1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetPassConfig>(); 331 AU.addRequired<TargetTransformInfoWrapperPass>(); 332 AU.addRequired<LoopInfoWrapperPass>(); 333 } 334 335 private: 336 template <typename F> 337 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 338 // Substituting can cause recursive simplifications, which can invalidate 339 // our iterator. Use a WeakTrackingVH to hold onto it in case this 340 // happens. 341 Value *CurValue = &*CurInstIterator; 342 WeakTrackingVH IterHandle(CurValue); 343 344 f(); 345 346 // If the iterator instruction was recursively deleted, start over at the 347 // start of the block. 348 if (IterHandle != CurValue) { 349 CurInstIterator = BB->begin(); 350 SunkAddrs.clear(); 351 } 352 } 353 354 // Get the DominatorTree, building if necessary. 355 DominatorTree &getDT(Function &F) { 356 if (!DT) 357 DT = std::make_unique<DominatorTree>(F); 358 return *DT; 359 } 360 361 bool eliminateFallThrough(Function &F); 362 bool eliminateMostlyEmptyBlocks(Function &F); 363 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 364 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 365 void eliminateMostlyEmptyBlock(BasicBlock *BB); 366 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 367 bool isPreheader); 368 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 369 bool optimizeInst(Instruction *I, bool &ModifiedDT); 370 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 371 Type *AccessTy, unsigned AddrSpace); 372 bool optimizeInlineAsmInst(CallInst *CS); 373 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 374 bool optimizeExt(Instruction *&I); 375 bool optimizeExtUses(Instruction *I); 376 bool optimizeLoadExt(LoadInst *Load); 377 bool optimizeShiftInst(BinaryOperator *BO); 378 bool optimizeSelectInst(SelectInst *SI); 379 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 380 bool optimizeSwitchInst(SwitchInst *SI); 381 bool optimizeExtractElementInst(Instruction *Inst); 382 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 383 bool fixupDbgValue(Instruction *I); 384 bool placeDbgValues(Function &F); 385 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 386 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 387 bool tryToPromoteExts(TypePromotionTransaction &TPT, 388 const SmallVectorImpl<Instruction *> &Exts, 389 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 390 unsigned CreatedInstsCost = 0); 391 bool mergeSExts(Function &F); 392 bool splitLargeGEPOffsets(); 393 bool performAddressTypePromotion( 394 Instruction *&Inst, 395 bool AllowPromotionWithoutCommonHeader, 396 bool HasPromoted, TypePromotionTransaction &TPT, 397 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 398 bool splitBranchCondition(Function &F, bool &ModifiedDT); 399 bool simplifyOffsetableRelocate(Instruction &I); 400 401 bool tryToSinkFreeOperands(Instruction *I); 402 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 403 Intrinsic::ID IID); 404 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 405 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 406 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 407 }; 408 409 } // end anonymous namespace 410 411 char CodeGenPrepare::ID = 0; 412 413 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 414 "Optimize for code generation", false, false) 415 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 416 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 417 "Optimize for code generation", false, false) 418 419 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 420 421 bool CodeGenPrepare::runOnFunction(Function &F) { 422 if (skipFunction(F)) 423 return false; 424 425 DL = &F.getParent()->getDataLayout(); 426 427 bool EverMadeChange = false; 428 // Clear per function information. 429 InsertedInsts.clear(); 430 PromotedInsts.clear(); 431 432 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 433 SubtargetInfo = TM->getSubtargetImpl(F); 434 TLI = SubtargetInfo->getTargetLowering(); 435 TRI = SubtargetInfo->getRegisterInfo(); 436 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 437 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 438 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 439 BPI.reset(new BranchProbabilityInfo(F, *LI)); 440 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 441 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 442 OptSize = F.hasOptSize(); 443 if (ProfileGuidedSectionPrefix) { 444 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 445 F.setSectionPrefix(".hot"); 446 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 447 F.setSectionPrefix(".unlikely"); 448 } 449 450 /// This optimization identifies DIV instructions that can be 451 /// profitably bypassed and carried out with a shorter, faster divide. 452 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 453 const DenseMap<unsigned int, unsigned int> &BypassWidths = 454 TLI->getBypassSlowDivWidths(); 455 BasicBlock* BB = &*F.begin(); 456 while (BB != nullptr) { 457 // bypassSlowDivision may create new BBs, but we don't want to reapply the 458 // optimization to those blocks. 459 BasicBlock* Next = BB->getNextNode(); 460 // F.hasOptSize is already checked in the outer if statement. 461 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 462 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 463 BB = Next; 464 } 465 } 466 467 // Eliminate blocks that contain only PHI nodes and an 468 // unconditional branch. 469 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 470 471 bool ModifiedDT = false; 472 if (!DisableBranchOpts) 473 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 474 475 // Split some critical edges where one of the sources is an indirect branch, 476 // to help generate sane code for PHIs involving such edges. 477 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 478 479 bool MadeChange = true; 480 while (MadeChange) { 481 MadeChange = false; 482 DT.reset(); 483 for (Function::iterator I = F.begin(); I != F.end(); ) { 484 BasicBlock *BB = &*I++; 485 bool ModifiedDTOnIteration = false; 486 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 487 488 // Restart BB iteration if the dominator tree of the Function was changed 489 if (ModifiedDTOnIteration) 490 break; 491 } 492 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 493 MadeChange |= mergeSExts(F); 494 if (!LargeOffsetGEPMap.empty()) 495 MadeChange |= splitLargeGEPOffsets(); 496 497 // Really free removed instructions during promotion. 498 for (Instruction *I : RemovedInsts) 499 I->deleteValue(); 500 501 EverMadeChange |= MadeChange; 502 SeenChainsForSExt.clear(); 503 ValToSExtendedUses.clear(); 504 RemovedInsts.clear(); 505 LargeOffsetGEPMap.clear(); 506 LargeOffsetGEPID.clear(); 507 } 508 509 SunkAddrs.clear(); 510 511 if (!DisableBranchOpts) { 512 MadeChange = false; 513 // Use a set vector to get deterministic iteration order. The order the 514 // blocks are removed may affect whether or not PHI nodes in successors 515 // are removed. 516 SmallSetVector<BasicBlock*, 8> WorkList; 517 for (BasicBlock &BB : F) { 518 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 519 MadeChange |= ConstantFoldTerminator(&BB, true); 520 if (!MadeChange) continue; 521 522 for (SmallVectorImpl<BasicBlock*>::iterator 523 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 524 if (pred_begin(*II) == pred_end(*II)) 525 WorkList.insert(*II); 526 } 527 528 // Delete the dead blocks and any of their dead successors. 529 MadeChange |= !WorkList.empty(); 530 while (!WorkList.empty()) { 531 BasicBlock *BB = WorkList.pop_back_val(); 532 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 533 534 DeleteDeadBlock(BB); 535 536 for (SmallVectorImpl<BasicBlock*>::iterator 537 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 538 if (pred_begin(*II) == pred_end(*II)) 539 WorkList.insert(*II); 540 } 541 542 // Merge pairs of basic blocks with unconditional branches, connected by 543 // a single edge. 544 if (EverMadeChange || MadeChange) 545 MadeChange |= eliminateFallThrough(F); 546 547 EverMadeChange |= MadeChange; 548 } 549 550 if (!DisableGCOpts) { 551 SmallVector<Instruction *, 2> Statepoints; 552 for (BasicBlock &BB : F) 553 for (Instruction &I : BB) 554 if (isStatepoint(I)) 555 Statepoints.push_back(&I); 556 for (auto &I : Statepoints) 557 EverMadeChange |= simplifyOffsetableRelocate(*I); 558 } 559 560 // Do this last to clean up use-before-def scenarios introduced by other 561 // preparatory transforms. 562 EverMadeChange |= placeDbgValues(F); 563 564 return EverMadeChange; 565 } 566 567 /// Merge basic blocks which are connected by a single edge, where one of the 568 /// basic blocks has a single successor pointing to the other basic block, 569 /// which has a single predecessor. 570 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 571 bool Changed = false; 572 // Scan all of the blocks in the function, except for the entry block. 573 // Use a temporary array to avoid iterator being invalidated when 574 // deleting blocks. 575 SmallVector<WeakTrackingVH, 16> Blocks; 576 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 577 Blocks.push_back(&Block); 578 579 for (auto &Block : Blocks) { 580 auto *BB = cast_or_null<BasicBlock>(Block); 581 if (!BB) 582 continue; 583 // If the destination block has a single pred, then this is a trivial 584 // edge, just collapse it. 585 BasicBlock *SinglePred = BB->getSinglePredecessor(); 586 587 // Don't merge if BB's address is taken. 588 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 589 590 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 591 if (Term && !Term->isConditional()) { 592 Changed = true; 593 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 594 595 // Merge BB into SinglePred and delete it. 596 MergeBlockIntoPredecessor(BB); 597 } 598 } 599 return Changed; 600 } 601 602 /// Find a destination block from BB if BB is mergeable empty block. 603 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 604 // If this block doesn't end with an uncond branch, ignore it. 605 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 606 if (!BI || !BI->isUnconditional()) 607 return nullptr; 608 609 // If the instruction before the branch (skipping debug info) isn't a phi 610 // node, then other stuff is happening here. 611 BasicBlock::iterator BBI = BI->getIterator(); 612 if (BBI != BB->begin()) { 613 --BBI; 614 while (isa<DbgInfoIntrinsic>(BBI)) { 615 if (BBI == BB->begin()) 616 break; 617 --BBI; 618 } 619 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 620 return nullptr; 621 } 622 623 // Do not break infinite loops. 624 BasicBlock *DestBB = BI->getSuccessor(0); 625 if (DestBB == BB) 626 return nullptr; 627 628 if (!canMergeBlocks(BB, DestBB)) 629 DestBB = nullptr; 630 631 return DestBB; 632 } 633 634 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 635 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 636 /// edges in ways that are non-optimal for isel. Start by eliminating these 637 /// blocks so we can split them the way we want them. 638 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 639 SmallPtrSet<BasicBlock *, 16> Preheaders; 640 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 641 while (!LoopList.empty()) { 642 Loop *L = LoopList.pop_back_val(); 643 LoopList.insert(LoopList.end(), L->begin(), L->end()); 644 if (BasicBlock *Preheader = L->getLoopPreheader()) 645 Preheaders.insert(Preheader); 646 } 647 648 bool MadeChange = false; 649 // Copy blocks into a temporary array to avoid iterator invalidation issues 650 // as we remove them. 651 // Note that this intentionally skips the entry block. 652 SmallVector<WeakTrackingVH, 16> Blocks; 653 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 654 Blocks.push_back(&Block); 655 656 for (auto &Block : Blocks) { 657 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 658 if (!BB) 659 continue; 660 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 661 if (!DestBB || 662 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 663 continue; 664 665 eliminateMostlyEmptyBlock(BB); 666 MadeChange = true; 667 } 668 return MadeChange; 669 } 670 671 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 672 BasicBlock *DestBB, 673 bool isPreheader) { 674 // Do not delete loop preheaders if doing so would create a critical edge. 675 // Loop preheaders can be good locations to spill registers. If the 676 // preheader is deleted and we create a critical edge, registers may be 677 // spilled in the loop body instead. 678 if (!DisablePreheaderProtect && isPreheader && 679 !(BB->getSinglePredecessor() && 680 BB->getSinglePredecessor()->getSingleSuccessor())) 681 return false; 682 683 // Skip merging if the block's successor is also a successor to any callbr 684 // that leads to this block. 685 // FIXME: Is this really needed? Is this a correctness issue? 686 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 687 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 688 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 689 if (DestBB == CBI->getSuccessor(i)) 690 return false; 691 } 692 693 // Try to skip merging if the unique predecessor of BB is terminated by a 694 // switch or indirect branch instruction, and BB is used as an incoming block 695 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 696 // add COPY instructions in the predecessor of BB instead of BB (if it is not 697 // merged). Note that the critical edge created by merging such blocks wont be 698 // split in MachineSink because the jump table is not analyzable. By keeping 699 // such empty block (BB), ISel will place COPY instructions in BB, not in the 700 // predecessor of BB. 701 BasicBlock *Pred = BB->getUniquePredecessor(); 702 if (!Pred || 703 !(isa<SwitchInst>(Pred->getTerminator()) || 704 isa<IndirectBrInst>(Pred->getTerminator()))) 705 return true; 706 707 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 708 return true; 709 710 // We use a simple cost heuristic which determine skipping merging is 711 // profitable if the cost of skipping merging is less than the cost of 712 // merging : Cost(skipping merging) < Cost(merging BB), where the 713 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 714 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 715 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 716 // Freq(Pred) / Freq(BB) > 2. 717 // Note that if there are multiple empty blocks sharing the same incoming 718 // value for the PHIs in the DestBB, we consider them together. In such 719 // case, Cost(merging BB) will be the sum of their frequencies. 720 721 if (!isa<PHINode>(DestBB->begin())) 722 return true; 723 724 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 725 726 // Find all other incoming blocks from which incoming values of all PHIs in 727 // DestBB are the same as the ones from BB. 728 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 729 ++PI) { 730 BasicBlock *DestBBPred = *PI; 731 if (DestBBPred == BB) 732 continue; 733 734 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 735 return DestPN.getIncomingValueForBlock(BB) == 736 DestPN.getIncomingValueForBlock(DestBBPred); 737 })) 738 SameIncomingValueBBs.insert(DestBBPred); 739 } 740 741 // See if all BB's incoming values are same as the value from Pred. In this 742 // case, no reason to skip merging because COPYs are expected to be place in 743 // Pred already. 744 if (SameIncomingValueBBs.count(Pred)) 745 return true; 746 747 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 748 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 749 750 for (auto SameValueBB : SameIncomingValueBBs) 751 if (SameValueBB->getUniquePredecessor() == Pred && 752 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 753 BBFreq += BFI->getBlockFreq(SameValueBB); 754 755 return PredFreq.getFrequency() <= 756 BBFreq.getFrequency() * FreqRatioToSkipMerge; 757 } 758 759 /// Return true if we can merge BB into DestBB if there is a single 760 /// unconditional branch between them, and BB contains no other non-phi 761 /// instructions. 762 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 763 const BasicBlock *DestBB) const { 764 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 765 // the successor. If there are more complex condition (e.g. preheaders), 766 // don't mess around with them. 767 for (const PHINode &PN : BB->phis()) { 768 for (const User *U : PN.users()) { 769 const Instruction *UI = cast<Instruction>(U); 770 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 771 return false; 772 // If User is inside DestBB block and it is a PHINode then check 773 // incoming value. If incoming value is not from BB then this is 774 // a complex condition (e.g. preheaders) we want to avoid here. 775 if (UI->getParent() == DestBB) { 776 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 777 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 778 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 779 if (Insn && Insn->getParent() == BB && 780 Insn->getParent() != UPN->getIncomingBlock(I)) 781 return false; 782 } 783 } 784 } 785 } 786 787 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 788 // and DestBB may have conflicting incoming values for the block. If so, we 789 // can't merge the block. 790 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 791 if (!DestBBPN) return true; // no conflict. 792 793 // Collect the preds of BB. 794 SmallPtrSet<const BasicBlock*, 16> BBPreds; 795 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 796 // It is faster to get preds from a PHI than with pred_iterator. 797 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 798 BBPreds.insert(BBPN->getIncomingBlock(i)); 799 } else { 800 BBPreds.insert(pred_begin(BB), pred_end(BB)); 801 } 802 803 // Walk the preds of DestBB. 804 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 805 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 806 if (BBPreds.count(Pred)) { // Common predecessor? 807 for (const PHINode &PN : DestBB->phis()) { 808 const Value *V1 = PN.getIncomingValueForBlock(Pred); 809 const Value *V2 = PN.getIncomingValueForBlock(BB); 810 811 // If V2 is a phi node in BB, look up what the mapped value will be. 812 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 813 if (V2PN->getParent() == BB) 814 V2 = V2PN->getIncomingValueForBlock(Pred); 815 816 // If there is a conflict, bail out. 817 if (V1 != V2) return false; 818 } 819 } 820 } 821 822 return true; 823 } 824 825 /// Eliminate a basic block that has only phi's and an unconditional branch in 826 /// it. 827 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 828 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 829 BasicBlock *DestBB = BI->getSuccessor(0); 830 831 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 832 << *BB << *DestBB); 833 834 // If the destination block has a single pred, then this is a trivial edge, 835 // just collapse it. 836 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 837 if (SinglePred != DestBB) { 838 assert(SinglePred == BB && 839 "Single predecessor not the same as predecessor"); 840 // Merge DestBB into SinglePred/BB and delete it. 841 MergeBlockIntoPredecessor(DestBB); 842 // Note: BB(=SinglePred) will not be deleted on this path. 843 // DestBB(=its single successor) is the one that was deleted. 844 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 845 return; 846 } 847 } 848 849 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 850 // to handle the new incoming edges it is about to have. 851 for (PHINode &PN : DestBB->phis()) { 852 // Remove the incoming value for BB, and remember it. 853 Value *InVal = PN.removeIncomingValue(BB, false); 854 855 // Two options: either the InVal is a phi node defined in BB or it is some 856 // value that dominates BB. 857 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 858 if (InValPhi && InValPhi->getParent() == BB) { 859 // Add all of the input values of the input PHI as inputs of this phi. 860 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 861 PN.addIncoming(InValPhi->getIncomingValue(i), 862 InValPhi->getIncomingBlock(i)); 863 } else { 864 // Otherwise, add one instance of the dominating value for each edge that 865 // we will be adding. 866 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 867 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 868 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 869 } else { 870 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 871 PN.addIncoming(InVal, *PI); 872 } 873 } 874 } 875 876 // The PHIs are now updated, change everything that refers to BB to use 877 // DestBB and remove BB. 878 BB->replaceAllUsesWith(DestBB); 879 BB->eraseFromParent(); 880 ++NumBlocksElim; 881 882 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 883 } 884 885 // Computes a map of base pointer relocation instructions to corresponding 886 // derived pointer relocation instructions given a vector of all relocate calls 887 static void computeBaseDerivedRelocateMap( 888 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 889 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 890 &RelocateInstMap) { 891 // Collect information in two maps: one primarily for locating the base object 892 // while filling the second map; the second map is the final structure holding 893 // a mapping between Base and corresponding Derived relocate calls 894 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 895 for (auto *ThisRelocate : AllRelocateCalls) { 896 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 897 ThisRelocate->getDerivedPtrIndex()); 898 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 899 } 900 for (auto &Item : RelocateIdxMap) { 901 std::pair<unsigned, unsigned> Key = Item.first; 902 if (Key.first == Key.second) 903 // Base relocation: nothing to insert 904 continue; 905 906 GCRelocateInst *I = Item.second; 907 auto BaseKey = std::make_pair(Key.first, Key.first); 908 909 // We're iterating over RelocateIdxMap so we cannot modify it. 910 auto MaybeBase = RelocateIdxMap.find(BaseKey); 911 if (MaybeBase == RelocateIdxMap.end()) 912 // TODO: We might want to insert a new base object relocate and gep off 913 // that, if there are enough derived object relocates. 914 continue; 915 916 RelocateInstMap[MaybeBase->second].push_back(I); 917 } 918 } 919 920 // Accepts a GEP and extracts the operands into a vector provided they're all 921 // small integer constants 922 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 923 SmallVectorImpl<Value *> &OffsetV) { 924 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 925 // Only accept small constant integer operands 926 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 927 if (!Op || Op->getZExtValue() > 20) 928 return false; 929 } 930 931 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 932 OffsetV.push_back(GEP->getOperand(i)); 933 return true; 934 } 935 936 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 937 // replace, computes a replacement, and affects it. 938 static bool 939 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 940 const SmallVectorImpl<GCRelocateInst *> &Targets) { 941 bool MadeChange = false; 942 // We must ensure the relocation of derived pointer is defined after 943 // relocation of base pointer. If we find a relocation corresponding to base 944 // defined earlier than relocation of base then we move relocation of base 945 // right before found relocation. We consider only relocation in the same 946 // basic block as relocation of base. Relocations from other basic block will 947 // be skipped by optimization and we do not care about them. 948 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 949 &*R != RelocatedBase; ++R) 950 if (auto RI = dyn_cast<GCRelocateInst>(R)) 951 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 952 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 953 RelocatedBase->moveBefore(RI); 954 break; 955 } 956 957 for (GCRelocateInst *ToReplace : Targets) { 958 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 959 "Not relocating a derived object of the original base object"); 960 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 961 // A duplicate relocate call. TODO: coalesce duplicates. 962 continue; 963 } 964 965 if (RelocatedBase->getParent() != ToReplace->getParent()) { 966 // Base and derived relocates are in different basic blocks. 967 // In this case transform is only valid when base dominates derived 968 // relocate. However it would be too expensive to check dominance 969 // for each such relocate, so we skip the whole transformation. 970 continue; 971 } 972 973 Value *Base = ToReplace->getBasePtr(); 974 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 975 if (!Derived || Derived->getPointerOperand() != Base) 976 continue; 977 978 SmallVector<Value *, 2> OffsetV; 979 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 980 continue; 981 982 // Create a Builder and replace the target callsite with a gep 983 assert(RelocatedBase->getNextNode() && 984 "Should always have one since it's not a terminator"); 985 986 // Insert after RelocatedBase 987 IRBuilder<> Builder(RelocatedBase->getNextNode()); 988 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 989 990 // If gc_relocate does not match the actual type, cast it to the right type. 991 // In theory, there must be a bitcast after gc_relocate if the type does not 992 // match, and we should reuse it to get the derived pointer. But it could be 993 // cases like this: 994 // bb1: 995 // ... 996 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 997 // br label %merge 998 // 999 // bb2: 1000 // ... 1001 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1002 // br label %merge 1003 // 1004 // merge: 1005 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1006 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1007 // 1008 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1009 // no matter there is already one or not. In this way, we can handle all cases, and 1010 // the extra bitcast should be optimized away in later passes. 1011 Value *ActualRelocatedBase = RelocatedBase; 1012 if (RelocatedBase->getType() != Base->getType()) { 1013 ActualRelocatedBase = 1014 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1015 } 1016 Value *Replacement = Builder.CreateGEP( 1017 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1018 Replacement->takeName(ToReplace); 1019 // If the newly generated derived pointer's type does not match the original derived 1020 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1021 Value *ActualReplacement = Replacement; 1022 if (Replacement->getType() != ToReplace->getType()) { 1023 ActualReplacement = 1024 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1025 } 1026 ToReplace->replaceAllUsesWith(ActualReplacement); 1027 ToReplace->eraseFromParent(); 1028 1029 MadeChange = true; 1030 } 1031 return MadeChange; 1032 } 1033 1034 // Turns this: 1035 // 1036 // %base = ... 1037 // %ptr = gep %base + 15 1038 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1039 // %base' = relocate(%tok, i32 4, i32 4) 1040 // %ptr' = relocate(%tok, i32 4, i32 5) 1041 // %val = load %ptr' 1042 // 1043 // into this: 1044 // 1045 // %base = ... 1046 // %ptr = gep %base + 15 1047 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1048 // %base' = gc.relocate(%tok, i32 4, i32 4) 1049 // %ptr' = gep %base' + 15 1050 // %val = load %ptr' 1051 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1052 bool MadeChange = false; 1053 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1054 1055 for (auto *U : I.users()) 1056 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1057 // Collect all the relocate calls associated with a statepoint 1058 AllRelocateCalls.push_back(Relocate); 1059 1060 // We need at least one base pointer relocation + one derived pointer 1061 // relocation to mangle 1062 if (AllRelocateCalls.size() < 2) 1063 return false; 1064 1065 // RelocateInstMap is a mapping from the base relocate instruction to the 1066 // corresponding derived relocate instructions 1067 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1068 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1069 if (RelocateInstMap.empty()) 1070 return false; 1071 1072 for (auto &Item : RelocateInstMap) 1073 // Item.first is the RelocatedBase to offset against 1074 // Item.second is the vector of Targets to replace 1075 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1076 return MadeChange; 1077 } 1078 1079 /// Sink the specified cast instruction into its user blocks. 1080 static bool SinkCast(CastInst *CI) { 1081 BasicBlock *DefBB = CI->getParent(); 1082 1083 /// InsertedCasts - Only insert a cast in each block once. 1084 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1085 1086 bool MadeChange = false; 1087 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1088 UI != E; ) { 1089 Use &TheUse = UI.getUse(); 1090 Instruction *User = cast<Instruction>(*UI); 1091 1092 // Figure out which BB this cast is used in. For PHI's this is the 1093 // appropriate predecessor block. 1094 BasicBlock *UserBB = User->getParent(); 1095 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1096 UserBB = PN->getIncomingBlock(TheUse); 1097 } 1098 1099 // Preincrement use iterator so we don't invalidate it. 1100 ++UI; 1101 1102 // The first insertion point of a block containing an EH pad is after the 1103 // pad. If the pad is the user, we cannot sink the cast past the pad. 1104 if (User->isEHPad()) 1105 continue; 1106 1107 // If the block selected to receive the cast is an EH pad that does not 1108 // allow non-PHI instructions before the terminator, we can't sink the 1109 // cast. 1110 if (UserBB->getTerminator()->isEHPad()) 1111 continue; 1112 1113 // If this user is in the same block as the cast, don't change the cast. 1114 if (UserBB == DefBB) continue; 1115 1116 // If we have already inserted a cast into this block, use it. 1117 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1118 1119 if (!InsertedCast) { 1120 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1121 assert(InsertPt != UserBB->end()); 1122 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1123 CI->getType(), "", &*InsertPt); 1124 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1125 } 1126 1127 // Replace a use of the cast with a use of the new cast. 1128 TheUse = InsertedCast; 1129 MadeChange = true; 1130 ++NumCastUses; 1131 } 1132 1133 // If we removed all uses, nuke the cast. 1134 if (CI->use_empty()) { 1135 salvageDebugInfo(*CI); 1136 CI->eraseFromParent(); 1137 MadeChange = true; 1138 } 1139 1140 return MadeChange; 1141 } 1142 1143 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1144 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1145 /// reduce the number of virtual registers that must be created and coalesced. 1146 /// 1147 /// Return true if any changes are made. 1148 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1149 const DataLayout &DL) { 1150 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1151 // than sinking only nop casts, but is helpful on some platforms. 1152 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1153 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1154 ASC->getDestAddressSpace())) 1155 return false; 1156 } 1157 1158 // If this is a noop copy, 1159 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1160 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1161 1162 // This is an fp<->int conversion? 1163 if (SrcVT.isInteger() != DstVT.isInteger()) 1164 return false; 1165 1166 // If this is an extension, it will be a zero or sign extension, which 1167 // isn't a noop. 1168 if (SrcVT.bitsLT(DstVT)) return false; 1169 1170 // If these values will be promoted, find out what they will be promoted 1171 // to. This helps us consider truncates on PPC as noop copies when they 1172 // are. 1173 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1174 TargetLowering::TypePromoteInteger) 1175 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1176 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1177 TargetLowering::TypePromoteInteger) 1178 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1179 1180 // If, after promotion, these are the same types, this is a noop copy. 1181 if (SrcVT != DstVT) 1182 return false; 1183 1184 return SinkCast(CI); 1185 } 1186 1187 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1188 CmpInst *Cmp, 1189 Intrinsic::ID IID) { 1190 if (BO->getParent() != Cmp->getParent()) { 1191 // We used to use a dominator tree here to allow multi-block optimization. 1192 // But that was problematic because: 1193 // 1. It could cause a perf regression by hoisting the math op into the 1194 // critical path. 1195 // 2. It could cause a perf regression by creating a value that was live 1196 // across multiple blocks and increasing register pressure. 1197 // 3. Use of a dominator tree could cause large compile-time regression. 