1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<unsigned> FreqRatioToSkipMerge( 179 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 180 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 181 "(frequency of destination block) is greater than this ratio")); 182 183 static cl::opt<bool> ForceSplitStore( 184 "force-split-store", cl::Hidden, cl::init(false), 185 cl::desc("Force store splitting no matter what the target query says.")); 186 187 static cl::opt<bool> 188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 189 cl::desc("Enable merging of redundant sexts when one is dominating" 190 " the other."), cl::init(true)); 191 192 static cl::opt<bool> DisableComplexAddrModes( 193 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 194 cl::desc("Disables combining addressing modes with different parts " 195 "in optimizeMemoryInst.")); 196 197 static cl::opt<bool> 198 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 199 cl::desc("Allow creation of Phis in Address sinking.")); 200 201 static cl::opt<bool> 202 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 203 cl::desc("Allow creation of selects in Address sinking.")); 204 205 static cl::opt<bool> AddrSinkCombineBaseReg( 206 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 207 cl::desc("Allow combining of BaseReg field in Address sinking.")); 208 209 static cl::opt<bool> AddrSinkCombineBaseGV( 210 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 211 cl::desc("Allow combining of BaseGV field in Address sinking.")); 212 213 static cl::opt<bool> AddrSinkCombineBaseOffs( 214 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 215 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineScaledReg( 218 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 220 221 static cl::opt<bool> 222 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 223 cl::init(true), 224 cl::desc("Enable splitting large offset of GEP.")); 225 226 static cl::opt<bool> EnableICMP_EQToICMP_ST( 227 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 228 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 229 230 namespace { 231 232 enum ExtType { 233 ZeroExtension, // Zero extension has been seen. 234 SignExtension, // Sign extension has been seen. 235 BothExtension // This extension type is used if we saw sext after 236 // ZeroExtension had been set, or if we saw zext after 237 // SignExtension had been set. It makes the type 238 // information of a promoted instruction invalid. 239 }; 240 241 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 242 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 243 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 244 using SExts = SmallVector<Instruction *, 16>; 245 using ValueToSExts = DenseMap<Value *, SExts>; 246 247 class TypePromotionTransaction; 248 249 class CodeGenPrepare : public FunctionPass { 250 const TargetMachine *TM = nullptr; 251 const TargetSubtargetInfo *SubtargetInfo; 252 const TargetLowering *TLI = nullptr; 253 const TargetRegisterInfo *TRI; 254 const TargetTransformInfo *TTI = nullptr; 255 const TargetLibraryInfo *TLInfo; 256 const LoopInfo *LI; 257 std::unique_ptr<BlockFrequencyInfo> BFI; 258 std::unique_ptr<BranchProbabilityInfo> BPI; 259 260 /// As we scan instructions optimizing them, this is the next instruction 261 /// to optimize. Transforms that can invalidate this should update it. 262 BasicBlock::iterator CurInstIterator; 263 264 /// Keeps track of non-local addresses that have been sunk into a block. 265 /// This allows us to avoid inserting duplicate code for blocks with 266 /// multiple load/stores of the same address. The usage of WeakTrackingVH 267 /// enables SunkAddrs to be treated as a cache whose entries can be 268 /// invalidated if a sunken address computation has been erased. 269 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 270 271 /// Keeps track of all instructions inserted for the current function. 272 SetOfInstrs InsertedInsts; 273 274 /// Keeps track of the type of the related instruction before their 275 /// promotion for the current function. 276 InstrToOrigTy PromotedInsts; 277 278 /// Keep track of instructions removed during promotion. 279 SetOfInstrs RemovedInsts; 280 281 /// Keep track of sext chains based on their initial value. 282 DenseMap<Value *, Instruction *> SeenChainsForSExt; 283 284 /// Keep track of GEPs accessing the same data structures such as structs or 285 /// arrays that are candidates to be split later because of their large 286 /// size. 287 MapVector< 288 AssertingVH<Value>, 289 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 290 LargeOffsetGEPMap; 291 292 /// Keep track of new GEP base after splitting the GEPs having large offset. 293 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 294 295 /// Map serial numbers to Large offset GEPs. 296 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 297 298 /// Keep track of SExt promoted. 299 ValueToSExts ValToSExtendedUses; 300 301 /// True if optimizing for size. 302 bool OptSize; 303 304 /// DataLayout for the Function being processed. 305 const DataLayout *DL = nullptr; 306 307 /// Building the dominator tree can be expensive, so we only build it 308 /// lazily and update it when required. 309 std::unique_ptr<DominatorTree> DT; 310 311 public: 312 static char ID; // Pass identification, replacement for typeid 313 314 CodeGenPrepare() : FunctionPass(ID) { 315 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 316 } 317 318 bool runOnFunction(Function &F) override; 319 320 StringRef getPassName() const override { return "CodeGen Prepare"; } 321 322 void getAnalysisUsage(AnalysisUsage &AU) const override { 323 // FIXME: When we can selectively preserve passes, preserve the domtree. 324 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 325 AU.addRequired<TargetLibraryInfoWrapperPass>(); 326 AU.addRequired<TargetTransformInfoWrapperPass>(); 327 AU.addRequired<LoopInfoWrapperPass>(); 328 } 329 330 private: 331 template <typename F> 332 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 333 // Substituting can cause recursive simplifications, which can invalidate 334 // our iterator. Use a WeakTrackingVH to hold onto it in case this 335 // happens. 336 Value *CurValue = &*CurInstIterator; 337 WeakTrackingVH IterHandle(CurValue); 338 339 f(); 340 341 // If the iterator instruction was recursively deleted, start over at the 342 // start of the block. 343 if (IterHandle != CurValue) { 344 CurInstIterator = BB->begin(); 345 SunkAddrs.clear(); 346 } 347 } 348 349 // Get the DominatorTree, building if necessary. 350 DominatorTree &getDT(Function &F) { 351 if (!DT) 352 DT = std::make_unique<DominatorTree>(F); 353 return *DT; 354 } 355 356 bool eliminateFallThrough(Function &F); 357 bool eliminateMostlyEmptyBlocks(Function &F); 358 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 359 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 360 void eliminateMostlyEmptyBlock(BasicBlock *BB); 361 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 362 bool isPreheader); 363 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 364 bool optimizeInst(Instruction *I, bool &ModifiedDT); 365 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 366 Type *AccessTy, unsigned AddrSpace); 367 bool optimizeInlineAsmInst(CallInst *CS); 368 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 369 bool optimizeExt(Instruction *&I); 370 bool optimizeExtUses(Instruction *I); 371 bool optimizeLoadExt(LoadInst *Load); 372 bool optimizeShiftInst(BinaryOperator *BO); 373 bool optimizeSelectInst(SelectInst *SI); 374 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 375 bool optimizeSwitchInst(SwitchInst *SI); 376 bool optimizeExtractElementInst(Instruction *Inst); 377 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 378 bool placeDbgValues(Function &F); 379 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 380 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 381 bool tryToPromoteExts(TypePromotionTransaction &TPT, 382 const SmallVectorImpl<Instruction *> &Exts, 383 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 384 unsigned CreatedInstsCost = 0); 385 bool mergeSExts(Function &F); 386 bool splitLargeGEPOffsets(); 387 bool performAddressTypePromotion( 388 Instruction *&Inst, 389 bool AllowPromotionWithoutCommonHeader, 390 bool HasPromoted, TypePromotionTransaction &TPT, 391 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 392 bool splitBranchCondition(Function &F, bool &ModifiedDT); 393 bool simplifyOffsetableRelocate(Instruction &I); 394 395 bool tryToSinkFreeOperands(Instruction *I); 396 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 397 Intrinsic::ID IID); 398 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 399 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 400 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 401 }; 402 403 } // end anonymous namespace 404 405 char CodeGenPrepare::ID = 0; 406 407 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 408 "Optimize for code generation", false, false) 409 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 410 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 411 "Optimize for code generation", false, false) 412 413 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 414 415 bool CodeGenPrepare::runOnFunction(Function &F) { 416 if (skipFunction(F)) 417 return false; 418 419 DL = &F.getParent()->getDataLayout(); 420 421 bool EverMadeChange = false; 422 // Clear per function information. 423 InsertedInsts.clear(); 424 PromotedInsts.clear(); 425 426 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 427 TM = &TPC->getTM<TargetMachine>(); 428 SubtargetInfo = TM->getSubtargetImpl(F); 429 TLI = SubtargetInfo->getTargetLowering(); 430 TRI = SubtargetInfo->getRegisterInfo(); 431 } 432 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 433 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 434 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 435 BPI.reset(new BranchProbabilityInfo(F, *LI)); 436 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 437 OptSize = F.hasOptSize(); 438 439 ProfileSummaryInfo *PSI = 440 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 441 if (ProfileGuidedSectionPrefix) { 442 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 443 F.setSectionPrefix(".hot"); 444 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 445 F.setSectionPrefix(".unlikely"); 446 } 447 448 /// This optimization identifies DIV instructions that can be 449 /// profitably bypassed and carried out with a shorter, faster divide. 450 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 451 TLI->isSlowDivBypassed()) { 452 const DenseMap<unsigned int, unsigned int> &BypassWidths = 453 TLI->getBypassSlowDivWidths(); 454 BasicBlock* BB = &*F.begin(); 455 while (BB != nullptr) { 456 // bypassSlowDivision may create new BBs, but we don't want to reapply the 457 // optimization to those blocks. 458 BasicBlock* Next = BB->getNextNode(); 459 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 460 BB = Next; 461 } 462 } 463 464 // Eliminate blocks that contain only PHI nodes and an 465 // unconditional branch. 466 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 467 468 bool ModifiedDT = false; 469 if (!DisableBranchOpts) 470 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 471 472 // Split some critical edges where one of the sources is an indirect branch, 473 // to help generate sane code for PHIs involving such edges. 474 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 475 476 bool MadeChange = true; 477 while (MadeChange) { 478 MadeChange = false; 479 DT.reset(); 480 for (Function::iterator I = F.begin(); I != F.end(); ) { 481 BasicBlock *BB = &*I++; 482 bool ModifiedDTOnIteration = false; 483 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 484 485 // Restart BB iteration if the dominator tree of the Function was changed 486 if (ModifiedDTOnIteration) 487 break; 488 } 489 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 490 MadeChange |= mergeSExts(F); 491 if (!LargeOffsetGEPMap.empty()) 492 MadeChange |= splitLargeGEPOffsets(); 493 494 // Really free removed instructions during promotion. 495 for (Instruction *I : RemovedInsts) 496 I->deleteValue(); 497 498 EverMadeChange |= MadeChange; 499 SeenChainsForSExt.clear(); 500 ValToSExtendedUses.clear(); 501 RemovedInsts.clear(); 502 LargeOffsetGEPMap.clear(); 503 LargeOffsetGEPID.clear(); 504 } 505 506 SunkAddrs.clear(); 507 508 if (!DisableBranchOpts) { 509 MadeChange = false; 510 // Use a set vector to get deterministic iteration order. The order the 511 // blocks are removed may affect whether or not PHI nodes in successors 512 // are removed. 513 SmallSetVector<BasicBlock*, 8> WorkList; 514 for (BasicBlock &BB : F) { 515 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 516 MadeChange |= ConstantFoldTerminator(&BB, true); 517 if (!MadeChange) continue; 518 519 for (SmallVectorImpl<BasicBlock*>::iterator 520 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 521 if (pred_begin(*II) == pred_end(*II)) 522 WorkList.insert(*II); 523 } 524 525 // Delete the dead blocks and any of their dead successors. 526 MadeChange |= !WorkList.empty(); 527 while (!WorkList.empty()) { 528 BasicBlock *BB = WorkList.pop_back_val(); 529 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 530 531 DeleteDeadBlock(BB); 532 533 for (SmallVectorImpl<BasicBlock*>::iterator 534 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 535 if (pred_begin(*II) == pred_end(*II)) 536 WorkList.insert(*II); 537 } 538 539 // Merge pairs of basic blocks with unconditional branches, connected by 540 // a single edge. 541 if (EverMadeChange || MadeChange) 542 MadeChange |= eliminateFallThrough(F); 543 544 EverMadeChange |= MadeChange; 545 } 546 547 if (!DisableGCOpts) { 548 SmallVector<Instruction *, 2> Statepoints; 549 for (BasicBlock &BB : F) 550 for (Instruction &I : BB) 551 if (isStatepoint(I)) 552 Statepoints.push_back(&I); 553 for (auto &I : Statepoints) 554 EverMadeChange |= simplifyOffsetableRelocate(*I); 555 } 556 557 // Do this last to clean up use-before-def scenarios introduced by other 558 // preparatory transforms. 559 EverMadeChange |= placeDbgValues(F); 560 561 return EverMadeChange; 562 } 563 564 /// Merge basic blocks which are connected by a single edge, where one of the 565 /// basic blocks has a single successor pointing to the other basic block, 566 /// which has a single predecessor. 567 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 568 bool Changed = false; 569 // Scan all of the blocks in the function, except for the entry block. 570 // Use a temporary array to avoid iterator being invalidated when 571 // deleting blocks. 572 SmallVector<WeakTrackingVH, 16> Blocks; 573 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 574 Blocks.push_back(&Block); 575 576 for (auto &Block : Blocks) { 577 auto *BB = cast_or_null<BasicBlock>(Block); 578 if (!BB) 579 continue; 580 // If the destination block has a single pred, then this is a trivial 581 // edge, just collapse it. 582 BasicBlock *SinglePred = BB->getSinglePredecessor(); 583 584 // Don't merge if BB's address is taken. 585 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 586 587 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 588 if (Term && !Term->isConditional()) { 589 Changed = true; 590 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 591 592 // Merge BB into SinglePred and delete it. 593 MergeBlockIntoPredecessor(BB); 594 } 595 } 596 return Changed; 597 } 598 599 /// Find a destination block from BB if BB is mergeable empty block. 600 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 601 // If this block doesn't end with an uncond branch, ignore it. 602 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 603 if (!BI || !BI->isUnconditional()) 604 return nullptr; 605 606 // If the instruction before the branch (skipping debug info) isn't a phi 607 // node, then other stuff is happening here. 608 BasicBlock::iterator BBI = BI->getIterator(); 609 if (BBI != BB->begin()) { 610 --BBI; 611 while (isa<DbgInfoIntrinsic>(BBI)) { 612 if (BBI == BB->begin()) 613 break; 614 --BBI; 615 } 616 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 617 return nullptr; 618 } 619 620 // Do not break infinite loops. 621 BasicBlock *DestBB = BI->getSuccessor(0); 622 if (DestBB == BB) 623 return nullptr; 624 625 if (!canMergeBlocks(BB, DestBB)) 626 DestBB = nullptr; 627 628 return DestBB; 629 } 630 631 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 632 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 633 /// edges in ways that are non-optimal for isel. Start by eliminating these 634 /// blocks so we can split them the way we want them. 635 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 636 SmallPtrSet<BasicBlock *, 16> Preheaders; 637 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 638 while (!LoopList.empty()) { 639 Loop *L = LoopList.pop_back_val(); 640 LoopList.insert(LoopList.end(), L->begin(), L->end()); 641 if (BasicBlock *Preheader = L->getLoopPreheader()) 642 Preheaders.insert(Preheader); 643 } 644 645 bool MadeChange = false; 646 // Copy blocks into a temporary array to avoid iterator invalidation issues 647 // as we remove them. 648 // Note that this intentionally skips the entry block. 649 SmallVector<WeakTrackingVH, 16> Blocks; 650 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 651 Blocks.push_back(&Block); 652 653 for (auto &Block : Blocks) { 654 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 655 if (!BB) 656 continue; 657 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 658 if (!DestBB || 659 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 660 continue; 661 662 eliminateMostlyEmptyBlock(BB); 663 MadeChange = true; 664 } 665 return MadeChange; 666 } 667 668 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 669 BasicBlock *DestBB, 670 bool isPreheader) { 671 // Do not delete loop preheaders if doing so would create a critical edge. 672 // Loop preheaders can be good locations to spill registers. If the 673 // preheader is deleted and we create a critical edge, registers may be 674 // spilled in the loop body instead. 675 if (!DisablePreheaderProtect && isPreheader && 676 !(BB->getSinglePredecessor() && 677 BB->getSinglePredecessor()->getSingleSuccessor())) 678 return false; 679 680 // Skip merging if the block's successor is also a successor to any callbr 681 // that leads to this block. 682 // FIXME: Is this really needed? Is this a correctness issue? 683 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 684 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 685 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 686 if (DestBB == CBI->getSuccessor(i)) 687 return false; 688 } 689 690 // Try to skip merging if the unique predecessor of BB is terminated by a 691 // switch or indirect branch instruction, and BB is used as an incoming block 692 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 693 // add COPY instructions in the predecessor of BB instead of BB (if it is not 694 // merged). Note that the critical edge created by merging such blocks wont be 695 // split in MachineSink because the jump table is not analyzable. By keeping 696 // such empty block (BB), ISel will place COPY instructions in BB, not in the 697 // predecessor of BB. 698 BasicBlock *Pred = BB->getUniquePredecessor(); 699 if (!Pred || 700 !(isa<SwitchInst>(Pred->getTerminator()) || 701 isa<IndirectBrInst>(Pred->getTerminator()))) 702 return true; 703 704 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 705 return true; 706 707 // We use a simple cost heuristic which determine skipping merging is 708 // profitable if the cost of skipping merging is less than the cost of 709 // merging : Cost(skipping merging) < Cost(merging BB), where the 710 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 711 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 712 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 713 // Freq(Pred) / Freq(BB) > 2. 714 // Note that if there are multiple empty blocks sharing the same incoming 715 // value for the PHIs in the DestBB, we consider them together. In such 716 // case, Cost(merging BB) will be the sum of their frequencies. 717 718 if (!isa<PHINode>(DestBB->begin())) 719 return true; 720 721 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 722 723 // Find all other incoming blocks from which incoming values of all PHIs in 724 // DestBB are the same as the ones from BB. 725 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 726 ++PI) { 727 BasicBlock *DestBBPred = *PI; 728 if (DestBBPred == BB) 729 continue; 730 731 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 732 return DestPN.getIncomingValueForBlock(BB) == 733 DestPN.getIncomingValueForBlock(DestBBPred); 734 })) 735 SameIncomingValueBBs.insert(DestBBPred); 736 } 737 738 // See if all BB's incoming values are same as the value from Pred. In this 739 // case, no reason to skip merging because COPYs are expected to be place in 740 // Pred already. 741 if (SameIncomingValueBBs.count(Pred)) 742 return true; 743 744 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 745 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 746 747 for (auto SameValueBB : SameIncomingValueBBs) 748 if (SameValueBB->getUniquePredecessor() == Pred && 749 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 750 BBFreq += BFI->getBlockFreq(SameValueBB); 751 752 return PredFreq.getFrequency() <= 753 BBFreq.getFrequency() * FreqRatioToSkipMerge; 754 } 755 756 /// Return true if we can merge BB into DestBB if there is a single 757 /// unconditional branch between them, and BB contains no other non-phi 758 /// instructions. 759 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 760 const BasicBlock *DestBB) const { 761 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 762 // the successor. If there are more complex condition (e.g. preheaders), 763 // don't mess around with them. 764 for (const PHINode &PN : BB->phis()) { 765 for (const User *U : PN.users()) { 766 const Instruction *UI = cast<Instruction>(U); 767 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 768 return false; 769 // If User is inside DestBB block and it is a PHINode then check 770 // incoming value. If incoming value is not from BB then this is 771 // a complex condition (e.g. preheaders) we want to avoid here. 772 if (UI->getParent() == DestBB) { 773 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 774 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 775 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 776 if (Insn && Insn->getParent() == BB && 777 Insn->getParent() != UPN->getIncomingBlock(I)) 778 return false; 779 } 780 } 781 } 782 } 783 784 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 785 // and DestBB may have conflicting incoming values for the block. If so, we 786 // can't merge the block. 787 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 788 if (!DestBBPN) return true; // no conflict. 789 790 // Collect the preds of BB. 791 SmallPtrSet<const BasicBlock*, 16> BBPreds; 792 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 793 // It is faster to get preds from a PHI than with pred_iterator. 794 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 795 BBPreds.insert(BBPN->getIncomingBlock(i)); 796 } else { 797 BBPreds.insert(pred_begin(BB), pred_end(BB)); 798 } 799 800 // Walk the preds of DestBB. 801 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 802 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 803 if (BBPreds.count(Pred)) { // Common predecessor? 804 for (const PHINode &PN : DestBB->phis()) { 805 const Value *V1 = PN.getIncomingValueForBlock(Pred); 806 const Value *V2 = PN.getIncomingValueForBlock(BB); 807 808 // If V2 is a phi node in BB, look up what the mapped value will be. 809 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 810 if (V2PN->getParent() == BB) 811 V2 = V2PN->getIncomingValueForBlock(Pred); 812 813 // If there is a conflict, bail out. 814 if (V1 != V2) return false; 815 } 816 } 817 } 818 819 return true; 820 } 821 822 /// Eliminate a basic block that has only phi's and an unconditional branch in 823 /// it. 824 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 825 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 826 BasicBlock *DestBB = BI->getSuccessor(0); 827 828 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 829 << *BB << *DestBB); 830 831 // If the destination block has a single pred, then this is a trivial edge, 832 // just collapse it. 833 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 834 if (SinglePred != DestBB) { 835 assert(SinglePred == BB && 836 "Single predecessor not the same as predecessor"); 837 // Merge DestBB into SinglePred/BB and delete it. 838 MergeBlockIntoPredecessor(DestBB); 839 // Note: BB(=SinglePred) will not be deleted on this path. 840 // DestBB(=its single successor) is the one that was deleted. 841 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 842 return; 843 } 844 } 845 846 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 847 // to handle the new incoming edges it is about to have. 848 for (PHINode &PN : DestBB->phis()) { 849 // Remove the incoming value for BB, and remember it. 850 Value *InVal = PN.removeIncomingValue(BB, false); 851 852 // Two options: either the InVal is a phi node defined in BB or it is some 853 // value that dominates BB. 854 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 855 if (InValPhi && InValPhi->getParent() == BB) { 856 // Add all of the input values of the input PHI as inputs of this phi. 857 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 858 PN.addIncoming(InValPhi->getIncomingValue(i), 859 InValPhi->getIncomingBlock(i)); 860 } else { 861 // Otherwise, add one instance of the dominating value for each edge that 862 // we will be adding. 863 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 864 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 865 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 866 } else { 867 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 868 PN.addIncoming(InVal, *PI); 869 } 870 } 871 } 872 873 // The PHIs are now updated, change everything that refers to BB to use 874 // DestBB and remove BB. 875 BB->replaceAllUsesWith(DestBB); 876 BB->eraseFromParent(); 877 ++NumBlocksElim; 878 879 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 880 } 881 882 // Computes a map of base pointer relocation instructions to corresponding 883 // derived pointer relocation instructions given a vector of all relocate calls 884 static void computeBaseDerivedRelocateMap( 885 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 886 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 887 &RelocateInstMap) { 888 // Collect information in two maps: one primarily for locating the base object 889 // while filling the second map; the second map is the final structure holding 890 // a mapping between Base and corresponding Derived relocate calls 891 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 892 for (auto *ThisRelocate : AllRelocateCalls) { 893 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 894 ThisRelocate->getDerivedPtrIndex()); 895 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 896 } 897 for (auto &Item : RelocateIdxMap) { 898 std::pair<unsigned, unsigned> Key = Item.first; 899 if (Key.first == Key.second) 900 // Base relocation: nothing to insert 901 continue; 902 903 GCRelocateInst *I = Item.second; 904 auto BaseKey = std::make_pair(Key.first, Key.first); 905 906 // We're iterating over RelocateIdxMap so we cannot modify it. 907 auto MaybeBase = RelocateIdxMap.find(BaseKey); 908 if (MaybeBase == RelocateIdxMap.end()) 909 // TODO: We might want to insert a new base object relocate and gep off 910 // that, if there are enough derived object relocates. 911 continue; 912 913 RelocateInstMap[MaybeBase->second].push_back(I); 914 } 915 } 916 917 // Accepts a GEP and extracts the operands into a vector provided they're all 918 // small integer constants 919 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 920 SmallVectorImpl<Value *> &OffsetV) { 921 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 922 // Only accept small constant integer operands 923 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 924 if (!Op || Op->getZExtValue() > 20) 925 return false; 926 } 927 928 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 929 OffsetV.push_back(GEP->getOperand(i)); 930 return true; 931 } 932 933 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 934 // replace, computes a replacement, and affects it. 935 static bool 936 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 937 const SmallVectorImpl<GCRelocateInst *> &Targets) { 938 bool MadeChange = false; 939 // We must ensure the relocation of derived pointer is defined after 940 // relocation of base pointer. If we find a relocation corresponding to base 941 // defined earlier than relocation of base then we move relocation of base 942 // right before found relocation. We consider only relocation in the same 943 // basic block as relocation of base. Relocations from other basic block will 944 // be skipped by optimization and we do not care about them. 945 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 946 &*R != RelocatedBase; ++R) 947 if (auto RI = dyn_cast<GCRelocateInst>(R)) 948 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 949 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 950 RelocatedBase->moveBefore(RI); 951 break; 952 } 953 954 for (GCRelocateInst *ToReplace : Targets) { 955 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 956 "Not relocating a derived object of the original base object"); 957 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 958 // A duplicate relocate call. TODO: coalesce duplicates. 959 continue; 960 } 961 962 if (RelocatedBase->getParent() != ToReplace->getParent()) { 963 // Base and derived relocates are in different basic blocks. 964 // In this case transform is only valid when base dominates derived 965 // relocate. However it would be too expensive to check dominance 966 // for each such relocate, so we skip the whole transformation. 967 continue; 968 } 969 970 Value *Base = ToReplace->getBasePtr(); 971 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 972 if (!Derived || Derived->getPointerOperand() != Base) 973 continue; 974 975 SmallVector<Value *, 2> OffsetV; 976 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 977 continue; 978 979 // Create a Builder and replace the target callsite with a gep 980 assert(RelocatedBase->getNextNode() && 981 "Should always have one since it's not a terminator"); 982 983 // Insert after RelocatedBase 984 IRBuilder<> Builder(RelocatedBase->getNextNode()); 985 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 986 987 // If gc_relocate does not match the actual type, cast it to the right type. 988 // In theory, there must be a bitcast after gc_relocate if the type does not 989 // match, and we should reuse it to get the derived pointer. But it could be 990 // cases like this: 991 // bb1: 992 // ... 993 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 994 // br label %merge 995 // 996 // bb2: 997 // ... 998 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 999 // br label %merge 1000 // 1001 // merge: 1002 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1003 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1004 // 1005 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1006 // no matter there is already one or not. In this way, we can handle all cases, and 1007 // the extra bitcast should be optimized away in later passes. 1008 Value *ActualRelocatedBase = RelocatedBase; 1009 if (RelocatedBase->getType() != Base->getType()) { 1010 ActualRelocatedBase = 1011 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1012 } 1013 Value *Replacement = Builder.CreateGEP( 1014 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1015 Replacement->takeName(ToReplace); 1016 // If the newly generated derived pointer's type does not match the original derived 1017 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1018 Value *ActualReplacement = Replacement; 1019 if (Replacement->getType() != ToReplace->getType()) { 1020 ActualReplacement = 1021 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1022 } 1023 ToReplace->replaceAllUsesWith(ActualReplacement); 1024 ToReplace->eraseFromParent(); 1025 1026 MadeChange = true; 1027 } 1028 return MadeChange; 1029 } 1030 1031 // Turns this: 1032 // 1033 // %base = ... 1034 // %ptr = gep %base + 15 1035 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1036 // %base' = relocate(%tok, i32 4, i32 4) 1037 // %ptr' = relocate(%tok, i32 4, i32 5) 1038 // %val = load %ptr' 1039 // 1040 // into this: 1041 // 1042 // %base = ... 1043 // %ptr = gep %base + 15 1044 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1045 // %base' = gc.relocate(%tok, i32 4, i32 4) 1046 // %ptr' = gep %base' + 15 1047 // %val = load %ptr' 1048 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1049 bool MadeChange = false; 1050 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1051 1052 for (auto *U : I.users()) 1053 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1054 // Collect all the relocate calls associated with a statepoint 1055 AllRelocateCalls.push_back(Relocate); 1056 1057 // We need atleast one base pointer relocation + one derived pointer 1058 // relocation to mangle 1059 if (AllRelocateCalls.size() < 2) 1060 return false; 1061 1062 // RelocateInstMap is a mapping from the base relocate instruction to the 1063 // corresponding derived relocate instructions 1064 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1065 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1066 if (RelocateInstMap.empty()) 1067 return false; 1068 1069 for (auto &Item : RelocateInstMap) 1070 // Item.first is the RelocatedBase to offset against 1071 // Item.second is the vector of Targets to replace 1072 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1073 return MadeChange; 1074 } 1075 1076 /// Sink the specified cast instruction into its user blocks. 