2415 // Insert it just after the definition. 2416 ITrunc->insertAfter(ExtOpnd); 2417 if (Truncs) 2418 Truncs->push_back(ITrunc); 2419 } 2420 2421 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2422 // Restore the operand of Ext (which has been replace by the previous call 2423 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2424 TPT.setOperand(Ext, 0, ExtOpnd); 2425 } 2426 2427 // Get through the Instruction: 2428 // 1. Update its type. 2429 // 2. Replace the uses of Ext by Inst. 2430 // 3. Extend each operand that needs to be extended. 2431 2432 // Remember the original type of the instruction before promotion. 2433 // This is useful to know that the high bits are sign extended bits. 2434 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2435 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2436 // Step #1. 2437 TPT.mutateType(ExtOpnd, Ext->getType()); 2438 // Step #2. 2439 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2440 // Step #3. 2441 Instruction *ExtForOpnd = Ext; 2442 2443 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2444 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2445 ++OpIdx) { 2446 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2447 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2448 !shouldExtOperand(ExtOpnd, OpIdx)) { 2449 DEBUG(dbgs() << "No need to propagate\n"); 2450 continue; 2451 } 2452 // Check if we can statically extend the operand. 2453 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2454 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2455 DEBUG(dbgs() << "Statically extend\n"); 2456 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2457 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2458 : Cst->getValue().zext(BitWidth); 2459 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2460 continue; 2461 } 2462 // UndefValue are typed, so we have to statically sign extend them. 2463 if (isa<UndefValue>(Opnd)) { 2464 DEBUG(dbgs() << "Statically extend\n"); 2465 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2466 continue; 2467 } 2468 2469 // Otherwise we have to explicity sign extend the operand. 2470 // Check if Ext was reused to extend an operand. 2471 if (!ExtForOpnd) { 2472 // If yes, create a new one. 2473 DEBUG(dbgs() << "More operands to ext\n"); 2474 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2475 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2476 if (!isa<Instruction>(ValForExtOpnd)) { 2477 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2478 continue; 2479 } 2480 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2481 } 2482 if (Exts) 2483 Exts->push_back(ExtForOpnd); 2484 TPT.setOperand(ExtForOpnd, 0, Opnd); 2485 2486 // Move the sign extension before the insertion point. 2487 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2488 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2489 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2490 // If more sext are required, new instructions will have to be created. 2491 ExtForOpnd = nullptr; 2492 } 2493 if (ExtForOpnd == Ext) { 2494 DEBUG(dbgs() << "Extension is useless now\n"); 2495 TPT.eraseInstruction(Ext); 2496 } 2497 return ExtOpnd; 2498 } 2499 2500 /// IsPromotionProfitable - Check whether or not promoting an instruction 2501 /// to a wider type was profitable. 2502 /// \p NewCost gives the cost of extension instructions created by the 2503 /// promotion. 2504 /// \p OldCost gives the cost of extension instructions before the promotion 2505 /// plus the number of instructions that have been 2506 /// matched in the addressing mode the promotion. 2507 /// \p PromotedOperand is the value that has been promoted. 2508 /// \return True if the promotion is profitable, false otherwise. 2509 bool AddressingModeMatcher::IsPromotionProfitable( 2510 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2511 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2512 // The cost of the new extensions is greater than the cost of the 2513 // old extension plus what we folded. 2514 // This is not profitable. 2515 if (NewCost > OldCost) 2516 return false; 2517 if (NewCost < OldCost) 2518 return true; 2519 // The promotion is neutral but it may help folding the sign extension in 2520 // loads for instance. 2521 // Check that we did not create an illegal instruction. 2522 return isPromotedInstructionLegal(TLI, PromotedOperand); 2523 } 2524 2525 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2526 /// fold the operation into the addressing mode. If so, update the addressing 2527 /// mode and return true, otherwise return false without modifying AddrMode. 2528 /// If \p MovedAway is not NULL, it contains the information of whether or 2529 /// not AddrInst has to be folded into the addressing mode on success. 2530 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2531 /// because it has been moved away. 2532 /// Thus AddrInst must not be added in the matched instructions. 2533 /// This state can happen when AddrInst is a sext, since it may be moved away. 2534 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2535 /// not be referenced anymore. 2536 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2537 unsigned Depth, 2538 bool *MovedAway) { 2539 // Avoid exponential behavior on extremely deep expression trees. 2540 if (Depth >= 5) return false; 2541 2542 // By default, all matched instructions stay in place. 2543 if (MovedAway) 2544 *MovedAway = false; 2545 2546 switch (Opcode) { 2547 case Instruction::PtrToInt: 2548 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2549 return MatchAddr(AddrInst->getOperand(0), Depth); 2550 case Instruction::IntToPtr: 2551 // This inttoptr is a no-op if the integer type is pointer sized. 2552 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2553 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2554 return MatchAddr(AddrInst->getOperand(0), Depth); 2555 return false; 2556 case Instruction::BitCast: 2557 case Instruction::AddrSpaceCast: 2558 // BitCast is always a noop, and we can handle it as long as it is 2559 // int->int or pointer->pointer (we don't want int<->fp or something). 2560 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2561 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2562 // Don't touch identity bitcasts. These were probably put here by LSR, 2563 // and we don't want to mess around with them. Assume it knows what it 2564 // is doing. 2565 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2566 return MatchAddr(AddrInst->getOperand(0), Depth); 2567 return false; 2568 case Instruction::Add: { 2569 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2570 ExtAddrMode BackupAddrMode = AddrMode; 2571 unsigned OldSize = AddrModeInsts.size(); 2572 // Start a transaction at this point. 2573 // The LHS may match but not the RHS. 2574 // Therefore, we need a higher level restoration point to undo partially 2575 // matched operation. 2576 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2577 TPT.getRestorationPoint(); 2578 2579 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2580 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2581 return true; 2582 2583 // Restore the old addr mode info. 2584 AddrMode = BackupAddrMode; 2585 AddrModeInsts.resize(OldSize); 2586 TPT.rollback(LastKnownGood); 2587 2588 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2589 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2590 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2591 return true; 2592 2593 // Otherwise we definitely can't merge the ADD in. 2594 AddrMode = BackupAddrMode; 2595 AddrModeInsts.resize(OldSize); 2596 TPT.rollback(LastKnownGood); 2597 break; 2598 } 2599 //case Instruction::Or: 2600 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2601 //break; 2602 case Instruction::Mul: 2603 case Instruction::Shl: { 2604 // Can only handle X*C and X << C. 2605 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2606 if (!RHS) 2607 return false; 2608 int64_t Scale = RHS->getSExtValue(); 2609 if (Opcode == Instruction::Shl) 2610 Scale = 1LL << Scale; 2611 2612 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2613 } 2614 case Instruction::GetElementPtr: { 2615 // Scan the GEP. We check it if it contains constant offsets and at most 2616 // one variable offset. 2617 int VariableOperand = -1; 2618 unsigned VariableScale = 0; 2619 2620 int64_t ConstantOffset = 0; 2621 const DataLayout *TD = TLI.getDataLayout(); 2622 gep_type_iterator GTI = gep_type_begin(AddrInst); 2623 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2624 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2625 const StructLayout *SL = TD->getStructLayout(STy); 2626 unsigned Idx = 2627 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2628 ConstantOffset += SL->getElementOffset(Idx); 2629 } else { 2630 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2631 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2632 ConstantOffset += CI->getSExtValue()*TypeSize; 2633 } else if (TypeSize) { // Scales of zero don't do anything. 2634 // We only allow one variable index at the moment. 2635 if (VariableOperand != -1) 2636 return false; 2637 2638 // Remember the variable index. 2639 VariableOperand = i; 2640 VariableScale = TypeSize; 2641 } 2642 } 2643 } 2644 2645 // A common case is for the GEP to only do a constant offset. In this case, 2646 // just add it to the disp field and check validity. 2647 if (VariableOperand == -1) { 2648 AddrMode.BaseOffs += ConstantOffset; 2649 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2650 // Check to see if we can fold the base pointer in too. 2651 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2652 return true; 2653 } 2654 AddrMode.BaseOffs -= ConstantOffset; 2655 return false; 2656 } 2657 2658 // Save the valid addressing mode in case we can't match. 2659 ExtAddrMode BackupAddrMode = AddrMode; 2660 unsigned OldSize = AddrModeInsts.size(); 2661 2662 // See if the scale and offset amount is valid for this target. 2663 AddrMode.BaseOffs += ConstantOffset; 2664 2665 // Match the base operand of the GEP. 2666 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2667 // If it couldn't be matched, just stuff the value in a register. 2668 if (AddrMode.HasBaseReg) { 2669 AddrMode = BackupAddrMode; 2670 AddrModeInsts.resize(OldSize); 2671 return false; 2672 } 2673 AddrMode.HasBaseReg = true; 2674 AddrMode.BaseReg = AddrInst->getOperand(0); 2675 } 2676 2677 // Match the remaining variable portion of the GEP. 2678 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2679 Depth)) { 2680 // If it couldn't be matched, try stuffing the base into a register 2681 // instead of matching it, and retrying the match of the scale. 