1198 // This is because we recompute the DT on every change in the main CGP 1199 // run-loop. The recomputing is probably unnecessary in many cases, so if 1200 // that was fixed, using a DT here would be ok. 1201 return false; 1202 } 1203 1204 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1205 Value *Arg0 = BO->getOperand(0); 1206 Value *Arg1 = BO->getOperand(1); 1207 if (BO->getOpcode() == Instruction::Add && 1208 IID == Intrinsic::usub_with_overflow) { 1209 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1210 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1211 } 1212 1213 // Insert at the first instruction of the pair. 1214 Instruction *InsertPt = nullptr; 1215 for (Instruction &Iter : *Cmp->getParent()) { 1216 if (&Iter == BO || &Iter == Cmp) { 1217 InsertPt = &Iter; 1218 break; 1219 } 1220 } 1221 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1222 1223 IRBuilder<> Builder(InsertPt); 1224 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1225 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1226 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1227 BO->replaceAllUsesWith(Math); 1228 Cmp->replaceAllUsesWith(OV); 1229 BO->eraseFromParent(); 1230 Cmp->eraseFromParent(); 1231 return true; 1232 } 1233 1234 /// Match special-case patterns that check for unsigned add overflow. 1235 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1236 BinaryOperator *&Add) { 1237 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1238 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1239 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1240 1241 // We are not expecting non-canonical/degenerate code. Just bail out. 1242 if (isa<Constant>(A)) 1243 return false; 1244 1245 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1246 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1247 B = ConstantInt::get(B->getType(), 1); 1248 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1249 B = ConstantInt::get(B->getType(), -1); 1250 else 1251 return false; 1252 1253 // Check the users of the variable operand of the compare looking for an add 1254 // with the adjusted constant. 1255 for (User *U : A->users()) { 1256 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1257 Add = cast<BinaryOperator>(U); 1258 return true; 1259 } 1260 } 1261 return false; 1262 } 1263 1264 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1265 /// intrinsic. Return true if any changes were made. 1266 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1267 bool &ModifiedDT) { 1268 Value *A, *B; 1269 BinaryOperator *Add; 1270 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1271 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1272 return false; 1273 1274 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1275 TLI->getValueType(*DL, Add->getType()))) 1276 return false; 1277 1278 // We don't want to move around uses of condition values this late, so we 1279 // check if it is legal to create the call to the intrinsic in the basic 1280 // block containing the icmp. 1281 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1282 return false; 1283 1284 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1285 return false; 1286 1287 // Reset callers - do not crash by iterating over a dead instruction. 1288 ModifiedDT = true; 1289 return true; 1290 } 1291 1292 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1293 bool &ModifiedDT) { 1294 // We are not expecting non-canonical/degenerate code. Just bail out. 1295 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1296 if (isa<Constant>(A) && isa<Constant>(B)) 1297 return false; 1298 1299 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1300 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1301 if (Pred == ICmpInst::ICMP_UGT) { 1302 std::swap(A, B); 1303 Pred = ICmpInst::ICMP_ULT; 1304 } 1305 // Convert special-case: (A == 0) is the same as (A u< 1). 1306 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1307 B = ConstantInt::get(B->getType(), 1); 1308 Pred = ICmpInst::ICMP_ULT; 1309 } 1310 // Convert special-case: (A != 0) is the same as (0 u< A). 1311 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1312 std::swap(A, B); 1313 Pred = ICmpInst::ICMP_ULT; 1314 } 1315 if (Pred != ICmpInst::ICMP_ULT) 1316 return false; 1317 1318 // Walk the users of a variable operand of a compare looking for a subtract or 1319 // add with that same operand. Also match the 2nd operand of the compare to 1320 // the add/sub, but that may be a negated constant operand of an add. 1321 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1322 BinaryOperator *Sub = nullptr; 1323 for (User *U : CmpVariableOperand->users()) { 1324 // A - B, A u< B --> usubo(A, B) 1325 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1326 Sub = cast<BinaryOperator>(U); 1327 break; 1328 } 1329 1330 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1331 const APInt *CmpC, *AddC; 1332 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1333 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1334 Sub = cast<BinaryOperator>(U); 1335 break; 1336 } 1337 } 1338 if (!Sub) 1339 return false; 1340 1341 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1342 TLI->getValueType(*DL, Sub->getType()))) 1343 return false; 1344 1345 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1346 return false; 1347 1348 // Reset callers - do not crash by iterating over a dead instruction. 1349 ModifiedDT = true; 1350 return true; 1351 } 1352 1353 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1354 /// registers that must be created and coalesced. This is a clear win except on 1355 /// targets with multiple condition code registers (PowerPC), where it might 1356 /// lose; some adjustment may be wanted there. 1357 /// 1358 /// Return true if any changes are made. 1359 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1360 if (TLI.hasMultipleConditionRegisters()) 1361 return false; 1362 1363 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1364 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1365 return false; 1366 1367 // Only insert a cmp in each block once. 1368 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1369 1370 bool MadeChange = false; 1371 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1372 UI != E; ) { 1373 Use &TheUse = UI.getUse(); 1374 Instruction *User = cast<Instruction>(*UI); 1375 1376 // Preincrement use iterator so we don't invalidate it. 1377 ++UI; 1378 1379 // Don't bother for PHI nodes. 1380 if (isa<PHINode>(User)) 1381 continue; 1382 1383 // Figure out which BB this cmp is used in. 1384 BasicBlock *UserBB = User->getParent(); 1385 BasicBlock *DefBB = Cmp->getParent(); 1386 1387 // If this user is in the same block as the cmp, don't change the cmp. 1388 if (UserBB == DefBB) continue; 1389 1390 // If we have already inserted a cmp into this block, use it. 1391 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1392 1393 if (!InsertedCmp) { 1394 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1395 assert(InsertPt != UserBB->end()); 1396 InsertedCmp = 1397 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1398 Cmp->getOperand(0), Cmp->getOperand(1), "", 1399 &*InsertPt); 1400 // Propagate the debug info. 1401 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1402 } 1403 1404 // Replace a use of the cmp with a use of the new cmp. 1405 TheUse = InsertedCmp; 1406 MadeChange = true; 1407 ++NumCmpUses; 1408 } 1409 1410 // If we removed all uses, nuke the cmp. 1411 if (Cmp->use_empty()) { 1412 Cmp->eraseFromParent(); 1413 MadeChange = true; 1414 } 1415 1416 return MadeChange; 1417 } 1418 1419 /// For pattern like: 1420 /// 1421 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1422 /// ... 1423 /// DomBB: 1424 /// ... 1425 /// br DomCond, TrueBB, CmpBB 1426 /// CmpBB: (with DomBB being the single predecessor) 1427 /// ... 1428 /// Cmp = icmp eq CmpOp0, CmpOp1 1429 /// ... 1430 /// 1431 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1432 /// different from lowering of icmp eq (PowerPC). This function try to convert 1433 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1434 /// After that, DomCond and Cmp can use the same comparison so reduce one 1435 /// comparison. 1436 /// 1437 /// Return true if any changes are made. 1438 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1439 const TargetLowering &TLI) { 1440 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1441 return false; 1442 1443 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1444 if (Pred != ICmpInst::ICMP_EQ) 1445 return false; 1446 1447 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1448 // icmp slt/sgt would introduce more redundant LLVM IR. 1449 for (User *U : Cmp->users()) { 1450 if (isa<BranchInst>(U)) 1451 continue; 1452 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1453 continue; 1454 return false; 1455 } 1456 1457 // This is a cheap/incomplete check for dominance - just match a single 1458 // predecessor with a conditional branch. 1459 BasicBlock *CmpBB = Cmp->getParent(); 1460 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1461 if (!DomBB) 1462 return false; 1463 1464 // We want to ensure that the only way control gets to the comparison of 1465 // interest is that a less/greater than comparison on the same operands is 1466 // false. 1467 Value *DomCond; 1468 BasicBlock *TrueBB, *FalseBB; 1469 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1470 return false; 1471 if (CmpBB != FalseBB) 1472 return false; 1473 1474 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1475 ICmpInst::Predicate DomPred; 1476 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1477 return false; 1478 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1479 return false; 1480 1481 // Convert the equality comparison to the opposite of the dominating 1482 // comparison and swap the direction for all branch/select users. 1483 // We have conceptually converted: 1484 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1485 // to 1486 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1487 // And similarly for branches. 1488 for (User *U : Cmp->users()) { 1489 if (auto *BI = dyn_cast<BranchInst>(U)) { 1490 assert(BI->isConditional() && "Must be conditional"); 1491 BI->swapSuccessors(); 1492 continue; 1493 } 1494 if (auto *SI = dyn_cast<SelectInst>(U)) { 1495 // Swap operands 1496 SI->swapValues(); 1497 SI->swapProfMetadata(); 1498 continue; 1499 } 1500 llvm_unreachable("Must be a branch or a select"); 1501 } 1502 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1503 return true; 1504 } 1505 1506 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1507 if (sinkCmpExpression(Cmp, *TLI)) 1508 return true; 1509 1510 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1511 return true; 1512 1513 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1514 return true; 1515 1516 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1517 return true; 1518 1519 return false; 1520 } 1521 1522 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1523 /// used in a compare to allow isel to generate better code for targets where 1524 /// this operation can be combined. 1525 /// 1526 /// Return true if any changes are made. 1527 static bool sinkAndCmp0Expression(Instruction *AndI, 1528 const TargetLowering &TLI, 1529 SetOfInstrs &InsertedInsts) { 1530 // Double-check that we're not trying to optimize an instruction that was 1531 // already optimized by some other part of this pass. 1532 assert(!InsertedInsts.count(AndI) && 1533 "Attempting to optimize already optimized and instruction"); 1534 (void) InsertedInsts; 1535 1536 // Nothing to do for single use in same basic block. 1537 if (AndI->hasOneUse() && 1538 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1539 return false; 1540 1541 // Try to avoid cases where sinking/duplicating is likely to increase register 1542 // pressure. 1543 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1544 !isa<ConstantInt>(AndI->getOperand(1)) && 1545 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1546 return false; 1547 1548 for (auto *U : AndI->users()) { 1549 Instruction *User = cast<Instruction>(U); 1550 1551 // Only sink 'and' feeding icmp with 0. 1552 if (!isa<ICmpInst>(User)) 1553 return false; 1554 1555 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1556 if (!CmpC || !CmpC->isZero()) 1557 return false; 1558 } 1559 1560 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1561 return false; 1562 1563 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1564 LLVM_DEBUG(AndI->getParent()->dump()); 1565 1566 // Push the 'and' into the same block as the icmp 0. There should only be 1567 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1568 // others, so we don't need to keep track of which BBs we insert into. 1569 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1570 UI != E; ) { 1571 Use &TheUse = UI.getUse(); 1572 Instruction *User = cast<Instruction>(*UI); 1573 1574 // Preincrement use iterator so we don't invalidate it. 1575 ++UI; 1576 1577 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1578 1579 // Keep the 'and' in the same place if the use is already in the same block. 1580 Instruction *InsertPt = 1581 User->getParent() == AndI->getParent() ? AndI : User; 1582 Instruction *InsertedAnd = 1583 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1584 AndI->getOperand(1), "", InsertPt); 1585 // Propagate the debug info. 1586 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1587 1588 // Replace a use of the 'and' with a use of the new 'and'. 1589 TheUse = InsertedAnd; 1590 ++NumAndUses; 1591 LLVM_DEBUG(User->getParent()->dump()); 1592 } 1593 1594 // We removed all uses, nuke the and. 1595 AndI->eraseFromParent(); 1596 return true; 1597 } 1598 1599 /// Check if the candidates could be combined with a shift instruction, which 1600 /// includes: 1601 /// 1. Truncate instruction 1602 /// 2. And instruction and the imm is a mask of the low bits: 1603 /// imm & (imm+1) == 0 1604 static bool isExtractBitsCandidateUse(Instruction *User) { 1605 if (!isa<TruncInst>(User)) { 1606 if (User->getOpcode() != Instruction::And || 1607 !isa<ConstantInt>(User->getOperand(1))) 1608 return false; 1609 1610 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1611 1612 if ((Cimm & (Cimm + 1)).getBoolValue()) 1613 return false; 1614 } 1615 return true; 1616 } 1617 1618 /// Sink both shift and truncate instruction to the use of truncate's BB. 1619 static bool 1620 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1621 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1622 const TargetLowering &TLI, const DataLayout &DL) { 1623 BasicBlock *UserBB = User->getParent(); 1624 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1625 auto *TruncI = cast<TruncInst>(User); 1626 bool MadeChange = false; 1627 1628 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1629 TruncE = TruncI->user_end(); 1630 TruncUI != TruncE;) { 1631 1632 Use &TruncTheUse = TruncUI.getUse(); 1633 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1634 // Preincrement use iterator so we don't invalidate it. 1635 1636 ++TruncUI; 1637 1638 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1639 if (!ISDOpcode) 1640 continue; 1641 1642 // If the use is actually a legal node, there will not be an 1643 // implicit truncate. 1644 // FIXME: always querying the result type is just an 1645 // approximation; some nodes' legality is determined by the 1646 // operand or other means. There's no good way to find out though. 1647 if (TLI.isOperationLegalOrCustom( 1648 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1649 continue; 1650 1651 // Don't bother for PHI nodes. 1652 if (isa<PHINode>(TruncUser)) 1653 continue; 1654 1655 BasicBlock *TruncUserBB = TruncUser->getParent(); 1656 1657 if (UserBB == TruncUserBB) 1658 continue; 1659 1660 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1661 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1662 1663 if (!InsertedShift && !InsertedTrunc) { 1664 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1665 assert(InsertPt != TruncUserBB->end()); 1666 // Sink the shift 1667 if (ShiftI->getOpcode() == Instruction::AShr) 1668 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1669 "", &*InsertPt); 1670 else 1671 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1672 "", &*InsertPt); 1673 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1674 1675 // Sink the trunc 1676 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1677 TruncInsertPt++; 1678 assert(TruncInsertPt != TruncUserBB->end()); 1679 1680 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1681 TruncI->getType(), "", &*TruncInsertPt); 1682 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1683 1684 MadeChange = true; 1685 1686 TruncTheUse = InsertedTrunc; 1687 } 1688 } 1689 return MadeChange; 1690 } 1691 1692 /// Sink the shift *right* instruction into user blocks if the uses could 1693 /// potentially be combined with this shift instruction and generate BitExtract 1694 /// instruction. It will only be applied if the architecture supports BitExtract 1695 /// instruction. Here is an example: 1696 /// BB1: 1697 /// %x.extract.shift = lshr i64 %arg1, 32 1698 /// BB2: 1699 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1700 /// ==> 1701 /// 1702 /// BB2: 1703 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1704 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1705 /// 1706 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1707 /// instruction. 1708 /// Return true if any changes are made. 1709 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1710 const TargetLowering &TLI, 1711 const DataLayout &DL) { 1712 BasicBlock *DefBB = ShiftI->getParent(); 1713 1714 /// Only insert instructions in each block once. 1715 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1716 1717 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1718 1719 bool MadeChange = false; 1720 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1721 UI != E;) { 1722 Use &TheUse = UI.getUse(); 1723 Instruction *User = cast<Instruction>(*UI); 1724 // Preincrement use iterator so we don't invalidate it. 1725 ++UI; 1726 1727 // Don't bother for PHI nodes. 1728 if (isa<PHINode>(User)) 1729 continue; 1730 1731 if (!isExtractBitsCandidateUse(User)) 1732 continue; 1733 1734 BasicBlock *UserBB = User->getParent(); 1735 1736 if (UserBB == DefBB) { 1737 // If the shift and truncate instruction are in the same BB. The use of 1738 // the truncate(TruncUse) may still introduce another truncate if not 1739 // legal. In this case, we would like to sink both shift and truncate 1740 // instruction to the BB of TruncUse. 1741 // for example: 1742 // BB1: 1743 // i64 shift.result = lshr i64 opnd, imm 1744 // trunc.result = trunc shift.result to i16 1745 // 1746 // BB2: 1747 // ----> We will have an implicit truncate here if the architecture does 1748 // not have i16 compare. 1749 // cmp i16 trunc.result, opnd2 1750 // 1751 if (isa<TruncInst>(User) && shiftIsLegal 1752 // If the type of the truncate is legal, no truncate will be 1753 // introduced in other basic blocks. 1754 && 1755 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1756 MadeChange = 1757 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1758 1759 continue; 1760 } 1761 // If we have already inserted a shift into this block, use it. 1762 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1763 1764 if (!InsertedShift) { 1765 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1766 assert(InsertPt != UserBB->end()); 1767 1768 if (ShiftI->getOpcode() == Instruction::AShr) 1769 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1770 "", &*InsertPt); 1771 else 1772 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1773 "", &*InsertPt); 1774 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1775 1776 MadeChange = true; 1777 } 1778 1779 // Replace a use of the shift with a use of the new shift. 1780 TheUse = InsertedShift; 1781 } 1782 1783 // If we removed all uses, or there are none, nuke the shift. 1784 if (ShiftI->use_empty()) { 1785 salvageDebugInfo(*ShiftI); 1786 ShiftI->eraseFromParent(); 1787 MadeChange = true; 1788 } 1789 1790 return MadeChange; 1791 } 1792 1793 /// If counting leading or trailing zeros is an expensive operation and a zero 1794 /// input is defined, add a check for zero to avoid calling the intrinsic. 1795 /// 1796 /// We want to transform: 1797 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1798 /// 1799 /// into: 1800 /// entry: 1801 /// %cmpz = icmp eq i64 %A, 0 1802 /// br i1 %cmpz, label %cond.end, label %cond.false 1803 /// cond.false: 1804 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1805 /// br label %cond.end 1806 /// cond.end: 1807 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1808 /// 1809 /// If the transform is performed, return true and set ModifiedDT to true. 1810 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1811 const TargetLowering *TLI, 1812 const DataLayout *DL, 1813 bool &ModifiedDT) { 1814 // If a zero input is undefined, it doesn't make sense to despeculate that. 1815 if (match(CountZeros->getOperand(1), m_One())) 1816 return false; 1817 1818 // If it's cheap to speculate, there's nothing to do. 1819 auto IntrinsicID = CountZeros->getIntrinsicID(); 1820 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1821 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1822 return false; 1823 1824 // Only handle legal scalar cases. Anything else requires too much work. 1825 Type *Ty = CountZeros->getType(); 1826 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1827 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1828 return false; 1829 1830 // The intrinsic will be sunk behind a compare against zero and branch. 1831 BasicBlock *StartBlock = CountZeros->getParent(); 1832 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1833 1834 // Create another block after the count zero intrinsic. A PHI will be added 1835 // in this block to select the result of the intrinsic or the bit-width 1836 // constant if the input to the intrinsic is zero. 1837 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1838 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1839 1840 // Set up a builder to create a compare, conditional branch, and PHI. 1841 IRBuilder<> Builder(CountZeros->getContext()); 1842 Builder.SetInsertPoint(StartBlock->getTerminator()); 1843 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1844 1845 // Replace the unconditional branch that was created by the first split with 1846 // a compare against zero and a conditional branch. 1847 Value *Zero = Constant::getNullValue(Ty); 1848 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1849 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1850 StartBlock->getTerminator()->eraseFromParent(); 1851 1852 // Create a PHI in the end block to select either the output of the intrinsic 1853 // or the bit width of the operand. 1854 Builder.SetInsertPoint(&EndBlock->front()); 1855 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1856 CountZeros->replaceAllUsesWith(PN); 1857 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1858 PN->addIncoming(BitWidth, StartBlock); 1859 PN->addIncoming(CountZeros, CallBlock); 1860 1861 // We are explicitly handling the zero case, so we can set the intrinsic's 1862 // undefined zero argument to 'true'. This will also prevent reprocessing the 1863 // intrinsic; we only despeculate when a zero input is defined. 1864 CountZeros->setArgOperand(1, Builder.getTrue()); 1865 ModifiedDT = true; 1866 return true; 1867 } 1868 1869 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1870 BasicBlock *BB = CI->getParent(); 1871 1872 // Lower inline assembly if we can. 1873 // If we found an inline asm expession, and if the target knows how to 1874 // lower it to normal LLVM code, do so now. 1875 if (isa<InlineAsm>(CI->getCalledValue())) { 1876 if (TLI->ExpandInlineAsm(CI)) { 1877 // Avoid invalidating the iterator. 1878 CurInstIterator = BB->begin(); 1879 // Avoid processing instructions out of order, which could cause 1880 // reuse before a value is defined. 1881 SunkAddrs.clear(); 1882 return true; 1883 } 1884 // Sink address computing for memory operands into the block. 1885 if (optimizeInlineAsmInst(CI)) 1886 return true; 1887 } 1888 1889 // Align the pointer arguments to this call if the target thinks it's a good 1890 // idea 1891 unsigned MinSize, PrefAlign; 1892 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1893 for (auto &Arg : CI->arg_operands()) { 1894 // We want to align both objects whose address is used directly and 1895 // objects whose address is used in casts and GEPs, though it only makes 1896 // sense for GEPs if the offset is a multiple of the desired alignment and 1897 // if size - offset meets the size threshold. 1898 if (!Arg->getType()->isPointerTy()) 1899 continue; 1900 APInt Offset(DL->getIndexSizeInBits( 1901 cast<PointerType>(Arg->getType())->getAddressSpace()), 1902 0); 1903 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1904 uint64_t Offset2 = Offset.getLimitedValue(); 1905 if ((Offset2 & (PrefAlign-1)) != 0) 1906 continue; 1907 AllocaInst *AI; 1908 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1909 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1910 AI->setAlignment(MaybeAlign(PrefAlign)); 1911 // Global variables can only be aligned if they are defined in this 1912 // object (i.e. they are uniquely initialized in this object), and 1913 // over-aligning global variables that have an explicit section is 1914 // forbidden. 1915 GlobalVariable *GV; 1916 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1917 GV->getPointerAlignment(*DL) < PrefAlign && 1918 DL->getTypeAllocSize(GV->getValueType()) >= 1919 MinSize + Offset2) 1920 GV->setAlignment(MaybeAlign(PrefAlign)); 1921 } 1922 // If this is a memcpy (or similar) then we may be able to improve the 1923 // alignment 1924 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1925 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1926 if (DestAlign > MI->getDestAlignment()) 1927 MI->setDestAlignment(DestAlign); 1928 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1929 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1930 if (SrcAlign > MTI->getSourceAlignment()) 1931 MTI->setSourceAlignment(SrcAlign); 1932 } 1933 } 1934 } 1935 1936 // If we have a cold call site, try to sink addressing computation into the 1937 // cold block. This interacts with our handling for loads and stores to 1938 // ensure that we can fold all uses of a potential addressing computation 1939 // into their uses. TODO: generalize this to work over profiling data 1940 if (CI->hasFnAttr(Attribute::Cold) && 1941 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 1942 for (auto &Arg : CI->arg_operands()) { 1943 if (!Arg->getType()->isPointerTy()) 1944 continue; 1945 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1946 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1947 } 1948 1949 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1950 if (II) { 1951 switch (II->getIntrinsicID()) { 1952 default: break; 1953 case Intrinsic::experimental_widenable_condition: { 1954 // Give up on future widening oppurtunties so that we can fold away dead 1955 // paths and merge blocks before going into block-local instruction 1956 // selection. 1957 if (II->use_empty()) { 1958 II->eraseFromParent(); 1959 return true; 1960 } 1961 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1962 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1963 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1964 }); 1965 return true; 1966 } 1967 case Intrinsic::objectsize: 1968 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1969 case Intrinsic::is_constant: 1970 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1971 case Intrinsic::aarch64_stlxr: 1972 case Intrinsic::aarch64_stxr: { 1973 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1974 if (!ExtVal || !ExtVal->hasOneUse() || 1975 ExtVal->getParent() == CI->getParent()) 1976 return false; 1977 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1978 ExtVal->moveBefore(CI); 1979 // Mark this instruction as "inserted by CGP", so that other 1980 // optimizations don't touch it. 1981 InsertedInsts.insert(ExtVal); 1982 return true; 1983 } 1984 1985 case Intrinsic::launder_invariant_group: 1986 case Intrinsic::strip_invariant_group: { 1987 Value *ArgVal = II->getArgOperand(0); 1988 auto it = LargeOffsetGEPMap.find(II); 1989 if (it != LargeOffsetGEPMap.end()) { 1990 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1991 // Make sure not to have to deal with iterator invalidation 1992 // after possibly adding ArgVal to LargeOffsetGEPMap. 1993 auto GEPs = std::move(it->second); 1994 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1995 LargeOffsetGEPMap.erase(II); 1996 } 1997 1998 II->replaceAllUsesWith(ArgVal); 1999 II->eraseFromParent(); 2000 return true; 2001 } 2002 case Intrinsic::cttz: 2003 case Intrinsic::ctlz: 2004 // If counting zeros is expensive, try to avoid it. 2005 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2006 case Intrinsic::dbg_value: 2007 return fixupDbgValue(II); 2008 case Intrinsic::vscale: { 2009 // If datalayout has no special restrictions on vector data layout, 2010 // replace `llvm.vscale` by an equivalent constant expression 2011 // to benefit from cheap constant propagation. 2012 Type *ScalableVectorTy = 2013 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2014 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2015 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2016 auto One = ConstantInt::getSigned(II->getType(), 1); 2017 auto *CGep = 2018 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2019 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2020 II->eraseFromParent(); 2021 return true; 2022 } 2023 } 2024 } 2025 2026 SmallVector<Value *, 2> PtrOps; 2027 Type *AccessTy; 2028 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2029 while (!PtrOps.empty()) { 2030 Value *PtrVal = PtrOps.pop_back_val(); 2031 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2032 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2033 return true; 2034 } 2035 } 2036 2037 // From here on out we're working with named functions. 2038 if (!CI->getCalledFunction()) return false; 2039 2040 // Lower all default uses of _chk calls. This is very similar 2041 // to what InstCombineCalls does, but here we are only lowering calls 2042 // to fortified library functions (e.g. __memcpy_chk) that have the default 2043 // "don't know" as the objectsize. Anything else should be left alone. 2044 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2045 if (Value *V = Simplifier.optimizeCall(CI)) { 2046 CI->replaceAllUsesWith(V); 2047 CI->eraseFromParent(); 2048 return true; 2049 } 2050 2051 return false; 2052 } 2053 2054 /// Look for opportunities to duplicate return instructions to the predecessor 2055 /// to enable tail call optimizations. The case it is currently looking for is: 2056 /// @code 2057 /// bb0: 2058 /// %tmp0 = tail call i32 @f0() 2059 /// br label %return 2060 /// bb1: 2061 /// %tmp1 = tail call i32 @f1() 2062 /// br label %return 2063 /// bb2: 2064 /// %tmp2 = tail call i32 @f2() 2065 /// br label %return 2066 /// return: 2067 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2068 /// ret i32 %retval 2069 /// @endcode 2070 /// 2071 /// => 2072 /// 2073 /// @code 2074 /// bb0: 2075 /// %tmp0 = tail call i32 @f0() 2076 /// ret i32 %tmp0 2077 /// bb1: 2078 /// %tmp1 = tail call i32 @f1() 2079 /// ret i32 %tmp1 2080 /// bb2: 2081 /// %tmp2 = tail call i32 @f2() 2082 /// ret i32 %tmp2 2083 /// @endcode 2084 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2085 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2086 if (!RetI) 2087 return false; 2088 2089 PHINode *PN = nullptr; 2090 BitCastInst *BCI = nullptr; 2091 Value *V = RetI->getReturnValue(); 2092 if (V) { 2093 BCI = dyn_cast<BitCastInst>(V); 2094 if (BCI) 2095 V = BCI->getOperand(0); 2096 2097 PN = dyn_cast<PHINode>(V); 2098 if (!PN) 2099 return false; 2100 } 2101 2102 if (PN && PN->getParent() != BB) 2103 return false; 2104 2105 // Make sure there are no instructions between the PHI and return, or that the 2106 // return is the first instruction in the block. 2107 if (PN) { 2108 BasicBlock::iterator BI = BB->begin(); 2109 // Skip over debug and the bitcast. 2110 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2111 if (&*BI != RetI) 2112 return false; 2113 } else { 2114 BasicBlock::iterator BI = BB->begin(); 2115 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2116 if (&*BI != RetI) 2117 return false; 2118 } 2119 2120 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2121 /// call. 2122 const Function *F = BB->getParent(); 2123 SmallVector<BasicBlock*, 4> TailCallBBs; 2124 if (PN) { 2125 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2126 // Look through bitcasts. 