1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/MachineValueType.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MathExtras.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include "llvm/Target/TargetOptions.h"
86 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
87 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
88 #include "llvm/Transforms/Utils/Local.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <limits>
95 #include <memory>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 
102 #define DEBUG_TYPE "codegenprepare"
103 
104 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
108                       "sunken Cmps");
109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
110                        "of sunken Casts");
111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
112                           "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated,
114           "Number of phis created when address "
115           "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated,
117           "Number of select created when address "
118           "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded,
122           "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
128 
129 static cl::opt<bool> DisableBranchOpts(
130   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
131   cl::desc("Disable branch optimizations in CodeGenPrepare"));
132 
133 static cl::opt<bool>
134     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
135                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool> DisableSelectToBranch(
138   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
139   cl::desc("Disable select to branch conversion."));
140 
141 static cl::opt<bool> AddrSinkUsingGEPs(
142   "addr-sink-using-gep", cl::Hidden, cl::init(true),
143   cl::desc("Address sinking in CGP using GEPs."));
144 
145 static cl::opt<bool> EnableAndCmpSinking(
146    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
147    cl::desc("Enable sinkinig and/cmp into branches."));
148 
149 static cl::opt<bool> DisableStoreExtract(
150     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
151     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
152 
153 static cl::opt<bool> StressStoreExtract(
154     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> DisableExtLdPromotion(
158     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
159     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
160              "CodeGenPrepare"));
161 
162 static cl::opt<bool> StressExtLdPromotion(
163     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165              "optimization in CodeGenPrepare"));
166 
167 static cl::opt<bool> DisablePreheaderProtect(
168     "disable-preheader-prot", cl::Hidden, cl::init(false),
169     cl::desc("Disable protection against removing loop preheaders"));
170 
171 static cl::opt<bool> ProfileGuidedSectionPrefix(
172     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
173     cl::desc("Use profile info to add section prefix for hot/cold functions"));
174 
175 static cl::opt<unsigned> FreqRatioToSkipMerge(
176     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
177     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178              "(frequency of destination block) is greater than this ratio"));
179 
180 static cl::opt<bool> ForceSplitStore(
181     "force-split-store", cl::Hidden, cl::init(false),
182     cl::desc("Force store splitting no matter what the target query says."));
183 
184 static cl::opt<bool>
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
186     cl::desc("Enable merging of redundant sexts when one is dominating"
187     " the other."), cl::init(true));
188 
189 static cl::opt<bool> DisableComplexAddrModes(
190     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
191     cl::desc("Disables combining addressing modes with different parts "
192              "in optimizeMemoryInst."));
193 
194 static cl::opt<bool>
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
196                 cl::desc("Allow creation of Phis in Address sinking."));
197 
198 static cl::opt<bool>
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
200                    cl::desc("Allow creation of selects in Address sinking."));
201 
202 static cl::opt<bool> AddrSinkCombineBaseReg(
203     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
204     cl::desc("Allow combining of BaseReg field in Address sinking."));
205 
206 static cl::opt<bool> AddrSinkCombineBaseGV(
207     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
208     cl::desc("Allow combining of BaseGV field in Address sinking."));
209 
210 static cl::opt<bool> AddrSinkCombineBaseOffs(
211     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
212     cl::desc("Allow combining of BaseOffs field in Address sinking."));
213 
214 static cl::opt<bool> AddrSinkCombineScaledReg(
215     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
216     cl::desc("Allow combining of ScaledReg field in Address sinking."));
217 
218 namespace {
219 
220 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
221 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
222 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
223 using SExts = SmallVector<Instruction *, 16>;
224 using ValueToSExts = DenseMap<Value *, SExts>;
225 
226 class TypePromotionTransaction;
227 
228   class CodeGenPrepare : public FunctionPass {
229     const TargetMachine *TM = nullptr;
230     const TargetSubtargetInfo *SubtargetInfo;
231     const TargetLowering *TLI = nullptr;
232     const TargetRegisterInfo *TRI;
233     const TargetTransformInfo *TTI = nullptr;
234     const TargetLibraryInfo *TLInfo;
235     const LoopInfo *LI;
236     std::unique_ptr<BlockFrequencyInfo> BFI;
237     std::unique_ptr<BranchProbabilityInfo> BPI;
238 
239     /// As we scan instructions optimizing them, this is the next instruction
240     /// to optimize. Transforms that can invalidate this should update it.
241     BasicBlock::iterator CurInstIterator;
242 
243     /// Keeps track of non-local addresses that have been sunk into a block.
244     /// This allows us to avoid inserting duplicate code for blocks with
245     /// multiple load/stores of the same address. The usage of WeakTrackingVH
246     /// enables SunkAddrs to be treated as a cache whose entries can be
247     /// invalidated if a sunken address computation has been erased.
248     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
249 
250     /// Keeps track of all instructions inserted for the current function.
251     SetOfInstrs InsertedInsts;
252 
253     /// Keeps track of the type of the related instruction before their
254     /// promotion for the current function.
255     InstrToOrigTy PromotedInsts;
256 
257     /// Keep track of instructions removed during promotion.
258     SetOfInstrs RemovedInsts;
259 
260     /// Keep track of sext chains based on their initial value.
261     DenseMap<Value *, Instruction *> SeenChainsForSExt;
262 
263     /// Keep track of SExt promoted.
264     ValueToSExts ValToSExtendedUses;
265 
266     /// True if CFG is modified in any way.
267     bool ModifiedDT;
268 
269     /// True if optimizing for size.
270     bool OptSize;
271 
272     /// DataLayout for the Function being processed.
273     const DataLayout *DL = nullptr;
274 
275   public:
276     static char ID; // Pass identification, replacement for typeid
277 
278     CodeGenPrepare() : FunctionPass(ID) {
279       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
280     }
281 
282     bool runOnFunction(Function &F) override;
283 
284     StringRef getPassName() const override { return "CodeGen Prepare"; }
285 
286     void getAnalysisUsage(AnalysisUsage &AU) const override {
287       // FIXME: When we can selectively preserve passes, preserve the domtree.
288       AU.addRequired<ProfileSummaryInfoWrapperPass>();
289       AU.addRequired<TargetLibraryInfoWrapperPass>();
290       AU.addRequired<TargetTransformInfoWrapperPass>();
291       AU.addRequired<LoopInfoWrapperPass>();
292     }
293 
294   private:
295     bool eliminateFallThrough(Function &F);
296     bool eliminateMostlyEmptyBlocks(Function &F);
297     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
298     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
299     void eliminateMostlyEmptyBlock(BasicBlock *BB);
300     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
301                                        bool isPreheader);
302     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
303     bool optimizeInst(Instruction *I, bool &ModifiedDT);
304     bool optimizeMemoryInst(Instruction *I, Value *Addr,
305                             Type *AccessTy, unsigned AS);
306     bool optimizeInlineAsmInst(CallInst *CS);
307     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
308     bool optimizeExt(Instruction *&I);
309     bool optimizeExtUses(Instruction *I);
310     bool optimizeLoadExt(LoadInst *I);
311     bool optimizeSelectInst(SelectInst *SI);
312     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
313     bool optimizeSwitchInst(SwitchInst *CI);
314     bool optimizeExtractElementInst(Instruction *Inst);
315     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
316     bool placeDbgValues(Function &F);
317     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
318                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
319     bool tryToPromoteExts(TypePromotionTransaction &TPT,
320                           const SmallVectorImpl<Instruction *> &Exts,
321                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
322                           unsigned CreatedInstsCost = 0);
323     bool mergeSExts(Function &F);
324     bool performAddressTypePromotion(
325         Instruction *&Inst,
326         bool AllowPromotionWithoutCommonHeader,
327         bool HasPromoted, TypePromotionTransaction &TPT,
328         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
329     bool splitBranchCondition(Function &F);
330     bool simplifyOffsetableRelocate(Instruction &I);
331   };
332 
333 } // end anonymous namespace
334 
335 char CodeGenPrepare::ID = 0;
336 
337 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
338                       "Optimize for code generation", false, false)
339 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
340 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
341                     "Optimize for code generation", false, false)
342 
343 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
344 
345 bool CodeGenPrepare::runOnFunction(Function &F) {
346   if (skipFunction(F))
347     return false;
348 
349   DL = &F.getParent()->getDataLayout();
350 
351   bool EverMadeChange = false;
352   // Clear per function information.
353   InsertedInsts.clear();
354   PromotedInsts.clear();
355 
356   ModifiedDT = false;
357   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
358     TM = &TPC->getTM<TargetMachine>();
359     SubtargetInfo = TM->getSubtargetImpl(F);
360     TLI = SubtargetInfo->getTargetLowering();
361     TRI = SubtargetInfo->getRegisterInfo();
362   }
363   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
364   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
365   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
366   BPI.reset(new BranchProbabilityInfo(F, *LI));
367   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
368   OptSize = F.optForSize();
369 
370   ProfileSummaryInfo *PSI =
371       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
372   if (ProfileGuidedSectionPrefix) {
373     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
374       F.setSectionPrefix(".hot");
375     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
376       F.setSectionPrefix(".unlikely");
377   }
378 
379   /// This optimization identifies DIV instructions that can be
380   /// profitably bypassed and carried out with a shorter, faster divide.
381   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
382       TLI->isSlowDivBypassed()) {
383     const DenseMap<unsigned int, unsigned int> &BypassWidths =
384        TLI->getBypassSlowDivWidths();
385     BasicBlock* BB = &*F.begin();
386     while (BB != nullptr) {
387       // bypassSlowDivision may create new BBs, but we don't want to reapply the
388       // optimization to those blocks.
389       BasicBlock* Next = BB->getNextNode();
390       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
391       BB = Next;
392     }
393   }
394 
395   // Eliminate blocks that contain only PHI nodes and an
396   // unconditional branch.
397   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
398 
399   // llvm.dbg.value is far away from the value then iSel may not be able
400   // handle it properly. iSel will drop llvm.dbg.value if it can not
401   // find a node corresponding to the value.
402   EverMadeChange |= placeDbgValues(F);
403 
404   if (!DisableBranchOpts)
405     EverMadeChange |= splitBranchCondition(F);
406 
407   // Split some critical edges where one of the sources is an indirect branch,
408   // to help generate sane code for PHIs involving such edges.
409   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
410 
411   bool MadeChange = true;
412   while (MadeChange) {
413     MadeChange = false;
414     SeenChainsForSExt.clear();
415     ValToSExtendedUses.clear();
416     RemovedInsts.clear();
417     for (Function::iterator I = F.begin(); I != F.end(); ) {
418       BasicBlock *BB = &*I++;
419       bool ModifiedDTOnIteration = false;
420       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
421 
422       // Restart BB iteration if the dominator tree of the Function was changed
423       if (ModifiedDTOnIteration)
424         break;
425     }
426     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
427       MadeChange |= mergeSExts(F);
428 
429     // Really free removed instructions during promotion.
430     for (Instruction *I : RemovedInsts)
431       I->deleteValue();
432 
433     EverMadeChange |= MadeChange;
434   }
435 
436   SunkAddrs.clear();
437 
438   if (!DisableBranchOpts) {
439     MadeChange = false;
440     SmallPtrSet<BasicBlock*, 8> WorkList;
441     for (BasicBlock &BB : F) {
442       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
443       MadeChange |= ConstantFoldTerminator(&BB, true);
444       if (!MadeChange) continue;
445 
446       for (SmallVectorImpl<BasicBlock*>::iterator
447              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
448         if (pred_begin(*II) == pred_end(*II))
449           WorkList.insert(*II);
450     }
451 
452     // Delete the dead blocks and any of their dead successors.
453     MadeChange |= !WorkList.empty();
454     while (!WorkList.empty()) {
455       BasicBlock *BB = *WorkList.begin();
456       WorkList.erase(BB);
457       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
458 
459       DeleteDeadBlock(BB);
460 
461       for (SmallVectorImpl<BasicBlock*>::iterator
462              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
463         if (pred_begin(*II) == pred_end(*II))
464           WorkList.insert(*II);
465     }
466 
467     // Merge pairs of basic blocks with unconditional branches, connected by
468     // a single edge.
469     if (EverMadeChange || MadeChange)
470       MadeChange |= eliminateFallThrough(F);
471 
472     EverMadeChange |= MadeChange;
473   }
474 
475   if (!DisableGCOpts) {
476     SmallVector<Instruction *, 2> Statepoints;
477     for (BasicBlock &BB : F)
478       for (Instruction &I : BB)
479         if (isStatepoint(I))
480           Statepoints.push_back(&I);
481     for (auto &I : Statepoints)
482       EverMadeChange |= simplifyOffsetableRelocate(*I);
483   }
484 
485   return EverMadeChange;
486 }
487 
488 /// Merge basic blocks which are connected by a single edge, where one of the
489 /// basic blocks has a single successor pointing to the other basic block,
490 /// which has a single predecessor.
491 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
492   bool Changed = false;
493   // Scan all of the blocks in the function, except for the entry block.
494   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
495     BasicBlock *BB = &*I++;
496     // If the destination block has a single pred, then this is a trivial
497     // edge, just collapse it.
498     BasicBlock *SinglePred = BB->getSinglePredecessor();
499 
500     // Don't merge if BB's address is taken.
501     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
502 
503     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
504     if (Term && !Term->isConditional()) {
505       Changed = true;
506       DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
507       // Remember if SinglePred was the entry block of the function.
508       // If so, we will need to move BB back to the entry position.
509       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
510       MergeBasicBlockIntoOnlyPred(BB, nullptr);
511 
512       if (isEntry && BB != &BB->getParent()->getEntryBlock())
513         BB->moveBefore(&BB->getParent()->getEntryBlock());
514 
515       // We have erased a block. Update the iterator.
516       I = BB->getIterator();
517     }
518   }
519   return Changed;
520 }
521 
522 /// Find a destination block from BB if BB is mergeable empty block.
523 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
524   // If this block doesn't end with an uncond branch, ignore it.
525   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
526   if (!BI || !BI->isUnconditional())
527     return nullptr;
528 
529   // If the instruction before the branch (skipping debug info) isn't a phi
530   // node, then other stuff is happening here.
531   BasicBlock::iterator BBI = BI->getIterator();
532   if (BBI != BB->begin()) {
533     --BBI;
534     while (isa<DbgInfoIntrinsic>(BBI)) {
535       if (BBI == BB->begin())
536         break;
537       --BBI;
538     }
539     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
540       return nullptr;
541   }
542 
543   // Do not break infinite loops.
544   BasicBlock *DestBB = BI->getSuccessor(0);
545   if (DestBB == BB)
546     return nullptr;
547 
548   if (!canMergeBlocks(BB, DestBB))
549     DestBB = nullptr;
550 
551   return DestBB;
552 }
553 
554 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
555 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
556 /// edges in ways that are non-optimal for isel. Start by eliminating these
557 /// blocks so we can split them the way we want them.
558 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
559   SmallPtrSet<BasicBlock *, 16> Preheaders;
560   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
561   while (!LoopList.empty()) {
562     Loop *L = LoopList.pop_back_val();
563     LoopList.insert(LoopList.end(), L->begin(), L->end());
564     if (BasicBlock *Preheader = L->getLoopPreheader())
565       Preheaders.insert(Preheader);
566   }
567 
568   bool MadeChange = false;
569   // Note that this intentionally skips the entry block.
570   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
571     BasicBlock *BB = &*I++;
572     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
573     if (!DestBB ||
574         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
575       continue;
576 
577     eliminateMostlyEmptyBlock(BB);
578     MadeChange = true;
579   }
580   return MadeChange;
581 }
582 
583 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
584                                                    BasicBlock *DestBB,
585                                                    bool isPreheader) {
586   // Do not delete loop preheaders if doing so would create a critical edge.
587   // Loop preheaders can be good locations to spill registers. If the
588   // preheader is deleted and we create a critical edge, registers may be
589   // spilled in the loop body instead.
590   if (!DisablePreheaderProtect && isPreheader &&
591       !(BB->getSinglePredecessor() &&
592         BB->getSinglePredecessor()->getSingleSuccessor()))
593     return false;
594 
595   // Try to skip merging if the unique predecessor of BB is terminated by a
596   // switch or indirect branch instruction, and BB is used as an incoming block
597   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
598   // add COPY instructions in the predecessor of BB instead of BB (if it is not
599   // merged). Note that the critical edge created by merging such blocks wont be
600   // split in MachineSink because the jump table is not analyzable. By keeping
601   // such empty block (BB), ISel will place COPY instructions in BB, not in the
602   // predecessor of BB.
603   BasicBlock *Pred = BB->getUniquePredecessor();
604   if (!Pred ||
605       !(isa<SwitchInst>(Pred->getTerminator()) ||
606         isa<IndirectBrInst>(Pred->getTerminator())))
607     return true;
608 
609   if (BB->getTerminator() != BB->getFirstNonPHI())
610     return true;
611 
612   // We use a simple cost heuristic which determine skipping merging is
613   // profitable if the cost of skipping merging is less than the cost of
614   // merging : Cost(skipping merging) < Cost(merging BB), where the
615   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
616   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
617   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
618   //   Freq(Pred) / Freq(BB) > 2.
619   // Note that if there are multiple empty blocks sharing the same incoming
620   // value for the PHIs in the DestBB, we consider them together. In such
621   // case, Cost(merging BB) will be the sum of their frequencies.
622 
623   if (!isa<PHINode>(DestBB->begin()))
624     return true;
625 
626   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
627 
628   // Find all other incoming blocks from which incoming values of all PHIs in
629   // DestBB are the same as the ones from BB.
630   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
631        ++PI) {
632     BasicBlock *DestBBPred = *PI;
633     if (DestBBPred == BB)
634       continue;
635 
636     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
637           return DestPN.getIncomingValueForBlock(BB) ==
638                  DestPN.getIncomingValueForBlock(DestBBPred);
639         }))
640       SameIncomingValueBBs.insert(DestBBPred);
641   }
642 
643   // See if all BB's incoming values are same as the value from Pred. In this
644   // case, no reason to skip merging because COPYs are expected to be place in
645   // Pred already.
646   if (SameIncomingValueBBs.count(Pred))
647     return true;
648 
649   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
650   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
651 
652   for (auto SameValueBB : SameIncomingValueBBs)
653     if (SameValueBB->getUniquePredecessor() == Pred &&
654         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
655       BBFreq += BFI->getBlockFreq(SameValueBB);
656 
657   return PredFreq.getFrequency() <=
658          BBFreq.getFrequency() * FreqRatioToSkipMerge;
659 }
660 
661 /// Return true if we can merge BB into DestBB if there is a single
662 /// unconditional branch between them, and BB contains no other non-phi
663 /// instructions.
664 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
665                                     const BasicBlock *DestBB) const {
666   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
667   // the successor.  If there are more complex condition (e.g. preheaders),
668   // don't mess around with them.
669   for (const PHINode &PN : BB->phis()) {
670     for (const User *U : PN.users()) {
671       const Instruction *UI = cast<Instruction>(U);
672       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
673         return false;
674       // If User is inside DestBB block and it is a PHINode then check
675       // incoming value. If incoming value is not from BB then this is
676       // a complex condition (e.g. preheaders) we want to avoid here.
677       if (UI->getParent() == DestBB) {
678         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
679           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
680             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
681             if (Insn && Insn->getParent() == BB &&
682                 Insn->getParent() != UPN->getIncomingBlock(I))
683               return false;
684           }
685       }
686     }
687   }
688 
689   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
690   // and DestBB may have conflicting incoming values for the block.  If so, we
691   // can't merge the block.
692   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
693   if (!DestBBPN) return true;  // no conflict.
694 
695   // Collect the preds of BB.
696   SmallPtrSet<const BasicBlock*, 16> BBPreds;
697   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
698     // It is faster to get preds from a PHI than with pred_iterator.
699     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
700       BBPreds.insert(BBPN->getIncomingBlock(i));
701   } else {
702     BBPreds.insert(pred_begin(BB), pred_end(BB));
703   }
704 
705   // Walk the preds of DestBB.
706   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
707     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
708     if (BBPreds.count(Pred)) {   // Common predecessor?
709       for (const PHINode &PN : DestBB->phis()) {
710         const Value *V1 = PN.getIncomingValueForBlock(Pred);
711         const Value *V2 = PN.getIncomingValueForBlock(BB);
712 
713         // If V2 is a phi node in BB, look up what the mapped value will be.
714         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
715           if (V2PN->getParent() == BB)
716             V2 = V2PN->getIncomingValueForBlock(Pred);
717 
718         // If there is a conflict, bail out.
719         if (V1 != V2) return false;
720       }
721     }
722   }
723 
724   return true;
725 }
726 
727 /// Eliminate a basic block that has only phi's and an unconditional branch in
728 /// it.
729 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
730   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
731   BasicBlock *DestBB = BI->getSuccessor(0);
732 
733   DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
734 
735   // If the destination block has a single pred, then this is a trivial edge,
736   // just collapse it.
737   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
738     if (SinglePred != DestBB) {
739       // Remember if SinglePred was the entry block of the function.  If so, we
740       // will need to move BB back to the entry position.
741       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
742       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
743 
744       if (isEntry && BB != &BB->getParent()->getEntryBlock())
745         BB->moveBefore(&BB->getParent()->getEntryBlock());
746 
747       DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
748       return;
749     }
750   }
751 
752   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
753   // to handle the new incoming edges it is about to have.
754   for (PHINode &PN : DestBB->phis()) {
755     // Remove the incoming value for BB, and remember it.
756     Value *InVal = PN.removeIncomingValue(BB, false);
757 
758     // Two options: either the InVal is a phi node defined in BB or it is some
759     // value that dominates BB.
760     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
761     if (InValPhi && InValPhi->getParent() == BB) {
762       // Add all of the input values of the input PHI as inputs of this phi.
763       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
764         PN.addIncoming(InValPhi->getIncomingValue(i),
765                        InValPhi->getIncomingBlock(i));
766     } else {
767       // Otherwise, add one instance of the dominating value for each edge that
768       // we will be adding.
769       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
770         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
771           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
772       } else {
773         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
774           PN.addIncoming(InVal, *PI);
775       }
776     }
777   }
778 
779   // The PHIs are now updated, change everything that refers to BB to use
780   // DestBB and remove BB.
781   BB->replaceAllUsesWith(DestBB);
782   BB->eraseFromParent();
783   ++NumBlocksElim;
784 
785   DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
786 }
787 
788 // Computes a map of base pointer relocation instructions to corresponding
789 // derived pointer relocation instructions given a vector of all relocate calls
790 static void computeBaseDerivedRelocateMap(
791     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
792     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
793         &RelocateInstMap) {
794   // Collect information in two maps: one primarily for locating the base object
795   // while filling the second map; the second map is the final structure holding
796   // a mapping between Base and corresponding Derived relocate calls
797   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
798   for (auto *ThisRelocate : AllRelocateCalls) {
799     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
800                             ThisRelocate->getDerivedPtrIndex());
801     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
802   }
803   for (auto &Item : RelocateIdxMap) {
804     std::pair<unsigned, unsigned> Key = Item.first;
805     if (Key.first == Key.second)
806       // Base relocation: nothing to insert
807       continue;
808 
809     GCRelocateInst *I = Item.second;
810     auto BaseKey = std::make_pair(Key.first, Key.first);
811 
812     // We're iterating over RelocateIdxMap so we cannot modify it.
813     auto MaybeBase = RelocateIdxMap.find(BaseKey);
814     if (MaybeBase == RelocateIdxMap.end())
815       // TODO: We might want to insert a new base object relocate and gep off
816       // that, if there are enough derived object relocates.
817       continue;
818 
819     RelocateInstMap[MaybeBase->second].push_back(I);
820   }
821 }
822 
823 // Accepts a GEP and extracts the operands into a vector provided they're all
824 // small integer constants
825 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
826                                           SmallVectorImpl<Value *> &OffsetV) {
827   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
828     // Only accept small constant integer operands
829     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
830     if (!Op || Op->getZExtValue() > 20)
831       return false;
832   }
833 
834   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
835     OffsetV.push_back(GEP->getOperand(i));
836   return true;
837 }
838 
839 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
840 // replace, computes a replacement, and affects it.
841 static bool
842 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
843                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
844   bool MadeChange = false;
845   // We must ensure the relocation of derived pointer is defined after
846   // relocation of base pointer. If we find a relocation corresponding to base
847   // defined earlier than relocation of base then we move relocation of base
848   // right before found relocation. We consider only relocation in the same
849   // basic block as relocation of base. Relocations from other basic block will
850   // be skipped by optimization and we do not care about them.
851   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
852        &*R != RelocatedBase; ++R)
853     if (auto RI = dyn_cast<GCRelocateInst>(R))
854       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
855         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
856           RelocatedBase->moveBefore(RI);
857           break;
858         }
859 
860   for (GCRelocateInst *ToReplace : Targets) {
861     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
862            "Not relocating a derived object of the original base object");
863     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
864       // A duplicate relocate call. TODO: coalesce duplicates.
865       continue;
866     }
867 
868     if (RelocatedBase->getParent() != ToReplace->getParent()) {
869       // Base and derived relocates are in different basic blocks.
870       // In this case transform is only valid when base dominates derived
871       // relocate. However it would be too expensive to check dominance
872       // for each such relocate, so we skip the whole transformation.
873       continue;
874     }
875 
876     Value *Base = ToReplace->getBasePtr();
877     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
878     if (!Derived || Derived->getPointerOperand() != Base)
879       continue;
880 
881     SmallVector<Value *, 2> OffsetV;
882     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
883       continue;
884 
885     // Create a Builder and replace the target callsite with a gep
886     assert(RelocatedBase->getNextNode() &&
887            "Should always have one since it's not a terminator");
888 
889     // Insert after RelocatedBase
890     IRBuilder<> Builder(RelocatedBase->getNextNode());
891     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
892 
893     // If gc_relocate does not match the actual type, cast it to the right type.
894     // In theory, there must be a bitcast after gc_relocate if the type does not
895     // match, and we should reuse it to get the derived pointer. But it could be
896     // cases like this:
897     // bb1:
898     //  ...
899     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
900     //  br label %merge
901     //
902     // bb2:
903     //  ...
904     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
905     //  br label %merge
906     //
907     // merge:
908     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
909     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
910     //
911     // In this case, we can not find the bitcast any more. So we insert a new bitcast
912     // no matter there is already one or not. In this way, we can handle all cases, and
913     // the extra bitcast should be optimized away in later passes.
914     Value *ActualRelocatedBase = RelocatedBase;
915     if (RelocatedBase->getType() != Base->getType()) {
916       ActualRelocatedBase =
917           Builder.CreateBitCast(RelocatedBase, Base->getType());
918     }
919     Value *Replacement = Builder.CreateGEP(
920         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
921     Replacement->takeName(ToReplace);
922     // If the newly generated derived pointer's type does not match the original derived
923     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
924     Value *ActualReplacement = Replacement;
925     if (Replacement->getType() != ToReplace->getType()) {
926       ActualReplacement =
927           Builder.CreateBitCast(Replacement, ToReplace->getType());
928     }
929     ToReplace->replaceAllUsesWith(ActualReplacement);
930     ToReplace->eraseFromParent();
931 
932     MadeChange = true;
933   }
934   return MadeChange;
935 }
936 
937 // Turns this:
938 //
939 // %base = ...
