1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineValueType.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MathExtras.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 87 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 namespace { 219 220 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 221 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 222 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 223 using SExts = SmallVector<Instruction *, 16>; 224 using ValueToSExts = DenseMap<Value *, SExts>; 225 226 class TypePromotionTransaction; 227 228 class CodeGenPrepare : public FunctionPass { 229 const TargetMachine *TM = nullptr; 230 const TargetSubtargetInfo *SubtargetInfo; 231 const TargetLowering *TLI = nullptr; 232 const TargetRegisterInfo *TRI; 233 const TargetTransformInfo *TTI = nullptr; 234 const TargetLibraryInfo *TLInfo; 235 const LoopInfo *LI; 236 std::unique_ptr<BlockFrequencyInfo> BFI; 237 std::unique_ptr<BranchProbabilityInfo> BPI; 238 239 /// As we scan instructions optimizing them, this is the next instruction 240 /// to optimize. Transforms that can invalidate this should update it. 241 BasicBlock::iterator CurInstIterator; 242 243 /// Keeps track of non-local addresses that have been sunk into a block. 244 /// This allows us to avoid inserting duplicate code for blocks with 245 /// multiple load/stores of the same address. The usage of WeakTrackingVH 246 /// enables SunkAddrs to be treated as a cache whose entries can be 247 /// invalidated if a sunken address computation has been erased. 248 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 249 250 /// Keeps track of all instructions inserted for the current function. 251 SetOfInstrs InsertedInsts; 252 253 /// Keeps track of the type of the related instruction before their 254 /// promotion for the current function. 255 InstrToOrigTy PromotedInsts; 256 257 /// Keep track of instructions removed during promotion. 258 SetOfInstrs RemovedInsts; 259 260 /// Keep track of sext chains based on their initial value. 261 DenseMap<Value *, Instruction *> SeenChainsForSExt; 262 263 /// Keep track of SExt promoted. 264 ValueToSExts ValToSExtendedUses; 265 266 /// True if CFG is modified in any way. 267 bool ModifiedDT; 268 269 /// True if optimizing for size. 270 bool OptSize; 271 272 /// DataLayout for the Function being processed. 273 const DataLayout *DL = nullptr; 274 275 public: 276 static char ID; // Pass identification, replacement for typeid 277 278 CodeGenPrepare() : FunctionPass(ID) { 279 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 280 } 281 282 bool runOnFunction(Function &F) override; 283 284 StringRef getPassName() const override { return "CodeGen Prepare"; } 285 286 void getAnalysisUsage(AnalysisUsage &AU) const override { 287 // FIXME: When we can selectively preserve passes, preserve the domtree. 288 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 289 AU.addRequired<TargetLibraryInfoWrapperPass>(); 290 AU.addRequired<TargetTransformInfoWrapperPass>(); 291 AU.addRequired<LoopInfoWrapperPass>(); 292 } 293 294 private: 295 bool eliminateFallThrough(Function &F); 296 bool eliminateMostlyEmptyBlocks(Function &F); 297 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 298 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 299 void eliminateMostlyEmptyBlock(BasicBlock *BB); 300 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 301 bool isPreheader); 302 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 303 bool optimizeInst(Instruction *I, bool &ModifiedDT); 304 bool optimizeMemoryInst(Instruction *I, Value *Addr, 305 Type *AccessTy, unsigned AS); 306 bool optimizeInlineAsmInst(CallInst *CS); 307 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 308 bool optimizeExt(Instruction *&I); 309 bool optimizeExtUses(Instruction *I); 310 bool optimizeLoadExt(LoadInst *I); 311 bool optimizeSelectInst(SelectInst *SI); 312 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 313 bool optimizeSwitchInst(SwitchInst *CI); 314 bool optimizeExtractElementInst(Instruction *Inst); 315 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 316 bool placeDbgValues(Function &F); 317 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 318 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 319 bool tryToPromoteExts(TypePromotionTransaction &TPT, 320 const SmallVectorImpl<Instruction *> &Exts, 321 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 322 unsigned CreatedInstsCost = 0); 323 bool mergeSExts(Function &F); 324 bool performAddressTypePromotion( 325 Instruction *&Inst, 326 bool AllowPromotionWithoutCommonHeader, 327 bool HasPromoted, TypePromotionTransaction &TPT, 328 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 329 bool splitBranchCondition(Function &F); 330 bool simplifyOffsetableRelocate(Instruction &I); 331 }; 332 333 } // end anonymous namespace 334 335 char CodeGenPrepare::ID = 0; 336 337 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 338 "Optimize for code generation", false, false) 339 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 340 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 341 "Optimize for code generation", false, false) 342 343 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 344 345 bool CodeGenPrepare::runOnFunction(Function &F) { 346 if (skipFunction(F)) 347 return false; 348 349 DL = &F.getParent()->getDataLayout(); 350 351 bool EverMadeChange = false; 352 // Clear per function information. 353 InsertedInsts.clear(); 354 PromotedInsts.clear(); 355 356 ModifiedDT = false; 357 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 358 TM = &TPC->getTM<TargetMachine>(); 359 SubtargetInfo = TM->getSubtargetImpl(F); 360 TLI = SubtargetInfo->getTargetLowering(); 361 TRI = SubtargetInfo->getRegisterInfo(); 362 } 363 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 364 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 365 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 366 BPI.reset(new BranchProbabilityInfo(F, *LI)); 367 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 368 OptSize = F.optForSize(); 369 370 ProfileSummaryInfo *PSI = 371 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 372 if (ProfileGuidedSectionPrefix) { 373 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 374 F.setSectionPrefix(".hot"); 375 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 376 F.setSectionPrefix(".unlikely"); 377 } 378 379 /// This optimization identifies DIV instructions that can be 380 /// profitably bypassed and carried out with a shorter, faster divide. 381 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 382 TLI->isSlowDivBypassed()) { 383 const DenseMap<unsigned int, unsigned int> &BypassWidths = 384 TLI->getBypassSlowDivWidths(); 385 BasicBlock* BB = &*F.begin(); 386 while (BB != nullptr) { 387 // bypassSlowDivision may create new BBs, but we don't want to reapply the 388 // optimization to those blocks. 389 BasicBlock* Next = BB->getNextNode(); 390 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 391 BB = Next; 392 } 393 } 394 395 // Eliminate blocks that contain only PHI nodes and an 396 // unconditional branch. 397 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 398 399 // llvm.dbg.value is far away from the value then iSel may not be able 400 // handle it properly. iSel will drop llvm.dbg.value if it can not 401 // find a node corresponding to the value. 402 EverMadeChange |= placeDbgValues(F); 403 404 if (!DisableBranchOpts) 405 EverMadeChange |= splitBranchCondition(F); 406 407 // Split some critical edges where one of the sources is an indirect branch, 408 // to help generate sane code for PHIs involving such edges. 409 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 410 411 bool MadeChange = true; 412 while (MadeChange) { 413 MadeChange = false; 414 SeenChainsForSExt.clear(); 415 ValToSExtendedUses.clear(); 416 RemovedInsts.clear(); 417 for (Function::iterator I = F.begin(); I != F.end(); ) { 418 BasicBlock *BB = &*I++; 419 bool ModifiedDTOnIteration = false; 420 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 421 422 // Restart BB iteration if the dominator tree of the Function was changed 423 if (ModifiedDTOnIteration) 424 break; 425 } 426 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 427 MadeChange |= mergeSExts(F); 428 429 // Really free removed instructions during promotion. 430 for (Instruction *I : RemovedInsts) 431 I->deleteValue(); 432 433 EverMadeChange |= MadeChange; 434 } 435 436 SunkAddrs.clear(); 437 438 if (!DisableBranchOpts) { 439 MadeChange = false; 440 SmallPtrSet<BasicBlock*, 8> WorkList; 441 for (BasicBlock &BB : F) { 442 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 443 MadeChange |= ConstantFoldTerminator(&BB, true); 444 if (!MadeChange) continue; 445 446 for (SmallVectorImpl<BasicBlock*>::iterator 447 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 448 if (pred_begin(*II) == pred_end(*II)) 449 WorkList.insert(*II); 450 } 451 452 // Delete the dead blocks and any of their dead successors. 453 MadeChange |= !WorkList.empty(); 454 while (!WorkList.empty()) { 455 BasicBlock *BB = *WorkList.begin(); 456 WorkList.erase(BB); 457 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 458 459 DeleteDeadBlock(BB); 460 461 for (SmallVectorImpl<BasicBlock*>::iterator 462 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 463 if (pred_begin(*II) == pred_end(*II)) 464 WorkList.insert(*II); 465 } 466 467 // Merge pairs of basic blocks with unconditional branches, connected by 468 // a single edge. 469 if (EverMadeChange || MadeChange) 470 MadeChange |= eliminateFallThrough(F); 471 472 EverMadeChange |= MadeChange; 473 } 474 475 if (!DisableGCOpts) { 476 SmallVector<Instruction *, 2> Statepoints; 477 for (BasicBlock &BB : F) 478 for (Instruction &I : BB) 479 if (isStatepoint(I)) 480 Statepoints.push_back(&I); 481 for (auto &I : Statepoints) 482 EverMadeChange |= simplifyOffsetableRelocate(*I); 483 } 484 485 return EverMadeChange; 486 } 487 488 /// Merge basic blocks which are connected by a single edge, where one of the 489 /// basic blocks has a single successor pointing to the other basic block, 490 /// which has a single predecessor. 491 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 492 bool Changed = false; 493 // Scan all of the blocks in the function, except for the entry block. 494 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 495 BasicBlock *BB = &*I++; 496 // If the destination block has a single pred, then this is a trivial 497 // edge, just collapse it. 498 BasicBlock *SinglePred = BB->getSinglePredecessor(); 499 500 // Don't merge if BB's address is taken. 501 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 502 503 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 504 if (Term && !Term->isConditional()) { 505 Changed = true; 506 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 507 // Remember if SinglePred was the entry block of the function. 508 // If so, we will need to move BB back to the entry position. 509 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 510 MergeBasicBlockIntoOnlyPred(BB, nullptr); 511 512 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 513 BB->moveBefore(&BB->getParent()->getEntryBlock()); 514 515 // We have erased a block. Update the iterator. 516 I = BB->getIterator(); 517 } 518 } 519 return Changed; 520 } 521 522 /// Find a destination block from BB if BB is mergeable empty block. 523 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 524 // If this block doesn't end with an uncond branch, ignore it. 525 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 526 if (!BI || !BI->isUnconditional()) 527 return nullptr; 528 529 // If the instruction before the branch (skipping debug info) isn't a phi 530 // node, then other stuff is happening here. 531 BasicBlock::iterator BBI = BI->getIterator(); 532 if (BBI != BB->begin()) { 533 --BBI; 534 while (isa<DbgInfoIntrinsic>(BBI)) { 535 if (BBI == BB->begin()) 536 break; 537 --BBI; 538 } 539 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 540 return nullptr; 541 } 542 543 // Do not break infinite loops. 544 BasicBlock *DestBB = BI->getSuccessor(0); 545 if (DestBB == BB) 546 return nullptr; 547 548 if (!canMergeBlocks(BB, DestBB)) 549 DestBB = nullptr; 550 551 return DestBB; 552 } 553 554 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 555 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 556 /// edges in ways that are non-optimal for isel. Start by eliminating these 557 /// blocks so we can split them the way we want them. 558 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 559 SmallPtrSet<BasicBlock *, 16> Preheaders; 560 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 561 while (!LoopList.empty()) { 562 Loop *L = LoopList.pop_back_val(); 563 LoopList.insert(LoopList.end(), L->begin(), L->end()); 564 if (BasicBlock *Preheader = L->getLoopPreheader()) 565 Preheaders.insert(Preheader); 566 } 567 568 bool MadeChange = false; 569 // Note that this intentionally skips the entry block. 570 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 571 BasicBlock *BB = &*I++; 572 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 573 if (!DestBB || 574 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 575 continue; 576 577 eliminateMostlyEmptyBlock(BB); 578 MadeChange = true; 579 } 580 return MadeChange; 581 } 582 583 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 584 BasicBlock *DestBB, 585 bool isPreheader) { 586 // Do not delete loop preheaders if doing so would create a critical edge. 587 // Loop preheaders can be good locations to spill registers. If the 588 // preheader is deleted and we create a critical edge, registers may be 589 // spilled in the loop body instead. 590 if (!DisablePreheaderProtect && isPreheader && 591 !(BB->getSinglePredecessor() && 592 BB->getSinglePredecessor()->getSingleSuccessor())) 593 return false; 594 595 // Try to skip merging if the unique predecessor of BB is terminated by a 596 // switch or indirect branch instruction, and BB is used as an incoming block 597 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 598 // add COPY instructions in the predecessor of BB instead of BB (if it is not 599 // merged). Note that the critical edge created by merging such blocks wont be 600 // split in MachineSink because the jump table is not analyzable. By keeping 601 // such empty block (BB), ISel will place COPY instructions in BB, not in the 602 // predecessor of BB. 603 BasicBlock *Pred = BB->getUniquePredecessor(); 604 if (!Pred || 605 !(isa<SwitchInst>(Pred->getTerminator()) || 606 isa<IndirectBrInst>(Pred->getTerminator()))) 607 return true; 608 609 if (BB->getTerminator() != BB->getFirstNonPHI()) 610 return true; 611 612 // We use a simple cost heuristic which determine skipping merging is 613 // profitable if the cost of skipping merging is less than the cost of 614 // merging : Cost(skipping merging) < Cost(merging BB), where the 615 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 616 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 617 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 618 // Freq(Pred) / Freq(BB) > 2. 619 // Note that if there are multiple empty blocks sharing the same incoming 620 // value for the PHIs in the DestBB, we consider them together. In such 621 // case, Cost(merging BB) will be the sum of their frequencies. 622 623 if (!isa<PHINode>(DestBB->begin())) 624 return true; 625 626 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 627 628 // Find all other incoming blocks from which incoming values of all PHIs in 629 // DestBB are the same as the ones from BB. 630 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 631 ++PI) { 632 BasicBlock *DestBBPred = *PI; 633 if (DestBBPred == BB) 634 continue; 635 636 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 637 return DestPN.getIncomingValueForBlock(BB) == 638 DestPN.getIncomingValueForBlock(DestBBPred); 639 })) 640 SameIncomingValueBBs.insert(DestBBPred); 641 } 642 643 // See if all BB's incoming values are same as the value from Pred. In this 644 // case, no reason to skip merging because COPYs are expected to be place in 645 // Pred already. 646 if (SameIncomingValueBBs.count(Pred)) 647 return true; 648 649 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 650 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 651 652 for (auto SameValueBB : SameIncomingValueBBs) 653 if (SameValueBB->getUniquePredecessor() == Pred && 654 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 655 BBFreq += BFI->getBlockFreq(SameValueBB); 656 657 return PredFreq.getFrequency() <= 658 BBFreq.getFrequency() * FreqRatioToSkipMerge; 659 } 660 661 /// Return true if we can merge BB into DestBB if there is a single 662 /// unconditional branch between them, and BB contains no other non-phi 663 /// instructions. 664 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 665 const BasicBlock *DestBB) const { 666 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 667 // the successor. If there are more complex condition (e.g. preheaders), 668 // don't mess around with them. 669 for (const PHINode &PN : BB->phis()) { 670 for (const User *U : PN.users()) { 671 const Instruction *UI = cast<Instruction>(U); 672 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 673 return false; 674 // If User is inside DestBB block and it is a PHINode then check 675 // incoming value. If incoming value is not from BB then this is 676 // a complex condition (e.g. preheaders) we want to avoid here. 677 if (UI->getParent() == DestBB) { 678 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 679 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 680 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 681 if (Insn && Insn->getParent() == BB && 682 Insn->getParent() != UPN->getIncomingBlock(I)) 683 return false; 684 } 685 } 686 } 687 } 688 689 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 690 // and DestBB may have conflicting incoming values for the block. If so, we 691 // can't merge the block. 692 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 693 if (!DestBBPN) return true; // no conflict. 694 695 // Collect the preds of BB. 696 SmallPtrSet<const BasicBlock*, 16> BBPreds; 697 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 698 // It is faster to get preds from a PHI than with pred_iterator. 699 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 700 BBPreds.insert(BBPN->getIncomingBlock(i)); 701 } else { 702 BBPreds.insert(pred_begin(BB), pred_end(BB)); 703 } 704 705 // Walk the preds of DestBB. 706 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 707 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 708 if (BBPreds.count(Pred)) { // Common predecessor? 709 for (const PHINode &PN : DestBB->phis()) { 710 const Value *V1 = PN.getIncomingValueForBlock(Pred); 711 const Value *V2 = PN.getIncomingValueForBlock(BB); 712 713 // If V2 is a phi node in BB, look up what the mapped value will be. 714 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 715 if (V2PN->getParent() == BB) 716 V2 = V2PN->getIncomingValueForBlock(Pred); 717 718 // If there is a conflict, bail out. 719 if (V1 != V2) return false; 720 } 721 } 722 } 723 724 return true; 725 } 726 727 /// Eliminate a basic block that has only phi's and an unconditional branch in 728 /// it. 729 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 730 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 731 BasicBlock *DestBB = BI->getSuccessor(0); 732 733 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 734 735 // If the destination block has a single pred, then this is a trivial edge, 736 // just collapse it. 737 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 738 if (SinglePred != DestBB) { 739 // Remember if SinglePred was the entry block of the function. If so, we 740 // will need to move BB back to the entry position. 741 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 742 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 743 744 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 745 BB->moveBefore(&BB->getParent()->getEntryBlock()); 746 747 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 748 return; 749 } 750 } 751 752 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 753 // to handle the new incoming edges it is about to have. 754 for (PHINode &PN : DestBB->phis()) { 755 // Remove the incoming value for BB, and remember it. 756 Value *InVal = PN.removeIncomingValue(BB, false); 757 758 // Two options: either the InVal is a phi node defined in BB or it is some 759 // value that dominates BB. 760 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 761 if (InValPhi && InValPhi->getParent() == BB) { 762 // Add all of the input values of the input PHI as inputs of this phi. 763 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 764 PN.addIncoming(InValPhi->getIncomingValue(i), 765 InValPhi->getIncomingBlock(i)); 766 } else { 767 // Otherwise, add one instance of the dominating value for each edge that 768 // we will be adding. 769 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 770 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 771 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 772 } else { 773 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 774 PN.addIncoming(InVal, *PI); 775 } 776 } 777 } 778 779 // The PHIs are now updated, change everything that refers to BB to use 780 // DestBB and remove BB. 781 BB->replaceAllUsesWith(DestBB); 782 BB->eraseFromParent(); 783 ++NumBlocksElim; 784 785 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 786 } 787 788 // Computes a map of base pointer relocation instructions to corresponding 789 // derived pointer relocation instructions given a vector of all relocate calls 790 static void computeBaseDerivedRelocateMap( 791 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 792 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 793 &RelocateInstMap) { 794 // Collect information in two maps: one primarily for locating the base object 795 // while filling the second map; the second map is the final structure holding 796 // a mapping between Base and corresponding Derived relocate calls 797 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 798 for (auto *ThisRelocate : AllRelocateCalls) { 799 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 800 ThisRelocate->getDerivedPtrIndex()); 801 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 802 } 803 for (auto &Item : RelocateIdxMap) { 804 std::pair<unsigned, unsigned> Key = Item.first; 805 if (Key.first == Key.second) 806 // Base relocation: nothing to insert 807 continue; 808 809 GCRelocateInst *I = Item.second; 810 auto BaseKey = std::make_pair(Key.first, Key.first); 811 812 // We're iterating over RelocateIdxMap so we cannot modify it. 813 auto MaybeBase = RelocateIdxMap.find(BaseKey); 814 if (MaybeBase == RelocateIdxMap.end()) 815 // TODO: We might want to insert a new base object relocate and gep off 816 // that, if there are enough derived object relocates. 817 continue; 818 819 RelocateInstMap[MaybeBase->second].push_back(I); 820 } 821 } 822 823 // Accepts a GEP and extracts the operands into a vector provided they're all 824 // small integer constants 825 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 826 SmallVectorImpl<Value *> &OffsetV) { 827 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 828 // Only accept small constant integer operands 829 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 830 if (!Op || Op->getZExtValue() > 20) 831 return false; 832 } 833 834 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 835 OffsetV.push_back(GEP->getOperand(i)); 836 return true; 837 } 838 839 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 840 // replace, computes a replacement, and affects it. 841 static bool 842 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 843 const SmallVectorImpl<GCRelocateInst *> &Targets) { 844 bool MadeChange = false; 845 // We must ensure the relocation of derived pointer is defined after 846 // relocation of base pointer. If we find a relocation corresponding to base 847 // defined earlier than relocation of base then we move relocation of base 848 // right before found relocation. We consider only relocation in the same 849 // basic block as relocation of base. Relocations from other basic block will 850 // be skipped by optimization and we do not care about them. 851 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 852 &*R != RelocatedBase; ++R) 853 if (auto RI = dyn_cast<GCRelocateInst>(R)) 854 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 855 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 856 RelocatedBase->moveBefore(RI); 857 break; 858 } 859 860 for (GCRelocateInst *ToReplace : Targets) { 861 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 862 "Not relocating a derived object of the original base object"); 863 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 864 // A duplicate relocate call. TODO: coalesce duplicates. 865 continue; 866 } 867 868 if (RelocatedBase->getParent() != ToReplace->getParent()) { 869 // Base and derived relocates are in different basic blocks. 870 // In this case transform is only valid when base dominates derived 871 // relocate. However it would be too expensive to check dominance 872 // for each such relocate, so we skip the whole transformation. 873 continue; 874 } 875 876 Value *Base = ToReplace->getBasePtr(); 877 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 878 if (!Derived || Derived->getPointerOperand() != Base) 879 continue; 880 881 SmallVector<Value *, 2> OffsetV; 882 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 883 continue; 884 885 // Create a Builder and replace the target callsite with a gep 886 assert(RelocatedBase->getNextNode() && 887 "Should always have one since it's not a terminator"); 888 889 // Insert after RelocatedBase 890 IRBuilder<> Builder(RelocatedBase->getNextNode()); 891 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 892 893 // If gc_relocate does not match the actual type, cast it to the right type. 894 // In theory, there must be a bitcast after gc_relocate if the type does not 895 // match, and we should reuse it to get the derived pointer. But it could be 896 // cases like this: 897 // bb1: 898 // ... 899 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 900 // br label %merge 901 // 902 // bb2: 903 // ... 904 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 905 // br label %merge 906 // 907 // merge: 908 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 909 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 910 // 911 // In this case, we can not find the bitcast any more. So we insert a new bitcast 912 // no matter there is already one or not. In this way, we can handle all cases, and 913 // the extra bitcast should be optimized away in later passes. 914 Value *ActualRelocatedBase = RelocatedBase; 915 if (RelocatedBase->getType() != Base->getType()) { 916 ActualRelocatedBase = 917 Builder.CreateBitCast(RelocatedBase, Base->getType()); 918 } 919 Value *Replacement = Builder.CreateGEP( 920 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 921 Replacement->takeName(ToReplace); 922 // If the newly generated derived pointer's type does not match the original derived 923 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 924 Value *ActualReplacement = Replacement; 925 if (Replacement->getType() != ToReplace->getType()) { 926 ActualReplacement = 927 Builder.CreateBitCast(Replacement, ToReplace->getType()); 928 } 929 ToReplace->replaceAllUsesWith(ActualReplacement); 930 ToReplace->eraseFromParent(); 931 932 MadeChange = true; 933 } 934 return MadeChange; 935 } 936 937 // Turns this: 938 // 939 // %base = ... 940 // %ptr = gep %base + 15 941 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 942 // %base' = relocate(%tok, i32 4, i32 4) 943 // %ptr' = relocate(%tok, i32 4, i32 5) 944 // %val = load %ptr' 945 // 946 // into this: 947 // 948 // %base = ... 949 // %ptr = gep %base + 15 950 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 951 // %base' = gc.relocate(%tok, i32 4, i32 4) 952 // %ptr' = gep %base' + 15 953 // %val = load %ptr' 954 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 955 bool MadeChange = false; 956 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 957 958 for (auto *U : I.users()) 959 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 960 // Collect all the relocate calls associated with a statepoint 961 AllRelocateCalls.push_back(Relocate); 962 963 // We need atleast one base pointer relocation + one derived pointer 964 // relocation to mangle 965 if (AllRelocateCalls.size() < 2) 966 return false; 967 968 // RelocateInstMap is a mapping from the base relocate instruction to the 969 // corresponding derived relocate instructions 970 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 971 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 972 if (RelocateInstMap.empty()) 973 return false; 974 975 for (auto &Item : RelocateInstMap) 976 // Item.first is the RelocatedBase to offset against 977 // Item.second is the vector of Targets to replace 978 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 979 return MadeChange; 980 } 981 982 /// SinkCast - Sink the specified cast instruction into its user blocks 983 static bool SinkCast(CastInst *CI) { 984 BasicBlock *DefBB = CI->getParent(); 985 986 /// InsertedCasts - Only insert a cast in each block once. 987 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 988 989 bool MadeChange = false; 990 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 991 UI != E; ) { 992 Use &TheUse = UI.getUse(); 993 Instruction *User = cast<Instruction>(*UI); 994 995 // Figure out which BB this cast is used in. For PHI's this is the 996 // appropriate predecessor block. 