2682 AddrMode = BackupAddrMode; 2683 AddrModeInsts.resize(OldSize); 2684 if (AddrMode.HasBaseReg) 2685 return false; 2686 AddrMode.HasBaseReg = true; 2687 AddrMode.BaseReg = AddrInst->getOperand(0); 2688 AddrMode.BaseOffs += ConstantOffset; 2689 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2690 VariableScale, Depth)) { 2691 // If even that didn't work, bail. 2692 AddrMode = BackupAddrMode; 2693 AddrModeInsts.resize(OldSize); 2694 return false; 2695 } 2696 } 2697 2698 return true; 2699 } 2700 case Instruction::SExt: 2701 case Instruction::ZExt: { 2702 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2703 if (!Ext) 2704 return false; 2705 2706 // Try to move this ext out of the way of the addressing mode. 2707 // Ask for a method for doing so. 2708 TypePromotionHelper::Action TPH = 2709 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2710 if (!TPH) 2711 return false; 2712 2713 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2714 TPT.getRestorationPoint(); 2715 unsigned CreatedInstsCost = 0; 2716 unsigned ExtCost = !TLI.isExtFree(Ext); 2717 Value *PromotedOperand = 2718 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2719 // SExt has been moved away. 2720 // Thus either it will be rematched later in the recursive calls or it is 2721 // gone. Anyway, we must not fold it into the addressing mode at this point. 2722 // E.g., 2723 // op = add opnd, 1 2724 // idx = ext op 2725 // addr = gep base, idx 2726 // is now: 2727 // promotedOpnd = ext opnd <- no match here 2728 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2729 // addr = gep base, op <- match 2730 if (MovedAway) 2731 *MovedAway = true; 2732 2733 assert(PromotedOperand && 2734 "TypePromotionHelper should have filtered out those cases"); 2735 2736 ExtAddrMode BackupAddrMode = AddrMode; 2737 unsigned OldSize = AddrModeInsts.size(); 2738 2739 if (!MatchAddr(PromotedOperand, Depth) || 2740 // The total of the new cost is equals to the cost of the created 2741 // instructions. 2742 // The total of the old cost is equals to the cost of the extension plus 2743 // what we have saved in the addressing mode. 2744 !IsPromotionProfitable(CreatedInstsCost, 2745 ExtCost + (AddrModeInsts.size() - OldSize), 2746 PromotedOperand)) { 2747 AddrMode = BackupAddrMode; 2748 AddrModeInsts.resize(OldSize); 2749 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2750 TPT.rollback(LastKnownGood); 2751 return false; 2752 } 2753 return true; 2754 } 2755 } 2756 return false; 2757 } 2758 2759 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2760 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2761 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2762 /// or intptr_t for the target. 2763 /// 2764 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2765 // Start a transaction at this point that we will rollback if the matching 2766 // fails. 2767 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2768 TPT.getRestorationPoint(); 2769 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2770 // Fold in immediates if legal for the target. 2771 AddrMode.BaseOffs += CI->getSExtValue(); 2772 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2773 return true; 2774 AddrMode.BaseOffs -= CI->getSExtValue(); 2775 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2776 // If this is a global variable, try to fold it into the addressing mode. 2777 if (!AddrMode.BaseGV) { 2778 AddrMode.BaseGV = GV; 2779 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2780 return true; 2781 AddrMode.BaseGV = nullptr; 2782 } 2783 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2784 ExtAddrMode BackupAddrMode = AddrMode; 2785 unsigned OldSize = AddrModeInsts.size(); 2786 2787 // Check to see if it is possible to fold this operation. 2788 bool MovedAway = false; 2789 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2790 // This instruction may have been move away. If so, there is nothing 2791 // to check here. 2792 if (MovedAway) 2793 return true; 2794 // Okay, it's possible to fold this. Check to see if it is actually 2795 // *profitable* to do so. We use a simple cost model to avoid increasing 2796 // register pressure too much. 2797 if (I->hasOneUse() || 2798 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2799 AddrModeInsts.push_back(I); 2800 return true; 2801 } 2802 2803 // It isn't profitable to do this, roll back. 2804 //cerr << "NOT FOLDING: " << *I; 2805 AddrMode = BackupAddrMode; 2806 AddrModeInsts.resize(OldSize); 2807 TPT.rollback(LastKnownGood); 2808 } 2809 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2810 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2811 return true; 2812 TPT.rollback(LastKnownGood); 2813 } else if (isa<ConstantPointerNull>(Addr)) { 2814 // Null pointer gets folded without affecting the addressing mode. 2815 return true; 2816 } 2817 2818 // Worse case, the target should support [reg] addressing modes. :) 2819 if (!AddrMode.HasBaseReg) { 2820 AddrMode.HasBaseReg = true; 2821 AddrMode.BaseReg = Addr; 2822 // Still check for legality in case the target supports [imm] but not [i+r]. 2823 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2824 return true; 2825 AddrMode.HasBaseReg = false; 2826 AddrMode.BaseReg = nullptr; 2827 } 2828 2829 // If the base register is already taken, see if we can do [r+r]. 2830 if (AddrMode.Scale == 0) { 2831 AddrMode.Scale = 1; 2832 AddrMode.ScaledReg = Addr; 2833 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2834 return true; 2835 AddrMode.Scale = 0; 2836 AddrMode.ScaledReg = nullptr; 2837 } 2838 // Couldn't match. 2839 TPT.rollback(LastKnownGood); 2840 return false; 2841 } 2842 2843 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2844 /// inline asm call are due to memory operands. If so, return true, otherwise 2845 /// return false. 2846 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2847 const TargetMachine &TM) { 2848 const Function *F = CI->getParent()->getParent(); 2849 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 2850 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 2851 TargetLowering::AsmOperandInfoVector TargetConstraints = 2852 TLI->ParseConstraints(TRI, ImmutableCallSite(CI)); 2853 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2854 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2855 2856 // Compute the constraint code and ConstraintType to use. 2857 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2858 2859 // If this asm operand is our Value*, and if it isn't an indirect memory 2860 // operand, we can't fold it! 2861 if (OpInfo.CallOperandVal == OpVal && 2862 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2863 !OpInfo.isIndirect)) 2864 return false; 2865 } 2866 2867 return true; 2868 } 2869 2870 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2871 /// memory use. If we find an obviously non-foldable instruction, return true. 2872 /// Add the ultimately found memory instructions to MemoryUses. 2873 static bool FindAllMemoryUses( 2874 Instruction *I, 2875 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 2876 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 2877 // If we already considered this instruction, we're done. 2878 if (!ConsideredInsts.insert(I).second) 2879 return false; 2880 2881 // If this is an obviously unfoldable instruction, bail out. 2882 if (!MightBeFoldableInst(I)) 2883 return true; 2884 2885 // Loop over all the uses, recursively processing them. 2886 for (Use &U : I->uses()) { 2887 Instruction *UserI = cast<Instruction>(U.getUser()); 2888 2889 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2890 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2891 continue; 2892 } 2893 2894 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2895 unsigned opNo = U.getOperandNo(); 2896 if (opNo == 0) return true; // Storing addr, not into addr. 2897 MemoryUses.push_back(std::make_pair(SI, opNo)); 2898 continue; 2899 } 2900 2901 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2902 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2903 if (!IA) return true; 2904 2905 // If this is a memory operand, we're cool, otherwise bail out. 2906 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 2907 return true; 2908 continue; 2909 } 2910 2911 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 2912 return true; 2913 } 2914 2915 return false; 2916 } 2917 2918 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2919 /// the use site that we're folding it into. If so, there is no cost to 2920 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2921 /// that we know are live at the instruction already. 2922 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2923 Value *KnownLive2) { 2924 // If Val is either of the known-live values, we know it is live! 2925 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2926 return true; 2927 2928 // All values other than instructions and arguments (e.g. constants) are live. 2929 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2930 2931 // If Val is a constant sized alloca in the entry block, it is live, this is 2932 // true because it is just a reference to the stack/frame pointer, which is 2933 // live for the whole function. 2934 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2935 if (AI->isStaticAlloca()) 2936 return true; 2937 2938 // Check to see if this value is already used in the memory instruction's 2939 // block. If so, it's already live into the block at the very least, so we 2940 // can reasonably fold it. 2941 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2942 } 2943 2944 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2945 /// mode of the machine to fold the specified instruction into a load or store 2946 /// that ultimately uses it. However, the specified instruction has multiple 2947 /// uses. Given this, it may actually increase register pressure to fold it 2948 /// into the load. For example, consider this code: 2949 /// 2950 /// X = ... 2951 /// Y = X+1 2952 /// use(Y) -> nonload/store 2953 /// Z = Y+1 2954 /// load Z 2955 /// 2956 /// In this case, Y has multiple uses, and can be folded into the load of Z 2957 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2958 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2959 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2960 /// number of computations either. 