940 // %ptr = gep %base + 15
941 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
942 // %base' = relocate(%tok, i32 4, i32 4)
943 // %ptr' = relocate(%tok, i32 4, i32 5)
944 // %val = load %ptr'
945 //
946 // into this:
947 //
948 // %base = ...
949 // %ptr = gep %base + 15
950 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
951 // %base' = gc.relocate(%tok, i32 4, i32 4)
952 // %ptr' = gep %base' + 15
953 // %val = load %ptr'
954 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
955   bool MadeChange = false;
956   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
957 
958   for (auto *U : I.users())
959     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
960       // Collect all the relocate calls associated with a statepoint
961       AllRelocateCalls.push_back(Relocate);
962 
963   // We need atleast one base pointer relocation + one derived pointer
964   // relocation to mangle
965   if (AllRelocateCalls.size() < 2)
966     return false;
967 
968   // RelocateInstMap is a mapping from the base relocate instruction to the
969   // corresponding derived relocate instructions
970   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
971   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
972   if (RelocateInstMap.empty())
973     return false;
974 
975   for (auto &Item : RelocateInstMap)
976     // Item.first is the RelocatedBase to offset against
977     // Item.second is the vector of Targets to replace
978     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
979   return MadeChange;
980 }
981 
982 /// SinkCast - Sink the specified cast instruction into its user blocks
983 static bool SinkCast(CastInst *CI) {
984   BasicBlock *DefBB = CI->getParent();
985 
986   /// InsertedCasts - Only insert a cast in each block once.
987   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
988 
989   bool MadeChange = false;
990   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
991        UI != E; ) {
992     Use &TheUse = UI.getUse();
993     Instruction *User = cast<Instruction>(*UI);
994 
995     // Figure out which BB this cast is used in.  For PHI's this is the
996     // appropriate predecessor block.
997     BasicBlock *UserBB = User->getParent();
998     if (PHINode *PN = dyn_cast<PHINode>(User)) {
999       UserBB = PN->getIncomingBlock(TheUse);
1000     }
1001 
1002     // Preincrement use iterator so we don't invalidate it.
1003     ++UI;
1004 
1005     // The first insertion point of a block containing an EH pad is after the
1006     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1007     if (User->isEHPad())
1008       continue;
1009 
1010     // If the block selected to receive the cast is an EH pad that does not
1011     // allow non-PHI instructions before the terminator, we can't sink the
1012     // cast.
1013     if (UserBB->getTerminator()->isEHPad())
1014       continue;
1015 
1016     // If this user is in the same block as the cast, don't change the cast.
1017     if (UserBB == DefBB) continue;
1018 
1019     // If we have already inserted a cast into this block, use it.
1020     CastInst *&InsertedCast = InsertedCasts[UserBB];
1021 
1022     if (!InsertedCast) {
1023       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1024       assert(InsertPt != UserBB->end());
1025       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1026                                       CI->getType(), "", &*InsertPt);
1027     }
1028 
1029     // Replace a use of the cast with a use of the new cast.
1030     TheUse = InsertedCast;
1031     MadeChange = true;
1032     ++NumCastUses;
1033   }
1034 
1035   // If we removed all uses, nuke the cast.
1036   if (CI->use_empty()) {
1037     salvageDebugInfo(*CI);
1038     CI->eraseFromParent();
1039     MadeChange = true;
1040   }
1041 
1042   return MadeChange;
1043 }
1044 
1045 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1046 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1047 /// reduce the number of virtual registers that must be created and coalesced.
1048 ///
1049 /// Return true if any changes are made.
1050 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1051                                        const DataLayout &DL) {
1052   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1053   // than sinking only nop casts, but is helpful on some platforms.
1054   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1055     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1056                                   ASC->getDestAddressSpace()))
1057       return false;
1058   }
1059 
1060   // If this is a noop copy,
1061   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1062   EVT DstVT = TLI.getValueType(DL, CI->getType());
1063 
1064   // This is an fp<->int conversion?
1065   if (SrcVT.isInteger() != DstVT.isInteger())
1066     return false;
1067 
1068   // If this is an extension, it will be a zero or sign extension, which
1069   // isn't a noop.
1070   if (SrcVT.bitsLT(DstVT)) return false;
1071 
1072   // If these values will be promoted, find out what they will be promoted
1073   // to.  This helps us consider truncates on PPC as noop copies when they
1074   // are.
1075   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1076       TargetLowering::TypePromoteInteger)
1077     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1078   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1079       TargetLowering::TypePromoteInteger)
1080     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1081 
1082   // If, after promotion, these are the same types, this is a noop copy.
1083   if (SrcVT != DstVT)
1084     return false;
1085 
1086   return SinkCast(CI);
1087 }
1088 
1089 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1090 /// possible.
1091 ///
1092 /// Return true if any changes were made.
1093 static bool CombineUAddWithOverflow(CmpInst *CI) {
1094   Value *A, *B;
1095   Instruction *AddI;
1096   if (!match(CI,
1097              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1098     return false;
1099 
1100   Type *Ty = AddI->getType();
1101   if (!isa<IntegerType>(Ty))
1102     return false;
1103 
1104   // We don't want to move around uses of condition values this late, so we we
1105   // check if it is legal to create the call to the intrinsic in the basic
1106   // block containing the icmp:
1107 
1108   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1109     return false;
1110 
1111 #ifndef NDEBUG
1112   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1113   // for now:
1114   if (AddI->hasOneUse())
1115     assert(*AddI->user_begin() == CI && "expected!");
1116 #endif
1117 
1118   Module *M = CI->getModule();
1119   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1120 
1121   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1122 
1123   auto *UAddWithOverflow =
1124       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1125   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1126   auto *Overflow =
1127       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1128 
1129   CI->replaceAllUsesWith(Overflow);
1130   AddI->replaceAllUsesWith(UAdd);
1131   CI->eraseFromParent();
1132   AddI->eraseFromParent();
1133   return true;
1134 }
1135 
1136 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1137 /// registers that must be created and coalesced. This is a clear win except on
1138 /// targets with multiple condition code registers (PowerPC), where it might
1139 /// lose; some adjustment may be wanted there.
1140 ///
1141 /// Return true if any changes are made.
1142 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1143   BasicBlock *DefBB = CI->getParent();
1144 
1145   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1146   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1147     return false;
1148 
1149   // Only insert a cmp in each block once.
1150   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1151 
1152   bool MadeChange = false;
1153   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1154        UI != E; ) {
1155     Use &TheUse = UI.getUse();
1156     Instruction *User = cast<Instruction>(*UI);
1157 
1158     // Preincrement use iterator so we don't invalidate it.
1159     ++UI;
1160 
1161     // Don't bother for PHI nodes.
1162     if (isa<PHINode>(User))
1163       continue;
1164 
1165     // Figure out which BB this cmp is used in.
1166     BasicBlock *UserBB = User->getParent();
1167 
1168     // If this user is in the same block as the cmp, don't change the cmp.
1169     if (UserBB == DefBB) continue;
1170 
1171     // If we have already inserted a cmp into this block, use it.
1172     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1173 
1174     if (!InsertedCmp) {
1175       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1176       assert(InsertPt != UserBB->end());
1177       InsertedCmp =
1178           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1179                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1180       // Propagate the debug info.
1181       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1182     }
1183 
1184     // Replace a use of the cmp with a use of the new cmp.
1185     TheUse = InsertedCmp;
1186     MadeChange = true;
1187     ++NumCmpUses;
1188   }
1189 
1190   // If we removed all uses, nuke the cmp.
1191   if (CI->use_empty()) {
1192     CI->eraseFromParent();
1193     MadeChange = true;
1194   }
1195 
1196   return MadeChange;
1197 }
1198 
1199 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1200   if (SinkCmpExpression(CI, TLI))
1201     return true;
1202 
1203   if (CombineUAddWithOverflow(CI))
1204     return true;
1205 
1206   return false;
1207 }
1208 
1209 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1210 /// used in a compare to allow isel to generate better code for targets where
1211 /// this operation can be combined.
1212 ///
1213 /// Return true if any changes are made.
1214 static bool sinkAndCmp0Expression(Instruction *AndI,
1215                                   const TargetLowering &TLI,
1216                                   SetOfInstrs &InsertedInsts) {
1217   // Double-check that we're not trying to optimize an instruction that was
1218   // already optimized by some other part of this pass.
1219   assert(!InsertedInsts.count(AndI) &&
1220          "Attempting to optimize already optimized and instruction");
1221   (void) InsertedInsts;
1222 
1223   // Nothing to do for single use in same basic block.
1224   if (AndI->hasOneUse() &&
1225       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1226     return false;
1227 
1228   // Try to avoid cases where sinking/duplicating is likely to increase register
1229   // pressure.
1230   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1231       !isa<ConstantInt>(AndI->getOperand(1)) &&
1232       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1233     return false;
1234 
1235   for (auto *U : AndI->users()) {
1236     Instruction *User = cast<Instruction>(U);
1237 
1238     // Only sink for and mask feeding icmp with 0.
1239     if (!isa<ICmpInst>(User))
1240       return false;
1241 
1242     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1243     if (!CmpC || !CmpC->isZero())
1244       return false;
1245   }
1246 
1247   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1248     return false;
1249 
1250   DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1251   DEBUG(AndI->getParent()->dump());
1252 
1253   // Push the 'and' into the same block as the icmp 0.  There should only be
1254   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1255   // others, so we don't need to keep track of which BBs we insert into.
1256   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1257        UI != E; ) {
1258     Use &TheUse = UI.getUse();
1259     Instruction *User = cast<Instruction>(*UI);
1260 
1261     // Preincrement use iterator so we don't invalidate it.
1262     ++UI;
1263 
1264     DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1265 
1266     // Keep the 'and' in the same place if the use is already in the same block.
1267     Instruction *InsertPt =
1268         User->getParent() == AndI->getParent() ? AndI : User;
1269     Instruction *InsertedAnd =
1270         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1271                                AndI->getOperand(1), "", InsertPt);
1272     // Propagate the debug info.
1273     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1274 
1275     // Replace a use of the 'and' with a use of the new 'and'.
1276     TheUse = InsertedAnd;
1277     ++NumAndUses;
1278     DEBUG(User->getParent()->dump());
1279   }
1280 
1281   // We removed all uses, nuke the and.
1282   AndI->eraseFromParent();
1283   return true;
1284 }
1285 
1286 /// Check if the candidates could be combined with a shift instruction, which
1287 /// includes:
1288 /// 1. Truncate instruction
1289 /// 2. And instruction and the imm is a mask of the low bits:
1290 /// imm & (imm+1) == 0
1291 static bool isExtractBitsCandidateUse(Instruction *User) {
1292   if (!isa<TruncInst>(User)) {
1293     if (User->getOpcode() != Instruction::And ||
1294         !isa<ConstantInt>(User->getOperand(1)))
1295       return false;
1296 
1297     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1298 
1299     if ((Cimm & (Cimm + 1)).getBoolValue())
1300       return false;
1301   }
1302   return true;
1303 }
1304 
1305 /// Sink both shift and truncate instruction to the use of truncate's BB.
1306 static bool
1307 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1308                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1309                      const TargetLowering &TLI, const DataLayout &DL) {
1310   BasicBlock *UserBB = User->getParent();
1311   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1312   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1313   bool MadeChange = false;
1314 
1315   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1316                             TruncE = TruncI->user_end();
1317        TruncUI != TruncE;) {
1318 
1319     Use &TruncTheUse = TruncUI.getUse();
1320     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1321     // Preincrement use iterator so we don't invalidate it.
1322 
1323     ++TruncUI;
1324 
1325     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1326     if (!ISDOpcode)
1327       continue;
1328 
1329     // If the use is actually a legal node, there will not be an
1330     // implicit truncate.
1331     // FIXME: always querying the result type is just an
1332     // approximation; some nodes' legality is determined by the
1333     // operand or other means. There's no good way to find out though.
1334     if (TLI.isOperationLegalOrCustom(
1335             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1336       continue;
1337 
1338     // Don't bother for PHI nodes.
1339     if (isa<PHINode>(TruncUser))
1340       continue;
1341 
1342     BasicBlock *TruncUserBB = TruncUser->getParent();
1343 
1344     if (UserBB == TruncUserBB)
1345       continue;
1346 
1347     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1348     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1349 
1350     if (!InsertedShift && !InsertedTrunc) {
1351       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1352       assert(InsertPt != TruncUserBB->end());
1353       // Sink the shift
1354       if (ShiftI->getOpcode() == Instruction::AShr)
1355         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1356                                                    "", &*InsertPt);
1357       else
1358         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1359                                                    "", &*InsertPt);
1360 
1361       // Sink the trunc
1362       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1363       TruncInsertPt++;
1364       assert(TruncInsertPt != TruncUserBB->end());
1365 
1366       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1367                                        TruncI->getType(), "", &*TruncInsertPt);
1368 
1369       MadeChange = true;
1370 
1371       TruncTheUse = InsertedTrunc;
1372     }
1373   }
1374   return MadeChange;
1375 }
1376 
1377 /// Sink the shift *right* instruction into user blocks if the uses could
1378 /// potentially be combined with this shift instruction and generate BitExtract
1379 /// instruction. It will only be applied if the architecture supports BitExtract
1380 /// instruction. Here is an example:
1381 /// BB1:
1382 ///   %x.extract.shift = lshr i64 %arg1, 32
1383 /// BB2:
1384 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1385 /// ==>
1386 ///
1387 /// BB2:
1388 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1389 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1390 ///
1391 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1392 /// instruction.
1393 /// Return true if any changes are made.
1394 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1395                                 const TargetLowering &TLI,
1396                                 const DataLayout &DL) {
1397   BasicBlock *DefBB = ShiftI->getParent();
1398 
1399   /// Only insert instructions in each block once.
1400   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1401 
1402   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1403 
1404   bool MadeChange = false;
1405   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1406        UI != E;) {
1407     Use &TheUse = UI.getUse();
1408     Instruction *User = cast<Instruction>(*UI);
1409     // Preincrement use iterator so we don't invalidate it.
1410     ++UI;
1411 
1412     // Don't bother for PHI nodes.
1413     if (isa<PHINode>(User))
1414       continue;
1415 
1416     if (!isExtractBitsCandidateUse(User))
1417       continue;
1418 
1419     BasicBlock *UserBB = User->getParent();
1420 
1421     if (UserBB == DefBB) {
1422       // If the shift and truncate instruction are in the same BB. The use of
1423       // the truncate(TruncUse) may still introduce another truncate if not
1424       // legal. In this case, we would like to sink both shift and truncate
1425       // instruction to the BB of TruncUse.
1426       // for example:
1427       // BB1:
1428       // i64 shift.result = lshr i64 opnd, imm
1429       // trunc.result = trunc shift.result to i16
1430       //
1431       // BB2:
1432       //   ----> We will have an implicit truncate here if the architecture does
1433       //   not have i16 compare.
1434       // cmp i16 trunc.result, opnd2
1435       //
1436       if (isa<TruncInst>(User) && shiftIsLegal
1437           // If the type of the truncate is legal, no trucate will be
1438           // introduced in other basic blocks.
1439           &&
1440           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1441         MadeChange =
1442             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1443 
1444       continue;
1445     }
1446     // If we have already inserted a shift into this block, use it.
1447     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1448 
1449     if (!InsertedShift) {
1450       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1451       assert(InsertPt != UserBB->end());
1452 
1453       if (ShiftI->getOpcode() == Instruction::AShr)
1454         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1455                                                    "", &*InsertPt);
1456       else
1457         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1458                                                    "", &*InsertPt);
1459 
1460       MadeChange = true;
1461     }
1462 
1463     // Replace a use of the shift with a use of the new shift.
1464     TheUse = InsertedShift;
1465   }
1466 
1467   // If we removed all uses, nuke the shift.
1468   if (ShiftI->use_empty())
1469     ShiftI->eraseFromParent();
1470 
1471   return MadeChange;
1472 }
1473 
1474 /// If counting leading or trailing zeros is an expensive operation and a zero
1475 /// input is defined, add a check for zero to avoid calling the intrinsic.
1476 ///
1477 /// We want to transform:
1478 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1479 ///
1480 /// into:
1481 ///   entry:
1482 ///     %cmpz = icmp eq i64 %A, 0
1483 ///     br i1 %cmpz, label %cond.end, label %cond.false
1484 ///   cond.false:
1485 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1486 ///     br label %cond.end
1487 ///   cond.end:
1488 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1489 ///
1490 /// If the transform is performed, return true and set ModifiedDT to true.
1491 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1492                                   const TargetLowering *TLI,
1493                                   const DataLayout *DL,
1494                                   bool &ModifiedDT) {
1495   if (!TLI || !DL)
1496     return false;
1497 
1498   // If a zero input is undefined, it doesn't make sense to despeculate that.
1499   if (match(CountZeros->getOperand(1), m_One()))
1500     return false;
1501 
1502   // If it's cheap to speculate, there's nothing to do.
1503   auto IntrinsicID = CountZeros->getIntrinsicID();
1504   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1505       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1506     return false;
1507 
1508   // Only handle legal scalar cases. Anything else requires too much work.
1509   Type *Ty = CountZeros->getType();
1510   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1511   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1512     return false;
1513 
1514   // The intrinsic will be sunk behind a compare against zero and branch.
1515   BasicBlock *StartBlock = CountZeros->getParent();
1516   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1517 
1518   // Create another block after the count zero intrinsic. A PHI will be added
1519   // in this block to select the result of the intrinsic or the bit-width
1520   // constant if the input to the intrinsic is zero.
1521   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1522   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1523 
1524   // Set up a builder to create a compare, conditional branch, and PHI.
1525   IRBuilder<> Builder(CountZeros->getContext());
1526   Builder.SetInsertPoint(StartBlock->getTerminator());
1527   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1528 
1529   // Replace the unconditional branch that was created by the first split with
1530   // a compare against zero and a conditional branch.
1531   Value *Zero = Constant::getNullValue(Ty);
1532   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1533   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1534   StartBlock->getTerminator()->eraseFromParent();
1535 
1536   // Create a PHI in the end block to select either the output of the intrinsic
1537   // or the bit width of the operand.
1538   Builder.SetInsertPoint(&EndBlock->front());
1539   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1540   CountZeros->replaceAllUsesWith(PN);
1541   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1542   PN->addIncoming(BitWidth, StartBlock);
1543   PN->addIncoming(CountZeros, CallBlock);
1544 
1545   // We are explicitly handling the zero case, so we can set the intrinsic's
1546   // undefined zero argument to 'true'. This will also prevent reprocessing the
1547   // intrinsic; we only despeculate when a zero input is defined.
1548   CountZeros->setArgOperand(1, Builder.getTrue());
1549   ModifiedDT = true;
1550   return true;
1551 }
1552 
1553 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1554   BasicBlock *BB = CI->getParent();
1555 
1556   // Lower inline assembly if we can.
1557   // If we found an inline asm expession, and if the target knows how to
1558   // lower it to normal LLVM code, do so now.
1559   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1560     if (TLI->ExpandInlineAsm(CI)) {
1561       // Avoid invalidating the iterator.
1562       CurInstIterator = BB->begin();
1563       // Avoid processing instructions out of order, which could cause
1564       // reuse before a value is defined.
1565       SunkAddrs.clear();
1566       return true;
1567     }
1568     // Sink address computing for memory operands into the block.
1569     if (optimizeInlineAsmInst(CI))
1570       return true;
1571   }
1572 
1573   // Align the pointer arguments to this call if the target thinks it's a good
1574   // idea
1575   unsigned MinSize, PrefAlign;
1576   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1577     for (auto &Arg : CI->arg_operands()) {
1578       // We want to align both objects whose address is used directly and
1579       // objects whose address is used in casts and GEPs, though it only makes
1580       // sense for GEPs if the offset is a multiple of the desired alignment and
1581       // if size - offset meets the size threshold.
1582       if (!Arg->getType()->isPointerTy())
1583         continue;
1584       APInt Offset(DL->getPointerSizeInBits(
1585                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1586                    0);
1587       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1588       uint64_t Offset2 = Offset.getLimitedValue();
1589       if ((Offset2 & (PrefAlign-1)) != 0)
1590         continue;
1591       AllocaInst *AI;
1592       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1593           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1594         AI->setAlignment(PrefAlign);
1595       // Global variables can only be aligned if they are defined in this
1596       // object (i.e. they are uniquely initialized in this object), and
1597       // over-aligning global variables that have an explicit section is
1598       // forbidden.
1599       GlobalVariable *GV;
1600       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1601           GV->getPointerAlignment(*DL) < PrefAlign &&
1602           DL->getTypeAllocSize(GV->getValueType()) >=
1603               MinSize + Offset2)
1604         GV->setAlignment(PrefAlign);
1605     }
1606     // If this is a memcpy (or similar) then we may be able to improve the
1607     // alignment
1608     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1609       unsigned Align = getKnownAlignment(MI->getDest(), *DL);
1610       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
1611         Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL));
1612       if (Align > MI->getAlignment())
1613         MI->setAlignment(Align);
1614     }
1615   }
1616 
1617   // If we have a cold call site, try to sink addressing computation into the
1618   // cold block.  This interacts with our handling for loads and stores to
1619   // ensure that we can fold all uses of a potential addressing computation
1620   // into their uses.  TODO: generalize this to work over profiling data
1621   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1622     for (auto &Arg : CI->arg_operands()) {
1623       if (!Arg->getType()->isPointerTy())
1624         continue;
1625       unsigned AS = Arg->getType()->getPointerAddressSpace();
1626       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1627     }
1628 
1629   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1630   if (II) {
1631     switch (II->getIntrinsicID()) {
1632     default: break;
1633     case Intrinsic::objectsize: {
1634       // Lower all uses of llvm.objectsize.*
1635       ConstantInt *RetVal =
1636           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1637       // Substituting this can cause recursive simplifications, which can
1638       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
1639       // this
1640       // happens.
1641       Value *CurValue = &*CurInstIterator;
1642       WeakTrackingVH IterHandle(CurValue);
1643 
1644       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1645 
1646       // If the iterator instruction was recursively deleted, start over at the
1647       // start of the block.
1648       if (IterHandle != CurValue) {
1649         CurInstIterator = BB->begin();
1650         SunkAddrs.clear();
1651       }
1652       return true;
1653     }
1654     case Intrinsic::aarch64_stlxr:
1655     case Intrinsic::aarch64_stxr: {
1656       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1657       if (!ExtVal || !ExtVal->hasOneUse() ||
1658           ExtVal->getParent() == CI->getParent())
1659         return false;
1660       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1661       ExtVal->moveBefore(CI);
1662       // Mark this instruction as "inserted by CGP", so that other
1663       // optimizations don't touch it.
1664       InsertedInsts.insert(ExtVal);
1665       return true;
1666     }
1667     case Intrinsic::invariant_group_barrier:
1668       II->replaceAllUsesWith(II->getArgOperand(0));
1669       II->eraseFromParent();
1670       return true;
1671 
1672     case Intrinsic::cttz:
1673     case Intrinsic::ctlz:
1674       // If counting zeros is expensive, try to avoid it.
1675       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1676     }
1677 
1678     if (TLI) {
1679       SmallVector<Value*, 2> PtrOps;
1680       Type *AccessTy;
1681       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1682         while (!PtrOps.empty()) {
1683           Value *PtrVal = PtrOps.pop_back_val();
1684           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1685           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1686             return true;
1687         }
1688     }
1689   }
1690 
1691   // From here on out we're working with named functions.
1692   if (!CI->getCalledFunction()) return false;
1693 
1694   // Lower all default uses of _chk calls.  This is very similar
1695   // to what InstCombineCalls does, but here we are only lowering calls
1696   // to fortified library functions (e.g. __memcpy_chk) that have the default
1697   // "don't know" as the objectsize.  Anything else should be left alone.
1698   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1699   if (Value *V = Simplifier.optimizeCall(CI)) {
1700     CI->replaceAllUsesWith(V);
1701     CI->eraseFromParent();
1702     return true;
1703   }
1704 
1705   return false;
1706 }
1707 
1708 /// Look for opportunities to duplicate return instructions to the predecessor
1709 /// to enable tail call optimizations. The case it is currently looking for is:
1710 /// @code
1711 /// bb0:
1712 ///   %tmp0 = tail call i32 @f0()
1713 ///   br label %return
1714 /// bb1:
1715 ///   %tmp1 = tail call i32 @f1()
1716 ///   br label %return
1717 /// bb2:
1718 ///   %tmp2 = tail call i32 @f2()
1719 ///   br label %return
1720 /// return:
1721 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1722 ///   ret i32 %retval
1723 /// @endcode
1724 ///
1725 /// =>
1726 ///
1727 /// @code
1728 /// bb0:
1729 ///   %tmp0 = tail call i32 @f0()
1730 ///   ret i32 %tmp0
1731 /// bb1:
1732 ///   %tmp1 = tail call i32 @f1()
1733 ///   ret i32 %tmp1
1734 /// bb2:
1735 ///   %tmp2 = tail call i32 @f2()
1736 ///   ret i32 %tmp2
1737 /// @endcode
1738 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1739   if (!TLI)
1740     return false;
1741 
1742   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1743   if (!RetI)
1744     return false;
1745 
1746   PHINode *PN = nullptr;
1747   BitCastInst *BCI = nullptr;
1748   Value *V = RetI->getReturnValue();
1749   if (V) {
1750     BCI = dyn_cast<BitCastInst>(V);
1751     if (BCI)
1752       V = BCI->getOperand(0);
1753 
1754     PN = dyn_cast<PHINode>(V);
1755     if (!PN)
1756       return false;
1757   }
1758 
1759   if (PN && PN->getParent() != BB)
1760     return false;
1761 
1762   // Make sure there are no instructions between the PHI and return, or that the
1763   // return is the first instruction in the block.
1764   if (PN) {
1765     BasicBlock::iterator BI = BB->begin();
1766     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1767     if (&*BI == BCI)
1768       // Also skip over the bitcast.
1769       ++BI;
1770     if (&*BI != RetI)
1771       return false;
1772   } else {
1773     BasicBlock::iterator BI = BB->begin();
1774     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1775     if (&*BI != RetI)
1776       return false;
1777   }
1778 
1779   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1780   /// call.
1781   const Function *F = BB->getParent();
1782   SmallVector<CallInst*, 4> TailCalls;
1783   if (PN) {
1784     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1785       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1786       // Make sure the phi value is indeed produced by the tail call.