997 BasicBlock *UserBB = User->getParent(); 998 if (PHINode *PN = dyn_cast<PHINode>(User)) { 999 UserBB = PN->getIncomingBlock(TheUse); 1000 } 1001 1002 // Preincrement use iterator so we don't invalidate it. 1003 ++UI; 1004 1005 // The first insertion point of a block containing an EH pad is after the 1006 // pad. If the pad is the user, we cannot sink the cast past the pad. 1007 if (User->isEHPad()) 1008 continue; 1009 1010 // If the block selected to receive the cast is an EH pad that does not 1011 // allow non-PHI instructions before the terminator, we can't sink the 1012 // cast. 1013 if (UserBB->getTerminator()->isEHPad()) 1014 continue; 1015 1016 // If this user is in the same block as the cast, don't change the cast. 1017 if (UserBB == DefBB) continue; 1018 1019 // If we have already inserted a cast into this block, use it. 1020 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1021 1022 if (!InsertedCast) { 1023 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1024 assert(InsertPt != UserBB->end()); 1025 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1026 CI->getType(), "", &*InsertPt); 1027 } 1028 1029 // Replace a use of the cast with a use of the new cast. 1030 TheUse = InsertedCast; 1031 MadeChange = true; 1032 ++NumCastUses; 1033 } 1034 1035 // If we removed all uses, nuke the cast. 1036 if (CI->use_empty()) { 1037 salvageDebugInfo(*CI); 1038 CI->eraseFromParent(); 1039 MadeChange = true; 1040 } 1041 1042 return MadeChange; 1043 } 1044 1045 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1046 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1047 /// reduce the number of virtual registers that must be created and coalesced. 1048 /// 1049 /// Return true if any changes are made. 1050 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1051 const DataLayout &DL) { 1052 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1053 // than sinking only nop casts, but is helpful on some platforms. 1054 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1055 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1056 ASC->getDestAddressSpace())) 1057 return false; 1058 } 1059 1060 // If this is a noop copy, 1061 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1062 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1063 1064 // This is an fp<->int conversion? 1065 if (SrcVT.isInteger() != DstVT.isInteger()) 1066 return false; 1067 1068 // If this is an extension, it will be a zero or sign extension, which 1069 // isn't a noop. 1070 if (SrcVT.bitsLT(DstVT)) return false; 1071 1072 // If these values will be promoted, find out what they will be promoted 1073 // to. This helps us consider truncates on PPC as noop copies when they 1074 // are. 1075 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1076 TargetLowering::TypePromoteInteger) 1077 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1078 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1079 TargetLowering::TypePromoteInteger) 1080 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1081 1082 // If, after promotion, these are the same types, this is a noop copy. 1083 if (SrcVT != DstVT) 1084 return false; 1085 1086 return SinkCast(CI); 1087 } 1088 1089 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1090 /// possible. 1091 /// 1092 /// Return true if any changes were made. 1093 static bool CombineUAddWithOverflow(CmpInst *CI) { 1094 Value *A, *B; 1095 Instruction *AddI; 1096 if (!match(CI, 1097 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1098 return false; 1099 1100 Type *Ty = AddI->getType(); 1101 if (!isa<IntegerType>(Ty)) 1102 return false; 1103 1104 // We don't want to move around uses of condition values this late, so we we 1105 // check if it is legal to create the call to the intrinsic in the basic 1106 // block containing the icmp: 1107 1108 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1109 return false; 1110 1111 #ifndef NDEBUG 1112 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1113 // for now: 1114 if (AddI->hasOneUse()) 1115 assert(*AddI->user_begin() == CI && "expected!"); 1116 #endif 1117 1118 Module *M = CI->getModule(); 1119 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1120 1121 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1122 1123 auto *UAddWithOverflow = 1124 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1125 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1126 auto *Overflow = 1127 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1128 1129 CI->replaceAllUsesWith(Overflow); 1130 AddI->replaceAllUsesWith(UAdd); 1131 CI->eraseFromParent(); 1132 AddI->eraseFromParent(); 1133 return true; 1134 } 1135 1136 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1137 /// registers that must be created and coalesced. This is a clear win except on 1138 /// targets with multiple condition code registers (PowerPC), where it might 1139 /// lose; some adjustment may be wanted there. 1140 /// 1141 /// Return true if any changes are made. 1142 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1143 BasicBlock *DefBB = CI->getParent(); 1144 1145 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1146 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1147 return false; 1148 1149 // Only insert a cmp in each block once. 1150 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1151 1152 bool MadeChange = false; 1153 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1154 UI != E; ) { 1155 Use &TheUse = UI.getUse(); 1156 Instruction *User = cast<Instruction>(*UI); 1157 1158 // Preincrement use iterator so we don't invalidate it. 1159 ++UI; 1160 1161 // Don't bother for PHI nodes. 1162 if (isa<PHINode>(User)) 1163 continue; 1164 1165 // Figure out which BB this cmp is used in. 1166 BasicBlock *UserBB = User->getParent(); 1167 1168 // If this user is in the same block as the cmp, don't change the cmp. 1169 if (UserBB == DefBB) continue; 1170 1171 // If we have already inserted a cmp into this block, use it. 1172 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1173 1174 if (!InsertedCmp) { 1175 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1176 assert(InsertPt != UserBB->end()); 1177 InsertedCmp = 1178 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1179 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1180 // Propagate the debug info. 1181 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1182 } 1183 1184 // Replace a use of the cmp with a use of the new cmp. 1185 TheUse = InsertedCmp; 1186 MadeChange = true; 1187 ++NumCmpUses; 1188 } 1189 1190 // If we removed all uses, nuke the cmp. 1191 if (CI->use_empty()) { 1192 CI->eraseFromParent(); 1193 MadeChange = true; 1194 } 1195 1196 return MadeChange; 1197 } 1198 1199 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1200 if (SinkCmpExpression(CI, TLI)) 1201 return true; 1202 1203 if (CombineUAddWithOverflow(CI)) 1204 return true; 1205 1206 return false; 1207 } 1208 1209 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1210 /// used in a compare to allow isel to generate better code for targets where 1211 /// this operation can be combined. 1212 /// 1213 /// Return true if any changes are made. 1214 static bool sinkAndCmp0Expression(Instruction *AndI, 1215 const TargetLowering &TLI, 1216 SetOfInstrs &InsertedInsts) { 1217 // Double-check that we're not trying to optimize an instruction that was 1218 // already optimized by some other part of this pass. 1219 assert(!InsertedInsts.count(AndI) && 1220 "Attempting to optimize already optimized and instruction"); 1221 (void) InsertedInsts; 1222 1223 // Nothing to do for single use in same basic block. 1224 if (AndI->hasOneUse() && 1225 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1226 return false; 1227 1228 // Try to avoid cases where sinking/duplicating is likely to increase register 1229 // pressure. 1230 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1231 !isa<ConstantInt>(AndI->getOperand(1)) && 1232 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1233 return false; 1234 1235 for (auto *U : AndI->users()) { 1236 Instruction *User = cast<Instruction>(U); 1237 1238 // Only sink for and mask feeding icmp with 0. 1239 if (!isa<ICmpInst>(User)) 1240 return false; 1241 1242 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1243 if (!CmpC || !CmpC->isZero()) 1244 return false; 1245 } 1246 1247 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1248 return false; 1249 1250 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1251 DEBUG(AndI->getParent()->dump()); 1252 1253 // Push the 'and' into the same block as the icmp 0. There should only be 1254 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1255 // others, so we don't need to keep track of which BBs we insert into. 1256 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1257 UI != E; ) { 1258 Use &TheUse = UI.getUse(); 1259 Instruction *User = cast<Instruction>(*UI); 1260 1261 // Preincrement use iterator so we don't invalidate it. 1262 ++UI; 1263 1264 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1265 1266 // Keep the 'and' in the same place if the use is already in the same block. 1267 Instruction *InsertPt = 1268 User->getParent() == AndI->getParent() ? AndI : User; 1269 Instruction *InsertedAnd = 1270 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1271 AndI->getOperand(1), "", InsertPt); 1272 // Propagate the debug info. 1273 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1274 1275 // Replace a use of the 'and' with a use of the new 'and'. 1276 TheUse = InsertedAnd; 1277 ++NumAndUses; 1278 DEBUG(User->getParent()->dump()); 1279 } 1280 1281 // We removed all uses, nuke the and. 1282 AndI->eraseFromParent(); 1283 return true; 1284 } 1285 1286 /// Check if the candidates could be combined with a shift instruction, which 1287 /// includes: 1288 /// 1. Truncate instruction 1289 /// 2. And instruction and the imm is a mask of the low bits: 1290 /// imm & (imm+1) == 0 1291 static bool isExtractBitsCandidateUse(Instruction *User) { 1292 if (!isa<TruncInst>(User)) { 1293 if (User->getOpcode() != Instruction::And || 1294 !isa<ConstantInt>(User->getOperand(1))) 1295 return false; 1296 1297 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1298 1299 if ((Cimm & (Cimm + 1)).getBoolValue()) 1300 return false; 1301 } 1302 return true; 1303 } 1304 1305 /// Sink both shift and truncate instruction to the use of truncate's BB. 1306 static bool 1307 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1308 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1309 const TargetLowering &TLI, const DataLayout &DL) { 1310 BasicBlock *UserBB = User->getParent(); 1311 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1312 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1313 bool MadeChange = false; 1314 1315 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1316 TruncE = TruncI->user_end(); 1317 TruncUI != TruncE;) { 1318 1319 Use &TruncTheUse = TruncUI.getUse(); 1320 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1321 // Preincrement use iterator so we don't invalidate it. 1322 1323 ++TruncUI; 1324 1325 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1326 if (!ISDOpcode) 1327 continue; 1328 1329 // If the use is actually a legal node, there will not be an 1330 // implicit truncate. 1331 // FIXME: always querying the result type is just an 1332 // approximation; some nodes' legality is determined by the 1333 // operand or other means. There's no good way to find out though. 1334 if (TLI.isOperationLegalOrCustom( 1335 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1336 continue; 1337 1338 // Don't bother for PHI nodes. 1339 if (isa<PHINode>(TruncUser)) 1340 continue; 1341 1342 BasicBlock *TruncUserBB = TruncUser->getParent(); 1343 1344 if (UserBB == TruncUserBB) 1345 continue; 1346 1347 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1348 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1349 1350 if (!InsertedShift && !InsertedTrunc) { 1351 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1352 assert(InsertPt != TruncUserBB->end()); 1353 // Sink the shift 1354 if (ShiftI->getOpcode() == Instruction::AShr) 1355 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1356 "", &*InsertPt); 1357 else 1358 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1359 "", &*InsertPt); 1360 1361 // Sink the trunc 1362 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1363 TruncInsertPt++; 1364 assert(TruncInsertPt != TruncUserBB->end()); 1365 1366 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1367 TruncI->getType(), "", &*TruncInsertPt); 1368 1369 MadeChange = true; 1370 1371 TruncTheUse = InsertedTrunc; 1372 } 1373 } 1374 return MadeChange; 1375 } 1376 1377 /// Sink the shift *right* instruction into user blocks if the uses could 1378 /// potentially be combined with this shift instruction and generate BitExtract 1379 /// instruction. It will only be applied if the architecture supports BitExtract 1380 /// instruction. Here is an example: 1381 /// BB1: 1382 /// %x.extract.shift = lshr i64 %arg1, 32 1383 /// BB2: 1384 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1385 /// ==> 1386 /// 1387 /// BB2: 1388 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1389 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1390 /// 1391 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1392 /// instruction. 1393 /// Return true if any changes are made. 1394 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1395 const TargetLowering &TLI, 1396 const DataLayout &DL) { 1397 BasicBlock *DefBB = ShiftI->getParent(); 1398 1399 /// Only insert instructions in each block once. 1400 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1401 1402 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1403 1404 bool MadeChange = false; 1405 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1406 UI != E;) { 1407 Use &TheUse = UI.getUse(); 1408 Instruction *User = cast<Instruction>(*UI); 1409 // Preincrement use iterator so we don't invalidate it. 1410 ++UI; 1411 1412 // Don't bother for PHI nodes. 1413 if (isa<PHINode>(User)) 1414 continue; 1415 1416 if (!isExtractBitsCandidateUse(User)) 1417 continue; 1418 1419 BasicBlock *UserBB = User->getParent(); 1420 1421 if (UserBB == DefBB) { 1422 // If the shift and truncate instruction are in the same BB. The use of 1423 // the truncate(TruncUse) may still introduce another truncate if not 1424 // legal. In this case, we would like to sink both shift and truncate 1425 // instruction to the BB of TruncUse. 1426 // for example: 1427 // BB1: 1428 // i64 shift.result = lshr i64 opnd, imm 1429 // trunc.result = trunc shift.result to i16 1430 // 1431 // BB2: 1432 // ----> We will have an implicit truncate here if the architecture does 1433 // not have i16 compare. 1434 // cmp i16 trunc.result, opnd2 1435 // 1436 if (isa<TruncInst>(User) && shiftIsLegal 1437 // If the type of the truncate is legal, no trucate will be 1438 // introduced in other basic blocks. 1439 && 1440 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1441 MadeChange = 1442 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1443 1444 continue; 1445 } 1446 // If we have already inserted a shift into this block, use it. 1447 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1448 1449 if (!InsertedShift) { 1450 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1451 assert(InsertPt != UserBB->end()); 1452 1453 if (ShiftI->getOpcode() == Instruction::AShr) 1454 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1455 "", &*InsertPt); 1456 else 1457 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1458 "", &*InsertPt); 1459 1460 MadeChange = true; 1461 } 1462 1463 // Replace a use of the shift with a use of the new shift. 1464 TheUse = InsertedShift; 1465 } 1466 1467 // If we removed all uses, nuke the shift. 1468 if (ShiftI->use_empty()) 1469 ShiftI->eraseFromParent(); 1470 1471 return MadeChange; 1472 } 1473 1474 /// If counting leading or trailing zeros is an expensive operation and a zero 1475 /// input is defined, add a check for zero to avoid calling the intrinsic. 1476 /// 1477 /// We want to transform: 1478 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1479 /// 1480 /// into: 1481 /// entry: 1482 /// %cmpz = icmp eq i64 %A, 0 1483 /// br i1 %cmpz, label %cond.end, label %cond.false 1484 /// cond.false: 1485 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1486 /// br label %cond.end 1487 /// cond.end: 1488 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1489 /// 1490 /// If the transform is performed, return true and set ModifiedDT to true. 1491 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1492 const TargetLowering *TLI, 1493 const DataLayout *DL, 1494 bool &ModifiedDT) { 1495 if (!TLI || !DL) 1496 return false; 1497 1498 // If a zero input is undefined, it doesn't make sense to despeculate that. 1499 if (match(CountZeros->getOperand(1), m_One())) 1500 return false; 1501 1502 // If it's cheap to speculate, there's nothing to do. 1503 auto IntrinsicID = CountZeros->getIntrinsicID(); 1504 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1505 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1506 return false; 1507 1508 // Only handle legal scalar cases. Anything else requires too much work. 1509 Type *Ty = CountZeros->getType(); 1510 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1511 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1512 return false; 1513 1514 // The intrinsic will be sunk behind a compare against zero and branch. 1515 BasicBlock *StartBlock = CountZeros->getParent(); 1516 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1517 1518 // Create another block after the count zero intrinsic. A PHI will be added 1519 // in this block to select the result of the intrinsic or the bit-width 1520 // constant if the input to the intrinsic is zero. 1521 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1522 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1523 1524 // Set up a builder to create a compare, conditional branch, and PHI. 1525 IRBuilder<> Builder(CountZeros->getContext()); 1526 Builder.SetInsertPoint(StartBlock->getTerminator()); 1527 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1528 1529 // Replace the unconditional branch that was created by the first split with 1530 // a compare against zero and a conditional branch. 1531 Value *Zero = Constant::getNullValue(Ty); 1532 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1533 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1534 StartBlock->getTerminator()->eraseFromParent(); 1535 1536 // Create a PHI in the end block to select either the output of the intrinsic 1537 // or the bit width of the operand. 1538 Builder.SetInsertPoint(&EndBlock->front()); 1539 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1540 CountZeros->replaceAllUsesWith(PN); 1541 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1542 PN->addIncoming(BitWidth, StartBlock); 1543 PN->addIncoming(CountZeros, CallBlock); 1544 1545 // We are explicitly handling the zero case, so we can set the intrinsic's 1546 // undefined zero argument to 'true'. This will also prevent reprocessing the 1547 // intrinsic; we only despeculate when a zero input is defined. 1548 CountZeros->setArgOperand(1, Builder.getTrue()); 1549 ModifiedDT = true; 1550 return true; 1551 } 1552 1553 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1554 BasicBlock *BB = CI->getParent(); 1555 1556 // Lower inline assembly if we can. 1557 // If we found an inline asm expession, and if the target knows how to 1558 // lower it to normal LLVM code, do so now. 1559 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1560 if (TLI->ExpandInlineAsm(CI)) { 1561 // Avoid invalidating the iterator. 1562 CurInstIterator = BB->begin(); 1563 // Avoid processing instructions out of order, which could cause 1564 // reuse before a value is defined. 1565 SunkAddrs.clear(); 1566 return true; 1567 } 1568 // Sink address computing for memory operands into the block. 1569 if (optimizeInlineAsmInst(CI)) 1570 return true; 1571 } 1572 1573 // Align the pointer arguments to this call if the target thinks it's a good 1574 // idea 1575 unsigned MinSize, PrefAlign; 1576 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1577 for (auto &Arg : CI->arg_operands()) { 1578 // We want to align both objects whose address is used directly and 1579 // objects whose address is used in casts and GEPs, though it only makes 1580 // sense for GEPs if the offset is a multiple of the desired alignment and 1581 // if size - offset meets the size threshold. 1582 if (!Arg->getType()->isPointerTy()) 1583 continue; 1584 APInt Offset(DL->getPointerSizeInBits( 1585 cast<PointerType>(Arg->getType())->getAddressSpace()), 1586 0); 1587 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1588 uint64_t Offset2 = Offset.getLimitedValue(); 1589 if ((Offset2 & (PrefAlign-1)) != 0) 1590 continue; 1591 AllocaInst *AI; 1592 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1593 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1594 AI->setAlignment(PrefAlign); 1595 // Global variables can only be aligned if they are defined in this 1596 // object (i.e. they are uniquely initialized in this object), and 1597 // over-aligning global variables that have an explicit section is 1598 // forbidden. 1599 GlobalVariable *GV; 1600 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1601 GV->getPointerAlignment(*DL) < PrefAlign && 1602 DL->getTypeAllocSize(GV->getValueType()) >= 1603 MinSize + Offset2) 1604 GV->setAlignment(PrefAlign); 1605 } 1606 // If this is a memcpy (or similar) then we may be able to improve the 1607 // alignment 1608 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1609 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1610 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1611 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1612 if (Align > MI->getAlignment()) 1613 MI->setAlignment(Align); 1614 } 1615 } 1616 1617 // If we have a cold call site, try to sink addressing computation into the 1618 // cold block. This interacts with our handling for loads and stores to 1619 // ensure that we can fold all uses of a potential addressing computation 1620 // into their uses. TODO: generalize this to work over profiling data 1621 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1622 for (auto &Arg : CI->arg_operands()) { 1623 if (!Arg->getType()->isPointerTy()) 1624 continue; 1625 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1626 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1627 } 1628 1629 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1630 if (II) { 1631 switch (II->getIntrinsicID()) { 1632 default: break; 1633 case Intrinsic::objectsize: { 1634 // Lower all uses of llvm.objectsize.* 1635 ConstantInt *RetVal = 1636 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1637 // Substituting this can cause recursive simplifications, which can 1638 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1639 // this 1640 // happens. 1641 Value *CurValue = &*CurInstIterator; 1642 WeakTrackingVH IterHandle(CurValue); 1643 1644 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1645 1646 // If the iterator instruction was recursively deleted, start over at the 1647 // start of the block. 1648 if (IterHandle != CurValue) { 1649 CurInstIterator = BB->begin(); 1650 SunkAddrs.clear(); 1651 } 1652 return true; 1653 } 1654 case Intrinsic::aarch64_stlxr: 1655 case Intrinsic::aarch64_stxr: { 1656 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1657 if (!ExtVal || !ExtVal->hasOneUse() || 1658 ExtVal->getParent() == CI->getParent()) 1659 return false; 1660 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1661 ExtVal->moveBefore(CI); 1662 // Mark this instruction as "inserted by CGP", so that other 1663 // optimizations don't touch it. 1664 InsertedInsts.insert(ExtVal); 1665 return true; 1666 } 1667 case Intrinsic::invariant_group_barrier: 1668 II->replaceAllUsesWith(II->getArgOperand(0)); 1669 II->eraseFromParent(); 1670 return true; 1671 1672 case Intrinsic::cttz: 1673 case Intrinsic::ctlz: 1674 // If counting zeros is expensive, try to avoid it. 1675 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1676 } 1677 1678 if (TLI) { 1679 SmallVector<Value*, 2> PtrOps; 1680 Type *AccessTy; 1681 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1682 while (!PtrOps.empty()) { 1683 Value *PtrVal = PtrOps.pop_back_val(); 1684 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1685 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1686 return true; 1687 } 1688 } 1689 } 1690 1691 // From here on out we're working with named functions. 1692 if (!CI->getCalledFunction()) return false; 1693 1694 // Lower all default uses of _chk calls. This is very similar 1695 // to what InstCombineCalls does, but here we are only lowering calls 1696 // to fortified library functions (e.g. __memcpy_chk) that have the default 1697 // "don't know" as the objectsize. Anything else should be left alone. 1698 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1699 if (Value *V = Simplifier.optimizeCall(CI)) { 1700 CI->replaceAllUsesWith(V); 1701 CI->eraseFromParent(); 1702 return true; 1703 } 1704 1705 return false; 1706 } 1707 1708 /// Look for opportunities to duplicate return instructions to the predecessor 1709 /// to enable tail call optimizations. The case it is currently looking for is: 1710 /// @code 1711 /// bb0: 1712 /// %tmp0 = tail call i32 @f0() 1713 /// br label %return 1714 /// bb1: 1715 /// %tmp1 = tail call i32 @f1() 1716 /// br label %return 1717 /// bb2: 1718 /// %tmp2 = tail call i32 @f2() 1719 /// br label %return 1720 /// return: 1721 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1722 /// ret i32 %retval 1723 /// @endcode 1724 /// 1725 /// => 1726 /// 1727 /// @code 1728 /// bb0: 1729 /// %tmp0 = tail call i32 @f0() 1730 /// ret i32 %tmp0 1731 /// bb1: 1732 /// %tmp1 = tail call i32 @f1() 1733 /// ret i32 %tmp1 1734 /// bb2: 1735 /// %tmp2 = tail call i32 @f2() 1736 /// ret i32 %tmp2 1737 /// @endcode 1738 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1739 if (!TLI) 1740 return false; 1741 1742 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1743 if (!RetI) 1744 return false; 1745 1746 PHINode *PN = nullptr; 1747 BitCastInst *BCI = nullptr; 1748 Value *V = RetI->getReturnValue(); 1749 if (V) { 1750 BCI = dyn_cast<BitCastInst>(V); 1751 if (BCI) 1752 V = BCI->getOperand(0); 1753 1754 PN = dyn_cast<PHINode>(V); 1755 if (!PN) 1756 return false; 1757 } 1758 1759 if (PN && PN->getParent() != BB) 1760 return false; 1761 1762 // Make sure there are no instructions between the PHI and return, or that the 1763 // return is the first instruction in the block. 1764 if (PN) { 1765 BasicBlock::iterator BI = BB->begin(); 1766 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1767 if (&*BI == BCI) 1768 // Also skip over the bitcast. 1769 ++BI; 1770 if (&*BI != RetI) 1771 return false; 1772 } else { 1773 BasicBlock::iterator BI = BB->begin(); 1774 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1775 if (&*BI != RetI) 1776 return false; 1777 } 1778 1779 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1780 /// call. 1781 const Function *F = BB->getParent(); 1782 SmallVector<CallInst*, 4> TailCalls; 1783 if (PN) { 1784 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1785 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1786 // Make sure the phi value is indeed produced by the tail call. 1787 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1788 TLI->mayBeEmittedAsTailCall(CI) && 1789 attributesPermitTailCall(F, CI, RetI, *TLI)) 1790 TailCalls.push_back(CI); 1791 } 1792 } else { 1793 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1794 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1795 if (!VisitedBBs.insert(*PI).second) 1796 continue; 1797 1798 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1799 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1800 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1801 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1802 if (RI == RE) 1803 continue; 1804 1805 CallInst *CI = dyn_cast<CallInst>(&*RI); 1806 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1807 attributesPermitTailCall(F, CI, RetI, *TLI)) 1808 TailCalls.push_back(CI); 1809 } 1810 } 1811 1812 bool Changed = false; 1813 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1814 CallInst *CI = TailCalls[i]; 1815 CallSite CS(CI); 1816 1817 // Conservatively require the attributes of the call to match those of the 1818 // return. Ignore noalias because it doesn't affect the call sequence. 1819 AttributeList CalleeAttrs = CS.getAttributes(); 1820 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1821 .removeAttribute(Attribute::NoAlias) != 1822 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1823 .removeAttribute(Attribute::NoAlias)) 1824 continue; 1825 1826 // Make sure the call instruction is followed by an unconditional branch to 1827 // the return block. 1828 BasicBlock *CallBB = CI->getParent(); 1829 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1830 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1831 continue; 1832 1833 // Duplicate the return into CallBB. 