2127 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2128 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2129 BasicBlock *PredBB = PN->getIncomingBlock(I); 2130 // Make sure the phi value is indeed produced by the tail call. 2131 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2132 TLI->mayBeEmittedAsTailCall(CI) && 2133 attributesPermitTailCall(F, CI, RetI, *TLI)) 2134 TailCallBBs.push_back(PredBB); 2135 } 2136 } else { 2137 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2138 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2139 if (!VisitedBBs.insert(*PI).second) 2140 continue; 2141 2142 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2143 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2144 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2145 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2146 if (RI == RE) 2147 continue; 2148 2149 CallInst *CI = dyn_cast<CallInst>(&*RI); 2150 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2151 attributesPermitTailCall(F, CI, RetI, *TLI)) 2152 TailCallBBs.push_back(*PI); 2153 } 2154 } 2155 2156 bool Changed = false; 2157 for (auto const &TailCallBB : TailCallBBs) { 2158 // Make sure the call instruction is followed by an unconditional branch to 2159 // the return block. 2160 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2161 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2162 continue; 2163 2164 // Duplicate the return into TailCallBB. 2165 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2166 ModifiedDT = Changed = true; 2167 ++NumRetsDup; 2168 } 2169 2170 // If we eliminated all predecessors of the block, delete the block now. 2171 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2172 BB->eraseFromParent(); 2173 2174 return Changed; 2175 } 2176 2177 //===----------------------------------------------------------------------===// 2178 // Memory Optimization 2179 //===----------------------------------------------------------------------===// 2180 2181 namespace { 2182 2183 /// This is an extended version of TargetLowering::AddrMode 2184 /// which holds actual Value*'s for register values. 2185 struct ExtAddrMode : public TargetLowering::AddrMode { 2186 Value *BaseReg = nullptr; 2187 Value *ScaledReg = nullptr; 2188 Value *OriginalValue = nullptr; 2189 bool InBounds = true; 2190 2191 enum FieldName { 2192 NoField = 0x00, 2193 BaseRegField = 0x01, 2194 BaseGVField = 0x02, 2195 BaseOffsField = 0x04, 2196 ScaledRegField = 0x08, 2197 ScaleField = 0x10, 2198 MultipleFields = 0xff 2199 }; 2200 2201 2202 ExtAddrMode() = default; 2203 2204 void print(raw_ostream &OS) const; 2205 void dump() const; 2206 2207 FieldName compare(const ExtAddrMode &other) { 2208 // First check that the types are the same on each field, as differing types 2209 // is something we can't cope with later on. 2210 if (BaseReg && other.BaseReg && 2211 BaseReg->getType() != other.BaseReg->getType()) 2212 return MultipleFields; 2213 if (BaseGV && other.BaseGV && 2214 BaseGV->getType() != other.BaseGV->getType()) 2215 return MultipleFields; 2216 if (ScaledReg && other.ScaledReg && 2217 ScaledReg->getType() != other.ScaledReg->getType()) 2218 return MultipleFields; 2219 2220 // Conservatively reject 'inbounds' mismatches. 2221 if (InBounds != other.InBounds) 2222 return MultipleFields; 2223 2224 // Check each field to see if it differs. 2225 unsigned Result = NoField; 2226 if (BaseReg != other.BaseReg) 2227 Result |= BaseRegField; 2228 if (BaseGV != other.BaseGV) 2229 Result |= BaseGVField; 2230 if (BaseOffs != other.BaseOffs) 2231 Result |= BaseOffsField; 2232 if (ScaledReg != other.ScaledReg) 2233 Result |= ScaledRegField; 2234 // Don't count 0 as being a different scale, because that actually means 2235 // unscaled (which will already be counted by having no ScaledReg). 2236 if (Scale && other.Scale && Scale != other.Scale) 2237 Result |= ScaleField; 2238 2239 if (countPopulation(Result) > 1) 2240 return MultipleFields; 2241 else 2242 return static_cast<FieldName>(Result); 2243 } 2244 2245 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2246 // with no offset. 2247 bool isTrivial() { 2248 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2249 // trivial if at most one of these terms is nonzero, except that BaseGV and 2250 // BaseReg both being zero actually means a null pointer value, which we 2251 // consider to be 'non-zero' here. 2252 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2253 } 2254 2255 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2256 switch (Field) { 2257 default: 2258 return nullptr; 2259 case BaseRegField: 2260 return BaseReg; 2261 case BaseGVField: 2262 return BaseGV; 2263 case ScaledRegField: 2264 return ScaledReg; 2265 case BaseOffsField: 2266 return ConstantInt::get(IntPtrTy, BaseOffs); 2267 } 2268 } 2269 2270 void SetCombinedField(FieldName Field, Value *V, 2271 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2272 switch (Field) { 2273 default: 2274 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2275 break; 2276 case ExtAddrMode::BaseRegField: 2277 BaseReg = V; 2278 break; 2279 case ExtAddrMode::BaseGVField: 2280 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2281 // in the BaseReg field. 2282 assert(BaseReg == nullptr); 2283 BaseReg = V; 2284 BaseGV = nullptr; 2285 break; 2286 case ExtAddrMode::ScaledRegField: 2287 ScaledReg = V; 2288 // If we have a mix of scaled and unscaled addrmodes then we want scale 2289 // to be the scale and not zero. 2290 if (!Scale) 2291 for (const ExtAddrMode &AM : AddrModes) 2292 if (AM.Scale) { 2293 Scale = AM.Scale; 2294 break; 2295 } 2296 break; 2297 case ExtAddrMode::BaseOffsField: 2298 // The offset is no longer a constant, so it goes in ScaledReg with a 2299 // scale of 1. 2300 assert(ScaledReg == nullptr); 2301 ScaledReg = V; 2302 Scale = 1; 2303 BaseOffs = 0; 2304 break; 2305 } 2306 } 2307 }; 2308 2309 } // end anonymous namespace 2310 2311 #ifndef NDEBUG 2312 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2313 AM.print(OS); 2314 return OS; 2315 } 2316 #endif 2317 2318 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2319 void ExtAddrMode::print(raw_ostream &OS) const { 2320 bool NeedPlus = false; 2321 OS << "["; 2322 if (InBounds) 2323 OS << "inbounds "; 2324 if (BaseGV) { 2325 OS << (NeedPlus ? " + " : "") 2326 << "GV:"; 2327 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2328 NeedPlus = true; 2329 } 2330 2331 if (BaseOffs) { 2332 OS << (NeedPlus ? " + " : "") 2333 << BaseOffs; 2334 NeedPlus = true; 2335 } 2336 2337 if (BaseReg) { 2338 OS << (NeedPlus ? " + " : "") 2339 << "Base:"; 2340 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2341 NeedPlus = true; 2342 } 2343 if (Scale) { 2344 OS << (NeedPlus ? " + " : "") 2345 << Scale << "*"; 2346 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2347 } 2348 2349 OS << ']'; 2350 } 2351 2352 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2353 print(dbgs()); 2354 dbgs() << '\n'; 2355 } 2356 #endif 2357 2358 namespace { 2359 2360 /// This class provides transaction based operation on the IR. 2361 /// Every change made through this class is recorded in the internal state and 2362 /// can be undone (rollback) until commit is called. 2363 class TypePromotionTransaction { 2364 /// This represents the common interface of the individual transaction. 2365 /// Each class implements the logic for doing one specific modification on 2366 /// the IR via the TypePromotionTransaction. 2367 class TypePromotionAction { 2368 protected: 2369 /// The Instruction modified. 2370 Instruction *Inst; 2371 2372 public: 2373 /// Constructor of the action. 2374 /// The constructor performs the related action on the IR. 2375 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2376 2377 virtual ~TypePromotionAction() = default; 2378 2379 /// Undo the modification done by this action. 2380 /// When this method is called, the IR must be in the same state as it was 2381 /// before this action was applied. 2382 /// \pre Undoing the action works if and only if the IR is in the exact same 2383 /// state as it was directly after this action was applied. 2384 virtual void undo() = 0; 2385 2386 /// Advocate every change made by this action. 2387 /// When the results on the IR of the action are to be kept, it is important 2388 /// to call this function, otherwise hidden information may be kept forever. 2389 virtual void commit() { 2390 // Nothing to be done, this action is not doing anything. 2391 } 2392 }; 2393 2394 /// Utility to remember the position of an instruction. 2395 class InsertionHandler { 2396 /// Position of an instruction. 2397 /// Either an instruction: 2398 /// - Is the first in a basic block: BB is used. 2399 /// - Has a previous instruction: PrevInst is used. 2400 union { 2401 Instruction *PrevInst; 2402 BasicBlock *BB; 2403 } Point; 2404 2405 /// Remember whether or not the instruction had a previous instruction. 2406 bool HasPrevInstruction; 2407 2408 public: 2409 /// Record the position of \p Inst. 2410 InsertionHandler(Instruction *Inst) { 2411 BasicBlock::iterator It = Inst->getIterator(); 2412 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2413 if (HasPrevInstruction) 2414 Point.PrevInst = &*--It; 2415 else 2416 Point.BB = Inst->getParent(); 2417 } 2418 2419 /// Insert \p Inst at the recorded position. 2420 void insert(Instruction *Inst) { 2421 if (HasPrevInstruction) { 2422 if (Inst->getParent()) 2423 Inst->removeFromParent(); 2424 Inst->insertAfter(Point.PrevInst); 2425 } else { 2426 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2427 if (Inst->getParent()) 2428 Inst->moveBefore(Position); 2429 else 2430 Inst->insertBefore(Position); 2431 } 2432 } 2433 }; 2434 2435 /// Move an instruction before another. 2436 class InstructionMoveBefore : public TypePromotionAction { 2437 /// Original position of the instruction. 2438 InsertionHandler Position; 2439 2440 public: 2441 /// Move \p Inst before \p Before. 2442 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2443 : TypePromotionAction(Inst), Position(Inst) { 2444 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2445 << "\n"); 2446 Inst->moveBefore(Before); 2447 } 2448 2449 /// Move the instruction back to its original position. 2450 void undo() override { 2451 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2452 Position.insert(Inst); 2453 } 2454 }; 2455 2456 /// Set the operand of an instruction with a new value. 2457 class OperandSetter : public TypePromotionAction { 2458 /// Original operand of the instruction. 2459 Value *Origin; 2460 2461 /// Index of the modified instruction. 2462 unsigned Idx; 2463 2464 public: 2465 /// Set \p Idx operand of \p Inst with \p NewVal. 2466 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2467 : TypePromotionAction(Inst), Idx(Idx) { 2468 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2469 << "for:" << *Inst << "\n" 2470 << "with:" << *NewVal << "\n"); 2471 Origin = Inst->getOperand(Idx); 2472 Inst->setOperand(Idx, NewVal); 2473 } 2474 2475 /// Restore the original value of the instruction. 2476 void undo() override { 2477 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2478 << "for: " << *Inst << "\n" 2479 << "with: " << *Origin << "\n"); 2480 Inst->setOperand(Idx, Origin); 2481 } 2482 }; 2483 2484 /// Hide the operands of an instruction. 2485 /// Do as if this instruction was not using any of its operands. 2486 class OperandsHider : public TypePromotionAction { 2487 /// The list of original operands. 2488 SmallVector<Value *, 4> OriginalValues; 2489 2490 public: 2491 /// Remove \p Inst from the uses of the operands of \p Inst. 2492 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2493 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2494 unsigned NumOpnds = Inst->getNumOperands(); 2495 OriginalValues.reserve(NumOpnds); 2496 for (unsigned It = 0; It < NumOpnds; ++It) { 2497 // Save the current operand. 2498 Value *Val = Inst->getOperand(It); 2499 OriginalValues.push_back(Val); 2500 // Set a dummy one. 2501 // We could use OperandSetter here, but that would imply an overhead 2502 // that we are not willing to pay. 2503 Inst->setOperand(It, UndefValue::get(Val->getType())); 2504 } 2505 } 2506 2507 /// Restore the original list of uses. 2508 void undo() override { 2509 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2510 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2511 Inst->setOperand(It, OriginalValues[It]); 2512 } 2513 }; 2514 2515 /// Build a truncate instruction. 2516 class TruncBuilder : public TypePromotionAction { 2517 Value *Val; 2518 2519 public: 2520 /// Build a truncate instruction of \p Opnd producing a \p Ty 2521 /// result. 2522 /// trunc Opnd to Ty. 2523 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2524 IRBuilder<> Builder(Opnd); 2525 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2526 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2527 } 2528 2529 /// Get the built value. 2530 Value *getBuiltValue() { return Val; } 2531 2532 /// Remove the built instruction. 2533 void undo() override { 2534 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2535 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2536 IVal->eraseFromParent(); 2537 } 2538 }; 2539 2540 /// Build a sign extension instruction. 2541 class SExtBuilder : public TypePromotionAction { 2542 Value *Val; 2543 2544 public: 2545 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2546 /// result. 2547 /// sext Opnd to Ty. 2548 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2549 : TypePromotionAction(InsertPt) { 2550 IRBuilder<> Builder(InsertPt); 2551 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2552 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2553 } 2554 2555 /// Get the built value. 2556 Value *getBuiltValue() { return Val; } 2557 2558 /// Remove the built instruction. 2559 void undo() override { 2560 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2561 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2562 IVal->eraseFromParent(); 2563 } 2564 }; 2565 2566 /// Build a zero extension instruction. 2567 class ZExtBuilder : public TypePromotionAction { 2568 Value *Val; 2569 2570 public: 2571 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2572 /// result. 2573 /// zext Opnd to Ty. 2574 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2575 : TypePromotionAction(InsertPt) { 2576 IRBuilder<> Builder(InsertPt); 2577 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2578 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2579 } 2580 2581 /// Get the built value. 2582 Value *getBuiltValue() { return Val; } 2583 2584 /// Remove the built instruction. 2585 void undo() override { 2586 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2587 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2588 IVal->eraseFromParent(); 2589 } 2590 }; 2591 2592 /// Mutate an instruction to another type. 2593 class TypeMutator : public TypePromotionAction { 2594 /// Record the original type. 2595 Type *OrigTy; 2596 2597 public: 2598 /// Mutate the type of \p Inst into \p NewTy. 2599 TypeMutator(Instruction *Inst, Type *NewTy) 2600 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2601 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2602 << "\n"); 2603 Inst->mutateType(NewTy); 2604 } 2605 2606 /// Mutate the instruction back to its original type. 2607 void undo() override { 2608 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2609 << "\n"); 2610 Inst->mutateType(OrigTy); 2611 } 2612 }; 2613 2614 /// Replace the uses of an instruction by another instruction. 2615 class UsesReplacer : public TypePromotionAction { 2616 /// Helper structure to keep track of the replaced uses. 2617 struct InstructionAndIdx { 2618 /// The instruction using the instruction. 2619 Instruction *Inst; 2620 2621 /// The index where this instruction is used for Inst. 2622 unsigned Idx; 2623 2624 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2625 : Inst(Inst), Idx(Idx) {} 2626 }; 2627 2628 /// Keep track of the original uses (pair Instruction, Index). 2629 SmallVector<InstructionAndIdx, 4> OriginalUses; 2630 /// Keep track of the debug users. 2631 SmallVector<DbgValueInst *, 1> DbgValues; 2632 2633 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2634 2635 public: 2636 /// Replace all the use of \p Inst by \p New. 2637 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2638 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2639 << "\n"); 2640 // Record the original uses. 2641 for (Use &U : Inst->uses()) { 2642 Instruction *UserI = cast<Instruction>(U.getUser()); 2643 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2644 } 2645 // Record the debug uses separately. They are not in the instruction's 2646 // use list, but they are replaced by RAUW. 2647 findDbgValues(DbgValues, Inst); 2648 2649 // Now, we can replace the uses. 2650 Inst->replaceAllUsesWith(New); 2651 } 2652 2653 /// Reassign the original uses of Inst to Inst. 2654 void undo() override { 2655 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2656 for (use_iterator UseIt = OriginalUses.begin(), 2657 EndIt = OriginalUses.end(); 2658 UseIt != EndIt; ++UseIt) { 2659 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2660 } 2661 // RAUW has replaced all original uses with references to the new value, 2662 // including the debug uses. Since we are undoing the replacements, 2663 // the original debug uses must also be reinstated to maintain the 2664 // correctness and utility of debug value instructions. 2665 for (auto *DVI: DbgValues) { 2666 LLVMContext &Ctx = Inst->getType()->getContext(); 2667 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2668 DVI->setOperand(0, MV); 2669 } 2670 } 2671 }; 2672 2673 /// Remove an instruction from the IR. 2674 class InstructionRemover : public TypePromotionAction { 2675 /// Original position of the instruction. 2676 InsertionHandler Inserter; 2677 2678 /// Helper structure to hide all the link to the instruction. In other 2679 /// words, this helps to do as if the instruction was removed. 2680 OperandsHider Hider; 2681 2682 /// Keep track of the uses replaced, if any. 2683 UsesReplacer *Replacer = nullptr; 2684 2685 /// Keep track of instructions removed. 2686 SetOfInstrs &RemovedInsts; 2687 2688 public: 2689 /// Remove all reference of \p Inst and optionally replace all its 2690 /// uses with New. 2691 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2692 /// \pre If !Inst->use_empty(), then New != nullptr 2693 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2694 Value *New = nullptr) 2695 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2696 RemovedInsts(RemovedInsts) { 2697 if (New) 2698 Replacer = new UsesReplacer(Inst, New); 2699 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2700 RemovedInsts.insert(Inst); 2701 /// The instructions removed here will be freed after completing 2702 /// optimizeBlock() for all blocks as we need to keep track of the 2703 /// removed instructions during promotion. 2704 Inst->removeFromParent(); 2705 } 2706 2707 ~InstructionRemover() override { delete Replacer; } 2708 2709 /// Resurrect the instruction and reassign it to the proper uses if 2710 /// new value was provided when build this action. 2711 void undo() override { 2712 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2713 Inserter.insert(Inst); 2714 if (Replacer) 2715 Replacer->undo(); 2716 Hider.undo(); 2717 RemovedInsts.erase(Inst); 2718 } 2719 }; 2720 2721 public: 2722 /// Restoration point. 2723 /// The restoration point is a pointer to an action instead of an iterator 2724 /// because the iterator may be invalidated but not the pointer. 2725 using ConstRestorationPt = const TypePromotionAction *; 2726 2727 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2728 : RemovedInsts(RemovedInsts) {} 2729 2730 /// Advocate every changes made in that transaction. 2731 void commit(); 2732 2733 /// Undo all the changes made after the given point. 2734 void rollback(ConstRestorationPt Point); 2735 2736 /// Get the current restoration point. 2737 ConstRestorationPt getRestorationPoint() const; 2738 2739 /// \name API for IR modification with state keeping to support rollback. 2740 /// @{ 2741 /// Same as Instruction::setOperand. 2742 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2743 2744 /// Same as Instruction::eraseFromParent. 2745 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2746 2747 /// Same as Value::replaceAllUsesWith. 2748 void replaceAllUsesWith(Instruction *Inst, Value *New); 2749 2750 /// Same as Value::mutateType. 2751 void mutateType(Instruction *Inst, Type *NewTy); 2752 2753 /// Same as IRBuilder::createTrunc. 2754 Value *createTrunc(Instruction *Opnd, Type *Ty); 2755 2756 /// Same as IRBuilder::createSExt. 2757 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2758 2759 /// Same as IRBuilder::createZExt. 2760 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2761 2762 /// Same as Instruction::moveBefore. 2763 void moveBefore(Instruction *Inst, Instruction *Before); 2764 /// @} 2765 2766 private: 2767 /// The ordered list of actions made so far. 2768 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2769 2770 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2771 2772 SetOfInstrs &RemovedInsts; 2773 }; 2774 2775 } // end anonymous namespace 2776 2777 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2778 Value *NewVal) { 2779 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2780 Inst, Idx, NewVal)); 2781 } 2782 2783 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2784 Value *NewVal) { 2785 Actions.push_back( 2786 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2787 Inst, RemovedInsts, NewVal)); 2788 } 2789 2790 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2791 Value *New) { 2792 Actions.push_back( 2793 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2794 } 2795 2796 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2797 Actions.push_back( 2798 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2799 } 2800 2801 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2802 Type *Ty) { 2803 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2804 Value *Val = Ptr->getBuiltValue(); 2805 Actions.push_back(std::move(Ptr)); 2806 return Val; 2807 } 2808 2809 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2810 Value *Opnd, Type *Ty) { 2811 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2812 Value *Val = Ptr->getBuiltValue(); 2813 Actions.push_back(std::move(Ptr)); 2814 return Val; 2815 } 2816 2817 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2818 Value *Opnd, Type *Ty) { 2819 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2820 Value *Val = Ptr->getBuiltValue(); 2821 Actions.push_back(std::move(Ptr)); 2822 return Val; 2823 } 2824 2825 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2826 Instruction *Before) { 2827 Actions.push_back( 2828 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2829 Inst, Before)); 2830 } 2831 2832 TypePromotionTransaction::ConstRestorationPt 2833 TypePromotionTransaction::getRestorationPoint() const { 2834 return !Actions.empty() ? Actions.back().get() : nullptr; 2835 } 2836 2837 void TypePromotionTransaction::commit() { 2838 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2839 ++It) 2840 (*It)->commit(); 2841 Actions.clear(); 2842 } 2843 2844 void TypePromotionTransaction::rollback( 2845 TypePromotionTransaction::ConstRestorationPt Point) { 2846 while (!Actions.empty() && Point != Actions.back().get()) { 2847 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2848 Curr->undo(); 2849 } 2850 } 2851 2852 namespace { 2853 2854 /// A helper class for matching addressing modes. 2855 /// 2856 /// This encapsulates the logic for matching the target-legal addressing modes. 2857 class AddressingModeMatcher { 2858 SmallVectorImpl<Instruction*> &AddrModeInsts; 2859 const TargetLowering &TLI; 2860 const TargetRegisterInfo &TRI; 2861 const DataLayout &DL; 2862 2863 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2864 /// the memory instruction that we're computing this address for. 2865 Type *AccessTy; 2866 unsigned AddrSpace; 2867 Instruction *MemoryInst; 2868 2869 /// This is the addressing mode that we're building up. This is 2870 /// part of the return value of this addressing mode matching stuff. 2871 ExtAddrMode &AddrMode; 2872 2873 /// The instructions inserted by other CodeGenPrepare optimizations. 2874 const SetOfInstrs &InsertedInsts; 2875 2876 /// A map from the instructions to their type before promotion. 2877 InstrToOrigTy &PromotedInsts; 2878 2879 /// The ongoing transaction where every action should be registered. 2880 TypePromotionTransaction &TPT; 2881 2882 // A GEP which has too large offset to be folded into the addressing mode. 2883 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2884 2885 /// This is set to true when we should not do profitability checks. 2886 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2887 bool IgnoreProfitability; 2888 2889 /// True if we are optimizing for size. 2890 bool OptSize; 2891 2892 ProfileSummaryInfo *PSI; 2893 BlockFrequencyInfo *BFI; 2894 2895 AddressingModeMatcher( 2896 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2897 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2898 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2899 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2900 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2901 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2902 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2903 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2904 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2905 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2906 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2907 IgnoreProfitability = false; 2908 } 2909 2910 public: 2911 /// Find the maximal addressing mode that a load/store of V can fold, 2912 /// give an access type of AccessTy. This returns a list of involved 2913 /// instructions in AddrModeInsts. 2914 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2915 /// optimizations. 2916 /// \p PromotedInsts maps the instructions to their type before promotion. 2917 /// \p The ongoing transaction where every action should be registered. 2918 static ExtAddrMode 2919 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2920 SmallVectorImpl<Instruction *> &AddrModeInsts, 2921 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2922 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2923 TypePromotionTransaction &TPT, 2924 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2925 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2926 ExtAddrMode Result; 2927 2928 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2929 MemoryInst, Result, InsertedInsts, 2930 PromotedInsts, TPT, LargeOffsetGEP, 2931 OptSize, PSI, BFI) 2932 .matchAddr(V, 0); 2933 (void)Success; assert(Success && "Couldn't select *anything*?"); 2934 return Result; 2935 } 2936 2937 private: 2938 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2939 bool matchAddr(Value *Addr, unsigned Depth); 2940 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2941 bool *MovedAway = nullptr); 2942 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2943 ExtAddrMode &AMBefore, 2944 ExtAddrMode &AMAfter); 2945 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2946 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2947 Value *PromotedOperand) const; 2948 }; 2949 2950 class PhiNodeSet; 2951 2952 /// An iterator for PhiNodeSet. 2953 class PhiNodeSetIterator { 2954 PhiNodeSet * const Set; 2955 size_t CurrentIndex = 0; 2956 2957 public: 2958 /// The constructor. Start should point to either a valid element, or be equal 2959 /// to the size of the underlying SmallVector of the PhiNodeSet. 2960 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2961 PHINode * operator*() const; 2962 PhiNodeSetIterator& operator++(); 2963 bool operator==(const PhiNodeSetIterator &RHS) const; 2964 bool operator!=(const PhiNodeSetIterator &RHS) const; 2965 }; 2966 2967 /// Keeps a set of PHINodes. 2968 /// 2969 /// This is a minimal set implementation for a specific use case: 2970 /// It is very fast when there are very few elements, but also provides good 2971 /// performance when there are many. It is similar to SmallPtrSet, but also 2972 /// provides iteration by insertion order, which is deterministic and stable 2973 /// across runs. It is also similar to SmallSetVector, but provides removing 2974 /// elements in O(1) time. This is achieved by not actually removing the element 2975 /// from the underlying vector, so comes at the cost of using more memory, but 2976 /// that is fine, since PhiNodeSets are used as short lived objects. 2977 class PhiNodeSet { 2978 friend class PhiNodeSetIterator; 2979 2980 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2981 using iterator = PhiNodeSetIterator; 2982 2983 /// Keeps the elements in the order of their insertion in the underlying 2984 /// vector. To achieve constant time removal, it never deletes any element. 2985 SmallVector<PHINode *, 32> NodeList; 2986 2987 /// Keeps the elements in the underlying set implementation. This (and not the 2988 /// NodeList defined above) is the source of truth on whether an element 2989 /// is actually in the collection. 2990 MapType NodeMap; 2991 2992 /// Points to the first valid (not deleted) element when the set is not empty 2993 /// and the value is not zero. Equals to the size of the underlying vector 2994 /// when the set is empty. When the value is 0, as in the beginning, the 2995 /// first element may or may not be valid. 2996 size_t FirstValidElement = 0; 2997 2998 public: 2999 /// Inserts a new element to the collection. 3000 /// \returns true if the element is actually added, i.e. was not in the 3001 /// collection before the operation. 3002 bool insert(PHINode *Ptr) { 3003 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3004 NodeList.push_back(Ptr); 3005 return true; 3006 } 3007 return false; 3008 } 3009 3010 /// Removes the element from the collection. 3011 /// \returns whether the element is actually removed, i.e. was in the 3012 /// collection before the operation. 3013 bool erase(PHINode *Ptr) { 3014 auto it = NodeMap.find(Ptr); 3015 if (it != NodeMap.end()) { 3016 NodeMap.erase(Ptr); 3017 SkipRemovedElements(FirstValidElement); 3018 return true; 3019 } 3020 return false; 3021 } 3022 3023 /// Removes all elements and clears the collection. 3024 void clear() { 3025 NodeMap.clear(); 3026 NodeList.clear(); 3027 FirstValidElement = 0; 3028 } 3029 3030 /// \returns an iterator that will iterate the elements in the order of 3031 /// insertion. 3032 iterator begin() { 3033 if (FirstValidElement == 0) 3034 SkipRemovedElements(FirstValidElement); 3035 return PhiNodeSetIterator(this, FirstValidElement); 3036 } 3037 3038 /// \returns an iterator that points to the end of the collection. 3039 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3040 3041 /// Returns the number of elements in the collection. 3042 size_t size() const { 3043 return NodeMap.size(); 3044 } 3045 3046 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3047 size_t count(PHINode *Ptr) const { 3048 return NodeMap.count(Ptr); 3049 } 3050 3051 private: 3052 /// Updates the CurrentIndex so that it will point to a valid element. 3053 /// 3054 /// If the element of NodeList at CurrentIndex is valid, it does not 3055 /// change it. If there are no more valid elements, it updates CurrentIndex 3056 /// to point to the end of the NodeList. 3057 void SkipRemovedElements(size_t &CurrentIndex) { 3058 while (CurrentIndex < NodeList.size()) { 3059 auto it = NodeMap.find(NodeList[CurrentIndex]); 3060 // If the element has been deleted and added again later, NodeMap will 3061 // point to a different index, so CurrentIndex will still be invalid. 3062 if (it != NodeMap.end() && it->second == CurrentIndex) 3063 break; 3064 ++CurrentIndex; 3065 } 3066 } 3067 }; 3068 3069 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3070 : Set(Set), CurrentIndex(Start) {} 3071 3072 PHINode * PhiNodeSetIterator::operator*() const { 3073 assert(CurrentIndex < Set->NodeList.size() && 3074 "PhiNodeSet access out of range"); 3075 return Set->NodeList[CurrentIndex]; 3076 } 3077 3078 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3079 assert(CurrentIndex < Set->NodeList.size() && 3080 "PhiNodeSet access out of range"); 3081 ++CurrentIndex; 3082 Set->SkipRemovedElements(CurrentIndex); 3083 return *this; 3084 } 3085 3086 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3087 return CurrentIndex == RHS.CurrentIndex; 3088 } 3089 3090 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3091 return !((*this) == RHS); 3092 } 3093 3094 /// Keep track of simplification of Phi nodes. 3095 /// Accept the set of all phi nodes and erase phi node from this set 3096 /// if it is simplified. 3097 class SimplificationTracker { 3098 DenseMap<Value *, Value *> Storage; 3099 const SimplifyQuery &SQ; 3100 // Tracks newly created Phi nodes. The elements are iterated by insertion 3101 // order. 3102 PhiNodeSet AllPhiNodes; 3103 // Tracks newly created Select nodes. 