1787       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1788           TLI->mayBeEmittedAsTailCall(CI) &&
1789           attributesPermitTailCall(F, CI, RetI, *TLI))
1790         TailCalls.push_back(CI);
1791     }
1792   } else {
1793     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1794     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1795       if (!VisitedBBs.insert(*PI).second)
1796         continue;
1797 
1798       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1799       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1800       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1801       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1802       if (RI == RE)
1803         continue;
1804 
1805       CallInst *CI = dyn_cast<CallInst>(&*RI);
1806       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1807           attributesPermitTailCall(F, CI, RetI, *TLI))
1808         TailCalls.push_back(CI);
1809     }
1810   }
1811 
1812   bool Changed = false;
1813   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1814     CallInst *CI = TailCalls[i];
1815     CallSite CS(CI);
1816 
1817     // Conservatively require the attributes of the call to match those of the
1818     // return. Ignore noalias because it doesn't affect the call sequence.
1819     AttributeList CalleeAttrs = CS.getAttributes();
1820     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1821             .removeAttribute(Attribute::NoAlias) !=
1822         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1823             .removeAttribute(Attribute::NoAlias))
1824       continue;
1825 
1826     // Make sure the call instruction is followed by an unconditional branch to
1827     // the return block.
1828     BasicBlock *CallBB = CI->getParent();
1829     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1830     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1831       continue;
1832 
1833     // Duplicate the return into CallBB.
1834     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1835     ModifiedDT = Changed = true;
1836     ++NumRetsDup;
1837   }
1838 
1839   // If we eliminated all predecessors of the block, delete the block now.
1840   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1841     BB->eraseFromParent();
1842 
1843   return Changed;
1844 }
1845 
1846 //===----------------------------------------------------------------------===//
1847 // Memory Optimization
1848 //===----------------------------------------------------------------------===//
1849 
1850 namespace {
1851 
1852 /// This is an extended version of TargetLowering::AddrMode
1853 /// which holds actual Value*'s for register values.
1854 struct ExtAddrMode : public TargetLowering::AddrMode {
1855   Value *BaseReg = nullptr;
1856   Value *ScaledReg = nullptr;
1857   Value *OriginalValue = nullptr;
1858 
1859   enum FieldName {
1860     NoField        = 0x00,
1861     BaseRegField   = 0x01,
1862     BaseGVField    = 0x02,
1863     BaseOffsField  = 0x04,
1864     ScaledRegField = 0x08,
1865     ScaleField     = 0x10,
1866     MultipleFields = 0xff
1867   };
1868 
1869   ExtAddrMode() = default;
1870 
1871   void print(raw_ostream &OS) const;
1872   void dump() const;
1873 
1874   FieldName compare(const ExtAddrMode &other) {
1875     // First check that the types are the same on each field, as differing types
1876     // is something we can't cope with later on.
1877     if (BaseReg && other.BaseReg &&
1878         BaseReg->getType() != other.BaseReg->getType())
1879       return MultipleFields;
1880     if (BaseGV && other.BaseGV &&
1881         BaseGV->getType() != other.BaseGV->getType())
1882       return MultipleFields;
1883     if (ScaledReg && other.ScaledReg &&
1884         ScaledReg->getType() != other.ScaledReg->getType())
1885       return MultipleFields;
1886 
1887     // Check each field to see if it differs.
1888     unsigned Result = NoField;
1889     if (BaseReg != other.BaseReg)
1890       Result |= BaseRegField;
1891     if (BaseGV != other.BaseGV)
1892       Result |= BaseGVField;
1893     if (BaseOffs != other.BaseOffs)
1894       Result |= BaseOffsField;
1895     if (ScaledReg != other.ScaledReg)
1896       Result |= ScaledRegField;
1897     // Don't count 0 as being a different scale, because that actually means
1898     // unscaled (which will already be counted by having no ScaledReg).
1899     if (Scale && other.Scale && Scale != other.Scale)
1900       Result |= ScaleField;
1901 
1902     if (countPopulation(Result) > 1)
1903       return MultipleFields;
1904     else
1905       return static_cast<FieldName>(Result);
1906   }
1907 
1908   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1909   // with no offset.
1910   bool isTrivial() {
1911     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1912     // trivial if at most one of these terms is nonzero, except that BaseGV and
1913     // BaseReg both being zero actually means a null pointer value, which we
1914     // consider to be 'non-zero' here.
1915     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1916   }
1917 
1918   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1919     switch (Field) {
1920     default:
1921       return nullptr;
1922     case BaseRegField:
1923       return BaseReg;
1924     case BaseGVField:
1925       return BaseGV;
1926     case ScaledRegField:
1927       return ScaledReg;
1928     case BaseOffsField:
1929       return ConstantInt::get(IntPtrTy, BaseOffs);
1930     }
1931   }
1932 
1933   void SetCombinedField(FieldName Field, Value *V,
1934                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
1935     switch (Field) {
1936     default:
1937       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1938       break;
1939     case ExtAddrMode::BaseRegField:
1940       BaseReg = V;
1941       break;
1942     case ExtAddrMode::BaseGVField:
1943       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
1944       // in the BaseReg field.
1945       assert(BaseReg == nullptr);
1946       BaseReg = V;
1947       BaseGV = nullptr;
1948       break;
1949     case ExtAddrMode::ScaledRegField:
1950       ScaledReg = V;
1951       // If we have a mix of scaled and unscaled addrmodes then we want scale
1952       // to be the scale and not zero.
1953       if (!Scale)
1954         for (const ExtAddrMode &AM : AddrModes)
1955           if (AM.Scale) {
1956             Scale = AM.Scale;
1957             break;
1958           }
1959       break;
1960     case ExtAddrMode::BaseOffsField:
1961       // The offset is no longer a constant, so it goes in ScaledReg with a
1962       // scale of 1.
1963       assert(ScaledReg == nullptr);
1964       ScaledReg = V;
1965       Scale = 1;
1966       BaseOffs = 0;
1967       break;
1968     }
1969   }
1970 };
1971 
1972 } // end anonymous namespace
1973 
1974 #ifndef NDEBUG
1975 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
1976   AM.print(OS);
1977   return OS;
1978 }
1979 #endif
1980 
1981 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1982 void ExtAddrMode::print(raw_ostream &OS) const {
1983   bool NeedPlus = false;
1984   OS << "[";
1985   if (BaseGV) {
1986     OS << (NeedPlus ? " + " : "")
1987        << "GV:";
1988     BaseGV->printAsOperand(OS, /*PrintType=*/false);
1989     NeedPlus = true;
1990   }
1991 
1992   if (BaseOffs) {
1993     OS << (NeedPlus ? " + " : "")
1994        << BaseOffs;
1995     NeedPlus = true;
1996   }
1997 
1998   if (BaseReg) {
1999     OS << (NeedPlus ? " + " : "")
2000        << "Base:";
2001     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2002     NeedPlus = true;
2003   }
2004   if (Scale) {
2005     OS << (NeedPlus ? " + " : "")
2006        << Scale << "*";
2007     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2008   }
2009 
2010   OS << ']';
2011 }
2012 
2013 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2014   print(dbgs());
2015   dbgs() << '\n';
2016 }
2017 #endif
2018 
2019 namespace {
2020 
2021 /// \brief This class provides transaction based operation on the IR.
2022 /// Every change made through this class is recorded in the internal state and
2023 /// can be undone (rollback) until commit is called.
2024 class TypePromotionTransaction {
2025   /// \brief This represents the common interface of the individual transaction.
2026   /// Each class implements the logic for doing one specific modification on
2027   /// the IR via the TypePromotionTransaction.
2028   class TypePromotionAction {
2029   protected:
2030     /// The Instruction modified.
2031     Instruction *Inst;
2032 
2033   public:
2034     /// \brief Constructor of the action.
2035     /// The constructor performs the related action on the IR.
2036     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2037 
2038     virtual ~TypePromotionAction() = default;
2039 
2040     /// \brief Undo the modification done by this action.
2041     /// When this method is called, the IR must be in the same state as it was
2042     /// before this action was applied.
2043     /// \pre Undoing the action works if and only if the IR is in the exact same
2044     /// state as it was directly after this action was applied.
2045     virtual void undo() = 0;
2046 
2047     /// \brief Advocate every change made by this action.
2048     /// When the results on the IR of the action are to be kept, it is important
2049     /// to call this function, otherwise hidden information may be kept forever.
2050     virtual void commit() {
2051       // Nothing to be done, this action is not doing anything.
2052     }
2053   };
2054 
2055   /// \brief Utility to remember the position of an instruction.
2056   class InsertionHandler {
2057     /// Position of an instruction.
2058     /// Either an instruction:
2059     /// - Is the first in a basic block: BB is used.
2060     /// - Has a previous instructon: PrevInst is used.
2061     union {
2062       Instruction *PrevInst;
2063       BasicBlock *BB;
2064     } Point;
2065 
2066     /// Remember whether or not the instruction had a previous instruction.
2067     bool HasPrevInstruction;
2068 
2069   public:
2070     /// \brief Record the position of \p Inst.
2071     InsertionHandler(Instruction *Inst) {
2072       BasicBlock::iterator It = Inst->getIterator();
2073       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2074       if (HasPrevInstruction)
2075         Point.PrevInst = &*--It;
2076       else
2077         Point.BB = Inst->getParent();
2078     }
2079 
2080     /// \brief Insert \p Inst at the recorded position.
2081     void insert(Instruction *Inst) {
2082       if (HasPrevInstruction) {
2083         if (Inst->getParent())
2084           Inst->removeFromParent();
2085         Inst->insertAfter(Point.PrevInst);
2086       } else {
2087         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2088         if (Inst->getParent())
2089           Inst->moveBefore(Position);
2090         else
2091           Inst->insertBefore(Position);
2092       }
2093     }
2094   };
2095 
2096   /// \brief Move an instruction before another.
2097   class InstructionMoveBefore : public TypePromotionAction {
2098     /// Original position of the instruction.
2099     InsertionHandler Position;
2100 
2101   public:
2102     /// \brief Move \p Inst before \p Before.
2103     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2104         : TypePromotionAction(Inst), Position(Inst) {
2105       DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
2106       Inst->moveBefore(Before);
2107     }
2108 
2109     /// \brief Move the instruction back to its original position.
2110     void undo() override {
2111       DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2112       Position.insert(Inst);
2113     }
2114   };
2115 
2116   /// \brief Set the operand of an instruction with a new value.
2117   class OperandSetter : public TypePromotionAction {
2118     /// Original operand of the instruction.
2119     Value *Origin;
2120 
2121     /// Index of the modified instruction.
2122     unsigned Idx;
2123 
2124   public:
2125     /// \brief Set \p Idx operand of \p Inst with \p NewVal.
2126     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2127         : TypePromotionAction(Inst), Idx(Idx) {
2128       DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2129                    << "for:" << *Inst << "\n"
2130                    << "with:" << *NewVal << "\n");
2131       Origin = Inst->getOperand(Idx);
2132       Inst->setOperand(Idx, NewVal);
2133     }
2134 
2135     /// \brief Restore the original value of the instruction.
2136     void undo() override {
2137       DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2138                    << "for: " << *Inst << "\n"
2139                    << "with: " << *Origin << "\n");
2140       Inst->setOperand(Idx, Origin);
2141     }
2142   };
2143 
2144   /// \brief Hide the operands of an instruction.
2145   /// Do as if this instruction was not using any of its operands.
2146   class OperandsHider : public TypePromotionAction {
2147     /// The list of original operands.
2148     SmallVector<Value *, 4> OriginalValues;
2149 
2150   public:
2151     /// \brief Remove \p Inst from the uses of the operands of \p Inst.
2152     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2153       DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2154       unsigned NumOpnds = Inst->getNumOperands();
2155       OriginalValues.reserve(NumOpnds);
2156       for (unsigned It = 0; It < NumOpnds; ++It) {
2157         // Save the current operand.
2158         Value *Val = Inst->getOperand(It);
2159         OriginalValues.push_back(Val);
2160         // Set a dummy one.
2161         // We could use OperandSetter here, but that would imply an overhead
2162         // that we are not willing to pay.
2163         Inst->setOperand(It, UndefValue::get(Val->getType()));
2164       }
2165     }
2166 
2167     /// \brief Restore the original list of uses.
2168     void undo() override {
2169       DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2170       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2171         Inst->setOperand(It, OriginalValues[It]);
2172     }
2173   };
2174 
2175   /// \brief Build a truncate instruction.
2176   class TruncBuilder : public TypePromotionAction {
2177     Value *Val;
2178 
2179   public:
2180     /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
2181     /// result.
2182     /// trunc Opnd to Ty.
2183     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2184       IRBuilder<> Builder(Opnd);
2185       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2186       DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2187     }
2188 
2189     /// \brief Get the built value.
2190     Value *getBuiltValue() { return Val; }
2191 
2192     /// \brief Remove the built instruction.
2193     void undo() override {
2194       DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2195       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2196         IVal->eraseFromParent();
2197     }
2198   };
2199 
2200   /// \brief Build a sign extension instruction.
2201   class SExtBuilder : public TypePromotionAction {
2202     Value *Val;
2203 
2204   public:
2205     /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
2206     /// result.
2207     /// sext Opnd to Ty.
2208     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2209         : TypePromotionAction(InsertPt) {
2210       IRBuilder<> Builder(InsertPt);
2211       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2212       DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2213     }
2214 
2215     /// \brief Get the built value.
2216     Value *getBuiltValue() { return Val; }
2217 
2218     /// \brief Remove the built instruction.
2219     void undo() override {
2220       DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2221       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2222         IVal->eraseFromParent();
2223     }
2224   };
2225 
2226   /// \brief Build a zero extension instruction.
2227   class ZExtBuilder : public TypePromotionAction {
2228     Value *Val;
2229 
2230   public:
2231     /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty
2232     /// result.
2233     /// zext Opnd to Ty.
2234     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2235         : TypePromotionAction(InsertPt) {
2236       IRBuilder<> Builder(InsertPt);
2237       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2238       DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2239     }
2240 
2241     /// \brief Get the built value.
2242     Value *getBuiltValue() { return Val; }
2243 
2244     /// \brief Remove the built instruction.
2245     void undo() override {
2246       DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2247       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2248         IVal->eraseFromParent();
2249     }
2250   };
2251 
2252   /// \brief Mutate an instruction to another type.
2253   class TypeMutator : public TypePromotionAction {
2254     /// Record the original type.
2255     Type *OrigTy;
2256 
2257   public:
2258     /// \brief Mutate the type of \p Inst into \p NewTy.
2259     TypeMutator(Instruction *Inst, Type *NewTy)
2260         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2261       DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2262                    << "\n");
2263       Inst->mutateType(NewTy);
2264     }
2265 
2266     /// \brief Mutate the instruction back to its original type.
2267     void undo() override {
2268       DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2269                    << "\n");
2270       Inst->mutateType(OrigTy);
2271     }
2272   };
2273 
2274   /// \brief Replace the uses of an instruction by another instruction.
2275   class UsesReplacer : public TypePromotionAction {
2276     /// Helper structure to keep track of the replaced uses.
2277     struct InstructionAndIdx {
2278       /// The instruction using the instruction.
2279       Instruction *Inst;
2280 
2281       /// The index where this instruction is used for Inst.
2282       unsigned Idx;
2283 
2284       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2285           : Inst(Inst), Idx(Idx) {}
2286     };
2287 
2288     /// Keep track of the original uses (pair Instruction, Index).
2289     SmallVector<InstructionAndIdx, 4> OriginalUses;
2290 
2291     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2292 
2293   public:
2294     /// \brief Replace all the use of \p Inst by \p New.
2295     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2296       DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2297                    << "\n");
2298       // Record the original uses.
2299       for (Use &U : Inst->uses()) {
2300         Instruction *UserI = cast<Instruction>(U.getUser());
2301         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2302       }
2303       // Now, we can replace the uses.
2304       Inst->replaceAllUsesWith(New);
2305     }
2306 
2307     /// \brief Reassign the original uses of Inst to Inst.
2308     void undo() override {
2309       DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2310       for (use_iterator UseIt = OriginalUses.begin(),
2311                         EndIt = OriginalUses.end();
2312            UseIt != EndIt; ++UseIt) {
2313         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2314       }
2315     }
2316   };
2317 
2318   /// \brief Remove an instruction from the IR.
2319   class InstructionRemover : public TypePromotionAction {
2320     /// Original position of the instruction.
2321     InsertionHandler Inserter;
2322 
2323     /// Helper structure to hide all the link to the instruction. In other
2324     /// words, this helps to do as if the instruction was removed.
2325     OperandsHider Hider;
2326 
2327     /// Keep track of the uses replaced, if any.
2328     UsesReplacer *Replacer = nullptr;
2329 
2330     /// Keep track of instructions removed.
2331     SetOfInstrs &RemovedInsts;
2332 
2333   public:
2334     /// \brief Remove all reference of \p Inst and optinally replace all its
2335     /// uses with New.
2336     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2337     /// \pre If !Inst->use_empty(), then New != nullptr
2338     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2339                        Value *New = nullptr)
2340         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2341           RemovedInsts(RemovedInsts) {
2342       if (New)
2343         Replacer = new UsesReplacer(Inst, New);
2344       DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2345       RemovedInsts.insert(Inst);
2346       /// The instructions removed here will be freed after completing
2347       /// optimizeBlock() for all blocks as we need to keep track of the
2348       /// removed instructions during promotion.
2349       Inst->removeFromParent();
2350     }
2351 
2352     ~InstructionRemover() override { delete Replacer; }
2353 
2354     /// \brief Resurrect the instruction and reassign it to the proper uses if
2355     /// new value was provided when build this action.
2356     void undo() override {
2357       DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2358       Inserter.insert(Inst);
2359       if (Replacer)
2360         Replacer->undo();
2361       Hider.undo();
2362       RemovedInsts.erase(Inst);
2363     }
2364   };
2365 
2366 public:
2367   /// Restoration point.
2368   /// The restoration point is a pointer to an action instead of an iterator
2369   /// because the iterator may be invalidated but not the pointer.
2370   using ConstRestorationPt = const TypePromotionAction *;
2371 
2372   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2373       : RemovedInsts(RemovedInsts) {}
2374 
2375   /// Advocate every changes made in that transaction.
2376   void commit();
2377 
2378   /// Undo all the changes made after the given point.
2379   void rollback(ConstRestorationPt Point);
2380 
2381   /// Get the current restoration point.
2382   ConstRestorationPt getRestorationPoint() const;
2383 
2384   /// \name API for IR modification with state keeping to support rollback.
2385   /// @{
2386   /// Same as Instruction::setOperand.
2387   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2388 
2389   /// Same as Instruction::eraseFromParent.
2390   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2391 
2392   /// Same as Value::replaceAllUsesWith.
2393   void replaceAllUsesWith(Instruction *Inst, Value *New);
2394 
2395   /// Same as Value::mutateType.
2396   void mutateType(Instruction *Inst, Type *NewTy);
2397 
2398   /// Same as IRBuilder::createTrunc.
2399   Value *createTrunc(Instruction *Opnd, Type *Ty);
2400 
2401   /// Same as IRBuilder::createSExt.
2402   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2403 
2404   /// Same as IRBuilder::createZExt.
2405   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2406 
2407   /// Same as Instruction::moveBefore.
2408   void moveBefore(Instruction *Inst, Instruction *Before);
2409   /// @}
2410 
2411 private:
2412   /// The ordered list of actions made so far.
2413   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2414 
2415   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2416 
2417   SetOfInstrs &RemovedInsts;
2418 };
2419 
2420 } // end anonymous namespace
2421 
2422 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2423                                           Value *NewVal) {
2424   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2425       Inst, Idx, NewVal));
2426 }
2427 
2428 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2429                                                 Value *NewVal) {
2430   Actions.push_back(
2431       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2432           Inst, RemovedInsts, NewVal));
2433 }
2434 
2435 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2436                                                   Value *New) {
2437   Actions.push_back(
2438       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2439 }
2440 
2441 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2442   Actions.push_back(
2443       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2444 }
2445 
2446 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2447                                              Type *Ty) {
2448   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2449   Value *Val = Ptr->getBuiltValue();
2450   Actions.push_back(std::move(Ptr));
2451   return Val;
2452 }
2453 
2454 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2455                                             Value *Opnd, Type *Ty) {
2456   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2457   Value *Val = Ptr->getBuiltValue();
2458   Actions.push_back(std::move(Ptr));
2459   return Val;
2460 }
2461 
2462 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2463                                             Value *Opnd, Type *Ty) {
2464   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2465   Value *Val = Ptr->getBuiltValue();
2466   Actions.push_back(std::move(Ptr));
2467   return Val;
2468 }
2469 
2470 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2471                                           Instruction *Before) {
2472   Actions.push_back(
2473       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2474           Inst, Before));
2475 }
2476 
2477 TypePromotionTransaction::ConstRestorationPt
2478 TypePromotionTransaction::getRestorationPoint() const {
2479   return !Actions.empty() ? Actions.back().get() : nullptr;
2480 }
2481 
2482 void TypePromotionTransaction::commit() {
2483   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2484        ++It)
2485     (*It)->commit();
2486   Actions.clear();
2487 }
2488 
2489 void TypePromotionTransaction::rollback(
2490     TypePromotionTransaction::ConstRestorationPt Point) {
2491   while (!Actions.empty() && Point != Actions.back().get()) {
2492     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2493     Curr->undo();
2494   }
2495 }
2496 
2497 namespace {
2498 
2499 /// \brief A helper class for matching addressing modes.
2500 ///
2501 /// This encapsulates the logic for matching the target-legal addressing modes.
2502 class AddressingModeMatcher {
2503   SmallVectorImpl<Instruction*> &AddrModeInsts;
2504   const TargetLowering &TLI;
2505   const TargetRegisterInfo &TRI;
2506   const DataLayout &DL;
2507 
2508   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2509   /// the memory instruction that we're computing this address for.
2510   Type *AccessTy;
2511   unsigned AddrSpace;
2512   Instruction *MemoryInst;
2513 
2514   /// This is the addressing mode that we're building up. This is
2515   /// part of the return value of this addressing mode matching stuff.
2516   ExtAddrMode &AddrMode;
2517 
2518   /// The instructions inserted by other CodeGenPrepare optimizations.
2519   const SetOfInstrs &InsertedInsts;
2520 
2521   /// A map from the instructions to their type before promotion.
2522   InstrToOrigTy &PromotedInsts;
2523 
2524   /// The ongoing transaction where every action should be registered.
2525   TypePromotionTransaction &TPT;
2526 
2527   /// This is set to true when we should not do profitability checks.
2528   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2529   bool IgnoreProfitability;
2530 
2531   AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI,
2532                         const TargetLowering &TLI,
2533                         const TargetRegisterInfo &TRI,
2534                         Type *AT, unsigned AS,
2535                         Instruction *MI, ExtAddrMode &AM,
2536                         const SetOfInstrs &InsertedInsts,
2537                         InstrToOrigTy &PromotedInsts,
2538                         TypePromotionTransaction &TPT)
2539       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2540         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2541         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2542         PromotedInsts(PromotedInsts), TPT(TPT) {
2543     IgnoreProfitability = false;
2544   }
2545 
2546 public:
2547   /// Find the maximal addressing mode that a load/store of V can fold,
2548   /// give an access type of AccessTy.  This returns a list of involved
2549   /// instructions in AddrModeInsts.
2550   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2551   /// optimizations.
2552   /// \p PromotedInsts maps the instructions to their type before promotion.
2553   /// \p The ongoing transaction where every action should be registered.
2554   static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS,
2555                            Instruction *MemoryInst,
2556                            SmallVectorImpl<Instruction*> &AddrModeInsts,
2557                            const TargetLowering &TLI,
2558                            const TargetRegisterInfo &TRI,
2559                            const SetOfInstrs &InsertedInsts,
2560                            InstrToOrigTy &PromotedInsts,
2561                            TypePromotionTransaction &TPT) {
2562     ExtAddrMode Result;
2563 
2564     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI,
2565                                          AccessTy, AS,
2566                                          MemoryInst, Result, InsertedInsts,
2567                                          PromotedInsts, TPT).matchAddr(V, 0);
2568     (void)Success; assert(Success && "Couldn't select *anything*?");
2569     return Result;
2570   }
2571 
2572 private:
2573   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2574   bool matchAddr(Value *V, unsigned Depth);
2575   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2576                           bool *MovedAway = nullptr);
2577   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2578                                             ExtAddrMode &AMBefore,
2579                                             ExtAddrMode &AMAfter);
2580   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2581   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2582                              Value *PromotedOperand) const;
2583 };
2584 
2585 /// \brief Keep track of simplification of Phi nodes.
2586 /// Accept the set of all phi nodes and erase phi node from this set
2587 /// if it is simplified.
2588 class SimplificationTracker {
2589   DenseMap<Value *, Value *> Storage;
2590   const SimplifyQuery &SQ;
2591   SmallPtrSetImpl<PHINode *> &AllPhiNodes;
2592   SmallPtrSetImpl<SelectInst *> &AllSelectNodes;
2593 
2594 public:
2595   SimplificationTracker(const SimplifyQuery &sq,
2596                         SmallPtrSetImpl<PHINode *> &APN,
2597                         SmallPtrSetImpl<SelectInst *> &ASN)
2598       : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {}
2599 
2600   Value *Get(Value *V) {
2601     do {
2602       auto SV = Storage.find(V);
2603       if (SV == Storage.end())
2604         return V;
2605       V = SV->second;
2606     } while (true);
2607   }
2608 
2609   Value *Simplify(Value *Val) {
2610     SmallVector<Value *, 32> WorkList;
2611     SmallPtrSet<Value *, 32> Visited;
2612     WorkList.push_back(Val);
2613     while (!WorkList.empty()) {
2614       auto P = WorkList.pop_back_val();
2615       if (!Visited.insert(P).second)
2616         continue;
2617       if (auto *PI = dyn_cast<Instruction>(P))
2618         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2619           for (auto *U : PI->users())
2620             WorkList.push_back(cast<Value>(U));
2621           Put(PI, V);
2622           PI->replaceAllUsesWith(V);
2623           if (auto *PHI = dyn_cast<PHINode>(PI))
2624             AllPhiNodes.erase(PHI);
2625           if (auto *Select = dyn_cast<SelectInst>(PI))
2626             AllSelectNodes.erase(Select);
2627           PI->eraseFromParent();
2628         }
2629     }
2630     return Get(Val);
2631   }
2632 
2633   void Put(Value *From, Value *To) {
2634     Storage.insert({ From, To });
2635   }
2636 };
2637 
2638 /// \brief A helper class for combining addressing modes.
2639 class AddressingModeCombiner {
2640   typedef std::pair<Value *, BasicBlock *> ValueInBB;
2641   typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping;
2642   typedef std::pair<PHINode *, PHINode *> PHIPair;
2643 
2644 private:
2645   /// The addressing modes we've collected.
2646   SmallVector<ExtAddrMode, 16> AddrModes;
2647 
2648   /// The field in which the AddrModes differ, when we have more than one.
2649   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2650 
2651   /// Are the AddrModes that we have all just equal to their original values?
2652   bool AllAddrModesTrivial = true;
2653 
2654   /// Common Type for all different fields in addressing modes.