1834 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1835 ModifiedDT = Changed = true; 1836 ++NumRetsDup; 1837 } 1838 1839 // If we eliminated all predecessors of the block, delete the block now. 1840 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1841 BB->eraseFromParent(); 1842 1843 return Changed; 1844 } 1845 1846 //===----------------------------------------------------------------------===// 1847 // Memory Optimization 1848 //===----------------------------------------------------------------------===// 1849 1850 namespace { 1851 1852 /// This is an extended version of TargetLowering::AddrMode 1853 /// which holds actual Value*'s for register values. 1854 struct ExtAddrMode : public TargetLowering::AddrMode { 1855 Value *BaseReg = nullptr; 1856 Value *ScaledReg = nullptr; 1857 Value *OriginalValue = nullptr; 1858 1859 enum FieldName { 1860 NoField = 0x00, 1861 BaseRegField = 0x01, 1862 BaseGVField = 0x02, 1863 BaseOffsField = 0x04, 1864 ScaledRegField = 0x08, 1865 ScaleField = 0x10, 1866 MultipleFields = 0xff 1867 }; 1868 1869 ExtAddrMode() = default; 1870 1871 void print(raw_ostream &OS) const; 1872 void dump() const; 1873 1874 FieldName compare(const ExtAddrMode &other) { 1875 // First check that the types are the same on each field, as differing types 1876 // is something we can't cope with later on. 1877 if (BaseReg && other.BaseReg && 1878 BaseReg->getType() != other.BaseReg->getType()) 1879 return MultipleFields; 1880 if (BaseGV && other.BaseGV && 1881 BaseGV->getType() != other.BaseGV->getType()) 1882 return MultipleFields; 1883 if (ScaledReg && other.ScaledReg && 1884 ScaledReg->getType() != other.ScaledReg->getType()) 1885 return MultipleFields; 1886 1887 // Check each field to see if it differs. 1888 unsigned Result = NoField; 1889 if (BaseReg != other.BaseReg) 1890 Result |= BaseRegField; 1891 if (BaseGV != other.BaseGV) 1892 Result |= BaseGVField; 1893 if (BaseOffs != other.BaseOffs) 1894 Result |= BaseOffsField; 1895 if (ScaledReg != other.ScaledReg) 1896 Result |= ScaledRegField; 1897 // Don't count 0 as being a different scale, because that actually means 1898 // unscaled (which will already be counted by having no ScaledReg). 1899 if (Scale && other.Scale && Scale != other.Scale) 1900 Result |= ScaleField; 1901 1902 if (countPopulation(Result) > 1) 1903 return MultipleFields; 1904 else 1905 return static_cast<FieldName>(Result); 1906 } 1907 1908 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1909 // with no offset. 1910 bool isTrivial() { 1911 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1912 // trivial if at most one of these terms is nonzero, except that BaseGV and 1913 // BaseReg both being zero actually means a null pointer value, which we 1914 // consider to be 'non-zero' here. 1915 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1916 } 1917 1918 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1919 switch (Field) { 1920 default: 1921 return nullptr; 1922 case BaseRegField: 1923 return BaseReg; 1924 case BaseGVField: 1925 return BaseGV; 1926 case ScaledRegField: 1927 return ScaledReg; 1928 case BaseOffsField: 1929 return ConstantInt::get(IntPtrTy, BaseOffs); 1930 } 1931 } 1932 1933 void SetCombinedField(FieldName Field, Value *V, 1934 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1935 switch (Field) { 1936 default: 1937 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1938 break; 1939 case ExtAddrMode::BaseRegField: 1940 BaseReg = V; 1941 break; 1942 case ExtAddrMode::BaseGVField: 1943 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1944 // in the BaseReg field. 1945 assert(BaseReg == nullptr); 1946 BaseReg = V; 1947 BaseGV = nullptr; 1948 break; 1949 case ExtAddrMode::ScaledRegField: 1950 ScaledReg = V; 1951 // If we have a mix of scaled and unscaled addrmodes then we want scale 1952 // to be the scale and not zero. 1953 if (!Scale) 1954 for (const ExtAddrMode &AM : AddrModes) 1955 if (AM.Scale) { 1956 Scale = AM.Scale; 1957 break; 1958 } 1959 break; 1960 case ExtAddrMode::BaseOffsField: 1961 // The offset is no longer a constant, so it goes in ScaledReg with a 1962 // scale of 1. 1963 assert(ScaledReg == nullptr); 1964 ScaledReg = V; 1965 Scale = 1; 1966 BaseOffs = 0; 1967 break; 1968 } 1969 } 1970 }; 1971 1972 } // end anonymous namespace 1973 1974 #ifndef NDEBUG 1975 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1976 AM.print(OS); 1977 return OS; 1978 } 1979 #endif 1980 1981 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1982 void ExtAddrMode::print(raw_ostream &OS) const { 1983 bool NeedPlus = false; 1984 OS << "["; 1985 if (BaseGV) { 1986 OS << (NeedPlus ? " + " : "") 1987 << "GV:"; 1988 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1989 NeedPlus = true; 1990 } 1991 1992 if (BaseOffs) { 1993 OS << (NeedPlus ? " + " : "") 1994 << BaseOffs; 1995 NeedPlus = true; 1996 } 1997 1998 if (BaseReg) { 1999 OS << (NeedPlus ? " + " : "") 2000 << "Base:"; 2001 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2002 NeedPlus = true; 2003 } 2004 if (Scale) { 2005 OS << (NeedPlus ? " + " : "") 2006 << Scale << "*"; 2007 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2008 } 2009 2010 OS << ']'; 2011 } 2012 2013 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2014 print(dbgs()); 2015 dbgs() << '\n'; 2016 } 2017 #endif 2018 2019 namespace { 2020 2021 /// \brief This class provides transaction based operation on the IR. 2022 /// Every change made through this class is recorded in the internal state and 2023 /// can be undone (rollback) until commit is called. 2024 class TypePromotionTransaction { 2025 /// \brief This represents the common interface of the individual transaction. 2026 /// Each class implements the logic for doing one specific modification on 2027 /// the IR via the TypePromotionTransaction. 2028 class TypePromotionAction { 2029 protected: 2030 /// The Instruction modified. 2031 Instruction *Inst; 2032 2033 public: 2034 /// \brief Constructor of the action. 2035 /// The constructor performs the related action on the IR. 2036 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2037 2038 virtual ~TypePromotionAction() = default; 2039 2040 /// \brief Undo the modification done by this action. 2041 /// When this method is called, the IR must be in the same state as it was 2042 /// before this action was applied. 2043 /// \pre Undoing the action works if and only if the IR is in the exact same 2044 /// state as it was directly after this action was applied. 2045 virtual void undo() = 0; 2046 2047 /// \brief Advocate every change made by this action. 2048 /// When the results on the IR of the action are to be kept, it is important 2049 /// to call this function, otherwise hidden information may be kept forever. 2050 virtual void commit() { 2051 // Nothing to be done, this action is not doing anything. 2052 } 2053 }; 2054 2055 /// \brief Utility to remember the position of an instruction. 2056 class InsertionHandler { 2057 /// Position of an instruction. 2058 /// Either an instruction: 2059 /// - Is the first in a basic block: BB is used. 2060 /// - Has a previous instructon: PrevInst is used. 2061 union { 2062 Instruction *PrevInst; 2063 BasicBlock *BB; 2064 } Point; 2065 2066 /// Remember whether or not the instruction had a previous instruction. 2067 bool HasPrevInstruction; 2068 2069 public: 2070 /// \brief Record the position of \p Inst. 2071 InsertionHandler(Instruction *Inst) { 2072 BasicBlock::iterator It = Inst->getIterator(); 2073 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2074 if (HasPrevInstruction) 2075 Point.PrevInst = &*--It; 2076 else 2077 Point.BB = Inst->getParent(); 2078 } 2079 2080 /// \brief Insert \p Inst at the recorded position. 2081 void insert(Instruction *Inst) { 2082 if (HasPrevInstruction) { 2083 if (Inst->getParent()) 2084 Inst->removeFromParent(); 2085 Inst->insertAfter(Point.PrevInst); 2086 } else { 2087 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2088 if (Inst->getParent()) 2089 Inst->moveBefore(Position); 2090 else 2091 Inst->insertBefore(Position); 2092 } 2093 } 2094 }; 2095 2096 /// \brief Move an instruction before another. 2097 class InstructionMoveBefore : public TypePromotionAction { 2098 /// Original position of the instruction. 2099 InsertionHandler Position; 2100 2101 public: 2102 /// \brief Move \p Inst before \p Before. 2103 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2104 : TypePromotionAction(Inst), Position(Inst) { 2105 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2106 Inst->moveBefore(Before); 2107 } 2108 2109 /// \brief Move the instruction back to its original position. 2110 void undo() override { 2111 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2112 Position.insert(Inst); 2113 } 2114 }; 2115 2116 /// \brief Set the operand of an instruction with a new value. 2117 class OperandSetter : public TypePromotionAction { 2118 /// Original operand of the instruction. 2119 Value *Origin; 2120 2121 /// Index of the modified instruction. 2122 unsigned Idx; 2123 2124 public: 2125 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2126 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2127 : TypePromotionAction(Inst), Idx(Idx) { 2128 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2129 << "for:" << *Inst << "\n" 2130 << "with:" << *NewVal << "\n"); 2131 Origin = Inst->getOperand(Idx); 2132 Inst->setOperand(Idx, NewVal); 2133 } 2134 2135 /// \brief Restore the original value of the instruction. 2136 void undo() override { 2137 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2138 << "for: " << *Inst << "\n" 2139 << "with: " << *Origin << "\n"); 2140 Inst->setOperand(Idx, Origin); 2141 } 2142 }; 2143 2144 /// \brief Hide the operands of an instruction. 2145 /// Do as if this instruction was not using any of its operands. 2146 class OperandsHider : public TypePromotionAction { 2147 /// The list of original operands. 2148 SmallVector<Value *, 4> OriginalValues; 2149 2150 public: 2151 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2152 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2153 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2154 unsigned NumOpnds = Inst->getNumOperands(); 2155 OriginalValues.reserve(NumOpnds); 2156 for (unsigned It = 0; It < NumOpnds; ++It) { 2157 // Save the current operand. 2158 Value *Val = Inst->getOperand(It); 2159 OriginalValues.push_back(Val); 2160 // Set a dummy one. 2161 // We could use OperandSetter here, but that would imply an overhead 2162 // that we are not willing to pay. 2163 Inst->setOperand(It, UndefValue::get(Val->getType())); 2164 } 2165 } 2166 2167 /// \brief Restore the original list of uses. 2168 void undo() override { 2169 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2170 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2171 Inst->setOperand(It, OriginalValues[It]); 2172 } 2173 }; 2174 2175 /// \brief Build a truncate instruction. 2176 class TruncBuilder : public TypePromotionAction { 2177 Value *Val; 2178 2179 public: 2180 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2181 /// result. 2182 /// trunc Opnd to Ty. 2183 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2184 IRBuilder<> Builder(Opnd); 2185 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2186 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2187 } 2188 2189 /// \brief Get the built value. 2190 Value *getBuiltValue() { return Val; } 2191 2192 /// \brief Remove the built instruction. 2193 void undo() override { 2194 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2195 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2196 IVal->eraseFromParent(); 2197 } 2198 }; 2199 2200 /// \brief Build a sign extension instruction. 2201 class SExtBuilder : public TypePromotionAction { 2202 Value *Val; 2203 2204 public: 2205 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2206 /// result. 2207 /// sext Opnd to Ty. 2208 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2209 : TypePromotionAction(InsertPt) { 2210 IRBuilder<> Builder(InsertPt); 2211 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2212 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2213 } 2214 2215 /// \brief Get the built value. 2216 Value *getBuiltValue() { return Val; } 2217 2218 /// \brief Remove the built instruction. 2219 void undo() override { 2220 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2221 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2222 IVal->eraseFromParent(); 2223 } 2224 }; 2225 2226 /// \brief Build a zero extension instruction. 2227 class ZExtBuilder : public TypePromotionAction { 2228 Value *Val; 2229 2230 public: 2231 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2232 /// result. 2233 /// zext Opnd to Ty. 2234 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2235 : TypePromotionAction(InsertPt) { 2236 IRBuilder<> Builder(InsertPt); 2237 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2238 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2239 } 2240 2241 /// \brief Get the built value. 2242 Value *getBuiltValue() { return Val; } 2243 2244 /// \brief Remove the built instruction. 2245 void undo() override { 2246 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2247 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2248 IVal->eraseFromParent(); 2249 } 2250 }; 2251 2252 /// \brief Mutate an instruction to another type. 2253 class TypeMutator : public TypePromotionAction { 2254 /// Record the original type. 2255 Type *OrigTy; 2256 2257 public: 2258 /// \brief Mutate the type of \p Inst into \p NewTy. 2259 TypeMutator(Instruction *Inst, Type *NewTy) 2260 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2261 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2262 << "\n"); 2263 Inst->mutateType(NewTy); 2264 } 2265 2266 /// \brief Mutate the instruction back to its original type. 2267 void undo() override { 2268 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2269 << "\n"); 2270 Inst->mutateType(OrigTy); 2271 } 2272 }; 2273 2274 /// \brief Replace the uses of an instruction by another instruction. 2275 class UsesReplacer : public TypePromotionAction { 2276 /// Helper structure to keep track of the replaced uses. 2277 struct InstructionAndIdx { 2278 /// The instruction using the instruction. 2279 Instruction *Inst; 2280 2281 /// The index where this instruction is used for Inst. 2282 unsigned Idx; 2283 2284 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2285 : Inst(Inst), Idx(Idx) {} 2286 }; 2287 2288 /// Keep track of the original uses (pair Instruction, Index). 2289 SmallVector<InstructionAndIdx, 4> OriginalUses; 2290 2291 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2292 2293 public: 2294 /// \brief Replace all the use of \p Inst by \p New. 2295 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2296 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2297 << "\n"); 2298 // Record the original uses. 2299 for (Use &U : Inst->uses()) { 2300 Instruction *UserI = cast<Instruction>(U.getUser()); 2301 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2302 } 2303 // Now, we can replace the uses. 2304 Inst->replaceAllUsesWith(New); 2305 } 2306 2307 /// \brief Reassign the original uses of Inst to Inst. 2308 void undo() override { 2309 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2310 for (use_iterator UseIt = OriginalUses.begin(), 2311 EndIt = OriginalUses.end(); 2312 UseIt != EndIt; ++UseIt) { 2313 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2314 } 2315 } 2316 }; 2317 2318 /// \brief Remove an instruction from the IR. 2319 class InstructionRemover : public TypePromotionAction { 2320 /// Original position of the instruction. 2321 InsertionHandler Inserter; 2322 2323 /// Helper structure to hide all the link to the instruction. In other 2324 /// words, this helps to do as if the instruction was removed. 2325 OperandsHider Hider; 2326 2327 /// Keep track of the uses replaced, if any. 2328 UsesReplacer *Replacer = nullptr; 2329 2330 /// Keep track of instructions removed. 2331 SetOfInstrs &RemovedInsts; 2332 2333 public: 2334 /// \brief Remove all reference of \p Inst and optinally replace all its 2335 /// uses with New. 2336 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2337 /// \pre If !Inst->use_empty(), then New != nullptr 2338 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2339 Value *New = nullptr) 2340 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2341 RemovedInsts(RemovedInsts) { 2342 if (New) 2343 Replacer = new UsesReplacer(Inst, New); 2344 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2345 RemovedInsts.insert(Inst); 2346 /// The instructions removed here will be freed after completing 2347 /// optimizeBlock() for all blocks as we need to keep track of the 2348 /// removed instructions during promotion. 2349 Inst->removeFromParent(); 2350 } 2351 2352 ~InstructionRemover() override { delete Replacer; } 2353 2354 /// \brief Resurrect the instruction and reassign it to the proper uses if 2355 /// new value was provided when build this action. 2356 void undo() override { 2357 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2358 Inserter.insert(Inst); 2359 if (Replacer) 2360 Replacer->undo(); 2361 Hider.undo(); 2362 RemovedInsts.erase(Inst); 2363 } 2364 }; 2365 2366 public: 2367 /// Restoration point. 2368 /// The restoration point is a pointer to an action instead of an iterator 2369 /// because the iterator may be invalidated but not the pointer. 2370 using ConstRestorationPt = const TypePromotionAction *; 2371 2372 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2373 : RemovedInsts(RemovedInsts) {} 2374 2375 /// Advocate every changes made in that transaction. 2376 void commit(); 2377 2378 /// Undo all the changes made after the given point. 2379 void rollback(ConstRestorationPt Point); 2380 2381 /// Get the current restoration point. 2382 ConstRestorationPt getRestorationPoint() const; 2383 2384 /// \name API for IR modification with state keeping to support rollback. 2385 /// @{ 2386 /// Same as Instruction::setOperand. 2387 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2388 2389 /// Same as Instruction::eraseFromParent. 2390 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2391 2392 /// Same as Value::replaceAllUsesWith. 2393 void replaceAllUsesWith(Instruction *Inst, Value *New); 2394 2395 /// Same as Value::mutateType. 2396 void mutateType(Instruction *Inst, Type *NewTy); 2397 2398 /// Same as IRBuilder::createTrunc. 2399 Value *createTrunc(Instruction *Opnd, Type *Ty); 2400 2401 /// Same as IRBuilder::createSExt. 2402 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2403 2404 /// Same as IRBuilder::createZExt. 2405 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2406 2407 /// Same as Instruction::moveBefore. 2408 void moveBefore(Instruction *Inst, Instruction *Before); 2409 /// @} 2410 2411 private: 2412 /// The ordered list of actions made so far. 2413 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2414 2415 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2416 2417 SetOfInstrs &RemovedInsts; 2418 }; 2419 2420 } // end anonymous namespace 2421 2422 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2423 Value *NewVal) { 2424 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2425 Inst, Idx, NewVal)); 2426 } 2427 2428 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2429 Value *NewVal) { 2430 Actions.push_back( 2431 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2432 Inst, RemovedInsts, NewVal)); 2433 } 2434 2435 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2436 Value *New) { 2437 Actions.push_back( 2438 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2439 } 2440 2441 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2442 Actions.push_back( 2443 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2444 } 2445 2446 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2447 Type *Ty) { 2448 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2449 Value *Val = Ptr->getBuiltValue(); 2450 Actions.push_back(std::move(Ptr)); 2451 return Val; 2452 } 2453 2454 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2455 Value *Opnd, Type *Ty) { 2456 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2457 Value *Val = Ptr->getBuiltValue(); 2458 Actions.push_back(std::move(Ptr)); 2459 return Val; 2460 } 2461 2462 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2463 Value *Opnd, Type *Ty) { 2464 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2465 Value *Val = Ptr->getBuiltValue(); 2466 Actions.push_back(std::move(Ptr)); 2467 return Val; 2468 } 2469 2470 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2471 Instruction *Before) { 2472 Actions.push_back( 2473 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2474 Inst, Before)); 2475 } 2476 2477 TypePromotionTransaction::ConstRestorationPt 2478 TypePromotionTransaction::getRestorationPoint() const { 2479 return !Actions.empty() ? Actions.back().get() : nullptr; 2480 } 2481 2482 void TypePromotionTransaction::commit() { 2483 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2484 ++It) 2485 (*It)->commit(); 2486 Actions.clear(); 2487 } 2488 2489 void TypePromotionTransaction::rollback( 2490 TypePromotionTransaction::ConstRestorationPt Point) { 2491 while (!Actions.empty() && Point != Actions.back().get()) { 2492 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2493 Curr->undo(); 2494 } 2495 } 2496 2497 namespace { 2498 2499 /// \brief A helper class for matching addressing modes. 2500 /// 2501 /// This encapsulates the logic for matching the target-legal addressing modes. 2502 class AddressingModeMatcher { 2503 SmallVectorImpl<Instruction*> &AddrModeInsts; 2504 const TargetLowering &TLI; 2505 const TargetRegisterInfo &TRI; 2506 const DataLayout &DL; 2507 2508 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2509 /// the memory instruction that we're computing this address for. 2510 Type *AccessTy; 2511 unsigned AddrSpace; 2512 Instruction *MemoryInst; 2513 2514 /// This is the addressing mode that we're building up. This is 2515 /// part of the return value of this addressing mode matching stuff. 2516 ExtAddrMode &AddrMode; 2517 2518 /// The instructions inserted by other CodeGenPrepare optimizations. 2519 const SetOfInstrs &InsertedInsts; 2520 2521 /// A map from the instructions to their type before promotion. 2522 InstrToOrigTy &PromotedInsts; 2523 2524 /// The ongoing transaction where every action should be registered. 2525 TypePromotionTransaction &TPT; 2526 2527 /// This is set to true when we should not do profitability checks. 2528 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2529 bool IgnoreProfitability; 2530 2531 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2532 const TargetLowering &TLI, 2533 const TargetRegisterInfo &TRI, 2534 Type *AT, unsigned AS, 2535 Instruction *MI, ExtAddrMode &AM, 2536 const SetOfInstrs &InsertedInsts, 2537 InstrToOrigTy &PromotedInsts, 2538 TypePromotionTransaction &TPT) 2539 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2540 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2541 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2542 PromotedInsts(PromotedInsts), TPT(TPT) { 2543 IgnoreProfitability = false; 2544 } 2545 2546 public: 2547 /// Find the maximal addressing mode that a load/store of V can fold, 2548 /// give an access type of AccessTy. This returns a list of involved 2549 /// instructions in AddrModeInsts. 2550 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2551 /// optimizations. 2552 /// \p PromotedInsts maps the instructions to their type before promotion. 2553 /// \p The ongoing transaction where every action should be registered. 2554 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2555 Instruction *MemoryInst, 2556 SmallVectorImpl<Instruction*> &AddrModeInsts, 2557 const TargetLowering &TLI, 2558 const TargetRegisterInfo &TRI, 2559 const SetOfInstrs &InsertedInsts, 2560 InstrToOrigTy &PromotedInsts, 2561 TypePromotionTransaction &TPT) { 2562 ExtAddrMode Result; 2563 2564 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2565 AccessTy, AS, 2566 MemoryInst, Result, InsertedInsts, 2567 PromotedInsts, TPT).matchAddr(V, 0); 2568 (void)Success; assert(Success && "Couldn't select *anything*?"); 2569 return Result; 2570 } 2571 2572 private: 2573 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2574 bool matchAddr(Value *V, unsigned Depth); 2575 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2576 bool *MovedAway = nullptr); 2577 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2578 ExtAddrMode &AMBefore, 2579 ExtAddrMode &AMAfter); 2580 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2581 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2582 Value *PromotedOperand) const; 2583 }; 2584 2585 /// \brief Keep track of simplification of Phi nodes. 2586 /// Accept the set of all phi nodes and erase phi node from this set 2587 /// if it is simplified. 2588 class SimplificationTracker { 2589 DenseMap<Value *, Value *> Storage; 2590 const SimplifyQuery &SQ; 2591 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2592 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2593 2594 public: 2595 SimplificationTracker(const SimplifyQuery &sq, 2596 SmallPtrSetImpl<PHINode *> &APN, 2597 SmallPtrSetImpl<SelectInst *> &ASN) 2598 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2599 2600 Value *Get(Value *V) { 2601 do { 2602 auto SV = Storage.find(V); 2603 if (SV == Storage.end()) 2604 return V; 2605 V = SV->second; 2606 } while (true); 2607 } 2608 2609 Value *Simplify(Value *Val) { 2610 SmallVector<Value *, 32> WorkList; 2611 SmallPtrSet<Value *, 32> Visited; 2612 WorkList.push_back(Val); 2613 while (!WorkList.empty()) { 2614 auto P = WorkList.pop_back_val(); 2615 if (!Visited.insert(P).second) 2616 continue; 2617 if (auto *PI = dyn_cast<Instruction>(P)) 2618 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2619 for (auto *U : PI->users()) 2620 WorkList.push_back(cast<Value>(U)); 2621 Put(PI, V); 2622 PI->replaceAllUsesWith(V); 2623 if (auto *PHI = dyn_cast<PHINode>(PI)) 2624 AllPhiNodes.erase(PHI); 2625 if (auto *Select = dyn_cast<SelectInst>(PI)) 2626 AllSelectNodes.erase(Select); 2627 PI->eraseFromParent(); 2628 } 2629 } 2630 return Get(Val); 2631 } 2632 2633 void Put(Value *From, Value *To) { 2634 Storage.insert({ From, To }); 2635 } 2636 }; 2637 2638 /// \brief A helper class for combining addressing modes. 2639 class AddressingModeCombiner { 2640 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2641 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2642 typedef std::pair<PHINode *, PHINode *> PHIPair; 2643 2644 private: 2645 /// The addressing modes we've collected. 2646 SmallVector<ExtAddrMode, 16> AddrModes; 2647 2648 /// The field in which the AddrModes differ, when we have more than one. 2649 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2650 2651 /// Are the AddrModes that we have all just equal to their original values? 2652 bool AllAddrModesTrivial = true; 2653 2654 /// Common Type for all different fields in addressing modes. 2655 Type *CommonType; 2656 2657 /// SimplifyQuery for simplifyInstruction utility. 2658 const SimplifyQuery &SQ; 2659 2660 /// Original Address. 2661 ValueInBB Original; 2662 2663 public: 2664 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2665 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2666 2667 /// \brief Get the combined AddrMode 2668 const ExtAddrMode &getAddrMode() const { 2669 return AddrModes[0]; 2670 } 2671 2672 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2673 /// have. 2674 /// \return True iff we succeeded in doing so. 2675 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2676 // Take note of if we have any non-trivial AddrModes, as we need to detect 2677 // when all AddrModes are trivial as then we would introduce a phi or select 2678 // which just duplicates what's already there. 2679 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2680 2681 // If this is the first addrmode then everything is fine. 2682 if (AddrModes.empty()) { 2683 AddrModes.emplace_back(NewAddrMode); 2684 return true; 2685 } 2686 2687 // Figure out how different this is from the other address modes, which we 2688 // can do just by comparing against the first one given that we only care 2689 // about the cumulative difference. 2690 ExtAddrMode::FieldName ThisDifferentField = 2691 AddrModes[0].compare(NewAddrMode); 2692 if (DifferentField == ExtAddrMode::NoField) 2693 DifferentField = ThisDifferentField; 2694 else if (DifferentField != ThisDifferentField) 2695 DifferentField = ExtAddrMode::MultipleFields; 2696 2697 // If NewAddrMode differs in more than one dimension we cannot handle it. 2698 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2699 2700 // If Scale Field is different then we reject. 2701 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2702 2703 // We also must reject the case when base offset is different and 2704 // scale reg is not null, we cannot handle this case due to merge of 2705 // different offsets will be used as ScaleReg. 2706 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2707 !NewAddrMode.ScaledReg); 2708 2709 // We also must reject the case when GV is different and BaseReg installed 2710 // due to we want to use base reg as a merge of GV values. 