3104 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3105 3106 public: 3107 SimplificationTracker(const SimplifyQuery &sq) 3108 : SQ(sq) {} 3109 3110 Value *Get(Value *V) { 3111 do { 3112 auto SV = Storage.find(V); 3113 if (SV == Storage.end()) 3114 return V; 3115 V = SV->second; 3116 } while (true); 3117 } 3118 3119 Value *Simplify(Value *Val) { 3120 SmallVector<Value *, 32> WorkList; 3121 SmallPtrSet<Value *, 32> Visited; 3122 WorkList.push_back(Val); 3123 while (!WorkList.empty()) { 3124 auto P = WorkList.pop_back_val(); 3125 if (!Visited.insert(P).second) 3126 continue; 3127 if (auto *PI = dyn_cast<Instruction>(P)) 3128 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3129 for (auto *U : PI->users()) 3130 WorkList.push_back(cast<Value>(U)); 3131 Put(PI, V); 3132 PI->replaceAllUsesWith(V); 3133 if (auto *PHI = dyn_cast<PHINode>(PI)) 3134 AllPhiNodes.erase(PHI); 3135 if (auto *Select = dyn_cast<SelectInst>(PI)) 3136 AllSelectNodes.erase(Select); 3137 PI->eraseFromParent(); 3138 } 3139 } 3140 return Get(Val); 3141 } 3142 3143 void Put(Value *From, Value *To) { 3144 Storage.insert({ From, To }); 3145 } 3146 3147 void ReplacePhi(PHINode *From, PHINode *To) { 3148 Value* OldReplacement = Get(From); 3149 while (OldReplacement != From) { 3150 From = To; 3151 To = dyn_cast<PHINode>(OldReplacement); 3152 OldReplacement = Get(From); 3153 } 3154 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3155 Put(From, To); 3156 From->replaceAllUsesWith(To); 3157 AllPhiNodes.erase(From); 3158 From->eraseFromParent(); 3159 } 3160 3161 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3162 3163 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3164 3165 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3166 3167 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3168 3169 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3170 3171 void destroyNewNodes(Type *CommonType) { 3172 // For safe erasing, replace the uses with dummy value first. 3173 auto Dummy = UndefValue::get(CommonType); 3174 for (auto I : AllPhiNodes) { 3175 I->replaceAllUsesWith(Dummy); 3176 I->eraseFromParent(); 3177 } 3178 AllPhiNodes.clear(); 3179 for (auto I : AllSelectNodes) { 3180 I->replaceAllUsesWith(Dummy); 3181 I->eraseFromParent(); 3182 } 3183 AllSelectNodes.clear(); 3184 } 3185 }; 3186 3187 /// A helper class for combining addressing modes. 3188 class AddressingModeCombiner { 3189 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3190 typedef std::pair<PHINode *, PHINode *> PHIPair; 3191 3192 private: 3193 /// The addressing modes we've collected. 3194 SmallVector<ExtAddrMode, 16> AddrModes; 3195 3196 /// The field in which the AddrModes differ, when we have more than one. 3197 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3198 3199 /// Are the AddrModes that we have all just equal to their original values? 3200 bool AllAddrModesTrivial = true; 3201 3202 /// Common Type for all different fields in addressing modes. 3203 Type *CommonType; 3204 3205 /// SimplifyQuery for simplifyInstruction utility. 3206 const SimplifyQuery &SQ; 3207 3208 /// Original Address. 3209 Value *Original; 3210 3211 public: 3212 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3213 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3214 3215 /// Get the combined AddrMode 3216 const ExtAddrMode &getAddrMode() const { 3217 return AddrModes[0]; 3218 } 3219 3220 /// Add a new AddrMode if it's compatible with the AddrModes we already 3221 /// have. 3222 /// \return True iff we succeeded in doing so. 3223 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3224 // Take note of if we have any non-trivial AddrModes, as we need to detect 3225 // when all AddrModes are trivial as then we would introduce a phi or select 3226 // which just duplicates what's already there. 3227 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3228 3229 // If this is the first addrmode then everything is fine. 3230 if (AddrModes.empty()) { 3231 AddrModes.emplace_back(NewAddrMode); 3232 return true; 3233 } 3234 3235 // Figure out how different this is from the other address modes, which we 3236 // can do just by comparing against the first one given that we only care 3237 // about the cumulative difference. 3238 ExtAddrMode::FieldName ThisDifferentField = 3239 AddrModes[0].compare(NewAddrMode); 3240 if (DifferentField == ExtAddrMode::NoField) 3241 DifferentField = ThisDifferentField; 3242 else if (DifferentField != ThisDifferentField) 3243 DifferentField = ExtAddrMode::MultipleFields; 3244 3245 // If NewAddrMode differs in more than one dimension we cannot handle it. 3246 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3247 3248 // If Scale Field is different then we reject. 3249 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3250 3251 // We also must reject the case when base offset is different and 3252 // scale reg is not null, we cannot handle this case due to merge of 3253 // different offsets will be used as ScaleReg. 3254 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3255 !NewAddrMode.ScaledReg); 3256 3257 // We also must reject the case when GV is different and BaseReg installed 3258 // due to we want to use base reg as a merge of GV values. 3259 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3260 !NewAddrMode.HasBaseReg); 3261 3262 // Even if NewAddMode is the same we still need to collect it due to 3263 // original value is different. And later we will need all original values 3264 // as anchors during finding the common Phi node. 3265 if (CanHandle) 3266 AddrModes.emplace_back(NewAddrMode); 3267 else 3268 AddrModes.clear(); 3269 3270 return CanHandle; 3271 } 3272 3273 /// Combine the addressing modes we've collected into a single 3274 /// addressing mode. 3275 /// \return True iff we successfully combined them or we only had one so 3276 /// didn't need to combine them anyway. 3277 bool combineAddrModes() { 3278 // If we have no AddrModes then they can't be combined. 3279 if (AddrModes.size() == 0) 3280 return false; 3281 3282 // A single AddrMode can trivially be combined. 3283 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3284 return true; 3285 3286 // If the AddrModes we collected are all just equal to the value they are 3287 // derived from then combining them wouldn't do anything useful. 3288 if (AllAddrModesTrivial) 3289 return false; 3290 3291 if (!addrModeCombiningAllowed()) 3292 return false; 3293 3294 // Build a map between <original value, basic block where we saw it> to 3295 // value of base register. 3296 // Bail out if there is no common type. 3297 FoldAddrToValueMapping Map; 3298 if (!initializeMap(Map)) 3299 return false; 3300 3301 Value *CommonValue = findCommon(Map); 3302 if (CommonValue) 3303 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3304 return CommonValue != nullptr; 3305 } 3306 3307 private: 3308 /// Initialize Map with anchor values. For address seen 3309 /// we set the value of different field saw in this address. 3310 /// At the same time we find a common type for different field we will 3311 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3312 /// Return false if there is no common type found. 3313 bool initializeMap(FoldAddrToValueMapping &Map) { 3314 // Keep track of keys where the value is null. We will need to replace it 3315 // with constant null when we know the common type. 3316 SmallVector<Value *, 2> NullValue; 3317 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3318 for (auto &AM : AddrModes) { 3319 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3320 if (DV) { 3321 auto *Type = DV->getType(); 3322 if (CommonType && CommonType != Type) 3323 return false; 3324 CommonType = Type; 3325 Map[AM.OriginalValue] = DV; 3326 } else { 3327 NullValue.push_back(AM.OriginalValue); 3328 } 3329 } 3330 assert(CommonType && "At least one non-null value must be!"); 3331 for (auto *V : NullValue) 3332 Map[V] = Constant::getNullValue(CommonType); 3333 return true; 3334 } 3335 3336 /// We have mapping between value A and other value B where B was a field in 3337 /// addressing mode represented by A. Also we have an original value C 3338 /// representing an address we start with. Traversing from C through phi and 3339 /// selects we ended up with A's in a map. This utility function tries to find 3340 /// a value V which is a field in addressing mode C and traversing through phi 3341 /// nodes and selects we will end up in corresponded values B in a map. 3342 /// The utility will create a new Phi/Selects if needed. 3343 // The simple example looks as follows: 3344 // BB1: 3345 // p1 = b1 + 40 3346 // br cond BB2, BB3 3347 // BB2: 3348 // p2 = b2 + 40 3349 // br BB3 3350 // BB3: 3351 // p = phi [p1, BB1], [p2, BB2] 3352 // v = load p 3353 // Map is 3354 // p1 -> b1 3355 // p2 -> b2 3356 // Request is 3357 // p -> ? 3358 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3359 Value *findCommon(FoldAddrToValueMapping &Map) { 3360 // Tracks the simplification of newly created phi nodes. The reason we use 3361 // this mapping is because we will add new created Phi nodes in AddrToBase. 3362 // Simplification of Phi nodes is recursive, so some Phi node may 3363 // be simplified after we added it to AddrToBase. In reality this 3364 // simplification is possible only if original phi/selects were not 3365 // simplified yet. 3366 // Using this mapping we can find the current value in AddrToBase. 3367 SimplificationTracker ST(SQ); 3368 3369 // First step, DFS to create PHI nodes for all intermediate blocks. 3370 // Also fill traverse order for the second step. 3371 SmallVector<Value *, 32> TraverseOrder; 3372 InsertPlaceholders(Map, TraverseOrder, ST); 3373 3374 // Second Step, fill new nodes by merged values and simplify if possible. 3375 FillPlaceholders(Map, TraverseOrder, ST); 3376 3377 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3378 ST.destroyNewNodes(CommonType); 3379 return nullptr; 3380 } 3381 3382 // Now we'd like to match New Phi nodes to existed ones. 3383 unsigned PhiNotMatchedCount = 0; 3384 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3385 ST.destroyNewNodes(CommonType); 3386 return nullptr; 3387 } 3388 3389 auto *Result = ST.Get(Map.find(Original)->second); 3390 if (Result) { 3391 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3392 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3393 } 3394 return Result; 3395 } 3396 3397 /// Try to match PHI node to Candidate. 3398 /// Matcher tracks the matched Phi nodes. 3399 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3400 SmallSetVector<PHIPair, 8> &Matcher, 3401 PhiNodeSet &PhiNodesToMatch) { 3402 SmallVector<PHIPair, 8> WorkList; 3403 Matcher.insert({ PHI, Candidate }); 3404 SmallSet<PHINode *, 8> MatchedPHIs; 3405 MatchedPHIs.insert(PHI); 3406 WorkList.push_back({ PHI, Candidate }); 3407 SmallSet<PHIPair, 8> Visited; 3408 while (!WorkList.empty()) { 3409 auto Item = WorkList.pop_back_val(); 3410 if (!Visited.insert(Item).second) 3411 continue; 3412 // We iterate over all incoming values to Phi to compare them. 3413 // If values are different and both of them Phi and the first one is a 3414 // Phi we added (subject to match) and both of them is in the same basic 3415 // block then we can match our pair if values match. So we state that 3416 // these values match and add it to work list to verify that. 3417 for (auto B : Item.first->blocks()) { 3418 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3419 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3420 if (FirstValue == SecondValue) 3421 continue; 3422 3423 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3424 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3425 3426 // One of them is not Phi or 3427 // The first one is not Phi node from the set we'd like to match or 3428 // Phi nodes from different basic blocks then 3429 // we will not be able to match. 3430 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3431 FirstPhi->getParent() != SecondPhi->getParent()) 3432 return false; 3433 3434 // If we already matched them then continue. 3435 if (Matcher.count({ FirstPhi, SecondPhi })) 3436 continue; 3437 // So the values are different and does not match. So we need them to 3438 // match. (But we register no more than one match per PHI node, so that 3439 // we won't later try to replace them twice.) 3440 if (MatchedPHIs.insert(FirstPhi).second) 3441 Matcher.insert({ FirstPhi, SecondPhi }); 3442 // But me must check it. 3443 WorkList.push_back({ FirstPhi, SecondPhi }); 3444 } 3445 } 3446 return true; 3447 } 3448 3449 /// For the given set of PHI nodes (in the SimplificationTracker) try 3450 /// to find their equivalents. 3451 /// Returns false if this matching fails and creation of new Phi is disabled. 3452 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3453 unsigned &PhiNotMatchedCount) { 3454 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3455 // order, so the replacements (ReplacePhi) are also done in a deterministic 3456 // order. 3457 SmallSetVector<PHIPair, 8> Matched; 3458 SmallPtrSet<PHINode *, 8> WillNotMatch; 3459 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3460 while (PhiNodesToMatch.size()) { 3461 PHINode *PHI = *PhiNodesToMatch.begin(); 3462 3463 // Add us, if no Phi nodes in the basic block we do not match. 3464 WillNotMatch.clear(); 3465 WillNotMatch.insert(PHI); 3466 3467 // Traverse all Phis until we found equivalent or fail to do that. 3468 bool IsMatched = false; 3469 for (auto &P : PHI->getParent()->phis()) { 3470 if (&P == PHI) 3471 continue; 3472 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3473 break; 3474 // If it does not match, collect all Phi nodes from matcher. 3475 // if we end up with no match, them all these Phi nodes will not match 3476 // later. 3477 for (auto M : Matched) 3478 WillNotMatch.insert(M.first); 3479 Matched.clear(); 3480 } 3481 if (IsMatched) { 3482 // Replace all matched values and erase them. 3483 for (auto MV : Matched) 3484 ST.ReplacePhi(MV.first, MV.second); 3485 Matched.clear(); 3486 continue; 3487 } 3488 // If we are not allowed to create new nodes then bail out. 3489 if (!AllowNewPhiNodes) 3490 return false; 3491 // Just remove all seen values in matcher. They will not match anything. 3492 PhiNotMatchedCount += WillNotMatch.size(); 3493 for (auto *P : WillNotMatch) 3494 PhiNodesToMatch.erase(P); 3495 } 3496 return true; 3497 } 3498 /// Fill the placeholders with values from predecessors and simplify them. 3499 void FillPlaceholders(FoldAddrToValueMapping &Map, 3500 SmallVectorImpl<Value *> &TraverseOrder, 3501 SimplificationTracker &ST) { 3502 while (!TraverseOrder.empty()) { 3503 Value *Current = TraverseOrder.pop_back_val(); 3504 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3505 Value *V = Map[Current]; 3506 3507 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3508 // CurrentValue also must be Select. 3509 auto *CurrentSelect = cast<SelectInst>(Current); 3510 auto *TrueValue = CurrentSelect->getTrueValue(); 3511 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3512 Select->setTrueValue(ST.Get(Map[TrueValue])); 3513 auto *FalseValue = CurrentSelect->getFalseValue(); 3514 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3515 Select->setFalseValue(ST.Get(Map[FalseValue])); 3516 } else { 3517 // Must be a Phi node then. 3518 auto *PHI = cast<PHINode>(V); 3519 // Fill the Phi node with values from predecessors. 3520 for (auto B : predecessors(PHI->getParent())) { 3521 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3522 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3523 PHI->addIncoming(ST.Get(Map[PV]), B); 3524 } 3525 } 3526 Map[Current] = ST.Simplify(V); 3527 } 3528 } 3529 3530 /// Starting from original value recursively iterates over def-use chain up to 3531 /// known ending values represented in a map. For each traversed phi/select 3532 /// inserts a placeholder Phi or Select. 3533 /// Reports all new created Phi/Select nodes by adding them to set. 3534 /// Also reports and order in what values have been traversed. 3535 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3536 SmallVectorImpl<Value *> &TraverseOrder, 3537 SimplificationTracker &ST) { 3538 SmallVector<Value *, 32> Worklist; 3539 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3540 "Address must be a Phi or Select node"); 3541 auto *Dummy = UndefValue::get(CommonType); 3542 Worklist.push_back(Original); 3543 while (!Worklist.empty()) { 3544 Value *Current = Worklist.pop_back_val(); 3545 // if it is already visited or it is an ending value then skip it. 3546 if (Map.find(Current) != Map.end()) 3547 continue; 3548 TraverseOrder.push_back(Current); 3549 3550 // CurrentValue must be a Phi node or select. All others must be covered 3551 // by anchors. 3552 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3553 // Is it OK to get metadata from OrigSelect?! 3554 // Create a Select placeholder with dummy value. 3555 SelectInst *Select = SelectInst::Create( 3556 CurrentSelect->getCondition(), Dummy, Dummy, 3557 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3558 Map[Current] = Select; 3559 ST.insertNewSelect(Select); 3560 // We are interested in True and False values. 3561 Worklist.push_back(CurrentSelect->getTrueValue()); 3562 Worklist.push_back(CurrentSelect->getFalseValue()); 3563 } else { 3564 // It must be a Phi node then. 3565 PHINode *CurrentPhi = cast<PHINode>(Current); 3566 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3567 PHINode *PHI = 3568 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3569 Map[Current] = PHI; 3570 ST.insertNewPhi(PHI); 3571 for (Value *P : CurrentPhi->incoming_values()) 3572 Worklist.push_back(P); 3573 } 3574 } 3575 } 3576 3577 bool addrModeCombiningAllowed() { 3578 if (DisableComplexAddrModes) 3579 return false; 3580 switch (DifferentField) { 3581 default: 3582 return false; 3583 case ExtAddrMode::BaseRegField: 3584 return AddrSinkCombineBaseReg; 3585 case ExtAddrMode::BaseGVField: 3586 return AddrSinkCombineBaseGV; 3587 case ExtAddrMode::BaseOffsField: 3588 return AddrSinkCombineBaseOffs; 3589 case ExtAddrMode::ScaledRegField: 3590 return AddrSinkCombineScaledReg; 3591 } 3592 } 3593 }; 3594 } // end anonymous namespace 3595 3596 /// Try adding ScaleReg*Scale to the current addressing mode. 3597 /// Return true and update AddrMode if this addr mode is legal for the target, 3598 /// false if not. 3599 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3600 unsigned Depth) { 3601 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3602 // mode. Just process that directly. 3603 if (Scale == 1) 3604 return matchAddr(ScaleReg, Depth); 3605 3606 // If the scale is 0, it takes nothing to add this. 3607 if (Scale == 0) 3608 return true; 3609 3610 // If we already have a scale of this value, we can add to it, otherwise, we 3611 // need an available scale field. 3612 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3613 return false; 3614 3615 ExtAddrMode TestAddrMode = AddrMode; 3616 3617 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3618 // [A+B + A*7] -> [B+A*8]. 3619 TestAddrMode.Scale += Scale; 3620 TestAddrMode.ScaledReg = ScaleReg; 3621 3622 // If the new address isn't legal, bail out. 3623 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3624 return false; 3625 3626 // It was legal, so commit it. 3627 AddrMode = TestAddrMode; 3628 3629 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3630 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3631 // X*Scale + C*Scale to addr mode. 3632 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3633 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3634 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3635 TestAddrMode.InBounds = false; 3636 TestAddrMode.ScaledReg = AddLHS; 3637 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3638 3639 // If this addressing mode is legal, commit it and remember that we folded 3640 // this instruction. 3641 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3642 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3643 AddrMode = TestAddrMode; 3644 return true; 3645 } 3646 } 3647 3648 // Otherwise, not (x+c)*scale, just return what we have. 3649 return true; 3650 } 3651 3652 /// This is a little filter, which returns true if an addressing computation 3653 /// involving I might be folded into a load/store accessing it. 3654 /// This doesn't need to be perfect, but needs to accept at least 3655 /// the set of instructions that MatchOperationAddr can. 3656 static bool MightBeFoldableInst(Instruction *I) { 3657 switch (I->getOpcode()) { 3658 case Instruction::BitCast: 3659 case Instruction::AddrSpaceCast: 3660 // Don't touch identity bitcasts. 3661 if (I->getType() == I->getOperand(0)->getType()) 3662 return false; 3663 return I->getType()->isIntOrPtrTy(); 3664 case Instruction::PtrToInt: 3665 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3666 return true; 3667 case Instruction::IntToPtr: 3668 // We know the input is intptr_t, so this is foldable. 3669 return true; 3670 case Instruction::Add: 3671 return true; 3672 case Instruction::Mul: 3673 case Instruction::Shl: 3674 // Can only handle X*C and X << C. 3675 return isa<ConstantInt>(I->getOperand(1)); 3676 case Instruction::GetElementPtr: 3677 return true; 3678 default: 3679 return false; 3680 } 3681 } 3682 3683 /// Check whether or not \p Val is a legal instruction for \p TLI. 3684 /// \note \p Val is assumed to be the product of some type promotion. 3685 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3686 /// to be legal, as the non-promoted value would have had the same state. 3687 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3688 const DataLayout &DL, Value *Val) { 3689 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3690 if (!PromotedInst) 3691 return false; 3692 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3693 // If the ISDOpcode is undefined, it was undefined before the promotion. 3694 if (!ISDOpcode) 3695 return true; 3696 // Otherwise, check if the promoted instruction is legal or not. 3697 return TLI.isOperationLegalOrCustom( 3698 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3699 } 3700 3701 namespace { 3702 3703 /// Hepler class to perform type promotion. 3704 class TypePromotionHelper { 3705 /// Utility function to add a promoted instruction \p ExtOpnd to 3706 /// \p PromotedInsts and record the type of extension we have seen. 3707 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3708 Instruction *ExtOpnd, 3709 bool IsSExt) { 3710 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3711 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3712 if (It != PromotedInsts.end()) { 3713 // If the new extension is same as original, the information in 3714 // PromotedInsts[ExtOpnd] is still correct. 3715 if (It->second.getInt() == ExtTy) 3716 return; 3717 3718 // Now the new extension is different from old extension, we make 3719 // the type information invalid by setting extension type to 3720 // BothExtension. 3721 ExtTy = BothExtension; 3722 } 3723 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3724 } 3725 3726 /// Utility function to query the original type of instruction \p Opnd 3727 /// with a matched extension type. If the extension doesn't match, we 3728 /// cannot use the information we had on the original type. 3729 /// BothExtension doesn't match any extension type. 3730 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3731 Instruction *Opnd, 3732 bool IsSExt) { 3733 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3734 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3735 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3736 return It->second.getPointer(); 3737 return nullptr; 3738 } 3739 3740 /// Utility function to check whether or not a sign or zero extension 3741 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3742 /// either using the operands of \p Inst or promoting \p Inst. 3743 /// The type of the extension is defined by \p IsSExt. 3744 /// In other words, check if: 3745 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3746 /// #1 Promotion applies: 3747 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3748 /// #2 Operand reuses: 3749 /// ext opnd1 to ConsideredExtType. 3750 /// \p PromotedInsts maps the instructions to their type before promotion. 3751 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3752 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3753 3754 /// Utility function to determine if \p OpIdx should be promoted when 3755 /// promoting \p Inst. 3756 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3757 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3758 } 3759 3760 /// Utility function to promote the operand of \p Ext when this 3761 /// operand is a promotable trunc or sext or zext. 3762 /// \p PromotedInsts maps the instructions to their type before promotion. 3763 /// \p CreatedInstsCost[out] contains the cost of all instructions 3764 /// created to promote the operand of Ext. 3765 /// Newly added extensions are inserted in \p Exts. 3766 /// Newly added truncates are inserted in \p Truncs. 3767 /// Should never be called directly. 3768 /// \return The promoted value which is used instead of Ext. 3769 static Value *promoteOperandForTruncAndAnyExt( 3770 Instruction *Ext, TypePromotionTransaction &TPT, 3771 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3772 SmallVectorImpl<Instruction *> *Exts, 3773 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3774 3775 /// Utility function to promote the operand of \p Ext when this 3776 /// operand is promotable and is not a supported trunc or sext. 3777 /// \p PromotedInsts maps the instructions to their type before promotion. 3778 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3779 /// created to promote the operand of Ext. 3780 /// Newly added extensions are inserted in \p Exts. 3781 /// Newly added truncates are inserted in \p Truncs. 3782 /// Should never be called directly. 3783 /// \return The promoted value which is used instead of Ext. 3784 static Value *promoteOperandForOther(Instruction *Ext, 3785 TypePromotionTransaction &TPT, 3786 InstrToOrigTy &PromotedInsts, 3787 unsigned &CreatedInstsCost, 3788 SmallVectorImpl<Instruction *> *Exts, 3789 SmallVectorImpl<Instruction *> *Truncs, 3790 const TargetLowering &TLI, bool IsSExt); 3791 3792 /// \see promoteOperandForOther. 3793 static Value *signExtendOperandForOther( 3794 Instruction *Ext, TypePromotionTransaction &TPT, 3795 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3796 SmallVectorImpl<Instruction *> *Exts, 3797 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3798 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3799 Exts, Truncs, TLI, true); 3800 } 3801 3802 /// \see promoteOperandForOther. 3803 static Value *zeroExtendOperandForOther( 3804 Instruction *Ext, TypePromotionTransaction &TPT, 3805 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3806 SmallVectorImpl<Instruction *> *Exts, 3807 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3808 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3809 Exts, Truncs, TLI, false); 3810 } 3811 3812 public: 3813 /// Type for the utility function that promotes the operand of Ext. 3814 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3815 InstrToOrigTy &PromotedInsts, 3816 unsigned &CreatedInstsCost, 3817 SmallVectorImpl<Instruction *> *Exts, 3818 SmallVectorImpl<Instruction *> *Truncs, 3819 const TargetLowering &TLI); 3820 3821 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3822 /// action to promote the operand of \p Ext instead of using Ext. 3823 /// \return NULL if no promotable action is possible with the current 3824 /// sign extension. 3825 /// \p InsertedInsts keeps track of all the instructions inserted by the 3826 /// other CodeGenPrepare optimizations. This information is important 3827 /// because we do not want to promote these instructions as CodeGenPrepare 3828 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3829 /// \p PromotedInsts maps the instructions to their type before promotion. 3830 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3831 const TargetLowering &TLI, 3832 const InstrToOrigTy &PromotedInsts); 3833 }; 3834 3835 } // end anonymous namespace 3836 3837 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3838 Type *ConsideredExtType, 3839 const InstrToOrigTy &PromotedInsts, 3840 bool IsSExt) { 3841 // The promotion helper does not know how to deal with vector types yet. 3842 // To be able to fix that, we would need to fix the places where we 3843 // statically extend, e.g., constants and such. 3844 if (Inst->getType()->isVectorTy()) 3845 return false; 3846 3847 // We can always get through zext. 3848 if (isa<ZExtInst>(Inst)) 3849 return true; 3850 3851 // sext(sext) is ok too. 3852 if (IsSExt && isa<SExtInst>(Inst)) 3853 return true; 3854 3855 // We can get through binary operator, if it is legal. In other words, the 3856 // binary operator must have a nuw or nsw flag. 3857 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3858 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3859 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3860 (IsSExt && BinOp->hasNoSignedWrap()))) 3861 return true; 3862 3863 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3864 if ((Inst->getOpcode() == Instruction::And || 3865 Inst->getOpcode() == Instruction::Or)) 3866 return true; 3867 3868 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3869 if (Inst->getOpcode() == Instruction::Xor) { 3870 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3871 // Make sure it is not a NOT. 3872 if (Cst && !Cst->getValue().isAllOnesValue()) 3873 return true; 3874 } 3875 3876 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3877 // It may change a poisoned value into a regular value, like 3878 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3879 // poisoned value regular value 3880 // It should be OK since undef covers valid value. 3881 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3882 return true; 3883 3884 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3885 // It may change a poisoned value into a regular value, like 3886 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3887 // poisoned value regular value 3888 // It should be OK since undef covers valid value. 3889 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3890 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3891 if (ExtInst->hasOneUse()) { 3892 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3893 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3894 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3895 if (Cst && 3896 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3897 return true; 3898 } 3899 } 3900 } 3901 3902 // Check if we can do the following simplification. 3903 // ext(trunc(opnd)) --> ext(opnd) 3904 if (!isa<TruncInst>(Inst)) 3905 return false; 3906 3907 Value *OpndVal = Inst->getOperand(0); 3908 // Check if we can use this operand in the extension. 3909 // If the type is larger than the result type of the extension, we cannot. 3910 if (!OpndVal->getType()->isIntegerTy() || 3911 OpndVal->getType()->getIntegerBitWidth() > 3912 ConsideredExtType->getIntegerBitWidth()) 3913 return false; 3914 3915 // If the operand of the truncate is not an instruction, we will not have 3916 // any information on the dropped bits. 3917 // (Actually we could for constant but it is not worth the extra logic). 3918 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3919 if (!Opnd) 3920 return false; 3921 3922 // Check if the source of the type is narrow enough. 3923 // I.e., check that trunc just drops extended bits of the same kind of 3924 // the extension. 3925 // #1 get the type of the operand and check the kind of the extended bits. 3926 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3927 if (OpndType) 3928 ; 3929 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3930 OpndType = Opnd->getOperand(0)->getType(); 3931 else 3932 return false; 3933 3934 // #2 check that the truncate just drops extended bits. 3935 return Inst->getType()->getIntegerBitWidth() >= 3936 OpndType->getIntegerBitWidth(); 3937 } 3938 3939 TypePromotionHelper::Action TypePromotionHelper::getAction( 3940 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3941 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3942 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3943 "Unexpected instruction type"); 3944 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3945 Type *ExtTy = Ext->getType(); 3946 bool IsSExt = isa<SExtInst>(Ext); 3947 // If the operand of the extension is not an instruction, we cannot 3948 // get through. 3949 // If it, check we can get through. 3950 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3951 return nullptr; 3952 3953 // Do not promote if the operand has been added by codegenprepare. 3954 // Otherwise, it means we are undoing an optimization that is likely to be 3955 // redone, thus causing potential infinite loop. 3956 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3957 return nullptr; 3958 3959 // SExt or Trunc instructions. 3960 // Return the related handler. 3961 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3962 isa<ZExtInst>(ExtOpnd)) 3963 return promoteOperandForTruncAndAnyExt; 3964 3965 // Regular instruction. 3966 // Abort early if we will have to insert non-free instructions. 3967 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3968 return nullptr; 3969 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3970 } 3971 3972 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3973 Instruction *SExt, TypePromotionTransaction &TPT, 3974 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3975 SmallVectorImpl<Instruction *> *Exts, 3976 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3977 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3978 // get through it and this method should not be called. 