2655   Type *CommonType;
2656 
2657   /// SimplifyQuery for simplifyInstruction utility.
2658   const SimplifyQuery &SQ;
2659 
2660   /// Original Address.
2661   ValueInBB Original;
2662 
2663 public:
2664   AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue)
2665       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2666 
2667   /// \brief Get the combined AddrMode
2668   const ExtAddrMode &getAddrMode() const {
2669     return AddrModes[0];
2670   }
2671 
2672   /// \brief Add a new AddrMode if it's compatible with the AddrModes we already
2673   /// have.
2674   /// \return True iff we succeeded in doing so.
2675   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2676     // Take note of if we have any non-trivial AddrModes, as we need to detect
2677     // when all AddrModes are trivial as then we would introduce a phi or select
2678     // which just duplicates what's already there.
2679     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2680 
2681     // If this is the first addrmode then everything is fine.
2682     if (AddrModes.empty()) {
2683       AddrModes.emplace_back(NewAddrMode);
2684       return true;
2685     }
2686 
2687     // Figure out how different this is from the other address modes, which we
2688     // can do just by comparing against the first one given that we only care
2689     // about the cumulative difference.
2690     ExtAddrMode::FieldName ThisDifferentField =
2691       AddrModes[0].compare(NewAddrMode);
2692     if (DifferentField == ExtAddrMode::NoField)
2693       DifferentField = ThisDifferentField;
2694     else if (DifferentField != ThisDifferentField)
2695       DifferentField = ExtAddrMode::MultipleFields;
2696 
2697     // If NewAddrMode differs in more than one dimension we cannot handle it.
2698     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2699 
2700     // If Scale Field is different then we reject.
2701     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2702 
2703     // We also must reject the case when base offset is different and
2704     // scale reg is not null, we cannot handle this case due to merge of
2705     // different offsets will be used as ScaleReg.
2706     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2707                               !NewAddrMode.ScaledReg);
2708 
2709     // We also must reject the case when GV is different and BaseReg installed
2710     // due to we want to use base reg as a merge of GV values.
2711     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2712                               !NewAddrMode.HasBaseReg);
2713 
2714     // Even if NewAddMode is the same we still need to collect it due to
2715     // original value is different. And later we will need all original values
2716     // as anchors during finding the common Phi node.
2717     if (CanHandle)
2718       AddrModes.emplace_back(NewAddrMode);
2719     else
2720       AddrModes.clear();
2721 
2722     return CanHandle;
2723   }
2724 
2725   /// \brief Combine the addressing modes we've collected into a single
2726   /// addressing mode.
2727   /// \return True iff we successfully combined them or we only had one so
2728   /// didn't need to combine them anyway.
2729   bool combineAddrModes() {
2730     // If we have no AddrModes then they can't be combined.
2731     if (AddrModes.size() == 0)
2732       return false;
2733 
2734     // A single AddrMode can trivially be combined.
2735     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2736       return true;
2737 
2738     // If the AddrModes we collected are all just equal to the value they are
2739     // derived from then combining them wouldn't do anything useful.
2740     if (AllAddrModesTrivial)
2741       return false;
2742 
2743     if (!addrModeCombiningAllowed())
2744       return false;
2745 
2746     // Build a map between <original value, basic block where we saw it> to
2747     // value of base register.
2748     // Bail out if there is no common type.
2749     FoldAddrToValueMapping Map;
2750     if (!initializeMap(Map))
2751       return false;
2752 
2753     Value *CommonValue = findCommon(Map);
2754     if (CommonValue)
2755       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
2756     return CommonValue != nullptr;
2757   }
2758 
2759 private:
2760   /// \brief Initialize Map with anchor values. For address seen in some BB
2761   /// we set the value of different field saw in this address.
2762   /// If address is not an instruction than basic block is set to null.
2763   /// At the same time we find a common type for different field we will
2764   /// use to create new Phi/Select nodes. Keep it in CommonType field.
2765   /// Return false if there is no common type found.
2766   bool initializeMap(FoldAddrToValueMapping &Map) {
2767     // Keep track of keys where the value is null. We will need to replace it
2768     // with constant null when we know the common type.
2769     SmallVector<ValueInBB, 2> NullValue;
2770     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
2771     for (auto &AM : AddrModes) {
2772       BasicBlock *BB = nullptr;
2773       if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue))
2774         BB = I->getParent();
2775 
2776       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
2777       if (DV) {
2778         auto *Type = DV->getType();
2779         if (CommonType && CommonType != Type)
2780           return false;
2781         CommonType = Type;
2782         Map[{ AM.OriginalValue, BB }] = DV;
2783       } else {
2784         NullValue.push_back({ AM.OriginalValue, BB });
2785       }
2786     }
2787     assert(CommonType && "At least one non-null value must be!");
2788     for (auto VIBB : NullValue)
2789       Map[VIBB] = Constant::getNullValue(CommonType);
2790     return true;
2791   }
2792 
2793   /// \brief We have mapping between value A and basic block where value A
2794   /// seen to other value B where B was a field in addressing mode represented
2795   /// by A. Also we have an original value C representin an address in some
2796   /// basic block. Traversing from C through phi and selects we ended up with
2797   /// A's in a map. This utility function tries to find a value V which is a
2798   /// field in addressing mode C and traversing through phi nodes and selects
2799   /// we will end up in corresponded values B in a map.
2800   /// The utility will create a new Phi/Selects if needed.
2801   // The simple example looks as follows:
2802   // BB1:
2803   //   p1 = b1 + 40
2804   //   br cond BB2, BB3
2805   // BB2:
2806   //   p2 = b2 + 40
2807   //   br BB3
2808   // BB3:
2809   //   p = phi [p1, BB1], [p2, BB2]
2810   //   v = load p
2811   // Map is
2812   //   <p1, BB1> -> b1
2813   //   <p2, BB2> -> b2
2814   // Request is
2815   //   <p, BB3> -> ?
2816   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2817   Value *findCommon(FoldAddrToValueMapping &Map) {
2818     // Tracks newly created Phi nodes.
2819     SmallPtrSet<PHINode *, 32> NewPhiNodes;
2820     // Tracks newly created Select nodes.
2821     SmallPtrSet<SelectInst *, 32> NewSelectNodes;
2822     // Tracks the simplification of newly created phi nodes. The reason we use
2823     // this mapping is because we will add new created Phi nodes in AddrToBase.
2824     // Simplification of Phi nodes is recursive, so some Phi node may
2825     // be simplified after we added it to AddrToBase.
2826     // Using this mapping we can find the current value in AddrToBase.
2827     SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes);
2828 
2829     // First step, DFS to create PHI nodes for all intermediate blocks.
2830     // Also fill traverse order for the second step.
2831     SmallVector<ValueInBB, 32> TraverseOrder;
2832     InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes);
2833 
2834     // Second Step, fill new nodes by merged values and simplify if possible.
2835     FillPlaceholders(Map, TraverseOrder, ST);
2836 
2837     if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) {
2838       DestroyNodes(NewPhiNodes);
2839       DestroyNodes(NewSelectNodes);
2840       return nullptr;
2841     }
2842 
2843     // Now we'd like to match New Phi nodes to existed ones.
2844     unsigned PhiNotMatchedCount = 0;
2845     if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
2846       DestroyNodes(NewPhiNodes);
2847       DestroyNodes(NewSelectNodes);
2848       return nullptr;
2849     }
2850 
2851     auto *Result = ST.Get(Map.find(Original)->second);
2852     if (Result) {
2853       NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount;
2854       NumMemoryInstsSelectCreated += NewSelectNodes.size();
2855     }
2856     return Result;
2857   }
2858 
2859   /// \brief Destroy nodes from a set.
2860   template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) {
2861     // For safe erasing, replace the Phi with dummy value first.
2862     auto Dummy = UndefValue::get(CommonType);
2863     for (auto I : Instructions) {
2864       I->replaceAllUsesWith(Dummy);
2865       I->eraseFromParent();
2866     }
2867   }
2868 
2869   /// \brief Try to match PHI node to Candidate.
2870   /// Matcher tracks the matched Phi nodes.
2871   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
2872                     DenseSet<PHIPair> &Matcher,
2873                     SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) {
2874     SmallVector<PHIPair, 8> WorkList;
2875     Matcher.insert({ PHI, Candidate });
2876     WorkList.push_back({ PHI, Candidate });
2877     SmallSet<PHIPair, 8> Visited;
2878     while (!WorkList.empty()) {
2879       auto Item = WorkList.pop_back_val();
2880       if (!Visited.insert(Item).second)
2881         continue;
2882       // We iterate over all incoming values to Phi to compare them.
2883       // If values are different and both of them Phi and the first one is a
2884       // Phi we added (subject to match) and both of them is in the same basic
2885       // block then we can match our pair if values match. So we state that
2886       // these values match and add it to work list to verify that.
2887       for (auto B : Item.first->blocks()) {
2888         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
2889         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
2890         if (FirstValue == SecondValue)
2891           continue;
2892 
2893         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
2894         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
2895 
2896         // One of them is not Phi or
2897         // The first one is not Phi node from the set we'd like to match or
2898         // Phi nodes from different basic blocks then
2899         // we will not be able to match.
2900         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
2901             FirstPhi->getParent() != SecondPhi->getParent())
2902           return false;
2903 
2904         // If we already matched them then continue.
2905         if (Matcher.count({ FirstPhi, SecondPhi }))
2906           continue;
2907         // So the values are different and does not match. So we need them to
2908         // match.
2909         Matcher.insert({ FirstPhi, SecondPhi });
2910         // But me must check it.
2911         WorkList.push_back({ FirstPhi, SecondPhi });
2912       }
2913     }
2914     return true;
2915   }
2916 
2917   /// \brief For the given set of PHI nodes try to find their equivalents.
2918   /// Returns false if this matching fails and creation of new Phi is disabled.
2919   bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch,
2920                    SimplificationTracker &ST, bool AllowNewPhiNodes,
2921                    unsigned &PhiNotMatchedCount) {
2922     DenseSet<PHIPair> Matched;
2923     SmallPtrSet<PHINode *, 8> WillNotMatch;
2924     while (PhiNodesToMatch.size()) {
2925       PHINode *PHI = *PhiNodesToMatch.begin();
2926 
2927       // Add us, if no Phi nodes in the basic block we do not match.
2928       WillNotMatch.clear();
2929       WillNotMatch.insert(PHI);
2930 
2931       // Traverse all Phis until we found equivalent or fail to do that.
2932       bool IsMatched = false;
2933       for (auto &P : PHI->getParent()->phis()) {
2934         if (&P == PHI)
2935           continue;
2936         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
2937           break;
2938         // If it does not match, collect all Phi nodes from matcher.
2939         // if we end up with no match, them all these Phi nodes will not match
2940         // later.
2941         for (auto M : Matched)
2942           WillNotMatch.insert(M.first);
2943         Matched.clear();
2944       }
2945       if (IsMatched) {
2946         // Replace all matched values and erase them.
2947         for (auto MV : Matched) {
2948           MV.first->replaceAllUsesWith(MV.second);
2949           PhiNodesToMatch.erase(MV.first);
2950           ST.Put(MV.first, MV.second);
2951           MV.first->eraseFromParent();
2952         }
2953         Matched.clear();
2954         continue;
2955       }
2956       // If we are not allowed to create new nodes then bail out.
2957       if (!AllowNewPhiNodes)
2958         return false;
2959       // Just remove all seen values in matcher. They will not match anything.
2960       PhiNotMatchedCount += WillNotMatch.size();
2961       for (auto *P : WillNotMatch)
2962         PhiNodesToMatch.erase(P);
2963     }
2964     return true;
2965   }
2966   /// \brief Fill the placeholder with values from predecessors and simplify it.
2967   void FillPlaceholders(FoldAddrToValueMapping &Map,
2968                         SmallVectorImpl<ValueInBB> &TraverseOrder,
2969                         SimplificationTracker &ST) {
2970     while (!TraverseOrder.empty()) {
2971       auto Current = TraverseOrder.pop_back_val();
2972       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
2973       Value *CurrentValue = Current.first;
2974       BasicBlock *CurrentBlock = Current.second;
2975       Value *V = Map[Current];
2976 
2977       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
2978         // CurrentValue also must be Select.
2979         auto *CurrentSelect = cast<SelectInst>(CurrentValue);
2980         auto *TrueValue = CurrentSelect->getTrueValue();
2981         ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue)
2982                                               ? CurrentBlock
2983                                               : nullptr };
2984         assert(Map.find(TrueItem) != Map.end() && "No True Value!");
2985         Select->setTrueValue(ST.Get(Map[TrueItem]));
2986         auto *FalseValue = CurrentSelect->getFalseValue();
2987         ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue)
2988                                                 ? CurrentBlock
2989                                                 : nullptr };
2990         assert(Map.find(FalseItem) != Map.end() && "No False Value!");
2991         Select->setFalseValue(ST.Get(Map[FalseItem]));
2992       } else {
2993         // Must be a Phi node then.
2994         PHINode *PHI = cast<PHINode>(V);
2995         // Fill the Phi node with values from predecessors.
2996         bool IsDefinedInThisBB =
2997             cast<Instruction>(CurrentValue)->getParent() == CurrentBlock;
2998         auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue);
2999         for (auto B : predecessors(CurrentBlock)) {
3000           Value *PV = IsDefinedInThisBB
3001                           ? CurrentPhi->getIncomingValueForBlock(B)
3002                           : CurrentValue;
3003           ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr };
3004           assert(Map.find(item) != Map.end() && "No predecessor Value!");
3005           PHI->addIncoming(ST.Get(Map[item]), B);
3006         }
3007       }
3008       // Simplify if possible.
3009       Map[Current] = ST.Simplify(V);
3010     }
3011   }
3012 
3013   /// Starting from value recursively iterates over predecessors up to known
3014   /// ending values represented in a map. For each traversed block inserts
3015   /// a placeholder Phi or Select.
3016   /// Reports all new created Phi/Select nodes by adding them to set.
3017   /// Also reports and order in what basic blocks have been traversed.
3018   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3019                           SmallVectorImpl<ValueInBB> &TraverseOrder,
3020                           SmallPtrSetImpl<PHINode *> &NewPhiNodes,
3021                           SmallPtrSetImpl<SelectInst *> &NewSelectNodes) {
3022     SmallVector<ValueInBB, 32> Worklist;
3023     assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) &&
3024            "Address must be a Phi or Select node");
3025     auto *Dummy = UndefValue::get(CommonType);
3026     Worklist.push_back(Original);
3027     while (!Worklist.empty()) {
3028       auto Current = Worklist.pop_back_val();
3029       // If value is not an instruction it is something global, constant,
3030       // parameter and we can say that this value is observable in any block.
3031       // Set block to null to denote it.
3032       // Also please take into account that it is how we build anchors.
3033       if (!isa<Instruction>(Current.first))
3034         Current.second = nullptr;
3035       // if it is already visited or it is an ending value then skip it.
3036       if (Map.find(Current) != Map.end())
3037         continue;
3038       TraverseOrder.push_back(Current);
3039 
3040       Value *CurrentValue = Current.first;
3041       BasicBlock *CurrentBlock = Current.second;
3042       // CurrentValue must be a Phi node or select. All others must be covered
3043       // by anchors.
3044       Instruction *CurrentI = cast<Instruction>(CurrentValue);
3045       bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock;
3046 
3047       unsigned PredCount =
3048           std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock));
3049       // if Current Value is not defined in this basic block we are interested
3050       // in values in predecessors.
3051       if (!IsDefinedInThisBB) {
3052         assert(PredCount && "Unreachable block?!");
3053         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3054                                        &CurrentBlock->front());
3055         Map[Current] = PHI;
3056         NewPhiNodes.insert(PHI);
3057         // Add all predecessors in work list.
3058         for (auto B : predecessors(CurrentBlock))
3059           Worklist.push_back({ CurrentValue, B });
3060         continue;
3061       }
3062       // Value is defined in this basic block.
3063       if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) {
3064         // Is it OK to get metadata from OrigSelect?!
3065         // Create a Select placeholder with dummy value.
3066         SelectInst *Select =
3067             SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy,
3068                                OrigSelect->getName(), OrigSelect, OrigSelect);
3069         Map[Current] = Select;
3070         NewSelectNodes.insert(Select);
3071         // We are interested in True and False value in this basic block.
3072         Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock });
3073         Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock });
3074       } else {
3075         // It must be a Phi node then.
3076         auto *CurrentPhi = cast<PHINode>(CurrentI);
3077         // Create new Phi node for merge of bases.
3078         assert(PredCount && "Unreachable block?!");
3079         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3080                                        &CurrentBlock->front());
3081         Map[Current] = PHI;
3082         NewPhiNodes.insert(PHI);
3083 
3084         // Add all predecessors in work list.
3085         for (auto B : predecessors(CurrentBlock))
3086           Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B });
3087       }
3088     }
3089   }
3090 
3091   bool addrModeCombiningAllowed() {
3092     if (DisableComplexAddrModes)
3093       return false;
3094     switch (DifferentField) {
3095     default:
3096       return false;
3097     case ExtAddrMode::BaseRegField:
3098       return AddrSinkCombineBaseReg;
3099     case ExtAddrMode::BaseGVField:
3100       return AddrSinkCombineBaseGV;
3101     case ExtAddrMode::BaseOffsField:
3102       return AddrSinkCombineBaseOffs;
3103     case ExtAddrMode::ScaledRegField:
3104       return AddrSinkCombineScaledReg;
3105     }
3106   }
3107 };
3108 } // end anonymous namespace
3109 
3110 /// Try adding ScaleReg*Scale to the current addressing mode.
3111 /// Return true and update AddrMode if this addr mode is legal for the target,
3112 /// false if not.
3113 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3114                                              unsigned Depth) {
3115   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3116   // mode.  Just process that directly.
3117   if (Scale == 1)
3118     return matchAddr(ScaleReg, Depth);
3119 
3120   // If the scale is 0, it takes nothing to add this.
3121   if (Scale == 0)
3122     return true;
3123 
3124   // If we already have a scale of this value, we can add to it, otherwise, we
3125   // need an available scale field.
3126   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3127     return false;
3128 
3129   ExtAddrMode TestAddrMode = AddrMode;
3130 
3131   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3132   // [A+B + A*7] -> [B+A*8].
3133   TestAddrMode.Scale += Scale;
3134   TestAddrMode.ScaledReg = ScaleReg;
3135 
3136   // If the new address isn't legal, bail out.
3137   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3138     return false;
3139 
3140   // It was legal, so commit it.
3141   AddrMode = TestAddrMode;
3142 
3143   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3144   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3145   // X*Scale + C*Scale to addr mode.
3146   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3147   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3148       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3149     TestAddrMode.ScaledReg = AddLHS;
3150     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3151 
3152     // If this addressing mode is legal, commit it and remember that we folded
3153     // this instruction.
3154     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3155       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3156       AddrMode = TestAddrMode;
3157       return true;
3158     }
3159   }
3160 
3161   // Otherwise, not (x+c)*scale, just return what we have.
3162   return true;
3163 }
3164 
3165 /// This is a little filter, which returns true if an addressing computation
3166 /// involving I might be folded into a load/store accessing it.
3167 /// This doesn't need to be perfect, but needs to accept at least
3168 /// the set of instructions that MatchOperationAddr can.
3169 static bool MightBeFoldableInst(Instruction *I) {
3170   switch (I->getOpcode()) {
3171   case Instruction::BitCast:
3172   case Instruction::AddrSpaceCast:
3173     // Don't touch identity bitcasts.
3174     if (I->getType() == I->getOperand(0)->getType())
3175       return false;
3176     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3177   case Instruction::PtrToInt:
3178     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3179     return true;
3180   case Instruction::IntToPtr:
3181     // We know the input is intptr_t, so this is foldable.
3182     return true;
3183   case Instruction::Add:
3184     return true;
3185   case Instruction::Mul:
3186   case Instruction::Shl:
3187     // Can only handle X*C and X << C.
3188     return isa<ConstantInt>(I->getOperand(1));
3189   case Instruction::GetElementPtr:
3190     return true;
3191   default:
3192     return false;
3193   }
3194 }
3195 
3196 /// \brief Check whether or not \p Val is a legal instruction for \p TLI.
3197 /// \note \p Val is assumed to be the product of some type promotion.
3198 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3199 /// to be legal, as the non-promoted value would have had the same state.
3200 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3201                                        const DataLayout &DL, Value *Val) {
3202   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3203   if (!PromotedInst)
3204     return false;
3205   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3206   // If the ISDOpcode is undefined, it was undefined before the promotion.
3207   if (!ISDOpcode)
3208     return true;
3209   // Otherwise, check if the promoted instruction is legal or not.
3210   return TLI.isOperationLegalOrCustom(
3211       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3212 }
3213 
3214 namespace {
3215 
3216 /// \brief Hepler class to perform type promotion.
3217 class TypePromotionHelper {
3218   /// \brief Utility function to check whether or not a sign or zero extension
3219   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3220   /// either using the operands of \p Inst or promoting \p Inst.
3221   /// The type of the extension is defined by \p IsSExt.
3222   /// In other words, check if:
3223   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3224   /// #1 Promotion applies:
3225   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3226   /// #2 Operand reuses:
3227   /// ext opnd1 to ConsideredExtType.
3228   /// \p PromotedInsts maps the instructions to their type before promotion.
3229   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3230                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3231 
3232   /// \brief Utility function to determine if \p OpIdx should be promoted when
3233   /// promoting \p Inst.
3234   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3235     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3236   }
3237 
3238   /// \brief Utility function to promote the operand of \p Ext when this
3239   /// operand is a promotable trunc or sext or zext.
3240   /// \p PromotedInsts maps the instructions to their type before promotion.
3241   /// \p CreatedInstsCost[out] contains the cost of all instructions
3242   /// created to promote the operand of Ext.
3243   /// Newly added extensions are inserted in \p Exts.
3244   /// Newly added truncates are inserted in \p Truncs.
3245   /// Should never be called directly.
3246   /// \return The promoted value which is used instead of Ext.
3247   static Value *promoteOperandForTruncAndAnyExt(
3248       Instruction *Ext, TypePromotionTransaction &TPT,
3249       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3250       SmallVectorImpl<Instruction *> *Exts,
3251       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3252 
3253   /// \brief Utility function to promote the operand of \p Ext when this
3254   /// operand is promotable and is not a supported trunc or sext.
3255   /// \p PromotedInsts maps the instructions to their type before promotion.
3256   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3257   /// created to promote the operand of Ext.
3258   /// Newly added extensions are inserted in \p Exts.
3259   /// Newly added truncates are inserted in \p Truncs.
3260   /// Should never be called directly.
3261   /// \return The promoted value which is used instead of Ext.
3262   static Value *promoteOperandForOther(Instruction *Ext,
3263                                        TypePromotionTransaction &TPT,
3264                                        InstrToOrigTy &PromotedInsts,
3265                                        unsigned &CreatedInstsCost,
3266                                        SmallVectorImpl<Instruction *> *Exts,
3267                                        SmallVectorImpl<Instruction *> *Truncs,
3268                                        const TargetLowering &TLI, bool IsSExt);
3269 
3270   /// \see promoteOperandForOther.
3271   static Value *signExtendOperandForOther(
3272       Instruction *Ext, TypePromotionTransaction &TPT,
3273       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3274       SmallVectorImpl<Instruction *> *Exts,
3275       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3276     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3277                                   Exts, Truncs, TLI, true);
3278   }
3279 
3280   /// \see promoteOperandForOther.
3281   static Value *zeroExtendOperandForOther(
3282       Instruction *Ext, TypePromotionTransaction &TPT,
3283       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3284       SmallVectorImpl<Instruction *> *Exts,
3285       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3286     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3287                                   Exts, Truncs, TLI, false);
3288   }
3289 
3290 public:
3291   /// Type for the utility function that promotes the operand of Ext.
3292   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3293                             InstrToOrigTy &PromotedInsts,
3294                             unsigned &CreatedInstsCost,
3295                             SmallVectorImpl<Instruction *> *Exts,
3296                             SmallVectorImpl<Instruction *> *Truncs,
3297                             const TargetLowering &TLI);
3298 
3299   /// \brief Given a sign/zero extend instruction \p Ext, return the approriate
3300   /// action to promote the operand of \p Ext instead of using Ext.
3301   /// \return NULL if no promotable action is possible with the current
3302   /// sign extension.
3303   /// \p InsertedInsts keeps track of all the instructions inserted by the
3304   /// other CodeGenPrepare optimizations. This information is important
3305   /// because we do not want to promote these instructions as CodeGenPrepare
3306   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3307   /// \p PromotedInsts maps the instructions to their type before promotion.
3308   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3309                           const TargetLowering &TLI,
3310                           const InstrToOrigTy &PromotedInsts);
3311 };
3312 
3313 } // end anonymous namespace
3314 
3315 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3316                                         Type *ConsideredExtType,
3317                                         const InstrToOrigTy &PromotedInsts,
3318                                         bool IsSExt) {
3319   // The promotion helper does not know how to deal with vector types yet.
3320   // To be able to fix that, we would need to fix the places where we
3321   // statically extend, e.g., constants and such.
3322   if (Inst->getType()->isVectorTy())
3323     return false;
3324 
3325   // We can always get through zext.
3326   if (isa<ZExtInst>(Inst))
3327     return true;
3328 
3329   // sext(sext) is ok too.
3330   if (IsSExt && isa<SExtInst>(Inst))
3331     return true;
3332 
3333   // We can get through binary operator, if it is legal. In other words, the
3334   // binary operator must have a nuw or nsw flag.
3335   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3336   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3337       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3338        (IsSExt && BinOp->hasNoSignedWrap())))
3339     return true;
3340 
3341   // Check if we can do the following simplification.
3342   // ext(trunc(opnd)) --> ext(opnd)
3343   if (!isa<TruncInst>(Inst))
3344     return false;
3345 
3346   Value *OpndVal = Inst->getOperand(0);
3347   // Check if we can use this operand in the extension.
3348   // If the type is larger than the result type of the extension, we cannot.
3349   if (!OpndVal->getType()->isIntegerTy() ||
3350       OpndVal->getType()->getIntegerBitWidth() >
3351           ConsideredExtType->getIntegerBitWidth())
3352     return false;
3353 
3354   // If the operand of the truncate is not an instruction, we will not have
3355   // any information on the dropped bits.
3356   // (Actually we could for constant but it is not worth the extra logic).
3357   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3358   if (!Opnd)
3359     return false;
3360 
3361   // Check if the source of the type is narrow enough.
3362   // I.e., check that trunc just drops extended bits of the same kind of
3363   // the extension.
3364   // #1 get the type of the operand and check the kind of the extended bits.
3365   const Type *OpndType;
3366   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3367   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3368     OpndType = It->second.getPointer();
3369   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3370     OpndType = Opnd->getOperand(0)->getType();
3371   else
3372     return false;
3373 
3374   // #2 check that the truncate just drops extended bits.