2711 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2712 !NewAddrMode.HasBaseReg); 2713 2714 // Even if NewAddMode is the same we still need to collect it due to 2715 // original value is different. And later we will need all original values 2716 // as anchors during finding the common Phi node. 2717 if (CanHandle) 2718 AddrModes.emplace_back(NewAddrMode); 2719 else 2720 AddrModes.clear(); 2721 2722 return CanHandle; 2723 } 2724 2725 /// \brief Combine the addressing modes we've collected into a single 2726 /// addressing mode. 2727 /// \return True iff we successfully combined them or we only had one so 2728 /// didn't need to combine them anyway. 2729 bool combineAddrModes() { 2730 // If we have no AddrModes then they can't be combined. 2731 if (AddrModes.size() == 0) 2732 return false; 2733 2734 // A single AddrMode can trivially be combined. 2735 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2736 return true; 2737 2738 // If the AddrModes we collected are all just equal to the value they are 2739 // derived from then combining them wouldn't do anything useful. 2740 if (AllAddrModesTrivial) 2741 return false; 2742 2743 if (!addrModeCombiningAllowed()) 2744 return false; 2745 2746 // Build a map between <original value, basic block where we saw it> to 2747 // value of base register. 2748 // Bail out if there is no common type. 2749 FoldAddrToValueMapping Map; 2750 if (!initializeMap(Map)) 2751 return false; 2752 2753 Value *CommonValue = findCommon(Map); 2754 if (CommonValue) 2755 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2756 return CommonValue != nullptr; 2757 } 2758 2759 private: 2760 /// \brief Initialize Map with anchor values. For address seen in some BB 2761 /// we set the value of different field saw in this address. 2762 /// If address is not an instruction than basic block is set to null. 2763 /// At the same time we find a common type for different field we will 2764 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2765 /// Return false if there is no common type found. 2766 bool initializeMap(FoldAddrToValueMapping &Map) { 2767 // Keep track of keys where the value is null. We will need to replace it 2768 // with constant null when we know the common type. 2769 SmallVector<ValueInBB, 2> NullValue; 2770 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2771 for (auto &AM : AddrModes) { 2772 BasicBlock *BB = nullptr; 2773 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2774 BB = I->getParent(); 2775 2776 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2777 if (DV) { 2778 auto *Type = DV->getType(); 2779 if (CommonType && CommonType != Type) 2780 return false; 2781 CommonType = Type; 2782 Map[{ AM.OriginalValue, BB }] = DV; 2783 } else { 2784 NullValue.push_back({ AM.OriginalValue, BB }); 2785 } 2786 } 2787 assert(CommonType && "At least one non-null value must be!"); 2788 for (auto VIBB : NullValue) 2789 Map[VIBB] = Constant::getNullValue(CommonType); 2790 return true; 2791 } 2792 2793 /// \brief We have mapping between value A and basic block where value A 2794 /// seen to other value B where B was a field in addressing mode represented 2795 /// by A. Also we have an original value C representin an address in some 2796 /// basic block. Traversing from C through phi and selects we ended up with 2797 /// A's in a map. This utility function tries to find a value V which is a 2798 /// field in addressing mode C and traversing through phi nodes and selects 2799 /// we will end up in corresponded values B in a map. 2800 /// The utility will create a new Phi/Selects if needed. 2801 // The simple example looks as follows: 2802 // BB1: 2803 // p1 = b1 + 40 2804 // br cond BB2, BB3 2805 // BB2: 2806 // p2 = b2 + 40 2807 // br BB3 2808 // BB3: 2809 // p = phi [p1, BB1], [p2, BB2] 2810 // v = load p 2811 // Map is 2812 // <p1, BB1> -> b1 2813 // <p2, BB2> -> b2 2814 // Request is 2815 // <p, BB3> -> ? 2816 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2817 Value *findCommon(FoldAddrToValueMapping &Map) { 2818 // Tracks newly created Phi nodes. 2819 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2820 // Tracks newly created Select nodes. 2821 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2822 // Tracks the simplification of newly created phi nodes. The reason we use 2823 // this mapping is because we will add new created Phi nodes in AddrToBase. 2824 // Simplification of Phi nodes is recursive, so some Phi node may 2825 // be simplified after we added it to AddrToBase. 2826 // Using this mapping we can find the current value in AddrToBase. 2827 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2828 2829 // First step, DFS to create PHI nodes for all intermediate blocks. 2830 // Also fill traverse order for the second step. 2831 SmallVector<ValueInBB, 32> TraverseOrder; 2832 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2833 2834 // Second Step, fill new nodes by merged values and simplify if possible. 2835 FillPlaceholders(Map, TraverseOrder, ST); 2836 2837 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2838 DestroyNodes(NewPhiNodes); 2839 DestroyNodes(NewSelectNodes); 2840 return nullptr; 2841 } 2842 2843 // Now we'd like to match New Phi nodes to existed ones. 2844 unsigned PhiNotMatchedCount = 0; 2845 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2846 DestroyNodes(NewPhiNodes); 2847 DestroyNodes(NewSelectNodes); 2848 return nullptr; 2849 } 2850 2851 auto *Result = ST.Get(Map.find(Original)->second); 2852 if (Result) { 2853 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2854 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2855 } 2856 return Result; 2857 } 2858 2859 /// \brief Destroy nodes from a set. 2860 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2861 // For safe erasing, replace the Phi with dummy value first. 2862 auto Dummy = UndefValue::get(CommonType); 2863 for (auto I : Instructions) { 2864 I->replaceAllUsesWith(Dummy); 2865 I->eraseFromParent(); 2866 } 2867 } 2868 2869 /// \brief Try to match PHI node to Candidate. 2870 /// Matcher tracks the matched Phi nodes. 2871 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2872 DenseSet<PHIPair> &Matcher, 2873 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2874 SmallVector<PHIPair, 8> WorkList; 2875 Matcher.insert({ PHI, Candidate }); 2876 WorkList.push_back({ PHI, Candidate }); 2877 SmallSet<PHIPair, 8> Visited; 2878 while (!WorkList.empty()) { 2879 auto Item = WorkList.pop_back_val(); 2880 if (!Visited.insert(Item).second) 2881 continue; 2882 // We iterate over all incoming values to Phi to compare them. 2883 // If values are different and both of them Phi and the first one is a 2884 // Phi we added (subject to match) and both of them is in the same basic 2885 // block then we can match our pair if values match. So we state that 2886 // these values match and add it to work list to verify that. 2887 for (auto B : Item.first->blocks()) { 2888 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2889 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2890 if (FirstValue == SecondValue) 2891 continue; 2892 2893 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2894 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2895 2896 // One of them is not Phi or 2897 // The first one is not Phi node from the set we'd like to match or 2898 // Phi nodes from different basic blocks then 2899 // we will not be able to match. 2900 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2901 FirstPhi->getParent() != SecondPhi->getParent()) 2902 return false; 2903 2904 // If we already matched them then continue. 2905 if (Matcher.count({ FirstPhi, SecondPhi })) 2906 continue; 2907 // So the values are different and does not match. So we need them to 2908 // match. 2909 Matcher.insert({ FirstPhi, SecondPhi }); 2910 // But me must check it. 2911 WorkList.push_back({ FirstPhi, SecondPhi }); 2912 } 2913 } 2914 return true; 2915 } 2916 2917 /// \brief For the given set of PHI nodes try to find their equivalents. 2918 /// Returns false if this matching fails and creation of new Phi is disabled. 2919 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 2920 SimplificationTracker &ST, bool AllowNewPhiNodes, 2921 unsigned &PhiNotMatchedCount) { 2922 DenseSet<PHIPair> Matched; 2923 SmallPtrSet<PHINode *, 8> WillNotMatch; 2924 while (PhiNodesToMatch.size()) { 2925 PHINode *PHI = *PhiNodesToMatch.begin(); 2926 2927 // Add us, if no Phi nodes in the basic block we do not match. 2928 WillNotMatch.clear(); 2929 WillNotMatch.insert(PHI); 2930 2931 // Traverse all Phis until we found equivalent or fail to do that. 2932 bool IsMatched = false; 2933 for (auto &P : PHI->getParent()->phis()) { 2934 if (&P == PHI) 2935 continue; 2936 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2937 break; 2938 // If it does not match, collect all Phi nodes from matcher. 2939 // if we end up with no match, them all these Phi nodes will not match 2940 // later. 2941 for (auto M : Matched) 2942 WillNotMatch.insert(M.first); 2943 Matched.clear(); 2944 } 2945 if (IsMatched) { 2946 // Replace all matched values and erase them. 2947 for (auto MV : Matched) { 2948 MV.first->replaceAllUsesWith(MV.second); 2949 PhiNodesToMatch.erase(MV.first); 2950 ST.Put(MV.first, MV.second); 2951 MV.first->eraseFromParent(); 2952 } 2953 Matched.clear(); 2954 continue; 2955 } 2956 // If we are not allowed to create new nodes then bail out. 2957 if (!AllowNewPhiNodes) 2958 return false; 2959 // Just remove all seen values in matcher. They will not match anything. 2960 PhiNotMatchedCount += WillNotMatch.size(); 2961 for (auto *P : WillNotMatch) 2962 PhiNodesToMatch.erase(P); 2963 } 2964 return true; 2965 } 2966 /// \brief Fill the placeholder with values from predecessors and simplify it. 2967 void FillPlaceholders(FoldAddrToValueMapping &Map, 2968 SmallVectorImpl<ValueInBB> &TraverseOrder, 2969 SimplificationTracker &ST) { 2970 while (!TraverseOrder.empty()) { 2971 auto Current = TraverseOrder.pop_back_val(); 2972 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 2973 Value *CurrentValue = Current.first; 2974 BasicBlock *CurrentBlock = Current.second; 2975 Value *V = Map[Current]; 2976 2977 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 2978 // CurrentValue also must be Select. 2979 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 2980 auto *TrueValue = CurrentSelect->getTrueValue(); 2981 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 2982 ? CurrentBlock 2983 : nullptr }; 2984 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 2985 Select->setTrueValue(ST.Get(Map[TrueItem])); 2986 auto *FalseValue = CurrentSelect->getFalseValue(); 2987 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 2988 ? CurrentBlock 2989 : nullptr }; 2990 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 2991 Select->setFalseValue(ST.Get(Map[FalseItem])); 2992 } else { 2993 // Must be a Phi node then. 2994 PHINode *PHI = cast<PHINode>(V); 2995 // Fill the Phi node with values from predecessors. 2996 bool IsDefinedInThisBB = 2997 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 2998 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 2999 for (auto B : predecessors(CurrentBlock)) { 3000 Value *PV = IsDefinedInThisBB 3001 ? CurrentPhi->getIncomingValueForBlock(B) 3002 : CurrentValue; 3003 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3004 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3005 PHI->addIncoming(ST.Get(Map[item]), B); 3006 } 3007 } 3008 // Simplify if possible. 3009 Map[Current] = ST.Simplify(V); 3010 } 3011 } 3012 3013 /// Starting from value recursively iterates over predecessors up to known 3014 /// ending values represented in a map. For each traversed block inserts 3015 /// a placeholder Phi or Select. 3016 /// Reports all new created Phi/Select nodes by adding them to set. 3017 /// Also reports and order in what basic blocks have been traversed. 3018 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3019 SmallVectorImpl<ValueInBB> &TraverseOrder, 3020 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3021 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3022 SmallVector<ValueInBB, 32> Worklist; 3023 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3024 "Address must be a Phi or Select node"); 3025 auto *Dummy = UndefValue::get(CommonType); 3026 Worklist.push_back(Original); 3027 while (!Worklist.empty()) { 3028 auto Current = Worklist.pop_back_val(); 3029 // If value is not an instruction it is something global, constant, 3030 // parameter and we can say that this value is observable in any block. 3031 // Set block to null to denote it. 3032 // Also please take into account that it is how we build anchors. 3033 if (!isa<Instruction>(Current.first)) 3034 Current.second = nullptr; 3035 // if it is already visited or it is an ending value then skip it. 3036 if (Map.find(Current) != Map.end()) 3037 continue; 3038 TraverseOrder.push_back(Current); 3039 3040 Value *CurrentValue = Current.first; 3041 BasicBlock *CurrentBlock = Current.second; 3042 // CurrentValue must be a Phi node or select. All others must be covered 3043 // by anchors. 3044 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3045 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3046 3047 unsigned PredCount = 3048 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3049 // if Current Value is not defined in this basic block we are interested 3050 // in values in predecessors. 3051 if (!IsDefinedInThisBB) { 3052 assert(PredCount && "Unreachable block?!"); 3053 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3054 &CurrentBlock->front()); 3055 Map[Current] = PHI; 3056 NewPhiNodes.insert(PHI); 3057 // Add all predecessors in work list. 3058 for (auto B : predecessors(CurrentBlock)) 3059 Worklist.push_back({ CurrentValue, B }); 3060 continue; 3061 } 3062 // Value is defined in this basic block. 3063 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3064 // Is it OK to get metadata from OrigSelect?! 3065 // Create a Select placeholder with dummy value. 3066 SelectInst *Select = 3067 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3068 OrigSelect->getName(), OrigSelect, OrigSelect); 3069 Map[Current] = Select; 3070 NewSelectNodes.insert(Select); 3071 // We are interested in True and False value in this basic block. 3072 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3073 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3074 } else { 3075 // It must be a Phi node then. 3076 auto *CurrentPhi = cast<PHINode>(CurrentI); 3077 // Create new Phi node for merge of bases. 3078 assert(PredCount && "Unreachable block?!"); 3079 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3080 &CurrentBlock->front()); 3081 Map[Current] = PHI; 3082 NewPhiNodes.insert(PHI); 3083 3084 // Add all predecessors in work list. 3085 for (auto B : predecessors(CurrentBlock)) 3086 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3087 } 3088 } 3089 } 3090 3091 bool addrModeCombiningAllowed() { 3092 if (DisableComplexAddrModes) 3093 return false; 3094 switch (DifferentField) { 3095 default: 3096 return false; 3097 case ExtAddrMode::BaseRegField: 3098 return AddrSinkCombineBaseReg; 3099 case ExtAddrMode::BaseGVField: 3100 return AddrSinkCombineBaseGV; 3101 case ExtAddrMode::BaseOffsField: 3102 return AddrSinkCombineBaseOffs; 3103 case ExtAddrMode::ScaledRegField: 3104 return AddrSinkCombineScaledReg; 3105 } 3106 } 3107 }; 3108 } // end anonymous namespace 3109 3110 /// Try adding ScaleReg*Scale to the current addressing mode. 3111 /// Return true and update AddrMode if this addr mode is legal for the target, 3112 /// false if not. 3113 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3114 unsigned Depth) { 3115 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3116 // mode. Just process that directly. 3117 if (Scale == 1) 3118 return matchAddr(ScaleReg, Depth); 3119 3120 // If the scale is 0, it takes nothing to add this. 3121 if (Scale == 0) 3122 return true; 3123 3124 // If we already have a scale of this value, we can add to it, otherwise, we 3125 // need an available scale field. 3126 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3127 return false; 3128 3129 ExtAddrMode TestAddrMode = AddrMode; 3130 3131 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3132 // [A+B + A*7] -> [B+A*8]. 3133 TestAddrMode.Scale += Scale; 3134 TestAddrMode.ScaledReg = ScaleReg; 3135 3136 // If the new address isn't legal, bail out. 3137 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3138 return false; 3139 3140 // It was legal, so commit it. 3141 AddrMode = TestAddrMode; 3142 3143 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3144 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3145 // X*Scale + C*Scale to addr mode. 3146 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3147 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3148 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3149 TestAddrMode.ScaledReg = AddLHS; 3150 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3151 3152 // If this addressing mode is legal, commit it and remember that we folded 3153 // this instruction. 3154 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3155 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3156 AddrMode = TestAddrMode; 3157 return true; 3158 } 3159 } 3160 3161 // Otherwise, not (x+c)*scale, just return what we have. 3162 return true; 3163 } 3164 3165 /// This is a little filter, which returns true if an addressing computation 3166 /// involving I might be folded into a load/store accessing it. 3167 /// This doesn't need to be perfect, but needs to accept at least 3168 /// the set of instructions that MatchOperationAddr can. 3169 static bool MightBeFoldableInst(Instruction *I) { 3170 switch (I->getOpcode()) { 3171 case Instruction::BitCast: 3172 case Instruction::AddrSpaceCast: 3173 // Don't touch identity bitcasts. 3174 if (I->getType() == I->getOperand(0)->getType()) 3175 return false; 3176 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3177 case Instruction::PtrToInt: 3178 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3179 return true; 3180 case Instruction::IntToPtr: 3181 // We know the input is intptr_t, so this is foldable. 3182 return true; 3183 case Instruction::Add: 3184 return true; 3185 case Instruction::Mul: 3186 case Instruction::Shl: 3187 // Can only handle X*C and X << C. 3188 return isa<ConstantInt>(I->getOperand(1)); 3189 case Instruction::GetElementPtr: 3190 return true; 3191 default: 3192 return false; 3193 } 3194 } 3195 3196 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3197 /// \note \p Val is assumed to be the product of some type promotion. 3198 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3199 /// to be legal, as the non-promoted value would have had the same state. 3200 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3201 const DataLayout &DL, Value *Val) { 3202 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3203 if (!PromotedInst) 3204 return false; 3205 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3206 // If the ISDOpcode is undefined, it was undefined before the promotion. 3207 if (!ISDOpcode) 3208 return true; 3209 // Otherwise, check if the promoted instruction is legal or not. 3210 return TLI.isOperationLegalOrCustom( 3211 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3212 } 3213 3214 namespace { 3215 3216 /// \brief Hepler class to perform type promotion. 3217 class TypePromotionHelper { 3218 /// \brief Utility function to check whether or not a sign or zero extension 3219 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3220 /// either using the operands of \p Inst or promoting \p Inst. 3221 /// The type of the extension is defined by \p IsSExt. 3222 /// In other words, check if: 3223 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3224 /// #1 Promotion applies: 3225 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3226 /// #2 Operand reuses: 3227 /// ext opnd1 to ConsideredExtType. 3228 /// \p PromotedInsts maps the instructions to their type before promotion. 3229 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3230 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3231 3232 /// \brief Utility function to determine if \p OpIdx should be promoted when 3233 /// promoting \p Inst. 3234 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3235 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3236 } 3237 3238 /// \brief Utility function to promote the operand of \p Ext when this 3239 /// operand is a promotable trunc or sext or zext. 3240 /// \p PromotedInsts maps the instructions to their type before promotion. 3241 /// \p CreatedInstsCost[out] contains the cost of all instructions 3242 /// created to promote the operand of Ext. 3243 /// Newly added extensions are inserted in \p Exts. 3244 /// Newly added truncates are inserted in \p Truncs. 3245 /// Should never be called directly. 3246 /// \return The promoted value which is used instead of Ext. 3247 static Value *promoteOperandForTruncAndAnyExt( 3248 Instruction *Ext, TypePromotionTransaction &TPT, 3249 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3250 SmallVectorImpl<Instruction *> *Exts, 3251 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3252 3253 /// \brief Utility function to promote the operand of \p Ext when this 3254 /// operand is promotable and is not a supported trunc or sext. 3255 /// \p PromotedInsts maps the instructions to their type before promotion. 3256 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3257 /// created to promote the operand of Ext. 3258 /// Newly added extensions are inserted in \p Exts. 3259 /// Newly added truncates are inserted in \p Truncs. 3260 /// Should never be called directly. 3261 /// \return The promoted value which is used instead of Ext. 3262 static Value *promoteOperandForOther(Instruction *Ext, 3263 TypePromotionTransaction &TPT, 3264 InstrToOrigTy &PromotedInsts, 3265 unsigned &CreatedInstsCost, 3266 SmallVectorImpl<Instruction *> *Exts, 3267 SmallVectorImpl<Instruction *> *Truncs, 3268 const TargetLowering &TLI, bool IsSExt); 3269 3270 /// \see promoteOperandForOther. 3271 static Value *signExtendOperandForOther( 3272 Instruction *Ext, TypePromotionTransaction &TPT, 3273 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3274 SmallVectorImpl<Instruction *> *Exts, 3275 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3276 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3277 Exts, Truncs, TLI, true); 3278 } 3279 3280 /// \see promoteOperandForOther. 3281 static Value *zeroExtendOperandForOther( 3282 Instruction *Ext, TypePromotionTransaction &TPT, 3283 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3284 SmallVectorImpl<Instruction *> *Exts, 3285 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3286 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3287 Exts, Truncs, TLI, false); 3288 } 3289 3290 public: 3291 /// Type for the utility function that promotes the operand of Ext. 3292 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3293 InstrToOrigTy &PromotedInsts, 3294 unsigned &CreatedInstsCost, 3295 SmallVectorImpl<Instruction *> *Exts, 3296 SmallVectorImpl<Instruction *> *Truncs, 3297 const TargetLowering &TLI); 3298 3299 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3300 /// action to promote the operand of \p Ext instead of using Ext. 3301 /// \return NULL if no promotable action is possible with the current 3302 /// sign extension. 3303 /// \p InsertedInsts keeps track of all the instructions inserted by the 3304 /// other CodeGenPrepare optimizations. This information is important 3305 /// because we do not want to promote these instructions as CodeGenPrepare 3306 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3307 /// \p PromotedInsts maps the instructions to their type before promotion. 3308 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3309 const TargetLowering &TLI, 3310 const InstrToOrigTy &PromotedInsts); 3311 }; 3312 3313 } // end anonymous namespace 3314 3315 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3316 Type *ConsideredExtType, 3317 const InstrToOrigTy &PromotedInsts, 3318 bool IsSExt) { 3319 // The promotion helper does not know how to deal with vector types yet. 3320 // To be able to fix that, we would need to fix the places where we 3321 // statically extend, e.g., constants and such. 3322 if (Inst->getType()->isVectorTy()) 3323 return false; 3324 3325 // We can always get through zext. 3326 if (isa<ZExtInst>(Inst)) 3327 return true; 3328 3329 // sext(sext) is ok too. 3330 if (IsSExt && isa<SExtInst>(Inst)) 3331 return true; 3332 3333 // We can get through binary operator, if it is legal. In other words, the 3334 // binary operator must have a nuw or nsw flag. 3335 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3336 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3337 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3338 (IsSExt && BinOp->hasNoSignedWrap()))) 3339 return true; 3340 3341 // Check if we can do the following simplification. 3342 // ext(trunc(opnd)) --> ext(opnd) 3343 if (!isa<TruncInst>(Inst)) 3344 return false; 3345 3346 Value *OpndVal = Inst->getOperand(0); 3347 // Check if we can use this operand in the extension. 3348 // If the type is larger than the result type of the extension, we cannot. 3349 if (!OpndVal->getType()->isIntegerTy() || 3350 OpndVal->getType()->getIntegerBitWidth() > 3351 ConsideredExtType->getIntegerBitWidth()) 3352 return false; 3353 3354 // If the operand of the truncate is not an instruction, we will not have 3355 // any information on the dropped bits. 3356 // (Actually we could for constant but it is not worth the extra logic). 3357 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3358 if (!Opnd) 3359 return false; 3360 3361 // Check if the source of the type is narrow enough. 3362 // I.e., check that trunc just drops extended bits of the same kind of 3363 // the extension. 3364 // #1 get the type of the operand and check the kind of the extended bits. 3365 const Type *OpndType; 3366 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3367 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3368 OpndType = It->second.getPointer(); 3369 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3370 OpndType = Opnd->getOperand(0)->getType(); 3371 else 3372 return false; 3373 3374 // #2 check that the truncate just drops extended bits. 3375 return Inst->getType()->getIntegerBitWidth() >= 3376 OpndType->getIntegerBitWidth(); 3377 } 3378 3379 TypePromotionHelper::Action TypePromotionHelper::getAction( 3380 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3381 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3382 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3383 "Unexpected instruction type"); 3384 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3385 Type *ExtTy = Ext->getType(); 3386 bool IsSExt = isa<SExtInst>(Ext); 3387 // If the operand of the extension is not an instruction, we cannot 3388 // get through. 3389 // If it, check we can get through. 3390 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3391 return nullptr; 3392 3393 // Do not promote if the operand has been added by codegenprepare. 3394 // Otherwise, it means we are undoing an optimization that is likely to be 3395 // redone, thus causing potential infinite loop. 3396 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3397 return nullptr; 3398 3399 // SExt or Trunc instructions. 3400 // Return the related handler. 3401 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3402 isa<ZExtInst>(ExtOpnd)) 3403 return promoteOperandForTruncAndAnyExt; 3404 3405 // Regular instruction. 3406 // Abort early if we will have to insert non-free instructions. 3407 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3408 return nullptr; 3409 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3410 } 3411 3412 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3413 Instruction *SExt, TypePromotionTransaction &TPT, 3414 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3415 SmallVectorImpl<Instruction *> *Exts, 3416 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3417 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3418 // get through it and this method should not be called. 3419 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3420 Value *ExtVal = SExt; 3421 bool HasMergedNonFreeExt = false; 3422 if (isa<ZExtInst>(SExtOpnd)) { 3423 // Replace s|zext(zext(opnd)) 3424 // => zext(opnd). 3425 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3426 Value *ZExt = 3427 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3428 TPT.replaceAllUsesWith(SExt, ZExt); 3429 TPT.eraseInstruction(SExt); 3430 ExtVal = ZExt; 3431 } else { 3432 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3433 // => z|sext(opnd). 3434 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3435 } 3436 CreatedInstsCost = 0; 3437 3438 // Remove dead code. 3439 if (SExtOpnd->use_empty()) 3440 TPT.eraseInstruction(SExtOpnd); 3441 3442 // Check if the extension is still needed. 3443 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3444 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3445 if (ExtInst) { 3446 if (Exts) 3447 Exts->push_back(ExtInst); 3448 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3449 } 3450 return ExtVal; 3451 } 3452 3453 // At this point we have: ext ty opnd to ty. 3454 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3455 Value *NextVal = ExtInst->getOperand(0); 3456 TPT.eraseInstruction(ExtInst, NextVal); 3457 return NextVal; 3458 } 3459 3460 Value *TypePromotionHelper::promoteOperandForOther( 3461 Instruction *Ext, TypePromotionTransaction &TPT, 3462 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3463 SmallVectorImpl<Instruction *> *Exts, 3464 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3465 bool IsSExt) { 3466 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3467 // get through it and this method should not be called. 