1077 static bool SinkCast(CastInst *CI) { 1078 BasicBlock *DefBB = CI->getParent(); 1079 1080 /// InsertedCasts - Only insert a cast in each block once. 1081 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1082 1083 bool MadeChange = false; 1084 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1085 UI != E; ) { 1086 Use &TheUse = UI.getUse(); 1087 Instruction *User = cast<Instruction>(*UI); 1088 1089 // Figure out which BB this cast is used in. For PHI's this is the 1090 // appropriate predecessor block. 1091 BasicBlock *UserBB = User->getParent(); 1092 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1093 UserBB = PN->getIncomingBlock(TheUse); 1094 } 1095 1096 // Preincrement use iterator so we don't invalidate it. 1097 ++UI; 1098 1099 // The first insertion point of a block containing an EH pad is after the 1100 // pad. If the pad is the user, we cannot sink the cast past the pad. 1101 if (User->isEHPad()) 1102 continue; 1103 1104 // If the block selected to receive the cast is an EH pad that does not 1105 // allow non-PHI instructions before the terminator, we can't sink the 1106 // cast. 1107 if (UserBB->getTerminator()->isEHPad()) 1108 continue; 1109 1110 // If this user is in the same block as the cast, don't change the cast. 1111 if (UserBB == DefBB) continue; 1112 1113 // If we have already inserted a cast into this block, use it. 1114 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1115 1116 if (!InsertedCast) { 1117 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1118 assert(InsertPt != UserBB->end()); 1119 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1120 CI->getType(), "", &*InsertPt); 1121 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1122 } 1123 1124 // Replace a use of the cast with a use of the new cast. 1125 TheUse = InsertedCast; 1126 MadeChange = true; 1127 ++NumCastUses; 1128 } 1129 1130 // If we removed all uses, nuke the cast. 1131 if (CI->use_empty()) { 1132 salvageDebugInfo(*CI); 1133 CI->eraseFromParent(); 1134 MadeChange = true; 1135 } 1136 1137 return MadeChange; 1138 } 1139 1140 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1141 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1142 /// reduce the number of virtual registers that must be created and coalesced. 1143 /// 1144 /// Return true if any changes are made. 1145 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1146 const DataLayout &DL) { 1147 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1148 // than sinking only nop casts, but is helpful on some platforms. 1149 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1150 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1151 ASC->getDestAddressSpace())) 1152 return false; 1153 } 1154 1155 // If this is a noop copy, 1156 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1157 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1158 1159 // This is an fp<->int conversion? 1160 if (SrcVT.isInteger() != DstVT.isInteger()) 1161 return false; 1162 1163 // If this is an extension, it will be a zero or sign extension, which 1164 // isn't a noop. 1165 if (SrcVT.bitsLT(DstVT)) return false; 1166 1167 // If these values will be promoted, find out what they will be promoted 1168 // to. This helps us consider truncates on PPC as noop copies when they 1169 // are. 1170 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1171 TargetLowering::TypePromoteInteger) 1172 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1173 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1174 TargetLowering::TypePromoteInteger) 1175 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1176 1177 // If, after promotion, these are the same types, this is a noop copy. 1178 if (SrcVT != DstVT) 1179 return false; 1180 1181 return SinkCast(CI); 1182 } 1183 1184 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1185 CmpInst *Cmp, 1186 Intrinsic::ID IID) { 1187 if (BO->getParent() != Cmp->getParent()) { 1188 // We used to use a dominator tree here to allow multi-block optimization. 1189 // But that was problematic because: 1190 // 1. It could cause a perf regression by hoisting the math op into the 1191 // critical path. 1192 // 2. It could cause a perf regression by creating a value that was live 1193 // across multiple blocks and increasing register pressure. 1194 // 3. Use of a dominator tree could cause large compile-time regression. 1195 // This is because we recompute the DT on every change in the main CGP 1196 // run-loop. The recomputing is probably unnecessary in many cases, so if 1197 // that was fixed, using a DT here would be ok. 1198 return false; 1199 } 1200 1201 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1202 Value *Arg0 = BO->getOperand(0); 1203 Value *Arg1 = BO->getOperand(1); 1204 if (BO->getOpcode() == Instruction::Add && 1205 IID == Intrinsic::usub_with_overflow) { 1206 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1207 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1208 } 1209 1210 // Insert at the first instruction of the pair. 1211 Instruction *InsertPt = nullptr; 1212 for (Instruction &Iter : *Cmp->getParent()) { 1213 if (&Iter == BO || &Iter == Cmp) { 1214 InsertPt = &Iter; 1215 break; 1216 } 1217 } 1218 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1219 1220 IRBuilder<> Builder(InsertPt); 1221 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1222 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1223 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1224 BO->replaceAllUsesWith(Math); 1225 Cmp->replaceAllUsesWith(OV); 1226 BO->eraseFromParent(); 1227 Cmp->eraseFromParent(); 1228 return true; 1229 } 1230 1231 /// Match special-case patterns that check for unsigned add overflow. 1232 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1233 BinaryOperator *&Add) { 1234 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1235 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1236 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1237 1238 // We are not expecting non-canonical/degenerate code. Just bail out. 1239 if (isa<Constant>(A)) 1240 return false; 1241 1242 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1243 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1244 B = ConstantInt::get(B->getType(), 1); 1245 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1246 B = ConstantInt::get(B->getType(), -1); 1247 else 1248 return false; 1249 1250 // Check the users of the variable operand of the compare looking for an add 1251 // with the adjusted constant. 1252 for (User *U : A->users()) { 1253 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1254 Add = cast<BinaryOperator>(U); 1255 return true; 1256 } 1257 } 1258 return false; 1259 } 1260 1261 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1262 /// intrinsic. Return true if any changes were made. 1263 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1264 bool &ModifiedDT) { 1265 Value *A, *B; 1266 BinaryOperator *Add; 1267 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1268 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1269 return false; 1270 1271 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1272 TLI->getValueType(*DL, Add->getType()))) 1273 return false; 1274 1275 // We don't want to move around uses of condition values this late, so we 1276 // check if it is legal to create the call to the intrinsic in the basic 1277 // block containing the icmp. 1278 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1279 return false; 1280 1281 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1282 return false; 1283 1284 // Reset callers - do not crash by iterating over a dead instruction. 1285 ModifiedDT = true; 1286 return true; 1287 } 1288 1289 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1290 bool &ModifiedDT) { 1291 // We are not expecting non-canonical/degenerate code. Just bail out. 1292 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1293 if (isa<Constant>(A) && isa<Constant>(B)) 1294 return false; 1295 1296 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1297 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1298 if (Pred == ICmpInst::ICMP_UGT) { 1299 std::swap(A, B); 1300 Pred = ICmpInst::ICMP_ULT; 1301 } 1302 // Convert special-case: (A == 0) is the same as (A u< 1). 1303 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1304 B = ConstantInt::get(B->getType(), 1); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 // Convert special-case: (A != 0) is the same as (0 u< A). 1308 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1309 std::swap(A, B); 1310 Pred = ICmpInst::ICMP_ULT; 1311 } 1312 if (Pred != ICmpInst::ICMP_ULT) 1313 return false; 1314 1315 // Walk the users of a variable operand of a compare looking for a subtract or 1316 // add with that same operand. Also match the 2nd operand of the compare to 1317 // the add/sub, but that may be a negated constant operand of an add. 1318 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1319 BinaryOperator *Sub = nullptr; 1320 for (User *U : CmpVariableOperand->users()) { 1321 // A - B, A u< B --> usubo(A, B) 1322 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1323 Sub = cast<BinaryOperator>(U); 1324 break; 1325 } 1326 1327 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1328 const APInt *CmpC, *AddC; 1329 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1330 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1331 Sub = cast<BinaryOperator>(U); 1332 break; 1333 } 1334 } 1335 if (!Sub) 1336 return false; 1337 1338 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1339 TLI->getValueType(*DL, Sub->getType()))) 1340 return false; 1341 1342 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1343 return false; 1344 1345 // Reset callers - do not crash by iterating over a dead instruction. 1346 ModifiedDT = true; 1347 return true; 1348 } 1349 1350 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1351 /// registers that must be created and coalesced. This is a clear win except on 1352 /// targets with multiple condition code registers (PowerPC), where it might 1353 /// lose; some adjustment may be wanted there. 1354 /// 1355 /// Return true if any changes are made. 1356 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1357 if (TLI.hasMultipleConditionRegisters()) 1358 return false; 1359 1360 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1361 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1362 return false; 1363 1364 // Only insert a cmp in each block once. 1365 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1366 1367 bool MadeChange = false; 1368 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1369 UI != E; ) { 1370 Use &TheUse = UI.getUse(); 1371 Instruction *User = cast<Instruction>(*UI); 1372 1373 // Preincrement use iterator so we don't invalidate it. 1374 ++UI; 1375 1376 // Don't bother for PHI nodes. 1377 if (isa<PHINode>(User)) 1378 continue; 1379 1380 // Figure out which BB this cmp is used in. 1381 BasicBlock *UserBB = User->getParent(); 1382 BasicBlock *DefBB = Cmp->getParent(); 1383 1384 // If this user is in the same block as the cmp, don't change the cmp. 1385 if (UserBB == DefBB) continue; 1386 1387 // If we have already inserted a cmp into this block, use it. 1388 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1389 1390 if (!InsertedCmp) { 1391 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1392 assert(InsertPt != UserBB->end()); 1393 InsertedCmp = 1394 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1395 Cmp->getOperand(0), Cmp->getOperand(1), "", 1396 &*InsertPt); 1397 // Propagate the debug info. 1398 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1399 } 1400 1401 // Replace a use of the cmp with a use of the new cmp. 1402 TheUse = InsertedCmp; 1403 MadeChange = true; 1404 ++NumCmpUses; 1405 } 1406 1407 // If we removed all uses, nuke the cmp. 1408 if (Cmp->use_empty()) { 1409 Cmp->eraseFromParent(); 1410 MadeChange = true; 1411 } 1412 1413 return MadeChange; 1414 } 1415 1416 /// For pattern like: 1417 /// 1418 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1419 /// ... 1420 /// DomBB: 1421 /// ... 1422 /// br DomCond, TrueBB, CmpBB 1423 /// CmpBB: (with DomBB being the single predecessor) 1424 /// ... 1425 /// Cmp = icmp eq CmpOp0, CmpOp1 1426 /// ... 1427 /// 1428 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1429 /// different from lowering of icmp eq (PowerPC). This function try to convert 1430 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1431 /// After that, DomCond and Cmp can use the same comparison so reduce one 1432 /// comparison. 1433 /// 1434 /// Return true if any changes are made. 1435 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1436 const TargetLowering &TLI) { 1437 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1438 return false; 1439 1440 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1441 if (Pred != ICmpInst::ICMP_EQ) 1442 return false; 1443 1444 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1445 // icmp slt/sgt would introduce more redundant LLVM IR. 1446 for (User *U : Cmp->users()) { 1447 if (isa<BranchInst>(U)) 1448 continue; 1449 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1450 continue; 1451 return false; 1452 } 1453 1454 // This is a cheap/incomplete check for dominance - just match a single 1455 // predecessor with a conditional branch. 1456 BasicBlock *CmpBB = Cmp->getParent(); 1457 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1458 if (!DomBB) 1459 return false; 1460 1461 // We want to ensure that the only way control gets to the comparison of 1462 // interest is that a less/greater than comparison on the same operands is 1463 // false. 1464 Value *DomCond; 1465 BasicBlock *TrueBB, *FalseBB; 1466 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1467 return false; 1468 if (CmpBB != FalseBB) 1469 return false; 1470 1471 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1472 ICmpInst::Predicate DomPred; 1473 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1474 return false; 1475 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1476 return false; 1477 1478 // Convert the equality comparison to the opposite of the dominating 1479 // comparison and swap the direction for all branch/select users. 1480 // We have conceptually converted: 1481 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1482 // to 1483 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1484 // And similarly for branches. 1485 for (User *U : Cmp->users()) { 1486 if (auto *BI = dyn_cast<BranchInst>(U)) { 1487 assert(BI->isConditional() && "Must be conditional"); 1488 BI->swapSuccessors(); 1489 continue; 1490 } 1491 if (auto *SI = dyn_cast<SelectInst>(U)) { 1492 // Swap operands 1493 SI->swapValues(); 1494 SI->swapProfMetadata(); 1495 continue; 1496 } 1497 llvm_unreachable("Must be a branch or a select"); 1498 } 1499 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1500 return true; 1501 } 1502 1503 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1504 if (sinkCmpExpression(Cmp, *TLI)) 1505 return true; 1506 1507 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1508 return true; 1509 1510 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1511 return true; 1512 1513 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1514 return true; 1515 1516 return false; 1517 } 1518 1519 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1520 /// used in a compare to allow isel to generate better code for targets where 1521 /// this operation can be combined. 1522 /// 1523 /// Return true if any changes are made. 1524 static bool sinkAndCmp0Expression(Instruction *AndI, 1525 const TargetLowering &TLI, 1526 SetOfInstrs &InsertedInsts) { 1527 // Double-check that we're not trying to optimize an instruction that was 1528 // already optimized by some other part of this pass. 1529 assert(!InsertedInsts.count(AndI) && 1530 "Attempting to optimize already optimized and instruction"); 1531 (void) InsertedInsts; 1532 1533 // Nothing to do for single use in same basic block. 1534 if (AndI->hasOneUse() && 1535 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1536 return false; 1537 1538 // Try to avoid cases where sinking/duplicating is likely to increase register 1539 // pressure. 1540 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1541 !isa<ConstantInt>(AndI->getOperand(1)) && 1542 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1543 return false; 1544 1545 for (auto *U : AndI->users()) { 1546 Instruction *User = cast<Instruction>(U); 1547 1548 // Only sink 'and' feeding icmp with 0. 1549 if (!isa<ICmpInst>(User)) 1550 return false; 1551 1552 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1553 if (!CmpC || !CmpC->isZero()) 1554 return false; 1555 } 1556 1557 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1558 return false; 1559 1560 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1561 LLVM_DEBUG(AndI->getParent()->dump()); 1562 1563 // Push the 'and' into the same block as the icmp 0. There should only be 1564 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1565 // others, so we don't need to keep track of which BBs we insert into. 1566 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1567 UI != E; ) { 1568 Use &TheUse = UI.getUse(); 1569 Instruction *User = cast<Instruction>(*UI); 1570 1571 // Preincrement use iterator so we don't invalidate it. 1572 ++UI; 1573 1574 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1575 1576 // Keep the 'and' in the same place if the use is already in the same block. 1577 Instruction *InsertPt = 1578 User->getParent() == AndI->getParent() ? AndI : User; 1579 Instruction *InsertedAnd = 1580 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1581 AndI->getOperand(1), "", InsertPt); 1582 // Propagate the debug info. 1583 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1584 1585 // Replace a use of the 'and' with a use of the new 'and'. 1586 TheUse = InsertedAnd; 1587 ++NumAndUses; 1588 LLVM_DEBUG(User->getParent()->dump()); 1589 } 1590 1591 // We removed all uses, nuke the and. 1592 AndI->eraseFromParent(); 1593 return true; 1594 } 1595 1596 /// Check if the candidates could be combined with a shift instruction, which 1597 /// includes: 1598 /// 1. Truncate instruction 1599 /// 2. And instruction and the imm is a mask of the low bits: 1600 /// imm & (imm+1) == 0 1601 static bool isExtractBitsCandidateUse(Instruction *User) { 1602 if (!isa<TruncInst>(User)) { 1603 if (User->getOpcode() != Instruction::And || 1604 !isa<ConstantInt>(User->getOperand(1))) 1605 return false; 1606 1607 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1608 1609 if ((Cimm & (Cimm + 1)).getBoolValue()) 1610 return false; 1611 } 1612 return true; 1613 } 1614 1615 /// Sink both shift and truncate instruction to the use of truncate's BB. 1616 static bool 1617 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1618 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1619 const TargetLowering &TLI, const DataLayout &DL) { 1620 BasicBlock *UserBB = User->getParent(); 1621 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1622 auto *TruncI = cast<TruncInst>(User); 1623 bool MadeChange = false; 1624 1625 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1626 TruncE = TruncI->user_end(); 1627 TruncUI != TruncE;) { 1628 1629 Use &TruncTheUse = TruncUI.getUse(); 1630 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1631 // Preincrement use iterator so we don't invalidate it. 1632 1633 ++TruncUI; 1634 1635 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1636 if (!ISDOpcode) 1637 continue; 1638 1639 // If the use is actually a legal node, there will not be an 1640 // implicit truncate. 1641 // FIXME: always querying the result type is just an 1642 // approximation; some nodes' legality is determined by the 1643 // operand or other means. There's no good way to find out though. 1644 if (TLI.isOperationLegalOrCustom( 1645 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1646 continue; 1647 1648 // Don't bother for PHI nodes. 1649 if (isa<PHINode>(TruncUser)) 1650 continue; 1651 1652 BasicBlock *TruncUserBB = TruncUser->getParent(); 1653 1654 if (UserBB == TruncUserBB) 1655 continue; 1656 1657 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1658 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1659 1660 if (!InsertedShift && !InsertedTrunc) { 1661 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1662 assert(InsertPt != TruncUserBB->end()); 1663 // Sink the shift 1664 if (ShiftI->getOpcode() == Instruction::AShr) 1665 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1666 "", &*InsertPt); 1667 else 1668 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1669 "", &*InsertPt); 1670 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1671 1672 // Sink the trunc 1673 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1674 TruncInsertPt++; 1675 assert(TruncInsertPt != TruncUserBB->end()); 1676 1677 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1678 TruncI->getType(), "", &*TruncInsertPt); 1679 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1680 1681 MadeChange = true; 1682 1683 TruncTheUse = InsertedTrunc; 1684 } 1685 } 1686 return MadeChange; 1687 } 1688 1689 /// Sink the shift *right* instruction into user blocks if the uses could 1690 /// potentially be combined with this shift instruction and generate BitExtract 1691 /// instruction. It will only be applied if the architecture supports BitExtract 1692 /// instruction. Here is an example: 1693 /// BB1: 1694 /// %x.extract.shift = lshr i64 %arg1, 32 1695 /// BB2: 1696 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1697 /// ==> 1698 /// 1699 /// BB2: 1700 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1701 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1702 /// 1703 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1704 /// instruction. 1705 /// Return true if any changes are made. 1706 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1707 const TargetLowering &TLI, 1708 const DataLayout &DL) { 1709 BasicBlock *DefBB = ShiftI->getParent(); 1710 1711 /// Only insert instructions in each block once. 1712 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1713 1714 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1715 1716 bool MadeChange = false; 1717 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1718 UI != E;) { 1719 Use &TheUse = UI.getUse(); 1720 Instruction *User = cast<Instruction>(*UI); 1721 // Preincrement use iterator so we don't invalidate it. 1722 ++UI; 1723 1724 // Don't bother for PHI nodes. 1725 if (isa<PHINode>(User)) 1726 continue; 1727 1728 if (!isExtractBitsCandidateUse(User)) 1729 continue; 1730 1731 BasicBlock *UserBB = User->getParent(); 1732 1733 if (UserBB == DefBB) { 1734 // If the shift and truncate instruction are in the same BB. The use of 1735 // the truncate(TruncUse) may still introduce another truncate if not 1736 // legal. In this case, we would like to sink both shift and truncate 1737 // instruction to the BB of TruncUse. 1738 // for example: 1739 // BB1: 1740 // i64 shift.result = lshr i64 opnd, imm 1741 // trunc.result = trunc shift.result to i16 1742 // 1743 // BB2: 1744 // ----> We will have an implicit truncate here if the architecture does 1745 // not have i16 compare. 1746 // cmp i16 trunc.result, opnd2 1747 // 1748 if (isa<TruncInst>(User) && shiftIsLegal 1749 // If the type of the truncate is legal, no truncate will be 1750 // introduced in other basic blocks. 1751 && 1752 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1753 MadeChange = 1754 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1755 1756 continue; 1757 } 1758 // If we have already inserted a shift into this block, use it. 1759 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1760 1761 if (!InsertedShift) { 1762 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1763 assert(InsertPt != UserBB->end()); 1764 1765 if (ShiftI->getOpcode() == Instruction::AShr) 1766 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1767 "", &*InsertPt); 1768 else 1769 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1770 "", &*InsertPt); 1771 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1772 1773 MadeChange = true; 1774 } 1775 1776 // Replace a use of the shift with a use of the new shift. 1777 TheUse = InsertedShift; 1778 } 1779 1780 // If we removed all uses, or there are none, nuke the shift. 1781 if (ShiftI->use_empty()) { 1782 salvageDebugInfo(*ShiftI); 1783 ShiftI->eraseFromParent(); 1784 MadeChange = true; 1785 } 1786 1787 return MadeChange; 1788 } 1789 1790 /// If counting leading or trailing zeros is an expensive operation and a zero 1791 /// input is defined, add a check for zero to avoid calling the intrinsic. 1792 /// 1793 /// We want to transform: 1794 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1795 /// 1796 /// into: 1797 /// entry: 1798 /// %cmpz = icmp eq i64 %A, 0 1799 /// br i1 %cmpz, label %cond.end, label %cond.false 1800 /// cond.false: 1801 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1802 /// br label %cond.end 1803 /// cond.end: 1804 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1805 /// 1806 /// If the transform is performed, return true and set ModifiedDT to true. 1807 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1808 const TargetLowering *TLI, 1809 const DataLayout *DL, 1810 bool &ModifiedDT) { 1811 if (!TLI || !DL) 1812 return false; 1813 1814 // If a zero input is undefined, it doesn't make sense to despeculate that. 1815 if (match(CountZeros->getOperand(1), m_One())) 1816 return false; 1817 1818 // If it's cheap to speculate, there's nothing to do. 1819 auto IntrinsicID = CountZeros->getIntrinsicID(); 1820 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1821 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1822 return false; 1823 1824 // Only handle legal scalar cases. Anything else requires too much work. 1825 Type *Ty = CountZeros->getType(); 1826 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1827 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1828 return false; 1829 1830 // The intrinsic will be sunk behind a compare against zero and branch. 1831 BasicBlock *StartBlock = CountZeros->getParent(); 1832 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1833 1834 // Create another block after the count zero intrinsic. A PHI will be added 1835 // in this block to select the result of the intrinsic or the bit-width 1836 // constant if the input to the intrinsic is zero. 1837 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1838 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1839 1840 // Set up a builder to create a compare, conditional branch, and PHI. 1841 IRBuilder<> Builder(CountZeros->getContext()); 1842 Builder.SetInsertPoint(StartBlock->getTerminator()); 1843 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1844 1845 // Replace the unconditional branch that was created by the first split with 1846 // a compare against zero and a conditional branch. 1847 Value *Zero = Constant::getNullValue(Ty); 1848 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1849 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1850 StartBlock->getTerminator()->eraseFromParent(); 1851 1852 // Create a PHI in the end block to select either the output of the intrinsic 1853 // or the bit width of the operand. 1854 Builder.SetInsertPoint(&EndBlock->front()); 1855 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1856 CountZeros->replaceAllUsesWith(PN); 1857 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1858 PN->addIncoming(BitWidth, StartBlock); 1859 PN->addIncoming(CountZeros, CallBlock); 1860 1861 // We are explicitly handling the zero case, so we can set the intrinsic's 1862 // undefined zero argument to 'true'. This will also prevent reprocessing the 1863 // intrinsic; we only despeculate when a zero input is defined. 1864 CountZeros->setArgOperand(1, Builder.getTrue()); 1865 ModifiedDT = true; 1866 return true; 1867 } 1868 1869 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1870 BasicBlock *BB = CI->getParent(); 1871 1872 // Lower inline assembly if we can. 1873 // If we found an inline asm expession, and if the target knows how to 1874 // lower it to normal LLVM code, do so now. 1875 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1876 if (TLI->ExpandInlineAsm(CI)) { 1877 // Avoid invalidating the iterator. 1878 CurInstIterator = BB->begin(); 1879 // Avoid processing instructions out of order, which could cause 1880 // reuse before a value is defined. 1881 SunkAddrs.clear(); 1882 return true; 1883 } 1884 // Sink address computing for memory operands into the block. 1885 if (optimizeInlineAsmInst(CI)) 1886 return true; 1887 } 1888 1889 // Align the pointer arguments to this call if the target thinks it's a good 1890 // idea 1891 unsigned MinSize, PrefAlign; 1892 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1893 for (auto &Arg : CI->arg_operands()) { 1894 // We want to align both objects whose address is used directly and 1895 // objects whose address is used in casts and GEPs, though it only makes 1896 // sense for GEPs if the offset is a multiple of the desired alignment and 1897 // if size - offset meets the size threshold. 1898 if (!Arg->getType()->isPointerTy()) 1899 continue; 1900 APInt Offset(DL->getIndexSizeInBits( 1901 cast<PointerType>(Arg->getType())->getAddressSpace()), 1902 0); 1903 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1904 uint64_t Offset2 = Offset.getLimitedValue(); 1905 if ((Offset2 & (PrefAlign-1)) != 0) 1906 continue; 1907 AllocaInst *AI; 1908 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1909 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1910 AI->setAlignment(MaybeAlign(PrefAlign)); 1911 // Global variables can only be aligned if they are defined in this 1912 // object (i.e. they are uniquely initialized in this object), and 1913 // over-aligning global variables that have an explicit section is 1914 // forbidden. 1915 GlobalVariable *GV; 1916 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1917 GV->getPointerAlignment(*DL) < PrefAlign && 1918 DL->getTypeAllocSize(GV->getValueType()) >= 1919 MinSize + Offset2) 1920 GV->setAlignment(MaybeAlign(PrefAlign)); 1921 } 1922 // If this is a memcpy (or similar) then we may be able to improve the 1923 // alignment 1924 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1925 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1926 if (DestAlign > MI->getDestAlignment()) 1927 MI->setDestAlignment(DestAlign); 1928 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1929 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1930 if (SrcAlign > MTI->getSourceAlignment()) 1931 MTI->setSourceAlignment(SrcAlign); 1932 } 1933 } 1934 } 1935 1936 // If we have a cold call site, try to sink addressing computation into the 1937 // cold block. This interacts with our handling for loads and stores to 1938 // ensure that we can fold all uses of a potential addressing computation 1939 // into their uses. TODO: generalize this to work over profiling data 1940 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1941 for (auto &Arg : CI->arg_operands()) { 1942 if (!Arg->getType()->isPointerTy()) 1943 continue; 1944 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1945 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1946 } 1947 1948 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1949 if (II) { 1950 switch (II->getIntrinsicID()) { 1951 default: break; 1952 case Intrinsic::experimental_widenable_condition: { 1953 // Give up on future widening oppurtunties so that we can fold away dead 1954 // paths and merge blocks before going into block-local instruction 1955 // selection. 1956 if (II->use_empty()) { 1957 II->eraseFromParent(); 1958 return true; 1959 } 1960 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1961 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1962 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1963 }); 1964 return true; 1965 } 1966 case Intrinsic::objectsize: 1967 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1968 case Intrinsic::is_constant: 1969 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1970 case Intrinsic::aarch64_stlxr: 1971 case Intrinsic::aarch64_stxr: { 1972 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1973 if (!ExtVal || !ExtVal->hasOneUse() || 1974 ExtVal->getParent() == CI->getParent()) 1975 return false; 1976 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1977 ExtVal->moveBefore(CI); 1978 // Mark this instruction as "inserted by CGP", so that other 1979 // optimizations don't touch it. 1980 InsertedInsts.insert(ExtVal); 1981 return true; 1982 } 1983 1984 case Intrinsic::launder_invariant_group: 1985 case Intrinsic::strip_invariant_group: { 1986 Value *ArgVal = II->getArgOperand(0); 1987 auto it = LargeOffsetGEPMap.find(II); 1988 if (it != LargeOffsetGEPMap.end()) { 1989 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1990 // Make sure not to have to deal with iterator invalidation 1991 // after possibly adding ArgVal to LargeOffsetGEPMap. 