1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineValueType.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/Argument.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/BasicBlock.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/Constants.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/DerivedTypes.h" 49 #include "llvm/IR/Dominators.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InlineAsm.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/MDBuilder.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/Operator.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Statepoint.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/IR/ValueMap.h" 73 #include "llvm/Pass.h" 74 #include "llvm/Support/BlockFrequency.h" 75 #include "llvm/Support/BranchProbability.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Compiler.h" 79 #include "llvm/Support/Debug.h" 80 #include "llvm/Support/ErrorHandling.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetLowering.h" 84 #include "llvm/Target/TargetMachine.h" 85 #include "llvm/Target/TargetOptions.h" 86 #include "llvm/Target/TargetSubtargetInfo.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/Cloning.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/ValueMapper.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<unsigned> FreqRatioToSkipMerge( 179 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 180 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 181 "(frequency of destination block) is greater than this ratio")); 182 183 static cl::opt<bool> ForceSplitStore( 184 "force-split-store", cl::Hidden, cl::init(false), 185 cl::desc("Force store splitting no matter what the target query says.")); 186 187 static cl::opt<bool> 188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 189 cl::desc("Enable merging of redundant sexts when one is dominating" 190 " the other."), cl::init(true)); 191 192 static cl::opt<bool> DisableComplexAddrModes( 193 "disable-complex-addr-modes", cl::Hidden, cl::init(true), 194 cl::desc("Disables combining addressing modes with different parts " 195 "in optimizeMemoryInst.")); 196 197 static cl::opt<bool> 198 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 199 cl::desc("Allow creation of Phis in Address sinking.")); 200 201 static cl::opt<bool> 202 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 203 cl::desc("Allow creation of selects in Address sinking.")); 204 205 namespace { 206 207 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 208 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 209 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 210 using SExts = SmallVector<Instruction *, 16>; 211 using ValueToSExts = DenseMap<Value *, SExts>; 212 213 class TypePromotionTransaction; 214 215 class CodeGenPrepare : public FunctionPass { 216 const TargetMachine *TM = nullptr; 217 const TargetSubtargetInfo *SubtargetInfo; 218 const TargetLowering *TLI = nullptr; 219 const TargetRegisterInfo *TRI; 220 const TargetTransformInfo *TTI = nullptr; 221 const TargetLibraryInfo *TLInfo; 222 const LoopInfo *LI; 223 std::unique_ptr<BlockFrequencyInfo> BFI; 224 std::unique_ptr<BranchProbabilityInfo> BPI; 225 226 /// As we scan instructions optimizing them, this is the next instruction 227 /// to optimize. Transforms that can invalidate this should update it. 228 BasicBlock::iterator CurInstIterator; 229 230 /// Keeps track of non-local addresses that have been sunk into a block. 231 /// This allows us to avoid inserting duplicate code for blocks with 232 /// multiple load/stores of the same address. 233 ValueMap<Value*, Value*> SunkAddrs; 234 235 /// Keeps track of all instructions inserted for the current function. 236 SetOfInstrs InsertedInsts; 237 238 /// Keeps track of the type of the related instruction before their 239 /// promotion for the current function. 240 InstrToOrigTy PromotedInsts; 241 242 /// Keep track of instructions removed during promotion. 243 SetOfInstrs RemovedInsts; 244 245 /// Keep track of sext chains based on their initial value. 246 DenseMap<Value *, Instruction *> SeenChainsForSExt; 247 248 /// Keep track of SExt promoted. 249 ValueToSExts ValToSExtendedUses; 250 251 /// True if CFG is modified in any way. 252 bool ModifiedDT; 253 254 /// True if optimizing for size. 255 bool OptSize; 256 257 /// DataLayout for the Function being processed. 258 const DataLayout *DL = nullptr; 259 260 public: 261 static char ID; // Pass identification, replacement for typeid 262 263 CodeGenPrepare() : FunctionPass(ID) { 264 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 265 } 266 267 bool runOnFunction(Function &F) override; 268 269 StringRef getPassName() const override { return "CodeGen Prepare"; } 270 271 void getAnalysisUsage(AnalysisUsage &AU) const override { 272 // FIXME: When we can selectively preserve passes, preserve the domtree. 273 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 274 AU.addRequired<TargetLibraryInfoWrapperPass>(); 275 AU.addRequired<TargetTransformInfoWrapperPass>(); 276 AU.addRequired<LoopInfoWrapperPass>(); 277 } 278 279 private: 280 bool eliminateFallThrough(Function &F); 281 bool eliminateMostlyEmptyBlocks(Function &F); 282 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 283 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 284 void eliminateMostlyEmptyBlock(BasicBlock *BB); 285 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 286 bool isPreheader); 287 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 288 bool optimizeInst(Instruction *I, bool &ModifiedDT); 289 bool optimizeMemoryInst(Instruction *I, Value *Addr, 290 Type *AccessTy, unsigned AS); 291 bool optimizeInlineAsmInst(CallInst *CS); 292 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 293 bool optimizeExt(Instruction *&I); 294 bool optimizeExtUses(Instruction *I); 295 bool optimizeLoadExt(LoadInst *I); 296 bool optimizeSelectInst(SelectInst *SI); 297 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 298 bool optimizeSwitchInst(SwitchInst *CI); 299 bool optimizeExtractElementInst(Instruction *Inst); 300 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 301 bool placeDbgValues(Function &F); 302 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 303 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 304 bool tryToPromoteExts(TypePromotionTransaction &TPT, 305 const SmallVectorImpl<Instruction *> &Exts, 306 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 307 unsigned CreatedInstsCost = 0); 308 bool mergeSExts(Function &F); 309 bool performAddressTypePromotion( 310 Instruction *&Inst, 311 bool AllowPromotionWithoutCommonHeader, 312 bool HasPromoted, TypePromotionTransaction &TPT, 313 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 314 bool splitBranchCondition(Function &F); 315 bool simplifyOffsetableRelocate(Instruction &I); 316 bool splitIndirectCriticalEdges(Function &F); 317 }; 318 319 } // end anonymous namespace 320 321 char CodeGenPrepare::ID = 0; 322 323 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 324 "Optimize for code generation", false, false) 325 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 326 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 327 "Optimize for code generation", false, false) 328 329 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 330 331 bool CodeGenPrepare::runOnFunction(Function &F) { 332 if (skipFunction(F)) 333 return false; 334 335 DL = &F.getParent()->getDataLayout(); 336 337 bool EverMadeChange = false; 338 // Clear per function information. 339 InsertedInsts.clear(); 340 PromotedInsts.clear(); 341 BFI.reset(); 342 BPI.reset(); 343 344 ModifiedDT = false; 345 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 346 TM = &TPC->getTM<TargetMachine>(); 347 SubtargetInfo = TM->getSubtargetImpl(F); 348 TLI = SubtargetInfo->getTargetLowering(); 349 TRI = SubtargetInfo->getRegisterInfo(); 350 } 351 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 352 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 353 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 354 OptSize = F.optForSize(); 355 356 if (ProfileGuidedSectionPrefix) { 357 ProfileSummaryInfo *PSI = 358 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 359 if (PSI->isFunctionHotInCallGraph(&F)) 360 F.setSectionPrefix(".hot"); 361 else if (PSI->isFunctionColdInCallGraph(&F)) 362 F.setSectionPrefix(".unlikely"); 363 } 364 365 /// This optimization identifies DIV instructions that can be 366 /// profitably bypassed and carried out with a shorter, faster divide. 367 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 368 const DenseMap<unsigned int, unsigned int> &BypassWidths = 369 TLI->getBypassSlowDivWidths(); 370 BasicBlock* BB = &*F.begin(); 371 while (BB != nullptr) { 372 // bypassSlowDivision may create new BBs, but we don't want to reapply the 373 // optimization to those blocks. 374 BasicBlock* Next = BB->getNextNode(); 375 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 376 BB = Next; 377 } 378 } 379 380 // Eliminate blocks that contain only PHI nodes and an 381 // unconditional branch. 382 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 383 384 // llvm.dbg.value is far away from the value then iSel may not be able 385 // handle it properly. iSel will drop llvm.dbg.value if it can not 386 // find a node corresponding to the value. 387 EverMadeChange |= placeDbgValues(F); 388 389 if (!DisableBranchOpts) 390 EverMadeChange |= splitBranchCondition(F); 391 392 // Split some critical edges where one of the sources is an indirect branch, 393 // to help generate sane code for PHIs involving such edges. 394 EverMadeChange |= splitIndirectCriticalEdges(F); 395 396 bool MadeChange = true; 397 while (MadeChange) { 398 MadeChange = false; 399 SeenChainsForSExt.clear(); 400 ValToSExtendedUses.clear(); 401 RemovedInsts.clear(); 402 for (Function::iterator I = F.begin(); I != F.end(); ) { 403 BasicBlock *BB = &*I++; 404 bool ModifiedDTOnIteration = false; 405 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 406 407 // Restart BB iteration if the dominator tree of the Function was changed 408 if (ModifiedDTOnIteration) 409 break; 410 } 411 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 412 MadeChange |= mergeSExts(F); 413 414 // Really free removed instructions during promotion. 415 for (Instruction *I : RemovedInsts) 416 I->deleteValue(); 417 418 EverMadeChange |= MadeChange; 419 } 420 421 SunkAddrs.clear(); 422 423 if (!DisableBranchOpts) { 424 MadeChange = false; 425 SmallPtrSet<BasicBlock*, 8> WorkList; 426 for (BasicBlock &BB : F) { 427 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 428 MadeChange |= ConstantFoldTerminator(&BB, true); 429 if (!MadeChange) continue; 430 431 for (SmallVectorImpl<BasicBlock*>::iterator 432 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 433 if (pred_begin(*II) == pred_end(*II)) 434 WorkList.insert(*II); 435 } 436 437 // Delete the dead blocks and any of their dead successors. 438 MadeChange |= !WorkList.empty(); 439 while (!WorkList.empty()) { 440 BasicBlock *BB = *WorkList.begin(); 441 WorkList.erase(BB); 442 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 443 444 DeleteDeadBlock(BB); 445 446 for (SmallVectorImpl<BasicBlock*>::iterator 447 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 448 if (pred_begin(*II) == pred_end(*II)) 449 WorkList.insert(*II); 450 } 451 452 // Merge pairs of basic blocks with unconditional branches, connected by 453 // a single edge. 454 if (EverMadeChange || MadeChange) 455 MadeChange |= eliminateFallThrough(F); 456 457 EverMadeChange |= MadeChange; 458 } 459 460 if (!DisableGCOpts) { 461 SmallVector<Instruction *, 2> Statepoints; 462 for (BasicBlock &BB : F) 463 for (Instruction &I : BB) 464 if (isStatepoint(I)) 465 Statepoints.push_back(&I); 466 for (auto &I : Statepoints) 467 EverMadeChange |= simplifyOffsetableRelocate(*I); 468 } 469 470 return EverMadeChange; 471 } 472 473 /// Merge basic blocks which are connected by a single edge, where one of the 474 /// basic blocks has a single successor pointing to the other basic block, 475 /// which has a single predecessor. 476 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 477 bool Changed = false; 478 // Scan all of the blocks in the function, except for the entry block. 479 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 480 BasicBlock *BB = &*I++; 481 // If the destination block has a single pred, then this is a trivial 482 // edge, just collapse it. 483 BasicBlock *SinglePred = BB->getSinglePredecessor(); 484 485 // Don't merge if BB's address is taken. 486 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 487 488 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 489 if (Term && !Term->isConditional()) { 490 Changed = true; 491 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 492 // Remember if SinglePred was the entry block of the function. 493 // If so, we will need to move BB back to the entry position. 494 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 495 MergeBasicBlockIntoOnlyPred(BB, nullptr); 496 497 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 498 BB->moveBefore(&BB->getParent()->getEntryBlock()); 499 500 // We have erased a block. Update the iterator. 501 I = BB->getIterator(); 502 } 503 } 504 return Changed; 505 } 506 507 /// Find a destination block from BB if BB is mergeable empty block. 508 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 509 // If this block doesn't end with an uncond branch, ignore it. 510 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 511 if (!BI || !BI->isUnconditional()) 512 return nullptr; 513 514 // If the instruction before the branch (skipping debug info) isn't a phi 515 // node, then other stuff is happening here. 516 BasicBlock::iterator BBI = BI->getIterator(); 517 if (BBI != BB->begin()) { 518 --BBI; 519 while (isa<DbgInfoIntrinsic>(BBI)) { 520 if (BBI == BB->begin()) 521 break; 522 --BBI; 523 } 524 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 525 return nullptr; 526 } 527 528 // Do not break infinite loops. 529 BasicBlock *DestBB = BI->getSuccessor(0); 530 if (DestBB == BB) 531 return nullptr; 532 533 if (!canMergeBlocks(BB, DestBB)) 534 DestBB = nullptr; 535 536 return DestBB; 537 } 538 539 // Return the unique indirectbr predecessor of a block. This may return null 540 // even if such a predecessor exists, if it's not useful for splitting. 541 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 542 // predecessors of BB. 543 static BasicBlock * 544 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 545 // If the block doesn't have any PHIs, we don't care about it, since there's 546 // no point in splitting it. 547 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 548 if (!PN) 549 return nullptr; 550 551 // Verify we have exactly one IBR predecessor. 552 // Conservatively bail out if one of the other predecessors is not a "regular" 553 // terminator (that is, not a switch or a br). 