3468 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3469 CreatedInstsCost = 0; 3470 if (!ExtOpnd->hasOneUse()) { 3471 // ExtOpnd will be promoted. 3472 // All its uses, but Ext, will need to use a truncated value of the 3473 // promoted version. 3474 // Create the truncate now. 3475 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3476 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3477 // Insert it just after the definition. 3478 ITrunc->moveAfter(ExtOpnd); 3479 if (Truncs) 3480 Truncs->push_back(ITrunc); 3481 } 3482 3483 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3484 // Restore the operand of Ext (which has been replaced by the previous call 3485 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3486 TPT.setOperand(Ext, 0, ExtOpnd); 3487 } 3488 3489 // Get through the Instruction: 3490 // 1. Update its type. 3491 // 2. Replace the uses of Ext by Inst. 3492 // 3. Extend each operand that needs to be extended. 3493 3494 // Remember the original type of the instruction before promotion. 3495 // This is useful to know that the high bits are sign extended bits. 3496 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3497 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3498 // Step #1. 3499 TPT.mutateType(ExtOpnd, Ext->getType()); 3500 // Step #2. 3501 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3502 // Step #3. 3503 Instruction *ExtForOpnd = Ext; 3504 3505 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3506 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3507 ++OpIdx) { 3508 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3509 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3510 !shouldExtOperand(ExtOpnd, OpIdx)) { 3511 DEBUG(dbgs() << "No need to propagate\n"); 3512 continue; 3513 } 3514 // Check if we can statically extend the operand. 3515 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3516 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3517 DEBUG(dbgs() << "Statically extend\n"); 3518 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3519 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3520 : Cst->getValue().zext(BitWidth); 3521 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3522 continue; 3523 } 3524 // UndefValue are typed, so we have to statically sign extend them. 3525 if (isa<UndefValue>(Opnd)) { 3526 DEBUG(dbgs() << "Statically extend\n"); 3527 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3528 continue; 3529 } 3530 3531 // Otherwise we have to explicity sign extend the operand. 3532 // Check if Ext was reused to extend an operand. 3533 if (!ExtForOpnd) { 3534 // If yes, create a new one. 3535 DEBUG(dbgs() << "More operands to ext\n"); 3536 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3537 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3538 if (!isa<Instruction>(ValForExtOpnd)) { 3539 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3540 continue; 3541 } 3542 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3543 } 3544 if (Exts) 3545 Exts->push_back(ExtForOpnd); 3546 TPT.setOperand(ExtForOpnd, 0, Opnd); 3547 3548 // Move the sign extension before the insertion point. 3549 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3550 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3551 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3552 // If more sext are required, new instructions will have to be created. 3553 ExtForOpnd = nullptr; 3554 } 3555 if (ExtForOpnd == Ext) { 3556 DEBUG(dbgs() << "Extension is useless now\n"); 3557 TPT.eraseInstruction(Ext); 3558 } 3559 return ExtOpnd; 3560 } 3561 3562 /// Check whether or not promoting an instruction to a wider type is profitable. 3563 /// \p NewCost gives the cost of extension instructions created by the 3564 /// promotion. 3565 /// \p OldCost gives the cost of extension instructions before the promotion 3566 /// plus the number of instructions that have been 3567 /// matched in the addressing mode the promotion. 3568 /// \p PromotedOperand is the value that has been promoted. 3569 /// \return True if the promotion is profitable, false otherwise. 3570 bool AddressingModeMatcher::isPromotionProfitable( 3571 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3572 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3573 // The cost of the new extensions is greater than the cost of the 3574 // old extension plus what we folded. 3575 // This is not profitable. 3576 if (NewCost > OldCost) 3577 return false; 3578 if (NewCost < OldCost) 3579 return true; 3580 // The promotion is neutral but it may help folding the sign extension in 3581 // loads for instance. 3582 // Check that we did not create an illegal instruction. 3583 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3584 } 3585 3586 /// Given an instruction or constant expr, see if we can fold the operation 3587 /// into the addressing mode. If so, update the addressing mode and return 3588 /// true, otherwise return false without modifying AddrMode. 3589 /// If \p MovedAway is not NULL, it contains the information of whether or 3590 /// not AddrInst has to be folded into the addressing mode on success. 3591 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3592 /// because it has been moved away. 3593 /// Thus AddrInst must not be added in the matched instructions. 3594 /// This state can happen when AddrInst is a sext, since it may be moved away. 3595 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3596 /// not be referenced anymore. 3597 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3598 unsigned Depth, 3599 bool *MovedAway) { 3600 // Avoid exponential behavior on extremely deep expression trees. 3601 if (Depth >= 5) return false; 3602 3603 // By default, all matched instructions stay in place. 3604 if (MovedAway) 3605 *MovedAway = false; 3606 3607 switch (Opcode) { 3608 case Instruction::PtrToInt: 3609 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3610 return matchAddr(AddrInst->getOperand(0), Depth); 3611 case Instruction::IntToPtr: { 3612 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3613 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3614 // This inttoptr is a no-op if the integer type is pointer sized. 3615 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3616 return matchAddr(AddrInst->getOperand(0), Depth); 3617 return false; 3618 } 3619 case Instruction::BitCast: 3620 // BitCast is always a noop, and we can handle it as long as it is 3621 // int->int or pointer->pointer (we don't want int<->fp or something). 3622 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3623 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3624 // Don't touch identity bitcasts. These were probably put here by LSR, 3625 // and we don't want to mess around with them. Assume it knows what it 3626 // is doing. 3627 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3628 return matchAddr(AddrInst->getOperand(0), Depth); 3629 return false; 3630 case Instruction::AddrSpaceCast: { 3631 unsigned SrcAS 3632 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3633 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3634 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3635 return matchAddr(AddrInst->getOperand(0), Depth); 3636 return false; 3637 } 3638 case Instruction::Add: { 3639 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3640 ExtAddrMode BackupAddrMode = AddrMode; 3641 unsigned OldSize = AddrModeInsts.size(); 3642 // Start a transaction at this point. 3643 // The LHS may match but not the RHS. 3644 // Therefore, we need a higher level restoration point to undo partially 3645 // matched operation. 3646 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3647 TPT.getRestorationPoint(); 3648 3649 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3650 matchAddr(AddrInst->getOperand(0), Depth+1)) 3651 return true; 3652 3653 // Restore the old addr mode info. 3654 AddrMode = BackupAddrMode; 3655 AddrModeInsts.resize(OldSize); 3656 TPT.rollback(LastKnownGood); 3657 3658 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3659 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3660 matchAddr(AddrInst->getOperand(1), Depth+1)) 3661 return true; 3662 3663 // Otherwise we definitely can't merge the ADD in. 3664 AddrMode = BackupAddrMode; 3665 AddrModeInsts.resize(OldSize); 3666 TPT.rollback(LastKnownGood); 3667 break; 3668 } 3669 //case Instruction::Or: 3670 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3671 //break; 3672 case Instruction::Mul: 3673 case Instruction::Shl: { 3674 // Can only handle X*C and X << C. 3675 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3676 if (!RHS || RHS->getBitWidth() > 64) 3677 return false; 3678 int64_t Scale = RHS->getSExtValue(); 3679 if (Opcode == Instruction::Shl) 3680 Scale = 1LL << Scale; 3681 3682 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3683 } 3684 case Instruction::GetElementPtr: { 3685 // Scan the GEP. We check it if it contains constant offsets and at most 3686 // one variable offset. 3687 int VariableOperand = -1; 3688 unsigned VariableScale = 0; 3689 3690 int64_t ConstantOffset = 0; 3691 gep_type_iterator GTI = gep_type_begin(AddrInst); 3692 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3693 if (StructType *STy = GTI.getStructTypeOrNull()) { 3694 const StructLayout *SL = DL.getStructLayout(STy); 3695 unsigned Idx = 3696 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3697 ConstantOffset += SL->getElementOffset(Idx); 3698 } else { 3699 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3700 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3701 ConstantOffset += CI->getSExtValue() * TypeSize; 3702 } else if (TypeSize) { // Scales of zero don't do anything. 3703 // We only allow one variable index at the moment. 3704 if (VariableOperand != -1) 3705 return false; 3706 3707 // Remember the variable index. 3708 VariableOperand = i; 3709 VariableScale = TypeSize; 3710 } 3711 } 3712 } 3713 3714 // A common case is for the GEP to only do a constant offset. In this case, 3715 // just add it to the disp field and check validity. 3716 if (VariableOperand == -1) { 3717 AddrMode.BaseOffs += ConstantOffset; 3718 if (ConstantOffset == 0 || 3719 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3720 // Check to see if we can fold the base pointer in too. 3721 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3722 return true; 3723 } 3724 AddrMode.BaseOffs -= ConstantOffset; 3725 return false; 3726 } 3727 3728 // Save the valid addressing mode in case we can't match. 3729 ExtAddrMode BackupAddrMode = AddrMode; 3730 unsigned OldSize = AddrModeInsts.size(); 3731 3732 // See if the scale and offset amount is valid for this target. 3733 AddrMode.BaseOffs += ConstantOffset; 3734 3735 // Match the base operand of the GEP. 3736 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3737 // If it couldn't be matched, just stuff the value in a register. 3738 if (AddrMode.HasBaseReg) { 3739 AddrMode = BackupAddrMode; 3740 AddrModeInsts.resize(OldSize); 3741 return false; 3742 } 3743 AddrMode.HasBaseReg = true; 3744 AddrMode.BaseReg = AddrInst->getOperand(0); 3745 } 3746 3747 // Match the remaining variable portion of the GEP. 3748 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3749 Depth)) { 3750 // If it couldn't be matched, try stuffing the base into a register 3751 // instead of matching it, and retrying the match of the scale. 3752 AddrMode = BackupAddrMode; 3753 AddrModeInsts.resize(OldSize); 3754 if (AddrMode.HasBaseReg) 3755 return false; 3756 AddrMode.HasBaseReg = true; 3757 AddrMode.BaseReg = AddrInst->getOperand(0); 3758 AddrMode.BaseOffs += ConstantOffset; 3759 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3760 VariableScale, Depth)) { 3761 // If even that didn't work, bail. 3762 AddrMode = BackupAddrMode; 3763 AddrModeInsts.resize(OldSize); 3764 return false; 3765 } 3766 } 3767 3768 return true; 3769 } 3770 case Instruction::SExt: 3771 case Instruction::ZExt: { 3772 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3773 if (!Ext) 3774 return false; 3775 3776 // Try to move this ext out of the way of the addressing mode. 3777 // Ask for a method for doing so. 3778 TypePromotionHelper::Action TPH = 3779 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3780 if (!TPH) 3781 return false; 3782 3783 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3784 TPT.getRestorationPoint(); 3785 unsigned CreatedInstsCost = 0; 3786 unsigned ExtCost = !TLI.isExtFree(Ext); 3787 Value *PromotedOperand = 3788 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3789 // SExt has been moved away. 3790 // Thus either it will be rematched later in the recursive calls or it is 3791 // gone. Anyway, we must not fold it into the addressing mode at this point. 3792 // E.g., 3793 // op = add opnd, 1 3794 // idx = ext op 3795 // addr = gep base, idx 3796 // is now: 3797 // promotedOpnd = ext opnd <- no match here 3798 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3799 // addr = gep base, op <- match 3800 if (MovedAway) 3801 *MovedAway = true; 3802 3803 assert(PromotedOperand && 3804 "TypePromotionHelper should have filtered out those cases"); 3805 3806 ExtAddrMode BackupAddrMode = AddrMode; 3807 unsigned OldSize = AddrModeInsts.size(); 3808 3809 if (!matchAddr(PromotedOperand, Depth) || 3810 // The total of the new cost is equal to the cost of the created 3811 // instructions. 3812 // The total of the old cost is equal to the cost of the extension plus 3813 // what we have saved in the addressing mode. 3814 !isPromotionProfitable(CreatedInstsCost, 3815 ExtCost + (AddrModeInsts.size() - OldSize), 3816 PromotedOperand)) { 3817 AddrMode = BackupAddrMode; 3818 AddrModeInsts.resize(OldSize); 3819 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3820 TPT.rollback(LastKnownGood); 3821 return false; 3822 } 3823 return true; 3824 } 3825 } 3826 return false; 3827 } 3828 3829 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3830 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3831 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3832 /// for the target. 3833 /// 3834 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3835 // Start a transaction at this point that we will rollback if the matching 3836 // fails. 3837 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3838 TPT.getRestorationPoint(); 3839 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3840 // Fold in immediates if legal for the target. 3841 AddrMode.BaseOffs += CI->getSExtValue(); 3842 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3843 return true; 3844 AddrMode.BaseOffs -= CI->getSExtValue(); 3845 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3846 // If this is a global variable, try to fold it into the addressing mode. 3847 if (!AddrMode.BaseGV) { 3848 AddrMode.BaseGV = GV; 3849 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3850 return true; 3851 AddrMode.BaseGV = nullptr; 3852 } 3853 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3854 ExtAddrMode BackupAddrMode = AddrMode; 3855 unsigned OldSize = AddrModeInsts.size(); 3856 3857 // Check to see if it is possible to fold this operation. 3858 bool MovedAway = false; 3859 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3860 // This instruction may have been moved away. If so, there is nothing 3861 // to check here. 3862 if (MovedAway) 3863 return true; 3864 // Okay, it's possible to fold this. Check to see if it is actually 3865 // *profitable* to do so. We use a simple cost model to avoid increasing 3866 // register pressure too much. 3867 if (I->hasOneUse() || 3868 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3869 AddrModeInsts.push_back(I); 3870 return true; 3871 } 3872 3873 // It isn't profitable to do this, roll back. 3874 //cerr << "NOT FOLDING: " << *I; 3875 AddrMode = BackupAddrMode; 3876 AddrModeInsts.resize(OldSize); 3877 TPT.rollback(LastKnownGood); 3878 } 3879 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3880 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3881 return true; 3882 TPT.rollback(LastKnownGood); 3883 } else if (isa<ConstantPointerNull>(Addr)) { 3884 // Null pointer gets folded without affecting the addressing mode. 3885 return true; 3886 } 3887 3888 // Worse case, the target should support [reg] addressing modes. :) 3889 if (!AddrMode.HasBaseReg) { 3890 AddrMode.HasBaseReg = true; 3891 AddrMode.BaseReg = Addr; 3892 // Still check for legality in case the target supports [imm] but not [i+r]. 3893 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3894 return true; 3895 AddrMode.HasBaseReg = false; 3896 AddrMode.BaseReg = nullptr; 3897 } 3898 3899 // If the base register is already taken, see if we can do [r+r]. 3900 if (AddrMode.Scale == 0) { 3901 AddrMode.Scale = 1; 3902 AddrMode.ScaledReg = Addr; 3903 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3904 return true; 3905 AddrMode.Scale = 0; 3906 AddrMode.ScaledReg = nullptr; 3907 } 3908 // Couldn't match. 3909 TPT.rollback(LastKnownGood); 3910 return false; 3911 } 3912 3913 /// Check to see if all uses of OpVal by the specified inline asm call are due 3914 /// to memory operands. If so, return true, otherwise return false. 3915 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3916 const TargetLowering &TLI, 3917 const TargetRegisterInfo &TRI) { 3918 const Function *F = CI->getFunction(); 3919 TargetLowering::AsmOperandInfoVector TargetConstraints = 3920 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3921 ImmutableCallSite(CI)); 3922 3923 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3924 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3925 3926 // Compute the constraint code and ConstraintType to use. 3927 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3928 3929 // If this asm operand is our Value*, and if it isn't an indirect memory 3930 // operand, we can't fold it! 3931 if (OpInfo.CallOperandVal == OpVal && 3932 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3933 !OpInfo.isIndirect)) 3934 return false; 3935 } 3936 3937 return true; 3938 } 3939 3940 // Max number of memory uses to look at before aborting the search to conserve 3941 // compile time. 3942 static constexpr int MaxMemoryUsesToScan = 20; 3943 3944 /// Recursively walk all the uses of I until we find a memory use. 3945 /// If we find an obviously non-foldable instruction, return true. 3946 /// Add the ultimately found memory instructions to MemoryUses. 3947 static bool FindAllMemoryUses( 3948 Instruction *I, 3949 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3950 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 3951 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 3952 // If we already considered this instruction, we're done. 3953 if (!ConsideredInsts.insert(I).second) 3954 return false; 3955 3956 // If this is an obviously unfoldable instruction, bail out. 3957 if (!MightBeFoldableInst(I)) 3958 return true; 3959 3960 const bool OptSize = I->getFunction()->optForSize(); 3961 3962 // Loop over all the uses, recursively processing them. 3963 for (Use &U : I->uses()) { 3964 // Conservatively return true if we're seeing a large number or a deep chain 3965 // of users. This avoids excessive compilation times in pathological cases. 3966 if (SeenInsts++ >= MaxMemoryUsesToScan) 3967 return true; 3968 3969 Instruction *UserI = cast<Instruction>(U.getUser()); 3970 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3971 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3972 continue; 3973 } 3974 3975 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3976 unsigned opNo = U.getOperandNo(); 3977 if (opNo != StoreInst::getPointerOperandIndex()) 3978 return true; // Storing addr, not into addr. 3979 MemoryUses.push_back(std::make_pair(SI, opNo)); 3980 continue; 3981 } 3982 3983 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3984 unsigned opNo = U.getOperandNo(); 3985 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3986 return true; // Storing addr, not into addr. 3987 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3988 continue; 3989 } 3990 3991 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3992 unsigned opNo = U.getOperandNo(); 3993 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3994 return true; // Storing addr, not into addr. 3995 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3996 continue; 3997 } 3998 3999 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4000 // If this is a cold call, we can sink the addressing calculation into 4001 // the cold path. See optimizeCallInst 4002 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4003 continue; 4004 4005 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4006 if (!IA) return true; 4007 4008 // If this is a memory operand, we're cool, otherwise bail out. 4009 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4010 return true; 4011 continue; 4012 } 4013 4014 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4015 SeenInsts)) 4016 return true; 4017 } 4018 4019 return false; 4020 } 4021 4022 /// Return true if Val is already known to be live at the use site that we're 4023 /// folding it into. If so, there is no cost to include it in the addressing 4024 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4025 /// instruction already. 4026 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4027 Value *KnownLive2) { 4028 // If Val is either of the known-live values, we know it is live! 4029 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4030 return true; 4031 4032 // All values other than instructions and arguments (e.g. constants) are live. 4033 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4034 4035 // If Val is a constant sized alloca in the entry block, it is live, this is 4036 // true because it is just a reference to the stack/frame pointer, which is 4037 // live for the whole function. 4038 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4039 if (AI->isStaticAlloca()) 4040 return true; 4041 4042 // Check to see if this value is already used in the memory instruction's 4043 // block. If so, it's already live into the block at the very least, so we 4044 // can reasonably fold it. 4045 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4046 } 4047 4048 /// It is possible for the addressing mode of the machine to fold the specified 4049 /// instruction into a load or store that ultimately uses it. 4050 /// However, the specified instruction has multiple uses. 4051 /// Given this, it may actually increase register pressure to fold it 4052 /// into the load. For example, consider this code: 4053 /// 4054 /// X = ... 4055 /// Y = X+1 4056 /// use(Y) -> nonload/store 4057 /// Z = Y+1 4058 /// load Z 4059 /// 4060 /// In this case, Y has multiple uses, and can be folded into the load of Z 4061 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4062 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4063 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4064 /// number of computations either. 4065 /// 4066 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4067 /// X was live across 'load Z' for other reasons, we actually *would* want to 4068 /// fold the addressing mode in the Z case. This would make Y die earlier. 4069 bool AddressingModeMatcher:: 4070 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4071 ExtAddrMode &AMAfter) { 4072 if (IgnoreProfitability) return true; 4073 4074 // AMBefore is the addressing mode before this instruction was folded into it, 4075 // and AMAfter is the addressing mode after the instruction was folded. Get 4076 // the set of registers referenced by AMAfter and subtract out those 4077 // referenced by AMBefore: this is the set of values which folding in this 4078 // address extends the lifetime of. 4079 // 4080 // Note that there are only two potential values being referenced here, 4081 // BaseReg and ScaleReg (global addresses are always available, as are any 4082 // folded immediates). 4083 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4084 4085 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4086 // lifetime wasn't extended by adding this instruction. 4087 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4088 BaseReg = nullptr; 4089 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4090 ScaledReg = nullptr; 4091 4092 // If folding this instruction (and it's subexprs) didn't extend any live 4093 // ranges, we're ok with it. 4094 if (!BaseReg && !ScaledReg) 4095 return true; 4096 4097 // If all uses of this instruction can have the address mode sunk into them, 4098 // we can remove the addressing mode and effectively trade one live register 4099 // for another (at worst.) In this context, folding an addressing mode into 4100 // the use is just a particularly nice way of sinking it. 4101 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4102 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4103 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4104 return false; // Has a non-memory, non-foldable use! 4105 4106 // Now that we know that all uses of this instruction are part of a chain of 4107 // computation involving only operations that could theoretically be folded 4108 // into a memory use, loop over each of these memory operation uses and see 4109 // if they could *actually* fold the instruction. The assumption is that 4110 // addressing modes are cheap and that duplicating the computation involved 4111 // many times is worthwhile, even on a fastpath. For sinking candidates 4112 // (i.e. cold call sites), this serves as a way to prevent excessive code 4113 // growth since most architectures have some reasonable small and fast way to 4114 // compute an effective address. (i.e LEA on x86) 4115 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4116 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4117 Instruction *User = MemoryUses[i].first; 4118 unsigned OpNo = MemoryUses[i].second; 4119 4120 // Get the access type of this use. If the use isn't a pointer, we don't 4121 // know what it accesses. 4122 Value *Address = User->getOperand(OpNo); 4123 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4124 if (!AddrTy) 4125 return false; 4126 Type *AddressAccessTy = AddrTy->getElementType(); 4127 unsigned AS = AddrTy->getAddressSpace(); 4128 4129 // Do a match against the root of this address, ignoring profitability. This 4130 // will tell us if the addressing mode for the memory operation will 4131 // *actually* cover the shared instruction. 4132 ExtAddrMode Result; 4133 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4134 TPT.getRestorationPoint(); 4135 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4136 AddressAccessTy, AS, 4137 MemoryInst, Result, InsertedInsts, 4138 PromotedInsts, TPT); 4139 Matcher.IgnoreProfitability = true; 4140 bool Success = Matcher.matchAddr(Address, 0); 4141 (void)Success; assert(Success && "Couldn't select *anything*?"); 4142 4143 // The match was to check the profitability, the changes made are not 4144 // part of the original matcher. Therefore, they should be dropped 4145 // otherwise the original matcher will not present the right state. 4146 TPT.rollback(LastKnownGood); 4147 4148 // If the match didn't cover I, then it won't be shared by it. 4149 if (!is_contained(MatchedAddrModeInsts, I)) 4150 return false; 4151 4152 MatchedAddrModeInsts.clear(); 4153 } 4154 4155 return true; 4156 } 4157 4158 /// Return true if the specified values are defined in a 4159 /// different basic block than BB. 4160 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4161 if (Instruction *I = dyn_cast<Instruction>(V)) 4162 return I->getParent() != BB; 4163 return false; 4164 } 4165 4166 /// Sink addressing mode computation immediate before MemoryInst if doing so 4167 /// can be done without increasing register pressure. The need for the 4168 /// register pressure constraint means this can end up being an all or nothing 4169 /// decision for all uses of the same addressing computation. 4170 /// 4171 /// Load and Store Instructions often have addressing modes that can do 4172 /// significant amounts of computation. As such, instruction selection will try 4173 /// to get the load or store to do as much computation as possible for the 4174 /// program. The problem is that isel can only see within a single block. As 4175 /// such, we sink as much legal addressing mode work into the block as possible. 4176 /// 4177 /// This method is used to optimize both load/store and inline asms with memory 4178 /// operands. It's also used to sink addressing computations feeding into cold 4179 /// call sites into their (cold) basic block. 4180 /// 4181 /// The motivation for handling sinking into cold blocks is that doing so can 4182 /// both enable other address mode sinking (by satisfying the register pressure 4183 /// constraint above), and reduce register pressure globally (by removing the 4184 /// addressing mode computation from the fast path entirely.). 4185 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4186 Type *AccessTy, unsigned AddrSpace) { 4187 Value *Repl = Addr; 4188 4189 // Try to collapse single-value PHI nodes. This is necessary to undo 4190 // unprofitable PRE transformations. 