1992 auto GEPs = std::move(it->second); 1993 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1994 LargeOffsetGEPMap.erase(II); 1995 } 1996 1997 II->replaceAllUsesWith(ArgVal); 1998 II->eraseFromParent(); 1999 return true; 2000 } 2001 case Intrinsic::cttz: 2002 case Intrinsic::ctlz: 2003 // If counting zeros is expensive, try to avoid it. 2004 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2005 } 2006 2007 if (TLI) { 2008 SmallVector<Value*, 2> PtrOps; 2009 Type *AccessTy; 2010 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2011 while (!PtrOps.empty()) { 2012 Value *PtrVal = PtrOps.pop_back_val(); 2013 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2014 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2015 return true; 2016 } 2017 } 2018 } 2019 2020 // From here on out we're working with named functions. 2021 if (!CI->getCalledFunction()) return false; 2022 2023 // Lower all default uses of _chk calls. This is very similar 2024 // to what InstCombineCalls does, but here we are only lowering calls 2025 // to fortified library functions (e.g. __memcpy_chk) that have the default 2026 // "don't know" as the objectsize. Anything else should be left alone. 2027 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2028 if (Value *V = Simplifier.optimizeCall(CI)) { 2029 CI->replaceAllUsesWith(V); 2030 CI->eraseFromParent(); 2031 return true; 2032 } 2033 2034 return false; 2035 } 2036 2037 /// Look for opportunities to duplicate return instructions to the predecessor 2038 /// to enable tail call optimizations. The case it is currently looking for is: 2039 /// @code 2040 /// bb0: 2041 /// %tmp0 = tail call i32 @f0() 2042 /// br label %return 2043 /// bb1: 2044 /// %tmp1 = tail call i32 @f1() 2045 /// br label %return 2046 /// bb2: 2047 /// %tmp2 = tail call i32 @f2() 2048 /// br label %return 2049 /// return: 2050 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2051 /// ret i32 %retval 2052 /// @endcode 2053 /// 2054 /// => 2055 /// 2056 /// @code 2057 /// bb0: 2058 /// %tmp0 = tail call i32 @f0() 2059 /// ret i32 %tmp0 2060 /// bb1: 2061 /// %tmp1 = tail call i32 @f1() 2062 /// ret i32 %tmp1 2063 /// bb2: 2064 /// %tmp2 = tail call i32 @f2() 2065 /// ret i32 %tmp2 2066 /// @endcode 2067 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2068 if (!TLI) 2069 return false; 2070 2071 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2072 if (!RetI) 2073 return false; 2074 2075 PHINode *PN = nullptr; 2076 BitCastInst *BCI = nullptr; 2077 Value *V = RetI->getReturnValue(); 2078 if (V) { 2079 BCI = dyn_cast<BitCastInst>(V); 2080 if (BCI) 2081 V = BCI->getOperand(0); 2082 2083 PN = dyn_cast<PHINode>(V); 2084 if (!PN) 2085 return false; 2086 } 2087 2088 if (PN && PN->getParent() != BB) 2089 return false; 2090 2091 // Make sure there are no instructions between the PHI and return, or that the 2092 // return is the first instruction in the block. 2093 if (PN) { 2094 BasicBlock::iterator BI = BB->begin(); 2095 // Skip over debug and the bitcast. 2096 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2097 if (&*BI != RetI) 2098 return false; 2099 } else { 2100 BasicBlock::iterator BI = BB->begin(); 2101 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2102 if (&*BI != RetI) 2103 return false; 2104 } 2105 2106 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2107 /// call. 2108 const Function *F = BB->getParent(); 2109 SmallVector<BasicBlock*, 4> TailCallBBs; 2110 if (PN) { 2111 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2112 // Look through bitcasts. 2113 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2114 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2115 BasicBlock *PredBB = PN->getIncomingBlock(I); 2116 // Make sure the phi value is indeed produced by the tail call. 2117 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2118 TLI->mayBeEmittedAsTailCall(CI) && 2119 attributesPermitTailCall(F, CI, RetI, *TLI)) 2120 TailCallBBs.push_back(PredBB); 2121 } 2122 } else { 2123 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2124 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2125 if (!VisitedBBs.insert(*PI).second) 2126 continue; 2127 2128 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2129 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2130 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2131 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2132 if (RI == RE) 2133 continue; 2134 2135 CallInst *CI = dyn_cast<CallInst>(&*RI); 2136 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2137 attributesPermitTailCall(F, CI, RetI, *TLI)) 2138 TailCallBBs.push_back(*PI); 2139 } 2140 } 2141 2142 bool Changed = false; 2143 for (auto const &TailCallBB : TailCallBBs) { 2144 // Make sure the call instruction is followed by an unconditional branch to 2145 // the return block. 2146 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2147 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2148 continue; 2149 2150 // Duplicate the return into TailCallBB. 2151 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2152 ModifiedDT = Changed = true; 2153 ++NumRetsDup; 2154 } 2155 2156 // If we eliminated all predecessors of the block, delete the block now. 2157 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2158 BB->eraseFromParent(); 2159 2160 return Changed; 2161 } 2162 2163 //===----------------------------------------------------------------------===// 2164 // Memory Optimization 2165 //===----------------------------------------------------------------------===// 2166 2167 namespace { 2168 2169 /// This is an extended version of TargetLowering::AddrMode 2170 /// which holds actual Value*'s for register values. 2171 struct ExtAddrMode : public TargetLowering::AddrMode { 2172 Value *BaseReg = nullptr; 2173 Value *ScaledReg = nullptr; 2174 Value *OriginalValue = nullptr; 2175 bool InBounds = true; 2176 2177 enum FieldName { 2178 NoField = 0x00, 2179 BaseRegField = 0x01, 2180 BaseGVField = 0x02, 2181 BaseOffsField = 0x04, 2182 ScaledRegField = 0x08, 2183 ScaleField = 0x10, 2184 MultipleFields = 0xff 2185 }; 2186 2187 2188 ExtAddrMode() = default; 2189 2190 void print(raw_ostream &OS) const; 2191 void dump() const; 2192 2193 FieldName compare(const ExtAddrMode &other) { 2194 // First check that the types are the same on each field, as differing types 2195 // is something we can't cope with later on. 2196 if (BaseReg && other.BaseReg && 2197 BaseReg->getType() != other.BaseReg->getType()) 2198 return MultipleFields; 2199 if (BaseGV && other.BaseGV && 2200 BaseGV->getType() != other.BaseGV->getType()) 2201 return MultipleFields; 2202 if (ScaledReg && other.ScaledReg && 2203 ScaledReg->getType() != other.ScaledReg->getType()) 2204 return MultipleFields; 2205 2206 // Conservatively reject 'inbounds' mismatches. 2207 if (InBounds != other.InBounds) 2208 return MultipleFields; 2209 2210 // Check each field to see if it differs. 2211 unsigned Result = NoField; 2212 if (BaseReg != other.BaseReg) 2213 Result |= BaseRegField; 2214 if (BaseGV != other.BaseGV) 2215 Result |= BaseGVField; 2216 if (BaseOffs != other.BaseOffs) 2217 Result |= BaseOffsField; 2218 if (ScaledReg != other.ScaledReg) 2219 Result |= ScaledRegField; 2220 // Don't count 0 as being a different scale, because that actually means 2221 // unscaled (which will already be counted by having no ScaledReg). 2222 if (Scale && other.Scale && Scale != other.Scale) 2223 Result |= ScaleField; 2224 2225 if (countPopulation(Result) > 1) 2226 return MultipleFields; 2227 else 2228 return static_cast<FieldName>(Result); 2229 } 2230 2231 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2232 // with no offset. 2233 bool isTrivial() { 2234 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2235 // trivial if at most one of these terms is nonzero, except that BaseGV and 2236 // BaseReg both being zero actually means a null pointer value, which we 2237 // consider to be 'non-zero' here. 2238 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2239 } 2240 2241 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2242 switch (Field) { 2243 default: 2244 return nullptr; 2245 case BaseRegField: 2246 return BaseReg; 2247 case BaseGVField: 2248 return BaseGV; 2249 case ScaledRegField: 2250 return ScaledReg; 2251 case BaseOffsField: 2252 return ConstantInt::get(IntPtrTy, BaseOffs); 2253 } 2254 } 2255 2256 void SetCombinedField(FieldName Field, Value *V, 2257 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2258 switch (Field) { 2259 default: 2260 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2261 break; 2262 case ExtAddrMode::BaseRegField: 2263 BaseReg = V; 2264 break; 2265 case ExtAddrMode::BaseGVField: 2266 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2267 // in the BaseReg field. 2268 assert(BaseReg == nullptr); 2269 BaseReg = V; 2270 BaseGV = nullptr; 2271 break; 2272 case ExtAddrMode::ScaledRegField: 2273 ScaledReg = V; 2274 // If we have a mix of scaled and unscaled addrmodes then we want scale 2275 // to be the scale and not zero. 2276 if (!Scale) 2277 for (const ExtAddrMode &AM : AddrModes) 2278 if (AM.Scale) { 2279 Scale = AM.Scale; 2280 break; 2281 } 2282 break; 2283 case ExtAddrMode::BaseOffsField: 2284 // The offset is no longer a constant, so it goes in ScaledReg with a 2285 // scale of 1. 2286 assert(ScaledReg == nullptr); 2287 ScaledReg = V; 2288 Scale = 1; 2289 BaseOffs = 0; 2290 break; 2291 } 2292 } 2293 }; 2294 2295 } // end anonymous namespace 2296 2297 #ifndef NDEBUG 2298 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2299 AM.print(OS); 2300 return OS; 2301 } 2302 #endif 2303 2304 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2305 void ExtAddrMode::print(raw_ostream &OS) const { 2306 bool NeedPlus = false; 2307 OS << "["; 2308 if (InBounds) 2309 OS << "inbounds "; 2310 if (BaseGV) { 2311 OS << (NeedPlus ? " + " : "") 2312 << "GV:"; 2313 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2314 NeedPlus = true; 2315 } 2316 2317 if (BaseOffs) { 2318 OS << (NeedPlus ? " + " : "") 2319 << BaseOffs; 2320 NeedPlus = true; 2321 } 2322 2323 if (BaseReg) { 2324 OS << (NeedPlus ? " + " : "") 2325 << "Base:"; 2326 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2327 NeedPlus = true; 2328 } 2329 if (Scale) { 2330 OS << (NeedPlus ? " + " : "") 2331 << Scale << "*"; 2332 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2333 } 2334 2335 OS << ']'; 2336 } 2337 2338 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2339 print(dbgs()); 2340 dbgs() << '\n'; 2341 } 2342 #endif 2343 2344 namespace { 2345 2346 /// This class provides transaction based operation on the IR. 2347 /// Every change made through this class is recorded in the internal state and 2348 /// can be undone (rollback) until commit is called. 2349 class TypePromotionTransaction { 2350 /// This represents the common interface of the individual transaction. 2351 /// Each class implements the logic for doing one specific modification on 2352 /// the IR via the TypePromotionTransaction. 2353 class TypePromotionAction { 2354 protected: 2355 /// The Instruction modified. 2356 Instruction *Inst; 2357 2358 public: 2359 /// Constructor of the action. 2360 /// The constructor performs the related action on the IR. 2361 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2362 2363 virtual ~TypePromotionAction() = default; 2364 2365 /// Undo the modification done by this action. 2366 /// When this method is called, the IR must be in the same state as it was 2367 /// before this action was applied. 2368 /// \pre Undoing the action works if and only if the IR is in the exact same 2369 /// state as it was directly after this action was applied. 2370 virtual void undo() = 0; 2371 2372 /// Advocate every change made by this action. 2373 /// When the results on the IR of the action are to be kept, it is important 2374 /// to call this function, otherwise hidden information may be kept forever. 2375 virtual void commit() { 2376 // Nothing to be done, this action is not doing anything. 2377 } 2378 }; 2379 2380 /// Utility to remember the position of an instruction. 2381 class InsertionHandler { 2382 /// Position of an instruction. 2383 /// Either an instruction: 2384 /// - Is the first in a basic block: BB is used. 2385 /// - Has a previous instruction: PrevInst is used. 2386 union { 2387 Instruction *PrevInst; 2388 BasicBlock *BB; 2389 } Point; 2390 2391 /// Remember whether or not the instruction had a previous instruction. 2392 bool HasPrevInstruction; 2393 2394 public: 2395 /// Record the position of \p Inst. 2396 InsertionHandler(Instruction *Inst) { 2397 BasicBlock::iterator It = Inst->getIterator(); 2398 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2399 if (HasPrevInstruction) 2400 Point.PrevInst = &*--It; 2401 else 2402 Point.BB = Inst->getParent(); 2403 } 2404 2405 /// Insert \p Inst at the recorded position. 2406 void insert(Instruction *Inst) { 2407 if (HasPrevInstruction) { 2408 if (Inst->getParent()) 2409 Inst->removeFromParent(); 2410 Inst->insertAfter(Point.PrevInst); 2411 } else { 2412 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2413 if (Inst->getParent()) 2414 Inst->moveBefore(Position); 2415 else 2416 Inst->insertBefore(Position); 2417 } 2418 } 2419 }; 2420 2421 /// Move an instruction before another. 2422 class InstructionMoveBefore : public TypePromotionAction { 2423 /// Original position of the instruction. 2424 InsertionHandler Position; 2425 2426 public: 2427 /// Move \p Inst before \p Before. 2428 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2429 : TypePromotionAction(Inst), Position(Inst) { 2430 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2431 << "\n"); 2432 Inst->moveBefore(Before); 2433 } 2434 2435 /// Move the instruction back to its original position. 2436 void undo() override { 2437 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2438 Position.insert(Inst); 2439 } 2440 }; 2441 2442 /// Set the operand of an instruction with a new value. 2443 class OperandSetter : public TypePromotionAction { 2444 /// Original operand of the instruction. 2445 Value *Origin; 2446 2447 /// Index of the modified instruction. 2448 unsigned Idx; 2449 2450 public: 2451 /// Set \p Idx operand of \p Inst with \p NewVal. 2452 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2453 : TypePromotionAction(Inst), Idx(Idx) { 2454 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2455 << "for:" << *Inst << "\n" 2456 << "with:" << *NewVal << "\n"); 2457 Origin = Inst->getOperand(Idx); 2458 Inst->setOperand(Idx, NewVal); 2459 } 2460 2461 /// Restore the original value of the instruction. 2462 void undo() override { 2463 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2464 << "for: " << *Inst << "\n" 2465 << "with: " << *Origin << "\n"); 2466 Inst->setOperand(Idx, Origin); 2467 } 2468 }; 2469 2470 /// Hide the operands of an instruction. 2471 /// Do as if this instruction was not using any of its operands. 2472 class OperandsHider : public TypePromotionAction { 2473 /// The list of original operands. 2474 SmallVector<Value *, 4> OriginalValues; 2475 2476 public: 2477 /// Remove \p Inst from the uses of the operands of \p Inst. 2478 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2479 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2480 unsigned NumOpnds = Inst->getNumOperands(); 2481 OriginalValues.reserve(NumOpnds); 2482 for (unsigned It = 0; It < NumOpnds; ++It) { 2483 // Save the current operand. 2484 Value *Val = Inst->getOperand(It); 2485 OriginalValues.push_back(Val); 2486 // Set a dummy one. 2487 // We could use OperandSetter here, but that would imply an overhead 2488 // that we are not willing to pay. 2489 Inst->setOperand(It, UndefValue::get(Val->getType())); 2490 } 2491 } 2492 2493 /// Restore the original list of uses. 2494 void undo() override { 2495 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2496 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2497 Inst->setOperand(It, OriginalValues[It]); 2498 } 2499 }; 2500 2501 /// Build a truncate instruction. 2502 class TruncBuilder : public TypePromotionAction { 2503 Value *Val; 2504 2505 public: 2506 /// Build a truncate instruction of \p Opnd producing a \p Ty 2507 /// result. 2508 /// trunc Opnd to Ty. 2509 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2510 IRBuilder<> Builder(Opnd); 2511 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2512 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2513 } 2514 2515 /// Get the built value. 2516 Value *getBuiltValue() { return Val; } 2517 2518 /// Remove the built instruction. 2519 void undo() override { 2520 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2521 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2522 IVal->eraseFromParent(); 2523 } 2524 }; 2525 2526 /// Build a sign extension instruction. 2527 class SExtBuilder : public TypePromotionAction { 2528 Value *Val; 2529 2530 public: 2531 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2532 /// result. 2533 /// sext Opnd to Ty. 2534 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2535 : TypePromotionAction(InsertPt) { 2536 IRBuilder<> Builder(InsertPt); 2537 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2538 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2539 } 2540 2541 /// Get the built value. 2542 Value *getBuiltValue() { return Val; } 2543 2544 /// Remove the built instruction. 2545 void undo() override { 2546 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2547 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2548 IVal->eraseFromParent(); 2549 } 2550 }; 2551 2552 /// Build a zero extension instruction. 2553 class ZExtBuilder : public TypePromotionAction { 2554 Value *Val; 2555 2556 public: 2557 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2558 /// result. 2559 /// zext Opnd to Ty. 2560 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2561 : TypePromotionAction(InsertPt) { 2562 IRBuilder<> Builder(InsertPt); 2563 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2564 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2565 } 2566 2567 /// Get the built value. 2568 Value *getBuiltValue() { return Val; } 2569 2570 /// Remove the built instruction. 2571 void undo() override { 2572 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2573 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2574 IVal->eraseFromParent(); 2575 } 2576 }; 2577 2578 /// Mutate an instruction to another type. 2579 class TypeMutator : public TypePromotionAction { 2580 /// Record the original type. 2581 Type *OrigTy; 2582 2583 public: 2584 /// Mutate the type of \p Inst into \p NewTy. 2585 TypeMutator(Instruction *Inst, Type *NewTy) 2586 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2587 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2588 << "\n"); 2589 Inst->mutateType(NewTy); 2590 } 2591 2592 /// Mutate the instruction back to its original type. 2593 void undo() override { 2594 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2595 << "\n"); 2596 Inst->mutateType(OrigTy); 2597 } 2598 }; 2599 2600 /// Replace the uses of an instruction by another instruction. 2601 class UsesReplacer : public TypePromotionAction { 2602 /// Helper structure to keep track of the replaced uses. 2603 struct InstructionAndIdx { 2604 /// The instruction using the instruction. 2605 Instruction *Inst; 2606 2607 /// The index where this instruction is used for Inst. 2608 unsigned Idx; 2609 2610 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2611 : Inst(Inst), Idx(Idx) {} 2612 }; 2613 2614 /// Keep track of the original uses (pair Instruction, Index). 2615 SmallVector<InstructionAndIdx, 4> OriginalUses; 2616 /// Keep track of the debug users. 2617 SmallVector<DbgValueInst *, 1> DbgValues; 2618 2619 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2620 2621 public: 2622 /// Replace all the use of \p Inst by \p New. 2623 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2624 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2625 << "\n"); 2626 // Record the original uses. 2627 for (Use &U : Inst->uses()) { 2628 Instruction *UserI = cast<Instruction>(U.getUser()); 2629 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2630 } 2631 // Record the debug uses separately. They are not in the instruction's 2632 // use list, but they are replaced by RAUW. 2633 findDbgValues(DbgValues, Inst); 2634 2635 // Now, we can replace the uses. 2636 Inst->replaceAllUsesWith(New); 2637 } 2638 2639 /// Reassign the original uses of Inst to Inst. 2640 void undo() override { 2641 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2642 for (use_iterator UseIt = OriginalUses.begin(), 2643 EndIt = OriginalUses.end(); 2644 UseIt != EndIt; ++UseIt) { 2645 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2646 } 2647 // RAUW has replaced all original uses with references to the new value, 2648 // including the debug uses. Since we are undoing the replacements, 2649 // the original debug uses must also be reinstated to maintain the 2650 // correctness and utility of debug value instructions. 2651 for (auto *DVI: DbgValues) { 2652 LLVMContext &Ctx = Inst->getType()->getContext(); 2653 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2654 DVI->setOperand(0, MV); 2655 } 2656 } 2657 }; 2658 2659 /// Remove an instruction from the IR. 2660 class InstructionRemover : public TypePromotionAction { 2661 /// Original position of the instruction. 2662 InsertionHandler Inserter; 2663 2664 /// Helper structure to hide all the link to the instruction. In other 2665 /// words, this helps to do as if the instruction was removed. 2666 OperandsHider Hider; 2667 2668 /// Keep track of the uses replaced, if any. 2669 UsesReplacer *Replacer = nullptr; 2670 2671 /// Keep track of instructions removed. 2672 SetOfInstrs &RemovedInsts; 2673 2674 public: 2675 /// Remove all reference of \p Inst and optionally replace all its 2676 /// uses with New. 2677 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2678 /// \pre If !Inst->use_empty(), then New != nullptr 2679 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2680 Value *New = nullptr) 2681 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2682 RemovedInsts(RemovedInsts) { 2683 if (New) 2684 Replacer = new UsesReplacer(Inst, New); 2685 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2686 RemovedInsts.insert(Inst); 2687 /// The instructions removed here will be freed after completing 2688 /// optimizeBlock() for all blocks as we need to keep track of the 2689 /// removed instructions during promotion. 2690 Inst->removeFromParent(); 2691 } 2692 2693 ~InstructionRemover() override { delete Replacer; } 2694 2695 /// Resurrect the instruction and reassign it to the proper uses if 2696 /// new value was provided when build this action. 2697 void undo() override { 2698 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2699 Inserter.insert(Inst); 2700 if (Replacer) 2701 Replacer->undo(); 2702 Hider.undo(); 2703 RemovedInsts.erase(Inst); 2704 } 2705 }; 2706 2707 public: 2708 /// Restoration point. 2709 /// The restoration point is a pointer to an action instead of an iterator 2710 /// because the iterator may be invalidated but not the pointer. 2711 using ConstRestorationPt = const TypePromotionAction *; 2712 2713 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2714 : RemovedInsts(RemovedInsts) {} 2715 2716 /// Advocate every changes made in that transaction. 2717 void commit(); 2718 2719 /// Undo all the changes made after the given point. 2720 void rollback(ConstRestorationPt Point); 2721 2722 /// Get the current restoration point. 2723 ConstRestorationPt getRestorationPoint() const; 2724 2725 /// \name API for IR modification with state keeping to support rollback. 2726 /// @{ 2727 /// Same as Instruction::setOperand. 2728 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2729 2730 /// Same as Instruction::eraseFromParent. 2731 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2732 2733 /// Same as Value::replaceAllUsesWith. 2734 void replaceAllUsesWith(Instruction *Inst, Value *New); 2735 2736 /// Same as Value::mutateType. 2737 void mutateType(Instruction *Inst, Type *NewTy); 2738 2739 /// Same as IRBuilder::createTrunc. 2740 Value *createTrunc(Instruction *Opnd, Type *Ty); 2741 2742 /// Same as IRBuilder::createSExt. 2743 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2744 2745 /// Same as IRBuilder::createZExt. 2746 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2747 2748 /// Same as Instruction::moveBefore. 2749 void moveBefore(Instruction *Inst, Instruction *Before); 2750 /// @} 2751 2752 private: 2753 /// The ordered list of actions made so far. 2754 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2755 2756 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2757 2758 SetOfInstrs &RemovedInsts; 2759 }; 2760 2761 } // end anonymous namespace 2762 2763 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2764 Value *NewVal) { 2765 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2766 Inst, Idx, NewVal)); 2767 } 2768 2769 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2770 Value *NewVal) { 2771 Actions.push_back( 2772 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2773 Inst, RemovedInsts, NewVal)); 2774 } 2775 2776 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2777 Value *New) { 2778 Actions.push_back( 2779 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2780 } 2781 2782 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2783 Actions.push_back( 2784 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2785 } 2786 2787 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2788 Type *Ty) { 2789 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2790 Value *Val = Ptr->getBuiltValue(); 2791 Actions.push_back(std::move(Ptr)); 2792 return Val; 2793 } 2794 2795 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2796 Value *Opnd, Type *Ty) { 2797 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2798 Value *Val = Ptr->getBuiltValue(); 2799 Actions.push_back(std::move(Ptr)); 2800 return Val; 2801 } 2802 2803 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2804 Value *Opnd, Type *Ty) { 2805 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2806 Value *Val = Ptr->getBuiltValue(); 2807 Actions.push_back(std::move(Ptr)); 2808 return Val; 2809 } 2810 2811 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2812 Instruction *Before) { 2813 Actions.push_back( 2814 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2815 Inst, Before)); 2816 } 2817 2818 TypePromotionTransaction::ConstRestorationPt 2819 TypePromotionTransaction::getRestorationPoint() const { 2820 return !Actions.empty() ? Actions.back().get() : nullptr; 2821 } 2822 2823 void TypePromotionTransaction::commit() { 2824 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2825 ++It) 2826 (*It)->commit(); 2827 Actions.clear(); 2828 } 2829 2830 void TypePromotionTransaction::rollback( 2831 TypePromotionTransaction::ConstRestorationPt Point) { 2832 while (!Actions.empty() && Point != Actions.back().get()) { 2833 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2834 Curr->undo(); 2835 } 2836 } 2837 2838 namespace { 2839 2840 /// A helper class for matching addressing modes. 2841 /// 2842 /// This encapsulates the logic for matching the target-legal addressing modes. 2843 class AddressingModeMatcher { 2844 SmallVectorImpl<Instruction*> &AddrModeInsts; 2845 const TargetLowering &TLI; 2846 const TargetRegisterInfo &TRI; 2847 const DataLayout &DL; 2848 2849 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2850 /// the memory instruction that we're computing this address for. 2851 Type *AccessTy; 2852 unsigned AddrSpace; 2853 Instruction *MemoryInst; 2854 2855 /// This is the addressing mode that we're building up. This is 2856 /// part of the return value of this addressing mode matching stuff. 2857 ExtAddrMode &AddrMode; 2858 2859 /// The instructions inserted by other CodeGenPrepare optimizations. 2860 const SetOfInstrs &InsertedInsts; 2861 2862 /// A map from the instructions to their type before promotion. 2863 InstrToOrigTy &PromotedInsts; 2864 2865 /// The ongoing transaction where every action should be registered. 2866 TypePromotionTransaction &TPT; 2867 2868 // A GEP which has too large offset to be folded into the addressing mode. 2869 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2870 2871 /// This is set to true when we should not do profitability checks. 2872 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2873 bool IgnoreProfitability; 2874 2875 AddressingModeMatcher( 2876 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2877 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2878 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2879 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2880 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2881 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2882 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2883 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2884 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2885 IgnoreProfitability = false; 2886 } 2887 2888 public: 2889 /// Find the maximal addressing mode that a load/store of V can fold, 2890 /// give an access type of AccessTy. This returns a list of involved 2891 /// instructions in AddrModeInsts. 2892 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2893 /// optimizations. 2894 /// \p PromotedInsts maps the instructions to their type before promotion. 2895 /// \p The ongoing transaction where every action should be registered. 2896 static ExtAddrMode 2897 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2898 SmallVectorImpl<Instruction *> &AddrModeInsts, 2899 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2900 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2901 TypePromotionTransaction &TPT, 2902 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2903 ExtAddrMode Result; 2904 2905 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2906 MemoryInst, Result, InsertedInsts, 2907 PromotedInsts, TPT, LargeOffsetGEP) 2908 .matchAddr(V, 0); 2909 (void)Success; assert(Success && "Couldn't select *anything*?"); 2910 return Result; 2911 } 2912 2913 private: 2914 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2915 bool matchAddr(Value *Addr, unsigned Depth); 2916 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2917 bool *MovedAway = nullptr); 2918 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2919 ExtAddrMode &AMBefore, 2920 ExtAddrMode &AMAfter); 2921 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2922 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2923 Value *PromotedOperand) const; 2924 }; 2925 2926 class PhiNodeSet; 2927 2928 /// An iterator for PhiNodeSet. 2929 class PhiNodeSetIterator { 2930 PhiNodeSet * const Set; 2931 size_t CurrentIndex = 0; 2932 2933 public: 2934 /// The constructor. Start should point to either a valid element, or be equal 2935 /// to the size of the underlying SmallVector of the PhiNodeSet. 2936 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2937 PHINode * operator*() const; 2938 PhiNodeSetIterator& operator++(); 2939 bool operator==(const PhiNodeSetIterator &RHS) const; 2940 bool operator!=(const PhiNodeSetIterator &RHS) const; 2941 }; 2942 2943 /// Keeps a set of PHINodes. 2944 /// 2945 /// This is a minimal set implementation for a specific use case: 2946 /// It is very fast when there are very few elements, but also provides good 2947 /// performance when there are many. It is similar to SmallPtrSet, but also 2948 /// provides iteration by insertion order, which is deterministic and stable 2949 /// across runs. It is also similar to SmallSetVector, but provides removing 2950 /// elements in O(1) time. This is achieved by not actually removing the element 2951 /// from the underlying vector, so comes at the cost of using more memory, but 2952 /// that is fine, since PhiNodeSets are used as short lived objects. 2953 class PhiNodeSet { 2954 friend class PhiNodeSetIterator; 2955 2956 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2957 using iterator = PhiNodeSetIterator; 2958 2959 /// Keeps the elements in the order of their insertion in the underlying 2960 /// vector. To achieve constant time removal, it never deletes any element. 2961 SmallVector<PHINode *, 32> NodeList; 2962 2963 /// Keeps the elements in the underlying set implementation. This (and not the 2964 /// NodeList defined above) is the source of truth on whether an element 2965 /// is actually in the collection. 2966 MapType NodeMap; 2967 2968 /// Points to the first valid (not deleted) element when the set is not empty 2969 /// and the value is not zero. Equals to the size of the underlying vector 2970 /// when the set is empty. When the value is 0, as in the beginning, the 2971 /// first element may or may not be valid. 2972 size_t FirstValidElement = 0; 2973 2974 public: 2975 /// Inserts a new element to the collection. 2976 /// \returns true if the element is actually added, i.e. was not in the 2977 /// collection before the operation. 2978 bool insert(PHINode *Ptr) { 2979 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2980 NodeList.push_back(Ptr); 2981 return true; 2982 } 2983 return false; 2984 } 2985 2986 /// Removes the element from the collection. 2987 /// \returns whether the element is actually removed, i.e. was in the 2988 /// collection before the operation. 