3375   return Inst->getType()->getIntegerBitWidth() >=
3376          OpndType->getIntegerBitWidth();
3377 }
3378 
3379 TypePromotionHelper::Action TypePromotionHelper::getAction(
3380     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3381     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3382   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3383          "Unexpected instruction type");
3384   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3385   Type *ExtTy = Ext->getType();
3386   bool IsSExt = isa<SExtInst>(Ext);
3387   // If the operand of the extension is not an instruction, we cannot
3388   // get through.
3389   // If it, check we can get through.
3390   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3391     return nullptr;
3392 
3393   // Do not promote if the operand has been added by codegenprepare.
3394   // Otherwise, it means we are undoing an optimization that is likely to be
3395   // redone, thus causing potential infinite loop.
3396   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3397     return nullptr;
3398 
3399   // SExt or Trunc instructions.
3400   // Return the related handler.
3401   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3402       isa<ZExtInst>(ExtOpnd))
3403     return promoteOperandForTruncAndAnyExt;
3404 
3405   // Regular instruction.
3406   // Abort early if we will have to insert non-free instructions.
3407   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3408     return nullptr;
3409   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3410 }
3411 
3412 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3413     Instruction *SExt, TypePromotionTransaction &TPT,
3414     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3415     SmallVectorImpl<Instruction *> *Exts,
3416     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3417   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3418   // get through it and this method should not be called.
3419   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3420   Value *ExtVal = SExt;
3421   bool HasMergedNonFreeExt = false;
3422   if (isa<ZExtInst>(SExtOpnd)) {
3423     // Replace s|zext(zext(opnd))
3424     // => zext(opnd).
3425     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3426     Value *ZExt =
3427         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3428     TPT.replaceAllUsesWith(SExt, ZExt);
3429     TPT.eraseInstruction(SExt);
3430     ExtVal = ZExt;
3431   } else {
3432     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3433     // => z|sext(opnd).
3434     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3435   }
3436   CreatedInstsCost = 0;
3437 
3438   // Remove dead code.
3439   if (SExtOpnd->use_empty())
3440     TPT.eraseInstruction(SExtOpnd);
3441 
3442   // Check if the extension is still needed.
3443   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3444   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3445     if (ExtInst) {
3446       if (Exts)
3447         Exts->push_back(ExtInst);
3448       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3449     }
3450     return ExtVal;
3451   }
3452 
3453   // At this point we have: ext ty opnd to ty.
3454   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3455   Value *NextVal = ExtInst->getOperand(0);
3456   TPT.eraseInstruction(ExtInst, NextVal);
3457   return NextVal;
3458 }
3459 
3460 Value *TypePromotionHelper::promoteOperandForOther(
3461     Instruction *Ext, TypePromotionTransaction &TPT,
3462     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3463     SmallVectorImpl<Instruction *> *Exts,
3464     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3465     bool IsSExt) {
3466   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3467   // get through it and this method should not be called.
3468   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3469   CreatedInstsCost = 0;
3470   if (!ExtOpnd->hasOneUse()) {
3471     // ExtOpnd will be promoted.
3472     // All its uses, but Ext, will need to use a truncated value of the
3473     // promoted version.
3474     // Create the truncate now.
3475     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3476     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3477       // Insert it just after the definition.
3478       ITrunc->moveAfter(ExtOpnd);
3479       if (Truncs)
3480         Truncs->push_back(ITrunc);
3481     }
3482 
3483     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3484     // Restore the operand of Ext (which has been replaced by the previous call
3485     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3486     TPT.setOperand(Ext, 0, ExtOpnd);
3487   }
3488 
3489   // Get through the Instruction:
3490   // 1. Update its type.
3491   // 2. Replace the uses of Ext by Inst.
3492   // 3. Extend each operand that needs to be extended.
3493 
3494   // Remember the original type of the instruction before promotion.
3495   // This is useful to know that the high bits are sign extended bits.
3496   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3497       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3498   // Step #1.
3499   TPT.mutateType(ExtOpnd, Ext->getType());
3500   // Step #2.
3501   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3502   // Step #3.
3503   Instruction *ExtForOpnd = Ext;
3504 
3505   DEBUG(dbgs() << "Propagate Ext to operands\n");
3506   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3507        ++OpIdx) {
3508     DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3509     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3510         !shouldExtOperand(ExtOpnd, OpIdx)) {
3511       DEBUG(dbgs() << "No need to propagate\n");
3512       continue;
3513     }
3514     // Check if we can statically extend the operand.
3515     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3516     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3517       DEBUG(dbgs() << "Statically extend\n");
3518       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3519       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3520                             : Cst->getValue().zext(BitWidth);
3521       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3522       continue;
3523     }
3524     // UndefValue are typed, so we have to statically sign extend them.
3525     if (isa<UndefValue>(Opnd)) {
3526       DEBUG(dbgs() << "Statically extend\n");
3527       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3528       continue;
3529     }
3530 
3531     // Otherwise we have to explicity sign extend the operand.
3532     // Check if Ext was reused to extend an operand.
3533     if (!ExtForOpnd) {
3534       // If yes, create a new one.
3535       DEBUG(dbgs() << "More operands to ext\n");
3536       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3537         : TPT.createZExt(Ext, Opnd, Ext->getType());
3538       if (!isa<Instruction>(ValForExtOpnd)) {
3539         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3540         continue;
3541       }
3542       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3543     }
3544     if (Exts)
3545       Exts->push_back(ExtForOpnd);
3546     TPT.setOperand(ExtForOpnd, 0, Opnd);
3547 
3548     // Move the sign extension before the insertion point.
3549     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3550     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3551     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3552     // If more sext are required, new instructions will have to be created.
3553     ExtForOpnd = nullptr;
3554   }
3555   if (ExtForOpnd == Ext) {
3556     DEBUG(dbgs() << "Extension is useless now\n");
3557     TPT.eraseInstruction(Ext);
3558   }
3559   return ExtOpnd;
3560 }
3561 
3562 /// Check whether or not promoting an instruction to a wider type is profitable.
3563 /// \p NewCost gives the cost of extension instructions created by the
3564 /// promotion.
3565 /// \p OldCost gives the cost of extension instructions before the promotion
3566 /// plus the number of instructions that have been
3567 /// matched in the addressing mode the promotion.
3568 /// \p PromotedOperand is the value that has been promoted.
3569 /// \return True if the promotion is profitable, false otherwise.
3570 bool AddressingModeMatcher::isPromotionProfitable(
3571     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3572   DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n');
3573   // The cost of the new extensions is greater than the cost of the
3574   // old extension plus what we folded.
3575   // This is not profitable.
3576   if (NewCost > OldCost)
3577     return false;
3578   if (NewCost < OldCost)
3579     return true;
3580   // The promotion is neutral but it may help folding the sign extension in
3581   // loads for instance.
3582   // Check that we did not create an illegal instruction.
3583   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3584 }
3585 
3586 /// Given an instruction or constant expr, see if we can fold the operation
3587 /// into the addressing mode. If so, update the addressing mode and return
3588 /// true, otherwise return false without modifying AddrMode.
3589 /// If \p MovedAway is not NULL, it contains the information of whether or
3590 /// not AddrInst has to be folded into the addressing mode on success.
3591 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3592 /// because it has been moved away.
3593 /// Thus AddrInst must not be added in the matched instructions.
3594 /// This state can happen when AddrInst is a sext, since it may be moved away.
3595 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3596 /// not be referenced anymore.
3597 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3598                                                unsigned Depth,
3599                                                bool *MovedAway) {
3600   // Avoid exponential behavior on extremely deep expression trees.
3601   if (Depth >= 5) return false;
3602 
3603   // By default, all matched instructions stay in place.
3604   if (MovedAway)
3605     *MovedAway = false;
3606 
3607   switch (Opcode) {
3608   case Instruction::PtrToInt:
3609     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3610     return matchAddr(AddrInst->getOperand(0), Depth);
3611   case Instruction::IntToPtr: {
3612     auto AS = AddrInst->getType()->getPointerAddressSpace();
3613     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3614     // This inttoptr is a no-op if the integer type is pointer sized.
3615     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3616       return matchAddr(AddrInst->getOperand(0), Depth);
3617     return false;
3618   }
3619   case Instruction::BitCast:
3620     // BitCast is always a noop, and we can handle it as long as it is
3621     // int->int or pointer->pointer (we don't want int<->fp or something).
3622     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3623          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3624         // Don't touch identity bitcasts.  These were probably put here by LSR,
3625         // and we don't want to mess around with them.  Assume it knows what it
3626         // is doing.
3627         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3628       return matchAddr(AddrInst->getOperand(0), Depth);
3629     return false;
3630   case Instruction::AddrSpaceCast: {
3631     unsigned SrcAS
3632       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3633     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3634     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3635       return matchAddr(AddrInst->getOperand(0), Depth);
3636     return false;
3637   }
3638   case Instruction::Add: {
3639     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3640     ExtAddrMode BackupAddrMode = AddrMode;
3641     unsigned OldSize = AddrModeInsts.size();
3642     // Start a transaction at this point.
3643     // The LHS may match but not the RHS.
3644     // Therefore, we need a higher level restoration point to undo partially
3645     // matched operation.
3646     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3647         TPT.getRestorationPoint();
3648 
3649     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3650         matchAddr(AddrInst->getOperand(0), Depth+1))
3651       return true;
3652 
3653     // Restore the old addr mode info.
3654     AddrMode = BackupAddrMode;
3655     AddrModeInsts.resize(OldSize);
3656     TPT.rollback(LastKnownGood);
3657 
3658     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3659     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3660         matchAddr(AddrInst->getOperand(1), Depth+1))
3661       return true;
3662 
3663     // Otherwise we definitely can't merge the ADD in.
3664     AddrMode = BackupAddrMode;
3665     AddrModeInsts.resize(OldSize);
3666     TPT.rollback(LastKnownGood);
3667     break;
3668   }
3669   //case Instruction::Or:
3670   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3671   //break;
3672   case Instruction::Mul:
3673   case Instruction::Shl: {
3674     // Can only handle X*C and X << C.
3675     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3676     if (!RHS || RHS->getBitWidth() > 64)
3677       return false;
3678     int64_t Scale = RHS->getSExtValue();
3679     if (Opcode == Instruction::Shl)
3680       Scale = 1LL << Scale;
3681 
3682     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3683   }
3684   case Instruction::GetElementPtr: {
3685     // Scan the GEP.  We check it if it contains constant offsets and at most
3686     // one variable offset.
3687     int VariableOperand = -1;
3688     unsigned VariableScale = 0;
3689 
3690     int64_t ConstantOffset = 0;
3691     gep_type_iterator GTI = gep_type_begin(AddrInst);
3692     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3693       if (StructType *STy = GTI.getStructTypeOrNull()) {
3694         const StructLayout *SL = DL.getStructLayout(STy);
3695         unsigned Idx =
3696           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3697         ConstantOffset += SL->getElementOffset(Idx);
3698       } else {
3699         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3700         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3701           ConstantOffset += CI->getSExtValue() * TypeSize;
3702         } else if (TypeSize) {  // Scales of zero don't do anything.
3703           // We only allow one variable index at the moment.
3704           if (VariableOperand != -1)
3705             return false;
3706 
3707           // Remember the variable index.
3708           VariableOperand = i;
3709           VariableScale = TypeSize;
3710         }
3711       }
3712     }
3713 
3714     // A common case is for the GEP to only do a constant offset.  In this case,
3715     // just add it to the disp field and check validity.
3716     if (VariableOperand == -1) {
3717       AddrMode.BaseOffs += ConstantOffset;
3718       if (ConstantOffset == 0 ||
3719           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3720         // Check to see if we can fold the base pointer in too.
3721         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3722           return true;
3723       }
3724       AddrMode.BaseOffs -= ConstantOffset;
3725       return false;
3726     }
3727 
3728     // Save the valid addressing mode in case we can't match.
3729     ExtAddrMode BackupAddrMode = AddrMode;
3730     unsigned OldSize = AddrModeInsts.size();
3731 
3732     // See if the scale and offset amount is valid for this target.
3733     AddrMode.BaseOffs += ConstantOffset;
3734 
3735     // Match the base operand of the GEP.
3736     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3737       // If it couldn't be matched, just stuff the value in a register.
3738       if (AddrMode.HasBaseReg) {
3739         AddrMode = BackupAddrMode;
3740         AddrModeInsts.resize(OldSize);
3741         return false;
3742       }
3743       AddrMode.HasBaseReg = true;
3744       AddrMode.BaseReg = AddrInst->getOperand(0);
3745     }
3746 
3747     // Match the remaining variable portion of the GEP.
3748     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3749                           Depth)) {
3750       // If it couldn't be matched, try stuffing the base into a register
3751       // instead of matching it, and retrying the match of the scale.
3752       AddrMode = BackupAddrMode;
3753       AddrModeInsts.resize(OldSize);
3754       if (AddrMode.HasBaseReg)
3755         return false;
3756       AddrMode.HasBaseReg = true;
3757       AddrMode.BaseReg = AddrInst->getOperand(0);
3758       AddrMode.BaseOffs += ConstantOffset;
3759       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3760                             VariableScale, Depth)) {
3761         // If even that didn't work, bail.
3762         AddrMode = BackupAddrMode;
3763         AddrModeInsts.resize(OldSize);
3764         return false;
3765       }
3766     }
3767 
3768     return true;
3769   }
3770   case Instruction::SExt:
3771   case Instruction::ZExt: {
3772     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3773     if (!Ext)
3774       return false;
3775 
3776     // Try to move this ext out of the way of the addressing mode.
3777     // Ask for a method for doing so.
3778     TypePromotionHelper::Action TPH =
3779         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3780     if (!TPH)
3781       return false;
3782 
3783     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3784         TPT.getRestorationPoint();
3785     unsigned CreatedInstsCost = 0;
3786     unsigned ExtCost = !TLI.isExtFree(Ext);
3787     Value *PromotedOperand =
3788         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3789     // SExt has been moved away.
3790     // Thus either it will be rematched later in the recursive calls or it is
3791     // gone. Anyway, we must not fold it into the addressing mode at this point.
3792     // E.g.,
3793     // op = add opnd, 1
3794     // idx = ext op
3795     // addr = gep base, idx
3796     // is now:
3797     // promotedOpnd = ext opnd            <- no match here
3798     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3799     // addr = gep base, op                <- match
3800     if (MovedAway)
3801       *MovedAway = true;
3802 
3803     assert(PromotedOperand &&
3804            "TypePromotionHelper should have filtered out those cases");
3805 
3806     ExtAddrMode BackupAddrMode = AddrMode;
3807     unsigned OldSize = AddrModeInsts.size();
3808 
3809     if (!matchAddr(PromotedOperand, Depth) ||
3810         // The total of the new cost is equal to the cost of the created
3811         // instructions.
3812         // The total of the old cost is equal to the cost of the extension plus
3813         // what we have saved in the addressing mode.
3814         !isPromotionProfitable(CreatedInstsCost,
3815                                ExtCost + (AddrModeInsts.size() - OldSize),
3816                                PromotedOperand)) {
3817       AddrMode = BackupAddrMode;
3818       AddrModeInsts.resize(OldSize);
3819       DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3820       TPT.rollback(LastKnownGood);
3821       return false;
3822     }
3823     return true;
3824   }
3825   }
3826   return false;
3827 }
3828 
3829 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3830 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3831 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3832 /// for the target.
3833 ///
3834 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3835   // Start a transaction at this point that we will rollback if the matching
3836   // fails.
3837   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3838       TPT.getRestorationPoint();
3839   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3840     // Fold in immediates if legal for the target.
3841     AddrMode.BaseOffs += CI->getSExtValue();
3842     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3843       return true;
3844     AddrMode.BaseOffs -= CI->getSExtValue();
3845   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3846     // If this is a global variable, try to fold it into the addressing mode.
3847     if (!AddrMode.BaseGV) {
3848       AddrMode.BaseGV = GV;
3849       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3850         return true;
3851       AddrMode.BaseGV = nullptr;
3852     }
3853   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3854     ExtAddrMode BackupAddrMode = AddrMode;
3855     unsigned OldSize = AddrModeInsts.size();
3856 
3857     // Check to see if it is possible to fold this operation.
3858     bool MovedAway = false;
3859     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3860       // This instruction may have been moved away. If so, there is nothing
3861       // to check here.
3862       if (MovedAway)
3863         return true;
3864       // Okay, it's possible to fold this.  Check to see if it is actually
3865       // *profitable* to do so.  We use a simple cost model to avoid increasing
3866       // register pressure too much.
3867       if (I->hasOneUse() ||
3868           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3869         AddrModeInsts.push_back(I);
3870         return true;
3871       }
3872 
3873       // It isn't profitable to do this, roll back.
3874       //cerr << "NOT FOLDING: " << *I;
3875       AddrMode = BackupAddrMode;
3876       AddrModeInsts.resize(OldSize);
3877       TPT.rollback(LastKnownGood);
3878     }
3879   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3880     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3881       return true;
3882     TPT.rollback(LastKnownGood);
3883   } else if (isa<ConstantPointerNull>(Addr)) {
3884     // Null pointer gets folded without affecting the addressing mode.
3885     return true;
3886   }
3887 
3888   // Worse case, the target should support [reg] addressing modes. :)
3889   if (!AddrMode.HasBaseReg) {
3890     AddrMode.HasBaseReg = true;
3891     AddrMode.BaseReg = Addr;
3892     // Still check for legality in case the target supports [imm] but not [i+r].
3893     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3894       return true;
3895     AddrMode.HasBaseReg = false;
3896     AddrMode.BaseReg = nullptr;
3897   }
3898 
3899   // If the base register is already taken, see if we can do [r+r].
3900   if (AddrMode.Scale == 0) {
3901     AddrMode.Scale = 1;
3902     AddrMode.ScaledReg = Addr;
3903     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3904       return true;
3905     AddrMode.Scale = 0;
3906     AddrMode.ScaledReg = nullptr;
3907   }
3908   // Couldn't match.
3909   TPT.rollback(LastKnownGood);
3910   return false;
3911 }
3912 
3913 /// Check to see if all uses of OpVal by the specified inline asm call are due
3914 /// to memory operands. If so, return true, otherwise return false.
3915 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
3916                                     const TargetLowering &TLI,
3917                                     const TargetRegisterInfo &TRI) {
3918   const Function *F = CI->getFunction();
3919   TargetLowering::AsmOperandInfoVector TargetConstraints =
3920       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
3921                             ImmutableCallSite(CI));
3922 
3923   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
3924     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
3925 
3926     // Compute the constraint code and ConstraintType to use.
3927     TLI.ComputeConstraintToUse(OpInfo, SDValue());
3928 
3929     // If this asm operand is our Value*, and if it isn't an indirect memory
3930     // operand, we can't fold it!
3931     if (OpInfo.CallOperandVal == OpVal &&
3932         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
3933          !OpInfo.isIndirect))
3934       return false;
3935   }
3936 
3937   return true;
3938 }
3939 
3940 // Max number of memory uses to look at before aborting the search to conserve
3941 // compile time.
3942 static constexpr int MaxMemoryUsesToScan = 20;
3943 
3944 /// Recursively walk all the uses of I until we find a memory use.
3945 /// If we find an obviously non-foldable instruction, return true.
3946 /// Add the ultimately found memory instructions to MemoryUses.
3947 static bool FindAllMemoryUses(
3948     Instruction *I,
3949     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
3950     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
3951     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
3952   // If we already considered this instruction, we're done.
3953   if (!ConsideredInsts.insert(I).second)
3954     return false;
3955 
3956   // If this is an obviously unfoldable instruction, bail out.
3957   if (!MightBeFoldableInst(I))
3958     return true;
3959 
3960   const bool OptSize = I->getFunction()->optForSize();
3961 
3962   // Loop over all the uses, recursively processing them.
3963   for (Use &U : I->uses()) {
3964     // Conservatively return true if we're seeing a large number or a deep chain
3965     // of users. This avoids excessive compilation times in pathological cases.
3966     if (SeenInsts++ >= MaxMemoryUsesToScan)
3967       return true;
3968 
3969     Instruction *UserI = cast<Instruction>(U.getUser());
3970     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
3971       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
3972       continue;
3973     }
3974 
3975     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
3976       unsigned opNo = U.getOperandNo();
3977       if (opNo != StoreInst::getPointerOperandIndex())
3978         return true; // Storing addr, not into addr.
3979       MemoryUses.push_back(std::make_pair(SI, opNo));
3980       continue;
3981     }
3982 
3983     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
3984       unsigned opNo = U.getOperandNo();
3985       if (opNo != AtomicRMWInst::getPointerOperandIndex())
3986         return true; // Storing addr, not into addr.
3987       MemoryUses.push_back(std::make_pair(RMW, opNo));
3988       continue;
3989     }
3990 
3991     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
3992       unsigned opNo = U.getOperandNo();
3993       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
3994         return true; // Storing addr, not into addr.
3995       MemoryUses.push_back(std::make_pair(CmpX, opNo));
3996       continue;
3997     }
3998 
3999     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4000       // If this is a cold call, we can sink the addressing calculation into
4001       // the cold path.  See optimizeCallInst
4002       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4003         continue;
4004 
4005       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4006       if (!IA) return true;
4007 
4008       // If this is a memory operand, we're cool, otherwise bail out.
4009       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4010         return true;
4011       continue;
4012     }
4013 
4014     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4015                           SeenInsts))
4016       return true;
4017   }
4018 
4019   return false;
4020 }
4021 
4022 /// Return true if Val is already known to be live at the use site that we're
4023 /// folding it into. If so, there is no cost to include it in the addressing
4024 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4025 /// instruction already.
4026 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4027                                                    Value *KnownLive2) {
4028   // If Val is either of the known-live values, we know it is live!
4029   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4030     return true;
4031 
4032   // All values other than instructions and arguments (e.g. constants) are live.
4033   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4034 
4035   // If Val is a constant sized alloca in the entry block, it is live, this is
4036   // true because it is just a reference to the stack/frame pointer, which is
4037   // live for the whole function.
4038   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4039     if (AI->isStaticAlloca())
4040       return true;
4041 
4042   // Check to see if this value is already used in the memory instruction's
4043   // block.  If so, it's already live into the block at the very least, so we
4044   // can reasonably fold it.
4045   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4046 }
4047 
4048 /// It is possible for the addressing mode of the machine to fold the specified
4049 /// instruction into a load or store that ultimately uses it.
4050 /// However, the specified instruction has multiple uses.
4051 /// Given this, it may actually increase register pressure to fold it
4052 /// into the load. For example, consider this code:
4053 ///
4054 ///     X = ...
4055 ///     Y = X+1
4056 ///     use(Y)   -> nonload/store
4057 ///     Z = Y+1
4058 ///     load Z
4059 ///
4060 /// In this case, Y has multiple uses, and can be folded into the load of Z
4061 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4062 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4063 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4064 /// number of computations either.
4065 ///
4066 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4067 /// X was live across 'load Z' for other reasons, we actually *would* want to
4068 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4069 bool AddressingModeMatcher::
4070 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4071                                      ExtAddrMode &AMAfter) {
4072   if (IgnoreProfitability) return true;
4073 
4074   // AMBefore is the addressing mode before this instruction was folded into it,
4075   // and AMAfter is the addressing mode after the instruction was folded.  Get
4076   // the set of registers referenced by AMAfter and subtract out those
4077   // referenced by AMBefore: this is the set of values which folding in this
4078   // address extends the lifetime of.
4079   //
4080   // Note that there are only two potential values being referenced here,
4081   // BaseReg and ScaleReg (global addresses are always available, as are any
4082   // folded immediates).
4083   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4084 
4085   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4086   // lifetime wasn't extended by adding this instruction.
4087   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4088     BaseReg = nullptr;
4089   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4090     ScaledReg = nullptr;
4091 
4092   // If folding this instruction (and it's subexprs) didn't extend any live
4093   // ranges, we're ok with it.
4094   if (!BaseReg && !ScaledReg)
4095     return true;
4096 
4097   // If all uses of this instruction can have the address mode sunk into them,
4098   // we can remove the addressing mode and effectively trade one live register
4099   // for another (at worst.)  In this context, folding an addressing mode into
4100   // the use is just a particularly nice way of sinking it.
4101   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4102   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4103   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4104     return false;  // Has a non-memory, non-foldable use!
4105 
4106   // Now that we know that all uses of this instruction are part of a chain of
4107   // computation involving only operations that could theoretically be folded
4108   // into a memory use, loop over each of these memory operation uses and see
4109   // if they could  *actually* fold the instruction.  The assumption is that
4110   // addressing modes are cheap and that duplicating the computation involved
4111   // many times is worthwhile, even on a fastpath. For sinking candidates
4112   // (i.e. cold call sites), this serves as a way to prevent excessive code
4113   // growth since most architectures have some reasonable small and fast way to
4114   // compute an effective address.  (i.e LEA on x86)
4115   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4116   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4117     Instruction *User = MemoryUses[i].first;
4118     unsigned OpNo = MemoryUses[i].second;
4119 
4120     // Get the access type of this use.  If the use isn't a pointer, we don't
4121     // know what it accesses.
4122     Value *Address = User->getOperand(OpNo);
4123     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4124     if (!AddrTy)
4125       return false;
4126     Type *AddressAccessTy = AddrTy->getElementType();
4127     unsigned AS = AddrTy->getAddressSpace();
4128 
4129     // Do a match against the root of this address, ignoring profitability. This
4130     // will tell us if the addressing mode for the memory operation will
4131     // *actually* cover the shared instruction.
4132     ExtAddrMode Result;
4133     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4134         TPT.getRestorationPoint();
4135     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI,
4136                                   AddressAccessTy, AS,
4137                                   MemoryInst, Result, InsertedInsts,
4138                                   PromotedInsts, TPT);
4139     Matcher.IgnoreProfitability = true;
4140     bool Success = Matcher.matchAddr(Address, 0);
4141     (void)Success; assert(Success && "Couldn't select *anything*?");
4142 
4143     // The match was to check the profitability, the changes made are not
4144     // part of the original matcher. Therefore, they should be dropped
4145     // otherwise the original matcher will not present the right state.
4146     TPT.rollback(LastKnownGood);
4147 
4148     // If the match didn't cover I, then it won't be shared by it.
4149     if (!is_contained(MatchedAddrModeInsts, I))
4150       return false;
4151 
4152     MatchedAddrModeInsts.clear();
4153   }
4154 
4155   return true;
4156 }
4157 
4158 /// Return true if the specified values are defined in a
4159 /// different basic block than BB.
4160 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4161   if (Instruction *I = dyn_cast<Instruction>(V))
4162     return I->getParent() != BB;
4163   return false;
4164 }
4165 
4166 /// Sink addressing mode computation immediate before MemoryInst if doing so
4167 /// can be done without increasing register pressure.  The need for the
4168 /// register pressure constraint means this can end up being an all or nothing
4169 /// decision for all uses of the same addressing computation.