554 BasicBlock *IBB = nullptr; 555 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 556 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 557 TerminatorInst *PredTerm = PredBB->getTerminator(); 558 switch (PredTerm->getOpcode()) { 559 case Instruction::IndirectBr: 560 if (IBB) 561 return nullptr; 562 IBB = PredBB; 563 break; 564 case Instruction::Br: 565 case Instruction::Switch: 566 OtherPreds.push_back(PredBB); 567 continue; 568 default: 569 return nullptr; 570 } 571 } 572 573 return IBB; 574 } 575 576 // Split critical edges where the source of the edge is an indirectbr 577 // instruction. This isn't always possible, but we can handle some easy cases. 578 // This is useful because MI is unable to split such critical edges, 579 // which means it will not be able to sink instructions along those edges. 580 // This is especially painful for indirect branches with many successors, where 581 // we end up having to prepare all outgoing values in the origin block. 582 // 583 // Our normal algorithm for splitting critical edges requires us to update 584 // the outgoing edges of the edge origin block, but for an indirectbr this 585 // is hard, since it would require finding and updating the block addresses 586 // the indirect branch uses. But if a block only has a single indirectbr 587 // predecessor, with the others being regular branches, we can do it in a 588 // different way. 589 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 590 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 591 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 592 // create the following structure: 593 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 594 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 595 // Check whether the function has any indirectbrs, and collect which blocks 596 // they may jump to. Since most functions don't have indirect branches, 597 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 598 SmallSetVector<BasicBlock *, 16> Targets; 599 for (auto &BB : F) { 600 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 601 if (!IBI) 602 continue; 603 604 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 605 Targets.insert(IBI->getSuccessor(Succ)); 606 } 607 608 if (Targets.empty()) 609 return false; 610 611 bool Changed = false; 612 for (BasicBlock *Target : Targets) { 613 SmallVector<BasicBlock *, 16> OtherPreds; 614 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 615 // If we did not found an indirectbr, or the indirectbr is the only 616 // incoming edge, this isn't the kind of edge we're looking for. 617 if (!IBRPred || OtherPreds.empty()) 618 continue; 619 620 // Don't even think about ehpads/landingpads. 621 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 622 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 623 continue; 624 625 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 626 // It's possible Target was its own successor through an indirectbr. 627 // In this case, the indirectbr now comes from BodyBlock. 628 if (IBRPred == Target) 629 IBRPred = BodyBlock; 630 631 // At this point Target only has PHIs, and BodyBlock has the rest of the 632 // block's body. Create a copy of Target that will be used by the "direct" 633 // preds. 634 ValueToValueMapTy VMap; 635 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 636 637 for (BasicBlock *Pred : OtherPreds) { 638 // If the target is a loop to itself, then the terminator of the split 639 // block needs to be updated. 640 if (Pred == Target) 641 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 642 else 643 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 644 } 645 646 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 647 // they are clones, so the number of PHIs are the same. 648 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 649 // (b) Leave that as the only edge in the "Indirect" PHI. 650 // (c) Merge the two in the body block. 651 BasicBlock::iterator Indirect = Target->begin(), 652 End = Target->getFirstNonPHI()->getIterator(); 653 BasicBlock::iterator Direct = DirectSucc->begin(); 654 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 655 656 assert(&*End == Target->getTerminator() && 657 "Block was expected to only contain PHIs"); 658 659 while (Indirect != End) { 660 PHINode *DirPHI = cast<PHINode>(Direct); 661 PHINode *IndPHI = cast<PHINode>(Indirect); 662 663 // Now, clean up - the direct block shouldn't get the indirect value, 664 // and vice versa. 665 DirPHI->removeIncomingValue(IBRPred); 666 Direct++; 667 668 // Advance the pointer here, to avoid invalidation issues when the old 669 // PHI is erased. 670 Indirect++; 671 672 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 673 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 674 IBRPred); 675 676 // Create a PHI in the body block, to merge the direct and indirect 677 // predecessors. 678 PHINode *MergePHI = 679 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 680 MergePHI->addIncoming(NewIndPHI, Target); 681 MergePHI->addIncoming(DirPHI, DirectSucc); 682 683 IndPHI->replaceAllUsesWith(MergePHI); 684 IndPHI->eraseFromParent(); 685 } 686 687 Changed = true; 688 } 689 690 return Changed; 691 } 692 693 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 694 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 695 /// edges in ways that are non-optimal for isel. Start by eliminating these 696 /// blocks so we can split them the way we want them. 697 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 698 SmallPtrSet<BasicBlock *, 16> Preheaders; 699 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 700 while (!LoopList.empty()) { 701 Loop *L = LoopList.pop_back_val(); 702 LoopList.insert(LoopList.end(), L->begin(), L->end()); 703 if (BasicBlock *Preheader = L->getLoopPreheader()) 704 Preheaders.insert(Preheader); 705 } 706 707 bool MadeChange = false; 708 // Note that this intentionally skips the entry block. 709 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 710 BasicBlock *BB = &*I++; 711 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 712 if (!DestBB || 713 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 714 continue; 715 716 eliminateMostlyEmptyBlock(BB); 717 MadeChange = true; 718 } 719 return MadeChange; 720 } 721 722 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 723 BasicBlock *DestBB, 724 bool isPreheader) { 725 // Do not delete loop preheaders if doing so would create a critical edge. 726 // Loop preheaders can be good locations to spill registers. If the 727 // preheader is deleted and we create a critical edge, registers may be 728 // spilled in the loop body instead. 729 if (!DisablePreheaderProtect && isPreheader && 730 !(BB->getSinglePredecessor() && 731 BB->getSinglePredecessor()->getSingleSuccessor())) 732 return false; 733 734 // Try to skip merging if the unique predecessor of BB is terminated by a 735 // switch or indirect branch instruction, and BB is used as an incoming block 736 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 737 // add COPY instructions in the predecessor of BB instead of BB (if it is not 738 // merged). Note that the critical edge created by merging such blocks wont be 739 // split in MachineSink because the jump table is not analyzable. By keeping 740 // such empty block (BB), ISel will place COPY instructions in BB, not in the 741 // predecessor of BB. 742 BasicBlock *Pred = BB->getUniquePredecessor(); 743 if (!Pred || 744 !(isa<SwitchInst>(Pred->getTerminator()) || 745 isa<IndirectBrInst>(Pred->getTerminator()))) 746 return true; 747 748 if (BB->getTerminator() != BB->getFirstNonPHI()) 749 return true; 750 751 // We use a simple cost heuristic which determine skipping merging is 752 // profitable if the cost of skipping merging is less than the cost of 753 // merging : Cost(skipping merging) < Cost(merging BB), where the 754 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 755 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 756 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 757 // Freq(Pred) / Freq(BB) > 2. 758 // Note that if there are multiple empty blocks sharing the same incoming 759 // value for the PHIs in the DestBB, we consider them together. In such 760 // case, Cost(merging BB) will be the sum of their frequencies. 761 762 if (!isa<PHINode>(DestBB->begin())) 763 return true; 764 765 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 766 767 // Find all other incoming blocks from which incoming values of all PHIs in 768 // DestBB are the same as the ones from BB. 769 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 770 ++PI) { 771 BasicBlock *DestBBPred = *PI; 772 if (DestBBPred == BB) 773 continue; 774 775 bool HasAllSameValue = true; 776 BasicBlock::const_iterator DestBBI = DestBB->begin(); 777 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 778 if (DestPN->getIncomingValueForBlock(BB) != 779 DestPN->getIncomingValueForBlock(DestBBPred)) { 780 HasAllSameValue = false; 781 break; 782 } 783 } 784 if (HasAllSameValue) 785 SameIncomingValueBBs.insert(DestBBPred); 786 } 787 788 // See if all BB's incoming values are same as the value from Pred. In this 789 // case, no reason to skip merging because COPYs are expected to be place in 790 // Pred already. 791 if (SameIncomingValueBBs.count(Pred)) 792 return true; 793 794 if (!BFI) { 795 Function &F = *BB->getParent(); 796 LoopInfo LI{DominatorTree(F)}; 797 BPI.reset(new BranchProbabilityInfo(F, LI)); 798 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 799 } 800 801 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 802 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 803 804 for (auto SameValueBB : SameIncomingValueBBs) 805 if (SameValueBB->getUniquePredecessor() == Pred && 806 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 807 BBFreq += BFI->getBlockFreq(SameValueBB); 808 809 return PredFreq.getFrequency() <= 810 BBFreq.getFrequency() * FreqRatioToSkipMerge; 811 } 812 813 /// Return true if we can merge BB into DestBB if there is a single 814 /// unconditional branch between them, and BB contains no other non-phi 815 /// instructions. 816 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 817 const BasicBlock *DestBB) const { 818 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 819 // the successor. If there are more complex condition (e.g. preheaders), 820 // don't mess around with them. 821 BasicBlock::const_iterator BBI = BB->begin(); 822 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 823 for (const User *U : PN->users()) { 824 const Instruction *UI = cast<Instruction>(U); 825 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 826 return false; 827 // If User is inside DestBB block and it is a PHINode then check 828 // incoming value. If incoming value is not from BB then this is 829 // a complex condition (e.g. preheaders) we want to avoid here. 830 if (UI->getParent() == DestBB) { 831 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 832 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 833 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 834 if (Insn && Insn->getParent() == BB && 835 Insn->getParent() != UPN->getIncomingBlock(I)) 836 return false; 837 } 838 } 839 } 840 } 841 842 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 843 // and DestBB may have conflicting incoming values for the block. If so, we 844 // can't merge the block. 845 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 846 if (!DestBBPN) return true; // no conflict. 847 848 // Collect the preds of BB. 849 SmallPtrSet<const BasicBlock*, 16> BBPreds; 850 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 851 // It is faster to get preds from a PHI than with pred_iterator. 852 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 853 BBPreds.insert(BBPN->getIncomingBlock(i)); 854 } else { 855 BBPreds.insert(pred_begin(BB), pred_end(BB)); 856 } 857 858 // Walk the preds of DestBB. 859 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 860 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 861 if (BBPreds.count(Pred)) { // Common predecessor? 862 BBI = DestBB->begin(); 863 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 864 const Value *V1 = PN->getIncomingValueForBlock(Pred); 865 const Value *V2 = PN->getIncomingValueForBlock(BB); 866 867 // If V2 is a phi node in BB, look up what the mapped value will be. 868 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 869 if (V2PN->getParent() == BB) 870 V2 = V2PN->getIncomingValueForBlock(Pred); 871 872 // If there is a conflict, bail out. 873 if (V1 != V2) return false; 874 } 875 } 876 } 877 878 return true; 879 } 880 881 /// Eliminate a basic block that has only phi's and an unconditional branch in 882 /// it. 883 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 884 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 885 BasicBlock *DestBB = BI->getSuccessor(0); 886 887 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 888 889 // If the destination block has a single pred, then this is a trivial edge, 890 // just collapse it. 891 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 892 if (SinglePred != DestBB) { 893 // Remember if SinglePred was the entry block of the function. If so, we 894 // will need to move BB back to the entry position. 895 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 896 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 897 898 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 899 BB->moveBefore(&BB->getParent()->getEntryBlock()); 900 901 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 902 return; 903 } 904 } 905 906 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 907 // to handle the new incoming edges it is about to have. 908 PHINode *PN; 909 for (BasicBlock::iterator BBI = DestBB->begin(); 910 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 911 // Remove the incoming value for BB, and remember it. 912 Value *InVal = PN->removeIncomingValue(BB, false); 913 914 // Two options: either the InVal is a phi node defined in BB or it is some 915 // value that dominates BB. 916 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 917 if (InValPhi && InValPhi->getParent() == BB) { 918 // Add all of the input values of the input PHI as inputs of this phi. 919 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 920 PN->addIncoming(InValPhi->getIncomingValue(i), 921 InValPhi->getIncomingBlock(i)); 922 } else { 923 // Otherwise, add one instance of the dominating value for each edge that 924 // we will be adding. 