4191 SmallVector<Value*, 8> worklist; 4192 SmallPtrSet<Value*, 16> Visited; 4193 worklist.push_back(Addr); 4194 4195 // Use a worklist to iteratively look through PHI and select nodes, and 4196 // ensure that the addressing mode obtained from the non-PHI/select roots of 4197 // the graph are compatible. 4198 bool PhiOrSelectSeen = false; 4199 SmallVector<Instruction*, 16> AddrModeInsts; 4200 const SimplifyQuery SQ(*DL, TLInfo); 4201 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4202 TypePromotionTransaction TPT(RemovedInsts); 4203 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4204 TPT.getRestorationPoint(); 4205 while (!worklist.empty()) { 4206 Value *V = worklist.back(); 4207 worklist.pop_back(); 4208 4209 // We allow traversing cyclic Phi nodes. 4210 // In case of success after this loop we ensure that traversing through 4211 // Phi nodes ends up with all cases to compute address of the form 4212 // BaseGV + Base + Scale * Index + Offset 4213 // where Scale and Offset are constans and BaseGV, Base and Index 4214 // are exactly the same Values in all cases. 4215 // It means that BaseGV, Scale and Offset dominate our memory instruction 4216 // and have the same value as they had in address computation represented 4217 // as Phi. So we can safely sink address computation to memory instruction. 4218 if (!Visited.insert(V).second) 4219 continue; 4220 4221 // For a PHI node, push all of its incoming values. 4222 if (PHINode *P = dyn_cast<PHINode>(V)) { 4223 for (Value *IncValue : P->incoming_values()) 4224 worklist.push_back(IncValue); 4225 PhiOrSelectSeen = true; 4226 continue; 4227 } 4228 // Similar for select. 4229 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4230 worklist.push_back(SI->getFalseValue()); 4231 worklist.push_back(SI->getTrueValue()); 4232 PhiOrSelectSeen = true; 4233 continue; 4234 } 4235 4236 // For non-PHIs, determine the addressing mode being computed. Note that 4237 // the result may differ depending on what other uses our candidate 4238 // addressing instructions might have. 4239 AddrModeInsts.clear(); 4240 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4241 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4242 InsertedInsts, PromotedInsts, TPT); 4243 NewAddrMode.OriginalValue = V; 4244 4245 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4246 break; 4247 } 4248 4249 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4250 // or we have multiple but either couldn't combine them or combining them 4251 // wouldn't do anything useful, bail out now. 4252 if (!AddrModes.combineAddrModes()) { 4253 TPT.rollback(LastKnownGood); 4254 return false; 4255 } 4256 TPT.commit(); 4257 4258 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4259 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4260 4261 // If all the instructions matched are already in this BB, don't do anything. 4262 // If we saw a Phi node then it is not local definitely, and if we saw a select 4263 // then we want to push the address calculation past it even if it's already 4264 // in this BB. 4265 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4266 return IsNonLocalValue(V, MemoryInst->getParent()); 4267 })) { 4268 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4269 return false; 4270 } 4271 4272 // Insert this computation right after this user. Since our caller is 4273 // scanning from the top of the BB to the bottom, reuse of the expr are 4274 // guaranteed to happen later. 4275 IRBuilder<> Builder(MemoryInst); 4276 4277 // Now that we determined the addressing expression we want to use and know 4278 // that we have to sink it into this block. Check to see if we have already 4279 // done this for some other load/store instr in this block. If so, reuse 4280 // the computation. Before attempting reuse, check if the address is valid 4281 // as it may have been erased. 4282 4283 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4284 4285 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4286 if (SunkAddr) { 4287 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4288 << *MemoryInst << "\n"); 4289 if (SunkAddr->getType() != Addr->getType()) 4290 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4291 } else if (AddrSinkUsingGEPs || 4292 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4293 SubtargetInfo->useAA())) { 4294 // By default, we use the GEP-based method when AA is used later. This 4295 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4296 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4297 << *MemoryInst << "\n"); 4298 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4299 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4300 4301 // First, find the pointer. 4302 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4303 ResultPtr = AddrMode.BaseReg; 4304 AddrMode.BaseReg = nullptr; 4305 } 4306 4307 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4308 // We can't add more than one pointer together, nor can we scale a 4309 // pointer (both of which seem meaningless). 4310 if (ResultPtr || AddrMode.Scale != 1) 4311 return false; 4312 4313 ResultPtr = AddrMode.ScaledReg; 4314 AddrMode.Scale = 0; 4315 } 4316 4317 // It is only safe to sign extend the BaseReg if we know that the math 4318 // required to create it did not overflow before we extend it. Since 4319 // the original IR value was tossed in favor of a constant back when 4320 // the AddrMode was created we need to bail out gracefully if widths 4321 // do not match instead of extending it. 4322 // 4323 // (See below for code to add the scale.) 4324 if (AddrMode.Scale) { 4325 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4326 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4327 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4328 return false; 4329 } 4330 4331 if (AddrMode.BaseGV) { 4332 if (ResultPtr) 4333 return false; 4334 4335 ResultPtr = AddrMode.BaseGV; 4336 } 4337 4338 // If the real base value actually came from an inttoptr, then the matcher 4339 // will look through it and provide only the integer value. In that case, 4340 // use it here. 4341 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4342 if (!ResultPtr && AddrMode.BaseReg) { 4343 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4344 "sunkaddr"); 4345 AddrMode.BaseReg = nullptr; 4346 } else if (!ResultPtr && AddrMode.Scale == 1) { 4347 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4348 "sunkaddr"); 4349 AddrMode.Scale = 0; 4350 } 4351 } 4352 4353 if (!ResultPtr && 4354 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4355 SunkAddr = Constant::getNullValue(Addr->getType()); 4356 } else if (!ResultPtr) { 4357 return false; 4358 } else { 4359 Type *I8PtrTy = 4360 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4361 Type *I8Ty = Builder.getInt8Ty(); 4362 4363 // Start with the base register. Do this first so that subsequent address 4364 // matching finds it last, which will prevent it from trying to match it 4365 // as the scaled value in case it happens to be a mul. That would be 4366 // problematic if we've sunk a different mul for the scale, because then 4367 // we'd end up sinking both muls. 4368 if (AddrMode.BaseReg) { 4369 Value *V = AddrMode.BaseReg; 4370 if (V->getType() != IntPtrTy) 4371 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4372 4373 ResultIndex = V; 4374 } 4375 4376 // Add the scale value. 4377 if (AddrMode.Scale) { 4378 Value *V = AddrMode.ScaledReg; 4379 if (V->getType() == IntPtrTy) { 4380 // done. 4381 } else { 4382 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4383 cast<IntegerType>(V->getType())->getBitWidth() && 4384 "We can't transform if ScaledReg is too narrow"); 4385 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4386 } 4387 4388 if (AddrMode.Scale != 1) 4389 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4390 "sunkaddr"); 4391 if (ResultIndex) 4392 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4393 else 4394 ResultIndex = V; 4395 } 4396 4397 // Add in the Base Offset if present. 4398 if (AddrMode.BaseOffs) { 4399 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4400 if (ResultIndex) { 4401 // We need to add this separately from the scale above to help with 4402 // SDAG consecutive load/store merging. 4403 if (ResultPtr->getType() != I8PtrTy) 4404 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4405 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4406 } 4407 4408 ResultIndex = V; 4409 } 4410 4411 if (!ResultIndex) { 4412 SunkAddr = ResultPtr; 4413 } else { 4414 if (ResultPtr->getType() != I8PtrTy) 4415 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4416 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4417 } 4418 4419 if (SunkAddr->getType() != Addr->getType()) 4420 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4421 } 4422 } else { 4423 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4424 // non-integral pointers, so in that case bail out now. 4425 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4426 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4427 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4428 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4429 if (DL->isNonIntegralPointerType(Addr->getType()) || 4430 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4431 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4432 (AddrMode.BaseGV && 4433 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4434 return false; 4435 4436 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4437 << *MemoryInst << "\n"); 4438 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4439 Value *Result = nullptr; 4440 4441 // Start with the base register. Do this first so that subsequent address 4442 // matching finds it last, which will prevent it from trying to match it 4443 // as the scaled value in case it happens to be a mul. That would be 4444 // problematic if we've sunk a different mul for the scale, because then 4445 // we'd end up sinking both muls. 4446 if (AddrMode.BaseReg) { 4447 Value *V = AddrMode.BaseReg; 4448 if (V->getType()->isPointerTy()) 4449 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4450 if (V->getType() != IntPtrTy) 4451 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4452 Result = V; 4453 } 4454 4455 // Add the scale value. 4456 if (AddrMode.Scale) { 4457 Value *V = AddrMode.ScaledReg; 4458 if (V->getType() == IntPtrTy) { 4459 // done. 4460 } else if (V->getType()->isPointerTy()) { 4461 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4462 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4463 cast<IntegerType>(V->getType())->getBitWidth()) { 4464 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4465 } else { 4466 // It is only safe to sign extend the BaseReg if we know that the math 4467 // required to create it did not overflow before we extend it. Since 4468 // the original IR value was tossed in favor of a constant back when 4469 // the AddrMode was created we need to bail out gracefully if widths 4470 // do not match instead of extending it. 4471 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4472 if (I && (Result != AddrMode.BaseReg)) 4473 I->eraseFromParent(); 4474 return false; 4475 } 4476 if (AddrMode.Scale != 1) 4477 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4478 "sunkaddr"); 4479 if (Result) 4480 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4481 else 4482 Result = V; 4483 } 4484 4485 // Add in the BaseGV if present. 4486 if (AddrMode.BaseGV) { 4487 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4488 if (Result) 4489 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4490 else 4491 Result = V; 4492 } 4493 4494 // Add in the Base Offset if present. 4495 if (AddrMode.BaseOffs) { 4496 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4497 if (Result) 4498 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4499 else 4500 Result = V; 4501 } 4502 4503 if (!Result) 4504 SunkAddr = Constant::getNullValue(Addr->getType()); 4505 else 4506 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4507 } 4508 4509 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4510 // Store the newly computed address into the cache. In the case we reused a 4511 // value, this should be idempotent. 4512 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4513 4514 // If we have no uses, recursively delete the value and all dead instructions 4515 // using it. 4516 if (Repl->use_empty()) { 4517 // This can cause recursive deletion, which can invalidate our iterator. 4518 // Use a WeakTrackingVH to hold onto it in case this happens. 4519 Value *CurValue = &*CurInstIterator; 4520 WeakTrackingVH IterHandle(CurValue); 4521 BasicBlock *BB = CurInstIterator->getParent(); 4522 4523 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4524 4525 if (IterHandle != CurValue) { 4526 // If the iterator instruction was recursively deleted, start over at the 4527 // start of the block. 4528 CurInstIterator = BB->begin(); 4529 SunkAddrs.clear(); 4530 } 4531 } 4532 ++NumMemoryInsts; 4533 return true; 4534 } 4535 4536 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4537 /// address computing into the block when possible / profitable. 4538 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4539 bool MadeChange = false; 4540 4541 const TargetRegisterInfo *TRI = 4542 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4543 TargetLowering::AsmOperandInfoVector TargetConstraints = 4544 TLI->ParseConstraints(*DL, TRI, CS); 4545 unsigned ArgNo = 0; 4546 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4547 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4548 4549 // Compute the constraint code and ConstraintType to use. 4550 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4551 4552 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4553 OpInfo.isIndirect) { 4554 Value *OpVal = CS->getArgOperand(ArgNo++); 4555 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4556 } else if (OpInfo.Type == InlineAsm::isInput) 4557 ArgNo++; 4558 } 4559 4560 return MadeChange; 4561 } 4562 4563 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4564 /// sign extensions. 4565 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4566 assert(!Val->use_empty() && "Input must have at least one use"); 4567 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4568 bool IsSExt = isa<SExtInst>(FirstUser); 4569 Type *ExtTy = FirstUser->getType(); 4570 for (const User *U : Val->users()) { 4571 const Instruction *UI = cast<Instruction>(U); 4572 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4573 return false; 4574 Type *CurTy = UI->getType(); 4575 // Same input and output types: Same instruction after CSE. 4576 if (CurTy == ExtTy) 4577 continue; 4578 4579 // If IsSExt is true, we are in this situation: 4580 // a = Val 4581 // b = sext ty1 a to ty2 4582 // c = sext ty1 a to ty3 4583 // Assuming ty2 is shorter than ty3, this could be turned into: 4584 // a = Val 4585 // b = sext ty1 a to ty2 4586 // c = sext ty2 b to ty3 4587 // However, the last sext is not free. 4588 if (IsSExt) 4589 return false; 4590 4591 // This is a ZExt, maybe this is free to extend from one type to another. 4592 // In that case, we would not account for a different use. 4593 Type *NarrowTy; 4594 Type *LargeTy; 4595 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4596 CurTy->getScalarType()->getIntegerBitWidth()) { 4597 NarrowTy = CurTy; 4598 LargeTy = ExtTy; 4599 } else { 4600 NarrowTy = ExtTy; 4601 LargeTy = CurTy; 4602 } 4603 4604 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4605 return false; 4606 } 4607 // All uses are the same or can be derived from one another for free. 4608 return true; 4609 } 4610 4611 /// \brief Try to speculatively promote extensions in \p Exts and continue 4612 /// promoting through newly promoted operands recursively as far as doing so is 4613 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4614 /// When some promotion happened, \p TPT contains the proper state to revert 4615 /// them. 4616 /// 4617 /// \return true if some promotion happened, false otherwise. 4618 bool CodeGenPrepare::tryToPromoteExts( 4619 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4620 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4621 unsigned CreatedInstsCost) { 4622 bool Promoted = false; 4623 4624 // Iterate over all the extensions to try to promote them. 4625 for (auto I : Exts) { 4626 // Early check if we directly have ext(load). 4627 if (isa<LoadInst>(I->getOperand(0))) { 4628 ProfitablyMovedExts.push_back(I); 4629 continue; 4630 } 4631 4632 // Check whether or not we want to do any promotion. The reason we have 4633 // this check inside the for loop is to catch the case where an extension 4634 // is directly fed by a load because in such case the extension can be moved 4635 // up without any promotion on its operands. 4636 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4637 return false; 4638 4639 // Get the action to perform the promotion. 4640 TypePromotionHelper::Action TPH = 4641 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4642 // Check if we can promote. 4643 if (!TPH) { 4644 // Save the current extension as we cannot move up through its operand. 4645 ProfitablyMovedExts.push_back(I); 4646 continue; 4647 } 4648 4649 // Save the current state. 4650 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4651 TPT.getRestorationPoint(); 4652 SmallVector<Instruction *, 4> NewExts; 4653 unsigned NewCreatedInstsCost = 0; 4654 unsigned ExtCost = !TLI->isExtFree(I); 4655 // Promote. 4656 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4657 &NewExts, nullptr, *TLI); 4658 assert(PromotedVal && 4659 "TypePromotionHelper should have filtered out those cases"); 4660 4661 // We would be able to merge only one extension in a load. 4662 // Therefore, if we have more than 1 new extension we heuristically 4663 // cut this search path, because it means we degrade the code quality. 4664 // With exactly 2, the transformation is neutral, because we will merge 4665 // one extension but leave one. However, we optimistically keep going, 4666 // because the new extension may be removed too. 4667 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4668 // FIXME: It would be possible to propagate a negative value instead of 4669 // conservatively ceiling it to 0. 4670 TotalCreatedInstsCost = 4671 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4672 if (!StressExtLdPromotion && 4673 (TotalCreatedInstsCost > 1 || 4674 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4675 // This promotion is not profitable, rollback to the previous state, and 4676 // save the current extension in ProfitablyMovedExts as the latest 4677 // speculative promotion turned out to be unprofitable. 4678 TPT.rollback(LastKnownGood); 4679 ProfitablyMovedExts.push_back(I); 4680 continue; 4681 } 4682 // Continue promoting NewExts as far as doing so is profitable. 4683 SmallVector<Instruction *, 2> NewlyMovedExts; 4684 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4685 bool NewPromoted = false; 4686 for (auto ExtInst : NewlyMovedExts) { 4687 Instruction *MovedExt = cast<Instruction>(ExtInst); 4688 Value *ExtOperand = MovedExt->getOperand(0); 4689 // If we have reached to a load, we need this extra profitability check 4690 // as it could potentially be merged into an ext(load). 4691 if (isa<LoadInst>(ExtOperand) && 4692 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4693 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4694 continue; 4695 4696 ProfitablyMovedExts.push_back(MovedExt); 4697 NewPromoted = true; 4698 } 4699 4700 // If none of speculative promotions for NewExts is profitable, rollback 4701 // and save the current extension (I) as the last profitable extension. 4702 if (!NewPromoted) { 4703 TPT.rollback(LastKnownGood); 4704 ProfitablyMovedExts.push_back(I); 4705 continue; 4706 } 4707 // The promotion is profitable. 4708 Promoted = true; 4709 } 4710 return Promoted; 4711 } 4712 4713 /// Merging redundant sexts when one is dominating the other. 4714 bool CodeGenPrepare::mergeSExts(Function &F) { 4715 DominatorTree DT(F); 4716 bool Changed = false; 4717 for (auto &Entry : ValToSExtendedUses) { 4718 SExts &Insts = Entry.second; 4719 SExts CurPts; 4720 for (Instruction *Inst : Insts) { 4721 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4722 Inst->getOperand(0) != Entry.first) 4723 continue; 4724 bool inserted = false; 4725 for (auto &Pt : CurPts) { 4726 if (DT.dominates(Inst, Pt)) { 4727 Pt->replaceAllUsesWith(Inst); 4728 RemovedInsts.insert(Pt); 4729 Pt->removeFromParent(); 4730 Pt = Inst; 4731 inserted = true; 4732 Changed = true; 4733 break; 4734 } 4735 if (!DT.dominates(Pt, Inst)) 4736 // Give up if we need to merge in a common dominator as the 4737 // expermients show it is not profitable. 4738 continue; 4739 Inst->replaceAllUsesWith(Pt); 4740 RemovedInsts.insert(Inst); 4741 Inst->removeFromParent(); 4742 inserted = true; 4743 Changed = true; 4744 break; 4745 } 4746 if (!inserted) 4747 CurPts.push_back(Inst); 4748 } 4749 } 4750 return Changed; 4751 } 4752 4753 /// Return true, if an ext(load) can be formed from an extension in 4754 /// \p MovedExts. 4755 bool CodeGenPrepare::canFormExtLd( 4756 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4757 Instruction *&Inst, bool HasPromoted) { 4758 for (auto *MovedExtInst : MovedExts) { 4759 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4760 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4761 Inst = MovedExtInst; 4762 break; 4763 } 4764 } 4765 if (!LI) 4766 return false; 4767 4768 // If they're already in the same block, there's nothing to do. 4769 // Make the cheap checks first if we did not promote. 4770 // If we promoted, we need to check if it is indeed profitable. 4771 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4772 return false; 4773 4774 return TLI->isExtLoad(LI, Inst, *DL); 4775 } 4776 4777 /// Move a zext or sext fed by a load into the same basic block as the load, 4778 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4779 /// extend into the load. 4780 /// 4781 /// E.g., 4782 /// \code 4783 /// %ld = load i32* %addr 4784 /// %add = add nuw i32 %ld, 4 4785 /// %zext = zext i32 %add to i64 4786 // \endcode 4787 /// => 4788 /// \code 4789 /// %ld = load i32* %addr 4790 /// %zext = zext i32 %ld to i64 4791 /// %add = add nuw i64 %zext, 4 4792 /// \encode 4793 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4794 /// allow us to match zext(load i32*) to i64. 4795 /// 4796 /// Also, try to promote the computations used to obtain a sign extended 4797 /// value used into memory accesses. 4798 /// E.g., 4799 /// \code 4800 /// a = add nsw i32 b, 3 4801 /// d = sext i32 a to i64 4802 /// e = getelementptr ..., i64 d 4803 /// \endcode 4804 /// => 4805 /// \code 4806 /// f = sext i32 b to i64 4807 /// a = add nsw i64 f, 3 4808 /// e = getelementptr ..., i64 a 4809 /// \endcode 4810 /// 4811 /// \p Inst[in/out] the extension may be modified during the process if some 4812 /// promotions apply. 4813 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4814 // ExtLoad formation and address type promotion infrastructure requires TLI to 4815 // be effective. 4816 if (!TLI) 4817 return false; 4818 4819 bool AllowPromotionWithoutCommonHeader = false; 4820 /// See if it is an interesting sext operations for the address type 4821 /// promotion before trying to promote it, e.g., the ones with the right 4822 /// type and used in memory accesses. 4823 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4824 *Inst, AllowPromotionWithoutCommonHeader); 4825 TypePromotionTransaction TPT(RemovedInsts); 4826 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4827 TPT.getRestorationPoint(); 4828 SmallVector<Instruction *, 1> Exts; 4829 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4830 Exts.push_back(Inst); 4831 4832 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4833 4834 // Look for a load being extended. 4835 LoadInst *LI = nullptr; 4836 Instruction *ExtFedByLoad; 4837 4838 // Try to promote a chain of computation if it allows to form an extended 4839 // load. 4840 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4841 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4842 TPT.commit(); 4843 // Move the extend into the same block as the load 4844 ExtFedByLoad->moveAfter(LI); 4845 // CGP does not check if the zext would be speculatively executed when moved 4846 // to the same basic block as the load. Preserving its original location 4847 // would pessimize the debugging experience, as well as negatively impact 4848 // the quality of sample pgo. We don't want to use "line 0" as that has a 4849 // size cost in the line-table section and logically the zext can be seen as 4850 // part of the load. Therefore we conservatively reuse the same debug 4851 // location for the load and the zext. 4852 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4853 ++NumExtsMoved; 4854 Inst = ExtFedByLoad; 4855 return true; 4856 } 4857 4858 // Continue promoting SExts if known as considerable depending on targets. 4859 if (ATPConsiderable && 4860 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4861 HasPromoted, TPT, SpeculativelyMovedExts)) 4862 return true; 4863 4864 TPT.rollback(LastKnownGood); 4865 return false; 4866 } 4867 4868 // Perform address type promotion if doing so is profitable. 4869 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4870 // instructions that sign extended the same initial value. However, if 4871 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4872 // extension is just profitable. 4873 bool CodeGenPrepare::performAddressTypePromotion( 4874 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4875 bool HasPromoted, TypePromotionTransaction &TPT, 4876 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4877 bool Promoted = false; 4878 SmallPtrSet<Instruction *, 1> UnhandledExts; 4879 bool AllSeenFirst = true; 4880 for (auto I : SpeculativelyMovedExts) { 4881 Value *HeadOfChain = I->getOperand(0); 4882 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4883 SeenChainsForSExt.find(HeadOfChain); 4884 // If there is an unhandled SExt which has the same header, try to promote 4885 // it as well. 4886 if (AlreadySeen != SeenChainsForSExt.end()) { 4887 if (AlreadySeen->second != nullptr) 4888 UnhandledExts.insert(AlreadySeen->second); 4889 AllSeenFirst = false; 4890 } 4891 } 4892 4893 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4894 SpeculativelyMovedExts.size() == 1)) { 4895 TPT.commit(); 4896 if (HasPromoted) 4897 Promoted = true; 4898 for (auto I : SpeculativelyMovedExts) { 4899 Value *HeadOfChain = I->getOperand(0); 4900 SeenChainsForSExt[HeadOfChain] = nullptr; 4901 ValToSExtendedUses[HeadOfChain].push_back(I); 4902 } 4903 // Update Inst as promotion happen. 4904 Inst = SpeculativelyMovedExts.pop_back_val(); 4905 } else { 4906 // This is the first chain visited from the header, keep the current chain 4907 // as unhandled. Defer to promote this until we encounter another SExt 4908 // chain derived from the same header. 4909 for (auto I : SpeculativelyMovedExts) { 4910 Value *HeadOfChain = I->getOperand(0); 4911 SeenChainsForSExt[HeadOfChain] = Inst; 4912 } 4913 return false; 4914 } 4915 4916 if (!AllSeenFirst && !UnhandledExts.empty()) 4917 for (auto VisitedSExt : UnhandledExts) { 4918 if (RemovedInsts.count(VisitedSExt)) 4919 continue; 4920 TypePromotionTransaction TPT(RemovedInsts); 4921 SmallVector<Instruction *, 1> Exts; 4922 SmallVector<Instruction *, 2> Chains; 4923 Exts.push_back(VisitedSExt); 4924 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4925 TPT.commit(); 4926 if (HasPromoted) 4927 Promoted = true; 4928 for (auto I : Chains) { 4929 Value *HeadOfChain = I->getOperand(0); 4930 // Mark this as handled. 4931 SeenChainsForSExt[HeadOfChain] = nullptr; 4932 ValToSExtendedUses[HeadOfChain].push_back(I); 4933 } 4934 } 4935 return Promoted; 4936 } 4937 4938 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4939 BasicBlock *DefBB = I->getParent(); 4940 4941 // If the result of a {s|z}ext and its source are both live out, rewrite all 4942 // other uses of the source with result of extension. 4943 Value *Src = I->getOperand(0); 4944 if (Src->hasOneUse()) 4945 return false; 4946 4947 // Only do this xform if truncating is free. 4948 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4949 return false; 4950 4951 // Only safe to perform the optimization if the source is also defined in 4952 // this block. 4953 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4954 return false; 4955 4956 bool DefIsLiveOut = false; 4957 for (User *U : I->users()) { 4958 Instruction *UI = cast<Instruction>(U); 4959 4960 // Figure out which BB this ext is used in. 4961 BasicBlock *UserBB = UI->getParent(); 4962 if (UserBB == DefBB) continue; 4963 DefIsLiveOut = true; 4964 break; 4965 } 4966 if (!DefIsLiveOut) 4967 return false; 4968 4969 // Make sure none of the uses are PHI nodes. 4970 for (User *U : Src->users()) { 4971 Instruction *UI = cast<Instruction>(U); 4972 BasicBlock *UserBB = UI->getParent(); 4973 if (UserBB == DefBB) continue; 4974 // Be conservative. We don't want this xform to end up introducing 4975 // reloads just before load / store instructions. 