4170 ///
4171 /// Load and Store Instructions often have addressing modes that can do
4172 /// significant amounts of computation. As such, instruction selection will try
4173 /// to get the load or store to do as much computation as possible for the
4174 /// program. The problem is that isel can only see within a single block. As
4175 /// such, we sink as much legal addressing mode work into the block as possible.
4176 ///
4177 /// This method is used to optimize both load/store and inline asms with memory
4178 /// operands.  It's also used to sink addressing computations feeding into cold
4179 /// call sites into their (cold) basic block.
4180 ///
4181 /// The motivation for handling sinking into cold blocks is that doing so can
4182 /// both enable other address mode sinking (by satisfying the register pressure
4183 /// constraint above), and reduce register pressure globally (by removing the
4184 /// addressing mode computation from the fast path entirely.).
4185 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4186                                         Type *AccessTy, unsigned AddrSpace) {
4187   Value *Repl = Addr;
4188 
4189   // Try to collapse single-value PHI nodes.  This is necessary to undo
4190   // unprofitable PRE transformations.
4191   SmallVector<Value*, 8> worklist;
4192   SmallPtrSet<Value*, 16> Visited;
4193   worklist.push_back(Addr);
4194 
4195   // Use a worklist to iteratively look through PHI and select nodes, and
4196   // ensure that the addressing mode obtained from the non-PHI/select roots of
4197   // the graph are compatible.
4198   bool PhiOrSelectSeen = false;
4199   SmallVector<Instruction*, 16> AddrModeInsts;
4200   const SimplifyQuery SQ(*DL, TLInfo);
4201   AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() });
4202   TypePromotionTransaction TPT(RemovedInsts);
4203   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4204       TPT.getRestorationPoint();
4205   while (!worklist.empty()) {
4206     Value *V = worklist.back();
4207     worklist.pop_back();
4208 
4209     // We allow traversing cyclic Phi nodes.
4210     // In case of success after this loop we ensure that traversing through
4211     // Phi nodes ends up with all cases to compute address of the form
4212     //    BaseGV + Base + Scale * Index + Offset
4213     // where Scale and Offset are constans and BaseGV, Base and Index
4214     // are exactly the same Values in all cases.
4215     // It means that BaseGV, Scale and Offset dominate our memory instruction
4216     // and have the same value as they had in address computation represented
4217     // as Phi. So we can safely sink address computation to memory instruction.
4218     if (!Visited.insert(V).second)
4219       continue;
4220 
4221     // For a PHI node, push all of its incoming values.
4222     if (PHINode *P = dyn_cast<PHINode>(V)) {
4223       for (Value *IncValue : P->incoming_values())
4224         worklist.push_back(IncValue);
4225       PhiOrSelectSeen = true;
4226       continue;
4227     }
4228     // Similar for select.
4229     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4230       worklist.push_back(SI->getFalseValue());
4231       worklist.push_back(SI->getTrueValue());
4232       PhiOrSelectSeen = true;
4233       continue;
4234     }
4235 
4236     // For non-PHIs, determine the addressing mode being computed.  Note that
4237     // the result may differ depending on what other uses our candidate
4238     // addressing instructions might have.
4239     AddrModeInsts.clear();
4240     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4241         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4242         InsertedInsts, PromotedInsts, TPT);
4243     NewAddrMode.OriginalValue = V;
4244 
4245     if (!AddrModes.addNewAddrMode(NewAddrMode))
4246       break;
4247   }
4248 
4249   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4250   // or we have multiple but either couldn't combine them or combining them
4251   // wouldn't do anything useful, bail out now.
4252   if (!AddrModes.combineAddrModes()) {
4253     TPT.rollback(LastKnownGood);
4254     return false;
4255   }
4256   TPT.commit();
4257 
4258   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4259   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4260 
4261   // If all the instructions matched are already in this BB, don't do anything.
4262   // If we saw a Phi node then it is not local definitely, and if we saw a select
4263   // then we want to push the address calculation past it even if it's already
4264   // in this BB.
4265   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4266         return IsNonLocalValue(V, MemoryInst->getParent());
4267                   })) {
4268     DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
4269     return false;
4270   }
4271 
4272   // Insert this computation right after this user.  Since our caller is
4273   // scanning from the top of the BB to the bottom, reuse of the expr are
4274   // guaranteed to happen later.
4275   IRBuilder<> Builder(MemoryInst);
4276 
4277   // Now that we determined the addressing expression we want to use and know
4278   // that we have to sink it into this block.  Check to see if we have already
4279   // done this for some other load/store instr in this block.  If so, reuse
4280   // the computation.  Before attempting reuse, check if the address is valid
4281   // as it may have been erased.
4282 
4283   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4284 
4285   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4286   if (SunkAddr) {
4287     DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
4288                  << *MemoryInst << "\n");
4289     if (SunkAddr->getType() != Addr->getType())
4290       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4291   } else if (AddrSinkUsingGEPs ||
4292              (!AddrSinkUsingGEPs.getNumOccurrences() && TM &&
4293               SubtargetInfo->useAA())) {
4294     // By default, we use the GEP-based method when AA is used later. This
4295     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4296     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4297                  << *MemoryInst << "\n");
4298     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4299     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4300 
4301     // First, find the pointer.
4302     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4303       ResultPtr = AddrMode.BaseReg;
4304       AddrMode.BaseReg = nullptr;
4305     }
4306 
4307     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4308       // We can't add more than one pointer together, nor can we scale a
4309       // pointer (both of which seem meaningless).
4310       if (ResultPtr || AddrMode.Scale != 1)
4311         return false;
4312 
4313       ResultPtr = AddrMode.ScaledReg;
4314       AddrMode.Scale = 0;
4315     }
4316 
4317     // It is only safe to sign extend the BaseReg if we know that the math
4318     // required to create it did not overflow before we extend it. Since
4319     // the original IR value was tossed in favor of a constant back when
4320     // the AddrMode was created we need to bail out gracefully if widths
4321     // do not match instead of extending it.
4322     //
4323     // (See below for code to add the scale.)
4324     if (AddrMode.Scale) {
4325       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4326       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4327           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4328         return false;
4329     }
4330 
4331     if (AddrMode.BaseGV) {
4332       if (ResultPtr)
4333         return false;
4334 
4335       ResultPtr = AddrMode.BaseGV;
4336     }
4337 
4338     // If the real base value actually came from an inttoptr, then the matcher
4339     // will look through it and provide only the integer value. In that case,
4340     // use it here.
4341     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4342       if (!ResultPtr && AddrMode.BaseReg) {
4343         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4344                                            "sunkaddr");
4345         AddrMode.BaseReg = nullptr;
4346       } else if (!ResultPtr && AddrMode.Scale == 1) {
4347         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4348                                            "sunkaddr");
4349         AddrMode.Scale = 0;
4350       }
4351     }
4352 
4353     if (!ResultPtr &&
4354         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4355       SunkAddr = Constant::getNullValue(Addr->getType());
4356     } else if (!ResultPtr) {
4357       return false;
4358     } else {
4359       Type *I8PtrTy =
4360           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4361       Type *I8Ty = Builder.getInt8Ty();
4362 
4363       // Start with the base register. Do this first so that subsequent address
4364       // matching finds it last, which will prevent it from trying to match it
4365       // as the scaled value in case it happens to be a mul. That would be
4366       // problematic if we've sunk a different mul for the scale, because then
4367       // we'd end up sinking both muls.
4368       if (AddrMode.BaseReg) {
4369         Value *V = AddrMode.BaseReg;
4370         if (V->getType() != IntPtrTy)
4371           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4372 
4373         ResultIndex = V;
4374       }
4375 
4376       // Add the scale value.
4377       if (AddrMode.Scale) {
4378         Value *V = AddrMode.ScaledReg;
4379         if (V->getType() == IntPtrTy) {
4380           // done.
4381         } else {
4382           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4383                  cast<IntegerType>(V->getType())->getBitWidth() &&
4384                  "We can't transform if ScaledReg is too narrow");
4385           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4386         }
4387 
4388         if (AddrMode.Scale != 1)
4389           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4390                                 "sunkaddr");
4391         if (ResultIndex)
4392           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4393         else
4394           ResultIndex = V;
4395       }
4396 
4397       // Add in the Base Offset if present.
4398       if (AddrMode.BaseOffs) {
4399         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4400         if (ResultIndex) {
4401           // We need to add this separately from the scale above to help with
4402           // SDAG consecutive load/store merging.
4403           if (ResultPtr->getType() != I8PtrTy)
4404             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4405           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4406         }
4407 
4408         ResultIndex = V;
4409       }
4410 
4411       if (!ResultIndex) {
4412         SunkAddr = ResultPtr;
4413       } else {
4414         if (ResultPtr->getType() != I8PtrTy)
4415           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4416         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4417       }
4418 
4419       if (SunkAddr->getType() != Addr->getType())
4420         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4421     }
4422   } else {
4423     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4424     // non-integral pointers, so in that case bail out now.
4425     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4426     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4427     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4428     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4429     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4430         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4431         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4432         (AddrMode.BaseGV &&
4433          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4434       return false;
4435 
4436     DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
4437                  << *MemoryInst << "\n");
4438     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4439     Value *Result = nullptr;
4440 
4441     // Start with the base register. Do this first so that subsequent address
4442     // matching finds it last, which will prevent it from trying to match it
4443     // as the scaled value in case it happens to be a mul. That would be
4444     // problematic if we've sunk a different mul for the scale, because then
4445     // we'd end up sinking both muls.
4446     if (AddrMode.BaseReg) {
4447       Value *V = AddrMode.BaseReg;
4448       if (V->getType()->isPointerTy())
4449         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4450       if (V->getType() != IntPtrTy)
4451         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4452       Result = V;
4453     }
4454 
4455     // Add the scale value.
4456     if (AddrMode.Scale) {
4457       Value *V = AddrMode.ScaledReg;
4458       if (V->getType() == IntPtrTy) {
4459         // done.
4460       } else if (V->getType()->isPointerTy()) {
4461         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4462       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4463                  cast<IntegerType>(V->getType())->getBitWidth()) {
4464         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4465       } else {
4466         // It is only safe to sign extend the BaseReg if we know that the math
4467         // required to create it did not overflow before we extend it. Since
4468         // the original IR value was tossed in favor of a constant back when
4469         // the AddrMode was created we need to bail out gracefully if widths
4470         // do not match instead of extending it.
4471         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4472         if (I && (Result != AddrMode.BaseReg))
4473           I->eraseFromParent();
4474         return false;
4475       }
4476       if (AddrMode.Scale != 1)
4477         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4478                               "sunkaddr");
4479       if (Result)
4480         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4481       else
4482         Result = V;
4483     }
4484 
4485     // Add in the BaseGV if present.
4486     if (AddrMode.BaseGV) {
4487       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4488       if (Result)
4489         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4490       else
4491         Result = V;
4492     }
4493 
4494     // Add in the Base Offset if present.
4495     if (AddrMode.BaseOffs) {
4496       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4497       if (Result)
4498         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4499       else
4500         Result = V;
4501     }
4502 
4503     if (!Result)
4504       SunkAddr = Constant::getNullValue(Addr->getType());
4505     else
4506       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4507   }
4508 
4509   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4510   // Store the newly computed address into the cache. In the case we reused a
4511   // value, this should be idempotent.
4512   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4513 
4514   // If we have no uses, recursively delete the value and all dead instructions
4515   // using it.
4516   if (Repl->use_empty()) {
4517     // This can cause recursive deletion, which can invalidate our iterator.
4518     // Use a WeakTrackingVH to hold onto it in case this happens.
4519     Value *CurValue = &*CurInstIterator;
4520     WeakTrackingVH IterHandle(CurValue);
4521     BasicBlock *BB = CurInstIterator->getParent();
4522 
4523     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4524 
4525     if (IterHandle != CurValue) {
4526       // If the iterator instruction was recursively deleted, start over at the
4527       // start of the block.
4528       CurInstIterator = BB->begin();
4529       SunkAddrs.clear();
4530     }
4531   }
4532   ++NumMemoryInsts;
4533   return true;
4534 }
4535 
4536 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4537 /// address computing into the block when possible / profitable.
4538 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4539   bool MadeChange = false;
4540 
4541   const TargetRegisterInfo *TRI =
4542       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4543   TargetLowering::AsmOperandInfoVector TargetConstraints =
4544       TLI->ParseConstraints(*DL, TRI, CS);
4545   unsigned ArgNo = 0;
4546   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4547     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4548 
4549     // Compute the constraint code and ConstraintType to use.
4550     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4551 
4552     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4553         OpInfo.isIndirect) {
4554       Value *OpVal = CS->getArgOperand(ArgNo++);
4555       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4556     } else if (OpInfo.Type == InlineAsm::isInput)
4557       ArgNo++;
4558   }
4559 
4560   return MadeChange;
4561 }
4562 
4563 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or
4564 /// sign extensions.
4565 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4566   assert(!Val->use_empty() && "Input must have at least one use");
4567   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4568   bool IsSExt = isa<SExtInst>(FirstUser);
4569   Type *ExtTy = FirstUser->getType();
4570   for (const User *U : Val->users()) {
4571     const Instruction *UI = cast<Instruction>(U);
4572     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4573       return false;
4574     Type *CurTy = UI->getType();
4575     // Same input and output types: Same instruction after CSE.
4576     if (CurTy == ExtTy)
4577       continue;
4578 
4579     // If IsSExt is true, we are in this situation:
4580     // a = Val
4581     // b = sext ty1 a to ty2
4582     // c = sext ty1 a to ty3
4583     // Assuming ty2 is shorter than ty3, this could be turned into:
4584     // a = Val
4585     // b = sext ty1 a to ty2
4586     // c = sext ty2 b to ty3
4587     // However, the last sext is not free.
4588     if (IsSExt)
4589       return false;
4590 
4591     // This is a ZExt, maybe this is free to extend from one type to another.
4592     // In that case, we would not account for a different use.
4593     Type *NarrowTy;
4594     Type *LargeTy;
4595     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4596         CurTy->getScalarType()->getIntegerBitWidth()) {
4597       NarrowTy = CurTy;
4598       LargeTy = ExtTy;
4599     } else {
4600       NarrowTy = ExtTy;
4601       LargeTy = CurTy;
4602     }
4603 
4604     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4605       return false;
4606   }
4607   // All uses are the same or can be derived from one another for free.
4608   return true;
4609 }
4610 
4611 /// \brief Try to speculatively promote extensions in \p Exts and continue
4612 /// promoting through newly promoted operands recursively as far as doing so is
4613 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4614 /// When some promotion happened, \p TPT contains the proper state to revert
4615 /// them.
4616 ///
4617 /// \return true if some promotion happened, false otherwise.
4618 bool CodeGenPrepare::tryToPromoteExts(
4619     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4620     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4621     unsigned CreatedInstsCost) {
4622   bool Promoted = false;
4623 
4624   // Iterate over all the extensions to try to promote them.
4625   for (auto I : Exts) {
4626     // Early check if we directly have ext(load).
4627     if (isa<LoadInst>(I->getOperand(0))) {
4628       ProfitablyMovedExts.push_back(I);
4629       continue;
4630     }
4631 
4632     // Check whether or not we want to do any promotion.  The reason we have
4633     // this check inside the for loop is to catch the case where an extension
4634     // is directly fed by a load because in such case the extension can be moved
4635     // up without any promotion on its operands.
4636     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4637       return false;
4638 
4639     // Get the action to perform the promotion.
4640     TypePromotionHelper::Action TPH =
4641         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4642     // Check if we can promote.
4643     if (!TPH) {
4644       // Save the current extension as we cannot move up through its operand.
4645       ProfitablyMovedExts.push_back(I);
4646       continue;
4647     }
4648 
4649     // Save the current state.
4650     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4651         TPT.getRestorationPoint();
4652     SmallVector<Instruction *, 4> NewExts;
4653     unsigned NewCreatedInstsCost = 0;
4654     unsigned ExtCost = !TLI->isExtFree(I);
4655     // Promote.
4656     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4657                              &NewExts, nullptr, *TLI);
4658     assert(PromotedVal &&
4659            "TypePromotionHelper should have filtered out those cases");
4660 
4661     // We would be able to merge only one extension in a load.
4662     // Therefore, if we have more than 1 new extension we heuristically
4663     // cut this search path, because it means we degrade the code quality.
4664     // With exactly 2, the transformation is neutral, because we will merge
4665     // one extension but leave one. However, we optimistically keep going,
4666     // because the new extension may be removed too.
4667     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4668     // FIXME: It would be possible to propagate a negative value instead of
4669     // conservatively ceiling it to 0.
4670     TotalCreatedInstsCost =
4671         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4672     if (!StressExtLdPromotion &&
4673         (TotalCreatedInstsCost > 1 ||
4674          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4675       // This promotion is not profitable, rollback to the previous state, and
4676       // save the current extension in ProfitablyMovedExts as the latest
4677       // speculative promotion turned out to be unprofitable.
4678       TPT.rollback(LastKnownGood);
4679       ProfitablyMovedExts.push_back(I);
4680       continue;
4681     }
4682     // Continue promoting NewExts as far as doing so is profitable.
4683     SmallVector<Instruction *, 2> NewlyMovedExts;
4684     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4685     bool NewPromoted = false;
4686     for (auto ExtInst : NewlyMovedExts) {
4687       Instruction *MovedExt = cast<Instruction>(ExtInst);
4688       Value *ExtOperand = MovedExt->getOperand(0);
4689       // If we have reached to a load, we need this extra profitability check
4690       // as it could potentially be merged into an ext(load).
4691       if (isa<LoadInst>(ExtOperand) &&
4692           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4693             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4694         continue;
4695 
4696       ProfitablyMovedExts.push_back(MovedExt);
4697       NewPromoted = true;
4698     }
4699 
4700     // If none of speculative promotions for NewExts is profitable, rollback
4701     // and save the current extension (I) as the last profitable extension.
4702     if (!NewPromoted) {
4703       TPT.rollback(LastKnownGood);
4704       ProfitablyMovedExts.push_back(I);
4705       continue;
4706     }
4707     // The promotion is profitable.
4708     Promoted = true;
4709   }
4710   return Promoted;
4711 }
4712 
4713 /// Merging redundant sexts when one is dominating the other.
4714 bool CodeGenPrepare::mergeSExts(Function &F) {
4715   DominatorTree DT(F);
4716   bool Changed = false;
4717   for (auto &Entry : ValToSExtendedUses) {
4718     SExts &Insts = Entry.second;
4719     SExts CurPts;
4720     for (Instruction *Inst : Insts) {
4721       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4722           Inst->getOperand(0) != Entry.first)
4723         continue;
4724       bool inserted = false;
4725       for (auto &Pt : CurPts) {
4726         if (DT.dominates(Inst, Pt)) {
4727           Pt->replaceAllUsesWith(Inst);
4728           RemovedInsts.insert(Pt);
4729           Pt->removeFromParent();
4730           Pt = Inst;
4731           inserted = true;
4732           Changed = true;
4733           break;
4734         }
4735         if (!DT.dominates(Pt, Inst))
4736           // Give up if we need to merge in a common dominator as the
4737           // expermients show it is not profitable.
4738           continue;
4739         Inst->replaceAllUsesWith(Pt);
4740         RemovedInsts.insert(Inst);
4741         Inst->removeFromParent();
4742         inserted = true;
4743         Changed = true;
4744         break;
4745       }
4746       if (!inserted)
4747         CurPts.push_back(Inst);
4748     }
4749   }
4750   return Changed;
4751 }
4752 
4753 /// Return true, if an ext(load) can be formed from an extension in
4754 /// \p MovedExts.
4755 bool CodeGenPrepare::canFormExtLd(
4756     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
4757     Instruction *&Inst, bool HasPromoted) {
4758   for (auto *MovedExtInst : MovedExts) {
4759     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
4760       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
4761       Inst = MovedExtInst;
4762       break;
4763     }
4764   }
4765   if (!LI)
4766     return false;
4767 
4768   // If they're already in the same block, there's nothing to do.
4769   // Make the cheap checks first if we did not promote.
4770   // If we promoted, we need to check if it is indeed profitable.
4771   if (!HasPromoted && LI->getParent() == Inst->getParent())
4772     return false;
4773 
4774   return TLI->isExtLoad(LI, Inst, *DL);
4775 }
4776 
4777 /// Move a zext or sext fed by a load into the same basic block as the load,
4778 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
4779 /// extend into the load.
4780 ///
4781 /// E.g.,
4782 /// \code
4783 /// %ld = load i32* %addr
4784 /// %add = add nuw i32 %ld, 4
4785 /// %zext = zext i32 %add to i64
4786 // \endcode
4787 /// =>
4788 /// \code
4789 /// %ld = load i32* %addr
4790 /// %zext = zext i32 %ld to i64
4791 /// %add = add nuw i64 %zext, 4
4792 /// \encode
4793 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
4794 /// allow us to match zext(load i32*) to i64.
4795 ///
4796 /// Also, try to promote the computations used to obtain a sign extended
4797 /// value used into memory accesses.
4798 /// E.g.,
4799 /// \code
4800 /// a = add nsw i32 b, 3
4801 /// d = sext i32 a to i64
4802 /// e = getelementptr ..., i64 d
4803 /// \endcode
4804 /// =>
4805 /// \code
4806 /// f = sext i32 b to i64
4807 /// a = add nsw i64 f, 3
4808 /// e = getelementptr ..., i64 a
4809 /// \endcode
4810 ///
4811 /// \p Inst[in/out] the extension may be modified during the process if some
4812 /// promotions apply.
4813 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
4814   // ExtLoad formation and address type promotion infrastructure requires TLI to
4815   // be effective.
4816   if (!TLI)
4817     return false;
4818 
4819   bool AllowPromotionWithoutCommonHeader = false;
4820   /// See if it is an interesting sext operations for the address type
4821   /// promotion before trying to promote it, e.g., the ones with the right
4822   /// type and used in memory accesses.
4823   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
4824       *Inst, AllowPromotionWithoutCommonHeader);
4825   TypePromotionTransaction TPT(RemovedInsts);
4826   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4827       TPT.getRestorationPoint();
4828   SmallVector<Instruction *, 1> Exts;
4829   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
4830   Exts.push_back(Inst);
4831 
4832   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
4833 
4834   // Look for a load being extended.
4835   LoadInst *LI = nullptr;
4836   Instruction *ExtFedByLoad;
4837 
4838   // Try to promote a chain of computation if it allows to form an extended
4839   // load.
4840   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
4841     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
4842     TPT.commit();
4843     // Move the extend into the same block as the load
4844     ExtFedByLoad->moveAfter(LI);
4845     // CGP does not check if the zext would be speculatively executed when moved
4846     // to the same basic block as the load. Preserving its original location
4847     // would pessimize the debugging experience, as well as negatively impact
4848     // the quality of sample pgo. We don't want to use "line 0" as that has a
4849     // size cost in the line-table section and logically the zext can be seen as
4850     // part of the load. Therefore we conservatively reuse the same debug
4851     // location for the load and the zext.
4852     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
4853     ++NumExtsMoved;
4854     Inst = ExtFedByLoad;
4855     return true;
4856   }
4857 
4858   // Continue promoting SExts if known as considerable depending on targets.
4859   if (ATPConsiderable &&
4860       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
4861                                   HasPromoted, TPT, SpeculativelyMovedExts))
4862     return true;
4863 
4864   TPT.rollback(LastKnownGood);
4865   return false;
4866 }
4867 
4868 // Perform address type promotion if doing so is profitable.
4869 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
4870 // instructions that sign extended the same initial value. However, if
4871 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
4872 // extension is just profitable.
4873 bool CodeGenPrepare::performAddressTypePromotion(
4874     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
4875     bool HasPromoted, TypePromotionTransaction &TPT,
4876     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
4877   bool Promoted = false;
4878   SmallPtrSet<Instruction *, 1> UnhandledExts;
4879   bool AllSeenFirst = true;
4880   for (auto I : SpeculativelyMovedExts) {
4881     Value *HeadOfChain = I->getOperand(0);
4882     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
4883         SeenChainsForSExt.find(HeadOfChain);
4884     // If there is an unhandled SExt which has the same header, try to promote
4885     // it as well.
4886     if (AlreadySeen != SeenChainsForSExt.end()) {
4887       if (AlreadySeen->second != nullptr)
4888         UnhandledExts.insert(AlreadySeen->second);
4889       AllSeenFirst = false;
4890     }
4891   }
4892 
4893   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
4894                         SpeculativelyMovedExts.size() == 1)) {
4895     TPT.commit();
4896     if (HasPromoted)
4897       Promoted = true;
4898     for (auto I : SpeculativelyMovedExts) {
4899       Value *HeadOfChain = I->getOperand(0);
4900       SeenChainsForSExt[HeadOfChain] = nullptr;
4901       ValToSExtendedUses[HeadOfChain].push_back(I);
4902     }
4903     // Update Inst as promotion happen.
4904     Inst = SpeculativelyMovedExts.pop_back_val();
4905   } else {
4906     // This is the first chain visited from the header, keep the current chain
4907     // as unhandled. Defer to promote this until we encounter another SExt
4908     // chain derived from the same header.
4909     for (auto I : SpeculativelyMovedExts) {
4910       Value *HeadOfChain = I->getOperand(0);
4911       SeenChainsForSExt[HeadOfChain] = Inst;
4912     }
4913     return false;
4914   }
4915 
4916   if (!AllSeenFirst && !UnhandledExts.empty())
4917     for (auto VisitedSExt : UnhandledExts) {
4918       if (RemovedInsts.count(VisitedSExt))
4919         continue;
4920       TypePromotionTransaction TPT(RemovedInsts);
4921       SmallVector<Instruction *, 1> Exts;
4922       SmallVector<Instruction *, 2> Chains;
4923       Exts.push_back(VisitedSExt);
4924       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
4925       TPT.commit();
4926       if (HasPromoted)
4927         Promoted = true;
4928       for (auto I : Chains) {
4929         Value *HeadOfChain = I->getOperand(0);
4930         // Mark this as handled.
4931         SeenChainsForSExt[HeadOfChain] = nullptr;
4932         ValToSExtendedUses[HeadOfChain].push_back(I);
4933       }
4934     }
4935   return Promoted;
4936 }
4937 
4938 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
4939   BasicBlock *DefBB = I->getParent();
4940 
4941   // If the result of a {s|z}ext and its source are both live out, rewrite all
4942   // other uses of the source with result of extension.
4943   Value *Src = I->getOperand(0);
4944   if (Src->hasOneUse())
4945     return false;
4946 
4947   // Only do this xform if truncating is free.
4948   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
4949     return false;
4950 
4951   // Only safe to perform the optimization if the source is also defined in
4952   // this block.
4953   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
4954     return false;
4955 
4956   bool DefIsLiveOut = false;
4957   for (User *U : I->users()) {
4958     Instruction *UI = cast<Instruction>(U);
4959 
4960     // Figure out which BB this ext is used in.