2961 /// 2962 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2963 /// X was live across 'load Z' for other reasons, we actually *would* want to 2964 /// fold the addressing mode in the Z case. This would make Y die earlier. 2965 bool AddressingModeMatcher:: 2966 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2967 ExtAddrMode &AMAfter) { 2968 if (IgnoreProfitability) return true; 2969 2970 // AMBefore is the addressing mode before this instruction was folded into it, 2971 // and AMAfter is the addressing mode after the instruction was folded. Get 2972 // the set of registers referenced by AMAfter and subtract out those 2973 // referenced by AMBefore: this is the set of values which folding in this 2974 // address extends the lifetime of. 2975 // 2976 // Note that there are only two potential values being referenced here, 2977 // BaseReg and ScaleReg (global addresses are always available, as are any 2978 // folded immediates). 2979 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2980 2981 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2982 // lifetime wasn't extended by adding this instruction. 2983 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2984 BaseReg = nullptr; 2985 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2986 ScaledReg = nullptr; 2987 2988 // If folding this instruction (and it's subexprs) didn't extend any live 2989 // ranges, we're ok with it. 2990 if (!BaseReg && !ScaledReg) 2991 return true; 2992 2993 // If all uses of this instruction are ultimately load/store/inlineasm's, 2994 // check to see if their addressing modes will include this instruction. If 2995 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2996 // uses. 2997 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2998 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2999 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3000 return false; // Has a non-memory, non-foldable use! 3001 3002 // Now that we know that all uses of this instruction are part of a chain of 3003 // computation involving only operations that could theoretically be folded 3004 // into a memory use, loop over each of these uses and see if they could 3005 // *actually* fold the instruction. 3006 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3007 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3008 Instruction *User = MemoryUses[i].first; 3009 unsigned OpNo = MemoryUses[i].second; 3010 3011 // Get the access type of this use. If the use isn't a pointer, we don't 3012 // know what it accesses. 3013 Value *Address = User->getOperand(OpNo); 3014 if (!Address->getType()->isPointerTy()) 3015 return false; 3016 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 3017 3018 // Do a match against the root of this address, ignoring profitability. This 3019 // will tell us if the addressing mode for the memory operation will 3020 // *actually* cover the shared instruction. 3021 ExtAddrMode Result; 3022 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3023 TPT.getRestorationPoint(); 3024 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, 3025 MemoryInst, Result, InsertedTruncs, 3026 PromotedInsts, TPT); 3027 Matcher.IgnoreProfitability = true; 3028 bool Success = Matcher.MatchAddr(Address, 0); 3029 (void)Success; assert(Success && "Couldn't select *anything*?"); 3030 3031 // The match was to check the profitability, the changes made are not 3032 // part of the original matcher. Therefore, they should be dropped 3033 // otherwise the original matcher will not present the right state. 3034 TPT.rollback(LastKnownGood); 3035 3036 // If the match didn't cover I, then it won't be shared by it. 3037 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3038 I) == MatchedAddrModeInsts.end()) 3039 return false; 3040 3041 MatchedAddrModeInsts.clear(); 3042 } 3043 3044 return true; 3045 } 3046 3047 } // end anonymous namespace 3048 3049 /// IsNonLocalValue - Return true if the specified values are defined in a 3050 /// different basic block than BB. 3051 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3052 if (Instruction *I = dyn_cast<Instruction>(V)) 3053 return I->getParent() != BB; 3054 return false; 3055 } 3056 3057 /// OptimizeMemoryInst - Load and Store Instructions often have 3058 /// addressing modes that can do significant amounts of computation. As such, 3059 /// instruction selection will try to get the load or store to do as much 3060 /// computation as possible for the program. The problem is that isel can only 3061 /// see within a single block. As such, we sink as much legal addressing mode 3062 /// stuff into the block as possible. 3063 /// 3064 /// This method is used to optimize both load/store and inline asms with memory 3065 /// operands. 3066 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3067 Type *AccessTy) { 3068 Value *Repl = Addr; 3069 3070 // Try to collapse single-value PHI nodes. This is necessary to undo 3071 // unprofitable PRE transformations. 3072 SmallVector<Value*, 8> worklist; 3073 SmallPtrSet<Value*, 16> Visited; 3074 worklist.push_back(Addr); 3075 3076 // Use a worklist to iteratively look through PHI nodes, and ensure that 3077 // the addressing mode obtained from the non-PHI roots of the graph 3078 // are equivalent. 3079 Value *Consensus = nullptr; 3080 unsigned NumUsesConsensus = 0; 3081 bool IsNumUsesConsensusValid = false; 3082 SmallVector<Instruction*, 16> AddrModeInsts; 3083 ExtAddrMode AddrMode; 3084 TypePromotionTransaction TPT; 3085 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3086 TPT.getRestorationPoint(); 3087 while (!worklist.empty()) { 3088 Value *V = worklist.back(); 3089 worklist.pop_back(); 3090 3091 // Break use-def graph loops. 3092 if (!Visited.insert(V).second) { 3093 Consensus = nullptr; 3094 break; 3095 } 3096 3097 // For a PHI node, push all of its incoming values. 3098 if (PHINode *P = dyn_cast<PHINode>(V)) { 3099 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 3100 worklist.push_back(P->getIncomingValue(i)); 3101 continue; 3102 } 3103 3104 // For non-PHIs, determine the addressing mode being computed. 3105 SmallVector<Instruction*, 16> NewAddrModeInsts; 3106 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3107 V, AccessTy, MemoryInst, NewAddrModeInsts, *TM, InsertedTruncsSet, 3108 PromotedInsts, TPT); 3109 3110 // This check is broken into two cases with very similar code to avoid using 3111 // getNumUses() as much as possible. Some values have a lot of uses, so 3112 // calling getNumUses() unconditionally caused a significant compile-time 3113 // regression. 3114 if (!Consensus) { 3115 Consensus = V; 3116 AddrMode = NewAddrMode; 3117 AddrModeInsts = NewAddrModeInsts; 3118 continue; 3119 } else if (NewAddrMode == AddrMode) { 3120 if (!IsNumUsesConsensusValid) { 3121 NumUsesConsensus = Consensus->getNumUses(); 3122 IsNumUsesConsensusValid = true; 3123 } 3124 3125 // Ensure that the obtained addressing mode is equivalent to that obtained 3126 // for all other roots of the PHI traversal. Also, when choosing one 3127 // such root as representative, select the one with the most uses in order 3128 // to keep the cost modeling heuristics in AddressingModeMatcher 3129 // applicable. 3130 unsigned NumUses = V->getNumUses(); 3131 if (NumUses > NumUsesConsensus) { 3132 Consensus = V; 3133 NumUsesConsensus = NumUses; 3134 AddrModeInsts = NewAddrModeInsts; 3135 } 3136 continue; 3137 } 3138 3139 Consensus = nullptr; 3140 break; 3141 } 3142 3143 // If the addressing mode couldn't be determined, or if multiple different 3144 // ones were determined, bail out now. 3145 if (!Consensus) { 3146 TPT.rollback(LastKnownGood); 3147 return false; 3148 } 3149 TPT.commit(); 3150 3151 // Check to see if any of the instructions supersumed by this addr mode are 3152 // non-local to I's BB. 3153 bool AnyNonLocal = false; 3154 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3155 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3156 AnyNonLocal = true; 3157 break; 3158 } 3159 } 3160 3161 // If all the instructions matched are already in this BB, don't do anything. 3162 if (!AnyNonLocal) { 3163 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3164 return false; 3165 } 3166 3167 // Insert this computation right after this user. Since our caller is 3168 // scanning from the top of the BB to the bottom, reuse of the expr are 3169 // guaranteed to happen later. 3170 IRBuilder<> Builder(MemoryInst); 3171 3172 // Now that we determined the addressing expression we want to use and know 3173 // that we have to sink it into this block. Check to see if we have already 3174 // done this for some other load/store instr in this block. If so, reuse the 3175 // computation. 3176 Value *&SunkAddr = SunkAddrs[Addr]; 3177 if (SunkAddr) { 3178 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3179 << *MemoryInst << "\n"); 3180 if (SunkAddr->getType() != Addr->getType()) 3181 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3182 } else if (AddrSinkUsingGEPs || 3183 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3184 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3185 ->useAA())) { 3186 // By default, we use the GEP-based method when AA is used later. This 3187 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3188 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3189 << *MemoryInst << "\n"); 3190 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3191 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3192 3193 // First, find the pointer. 3194 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3195 ResultPtr = AddrMode.BaseReg; 3196 AddrMode.BaseReg = nullptr; 3197 } 3198 3199 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3200 // We can't add more than one pointer together, nor can we scale a 3201 // pointer (both of which seem meaningless). 3202 if (ResultPtr || AddrMode.Scale != 1) 3203 return false; 3204 3205 ResultPtr = AddrMode.ScaledReg; 3206 AddrMode.Scale = 0; 3207 } 3208 3209 if (AddrMode.BaseGV) { 3210 if (ResultPtr) 3211 return false; 3212 3213 ResultPtr = AddrMode.BaseGV; 3214 } 3215 3216 // If the real base value actually came from an inttoptr, then the matcher 3217 // will look through it and provide only the integer value. In that case, 3218 // use it here. 3219 if (!ResultPtr && AddrMode.BaseReg) { 3220 ResultPtr = 3221 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3222 AddrMode.BaseReg = nullptr; 3223 } else if (!ResultPtr && AddrMode.Scale == 1) { 3224 ResultPtr = 3225 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3226 AddrMode.Scale = 0; 3227 } 3228 3229 if (!ResultPtr && 3230 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3231 SunkAddr = Constant::getNullValue(Addr->getType()); 3232 } else if (!ResultPtr) { 3233 return false; 3234 } else { 3235 Type *I8PtrTy = 3236 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3237 Type *I8Ty = Builder.getInt8Ty(); 3238 3239 // Start with the base register. Do this first so that subsequent address 3240 // matching finds it last, which will prevent it from trying to match it 3241 // as the scaled value in case it happens to be a mul. That would be 3242 // problematic if we've sunk a different mul for the scale, because then 3243 // we'd end up sinking both muls. 3244 if (AddrMode.BaseReg) { 3245 Value *V = AddrMode.BaseReg; 3246 if (V->getType() != IntPtrTy) 3247 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3248 3249 ResultIndex = V; 3250 } 3251 3252 // Add the scale value. 