2989 bool erase(PHINode *Ptr) { 2990 auto it = NodeMap.find(Ptr); 2991 if (it != NodeMap.end()) { 2992 NodeMap.erase(Ptr); 2993 SkipRemovedElements(FirstValidElement); 2994 return true; 2995 } 2996 return false; 2997 } 2998 2999 /// Removes all elements and clears the collection. 3000 void clear() { 3001 NodeMap.clear(); 3002 NodeList.clear(); 3003 FirstValidElement = 0; 3004 } 3005 3006 /// \returns an iterator that will iterate the elements in the order of 3007 /// insertion. 3008 iterator begin() { 3009 if (FirstValidElement == 0) 3010 SkipRemovedElements(FirstValidElement); 3011 return PhiNodeSetIterator(this, FirstValidElement); 3012 } 3013 3014 /// \returns an iterator that points to the end of the collection. 3015 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3016 3017 /// Returns the number of elements in the collection. 3018 size_t size() const { 3019 return NodeMap.size(); 3020 } 3021 3022 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3023 size_t count(PHINode *Ptr) const { 3024 return NodeMap.count(Ptr); 3025 } 3026 3027 private: 3028 /// Updates the CurrentIndex so that it will point to a valid element. 3029 /// 3030 /// If the element of NodeList at CurrentIndex is valid, it does not 3031 /// change it. If there are no more valid elements, it updates CurrentIndex 3032 /// to point to the end of the NodeList. 3033 void SkipRemovedElements(size_t &CurrentIndex) { 3034 while (CurrentIndex < NodeList.size()) { 3035 auto it = NodeMap.find(NodeList[CurrentIndex]); 3036 // If the element has been deleted and added again later, NodeMap will 3037 // point to a different index, so CurrentIndex will still be invalid. 3038 if (it != NodeMap.end() && it->second == CurrentIndex) 3039 break; 3040 ++CurrentIndex; 3041 } 3042 } 3043 }; 3044 3045 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3046 : Set(Set), CurrentIndex(Start) {} 3047 3048 PHINode * PhiNodeSetIterator::operator*() const { 3049 assert(CurrentIndex < Set->NodeList.size() && 3050 "PhiNodeSet access out of range"); 3051 return Set->NodeList[CurrentIndex]; 3052 } 3053 3054 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3055 assert(CurrentIndex < Set->NodeList.size() && 3056 "PhiNodeSet access out of range"); 3057 ++CurrentIndex; 3058 Set->SkipRemovedElements(CurrentIndex); 3059 return *this; 3060 } 3061 3062 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3063 return CurrentIndex == RHS.CurrentIndex; 3064 } 3065 3066 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3067 return !((*this) == RHS); 3068 } 3069 3070 /// Keep track of simplification of Phi nodes. 3071 /// Accept the set of all phi nodes and erase phi node from this set 3072 /// if it is simplified. 3073 class SimplificationTracker { 3074 DenseMap<Value *, Value *> Storage; 3075 const SimplifyQuery &SQ; 3076 // Tracks newly created Phi nodes. The elements are iterated by insertion 3077 // order. 3078 PhiNodeSet AllPhiNodes; 3079 // Tracks newly created Select nodes. 3080 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3081 3082 public: 3083 SimplificationTracker(const SimplifyQuery &sq) 3084 : SQ(sq) {} 3085 3086 Value *Get(Value *V) { 3087 do { 3088 auto SV = Storage.find(V); 3089 if (SV == Storage.end()) 3090 return V; 3091 V = SV->second; 3092 } while (true); 3093 } 3094 3095 Value *Simplify(Value *Val) { 3096 SmallVector<Value *, 32> WorkList; 3097 SmallPtrSet<Value *, 32> Visited; 3098 WorkList.push_back(Val); 3099 while (!WorkList.empty()) { 3100 auto P = WorkList.pop_back_val(); 3101 if (!Visited.insert(P).second) 3102 continue; 3103 if (auto *PI = dyn_cast<Instruction>(P)) 3104 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3105 for (auto *U : PI->users()) 3106 WorkList.push_back(cast<Value>(U)); 3107 Put(PI, V); 3108 PI->replaceAllUsesWith(V); 3109 if (auto *PHI = dyn_cast<PHINode>(PI)) 3110 AllPhiNodes.erase(PHI); 3111 if (auto *Select = dyn_cast<SelectInst>(PI)) 3112 AllSelectNodes.erase(Select); 3113 PI->eraseFromParent(); 3114 } 3115 } 3116 return Get(Val); 3117 } 3118 3119 void Put(Value *From, Value *To) { 3120 Storage.insert({ From, To }); 3121 } 3122 3123 void ReplacePhi(PHINode *From, PHINode *To) { 3124 Value* OldReplacement = Get(From); 3125 while (OldReplacement != From) { 3126 From = To; 3127 To = dyn_cast<PHINode>(OldReplacement); 3128 OldReplacement = Get(From); 3129 } 3130 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3131 Put(From, To); 3132 From->replaceAllUsesWith(To); 3133 AllPhiNodes.erase(From); 3134 From->eraseFromParent(); 3135 } 3136 3137 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3138 3139 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3140 3141 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3142 3143 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3144 3145 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3146 3147 void destroyNewNodes(Type *CommonType) { 3148 // For safe erasing, replace the uses with dummy value first. 3149 auto Dummy = UndefValue::get(CommonType); 3150 for (auto I : AllPhiNodes) { 3151 I->replaceAllUsesWith(Dummy); 3152 I->eraseFromParent(); 3153 } 3154 AllPhiNodes.clear(); 3155 for (auto I : AllSelectNodes) { 3156 I->replaceAllUsesWith(Dummy); 3157 I->eraseFromParent(); 3158 } 3159 AllSelectNodes.clear(); 3160 } 3161 }; 3162 3163 /// A helper class for combining addressing modes. 3164 class AddressingModeCombiner { 3165 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3166 typedef std::pair<PHINode *, PHINode *> PHIPair; 3167 3168 private: 3169 /// The addressing modes we've collected. 3170 SmallVector<ExtAddrMode, 16> AddrModes; 3171 3172 /// The field in which the AddrModes differ, when we have more than one. 3173 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3174 3175 /// Are the AddrModes that we have all just equal to their original values? 3176 bool AllAddrModesTrivial = true; 3177 3178 /// Common Type for all different fields in addressing modes. 3179 Type *CommonType; 3180 3181 /// SimplifyQuery for simplifyInstruction utility. 3182 const SimplifyQuery &SQ; 3183 3184 /// Original Address. 3185 Value *Original; 3186 3187 public: 3188 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3189 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3190 3191 /// Get the combined AddrMode 3192 const ExtAddrMode &getAddrMode() const { 3193 return AddrModes[0]; 3194 } 3195 3196 /// Add a new AddrMode if it's compatible with the AddrModes we already 3197 /// have. 3198 /// \return True iff we succeeded in doing so. 3199 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3200 // Take note of if we have any non-trivial AddrModes, as we need to detect 3201 // when all AddrModes are trivial as then we would introduce a phi or select 3202 // which just duplicates what's already there. 3203 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3204 3205 // If this is the first addrmode then everything is fine. 3206 if (AddrModes.empty()) { 3207 AddrModes.emplace_back(NewAddrMode); 3208 return true; 3209 } 3210 3211 // Figure out how different this is from the other address modes, which we 3212 // can do just by comparing against the first one given that we only care 3213 // about the cumulative difference. 3214 ExtAddrMode::FieldName ThisDifferentField = 3215 AddrModes[0].compare(NewAddrMode); 3216 if (DifferentField == ExtAddrMode::NoField) 3217 DifferentField = ThisDifferentField; 3218 else if (DifferentField != ThisDifferentField) 3219 DifferentField = ExtAddrMode::MultipleFields; 3220 3221 // If NewAddrMode differs in more than one dimension we cannot handle it. 3222 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3223 3224 // If Scale Field is different then we reject. 3225 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3226 3227 // We also must reject the case when base offset is different and 3228 // scale reg is not null, we cannot handle this case due to merge of 3229 // different offsets will be used as ScaleReg. 3230 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3231 !NewAddrMode.ScaledReg); 3232 3233 // We also must reject the case when GV is different and BaseReg installed 3234 // due to we want to use base reg as a merge of GV values. 3235 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3236 !NewAddrMode.HasBaseReg); 3237 3238 // Even if NewAddMode is the same we still need to collect it due to 3239 // original value is different. And later we will need all original values 3240 // as anchors during finding the common Phi node. 3241 if (CanHandle) 3242 AddrModes.emplace_back(NewAddrMode); 3243 else 3244 AddrModes.clear(); 3245 3246 return CanHandle; 3247 } 3248 3249 /// Combine the addressing modes we've collected into a single 3250 /// addressing mode. 3251 /// \return True iff we successfully combined them or we only had one so 3252 /// didn't need to combine them anyway. 3253 bool combineAddrModes() { 3254 // If we have no AddrModes then they can't be combined. 3255 if (AddrModes.size() == 0) 3256 return false; 3257 3258 // A single AddrMode can trivially be combined. 3259 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3260 return true; 3261 3262 // If the AddrModes we collected are all just equal to the value they are 3263 // derived from then combining them wouldn't do anything useful. 3264 if (AllAddrModesTrivial) 3265 return false; 3266 3267 if (!addrModeCombiningAllowed()) 3268 return false; 3269 3270 // Build a map between <original value, basic block where we saw it> to 3271 // value of base register. 3272 // Bail out if there is no common type. 3273 FoldAddrToValueMapping Map; 3274 if (!initializeMap(Map)) 3275 return false; 3276 3277 Value *CommonValue = findCommon(Map); 3278 if (CommonValue) 3279 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3280 return CommonValue != nullptr; 3281 } 3282 3283 private: 3284 /// Initialize Map with anchor values. For address seen 3285 /// we set the value of different field saw in this address. 3286 /// At the same time we find a common type for different field we will 3287 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3288 /// Return false if there is no common type found. 3289 bool initializeMap(FoldAddrToValueMapping &Map) { 3290 // Keep track of keys where the value is null. We will need to replace it 3291 // with constant null when we know the common type. 3292 SmallVector<Value *, 2> NullValue; 3293 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3294 for (auto &AM : AddrModes) { 3295 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3296 if (DV) { 3297 auto *Type = DV->getType(); 3298 if (CommonType && CommonType != Type) 3299 return false; 3300 CommonType = Type; 3301 Map[AM.OriginalValue] = DV; 3302 } else { 3303 NullValue.push_back(AM.OriginalValue); 3304 } 3305 } 3306 assert(CommonType && "At least one non-null value must be!"); 3307 for (auto *V : NullValue) 3308 Map[V] = Constant::getNullValue(CommonType); 3309 return true; 3310 } 3311 3312 /// We have mapping between value A and other value B where B was a field in 3313 /// addressing mode represented by A. Also we have an original value C 3314 /// representing an address we start with. Traversing from C through phi and 3315 /// selects we ended up with A's in a map. This utility function tries to find 3316 /// a value V which is a field in addressing mode C and traversing through phi 3317 /// nodes and selects we will end up in corresponded values B in a map. 3318 /// The utility will create a new Phi/Selects if needed. 3319 // The simple example looks as follows: 3320 // BB1: 3321 // p1 = b1 + 40 3322 // br cond BB2, BB3 3323 // BB2: 3324 // p2 = b2 + 40 3325 // br BB3 3326 // BB3: 3327 // p = phi [p1, BB1], [p2, BB2] 3328 // v = load p 3329 // Map is 3330 // p1 -> b1 3331 // p2 -> b2 3332 // Request is 3333 // p -> ? 3334 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3335 Value *findCommon(FoldAddrToValueMapping &Map) { 3336 // Tracks the simplification of newly created phi nodes. The reason we use 3337 // this mapping is because we will add new created Phi nodes in AddrToBase. 3338 // Simplification of Phi nodes is recursive, so some Phi node may 3339 // be simplified after we added it to AddrToBase. In reality this 3340 // simplification is possible only if original phi/selects were not 3341 // simplified yet. 3342 // Using this mapping we can find the current value in AddrToBase. 3343 SimplificationTracker ST(SQ); 3344 3345 // First step, DFS to create PHI nodes for all intermediate blocks. 3346 // Also fill traverse order for the second step. 3347 SmallVector<Value *, 32> TraverseOrder; 3348 InsertPlaceholders(Map, TraverseOrder, ST); 3349 3350 // Second Step, fill new nodes by merged values and simplify if possible. 3351 FillPlaceholders(Map, TraverseOrder, ST); 3352 3353 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3354 ST.destroyNewNodes(CommonType); 3355 return nullptr; 3356 } 3357 3358 // Now we'd like to match New Phi nodes to existed ones. 3359 unsigned PhiNotMatchedCount = 0; 3360 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3361 ST.destroyNewNodes(CommonType); 3362 return nullptr; 3363 } 3364 3365 auto *Result = ST.Get(Map.find(Original)->second); 3366 if (Result) { 3367 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3368 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3369 } 3370 return Result; 3371 } 3372 3373 /// Try to match PHI node to Candidate. 3374 /// Matcher tracks the matched Phi nodes. 3375 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3376 SmallSetVector<PHIPair, 8> &Matcher, 3377 PhiNodeSet &PhiNodesToMatch) { 3378 SmallVector<PHIPair, 8> WorkList; 3379 Matcher.insert({ PHI, Candidate }); 3380 SmallSet<PHINode *, 8> MatchedPHIs; 3381 MatchedPHIs.insert(PHI); 3382 WorkList.push_back({ PHI, Candidate }); 3383 SmallSet<PHIPair, 8> Visited; 3384 while (!WorkList.empty()) { 3385 auto Item = WorkList.pop_back_val(); 3386 if (!Visited.insert(Item).second) 3387 continue; 3388 // We iterate over all incoming values to Phi to compare them. 3389 // If values are different and both of them Phi and the first one is a 3390 // Phi we added (subject to match) and both of them is in the same basic 3391 // block then we can match our pair if values match. So we state that 3392 // these values match and add it to work list to verify that. 3393 for (auto B : Item.first->blocks()) { 3394 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3395 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3396 if (FirstValue == SecondValue) 3397 continue; 3398 3399 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3400 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3401 3402 // One of them is not Phi or 3403 // The first one is not Phi node from the set we'd like to match or 3404 // Phi nodes from different basic blocks then 3405 // we will not be able to match. 3406 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3407 FirstPhi->getParent() != SecondPhi->getParent()) 3408 return false; 3409 3410 // If we already matched them then continue. 3411 if (Matcher.count({ FirstPhi, SecondPhi })) 3412 continue; 3413 // So the values are different and does not match. So we need them to 3414 // match. (But we register no more than one match per PHI node, so that 3415 // we won't later try to replace them twice.) 3416 if (MatchedPHIs.insert(FirstPhi).second) 3417 Matcher.insert({ FirstPhi, SecondPhi }); 3418 // But me must check it. 3419 WorkList.push_back({ FirstPhi, SecondPhi }); 3420 } 3421 } 3422 return true; 3423 } 3424 3425 /// For the given set of PHI nodes (in the SimplificationTracker) try 3426 /// to find their equivalents. 3427 /// Returns false if this matching fails and creation of new Phi is disabled. 3428 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3429 unsigned &PhiNotMatchedCount) { 3430 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3431 // order, so the replacements (ReplacePhi) are also done in a deterministic 3432 // order. 3433 SmallSetVector<PHIPair, 8> Matched; 3434 SmallPtrSet<PHINode *, 8> WillNotMatch; 3435 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3436 while (PhiNodesToMatch.size()) { 3437 PHINode *PHI = *PhiNodesToMatch.begin(); 3438 3439 // Add us, if no Phi nodes in the basic block we do not match. 3440 WillNotMatch.clear(); 3441 WillNotMatch.insert(PHI); 3442 3443 // Traverse all Phis until we found equivalent or fail to do that. 3444 bool IsMatched = false; 3445 for (auto &P : PHI->getParent()->phis()) { 3446 if (&P == PHI) 3447 continue; 3448 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3449 break; 3450 // If it does not match, collect all Phi nodes from matcher. 3451 // if we end up with no match, them all these Phi nodes will not match 3452 // later. 3453 for (auto M : Matched) 3454 WillNotMatch.insert(M.first); 3455 Matched.clear(); 3456 } 3457 if (IsMatched) { 3458 // Replace all matched values and erase them. 3459 for (auto MV : Matched) 3460 ST.ReplacePhi(MV.first, MV.second); 3461 Matched.clear(); 3462 continue; 3463 } 3464 // If we are not allowed to create new nodes then bail out. 3465 if (!AllowNewPhiNodes) 3466 return false; 3467 // Just remove all seen values in matcher. They will not match anything. 3468 PhiNotMatchedCount += WillNotMatch.size(); 3469 for (auto *P : WillNotMatch) 3470 PhiNodesToMatch.erase(P); 3471 } 3472 return true; 3473 } 3474 /// Fill the placeholders with values from predecessors and simplify them. 3475 void FillPlaceholders(FoldAddrToValueMapping &Map, 3476 SmallVectorImpl<Value *> &TraverseOrder, 3477 SimplificationTracker &ST) { 3478 while (!TraverseOrder.empty()) { 3479 Value *Current = TraverseOrder.pop_back_val(); 3480 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3481 Value *V = Map[Current]; 3482 3483 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3484 // CurrentValue also must be Select. 3485 auto *CurrentSelect = cast<SelectInst>(Current); 3486 auto *TrueValue = CurrentSelect->getTrueValue(); 3487 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3488 Select->setTrueValue(ST.Get(Map[TrueValue])); 3489 auto *FalseValue = CurrentSelect->getFalseValue(); 3490 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3491 Select->setFalseValue(ST.Get(Map[FalseValue])); 3492 } else { 3493 // Must be a Phi node then. 3494 auto *PHI = cast<PHINode>(V); 3495 // Fill the Phi node with values from predecessors. 3496 for (auto B : predecessors(PHI->getParent())) { 3497 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3498 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3499 PHI->addIncoming(ST.Get(Map[PV]), B); 3500 } 3501 } 3502 Map[Current] = ST.Simplify(V); 3503 } 3504 } 3505 3506 /// Starting from original value recursively iterates over def-use chain up to 3507 /// known ending values represented in a map. For each traversed phi/select 3508 /// inserts a placeholder Phi or Select. 3509 /// Reports all new created Phi/Select nodes by adding them to set. 3510 /// Also reports and order in what values have been traversed. 3511 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3512 SmallVectorImpl<Value *> &TraverseOrder, 3513 SimplificationTracker &ST) { 3514 SmallVector<Value *, 32> Worklist; 3515 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3516 "Address must be a Phi or Select node"); 3517 auto *Dummy = UndefValue::get(CommonType); 3518 Worklist.push_back(Original); 3519 while (!Worklist.empty()) { 3520 Value *Current = Worklist.pop_back_val(); 3521 // if it is already visited or it is an ending value then skip it. 3522 if (Map.find(Current) != Map.end()) 3523 continue; 3524 TraverseOrder.push_back(Current); 3525 3526 // CurrentValue must be a Phi node or select. All others must be covered 3527 // by anchors. 3528 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3529 // Is it OK to get metadata from OrigSelect?! 3530 // Create a Select placeholder with dummy value. 3531 SelectInst *Select = SelectInst::Create( 3532 CurrentSelect->getCondition(), Dummy, Dummy, 3533 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3534 Map[Current] = Select; 3535 ST.insertNewSelect(Select); 3536 // We are interested in True and False values. 3537 Worklist.push_back(CurrentSelect->getTrueValue()); 3538 Worklist.push_back(CurrentSelect->getFalseValue()); 3539 } else { 3540 // It must be a Phi node then. 3541 PHINode *CurrentPhi = cast<PHINode>(Current); 3542 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3543 PHINode *PHI = 3544 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3545 Map[Current] = PHI; 3546 ST.insertNewPhi(PHI); 3547 for (Value *P : CurrentPhi->incoming_values()) 3548 Worklist.push_back(P); 3549 } 3550 } 3551 } 3552 3553 bool addrModeCombiningAllowed() { 3554 if (DisableComplexAddrModes) 3555 return false; 3556 switch (DifferentField) { 3557 default: 3558 return false; 3559 case ExtAddrMode::BaseRegField: 3560 return AddrSinkCombineBaseReg; 3561 case ExtAddrMode::BaseGVField: 3562 return AddrSinkCombineBaseGV; 3563 case ExtAddrMode::BaseOffsField: 3564 return AddrSinkCombineBaseOffs; 3565 case ExtAddrMode::ScaledRegField: 3566 return AddrSinkCombineScaledReg; 3567 } 3568 } 3569 }; 3570 } // end anonymous namespace 3571 3572 /// Try adding ScaleReg*Scale to the current addressing mode. 3573 /// Return true and update AddrMode if this addr mode is legal for the target, 3574 /// false if not. 3575 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3576 unsigned Depth) { 3577 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3578 // mode. Just process that directly. 3579 if (Scale == 1) 3580 return matchAddr(ScaleReg, Depth); 3581 3582 // If the scale is 0, it takes nothing to add this. 3583 if (Scale == 0) 3584 return true; 3585 3586 // If we already have a scale of this value, we can add to it, otherwise, we 3587 // need an available scale field. 3588 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3589 return false; 3590 3591 ExtAddrMode TestAddrMode = AddrMode; 3592 3593 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3594 // [A+B + A*7] -> [B+A*8]. 3595 TestAddrMode.Scale += Scale; 3596 TestAddrMode.ScaledReg = ScaleReg; 3597 3598 // If the new address isn't legal, bail out. 3599 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3600 return false; 3601 3602 // It was legal, so commit it. 3603 AddrMode = TestAddrMode; 3604 3605 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3606 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3607 // X*Scale + C*Scale to addr mode. 3608 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3609 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3610 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3611 TestAddrMode.InBounds = false; 3612 TestAddrMode.ScaledReg = AddLHS; 3613 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3614 3615 // If this addressing mode is legal, commit it and remember that we folded 3616 // this instruction. 3617 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3618 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3619 AddrMode = TestAddrMode; 3620 return true; 3621 } 3622 } 3623 3624 // Otherwise, not (x+c)*scale, just return what we have. 3625 return true; 3626 } 3627 3628 /// This is a little filter, which returns true if an addressing computation 3629 /// involving I might be folded into a load/store accessing it. 3630 /// This doesn't need to be perfect, but needs to accept at least 3631 /// the set of instructions that MatchOperationAddr can. 3632 static bool MightBeFoldableInst(Instruction *I) { 3633 switch (I->getOpcode()) { 3634 case Instruction::BitCast: 3635 case Instruction::AddrSpaceCast: 3636 // Don't touch identity bitcasts. 3637 if (I->getType() == I->getOperand(0)->getType()) 3638 return false; 3639 return I->getType()->isIntOrPtrTy(); 3640 case Instruction::PtrToInt: 3641 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3642 return true; 3643 case Instruction::IntToPtr: 3644 // We know the input is intptr_t, so this is foldable. 3645 return true; 3646 case Instruction::Add: 3647 return true; 3648 case Instruction::Mul: 3649 case Instruction::Shl: 3650 // Can only handle X*C and X << C. 3651 return isa<ConstantInt>(I->getOperand(1)); 3652 case Instruction::GetElementPtr: 3653 return true; 3654 default: 3655 return false; 3656 } 3657 } 3658 3659 /// Check whether or not \p Val is a legal instruction for \p TLI. 3660 /// \note \p Val is assumed to be the product of some type promotion. 3661 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3662 /// to be legal, as the non-promoted value would have had the same state. 3663 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3664 const DataLayout &DL, Value *Val) { 3665 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3666 if (!PromotedInst) 3667 return false; 3668 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3669 // If the ISDOpcode is undefined, it was undefined before the promotion. 3670 if (!ISDOpcode) 3671 return true; 3672 // Otherwise, check if the promoted instruction is legal or not. 3673 return TLI.isOperationLegalOrCustom( 3674 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3675 } 3676 3677 namespace { 3678 3679 /// Hepler class to perform type promotion. 3680 class TypePromotionHelper { 3681 /// Utility function to add a promoted instruction \p ExtOpnd to 3682 /// \p PromotedInsts and record the type of extension we have seen. 3683 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3684 Instruction *ExtOpnd, 3685 bool IsSExt) { 3686 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3687 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3688 if (It != PromotedInsts.end()) { 3689 // If the new extension is same as original, the information in 3690 // PromotedInsts[ExtOpnd] is still correct. 3691 if (It->second.getInt() == ExtTy) 3692 return; 3693 3694 // Now the new extension is different from old extension, we make 3695 // the type information invalid by setting extension type to 3696 // BothExtension. 3697 ExtTy = BothExtension; 3698 } 3699 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3700 } 3701 3702 /// Utility function to query the original type of instruction \p Opnd 3703 /// with a matched extension type. If the extension doesn't match, we 3704 /// cannot use the information we had on the original type. 3705 /// BothExtension doesn't match any extension type. 3706 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3707 Instruction *Opnd, 3708 bool IsSExt) { 3709 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3710 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3711 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3712 return It->second.getPointer(); 3713 return nullptr; 3714 } 3715 3716 /// Utility function to check whether or not a sign or zero extension 3717 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3718 /// either using the operands of \p Inst or promoting \p Inst. 3719 /// The type of the extension is defined by \p IsSExt. 3720 /// In other words, check if: 3721 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3722 /// #1 Promotion applies: 3723 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3724 /// #2 Operand reuses: 3725 /// ext opnd1 to ConsideredExtType. 3726 /// \p PromotedInsts maps the instructions to their type before promotion. 3727 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3728 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3729 3730 /// Utility function to determine if \p OpIdx should be promoted when 3731 /// promoting \p Inst. 3732 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3733 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3734 } 3735 3736 /// Utility function to promote the operand of \p Ext when this 3737 /// operand is a promotable trunc or sext or zext. 3738 /// \p PromotedInsts maps the instructions to their type before promotion. 3739 /// \p CreatedInstsCost[out] contains the cost of all instructions 3740 /// created to promote the operand of Ext. 3741 /// Newly added extensions are inserted in \p Exts. 3742 /// Newly added truncates are inserted in \p Truncs. 3743 /// Should never be called directly. 3744 /// \return The promoted value which is used instead of Ext. 3745 static Value *promoteOperandForTruncAndAnyExt( 3746 Instruction *Ext, TypePromotionTransaction &TPT, 3747 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3748 SmallVectorImpl<Instruction *> *Exts, 3749 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3750 3751 /// Utility function to promote the operand of \p Ext when this 3752 /// operand is promotable and is not a supported trunc or sext. 3753 /// \p PromotedInsts maps the instructions to their type before promotion. 3754 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3755 /// created to promote the operand of Ext. 3756 /// Newly added extensions are inserted in \p Exts. 3757 /// Newly added truncates are inserted in \p Truncs. 3758 /// Should never be called directly. 3759 /// \return The promoted value which is used instead of Ext. 3760 static Value *promoteOperandForOther(Instruction *Ext, 3761 TypePromotionTransaction &TPT, 3762 InstrToOrigTy &PromotedInsts, 3763 unsigned &CreatedInstsCost, 3764 SmallVectorImpl<Instruction *> *Exts, 3765 SmallVectorImpl<Instruction *> *Truncs, 3766 const TargetLowering &TLI, bool IsSExt); 3767 3768 /// \see promoteOperandForOther. 3769 static Value *signExtendOperandForOther( 3770 Instruction *Ext, TypePromotionTransaction &TPT, 3771 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3772 SmallVectorImpl<Instruction *> *Exts, 3773 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3774 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3775 Exts, Truncs, TLI, true); 3776 } 3777 3778 /// \see promoteOperandForOther. 3779 static Value *zeroExtendOperandForOther( 3780 Instruction *Ext, TypePromotionTransaction &TPT, 3781 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3782 SmallVectorImpl<Instruction *> *Exts, 3783 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3784 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3785 Exts, Truncs, TLI, false); 3786 } 3787 3788 public: 3789 /// Type for the utility function that promotes the operand of Ext. 3790 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3791 InstrToOrigTy &PromotedInsts, 3792 unsigned &CreatedInstsCost, 3793 SmallVectorImpl<Instruction *> *Exts, 3794 SmallVectorImpl<Instruction *> *Truncs, 3795 const TargetLowering &TLI); 3796 3797 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3798 /// action to promote the operand of \p Ext instead of using Ext. 3799 /// \return NULL if no promotable action is possible with the current 3800 /// sign extension. 3801 /// \p InsertedInsts keeps track of all the instructions inserted by the 3802 /// other CodeGenPrepare optimizations. This information is important 3803 /// because we do not want to promote these instructions as CodeGenPrepare 3804 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3805 /// \p PromotedInsts maps the instructions to their type before promotion. 3806 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3807 const TargetLowering &TLI, 3808 const InstrToOrigTy &PromotedInsts); 3809 }; 3810 3811 } // end anonymous namespace 3812 3813 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3814 Type *ConsideredExtType, 3815 const InstrToOrigTy &PromotedInsts, 3816 bool IsSExt) { 3817 // The promotion helper does not know how to deal with vector types yet. 3818 // To be able to fix that, we would need to fix the places where we 3819 // statically extend, e.g., constants and such. 3820 if (Inst->getType()->isVectorTy()) 3821 return false; 3822 3823 // We can always get through zext. 3824 if (isa<ZExtInst>(Inst)) 3825 return true; 3826 3827 // sext(sext) is ok too. 3828 if (IsSExt && isa<SExtInst>(Inst)) 3829 return true; 3830 3831 // We can get through binary operator, if it is legal. In other words, the 3832 // binary operator must have a nuw or nsw flag. 3833 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3834 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3835 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3836 (IsSExt && BinOp->hasNoSignedWrap()))) 3837 return true; 3838 3839 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3840 if ((Inst->getOpcode() == Instruction::And || 3841 Inst->getOpcode() == Instruction::Or)) 3842 return true; 3843 3844 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3845 if (Inst->getOpcode() == Instruction::Xor) { 3846 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3847 // Make sure it is not a NOT. 3848 if (Cst && !Cst->getValue().isAllOnesValue()) 3849 return true; 3850 } 3851 3852 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3853 // It may change a poisoned value into a regular value, like 3854 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3855 // poisoned value regular value 3856 // It should be OK since undef covers valid value. 3857 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3858 return true; 3859 3860 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3861 // It may change a poisoned value into a regular value, like 3862 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3863 // poisoned value regular value 3864 // It should be OK since undef covers valid value. 3865 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3866 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3867 if (ExtInst->hasOneUse()) { 3868 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3869 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3870 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3871 if (Cst && 3872 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3873 return true; 3874 } 3875 } 3876 } 3877 3878 // Check if we can do the following simplification. 