925 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 926 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 927 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 928 } else { 929 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 930 PN->addIncoming(InVal, *PI); 931 } 932 } 933 } 934 935 // The PHIs are now updated, change everything that refers to BB to use 936 // DestBB and remove BB. 937 BB->replaceAllUsesWith(DestBB); 938 BB->eraseFromParent(); 939 ++NumBlocksElim; 940 941 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 942 } 943 944 // Computes a map of base pointer relocation instructions to corresponding 945 // derived pointer relocation instructions given a vector of all relocate calls 946 static void computeBaseDerivedRelocateMap( 947 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 948 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 949 &RelocateInstMap) { 950 // Collect information in two maps: one primarily for locating the base object 951 // while filling the second map; the second map is the final structure holding 952 // a mapping between Base and corresponding Derived relocate calls 953 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 954 for (auto *ThisRelocate : AllRelocateCalls) { 955 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 956 ThisRelocate->getDerivedPtrIndex()); 957 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 958 } 959 for (auto &Item : RelocateIdxMap) { 960 std::pair<unsigned, unsigned> Key = Item.first; 961 if (Key.first == Key.second) 962 // Base relocation: nothing to insert 963 continue; 964 965 GCRelocateInst *I = Item.second; 966 auto BaseKey = std::make_pair(Key.first, Key.first); 967 968 // We're iterating over RelocateIdxMap so we cannot modify it. 969 auto MaybeBase = RelocateIdxMap.find(BaseKey); 970 if (MaybeBase == RelocateIdxMap.end()) 971 // TODO: We might want to insert a new base object relocate and gep off 972 // that, if there are enough derived object relocates. 973 continue; 974 975 RelocateInstMap[MaybeBase->second].push_back(I); 976 } 977 } 978 979 // Accepts a GEP and extracts the operands into a vector provided they're all 980 // small integer constants 981 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 982 SmallVectorImpl<Value *> &OffsetV) { 983 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 984 // Only accept small constant integer operands 985 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 986 if (!Op || Op->getZExtValue() > 20) 987 return false; 988 } 989 990 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 991 OffsetV.push_back(GEP->getOperand(i)); 992 return true; 993 } 994 995 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 996 // replace, computes a replacement, and affects it. 997 static bool 998 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 999 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1000 bool MadeChange = false; 1001 // We must ensure the relocation of derived pointer is defined after 1002 // relocation of base pointer. If we find a relocation corresponding to base 1003 // defined earlier than relocation of base then we move relocation of base 1004 // right before found relocation. We consider only relocation in the same 1005 // basic block as relocation of base. Relocations from other basic block will 1006 // be skipped by optimization and we do not care about them. 1007 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1008 &*R != RelocatedBase; ++R) 1009 if (auto RI = dyn_cast<GCRelocateInst>(R)) 1010 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1011 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1012 RelocatedBase->moveBefore(RI); 1013 break; 1014 } 1015 1016 for (GCRelocateInst *ToReplace : Targets) { 1017 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1018 "Not relocating a derived object of the original base object"); 1019 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1020 // A duplicate relocate call. TODO: coalesce duplicates. 1021 continue; 1022 } 1023 1024 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1025 // Base and derived relocates are in different basic blocks. 1026 // In this case transform is only valid when base dominates derived 1027 // relocate. However it would be too expensive to check dominance 1028 // for each such relocate, so we skip the whole transformation. 1029 continue; 1030 } 1031 1032 Value *Base = ToReplace->getBasePtr(); 1033 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1034 if (!Derived || Derived->getPointerOperand() != Base) 1035 continue; 1036 1037 SmallVector<Value *, 2> OffsetV; 1038 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1039 continue; 1040 1041 // Create a Builder and replace the target callsite with a gep 1042 assert(RelocatedBase->getNextNode() && 1043 "Should always have one since it's not a terminator"); 1044 1045 // Insert after RelocatedBase 1046 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1047 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1048 1049 // If gc_relocate does not match the actual type, cast it to the right type. 1050 // In theory, there must be a bitcast after gc_relocate if the type does not 1051 // match, and we should reuse it to get the derived pointer. But it could be 1052 // cases like this: 1053 // bb1: 1054 // ... 1055 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1056 // br label %merge 1057 // 1058 // bb2: 1059 // ... 1060 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1061 // br label %merge 1062 // 1063 // merge: 1064 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1065 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1066 // 1067 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1068 // no matter there is already one or not. In this way, we can handle all cases, and 1069 // the extra bitcast should be optimized away in later passes. 1070 Value *ActualRelocatedBase = RelocatedBase; 1071 if (RelocatedBase->getType() != Base->getType()) { 1072 ActualRelocatedBase = 1073 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1074 } 1075 Value *Replacement = Builder.CreateGEP( 1076 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1077 Replacement->takeName(ToReplace); 1078 // If the newly generated derived pointer's type does not match the original derived 1079 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1080 Value *ActualReplacement = Replacement; 1081 if (Replacement->getType() != ToReplace->getType()) { 1082 ActualReplacement = 1083 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1084 } 1085 ToReplace->replaceAllUsesWith(ActualReplacement); 1086 ToReplace->eraseFromParent(); 1087 1088 MadeChange = true; 1089 } 1090 return MadeChange; 1091 } 1092 1093 // Turns this: 1094 // 1095 // %base = ... 1096 // %ptr = gep %base + 15 1097 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1098 // %base' = relocate(%tok, i32 4, i32 4) 1099 // %ptr' = relocate(%tok, i32 4, i32 5) 1100 // %val = load %ptr' 1101 // 1102 // into this: 1103 // 1104 // %base = ... 1105 // %ptr = gep %base + 15 1106 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1107 // %base' = gc.relocate(%tok, i32 4, i32 4) 1108 // %ptr' = gep %base' + 15 1109 // %val = load %ptr' 1110 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1111 bool MadeChange = false; 1112 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1113 1114 for (auto *U : I.users()) 1115 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1116 // Collect all the relocate calls associated with a statepoint 1117 AllRelocateCalls.push_back(Relocate); 1118 1119 // We need atleast one base pointer relocation + one derived pointer 1120 // relocation to mangle 1121 if (AllRelocateCalls.size() < 2) 1122 return false; 1123 1124 // RelocateInstMap is a mapping from the base relocate instruction to the 1125 // corresponding derived relocate instructions 1126 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1127 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1128 if (RelocateInstMap.empty()) 1129 return false; 1130 1131 for (auto &Item : RelocateInstMap) 1132 // Item.first is the RelocatedBase to offset against 1133 // Item.second is the vector of Targets to replace 1134 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1135 return MadeChange; 1136 } 1137 1138 /// SinkCast - Sink the specified cast instruction into its user blocks 1139 static bool SinkCast(CastInst *CI) { 1140 BasicBlock *DefBB = CI->getParent(); 1141 1142 /// InsertedCasts - Only insert a cast in each block once. 1143 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1144 1145 bool MadeChange = false; 1146 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1147 UI != E; ) { 1148 Use &TheUse = UI.getUse(); 1149 Instruction *User = cast<Instruction>(*UI); 1150 1151 // Figure out which BB this cast is used in. For PHI's this is the 1152 // appropriate predecessor block. 1153 BasicBlock *UserBB = User->getParent(); 1154 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1155 UserBB = PN->getIncomingBlock(TheUse); 1156 } 1157 1158 // Preincrement use iterator so we don't invalidate it. 1159 ++UI; 1160 1161 // The first insertion point of a block containing an EH pad is after the 1162 // pad. If the pad is the user, we cannot sink the cast past the pad. 1163 if (User->isEHPad()) 1164 continue; 1165 1166 // If the block selected to receive the cast is an EH pad that does not 1167 // allow non-PHI instructions before the terminator, we can't sink the 1168 // cast. 1169 if (UserBB->getTerminator()->isEHPad()) 1170 continue; 1171 1172 // If this user is in the same block as the cast, don't change the cast. 1173 if (UserBB == DefBB) continue; 1174 1175 // If we have already inserted a cast into this block, use it. 1176 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1177 1178 if (!InsertedCast) { 1179 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1180 assert(InsertPt != UserBB->end()); 1181 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1182 CI->getType(), "", &*InsertPt); 1183 } 1184 1185 // Replace a use of the cast with a use of the new cast. 1186 TheUse = InsertedCast; 1187 MadeChange = true; 1188 ++NumCastUses; 1189 } 1190 1191 // If we removed all uses, nuke the cast. 1192 if (CI->use_empty()) { 1193 salvageDebugInfo(*CI); 1194 CI->eraseFromParent(); 1195 MadeChange = true; 1196 } 1197 1198 return MadeChange; 1199 } 1200 1201 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1202 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1203 /// reduce the number of virtual registers that must be created and coalesced. 1204 /// 1205 /// Return true if any changes are made. 1206 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1207 const DataLayout &DL) { 1208 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1209 // than sinking only nop casts, but is helpful on some platforms. 1210 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1211 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1212 ASC->getDestAddressSpace())) 1213 return false; 1214 } 1215 1216 // If this is a noop copy, 1217 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1218 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1219 1220 // This is an fp<->int conversion? 1221 if (SrcVT.isInteger() != DstVT.isInteger()) 1222 return false; 1223 1224 // If this is an extension, it will be a zero or sign extension, which 1225 // isn't a noop. 1226 if (SrcVT.bitsLT(DstVT)) return false; 1227 1228 // If these values will be promoted, find out what they will be promoted 1229 // to. This helps us consider truncates on PPC as noop copies when they 1230 // are. 1231 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1232 TargetLowering::TypePromoteInteger) 1233 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1234 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1235 TargetLowering::TypePromoteInteger) 1236 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1237 1238 // If, after promotion, these are the same types, this is a noop copy. 1239 if (SrcVT != DstVT) 1240 return false; 1241 1242 return SinkCast(CI); 1243 } 1244 1245 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1246 /// possible. 1247 /// 1248 /// Return true if any changes were made. 1249 static bool CombineUAddWithOverflow(CmpInst *CI) { 1250 Value *A, *B; 1251 Instruction *AddI; 1252 if (!match(CI, 1253 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1254 return false; 1255 1256 Type *Ty = AddI->getType(); 1257 if (!isa<IntegerType>(Ty)) 1258 return false; 1259 1260 // We don't want to move around uses of condition values this late, so we we 1261 // check if it is legal to create the call to the intrinsic in the basic 1262 // block containing the icmp: 1263 1264 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1265 return false; 1266 1267 #ifndef NDEBUG 1268 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1269 // for now: 1270 if (AddI->hasOneUse()) 1271 assert(*AddI->user_begin() == CI && "expected!"); 1272 #endif 1273 1274 Module *M = CI->getModule(); 1275 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1276 1277 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1278 1279 auto *UAddWithOverflow = 1280 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1281 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1282 auto *Overflow = 1283 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1284 1285 CI->replaceAllUsesWith(Overflow); 1286 AddI->replaceAllUsesWith(UAdd); 1287 CI->eraseFromParent(); 1288 AddI->eraseFromParent(); 1289 return true; 1290 } 1291 1292 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1293 /// registers that must be created and coalesced. This is a clear win except on 1294 /// targets with multiple condition code registers (PowerPC), where it might 1295 /// lose; some adjustment may be wanted there. 1296 /// 1297 /// Return true if any changes are made. 1298 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1299 BasicBlock *DefBB = CI->getParent(); 1300 1301 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1302 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1303 return false; 1304 1305 // Only insert a cmp in each block once. 1306 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1307 1308 bool MadeChange = false; 1309 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1310 UI != E; ) { 1311 Use &TheUse = UI.getUse(); 1312 Instruction *User = cast<Instruction>(*UI); 1313 1314 // Preincrement use iterator so we don't invalidate it. 1315 ++UI; 1316 1317 // Don't bother for PHI nodes. 1318 if (isa<PHINode>(User)) 1319 continue; 1320 1321 // Figure out which BB this cmp is used in. 1322 BasicBlock *UserBB = User->getParent(); 1323 1324 // If this user is in the same block as the cmp, don't change the cmp. 1325 if (UserBB == DefBB) continue; 1326 1327 // If we have already inserted a cmp into this block, use it. 1328 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1329 1330 if (!InsertedCmp) { 1331 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1332 assert(InsertPt != UserBB->end()); 1333 InsertedCmp = 1334 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1335 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1336 // Propagate the debug info. 1337 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1338 } 1339 1340 // Replace a use of the cmp with a use of the new cmp. 1341 TheUse = InsertedCmp; 1342 MadeChange = true; 1343 ++NumCmpUses; 1344 } 1345 1346 // If we removed all uses, nuke the cmp. 1347 if (CI->use_empty()) { 1348 CI->eraseFromParent(); 1349 MadeChange = true; 1350 } 1351 1352 return MadeChange; 1353 } 1354 1355 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1356 if (SinkCmpExpression(CI, TLI)) 1357 return true; 1358 1359 if (CombineUAddWithOverflow(CI)) 1360 return true; 1361 1362 return false; 1363 } 1364 1365 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1366 /// used in a compare to allow isel to generate better code for targets where 1367 /// this operation can be combined. 