3253 if (AddrMode.Scale) { 3254 Value *V = AddrMode.ScaledReg; 3255 if (V->getType() == IntPtrTy) { 3256 // done. 3257 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3258 cast<IntegerType>(V->getType())->getBitWidth()) { 3259 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3260 } else { 3261 // It is only safe to sign extend the BaseReg if we know that the math 3262 // required to create it did not overflow before we extend it. Since 3263 // the original IR value was tossed in favor of a constant back when 3264 // the AddrMode was created we need to bail out gracefully if widths 3265 // do not match instead of extending it. 3266 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3267 if (I && (ResultIndex != AddrMode.BaseReg)) 3268 I->eraseFromParent(); 3269 return false; 3270 } 3271 3272 if (AddrMode.Scale != 1) 3273 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3274 "sunkaddr"); 3275 if (ResultIndex) 3276 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3277 else 3278 ResultIndex = V; 3279 } 3280 3281 // Add in the Base Offset if present. 3282 if (AddrMode.BaseOffs) { 3283 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3284 if (ResultIndex) { 3285 // We need to add this separately from the scale above to help with 3286 // SDAG consecutive load/store merging. 3287 if (ResultPtr->getType() != I8PtrTy) 3288 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3289 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3290 } 3291 3292 ResultIndex = V; 3293 } 3294 3295 if (!ResultIndex) { 3296 SunkAddr = ResultPtr; 3297 } else { 3298 if (ResultPtr->getType() != I8PtrTy) 3299 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3300 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3301 } 3302 3303 if (SunkAddr->getType() != Addr->getType()) 3304 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3305 } 3306 } else { 3307 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3308 << *MemoryInst << "\n"); 3309 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3310 Value *Result = nullptr; 3311 3312 // Start with the base register. Do this first so that subsequent address 3313 // matching finds it last, which will prevent it from trying to match it 3314 // as the scaled value in case it happens to be a mul. That would be 3315 // problematic if we've sunk a different mul for the scale, because then 3316 // we'd end up sinking both muls. 3317 if (AddrMode.BaseReg) { 3318 Value *V = AddrMode.BaseReg; 3319 if (V->getType()->isPointerTy()) 3320 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3321 if (V->getType() != IntPtrTy) 3322 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3323 Result = V; 3324 } 3325 3326 // Add the scale value. 3327 if (AddrMode.Scale) { 3328 Value *V = AddrMode.ScaledReg; 3329 if (V->getType() == IntPtrTy) { 3330 // done. 3331 } else if (V->getType()->isPointerTy()) { 3332 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3333 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3334 cast<IntegerType>(V->getType())->getBitWidth()) { 3335 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3336 } else { 3337 // It is only safe to sign extend the BaseReg if we know that the math 3338 // required to create it did not overflow before we extend it. Since 3339 // the original IR value was tossed in favor of a constant back when 3340 // the AddrMode was created we need to bail out gracefully if widths 3341 // do not match instead of extending it. 3342 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3343 if (I && (Result != AddrMode.BaseReg)) 3344 I->eraseFromParent(); 3345 return false; 3346 } 3347 if (AddrMode.Scale != 1) 3348 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3349 "sunkaddr"); 3350 if (Result) 3351 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3352 else 3353 Result = V; 3354 } 3355 3356 // Add in the BaseGV if present. 3357 if (AddrMode.BaseGV) { 3358 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3359 if (Result) 3360 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3361 else 3362 Result = V; 3363 } 3364 3365 // Add in the Base Offset if present. 3366 if (AddrMode.BaseOffs) { 3367 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3368 if (Result) 3369 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3370 else 3371 Result = V; 3372 } 3373 3374 if (!Result) 3375 SunkAddr = Constant::getNullValue(Addr->getType()); 3376 else 3377 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3378 } 3379 3380 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3381 3382 // If we have no uses, recursively delete the value and all dead instructions 3383 // using it. 3384 if (Repl->use_empty()) { 3385 // This can cause recursive deletion, which can invalidate our iterator. 3386 // Use a WeakVH to hold onto it in case this happens. 3387 WeakVH IterHandle(CurInstIterator); 3388 BasicBlock *BB = CurInstIterator->getParent(); 3389 3390 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3391 3392 if (IterHandle != CurInstIterator) { 3393 // If the iterator instruction was recursively deleted, start over at the 3394 // start of the block. 3395 CurInstIterator = BB->begin(); 3396 SunkAddrs.clear(); 3397 } 3398 } 3399 ++NumMemoryInsts; 3400 return true; 3401 } 3402 3403 /// OptimizeInlineAsmInst - If there are any memory operands, use 3404 /// OptimizeMemoryInst to sink their address computing into the block when 3405 /// possible / profitable. 3406 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3407 bool MadeChange = false; 3408 3409 const TargetRegisterInfo *TRI = 3410 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3411 TargetLowering::AsmOperandInfoVector 3412 TargetConstraints = TLI->ParseConstraints(TRI, CS); 3413 unsigned ArgNo = 0; 3414 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3415 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3416 3417 // Compute the constraint code and ConstraintType to use. 3418 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3419 3420 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3421 OpInfo.isIndirect) { 3422 Value *OpVal = CS->getArgOperand(ArgNo++); 3423 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3424 } else if (OpInfo.Type == InlineAsm::isInput) 3425 ArgNo++; 3426 } 3427 3428 return MadeChange; 3429 } 3430 3431 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3432 /// sign extensions. 3433 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3434 assert(!Inst->use_empty() && "Input must have at least one use"); 3435 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3436 bool IsSExt = isa<SExtInst>(FirstUser); 3437 Type *ExtTy = FirstUser->getType(); 3438 for (const User *U : Inst->users()) { 3439 const Instruction *UI = cast<Instruction>(U); 3440 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3441 return false; 3442 Type *CurTy = UI->getType(); 3443 // Same input and output types: Same instruction after CSE. 3444 if (CurTy == ExtTy) 3445 continue; 3446 3447 // If IsSExt is true, we are in this situation: 3448 // a = Inst 3449 // b = sext ty1 a to ty2 3450 // c = sext ty1 a to ty3 3451 // Assuming ty2 is shorter than ty3, this could be turned into: 3452 // a = Inst 3453 // b = sext ty1 a to ty2 3454 // c = sext ty2 b to ty3 3455 // However, the last sext is not free. 3456 if (IsSExt) 3457 return false; 3458 3459 // This is a ZExt, maybe this is free to extend from one type to another. 3460 // In that case, we would not account for a different use. 3461 Type *NarrowTy; 3462 Type *LargeTy; 3463 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3464 CurTy->getScalarType()->getIntegerBitWidth()) { 3465 NarrowTy = CurTy; 3466 LargeTy = ExtTy; 3467 } else { 3468 NarrowTy = ExtTy; 3469 LargeTy = CurTy; 3470 } 3471 3472 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3473 return false; 3474 } 3475 // All uses are the same or can be derived from one another for free. 3476 return true; 3477 } 3478 3479 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3480 /// load instruction. 3481 /// If an ext(load) can be formed, it is returned via \p LI for the load 3482 /// and \p Inst for the extension. 3483 /// Otherwise LI == nullptr and Inst == nullptr. 3484 /// When some promotion happened, \p TPT contains the proper state to 3485 /// revert them. 3486 /// 3487 /// \return true when promoting was necessary to expose the ext(load) 3488 /// opportunity, false otherwise. 3489 /// 3490 /// Example: 3491 /// \code 3492 /// %ld = load i32* %addr 3493 /// %add = add nuw i32 %ld, 4 3494 /// %zext = zext i32 %add to i64 3495 /// \endcode 3496 /// => 3497 /// \code 3498 /// %ld = load i32* %addr 3499 /// %zext = zext i32 %ld to i64 3500 /// %add = add nuw i64 %zext, 4 3501 /// \encode 3502 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3503 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3504 LoadInst *&LI, Instruction *&Inst, 3505 const SmallVectorImpl<Instruction *> &Exts, 3506 unsigned CreatedInstsCost = 0) { 3507 // Iterate over all the extensions to see if one form an ext(load). 3508 for (auto I : Exts) { 3509 // Check if we directly have ext(load). 3510 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3511 Inst = I; 3512 // No promotion happened here. 3513 return false; 3514 } 3515 // Check whether or not we want to do any promotion. 3516 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3517 continue; 3518 // Get the action to perform the promotion. 3519 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3520 I, InsertedTruncsSet, *TLI, PromotedInsts); 3521 // Check if we can promote. 3522 if (!TPH) 3523 continue; 3524 // Save the current state. 