3879 // ext(trunc(opnd)) --> ext(opnd) 3880 if (!isa<TruncInst>(Inst)) 3881 return false; 3882 3883 Value *OpndVal = Inst->getOperand(0); 3884 // Check if we can use this operand in the extension. 3885 // If the type is larger than the result type of the extension, we cannot. 3886 if (!OpndVal->getType()->isIntegerTy() || 3887 OpndVal->getType()->getIntegerBitWidth() > 3888 ConsideredExtType->getIntegerBitWidth()) 3889 return false; 3890 3891 // If the operand of the truncate is not an instruction, we will not have 3892 // any information on the dropped bits. 3893 // (Actually we could for constant but it is not worth the extra logic). 3894 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3895 if (!Opnd) 3896 return false; 3897 3898 // Check if the source of the type is narrow enough. 3899 // I.e., check that trunc just drops extended bits of the same kind of 3900 // the extension. 3901 // #1 get the type of the operand and check the kind of the extended bits. 3902 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3903 if (OpndType) 3904 ; 3905 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3906 OpndType = Opnd->getOperand(0)->getType(); 3907 else 3908 return false; 3909 3910 // #2 check that the truncate just drops extended bits. 3911 return Inst->getType()->getIntegerBitWidth() >= 3912 OpndType->getIntegerBitWidth(); 3913 } 3914 3915 TypePromotionHelper::Action TypePromotionHelper::getAction( 3916 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3917 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3918 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3919 "Unexpected instruction type"); 3920 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3921 Type *ExtTy = Ext->getType(); 3922 bool IsSExt = isa<SExtInst>(Ext); 3923 // If the operand of the extension is not an instruction, we cannot 3924 // get through. 3925 // If it, check we can get through. 3926 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3927 return nullptr; 3928 3929 // Do not promote if the operand has been added by codegenprepare. 3930 // Otherwise, it means we are undoing an optimization that is likely to be 3931 // redone, thus causing potential infinite loop. 3932 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3933 return nullptr; 3934 3935 // SExt or Trunc instructions. 3936 // Return the related handler. 3937 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3938 isa<ZExtInst>(ExtOpnd)) 3939 return promoteOperandForTruncAndAnyExt; 3940 3941 // Regular instruction. 3942 // Abort early if we will have to insert non-free instructions. 3943 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3944 return nullptr; 3945 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3946 } 3947 3948 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3949 Instruction *SExt, TypePromotionTransaction &TPT, 3950 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3951 SmallVectorImpl<Instruction *> *Exts, 3952 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3953 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3954 // get through it and this method should not be called. 3955 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3956 Value *ExtVal = SExt; 3957 bool HasMergedNonFreeExt = false; 3958 if (isa<ZExtInst>(SExtOpnd)) { 3959 // Replace s|zext(zext(opnd)) 3960 // => zext(opnd). 3961 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3962 Value *ZExt = 3963 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3964 TPT.replaceAllUsesWith(SExt, ZExt); 3965 TPT.eraseInstruction(SExt); 3966 ExtVal = ZExt; 3967 } else { 3968 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3969 // => z|sext(opnd). 3970 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3971 } 3972 CreatedInstsCost = 0; 3973 3974 // Remove dead code. 3975 if (SExtOpnd->use_empty()) 3976 TPT.eraseInstruction(SExtOpnd); 3977 3978 // Check if the extension is still needed. 3979 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3980 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3981 if (ExtInst) { 3982 if (Exts) 3983 Exts->push_back(ExtInst); 3984 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3985 } 3986 return ExtVal; 3987 } 3988 3989 // At this point we have: ext ty opnd to ty. 3990 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3991 Value *NextVal = ExtInst->getOperand(0); 3992 TPT.eraseInstruction(ExtInst, NextVal); 3993 return NextVal; 3994 } 3995 3996 Value *TypePromotionHelper::promoteOperandForOther( 3997 Instruction *Ext, TypePromotionTransaction &TPT, 3998 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3999 SmallVectorImpl<Instruction *> *Exts, 4000 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4001 bool IsSExt) { 4002 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4003 // get through it and this method should not be called. 4004 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4005 CreatedInstsCost = 0; 4006 if (!ExtOpnd->hasOneUse()) { 4007 // ExtOpnd will be promoted. 4008 // All its uses, but Ext, will need to use a truncated value of the 4009 // promoted version. 4010 // Create the truncate now. 4011 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4012 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4013 // Insert it just after the definition. 4014 ITrunc->moveAfter(ExtOpnd); 4015 if (Truncs) 4016 Truncs->push_back(ITrunc); 4017 } 4018 4019 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4020 // Restore the operand of Ext (which has been replaced by the previous call 4021 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4022 TPT.setOperand(Ext, 0, ExtOpnd); 4023 } 4024 4025 // Get through the Instruction: 4026 // 1. Update its type. 4027 // 2. Replace the uses of Ext by Inst. 4028 // 3. Extend each operand that needs to be extended. 4029 4030 // Remember the original type of the instruction before promotion. 4031 // This is useful to know that the high bits are sign extended bits. 4032 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4033 // Step #1. 4034 TPT.mutateType(ExtOpnd, Ext->getType()); 4035 // Step #2. 4036 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4037 // Step #3. 4038 Instruction *ExtForOpnd = Ext; 4039 4040 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4041 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4042 ++OpIdx) { 4043 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4044 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4045 !shouldExtOperand(ExtOpnd, OpIdx)) { 4046 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4047 continue; 4048 } 4049 // Check if we can statically extend the operand. 4050 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4051 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4052 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4053 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4054 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4055 : Cst->getValue().zext(BitWidth); 4056 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4057 continue; 4058 } 4059 // UndefValue are typed, so we have to statically sign extend them. 4060 if (isa<UndefValue>(Opnd)) { 4061 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4062 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4063 continue; 4064 } 4065 4066 // Otherwise we have to explicitly sign extend the operand. 4067 // Check if Ext was reused to extend an operand. 4068 if (!ExtForOpnd) { 4069 // If yes, create a new one. 4070 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4071 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4072 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4073 if (!isa<Instruction>(ValForExtOpnd)) { 4074 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4075 continue; 4076 } 4077 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4078 } 4079 if (Exts) 4080 Exts->push_back(ExtForOpnd); 4081 TPT.setOperand(ExtForOpnd, 0, Opnd); 4082 4083 // Move the sign extension before the insertion point. 4084 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4085 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4086 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4087 // If more sext are required, new instructions will have to be created. 4088 ExtForOpnd = nullptr; 4089 } 4090 if (ExtForOpnd == Ext) { 4091 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4092 TPT.eraseInstruction(Ext); 4093 } 4094 return ExtOpnd; 4095 } 4096 4097 /// Check whether or not promoting an instruction to a wider type is profitable. 4098 /// \p NewCost gives the cost of extension instructions created by the 4099 /// promotion. 4100 /// \p OldCost gives the cost of extension instructions before the promotion 4101 /// plus the number of instructions that have been 4102 /// matched in the addressing mode the promotion. 4103 /// \p PromotedOperand is the value that has been promoted. 4104 /// \return True if the promotion is profitable, false otherwise. 4105 bool AddressingModeMatcher::isPromotionProfitable( 4106 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4107 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4108 << '\n'); 4109 // The cost of the new extensions is greater than the cost of the 4110 // old extension plus what we folded. 4111 // This is not profitable. 4112 if (NewCost > OldCost) 4113 return false; 4114 if (NewCost < OldCost) 4115 return true; 4116 // The promotion is neutral but it may help folding the sign extension in 4117 // loads for instance. 4118 // Check that we did not create an illegal instruction. 4119 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4120 } 4121 4122 /// Given an instruction or constant expr, see if we can fold the operation 4123 /// into the addressing mode. If so, update the addressing mode and return 4124 /// true, otherwise return false without modifying AddrMode. 4125 /// If \p MovedAway is not NULL, it contains the information of whether or 4126 /// not AddrInst has to be folded into the addressing mode on success. 4127 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4128 /// because it has been moved away. 4129 /// Thus AddrInst must not be added in the matched instructions. 4130 /// This state can happen when AddrInst is a sext, since it may be moved away. 4131 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4132 /// not be referenced anymore. 4133 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4134 unsigned Depth, 4135 bool *MovedAway) { 4136 // Avoid exponential behavior on extremely deep expression trees. 4137 if (Depth >= 5) return false; 4138 4139 // By default, all matched instructions stay in place. 4140 if (MovedAway) 4141 *MovedAway = false; 4142 4143 switch (Opcode) { 4144 case Instruction::PtrToInt: 4145 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4146 return matchAddr(AddrInst->getOperand(0), Depth); 4147 case Instruction::IntToPtr: { 4148 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4149 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4150 // This inttoptr is a no-op if the integer type is pointer sized. 4151 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4152 return matchAddr(AddrInst->getOperand(0), Depth); 4153 return false; 4154 } 4155 case Instruction::BitCast: 4156 // BitCast is always a noop, and we can handle it as long as it is 4157 // int->int or pointer->pointer (we don't want int<->fp or something). 4158 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4159 // Don't touch identity bitcasts. These were probably put here by LSR, 4160 // and we don't want to mess around with them. Assume it knows what it 4161 // is doing. 4162 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4163 return matchAddr(AddrInst->getOperand(0), Depth); 4164 return false; 4165 case Instruction::AddrSpaceCast: { 4166 unsigned SrcAS 4167 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4168 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4169 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4170 return matchAddr(AddrInst->getOperand(0), Depth); 4171 return false; 4172 } 4173 case Instruction::Add: { 4174 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4175 ExtAddrMode BackupAddrMode = AddrMode; 4176 unsigned OldSize = AddrModeInsts.size(); 4177 // Start a transaction at this point. 4178 // The LHS may match but not the RHS. 4179 // Therefore, we need a higher level restoration point to undo partially 4180 // matched operation. 4181 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4182 TPT.getRestorationPoint(); 4183 4184 AddrMode.InBounds = false; 4185 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4186 matchAddr(AddrInst->getOperand(0), Depth+1)) 4187 return true; 4188 4189 // Restore the old addr mode info. 4190 AddrMode = BackupAddrMode; 4191 AddrModeInsts.resize(OldSize); 4192 TPT.rollback(LastKnownGood); 4193 4194 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4195 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4196 matchAddr(AddrInst->getOperand(1), Depth+1)) 4197 return true; 4198 4199 // Otherwise we definitely can't merge the ADD in. 4200 AddrMode = BackupAddrMode; 4201 AddrModeInsts.resize(OldSize); 4202 TPT.rollback(LastKnownGood); 4203 break; 4204 } 4205 //case Instruction::Or: 4206 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4207 //break; 4208 case Instruction::Mul: 4209 case Instruction::Shl: { 4210 // Can only handle X*C and X << C. 4211 AddrMode.InBounds = false; 4212 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4213 if (!RHS || RHS->getBitWidth() > 64) 4214 return false; 4215 int64_t Scale = RHS->getSExtValue(); 4216 if (Opcode == Instruction::Shl) 4217 Scale = 1LL << Scale; 4218 4219 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4220 } 4221 case Instruction::GetElementPtr: { 4222 // Scan the GEP. We check it if it contains constant offsets and at most 4223 // one variable offset. 4224 int VariableOperand = -1; 4225 unsigned VariableScale = 0; 4226 4227 int64_t ConstantOffset = 0; 4228 gep_type_iterator GTI = gep_type_begin(AddrInst); 4229 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4230 if (StructType *STy = GTI.getStructTypeOrNull()) { 4231 const StructLayout *SL = DL.getStructLayout(STy); 4232 unsigned Idx = 4233 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4234 ConstantOffset += SL->getElementOffset(Idx); 4235 } else { 4236 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4237 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4238 const APInt &CVal = CI->getValue(); 4239 if (CVal.getMinSignedBits() <= 64) { 4240 ConstantOffset += CVal.getSExtValue() * TypeSize; 4241 continue; 4242 } 4243 } 4244 if (TypeSize) { // Scales of zero don't do anything. 4245 // We only allow one variable index at the moment. 4246 if (VariableOperand != -1) 4247 return false; 4248 4249 // Remember the variable index. 4250 VariableOperand = i; 4251 VariableScale = TypeSize; 4252 } 4253 } 4254 } 4255 4256 // A common case is for the GEP to only do a constant offset. In this case, 4257 // just add it to the disp field and check validity. 4258 if (VariableOperand == -1) { 4259 AddrMode.BaseOffs += ConstantOffset; 4260 if (ConstantOffset == 0 || 4261 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4262 // Check to see if we can fold the base pointer in too. 4263 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4264 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4265 AddrMode.InBounds = false; 4266 return true; 4267 } 4268 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4269 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4270 ConstantOffset > 0) { 4271 // Record GEPs with non-zero offsets as candidates for splitting in the 4272 // event that the offset cannot fit into the r+i addressing mode. 4273 // Simple and common case that only one GEP is used in calculating the 4274 // address for the memory access. 4275 Value *Base = AddrInst->getOperand(0); 4276 auto *BaseI = dyn_cast<Instruction>(Base); 4277 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4278 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4279 (BaseI && !isa<CastInst>(BaseI) && 4280 !isa<GetElementPtrInst>(BaseI))) { 4281 // Make sure the parent block allows inserting non-PHI instructions 4282 // before the terminator. 4283 BasicBlock *Parent = 4284 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4285 if (!Parent->getTerminator()->isEHPad()) 4286 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4287 } 4288 } 4289 AddrMode.BaseOffs -= ConstantOffset; 4290 return false; 4291 } 4292 4293 // Save the valid addressing mode in case we can't match. 4294 ExtAddrMode BackupAddrMode = AddrMode; 4295 unsigned OldSize = AddrModeInsts.size(); 4296 4297 // See if the scale and offset amount is valid for this target. 4298 AddrMode.BaseOffs += ConstantOffset; 4299 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4300 AddrMode.InBounds = false; 4301 4302 // Match the base operand of the GEP. 4303 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4304 // If it couldn't be matched, just stuff the value in a register. 4305 if (AddrMode.HasBaseReg) { 4306 AddrMode = BackupAddrMode; 4307 AddrModeInsts.resize(OldSize); 4308 return false; 4309 } 4310 AddrMode.HasBaseReg = true; 4311 AddrMode.BaseReg = AddrInst->getOperand(0); 4312 } 4313 4314 // Match the remaining variable portion of the GEP. 4315 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4316 Depth)) { 4317 // If it couldn't be matched, try stuffing the base into a register 4318 // instead of matching it, and retrying the match of the scale. 4319 AddrMode = BackupAddrMode; 4320 AddrModeInsts.resize(OldSize); 4321 if (AddrMode.HasBaseReg) 4322 return false; 4323 AddrMode.HasBaseReg = true; 4324 AddrMode.BaseReg = AddrInst->getOperand(0); 4325 AddrMode.BaseOffs += ConstantOffset; 4326 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4327 VariableScale, Depth)) { 4328 // If even that didn't work, bail. 4329 AddrMode = BackupAddrMode; 4330 AddrModeInsts.resize(OldSize); 4331 return false; 4332 } 4333 } 4334 4335 return true; 4336 } 4337 case Instruction::SExt: 4338 case Instruction::ZExt: { 4339 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4340 if (!Ext) 4341 return false; 4342 4343 // Try to move this ext out of the way of the addressing mode. 4344 // Ask for a method for doing so. 4345 TypePromotionHelper::Action TPH = 4346 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4347 if (!TPH) 4348 return false; 4349 4350 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4351 TPT.getRestorationPoint(); 4352 unsigned CreatedInstsCost = 0; 4353 unsigned ExtCost = !TLI.isExtFree(Ext); 4354 Value *PromotedOperand = 4355 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4356 // SExt has been moved away. 4357 // Thus either it will be rematched later in the recursive calls or it is 4358 // gone. Anyway, we must not fold it into the addressing mode at this point. 4359 // E.g., 4360 // op = add opnd, 1 4361 // idx = ext op 4362 // addr = gep base, idx 4363 // is now: 4364 // promotedOpnd = ext opnd <- no match here 4365 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4366 // addr = gep base, op <- match 4367 if (MovedAway) 4368 *MovedAway = true; 4369 4370 assert(PromotedOperand && 4371 "TypePromotionHelper should have filtered out those cases"); 4372 4373 ExtAddrMode BackupAddrMode = AddrMode; 4374 unsigned OldSize = AddrModeInsts.size(); 4375 4376 if (!matchAddr(PromotedOperand, Depth) || 4377 // The total of the new cost is equal to the cost of the created 4378 // instructions. 4379 // The total of the old cost is equal to the cost of the extension plus 4380 // what we have saved in the addressing mode. 4381 !isPromotionProfitable(CreatedInstsCost, 4382 ExtCost + (AddrModeInsts.size() - OldSize), 4383 PromotedOperand)) { 4384 AddrMode = BackupAddrMode; 4385 AddrModeInsts.resize(OldSize); 4386 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4387 TPT.rollback(LastKnownGood); 4388 return false; 4389 } 4390 return true; 4391 } 4392 } 4393 return false; 4394 } 4395 4396 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4397 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4398 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4399 /// for the target. 4400 /// 4401 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4402 // Start a transaction at this point that we will rollback if the matching 4403 // fails. 4404 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4405 TPT.getRestorationPoint(); 4406 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4407 // Fold in immediates if legal for the target. 4408 AddrMode.BaseOffs += CI->getSExtValue(); 4409 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4410 return true; 4411 AddrMode.BaseOffs -= CI->getSExtValue(); 4412 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4413 // If this is a global variable, try to fold it into the addressing mode. 4414 if (!AddrMode.BaseGV) { 4415 AddrMode.BaseGV = GV; 4416 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4417 return true; 4418 AddrMode.BaseGV = nullptr; 4419 } 4420 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4421 ExtAddrMode BackupAddrMode = AddrMode; 4422 unsigned OldSize = AddrModeInsts.size(); 4423 4424 // Check to see if it is possible to fold this operation. 4425 bool MovedAway = false; 4426 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4427 // This instruction may have been moved away. If so, there is nothing 4428 // to check here. 4429 if (MovedAway) 4430 return true; 4431 // Okay, it's possible to fold this. Check to see if it is actually 4432 // *profitable* to do so. We use a simple cost model to avoid increasing 4433 // register pressure too much. 4434 if (I->hasOneUse() || 4435 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4436 AddrModeInsts.push_back(I); 4437 return true; 4438 } 4439 4440 // It isn't profitable to do this, roll back. 4441 //cerr << "NOT FOLDING: " << *I; 4442 AddrMode = BackupAddrMode; 4443 AddrModeInsts.resize(OldSize); 4444 TPT.rollback(LastKnownGood); 4445 } 4446 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4447 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4448 return true; 4449 TPT.rollback(LastKnownGood); 4450 } else if (isa<ConstantPointerNull>(Addr)) { 4451 // Null pointer gets folded without affecting the addressing mode. 4452 return true; 4453 } 4454 4455 // Worse case, the target should support [reg] addressing modes. :) 4456 if (!AddrMode.HasBaseReg) { 4457 AddrMode.HasBaseReg = true; 4458 AddrMode.BaseReg = Addr; 4459 // Still check for legality in case the target supports [imm] but not [i+r]. 4460 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4461 return true; 4462 AddrMode.HasBaseReg = false; 4463 AddrMode.BaseReg = nullptr; 4464 } 4465 4466 // If the base register is already taken, see if we can do [r+r]. 4467 if (AddrMode.Scale == 0) { 4468 AddrMode.Scale = 1; 4469 AddrMode.ScaledReg = Addr; 4470 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4471 return true; 4472 AddrMode.Scale = 0; 4473 AddrMode.ScaledReg = nullptr; 4474 } 4475 // Couldn't match. 4476 TPT.rollback(LastKnownGood); 4477 return false; 4478 } 4479 4480 /// Check to see if all uses of OpVal by the specified inline asm call are due 4481 /// to memory operands. If so, return true, otherwise return false. 4482 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4483 const TargetLowering &TLI, 4484 const TargetRegisterInfo &TRI) { 4485 const Function *F = CI->getFunction(); 4486 TargetLowering::AsmOperandInfoVector TargetConstraints = 4487 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4488 ImmutableCallSite(CI)); 4489 4490 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4491 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4492 4493 // Compute the constraint code and ConstraintType to use. 4494 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4495 4496 // If this asm operand is our Value*, and if it isn't an indirect memory 4497 // operand, we can't fold it! 4498 if (OpInfo.CallOperandVal == OpVal && 4499 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4500 !OpInfo.isIndirect)) 4501 return false; 4502 } 4503 4504 return true; 4505 } 4506 4507 // Max number of memory uses to look at before aborting the search to conserve 4508 // compile time. 4509 static constexpr int MaxMemoryUsesToScan = 20; 4510 4511 /// Recursively walk all the uses of I until we find a memory use. 4512 /// If we find an obviously non-foldable instruction, return true. 4513 /// Add the ultimately found memory instructions to MemoryUses. 4514 static bool FindAllMemoryUses( 4515 Instruction *I, 4516 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4517 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4518 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4519 // If we already considered this instruction, we're done. 4520 if (!ConsideredInsts.insert(I).second) 4521 return false; 4522 4523 // If this is an obviously unfoldable instruction, bail out. 4524 if (!MightBeFoldableInst(I)) 4525 return true; 4526 4527 const bool OptSize = I->getFunction()->hasOptSize(); 4528 4529 // Loop over all the uses, recursively processing them. 4530 for (Use &U : I->uses()) { 4531 // Conservatively return true if we're seeing a large number or a deep chain 4532 // of users. This avoids excessive compilation times in pathological cases. 4533 if (SeenInsts++ >= MaxMemoryUsesToScan) 4534 return true; 4535 4536 Instruction *UserI = cast<Instruction>(U.getUser()); 4537 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4538 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4539 continue; 4540 } 4541 4542 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4543 unsigned opNo = U.getOperandNo(); 4544 if (opNo != StoreInst::getPointerOperandIndex()) 4545 return true; // Storing addr, not into addr. 4546 MemoryUses.push_back(std::make_pair(SI, opNo)); 4547 continue; 4548 } 4549 4550 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4551 unsigned opNo = U.getOperandNo(); 4552 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4553 return true; // Storing addr, not into addr. 4554 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4555 continue; 4556 } 4557 4558 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4559 unsigned opNo = U.getOperandNo(); 4560 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4561 return true; // Storing addr, not into addr. 4562 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4563 continue; 4564 } 4565 4566 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4567 // If this is a cold call, we can sink the addressing calculation into 4568 // the cold path. See optimizeCallInst 4569 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4570 continue; 4571 4572 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4573 if (!IA) return true; 4574 4575 // If this is a memory operand, we're cool, otherwise bail out. 4576 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4577 return true; 4578 continue; 4579 } 4580 4581 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4582 SeenInsts)) 4583 return true; 4584 } 4585 4586 return false; 4587 } 4588 4589 /// Return true if Val is already known to be live at the use site that we're 4590 /// folding it into. If so, there is no cost to include it in the addressing 4591 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4592 /// instruction already. 4593 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4594 Value *KnownLive2) { 4595 // If Val is either of the known-live values, we know it is live! 4596 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4597 return true; 4598 4599 // All values other than instructions and arguments (e.g. constants) are live. 4600 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4601 4602 // If Val is a constant sized alloca in the entry block, it is live, this is 4603 // true because it is just a reference to the stack/frame pointer, which is 4604 // live for the whole function. 4605 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4606 if (AI->isStaticAlloca()) 4607 return true; 4608 4609 // Check to see if this value is already used in the memory instruction's 4610 // block. If so, it's already live into the block at the very least, so we 4611 // can reasonably fold it. 4612 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4613 } 4614 4615 /// It is possible for the addressing mode of the machine to fold the specified 4616 /// instruction into a load or store that ultimately uses it. 4617 /// However, the specified instruction has multiple uses. 4618 /// Given this, it may actually increase register pressure to fold it 4619 /// into the load. For example, consider this code: 4620 /// 4621 /// X = ... 4622 /// Y = X+1 4623 /// use(Y) -> nonload/store 4624 /// Z = Y+1 4625 /// load Z 4626 /// 4627 /// In this case, Y has multiple uses, and can be folded into the load of Z 4628 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4629 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4630 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4631 /// number of computations either. 4632 /// 4633 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4634 /// X was live across 'load Z' for other reasons, we actually *would* want to 4635 /// fold the addressing mode in the Z case. This would make Y die earlier. 4636 bool AddressingModeMatcher:: 4637 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4638 ExtAddrMode &AMAfter) { 4639 if (IgnoreProfitability) return true; 4640 4641 // AMBefore is the addressing mode before this instruction was folded into it, 4642 // and AMAfter is the addressing mode after the instruction was folded. Get 4643 // the set of registers referenced by AMAfter and subtract out those 4644 // referenced by AMBefore: this is the set of values which folding in this 4645 // address extends the lifetime of. 4646 // 4647 // Note that there are only two potential values being referenced here, 4648 // BaseReg and ScaleReg (global addresses are always available, as are any 4649 // folded immediates). 4650 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4651 4652 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4653 // lifetime wasn't extended by adding this instruction. 4654 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4655 BaseReg = nullptr; 4656 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4657 ScaledReg = nullptr; 4658 4659 // If folding this instruction (and it's subexprs) didn't extend any live 4660 // ranges, we're ok with it. 4661 if (!BaseReg && !ScaledReg) 4662 return true; 4663 4664 // If all uses of this instruction can have the address mode sunk into them, 4665 // we can remove the addressing mode and effectively trade one live register 4666 // for another (at worst.) In this context, folding an addressing mode into 4667 // the use is just a particularly nice way of sinking it. 4668 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4669 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4670 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4671 return false; // Has a non-memory, non-foldable use! 4672 4673 // Now that we know that all uses of this instruction are part of a chain of 4674 // computation involving only operations that could theoretically be folded 4675 // into a memory use, loop over each of these memory operation uses and see 4676 // if they could *actually* fold the instruction. The assumption is that 4677 // addressing modes are cheap and that duplicating the computation involved 4678 // many times is worthwhile, even on a fastpath. For sinking candidates 4679 // (i.e. cold call sites), this serves as a way to prevent excessive code 4680 // growth since most architectures have some reasonable small and fast way to 4681 // compute an effective address. (i.e LEA on x86) 4682 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4683 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4684 Instruction *User = MemoryUses[i].first; 4685 unsigned OpNo = MemoryUses[i].second; 4686 4687 // Get the access type of this use. If the use isn't a pointer, we don't 4688 // know what it accesses. 4689 Value *Address = User->getOperand(OpNo); 4690 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4691 if (!AddrTy) 4692 return false; 4693 Type *AddressAccessTy = AddrTy->getElementType(); 4694 unsigned AS = AddrTy->getAddressSpace(); 4695 4696 // Do a match against the root of this address, ignoring profitability. This 4697 // will tell us if the addressing mode for the memory operation will 4698 // *actually* cover the shared instruction. 4699 ExtAddrMode Result; 4700 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4701 0); 4702 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4703 TPT.getRestorationPoint(); 4704 AddressingModeMatcher Matcher( 4705 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4706 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4707 Matcher.IgnoreProfitability = true; 4708 bool Success = Matcher.matchAddr(Address, 0); 4709 (void)Success; assert(Success && "Couldn't select *anything*?"); 4710 4711 // The match was to check the profitability, the changes made are not 4712 // part of the original matcher. Therefore, they should be dropped 4713 // otherwise the original matcher will not present the right state. 