3979 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3980 Value *ExtVal = SExt; 3981 bool HasMergedNonFreeExt = false; 3982 if (isa<ZExtInst>(SExtOpnd)) { 3983 // Replace s|zext(zext(opnd)) 3984 // => zext(opnd). 3985 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3986 Value *ZExt = 3987 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3988 TPT.replaceAllUsesWith(SExt, ZExt); 3989 TPT.eraseInstruction(SExt); 3990 ExtVal = ZExt; 3991 } else { 3992 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3993 // => z|sext(opnd). 3994 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3995 } 3996 CreatedInstsCost = 0; 3997 3998 // Remove dead code. 3999 if (SExtOpnd->use_empty()) 4000 TPT.eraseInstruction(SExtOpnd); 4001 4002 // Check if the extension is still needed. 4003 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4004 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4005 if (ExtInst) { 4006 if (Exts) 4007 Exts->push_back(ExtInst); 4008 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4009 } 4010 return ExtVal; 4011 } 4012 4013 // At this point we have: ext ty opnd to ty. 4014 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4015 Value *NextVal = ExtInst->getOperand(0); 4016 TPT.eraseInstruction(ExtInst, NextVal); 4017 return NextVal; 4018 } 4019 4020 Value *TypePromotionHelper::promoteOperandForOther( 4021 Instruction *Ext, TypePromotionTransaction &TPT, 4022 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4023 SmallVectorImpl<Instruction *> *Exts, 4024 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4025 bool IsSExt) { 4026 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4027 // get through it and this method should not be called. 4028 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4029 CreatedInstsCost = 0; 4030 if (!ExtOpnd->hasOneUse()) { 4031 // ExtOpnd will be promoted. 4032 // All its uses, but Ext, will need to use a truncated value of the 4033 // promoted version. 4034 // Create the truncate now. 4035 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4036 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4037 // Insert it just after the definition. 4038 ITrunc->moveAfter(ExtOpnd); 4039 if (Truncs) 4040 Truncs->push_back(ITrunc); 4041 } 4042 4043 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4044 // Restore the operand of Ext (which has been replaced by the previous call 4045 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4046 TPT.setOperand(Ext, 0, ExtOpnd); 4047 } 4048 4049 // Get through the Instruction: 4050 // 1. Update its type. 4051 // 2. Replace the uses of Ext by Inst. 4052 // 3. Extend each operand that needs to be extended. 4053 4054 // Remember the original type of the instruction before promotion. 4055 // This is useful to know that the high bits are sign extended bits. 4056 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4057 // Step #1. 4058 TPT.mutateType(ExtOpnd, Ext->getType()); 4059 // Step #2. 4060 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4061 // Step #3. 4062 Instruction *ExtForOpnd = Ext; 4063 4064 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4065 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4066 ++OpIdx) { 4067 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4068 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4069 !shouldExtOperand(ExtOpnd, OpIdx)) { 4070 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4071 continue; 4072 } 4073 // Check if we can statically extend the operand. 4074 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4075 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4076 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4077 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4078 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4079 : Cst->getValue().zext(BitWidth); 4080 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4081 continue; 4082 } 4083 // UndefValue are typed, so we have to statically sign extend them. 4084 if (isa<UndefValue>(Opnd)) { 4085 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4086 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4087 continue; 4088 } 4089 4090 // Otherwise we have to explicitly sign extend the operand. 4091 // Check if Ext was reused to extend an operand. 4092 if (!ExtForOpnd) { 4093 // If yes, create a new one. 4094 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4095 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4096 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4097 if (!isa<Instruction>(ValForExtOpnd)) { 4098 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4099 continue; 4100 } 4101 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4102 } 4103 if (Exts) 4104 Exts->push_back(ExtForOpnd); 4105 TPT.setOperand(ExtForOpnd, 0, Opnd); 4106 4107 // Move the sign extension before the insertion point. 4108 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4109 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4110 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4111 // If more sext are required, new instructions will have to be created. 4112 ExtForOpnd = nullptr; 4113 } 4114 if (ExtForOpnd == Ext) { 4115 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4116 TPT.eraseInstruction(Ext); 4117 } 4118 return ExtOpnd; 4119 } 4120 4121 /// Check whether or not promoting an instruction to a wider type is profitable. 4122 /// \p NewCost gives the cost of extension instructions created by the 4123 /// promotion. 4124 /// \p OldCost gives the cost of extension instructions before the promotion 4125 /// plus the number of instructions that have been 4126 /// matched in the addressing mode the promotion. 4127 /// \p PromotedOperand is the value that has been promoted. 4128 /// \return True if the promotion is profitable, false otherwise. 4129 bool AddressingModeMatcher::isPromotionProfitable( 4130 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4131 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4132 << '\n'); 4133 // The cost of the new extensions is greater than the cost of the 4134 // old extension plus what we folded. 4135 // This is not profitable. 4136 if (NewCost > OldCost) 4137 return false; 4138 if (NewCost < OldCost) 4139 return true; 4140 // The promotion is neutral but it may help folding the sign extension in 4141 // loads for instance. 4142 // Check that we did not create an illegal instruction. 4143 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4144 } 4145 4146 /// Given an instruction or constant expr, see if we can fold the operation 4147 /// into the addressing mode. If so, update the addressing mode and return 4148 /// true, otherwise return false without modifying AddrMode. 4149 /// If \p MovedAway is not NULL, it contains the information of whether or 4150 /// not AddrInst has to be folded into the addressing mode on success. 4151 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4152 /// because it has been moved away. 4153 /// Thus AddrInst must not be added in the matched instructions. 4154 /// This state can happen when AddrInst is a sext, since it may be moved away. 4155 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4156 /// not be referenced anymore. 4157 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4158 unsigned Depth, 4159 bool *MovedAway) { 4160 // Avoid exponential behavior on extremely deep expression trees. 4161 if (Depth >= 5) return false; 4162 4163 // By default, all matched instructions stay in place. 4164 if (MovedAway) 4165 *MovedAway = false; 4166 4167 switch (Opcode) { 4168 case Instruction::PtrToInt: 4169 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4170 return matchAddr(AddrInst->getOperand(0), Depth); 4171 case Instruction::IntToPtr: { 4172 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4173 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4174 // This inttoptr is a no-op if the integer type is pointer sized. 4175 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4176 return matchAddr(AddrInst->getOperand(0), Depth); 4177 return false; 4178 } 4179 case Instruction::BitCast: 4180 // BitCast is always a noop, and we can handle it as long as it is 4181 // int->int or pointer->pointer (we don't want int<->fp or something). 4182 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4183 // Don't touch identity bitcasts. These were probably put here by LSR, 4184 // and we don't want to mess around with them. Assume it knows what it 4185 // is doing. 4186 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4187 return matchAddr(AddrInst->getOperand(0), Depth); 4188 return false; 4189 case Instruction::AddrSpaceCast: { 4190 unsigned SrcAS 4191 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4192 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4193 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4194 return matchAddr(AddrInst->getOperand(0), Depth); 4195 return false; 4196 } 4197 case Instruction::Add: { 4198 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4199 ExtAddrMode BackupAddrMode = AddrMode; 4200 unsigned OldSize = AddrModeInsts.size(); 4201 // Start a transaction at this point. 4202 // The LHS may match but not the RHS. 4203 // Therefore, we need a higher level restoration point to undo partially 4204 // matched operation. 4205 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4206 TPT.getRestorationPoint(); 4207 4208 AddrMode.InBounds = false; 4209 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4210 matchAddr(AddrInst->getOperand(0), Depth+1)) 4211 return true; 4212 4213 // Restore the old addr mode info. 4214 AddrMode = BackupAddrMode; 4215 AddrModeInsts.resize(OldSize); 4216 TPT.rollback(LastKnownGood); 4217 4218 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4219 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4220 matchAddr(AddrInst->getOperand(1), Depth+1)) 4221 return true; 4222 4223 // Otherwise we definitely can't merge the ADD in. 4224 AddrMode = BackupAddrMode; 4225 AddrModeInsts.resize(OldSize); 4226 TPT.rollback(LastKnownGood); 4227 break; 4228 } 4229 //case Instruction::Or: 4230 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4231 //break; 4232 case Instruction::Mul: 4233 case Instruction::Shl: { 4234 // Can only handle X*C and X << C. 4235 AddrMode.InBounds = false; 4236 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4237 if (!RHS || RHS->getBitWidth() > 64) 4238 return false; 4239 int64_t Scale = RHS->getSExtValue(); 4240 if (Opcode == Instruction::Shl) 4241 Scale = 1LL << Scale; 4242 4243 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4244 } 4245 case Instruction::GetElementPtr: { 4246 // Scan the GEP. We check it if it contains constant offsets and at most 4247 // one variable offset. 4248 int VariableOperand = -1; 4249 unsigned VariableScale = 0; 4250 4251 int64_t ConstantOffset = 0; 4252 gep_type_iterator GTI = gep_type_begin(AddrInst); 4253 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4254 if (StructType *STy = GTI.getStructTypeOrNull()) { 4255 const StructLayout *SL = DL.getStructLayout(STy); 4256 unsigned Idx = 4257 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4258 ConstantOffset += SL->getElementOffset(Idx); 4259 } else { 4260 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4261 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4262 const APInt &CVal = CI->getValue(); 4263 if (CVal.getMinSignedBits() <= 64) { 4264 ConstantOffset += CVal.getSExtValue() * TypeSize; 4265 continue; 4266 } 4267 } 4268 if (TypeSize) { // Scales of zero don't do anything. 4269 // We only allow one variable index at the moment. 4270 if (VariableOperand != -1) 4271 return false; 4272 4273 // Remember the variable index. 4274 VariableOperand = i; 4275 VariableScale = TypeSize; 4276 } 4277 } 4278 } 4279 4280 // A common case is for the GEP to only do a constant offset. In this case, 4281 // just add it to the disp field and check validity. 4282 if (VariableOperand == -1) { 4283 AddrMode.BaseOffs += ConstantOffset; 4284 if (ConstantOffset == 0 || 4285 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4286 // Check to see if we can fold the base pointer in too. 4287 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4288 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4289 AddrMode.InBounds = false; 4290 return true; 4291 } 4292 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4293 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4294 ConstantOffset > 0) { 4295 // Record GEPs with non-zero offsets as candidates for splitting in the 4296 // event that the offset cannot fit into the r+i addressing mode. 4297 // Simple and common case that only one GEP is used in calculating the 4298 // address for the memory access. 4299 Value *Base = AddrInst->getOperand(0); 4300 auto *BaseI = dyn_cast<Instruction>(Base); 4301 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4302 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4303 (BaseI && !isa<CastInst>(BaseI) && 4304 !isa<GetElementPtrInst>(BaseI))) { 4305 // Make sure the parent block allows inserting non-PHI instructions 4306 // before the terminator. 4307 BasicBlock *Parent = 4308 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4309 if (!Parent->getTerminator()->isEHPad()) 4310 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4311 } 4312 } 4313 AddrMode.BaseOffs -= ConstantOffset; 4314 return false; 4315 } 4316 4317 // Save the valid addressing mode in case we can't match. 4318 ExtAddrMode BackupAddrMode = AddrMode; 4319 unsigned OldSize = AddrModeInsts.size(); 4320 4321 // See if the scale and offset amount is valid for this target. 4322 AddrMode.BaseOffs += ConstantOffset; 4323 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4324 AddrMode.InBounds = false; 4325 4326 // Match the base operand of the GEP. 4327 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4328 // If it couldn't be matched, just stuff the value in a register. 4329 if (AddrMode.HasBaseReg) { 4330 AddrMode = BackupAddrMode; 4331 AddrModeInsts.resize(OldSize); 4332 return false; 4333 } 4334 AddrMode.HasBaseReg = true; 4335 AddrMode.BaseReg = AddrInst->getOperand(0); 4336 } 4337 4338 // Match the remaining variable portion of the GEP. 4339 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4340 Depth)) { 4341 // If it couldn't be matched, try stuffing the base into a register 4342 // instead of matching it, and retrying the match of the scale. 4343 AddrMode = BackupAddrMode; 4344 AddrModeInsts.resize(OldSize); 4345 if (AddrMode.HasBaseReg) 4346 return false; 4347 AddrMode.HasBaseReg = true; 4348 AddrMode.BaseReg = AddrInst->getOperand(0); 4349 AddrMode.BaseOffs += ConstantOffset; 4350 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4351 VariableScale, Depth)) { 4352 // If even that didn't work, bail. 4353 AddrMode = BackupAddrMode; 4354 AddrModeInsts.resize(OldSize); 4355 return false; 4356 } 4357 } 4358 4359 return true; 4360 } 4361 case Instruction::SExt: 4362 case Instruction::ZExt: { 4363 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4364 if (!Ext) 4365 return false; 4366 4367 // Try to move this ext out of the way of the addressing mode. 4368 // Ask for a method for doing so. 4369 TypePromotionHelper::Action TPH = 4370 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4371 if (!TPH) 4372 return false; 4373 4374 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4375 TPT.getRestorationPoint(); 4376 unsigned CreatedInstsCost = 0; 4377 unsigned ExtCost = !TLI.isExtFree(Ext); 4378 Value *PromotedOperand = 4379 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4380 // SExt has been moved away. 4381 // Thus either it will be rematched later in the recursive calls or it is 4382 // gone. Anyway, we must not fold it into the addressing mode at this point. 4383 // E.g., 4384 // op = add opnd, 1 4385 // idx = ext op 4386 // addr = gep base, idx 4387 // is now: 4388 // promotedOpnd = ext opnd <- no match here 4389 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4390 // addr = gep base, op <- match 4391 if (MovedAway) 4392 *MovedAway = true; 4393 4394 assert(PromotedOperand && 4395 "TypePromotionHelper should have filtered out those cases"); 4396 4397 ExtAddrMode BackupAddrMode = AddrMode; 4398 unsigned OldSize = AddrModeInsts.size(); 4399 4400 if (!matchAddr(PromotedOperand, Depth) || 4401 // The total of the new cost is equal to the cost of the created 4402 // instructions. 4403 // The total of the old cost is equal to the cost of the extension plus 4404 // what we have saved in the addressing mode. 4405 !isPromotionProfitable(CreatedInstsCost, 4406 ExtCost + (AddrModeInsts.size() - OldSize), 4407 PromotedOperand)) { 4408 AddrMode = BackupAddrMode; 4409 AddrModeInsts.resize(OldSize); 4410 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4411 TPT.rollback(LastKnownGood); 4412 return false; 4413 } 4414 return true; 4415 } 4416 } 4417 return false; 4418 } 4419 4420 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4421 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4422 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4423 /// for the target. 4424 /// 4425 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4426 // Start a transaction at this point that we will rollback if the matching 4427 // fails. 4428 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4429 TPT.getRestorationPoint(); 4430 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4431 // Fold in immediates if legal for the target. 4432 AddrMode.BaseOffs += CI->getSExtValue(); 4433 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4434 return true; 4435 AddrMode.BaseOffs -= CI->getSExtValue(); 4436 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4437 // If this is a global variable, try to fold it into the addressing mode. 4438 if (!AddrMode.BaseGV) { 4439 AddrMode.BaseGV = GV; 4440 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4441 return true; 4442 AddrMode.BaseGV = nullptr; 4443 } 4444 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4445 ExtAddrMode BackupAddrMode = AddrMode; 4446 unsigned OldSize = AddrModeInsts.size(); 4447 4448 // Check to see if it is possible to fold this operation. 4449 bool MovedAway = false; 4450 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4451 // This instruction may have been moved away. If so, there is nothing 4452 // to check here. 4453 if (MovedAway) 4454 return true; 4455 // Okay, it's possible to fold this. Check to see if it is actually 4456 // *profitable* to do so. We use a simple cost model to avoid increasing 4457 // register pressure too much. 4458 if (I->hasOneUse() || 4459 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4460 AddrModeInsts.push_back(I); 4461 return true; 4462 } 4463 4464 // It isn't profitable to do this, roll back. 4465 //cerr << "NOT FOLDING: " << *I; 4466 AddrMode = BackupAddrMode; 4467 AddrModeInsts.resize(OldSize); 4468 TPT.rollback(LastKnownGood); 4469 } 4470 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4471 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4472 return true; 4473 TPT.rollback(LastKnownGood); 4474 } else if (isa<ConstantPointerNull>(Addr)) { 4475 // Null pointer gets folded without affecting the addressing mode. 4476 return true; 4477 } 4478 4479 // Worse case, the target should support [reg] addressing modes. :) 4480 if (!AddrMode.HasBaseReg) { 4481 AddrMode.HasBaseReg = true; 4482 AddrMode.BaseReg = Addr; 4483 // Still check for legality in case the target supports [imm] but not [i+r]. 4484 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4485 return true; 4486 AddrMode.HasBaseReg = false; 4487 AddrMode.BaseReg = nullptr; 4488 } 4489 4490 // If the base register is already taken, see if we can do [r+r]. 4491 if (AddrMode.Scale == 0) { 4492 AddrMode.Scale = 1; 4493 AddrMode.ScaledReg = Addr; 4494 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4495 return true; 4496 AddrMode.Scale = 0; 4497 AddrMode.ScaledReg = nullptr; 4498 } 4499 // Couldn't match. 4500 TPT.rollback(LastKnownGood); 4501 return false; 4502 } 4503 4504 /// Check to see if all uses of OpVal by the specified inline asm call are due 4505 /// to memory operands. If so, return true, otherwise return false. 4506 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4507 const TargetLowering &TLI, 4508 const TargetRegisterInfo &TRI) { 4509 const Function *F = CI->getFunction(); 4510 TargetLowering::AsmOperandInfoVector TargetConstraints = 4511 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4512 ImmutableCallSite(CI)); 4513 4514 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4515 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4516 4517 // Compute the constraint code and ConstraintType to use. 4518 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4519 4520 // If this asm operand is our Value*, and if it isn't an indirect memory 4521 // operand, we can't fold it! 4522 if (OpInfo.CallOperandVal == OpVal && 4523 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4524 !OpInfo.isIndirect)) 4525 return false; 4526 } 4527 4528 return true; 4529 } 4530 4531 // Max number of memory uses to look at before aborting the search to conserve 4532 // compile time. 4533 static constexpr int MaxMemoryUsesToScan = 20; 4534 4535 /// Recursively walk all the uses of I until we find a memory use. 4536 /// If we find an obviously non-foldable instruction, return true. 4537 /// Add the ultimately found memory instructions to MemoryUses. 4538 static bool FindAllMemoryUses( 4539 Instruction *I, 4540 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4541 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4542 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4543 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4544 // If we already considered this instruction, we're done. 4545 if (!ConsideredInsts.insert(I).second) 4546 return false; 4547 4548 // If this is an obviously unfoldable instruction, bail out. 4549 if (!MightBeFoldableInst(I)) 4550 return true; 4551 4552 // Loop over all the uses, recursively processing them. 4553 for (Use &U : I->uses()) { 4554 // Conservatively return true if we're seeing a large number or a deep chain 4555 // of users. This avoids excessive compilation times in pathological cases. 4556 if (SeenInsts++ >= MaxMemoryUsesToScan) 4557 return true; 4558 4559 Instruction *UserI = cast<Instruction>(U.getUser()); 4560 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4561 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4562 continue; 4563 } 4564 4565 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4566 unsigned opNo = U.getOperandNo(); 4567 if (opNo != StoreInst::getPointerOperandIndex()) 4568 return true; // Storing addr, not into addr. 4569 MemoryUses.push_back(std::make_pair(SI, opNo)); 4570 continue; 4571 } 4572 4573 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4574 unsigned opNo = U.getOperandNo(); 4575 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4576 return true; // Storing addr, not into addr. 4577 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4578 continue; 4579 } 4580 4581 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4582 unsigned opNo = U.getOperandNo(); 4583 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4584 return true; // Storing addr, not into addr. 4585 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4586 continue; 4587 } 4588 4589 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4590 if (CI->hasFnAttr(Attribute::Cold)) { 4591 // If this is a cold call, we can sink the addressing calculation into 4592 // the cold path. See optimizeCallInst 4593 bool OptForSize = OptSize || 4594 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4595 if (!OptForSize) 4596 continue; 4597 } 4598 4599 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4600 if (!IA) return true; 4601 4602 // If this is a memory operand, we're cool, otherwise bail out. 4603 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4604 return true; 4605 continue; 4606 } 4607 4608 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4609 PSI, BFI, SeenInsts)) 4610 return true; 4611 } 4612 4613 return false; 4614 } 4615 4616 /// Return true if Val is already known to be live at the use site that we're 4617 /// folding it into. If so, there is no cost to include it in the addressing 4618 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4619 /// instruction already. 4620 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4621 Value *KnownLive2) { 4622 // If Val is either of the known-live values, we know it is live! 4623 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4624 return true; 4625 4626 // All values other than instructions and arguments (e.g. constants) are live. 4627 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4628 4629 // If Val is a constant sized alloca in the entry block, it is live, this is 4630 // true because it is just a reference to the stack/frame pointer, which is 4631 // live for the whole function. 4632 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4633 if (AI->isStaticAlloca()) 4634 return true; 4635 4636 // Check to see if this value is already used in the memory instruction's 4637 // block. If so, it's already live into the block at the very least, so we 4638 // can reasonably fold it. 4639 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4640 } 4641 4642 /// It is possible for the addressing mode of the machine to fold the specified 4643 /// instruction into a load or store that ultimately uses it. 4644 /// However, the specified instruction has multiple uses. 4645 /// Given this, it may actually increase register pressure to fold it 4646 /// into the load. For example, consider this code: 4647 /// 4648 /// X = ... 4649 /// Y = X+1 4650 /// use(Y) -> nonload/store 4651 /// Z = Y+1 4652 /// load Z 4653 /// 4654 /// In this case, Y has multiple uses, and can be folded into the load of Z 4655 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4656 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4657 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4658 /// number of computations either. 4659 /// 4660 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4661 /// X was live across 'load Z' for other reasons, we actually *would* want to 4662 /// fold the addressing mode in the Z case. This would make Y die earlier. 4663 bool AddressingModeMatcher:: 4664 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4665 ExtAddrMode &AMAfter) { 4666 if (IgnoreProfitability) return true; 4667 4668 // AMBefore is the addressing mode before this instruction was folded into it, 4669 // and AMAfter is the addressing mode after the instruction was folded. Get 4670 // the set of registers referenced by AMAfter and subtract out those 4671 // referenced by AMBefore: this is the set of values which folding in this 4672 // address extends the lifetime of. 4673 // 4674 // Note that there are only two potential values being referenced here, 4675 // BaseReg and ScaleReg (global addresses are always available, as are any 4676 // folded immediates). 4677 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4678 4679 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4680 // lifetime wasn't extended by adding this instruction. 4681 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4682 BaseReg = nullptr; 4683 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4684 ScaledReg = nullptr; 4685 4686 // If folding this instruction (and it's subexprs) didn't extend any live 4687 // ranges, we're ok with it. 4688 if (!BaseReg && !ScaledReg) 4689 return true; 4690 4691 // If all uses of this instruction can have the address mode sunk into them, 4692 // we can remove the addressing mode and effectively trade one live register 4693 // for another (at worst.) In this context, folding an addressing mode into 4694 // the use is just a particularly nice way of sinking it. 4695 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4696 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4697 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4698 PSI, BFI)) 4699 return false; // Has a non-memory, non-foldable use! 4700 4701 // Now that we know that all uses of this instruction are part of a chain of 4702 // computation involving only operations that could theoretically be folded 4703 // into a memory use, loop over each of these memory operation uses and see 4704 // if they could *actually* fold the instruction. The assumption is that 4705 // addressing modes are cheap and that duplicating the computation involved 4706 // many times is worthwhile, even on a fastpath. For sinking candidates 4707 // (i.e. cold call sites), this serves as a way to prevent excessive code 4708 // growth since most architectures have some reasonable small and fast way to 4709 // compute an effective address. (i.e LEA on x86) 4710 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4711 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4712 Instruction *User = MemoryUses[i].first; 4713 unsigned OpNo = MemoryUses[i].second; 4714 4715 // Get the access type of this use. If the use isn't a pointer, we don't 4716 // know what it accesses. 4717 Value *Address = User->getOperand(OpNo); 4718 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4719 if (!AddrTy) 4720 return false; 4721 Type *AddressAccessTy = AddrTy->getElementType(); 4722 unsigned AS = AddrTy->getAddressSpace(); 4723 4724 // Do a match against the root of this address, ignoring profitability. This 4725 // will tell us if the addressing mode for the memory operation will 4726 // *actually* cover the shared instruction. 4727 ExtAddrMode Result; 4728 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4729 0); 4730 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4731 TPT.getRestorationPoint(); 4732 AddressingModeMatcher Matcher( 4733 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4734 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4735 Matcher.IgnoreProfitability = true; 4736 bool Success = Matcher.matchAddr(Address, 0); 4737 (void)Success; assert(Success && "Couldn't select *anything*?"); 4738 4739 // The match was to check the profitability, the changes made are not 4740 // part of the original matcher. Therefore, they should be dropped 4741 // otherwise the original matcher will not present the right state. 4742 TPT.rollback(LastKnownGood); 4743 4744 // If the match didn't cover I, then it won't be shared by it. 4745 if (!is_contained(MatchedAddrModeInsts, I)) 4746 return false; 4747 4748 MatchedAddrModeInsts.clear(); 4749 } 4750 4751 return true; 4752 } 4753 4754 /// Return true if the specified values are defined in a 4755 /// different basic block than BB. 4756 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4757 if (Instruction *I = dyn_cast<Instruction>(V)) 4758 return I->getParent() != BB; 4759 return false; 4760 } 4761 4762 /// Sink addressing mode computation immediate before MemoryInst if doing so 4763 /// can be done without increasing register pressure. The need for the 4764 /// register pressure constraint means this can end up being an all or nothing 4765 /// decision for all uses of the same addressing computation. 4766 /// 4767 /// Load and Store Instructions often have addressing modes that can do 4768 /// significant amounts of computation. As such, instruction selection will try 4769 /// to get the load or store to do as much computation as possible for the 4770 /// program. The problem is that isel can only see within a single block. As 4771 /// such, we sink as much legal addressing mode work into the block as possible. 4772 /// 4773 /// This method is used to optimize both load/store and inline asms with memory 4774 /// operands. It's also used to sink addressing computations feeding into cold 4775 /// call sites into their (cold) basic block. 4776 /// 4777 /// The motivation for handling sinking into cold blocks is that doing so can 4778 /// both enable other address mode sinking (by satisfying the register pressure 4779 /// constraint above), and reduce register pressure globally (by removing the 4780 /// addressing mode computation from the fast path entirely.). 4781 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4782 Type *AccessTy, unsigned AddrSpace) { 4783 Value *Repl = Addr; 4784 4785 // Try to collapse single-value PHI nodes. This is necessary to undo 4786 // unprofitable PRE transformations. 4787 SmallVector<Value*, 8> worklist; 4788 SmallPtrSet<Value*, 16> Visited; 4789 worklist.push_back(Addr); 4790 4791 // Use a worklist to iteratively look through PHI and select nodes, and 4792 // ensure that the addressing mode obtained from the non-PHI/select roots of 4793 // the graph are compatible. 4794 bool PhiOrSelectSeen = false; 4795 SmallVector<Instruction*, 16> AddrModeInsts; 4796 const SimplifyQuery SQ(*DL, TLInfo); 4797 AddressingModeCombiner AddrModes(SQ, Addr); 4798 TypePromotionTransaction TPT(RemovedInsts); 4799 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4800 TPT.getRestorationPoint(); 4801 while (!worklist.empty()) { 4802 Value *V = worklist.back(); 4803 worklist.pop_back(); 4804 4805 // We allow traversing cyclic Phi nodes. 