1368 /// 1369 /// Return true if any changes are made. 1370 static bool sinkAndCmp0Expression(Instruction *AndI, 1371 const TargetLowering &TLI, 1372 SetOfInstrs &InsertedInsts) { 1373 // Double-check that we're not trying to optimize an instruction that was 1374 // already optimized by some other part of this pass. 1375 assert(!InsertedInsts.count(AndI) && 1376 "Attempting to optimize already optimized and instruction"); 1377 (void) InsertedInsts; 1378 1379 // Nothing to do for single use in same basic block. 1380 if (AndI->hasOneUse() && 1381 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1382 return false; 1383 1384 // Try to avoid cases where sinking/duplicating is likely to increase register 1385 // pressure. 1386 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1387 !isa<ConstantInt>(AndI->getOperand(1)) && 1388 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1389 return false; 1390 1391 for (auto *U : AndI->users()) { 1392 Instruction *User = cast<Instruction>(U); 1393 1394 // Only sink for and mask feeding icmp with 0. 1395 if (!isa<ICmpInst>(User)) 1396 return false; 1397 1398 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1399 if (!CmpC || !CmpC->isZero()) 1400 return false; 1401 } 1402 1403 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1404 return false; 1405 1406 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1407 DEBUG(AndI->getParent()->dump()); 1408 1409 // Push the 'and' into the same block as the icmp 0. There should only be 1410 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1411 // others, so we don't need to keep track of which BBs we insert into. 1412 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1413 UI != E; ) { 1414 Use &TheUse = UI.getUse(); 1415 Instruction *User = cast<Instruction>(*UI); 1416 1417 // Preincrement use iterator so we don't invalidate it. 1418 ++UI; 1419 1420 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1421 1422 // Keep the 'and' in the same place if the use is already in the same block. 1423 Instruction *InsertPt = 1424 User->getParent() == AndI->getParent() ? AndI : User; 1425 Instruction *InsertedAnd = 1426 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1427 AndI->getOperand(1), "", InsertPt); 1428 // Propagate the debug info. 1429 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1430 1431 // Replace a use of the 'and' with a use of the new 'and'. 1432 TheUse = InsertedAnd; 1433 ++NumAndUses; 1434 DEBUG(User->getParent()->dump()); 1435 } 1436 1437 // We removed all uses, nuke the and. 1438 AndI->eraseFromParent(); 1439 return true; 1440 } 1441 1442 /// Check if the candidates could be combined with a shift instruction, which 1443 /// includes: 1444 /// 1. Truncate instruction 1445 /// 2. And instruction and the imm is a mask of the low bits: 1446 /// imm & (imm+1) == 0 1447 static bool isExtractBitsCandidateUse(Instruction *User) { 1448 if (!isa<TruncInst>(User)) { 1449 if (User->getOpcode() != Instruction::And || 1450 !isa<ConstantInt>(User->getOperand(1))) 1451 return false; 1452 1453 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1454 1455 if ((Cimm & (Cimm + 1)).getBoolValue()) 1456 return false; 1457 } 1458 return true; 1459 } 1460 1461 /// Sink both shift and truncate instruction to the use of truncate's BB. 1462 static bool 1463 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1464 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1465 const TargetLowering &TLI, const DataLayout &DL) { 1466 BasicBlock *UserBB = User->getParent(); 1467 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1468 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1469 bool MadeChange = false; 1470 1471 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1472 TruncE = TruncI->user_end(); 1473 TruncUI != TruncE;) { 1474 1475 Use &TruncTheUse = TruncUI.getUse(); 1476 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1477 // Preincrement use iterator so we don't invalidate it. 1478 1479 ++TruncUI; 1480 1481 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1482 if (!ISDOpcode) 1483 continue; 1484 1485 // If the use is actually a legal node, there will not be an 1486 // implicit truncate. 1487 // FIXME: always querying the result type is just an 1488 // approximation; some nodes' legality is determined by the 1489 // operand or other means. There's no good way to find out though. 1490 if (TLI.isOperationLegalOrCustom( 1491 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1492 continue; 1493 1494 // Don't bother for PHI nodes. 1495 if (isa<PHINode>(TruncUser)) 1496 continue; 1497 1498 BasicBlock *TruncUserBB = TruncUser->getParent(); 1499 1500 if (UserBB == TruncUserBB) 1501 continue; 1502 1503 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1504 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1505 1506 if (!InsertedShift && !InsertedTrunc) { 1507 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1508 assert(InsertPt != TruncUserBB->end()); 1509 // Sink the shift 1510 if (ShiftI->getOpcode() == Instruction::AShr) 1511 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1512 "", &*InsertPt); 1513 else 1514 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1515 "", &*InsertPt); 1516 1517 // Sink the trunc 1518 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1519 TruncInsertPt++; 1520 assert(TruncInsertPt != TruncUserBB->end()); 1521 1522 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1523 TruncI->getType(), "", &*TruncInsertPt); 1524 1525 MadeChange = true; 1526 1527 TruncTheUse = InsertedTrunc; 1528 } 1529 } 1530 return MadeChange; 1531 } 1532 1533 /// Sink the shift *right* instruction into user blocks if the uses could 1534 /// potentially be combined with this shift instruction and generate BitExtract 1535 /// instruction. It will only be applied if the architecture supports BitExtract 1536 /// instruction. Here is an example: 1537 /// BB1: 1538 /// %x.extract.shift = lshr i64 %arg1, 32 1539 /// BB2: 1540 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1541 /// ==> 1542 /// 1543 /// BB2: 1544 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1545 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1546 /// 1547 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1548 /// instruction. 1549 /// Return true if any changes are made. 1550 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1551 const TargetLowering &TLI, 1552 const DataLayout &DL) { 1553 BasicBlock *DefBB = ShiftI->getParent(); 1554 1555 /// Only insert instructions in each block once. 1556 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1557 1558 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1559 1560 bool MadeChange = false; 1561 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1562 UI != E;) { 1563 Use &TheUse = UI.getUse(); 1564 Instruction *User = cast<Instruction>(*UI); 1565 // Preincrement use iterator so we don't invalidate it. 1566 ++UI; 1567 1568 // Don't bother for PHI nodes. 1569 if (isa<PHINode>(User)) 1570 continue; 1571 1572 if (!isExtractBitsCandidateUse(User)) 1573 continue; 1574 1575 BasicBlock *UserBB = User->getParent(); 1576 1577 if (UserBB == DefBB) { 1578 // If the shift and truncate instruction are in the same BB. The use of 1579 // the truncate(TruncUse) may still introduce another truncate if not 1580 // legal. In this case, we would like to sink both shift and truncate 1581 // instruction to the BB of TruncUse. 1582 // for example: 1583 // BB1: 1584 // i64 shift.result = lshr i64 opnd, imm 1585 // trunc.result = trunc shift.result to i16 1586 // 1587 // BB2: 1588 // ----> We will have an implicit truncate here if the architecture does 1589 // not have i16 compare. 1590 // cmp i16 trunc.result, opnd2 1591 // 1592 if (isa<TruncInst>(User) && shiftIsLegal 1593 // If the type of the truncate is legal, no trucate will be 1594 // introduced in other basic blocks. 1595 && 1596 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1597 MadeChange = 1598 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1599 1600 continue; 1601 } 1602 // If we have already inserted a shift into this block, use it. 1603 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1604 1605 if (!InsertedShift) { 1606 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1607 assert(InsertPt != UserBB->end()); 1608 1609 if (ShiftI->getOpcode() == Instruction::AShr) 1610 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1611 "", &*InsertPt); 1612 else 1613 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1614 "", &*InsertPt); 1615 1616 MadeChange = true; 1617 } 1618 1619 // Replace a use of the shift with a use of the new shift. 1620 TheUse = InsertedShift; 1621 } 1622 1623 // If we removed all uses, nuke the shift. 1624 if (ShiftI->use_empty()) 1625 ShiftI->eraseFromParent(); 1626 1627 return MadeChange; 1628 } 1629 1630 /// If counting leading or trailing zeros is an expensive operation and a zero 1631 /// input is defined, add a check for zero to avoid calling the intrinsic. 1632 /// 1633 /// We want to transform: 1634 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1635 /// 1636 /// into: 1637 /// entry: 1638 /// %cmpz = icmp eq i64 %A, 0 1639 /// br i1 %cmpz, label %cond.end, label %cond.false 1640 /// cond.false: 1641 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1642 /// br label %cond.end 1643 /// cond.end: 1644 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1645 /// 1646 /// If the transform is performed, return true and set ModifiedDT to true. 1647 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1648 const TargetLowering *TLI, 1649 const DataLayout *DL, 1650 bool &ModifiedDT) { 1651 if (!TLI || !DL) 1652 return false; 1653 1654 // If a zero input is undefined, it doesn't make sense to despeculate that. 1655 if (match(CountZeros->getOperand(1), m_One())) 1656 return false; 1657 1658 // If it's cheap to speculate, there's nothing to do. 1659 auto IntrinsicID = CountZeros->getIntrinsicID(); 1660 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1661 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1662 return false; 1663 1664 // Only handle legal scalar cases. Anything else requires too much work. 1665 Type *Ty = CountZeros->getType(); 1666 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1667 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1668 return false; 1669 1670 // The intrinsic will be sunk behind a compare against zero and branch. 1671 BasicBlock *StartBlock = CountZeros->getParent(); 1672 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1673 1674 // Create another block after the count zero intrinsic. A PHI will be added 1675 // in this block to select the result of the intrinsic or the bit-width 1676 // constant if the input to the intrinsic is zero. 1677 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1678 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1679 1680 // Set up a builder to create a compare, conditional branch, and PHI. 1681 IRBuilder<> Builder(CountZeros->getContext()); 1682 Builder.SetInsertPoint(StartBlock->getTerminator()); 1683 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1684 1685 // Replace the unconditional branch that was created by the first split with 1686 // a compare against zero and a conditional branch. 1687 Value *Zero = Constant::getNullValue(Ty); 1688 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1689 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1690 StartBlock->getTerminator()->eraseFromParent(); 1691 1692 // Create a PHI in the end block to select either the output of the intrinsic 1693 // or the bit width of the operand. 1694 Builder.SetInsertPoint(&EndBlock->front()); 1695 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1696 CountZeros->replaceAllUsesWith(PN); 1697 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1698 PN->addIncoming(BitWidth, StartBlock); 1699 PN->addIncoming(CountZeros, CallBlock); 1700 1701 // We are explicitly handling the zero case, so we can set the intrinsic's 1702 // undefined zero argument to 'true'. This will also prevent reprocessing the 1703 // intrinsic; we only despeculate when a zero input is defined. 1704 CountZeros->setArgOperand(1, Builder.getTrue()); 1705 ModifiedDT = true; 1706 return true; 1707 } 1708 1709 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1710 BasicBlock *BB = CI->getParent(); 1711 1712 // Lower inline assembly if we can. 1713 // If we found an inline asm expession, and if the target knows how to 1714 // lower it to normal LLVM code, do so now. 1715 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1716 if (TLI->ExpandInlineAsm(CI)) { 1717 // Avoid invalidating the iterator. 1718 CurInstIterator = BB->begin(); 1719 // Avoid processing instructions out of order, which could cause 1720 // reuse before a value is defined. 1721 SunkAddrs.clear(); 1722 return true; 1723 } 1724 // Sink address computing for memory operands into the block. 1725 if (optimizeInlineAsmInst(CI)) 1726 return true; 1727 } 1728 1729 // Align the pointer arguments to this call if the target thinks it's a good 1730 // idea 1731 unsigned MinSize, PrefAlign; 1732 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1733 for (auto &Arg : CI->arg_operands()) { 1734 // We want to align both objects whose address is used directly and 1735 // objects whose address is used in casts and GEPs, though it only makes 1736 // sense for GEPs if the offset is a multiple of the desired alignment and 1737 // if size - offset meets the size threshold. 1738 if (!Arg->getType()->isPointerTy()) 1739 continue; 1740 APInt Offset(DL->getPointerSizeInBits( 1741 cast<PointerType>(Arg->getType())->getAddressSpace()), 1742 0); 1743 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1744 uint64_t Offset2 = Offset.getLimitedValue(); 1745 if ((Offset2 & (PrefAlign-1)) != 0) 1746 continue; 1747 AllocaInst *AI; 1748 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1749 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1750 AI->setAlignment(PrefAlign); 1751 // Global variables can only be aligned if they are defined in this 1752 // object (i.e. they are uniquely initialized in this object), and 1753 // over-aligning global variables that have an explicit section is 1754 // forbidden. 1755 GlobalVariable *GV; 1756 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1757 GV->getPointerAlignment(*DL) < PrefAlign && 1758 DL->getTypeAllocSize(GV->getValueType()) >= 1759 MinSize + Offset2) 1760 GV->setAlignment(PrefAlign); 1761 } 1762 // If this is a memcpy (or similar) then we may be able to improve the 1763 // alignment 1764 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1765 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1766 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1767 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1768 if (Align > MI->getAlignment()) 1769 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1770 } 1771 } 1772 1773 // If we have a cold call site, try to sink addressing computation into the 1774 // cold block. This interacts with our handling for loads and stores to 1775 // ensure that we can fold all uses of a potential addressing computation 1776 // into their uses. TODO: generalize this to work over profiling data 1777 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1778 for (auto &Arg : CI->arg_operands()) { 1779 if (!Arg->getType()->isPointerTy()) 1780 continue; 1781 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1782 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1783 } 1784 1785 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1786 if (II) { 1787 switch (II->getIntrinsicID()) { 1788 default: break; 1789 case Intrinsic::objectsize: { 1790 // Lower all uses of llvm.objectsize.