4714 TPT.rollback(LastKnownGood); 4715 4716 // If the match didn't cover I, then it won't be shared by it. 4717 if (!is_contained(MatchedAddrModeInsts, I)) 4718 return false; 4719 4720 MatchedAddrModeInsts.clear(); 4721 } 4722 4723 return true; 4724 } 4725 4726 /// Return true if the specified values are defined in a 4727 /// different basic block than BB. 4728 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4729 if (Instruction *I = dyn_cast<Instruction>(V)) 4730 return I->getParent() != BB; 4731 return false; 4732 } 4733 4734 /// Sink addressing mode computation immediate before MemoryInst if doing so 4735 /// can be done without increasing register pressure. The need for the 4736 /// register pressure constraint means this can end up being an all or nothing 4737 /// decision for all uses of the same addressing computation. 4738 /// 4739 /// Load and Store Instructions often have addressing modes that can do 4740 /// significant amounts of computation. As such, instruction selection will try 4741 /// to get the load or store to do as much computation as possible for the 4742 /// program. The problem is that isel can only see within a single block. As 4743 /// such, we sink as much legal addressing mode work into the block as possible. 4744 /// 4745 /// This method is used to optimize both load/store and inline asms with memory 4746 /// operands. It's also used to sink addressing computations feeding into cold 4747 /// call sites into their (cold) basic block. 4748 /// 4749 /// The motivation for handling sinking into cold blocks is that doing so can 4750 /// both enable other address mode sinking (by satisfying the register pressure 4751 /// constraint above), and reduce register pressure globally (by removing the 4752 /// addressing mode computation from the fast path entirely.). 4753 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4754 Type *AccessTy, unsigned AddrSpace) { 4755 Value *Repl = Addr; 4756 4757 // Try to collapse single-value PHI nodes. This is necessary to undo 4758 // unprofitable PRE transformations. 4759 SmallVector<Value*, 8> worklist; 4760 SmallPtrSet<Value*, 16> Visited; 4761 worklist.push_back(Addr); 4762 4763 // Use a worklist to iteratively look through PHI and select nodes, and 4764 // ensure that the addressing mode obtained from the non-PHI/select roots of 4765 // the graph are compatible. 4766 bool PhiOrSelectSeen = false; 4767 SmallVector<Instruction*, 16> AddrModeInsts; 4768 const SimplifyQuery SQ(*DL, TLInfo); 4769 AddressingModeCombiner AddrModes(SQ, Addr); 4770 TypePromotionTransaction TPT(RemovedInsts); 4771 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4772 TPT.getRestorationPoint(); 4773 while (!worklist.empty()) { 4774 Value *V = worklist.back(); 4775 worklist.pop_back(); 4776 4777 // We allow traversing cyclic Phi nodes. 4778 // In case of success after this loop we ensure that traversing through 4779 // Phi nodes ends up with all cases to compute address of the form 4780 // BaseGV + Base + Scale * Index + Offset 4781 // where Scale and Offset are constans and BaseGV, Base and Index 4782 // are exactly the same Values in all cases. 4783 // It means that BaseGV, Scale and Offset dominate our memory instruction 4784 // and have the same value as they had in address computation represented 4785 // as Phi. So we can safely sink address computation to memory instruction. 4786 if (!Visited.insert(V).second) 4787 continue; 4788 4789 // For a PHI node, push all of its incoming values. 4790 if (PHINode *P = dyn_cast<PHINode>(V)) { 4791 for (Value *IncValue : P->incoming_values()) 4792 worklist.push_back(IncValue); 4793 PhiOrSelectSeen = true; 4794 continue; 4795 } 4796 // Similar for select. 4797 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4798 worklist.push_back(SI->getFalseValue()); 4799 worklist.push_back(SI->getTrueValue()); 4800 PhiOrSelectSeen = true; 4801 continue; 4802 } 4803 4804 // For non-PHIs, determine the addressing mode being computed. Note that 4805 // the result may differ depending on what other uses our candidate 4806 // addressing instructions might have. 4807 AddrModeInsts.clear(); 4808 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4809 0); 4810 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4811 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4812 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4813 4814 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4815 if (GEP && !NewGEPBases.count(GEP)) { 4816 // If splitting the underlying data structure can reduce the offset of a 4817 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4818 // previously split data structures. 4819 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4820 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4821 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4822 } 4823 4824 NewAddrMode.OriginalValue = V; 4825 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4826 break; 4827 } 4828 4829 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4830 // or we have multiple but either couldn't combine them or combining them 4831 // wouldn't do anything useful, bail out now. 4832 if (!AddrModes.combineAddrModes()) { 4833 TPT.rollback(LastKnownGood); 4834 return false; 4835 } 4836 TPT.commit(); 4837 4838 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4839 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4840 4841 // If all the instructions matched are already in this BB, don't do anything. 4842 // If we saw a Phi node then it is not local definitely, and if we saw a select 4843 // then we want to push the address calculation past it even if it's already 4844 // in this BB. 4845 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4846 return IsNonLocalValue(V, MemoryInst->getParent()); 4847 })) { 4848 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4849 << "\n"); 4850 return false; 4851 } 4852 4853 // Insert this computation right after this user. Since our caller is 4854 // scanning from the top of the BB to the bottom, reuse of the expr are 4855 // guaranteed to happen later. 4856 IRBuilder<> Builder(MemoryInst); 4857 4858 // Now that we determined the addressing expression we want to use and know 4859 // that we have to sink it into this block. Check to see if we have already 4860 // done this for some other load/store instr in this block. If so, reuse 4861 // the computation. Before attempting reuse, check if the address is valid 4862 // as it may have been erased. 4863 4864 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4865 4866 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4867 if (SunkAddr) { 4868 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4869 << " for " << *MemoryInst << "\n"); 4870 if (SunkAddr->getType() != Addr->getType()) 4871 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4872 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4873 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4874 // By default, we use the GEP-based method when AA is used later. This 4875 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4876 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4877 << " for " << *MemoryInst << "\n"); 4878 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4879 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4880 4881 // First, find the pointer. 4882 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4883 ResultPtr = AddrMode.BaseReg; 4884 AddrMode.BaseReg = nullptr; 4885 } 4886 4887 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4888 // We can't add more than one pointer together, nor can we scale a 4889 // pointer (both of which seem meaningless). 4890 if (ResultPtr || AddrMode.Scale != 1) 4891 return false; 4892 4893 ResultPtr = AddrMode.ScaledReg; 4894 AddrMode.Scale = 0; 4895 } 4896 4897 // It is only safe to sign extend the BaseReg if we know that the math 4898 // required to create it did not overflow before we extend it. Since 4899 // the original IR value was tossed in favor of a constant back when 4900 // the AddrMode was created we need to bail out gracefully if widths 4901 // do not match instead of extending it. 4902 // 4903 // (See below for code to add the scale.) 4904 if (AddrMode.Scale) { 4905 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4906 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4907 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4908 return false; 4909 } 4910 4911 if (AddrMode.BaseGV) { 4912 if (ResultPtr) 4913 return false; 4914 4915 ResultPtr = AddrMode.BaseGV; 4916 } 4917 4918 // If the real base value actually came from an inttoptr, then the matcher 4919 // will look through it and provide only the integer value. In that case, 4920 // use it here. 4921 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4922 if (!ResultPtr && AddrMode.BaseReg) { 4923 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4924 "sunkaddr"); 4925 AddrMode.BaseReg = nullptr; 4926 } else if (!ResultPtr && AddrMode.Scale == 1) { 4927 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4928 "sunkaddr"); 4929 AddrMode.Scale = 0; 4930 } 4931 } 4932 4933 if (!ResultPtr && 4934 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4935 SunkAddr = Constant::getNullValue(Addr->getType()); 4936 } else if (!ResultPtr) { 4937 return false; 4938 } else { 4939 Type *I8PtrTy = 4940 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4941 Type *I8Ty = Builder.getInt8Ty(); 4942 4943 // Start with the base register. Do this first so that subsequent address 4944 // matching finds it last, which will prevent it from trying to match it 4945 // as the scaled value in case it happens to be a mul. That would be 4946 // problematic if we've sunk a different mul for the scale, because then 4947 // we'd end up sinking both muls. 4948 if (AddrMode.BaseReg) { 4949 Value *V = AddrMode.BaseReg; 4950 if (V->getType() != IntPtrTy) 4951 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4952 4953 ResultIndex = V; 4954 } 4955 4956 // Add the scale value. 4957 if (AddrMode.Scale) { 4958 Value *V = AddrMode.ScaledReg; 4959 if (V->getType() == IntPtrTy) { 4960 // done. 4961 } else { 4962 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4963 cast<IntegerType>(V->getType())->getBitWidth() && 4964 "We can't transform if ScaledReg is too narrow"); 4965 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4966 } 4967 4968 if (AddrMode.Scale != 1) 4969 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4970 "sunkaddr"); 4971 if (ResultIndex) 4972 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4973 else 4974 ResultIndex = V; 4975 } 4976 4977 // Add in the Base Offset if present. 4978 if (AddrMode.BaseOffs) { 4979 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4980 if (ResultIndex) { 4981 // We need to add this separately from the scale above to help with 4982 // SDAG consecutive load/store merging. 4983 if (ResultPtr->getType() != I8PtrTy) 4984 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4985 ResultPtr = 4986 AddrMode.InBounds 4987 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4988 "sunkaddr") 4989 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4990 } 4991 4992 ResultIndex = V; 4993 } 4994 4995 if (!ResultIndex) { 4996 SunkAddr = ResultPtr; 4997 } else { 4998 if (ResultPtr->getType() != I8PtrTy) 4999 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5000 SunkAddr = 5001 AddrMode.InBounds 5002 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5003 "sunkaddr") 5004 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5005 } 5006 5007 if (SunkAddr->getType() != Addr->getType()) 5008 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5009 } 5010 } else { 5011 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5012 // non-integral pointers, so in that case bail out now. 5013 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5014 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5015 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5016 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5017 if (DL->isNonIntegralPointerType(Addr->getType()) || 5018 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5019 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5020 (AddrMode.BaseGV && 5021 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5022 return false; 5023 5024 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5025 << " for " << *MemoryInst << "\n"); 5026 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5027 Value *Result = nullptr; 5028 5029 // Start with the base register. Do this first so that subsequent address 5030 // matching finds it last, which will prevent it from trying to match it 5031 // as the scaled value in case it happens to be a mul. That would be 5032 // problematic if we've sunk a different mul for the scale, because then 5033 // we'd end up sinking both muls. 5034 if (AddrMode.BaseReg) { 5035 Value *V = AddrMode.BaseReg; 5036 if (V->getType()->isPointerTy()) 5037 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5038 if (V->getType() != IntPtrTy) 5039 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5040 Result = V; 5041 } 5042 5043 // Add the scale value. 5044 if (AddrMode.Scale) { 5045 Value *V = AddrMode.ScaledReg; 5046 if (V->getType() == IntPtrTy) { 5047 // done. 5048 } else if (V->getType()->isPointerTy()) { 5049 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5050 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5051 cast<IntegerType>(V->getType())->getBitWidth()) { 5052 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5053 } else { 5054 // It is only safe to sign extend the BaseReg if we know that the math 5055 // required to create it did not overflow before we extend it. Since 5056 // the original IR value was tossed in favor of a constant back when 5057 // the AddrMode was created we need to bail out gracefully if widths 5058 // do not match instead of extending it. 5059 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5060 if (I && (Result != AddrMode.BaseReg)) 5061 I->eraseFromParent(); 5062 return false; 5063 } 5064 if (AddrMode.Scale != 1) 5065 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5066 "sunkaddr"); 5067 if (Result) 5068 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5069 else 5070 Result = V; 5071 } 5072 5073 // Add in the BaseGV if present. 5074 if (AddrMode.BaseGV) { 5075 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5076 if (Result) 5077 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5078 else 5079 Result = V; 5080 } 5081 5082 // Add in the Base Offset if present. 5083 if (AddrMode.BaseOffs) { 5084 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5085 if (Result) 5086 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5087 else 5088 Result = V; 5089 } 5090 5091 if (!Result) 5092 SunkAddr = Constant::getNullValue(Addr->getType()); 5093 else 5094 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5095 } 5096 5097 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5098 // Store the newly computed address into the cache. In the case we reused a 5099 // value, this should be idempotent. 5100 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5101 5102 // If we have no uses, recursively delete the value and all dead instructions 5103 // using it. 5104 if (Repl->use_empty()) { 5105 // This can cause recursive deletion, which can invalidate our iterator. 5106 // Use a WeakTrackingVH to hold onto it in case this happens. 5107 Value *CurValue = &*CurInstIterator; 5108 WeakTrackingVH IterHandle(CurValue); 5109 BasicBlock *BB = CurInstIterator->getParent(); 5110 5111 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5112 5113 if (IterHandle != CurValue) { 5114 // If the iterator instruction was recursively deleted, start over at the 5115 // start of the block. 5116 CurInstIterator = BB->begin(); 5117 SunkAddrs.clear(); 5118 } 5119 } 5120 ++NumMemoryInsts; 5121 return true; 5122 } 5123 5124 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5125 /// address computing into the block when possible / profitable. 5126 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5127 bool MadeChange = false; 5128 5129 const TargetRegisterInfo *TRI = 5130 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5131 TargetLowering::AsmOperandInfoVector TargetConstraints = 5132 TLI->ParseConstraints(*DL, TRI, CS); 5133 unsigned ArgNo = 0; 5134 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5135 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5136 5137 // Compute the constraint code and ConstraintType to use. 5138 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5139 5140 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5141 OpInfo.isIndirect) { 5142 Value *OpVal = CS->getArgOperand(ArgNo++); 5143 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5144 } else if (OpInfo.Type == InlineAsm::isInput) 5145 ArgNo++; 5146 } 5147 5148 return MadeChange; 5149 } 5150 5151 /// Check if all the uses of \p Val are equivalent (or free) zero or 5152 /// sign extensions. 5153 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5154 assert(!Val->use_empty() && "Input must have at least one use"); 5155 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5156 bool IsSExt = isa<SExtInst>(FirstUser); 5157 Type *ExtTy = FirstUser->getType(); 5158 for (const User *U : Val->users()) { 5159 const Instruction *UI = cast<Instruction>(U); 5160 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5161 return false; 5162 Type *CurTy = UI->getType(); 5163 // Same input and output types: Same instruction after CSE. 5164 if (CurTy == ExtTy) 5165 continue; 5166 5167 // If IsSExt is true, we are in this situation: 5168 // a = Val 5169 // b = sext ty1 a to ty2 5170 // c = sext ty1 a to ty3 5171 // Assuming ty2 is shorter than ty3, this could be turned into: 5172 // a = Val 5173 // b = sext ty1 a to ty2 5174 // c = sext ty2 b to ty3 5175 // However, the last sext is not free. 5176 if (IsSExt) 5177 return false; 5178 5179 // This is a ZExt, maybe this is free to extend from one type to another. 5180 // In that case, we would not account for a different use. 5181 Type *NarrowTy; 5182 Type *LargeTy; 5183 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5184 CurTy->getScalarType()->getIntegerBitWidth()) { 5185 NarrowTy = CurTy; 5186 LargeTy = ExtTy; 5187 } else { 5188 NarrowTy = ExtTy; 5189 LargeTy = CurTy; 5190 } 5191 5192 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5193 return false; 5194 } 5195 // All uses are the same or can be derived from one another for free. 5196 return true; 5197 } 5198 5199 /// Try to speculatively promote extensions in \p Exts and continue 5200 /// promoting through newly promoted operands recursively as far as doing so is 5201 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5202 /// When some promotion happened, \p TPT contains the proper state to revert 5203 /// them. 5204 /// 5205 /// \return true if some promotion happened, false otherwise. 5206 bool CodeGenPrepare::tryToPromoteExts( 5207 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5208 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5209 unsigned CreatedInstsCost) { 5210 bool Promoted = false; 5211 5212 // Iterate over all the extensions to try to promote them. 5213 for (auto I : Exts) { 5214 // Early check if we directly have ext(load). 5215 if (isa<LoadInst>(I->getOperand(0))) { 5216 ProfitablyMovedExts.push_back(I); 5217 continue; 5218 } 5219 5220 // Check whether or not we want to do any promotion. The reason we have 5221 // this check inside the for loop is to catch the case where an extension 5222 // is directly fed by a load because in such case the extension can be moved 5223 // up without any promotion on its operands. 5224 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5225 return false; 5226 5227 // Get the action to perform the promotion. 5228 TypePromotionHelper::Action TPH = 5229 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5230 // Check if we can promote. 5231 if (!TPH) { 5232 // Save the current extension as we cannot move up through its operand. 5233 ProfitablyMovedExts.push_back(I); 5234 continue; 5235 } 5236 5237 // Save the current state. 5238 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5239 TPT.getRestorationPoint(); 5240 SmallVector<Instruction *, 4> NewExts; 5241 unsigned NewCreatedInstsCost = 0; 5242 unsigned ExtCost = !TLI->isExtFree(I); 5243 // Promote. 5244 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5245 &NewExts, nullptr, *TLI); 5246 assert(PromotedVal && 5247 "TypePromotionHelper should have filtered out those cases"); 5248 5249 // We would be able to merge only one extension in a load. 5250 // Therefore, if we have more than 1 new extension we heuristically 5251 // cut this search path, because it means we degrade the code quality. 5252 // With exactly 2, the transformation is neutral, because we will merge 5253 // one extension but leave one. However, we optimistically keep going, 5254 // because the new extension may be removed too. 5255 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5256 // FIXME: It would be possible to propagate a negative value instead of 5257 // conservatively ceiling it to 0. 5258 TotalCreatedInstsCost = 5259 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5260 if (!StressExtLdPromotion && 5261 (TotalCreatedInstsCost > 1 || 5262 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5263 // This promotion is not profitable, rollback to the previous state, and 5264 // save the current extension in ProfitablyMovedExts as the latest 5265 // speculative promotion turned out to be unprofitable. 5266 TPT.rollback(LastKnownGood); 5267 ProfitablyMovedExts.push_back(I); 5268 continue; 5269 } 5270 // Continue promoting NewExts as far as doing so is profitable. 5271 SmallVector<Instruction *, 2> NewlyMovedExts; 5272 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5273 bool NewPromoted = false; 5274 for (auto ExtInst : NewlyMovedExts) { 5275 Instruction *MovedExt = cast<Instruction>(ExtInst); 5276 Value *ExtOperand = MovedExt->getOperand(0); 5277 // If we have reached to a load, we need this extra profitability check 5278 // as it could potentially be merged into an ext(load). 5279 if (isa<LoadInst>(ExtOperand) && 5280 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5281 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5282 continue; 5283 5284 ProfitablyMovedExts.push_back(MovedExt); 5285 NewPromoted = true; 5286 } 5287 5288 // If none of speculative promotions for NewExts is profitable, rollback 5289 // and save the current extension (I) as the last profitable extension. 5290 if (!NewPromoted) { 5291 TPT.rollback(LastKnownGood); 5292 ProfitablyMovedExts.push_back(I); 5293 continue; 5294 } 5295 // The promotion is profitable. 5296 Promoted = true; 5297 } 5298 return Promoted; 5299 } 5300 5301 /// Merging redundant sexts when one is dominating the other. 5302 bool CodeGenPrepare::mergeSExts(Function &F) { 5303 bool Changed = false; 5304 for (auto &Entry : ValToSExtendedUses) { 5305 SExts &Insts = Entry.second; 5306 SExts CurPts; 5307 for (Instruction *Inst : Insts) { 5308 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5309 Inst->getOperand(0) != Entry.first) 5310 continue; 5311 bool inserted = false; 5312 for (auto &Pt : CurPts) { 5313 if (getDT(F).dominates(Inst, Pt)) { 5314 Pt->replaceAllUsesWith(Inst); 5315 RemovedInsts.insert(Pt); 5316 Pt->removeFromParent(); 5317 Pt = Inst; 5318 inserted = true; 5319 Changed = true; 5320 break; 5321 } 5322 if (!getDT(F).dominates(Pt, Inst)) 5323 // Give up if we need to merge in a common dominator as the 5324 // experiments show it is not profitable. 5325 continue; 5326 Inst->replaceAllUsesWith(Pt); 5327 RemovedInsts.insert(Inst); 5328 Inst->removeFromParent(); 5329 inserted = true; 5330 Changed = true; 5331 break; 5332 } 5333 if (!inserted) 5334 CurPts.push_back(Inst); 5335 } 5336 } 5337 return Changed; 5338 } 5339 5340 // Spliting large data structures so that the GEPs accessing them can have 5341 // smaller offsets so that they can be sunk to the same blocks as their users. 5342 // For example, a large struct starting from %base is splitted into two parts 5343 // where the second part starts from %new_base. 5344 // 5345 // Before: 5346 // BB0: 5347 // %base = 5348 // 5349 // BB1: 5350 // %gep0 = gep %base, off0 5351 // %gep1 = gep %base, off1 5352 // %gep2 = gep %base, off2 5353 // 5354 // BB2: 5355 // %load1 = load %gep0 5356 // %load2 = load %gep1 5357 // %load3 = load %gep2 5358 // 5359 // After: 5360 // BB0: 5361 // %base = 5362 // %new_base = gep %base, off0 5363 // 5364 // BB1: 5365 // %new_gep0 = %new_base 5366 // %new_gep1 = gep %new_base, off1 - off0 5367 // %new_gep2 = gep %new_base, off2 - off0 5368 // 5369 // BB2: 5370 // %load1 = load i32, i32* %new_gep0 5371 // %load2 = load i32, i32* %new_gep1 5372 // %load3 = load i32, i32* %new_gep2 5373 // 5374 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5375 // their offsets are smaller enough to fit into the addressing mode. 5376 bool CodeGenPrepare::splitLargeGEPOffsets() { 5377 bool Changed = false; 5378 for (auto &Entry : LargeOffsetGEPMap) { 5379 Value *OldBase = Entry.first; 5380 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5381 &LargeOffsetGEPs = Entry.second; 5382 auto compareGEPOffset = 5383 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5384 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5385 if (LHS.first == RHS.first) 5386 return false; 5387 if (LHS.second != RHS.second) 5388 return LHS.second < RHS.second; 5389 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5390 }; 5391 // Sorting all the GEPs of the same data structures based on the offsets. 5392 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5393 LargeOffsetGEPs.erase( 5394 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5395 LargeOffsetGEPs.end()); 5396 // Skip if all the GEPs have the same offsets. 5397 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5398 continue; 5399 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5400 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5401 Value *NewBaseGEP = nullptr; 5402 5403 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5404 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5405 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5406 int64_t Offset = LargeOffsetGEP->second; 5407 if (Offset != BaseOffset) { 5408 TargetLowering::AddrMode AddrMode; 5409 AddrMode.BaseOffs = Offset - BaseOffset; 5410 // The result type of the GEP might not be the type of the memory 5411 // access. 5412 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5413 GEP->getResultElementType(), 5414 GEP->getAddressSpace())) { 5415 // We need to create a new base if the offset to the current base is 5416 // too large to fit into the addressing mode. So, a very large struct 5417 // may be splitted into several parts. 5418 BaseGEP = GEP; 5419 BaseOffset = Offset; 5420 NewBaseGEP = nullptr; 5421 } 5422 } 5423 5424 // Generate a new GEP to replace the current one. 5425 LLVMContext &Ctx = GEP->getContext(); 5426 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5427 Type *I8PtrTy = 5428 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5429 Type *I8Ty = Type::getInt8Ty(Ctx); 5430 5431 if (!NewBaseGEP) { 5432 // Create a new base if we don't have one yet. Find the insertion 5433 // pointer for the new base first. 5434 BasicBlock::iterator NewBaseInsertPt; 5435 BasicBlock *NewBaseInsertBB; 5436 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5437 // If the base of the struct is an instruction, the new base will be 5438 // inserted close to it. 5439 NewBaseInsertBB = BaseI->getParent(); 5440 if (isa<PHINode>(BaseI)) 5441 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5442 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5443 NewBaseInsertBB = 5444 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5445 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5446 } else 5447 NewBaseInsertPt = std::next(BaseI->getIterator()); 5448 } else { 5449 // If the current base is an argument or global value, the new base 5450 // will be inserted to the entry block. 5451 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5452 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5453 } 5454 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5455 // Create a new base. 5456 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5457 NewBaseGEP = OldBase; 5458 if (NewBaseGEP->getType() != I8PtrTy) 5459 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5460 NewBaseGEP = 5461 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5462 NewGEPBases.insert(NewBaseGEP); 5463 } 5464 5465 IRBuilder<> Builder(GEP); 5466 Value *NewGEP = NewBaseGEP; 5467 if (Offset == BaseOffset) { 5468 if (GEP->getType() != I8PtrTy) 5469 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5470 } else { 5471 // Calculate the new offset for the new GEP. 5472 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5473 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5474 5475 if (GEP->getType() != I8PtrTy) 5476 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5477 } 5478 GEP->replaceAllUsesWith(NewGEP); 5479 LargeOffsetGEPID.erase(GEP); 5480 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5481 GEP->eraseFromParent(); 5482 Changed = true; 5483 } 5484 } 5485 return Changed; 5486 } 5487 5488 /// Return true, if an ext(load) can be formed from an extension in 5489 /// \p MovedExts. 5490 bool CodeGenPrepare::canFormExtLd( 5491 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5492 Instruction *&Inst, bool HasPromoted) { 5493 for (auto *MovedExtInst : MovedExts) { 5494 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5495 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5496 Inst = MovedExtInst; 5497 break; 5498 } 5499 } 5500 if (!LI) 5501 return false; 5502 5503 // If they're already in the same block, there's nothing to do. 5504 // Make the cheap checks first if we did not promote. 5505 // If we promoted, we need to check if it is indeed profitable. 5506 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5507 return false; 5508 5509 return TLI->isExtLoad(LI, Inst, *DL); 5510 } 5511 5512 /// Move a zext or sext fed by a load into the same basic block as the load, 5513 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5514 /// extend into the load. 5515 /// 5516 /// E.g., 5517 /// \code 5518 /// %ld = load i32* %addr 5519 /// %add = add nuw i32 %ld, 4 5520 /// %zext = zext i32 %add to i64 5521 // \endcode 5522 /// => 5523 /// \code 5524 /// %ld = load i32* %addr 5525 /// %zext = zext i32 %ld to i64 5526 /// %add = add nuw i64 %zext, 4 5527 /// \encode 5528 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5529 /// allow us to match zext(load i32*) to i64. 5530 /// 5531 /// Also, try to promote the computations used to obtain a sign extended 5532 /// value used into memory accesses. 5533 /// E.g., 5534 /// \code 5535 /// a = add nsw i32 b, 3 5536 /// d = sext i32 a to i64 5537 /// e = getelementptr ..., i64 d 5538 /// \endcode 5539 /// => 5540 /// \code 5541 /// f = sext i32 b to i64 5542 /// a = add nsw i64 f, 3 5543 /// e = getelementptr ..., i64 a 5544 /// \endcode 5545 /// 5546 /// \p Inst[in/out] the extension may be modified during the process if some 5547 /// promotions apply. 5548 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5549 // ExtLoad formation and address type promotion infrastructure requires TLI to 5550 // be effective. 5551 if (!TLI) 5552 return false; 5553 5554 bool AllowPromotionWithoutCommonHeader = false; 5555 /// See if it is an interesting sext operations for the address type 5556 /// promotion before trying to promote it, e.g., the ones with the right 5557 /// type and used in memory accesses. 5558 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5559 *Inst, AllowPromotionWithoutCommonHeader); 5560 TypePromotionTransaction TPT(RemovedInsts); 5561 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5562 TPT.getRestorationPoint(); 5563 SmallVector<Instruction *, 1> Exts; 5564 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5565 Exts.push_back(Inst); 5566 5567 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5568 5569 // Look for a load being extended. 5570 LoadInst *LI = nullptr; 5571 Instruction *ExtFedByLoad; 5572 5573 // Try to promote a chain of computation if it allows to form an extended 5574 // load. 5575 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5576 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5577 TPT.commit(); 5578 // Move the extend into the same block as the load 5579 ExtFedByLoad->moveAfter(LI); 5580 // CGP does not check if the zext would be speculatively executed when moved 5581 // to the same basic block as the load. Preserving its original location 5582 // would pessimize the debugging experience, as well as negatively impact 5583 // the quality of sample pgo. We don't want to use "line 0" as that has a 5584 // size cost in the line-table section and logically the zext can be seen as 5585 // part of the load. Therefore we conservatively reuse the same debug 5586 // location for the load and the zext. 5587 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5588 ++NumExtsMoved; 5589 Inst = ExtFedByLoad; 5590 return true; 5591 } 5592 5593 // Continue promoting SExts if known as considerable depending on targets. 5594 if (ATPConsiderable && 5595 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5596 HasPromoted, TPT, SpeculativelyMovedExts)) 5597 return true; 5598 5599 TPT.rollback(LastKnownGood); 5600 return false; 5601 } 5602 5603 // Perform address type promotion if doing so is profitable. 5604 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5605 // instructions that sign extended the same initial value. However, if 5606 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5607 // extension is just profitable. 