4961     BasicBlock *UserBB = UI->getParent();
4962     if (UserBB == DefBB) continue;
4963     DefIsLiveOut = true;
4964     break;
4965   }
4966   if (!DefIsLiveOut)
4967     return false;
4968 
4969   // Make sure none of the uses are PHI nodes.
4970   for (User *U : Src->users()) {
4971     Instruction *UI = cast<Instruction>(U);
4972     BasicBlock *UserBB = UI->getParent();
4973     if (UserBB == DefBB) continue;
4974     // Be conservative. We don't want this xform to end up introducing
4975     // reloads just before load / store instructions.
4976     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
4977       return false;
4978   }
4979 
4980   // InsertedTruncs - Only insert one trunc in each block once.
4981   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
4982 
4983   bool MadeChange = false;
4984   for (Use &U : Src->uses()) {
4985     Instruction *User = cast<Instruction>(U.getUser());
4986 
4987     // Figure out which BB this ext is used in.
4988     BasicBlock *UserBB = User->getParent();
4989     if (UserBB == DefBB) continue;
4990 
4991     // Both src and def are live in this block. Rewrite the use.
4992     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
4993 
4994     if (!InsertedTrunc) {
4995       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
4996       assert(InsertPt != UserBB->end());
4997       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
4998       InsertedInsts.insert(InsertedTrunc);
4999     }
5000 
5001     // Replace a use of the {s|z}ext source with a use of the result.
5002     U = InsertedTrunc;
5003     ++NumExtUses;
5004     MadeChange = true;
5005   }
5006 
5007   return MadeChange;
5008 }
5009 
5010 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5011 // just after the load if the target can fold this into one extload instruction,
5012 // with the hope of eliminating some of the other later "and" instructions using
5013 // the loaded value.  "and"s that are made trivially redundant by the insertion
5014 // of the new "and" are removed by this function, while others (e.g. those whose
5015 // path from the load goes through a phi) are left for isel to potentially
5016 // remove.
5017 //
5018 // For example:
5019 //
5020 // b0:
5021 //   x = load i32
5022 //   ...
5023 // b1:
5024 //   y = and x, 0xff
5025 //   z = use y
5026 //
5027 // becomes:
5028 //
5029 // b0:
5030 //   x = load i32
5031 //   x' = and x, 0xff
5032 //   ...
5033 // b1:
5034 //   z = use x'
5035 //
5036 // whereas:
5037 //
5038 // b0:
5039 //   x1 = load i32
5040 //   ...
5041 // b1:
5042 //   x2 = load i32
5043 //   ...
5044 // b2:
5045 //   x = phi x1, x2
5046 //   y = and x, 0xff
5047 //
5048 // becomes (after a call to optimizeLoadExt for each load):
5049 //
5050 // b0:
5051 //   x1 = load i32
5052 //   x1' = and x1, 0xff
5053 //   ...
5054 // b1:
5055 //   x2 = load i32
5056 //   x2' = and x2, 0xff
5057 //   ...
5058 // b2:
5059 //   x = phi x1', x2'
5060 //   y = and x, 0xff
5061 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5062   if (!Load->isSimple() ||
5063       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5064     return false;
5065 
5066   // Skip loads we've already transformed.
5067   if (Load->hasOneUse() &&
5068       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5069     return false;
5070 
5071   // Look at all uses of Load, looking through phis, to determine how many bits
5072   // of the loaded value are needed.
5073   SmallVector<Instruction *, 8> WorkList;
5074   SmallPtrSet<Instruction *, 16> Visited;
5075   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5076   for (auto *U : Load->users())
5077     WorkList.push_back(cast<Instruction>(U));
5078 
5079   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5080   unsigned BitWidth = LoadResultVT.getSizeInBits();
5081   APInt DemandBits(BitWidth, 0);
5082   APInt WidestAndBits(BitWidth, 0);
5083 
5084   while (!WorkList.empty()) {
5085     Instruction *I = WorkList.back();
5086     WorkList.pop_back();
5087 
5088     // Break use-def graph loops.
5089     if (!Visited.insert(I).second)
5090       continue;
5091 
5092     // For a PHI node, push all of its users.
5093     if (auto *Phi = dyn_cast<PHINode>(I)) {
5094       for (auto *U : Phi->users())
5095         WorkList.push_back(cast<Instruction>(U));
5096       continue;
5097     }
5098 
5099     switch (I->getOpcode()) {
5100     case Instruction::And: {
5101       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5102       if (!AndC)
5103         return false;
5104       APInt AndBits = AndC->getValue();
5105       DemandBits |= AndBits;
5106       // Keep track of the widest and mask we see.
5107       if (AndBits.ugt(WidestAndBits))
5108         WidestAndBits = AndBits;
5109       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5110         AndsToMaybeRemove.push_back(I);
5111       break;
5112     }
5113 
5114     case Instruction::Shl: {
5115       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5116       if (!ShlC)
5117         return false;
5118       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5119       DemandBits.setLowBits(BitWidth - ShiftAmt);
5120       break;
5121     }
5122 
5123     case Instruction::Trunc: {
5124       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5125       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5126       DemandBits.setLowBits(TruncBitWidth);
5127       break;
5128     }
5129 
5130     default:
5131       return false;
5132     }
5133   }
5134 
5135   uint32_t ActiveBits = DemandBits.getActiveBits();
5136   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5137   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5138   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5139   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5140   // followed by an AND.
5141   // TODO: Look into removing this restriction by fixing backends to either
5142   // return false for isLoadExtLegal for i1 or have them select this pattern to
5143   // a single instruction.
5144   //
5145   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5146   // mask, since these are the only ands that will be removed by isel.
5147   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5148       WidestAndBits != DemandBits)
5149     return false;
5150 
5151   LLVMContext &Ctx = Load->getType()->getContext();
5152   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5153   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5154 
5155   // Reject cases that won't be matched as extloads.
5156   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5157       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5158     return false;
5159 
5160   IRBuilder<> Builder(Load->getNextNode());
5161   auto *NewAnd = dyn_cast<Instruction>(
5162       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5163   // Mark this instruction as "inserted by CGP", so that other
5164   // optimizations don't touch it.
5165   InsertedInsts.insert(NewAnd);
5166 
5167   // Replace all uses of load with new and (except for the use of load in the
5168   // new and itself).
5169   Load->replaceAllUsesWith(NewAnd);
5170   NewAnd->setOperand(0, Load);
5171 
5172   // Remove any and instructions that are now redundant.
5173   for (auto *And : AndsToMaybeRemove)
5174     // Check that the and mask is the same as the one we decided to put on the
5175     // new and.
5176     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5177       And->replaceAllUsesWith(NewAnd);
5178       if (&*CurInstIterator == And)
5179         CurInstIterator = std::next(And->getIterator());
5180       And->eraseFromParent();
5181       ++NumAndUses;
5182     }
5183 
5184   ++NumAndsAdded;
5185   return true;
5186 }
5187 
5188 /// Check if V (an operand of a select instruction) is an expensive instruction
5189 /// that is only used once.
5190 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5191   auto *I = dyn_cast<Instruction>(V);
5192   // If it's safe to speculatively execute, then it should not have side
5193   // effects; therefore, it's safe to sink and possibly *not* execute.
5194   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5195          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5196 }
5197 
5198 /// Returns true if a SelectInst should be turned into an explicit branch.
5199 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5200                                                 const TargetLowering *TLI,
5201                                                 SelectInst *SI) {
5202   // If even a predictable select is cheap, then a branch can't be cheaper.
5203   if (!TLI->isPredictableSelectExpensive())
5204     return false;
5205 
5206   // FIXME: This should use the same heuristics as IfConversion to determine
5207   // whether a select is better represented as a branch.
5208 
5209   // If metadata tells us that the select condition is obviously predictable,
5210   // then we want to replace the select with a branch.
5211   uint64_t TrueWeight, FalseWeight;
5212   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5213     uint64_t Max = std::max(TrueWeight, FalseWeight);
5214     uint64_t Sum = TrueWeight + FalseWeight;
5215     if (Sum != 0) {
5216       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5217       if (Probability > TLI->getPredictableBranchThreshold())
5218         return true;
5219     }
5220   }
5221 
5222   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5223 
5224   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5225   // comparison condition. If the compare has more than one use, there's
5226   // probably another cmov or setcc around, so it's not worth emitting a branch.
5227   if (!Cmp || !Cmp->hasOneUse())
5228     return false;
5229 
5230   // If either operand of the select is expensive and only needed on one side
5231   // of the select, we should form a branch.
5232   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5233       sinkSelectOperand(TTI, SI->getFalseValue()))
5234     return true;
5235 
5236   return false;
5237 }
5238 
5239 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5240 /// false value of \p SI. If the true/false value of \p SI is defined by any
5241 /// select instructions in \p Selects, look through the defining select
5242 /// instruction until the true/false value is not defined in \p Selects.
5243 static Value *getTrueOrFalseValue(
5244     SelectInst *SI, bool isTrue,
5245     const SmallPtrSet<const Instruction *, 2> &Selects) {
5246   Value *V;
5247 
5248   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5249        DefSI = dyn_cast<SelectInst>(V)) {
5250     assert(DefSI->getCondition() == SI->getCondition() &&
5251            "The condition of DefSI does not match with SI");
5252     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5253   }
5254   return V;
5255 }
5256 
5257 /// If we have a SelectInst that will likely profit from branch prediction,
5258 /// turn it into a branch.
5259 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5260   // Find all consecutive select instructions that share the same condition.
5261   SmallVector<SelectInst *, 2> ASI;
5262   ASI.push_back(SI);
5263   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5264        It != SI->getParent()->end(); ++It) {
5265     SelectInst *I = dyn_cast<SelectInst>(&*It);
5266     if (I && SI->getCondition() == I->getCondition()) {
5267       ASI.push_back(I);
5268     } else {
5269       break;
5270     }
5271   }
5272 
5273   SelectInst *LastSI = ASI.back();
5274   // Increment the current iterator to skip all the rest of select instructions
5275   // because they will be either "not lowered" or "all lowered" to branch.
5276   CurInstIterator = std::next(LastSI->getIterator());
5277 
5278   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5279 
5280   // Can we convert the 'select' to CF ?
5281   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5282       SI->getMetadata(LLVMContext::MD_unpredictable))
5283     return false;
5284 
5285   TargetLowering::SelectSupportKind SelectKind;
5286   if (VectorCond)
5287     SelectKind = TargetLowering::VectorMaskSelect;
5288   else if (SI->getType()->isVectorTy())
5289     SelectKind = TargetLowering::ScalarCondVectorVal;
5290   else
5291     SelectKind = TargetLowering::ScalarValSelect;
5292 
5293   if (TLI->isSelectSupported(SelectKind) &&
5294       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5295     return false;
5296 
5297   ModifiedDT = true;
5298 
5299   // Transform a sequence like this:
5300   //    start:
5301   //       %cmp = cmp uge i32 %a, %b
5302   //       %sel = select i1 %cmp, i32 %c, i32 %d
5303   //
5304   // Into:
5305   //    start:
5306   //       %cmp = cmp uge i32 %a, %b
5307   //       br i1 %cmp, label %select.true, label %select.false
5308   //    select.true:
5309   //       br label %select.end
5310   //    select.false:
5311   //       br label %select.end
5312   //    select.end:
5313   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5314   //
5315   // In addition, we may sink instructions that produce %c or %d from
5316   // the entry block into the destination(s) of the new branch.
5317   // If the true or false blocks do not contain a sunken instruction, that
5318   // block and its branch may be optimized away. In that case, one side of the
5319   // first branch will point directly to select.end, and the corresponding PHI
5320   // predecessor block will be the start block.
5321 
5322   // First, we split the block containing the select into 2 blocks.
5323   BasicBlock *StartBlock = SI->getParent();
5324   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5325   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5326 
5327   // Delete the unconditional branch that was just created by the split.
5328   StartBlock->getTerminator()->eraseFromParent();
5329 
5330   // These are the new basic blocks for the conditional branch.
5331   // At least one will become an actual new basic block.
5332   BasicBlock *TrueBlock = nullptr;
5333   BasicBlock *FalseBlock = nullptr;
5334   BranchInst *TrueBranch = nullptr;
5335   BranchInst *FalseBranch = nullptr;
5336 
5337   // Sink expensive instructions into the conditional blocks to avoid executing
5338   // them speculatively.
5339   for (SelectInst *SI : ASI) {
5340     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5341       if (TrueBlock == nullptr) {
5342         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5343                                        EndBlock->getParent(), EndBlock);
5344         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5345       }
5346       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5347       TrueInst->moveBefore(TrueBranch);
5348     }
5349     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5350       if (FalseBlock == nullptr) {
5351         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5352                                         EndBlock->getParent(), EndBlock);
5353         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5354       }
5355       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5356       FalseInst->moveBefore(FalseBranch);
5357     }
5358   }
5359 
5360   // If there was nothing to sink, then arbitrarily choose the 'false' side
5361   // for a new input value to the PHI.
5362   if (TrueBlock == FalseBlock) {
5363     assert(TrueBlock == nullptr &&
5364            "Unexpected basic block transform while optimizing select");
5365 
5366     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5367                                     EndBlock->getParent(), EndBlock);
5368     BranchInst::Create(EndBlock, FalseBlock);
5369   }
5370 
5371   // Insert the real conditional branch based on the original condition.
5372   // If we did not create a new block for one of the 'true' or 'false' paths
5373   // of the condition, it means that side of the branch goes to the end block
5374   // directly and the path originates from the start block from the point of
5375   // view of the new PHI.
5376   BasicBlock *TT, *FT;
5377   if (TrueBlock == nullptr) {
5378     TT = EndBlock;
5379     FT = FalseBlock;
5380     TrueBlock = StartBlock;
5381   } else if (FalseBlock == nullptr) {
5382     TT = TrueBlock;
5383     FT = EndBlock;
5384     FalseBlock = StartBlock;
5385   } else {
5386     TT = TrueBlock;
5387     FT = FalseBlock;
5388   }
5389   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5390 
5391   SmallPtrSet<const Instruction *, 2> INS;
5392   INS.insert(ASI.begin(), ASI.end());
5393   // Use reverse iterator because later select may use the value of the
5394   // earlier select, and we need to propagate value through earlier select
5395   // to get the PHI operand.
5396   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5397     SelectInst *SI = *It;
5398     // The select itself is replaced with a PHI Node.
5399     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5400     PN->takeName(SI);
5401     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5402     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5403 
5404     SI->replaceAllUsesWith(PN);
5405     SI->eraseFromParent();
5406     INS.erase(SI);
5407     ++NumSelectsExpanded;
5408   }
5409 
5410   // Instruct OptimizeBlock to skip to the next block.
5411   CurInstIterator = StartBlock->end();
5412   return true;
5413 }
5414 
5415 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5416   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5417   int SplatElem = -1;
5418   for (unsigned i = 0; i < Mask.size(); ++i) {
5419     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5420       return false;
5421     SplatElem = Mask[i];
5422   }
5423 
5424   return true;
5425 }
5426 
5427 /// Some targets have expensive vector shifts if the lanes aren't all the same
5428 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5429 /// it's often worth sinking a shufflevector splat down to its use so that
5430 /// codegen can spot all lanes are identical.
5431 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5432   BasicBlock *DefBB = SVI->getParent();
5433 
5434   // Only do this xform if variable vector shifts are particularly expensive.
5435   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5436     return false;
5437 
5438   // We only expect better codegen by sinking a shuffle if we can recognise a
5439   // constant splat.
5440   if (!isBroadcastShuffle(SVI))
5441     return false;
5442 
5443   // InsertedShuffles - Only insert a shuffle in each block once.
5444   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5445 
5446   bool MadeChange = false;
5447   for (User *U : SVI->users()) {
5448     Instruction *UI = cast<Instruction>(U);
5449 
5450     // Figure out which BB this ext is used in.
5451     BasicBlock *UserBB = UI->getParent();
5452     if (UserBB == DefBB) continue;
5453 
5454     // For now only apply this when the splat is used by a shift instruction.
5455     if (!UI->isShift()) continue;
5456 
5457     // Everything checks out, sink the shuffle if the user's block doesn't
5458     // already have a copy.
5459     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5460 
5461     if (!InsertedShuffle) {
5462       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5463       assert(InsertPt != UserBB->end());
5464       InsertedShuffle =
5465           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5466                                 SVI->getOperand(2), "", &*InsertPt);
5467     }
5468 
5469     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5470     MadeChange = true;
5471   }
5472 
5473   // If we removed all uses, nuke the shuffle.
5474   if (SVI->use_empty()) {
5475     SVI->eraseFromParent();
5476     MadeChange = true;
5477   }
5478 
5479   return MadeChange;
5480 }
5481 
5482 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5483   if (!TLI || !DL)
5484     return false;
5485 
5486   Value *Cond = SI->getCondition();
5487   Type *OldType = Cond->getType();
5488   LLVMContext &Context = Cond->getContext();
5489   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5490   unsigned RegWidth = RegType.getSizeInBits();
5491 
5492   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5493     return false;
5494 
5495   // If the register width is greater than the type width, expand the condition
5496   // of the switch instruction and each case constant to the width of the
5497   // register. By widening the type of the switch condition, subsequent
5498   // comparisons (for case comparisons) will not need to be extended to the
5499   // preferred register width, so we will potentially eliminate N-1 extends,
5500   // where N is the number of cases in the switch.
5501   auto *NewType = Type::getIntNTy(Context, RegWidth);
5502 
5503   // Zero-extend the switch condition and case constants unless the switch
5504   // condition is a function argument that is already being sign-extended.
5505   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5506   // everything instead.
5507   Instruction::CastOps ExtType = Instruction::ZExt;
5508   if (auto *Arg = dyn_cast<Argument>(Cond))
5509     if (Arg->hasSExtAttr())
5510       ExtType = Instruction::SExt;
5511 
5512   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5513   ExtInst->insertBefore(SI);
5514   SI->setCondition(ExtInst);
5515   for (auto Case : SI->cases()) {
5516     APInt NarrowConst = Case.getCaseValue()->getValue();
5517     APInt WideConst = (ExtType == Instruction::ZExt) ?
5518                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5519     Case.setValue(ConstantInt::get(Context, WideConst));
5520   }
5521 
5522   return true;
5523 }
5524 
5525 
5526 namespace {
5527 
5528 /// \brief Helper class to promote a scalar operation to a vector one.
5529 /// This class is used to move downward extractelement transition.
5530 /// E.g.,
5531 /// a = vector_op <2 x i32>
5532 /// b = extractelement <2 x i32> a, i32 0
5533 /// c = scalar_op b
5534 /// store c
5535 ///
5536 /// =>
5537 /// a = vector_op <2 x i32>
5538 /// c = vector_op a (equivalent to scalar_op on the related lane)
5539 /// * d = extractelement <2 x i32> c, i32 0
5540 /// * store d
5541 /// Assuming both extractelement and store can be combine, we get rid of the
5542 /// transition.
5543 class VectorPromoteHelper {
5544   /// DataLayout associated with the current module.
5545   const DataLayout &DL;
5546 
5547   /// Used to perform some checks on the legality of vector operations.
5548   const TargetLowering &TLI;
5549 
5550   /// Used to estimated the cost of the promoted chain.
5551   const TargetTransformInfo &TTI;
5552 
5553   /// The transition being moved downwards.
5554   Instruction *Transition;
5555 
5556   /// The sequence of instructions to be promoted.
5557   SmallVector<Instruction *, 4> InstsToBePromoted;
5558 
5559   /// Cost of combining a store and an extract.
5560   unsigned StoreExtractCombineCost;
5561 
5562   /// Instruction that will be combined with the transition.
5563   Instruction *CombineInst = nullptr;
5564 
5565   /// \brief The instruction that represents the current end of the transition.
5566   /// Since we are faking the promotion until we reach the end of the chain
5567   /// of computation, we need a way to get the current end of the transition.
5568   Instruction *getEndOfTransition() const {
5569     if (InstsToBePromoted.empty())
5570       return Transition;
5571     return InstsToBePromoted.back();
5572   }
5573 
5574   /// \brief Return the index of the original value in the transition.
5575   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5576   /// c, is at index 0.
5577   unsigned getTransitionOriginalValueIdx() const {
5578     assert(isa<ExtractElementInst>(Transition) &&
5579            "Other kind of transitions are not supported yet");
5580     return 0;
5581   }
5582 
5583   /// \brief Return the index of the index in the transition.
5584   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5585   /// is at index 1.
5586   unsigned getTransitionIdx() const {
5587     assert(isa<ExtractElementInst>(Transition) &&
5588            "Other kind of transitions are not supported yet");
5589     return 1;
5590   }
5591 
5592   /// \brief Get the type of the transition.
5593   /// This is the type of the original value.
5594   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5595   /// transition is <2 x i32>.
5596   Type *getTransitionType() const {
5597     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5598   }
5599 
5600   /// \brief Promote \p ToBePromoted by moving \p Def downward through.
5601   /// I.e., we have the following sequence:
5602   /// Def = Transition <ty1> a to <ty2>
5603   /// b = ToBePromoted <ty2> Def, ...
5604   /// =>
5605   /// b = ToBePromoted <ty1> a, ...
5606   /// Def = Transition <ty1> ToBePromoted to <ty2>
5607   void promoteImpl(Instruction *ToBePromoted);
5608 
5609   /// \brief Check whether or not it is profitable to promote all the
5610   /// instructions enqueued to be promoted.
5611   bool isProfitableToPromote() {
5612     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5613     unsigned Index = isa<ConstantInt>(ValIdx)
5614                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5615                          : -1;
5616     Type *PromotedType = getTransitionType();
5617 
5618     StoreInst *ST = cast<StoreInst>(CombineInst);
5619     unsigned AS = ST->getPointerAddressSpace();
5620     unsigned Align = ST->getAlignment();
5621     // Check if this store is supported.
5622     if (!TLI.allowsMisalignedMemoryAccesses(
5623             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5624             Align)) {
5625       // If this is not supported, there is no way we can combine
5626       // the extract with the store.
5627       return false;
5628     }
5629 
5630     // The scalar chain of computation has to pay for the transition
5631     // scalar to vector.
5632     // The vector chain has to account for the combining cost.
5633     uint64_t ScalarCost =
5634         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5635     uint64_t VectorCost = StoreExtractCombineCost;
5636     for (const auto &Inst : InstsToBePromoted) {
5637       // Compute the cost.
5638       // By construction, all instructions being promoted are arithmetic ones.
5639       // Moreover, one argument is a constant that can be viewed as a splat
5640       // constant.
5641       Value *Arg0 = Inst->getOperand(0);
5642       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5643                             isa<ConstantFP>(Arg0);
5644       TargetTransformInfo::OperandValueKind Arg0OVK =
5645           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5646                          : TargetTransformInfo::OK_AnyValue;
5647       TargetTransformInfo::OperandValueKind Arg1OVK =
5648           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5649                           : TargetTransformInfo::OK_AnyValue;
5650       ScalarCost += TTI.getArithmeticInstrCost(
5651           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5652       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5653                                                Arg0OVK, Arg1OVK);
5654     }
5655     DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5656                  << ScalarCost << "\nVector: " << VectorCost << '\n');
5657     return ScalarCost > VectorCost;
5658   }
5659 
5660   /// \brief Generate a constant vector with \p Val with the same
5661   /// number of elements as the transition.
5662   /// \p UseSplat defines whether or not \p Val should be replicated
5663   /// across the whole vector.
5664   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5665   /// otherwise we generate a vector with as many undef as possible:
5666   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5667   /// used at the index of the extract.
5668   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5669     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
5670     if (!UseSplat) {
5671       // If we cannot determine where the constant must be, we have to
5672       // use a splat constant.
5673       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5674       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5675         ExtractIdx = CstVal->getSExtValue();
5676       else
5677         UseSplat = true;
5678     }
5679 
5680     unsigned End = getTransitionType()->getVectorNumElements();
5681     if (UseSplat)
5682       return ConstantVector::getSplat(End, Val);
5683 
5684     SmallVector<Constant *, 4> ConstVec;
5685     UndefValue *UndefVal = UndefValue::get(Val->getType());
5686     for (unsigned Idx = 0; Idx != End; ++Idx) {
5687       if (Idx == ExtractIdx)
5688         ConstVec.push_back(Val);
5689       else
5690         ConstVec.push_back(UndefVal);
5691     }
5692     return ConstantVector::get(ConstVec);
5693   }
5694 
5695   /// \brief Check if promoting to a vector type an operand at \p OperandIdx
5696   /// in \p Use can trigger undefined behavior.
5697   static bool canCauseUndefinedBehavior(const Instruction *Use,
5698                                         unsigned OperandIdx) {
5699     // This is not safe to introduce undef when the operand is on
5700     // the right hand side of a division-like instruction.
5701     if (OperandIdx != 1)
5702       return false;
5703     switch (Use->getOpcode()) {
5704     default:
5705       return false;
5706     case Instruction::SDiv:
5707     case Instruction::UDiv:
5708     case Instruction::SRem:
5709     case Instruction::URem:
5710       return true;
5711     case Instruction::FDiv:
5712     case Instruction::FRem:
5713       return !Use->hasNoNaNs();
5714     }
5715     llvm_unreachable(nullptr);
5716   }
5717 
5718 public:
5719   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
5720                       const TargetTransformInfo &TTI, Instruction *Transition,
5721                       unsigned CombineCost)
5722       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
5723         StoreExtractCombineCost(CombineCost) {
5724     assert(Transition && "Do not know how to promote null");
5725   }
5726 
5727   /// \brief Check if we can promote \p ToBePromoted to \p Type.
5728   bool canPromote(const Instruction *ToBePromoted) const {
5729     // We could support CastInst too.
5730     return isa<BinaryOperator>(ToBePromoted);
5731   }
5732 
5733   /// \brief Check if it is profitable to promote \p ToBePromoted
5734   /// by moving downward the transition through.
5735   bool shouldPromote(const Instruction *ToBePromoted) const {
5736     // Promote only if all the operands can be statically expanded.
5737     // Indeed, we do not want to introduce any new kind of transitions.
5738     for (const Use &U : ToBePromoted->operands()) {
5739       const Value *Val = U.get();
5740       if (Val == getEndOfTransition()) {
5741         // If the use is a division and the transition is on the rhs,
5742         // we cannot promote the operation, otherwise we may create a
5743         // division by zero.
5744         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
5745           return false;
5746         continue;
5747       }
5748       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
5749           !isa<ConstantFP>(Val))
5750         return false;
5751     }
5752     // Check that the resulting operation is legal.
5753     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
5754     if (!ISDOpcode)
5755       return false;
5756     return StressStoreExtract ||
5757            TLI.isOperationLegalOrCustom(
5758                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
5759   }
5760 
5761   /// \brief Check whether or not \p Use can be combined
5762   /// with the transition.
5763   /// I.e., is it possible to do Use(Transition) => AnotherUse?
5764   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
5765 
5766   /// \brief Record \p ToBePromoted as part of the chain to be promoted.