3525 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3526 TPT.getRestorationPoint(); 3527 SmallVector<Instruction *, 4> NewExts; 3528 unsigned NewCreatedInstsCost = 0; 3529 unsigned ExtCost = !TLI->isExtFree(I); 3530 // Promote. 3531 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3532 &NewExts, nullptr, *TLI); 3533 assert(PromotedVal && 3534 "TypePromotionHelper should have filtered out those cases"); 3535 3536 // We would be able to merge only one extension in a load. 3537 // Therefore, if we have more than 1 new extension we heuristically 3538 // cut this search path, because it means we degrade the code quality. 3539 // With exactly 2, the transformation is neutral, because we will merge 3540 // one extension but leave one. However, we optimistically keep going, 3541 // because the new extension may be removed too. 3542 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3543 TotalCreatedInstsCost -= ExtCost; 3544 if (!StressExtLdPromotion && 3545 (TotalCreatedInstsCost > 1 || 3546 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3547 // The promotion is not profitable, rollback to the previous state. 3548 TPT.rollback(LastKnownGood); 3549 continue; 3550 } 3551 // The promotion is profitable. 3552 // Check if it exposes an ext(load). 3553 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3554 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3555 // If we have created a new extension, i.e., now we have two 3556 // extensions. We must make sure one of them is merged with 3557 // the load, otherwise we may degrade the code quality. 3558 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3559 // Promotion happened. 3560 return true; 3561 // If this does not help to expose an ext(load) then, rollback. 3562 TPT.rollback(LastKnownGood); 3563 } 3564 // None of the extension can form an ext(load). 3565 LI = nullptr; 3566 Inst = nullptr; 3567 return false; 3568 } 3569 3570 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3571 /// basic block as the load, unless conditions are unfavorable. This allows 3572 /// SelectionDAG to fold the extend into the load. 3573 /// \p I[in/out] the extension may be modified during the process if some 3574 /// promotions apply. 3575 /// 3576 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3577 // Try to promote a chain of computation if it allows to form 3578 // an extended load. 3579 TypePromotionTransaction TPT; 3580 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3581 TPT.getRestorationPoint(); 3582 SmallVector<Instruction *, 1> Exts; 3583 Exts.push_back(I); 3584 // Look for a load being extended. 3585 LoadInst *LI = nullptr; 3586 Instruction *OldExt = I; 3587 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3588 if (!LI || !I) { 3589 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3590 "the code must remain the same"); 3591 I = OldExt; 3592 return false; 3593 } 3594 3595 // If they're already in the same block, there's nothing to do. 3596 // Make the cheap checks first if we did not promote. 3597 // If we promoted, we need to check if it is indeed profitable. 3598 if (!HasPromoted && LI->getParent() == I->getParent()) 3599 return false; 3600 3601 EVT VT = TLI->getValueType(I->getType()); 3602 EVT LoadVT = TLI->getValueType(LI->getType()); 3603 3604 // If the load has other users and the truncate is not free, this probably 3605 // isn't worthwhile. 3606 if (!LI->hasOneUse() && TLI && 3607 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3608 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3609 I = OldExt; 3610 TPT.rollback(LastKnownGood); 3611 return false; 3612 } 3613 3614 // Check whether the target supports casts folded into loads. 3615 unsigned LType; 3616 if (isa<ZExtInst>(I)) 3617 LType = ISD::ZEXTLOAD; 3618 else { 3619 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3620 LType = ISD::SEXTLOAD; 3621 } 3622 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3623 I = OldExt; 3624 TPT.rollback(LastKnownGood); 3625 return false; 3626 } 3627 3628 // Move the extend into the same block as the load, so that SelectionDAG 3629 // can fold it. 3630 TPT.commit(); 3631 I->removeFromParent(); 3632 I->insertAfter(LI); 3633 ++NumExtsMoved; 3634 return true; 3635 } 3636 3637 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3638 BasicBlock *DefBB = I->getParent(); 3639 3640 // If the result of a {s|z}ext and its source are both live out, rewrite all 3641 // other uses of the source with result of extension. 3642 Value *Src = I->getOperand(0); 3643 if (Src->hasOneUse()) 3644 return false; 3645 3646 // Only do this xform if truncating is free. 3647 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3648 return false; 3649 3650 // Only safe to perform the optimization if the source is also defined in 3651 // this block. 3652 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3653 return false; 3654 3655 bool DefIsLiveOut = false; 3656 for (User *U : I->users()) { 3657 Instruction *UI = cast<Instruction>(U); 3658 3659 // Figure out which BB this ext is used in. 3660 BasicBlock *UserBB = UI->getParent(); 3661 if (UserBB == DefBB) continue; 3662 DefIsLiveOut = true; 3663 break; 3664 } 3665 if (!DefIsLiveOut) 3666 return false; 3667 3668 // Make sure none of the uses are PHI nodes. 3669 for (User *U : Src->users()) { 3670 Instruction *UI = cast<Instruction>(U); 3671 BasicBlock *UserBB = UI->getParent(); 3672 if (UserBB == DefBB) continue; 3673 // Be conservative. We don't want this xform to end up introducing 3674 // reloads just before load / store instructions. 3675 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3676 return false; 3677 } 3678 3679 // InsertedTruncs - Only insert one trunc in each block once. 3680 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3681 3682 bool MadeChange = false; 3683 for (Use &U : Src->uses()) { 3684 Instruction *User = cast<Instruction>(U.getUser()); 3685 3686 // Figure out which BB this ext is used in. 3687 BasicBlock *UserBB = User->getParent(); 3688 if (UserBB == DefBB) continue; 3689 3690 // Both src and def are live in this block. Rewrite the use. 3691 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3692 3693 if (!InsertedTrunc) { 3694 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3695 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3696 InsertedTruncsSet.insert(InsertedTrunc); 3697 } 3698 3699 // Replace a use of the {s|z}ext source with a use of the result. 3700 U = InsertedTrunc; 3701 ++NumExtUses; 3702 MadeChange = true; 3703 } 3704 3705 return MadeChange; 3706 } 3707 3708 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3709 /// turned into an explicit branch. 3710 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3711 // FIXME: This should use the same heuristics as IfConversion to determine 3712 // whether a select is better represented as a branch. This requires that 3713 // branch probability metadata is preserved for the select, which is not the 3714 // case currently. 3715 3716 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3717 3718 // If the branch is predicted right, an out of order CPU can avoid blocking on 3719 // the compare. Emit cmovs on compares with a memory operand as branches to 3720 // avoid stalls on the load from memory. If the compare has more than one use 3721 // there's probably another cmov or setcc around so it's not worth emitting a 3722 // branch. 3723 if (!Cmp) 3724 return false; 3725 3726 Value *CmpOp0 = Cmp->getOperand(0); 3727 Value *CmpOp1 = Cmp->getOperand(1); 3728 3729 // We check that the memory operand has one use to avoid uses of the loaded 3730 // value directly after the compare, making branches unprofitable. 3731 return Cmp->hasOneUse() && 3732 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3733 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3734 } 3735 3736 3737 /// If we have a SelectInst that will likely profit from branch prediction, 3738 /// turn it into a branch. 3739 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3740 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3741 3742 // Can we convert the 'select' to CF ? 3743 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3744 return false; 3745 3746 TargetLowering::SelectSupportKind SelectKind; 3747 if (VectorCond) 3748 SelectKind = TargetLowering::VectorMaskSelect; 3749 else if (SI->getType()->isVectorTy()) 3750 SelectKind = TargetLowering::ScalarCondVectorVal; 3751 else 3752 SelectKind = TargetLowering::ScalarValSelect; 3753 3754 // Do we have efficient codegen support for this kind of 'selects' ? 3755 if (TLI->isSelectSupported(SelectKind)) { 3756 // We have efficient codegen support for the select instruction. 3757 // Check if it is profitable to keep this 'select'. 3758 if (!TLI->isPredictableSelectExpensive() || 3759 !isFormingBranchFromSelectProfitable(SI)) 3760 return false; 3761 } 3762 3763 ModifiedDT = true; 3764 3765 // First, we split the block containing the select into 2 blocks. 3766 BasicBlock *StartBlock = SI->getParent(); 3767 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3768 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3769 3770 // Create a new block serving as the landing pad for the branch. 3771 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3772 NextBlock->getParent(), NextBlock); 3773 3774 // Move the unconditional branch from the block with the select in it into our 3775 // landing pad block. 3776 StartBlock->getTerminator()->eraseFromParent(); 3777 BranchInst::Create(NextBlock, SmallBlock); 3778 3779 // Insert the real conditional branch based on the original condition. 3780 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3781 3782 // The select itself is replaced with a PHI Node. 3783 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3784 PN->takeName(SI); 3785 PN->addIncoming(SI->getTrueValue(), StartBlock); 3786 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3787 SI->replaceAllUsesWith(PN); 3788 SI->eraseFromParent(); 3789 3790 // Instruct OptimizeBlock to skip to the next block. 3791 CurInstIterator = StartBlock->end(); 3792 ++NumSelectsExpanded; 3793 return true; 3794 } 3795 3796 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3797 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3798 int SplatElem = -1; 3799 for (unsigned i = 0; i < Mask.size(); ++i) { 3800 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3801 return false; 3802 SplatElem = Mask[i]; 3803 } 3804 3805 return true; 3806 } 3807 3808 /// Some targets have expensive vector shifts if the lanes aren't all the same 3809 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3810 /// it's often worth sinking a shufflevector splat down to its use so that 3811 /// codegen can spot all lanes are identical. 