5608 bool CodeGenPrepare::performAddressTypePromotion( 5609 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5610 bool HasPromoted, TypePromotionTransaction &TPT, 5611 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5612 bool Promoted = false; 5613 SmallPtrSet<Instruction *, 1> UnhandledExts; 5614 bool AllSeenFirst = true; 5615 for (auto I : SpeculativelyMovedExts) { 5616 Value *HeadOfChain = I->getOperand(0); 5617 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5618 SeenChainsForSExt.find(HeadOfChain); 5619 // If there is an unhandled SExt which has the same header, try to promote 5620 // it as well. 5621 if (AlreadySeen != SeenChainsForSExt.end()) { 5622 if (AlreadySeen->second != nullptr) 5623 UnhandledExts.insert(AlreadySeen->second); 5624 AllSeenFirst = false; 5625 } 5626 } 5627 5628 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5629 SpeculativelyMovedExts.size() == 1)) { 5630 TPT.commit(); 5631 if (HasPromoted) 5632 Promoted = true; 5633 for (auto I : SpeculativelyMovedExts) { 5634 Value *HeadOfChain = I->getOperand(0); 5635 SeenChainsForSExt[HeadOfChain] = nullptr; 5636 ValToSExtendedUses[HeadOfChain].push_back(I); 5637 } 5638 // Update Inst as promotion happen. 5639 Inst = SpeculativelyMovedExts.pop_back_val(); 5640 } else { 5641 // This is the first chain visited from the header, keep the current chain 5642 // as unhandled. Defer to promote this until we encounter another SExt 5643 // chain derived from the same header. 5644 for (auto I : SpeculativelyMovedExts) { 5645 Value *HeadOfChain = I->getOperand(0); 5646 SeenChainsForSExt[HeadOfChain] = Inst; 5647 } 5648 return false; 5649 } 5650 5651 if (!AllSeenFirst && !UnhandledExts.empty()) 5652 for (auto VisitedSExt : UnhandledExts) { 5653 if (RemovedInsts.count(VisitedSExt)) 5654 continue; 5655 TypePromotionTransaction TPT(RemovedInsts); 5656 SmallVector<Instruction *, 1> Exts; 5657 SmallVector<Instruction *, 2> Chains; 5658 Exts.push_back(VisitedSExt); 5659 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5660 TPT.commit(); 5661 if (HasPromoted) 5662 Promoted = true; 5663 for (auto I : Chains) { 5664 Value *HeadOfChain = I->getOperand(0); 5665 // Mark this as handled. 5666 SeenChainsForSExt[HeadOfChain] = nullptr; 5667 ValToSExtendedUses[HeadOfChain].push_back(I); 5668 } 5669 } 5670 return Promoted; 5671 } 5672 5673 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5674 BasicBlock *DefBB = I->getParent(); 5675 5676 // If the result of a {s|z}ext and its source are both live out, rewrite all 5677 // other uses of the source with result of extension. 5678 Value *Src = I->getOperand(0); 5679 if (Src->hasOneUse()) 5680 return false; 5681 5682 // Only do this xform if truncating is free. 5683 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5684 return false; 5685 5686 // Only safe to perform the optimization if the source is also defined in 5687 // this block. 5688 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5689 return false; 5690 5691 bool DefIsLiveOut = false; 5692 for (User *U : I->users()) { 5693 Instruction *UI = cast<Instruction>(U); 5694 5695 // Figure out which BB this ext is used in. 5696 BasicBlock *UserBB = UI->getParent(); 5697 if (UserBB == DefBB) continue; 5698 DefIsLiveOut = true; 5699 break; 5700 } 5701 if (!DefIsLiveOut) 5702 return false; 5703 5704 // Make sure none of the uses are PHI nodes. 5705 for (User *U : Src->users()) { 5706 Instruction *UI = cast<Instruction>(U); 5707 BasicBlock *UserBB = UI->getParent(); 5708 if (UserBB == DefBB) continue; 5709 // Be conservative. We don't want this xform to end up introducing 5710 // reloads just before load / store instructions. 5711 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5712 return false; 5713 } 5714 5715 // InsertedTruncs - Only insert one trunc in each block once. 5716 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5717 5718 bool MadeChange = false; 5719 for (Use &U : Src->uses()) { 5720 Instruction *User = cast<Instruction>(U.getUser()); 5721 5722 // Figure out which BB this ext is used in. 5723 BasicBlock *UserBB = User->getParent(); 5724 if (UserBB == DefBB) continue; 5725 5726 // Both src and def are live in this block. Rewrite the use. 5727 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5728 5729 if (!InsertedTrunc) { 5730 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5731 assert(InsertPt != UserBB->end()); 5732 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5733 InsertedInsts.insert(InsertedTrunc); 5734 } 5735 5736 // Replace a use of the {s|z}ext source with a use of the result. 5737 U = InsertedTrunc; 5738 ++NumExtUses; 5739 MadeChange = true; 5740 } 5741 5742 return MadeChange; 5743 } 5744 5745 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5746 // just after the load if the target can fold this into one extload instruction, 5747 // with the hope of eliminating some of the other later "and" instructions using 5748 // the loaded value. "and"s that are made trivially redundant by the insertion 5749 // of the new "and" are removed by this function, while others (e.g. those whose 5750 // path from the load goes through a phi) are left for isel to potentially 5751 // remove. 5752 // 5753 // For example: 5754 // 5755 // b0: 5756 // x = load i32 5757 // ... 5758 // b1: 5759 // y = and x, 0xff 5760 // z = use y 5761 // 5762 // becomes: 5763 // 5764 // b0: 5765 // x = load i32 5766 // x' = and x, 0xff 5767 // ... 5768 // b1: 5769 // z = use x' 5770 // 5771 // whereas: 5772 // 5773 // b0: 5774 // x1 = load i32 5775 // ... 5776 // b1: 5777 // x2 = load i32 5778 // ... 5779 // b2: 5780 // x = phi x1, x2 5781 // y = and x, 0xff 5782 // 5783 // becomes (after a call to optimizeLoadExt for each load): 5784 // 5785 // b0: 5786 // x1 = load i32 5787 // x1' = and x1, 0xff 5788 // ... 5789 // b1: 5790 // x2 = load i32 5791 // x2' = and x2, 0xff 5792 // ... 5793 // b2: 5794 // x = phi x1', x2' 5795 // y = and x, 0xff 5796 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5797 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5798 return false; 5799 5800 // Skip loads we've already transformed. 5801 if (Load->hasOneUse() && 5802 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5803 return false; 5804 5805 // Look at all uses of Load, looking through phis, to determine how many bits 5806 // of the loaded value are needed. 5807 SmallVector<Instruction *, 8> WorkList; 5808 SmallPtrSet<Instruction *, 16> Visited; 5809 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5810 for (auto *U : Load->users()) 5811 WorkList.push_back(cast<Instruction>(U)); 5812 5813 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5814 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5815 APInt DemandBits(BitWidth, 0); 5816 APInt WidestAndBits(BitWidth, 0); 5817 5818 while (!WorkList.empty()) { 5819 Instruction *I = WorkList.back(); 5820 WorkList.pop_back(); 5821 5822 // Break use-def graph loops. 5823 if (!Visited.insert(I).second) 5824 continue; 5825 5826 // For a PHI node, push all of its users. 5827 if (auto *Phi = dyn_cast<PHINode>(I)) { 5828 for (auto *U : Phi->users()) 5829 WorkList.push_back(cast<Instruction>(U)); 5830 continue; 5831 } 5832 5833 switch (I->getOpcode()) { 5834 case Instruction::And: { 5835 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5836 if (!AndC) 5837 return false; 5838 APInt AndBits = AndC->getValue(); 5839 DemandBits |= AndBits; 5840 // Keep track of the widest and mask we see. 5841 if (AndBits.ugt(WidestAndBits)) 5842 WidestAndBits = AndBits; 5843 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5844 AndsToMaybeRemove.push_back(I); 5845 break; 5846 } 5847 5848 case Instruction::Shl: { 5849 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5850 if (!ShlC) 5851 return false; 5852 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5853 DemandBits.setLowBits(BitWidth - ShiftAmt); 5854 break; 5855 } 5856 5857 case Instruction::Trunc: { 5858 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5859 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5860 DemandBits.setLowBits(TruncBitWidth); 5861 break; 5862 } 5863 5864 default: 5865 return false; 5866 } 5867 } 5868 5869 uint32_t ActiveBits = DemandBits.getActiveBits(); 5870 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5871 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5872 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5873 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5874 // followed by an AND. 5875 // TODO: Look into removing this restriction by fixing backends to either 5876 // return false for isLoadExtLegal for i1 or have them select this pattern to 5877 // a single instruction. 5878 // 5879 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5880 // mask, since these are the only ands that will be removed by isel. 5881 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5882 WidestAndBits != DemandBits) 5883 return false; 5884 5885 LLVMContext &Ctx = Load->getType()->getContext(); 5886 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5887 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5888 5889 // Reject cases that won't be matched as extloads. 5890 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5891 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5892 return false; 5893 5894 IRBuilder<> Builder(Load->getNextNode()); 5895 auto *NewAnd = cast<Instruction>( 5896 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5897 // Mark this instruction as "inserted by CGP", so that other 5898 // optimizations don't touch it. 5899 InsertedInsts.insert(NewAnd); 5900 5901 // Replace all uses of load with new and (except for the use of load in the 5902 // new and itself). 5903 Load->replaceAllUsesWith(NewAnd); 5904 NewAnd->setOperand(0, Load); 5905 5906 // Remove any and instructions that are now redundant. 5907 for (auto *And : AndsToMaybeRemove) 5908 // Check that the and mask is the same as the one we decided to put on the 5909 // new and. 5910 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5911 And->replaceAllUsesWith(NewAnd); 5912 if (&*CurInstIterator == And) 5913 CurInstIterator = std::next(And->getIterator()); 5914 And->eraseFromParent(); 5915 ++NumAndUses; 5916 } 5917 5918 ++NumAndsAdded; 5919 return true; 5920 } 5921 5922 /// Check if V (an operand of a select instruction) is an expensive instruction 5923 /// that is only used once. 5924 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5925 auto *I = dyn_cast<Instruction>(V); 5926 // If it's safe to speculatively execute, then it should not have side 5927 // effects; therefore, it's safe to sink and possibly *not* execute. 5928 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5929 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5930 } 5931 5932 /// Returns true if a SelectInst should be turned into an explicit branch. 5933 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5934 const TargetLowering *TLI, 5935 SelectInst *SI) { 5936 // If even a predictable select is cheap, then a branch can't be cheaper. 5937 if (!TLI->isPredictableSelectExpensive()) 5938 return false; 5939 5940 // FIXME: This should use the same heuristics as IfConversion to determine 5941 // whether a select is better represented as a branch. 5942 5943 // If metadata tells us that the select condition is obviously predictable, 5944 // then we want to replace the select with a branch. 5945 uint64_t TrueWeight, FalseWeight; 5946 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5947 uint64_t Max = std::max(TrueWeight, FalseWeight); 5948 uint64_t Sum = TrueWeight + FalseWeight; 5949 if (Sum != 0) { 5950 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5951 if (Probability > TLI->getPredictableBranchThreshold()) 5952 return true; 5953 } 5954 } 5955 5956 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5957 5958 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5959 // comparison condition. If the compare has more than one use, there's 5960 // probably another cmov or setcc around, so it's not worth emitting a branch. 5961 if (!Cmp || !Cmp->hasOneUse()) 5962 return false; 5963 5964 // If either operand of the select is expensive and only needed on one side 5965 // of the select, we should form a branch. 5966 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5967 sinkSelectOperand(TTI, SI->getFalseValue())) 5968 return true; 5969 5970 return false; 5971 } 5972 5973 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5974 /// false value of \p SI. If the true/false value of \p SI is defined by any 5975 /// select instructions in \p Selects, look through the defining select 5976 /// instruction until the true/false value is not defined in \p Selects. 5977 static Value *getTrueOrFalseValue( 5978 SelectInst *SI, bool isTrue, 5979 const SmallPtrSet<const Instruction *, 2> &Selects) { 5980 Value *V = nullptr; 5981 5982 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5983 DefSI = dyn_cast<SelectInst>(V)) { 5984 assert(DefSI->getCondition() == SI->getCondition() && 5985 "The condition of DefSI does not match with SI"); 5986 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5987 } 5988 5989 assert(V && "Failed to get select true/false value"); 5990 return V; 5991 } 5992 5993 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 5994 assert(Shift->isShift() && "Expected a shift"); 5995 5996 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 5997 // general vector shifts, and (3) the shift amount is a select-of-splatted 5998 // values, hoist the shifts before the select: 5999 // shift Op0, (select Cond, TVal, FVal) --> 6000 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6001 // 6002 // This is inverting a generic IR transform when we know that the cost of a 6003 // general vector shift is more than the cost of 2 shift-by-scalars. 6004 // We can't do this effectively in SDAG because we may not be able to 6005 // determine if the select operands are splats from within a basic block. 6006 Type *Ty = Shift->getType(); 6007 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6008 return false; 6009 Value *Cond, *TVal, *FVal; 6010 if (!match(Shift->getOperand(1), 6011 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6012 return false; 6013 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6014 return false; 6015 6016 IRBuilder<> Builder(Shift); 6017 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6018 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6019 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6020 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6021 Shift->replaceAllUsesWith(NewSel); 6022 Shift->eraseFromParent(); 6023 return true; 6024 } 6025 6026 /// If we have a SelectInst that will likely profit from branch prediction, 6027 /// turn it into a branch. 6028 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6029 // If branch conversion isn't desirable, exit early. 6030 if (DisableSelectToBranch || OptSize || !TLI) 6031 return false; 6032 6033 // Find all consecutive select instructions that share the same condition. 6034 SmallVector<SelectInst *, 2> ASI; 6035 ASI.push_back(SI); 6036 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6037 It != SI->getParent()->end(); ++It) { 6038 SelectInst *I = dyn_cast<SelectInst>(&*It); 6039 if (I && SI->getCondition() == I->getCondition()) { 6040 ASI.push_back(I); 6041 } else { 6042 break; 6043 } 6044 } 6045 6046 SelectInst *LastSI = ASI.back(); 6047 // Increment the current iterator to skip all the rest of select instructions 6048 // because they will be either "not lowered" or "all lowered" to branch. 6049 CurInstIterator = std::next(LastSI->getIterator()); 6050 6051 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6052 6053 // Can we convert the 'select' to CF ? 6054 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6055 return false; 6056 6057 TargetLowering::SelectSupportKind SelectKind; 6058 if (VectorCond) 6059 SelectKind = TargetLowering::VectorMaskSelect; 6060 else if (SI->getType()->isVectorTy()) 6061 SelectKind = TargetLowering::ScalarCondVectorVal; 6062 else 6063 SelectKind = TargetLowering::ScalarValSelect; 6064 6065 if (TLI->isSelectSupported(SelectKind) && 6066 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6067 return false; 6068 6069 // The DominatorTree needs to be rebuilt by any consumers after this 6070 // transformation. We simply reset here rather than setting the ModifiedDT 6071 // flag to avoid restarting the function walk in runOnFunction for each 6072 // select optimized. 6073 DT.reset(); 6074 6075 // Transform a sequence like this: 6076 // start: 6077 // %cmp = cmp uge i32 %a, %b 6078 // %sel = select i1 %cmp, i32 %c, i32 %d 6079 // 6080 // Into: 6081 // start: 6082 // %cmp = cmp uge i32 %a, %b 6083 // br i1 %cmp, label %select.true, label %select.false 6084 // select.true: 6085 // br label %select.end 6086 // select.false: 6087 // br label %select.end 6088 // select.end: 6089 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6090 // 6091 // In addition, we may sink instructions that produce %c or %d from 6092 // the entry block into the destination(s) of the new branch. 6093 // If the true or false blocks do not contain a sunken instruction, that 6094 // block and its branch may be optimized away. In that case, one side of the 6095 // first branch will point directly to select.end, and the corresponding PHI 6096 // predecessor block will be the start block. 6097 6098 // First, we split the block containing the select into 2 blocks. 6099 BasicBlock *StartBlock = SI->getParent(); 6100 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6101 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6102 6103 // Delete the unconditional branch that was just created by the split. 6104 StartBlock->getTerminator()->eraseFromParent(); 6105 6106 // These are the new basic blocks for the conditional branch. 6107 // At least one will become an actual new basic block. 6108 BasicBlock *TrueBlock = nullptr; 6109 BasicBlock *FalseBlock = nullptr; 6110 BranchInst *TrueBranch = nullptr; 6111 BranchInst *FalseBranch = nullptr; 6112 6113 // Sink expensive instructions into the conditional blocks to avoid executing 6114 // them speculatively. 6115 for (SelectInst *SI : ASI) { 6116 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6117 if (TrueBlock == nullptr) { 6118 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6119 EndBlock->getParent(), EndBlock); 6120 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6121 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6122 } 6123 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6124 TrueInst->moveBefore(TrueBranch); 6125 } 6126 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6127 if (FalseBlock == nullptr) { 6128 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6129 EndBlock->getParent(), EndBlock); 6130 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6131 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6132 } 6133 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6134 FalseInst->moveBefore(FalseBranch); 6135 } 6136 } 6137 6138 // If there was nothing to sink, then arbitrarily choose the 'false' side 6139 // for a new input value to the PHI. 6140 if (TrueBlock == FalseBlock) { 6141 assert(TrueBlock == nullptr && 6142 "Unexpected basic block transform while optimizing select"); 6143 6144 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6145 EndBlock->getParent(), EndBlock); 6146 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6147 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6148 } 6149 6150 // Insert the real conditional branch based on the original condition. 6151 // If we did not create a new block for one of the 'true' or 'false' paths 6152 // of the condition, it means that side of the branch goes to the end block 6153 // directly and the path originates from the start block from the point of 6154 // view of the new PHI. 6155 BasicBlock *TT, *FT; 6156 if (TrueBlock == nullptr) { 6157 TT = EndBlock; 6158 FT = FalseBlock; 6159 TrueBlock = StartBlock; 6160 } else if (FalseBlock == nullptr) { 6161 TT = TrueBlock; 6162 FT = EndBlock; 6163 FalseBlock = StartBlock; 6164 } else { 6165 TT = TrueBlock; 6166 FT = FalseBlock; 6167 } 6168 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6169 6170 SmallPtrSet<const Instruction *, 2> INS; 6171 INS.insert(ASI.begin(), ASI.end()); 6172 // Use reverse iterator because later select may use the value of the 6173 // earlier select, and we need to propagate value through earlier select 6174 // to get the PHI operand. 6175 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6176 SelectInst *SI = *It; 6177 // The select itself is replaced with a PHI Node. 6178 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6179 PN->takeName(SI); 6180 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6181 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6182 PN->setDebugLoc(SI->getDebugLoc()); 6183 6184 SI->replaceAllUsesWith(PN); 6185 SI->eraseFromParent(); 6186 INS.erase(SI); 6187 ++NumSelectsExpanded; 6188 } 6189 6190 // Instruct OptimizeBlock to skip to the next block. 6191 CurInstIterator = StartBlock->end(); 6192 return true; 6193 } 6194 6195 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6196 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6197 int SplatElem = -1; 6198 for (unsigned i = 0; i < Mask.size(); ++i) { 6199 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6200 return false; 6201 SplatElem = Mask[i]; 6202 } 6203 6204 return true; 6205 } 6206 6207 /// Some targets have expensive vector shifts if the lanes aren't all the same 6208 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6209 /// it's often worth sinking a shufflevector splat down to its use so that 6210 /// codegen can spot all lanes are identical. 6211 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6212 BasicBlock *DefBB = SVI->getParent(); 6213 6214 // Only do this xform if variable vector shifts are particularly expensive. 6215 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6216 return false; 6217 6218 // We only expect better codegen by sinking a shuffle if we can recognise a 6219 // constant splat. 6220 if (!isBroadcastShuffle(SVI)) 6221 return false; 6222 6223 // InsertedShuffles - Only insert a shuffle in each block once. 6224 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6225 6226 bool MadeChange = false; 6227 for (User *U : SVI->users()) { 6228 Instruction *UI = cast<Instruction>(U); 6229 6230 // Figure out which BB this ext is used in. 6231 BasicBlock *UserBB = UI->getParent(); 6232 if (UserBB == DefBB) continue; 6233 6234 // For now only apply this when the splat is used by a shift instruction. 6235 if (!UI->isShift()) continue; 6236 6237 // Everything checks out, sink the shuffle if the user's block doesn't 6238 // already have a copy. 6239 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6240 6241 if (!InsertedShuffle) { 6242 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6243 assert(InsertPt != UserBB->end()); 6244 InsertedShuffle = 6245 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6246 SVI->getOperand(2), "", &*InsertPt); 6247 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6248 } 6249 6250 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6251 MadeChange = true; 6252 } 6253 6254 // If we removed all uses, nuke the shuffle. 6255 if (SVI->use_empty()) { 6256 SVI->eraseFromParent(); 6257 MadeChange = true; 6258 } 6259 6260 return MadeChange; 6261 } 6262 6263 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6264 // If the operands of I can be folded into a target instruction together with 6265 // I, duplicate and sink them. 6266 SmallVector<Use *, 4> OpsToSink; 6267 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6268 return false; 6269 6270 // OpsToSink can contain multiple uses in a use chain (e.g. 6271 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6272 // uses must come first, so we process the ops in reverse order so as to not 6273 // create invalid IR. 6274 BasicBlock *TargetBB = I->getParent(); 6275 bool Changed = false; 6276 SmallVector<Use *, 4> ToReplace; 6277 for (Use *U : reverse(OpsToSink)) { 6278 auto *UI = cast<Instruction>(U->get()); 6279 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6280 continue; 6281 ToReplace.push_back(U); 6282 } 6283 6284 SetVector<Instruction *> MaybeDead; 6285 DenseMap<Instruction *, Instruction *> NewInstructions; 6286 Instruction *InsertPoint = I; 6287 for (Use *U : ToReplace) { 6288 auto *UI = cast<Instruction>(U->get()); 6289 Instruction *NI = UI->clone(); 6290 NewInstructions[UI] = NI; 6291 MaybeDead.insert(UI); 6292 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6293 NI->insertBefore(InsertPoint); 6294 InsertPoint = NI; 6295 InsertedInsts.insert(NI); 6296 6297 // Update the use for the new instruction, making sure that we update the 6298 // sunk instruction uses, if it is part of a chain that has already been 6299 // sunk. 6300 Instruction *OldI = cast<Instruction>(U->getUser()); 6301 if (NewInstructions.count(OldI)) 6302 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6303 else 6304 U->set(NI); 6305 Changed = true; 6306 } 6307 6308 // Remove instructions that are dead after sinking. 6309 for (auto *I : MaybeDead) { 6310 if (!I->hasNUsesOrMore(1)) { 6311 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6312 I->eraseFromParent(); 6313 } 6314 } 6315 6316 return Changed; 6317 } 6318 6319 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6320 if (!TLI || !DL) 6321 return false; 6322 6323 Value *Cond = SI->getCondition(); 6324 Type *OldType = Cond->getType(); 6325 LLVMContext &Context = Cond->getContext(); 6326 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6327 unsigned RegWidth = RegType.getSizeInBits(); 6328 6329 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6330 return false; 6331 6332 // If the register width is greater than the type width, expand the condition 6333 // of the switch instruction and each case constant to the width of the 6334 // register. By widening the type of the switch condition, subsequent 6335 // comparisons (for case comparisons) will not need to be extended to the 6336 // preferred register width, so we will potentially eliminate N-1 extends, 6337 // where N is the number of cases in the switch. 6338 auto *NewType = Type::getIntNTy(Context, RegWidth); 6339 6340 // Zero-extend the switch condition and case constants unless the switch 6341 // condition is a function argument that is already being sign-extended. 6342 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6343 // everything instead. 6344 Instruction::CastOps ExtType = Instruction::ZExt; 6345 if (auto *Arg = dyn_cast<Argument>(Cond)) 6346 if (Arg->hasSExtAttr()) 6347 ExtType = Instruction::SExt; 6348 6349 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6350 ExtInst->insertBefore(SI); 6351 ExtInst->setDebugLoc(SI->getDebugLoc()); 6352 SI->setCondition(ExtInst); 6353 for (auto Case : SI->cases()) { 6354 APInt NarrowConst = Case.getCaseValue()->getValue(); 6355 APInt WideConst = (ExtType == Instruction::ZExt) ? 6356 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6357 Case.setValue(ConstantInt::get(Context, WideConst)); 6358 } 6359 6360 return true; 6361 } 6362 6363 6364 namespace { 6365 6366 /// Helper class to promote a scalar operation to a vector one. 6367 /// This class is used to move downward extractelement transition. 6368 /// E.g., 6369 /// a = vector_op <2 x i32> 6370 /// b = extractelement <2 x i32> a, i32 0 6371 /// c = scalar_op b 6372 /// store c 6373 /// 6374 /// => 6375 /// a = vector_op <2 x i32> 6376 /// c = vector_op a (equivalent to scalar_op on the related lane) 6377 /// * d = extractelement <2 x i32> c, i32 0 6378 /// * store d 6379 /// Assuming both extractelement and store can be combine, we get rid of the 6380 /// transition. 6381 class VectorPromoteHelper { 6382 /// DataLayout associated with the current module. 6383 const DataLayout &DL; 6384 6385 /// Used to perform some checks on the legality of vector operations. 6386 const TargetLowering &TLI; 6387 6388 /// Used to estimated the cost of the promoted chain. 6389 const TargetTransformInfo &TTI; 6390 6391 /// The transition being moved downwards. 6392 Instruction *Transition; 6393 6394 /// The sequence of instructions to be promoted. 6395 SmallVector<Instruction *, 4> InstsToBePromoted; 6396 6397 /// Cost of combining a store and an extract. 6398 unsigned StoreExtractCombineCost; 6399 6400 /// Instruction that will be combined with the transition. 6401 Instruction *CombineInst = nullptr; 6402 6403 /// The instruction that represents the current end of the transition. 6404 /// Since we are faking the promotion until we reach the end of the chain 6405 /// of computation, we need a way to get the current end of the transition. 6406 Instruction *getEndOfTransition() const { 6407 if (InstsToBePromoted.empty()) 6408 return Transition; 6409 return InstsToBePromoted.back(); 6410 } 6411 6412 /// Return the index of the original value in the transition. 6413 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6414 /// c, is at index 0. 6415 unsigned getTransitionOriginalValueIdx() const { 6416 assert(isa<ExtractElementInst>(Transition) && 6417 "Other kind of transitions are not supported yet"); 6418 return 0; 6419 } 6420 6421 /// Return the index of the index in the transition. 6422 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6423 /// is at index 1. 6424 unsigned getTransitionIdx() const { 6425 assert(isa<ExtractElementInst>(Transition) && 6426 "Other kind of transitions are not supported yet"); 6427 return 1; 6428 } 6429 6430 /// Get the type of the transition. 6431 /// This is the type of the original value. 6432 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6433 /// transition is <2 x i32>. 6434 Type *getTransitionType() const { 6435 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6436 } 6437 6438 /// Promote \p ToBePromoted by moving \p Def downward through. 6439 /// I.e., we have the following sequence: 6440 /// Def = Transition <ty1> a to <ty2> 6441 /// b = ToBePromoted <ty2> Def, ... 6442 /// => 6443 /// b = ToBePromoted <ty1> a, ... 6444 /// Def = Transition <ty1> ToBePromoted to <ty2> 6445 void promoteImpl(Instruction *ToBePromoted); 6446 6447 /// Check whether or not it is profitable to promote all the 6448 /// instructions enqueued to be promoted. 6449 bool isProfitableToPromote() { 6450 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6451 unsigned Index = isa<ConstantInt>(ValIdx) 6452 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6453 : -1; 6454 Type *PromotedType = getTransitionType(); 6455 6456 StoreInst *ST = cast<StoreInst>(CombineInst); 6457 unsigned AS = ST->getPointerAddressSpace(); 6458 unsigned Align = ST->getAlignment(); 6459 // Check if this store is supported. 6460 if (!TLI.allowsMisalignedMemoryAccesses( 6461 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6462 Align)) { 6463 // If this is not supported, there is no way we can combine 6464 // the extract with the store. 6465 return false; 6466 } 6467 6468 // The scalar chain of computation has to pay for the transition 6469 // scalar to vector. 6470 // The vector chain has to account for the combining cost. 6471 uint64_t ScalarCost = 6472 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6473 uint64_t VectorCost = StoreExtractCombineCost; 6474 for (const auto &Inst : InstsToBePromoted) { 6475 // Compute the cost. 6476 // By construction, all instructions being promoted are arithmetic ones. 6477 // Moreover, one argument is a constant that can be viewed as a splat 6478 // constant. 6479 Value *Arg0 = Inst->getOperand(0); 6480 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6481 isa<ConstantFP>(Arg0); 6482 TargetTransformInfo::OperandValueKind Arg0OVK = 6483 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6484 : TargetTransformInfo::OK_AnyValue; 6485 TargetTransformInfo::OperandValueKind Arg1OVK = 6486 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6487 : TargetTransformInfo::OK_AnyValue; 6488 ScalarCost += TTI.getArithmeticInstrCost( 6489 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6490 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6491 Arg0OVK, Arg1OVK); 6492 } 6493 LLVM_DEBUG( 6494 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6495 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6496 return ScalarCost > VectorCost; 6497 } 6498 6499 /// Generate a constant vector with \p Val with the same 6500 /// number of elements as the transition. 6501 /// \p UseSplat defines whether or not \p Val should be replicated 6502 /// across the whole vector. 6503 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6504 /// otherwise we generate a vector with as many undef as possible: 6505 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6506 /// used at the index of the extract. 6507 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6508 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6509 if (!UseSplat) { 6510 // If we cannot determine where the constant must be, we have to 6511 // use a splat constant. 6512 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6513 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6514 ExtractIdx = CstVal->getSExtValue(); 6515 else 6516 UseSplat = true; 6517 } 6518 6519 unsigned End = getTransitionType()->getVectorNumElements(); 6520 if (UseSplat) 6521 return ConstantVector::getSplat(End, Val); 6522 6523 SmallVector<Constant *, 4> ConstVec; 6524 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6525 for (unsigned Idx = 0; Idx != End; ++Idx) { 6526 if (Idx == ExtractIdx) 6527 ConstVec.push_back(Val); 6528 else 6529 ConstVec.push_back(UndefVal); 6530 } 6531 return ConstantVector::get(ConstVec); 6532 } 6533 6534 /// Check if promoting to a vector type an operand at \p OperandIdx 6535 /// in \p Use can trigger undefined behavior. 