4976 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4977 return false; 4978 } 4979 4980 // InsertedTruncs - Only insert one trunc in each block once. 4981 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4982 4983 bool MadeChange = false; 4984 for (Use &U : Src->uses()) { 4985 Instruction *User = cast<Instruction>(U.getUser()); 4986 4987 // Figure out which BB this ext is used in. 4988 BasicBlock *UserBB = User->getParent(); 4989 if (UserBB == DefBB) continue; 4990 4991 // Both src and def are live in this block. Rewrite the use. 4992 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4993 4994 if (!InsertedTrunc) { 4995 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4996 assert(InsertPt != UserBB->end()); 4997 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4998 InsertedInsts.insert(InsertedTrunc); 4999 } 5000 5001 // Replace a use of the {s|z}ext source with a use of the result. 5002 U = InsertedTrunc; 5003 ++NumExtUses; 5004 MadeChange = true; 5005 } 5006 5007 return MadeChange; 5008 } 5009 5010 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5011 // just after the load if the target can fold this into one extload instruction, 5012 // with the hope of eliminating some of the other later "and" instructions using 5013 // the loaded value. "and"s that are made trivially redundant by the insertion 5014 // of the new "and" are removed by this function, while others (e.g. those whose 5015 // path from the load goes through a phi) are left for isel to potentially 5016 // remove. 5017 // 5018 // For example: 5019 // 5020 // b0: 5021 // x = load i32 5022 // ... 5023 // b1: 5024 // y = and x, 0xff 5025 // z = use y 5026 // 5027 // becomes: 5028 // 5029 // b0: 5030 // x = load i32 5031 // x' = and x, 0xff 5032 // ... 5033 // b1: 5034 // z = use x' 5035 // 5036 // whereas: 5037 // 5038 // b0: 5039 // x1 = load i32 5040 // ... 5041 // b1: 5042 // x2 = load i32 5043 // ... 5044 // b2: 5045 // x = phi x1, x2 5046 // y = and x, 0xff 5047 // 5048 // becomes (after a call to optimizeLoadExt for each load): 5049 // 5050 // b0: 5051 // x1 = load i32 5052 // x1' = and x1, 0xff 5053 // ... 5054 // b1: 5055 // x2 = load i32 5056 // x2' = and x2, 0xff 5057 // ... 5058 // b2: 5059 // x = phi x1', x2' 5060 // y = and x, 0xff 5061 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5062 if (!Load->isSimple() || 5063 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5064 return false; 5065 5066 // Skip loads we've already transformed. 5067 if (Load->hasOneUse() && 5068 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5069 return false; 5070 5071 // Look at all uses of Load, looking through phis, to determine how many bits 5072 // of the loaded value are needed. 5073 SmallVector<Instruction *, 8> WorkList; 5074 SmallPtrSet<Instruction *, 16> Visited; 5075 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5076 for (auto *U : Load->users()) 5077 WorkList.push_back(cast<Instruction>(U)); 5078 5079 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5080 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5081 APInt DemandBits(BitWidth, 0); 5082 APInt WidestAndBits(BitWidth, 0); 5083 5084 while (!WorkList.empty()) { 5085 Instruction *I = WorkList.back(); 5086 WorkList.pop_back(); 5087 5088 // Break use-def graph loops. 5089 if (!Visited.insert(I).second) 5090 continue; 5091 5092 // For a PHI node, push all of its users. 5093 if (auto *Phi = dyn_cast<PHINode>(I)) { 5094 for (auto *U : Phi->users()) 5095 WorkList.push_back(cast<Instruction>(U)); 5096 continue; 5097 } 5098 5099 switch (I->getOpcode()) { 5100 case Instruction::And: { 5101 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5102 if (!AndC) 5103 return false; 5104 APInt AndBits = AndC->getValue(); 5105 DemandBits |= AndBits; 5106 // Keep track of the widest and mask we see. 5107 if (AndBits.ugt(WidestAndBits)) 5108 WidestAndBits = AndBits; 5109 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5110 AndsToMaybeRemove.push_back(I); 5111 break; 5112 } 5113 5114 case Instruction::Shl: { 5115 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5116 if (!ShlC) 5117 return false; 5118 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5119 DemandBits.setLowBits(BitWidth - ShiftAmt); 5120 break; 5121 } 5122 5123 case Instruction::Trunc: { 5124 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5125 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5126 DemandBits.setLowBits(TruncBitWidth); 5127 break; 5128 } 5129 5130 default: 5131 return false; 5132 } 5133 } 5134 5135 uint32_t ActiveBits = DemandBits.getActiveBits(); 5136 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5137 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5138 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5139 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5140 // followed by an AND. 5141 // TODO: Look into removing this restriction by fixing backends to either 5142 // return false for isLoadExtLegal for i1 or have them select this pattern to 5143 // a single instruction. 5144 // 5145 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5146 // mask, since these are the only ands that will be removed by isel. 5147 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5148 WidestAndBits != DemandBits) 5149 return false; 5150 5151 LLVMContext &Ctx = Load->getType()->getContext(); 5152 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5153 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5154 5155 // Reject cases that won't be matched as extloads. 5156 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5157 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5158 return false; 5159 5160 IRBuilder<> Builder(Load->getNextNode()); 5161 auto *NewAnd = dyn_cast<Instruction>( 5162 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5163 // Mark this instruction as "inserted by CGP", so that other 5164 // optimizations don't touch it. 5165 InsertedInsts.insert(NewAnd); 5166 5167 // Replace all uses of load with new and (except for the use of load in the 5168 // new and itself). 5169 Load->replaceAllUsesWith(NewAnd); 5170 NewAnd->setOperand(0, Load); 5171 5172 // Remove any and instructions that are now redundant. 5173 for (auto *And : AndsToMaybeRemove) 5174 // Check that the and mask is the same as the one we decided to put on the 5175 // new and. 5176 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5177 And->replaceAllUsesWith(NewAnd); 5178 if (&*CurInstIterator == And) 5179 CurInstIterator = std::next(And->getIterator()); 5180 And->eraseFromParent(); 5181 ++NumAndUses; 5182 } 5183 5184 ++NumAndsAdded; 5185 return true; 5186 } 5187 5188 /// Check if V (an operand of a select instruction) is an expensive instruction 5189 /// that is only used once. 5190 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5191 auto *I = dyn_cast<Instruction>(V); 5192 // If it's safe to speculatively execute, then it should not have side 5193 // effects; therefore, it's safe to sink and possibly *not* execute. 5194 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5195 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5196 } 5197 5198 /// Returns true if a SelectInst should be turned into an explicit branch. 5199 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5200 const TargetLowering *TLI, 5201 SelectInst *SI) { 5202 // If even a predictable select is cheap, then a branch can't be cheaper. 5203 if (!TLI->isPredictableSelectExpensive()) 5204 return false; 5205 5206 // FIXME: This should use the same heuristics as IfConversion to determine 5207 // whether a select is better represented as a branch. 5208 5209 // If metadata tells us that the select condition is obviously predictable, 5210 // then we want to replace the select with a branch. 5211 uint64_t TrueWeight, FalseWeight; 5212 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5213 uint64_t Max = std::max(TrueWeight, FalseWeight); 5214 uint64_t Sum = TrueWeight + FalseWeight; 5215 if (Sum != 0) { 5216 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5217 if (Probability > TLI->getPredictableBranchThreshold()) 5218 return true; 5219 } 5220 } 5221 5222 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5223 5224 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5225 // comparison condition. If the compare has more than one use, there's 5226 // probably another cmov or setcc around, so it's not worth emitting a branch. 5227 if (!Cmp || !Cmp->hasOneUse()) 5228 return false; 5229 5230 // If either operand of the select is expensive and only needed on one side 5231 // of the select, we should form a branch. 5232 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5233 sinkSelectOperand(TTI, SI->getFalseValue())) 5234 return true; 5235 5236 return false; 5237 } 5238 5239 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5240 /// false value of \p SI. If the true/false value of \p SI is defined by any 5241 /// select instructions in \p Selects, look through the defining select 5242 /// instruction until the true/false value is not defined in \p Selects. 5243 static Value *getTrueOrFalseValue( 5244 SelectInst *SI, bool isTrue, 5245 const SmallPtrSet<const Instruction *, 2> &Selects) { 5246 Value *V; 5247 5248 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5249 DefSI = dyn_cast<SelectInst>(V)) { 5250 assert(DefSI->getCondition() == SI->getCondition() && 5251 "The condition of DefSI does not match with SI"); 5252 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5253 } 5254 return V; 5255 } 5256 5257 /// If we have a SelectInst that will likely profit from branch prediction, 5258 /// turn it into a branch. 5259 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5260 // Find all consecutive select instructions that share the same condition. 5261 SmallVector<SelectInst *, 2> ASI; 5262 ASI.push_back(SI); 5263 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5264 It != SI->getParent()->end(); ++It) { 5265 SelectInst *I = dyn_cast<SelectInst>(&*It); 5266 if (I && SI->getCondition() == I->getCondition()) { 5267 ASI.push_back(I); 5268 } else { 5269 break; 5270 } 5271 } 5272 5273 SelectInst *LastSI = ASI.back(); 5274 // Increment the current iterator to skip all the rest of select instructions 5275 // because they will be either "not lowered" or "all lowered" to branch. 5276 CurInstIterator = std::next(LastSI->getIterator()); 5277 5278 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5279 5280 // Can we convert the 'select' to CF ? 5281 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5282 SI->getMetadata(LLVMContext::MD_unpredictable)) 5283 return false; 5284 5285 TargetLowering::SelectSupportKind SelectKind; 5286 if (VectorCond) 5287 SelectKind = TargetLowering::VectorMaskSelect; 5288 else if (SI->getType()->isVectorTy()) 5289 SelectKind = TargetLowering::ScalarCondVectorVal; 5290 else 5291 SelectKind = TargetLowering::ScalarValSelect; 5292 5293 if (TLI->isSelectSupported(SelectKind) && 5294 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5295 return false; 5296 5297 ModifiedDT = true; 5298 5299 // Transform a sequence like this: 5300 // start: 5301 // %cmp = cmp uge i32 %a, %b 5302 // %sel = select i1 %cmp, i32 %c, i32 %d 5303 // 5304 // Into: 5305 // start: 5306 // %cmp = cmp uge i32 %a, %b 5307 // br i1 %cmp, label %select.true, label %select.false 5308 // select.true: 5309 // br label %select.end 5310 // select.false: 5311 // br label %select.end 5312 // select.end: 5313 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5314 // 5315 // In addition, we may sink instructions that produce %c or %d from 5316 // the entry block into the destination(s) of the new branch. 5317 // If the true or false blocks do not contain a sunken instruction, that 5318 // block and its branch may be optimized away. In that case, one side of the 5319 // first branch will point directly to select.end, and the corresponding PHI 5320 // predecessor block will be the start block. 5321 5322 // First, we split the block containing the select into 2 blocks. 5323 BasicBlock *StartBlock = SI->getParent(); 5324 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5325 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5326 5327 // Delete the unconditional branch that was just created by the split. 5328 StartBlock->getTerminator()->eraseFromParent(); 5329 5330 // These are the new basic blocks for the conditional branch. 5331 // At least one will become an actual new basic block. 5332 BasicBlock *TrueBlock = nullptr; 5333 BasicBlock *FalseBlock = nullptr; 5334 BranchInst *TrueBranch = nullptr; 5335 BranchInst *FalseBranch = nullptr; 5336 5337 // Sink expensive instructions into the conditional blocks to avoid executing 5338 // them speculatively. 5339 for (SelectInst *SI : ASI) { 5340 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5341 if (TrueBlock == nullptr) { 5342 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5343 EndBlock->getParent(), EndBlock); 5344 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5345 } 5346 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5347 TrueInst->moveBefore(TrueBranch); 5348 } 5349 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5350 if (FalseBlock == nullptr) { 5351 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5352 EndBlock->getParent(), EndBlock); 5353 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5354 } 5355 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5356 FalseInst->moveBefore(FalseBranch); 5357 } 5358 } 5359 5360 // If there was nothing to sink, then arbitrarily choose the 'false' side 5361 // for a new input value to the PHI. 5362 if (TrueBlock == FalseBlock) { 5363 assert(TrueBlock == nullptr && 5364 "Unexpected basic block transform while optimizing select"); 5365 5366 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5367 EndBlock->getParent(), EndBlock); 5368 BranchInst::Create(EndBlock, FalseBlock); 5369 } 5370 5371 // Insert the real conditional branch based on the original condition. 5372 // If we did not create a new block for one of the 'true' or 'false' paths 5373 // of the condition, it means that side of the branch goes to the end block 5374 // directly and the path originates from the start block from the point of 5375 // view of the new PHI. 5376 BasicBlock *TT, *FT; 5377 if (TrueBlock == nullptr) { 5378 TT = EndBlock; 5379 FT = FalseBlock; 5380 TrueBlock = StartBlock; 5381 } else if (FalseBlock == nullptr) { 5382 TT = TrueBlock; 5383 FT = EndBlock; 5384 FalseBlock = StartBlock; 5385 } else { 5386 TT = TrueBlock; 5387 FT = FalseBlock; 5388 } 5389 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5390 5391 SmallPtrSet<const Instruction *, 2> INS; 5392 INS.insert(ASI.begin(), ASI.end()); 5393 // Use reverse iterator because later select may use the value of the 5394 // earlier select, and we need to propagate value through earlier select 5395 // to get the PHI operand. 5396 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5397 SelectInst *SI = *It; 5398 // The select itself is replaced with a PHI Node. 5399 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5400 PN->takeName(SI); 5401 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5402 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5403 5404 SI->replaceAllUsesWith(PN); 5405 SI->eraseFromParent(); 5406 INS.erase(SI); 5407 ++NumSelectsExpanded; 5408 } 5409 5410 // Instruct OptimizeBlock to skip to the next block. 5411 CurInstIterator = StartBlock->end(); 5412 return true; 5413 } 5414 5415 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5416 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5417 int SplatElem = -1; 5418 for (unsigned i = 0; i < Mask.size(); ++i) { 5419 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5420 return false; 5421 SplatElem = Mask[i]; 5422 } 5423 5424 return true; 5425 } 5426 5427 /// Some targets have expensive vector shifts if the lanes aren't all the same 5428 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5429 /// it's often worth sinking a shufflevector splat down to its use so that 5430 /// codegen can spot all lanes are identical. 5431 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5432 BasicBlock *DefBB = SVI->getParent(); 5433 5434 // Only do this xform if variable vector shifts are particularly expensive. 5435 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5436 return false; 5437 5438 // We only expect better codegen by sinking a shuffle if we can recognise a 5439 // constant splat. 5440 if (!isBroadcastShuffle(SVI)) 5441 return false; 5442 5443 // InsertedShuffles - Only insert a shuffle in each block once. 5444 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5445 5446 bool MadeChange = false; 5447 for (User *U : SVI->users()) { 5448 Instruction *UI = cast<Instruction>(U); 5449 5450 // Figure out which BB this ext is used in. 5451 BasicBlock *UserBB = UI->getParent(); 5452 if (UserBB == DefBB) continue; 5453 5454 // For now only apply this when the splat is used by a shift instruction. 5455 if (!UI->isShift()) continue; 5456 5457 // Everything checks out, sink the shuffle if the user's block doesn't 5458 // already have a copy. 5459 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5460 5461 if (!InsertedShuffle) { 5462 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5463 assert(InsertPt != UserBB->end()); 5464 InsertedShuffle = 5465 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5466 SVI->getOperand(2), "", &*InsertPt); 5467 } 5468 5469 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5470 MadeChange = true; 5471 } 5472 5473 // If we removed all uses, nuke the shuffle. 5474 if (SVI->use_empty()) { 5475 SVI->eraseFromParent(); 5476 MadeChange = true; 5477 } 5478 5479 return MadeChange; 5480 } 5481 5482 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5483 if (!TLI || !DL) 5484 return false; 5485 5486 Value *Cond = SI->getCondition(); 5487 Type *OldType = Cond->getType(); 5488 LLVMContext &Context = Cond->getContext(); 5489 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5490 unsigned RegWidth = RegType.getSizeInBits(); 5491 5492 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5493 return false; 5494 5495 // If the register width is greater than the type width, expand the condition 5496 // of the switch instruction and each case constant to the width of the 5497 // register. By widening the type of the switch condition, subsequent 5498 // comparisons (for case comparisons) will not need to be extended to the 5499 // preferred register width, so we will potentially eliminate N-1 extends, 5500 // where N is the number of cases in the switch. 5501 auto *NewType = Type::getIntNTy(Context, RegWidth); 5502 5503 // Zero-extend the switch condition and case constants unless the switch 5504 // condition is a function argument that is already being sign-extended. 5505 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5506 // everything instead. 5507 Instruction::CastOps ExtType = Instruction::ZExt; 5508 if (auto *Arg = dyn_cast<Argument>(Cond)) 5509 if (Arg->hasSExtAttr()) 5510 ExtType = Instruction::SExt; 5511 5512 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5513 ExtInst->insertBefore(SI); 5514 SI->setCondition(ExtInst); 5515 for (auto Case : SI->cases()) { 5516 APInt NarrowConst = Case.getCaseValue()->getValue(); 5517 APInt WideConst = (ExtType == Instruction::ZExt) ? 5518 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5519 Case.setValue(ConstantInt::get(Context, WideConst)); 5520 } 5521 5522 return true; 5523 } 5524 5525 5526 namespace { 5527 5528 /// \brief Helper class to promote a scalar operation to a vector one. 5529 /// This class is used to move downward extractelement transition. 5530 /// E.g., 5531 /// a = vector_op <2 x i32> 5532 /// b = extractelement <2 x i32> a, i32 0 5533 /// c = scalar_op b 5534 /// store c 5535 /// 5536 /// => 5537 /// a = vector_op <2 x i32> 5538 /// c = vector_op a (equivalent to scalar_op on the related lane) 5539 /// * d = extractelement <2 x i32> c, i32 0 5540 /// * store d 5541 /// Assuming both extractelement and store can be combine, we get rid of the 5542 /// transition. 5543 class VectorPromoteHelper { 5544 /// DataLayout associated with the current module. 5545 const DataLayout &DL; 5546 5547 /// Used to perform some checks on the legality of vector operations. 5548 const TargetLowering &TLI; 5549 5550 /// Used to estimated the cost of the promoted chain. 5551 const TargetTransformInfo &TTI; 5552 5553 /// The transition being moved downwards. 5554 Instruction *Transition; 5555 5556 /// The sequence of instructions to be promoted. 5557 SmallVector<Instruction *, 4> InstsToBePromoted; 5558 5559 /// Cost of combining a store and an extract. 5560 unsigned StoreExtractCombineCost; 5561 5562 /// Instruction that will be combined with the transition. 5563 Instruction *CombineInst = nullptr; 5564 5565 /// \brief The instruction that represents the current end of the transition. 5566 /// Since we are faking the promotion until we reach the end of the chain 5567 /// of computation, we need a way to get the current end of the transition. 5568 Instruction *getEndOfTransition() const { 5569 if (InstsToBePromoted.empty()) 5570 return Transition; 5571 return InstsToBePromoted.back(); 5572 } 5573 5574 /// \brief Return the index of the original value in the transition. 5575 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5576 /// c, is at index 0. 5577 unsigned getTransitionOriginalValueIdx() const { 5578 assert(isa<ExtractElementInst>(Transition) && 5579 "Other kind of transitions are not supported yet"); 5580 return 0; 5581 } 5582 5583 /// \brief Return the index of the index in the transition. 5584 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5585 /// is at index 1. 5586 unsigned getTransitionIdx() const { 5587 assert(isa<ExtractElementInst>(Transition) && 5588 "Other kind of transitions are not supported yet"); 5589 return 1; 5590 } 5591 5592 /// \brief Get the type of the transition. 5593 /// This is the type of the original value. 5594 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5595 /// transition is <2 x i32>. 5596 Type *getTransitionType() const { 5597 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5598 } 5599 5600 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5601 /// I.e., we have the following sequence: 5602 /// Def = Transition <ty1> a to <ty2> 5603 /// b = ToBePromoted <ty2> Def, ... 5604 /// => 5605 /// b = ToBePromoted <ty1> a, ... 5606 /// Def = Transition <ty1> ToBePromoted to <ty2> 5607 void promoteImpl(Instruction *ToBePromoted); 5608 5609 /// \brief Check whether or not it is profitable to promote all the 5610 /// instructions enqueued to be promoted. 5611 bool isProfitableToPromote() { 5612 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5613 unsigned Index = isa<ConstantInt>(ValIdx) 5614 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5615 : -1; 5616 Type *PromotedType = getTransitionType(); 5617 5618 StoreInst *ST = cast<StoreInst>(CombineInst); 5619 unsigned AS = ST->getPointerAddressSpace(); 5620 unsigned Align = ST->getAlignment(); 5621 // Check if this store is supported. 5622 if (!TLI.allowsMisalignedMemoryAccesses( 5623 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5624 Align)) { 5625 // If this is not supported, there is no way we can combine 5626 // the extract with the store. 5627 return false; 5628 } 5629 5630 // The scalar chain of computation has to pay for the transition 5631 // scalar to vector. 5632 // The vector chain has to account for the combining cost. 5633 uint64_t ScalarCost = 5634 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5635 uint64_t VectorCost = StoreExtractCombineCost; 5636 for (const auto &Inst : InstsToBePromoted) { 5637 // Compute the cost. 5638 // By construction, all instructions being promoted are arithmetic ones. 5639 // Moreover, one argument is a constant that can be viewed as a splat 5640 // constant. 5641 Value *Arg0 = Inst->getOperand(0); 5642 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5643 isa<ConstantFP>(Arg0); 5644 TargetTransformInfo::OperandValueKind Arg0OVK = 5645 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5646 : TargetTransformInfo::OK_AnyValue; 5647 TargetTransformInfo::OperandValueKind Arg1OVK = 5648 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5649 : TargetTransformInfo::OK_AnyValue; 5650 ScalarCost += TTI.getArithmeticInstrCost( 5651 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5652 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5653 Arg0OVK, Arg1OVK); 5654 } 5655 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5656 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5657 return ScalarCost > VectorCost; 5658 } 5659 5660 /// \brief Generate a constant vector with \p Val with the same 5661 /// number of elements as the transition. 5662 /// \p UseSplat defines whether or not \p Val should be replicated 5663 /// across the whole vector. 5664 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5665 /// otherwise we generate a vector with as many undef as possible: 5666 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5667 /// used at the index of the extract. 5668 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5669 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5670 if (!UseSplat) { 5671 // If we cannot determine where the constant must be, we have to 5672 // use a splat constant. 5673 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5674 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5675 ExtractIdx = CstVal->getSExtValue(); 5676 else 5677 UseSplat = true; 5678 } 5679 5680 unsigned End = getTransitionType()->getVectorNumElements(); 5681 if (UseSplat) 5682 return ConstantVector::getSplat(End, Val); 5683 5684 SmallVector<Constant *, 4> ConstVec; 5685 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5686 for (unsigned Idx = 0; Idx != End; ++Idx) { 5687 if (Idx == ExtractIdx) 5688 ConstVec.push_back(Val); 5689 else 5690 ConstVec.push_back(UndefVal); 5691 } 5692 return ConstantVector::get(ConstVec); 5693 } 5694 5695 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5696 /// in \p Use can trigger undefined behavior. 5697 static bool canCauseUndefinedBehavior(const Instruction *Use, 5698 unsigned OperandIdx) { 5699 // This is not safe to introduce undef when the operand is on 5700 // the right hand side of a division-like instruction. 5701 if (OperandIdx != 1) 5702 return false; 5703 switch (Use->getOpcode()) { 5704 default: 5705 return false; 5706 case Instruction::SDiv: 5707 case Instruction::UDiv: 5708 case Instruction::SRem: 5709 case Instruction::URem: 5710 return true; 5711 case Instruction::FDiv: 5712 case Instruction::FRem: 5713 return !Use->hasNoNaNs(); 5714 } 5715 llvm_unreachable(nullptr); 5716 } 5717 5718 public: 5719 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5720 const TargetTransformInfo &TTI, Instruction *Transition, 5721 unsigned CombineCost) 5722 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5723 StoreExtractCombineCost(CombineCost) { 5724 assert(Transition && "Do not know how to promote null"); 5725 } 5726 5727 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5728 bool canPromote(const Instruction *ToBePromoted) const { 5729 // We could support CastInst too. 5730 return isa<BinaryOperator>(ToBePromoted); 5731 } 5732 5733 /// \brief Check if it is profitable to promote \p ToBePromoted 5734 /// by moving downward the transition through. 5735 bool shouldPromote(const Instruction *ToBePromoted) const { 5736 // Promote only if all the operands can be statically expanded. 5737 // Indeed, we do not want to introduce any new kind of transitions. 5738 for (const Use &U : ToBePromoted->operands()) { 5739 const Value *Val = U.get(); 5740 if (Val == getEndOfTransition()) { 5741 // If the use is a division and the transition is on the rhs, 5742 // we cannot promote the operation, otherwise we may create a 5743 // division by zero. 5744 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5745 return false; 5746 continue; 5747 } 5748 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5749 !isa<ConstantFP>(Val)) 5750 return false; 5751 } 5752 // Check that the resulting operation is legal. 5753 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5754 if (!ISDOpcode) 5755 return false; 5756 return StressStoreExtract || 5757 TLI.isOperationLegalOrCustom( 5758 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5759 } 5760 5761 /// \brief Check whether or not \p Use can be combined 5762 /// with the transition. 5763 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5764 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5765 5766 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5767 void enqueueForPromotion(Instruction *ToBePromoted) { 5768 InstsToBePromoted.push_back(ToBePromoted); 5769 } 5770 5771 /// \brief Set the instruction that will be combined with the transition. 5772 void recordCombineInstruction(Instruction *ToBeCombined) { 5773 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5774 CombineInst = ToBeCombined; 5775 } 5776 5777 /// \brief Promote all the instructions enqueued for promotion if it is 5778 /// is profitable. 5779 /// \return True if the promotion happened, false otherwise. 5780 bool promote() { 5781 // Check if there is something to promote. 5782 // Right now, if we do not have anything to combine with, 5783 // we assume the promotion is not profitable. 5784 if (InstsToBePromoted.empty() || !CombineInst) 5785 return false; 5786 5787 // Check cost. 5788 if (!StressStoreExtract && !isProfitableToPromote()) 5789 return false; 5790 5791 // Promote. 