3812 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3813 BasicBlock *DefBB = SVI->getParent(); 3814 3815 // Only do this xform if variable vector shifts are particularly expensive. 3816 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3817 return false; 3818 3819 // We only expect better codegen by sinking a shuffle if we can recognise a 3820 // constant splat. 3821 if (!isBroadcastShuffle(SVI)) 3822 return false; 3823 3824 // InsertedShuffles - Only insert a shuffle in each block once. 3825 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3826 3827 bool MadeChange = false; 3828 for (User *U : SVI->users()) { 3829 Instruction *UI = cast<Instruction>(U); 3830 3831 // Figure out which BB this ext is used in. 3832 BasicBlock *UserBB = UI->getParent(); 3833 if (UserBB == DefBB) continue; 3834 3835 // For now only apply this when the splat is used by a shift instruction. 3836 if (!UI->isShift()) continue; 3837 3838 // Everything checks out, sink the shuffle if the user's block doesn't 3839 // already have a copy. 3840 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3841 3842 if (!InsertedShuffle) { 3843 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3844 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3845 SVI->getOperand(1), 3846 SVI->getOperand(2), "", InsertPt); 3847 } 3848 3849 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3850 MadeChange = true; 3851 } 3852 3853 // If we removed all uses, nuke the shuffle. 3854 if (SVI->use_empty()) { 3855 SVI->eraseFromParent(); 3856 MadeChange = true; 3857 } 3858 3859 return MadeChange; 3860 } 3861 3862 namespace { 3863 /// \brief Helper class to promote a scalar operation to a vector one. 3864 /// This class is used to move downward extractelement transition. 3865 /// E.g., 3866 /// a = vector_op <2 x i32> 3867 /// b = extractelement <2 x i32> a, i32 0 3868 /// c = scalar_op b 3869 /// store c 3870 /// 3871 /// => 3872 /// a = vector_op <2 x i32> 3873 /// c = vector_op a (equivalent to scalar_op on the related lane) 3874 /// * d = extractelement <2 x i32> c, i32 0 3875 /// * store d 3876 /// Assuming both extractelement and store can be combine, we get rid of the 3877 /// transition. 3878 class VectorPromoteHelper { 3879 /// Used to perform some checks on the legality of vector operations. 3880 const TargetLowering &TLI; 3881 3882 /// Used to estimated the cost of the promoted chain. 3883 const TargetTransformInfo &TTI; 3884 3885 /// The transition being moved downwards. 3886 Instruction *Transition; 3887 /// The sequence of instructions to be promoted. 3888 SmallVector<Instruction *, 4> InstsToBePromoted; 3889 /// Cost of combining a store and an extract. 3890 unsigned StoreExtractCombineCost; 3891 /// Instruction that will be combined with the transition. 3892 Instruction *CombineInst; 3893 3894 /// \brief The instruction that represents the current end of the transition. 3895 /// Since we are faking the promotion until we reach the end of the chain 3896 /// of computation, we need a way to get the current end of the transition. 3897 Instruction *getEndOfTransition() const { 3898 if (InstsToBePromoted.empty()) 3899 return Transition; 3900 return InstsToBePromoted.back(); 3901 } 3902 3903 /// \brief Return the index of the original value in the transition. 3904 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3905 /// c, is at index 0. 3906 unsigned getTransitionOriginalValueIdx() const { 3907 assert(isa<ExtractElementInst>(Transition) && 3908 "Other kind of transitions are not supported yet"); 3909 return 0; 3910 } 3911 3912 /// \brief Return the index of the index in the transition. 3913 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3914 /// is at index 1. 3915 unsigned getTransitionIdx() const { 3916 assert(isa<ExtractElementInst>(Transition) && 3917 "Other kind of transitions are not supported yet"); 3918 return 1; 3919 } 3920 3921 /// \brief Get the type of the transition. 3922 /// This is the type of the original value. 3923 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3924 /// transition is <2 x i32>. 3925 Type *getTransitionType() const { 3926 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3927 } 3928 3929 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3930 /// I.e., we have the following sequence: 3931 /// Def = Transition <ty1> a to <ty2> 3932 /// b = ToBePromoted <ty2> Def, ... 3933 /// => 3934 /// b = ToBePromoted <ty1> a, ... 3935 /// Def = Transition <ty1> ToBePromoted to <ty2> 3936 void promoteImpl(Instruction *ToBePromoted); 3937 3938 /// \brief Check whether or not it is profitable to promote all the 3939 /// instructions enqueued to be promoted. 3940 bool isProfitableToPromote() { 3941 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3942 unsigned Index = isa<ConstantInt>(ValIdx) 3943 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3944 : -1; 3945 Type *PromotedType = getTransitionType(); 3946 3947 StoreInst *ST = cast<StoreInst>(CombineInst); 3948 unsigned AS = ST->getPointerAddressSpace(); 3949 unsigned Align = ST->getAlignment(); 3950 // Check if this store is supported. 3951 if (!TLI.allowsMisalignedMemoryAccesses( 3952 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3953 // If this is not supported, there is no way we can combine 3954 // the extract with the store. 3955 return false; 3956 } 3957 3958 // The scalar chain of computation has to pay for the transition 3959 // scalar to vector. 3960 // The vector chain has to account for the combining cost. 3961 uint64_t ScalarCost = 3962 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3963 uint64_t VectorCost = StoreExtractCombineCost; 3964 for (const auto &Inst : InstsToBePromoted) { 3965 // Compute the cost. 3966 // By construction, all instructions being promoted are arithmetic ones. 3967 // Moreover, one argument is a constant that can be viewed as a splat 3968 // constant. 3969 Value *Arg0 = Inst->getOperand(0); 3970 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3971 isa<ConstantFP>(Arg0); 3972 TargetTransformInfo::OperandValueKind Arg0OVK = 3973 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3974 : TargetTransformInfo::OK_AnyValue; 3975 TargetTransformInfo::OperandValueKind Arg1OVK = 3976 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3977 : TargetTransformInfo::OK_AnyValue; 3978 ScalarCost += TTI.getArithmeticInstrCost( 3979 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3980 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3981 Arg0OVK, Arg1OVK); 3982 } 3983 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3984 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3985 return ScalarCost > VectorCost; 3986 } 3987 3988 /// \brief Generate a constant vector with \p Val with the same 3989 /// number of elements as the transition. 3990 /// \p UseSplat defines whether or not \p Val should be replicated 3991 /// accross the whole vector. 3992 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3993 /// otherwise we generate a vector with as many undef as possible: 3994 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3995 /// used at the index of the extract. 3996 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3997 unsigned ExtractIdx = UINT_MAX; 3998 if (!UseSplat) { 3999 // If we cannot determine where the constant must be, we have to 4000 // use a splat constant. 4001 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4002 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4003 ExtractIdx = CstVal->getSExtValue(); 4004 else 4005 UseSplat = true; 4006 } 4007 4008 unsigned End = getTransitionType()->getVectorNumElements(); 4009 if (UseSplat) 4010 return ConstantVector::getSplat(End, Val); 4011 4012 SmallVector<Constant *, 4> ConstVec; 4013 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4014 for (unsigned Idx = 0; Idx != End; ++Idx) { 4015 if (Idx == ExtractIdx) 4016 ConstVec.push_back(Val); 4017 else 4018 ConstVec.push_back(UndefVal); 4019 } 4020 return ConstantVector::get(ConstVec); 4021 } 4022 4023 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4024 /// in \p Use can trigger undefined behavior. 4025 static bool canCauseUndefinedBehavior(const Instruction *Use, 4026 unsigned OperandIdx) { 4027 // This is not safe to introduce undef when the operand is on 4028 // the right hand side of a division-like instruction. 4029 if (OperandIdx != 1) 4030 return false; 4031 switch (Use->getOpcode()) { 4032 default: 4033 return false; 4034 case Instruction::SDiv: 4035 case Instruction::UDiv: 4036 case Instruction::SRem: 4037 case Instruction::URem: 4038 return true; 4039 case Instruction::FDiv: 4040 case Instruction::FRem: 4041 return !Use->hasNoNaNs(); 4042 } 4043 llvm_unreachable(nullptr); 4044 } 4045 4046 public: 4047 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 4048 Instruction *Transition, unsigned CombineCost) 4049 : TLI(TLI), TTI(TTI), Transition(Transition), 4050 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4051 assert(Transition && "Do not know how to promote null"); 4052 } 4053 4054 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4055 bool canPromote(const Instruction *ToBePromoted) const { 4056 // We could support CastInst too. 4057 return isa<BinaryOperator>(ToBePromoted); 4058 } 4059 4060 /// \brief Check if it is profitable to promote \p ToBePromoted 4061 /// by moving downward the transition through. 4062 bool shouldPromote(const Instruction *ToBePromoted) const { 4063 // Promote only if all the operands can be statically expanded. 4064 // Indeed, we do not want to introduce any new kind of transitions. 4065 for (const Use &U : ToBePromoted->operands()) { 4066 const Value *Val = U.get(); 4067 if (Val == getEndOfTransition()) { 4068 // If the use is a division and the transition is on the rhs, 4069 // we cannot promote the operation, otherwise we may create a 4070 // division by zero. 4071 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4072 return false; 4073 continue; 4074 } 4075 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4076 !isa<ConstantFP>(Val)) 4077 return false; 4078 } 4079 // Check that the resulting operation is legal. 4080 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4081 if (!ISDOpcode) 4082 return false; 4083 return StressStoreExtract || 4084 TLI.isOperationLegalOrCustom( 4085 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 4086 } 4087 4088 /// \brief Check whether or not \p Use can be combined 4089 /// with the transition. 