6536 static bool canCauseUndefinedBehavior(const Instruction *Use, 6537 unsigned OperandIdx) { 6538 // This is not safe to introduce undef when the operand is on 6539 // the right hand side of a division-like instruction. 6540 if (OperandIdx != 1) 6541 return false; 6542 switch (Use->getOpcode()) { 6543 default: 6544 return false; 6545 case Instruction::SDiv: 6546 case Instruction::UDiv: 6547 case Instruction::SRem: 6548 case Instruction::URem: 6549 return true; 6550 case Instruction::FDiv: 6551 case Instruction::FRem: 6552 return !Use->hasNoNaNs(); 6553 } 6554 llvm_unreachable(nullptr); 6555 } 6556 6557 public: 6558 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6559 const TargetTransformInfo &TTI, Instruction *Transition, 6560 unsigned CombineCost) 6561 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6562 StoreExtractCombineCost(CombineCost) { 6563 assert(Transition && "Do not know how to promote null"); 6564 } 6565 6566 /// Check if we can promote \p ToBePromoted to \p Type. 6567 bool canPromote(const Instruction *ToBePromoted) const { 6568 // We could support CastInst too. 6569 return isa<BinaryOperator>(ToBePromoted); 6570 } 6571 6572 /// Check if it is profitable to promote \p ToBePromoted 6573 /// by moving downward the transition through. 6574 bool shouldPromote(const Instruction *ToBePromoted) const { 6575 // Promote only if all the operands can be statically expanded. 6576 // Indeed, we do not want to introduce any new kind of transitions. 6577 for (const Use &U : ToBePromoted->operands()) { 6578 const Value *Val = U.get(); 6579 if (Val == getEndOfTransition()) { 6580 // If the use is a division and the transition is on the rhs, 6581 // we cannot promote the operation, otherwise we may create a 6582 // division by zero. 6583 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6584 return false; 6585 continue; 6586 } 6587 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6588 !isa<ConstantFP>(Val)) 6589 return false; 6590 } 6591 // Check that the resulting operation is legal. 6592 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6593 if (!ISDOpcode) 6594 return false; 6595 return StressStoreExtract || 6596 TLI.isOperationLegalOrCustom( 6597 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6598 } 6599 6600 /// Check whether or not \p Use can be combined 6601 /// with the transition. 6602 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6603 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6604 6605 /// Record \p ToBePromoted as part of the chain to be promoted. 6606 void enqueueForPromotion(Instruction *ToBePromoted) { 6607 InstsToBePromoted.push_back(ToBePromoted); 6608 } 6609 6610 /// Set the instruction that will be combined with the transition. 6611 void recordCombineInstruction(Instruction *ToBeCombined) { 6612 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6613 CombineInst = ToBeCombined; 6614 } 6615 6616 /// Promote all the instructions enqueued for promotion if it is 6617 /// is profitable. 6618 /// \return True if the promotion happened, false otherwise. 6619 bool promote() { 6620 // Check if there is something to promote. 6621 // Right now, if we do not have anything to combine with, 6622 // we assume the promotion is not profitable. 6623 if (InstsToBePromoted.empty() || !CombineInst) 6624 return false; 6625 6626 // Check cost. 6627 if (!StressStoreExtract && !isProfitableToPromote()) 6628 return false; 6629 6630 // Promote. 6631 for (auto &ToBePromoted : InstsToBePromoted) 6632 promoteImpl(ToBePromoted); 6633 InstsToBePromoted.clear(); 6634 return true; 6635 } 6636 }; 6637 6638 } // end anonymous namespace 6639 6640 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6641 // At this point, we know that all the operands of ToBePromoted but Def 6642 // can be statically promoted. 6643 // For Def, we need to use its parameter in ToBePromoted: 6644 // b = ToBePromoted ty1 a 6645 // Def = Transition ty1 b to ty2 6646 // Move the transition down. 6647 // 1. Replace all uses of the promoted operation by the transition. 6648 // = ... b => = ... Def. 6649 assert(ToBePromoted->getType() == Transition->getType() && 6650 "The type of the result of the transition does not match " 6651 "the final type"); 6652 ToBePromoted->replaceAllUsesWith(Transition); 6653 // 2. Update the type of the uses. 6654 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6655 Type *TransitionTy = getTransitionType(); 6656 ToBePromoted->mutateType(TransitionTy); 6657 // 3. Update all the operands of the promoted operation with promoted 6658 // operands. 6659 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6660 for (Use &U : ToBePromoted->operands()) { 6661 Value *Val = U.get(); 6662 Value *NewVal = nullptr; 6663 if (Val == Transition) 6664 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6665 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6666 isa<ConstantFP>(Val)) { 6667 // Use a splat constant if it is not safe to use undef. 6668 NewVal = getConstantVector( 6669 cast<Constant>(Val), 6670 isa<UndefValue>(Val) || 6671 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6672 } else 6673 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6674 "this?"); 6675 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6676 } 6677 Transition->moveAfter(ToBePromoted); 6678 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6679 } 6680 6681 /// Some targets can do store(extractelement) with one instruction. 6682 /// Try to push the extractelement towards the stores when the target 6683 /// has this feature and this is profitable. 6684 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6685 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6686 if (DisableStoreExtract || !TLI || 6687 (!StressStoreExtract && 6688 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6689 Inst->getOperand(1), CombineCost))) 6690 return false; 6691 6692 // At this point we know that Inst is a vector to scalar transition. 6693 // Try to move it down the def-use chain, until: 6694 // - We can combine the transition with its single use 6695 // => we got rid of the transition. 6696 // - We escape the current basic block 6697 // => we would need to check that we are moving it at a cheaper place and 6698 // we do not do that for now. 6699 BasicBlock *Parent = Inst->getParent(); 6700 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6701 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6702 // If the transition has more than one use, assume this is not going to be 6703 // beneficial. 6704 while (Inst->hasOneUse()) { 6705 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6706 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6707 6708 if (ToBePromoted->getParent() != Parent) { 6709 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6710 << ToBePromoted->getParent()->getName() 6711 << ") than the transition (" << Parent->getName() 6712 << ").\n"); 6713 return false; 6714 } 6715 6716 if (VPH.canCombine(ToBePromoted)) { 6717 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6718 << "will be combined with: " << *ToBePromoted << '\n'); 6719 VPH.recordCombineInstruction(ToBePromoted); 6720 bool Changed = VPH.promote(); 6721 NumStoreExtractExposed += Changed; 6722 return Changed; 6723 } 6724 6725 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6726 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6727 return false; 6728 6729 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6730 6731 VPH.enqueueForPromotion(ToBePromoted); 6732 Inst = ToBePromoted; 6733 } 6734 return false; 6735 } 6736 6737 /// For the instruction sequence of store below, F and I values 6738 /// are bundled together as an i64 value before being stored into memory. 6739 /// Sometimes it is more efficient to generate separate stores for F and I, 6740 /// which can remove the bitwise instructions or sink them to colder places. 6741 /// 6742 /// (store (or (zext (bitcast F to i32) to i64), 6743 /// (shl (zext I to i64), 32)), addr) --> 6744 /// (store F, addr) and (store I, addr+4) 6745 /// 6746 /// Similarly, splitting for other merged store can also be beneficial, like: 6747 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6748 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6749 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6750 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6751 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6752 /// 6753 /// We allow each target to determine specifically which kind of splitting is 6754 /// supported. 6755 /// 6756 /// The store patterns are commonly seen from the simple code snippet below 6757 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6758 /// void goo(const std::pair<int, float> &); 6759 /// hoo() { 6760 /// ... 6761 /// goo(std::make_pair(tmp, ftmp)); 6762 /// ... 6763 /// } 6764 /// 6765 /// Although we already have similar splitting in DAG Combine, we duplicate 6766 /// it in CodeGenPrepare to catch the case in which pattern is across 6767 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6768 /// during code expansion. 6769 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6770 const TargetLowering &TLI) { 6771 // Handle simple but common cases only. 6772 Type *StoreType = SI.getValueOperand()->getType(); 6773 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6774 DL.getTypeSizeInBits(StoreType) == 0) 6775 return false; 6776 6777 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6778 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6779 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6780 return false; 6781 6782 // Don't split the store if it is volatile. 6783 if (SI.isVolatile()) 6784 return false; 6785 6786 // Match the following patterns: 6787 // (store (or (zext LValue to i64), 6788 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6789 // or 6790 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6791 // (zext LValue to i64), 6792 // Expect both operands of OR and the first operand of SHL have only 6793 // one use. 6794 Value *LValue, *HValue; 6795 if (!match(SI.getValueOperand(), 6796 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6797 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6798 m_SpecificInt(HalfValBitSize)))))) 6799 return false; 6800 6801 // Check LValue and HValue are int with size less or equal than 32. 6802 if (!LValue->getType()->isIntegerTy() || 6803 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6804 !HValue->getType()->isIntegerTy() || 6805 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6806 return false; 6807 6808 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6809 // as the input of target query. 6810 auto *LBC = dyn_cast<BitCastInst>(LValue); 6811 auto *HBC = dyn_cast<BitCastInst>(HValue); 6812 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6813 : EVT::getEVT(LValue->getType()); 6814 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6815 : EVT::getEVT(HValue->getType()); 6816 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6817 return false; 6818 6819 // Start to split store. 6820 IRBuilder<> Builder(SI.getContext()); 6821 Builder.SetInsertPoint(&SI); 6822 6823 // If LValue/HValue is a bitcast in another BB, create a new one in current 6824 // BB so it may be merged with the splitted stores by dag combiner. 6825 if (LBC && LBC->getParent() != SI.getParent()) 6826 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6827 if (HBC && HBC->getParent() != SI.getParent()) 6828 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6829 6830 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6831 auto CreateSplitStore = [&](Value *V, bool Upper) { 6832 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6833 Value *Addr = Builder.CreateBitCast( 6834 SI.getOperand(1), 6835 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6836 if ((IsLE && Upper) || (!IsLE && !Upper)) 6837 Addr = Builder.CreateGEP( 6838 SplitStoreType, Addr, 6839 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6840 Builder.CreateAlignedStore( 6841 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6842 }; 6843 6844 CreateSplitStore(LValue, false); 6845 CreateSplitStore(HValue, true); 6846 6847 // Delete the old store. 6848 SI.eraseFromParent(); 6849 return true; 6850 } 6851 6852 // Return true if the GEP has two operands, the first operand is of a sequential 6853 // type, and the second operand is a constant. 6854 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6855 gep_type_iterator I = gep_type_begin(*GEP); 6856 return GEP->getNumOperands() == 2 && 6857 I.isSequential() && 6858 isa<ConstantInt>(GEP->getOperand(1)); 6859 } 6860 6861 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6862 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6863 // reducing liveness interference across those edges benefits global register 6864 // allocation. Currently handles only certain cases. 6865 // 6866 // For example, unmerge %GEPI and %UGEPI as below. 6867 // 6868 // ---------- BEFORE ---------- 6869 // SrcBlock: 6870 // ... 6871 // %GEPIOp = ... 6872 // ... 6873 // %GEPI = gep %GEPIOp, Idx 6874 // ... 6875 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6876 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6877 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6878 // %UGEPI) 6879 // 6880 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6881 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6882 // ... 6883 // 6884 // DstBi: 6885 // ... 6886 // %UGEPI = gep %GEPIOp, UIdx 6887 // ... 6888 // --------------------------- 6889 // 6890 // ---------- AFTER ---------- 6891 // SrcBlock: 6892 // ... (same as above) 6893 // (* %GEPI is still alive on the indirectbr edges) 6894 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6895 // unmerging) 6896 // ... 6897 // 6898 // DstBi: 6899 // ... 6900 // %UGEPI = gep %GEPI, (UIdx-Idx) 6901 // ... 6902 // --------------------------- 6903 // 6904 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6905 // no longer alive on them. 6906 // 6907 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6908 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6909 // not to disable further simplications and optimizations as a result of GEP 6910 // merging. 6911 // 6912 // Note this unmerging may increase the length of the data flow critical path 6913 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6914 // between the register pressure and the length of data-flow critical 6915 // path. Restricting this to the uncommon IndirectBr case would minimize the 6916 // impact of potentially longer critical path, if any, and the impact on compile 6917 // time. 6918 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6919 const TargetTransformInfo *TTI) { 6920 BasicBlock *SrcBlock = GEPI->getParent(); 6921 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6922 // (non-IndirectBr) cases exit early here. 6923 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6924 return false; 6925 // Check that GEPI is a simple gep with a single constant index. 6926 if (!GEPSequentialConstIndexed(GEPI)) 6927 return false; 6928 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6929 // Check that GEPI is a cheap one. 6930 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6931 > TargetTransformInfo::TCC_Basic) 6932 return false; 6933 Value *GEPIOp = GEPI->getOperand(0); 6934 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6935 if (!isa<Instruction>(GEPIOp)) 6936 return false; 6937 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6938 if (GEPIOpI->getParent() != SrcBlock) 6939 return false; 6940 // Check that GEP is used outside the block, meaning it's alive on the 6941 // IndirectBr edge(s). 6942 if (find_if(GEPI->users(), [&](User *Usr) { 6943 if (auto *I = dyn_cast<Instruction>(Usr)) { 6944 if (I->getParent() != SrcBlock) { 6945 return true; 6946 } 6947 } 6948 return false; 6949 }) == GEPI->users().end()) 6950 return false; 6951 // The second elements of the GEP chains to be unmerged. 6952 std::vector<GetElementPtrInst *> UGEPIs; 6953 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6954 // on IndirectBr edges. 6955 for (User *Usr : GEPIOp->users()) { 6956 if (Usr == GEPI) continue; 6957 // Check if Usr is an Instruction. If not, give up. 6958 if (!isa<Instruction>(Usr)) 6959 return false; 6960 auto *UI = cast<Instruction>(Usr); 6961 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6962 if (UI->getParent() == SrcBlock) 6963 continue; 6964 // Check if Usr is a GEP. If not, give up. 6965 if (!isa<GetElementPtrInst>(Usr)) 6966 return false; 6967 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6968 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6969 // the pointer operand to it. If so, record it in the vector. If not, give 6970 // up. 6971 if (!GEPSequentialConstIndexed(UGEPI)) 6972 return false; 6973 if (UGEPI->getOperand(0) != GEPIOp) 6974 return false; 6975 if (GEPIIdx->getType() != 6976 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6977 return false; 6978 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6979 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6980 > TargetTransformInfo::TCC_Basic) 6981 return false; 6982 UGEPIs.push_back(UGEPI); 6983 } 6984 if (UGEPIs.size() == 0) 6985 return false; 6986 // Check the materializing cost of (Uidx-Idx). 6987 for (GetElementPtrInst *UGEPI : UGEPIs) { 6988 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6989 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6990 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6991 if (ImmCost > TargetTransformInfo::TCC_Basic) 6992 return false; 6993 } 6994 // Now unmerge between GEPI and UGEPIs. 6995 for (GetElementPtrInst *UGEPI : UGEPIs) { 6996 UGEPI->setOperand(0, GEPI); 6997 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6998 Constant *NewUGEPIIdx = 6999 ConstantInt::get(GEPIIdx->getType(), 7000 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7001 UGEPI->setOperand(1, NewUGEPIIdx); 7002 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7003 // inbounds to avoid UB. 7004 if (!GEPI->isInBounds()) { 7005 UGEPI->setIsInBounds(false); 7006 } 7007 } 7008 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7009 // alive on IndirectBr edges). 7010 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7011 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7012 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7013 return true; 7014 } 7015 7016 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7017 // Bail out if we inserted the instruction to prevent optimizations from 7018 // stepping on each other's toes. 7019 if (InsertedInsts.count(I)) 7020 return false; 7021 7022 // TODO: Move into the switch on opcode below here. 7023 if (PHINode *P = dyn_cast<PHINode>(I)) { 7024 // It is possible for very late stage optimizations (such as SimplifyCFG) 7025 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7026 // trivial PHI, go ahead and zap it here. 7027 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7028 LargeOffsetGEPMap.erase(P); 7029 P->replaceAllUsesWith(V); 7030 P->eraseFromParent(); 7031 ++NumPHIsElim; 7032 return true; 7033 } 7034 return false; 7035 } 7036 7037 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7038 // If the source of the cast is a constant, then this should have 7039 // already been constant folded. The only reason NOT to constant fold 7040 // it is if something (e.g. LSR) was careful to place the constant 7041 // evaluation in a block other than then one that uses it (e.g. to hoist 7042 // the address of globals out of a loop). If this is the case, we don't 7043 // want to forward-subst the cast. 7044 if (isa<Constant>(CI->getOperand(0))) 7045 return false; 7046 7047 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7048 return true; 7049 7050 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7051 /// Sink a zext or sext into its user blocks if the target type doesn't 7052 /// fit in one register 7053 if (TLI && 7054 TLI->getTypeAction(CI->getContext(), 7055 TLI->getValueType(*DL, CI->getType())) == 7056 TargetLowering::TypeExpandInteger) { 7057 return SinkCast(CI); 7058 } else { 7059 bool MadeChange = optimizeExt(I); 7060 return MadeChange | optimizeExtUses(I); 7061 } 7062 } 7063 return false; 7064 } 7065 7066 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7067 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 7068 return true; 7069 7070 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7071 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7072 if (TLI) { 7073 bool Modified = optimizeLoadExt(LI); 7074 unsigned AS = LI->getPointerAddressSpace(); 7075 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7076 return Modified; 7077 } 7078 return false; 7079 } 7080 7081 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7082 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 7083 return true; 7084 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7085 if (TLI) { 7086 unsigned AS = SI->getPointerAddressSpace(); 7087 return optimizeMemoryInst(I, SI->getOperand(1), 7088 SI->getOperand(0)->getType(), AS); 7089 } 7090 return false; 7091 } 7092 7093 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7094 unsigned AS = RMW->getPointerAddressSpace(); 7095 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7096 RMW->getType(), AS); 7097 } 7098 7099 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7100 unsigned AS = CmpX->getPointerAddressSpace(); 7101 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7102 CmpX->getCompareOperand()->getType(), AS); 7103 } 7104 7105 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7106 7107 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7108 EnableAndCmpSinking && TLI) 7109 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7110 7111 // TODO: Move this into the switch on opcode - it handles shifts already. 7112 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7113 BinOp->getOpcode() == Instruction::LShr)) { 7114 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7115 if (TLI && CI && TLI->hasExtractBitsInsn()) 7116 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7117 return true; 7118 } 7119 7120 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7121 if (GEPI->hasAllZeroIndices()) { 7122 /// The GEP operand must be a pointer, so must its result -> BitCast 7123 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7124 GEPI->getName(), GEPI); 7125 NC->setDebugLoc(GEPI->getDebugLoc()); 7126 GEPI->replaceAllUsesWith(NC); 7127 GEPI->eraseFromParent(); 7128 ++NumGEPsElim; 7129 optimizeInst(NC, ModifiedDT); 7130 return true; 7131 } 7132 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7133 return true; 7134 } 7135 return false; 7136 } 7137 7138 if (tryToSinkFreeOperands(I)) 7139 return true; 7140 7141 switch (I->getOpcode()) { 7142 case Instruction::Shl: 7143 case Instruction::LShr: 7144 case Instruction::AShr: 7145 return optimizeShiftInst(cast<BinaryOperator>(I)); 7146 case Instruction::Call: 7147 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7148 case Instruction::Select: 7149 return optimizeSelectInst(cast<SelectInst>(I)); 7150 case Instruction::ShuffleVector: 7151 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7152 case Instruction::Switch: 7153 return optimizeSwitchInst(cast<SwitchInst>(I)); 7154 case Instruction::ExtractElement: 7155 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7156 } 7157 7158 return false; 7159 } 7160 7161 /// Given an OR instruction, check to see if this is a bitreverse 7162 /// idiom. If so, insert the new intrinsic and return true. 7163 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7164 const TargetLowering &TLI) { 7165 if (!I.getType()->isIntegerTy() || 7166 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7167 TLI.getValueType(DL, I.getType(), true))) 7168 return false; 7169 7170 SmallVector<Instruction*, 4> Insts; 7171 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7172 return false; 7173 Instruction *LastInst = Insts.back(); 7174 I.replaceAllUsesWith(LastInst); 7175 RecursivelyDeleteTriviallyDeadInstructions(&I); 7176 return true; 7177 } 7178 7179 // In this pass we look for GEP and cast instructions that are used 7180 // across basic blocks and rewrite them to improve basic-block-at-a-time 7181 // selection. 7182 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7183 SunkAddrs.clear(); 7184 bool MadeChange = false; 7185 7186 CurInstIterator = BB.begin(); 7187 while (CurInstIterator != BB.end()) { 7188 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7189 if (ModifiedDT) 7190 return true; 7191 } 7192 7193 bool MadeBitReverse = true; 7194 while (TLI && MadeBitReverse) { 7195 MadeBitReverse = false; 7196 for (auto &I : reverse(BB)) { 7197 if (makeBitReverse(I, *DL, *TLI)) { 7198 MadeBitReverse = MadeChange = true; 7199 break; 7200 } 7201 } 7202 } 7203 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7204 7205 return MadeChange; 7206 } 7207 7208 // llvm.dbg.value is far away from the value then iSel may not be able 7209 // handle it properly. iSel will drop llvm.dbg.value if it can not 7210 // find a node corresponding to the value. 7211 bool CodeGenPrepare::placeDbgValues(Function &F) { 7212 bool MadeChange = false; 7213 for (BasicBlock &BB : F) { 7214 Instruction *PrevNonDbgInst = nullptr; 7215 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7216 Instruction *Insn = &*BI++; 7217 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7218 // Leave dbg.values that refer to an alloca alone. These 7219 // intrinsics describe the address of a variable (= the alloca) 7220 // being taken. They should not be moved next to the alloca 7221 // (and to the beginning of the scope), but rather stay close to 7222 // where said address is used. 7223 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7224 PrevNonDbgInst = Insn; 7225 continue; 7226 } 7227 7228 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7229 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7230 // If VI is a phi in a block with an EHPad terminator, we can't insert 7231 // after it. 7232 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7233 continue; 7234 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7235 << *DVI << ' ' << *VI); 7236 DVI->removeFromParent(); 7237 if (isa<PHINode>(VI)) 7238 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7239 else 7240 DVI->insertAfter(VI); 7241 MadeChange = true; 7242 ++NumDbgValueMoved; 7243 } 7244 } 7245 } 7246 return MadeChange; 7247 } 7248 7249 /// Scale down both weights to fit into uint32_t. 7250 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7251 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7252 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7253 NewTrue = NewTrue / Scale; 7254 NewFalse = NewFalse / Scale; 7255 } 7256 7257 /// Some targets prefer to split a conditional branch like: 7258 /// \code 7259 /// %0 = icmp ne i32 %a, 0 7260 /// %1 = icmp ne i32 %b, 0 7261 /// %or.cond = or i1 %0, %1 7262 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7263 /// \endcode 7264 /// into multiple branch instructions like: 7265 /// \code 7266 /// bb1: 7267 /// %0 = icmp ne i32 %a, 0 7268 /// br i1 %0, label %TrueBB, label %bb2 7269 /// bb2: 7270 /// %1 = icmp ne i32 %b, 0 7271 /// br i1 %1, label %TrueBB, label %FalseBB 7272 /// \endcode 7273 /// This usually allows instruction selection to do even further optimizations 7274 /// and combine the compare with the branch instruction. Currently this is 7275 /// applied for targets which have "cheap" jump instructions. 7276 /// 7277 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7278 /// 7279 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7280 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7281 return false; 7282 7283 bool MadeChange = false; 7284 for (auto &BB : F) { 7285 // Does this BB end with the following? 7286 // %cond1 = icmp|fcmp|binary instruction ... 7287 // %cond2 = icmp|fcmp|binary instruction ... 7288 // %cond.or = or|and i1 %cond1, cond2 7289 // br i1 %cond.or label %dest1, label %dest2" 7290 BinaryOperator *LogicOp; 7291 BasicBlock *TBB, *FBB; 7292 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7293 continue; 7294 7295 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7296 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7297 continue; 7298 7299 unsigned Opc; 7300 Value *Cond1, *Cond2; 7301 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7302 m_OneUse(m_Value(Cond2))))) 7303 Opc = Instruction::And; 7304 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7305 m_OneUse(m_Value(Cond2))))) 7306 Opc = Instruction::Or; 7307 else 7308 continue; 7309 7310 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7311 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7312 continue; 7313 7314 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7315 7316 // Create a new BB. 7317 auto TmpBB = 7318 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7319 BB.getParent(), BB.getNextNode()); 7320 7321 // Update original basic block by using the first condition directly by the 7322 // branch instruction and removing the no longer needed and/or instruction. 7323 Br1->setCondition(Cond1); 7324 LogicOp->eraseFromParent(); 7325 7326 // Depending on the condition we have to either replace the true or the 7327 // false successor of the original branch instruction. 7328 if (Opc == Instruction::And) 7329 Br1->setSuccessor(0, TmpBB); 7330 else 7331 Br1->setSuccessor(1, TmpBB); 7332 7333 // Fill in the new basic block. 7334 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7335 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7336 I->removeFromParent(); 7337 I->insertBefore(Br2); 7338 } 7339 7340 // Update PHI nodes in both successors. The original BB needs to be 7341 // replaced in one successor's PHI nodes, because the branch comes now from 7342 // the newly generated BB (NewBB). In the other successor we need to add one 7343 // incoming edge to the PHI nodes, because both branch instructions target 7344 // now the same successor. Depending on the original branch condition 7345 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7346 // we perform the correct update for the PHI nodes. 7347 // This doesn't change the successor order of the just created branch 7348 // instruction (or any other instruction). 7349 if (Opc == Instruction::Or) 7350 std::swap(TBB, FBB); 7351 7352 // Replace the old BB with the new BB. 7353 TBB->replacePhiUsesWith(&BB, TmpBB); 7354 7355 // Add another incoming edge form the new BB. 7356 for (PHINode &PN : FBB->phis()) { 7357 auto *Val = PN.getIncomingValueForBlock(&BB); 7358 PN.addIncoming(Val, TmpBB); 7359 } 7360 7361 // Update the branch weights (from SelectionDAGBuilder:: 7362 // FindMergedConditions). 7363 if (Opc == Instruction::Or) { 7364 // Codegen X | Y as: 7365 // BB1: 7366 // jmp_if_X TBB 7367 // jmp TmpBB 7368 // TmpBB: 7369 // jmp_if_Y TBB 7370 // jmp FBB 7371 // 7372 7373 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7374 // The requirement is that 7375 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7376 // = TrueProb for original BB. 7377 // Assuming the original weights are A and B, one choice is to set BB1's 7378 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7379 // assumes that 7380 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7381 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7382 // TmpBB, but the math is more complicated. 7383 uint64_t TrueWeight, FalseWeight; 7384 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7385 uint64_t NewTrueWeight = TrueWeight; 7386 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7387 scaleWeights(NewTrueWeight, NewFalseWeight); 7388 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7389 .createBranchWeights(TrueWeight, FalseWeight)); 7390 7391 NewTrueWeight = TrueWeight; 7392 NewFalseWeight = 2 * FalseWeight; 7393 scaleWeights(NewTrueWeight, NewFalseWeight); 7394 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7395 .createBranchWeights(TrueWeight, FalseWeight)); 7396 } 7397 } else { 7398 // Codegen X & Y as: 7399 // BB1: 7400 // jmp_if_X TmpBB 7401 // jmp FBB 7402 // TmpBB: 7403 // jmp_if_Y TBB 7404 // jmp FBB 7405 // 7406 // This requires creation of TmpBB after CurBB. 7407 7408 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7409 // The requirement is that 7410 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7411 // = FalseProb for original BB. 7412 // Assuming the original weights are A and B, one choice is to set BB1's 7413 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7414 // assumes that 7415 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7416 uint64_t TrueWeight, FalseWeight; 7417 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7418 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7419 uint64_t NewFalseWeight = FalseWeight; 7420 scaleWeights(NewTrueWeight, NewFalseWeight); 7421 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7422 .createBranchWeights(TrueWeight, FalseWeight)); 7423 7424 NewTrueWeight = 2 * TrueWeight; 7425 NewFalseWeight = FalseWeight; 7426 scaleWeights(NewTrueWeight, NewFalseWeight); 7427 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7428 .createBranchWeights(TrueWeight, FalseWeight)); 7429 } 7430 } 7431 7432 ModifiedDT = true; 7433 MadeChange = true; 7434 7435 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7436 TmpBB->dump()); 7437 } 7438 return MadeChange; 7439 } 7440