5767   void enqueueForPromotion(Instruction *ToBePromoted) {
5768     InstsToBePromoted.push_back(ToBePromoted);
5769   }
5770 
5771   /// \brief Set the instruction that will be combined with the transition.
5772   void recordCombineInstruction(Instruction *ToBeCombined) {
5773     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
5774     CombineInst = ToBeCombined;
5775   }
5776 
5777   /// \brief Promote all the instructions enqueued for promotion if it is
5778   /// is profitable.
5779   /// \return True if the promotion happened, false otherwise.
5780   bool promote() {
5781     // Check if there is something to promote.
5782     // Right now, if we do not have anything to combine with,
5783     // we assume the promotion is not profitable.
5784     if (InstsToBePromoted.empty() || !CombineInst)
5785       return false;
5786 
5787     // Check cost.
5788     if (!StressStoreExtract && !isProfitableToPromote())
5789       return false;
5790 
5791     // Promote.
5792     for (auto &ToBePromoted : InstsToBePromoted)
5793       promoteImpl(ToBePromoted);
5794     InstsToBePromoted.clear();
5795     return true;
5796   }
5797 };
5798 
5799 } // end anonymous namespace
5800 
5801 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
5802   // At this point, we know that all the operands of ToBePromoted but Def
5803   // can be statically promoted.
5804   // For Def, we need to use its parameter in ToBePromoted:
5805   // b = ToBePromoted ty1 a
5806   // Def = Transition ty1 b to ty2
5807   // Move the transition down.
5808   // 1. Replace all uses of the promoted operation by the transition.
5809   // = ... b => = ... Def.
5810   assert(ToBePromoted->getType() == Transition->getType() &&
5811          "The type of the result of the transition does not match "
5812          "the final type");
5813   ToBePromoted->replaceAllUsesWith(Transition);
5814   // 2. Update the type of the uses.
5815   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
5816   Type *TransitionTy = getTransitionType();
5817   ToBePromoted->mutateType(TransitionTy);
5818   // 3. Update all the operands of the promoted operation with promoted
5819   // operands.
5820   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
5821   for (Use &U : ToBePromoted->operands()) {
5822     Value *Val = U.get();
5823     Value *NewVal = nullptr;
5824     if (Val == Transition)
5825       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
5826     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
5827              isa<ConstantFP>(Val)) {
5828       // Use a splat constant if it is not safe to use undef.
5829       NewVal = getConstantVector(
5830           cast<Constant>(Val),
5831           isa<UndefValue>(Val) ||
5832               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
5833     } else
5834       llvm_unreachable("Did you modified shouldPromote and forgot to update "
5835                        "this?");
5836     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
5837   }
5838   Transition->moveAfter(ToBePromoted);
5839   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
5840 }
5841 
5842 /// Some targets can do store(extractelement) with one instruction.
5843 /// Try to push the extractelement towards the stores when the target
5844 /// has this feature and this is profitable.
5845 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
5846   unsigned CombineCost = std::numeric_limits<unsigned>::max();
5847   if (DisableStoreExtract || !TLI ||
5848       (!StressStoreExtract &&
5849        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
5850                                        Inst->getOperand(1), CombineCost)))
5851     return false;
5852 
5853   // At this point we know that Inst is a vector to scalar transition.
5854   // Try to move it down the def-use chain, until:
5855   // - We can combine the transition with its single use
5856   //   => we got rid of the transition.
5857   // - We escape the current basic block
5858   //   => we would need to check that we are moving it at a cheaper place and
5859   //      we do not do that for now.
5860   BasicBlock *Parent = Inst->getParent();
5861   DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
5862   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
5863   // If the transition has more than one use, assume this is not going to be
5864   // beneficial.
5865   while (Inst->hasOneUse()) {
5866     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
5867     DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
5868 
5869     if (ToBePromoted->getParent() != Parent) {
5870       DEBUG(dbgs() << "Instruction to promote is in a different block ("
5871                    << ToBePromoted->getParent()->getName()
5872                    << ") than the transition (" << Parent->getName() << ").\n");
5873       return false;
5874     }
5875 
5876     if (VPH.canCombine(ToBePromoted)) {
5877       DEBUG(dbgs() << "Assume " << *Inst << '\n'
5878                    << "will be combined with: " << *ToBePromoted << '\n');
5879       VPH.recordCombineInstruction(ToBePromoted);
5880       bool Changed = VPH.promote();
5881       NumStoreExtractExposed += Changed;
5882       return Changed;
5883     }
5884 
5885     DEBUG(dbgs() << "Try promoting.\n");
5886     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
5887       return false;
5888 
5889     DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
5890 
5891     VPH.enqueueForPromotion(ToBePromoted);
5892     Inst = ToBePromoted;
5893   }
5894   return false;
5895 }
5896 
5897 /// For the instruction sequence of store below, F and I values
5898 /// are bundled together as an i64 value before being stored into memory.
5899 /// Sometimes it is more efficent to generate separate stores for F and I,
5900 /// which can remove the bitwise instructions or sink them to colder places.
5901 ///
5902 ///   (store (or (zext (bitcast F to i32) to i64),
5903 ///              (shl (zext I to i64), 32)), addr)  -->
5904 ///   (store F, addr) and (store I, addr+4)
5905 ///
5906 /// Similarly, splitting for other merged store can also be beneficial, like:
5907 /// For pair of {i32, i32}, i64 store --> two i32 stores.
5908 /// For pair of {i32, i16}, i64 store --> two i32 stores.
5909 /// For pair of {i16, i16}, i32 store --> two i16 stores.
5910 /// For pair of {i16, i8},  i32 store --> two i16 stores.
5911 /// For pair of {i8, i8},   i16 store --> two i8 stores.
5912 ///
5913 /// We allow each target to determine specifically which kind of splitting is
5914 /// supported.
5915 ///
5916 /// The store patterns are commonly seen from the simple code snippet below
5917 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
5918 ///   void goo(const std::pair<int, float> &);
5919 ///   hoo() {
5920 ///     ...
5921 ///     goo(std::make_pair(tmp, ftmp));
5922 ///     ...
5923 ///   }
5924 ///
5925 /// Although we already have similar splitting in DAG Combine, we duplicate
5926 /// it in CodeGenPrepare to catch the case in which pattern is across
5927 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
5928 /// during code expansion.
5929 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
5930                                 const TargetLowering &TLI) {
5931   // Handle simple but common cases only.
5932   Type *StoreType = SI.getValueOperand()->getType();
5933   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
5934       DL.getTypeSizeInBits(StoreType) == 0)
5935     return false;
5936 
5937   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
5938   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
5939   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
5940       DL.getTypeSizeInBits(SplitStoreType))
5941     return false;
5942 
5943   // Match the following patterns:
5944   // (store (or (zext LValue to i64),
5945   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
5946   //  or
5947   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
5948   //            (zext LValue to i64),
5949   // Expect both operands of OR and the first operand of SHL have only
5950   // one use.
5951   Value *LValue, *HValue;
5952   if (!match(SI.getValueOperand(),
5953              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
5954                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
5955                                    m_SpecificInt(HalfValBitSize))))))
5956     return false;
5957 
5958   // Check LValue and HValue are int with size less or equal than 32.
5959   if (!LValue->getType()->isIntegerTy() ||
5960       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
5961       !HValue->getType()->isIntegerTy() ||
5962       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
5963     return false;
5964 
5965   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
5966   // as the input of target query.
5967   auto *LBC = dyn_cast<BitCastInst>(LValue);
5968   auto *HBC = dyn_cast<BitCastInst>(HValue);
5969   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
5970                   : EVT::getEVT(LValue->getType());
5971   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
5972                    : EVT::getEVT(HValue->getType());
5973   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
5974     return false;
5975 
5976   // Start to split store.
5977   IRBuilder<> Builder(SI.getContext());
5978   Builder.SetInsertPoint(&SI);
5979 
5980   // If LValue/HValue is a bitcast in another BB, create a new one in current
5981   // BB so it may be merged with the splitted stores by dag combiner.
5982   if (LBC && LBC->getParent() != SI.getParent())
5983     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
5984   if (HBC && HBC->getParent() != SI.getParent())
5985     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
5986 
5987   auto CreateSplitStore = [&](Value *V, bool Upper) {
5988     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
5989     Value *Addr = Builder.CreateBitCast(
5990         SI.getOperand(1),
5991         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
5992     if (Upper)
5993       Addr = Builder.CreateGEP(
5994           SplitStoreType, Addr,
5995           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
5996     Builder.CreateAlignedStore(
5997         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
5998   };
5999 
6000   CreateSplitStore(LValue, false);
6001   CreateSplitStore(HValue, true);
6002 
6003   // Delete the old store.
6004   SI.eraseFromParent();
6005   return true;
6006 }
6007 
6008 // Return true if the GEP has two operands, the first operand is of a sequential
6009 // type, and the second operand is a constant.
6010 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6011   gep_type_iterator I = gep_type_begin(*GEP);
6012   return GEP->getNumOperands() == 2 &&
6013       I.isSequential() &&
6014       isa<ConstantInt>(GEP->getOperand(1));
6015 }
6016 
6017 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6018 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6019 // reducing liveness interference across those edges benefits global register
6020 // allocation. Currently handles only certain cases.
6021 //
6022 // For example, unmerge %GEPI and %UGEPI as below.
6023 //
6024 // ---------- BEFORE ----------
6025 // SrcBlock:
6026 //   ...
6027 //   %GEPIOp = ...
6028 //   ...
6029 //   %GEPI = gep %GEPIOp, Idx
6030 //   ...
6031 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6032 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6033 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6034 //   %UGEPI)
6035 //
6036 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6037 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6038 // ...
6039 //
6040 // DstBi:
6041 //   ...
6042 //   %UGEPI = gep %GEPIOp, UIdx
6043 // ...
6044 // ---------------------------
6045 //
6046 // ---------- AFTER ----------
6047 // SrcBlock:
6048 //   ... (same as above)
6049 //    (* %GEPI is still alive on the indirectbr edges)
6050 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6051 //    unmerging)
6052 // ...
6053 //
6054 // DstBi:
6055 //   ...
6056 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6057 //   ...
6058 // ---------------------------
6059 //
6060 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6061 // no longer alive on them.
6062 //
6063 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6064 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6065 // not to disable further simplications and optimizations as a result of GEP
6066 // merging.
6067 //
6068 // Note this unmerging may increase the length of the data flow critical path
6069 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6070 // between the register pressure and the length of data-flow critical
6071 // path. Restricting this to the uncommon IndirectBr case would minimize the
6072 // impact of potentially longer critical path, if any, and the impact on compile
6073 // time.
6074 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6075                                              const TargetTransformInfo *TTI) {
6076   BasicBlock *SrcBlock = GEPI->getParent();
6077   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6078   // (non-IndirectBr) cases exit early here.
6079   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6080     return false;
6081   // Check that GEPI is a simple gep with a single constant index.
6082   if (!GEPSequentialConstIndexed(GEPI))
6083     return false;
6084   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6085   // Check that GEPI is a cheap one.
6086   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6087       > TargetTransformInfo::TCC_Basic)
6088     return false;
6089   Value *GEPIOp = GEPI->getOperand(0);
6090   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6091   if (!isa<Instruction>(GEPIOp))
6092     return false;
6093   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6094   if (GEPIOpI->getParent() != SrcBlock)
6095     return false;
6096   // Check that GEP is used outside the block, meaning it's alive on the
6097   // IndirectBr edge(s).
6098   if (find_if(GEPI->users(), [&](User *Usr) {
6099         if (auto *I = dyn_cast<Instruction>(Usr)) {
6100           if (I->getParent() != SrcBlock) {
6101             return true;
6102           }
6103         }
6104         return false;
6105       }) == GEPI->users().end())
6106     return false;
6107   // The second elements of the GEP chains to be unmerged.
6108   std::vector<GetElementPtrInst *> UGEPIs;
6109   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6110   // on IndirectBr edges.
6111   for (User *Usr : GEPIOp->users()) {
6112     if (Usr == GEPI) continue;
6113     // Check if Usr is an Instruction. If not, give up.
6114     if (!isa<Instruction>(Usr))
6115       return false;
6116     auto *UI = cast<Instruction>(Usr);
6117     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6118     if (UI->getParent() == SrcBlock)
6119       continue;
6120     // Check if Usr is a GEP. If not, give up.
6121     if (!isa<GetElementPtrInst>(Usr))
6122       return false;
6123     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6124     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6125     // the pointer operand to it. If so, record it in the vector. If not, give
6126     // up.
6127     if (!GEPSequentialConstIndexed(UGEPI))
6128       return false;
6129     if (UGEPI->getOperand(0) != GEPIOp)
6130       return false;
6131     if (GEPIIdx->getType() !=
6132         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6133       return false;
6134     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6135     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6136         > TargetTransformInfo::TCC_Basic)
6137       return false;
6138     UGEPIs.push_back(UGEPI);
6139   }
6140   if (UGEPIs.size() == 0)
6141     return false;
6142   // Check the materializing cost of (Uidx-Idx).
6143   for (GetElementPtrInst *UGEPI : UGEPIs) {
6144     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6145     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6146     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6147     if (ImmCost > TargetTransformInfo::TCC_Basic)
6148       return false;
6149   }
6150   // Now unmerge between GEPI and UGEPIs.
6151   for (GetElementPtrInst *UGEPI : UGEPIs) {
6152     UGEPI->setOperand(0, GEPI);
6153     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6154     Constant *NewUGEPIIdx =
6155         ConstantInt::get(GEPIIdx->getType(),
6156                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6157     UGEPI->setOperand(1, NewUGEPIIdx);
6158     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6159     // inbounds to avoid UB.
6160     if (!GEPI->isInBounds()) {
6161       UGEPI->setIsInBounds(false);
6162     }
6163   }
6164   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6165   // alive on IndirectBr edges).
6166   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6167         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6168       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6169   return true;
6170 }
6171 
6172 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6173   // Bail out if we inserted the instruction to prevent optimizations from
6174   // stepping on each other's toes.
6175   if (InsertedInsts.count(I))
6176     return false;
6177 
6178   if (PHINode *P = dyn_cast<PHINode>(I)) {
6179     // It is possible for very late stage optimizations (such as SimplifyCFG)
6180     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6181     // trivial PHI, go ahead and zap it here.
6182     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6183       P->replaceAllUsesWith(V);
6184       P->eraseFromParent();
6185       ++NumPHIsElim;
6186       return true;
6187     }
6188     return false;
6189   }
6190 
6191   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6192     // If the source of the cast is a constant, then this should have
6193     // already been constant folded.  The only reason NOT to constant fold
6194     // it is if something (e.g. LSR) was careful to place the constant
6195     // evaluation in a block other than then one that uses it (e.g. to hoist
6196     // the address of globals out of a loop).  If this is the case, we don't
6197     // want to forward-subst the cast.
6198     if (isa<Constant>(CI->getOperand(0)))
6199       return false;
6200 
6201     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6202       return true;
6203 
6204     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6205       /// Sink a zext or sext into its user blocks if the target type doesn't
6206       /// fit in one register
6207       if (TLI &&
6208           TLI->getTypeAction(CI->getContext(),
6209                              TLI->getValueType(*DL, CI->getType())) ==
6210               TargetLowering::TypeExpandInteger) {
6211         return SinkCast(CI);
6212       } else {
6213         bool MadeChange = optimizeExt(I);
6214         return MadeChange | optimizeExtUses(I);
6215       }
6216     }
6217     return false;
6218   }
6219 
6220   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6221     if (!TLI || !TLI->hasMultipleConditionRegisters())
6222       return OptimizeCmpExpression(CI, TLI);
6223 
6224   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6225     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6226     if (TLI) {
6227       bool Modified = optimizeLoadExt(LI);
6228       unsigned AS = LI->getPointerAddressSpace();
6229       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6230       return Modified;
6231     }
6232     return false;
6233   }
6234 
6235   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6236     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6237       return true;
6238     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6239     if (TLI) {
6240       unsigned AS = SI->getPointerAddressSpace();
6241       return optimizeMemoryInst(I, SI->getOperand(1),
6242                                 SI->getOperand(0)->getType(), AS);
6243     }
6244     return false;
6245   }
6246 
6247   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6248       unsigned AS = RMW->getPointerAddressSpace();
6249       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6250                                 RMW->getType(), AS);
6251   }
6252 
6253   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6254       unsigned AS = CmpX->getPointerAddressSpace();
6255       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6256                                 CmpX->getCompareOperand()->getType(), AS);
6257   }
6258 
6259   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6260 
6261   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6262       EnableAndCmpSinking && TLI)
6263     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6264 
6265   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6266                 BinOp->getOpcode() == Instruction::LShr)) {
6267     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6268     if (TLI && CI && TLI->hasExtractBitsInsn())
6269       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6270 
6271     return false;
6272   }
6273 
6274   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6275     if (GEPI->hasAllZeroIndices()) {
6276       /// The GEP operand must be a pointer, so must its result -> BitCast
6277       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6278                                         GEPI->getName(), GEPI);
6279       GEPI->replaceAllUsesWith(NC);
6280       GEPI->eraseFromParent();
6281       ++NumGEPsElim;
6282       optimizeInst(NC, ModifiedDT);
6283       return true;
6284     }
6285     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6286       return true;
6287     }
6288     return false;
6289   }
6290 
6291   if (CallInst *CI = dyn_cast<CallInst>(I))
6292     return optimizeCallInst(CI, ModifiedDT);
6293 
6294   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6295     return optimizeSelectInst(SI);
6296 
6297   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6298     return optimizeShuffleVectorInst(SVI);
6299 
6300   if (auto *Switch = dyn_cast<SwitchInst>(I))
6301     return optimizeSwitchInst(Switch);
6302 
6303   if (isa<ExtractElementInst>(I))
6304     return optimizeExtractElementInst(I);
6305 
6306   return false;
6307 }
6308 
6309 /// Given an OR instruction, check to see if this is a bitreverse
6310 /// idiom. If so, insert the new intrinsic and return true.
6311 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6312                            const TargetLowering &TLI) {
6313   if (!I.getType()->isIntegerTy() ||
6314       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6315                                     TLI.getValueType(DL, I.getType(), true)))
6316     return false;
6317 
6318   SmallVector<Instruction*, 4> Insts;
6319   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6320     return false;
6321   Instruction *LastInst = Insts.back();
6322   I.replaceAllUsesWith(LastInst);
6323   RecursivelyDeleteTriviallyDeadInstructions(&I);
6324   return true;
6325 }
6326 
6327 // In this pass we look for GEP and cast instructions that are used
6328 // across basic blocks and rewrite them to improve basic-block-at-a-time
6329 // selection.
6330 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6331   SunkAddrs.clear();
6332   bool MadeChange = false;
6333 
6334   CurInstIterator = BB.begin();
6335   while (CurInstIterator != BB.end()) {
6336     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6337     if (ModifiedDT)
6338       return true;
6339   }
6340 
6341   bool MadeBitReverse = true;
6342   while (TLI && MadeBitReverse) {
6343     MadeBitReverse = false;
6344     for (auto &I : reverse(BB)) {
6345       if (makeBitReverse(I, *DL, *TLI)) {
6346         MadeBitReverse = MadeChange = true;
6347         ModifiedDT = true;
6348         break;
6349       }
6350     }
6351   }
6352   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6353 
6354   return MadeChange;
6355 }
6356 
6357 // llvm.dbg.value is far away from the value then iSel may not be able
6358 // handle it properly. iSel will drop llvm.dbg.value if it can not
6359 // find a node corresponding to the value.
6360 bool CodeGenPrepare::placeDbgValues(Function &F) {
6361   bool MadeChange = false;
6362   for (BasicBlock &BB : F) {
6363     Instruction *PrevNonDbgInst = nullptr;
6364     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6365       Instruction *Insn = &*BI++;
6366       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6367       // Leave dbg.values that refer to an alloca alone. These
6368       // intrinsics describe the address of a variable (= the alloca)
6369       // being taken.  They should not be moved next to the alloca
6370       // (and to the beginning of the scope), but rather stay close to
6371       // where said address is used.
6372       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6373         PrevNonDbgInst = Insn;
6374         continue;
6375       }
6376 
6377       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6378       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6379         // If VI is a phi in a block with an EHPad terminator, we can't insert
6380         // after it.
6381         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6382           continue;
6383         DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
6384         DVI->removeFromParent();
6385         if (isa<PHINode>(VI))
6386           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6387         else
6388           DVI->insertAfter(VI);
6389         MadeChange = true;
6390         ++NumDbgValueMoved;
6391       }
6392     }
6393   }
6394   return MadeChange;
6395 }
6396 
6397 /// \brief Scale down both weights to fit into uint32_t.
6398 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6399   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6400   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6401   NewTrue = NewTrue / Scale;
6402   NewFalse = NewFalse / Scale;
6403 }
6404 
6405 /// \brief Some targets prefer to split a conditional branch like:
6406 /// \code
6407 ///   %0 = icmp ne i32 %a, 0
6408 ///   %1 = icmp ne i32 %b, 0
6409 ///   %or.cond = or i1 %0, %1
6410 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6411 /// \endcode
6412 /// into multiple branch instructions like:
6413 /// \code
6414 ///   bb1:
6415 ///     %0 = icmp ne i32 %a, 0
6416 ///     br i1 %0, label %TrueBB, label %bb2
6417 ///   bb2:
6418 ///     %1 = icmp ne i32 %b, 0
6419 ///     br i1 %1, label %TrueBB, label %FalseBB
6420 /// \endcode
6421 /// This usually allows instruction selection to do even further optimizations
6422 /// and combine the compare with the branch instruction. Currently this is
6423 /// applied for targets which have "cheap" jump instructions.
6424 ///
6425 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6426 ///
6427 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6428   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6429     return false;
6430 
6431   bool MadeChange = false;
6432   for (auto &BB : F) {
6433     // Does this BB end with the following?
6434     //   %cond1 = icmp|fcmp|binary instruction ...
6435     //   %cond2 = icmp|fcmp|binary instruction ...
6436     //   %cond.or = or|and i1 %cond1, cond2
6437     //   br i1 %cond.or label %dest1, label %dest2"
6438     BinaryOperator *LogicOp;
6439     BasicBlock *TBB, *FBB;
6440     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6441       continue;
6442 
6443     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6444     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6445       continue;
6446 
6447     unsigned Opc;
6448     Value *Cond1, *Cond2;
6449     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6450                              m_OneUse(m_Value(Cond2)))))
6451       Opc = Instruction::And;
6452     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6453                                  m_OneUse(m_Value(Cond2)))))
6454       Opc = Instruction::Or;
6455     else
6456       continue;
6457 
6458     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6459         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6460       continue;
6461 
6462     DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6463 
6464     // Create a new BB.
6465     auto TmpBB =
6466         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6467                            BB.getParent(), BB.getNextNode());
6468 
6469     // Update original basic block by using the first condition directly by the
6470     // branch instruction and removing the no longer needed and/or instruction.
6471     Br1->setCondition(Cond1);
6472     LogicOp->eraseFromParent();
6473 
6474     // Depending on the conditon we have to either replace the true or the false
6475     // successor of the original branch instruction.
6476     if (Opc == Instruction::And)
6477       Br1->setSuccessor(0, TmpBB);
6478     else
6479       Br1->setSuccessor(1, TmpBB);
6480 
6481     // Fill in the new basic block.
6482     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6483     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6484       I->removeFromParent();
6485       I->insertBefore(Br2);
6486     }
6487 
6488     // Update PHI nodes in both successors. The original BB needs to be
6489     // replaced in one successor's PHI nodes, because the branch comes now from
6490     // the newly generated BB (NewBB). In the other successor we need to add one
6491     // incoming edge to the PHI nodes, because both branch instructions target
6492     // now the same successor. Depending on the original branch condition
6493     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6494     // we perform the correct update for the PHI nodes.
6495     // This doesn't change the successor order of the just created branch
6496     // instruction (or any other instruction).
6497     if (Opc == Instruction::Or)
6498       std::swap(TBB, FBB);
6499 
6500     // Replace the old BB with the new BB.
6501     for (PHINode &PN : TBB->phis()) {
6502       int i;
6503       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6504         PN.setIncomingBlock(i, TmpBB);
6505     }
6506 
6507     // Add another incoming edge form the new BB.
6508     for (PHINode &PN : FBB->phis()) {
6509       auto *Val = PN.getIncomingValueForBlock(&BB);
6510       PN.addIncoming(Val, TmpBB);
6511     }
6512 
6513     // Update the branch weights (from SelectionDAGBuilder::
6514     // FindMergedConditions).
6515     if (Opc == Instruction::Or) {
6516       // Codegen X | Y as:
6517       // BB1:
6518       //   jmp_if_X TBB
6519       //   jmp TmpBB
6520       // TmpBB:
6521       //   jmp_if_Y TBB
6522       //   jmp FBB
6523       //
6524 
6525       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6526       // The requirement is that
6527       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6528       //     = TrueProb for orignal BB.
6529       // Assuming the orignal weights are A and B, one choice is to set BB1's
6530       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6531       // assumes that
6532       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6533       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6534       // TmpBB, but the math is more complicated.
6535       uint64_t TrueWeight, FalseWeight;
6536       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6537         uint64_t NewTrueWeight = TrueWeight;
6538         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6539         scaleWeights(NewTrueWeight, NewFalseWeight);
6540         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6541                          .createBranchWeights(TrueWeight, FalseWeight));
6542 
6543         NewTrueWeight = TrueWeight;
6544         NewFalseWeight = 2 * FalseWeight;
6545         scaleWeights(NewTrueWeight, NewFalseWeight);
6546         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6547                          .createBranchWeights(TrueWeight, FalseWeight));
6548       }
6549     } else {
6550       // Codegen X & Y as:
6551       // BB1:
6552       //   jmp_if_X TmpBB
6553       //   jmp FBB
6554       // TmpBB:
6555       //   jmp_if_Y TBB
6556       //   jmp FBB
6557       //
6558       //  This requires creation of TmpBB after CurBB.
6559 
6560       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6561       // The requirement is that
6562       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6563       //     = FalseProb for orignal BB.
6564       // Assuming the orignal weights are A and B, one choice is to set BB1's
6565       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6566       // assumes that
6567       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6568       uint64_t TrueWeight, FalseWeight;
6569       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6570         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6571         uint64_t NewFalseWeight = FalseWeight;
6572         scaleWeights(NewTrueWeight, NewFalseWeight);
6573         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6574                          .createBranchWeights(TrueWeight, FalseWeight));
6575 
6576         NewTrueWeight = 2 * TrueWeight;
6577         NewFalseWeight = FalseWeight;
6578         scaleWeights(NewTrueWeight, NewFalseWeight);
6579         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6580                          .createBranchWeights(TrueWeight, FalseWeight));
6581       }
6582     }
6583 
6584     // Note: No point in getting fancy here, since the DT info is never
6585     // available to CodeGenPrepare.
6586     ModifiedDT = true;
6587 
6588     MadeChange = true;
6589 
6590     DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6591           TmpBB->dump());
6592   }
6593   return MadeChange;
6594 }
6595