* 1791 ConstantInt *RetVal = 1792 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1793 // Substituting this can cause recursive simplifications, which can 1794 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1795 // this 1796 // happens. 1797 Value *CurValue = &*CurInstIterator; 1798 WeakTrackingVH IterHandle(CurValue); 1799 1800 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1801 1802 // If the iterator instruction was recursively deleted, start over at the 1803 // start of the block. 1804 if (IterHandle != CurValue) { 1805 CurInstIterator = BB->begin(); 1806 SunkAddrs.clear(); 1807 } 1808 return true; 1809 } 1810 case Intrinsic::aarch64_stlxr: 1811 case Intrinsic::aarch64_stxr: { 1812 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1813 if (!ExtVal || !ExtVal->hasOneUse() || 1814 ExtVal->getParent() == CI->getParent()) 1815 return false; 1816 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1817 ExtVal->moveBefore(CI); 1818 // Mark this instruction as "inserted by CGP", so that other 1819 // optimizations don't touch it. 1820 InsertedInsts.insert(ExtVal); 1821 return true; 1822 } 1823 case Intrinsic::invariant_group_barrier: 1824 II->replaceAllUsesWith(II->getArgOperand(0)); 1825 II->eraseFromParent(); 1826 return true; 1827 1828 case Intrinsic::cttz: 1829 case Intrinsic::ctlz: 1830 // If counting zeros is expensive, try to avoid it. 1831 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1832 } 1833 1834 if (TLI) { 1835 SmallVector<Value*, 2> PtrOps; 1836 Type *AccessTy; 1837 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1838 while (!PtrOps.empty()) { 1839 Value *PtrVal = PtrOps.pop_back_val(); 1840 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1841 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1842 return true; 1843 } 1844 } 1845 } 1846 1847 // From here on out we're working with named functions. 1848 if (!CI->getCalledFunction()) return false; 1849 1850 // Lower all default uses of _chk calls. This is very similar 1851 // to what InstCombineCalls does, but here we are only lowering calls 1852 // to fortified library functions (e.g. __memcpy_chk) that have the default 1853 // "don't know" as the objectsize. Anything else should be left alone. 1854 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1855 if (Value *V = Simplifier.optimizeCall(CI)) { 1856 CI->replaceAllUsesWith(V); 1857 CI->eraseFromParent(); 1858 return true; 1859 } 1860 1861 return false; 1862 } 1863 1864 /// Look for opportunities to duplicate return instructions to the predecessor 1865 /// to enable tail call optimizations. The case it is currently looking for is: 1866 /// @code 1867 /// bb0: 1868 /// %tmp0 = tail call i32 @f0() 1869 /// br label %return 1870 /// bb1: 1871 /// %tmp1 = tail call i32 @f1() 1872 /// br label %return 1873 /// bb2: 1874 /// %tmp2 = tail call i32 @f2() 1875 /// br label %return 1876 /// return: 1877 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1878 /// ret i32 %retval 1879 /// @endcode 1880 /// 1881 /// => 1882 /// 1883 /// @code 1884 /// bb0: 1885 /// %tmp0 = tail call i32 @f0() 1886 /// ret i32 %tmp0 1887 /// bb1: 1888 /// %tmp1 = tail call i32 @f1() 1889 /// ret i32 %tmp1 1890 /// bb2: 1891 /// %tmp2 = tail call i32 @f2() 1892 /// ret i32 %tmp2 1893 /// @endcode 1894 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1895 if (!TLI) 1896 return false; 1897 1898 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1899 if (!RetI) 1900 return false; 1901 1902 PHINode *PN = nullptr; 1903 BitCastInst *BCI = nullptr; 1904 Value *V = RetI->getReturnValue(); 1905 if (V) { 1906 BCI = dyn_cast<BitCastInst>(V); 1907 if (BCI) 1908 V = BCI->getOperand(0); 1909 1910 PN = dyn_cast<PHINode>(V); 1911 if (!PN) 1912 return false; 1913 } 1914 1915 if (PN && PN->getParent() != BB) 1916 return false; 1917 1918 // Make sure there are no instructions between the PHI and return, or that the 1919 // return is the first instruction in the block. 1920 if (PN) { 1921 BasicBlock::iterator BI = BB->begin(); 1922 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1923 if (&*BI == BCI) 1924 // Also skip over the bitcast. 1925 ++BI; 1926 if (&*BI != RetI) 1927 return false; 1928 } else { 1929 BasicBlock::iterator BI = BB->begin(); 1930 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1931 if (&*BI != RetI) 1932 return false; 1933 } 1934 1935 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1936 /// call. 1937 const Function *F = BB->getParent(); 1938 SmallVector<CallInst*, 4> TailCalls; 1939 if (PN) { 1940 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1941 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1942 // Make sure the phi value is indeed produced by the tail call. 1943 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1944 TLI->mayBeEmittedAsTailCall(CI) && 1945 attributesPermitTailCall(F, CI, RetI, *TLI)) 1946 TailCalls.push_back(CI); 1947 } 1948 } else { 1949 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1950 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1951 if (!VisitedBBs.insert(*PI).second) 1952 continue; 1953 1954 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1955 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1956 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1957 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1958 if (RI == RE) 1959 continue; 1960 1961 CallInst *CI = dyn_cast<CallInst>(&*RI); 1962 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1963 attributesPermitTailCall(F, CI, RetI, *TLI)) 1964 TailCalls.push_back(CI); 1965 } 1966 } 1967 1968 bool Changed = false; 1969 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1970 CallInst *CI = TailCalls[i]; 1971 CallSite CS(CI); 1972 1973 // Conservatively require the attributes of the call to match those of the 1974 // return. Ignore noalias because it doesn't affect the call sequence. 1975 AttributeList CalleeAttrs = CS.getAttributes(); 1976 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1977 .removeAttribute(Attribute::NoAlias) != 1978 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1979 .removeAttribute(Attribute::NoAlias)) 1980 continue; 1981 1982 // Make sure the call instruction is followed by an unconditional branch to 1983 // the return block. 1984 BasicBlock *CallBB = CI->getParent(); 1985 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1986 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1987 continue; 1988 1989 // Duplicate the return into CallBB. 1990 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1991 ModifiedDT = Changed = true; 1992 ++NumRetsDup; 1993 } 1994 1995 // If we eliminated all predecessors of the block, delete the block now. 1996 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1997 BB->eraseFromParent(); 1998 1999 return Changed; 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // Memory Optimization 2004 //===----------------------------------------------------------------------===// 2005 2006 namespace { 2007 2008 /// This is an extended version of TargetLowering::AddrMode 2009 /// which holds actual Value*'s for register values. 2010 struct ExtAddrMode : public TargetLowering::AddrMode { 2011 Value *BaseReg = nullptr; 2012 Value *ScaledReg = nullptr; 2013 Value *OriginalValue = nullptr; 2014 2015 enum FieldName { 2016 NoField = 0x00, 2017 BaseRegField = 0x01, 2018 BaseGVField = 0x02, 2019 BaseOffsField = 0x04, 2020 ScaledRegField = 0x08, 2021 ScaleField = 0x10, 2022 MultipleFields = 0xff 2023 }; 2024 2025 ExtAddrMode() = default; 2026 2027 void print(raw_ostream &OS) const; 2028 void dump() const; 2029 2030 FieldName compare(const ExtAddrMode &other) { 2031 // First check that the types are the same on each field, as differing types 2032 // is something we can't cope with later on. 2033 if (BaseReg && other.BaseReg && 2034 BaseReg->getType() != other.BaseReg->getType()) 2035 return MultipleFields; 2036 if (BaseGV && other.BaseGV && 2037 BaseGV->getType() != other.BaseGV->getType()) 2038 return MultipleFields; 2039 if (ScaledReg && other.ScaledReg && 2040 ScaledReg->getType() != other.ScaledReg->getType()) 2041 return MultipleFields; 2042 2043 // Check each field to see if it differs. 2044 unsigned Result = NoField; 2045 if (BaseReg != other.BaseReg) 2046 Result |= BaseRegField; 2047 if (BaseGV != other.BaseGV) 2048 Result |= BaseGVField; 2049 if (BaseOffs != other.BaseOffs) 2050 Result |= BaseOffsField; 2051 if (ScaledReg != other.ScaledReg) 2052 Result |= ScaledRegField; 2053 // Don't count 0 as being a different scale, because that actually means 2054 // unscaled (which will already be counted by having no ScaledReg). 2055 if (Scale && other.Scale && Scale != other.Scale) 2056 Result |= ScaleField; 2057 2058 if (countPopulation(Result) > 1) 2059 return MultipleFields; 2060 else 2061 return static_cast<FieldName>(Result); 2062 } 2063 2064 // AddrModes with a baseReg or gv where the reg/gv is 2065 // the only populated field are trivial. 2066 bool isTrivial() { 2067 if (BaseGV && !BaseOffs && !Scale && !BaseReg) 2068 return true; 2069 2070 if (!BaseGV && !BaseOffs && !Scale && BaseReg) 2071 return true; 2072 2073 return false; 2074 } 2075 }; 2076 2077 } // end anonymous namespace 2078 2079 #ifndef NDEBUG 2080 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2081 AM.print(OS); 2082 return OS; 2083 } 2084 #endif 2085 2086 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2087 void ExtAddrMode::print(raw_ostream &OS) const { 2088 bool NeedPlus = false; 2089 OS << "["; 2090 if (BaseGV) { 2091 OS << (NeedPlus ? " + " : "") 2092 << "GV:"; 2093 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2094 NeedPlus = true; 2095 } 2096 2097 if (BaseOffs) { 2098 OS << (NeedPlus ? " + " : "") 2099 << BaseOffs; 2100 NeedPlus = true; 2101 } 2102 2103 if (BaseReg) { 2104 OS << (NeedPlus ? " + " : "") 2105 << "Base:"; 2106 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2107 NeedPlus = true; 2108 } 2109 if (Scale) { 2110 OS << (NeedPlus ? " + " : "") 2111 << Scale << "*"; 2112 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2113 } 2114 2115 OS << ']'; 2116 } 2117 2118 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2119 print(dbgs()); 2120 dbgs() << '\n'; 2121 } 2122 #endif 2123 2124 namespace { 2125 2126 /// \brief This class provides transaction based operation on the IR. 2127 /// Every change made through this class is recorded in the internal state and 2128 /// can be undone (rollback) until commit is called. 2129 class TypePromotionTransaction { 2130 /// \brief This represents the common interface of the individual transaction. 2131 /// Each class implements the logic for doing one specific modification on 2132 /// the IR via the TypePromotionTransaction. 2133 class TypePromotionAction { 2134 protected: 2135 /// The Instruction modified. 2136 Instruction *Inst; 2137 2138 public: 2139 /// \brief Constructor of the action. 2140 /// The constructor performs the related action on the IR. 2141 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2142 2143 virtual ~TypePromotionAction() = default; 2144 2145 /// \brief Undo the modification done by this action. 2146 /// When this method is called, the IR must be in the same state as it was 2147 /// before this action was applied. 2148 /// \pre Undoing the action works if and only if the IR is in the exact same 2149 /// state as it was directly after this action was applied. 2150 virtual void undo() = 0; 2151 2152 /// \brief Advocate every change made by this action. 2153 /// When the results on the IR of the action are to be kept, it is important 2154 /// to call this function, otherwise hidden information may be kept forever. 2155 virtual void commit() { 2156 // Nothing to be done, this action is not doing anything. 2157 } 2158 }; 2159 2160 /// \brief Utility to remember the position of an instruction. 2161 class InsertionHandler { 2162 /// Position of an instruction. 2163 /// Either an instruction: 2164 /// - Is the first in a basic block: BB is used. 2165 /// - Has a previous instructon: PrevInst is used. 2166 union { 2167 Instruction *PrevInst; 2168 BasicBlock *BB; 2169 } Point; 2170 2171 /// Remember whether or not the instruction had a previous instruction. 2172 bool HasPrevInstruction; 2173 2174 public: 2175 /// \brief Record the position of \p Inst. 2176 InsertionHandler(Instruction *Inst) { 2177 BasicBlock::iterator It = Inst->getIterator(); 2178 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2179 if (HasPrevInstruction) 2180 Point.PrevInst = &*--It; 2181 else 2182 Point.BB = Inst->getParent(); 2183 } 2184 2185 /// \brief Insert \p Inst at the recorded position. 2186 void insert(Instruction *Inst) { 2187 if (HasPrevInstruction) { 2188 if (Inst->getParent()) 2189 Inst->removeFromParent(); 2190 Inst->insertAfter(Point.PrevInst); 2191 } else { 2192 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2193 if (Inst->getParent()) 2194 Inst->moveBefore(Position); 2195 else 2196 Inst->insertBefore(Position); 2197 } 2198 } 2199 }; 2200 2201 /// \brief Move an instruction before another. 2202 class InstructionMoveBefore : public TypePromotionAction { 2203 /// Original position of the instruction. 2204 InsertionHandler Position; 2205 2206 public: 2207 /// \brief Move \p Inst before \p Before. 2208 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2209 : TypePromotionAction(Inst), Position(Inst) { 2210 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2211 Inst->moveBefore(Before); 2212 } 2213 2214 /// \brief Move the instruction back to its original position. 2215 void undo() override { 2216 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2217 Position.insert(Inst); 2218 } 2219 }; 2220 2221 /// \brief Set the operand of an instruction with a new value. 2222 class OperandSetter : public TypePromotionAction { 2223 /// Original operand of the instruction. 2224 Value *Origin; 2225 2226 /// Index of the modified instruction. 2227 unsigned Idx; 2228 2229 public: 2230 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2231 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2232 : TypePromotionAction(Inst), Idx(Idx) { 2233 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2234 << "for:" << *Inst << "\n" 2235 << "with:" << *NewVal << "\n"); 2236 Origin = Inst->getOperand(Idx); 2237 Inst->setOperand(Idx, NewVal); 2238 } 2239 2240 /// \brief Restore the original value of the instruction. 2241 void undo() override { 2242 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2243 << "for: " << *Inst << "\n" 2244 << "with: " << *Origin << "\n"); 2245 Inst->setOperand(Idx, Origin); 2246 } 2247 }; 2248 2249 /// \brief Hide the operands of an instruction. 2250 /// Do as if this instruction was not using any of its operands. 2251 class OperandsHider : public TypePromotionAction { 2252 /// The list of original operands. 