4806 // In case of success after this loop we ensure that traversing through 4807 // Phi nodes ends up with all cases to compute address of the form 4808 // BaseGV + Base + Scale * Index + Offset 4809 // where Scale and Offset are constans and BaseGV, Base and Index 4810 // are exactly the same Values in all cases. 4811 // It means that BaseGV, Scale and Offset dominate our memory instruction 4812 // and have the same value as they had in address computation represented 4813 // as Phi. So we can safely sink address computation to memory instruction. 4814 if (!Visited.insert(V).second) 4815 continue; 4816 4817 // For a PHI node, push all of its incoming values. 4818 if (PHINode *P = dyn_cast<PHINode>(V)) { 4819 for (Value *IncValue : P->incoming_values()) 4820 worklist.push_back(IncValue); 4821 PhiOrSelectSeen = true; 4822 continue; 4823 } 4824 // Similar for select. 4825 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4826 worklist.push_back(SI->getFalseValue()); 4827 worklist.push_back(SI->getTrueValue()); 4828 PhiOrSelectSeen = true; 4829 continue; 4830 } 4831 4832 // For non-PHIs, determine the addressing mode being computed. Note that 4833 // the result may differ depending on what other uses our candidate 4834 // addressing instructions might have. 4835 AddrModeInsts.clear(); 4836 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4837 0); 4838 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4839 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4840 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4841 BFI.get()); 4842 4843 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4844 if (GEP && !NewGEPBases.count(GEP)) { 4845 // If splitting the underlying data structure can reduce the offset of a 4846 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4847 // previously split data structures. 4848 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4849 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4850 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4851 } 4852 4853 NewAddrMode.OriginalValue = V; 4854 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4855 break; 4856 } 4857 4858 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4859 // or we have multiple but either couldn't combine them or combining them 4860 // wouldn't do anything useful, bail out now. 4861 if (!AddrModes.combineAddrModes()) { 4862 TPT.rollback(LastKnownGood); 4863 return false; 4864 } 4865 TPT.commit(); 4866 4867 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4868 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4869 4870 // If all the instructions matched are already in this BB, don't do anything. 4871 // If we saw a Phi node then it is not local definitely, and if we saw a select 4872 // then we want to push the address calculation past it even if it's already 4873 // in this BB. 4874 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4875 return IsNonLocalValue(V, MemoryInst->getParent()); 4876 })) { 4877 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4878 << "\n"); 4879 return false; 4880 } 4881 4882 // Insert this computation right after this user. Since our caller is 4883 // scanning from the top of the BB to the bottom, reuse of the expr are 4884 // guaranteed to happen later. 4885 IRBuilder<> Builder(MemoryInst); 4886 4887 // Now that we determined the addressing expression we want to use and know 4888 // that we have to sink it into this block. Check to see if we have already 4889 // done this for some other load/store instr in this block. If so, reuse 4890 // the computation. Before attempting reuse, check if the address is valid 4891 // as it may have been erased. 4892 4893 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4894 4895 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4896 if (SunkAddr) { 4897 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4898 << " for " << *MemoryInst << "\n"); 4899 if (SunkAddr->getType() != Addr->getType()) 4900 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4901 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4902 SubtargetInfo->addrSinkUsingGEPs())) { 4903 // By default, we use the GEP-based method when AA is used later. This 4904 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4905 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4906 << " for " << *MemoryInst << "\n"); 4907 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4908 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4909 4910 // First, find the pointer. 4911 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4912 ResultPtr = AddrMode.BaseReg; 4913 AddrMode.BaseReg = nullptr; 4914 } 4915 4916 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4917 // We can't add more than one pointer together, nor can we scale a 4918 // pointer (both of which seem meaningless). 4919 if (ResultPtr || AddrMode.Scale != 1) 4920 return false; 4921 4922 ResultPtr = AddrMode.ScaledReg; 4923 AddrMode.Scale = 0; 4924 } 4925 4926 // It is only safe to sign extend the BaseReg if we know that the math 4927 // required to create it did not overflow before we extend it. Since 4928 // the original IR value was tossed in favor of a constant back when 4929 // the AddrMode was created we need to bail out gracefully if widths 4930 // do not match instead of extending it. 4931 // 4932 // (See below for code to add the scale.) 4933 if (AddrMode.Scale) { 4934 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4935 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4936 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4937 return false; 4938 } 4939 4940 if (AddrMode.BaseGV) { 4941 if (ResultPtr) 4942 return false; 4943 4944 ResultPtr = AddrMode.BaseGV; 4945 } 4946 4947 // If the real base value actually came from an inttoptr, then the matcher 4948 // will look through it and provide only the integer value. In that case, 4949 // use it here. 4950 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4951 if (!ResultPtr && AddrMode.BaseReg) { 4952 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4953 "sunkaddr"); 4954 AddrMode.BaseReg = nullptr; 4955 } else if (!ResultPtr && AddrMode.Scale == 1) { 4956 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4957 "sunkaddr"); 4958 AddrMode.Scale = 0; 4959 } 4960 } 4961 4962 if (!ResultPtr && 4963 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4964 SunkAddr = Constant::getNullValue(Addr->getType()); 4965 } else if (!ResultPtr) { 4966 return false; 4967 } else { 4968 Type *I8PtrTy = 4969 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4970 Type *I8Ty = Builder.getInt8Ty(); 4971 4972 // Start with the base register. Do this first so that subsequent address 4973 // matching finds it last, which will prevent it from trying to match it 4974 // as the scaled value in case it happens to be a mul. That would be 4975 // problematic if we've sunk a different mul for the scale, because then 4976 // we'd end up sinking both muls. 4977 if (AddrMode.BaseReg) { 4978 Value *V = AddrMode.BaseReg; 4979 if (V->getType() != IntPtrTy) 4980 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4981 4982 ResultIndex = V; 4983 } 4984 4985 // Add the scale value. 4986 if (AddrMode.Scale) { 4987 Value *V = AddrMode.ScaledReg; 4988 if (V->getType() == IntPtrTy) { 4989 // done. 4990 } else { 4991 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4992 cast<IntegerType>(V->getType())->getBitWidth() && 4993 "We can't transform if ScaledReg is too narrow"); 4994 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4995 } 4996 4997 if (AddrMode.Scale != 1) 4998 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4999 "sunkaddr"); 5000 if (ResultIndex) 5001 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5002 else 5003 ResultIndex = V; 5004 } 5005 5006 // Add in the Base Offset if present. 5007 if (AddrMode.BaseOffs) { 5008 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5009 if (ResultIndex) { 5010 // We need to add this separately from the scale above to help with 5011 // SDAG consecutive load/store merging. 5012 if (ResultPtr->getType() != I8PtrTy) 5013 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5014 ResultPtr = 5015 AddrMode.InBounds 5016 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5017 "sunkaddr") 5018 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5019 } 5020 5021 ResultIndex = V; 5022 } 5023 5024 if (!ResultIndex) { 5025 SunkAddr = ResultPtr; 5026 } else { 5027 if (ResultPtr->getType() != I8PtrTy) 5028 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5029 SunkAddr = 5030 AddrMode.InBounds 5031 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5032 "sunkaddr") 5033 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5034 } 5035 5036 if (SunkAddr->getType() != Addr->getType()) 5037 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5038 } 5039 } else { 5040 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5041 // non-integral pointers, so in that case bail out now. 5042 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5043 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5044 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5045 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5046 if (DL->isNonIntegralPointerType(Addr->getType()) || 5047 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5048 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5049 (AddrMode.BaseGV && 5050 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5051 return false; 5052 5053 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5054 << " for " << *MemoryInst << "\n"); 5055 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5056 Value *Result = nullptr; 5057 5058 // Start with the base register. Do this first so that subsequent address 5059 // matching finds it last, which will prevent it from trying to match it 5060 // as the scaled value in case it happens to be a mul. That would be 5061 // problematic if we've sunk a different mul for the scale, because then 5062 // we'd end up sinking both muls. 5063 if (AddrMode.BaseReg) { 5064 Value *V = AddrMode.BaseReg; 5065 if (V->getType()->isPointerTy()) 5066 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5067 if (V->getType() != IntPtrTy) 5068 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5069 Result = V; 5070 } 5071 5072 // Add the scale value. 5073 if (AddrMode.Scale) { 5074 Value *V = AddrMode.ScaledReg; 5075 if (V->getType() == IntPtrTy) { 5076 // done. 5077 } else if (V->getType()->isPointerTy()) { 5078 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5079 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5080 cast<IntegerType>(V->getType())->getBitWidth()) { 5081 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5082 } else { 5083 // It is only safe to sign extend the BaseReg if we know that the math 5084 // required to create it did not overflow before we extend it. Since 5085 // the original IR value was tossed in favor of a constant back when 5086 // the AddrMode was created we need to bail out gracefully if widths 5087 // do not match instead of extending it. 5088 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5089 if (I && (Result != AddrMode.BaseReg)) 5090 I->eraseFromParent(); 5091 return false; 5092 } 5093 if (AddrMode.Scale != 1) 5094 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5095 "sunkaddr"); 5096 if (Result) 5097 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5098 else 5099 Result = V; 5100 } 5101 5102 // Add in the BaseGV if present. 5103 if (AddrMode.BaseGV) { 5104 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5105 if (Result) 5106 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5107 else 5108 Result = V; 5109 } 5110 5111 // Add in the Base Offset if present. 5112 if (AddrMode.BaseOffs) { 5113 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5114 if (Result) 5115 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5116 else 5117 Result = V; 5118 } 5119 5120 if (!Result) 5121 SunkAddr = Constant::getNullValue(Addr->getType()); 5122 else 5123 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5124 } 5125 5126 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5127 // Store the newly computed address into the cache. In the case we reused a 5128 // value, this should be idempotent. 5129 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5130 5131 // If we have no uses, recursively delete the value and all dead instructions 5132 // using it. 5133 if (Repl->use_empty()) { 5134 // This can cause recursive deletion, which can invalidate our iterator. 5135 // Use a WeakTrackingVH to hold onto it in case this happens. 5136 Value *CurValue = &*CurInstIterator; 5137 WeakTrackingVH IterHandle(CurValue); 5138 BasicBlock *BB = CurInstIterator->getParent(); 5139 5140 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5141 5142 if (IterHandle != CurValue) { 5143 // If the iterator instruction was recursively deleted, start over at the 5144 // start of the block. 5145 CurInstIterator = BB->begin(); 5146 SunkAddrs.clear(); 5147 } 5148 } 5149 ++NumMemoryInsts; 5150 return true; 5151 } 5152 5153 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5154 /// address computing into the block when possible / profitable. 5155 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5156 bool MadeChange = false; 5157 5158 const TargetRegisterInfo *TRI = 5159 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5160 TargetLowering::AsmOperandInfoVector TargetConstraints = 5161 TLI->ParseConstraints(*DL, TRI, CS); 5162 unsigned ArgNo = 0; 5163 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5164 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5165 5166 // Compute the constraint code and ConstraintType to use. 5167 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5168 5169 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5170 OpInfo.isIndirect) { 5171 Value *OpVal = CS->getArgOperand(ArgNo++); 5172 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5173 } else if (OpInfo.Type == InlineAsm::isInput) 5174 ArgNo++; 5175 } 5176 5177 return MadeChange; 5178 } 5179 5180 /// Check if all the uses of \p Val are equivalent (or free) zero or 5181 /// sign extensions. 5182 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5183 assert(!Val->use_empty() && "Input must have at least one use"); 5184 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5185 bool IsSExt = isa<SExtInst>(FirstUser); 5186 Type *ExtTy = FirstUser->getType(); 5187 for (const User *U : Val->users()) { 5188 const Instruction *UI = cast<Instruction>(U); 5189 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5190 return false; 5191 Type *CurTy = UI->getType(); 5192 // Same input and output types: Same instruction after CSE. 5193 if (CurTy == ExtTy) 5194 continue; 5195 5196 // If IsSExt is true, we are in this situation: 5197 // a = Val 5198 // b = sext ty1 a to ty2 5199 // c = sext ty1 a to ty3 5200 // Assuming ty2 is shorter than ty3, this could be turned into: 5201 // a = Val 5202 // b = sext ty1 a to ty2 5203 // c = sext ty2 b to ty3 5204 // However, the last sext is not free. 5205 if (IsSExt) 5206 return false; 5207 5208 // This is a ZExt, maybe this is free to extend from one type to another. 5209 // In that case, we would not account for a different use. 5210 Type *NarrowTy; 5211 Type *LargeTy; 5212 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5213 CurTy->getScalarType()->getIntegerBitWidth()) { 5214 NarrowTy = CurTy; 5215 LargeTy = ExtTy; 5216 } else { 5217 NarrowTy = ExtTy; 5218 LargeTy = CurTy; 5219 } 5220 5221 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5222 return false; 5223 } 5224 // All uses are the same or can be derived from one another for free. 5225 return true; 5226 } 5227 5228 /// Try to speculatively promote extensions in \p Exts and continue 5229 /// promoting through newly promoted operands recursively as far as doing so is 5230 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5231 /// When some promotion happened, \p TPT contains the proper state to revert 5232 /// them. 5233 /// 5234 /// \return true if some promotion happened, false otherwise. 5235 bool CodeGenPrepare::tryToPromoteExts( 5236 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5237 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5238 unsigned CreatedInstsCost) { 5239 bool Promoted = false; 5240 5241 // Iterate over all the extensions to try to promote them. 5242 for (auto I : Exts) { 5243 // Early check if we directly have ext(load). 5244 if (isa<LoadInst>(I->getOperand(0))) { 5245 ProfitablyMovedExts.push_back(I); 5246 continue; 5247 } 5248 5249 // Check whether or not we want to do any promotion. The reason we have 5250 // this check inside the for loop is to catch the case where an extension 5251 // is directly fed by a load because in such case the extension can be moved 5252 // up without any promotion on its operands. 5253 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5254 return false; 5255 5256 // Get the action to perform the promotion. 5257 TypePromotionHelper::Action TPH = 5258 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5259 // Check if we can promote. 5260 if (!TPH) { 5261 // Save the current extension as we cannot move up through its operand. 5262 ProfitablyMovedExts.push_back(I); 5263 continue; 5264 } 5265 5266 // Save the current state. 5267 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5268 TPT.getRestorationPoint(); 5269 SmallVector<Instruction *, 4> NewExts; 5270 unsigned NewCreatedInstsCost = 0; 5271 unsigned ExtCost = !TLI->isExtFree(I); 5272 // Promote. 5273 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5274 &NewExts, nullptr, *TLI); 5275 assert(PromotedVal && 5276 "TypePromotionHelper should have filtered out those cases"); 5277 5278 // We would be able to merge only one extension in a load. 5279 // Therefore, if we have more than 1 new extension we heuristically 5280 // cut this search path, because it means we degrade the code quality. 5281 // With exactly 2, the transformation is neutral, because we will merge 5282 // one extension but leave one. However, we optimistically keep going, 5283 // because the new extension may be removed too. 5284 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5285 // FIXME: It would be possible to propagate a negative value instead of 5286 // conservatively ceiling it to 0. 5287 TotalCreatedInstsCost = 5288 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5289 if (!StressExtLdPromotion && 5290 (TotalCreatedInstsCost > 1 || 5291 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5292 // This promotion is not profitable, rollback to the previous state, and 5293 // save the current extension in ProfitablyMovedExts as the latest 5294 // speculative promotion turned out to be unprofitable. 5295 TPT.rollback(LastKnownGood); 5296 ProfitablyMovedExts.push_back(I); 5297 continue; 5298 } 5299 // Continue promoting NewExts as far as doing so is profitable. 5300 SmallVector<Instruction *, 2> NewlyMovedExts; 5301 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5302 bool NewPromoted = false; 5303 for (auto ExtInst : NewlyMovedExts) { 5304 Instruction *MovedExt = cast<Instruction>(ExtInst); 5305 Value *ExtOperand = MovedExt->getOperand(0); 5306 // If we have reached to a load, we need this extra profitability check 5307 // as it could potentially be merged into an ext(load). 5308 if (isa<LoadInst>(ExtOperand) && 5309 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5310 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5311 continue; 5312 5313 ProfitablyMovedExts.push_back(MovedExt); 5314 NewPromoted = true; 5315 } 5316 5317 // If none of speculative promotions for NewExts is profitable, rollback 5318 // and save the current extension (I) as the last profitable extension. 5319 if (!NewPromoted) { 5320 TPT.rollback(LastKnownGood); 5321 ProfitablyMovedExts.push_back(I); 5322 continue; 5323 } 5324 // The promotion is profitable. 5325 Promoted = true; 5326 } 5327 return Promoted; 5328 } 5329 5330 /// Merging redundant sexts when one is dominating the other. 5331 bool CodeGenPrepare::mergeSExts(Function &F) { 5332 bool Changed = false; 5333 for (auto &Entry : ValToSExtendedUses) { 5334 SExts &Insts = Entry.second; 5335 SExts CurPts; 5336 for (Instruction *Inst : Insts) { 5337 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5338 Inst->getOperand(0) != Entry.first) 5339 continue; 5340 bool inserted = false; 5341 for (auto &Pt : CurPts) { 5342 if (getDT(F).dominates(Inst, Pt)) { 5343 Pt->replaceAllUsesWith(Inst); 5344 RemovedInsts.insert(Pt); 5345 Pt->removeFromParent(); 5346 Pt = Inst; 5347 inserted = true; 5348 Changed = true; 5349 break; 5350 } 5351 if (!getDT(F).dominates(Pt, Inst)) 5352 // Give up if we need to merge in a common dominator as the 5353 // experiments show it is not profitable. 5354 continue; 5355 Inst->replaceAllUsesWith(Pt); 5356 RemovedInsts.insert(Inst); 5357 Inst->removeFromParent(); 5358 inserted = true; 5359 Changed = true; 5360 break; 5361 } 5362 if (!inserted) 5363 CurPts.push_back(Inst); 5364 } 5365 } 5366 return Changed; 5367 } 5368 5369 // Spliting large data structures so that the GEPs accessing them can have 5370 // smaller offsets so that they can be sunk to the same blocks as their users. 5371 // For example, a large struct starting from %base is splitted into two parts 5372 // where the second part starts from %new_base. 5373 // 5374 // Before: 5375 // BB0: 5376 // %base = 5377 // 5378 // BB1: 5379 // %gep0 = gep %base, off0 5380 // %gep1 = gep %base, off1 5381 // %gep2 = gep %base, off2 5382 // 5383 // BB2: 5384 // %load1 = load %gep0 5385 // %load2 = load %gep1 5386 // %load3 = load %gep2 5387 // 5388 // After: 5389 // BB0: 5390 // %base = 5391 // %new_base = gep %base, off0 5392 // 5393 // BB1: 5394 // %new_gep0 = %new_base 5395 // %new_gep1 = gep %new_base, off1 - off0 5396 // %new_gep2 = gep %new_base, off2 - off0 5397 // 5398 // BB2: 5399 // %load1 = load i32, i32* %new_gep0 5400 // %load2 = load i32, i32* %new_gep1 5401 // %load3 = load i32, i32* %new_gep2 5402 // 5403 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5404 // their offsets are smaller enough to fit into the addressing mode. 5405 bool CodeGenPrepare::splitLargeGEPOffsets() { 5406 bool Changed = false; 5407 for (auto &Entry : LargeOffsetGEPMap) { 5408 Value *OldBase = Entry.first; 5409 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5410 &LargeOffsetGEPs = Entry.second; 5411 auto compareGEPOffset = 5412 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5413 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5414 if (LHS.first == RHS.first) 5415 return false; 5416 if (LHS.second != RHS.second) 5417 return LHS.second < RHS.second; 5418 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5419 }; 5420 // Sorting all the GEPs of the same data structures based on the offsets. 5421 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5422 LargeOffsetGEPs.erase( 5423 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5424 LargeOffsetGEPs.end()); 5425 // Skip if all the GEPs have the same offsets. 5426 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5427 continue; 5428 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5429 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5430 Value *NewBaseGEP = nullptr; 5431 5432 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5433 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5434 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5435 int64_t Offset = LargeOffsetGEP->second; 5436 if (Offset != BaseOffset) { 5437 TargetLowering::AddrMode AddrMode; 5438 AddrMode.BaseOffs = Offset - BaseOffset; 5439 // The result type of the GEP might not be the type of the memory 5440 // access. 5441 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5442 GEP->getResultElementType(), 5443 GEP->getAddressSpace())) { 5444 // We need to create a new base if the offset to the current base is 5445 // too large to fit into the addressing mode. So, a very large struct 5446 // may be splitted into several parts. 5447 BaseGEP = GEP; 5448 BaseOffset = Offset; 5449 NewBaseGEP = nullptr; 5450 } 5451 } 5452 5453 // Generate a new GEP to replace the current one. 5454 LLVMContext &Ctx = GEP->getContext(); 5455 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5456 Type *I8PtrTy = 5457 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5458 Type *I8Ty = Type::getInt8Ty(Ctx); 5459 5460 if (!NewBaseGEP) { 5461 // Create a new base if we don't have one yet. Find the insertion 5462 // pointer for the new base first. 5463 BasicBlock::iterator NewBaseInsertPt; 5464 BasicBlock *NewBaseInsertBB; 5465 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5466 // If the base of the struct is an instruction, the new base will be 5467 // inserted close to it. 5468 NewBaseInsertBB = BaseI->getParent(); 5469 if (isa<PHINode>(BaseI)) 5470 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5471 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5472 NewBaseInsertBB = 5473 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5474 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5475 } else 5476 NewBaseInsertPt = std::next(BaseI->getIterator()); 5477 } else { 5478 // If the current base is an argument or global value, the new base 5479 // will be inserted to the entry block. 5480 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5481 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5482 } 5483 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5484 // Create a new base. 5485 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5486 NewBaseGEP = OldBase; 5487 if (NewBaseGEP->getType() != I8PtrTy) 5488 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5489 NewBaseGEP = 5490 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5491 NewGEPBases.insert(NewBaseGEP); 5492 } 5493 5494 IRBuilder<> Builder(GEP); 5495 Value *NewGEP = NewBaseGEP; 5496 if (Offset == BaseOffset) { 5497 if (GEP->getType() != I8PtrTy) 5498 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5499 } else { 5500 // Calculate the new offset for the new GEP. 5501 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5502 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5503 5504 if (GEP->getType() != I8PtrTy) 5505 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5506 } 5507 GEP->replaceAllUsesWith(NewGEP); 5508 LargeOffsetGEPID.erase(GEP); 5509 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5510 GEP->eraseFromParent(); 5511 Changed = true; 5512 } 5513 } 5514 return Changed; 5515 } 5516 5517 /// Return true, if an ext(load) can be formed from an extension in 5518 /// \p MovedExts. 5519 bool CodeGenPrepare::canFormExtLd( 5520 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5521 Instruction *&Inst, bool HasPromoted) { 5522 for (auto *MovedExtInst : MovedExts) { 5523 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5524 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5525 Inst = MovedExtInst; 5526 break; 5527 } 5528 } 5529 if (!LI) 5530 return false; 5531 5532 // If they're already in the same block, there's nothing to do. 5533 // Make the cheap checks first if we did not promote. 5534 // If we promoted, we need to check if it is indeed profitable. 5535 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5536 return false; 5537 5538 return TLI->isExtLoad(LI, Inst, *DL); 5539 } 5540 5541 /// Move a zext or sext fed by a load into the same basic block as the load, 5542 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5543 /// extend into the load. 5544 /// 5545 /// E.g., 5546 /// \code 5547 /// %ld = load i32* %addr 5548 /// %add = add nuw i32 %ld, 4 5549 /// %zext = zext i32 %add to i64 5550 // \endcode 5551 /// => 5552 /// \code 5553 /// %ld = load i32* %addr 5554 /// %zext = zext i32 %ld to i64 5555 /// %add = add nuw i64 %zext, 4 5556 /// \encode 5557 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5558 /// allow us to match zext(load i32*) to i64. 5559 /// 5560 /// Also, try to promote the computations used to obtain a sign extended 5561 /// value used into memory accesses. 5562 /// E.g., 5563 /// \code 5564 /// a = add nsw i32 b, 3 5565 /// d = sext i32 a to i64 5566 /// e = getelementptr ..., i64 d 5567 /// \endcode 5568 /// => 5569 /// \code 5570 /// f = sext i32 b to i64 5571 /// a = add nsw i64 f, 3 5572 /// e = getelementptr ..., i64 a 5573 /// \endcode 5574 /// 5575 /// \p Inst[in/out] the extension may be modified during the process if some 5576 /// promotions apply. 5577 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5578 bool AllowPromotionWithoutCommonHeader = false; 5579 /// See if it is an interesting sext operations for the address type 5580 /// promotion before trying to promote it, e.g., the ones with the right 5581 /// type and used in memory accesses. 5582 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5583 *Inst, AllowPromotionWithoutCommonHeader); 5584 TypePromotionTransaction TPT(RemovedInsts); 5585 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5586 TPT.getRestorationPoint(); 5587 SmallVector<Instruction *, 1> Exts; 5588 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5589 Exts.push_back(Inst); 5590 5591 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5592 5593 // Look for a load being extended. 5594 LoadInst *LI = nullptr; 5595 Instruction *ExtFedByLoad; 5596 5597 // Try to promote a chain of computation if it allows to form an extended 5598 // load. 5599 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5600 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5601 TPT.commit(); 5602 // Move the extend into the same block as the load 5603 ExtFedByLoad->moveAfter(LI); 5604 // CGP does not check if the zext would be speculatively executed when moved 5605 // to the same basic block as the load. Preserving its original location 5606 // would pessimize the debugging experience, as well as negatively impact 5607 // the quality of sample pgo. We don't want to use "line 0" as that has a 5608 // size cost in the line-table section and logically the zext can be seen as 5609 // part of the load. Therefore we conservatively reuse the same debug 5610 // location for the load and the zext. 5611 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5612 ++NumExtsMoved; 5613 Inst = ExtFedByLoad; 5614 return true; 5615 } 5616 5617 // Continue promoting SExts if known as considerable depending on targets. 5618 if (ATPConsiderable && 5619 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5620 HasPromoted, TPT, SpeculativelyMovedExts)) 5621 return true; 5622 5623 TPT.rollback(LastKnownGood); 5624 return false; 5625 } 5626 5627 // Perform address type promotion if doing so is profitable. 5628 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5629 // instructions that sign extended the same initial value. However, if 5630 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5631 // extension is just profitable. 5632 bool CodeGenPrepare::performAddressTypePromotion( 5633 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5634 bool HasPromoted, TypePromotionTransaction &TPT, 5635 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5636 bool Promoted = false; 5637 SmallPtrSet<Instruction *, 1> UnhandledExts; 5638 bool AllSeenFirst = true; 5639 for (auto I : SpeculativelyMovedExts) { 5640 Value *HeadOfChain = I->getOperand(0); 5641 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5642 SeenChainsForSExt.find(HeadOfChain); 5643 // If there is an unhandled SExt which has the same header, try to promote 5644 // it as well. 5645 if (AlreadySeen != SeenChainsForSExt.end()) { 5646 if (AlreadySeen->second != nullptr) 5647 UnhandledExts.insert(AlreadySeen->second); 5648 AllSeenFirst = false; 5649 } 5650 } 5651 5652 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5653 SpeculativelyMovedExts.size() == 1)) { 5654 TPT.commit(); 5655 if (HasPromoted) 5656 Promoted = true; 5657 for (auto I : SpeculativelyMovedExts) { 5658 Value *HeadOfChain = I->getOperand(0); 5659 SeenChainsForSExt[HeadOfChain] = nullptr; 5660 ValToSExtendedUses[HeadOfChain].push_back(I); 5661 } 5662 // Update Inst as promotion happen. 5663 Inst = SpeculativelyMovedExts.pop_back_val(); 5664 } else { 5665 // This is the first chain visited from the header, keep the current chain 5666 // as unhandled. Defer to promote this until we encounter another SExt 5667 // chain derived from the same header. 5668 for (auto I : SpeculativelyMovedExts) { 5669 Value *HeadOfChain = I->getOperand(0); 5670 SeenChainsForSExt[HeadOfChain] = Inst; 5671 } 5672 return false; 5673 } 5674 5675 if (!AllSeenFirst && !UnhandledExts.empty()) 5676 for (auto VisitedSExt : UnhandledExts) { 5677 if (RemovedInsts.count(VisitedSExt)) 5678 continue; 5679 TypePromotionTransaction TPT(RemovedInsts); 5680 SmallVector<Instruction *, 1> Exts; 5681 SmallVector<Instruction *, 2> Chains; 5682 Exts.push_back(VisitedSExt); 5683 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5684 TPT.commit(); 5685 if (HasPromoted) 5686 Promoted = true; 5687 for (auto I : Chains) { 5688 Value *HeadOfChain = I->getOperand(0); 5689 // Mark this as handled. 