5792 for (auto &ToBePromoted : InstsToBePromoted) 5793 promoteImpl(ToBePromoted); 5794 InstsToBePromoted.clear(); 5795 return true; 5796 } 5797 }; 5798 5799 } // end anonymous namespace 5800 5801 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5802 // At this point, we know that all the operands of ToBePromoted but Def 5803 // can be statically promoted. 5804 // For Def, we need to use its parameter in ToBePromoted: 5805 // b = ToBePromoted ty1 a 5806 // Def = Transition ty1 b to ty2 5807 // Move the transition down. 5808 // 1. Replace all uses of the promoted operation by the transition. 5809 // = ... b => = ... Def. 5810 assert(ToBePromoted->getType() == Transition->getType() && 5811 "The type of the result of the transition does not match " 5812 "the final type"); 5813 ToBePromoted->replaceAllUsesWith(Transition); 5814 // 2. Update the type of the uses. 5815 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5816 Type *TransitionTy = getTransitionType(); 5817 ToBePromoted->mutateType(TransitionTy); 5818 // 3. Update all the operands of the promoted operation with promoted 5819 // operands. 5820 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5821 for (Use &U : ToBePromoted->operands()) { 5822 Value *Val = U.get(); 5823 Value *NewVal = nullptr; 5824 if (Val == Transition) 5825 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5826 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5827 isa<ConstantFP>(Val)) { 5828 // Use a splat constant if it is not safe to use undef. 5829 NewVal = getConstantVector( 5830 cast<Constant>(Val), 5831 isa<UndefValue>(Val) || 5832 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5833 } else 5834 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5835 "this?"); 5836 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5837 } 5838 Transition->moveAfter(ToBePromoted); 5839 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5840 } 5841 5842 /// Some targets can do store(extractelement) with one instruction. 5843 /// Try to push the extractelement towards the stores when the target 5844 /// has this feature and this is profitable. 5845 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5846 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5847 if (DisableStoreExtract || !TLI || 5848 (!StressStoreExtract && 5849 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5850 Inst->getOperand(1), CombineCost))) 5851 return false; 5852 5853 // At this point we know that Inst is a vector to scalar transition. 5854 // Try to move it down the def-use chain, until: 5855 // - We can combine the transition with its single use 5856 // => we got rid of the transition. 5857 // - We escape the current basic block 5858 // => we would need to check that we are moving it at a cheaper place and 5859 // we do not do that for now. 5860 BasicBlock *Parent = Inst->getParent(); 5861 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5862 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5863 // If the transition has more than one use, assume this is not going to be 5864 // beneficial. 5865 while (Inst->hasOneUse()) { 5866 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5867 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5868 5869 if (ToBePromoted->getParent() != Parent) { 5870 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5871 << ToBePromoted->getParent()->getName() 5872 << ") than the transition (" << Parent->getName() << ").\n"); 5873 return false; 5874 } 5875 5876 if (VPH.canCombine(ToBePromoted)) { 5877 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5878 << "will be combined with: " << *ToBePromoted << '\n'); 5879 VPH.recordCombineInstruction(ToBePromoted); 5880 bool Changed = VPH.promote(); 5881 NumStoreExtractExposed += Changed; 5882 return Changed; 5883 } 5884 5885 DEBUG(dbgs() << "Try promoting.\n"); 5886 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5887 return false; 5888 5889 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5890 5891 VPH.enqueueForPromotion(ToBePromoted); 5892 Inst = ToBePromoted; 5893 } 5894 return false; 5895 } 5896 5897 /// For the instruction sequence of store below, F and I values 5898 /// are bundled together as an i64 value before being stored into memory. 5899 /// Sometimes it is more efficent to generate separate stores for F and I, 5900 /// which can remove the bitwise instructions or sink them to colder places. 5901 /// 5902 /// (store (or (zext (bitcast F to i32) to i64), 5903 /// (shl (zext I to i64), 32)), addr) --> 5904 /// (store F, addr) and (store I, addr+4) 5905 /// 5906 /// Similarly, splitting for other merged store can also be beneficial, like: 5907 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5908 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5909 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5910 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5911 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5912 /// 5913 /// We allow each target to determine specifically which kind of splitting is 5914 /// supported. 5915 /// 5916 /// The store patterns are commonly seen from the simple code snippet below 5917 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5918 /// void goo(const std::pair<int, float> &); 5919 /// hoo() { 5920 /// ... 5921 /// goo(std::make_pair(tmp, ftmp)); 5922 /// ... 5923 /// } 5924 /// 5925 /// Although we already have similar splitting in DAG Combine, we duplicate 5926 /// it in CodeGenPrepare to catch the case in which pattern is across 5927 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5928 /// during code expansion. 5929 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5930 const TargetLowering &TLI) { 5931 // Handle simple but common cases only. 5932 Type *StoreType = SI.getValueOperand()->getType(); 5933 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5934 DL.getTypeSizeInBits(StoreType) == 0) 5935 return false; 5936 5937 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5938 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5939 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5940 DL.getTypeSizeInBits(SplitStoreType)) 5941 return false; 5942 5943 // Match the following patterns: 5944 // (store (or (zext LValue to i64), 5945 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5946 // or 5947 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5948 // (zext LValue to i64), 5949 // Expect both operands of OR and the first operand of SHL have only 5950 // one use. 5951 Value *LValue, *HValue; 5952 if (!match(SI.getValueOperand(), 5953 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5954 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5955 m_SpecificInt(HalfValBitSize)))))) 5956 return false; 5957 5958 // Check LValue and HValue are int with size less or equal than 32. 5959 if (!LValue->getType()->isIntegerTy() || 5960 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5961 !HValue->getType()->isIntegerTy() || 5962 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5963 return false; 5964 5965 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5966 // as the input of target query. 5967 auto *LBC = dyn_cast<BitCastInst>(LValue); 5968 auto *HBC = dyn_cast<BitCastInst>(HValue); 5969 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5970 : EVT::getEVT(LValue->getType()); 5971 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5972 : EVT::getEVT(HValue->getType()); 5973 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5974 return false; 5975 5976 // Start to split store. 5977 IRBuilder<> Builder(SI.getContext()); 5978 Builder.SetInsertPoint(&SI); 5979 5980 // If LValue/HValue is a bitcast in another BB, create a new one in current 5981 // BB so it may be merged with the splitted stores by dag combiner. 5982 if (LBC && LBC->getParent() != SI.getParent()) 5983 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5984 if (HBC && HBC->getParent() != SI.getParent()) 5985 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5986 5987 auto CreateSplitStore = [&](Value *V, bool Upper) { 5988 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5989 Value *Addr = Builder.CreateBitCast( 5990 SI.getOperand(1), 5991 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5992 if (Upper) 5993 Addr = Builder.CreateGEP( 5994 SplitStoreType, Addr, 5995 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5996 Builder.CreateAlignedStore( 5997 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5998 }; 5999 6000 CreateSplitStore(LValue, false); 6001 CreateSplitStore(HValue, true); 6002 6003 // Delete the old store. 6004 SI.eraseFromParent(); 6005 return true; 6006 } 6007 6008 // Return true if the GEP has two operands, the first operand is of a sequential 6009 // type, and the second operand is a constant. 6010 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6011 gep_type_iterator I = gep_type_begin(*GEP); 6012 return GEP->getNumOperands() == 2 && 6013 I.isSequential() && 6014 isa<ConstantInt>(GEP->getOperand(1)); 6015 } 6016 6017 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6018 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6019 // reducing liveness interference across those edges benefits global register 6020 // allocation. Currently handles only certain cases. 6021 // 6022 // For example, unmerge %GEPI and %UGEPI as below. 6023 // 6024 // ---------- BEFORE ---------- 6025 // SrcBlock: 6026 // ... 6027 // %GEPIOp = ... 6028 // ... 6029 // %GEPI = gep %GEPIOp, Idx 6030 // ... 6031 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6032 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6033 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6034 // %UGEPI) 6035 // 6036 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6037 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6038 // ... 6039 // 6040 // DstBi: 6041 // ... 6042 // %UGEPI = gep %GEPIOp, UIdx 6043 // ... 6044 // --------------------------- 6045 // 6046 // ---------- AFTER ---------- 6047 // SrcBlock: 6048 // ... (same as above) 6049 // (* %GEPI is still alive on the indirectbr edges) 6050 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6051 // unmerging) 6052 // ... 6053 // 6054 // DstBi: 6055 // ... 6056 // %UGEPI = gep %GEPI, (UIdx-Idx) 6057 // ... 6058 // --------------------------- 6059 // 6060 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6061 // no longer alive on them. 6062 // 6063 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6064 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6065 // not to disable further simplications and optimizations as a result of GEP 6066 // merging. 6067 // 6068 // Note this unmerging may increase the length of the data flow critical path 6069 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6070 // between the register pressure and the length of data-flow critical 6071 // path. Restricting this to the uncommon IndirectBr case would minimize the 6072 // impact of potentially longer critical path, if any, and the impact on compile 6073 // time. 6074 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6075 const TargetTransformInfo *TTI) { 6076 BasicBlock *SrcBlock = GEPI->getParent(); 6077 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6078 // (non-IndirectBr) cases exit early here. 6079 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6080 return false; 6081 // Check that GEPI is a simple gep with a single constant index. 6082 if (!GEPSequentialConstIndexed(GEPI)) 6083 return false; 6084 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6085 // Check that GEPI is a cheap one. 6086 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6087 > TargetTransformInfo::TCC_Basic) 6088 return false; 6089 Value *GEPIOp = GEPI->getOperand(0); 6090 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6091 if (!isa<Instruction>(GEPIOp)) 6092 return false; 6093 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6094 if (GEPIOpI->getParent() != SrcBlock) 6095 return false; 6096 // Check that GEP is used outside the block, meaning it's alive on the 6097 // IndirectBr edge(s). 6098 if (find_if(GEPI->users(), [&](User *Usr) { 6099 if (auto *I = dyn_cast<Instruction>(Usr)) { 6100 if (I->getParent() != SrcBlock) { 6101 return true; 6102 } 6103 } 6104 return false; 6105 }) == GEPI->users().end()) 6106 return false; 6107 // The second elements of the GEP chains to be unmerged. 6108 std::vector<GetElementPtrInst *> UGEPIs; 6109 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6110 // on IndirectBr edges. 6111 for (User *Usr : GEPIOp->users()) { 6112 if (Usr == GEPI) continue; 6113 // Check if Usr is an Instruction. If not, give up. 6114 if (!isa<Instruction>(Usr)) 6115 return false; 6116 auto *UI = cast<Instruction>(Usr); 6117 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6118 if (UI->getParent() == SrcBlock) 6119 continue; 6120 // Check if Usr is a GEP. If not, give up. 6121 if (!isa<GetElementPtrInst>(Usr)) 6122 return false; 6123 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6124 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6125 // the pointer operand to it. If so, record it in the vector. If not, give 6126 // up. 6127 if (!GEPSequentialConstIndexed(UGEPI)) 6128 return false; 6129 if (UGEPI->getOperand(0) != GEPIOp) 6130 return false; 6131 if (GEPIIdx->getType() != 6132 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6133 return false; 6134 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6135 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6136 > TargetTransformInfo::TCC_Basic) 6137 return false; 6138 UGEPIs.push_back(UGEPI); 6139 } 6140 if (UGEPIs.size() == 0) 6141 return false; 6142 // Check the materializing cost of (Uidx-Idx). 6143 for (GetElementPtrInst *UGEPI : UGEPIs) { 6144 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6145 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6146 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6147 if (ImmCost > TargetTransformInfo::TCC_Basic) 6148 return false; 6149 } 6150 // Now unmerge between GEPI and UGEPIs. 6151 for (GetElementPtrInst *UGEPI : UGEPIs) { 6152 UGEPI->setOperand(0, GEPI); 6153 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6154 Constant *NewUGEPIIdx = 6155 ConstantInt::get(GEPIIdx->getType(), 6156 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6157 UGEPI->setOperand(1, NewUGEPIIdx); 6158 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6159 // inbounds to avoid UB. 6160 if (!GEPI->isInBounds()) { 6161 UGEPI->setIsInBounds(false); 6162 } 6163 } 6164 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6165 // alive on IndirectBr edges). 6166 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6167 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6168 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6169 return true; 6170 } 6171 6172 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6173 // Bail out if we inserted the instruction to prevent optimizations from 6174 // stepping on each other's toes. 6175 if (InsertedInsts.count(I)) 6176 return false; 6177 6178 if (PHINode *P = dyn_cast<PHINode>(I)) { 6179 // It is possible for very late stage optimizations (such as SimplifyCFG) 6180 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6181 // trivial PHI, go ahead and zap it here. 6182 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6183 P->replaceAllUsesWith(V); 6184 P->eraseFromParent(); 6185 ++NumPHIsElim; 6186 return true; 6187 } 6188 return false; 6189 } 6190 6191 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6192 // If the source of the cast is a constant, then this should have 6193 // already been constant folded. The only reason NOT to constant fold 6194 // it is if something (e.g. LSR) was careful to place the constant 6195 // evaluation in a block other than then one that uses it (e.g. to hoist 6196 // the address of globals out of a loop). If this is the case, we don't 6197 // want to forward-subst the cast. 6198 if (isa<Constant>(CI->getOperand(0))) 6199 return false; 6200 6201 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6202 return true; 6203 6204 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6205 /// Sink a zext or sext into its user blocks if the target type doesn't 6206 /// fit in one register 6207 if (TLI && 6208 TLI->getTypeAction(CI->getContext(), 6209 TLI->getValueType(*DL, CI->getType())) == 6210 TargetLowering::TypeExpandInteger) { 6211 return SinkCast(CI); 6212 } else { 6213 bool MadeChange = optimizeExt(I); 6214 return MadeChange | optimizeExtUses(I); 6215 } 6216 } 6217 return false; 6218 } 6219 6220 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6221 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6222 return OptimizeCmpExpression(CI, TLI); 6223 6224 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6225 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6226 if (TLI) { 6227 bool Modified = optimizeLoadExt(LI); 6228 unsigned AS = LI->getPointerAddressSpace(); 6229 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6230 return Modified; 6231 } 6232 return false; 6233 } 6234 6235 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6236 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6237 return true; 6238 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6239 if (TLI) { 6240 unsigned AS = SI->getPointerAddressSpace(); 6241 return optimizeMemoryInst(I, SI->getOperand(1), 6242 SI->getOperand(0)->getType(), AS); 6243 } 6244 return false; 6245 } 6246 6247 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6248 unsigned AS = RMW->getPointerAddressSpace(); 6249 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6250 RMW->getType(), AS); 6251 } 6252 6253 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6254 unsigned AS = CmpX->getPointerAddressSpace(); 6255 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6256 CmpX->getCompareOperand()->getType(), AS); 6257 } 6258 6259 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6260 6261 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6262 EnableAndCmpSinking && TLI) 6263 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6264 6265 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6266 BinOp->getOpcode() == Instruction::LShr)) { 6267 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6268 if (TLI && CI && TLI->hasExtractBitsInsn()) 6269 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6270 6271 return false; 6272 } 6273 6274 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6275 if (GEPI->hasAllZeroIndices()) { 6276 /// The GEP operand must be a pointer, so must its result -> BitCast 6277 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6278 GEPI->getName(), GEPI); 6279 GEPI->replaceAllUsesWith(NC); 6280 GEPI->eraseFromParent(); 6281 ++NumGEPsElim; 6282 optimizeInst(NC, ModifiedDT); 6283 return true; 6284 } 6285 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6286 return true; 6287 } 6288 return false; 6289 } 6290 6291 if (CallInst *CI = dyn_cast<CallInst>(I)) 6292 return optimizeCallInst(CI, ModifiedDT); 6293 6294 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6295 return optimizeSelectInst(SI); 6296 6297 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6298 return optimizeShuffleVectorInst(SVI); 6299 6300 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6301 return optimizeSwitchInst(Switch); 6302 6303 if (isa<ExtractElementInst>(I)) 6304 return optimizeExtractElementInst(I); 6305 6306 return false; 6307 } 6308 6309 /// Given an OR instruction, check to see if this is a bitreverse 6310 /// idiom. If so, insert the new intrinsic and return true. 6311 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6312 const TargetLowering &TLI) { 6313 if (!I.getType()->isIntegerTy() || 6314 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6315 TLI.getValueType(DL, I.getType(), true))) 6316 return false; 6317 6318 SmallVector<Instruction*, 4> Insts; 6319 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6320 return false; 6321 Instruction *LastInst = Insts.back(); 6322 I.replaceAllUsesWith(LastInst); 6323 RecursivelyDeleteTriviallyDeadInstructions(&I); 6324 return true; 6325 } 6326 6327 // In this pass we look for GEP and cast instructions that are used 6328 // across basic blocks and rewrite them to improve basic-block-at-a-time 6329 // selection. 6330 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6331 SunkAddrs.clear(); 6332 bool MadeChange = false; 6333 6334 CurInstIterator = BB.begin(); 6335 while (CurInstIterator != BB.end()) { 6336 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6337 if (ModifiedDT) 6338 return true; 6339 } 6340 6341 bool MadeBitReverse = true; 6342 while (TLI && MadeBitReverse) { 6343 MadeBitReverse = false; 6344 for (auto &I : reverse(BB)) { 6345 if (makeBitReverse(I, *DL, *TLI)) { 6346 MadeBitReverse = MadeChange = true; 6347 ModifiedDT = true; 6348 break; 6349 } 6350 } 6351 } 6352 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6353 6354 return MadeChange; 6355 } 6356 6357 // llvm.dbg.value is far away from the value then iSel may not be able 6358 // handle it properly. iSel will drop llvm.dbg.value if it can not 6359 // find a node corresponding to the value. 6360 bool CodeGenPrepare::placeDbgValues(Function &F) { 6361 bool MadeChange = false; 6362 for (BasicBlock &BB : F) { 6363 Instruction *PrevNonDbgInst = nullptr; 6364 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6365 Instruction *Insn = &*BI++; 6366 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6367 // Leave dbg.values that refer to an alloca alone. These 6368 // intrinsics describe the address of a variable (= the alloca) 6369 // being taken. They should not be moved next to the alloca 6370 // (and to the beginning of the scope), but rather stay close to 6371 // where said address is used. 6372 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6373 PrevNonDbgInst = Insn; 6374 continue; 6375 } 6376 6377 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6378 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6379 // If VI is a phi in a block with an EHPad terminator, we can't insert 6380 // after it. 6381 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6382 continue; 6383 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6384 DVI->removeFromParent(); 6385 if (isa<PHINode>(VI)) 6386 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6387 else 6388 DVI->insertAfter(VI); 6389 MadeChange = true; 6390 ++NumDbgValueMoved; 6391 } 6392 } 6393 } 6394 return MadeChange; 6395 } 6396 6397 /// \brief Scale down both weights to fit into uint32_t. 6398 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6399 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6400 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6401 NewTrue = NewTrue / Scale; 6402 NewFalse = NewFalse / Scale; 6403 } 6404 6405 /// \brief Some targets prefer to split a conditional branch like: 6406 /// \code 6407 /// %0 = icmp ne i32 %a, 0 6408 /// %1 = icmp ne i32 %b, 0 6409 /// %or.cond = or i1 %0, %1 6410 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6411 /// \endcode 6412 /// into multiple branch instructions like: 6413 /// \code 6414 /// bb1: 6415 /// %0 = icmp ne i32 %a, 0 6416 /// br i1 %0, label %TrueBB, label %bb2 6417 /// bb2: 6418 /// %1 = icmp ne i32 %b, 0 6419 /// br i1 %1, label %TrueBB, label %FalseBB 6420 /// \endcode 6421 /// This usually allows instruction selection to do even further optimizations 6422 /// and combine the compare with the branch instruction. Currently this is 6423 /// applied for targets which have "cheap" jump instructions. 6424 /// 6425 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6426 /// 6427 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6428 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6429 return false; 6430 6431 bool MadeChange = false; 6432 for (auto &BB : F) { 6433 // Does this BB end with the following? 6434 // %cond1 = icmp|fcmp|binary instruction ... 6435 // %cond2 = icmp|fcmp|binary instruction ... 6436 // %cond.or = or|and i1 %cond1, cond2 6437 // br i1 %cond.or label %dest1, label %dest2" 6438 BinaryOperator *LogicOp; 6439 BasicBlock *TBB, *FBB; 6440 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6441 continue; 6442 6443 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6444 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6445 continue; 6446 6447 unsigned Opc; 6448 Value *Cond1, *Cond2; 6449 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6450 m_OneUse(m_Value(Cond2))))) 6451 Opc = Instruction::And; 6452 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6453 m_OneUse(m_Value(Cond2))))) 6454 Opc = Instruction::Or; 6455 else 6456 continue; 6457 6458 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6459 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6460 continue; 6461 6462 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6463 6464 // Create a new BB. 6465 auto TmpBB = 6466 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6467 BB.getParent(), BB.getNextNode()); 6468 6469 // Update original basic block by using the first condition directly by the 6470 // branch instruction and removing the no longer needed and/or instruction. 6471 Br1->setCondition(Cond1); 6472 LogicOp->eraseFromParent(); 6473 6474 // Depending on the conditon we have to either replace the true or the false 6475 // successor of the original branch instruction. 6476 if (Opc == Instruction::And) 6477 Br1->setSuccessor(0, TmpBB); 6478 else 6479 Br1->setSuccessor(1, TmpBB); 6480 6481 // Fill in the new basic block. 6482 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6483 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6484 I->removeFromParent(); 6485 I->insertBefore(Br2); 6486 } 6487 6488 // Update PHI nodes in both successors. The original BB needs to be 6489 // replaced in one successor's PHI nodes, because the branch comes now from 6490 // the newly generated BB (NewBB). In the other successor we need to add one 6491 // incoming edge to the PHI nodes, because both branch instructions target 6492 // now the same successor. Depending on the original branch condition 6493 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6494 // we perform the correct update for the PHI nodes. 6495 // This doesn't change the successor order of the just created branch 6496 // instruction (or any other instruction). 6497 if (Opc == Instruction::Or) 6498 std::swap(TBB, FBB); 6499 6500 // Replace the old BB with the new BB. 6501 for (PHINode &PN : TBB->phis()) { 6502 int i; 6503 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6504 PN.setIncomingBlock(i, TmpBB); 6505 } 6506 6507 // Add another incoming edge form the new BB. 6508 for (PHINode &PN : FBB->phis()) { 6509 auto *Val = PN.getIncomingValueForBlock(&BB); 6510 PN.addIncoming(Val, TmpBB); 6511 } 6512 6513 // Update the branch weights (from SelectionDAGBuilder:: 6514 // FindMergedConditions). 6515 if (Opc == Instruction::Or) { 6516 // Codegen X | Y as: 6517 // BB1: 6518 // jmp_if_X TBB 6519 // jmp TmpBB 6520 // TmpBB: 6521 // jmp_if_Y TBB 6522 // jmp FBB 6523 // 6524 6525 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6526 // The requirement is that 6527 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6528 // = TrueProb for orignal BB. 6529 // Assuming the orignal weights are A and B, one choice is to set BB1's 6530 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6531 // assumes that 6532 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6533 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6534 // TmpBB, but the math is more complicated. 6535 uint64_t TrueWeight, FalseWeight; 6536 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6537 uint64_t NewTrueWeight = TrueWeight; 6538 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6539 scaleWeights(NewTrueWeight, NewFalseWeight); 6540 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6541 .createBranchWeights(TrueWeight, FalseWeight)); 6542 6543 NewTrueWeight = TrueWeight; 6544 NewFalseWeight = 2 * FalseWeight; 6545 scaleWeights(NewTrueWeight, NewFalseWeight); 6546 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6547 .createBranchWeights(TrueWeight, FalseWeight)); 6548 } 6549 } else { 6550 // Codegen X & Y as: 6551 // BB1: 6552 // jmp_if_X TmpBB 6553 // jmp FBB 6554 // TmpBB: 6555 // jmp_if_Y TBB 6556 // jmp FBB 6557 // 6558 // This requires creation of TmpBB after CurBB. 6559 6560 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6561 // The requirement is that 6562 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6563 // = FalseProb for orignal BB. 6564 // Assuming the orignal weights are A and B, one choice is to set BB1's 6565 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6566 // assumes that 6567 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6568 uint64_t TrueWeight, FalseWeight; 6569 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6570 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6571 uint64_t NewFalseWeight = FalseWeight; 6572 scaleWeights(NewTrueWeight, NewFalseWeight); 6573 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6574 .createBranchWeights(TrueWeight, FalseWeight)); 6575 6576 NewTrueWeight = 2 * TrueWeight; 6577 NewFalseWeight = FalseWeight; 6578 scaleWeights(NewTrueWeight, NewFalseWeight); 6579 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6580 .createBranchWeights(TrueWeight, FalseWeight)); 6581 } 6582 } 6583 6584 // Note: No point in getting fancy here, since the DT info is never 6585 // available to CodeGenPrepare. 6586 ModifiedDT = true; 6587 6588 MadeChange = true; 6589 6590 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6591 TmpBB->dump()); 6592 } 6593 return MadeChange; 6594 } 6595