2253 SmallVector<Value *, 4> OriginalValues; 2254 2255 public: 2256 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2257 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2258 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2259 unsigned NumOpnds = Inst->getNumOperands(); 2260 OriginalValues.reserve(NumOpnds); 2261 for (unsigned It = 0; It < NumOpnds; ++It) { 2262 // Save the current operand. 2263 Value *Val = Inst->getOperand(It); 2264 OriginalValues.push_back(Val); 2265 // Set a dummy one. 2266 // We could use OperandSetter here, but that would imply an overhead 2267 // that we are not willing to pay. 2268 Inst->setOperand(It, UndefValue::get(Val->getType())); 2269 } 2270 } 2271 2272 /// \brief Restore the original list of uses. 2273 void undo() override { 2274 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2275 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2276 Inst->setOperand(It, OriginalValues[It]); 2277 } 2278 }; 2279 2280 /// \brief Build a truncate instruction. 2281 class TruncBuilder : public TypePromotionAction { 2282 Value *Val; 2283 2284 public: 2285 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2286 /// result. 2287 /// trunc Opnd to Ty. 2288 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2289 IRBuilder<> Builder(Opnd); 2290 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2291 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2292 } 2293 2294 /// \brief Get the built value. 2295 Value *getBuiltValue() { return Val; } 2296 2297 /// \brief Remove the built instruction. 2298 void undo() override { 2299 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2300 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2301 IVal->eraseFromParent(); 2302 } 2303 }; 2304 2305 /// \brief Build a sign extension instruction. 2306 class SExtBuilder : public TypePromotionAction { 2307 Value *Val; 2308 2309 public: 2310 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2311 /// result. 2312 /// sext Opnd to Ty. 2313 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2314 : TypePromotionAction(InsertPt) { 2315 IRBuilder<> Builder(InsertPt); 2316 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2317 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2318 } 2319 2320 /// \brief Get the built value. 2321 Value *getBuiltValue() { return Val; } 2322 2323 /// \brief Remove the built instruction. 2324 void undo() override { 2325 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2326 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2327 IVal->eraseFromParent(); 2328 } 2329 }; 2330 2331 /// \brief Build a zero extension instruction. 2332 class ZExtBuilder : public TypePromotionAction { 2333 Value *Val; 2334 2335 public: 2336 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2337 /// result. 2338 /// zext Opnd to Ty. 2339 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2340 : TypePromotionAction(InsertPt) { 2341 IRBuilder<> Builder(InsertPt); 2342 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2343 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2344 } 2345 2346 /// \brief Get the built value. 2347 Value *getBuiltValue() { return Val; } 2348 2349 /// \brief Remove the built instruction. 2350 void undo() override { 2351 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2352 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2353 IVal->eraseFromParent(); 2354 } 2355 }; 2356 2357 /// \brief Mutate an instruction to another type. 2358 class TypeMutator : public TypePromotionAction { 2359 /// Record the original type. 2360 Type *OrigTy; 2361 2362 public: 2363 /// \brief Mutate the type of \p Inst into \p NewTy. 2364 TypeMutator(Instruction *Inst, Type *NewTy) 2365 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2366 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2367 << "\n"); 2368 Inst->mutateType(NewTy); 2369 } 2370 2371 /// \brief Mutate the instruction back to its original type. 2372 void undo() override { 2373 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2374 << "\n"); 2375 Inst->mutateType(OrigTy); 2376 } 2377 }; 2378 2379 /// \brief Replace the uses of an instruction by another instruction. 2380 class UsesReplacer : public TypePromotionAction { 2381 /// Helper structure to keep track of the replaced uses. 2382 struct InstructionAndIdx { 2383 /// The instruction using the instruction. 2384 Instruction *Inst; 2385 2386 /// The index where this instruction is used for Inst. 2387 unsigned Idx; 2388 2389 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2390 : Inst(Inst), Idx(Idx) {} 2391 }; 2392 2393 /// Keep track of the original uses (pair Instruction, Index). 2394 SmallVector<InstructionAndIdx, 4> OriginalUses; 2395 2396 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2397 2398 public: 2399 /// \brief Replace all the use of \p Inst by \p New. 2400 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2401 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2402 << "\n"); 2403 // Record the original uses. 2404 for (Use &U : Inst->uses()) { 2405 Instruction *UserI = cast<Instruction>(U.getUser()); 2406 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2407 } 2408 // Now, we can replace the uses. 2409 Inst->replaceAllUsesWith(New); 2410 } 2411 2412 /// \brief Reassign the original uses of Inst to Inst. 2413 void undo() override { 2414 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2415 for (use_iterator UseIt = OriginalUses.begin(), 2416 EndIt = OriginalUses.end(); 2417 UseIt != EndIt; ++UseIt) { 2418 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2419 } 2420 } 2421 }; 2422 2423 /// \brief Remove an instruction from the IR. 2424 class InstructionRemover : public TypePromotionAction { 2425 /// Original position of the instruction. 2426 InsertionHandler Inserter; 2427 2428 /// Helper structure to hide all the link to the instruction. In other 2429 /// words, this helps to do as if the instruction was removed. 2430 OperandsHider Hider; 2431 2432 /// Keep track of the uses replaced, if any. 2433 UsesReplacer *Replacer = nullptr; 2434 2435 /// Keep track of instructions removed. 2436 SetOfInstrs &RemovedInsts; 2437 2438 public: 2439 /// \brief Remove all reference of \p Inst and optinally replace all its 2440 /// uses with New. 2441 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2442 /// \pre If !Inst->use_empty(), then New != nullptr 2443 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2444 Value *New = nullptr) 2445 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2446 RemovedInsts(RemovedInsts) { 2447 if (New) 2448 Replacer = new UsesReplacer(Inst, New); 2449 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2450 RemovedInsts.insert(Inst); 2451 /// The instructions removed here will be freed after completing 2452 /// optimizeBlock() for all blocks as we need to keep track of the 2453 /// removed instructions during promotion. 2454 Inst->removeFromParent(); 2455 } 2456 2457 ~InstructionRemover() override { delete Replacer; } 2458 2459 /// \brief Resurrect the instruction and reassign it to the proper uses if 2460 /// new value was provided when build this action. 2461 void undo() override { 2462 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2463 Inserter.insert(Inst); 2464 if (Replacer) 2465 Replacer->undo(); 2466 Hider.undo(); 2467 RemovedInsts.erase(Inst); 2468 } 2469 }; 2470 2471 public: 2472 /// Restoration point. 2473 /// The restoration point is a pointer to an action instead of an iterator 2474 /// because the iterator may be invalidated but not the pointer. 2475 using ConstRestorationPt = const TypePromotionAction *; 2476 2477 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2478 : RemovedInsts(RemovedInsts) {} 2479 2480 /// Advocate every changes made in that transaction. 2481 void commit(); 2482 2483 /// Undo all the changes made after the given point. 2484 void rollback(ConstRestorationPt Point); 2485 2486 /// Get the current restoration point. 2487 ConstRestorationPt getRestorationPoint() const; 2488 2489 /// \name API for IR modification with state keeping to support rollback. 2490 /// @{ 2491 /// Same as Instruction::setOperand. 2492 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2493 2494 /// Same as Instruction::eraseFromParent. 2495 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2496 2497 /// Same as Value::replaceAllUsesWith. 2498 void replaceAllUsesWith(Instruction *Inst, Value *New); 2499 2500 /// Same as Value::mutateType. 2501 void mutateType(Instruction *Inst, Type *NewTy); 2502 2503 /// Same as IRBuilder::createTrunc. 2504 Value *createTrunc(Instruction *Opnd, Type *Ty); 2505 2506 /// Same as IRBuilder::createSExt. 2507 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2508 2509 /// Same as IRBuilder::createZExt. 2510 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2511 2512 /// Same as Instruction::moveBefore. 2513 void moveBefore(Instruction *Inst, Instruction *Before); 2514 /// @} 2515 2516 private: 2517 /// The ordered list of actions made so far. 2518 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2519 2520 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2521 2522 SetOfInstrs &RemovedInsts; 2523 }; 2524 2525 } // end anonymous namespace 2526 2527 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2528 Value *NewVal) { 2529 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2530 Inst, Idx, NewVal)); 2531 } 2532 2533 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2534 Value *NewVal) { 2535 Actions.push_back( 2536 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2537 Inst, RemovedInsts, NewVal)); 2538 } 2539 2540 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2541 Value *New) { 2542 Actions.push_back( 2543 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2544 } 2545 2546 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2547 Actions.push_back( 2548 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2549 } 2550 2551 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2552 Type *Ty) { 2553 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2554 Value *Val = Ptr->getBuiltValue(); 2555 Actions.push_back(std::move(Ptr)); 2556 return Val; 2557 } 2558 2559 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2560 Value *Opnd, Type *Ty) { 2561 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2562 Value *Val = Ptr->getBuiltValue(); 2563 Actions.push_back(std::move(Ptr)); 2564 return Val; 2565 } 2566 2567 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2568 Value *Opnd, Type *Ty) { 2569 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2570 Value *Val = Ptr->getBuiltValue(); 2571 Actions.push_back(std::move(Ptr)); 2572 return Val; 2573 } 2574 2575 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2576 Instruction *Before) { 2577 Actions.push_back( 2578 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2579 Inst, Before)); 2580 } 2581 2582 TypePromotionTransaction::ConstRestorationPt 2583 TypePromotionTransaction::getRestorationPoint() const { 2584 return !Actions.empty() ? Actions.back().get() : nullptr; 2585 } 2586 2587 void TypePromotionTransaction::commit() { 2588 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2589 ++It) 2590 (*It)->commit(); 2591 Actions.clear(); 2592 } 2593 2594 void TypePromotionTransaction::rollback( 2595 TypePromotionTransaction::ConstRestorationPt Point) { 2596 while (!Actions.empty() && Point != Actions.back().get()) { 2597 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2598 Curr->undo(); 2599 } 2600 } 2601 2602 namespace { 2603 2604 /// \brief A helper class for matching addressing modes. 2605 /// 2606 /// This encapsulates the logic for matching the target-legal addressing modes. 2607 class AddressingModeMatcher { 2608 SmallVectorImpl<Instruction*> &AddrModeInsts; 2609 const TargetLowering &TLI; 2610 const TargetRegisterInfo &TRI; 2611 const DataLayout &DL; 2612 2613 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2614 /// the memory instruction that we're computing this address for. 2615 Type *AccessTy; 2616 unsigned AddrSpace; 2617 Instruction *MemoryInst; 2618 2619 /// This is the addressing mode that we're building up. This is 2620 /// part of the return value of this addressing mode matching stuff. 2621 ExtAddrMode &AddrMode; 2622 2623 /// The instructions inserted by other CodeGenPrepare optimizations. 2624 const SetOfInstrs &InsertedInsts; 2625 2626 /// A map from the instructions to their type before promotion. 2627 InstrToOrigTy &PromotedInsts; 2628 2629 /// The ongoing transaction where every action should be registered. 2630 TypePromotionTransaction &TPT; 2631 2632 /// This is set to true when we should not do profitability checks. 2633 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2634 bool IgnoreProfitability; 2635 2636 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2637 const TargetLowering &TLI, 2638 const TargetRegisterInfo &TRI, 2639 Type *AT, unsigned AS, 2640 Instruction *MI, ExtAddrMode &AM, 2641 const SetOfInstrs &InsertedInsts, 2642 InstrToOrigTy &PromotedInsts, 2643 TypePromotionTransaction &TPT) 2644 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2645 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2646 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2647 PromotedInsts(PromotedInsts), TPT(TPT) { 2648 IgnoreProfitability = false; 2649 } 2650 2651 public: 2652 /// Find the maximal addressing mode that a load/store of V can fold, 2653 /// give an access type of AccessTy. This returns a list of involved 2654 /// instructions in AddrModeInsts. 2655 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2656 /// optimizations. 2657 /// \p PromotedInsts maps the instructions to their type before promotion. 2658 /// \p The ongoing transaction where every action should be registered. 2659 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2660 Instruction *MemoryInst, 2661 SmallVectorImpl<Instruction*> &AddrModeInsts, 2662 const TargetLowering &TLI, 2663 const TargetRegisterInfo &TRI, 2664 const SetOfInstrs &InsertedInsts, 2665 InstrToOrigTy &PromotedInsts, 2666 TypePromotionTransaction &TPT) { 2667 ExtAddrMode Result; 2668 2669 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2670 AccessTy, AS, 2671 MemoryInst, Result, InsertedInsts, 2672 PromotedInsts, TPT).matchAddr(V, 0); 2673 (void)Success; assert(Success && "Couldn't select *anything*?"); 2674 return Result; 2675 } 2676 2677 private: 2678 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2679 bool matchAddr(Value *V, unsigned Depth); 2680 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2681 bool *MovedAway = nullptr); 2682 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2683 ExtAddrMode &AMBefore, 2684 ExtAddrMode &AMAfter); 2685 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2686 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2687 Value *PromotedOperand) const; 2688 }; 2689 2690 /// \brief Keep track of simplification of Phi nodes. 2691 /// Accept the set of all phi nodes and erase phi node from this set 2692 /// if it is simplified. 