4090 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4091 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4092 4093 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4094 void enqueueForPromotion(Instruction *ToBePromoted) { 4095 InstsToBePromoted.push_back(ToBePromoted); 4096 } 4097 4098 /// \brief Set the instruction that will be combined with the transition. 4099 void recordCombineInstruction(Instruction *ToBeCombined) { 4100 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4101 CombineInst = ToBeCombined; 4102 } 4103 4104 /// \brief Promote all the instructions enqueued for promotion if it is 4105 /// is profitable. 4106 /// \return True if the promotion happened, false otherwise. 4107 bool promote() { 4108 // Check if there is something to promote. 4109 // Right now, if we do not have anything to combine with, 4110 // we assume the promotion is not profitable. 4111 if (InstsToBePromoted.empty() || !CombineInst) 4112 return false; 4113 4114 // Check cost. 4115 if (!StressStoreExtract && !isProfitableToPromote()) 4116 return false; 4117 4118 // Promote. 4119 for (auto &ToBePromoted : InstsToBePromoted) 4120 promoteImpl(ToBePromoted); 4121 InstsToBePromoted.clear(); 4122 return true; 4123 } 4124 }; 4125 } // End of anonymous namespace. 4126 4127 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4128 // At this point, we know that all the operands of ToBePromoted but Def 4129 // can be statically promoted. 4130 // For Def, we need to use its parameter in ToBePromoted: 4131 // b = ToBePromoted ty1 a 4132 // Def = Transition ty1 b to ty2 4133 // Move the transition down. 4134 // 1. Replace all uses of the promoted operation by the transition. 4135 // = ... b => = ... Def. 4136 assert(ToBePromoted->getType() == Transition->getType() && 4137 "The type of the result of the transition does not match " 4138 "the final type"); 4139 ToBePromoted->replaceAllUsesWith(Transition); 4140 // 2. Update the type of the uses. 4141 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4142 Type *TransitionTy = getTransitionType(); 4143 ToBePromoted->mutateType(TransitionTy); 4144 // 3. Update all the operands of the promoted operation with promoted 4145 // operands. 4146 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4147 for (Use &U : ToBePromoted->operands()) { 4148 Value *Val = U.get(); 4149 Value *NewVal = nullptr; 4150 if (Val == Transition) 4151 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4152 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4153 isa<ConstantFP>(Val)) { 4154 // Use a splat constant if it is not safe to use undef. 4155 NewVal = getConstantVector( 4156 cast<Constant>(Val), 4157 isa<UndefValue>(Val) || 4158 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4159 } else 4160 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4161 "this?"); 4162 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4163 } 4164 Transition->removeFromParent(); 4165 Transition->insertAfter(ToBePromoted); 4166 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4167 } 4168 4169 /// Some targets can do store(extractelement) with one instruction. 4170 /// Try to push the extractelement towards the stores when the target 4171 /// has this feature and this is profitable. 4172 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4173 unsigned CombineCost = UINT_MAX; 4174 if (DisableStoreExtract || !TLI || 4175 (!StressStoreExtract && 4176 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4177 Inst->getOperand(1), CombineCost))) 4178 return false; 4179 4180 // At this point we know that Inst is a vector to scalar transition. 4181 // Try to move it down the def-use chain, until: 4182 // - We can combine the transition with its single use 4183 // => we got rid of the transition. 4184 // - We escape the current basic block 4185 // => we would need to check that we are moving it at a cheaper place and 4186 // we do not do that for now. 4187 BasicBlock *Parent = Inst->getParent(); 4188 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4189 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4190 // If the transition has more than one use, assume this is not going to be 4191 // beneficial. 4192 while (Inst->hasOneUse()) { 4193 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4194 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4195 4196 if (ToBePromoted->getParent() != Parent) { 4197 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4198 << ToBePromoted->getParent()->getName() 4199 << ") than the transition (" << Parent->getName() << ").\n"); 4200 return false; 4201 } 4202 4203 if (VPH.canCombine(ToBePromoted)) { 4204 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4205 << "will be combined with: " << *ToBePromoted << '\n'); 4206 VPH.recordCombineInstruction(ToBePromoted); 4207 bool Changed = VPH.promote(); 4208 NumStoreExtractExposed += Changed; 4209 return Changed; 4210 } 4211 4212 DEBUG(dbgs() << "Try promoting.\n"); 4213 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4214 return false; 4215 4216 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4217 4218 VPH.enqueueForPromotion(ToBePromoted); 4219 Inst = ToBePromoted; 4220 } 4221 return false; 4222 } 4223 4224 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4225 if (PHINode *P = dyn_cast<PHINode>(I)) { 4226 // It is possible for very late stage optimizations (such as SimplifyCFG) 4227 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4228 // trivial PHI, go ahead and zap it here. 4229 const DataLayout &DL = I->getModule()->getDataLayout(); 4230 if (Value *V = SimplifyInstruction(P, DL, TLInfo, nullptr)) { 4231 P->replaceAllUsesWith(V); 4232 P->eraseFromParent(); 4233 ++NumPHIsElim; 4234 return true; 4235 } 4236 return false; 4237 } 4238 4239 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4240 // If the source of the cast is a constant, then this should have 4241 // already been constant folded. The only reason NOT to constant fold 4242 // it is if something (e.g. LSR) was careful to place the constant 4243 // evaluation in a block other than then one that uses it (e.g. to hoist 4244 // the address of globals out of a loop). If this is the case, we don't 4245 // want to forward-subst the cast. 4246 if (isa<Constant>(CI->getOperand(0))) 4247 return false; 4248 4249 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4250 return true; 4251 4252 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4253 /// Sink a zext or sext into its user blocks if the target type doesn't 4254 /// fit in one register 4255 if (TLI && TLI->getTypeAction(CI->getContext(), 4256 TLI->getValueType(CI->getType())) == 4257 TargetLowering::TypeExpandInteger) { 4258 return SinkCast(CI); 4259 } else { 4260 bool MadeChange = MoveExtToFormExtLoad(I); 4261 return MadeChange | OptimizeExtUses(I); 4262 } 4263 } 4264 return false; 4265 } 4266 4267 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4268 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4269 return OptimizeCmpExpression(CI); 4270 4271 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4272 if (TLI) 4273 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4274 return false; 4275 } 4276 4277 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4278 if (TLI) 4279 return OptimizeMemoryInst(I, SI->getOperand(1), 4280 SI->getOperand(0)->getType()); 4281 return false; 4282 } 4283 4284 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4285 4286 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4287 BinOp->getOpcode() == Instruction::LShr)) { 4288 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4289 if (TLI && CI && TLI->hasExtractBitsInsn()) 4290 return OptimizeExtractBits(BinOp, CI, *TLI); 4291 4292 return false; 4293 } 4294 4295 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4296 if (GEPI->hasAllZeroIndices()) { 4297 /// The GEP operand must be a pointer, so must its result -> BitCast 4298 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4299 GEPI->getName(), GEPI); 4300 GEPI->replaceAllUsesWith(NC); 4301 GEPI->eraseFromParent(); 4302 ++NumGEPsElim; 4303 OptimizeInst(NC, ModifiedDT); 4304 return true; 4305 } 4306 return false; 4307 } 4308 4309 if (CallInst *CI = dyn_cast<CallInst>(I)) 4310 return OptimizeCallInst(CI, ModifiedDT); 4311 4312 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4313 return OptimizeSelectInst(SI); 4314 4315 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4316 return OptimizeShuffleVectorInst(SVI); 4317 4318 if (isa<ExtractElementInst>(I)) 4319 return OptimizeExtractElementInst(I); 4320 4321 return false; 4322 } 4323 4324 // In this pass we look for GEP and cast instructions that are used 4325 // across basic blocks and rewrite them to improve basic-block-at-a-time 4326 // selection. 4327 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4328 SunkAddrs.clear(); 4329 bool MadeChange = false; 4330 4331 CurInstIterator = BB.begin(); 4332 while (CurInstIterator != BB.end()) { 4333 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4334 if (ModifiedDT) 4335 return true; 4336 } 4337 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4338 4339 return MadeChange; 4340 } 4341 4342 // llvm.dbg.value is far away from the value then iSel may not be able 4343 // handle it properly. iSel will drop llvm.dbg.value if it can not 4344 // find a node corresponding to the value. 4345 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4346 bool MadeChange = false; 4347 for (BasicBlock &BB : F) { 4348 Instruction *PrevNonDbgInst = nullptr; 4349 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4350 Instruction *Insn = BI++; 4351 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4352 // Leave dbg.values that refer to an alloca alone. These 4353 // instrinsics describe the address of a variable (= the alloca) 4354 // being taken. They should not be moved next to the alloca 4355 // (and to the beginning of the scope), but rather stay close to 4356 // where said address is used. 4357 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4358 PrevNonDbgInst = Insn; 4359 continue; 4360 } 4361 4362 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4363 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4364 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4365 DVI->removeFromParent(); 4366 if (isa<PHINode>(VI)) 4367 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4368 else 4369 DVI->insertAfter(VI); 4370 MadeChange = true; 4371 ++NumDbgValueMoved; 4372 } 4373 } 4374 } 4375 return MadeChange; 4376 } 4377 4378 // If there is a sequence that branches based on comparing a single bit 4379 // against zero that can be combined into a single instruction, and the 4380 // target supports folding these into a single instruction, sink the 4381 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4382 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4383 // searched for. 4384 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4385 if (!EnableAndCmpSinking) 4386 return false; 4387 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4388 return false; 4389 bool MadeChange = false; 4390 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4391 BasicBlock *BB = I++; 4392 4393 // Does this BB end with the following? 