5690 SeenChainsForSExt[HeadOfChain] = nullptr; 5691 ValToSExtendedUses[HeadOfChain].push_back(I); 5692 } 5693 } 5694 return Promoted; 5695 } 5696 5697 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5698 BasicBlock *DefBB = I->getParent(); 5699 5700 // If the result of a {s|z}ext and its source are both live out, rewrite all 5701 // other uses of the source with result of extension. 5702 Value *Src = I->getOperand(0); 5703 if (Src->hasOneUse()) 5704 return false; 5705 5706 // Only do this xform if truncating is free. 5707 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 5708 return false; 5709 5710 // Only safe to perform the optimization if the source is also defined in 5711 // this block. 5712 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5713 return false; 5714 5715 bool DefIsLiveOut = false; 5716 for (User *U : I->users()) { 5717 Instruction *UI = cast<Instruction>(U); 5718 5719 // Figure out which BB this ext is used in. 5720 BasicBlock *UserBB = UI->getParent(); 5721 if (UserBB == DefBB) continue; 5722 DefIsLiveOut = true; 5723 break; 5724 } 5725 if (!DefIsLiveOut) 5726 return false; 5727 5728 // Make sure none of the uses are PHI nodes. 5729 for (User *U : Src->users()) { 5730 Instruction *UI = cast<Instruction>(U); 5731 BasicBlock *UserBB = UI->getParent(); 5732 if (UserBB == DefBB) continue; 5733 // Be conservative. We don't want this xform to end up introducing 5734 // reloads just before load / store instructions. 5735 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5736 return false; 5737 } 5738 5739 // InsertedTruncs - Only insert one trunc in each block once. 5740 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5741 5742 bool MadeChange = false; 5743 for (Use &U : Src->uses()) { 5744 Instruction *User = cast<Instruction>(U.getUser()); 5745 5746 // Figure out which BB this ext is used in. 5747 BasicBlock *UserBB = User->getParent(); 5748 if (UserBB == DefBB) continue; 5749 5750 // Both src and def are live in this block. Rewrite the use. 5751 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5752 5753 if (!InsertedTrunc) { 5754 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5755 assert(InsertPt != UserBB->end()); 5756 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5757 InsertedInsts.insert(InsertedTrunc); 5758 } 5759 5760 // Replace a use of the {s|z}ext source with a use of the result. 5761 U = InsertedTrunc; 5762 ++NumExtUses; 5763 MadeChange = true; 5764 } 5765 5766 return MadeChange; 5767 } 5768 5769 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5770 // just after the load if the target can fold this into one extload instruction, 5771 // with the hope of eliminating some of the other later "and" instructions using 5772 // the loaded value. "and"s that are made trivially redundant by the insertion 5773 // of the new "and" are removed by this function, while others (e.g. those whose 5774 // path from the load goes through a phi) are left for isel to potentially 5775 // remove. 5776 // 5777 // For example: 5778 // 5779 // b0: 5780 // x = load i32 5781 // ... 5782 // b1: 5783 // y = and x, 0xff 5784 // z = use y 5785 // 5786 // becomes: 5787 // 5788 // b0: 5789 // x = load i32 5790 // x' = and x, 0xff 5791 // ... 5792 // b1: 5793 // z = use x' 5794 // 5795 // whereas: 5796 // 5797 // b0: 5798 // x1 = load i32 5799 // ... 5800 // b1: 5801 // x2 = load i32 5802 // ... 5803 // b2: 5804 // x = phi x1, x2 5805 // y = and x, 0xff 5806 // 5807 // becomes (after a call to optimizeLoadExt for each load): 5808 // 5809 // b0: 5810 // x1 = load i32 5811 // x1' = and x1, 0xff 5812 // ... 5813 // b1: 5814 // x2 = load i32 5815 // x2' = and x2, 0xff 5816 // ... 5817 // b2: 5818 // x = phi x1', x2' 5819 // y = and x, 0xff 5820 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5821 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5822 return false; 5823 5824 // Skip loads we've already transformed. 5825 if (Load->hasOneUse() && 5826 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5827 return false; 5828 5829 // Look at all uses of Load, looking through phis, to determine how many bits 5830 // of the loaded value are needed. 5831 SmallVector<Instruction *, 8> WorkList; 5832 SmallPtrSet<Instruction *, 16> Visited; 5833 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5834 for (auto *U : Load->users()) 5835 WorkList.push_back(cast<Instruction>(U)); 5836 5837 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5838 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5839 APInt DemandBits(BitWidth, 0); 5840 APInt WidestAndBits(BitWidth, 0); 5841 5842 while (!WorkList.empty()) { 5843 Instruction *I = WorkList.back(); 5844 WorkList.pop_back(); 5845 5846 // Break use-def graph loops. 5847 if (!Visited.insert(I).second) 5848 continue; 5849 5850 // For a PHI node, push all of its users. 5851 if (auto *Phi = dyn_cast<PHINode>(I)) { 5852 for (auto *U : Phi->users()) 5853 WorkList.push_back(cast<Instruction>(U)); 5854 continue; 5855 } 5856 5857 switch (I->getOpcode()) { 5858 case Instruction::And: { 5859 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5860 if (!AndC) 5861 return false; 5862 APInt AndBits = AndC->getValue(); 5863 DemandBits |= AndBits; 5864 // Keep track of the widest and mask we see. 5865 if (AndBits.ugt(WidestAndBits)) 5866 WidestAndBits = AndBits; 5867 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5868 AndsToMaybeRemove.push_back(I); 5869 break; 5870 } 5871 5872 case Instruction::Shl: { 5873 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5874 if (!ShlC) 5875 return false; 5876 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5877 DemandBits.setLowBits(BitWidth - ShiftAmt); 5878 break; 5879 } 5880 5881 case Instruction::Trunc: { 5882 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5883 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5884 DemandBits.setLowBits(TruncBitWidth); 5885 break; 5886 } 5887 5888 default: 5889 return false; 5890 } 5891 } 5892 5893 uint32_t ActiveBits = DemandBits.getActiveBits(); 5894 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5895 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5896 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5897 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5898 // followed by an AND. 5899 // TODO: Look into removing this restriction by fixing backends to either 5900 // return false for isLoadExtLegal for i1 or have them select this pattern to 5901 // a single instruction. 5902 // 5903 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5904 // mask, since these are the only ands that will be removed by isel. 5905 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5906 WidestAndBits != DemandBits) 5907 return false; 5908 5909 LLVMContext &Ctx = Load->getType()->getContext(); 5910 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5911 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5912 5913 // Reject cases that won't be matched as extloads. 5914 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5915 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5916 return false; 5917 5918 IRBuilder<> Builder(Load->getNextNode()); 5919 auto *NewAnd = cast<Instruction>( 5920 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5921 // Mark this instruction as "inserted by CGP", so that other 5922 // optimizations don't touch it. 5923 InsertedInsts.insert(NewAnd); 5924 5925 // Replace all uses of load with new and (except for the use of load in the 5926 // new and itself). 5927 Load->replaceAllUsesWith(NewAnd); 5928 NewAnd->setOperand(0, Load); 5929 5930 // Remove any and instructions that are now redundant. 5931 for (auto *And : AndsToMaybeRemove) 5932 // Check that the and mask is the same as the one we decided to put on the 5933 // new and. 5934 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5935 And->replaceAllUsesWith(NewAnd); 5936 if (&*CurInstIterator == And) 5937 CurInstIterator = std::next(And->getIterator()); 5938 And->eraseFromParent(); 5939 ++NumAndUses; 5940 } 5941 5942 ++NumAndsAdded; 5943 return true; 5944 } 5945 5946 /// Check if V (an operand of a select instruction) is an expensive instruction 5947 /// that is only used once. 5948 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5949 auto *I = dyn_cast<Instruction>(V); 5950 // If it's safe to speculatively execute, then it should not have side 5951 // effects; therefore, it's safe to sink and possibly *not* execute. 5952 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5953 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5954 } 5955 5956 /// Returns true if a SelectInst should be turned into an explicit branch. 5957 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5958 const TargetLowering *TLI, 5959 SelectInst *SI) { 5960 // If even a predictable select is cheap, then a branch can't be cheaper. 5961 if (!TLI->isPredictableSelectExpensive()) 5962 return false; 5963 5964 // FIXME: This should use the same heuristics as IfConversion to determine 5965 // whether a select is better represented as a branch. 5966 5967 // If metadata tells us that the select condition is obviously predictable, 5968 // then we want to replace the select with a branch. 5969 uint64_t TrueWeight, FalseWeight; 5970 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5971 uint64_t Max = std::max(TrueWeight, FalseWeight); 5972 uint64_t Sum = TrueWeight + FalseWeight; 5973 if (Sum != 0) { 5974 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5975 if (Probability > TLI->getPredictableBranchThreshold()) 5976 return true; 5977 } 5978 } 5979 5980 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5981 5982 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5983 // comparison condition. If the compare has more than one use, there's 5984 // probably another cmov or setcc around, so it's not worth emitting a branch. 5985 if (!Cmp || !Cmp->hasOneUse()) 5986 return false; 5987 5988 // If either operand of the select is expensive and only needed on one side 5989 // of the select, we should form a branch. 5990 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5991 sinkSelectOperand(TTI, SI->getFalseValue())) 5992 return true; 5993 5994 return false; 5995 } 5996 5997 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5998 /// false value of \p SI. If the true/false value of \p SI is defined by any 5999 /// select instructions in \p Selects, look through the defining select 6000 /// instruction until the true/false value is not defined in \p Selects. 6001 static Value *getTrueOrFalseValue( 6002 SelectInst *SI, bool isTrue, 6003 const SmallPtrSet<const Instruction *, 2> &Selects) { 6004 Value *V = nullptr; 6005 6006 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6007 DefSI = dyn_cast<SelectInst>(V)) { 6008 assert(DefSI->getCondition() == SI->getCondition() && 6009 "The condition of DefSI does not match with SI"); 6010 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6011 } 6012 6013 assert(V && "Failed to get select true/false value"); 6014 return V; 6015 } 6016 6017 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6018 assert(Shift->isShift() && "Expected a shift"); 6019 6020 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6021 // general vector shifts, and (3) the shift amount is a select-of-splatted 6022 // values, hoist the shifts before the select: 6023 // shift Op0, (select Cond, TVal, FVal) --> 6024 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6025 // 6026 // This is inverting a generic IR transform when we know that the cost of a 6027 // general vector shift is more than the cost of 2 shift-by-scalars. 6028 // We can't do this effectively in SDAG because we may not be able to 6029 // determine if the select operands are splats from within a basic block. 6030 Type *Ty = Shift->getType(); 6031 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6032 return false; 6033 Value *Cond, *TVal, *FVal; 6034 if (!match(Shift->getOperand(1), 6035 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6036 return false; 6037 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6038 return false; 6039 6040 IRBuilder<> Builder(Shift); 6041 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6042 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6043 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6044 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6045 Shift->replaceAllUsesWith(NewSel); 6046 Shift->eraseFromParent(); 6047 return true; 6048 } 6049 6050 /// If we have a SelectInst that will likely profit from branch prediction, 6051 /// turn it into a branch. 6052 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6053 // If branch conversion isn't desirable, exit early. 6054 if (DisableSelectToBranch || OptSize || 6055 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6056 return false; 6057 6058 // Find all consecutive select instructions that share the same condition. 6059 SmallVector<SelectInst *, 2> ASI; 6060 ASI.push_back(SI); 6061 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6062 It != SI->getParent()->end(); ++It) { 6063 SelectInst *I = dyn_cast<SelectInst>(&*It); 6064 if (I && SI->getCondition() == I->getCondition()) { 6065 ASI.push_back(I); 6066 } else { 6067 break; 6068 } 6069 } 6070 6071 SelectInst *LastSI = ASI.back(); 6072 // Increment the current iterator to skip all the rest of select instructions 6073 // because they will be either "not lowered" or "all lowered" to branch. 6074 CurInstIterator = std::next(LastSI->getIterator()); 6075 6076 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6077 6078 // Can we convert the 'select' to CF ? 6079 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6080 return false; 6081 6082 TargetLowering::SelectSupportKind SelectKind; 6083 if (VectorCond) 6084 SelectKind = TargetLowering::VectorMaskSelect; 6085 else if (SI->getType()->isVectorTy()) 6086 SelectKind = TargetLowering::ScalarCondVectorVal; 6087 else 6088 SelectKind = TargetLowering::ScalarValSelect; 6089 6090 if (TLI->isSelectSupported(SelectKind) && 6091 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6092 return false; 6093 6094 // The DominatorTree needs to be rebuilt by any consumers after this 6095 // transformation. We simply reset here rather than setting the ModifiedDT 6096 // flag to avoid restarting the function walk in runOnFunction for each 6097 // select optimized. 6098 DT.reset(); 6099 6100 // Transform a sequence like this: 6101 // start: 6102 // %cmp = cmp uge i32 %a, %b 6103 // %sel = select i1 %cmp, i32 %c, i32 %d 6104 // 6105 // Into: 6106 // start: 6107 // %cmp = cmp uge i32 %a, %b 6108 // br i1 %cmp, label %select.true, label %select.false 6109 // select.true: 6110 // br label %select.end 6111 // select.false: 6112 // br label %select.end 6113 // select.end: 6114 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6115 // 6116 // In addition, we may sink instructions that produce %c or %d from 6117 // the entry block into the destination(s) of the new branch. 6118 // If the true or false blocks do not contain a sunken instruction, that 6119 // block and its branch may be optimized away. In that case, one side of the 6120 // first branch will point directly to select.end, and the corresponding PHI 6121 // predecessor block will be the start block. 6122 6123 // First, we split the block containing the select into 2 blocks. 6124 BasicBlock *StartBlock = SI->getParent(); 6125 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6126 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6127 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6128 6129 // Delete the unconditional branch that was just created by the split. 6130 StartBlock->getTerminator()->eraseFromParent(); 6131 6132 // These are the new basic blocks for the conditional branch. 6133 // At least one will become an actual new basic block. 6134 BasicBlock *TrueBlock = nullptr; 6135 BasicBlock *FalseBlock = nullptr; 6136 BranchInst *TrueBranch = nullptr; 6137 BranchInst *FalseBranch = nullptr; 6138 6139 // Sink expensive instructions into the conditional blocks to avoid executing 6140 // them speculatively. 6141 for (SelectInst *SI : ASI) { 6142 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6143 if (TrueBlock == nullptr) { 6144 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6145 EndBlock->getParent(), EndBlock); 6146 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6147 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6148 } 6149 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6150 TrueInst->moveBefore(TrueBranch); 6151 } 6152 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6153 if (FalseBlock == nullptr) { 6154 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6155 EndBlock->getParent(), EndBlock); 6156 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6157 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6158 } 6159 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6160 FalseInst->moveBefore(FalseBranch); 6161 } 6162 } 6163 6164 // If there was nothing to sink, then arbitrarily choose the 'false' side 6165 // for a new input value to the PHI. 6166 if (TrueBlock == FalseBlock) { 6167 assert(TrueBlock == nullptr && 6168 "Unexpected basic block transform while optimizing select"); 6169 6170 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6171 EndBlock->getParent(), EndBlock); 6172 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6173 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6174 } 6175 6176 // Insert the real conditional branch based on the original condition. 6177 // If we did not create a new block for one of the 'true' or 'false' paths 6178 // of the condition, it means that side of the branch goes to the end block 6179 // directly and the path originates from the start block from the point of 6180 // view of the new PHI. 6181 BasicBlock *TT, *FT; 6182 if (TrueBlock == nullptr) { 6183 TT = EndBlock; 6184 FT = FalseBlock; 6185 TrueBlock = StartBlock; 6186 } else if (FalseBlock == nullptr) { 6187 TT = TrueBlock; 6188 FT = EndBlock; 6189 FalseBlock = StartBlock; 6190 } else { 6191 TT = TrueBlock; 6192 FT = FalseBlock; 6193 } 6194 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6195 6196 SmallPtrSet<const Instruction *, 2> INS; 6197 INS.insert(ASI.begin(), ASI.end()); 6198 // Use reverse iterator because later select may use the value of the 6199 // earlier select, and we need to propagate value through earlier select 6200 // to get the PHI operand. 6201 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6202 SelectInst *SI = *It; 6203 // The select itself is replaced with a PHI Node. 6204 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6205 PN->takeName(SI); 6206 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6207 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6208 PN->setDebugLoc(SI->getDebugLoc()); 6209 6210 SI->replaceAllUsesWith(PN); 6211 SI->eraseFromParent(); 6212 INS.erase(SI); 6213 ++NumSelectsExpanded; 6214 } 6215 6216 // Instruct OptimizeBlock to skip to the next block. 6217 CurInstIterator = StartBlock->end(); 6218 return true; 6219 } 6220 6221 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6222 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6223 int SplatElem = -1; 6224 for (unsigned i = 0; i < Mask.size(); ++i) { 6225 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6226 return false; 6227 SplatElem = Mask[i]; 6228 } 6229 6230 return true; 6231 } 6232 6233 /// Some targets have expensive vector shifts if the lanes aren't all the same 6234 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6235 /// it's often worth sinking a shufflevector splat down to its use so that 6236 /// codegen can spot all lanes are identical. 6237 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6238 BasicBlock *DefBB = SVI->getParent(); 6239 6240 // Only do this xform if variable vector shifts are particularly expensive. 6241 if (!TLI->isVectorShiftByScalarCheap(SVI->getType())) 6242 return false; 6243 6244 // We only expect better codegen by sinking a shuffle if we can recognise a 6245 // constant splat. 6246 if (!isBroadcastShuffle(SVI)) 6247 return false; 6248 6249 // InsertedShuffles - Only insert a shuffle in each block once. 6250 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6251 6252 bool MadeChange = false; 6253 for (User *U : SVI->users()) { 6254 Instruction *UI = cast<Instruction>(U); 6255 6256 // Figure out which BB this ext is used in. 6257 BasicBlock *UserBB = UI->getParent(); 6258 if (UserBB == DefBB) continue; 6259 6260 // For now only apply this when the splat is used by a shift instruction. 6261 if (!UI->isShift()) continue; 6262 6263 // Everything checks out, sink the shuffle if the user's block doesn't 6264 // already have a copy. 6265 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6266 6267 if (!InsertedShuffle) { 6268 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6269 assert(InsertPt != UserBB->end()); 6270 InsertedShuffle = 6271 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6272 SVI->getOperand(2), "", &*InsertPt); 6273 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6274 } 6275 6276 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6277 MadeChange = true; 6278 } 6279 6280 // If we removed all uses, nuke the shuffle. 6281 if (SVI->use_empty()) { 6282 SVI->eraseFromParent(); 6283 MadeChange = true; 6284 } 6285 6286 return MadeChange; 6287 } 6288 6289 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6290 // If the operands of I can be folded into a target instruction together with 6291 // I, duplicate and sink them. 6292 SmallVector<Use *, 4> OpsToSink; 6293 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6294 return false; 6295 6296 // OpsToSink can contain multiple uses in a use chain (e.g. 6297 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6298 // uses must come first, so we process the ops in reverse order so as to not 6299 // create invalid IR. 6300 BasicBlock *TargetBB = I->getParent(); 6301 bool Changed = false; 6302 SmallVector<Use *, 4> ToReplace; 6303 for (Use *U : reverse(OpsToSink)) { 6304 auto *UI = cast<Instruction>(U->get()); 6305 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6306 continue; 6307 ToReplace.push_back(U); 6308 } 6309 6310 SetVector<Instruction *> MaybeDead; 6311 DenseMap<Instruction *, Instruction *> NewInstructions; 6312 Instruction *InsertPoint = I; 6313 for (Use *U : ToReplace) { 6314 auto *UI = cast<Instruction>(U->get()); 6315 Instruction *NI = UI->clone(); 6316 NewInstructions[UI] = NI; 6317 MaybeDead.insert(UI); 6318 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6319 NI->insertBefore(InsertPoint); 6320 InsertPoint = NI; 6321 InsertedInsts.insert(NI); 6322 6323 // Update the use for the new instruction, making sure that we update the 6324 // sunk instruction uses, if it is part of a chain that has already been 6325 // sunk. 6326 Instruction *OldI = cast<Instruction>(U->getUser()); 6327 if (NewInstructions.count(OldI)) 6328 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6329 else 6330 U->set(NI); 6331 Changed = true; 6332 } 6333 6334 // Remove instructions that are dead after sinking. 6335 for (auto *I : MaybeDead) { 6336 if (!I->hasNUsesOrMore(1)) { 6337 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6338 I->eraseFromParent(); 6339 } 6340 } 6341 6342 return Changed; 6343 } 6344 6345 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6346 Value *Cond = SI->getCondition(); 6347 Type *OldType = Cond->getType(); 6348 LLVMContext &Context = Cond->getContext(); 6349 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6350 unsigned RegWidth = RegType.getSizeInBits(); 6351 6352 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6353 return false; 6354 6355 // If the register width is greater than the type width, expand the condition 6356 // of the switch instruction and each case constant to the width of the 6357 // register. By widening the type of the switch condition, subsequent 6358 // comparisons (for case comparisons) will not need to be extended to the 6359 // preferred register width, so we will potentially eliminate N-1 extends, 6360 // where N is the number of cases in the switch. 6361 auto *NewType = Type::getIntNTy(Context, RegWidth); 6362 6363 // Zero-extend the switch condition and case constants unless the switch 6364 // condition is a function argument that is already being sign-extended. 6365 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6366 // everything instead. 6367 Instruction::CastOps ExtType = Instruction::ZExt; 6368 if (auto *Arg = dyn_cast<Argument>(Cond)) 6369 if (Arg->hasSExtAttr()) 6370 ExtType = Instruction::SExt; 6371 6372 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6373 ExtInst->insertBefore(SI); 6374 ExtInst->setDebugLoc(SI->getDebugLoc()); 6375 SI->setCondition(ExtInst); 6376 for (auto Case : SI->cases()) { 6377 APInt NarrowConst = Case.getCaseValue()->getValue(); 6378 APInt WideConst = (ExtType == Instruction::ZExt) ? 6379 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6380 Case.setValue(ConstantInt::get(Context, WideConst)); 6381 } 6382 6383 return true; 6384 } 6385 6386 6387 namespace { 6388 6389 /// Helper class to promote a scalar operation to a vector one. 6390 /// This class is used to move downward extractelement transition. 6391 /// E.g., 6392 /// a = vector_op <2 x i32> 6393 /// b = extractelement <2 x i32> a, i32 0 6394 /// c = scalar_op b 6395 /// store c 6396 /// 6397 /// => 6398 /// a = vector_op <2 x i32> 6399 /// c = vector_op a (equivalent to scalar_op on the related lane) 6400 /// * d = extractelement <2 x i32> c, i32 0 6401 /// * store d 6402 /// Assuming both extractelement and store can be combine, we get rid of the 6403 /// transition. 6404 class VectorPromoteHelper { 6405 /// DataLayout associated with the current module. 6406 const DataLayout &DL; 6407 6408 /// Used to perform some checks on the legality of vector operations. 6409 const TargetLowering &TLI; 6410 6411 /// Used to estimated the cost of the promoted chain. 6412 const TargetTransformInfo &TTI; 6413 6414 /// The transition being moved downwards. 6415 Instruction *Transition; 6416 6417 /// The sequence of instructions to be promoted. 6418 SmallVector<Instruction *, 4> InstsToBePromoted; 6419 6420 /// Cost of combining a store and an extract. 6421 unsigned StoreExtractCombineCost; 6422 6423 /// Instruction that will be combined with the transition. 6424 Instruction *CombineInst = nullptr; 6425 6426 /// The instruction that represents the current end of the transition. 6427 /// Since we are faking the promotion until we reach the end of the chain 6428 /// of computation, we need a way to get the current end of the transition. 6429 Instruction *getEndOfTransition() const { 6430 if (InstsToBePromoted.empty()) 6431 return Transition; 6432 return InstsToBePromoted.back(); 6433 } 6434 6435 /// Return the index of the original value in the transition. 6436 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6437 /// c, is at index 0. 6438 unsigned getTransitionOriginalValueIdx() const { 6439 assert(isa<ExtractElementInst>(Transition) && 6440 "Other kind of transitions are not supported yet"); 6441 return 0; 6442 } 6443 6444 /// Return the index of the index in the transition. 6445 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6446 /// is at index 1. 6447 unsigned getTransitionIdx() const { 6448 assert(isa<ExtractElementInst>(Transition) && 6449 "Other kind of transitions are not supported yet"); 6450 return 1; 6451 } 6452 6453 /// Get the type of the transition. 6454 /// This is the type of the original value. 6455 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6456 /// transition is <2 x i32>. 6457 Type *getTransitionType() const { 6458 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6459 } 6460 6461 /// Promote \p ToBePromoted by moving \p Def downward through. 6462 /// I.e., we have the following sequence: 6463 /// Def = Transition <ty1> a to <ty2> 6464 /// b = ToBePromoted <ty2> Def, ... 6465 /// => 6466 /// b = ToBePromoted <ty1> a, ... 6467 /// Def = Transition <ty1> ToBePromoted to <ty2> 6468 void promoteImpl(Instruction *ToBePromoted); 6469 6470 /// Check whether or not it is profitable to promote all the 6471 /// instructions enqueued to be promoted. 6472 bool isProfitableToPromote() { 6473 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6474 unsigned Index = isa<ConstantInt>(ValIdx) 6475 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6476 : -1; 6477 Type *PromotedType = getTransitionType(); 6478 6479 StoreInst *ST = cast<StoreInst>(CombineInst); 6480 unsigned AS = ST->getPointerAddressSpace(); 6481 unsigned Align = ST->getAlignment(); 6482 // Check if this store is supported. 6483 if (!TLI.allowsMisalignedMemoryAccesses( 6484 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6485 Align)) { 6486 // If this is not supported, there is no way we can combine 6487 // the extract with the store. 6488 return false; 6489 } 6490 6491 // The scalar chain of computation has to pay for the transition 6492 // scalar to vector. 6493 // The vector chain has to account for the combining cost. 6494 uint64_t ScalarCost = 6495 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6496 uint64_t VectorCost = StoreExtractCombineCost; 6497 for (const auto &Inst : InstsToBePromoted) { 6498 // Compute the cost. 6499 // By construction, all instructions being promoted are arithmetic ones. 6500 // Moreover, one argument is a constant that can be viewed as a splat 6501 // constant. 6502 Value *Arg0 = Inst->getOperand(0); 6503 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6504 isa<ConstantFP>(Arg0); 6505 TargetTransformInfo::OperandValueKind Arg0OVK = 6506 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6507 : TargetTransformInfo::OK_AnyValue; 6508 TargetTransformInfo::OperandValueKind Arg1OVK = 6509 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6510 : TargetTransformInfo::OK_AnyValue; 6511 ScalarCost += TTI.getArithmeticInstrCost( 6512 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6513 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6514 Arg0OVK, Arg1OVK); 6515 } 6516 LLVM_DEBUG( 6517 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6518 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6519 return ScalarCost > VectorCost; 6520 } 6521 6522 /// Generate a constant vector with \p Val with the same 6523 /// number of elements as the transition. 6524 /// \p UseSplat defines whether or not \p Val should be replicated 6525 /// across the whole vector. 6526 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6527 /// otherwise we generate a vector with as many undef as possible: 6528 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6529 /// used at the index of the extract. 6530 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6531 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6532 if (!UseSplat) { 6533 // If we cannot determine where the constant must be, we have to 6534 // use a splat constant. 6535 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6536 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6537 ExtractIdx = CstVal->getSExtValue(); 6538 else 6539 UseSplat = true; 6540 } 6541 6542 unsigned End = getTransitionType()->getVectorNumElements(); 6543 if (UseSplat) 6544 return ConstantVector::getSplat(End, Val); 6545 6546 SmallVector<Constant *, 4> ConstVec; 6547 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6548 for (unsigned Idx = 0; Idx != End; ++Idx) { 6549 if (Idx == ExtractIdx) 6550 ConstVec.push_back(Val); 6551 else 6552 ConstVec.push_back(UndefVal); 6553 } 6554 return ConstantVector::get(ConstVec); 6555 } 6556 6557 /// Check if promoting to a vector type an operand at \p OperandIdx 6558 /// in \p Use can trigger undefined behavior. 6559 static bool canCauseUndefinedBehavior(const Instruction *Use, 6560 unsigned OperandIdx) { 6561 // This is not safe to introduce undef when the operand is on 6562 // the right hand side of a division-like instruction. 6563 if (OperandIdx != 1) 6564 return false; 6565 switch (Use->getOpcode()) { 6566 default: 6567 return false; 6568 case Instruction::SDiv: 6569 case Instruction::UDiv: 6570 case Instruction::SRem: 6571 case Instruction::URem: 6572 return true; 6573 case Instruction::FDiv: 6574 case Instruction::FRem: 6575 return !Use->hasNoNaNs(); 6576 } 6577 llvm_unreachable(nullptr); 6578 } 6579 6580 public: 6581 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6582 const TargetTransformInfo &TTI, Instruction *Transition, 6583 unsigned CombineCost) 6584 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6585 StoreExtractCombineCost(CombineCost) { 6586 assert(Transition && "Do not know how to promote null"); 6587 } 6588 6589 /// Check if we can promote \p ToBePromoted to \p Type. 6590 bool canPromote(const Instruction *ToBePromoted) const { 6591 // We could support CastInst too. 6592 return isa<BinaryOperator>(ToBePromoted); 6593 } 6594 6595 /// Check if it is profitable to promote \p ToBePromoted 6596 /// by moving downward the transition through. 6597 bool shouldPromote(const Instruction *ToBePromoted) const { 6598 // Promote only if all the operands can be statically expanded. 