2693 class SimplificationTracker { 2694 DenseMap<Value *, Value *> Storage; 2695 const SimplifyQuery &SQ; 2696 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2697 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2698 2699 public: 2700 SimplificationTracker(const SimplifyQuery &sq, 2701 SmallPtrSetImpl<PHINode *> &APN, 2702 SmallPtrSetImpl<SelectInst *> &ASN) 2703 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2704 2705 Value *Get(Value *V) { 2706 do { 2707 auto SV = Storage.find(V); 2708 if (SV == Storage.end()) 2709 return V; 2710 V = SV->second; 2711 } while (true); 2712 } 2713 2714 Value *Simplify(Value *Val) { 2715 SmallVector<Value *, 32> WorkList; 2716 SmallPtrSet<Value *, 32> Visited; 2717 WorkList.push_back(Val); 2718 while (!WorkList.empty()) { 2719 auto P = WorkList.pop_back_val(); 2720 if (!Visited.insert(P).second) 2721 continue; 2722 if (auto *PI = dyn_cast<Instruction>(P)) 2723 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2724 for (auto *U : PI->users()) 2725 WorkList.push_back(cast<Value>(U)); 2726 Put(PI, V); 2727 PI->replaceAllUsesWith(V); 2728 if (auto *PHI = dyn_cast<PHINode>(PI)) 2729 AllPhiNodes.erase(PHI); 2730 if (auto *Select = dyn_cast<SelectInst>(PI)) 2731 AllSelectNodes.erase(Select); 2732 PI->eraseFromParent(); 2733 } 2734 } 2735 return Get(Val); 2736 } 2737 2738 void Put(Value *From, Value *To) { 2739 Storage.insert({ From, To }); 2740 } 2741 }; 2742 2743 /// \brief A helper class for combining addressing modes. 2744 class AddressingModeCombiner { 2745 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2746 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2747 typedef std::pair<PHINode *, PHINode *> PHIPair; 2748 2749 private: 2750 /// The addressing modes we've collected. 2751 SmallVector<ExtAddrMode, 16> AddrModes; 2752 2753 /// The field in which the AddrModes differ, when we have more than one. 2754 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2755 2756 /// Are the AddrModes that we have all just equal to their original values? 2757 bool AllAddrModesTrivial = true; 2758 2759 /// Common Type for all different fields in addressing modes. 2760 Type *CommonType; 2761 2762 /// SimplifyQuery for simplifyInstruction utility. 2763 const SimplifyQuery &SQ; 2764 2765 /// Original Address. 2766 ValueInBB Original; 2767 2768 public: 2769 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2770 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2771 2772 /// \brief Get the combined AddrMode 2773 const ExtAddrMode &getAddrMode() const { 2774 return AddrModes[0]; 2775 } 2776 2777 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2778 /// have. 2779 /// \return True iff we succeeded in doing so. 2780 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2781 // Take note of if we have any non-trivial AddrModes, as we need to detect 2782 // when all AddrModes are trivial as then we would introduce a phi or select 2783 // which just duplicates what's already there. 2784 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2785 2786 // If this is the first addrmode then everything is fine. 2787 if (AddrModes.empty()) { 2788 AddrModes.emplace_back(NewAddrMode); 2789 return true; 2790 } 2791 2792 // Figure out how different this is from the other address modes, which we 2793 // can do just by comparing against the first one given that we only care 2794 // about the cumulative difference. 2795 ExtAddrMode::FieldName ThisDifferentField = 2796 AddrModes[0].compare(NewAddrMode); 2797 if (DifferentField == ExtAddrMode::NoField) 2798 DifferentField = ThisDifferentField; 2799 else if (DifferentField != ThisDifferentField) 2800 DifferentField = ExtAddrMode::MultipleFields; 2801 2802 // If this AddrMode is the same as all the others then everything is fine 2803 // (which should only happen when there is actually only one AddrMode). 2804 if (DifferentField == ExtAddrMode::NoField) { 2805 assert(AddrModes.size() == 1); 2806 return true; 2807 } 2808 2809 // If NewAddrMode differs in only one dimension then we can handle it by 2810 // inserting a phi/select later on. 2811 if (DifferentField != ExtAddrMode::MultipleFields) { 2812 AddrModes.emplace_back(NewAddrMode); 2813 return true; 2814 } 2815 2816 // We couldn't combine NewAddrMode with the rest, so return failure. 2817 AddrModes.clear(); 2818 return false; 2819 } 2820 2821 /// \brief Combine the addressing modes we've collected into a single 2822 /// addressing mode. 2823 /// \return True iff we successfully combined them or we only had one so 2824 /// didn't need to combine them anyway. 2825 bool combineAddrModes() { 2826 // If we have no AddrModes then they can't be combined. 2827 if (AddrModes.size() == 0) 2828 return false; 2829 2830 // A single AddrMode can trivially be combined. 2831 if (AddrModes.size() == 1) 2832 return true; 2833 2834 // If the AddrModes we collected are all just equal to the value they are 2835 // derived from then combining them wouldn't do anything useful. 2836 if (AllAddrModesTrivial) 2837 return false; 2838 2839 if (DisableComplexAddrModes) 2840 return false; 2841 2842 // For now we support only different base registers. 2843 // TODO: enable others. 2844 if (DifferentField != ExtAddrMode::BaseRegField) 2845 return false; 2846 2847 // Build a map between <original value, basic block where we saw it> to 2848 // value of base register. 2849 FoldAddrToValueMapping Map; 2850 initializeMap(Map); 2851 2852 Value *CommonValue = findCommon(Map); 2853 if (CommonValue) 2854 AddrModes[0].BaseReg = CommonValue; 2855 return CommonValue != nullptr; 2856 } 2857 2858 private: 2859 /// \brief Initialize Map with anchor values. For address seen in some BB 2860 /// we set the value of different field saw in this address. 2861 /// If address is not an instruction than basic block is set to null. 2862 /// At the same time we find a common type for different field we will 2863 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2864 void initializeMap(FoldAddrToValueMapping &Map) { 2865 // Keep track of keys where the value is null. We will need to replace it 2866 // with constant null when we know the common type. 2867 SmallVector<ValueInBB, 2> NullValue; 2868 for (auto &AM : AddrModes) { 2869 BasicBlock *BB = nullptr; 2870 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2871 BB = I->getParent(); 2872 2873 // For now we support only base register as different field. 2874 // TODO: Enable others. 2875 Value *DV = AM.BaseReg; 2876 if (DV) { 2877 if (CommonType) 2878 assert(CommonType == DV->getType() && "Different types detected!"); 2879 else 2880 CommonType = DV->getType(); 2881 Map[{ AM.OriginalValue, BB }] = DV; 2882 } else { 2883 NullValue.push_back({ AM.OriginalValue, BB }); 2884 } 2885 } 2886 assert(CommonType && "At least one non-null value must be!"); 2887 for (auto VIBB : NullValue) 2888 Map[VIBB] = Constant::getNullValue(CommonType); 2889 } 2890 2891 /// \brief We have mapping between value A and basic block where value A 2892 /// seen to other value B where B was a field in addressing mode represented 2893 /// by A. Also we have an original value C representin an address in some 2894 /// basic block. Traversing from C through phi and selects we ended up with 2895 /// A's in a map. This utility function tries to find a value V which is a 2896 /// field in addressing mode C and traversing through phi nodes and selects 2897 /// we will end up in corresponded values B in a map. 2898 /// The utility will create a new Phi/Selects if needed. 2899 // The simple example looks as follows: 2900 // BB1: 2901 // p1 = b1 + 40 2902 // br cond BB2, BB3 2903 // BB2: 2904 // p2 = b2 + 40 2905 // br BB3 2906 // BB3: 2907 // p = phi [p1, BB1], [p2, BB2] 2908 // v = load p 2909 // Map is 2910 // <p1, BB1> -> b1 2911 // <p2, BB2> -> b2 2912 // Request is 2913 // <p, BB3> -> ? 2914 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2915 Value *findCommon(FoldAddrToValueMapping &Map) { 2916 // Tracks of new created Phi nodes. 2917 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2918 // Tracks of new created Select nodes. 2919 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2920 // Tracks the simplification of new created phi nodes. The reason we use 2921 // this mapping is because we will add new created Phi nodes in AddrToBase. 2922 // Simplification of Phi nodes is recursive, so some Phi node may 2923 // be simplified after we added it to AddrToBase. 2924 // Using this mapping we can find the current value in AddrToBase. 2925 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2926 2927 // First step, DFS to create PHI nodes for all intermediate blocks. 2928 // Also fill traverse order for the second step. 2929 SmallVector<ValueInBB, 32> TraverseOrder; 2930 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2931 2932 // Second Step, fill new nodes by merged values and simplify if possible. 2933 FillPlaceholders(Map, TraverseOrder, ST); 2934 2935 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 2936 DestroyNodes(NewPhiNodes); 2937 DestroyNodes(NewSelectNodes); 2938 return nullptr; 2939 } 2940 2941 // Now we'd like to match New Phi nodes to existed ones. 2942 unsigned PhiNotMatchedCount = 0; 2943 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2944 DestroyNodes(NewPhiNodes); 2945 DestroyNodes(NewSelectNodes); 2946 return nullptr; 2947 } 2948 2949 auto *Result = ST.Get(Map.find(Original)->second); 2950 if (Result) { 2951 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 2952 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 2953 } 2954 return Result; 2955 } 2956 2957 /// \brief Destroy nodes from a set. 2958 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 2959 // For safe erasing, replace the Phi with dummy value first. 2960 auto Dummy = UndefValue::get(CommonType); 2961 for (auto I : Instructions) { 2962 I->replaceAllUsesWith(Dummy); 2963 I->eraseFromParent(); 2964 } 2965 } 2966 2967 /// \brief Try to match PHI node to Candidate. 2968 /// Matcher tracks the matched Phi nodes. 2969 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2970 DenseSet<PHIPair> &Matcher, 2971 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 2972 SmallVector<PHIPair, 8> WorkList; 2973 Matcher.insert({ PHI, Candidate }); 2974 WorkList.push_back({ PHI, Candidate }); 2975 SmallSet<PHIPair, 8> Visited; 2976 while (!WorkList.empty()) { 2977 auto Item = WorkList.pop_back_val(); 2978 if (!Visited.insert(Item).second) 2979 continue; 2980 // We iterate over all incoming values to Phi to compare them. 2981 // If values are different and both of them Phi and the first one is a 2982 // Phi we added (subject to match) and both of them is in the same basic 2983 // block then we can match our pair if values match. So we state that 2984 // these values match and add it to work list to verify that. 2985 for (auto B : Item.first->blocks()) { 2986 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2987 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2988 if (FirstValue == SecondValue) 2989 continue; 2990 2991 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2992 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2993 2994 // One of them is not Phi or 2995 // The first one is not Phi node from the set we'd like to match or 2996 // Phi nodes from different basic blocks then 2997 // we will not be able to match. 2998 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2999 FirstPhi->getParent() != SecondPhi->getParent()) 3000 return false; 3001 3002 // If we already matched them then continue. 3003 if (Matcher.count({ FirstPhi, SecondPhi })) 3004 continue; 3005 // So the values are different and does not match. So we need them to 3006 // match. 3007 Matcher.insert({ FirstPhi, SecondPhi }); 3008 // But me must check it. 3009 WorkList.push_back({ FirstPhi, SecondPhi }); 3010 } 3011 } 3012 return true; 3013 } 3014 3015 /// \brief For the given set of PHI nodes try to find their equivalents. 3016 /// Returns false if this matching fails and creation of new Phi is disabled. 3017 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 3018 SimplificationTracker &ST, bool AllowNewPhiNodes, 3019 unsigned &PhiNotMatchedCount) { 3020 DenseSet<PHIPair> Matched; 3021 SmallPtrSet<PHINode *, 8> WillNotMatch; 3022 while (PhiNodesToMatch.size()) { 3023 PHINode *PHI = *PhiNodesToMatch.begin(); 3024 3025 // Add us, if no Phi nodes in the basic block we do not match. 3026 WillNotMatch.clear(); 3027 WillNotMatch.insert(PHI); 3028 3029 // Traverse all Phis until we found equivalent or fail to do that. 3030 bool IsMatched = false; 3031 for (auto &P : PHI->getParent()->phis()) { 3032 if (&P == PHI) 3033 continue; 3034 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3035 break; 3036 // If it does not match, collect all Phi nodes from matcher. 3037 // if we end up with no match, them all these Phi nodes will not match 3038 // later. 3039 for (auto M : Matched) 3040 WillNotMatch.insert(M.first); 3041 Matched.clear(); 3042 } 3043 if (IsMatched) { 3044 // Replace all matched values and erase them. 3045 for (auto MV : Matched) { 3046 MV.first->replaceAllUsesWith(MV.second); 3047 PhiNodesToMatch.erase(MV.first); 3048 ST.Put(MV.first, MV.second); 3049 MV.first->eraseFromParent(); 3050 } 3051 Matched.clear(); 3052 continue; 3053 } 3054 // If we are not allowed to create new nodes then bail out. 3055 if (!AllowNewPhiNodes) 3056 return false; 3057 // Just remove all seen values in matcher. They will not match anything. 3058 PhiNotMatchedCount += WillNotMatch.size(); 3059 for (auto *P : WillNotMatch) 3060 PhiNodesToMatch.erase(P); 3061 } 3062 return true; 3063 } 3064 /// \brief Fill the placeholder with values from predecessors and simplify it. 3065 void FillPlaceholders(FoldAddrToValueMapping &Map, 3066 SmallVectorImpl<ValueInBB> &TraverseOrder, 3067 SimplificationTracker &ST) { 3068 while (!TraverseOrder.empty()) { 3069 auto Current = TraverseOrder.pop_back_val(); 3070 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3071 Value *CurrentValue = Current.first; 3072 BasicBlock *CurrentBlock = Current.second; 3073 Value *V = Map[Current]; 3074 3075 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3076 // CurrentValue also must be Select. 3077 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3078 auto *TrueValue = CurrentSelect->getTrueValue(); 3079 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3080 ? CurrentBlock 3081 : nullptr }; 3082 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3083 Select->setTrueValue(Map[TrueItem]); 3084 auto *FalseValue = CurrentSelect->getFalseValue(); 3085 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3086 ? CurrentBlock 3087 : nullptr }; 3088 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3089 Select->setFalseValue(Map[FalseItem]); 3090 } else { 3091 // Must be a Phi node then. 3092 PHINode *PHI = cast<PHINode>(V); 3093 // Fill the Phi node with values from predecessors. 3094 bool IsDefinedInThisBB = 3095 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3096 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3097 for (auto B : predecessors(CurrentBlock)) { 3098 Value *PV = IsDefinedInThisBB 3099 ? CurrentPhi->getIncomingValueForBlock(B) 3100 : CurrentValue; 3101 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3102 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3103 PHI->addIncoming(ST.Get(Map[item]), B); 3104 } 3105 } 3106 // Simplify if possible. 