4394 // %andVal = and %val, #single-bit-set 4395 // %icmpVal = icmp %andResult, 0 4396 // br i1 %cmpVal label %dest1, label %dest2" 4397 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4398 if (!Brcc || !Brcc->isConditional()) 4399 continue; 4400 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4401 if (!Cmp || Cmp->getParent() != BB) 4402 continue; 4403 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4404 if (!Zero || !Zero->isZero()) 4405 continue; 4406 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4407 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4408 continue; 4409 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4410 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4411 continue; 4412 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4413 4414 // Push the "and; icmp" for any users that are conditional branches. 4415 // Since there can only be one branch use per BB, we don't need to keep 4416 // track of which BBs we insert into. 4417 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4418 UI != E; ) { 4419 Use &TheUse = *UI; 4420 // Find brcc use. 4421 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4422 ++UI; 4423 if (!BrccUser || !BrccUser->isConditional()) 4424 continue; 4425 BasicBlock *UserBB = BrccUser->getParent(); 4426 if (UserBB == BB) continue; 4427 DEBUG(dbgs() << "found Brcc use\n"); 4428 4429 // Sink the "and; icmp" to use. 4430 MadeChange = true; 4431 BinaryOperator *NewAnd = 4432 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4433 BrccUser); 4434 CmpInst *NewCmp = 4435 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4436 "", BrccUser); 4437 TheUse = NewCmp; 4438 ++NumAndCmpsMoved; 4439 DEBUG(BrccUser->getParent()->dump()); 4440 } 4441 } 4442 return MadeChange; 4443 } 4444 4445 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4446 /// success, or returns false if no or invalid metadata was found. 4447 static bool extractBranchMetadata(BranchInst *BI, 4448 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4449 assert(BI->isConditional() && 4450 "Looking for probabilities on unconditional branch?"); 4451 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4452 if (!ProfileData || ProfileData->getNumOperands() != 3) 4453 return false; 4454 4455 const auto *CITrue = 4456 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4457 const auto *CIFalse = 4458 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4459 if (!CITrue || !CIFalse) 4460 return false; 4461 4462 ProbTrue = CITrue->getValue().getZExtValue(); 4463 ProbFalse = CIFalse->getValue().getZExtValue(); 4464 4465 return true; 4466 } 4467 4468 /// \brief Scale down both weights to fit into uint32_t. 4469 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4470 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4471 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4472 NewTrue = NewTrue / Scale; 4473 NewFalse = NewFalse / Scale; 4474 } 4475 4476 /// \brief Some targets prefer to split a conditional branch like: 4477 /// \code 4478 /// %0 = icmp ne i32 %a, 0 4479 /// %1 = icmp ne i32 %b, 0 4480 /// %or.cond = or i1 %0, %1 4481 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4482 /// \endcode 4483 /// into multiple branch instructions like: 4484 /// \code 4485 /// bb1: 4486 /// %0 = icmp ne i32 %a, 0 4487 /// br i1 %0, label %TrueBB, label %bb2 4488 /// bb2: 4489 /// %1 = icmp ne i32 %b, 0 4490 /// br i1 %1, label %TrueBB, label %FalseBB 4491 /// \endcode 4492 /// This usually allows instruction selection to do even further optimizations 4493 /// and combine the compare with the branch instruction. Currently this is 4494 /// applied for targets which have "cheap" jump instructions. 4495 /// 4496 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4497 /// 4498 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4499 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4500 return false; 4501 4502 bool MadeChange = false; 4503 for (auto &BB : F) { 4504 // Does this BB end with the following? 4505 // %cond1 = icmp|fcmp|binary instruction ... 4506 // %cond2 = icmp|fcmp|binary instruction ... 4507 // %cond.or = or|and i1 %cond1, cond2 4508 // br i1 %cond.or label %dest1, label %dest2" 4509 BinaryOperator *LogicOp; 4510 BasicBlock *TBB, *FBB; 4511 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4512 continue; 4513 4514 unsigned Opc; 4515 Value *Cond1, *Cond2; 4516 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4517 m_OneUse(m_Value(Cond2))))) 4518 Opc = Instruction::And; 4519 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4520 m_OneUse(m_Value(Cond2))))) 4521 Opc = Instruction::Or; 4522 else 4523 continue; 4524 4525 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4526 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4527 continue; 4528 4529 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4530 4531 // Create a new BB. 4532 auto *InsertBefore = std::next(Function::iterator(BB)) 4533 .getNodePtrUnchecked(); 4534 auto TmpBB = BasicBlock::Create(BB.getContext(), 4535 BB.getName() + ".cond.split", 4536 BB.getParent(), InsertBefore); 4537 4538 // Update original basic block by using the first condition directly by the 4539 // branch instruction and removing the no longer needed and/or instruction. 4540 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4541 Br1->setCondition(Cond1); 4542 LogicOp->eraseFromParent(); 4543 4544 // Depending on the conditon we have to either replace the true or the false 4545 // successor of the original branch instruction. 4546 if (Opc == Instruction::And) 4547 Br1->setSuccessor(0, TmpBB); 4548 else 4549 Br1->setSuccessor(1, TmpBB); 4550 4551 // Fill in the new basic block. 4552 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4553 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4554 I->removeFromParent(); 4555 I->insertBefore(Br2); 4556 } 4557 4558 // Update PHI nodes in both successors. The original BB needs to be 4559 // replaced in one succesor's PHI nodes, because the branch comes now from 4560 // the newly generated BB (NewBB). In the other successor we need to add one 4561 // incoming edge to the PHI nodes, because both branch instructions target 4562 // now the same successor. Depending on the original branch condition 4563 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4564 // we perfrom the correct update for the PHI nodes. 4565 // This doesn't change the successor order of the just created branch 4566 // instruction (or any other instruction). 4567 if (Opc == Instruction::Or) 4568 std::swap(TBB, FBB); 4569 4570 // Replace the old BB with the new BB. 4571 for (auto &I : *TBB) { 4572 PHINode *PN = dyn_cast<PHINode>(&I); 4573 if (!PN) 4574 break; 4575 int i; 4576 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4577 PN->setIncomingBlock(i, TmpBB); 4578 } 4579 4580 // Add another incoming edge form the new BB. 4581 for (auto &I : *FBB) { 4582 PHINode *PN = dyn_cast<PHINode>(&I); 4583 if (!PN) 4584 break; 4585 auto *Val = PN->getIncomingValueForBlock(&BB); 4586 PN->addIncoming(Val, TmpBB); 4587 } 4588 4589 // Update the branch weights (from SelectionDAGBuilder:: 4590 // FindMergedConditions). 4591 if (Opc == Instruction::Or) { 4592 // Codegen X | Y as: 4593 // BB1: 4594 // jmp_if_X TBB 4595 // jmp TmpBB 4596 // TmpBB: 4597 // jmp_if_Y TBB 4598 // jmp FBB 4599 // 4600 4601 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4602 // The requirement is that 4603 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4604 // = TrueProb for orignal BB. 4605 // Assuming the orignal weights are A and B, one choice is to set BB1's 4606 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4607 // assumes that 4608 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4609 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4610 // TmpBB, but the math is more complicated. 4611 uint64_t TrueWeight, FalseWeight; 4612 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4613 uint64_t NewTrueWeight = TrueWeight; 4614 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4615 scaleWeights(NewTrueWeight, NewFalseWeight); 4616 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4617 .createBranchWeights(TrueWeight, FalseWeight)); 4618 4619 NewTrueWeight = TrueWeight; 4620 NewFalseWeight = 2 * FalseWeight; 4621 scaleWeights(NewTrueWeight, NewFalseWeight); 4622 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4623 .createBranchWeights(TrueWeight, FalseWeight)); 4624 } 4625 } else { 4626 // Codegen X & Y as: 4627 // BB1: 4628 // jmp_if_X TmpBB 4629 // jmp FBB 4630 // TmpBB: 4631 // jmp_if_Y TBB 4632 // jmp FBB 4633 // 4634 // This requires creation of TmpBB after CurBB. 4635 4636 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4637 // The requirement is that 4638 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4639 // = FalseProb for orignal BB. 4640 // Assuming the orignal weights are A and B, one choice is to set BB1's 4641 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4642 // assumes that 4643 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4644 uint64_t TrueWeight, FalseWeight; 4645 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4646 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4647 uint64_t NewFalseWeight = FalseWeight; 4648 scaleWeights(NewTrueWeight, NewFalseWeight); 4649 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4650 .createBranchWeights(TrueWeight, FalseWeight)); 4651 4652 NewTrueWeight = 2 * TrueWeight; 4653 NewFalseWeight = FalseWeight; 4654 scaleWeights(NewTrueWeight, NewFalseWeight); 4655 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4656 .createBranchWeights(TrueWeight, FalseWeight)); 4657 } 4658 } 4659 4660 // Note: No point in getting fancy here, since the DT info is never 4661 // available to CodeGenPrepare. 4662 ModifiedDT = true; 4663 4664 MadeChange = true; 4665 4666 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4667 TmpBB->dump()); 4668 } 4669 return MadeChange; 4670 } 4671