6599 // Indeed, we do not want to introduce any new kind of transitions. 6600 for (const Use &U : ToBePromoted->operands()) { 6601 const Value *Val = U.get(); 6602 if (Val == getEndOfTransition()) { 6603 // If the use is a division and the transition is on the rhs, 6604 // we cannot promote the operation, otherwise we may create a 6605 // division by zero. 6606 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6607 return false; 6608 continue; 6609 } 6610 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6611 !isa<ConstantFP>(Val)) 6612 return false; 6613 } 6614 // Check that the resulting operation is legal. 6615 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6616 if (!ISDOpcode) 6617 return false; 6618 return StressStoreExtract || 6619 TLI.isOperationLegalOrCustom( 6620 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6621 } 6622 6623 /// Check whether or not \p Use can be combined 6624 /// with the transition. 6625 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6626 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6627 6628 /// Record \p ToBePromoted as part of the chain to be promoted. 6629 void enqueueForPromotion(Instruction *ToBePromoted) { 6630 InstsToBePromoted.push_back(ToBePromoted); 6631 } 6632 6633 /// Set the instruction that will be combined with the transition. 6634 void recordCombineInstruction(Instruction *ToBeCombined) { 6635 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6636 CombineInst = ToBeCombined; 6637 } 6638 6639 /// Promote all the instructions enqueued for promotion if it is 6640 /// is profitable. 6641 /// \return True if the promotion happened, false otherwise. 6642 bool promote() { 6643 // Check if there is something to promote. 6644 // Right now, if we do not have anything to combine with, 6645 // we assume the promotion is not profitable. 6646 if (InstsToBePromoted.empty() || !CombineInst) 6647 return false; 6648 6649 // Check cost. 6650 if (!StressStoreExtract && !isProfitableToPromote()) 6651 return false; 6652 6653 // Promote. 6654 for (auto &ToBePromoted : InstsToBePromoted) 6655 promoteImpl(ToBePromoted); 6656 InstsToBePromoted.clear(); 6657 return true; 6658 } 6659 }; 6660 6661 } // end anonymous namespace 6662 6663 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6664 // At this point, we know that all the operands of ToBePromoted but Def 6665 // can be statically promoted. 6666 // For Def, we need to use its parameter in ToBePromoted: 6667 // b = ToBePromoted ty1 a 6668 // Def = Transition ty1 b to ty2 6669 // Move the transition down. 6670 // 1. Replace all uses of the promoted operation by the transition. 6671 // = ... b => = ... Def. 6672 assert(ToBePromoted->getType() == Transition->getType() && 6673 "The type of the result of the transition does not match " 6674 "the final type"); 6675 ToBePromoted->replaceAllUsesWith(Transition); 6676 // 2. Update the type of the uses. 6677 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6678 Type *TransitionTy = getTransitionType(); 6679 ToBePromoted->mutateType(TransitionTy); 6680 // 3. Update all the operands of the promoted operation with promoted 6681 // operands. 6682 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6683 for (Use &U : ToBePromoted->operands()) { 6684 Value *Val = U.get(); 6685 Value *NewVal = nullptr; 6686 if (Val == Transition) 6687 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6688 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6689 isa<ConstantFP>(Val)) { 6690 // Use a splat constant if it is not safe to use undef. 6691 NewVal = getConstantVector( 6692 cast<Constant>(Val), 6693 isa<UndefValue>(Val) || 6694 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6695 } else 6696 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6697 "this?"); 6698 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6699 } 6700 Transition->moveAfter(ToBePromoted); 6701 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6702 } 6703 6704 /// Some targets can do store(extractelement) with one instruction. 6705 /// Try to push the extractelement towards the stores when the target 6706 /// has this feature and this is profitable. 6707 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6708 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6709 if (DisableStoreExtract || 6710 (!StressStoreExtract && 6711 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6712 Inst->getOperand(1), CombineCost))) 6713 return false; 6714 6715 // At this point we know that Inst is a vector to scalar transition. 6716 // Try to move it down the def-use chain, until: 6717 // - We can combine the transition with its single use 6718 // => we got rid of the transition. 6719 // - We escape the current basic block 6720 // => we would need to check that we are moving it at a cheaper place and 6721 // we do not do that for now. 6722 BasicBlock *Parent = Inst->getParent(); 6723 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6724 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6725 // If the transition has more than one use, assume this is not going to be 6726 // beneficial. 6727 while (Inst->hasOneUse()) { 6728 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6729 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6730 6731 if (ToBePromoted->getParent() != Parent) { 6732 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6733 << ToBePromoted->getParent()->getName() 6734 << ") than the transition (" << Parent->getName() 6735 << ").\n"); 6736 return false; 6737 } 6738 6739 if (VPH.canCombine(ToBePromoted)) { 6740 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6741 << "will be combined with: " << *ToBePromoted << '\n'); 6742 VPH.recordCombineInstruction(ToBePromoted); 6743 bool Changed = VPH.promote(); 6744 NumStoreExtractExposed += Changed; 6745 return Changed; 6746 } 6747 6748 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6749 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6750 return false; 6751 6752 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6753 6754 VPH.enqueueForPromotion(ToBePromoted); 6755 Inst = ToBePromoted; 6756 } 6757 return false; 6758 } 6759 6760 /// For the instruction sequence of store below, F and I values 6761 /// are bundled together as an i64 value before being stored into memory. 6762 /// Sometimes it is more efficient to generate separate stores for F and I, 6763 /// which can remove the bitwise instructions or sink them to colder places. 6764 /// 6765 /// (store (or (zext (bitcast F to i32) to i64), 6766 /// (shl (zext I to i64), 32)), addr) --> 6767 /// (store F, addr) and (store I, addr+4) 6768 /// 6769 /// Similarly, splitting for other merged store can also be beneficial, like: 6770 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6771 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6772 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6773 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6774 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6775 /// 6776 /// We allow each target to determine specifically which kind of splitting is 6777 /// supported. 6778 /// 6779 /// The store patterns are commonly seen from the simple code snippet below 6780 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6781 /// void goo(const std::pair<int, float> &); 6782 /// hoo() { 6783 /// ... 6784 /// goo(std::make_pair(tmp, ftmp)); 6785 /// ... 6786 /// } 6787 /// 6788 /// Although we already have similar splitting in DAG Combine, we duplicate 6789 /// it in CodeGenPrepare to catch the case in which pattern is across 6790 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6791 /// during code expansion. 6792 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6793 const TargetLowering &TLI) { 6794 // Handle simple but common cases only. 6795 Type *StoreType = SI.getValueOperand()->getType(); 6796 6797 // The code below assumes shifting a value by <number of bits>, 6798 // whereas scalable vectors would have to be shifted by 6799 // <2log(vscale) + number of bits> in order to store the 6800 // low/high parts. Bailing out for now. 6801 if (StoreType->isVectorTy() && StoreType->getVectorIsScalable()) 6802 return false; 6803 6804 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6805 DL.getTypeSizeInBits(StoreType) == 0) 6806 return false; 6807 6808 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6809 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6810 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6811 return false; 6812 6813 // Don't split the store if it is volatile. 6814 if (SI.isVolatile()) 6815 return false; 6816 6817 // Match the following patterns: 6818 // (store (or (zext LValue to i64), 6819 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6820 // or 6821 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6822 // (zext LValue to i64), 6823 // Expect both operands of OR and the first operand of SHL have only 6824 // one use. 6825 Value *LValue, *HValue; 6826 if (!match(SI.getValueOperand(), 6827 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6828 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6829 m_SpecificInt(HalfValBitSize)))))) 6830 return false; 6831 6832 // Check LValue and HValue are int with size less or equal than 32. 6833 if (!LValue->getType()->isIntegerTy() || 6834 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6835 !HValue->getType()->isIntegerTy() || 6836 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6837 return false; 6838 6839 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6840 // as the input of target query. 6841 auto *LBC = dyn_cast<BitCastInst>(LValue); 6842 auto *HBC = dyn_cast<BitCastInst>(HValue); 6843 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6844 : EVT::getEVT(LValue->getType()); 6845 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6846 : EVT::getEVT(HValue->getType()); 6847 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6848 return false; 6849 6850 // Start to split store. 6851 IRBuilder<> Builder(SI.getContext()); 6852 Builder.SetInsertPoint(&SI); 6853 6854 // If LValue/HValue is a bitcast in another BB, create a new one in current 6855 // BB so it may be merged with the splitted stores by dag combiner. 6856 if (LBC && LBC->getParent() != SI.getParent()) 6857 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6858 if (HBC && HBC->getParent() != SI.getParent()) 6859 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6860 6861 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6862 auto CreateSplitStore = [&](Value *V, bool Upper) { 6863 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6864 Value *Addr = Builder.CreateBitCast( 6865 SI.getOperand(1), 6866 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6867 if ((IsLE && Upper) || (!IsLE && !Upper)) 6868 Addr = Builder.CreateGEP( 6869 SplitStoreType, Addr, 6870 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6871 Builder.CreateAlignedStore(V, Addr, 6872 Upper ? SI.getAlign() / 2 : SI.getAlign()); 6873 }; 6874 6875 CreateSplitStore(LValue, false); 6876 CreateSplitStore(HValue, true); 6877 6878 // Delete the old store. 6879 SI.eraseFromParent(); 6880 return true; 6881 } 6882 6883 // Return true if the GEP has two operands, the first operand is of a sequential 6884 // type, and the second operand is a constant. 6885 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6886 gep_type_iterator I = gep_type_begin(*GEP); 6887 return GEP->getNumOperands() == 2 && 6888 I.isSequential() && 6889 isa<ConstantInt>(GEP->getOperand(1)); 6890 } 6891 6892 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6893 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6894 // reducing liveness interference across those edges benefits global register 6895 // allocation. Currently handles only certain cases. 6896 // 6897 // For example, unmerge %GEPI and %UGEPI as below. 6898 // 6899 // ---------- BEFORE ---------- 6900 // SrcBlock: 6901 // ... 6902 // %GEPIOp = ... 6903 // ... 6904 // %GEPI = gep %GEPIOp, Idx 6905 // ... 6906 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6907 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6908 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6909 // %UGEPI) 6910 // 6911 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6912 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6913 // ... 6914 // 6915 // DstBi: 6916 // ... 6917 // %UGEPI = gep %GEPIOp, UIdx 6918 // ... 6919 // --------------------------- 6920 // 6921 // ---------- AFTER ---------- 6922 // SrcBlock: 6923 // ... (same as above) 6924 // (* %GEPI is still alive on the indirectbr edges) 6925 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6926 // unmerging) 6927 // ... 6928 // 6929 // DstBi: 6930 // ... 6931 // %UGEPI = gep %GEPI, (UIdx-Idx) 6932 // ... 6933 // --------------------------- 6934 // 6935 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6936 // no longer alive on them. 6937 // 6938 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6939 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6940 // not to disable further simplications and optimizations as a result of GEP 6941 // merging. 6942 // 6943 // Note this unmerging may increase the length of the data flow critical path 6944 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6945 // between the register pressure and the length of data-flow critical 6946 // path. Restricting this to the uncommon IndirectBr case would minimize the 6947 // impact of potentially longer critical path, if any, and the impact on compile 6948 // time. 6949 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6950 const TargetTransformInfo *TTI) { 6951 BasicBlock *SrcBlock = GEPI->getParent(); 6952 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6953 // (non-IndirectBr) cases exit early here. 6954 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6955 return false; 6956 // Check that GEPI is a simple gep with a single constant index. 6957 if (!GEPSequentialConstIndexed(GEPI)) 6958 return false; 6959 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6960 // Check that GEPI is a cheap one. 6961 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6962 > TargetTransformInfo::TCC_Basic) 6963 return false; 6964 Value *GEPIOp = GEPI->getOperand(0); 6965 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6966 if (!isa<Instruction>(GEPIOp)) 6967 return false; 6968 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6969 if (GEPIOpI->getParent() != SrcBlock) 6970 return false; 6971 // Check that GEP is used outside the block, meaning it's alive on the 6972 // IndirectBr edge(s). 6973 if (find_if(GEPI->users(), [&](User *Usr) { 6974 if (auto *I = dyn_cast<Instruction>(Usr)) { 6975 if (I->getParent() != SrcBlock) { 6976 return true; 6977 } 6978 } 6979 return false; 6980 }) == GEPI->users().end()) 6981 return false; 6982 // The second elements of the GEP chains to be unmerged. 6983 std::vector<GetElementPtrInst *> UGEPIs; 6984 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6985 // on IndirectBr edges. 6986 for (User *Usr : GEPIOp->users()) { 6987 if (Usr == GEPI) continue; 6988 // Check if Usr is an Instruction. If not, give up. 6989 if (!isa<Instruction>(Usr)) 6990 return false; 6991 auto *UI = cast<Instruction>(Usr); 6992 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6993 if (UI->getParent() == SrcBlock) 6994 continue; 6995 // Check if Usr is a GEP. If not, give up. 6996 if (!isa<GetElementPtrInst>(Usr)) 6997 return false; 6998 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6999 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7000 // the pointer operand to it. If so, record it in the vector. If not, give 7001 // up. 7002 if (!GEPSequentialConstIndexed(UGEPI)) 7003 return false; 7004 if (UGEPI->getOperand(0) != GEPIOp) 7005 return false; 7006 if (GEPIIdx->getType() != 7007 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7008 return false; 7009 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7010 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7011 > TargetTransformInfo::TCC_Basic) 7012 return false; 7013 UGEPIs.push_back(UGEPI); 7014 } 7015 if (UGEPIs.size() == 0) 7016 return false; 7017 // Check the materializing cost of (Uidx-Idx). 7018 for (GetElementPtrInst *UGEPI : UGEPIs) { 7019 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7020 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7021 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7022 if (ImmCost > TargetTransformInfo::TCC_Basic) 7023 return false; 7024 } 7025 // Now unmerge between GEPI and UGEPIs. 7026 for (GetElementPtrInst *UGEPI : UGEPIs) { 7027 UGEPI->setOperand(0, GEPI); 7028 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7029 Constant *NewUGEPIIdx = 7030 ConstantInt::get(GEPIIdx->getType(), 7031 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7032 UGEPI->setOperand(1, NewUGEPIIdx); 7033 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7034 // inbounds to avoid UB. 7035 if (!GEPI->isInBounds()) { 7036 UGEPI->setIsInBounds(false); 7037 } 7038 } 7039 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7040 // alive on IndirectBr edges). 7041 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7042 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7043 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7044 return true; 7045 } 7046 7047 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7048 // Bail out if we inserted the instruction to prevent optimizations from 7049 // stepping on each other's toes. 7050 if (InsertedInsts.count(I)) 7051 return false; 7052 7053 // TODO: Move into the switch on opcode below here. 7054 if (PHINode *P = dyn_cast<PHINode>(I)) { 7055 // It is possible for very late stage optimizations (such as SimplifyCFG) 7056 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7057 // trivial PHI, go ahead and zap it here. 7058 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7059 LargeOffsetGEPMap.erase(P); 7060 P->replaceAllUsesWith(V); 7061 P->eraseFromParent(); 7062 ++NumPHIsElim; 7063 return true; 7064 } 7065 return false; 7066 } 7067 7068 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7069 // If the source of the cast is a constant, then this should have 7070 // already been constant folded. The only reason NOT to constant fold 7071 // it is if something (e.g. LSR) was careful to place the constant 7072 // evaluation in a block other than then one that uses it (e.g. to hoist 7073 // the address of globals out of a loop). If this is the case, we don't 7074 // want to forward-subst the cast. 7075 if (isa<Constant>(CI->getOperand(0))) 7076 return false; 7077 7078 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7079 return true; 7080 7081 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7082 /// Sink a zext or sext into its user blocks if the target type doesn't 7083 /// fit in one register 7084 if (TLI->getTypeAction(CI->getContext(), 7085 TLI->getValueType(*DL, CI->getType())) == 7086 TargetLowering::TypeExpandInteger) { 7087 return SinkCast(CI); 7088 } else { 7089 bool MadeChange = optimizeExt(I); 7090 return MadeChange | optimizeExtUses(I); 7091 } 7092 } 7093 return false; 7094 } 7095 7096 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7097 if (optimizeCmp(Cmp, ModifiedDT)) 7098 return true; 7099 7100 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7101 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7102 bool Modified = optimizeLoadExt(LI); 7103 unsigned AS = LI->getPointerAddressSpace(); 7104 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7105 return Modified; 7106 } 7107 7108 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7109 if (splitMergedValStore(*SI, *DL, *TLI)) 7110 return true; 7111 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7112 unsigned AS = SI->getPointerAddressSpace(); 7113 return optimizeMemoryInst(I, SI->getOperand(1), 7114 SI->getOperand(0)->getType(), AS); 7115 } 7116 7117 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7118 unsigned AS = RMW->getPointerAddressSpace(); 7119 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7120 RMW->getType(), AS); 7121 } 7122 7123 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7124 unsigned AS = CmpX->getPointerAddressSpace(); 7125 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7126 CmpX->getCompareOperand()->getType(), AS); 7127 } 7128 7129 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7130 7131 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7132 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7133 7134 // TODO: Move this into the switch on opcode - it handles shifts already. 7135 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7136 BinOp->getOpcode() == Instruction::LShr)) { 7137 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7138 if (CI && TLI->hasExtractBitsInsn()) 7139 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7140 return true; 7141 } 7142 7143 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7144 if (GEPI->hasAllZeroIndices()) { 7145 /// The GEP operand must be a pointer, so must its result -> BitCast 7146 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7147 GEPI->getName(), GEPI); 7148 NC->setDebugLoc(GEPI->getDebugLoc()); 7149 GEPI->replaceAllUsesWith(NC); 7150 GEPI->eraseFromParent(); 7151 ++NumGEPsElim; 7152 optimizeInst(NC, ModifiedDT); 7153 return true; 7154 } 7155 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7156 return true; 7157 } 7158 return false; 7159 } 7160 7161 if (tryToSinkFreeOperands(I)) 7162 return true; 7163 7164 switch (I->getOpcode()) { 7165 case Instruction::Shl: 7166 case Instruction::LShr: 7167 case Instruction::AShr: 7168 return optimizeShiftInst(cast<BinaryOperator>(I)); 7169 case Instruction::Call: 7170 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7171 case Instruction::Select: 7172 return optimizeSelectInst(cast<SelectInst>(I)); 7173 case Instruction::ShuffleVector: 7174 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7175 case Instruction::Switch: 7176 return optimizeSwitchInst(cast<SwitchInst>(I)); 7177 case Instruction::ExtractElement: 7178 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7179 } 7180 7181 return false; 7182 } 7183 7184 /// Given an OR instruction, check to see if this is a bitreverse 7185 /// idiom. If so, insert the new intrinsic and return true. 7186 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7187 const TargetLowering &TLI) { 7188 if (!I.getType()->isIntegerTy() || 7189 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7190 TLI.getValueType(DL, I.getType(), true))) 7191 return false; 7192 7193 SmallVector<Instruction*, 4> Insts; 7194 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7195 return false; 7196 Instruction *LastInst = Insts.back(); 7197 I.replaceAllUsesWith(LastInst); 7198 RecursivelyDeleteTriviallyDeadInstructions(&I); 7199 return true; 7200 } 7201 7202 // In this pass we look for GEP and cast instructions that are used 7203 // across basic blocks and rewrite them to improve basic-block-at-a-time 7204 // selection. 7205 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7206 SunkAddrs.clear(); 7207 bool MadeChange = false; 7208 7209 CurInstIterator = BB.begin(); 7210 while (CurInstIterator != BB.end()) { 7211 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7212 if (ModifiedDT) 7213 return true; 7214 } 7215 7216 bool MadeBitReverse = true; 7217 while (MadeBitReverse) { 7218 MadeBitReverse = false; 7219 for (auto &I : reverse(BB)) { 7220 if (makeBitReverse(I, *DL, *TLI)) { 7221 MadeBitReverse = MadeChange = true; 7222 break; 7223 } 7224 } 7225 } 7226 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7227 7228 return MadeChange; 7229 } 7230 7231 // Some CGP optimizations may move or alter what's computed in a block. Check 7232 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7233 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7234 assert(isa<DbgValueInst>(I)); 7235 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7236 7237 // Does this dbg.value refer to a sunk address calculation? 7238 Value *Location = DVI.getVariableLocation(); 7239 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7240 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7241 if (SunkAddr) { 7242 // Point dbg.value at locally computed address, which should give the best 7243 // opportunity to be accurately lowered. This update may change the type of 7244 // pointer being referred to; however this makes no difference to debugging 7245 // information, and we can't generate bitcasts that may affect codegen. 7246 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7247 ValueAsMetadata::get(SunkAddr))); 7248 return true; 7249 } 7250 return false; 7251 } 7252 7253 // A llvm.dbg.value may be using a value before its definition, due to 7254 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7255 // them by moving the dbg.value to immediately after the value definition. 7256 // FIXME: Ideally this should never be necessary, and this has the potential 7257 // to re-order dbg.value intrinsics. 7258 bool CodeGenPrepare::placeDbgValues(Function &F) { 7259 bool MadeChange = false; 7260 DominatorTree DT(F); 7261 7262 for (BasicBlock &BB : F) { 7263 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7264 Instruction *Insn = &*BI++; 7265 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7266 if (!DVI) 7267 continue; 7268 7269 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7270 7271 if (!VI || VI->isTerminator()) 7272 continue; 7273 7274 // If VI is a phi in a block with an EHPad terminator, we can't insert 7275 // after it. 7276 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7277 continue; 7278 7279 // If the defining instruction dominates the dbg.value, we do not need 7280 // to move the dbg.value. 7281 if (DT.dominates(VI, DVI)) 7282 continue; 7283 7284 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7285 << *DVI << ' ' << *VI); 7286 DVI->removeFromParent(); 7287 if (isa<PHINode>(VI)) 7288 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7289 else 7290 DVI->insertAfter(VI); 7291 MadeChange = true; 7292 ++NumDbgValueMoved; 7293 } 7294 } 7295 return MadeChange; 7296 } 7297 7298 /// Scale down both weights to fit into uint32_t. 7299 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7300 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7301 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7302 NewTrue = NewTrue / Scale; 7303 NewFalse = NewFalse / Scale; 7304 } 7305 7306 /// Some targets prefer to split a conditional branch like: 7307 /// \code 7308 /// %0 = icmp ne i32 %a, 0 7309 /// %1 = icmp ne i32 %b, 0 7310 /// %or.cond = or i1 %0, %1 7311 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7312 /// \endcode 7313 /// into multiple branch instructions like: 7314 /// \code 7315 /// bb1: 7316 /// %0 = icmp ne i32 %a, 0 7317 /// br i1 %0, label %TrueBB, label %bb2 7318 /// bb2: 7319 /// %1 = icmp ne i32 %b, 0 7320 /// br i1 %1, label %TrueBB, label %FalseBB 7321 /// \endcode 7322 /// This usually allows instruction selection to do even further optimizations 7323 /// and combine the compare with the branch instruction. Currently this is 7324 /// applied for targets which have "cheap" jump instructions. 7325 /// 7326 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7327 /// 7328 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7329 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7330 return false; 7331 7332 bool MadeChange = false; 7333 for (auto &BB : F) { 7334 // Does this BB end with the following? 7335 // %cond1 = icmp|fcmp|binary instruction ... 7336 // %cond2 = icmp|fcmp|binary instruction ... 7337 // %cond.or = or|and i1 %cond1, cond2 7338 // br i1 %cond.or label %dest1, label %dest2" 7339 BinaryOperator *LogicOp; 7340 BasicBlock *TBB, *FBB; 7341 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7342 continue; 7343 7344 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7345 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7346 continue; 7347 7348 // The merging of mostly empty BB can cause a degenerate branch. 7349 if (TBB == FBB) 7350 continue; 7351 7352 unsigned Opc; 7353 Value *Cond1, *Cond2; 7354 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7355 m_OneUse(m_Value(Cond2))))) 7356 Opc = Instruction::And; 7357 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7358 m_OneUse(m_Value(Cond2))))) 7359 Opc = Instruction::Or; 7360 else 7361 continue; 7362 7363 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7364 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7365 continue; 7366 7367 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7368 7369 // Create a new BB. 7370 auto TmpBB = 7371 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7372 BB.getParent(), BB.getNextNode()); 7373 7374 // Update original basic block by using the first condition directly by the 7375 // branch instruction and removing the no longer needed and/or instruction. 7376 Br1->setCondition(Cond1); 7377 LogicOp->eraseFromParent(); 7378 7379 // Depending on the condition we have to either replace the true or the 7380 // false successor of the original branch instruction. 7381 if (Opc == Instruction::And) 7382 Br1->setSuccessor(0, TmpBB); 7383 else 7384 Br1->setSuccessor(1, TmpBB); 7385 7386 // Fill in the new basic block. 7387 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7388 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7389 I->removeFromParent(); 7390 I->insertBefore(Br2); 7391 } 7392 7393 // Update PHI nodes in both successors. The original BB needs to be 7394 // replaced in one successor's PHI nodes, because the branch comes now from 7395 // the newly generated BB (NewBB). In the other successor we need to add one 7396 // incoming edge to the PHI nodes, because both branch instructions target 7397 // now the same successor. Depending on the original branch condition 7398 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7399 // we perform the correct update for the PHI nodes. 7400 // This doesn't change the successor order of the just created branch 7401 // instruction (or any other instruction). 7402 if (Opc == Instruction::Or) 7403 std::swap(TBB, FBB); 7404 7405 // Replace the old BB with the new BB. 7406 TBB->replacePhiUsesWith(&BB, TmpBB); 7407 7408 // Add another incoming edge form the new BB. 7409 for (PHINode &PN : FBB->phis()) { 7410 auto *Val = PN.getIncomingValueForBlock(&BB); 7411 PN.addIncoming(Val, TmpBB); 7412 } 7413 7414 // Update the branch weights (from SelectionDAGBuilder:: 7415 // FindMergedConditions). 7416 if (Opc == Instruction::Or) { 7417 // Codegen X | Y as: 7418 // BB1: 7419 // jmp_if_X TBB 7420 // jmp TmpBB 7421 // TmpBB: 7422 // jmp_if_Y TBB 7423 // jmp FBB 7424 // 7425 7426 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7427 // The requirement is that 7428 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7429 // = TrueProb for original BB. 7430 // Assuming the original weights are A and B, one choice is to set BB1's 7431 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7432 // assumes that 7433 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7434 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7435 // TmpBB, but the math is more complicated. 7436 uint64_t TrueWeight, FalseWeight; 7437 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7438 uint64_t NewTrueWeight = TrueWeight; 7439 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7440 scaleWeights(NewTrueWeight, NewFalseWeight); 7441 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7442 .createBranchWeights(TrueWeight, FalseWeight)); 7443 7444 NewTrueWeight = TrueWeight; 7445 NewFalseWeight = 2 * FalseWeight; 7446 scaleWeights(NewTrueWeight, NewFalseWeight); 7447 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7448 .createBranchWeights(TrueWeight, FalseWeight)); 7449 } 7450 } else { 7451 // Codegen X & Y as: 7452 // BB1: 7453 // jmp_if_X TmpBB 7454 // jmp FBB 7455 // TmpBB: 7456 // jmp_if_Y TBB 7457 // jmp FBB 7458 // 7459 // This requires creation of TmpBB after CurBB. 7460 7461 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7462 // The requirement is that 7463 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7464 // = FalseProb for original BB. 7465 // Assuming the original weights are A and B, one choice is to set BB1's 7466 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7467 // assumes that 7468 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7469 uint64_t TrueWeight, FalseWeight; 7470 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7471 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7472 uint64_t NewFalseWeight = FalseWeight; 7473 scaleWeights(NewTrueWeight, NewFalseWeight); 7474 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7475 .createBranchWeights(TrueWeight, FalseWeight)); 7476 7477 NewTrueWeight = 2 * TrueWeight; 7478 NewFalseWeight = FalseWeight; 7479 scaleWeights(NewTrueWeight, NewFalseWeight); 7480 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7481 .createBranchWeights(TrueWeight, FalseWeight)); 7482 } 7483 } 7484 7485 ModifiedDT = true; 7486 MadeChange = true; 7487 7488 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7489 TmpBB->dump()); 7490 } 7491 return MadeChange; 7492 } 7493