3107 Map[Current] = ST.Simplify(V); 3108 } 3109 } 3110 3111 /// Starting from value recursively iterates over predecessors up to known 3112 /// ending values represented in a map. For each traversed block inserts 3113 /// a placeholder Phi or Select. 3114 /// Reports all new created Phi/Select nodes by adding them to set. 3115 /// Also reports and order in what basic blocks have been traversed. 3116 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3117 SmallVectorImpl<ValueInBB> &TraverseOrder, 3118 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3119 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3120 SmallVector<ValueInBB, 32> Worklist; 3121 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3122 "Address must be a Phi or Select node"); 3123 auto *Dummy = UndefValue::get(CommonType); 3124 Worklist.push_back(Original); 3125 while (!Worklist.empty()) { 3126 auto Current = Worklist.pop_back_val(); 3127 // If value is not an instruction it is something global, constant, 3128 // parameter and we can say that this value is observable in any block. 3129 // Set block to null to denote it. 3130 // Also please take into account that it is how we build anchors. 3131 if (!isa<Instruction>(Current.first)) 3132 Current.second = nullptr; 3133 // if it is already visited or it is an ending value then skip it. 3134 if (Map.find(Current) != Map.end()) 3135 continue; 3136 TraverseOrder.push_back(Current); 3137 3138 Value *CurrentValue = Current.first; 3139 BasicBlock *CurrentBlock = Current.second; 3140 // CurrentValue must be a Phi node or select. All others must be covered 3141 // by anchors. 3142 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3143 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3144 3145 unsigned PredCount = 3146 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3147 // if Current Value is not defined in this basic block we are interested 3148 // in values in predecessors. 3149 if (!IsDefinedInThisBB) { 3150 assert(PredCount && "Unreachable block?!"); 3151 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3152 &CurrentBlock->front()); 3153 Map[Current] = PHI; 3154 NewPhiNodes.insert(PHI); 3155 // Add all predecessors in work list. 3156 for (auto B : predecessors(CurrentBlock)) 3157 Worklist.push_back({ CurrentValue, B }); 3158 continue; 3159 } 3160 // Value is defined in this basic block. 3161 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3162 // Is it OK to get metadata from OrigSelect?! 3163 // Create a Select placeholder with dummy value. 3164 SelectInst *Select = 3165 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3166 OrigSelect->getName(), OrigSelect, OrigSelect); 3167 Map[Current] = Select; 3168 NewSelectNodes.insert(Select); 3169 // We are interested in True and False value in this basic block. 3170 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3171 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3172 } else { 3173 // It must be a Phi node then. 3174 auto *CurrentPhi = cast<PHINode>(CurrentI); 3175 // Create new Phi node for merge of bases. 3176 assert(PredCount && "Unreachable block?!"); 3177 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3178 &CurrentBlock->front()); 3179 Map[Current] = PHI; 3180 NewPhiNodes.insert(PHI); 3181 3182 // Add all predecessors in work list. 3183 for (auto B : predecessors(CurrentBlock)) 3184 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3185 } 3186 } 3187 } 3188 }; 3189 } // end anonymous namespace 3190 3191 /// Try adding ScaleReg*Scale to the current addressing mode. 3192 /// Return true and update AddrMode if this addr mode is legal for the target, 3193 /// false if not. 3194 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3195 unsigned Depth) { 3196 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3197 // mode. Just process that directly. 3198 if (Scale == 1) 3199 return matchAddr(ScaleReg, Depth); 3200 3201 // If the scale is 0, it takes nothing to add this. 3202 if (Scale == 0) 3203 return true; 3204 3205 // If we already have a scale of this value, we can add to it, otherwise, we 3206 // need an available scale field. 3207 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3208 return false; 3209 3210 ExtAddrMode TestAddrMode = AddrMode; 3211 3212 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3213 // [A+B + A*7] -> [B+A*8]. 3214 TestAddrMode.Scale += Scale; 3215 TestAddrMode.ScaledReg = ScaleReg; 3216 3217 // If the new address isn't legal, bail out. 3218 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3219 return false; 3220 3221 // It was legal, so commit it. 3222 AddrMode = TestAddrMode; 3223 3224 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3225 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3226 // X*Scale + C*Scale to addr mode. 3227 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3228 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3229 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3230 TestAddrMode.ScaledReg = AddLHS; 3231 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3232 3233 // If this addressing mode is legal, commit it and remember that we folded 3234 // this instruction. 3235 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3236 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3237 AddrMode = TestAddrMode; 3238 return true; 3239 } 3240 } 3241 3242 // Otherwise, not (x+c)*scale, just return what we have. 3243 return true; 3244 } 3245 3246 /// This is a little filter, which returns true if an addressing computation 3247 /// involving I might be folded into a load/store accessing it. 3248 /// This doesn't need to be perfect, but needs to accept at least 3249 /// the set of instructions that MatchOperationAddr can. 3250 static bool MightBeFoldableInst(Instruction *I) { 3251 switch (I->getOpcode()) { 3252 case Instruction::BitCast: 3253 case Instruction::AddrSpaceCast: 3254 // Don't touch identity bitcasts. 3255 if (I->getType() == I->getOperand(0)->getType()) 3256 return false; 3257 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3258 case Instruction::PtrToInt: 3259 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3260 return true; 3261 case Instruction::IntToPtr: 3262 // We know the input is intptr_t, so this is foldable. 3263 return true; 3264 case Instruction::Add: 3265 return true; 3266 case Instruction::Mul: 3267 case Instruction::Shl: 3268 // Can only handle X*C and X << C. 3269 return isa<ConstantInt>(I->getOperand(1)); 3270 case Instruction::GetElementPtr: 3271 return true; 3272 default: 3273 return false; 3274 } 3275 } 3276 3277 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3278 /// \note \p Val is assumed to be the product of some type promotion. 3279 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3280 /// to be legal, as the non-promoted value would have had the same state. 3281 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3282 const DataLayout &DL, Value *Val) { 3283 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3284 if (!PromotedInst) 3285 return false; 3286 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3287 // If the ISDOpcode is undefined, it was undefined before the promotion. 3288 if (!ISDOpcode) 3289 return true; 3290 // Otherwise, check if the promoted instruction is legal or not. 3291 return TLI.isOperationLegalOrCustom( 3292 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3293 } 3294 3295 namespace { 3296 3297 /// \brief Hepler class to perform type promotion. 3298 class TypePromotionHelper { 3299 /// \brief Utility function to check whether or not a sign or zero extension 3300 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3301 /// either using the operands of \p Inst or promoting \p Inst. 3302 /// The type of the extension is defined by \p IsSExt. 3303 /// In other words, check if: 3304 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3305 /// #1 Promotion applies: 3306 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3307 /// #2 Operand reuses: 3308 /// ext opnd1 to ConsideredExtType. 3309 /// \p PromotedInsts maps the instructions to their type before promotion. 3310 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3311 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3312 3313 /// \brief Utility function to determine if \p OpIdx should be promoted when 3314 /// promoting \p Inst. 3315 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3316 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3317 } 3318 3319 /// \brief Utility function to promote the operand of \p Ext when this 3320 /// operand is a promotable trunc or sext or zext. 3321 /// \p PromotedInsts maps the instructions to their type before promotion. 3322 /// \p CreatedInstsCost[out] contains the cost of all instructions 3323 /// created to promote the operand of Ext. 3324 /// Newly added extensions are inserted in \p Exts. 3325 /// Newly added truncates are inserted in \p Truncs. 3326 /// Should never be called directly. 3327 /// \return The promoted value which is used instead of Ext. 3328 static Value *promoteOperandForTruncAndAnyExt( 3329 Instruction *Ext, TypePromotionTransaction &TPT, 3330 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3331 SmallVectorImpl<Instruction *> *Exts, 3332 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3333 3334 /// \brief Utility function to promote the operand of \p Ext when this 3335 /// operand is promotable and is not a supported trunc or sext. 3336 /// \p PromotedInsts maps the instructions to their type before promotion. 3337 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3338 /// created to promote the operand of Ext. 3339 /// Newly added extensions are inserted in \p Exts. 3340 /// Newly added truncates are inserted in \p Truncs. 3341 /// Should never be called directly. 3342 /// \return The promoted value which is used instead of Ext. 3343 static Value *promoteOperandForOther(Instruction *Ext, 3344 TypePromotionTransaction &TPT, 3345 InstrToOrigTy &PromotedInsts, 3346 unsigned &CreatedInstsCost, 3347 SmallVectorImpl<Instruction *> *Exts, 3348 SmallVectorImpl<Instruction *> *Truncs, 3349 const TargetLowering &TLI, bool IsSExt); 3350 3351 /// \see promoteOperandForOther. 3352 static Value *signExtendOperandForOther( 3353 Instruction *Ext, TypePromotionTransaction &TPT, 3354 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3355 SmallVectorImpl<Instruction *> *Exts, 3356 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3357 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3358 Exts, Truncs, TLI, true); 3359 } 3360 3361 /// \see promoteOperandForOther. 3362 static Value *zeroExtendOperandForOther( 3363 Instruction *Ext, TypePromotionTransaction &TPT, 3364 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3365 SmallVectorImpl<Instruction *> *Exts, 3366 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3367 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3368 Exts, Truncs, TLI, false); 3369 } 3370 3371 public: 3372 /// Type for the utility function that promotes the operand of Ext. 3373 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3374 InstrToOrigTy &PromotedInsts, 3375 unsigned &CreatedInstsCost, 3376 SmallVectorImpl<Instruction *> *Exts, 3377 SmallVectorImpl<Instruction *> *Truncs, 3378 const TargetLowering &TLI); 3379 3380 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3381 /// action to promote the operand of \p Ext instead of using Ext. 3382 /// \return NULL if no promotable action is possible with the current 3383 /// sign extension. 3384 /// \p InsertedInsts keeps track of all the instructions inserted by the 3385 /// other CodeGenPrepare optimizations. This information is important 3386 /// because we do not want to promote these instructions as CodeGenPrepare 3387 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3388 /// \p PromotedInsts maps the instructions to their type before promotion. 3389 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3390 const TargetLowering &TLI, 3391 const InstrToOrigTy &PromotedInsts); 3392 }; 3393 3394 } // end anonymous namespace 3395 3396 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3397 Type *ConsideredExtType, 3398 const InstrToOrigTy &PromotedInsts, 3399 bool IsSExt) { 3400 // The promotion helper does not know how to deal with vector types yet. 3401 // To be able to fix that, we would need to fix the places where we 3402 // statically extend, e.g., constants and such. 3403 if (Inst->getType()->isVectorTy()) 3404 return false; 3405 3406 // We can always get through zext. 3407 if (isa<ZExtInst>(Inst)) 3408 return true; 3409 3410 // sext(sext) is ok too. 3411 if (IsSExt && isa<SExtInst>(Inst)) 3412 return true; 3413 3414 // We can get through binary operator, if it is legal. In other words, the 3415 // binary operator must have a nuw or nsw flag. 3416 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3417 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3418 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3419 (IsSExt && BinOp->hasNoSignedWrap()))) 3420 return true; 3421 3422 // Check if we can do the following simplification. 3423 // ext(trunc(opnd)) --> ext(opnd) 3424 if (!isa<TruncInst>(Inst)) 3425 return false; 3426 3427 Value *OpndVal = Inst->getOperand(0); 3428 // Check if we can use this operand in the extension. 3429 // If the type is larger than the result type of the extension, we cannot. 3430 if (!OpndVal->getType()->isIntegerTy() || 3431 OpndVal->getType()->getIntegerBitWidth() > 3432 ConsideredExtType->getIntegerBitWidth()) 3433 return false; 3434 3435 // If the operand of the truncate is not an instruction, we will not have 3436 // any information on the dropped bits. 3437 // (Actually we could for constant but it is not worth the extra logic). 3438 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3439 if (!Opnd) 3440 return false; 3441 3442 // Check if the source of the type is narrow enough. 3443 // I.e., check that trunc just drops extended bits of the same kind of 3444 // the extension. 3445 // #1 get the type of the operand and check the kind of the extended bits. 3446 const Type *OpndType; 3447 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3448 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3449 OpndType = It->second.getPointer(); 3450 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3451 OpndType = Opnd->getOperand(0)->getType(); 3452 else 3453 return false; 3454 3455 // #2 check that the truncate just drops extended bits. 3456 return Inst->getType()->getIntegerBitWidth() >= 3457 OpndType->getIntegerBitWidth(); 3458 } 3459 3460 TypePromotionHelper::Action TypePromotionHelper::getAction( 3461 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3462 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3463 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3464 "Unexpected instruction type"); 3465 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3466 Type *ExtTy = Ext->getType(); 3467 bool IsSExt = isa<SExtInst>(Ext); 3468 // If the operand of the extension is not an instruction, we cannot 3469 // get through. 3470 // If it, check we can get through. 3471 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3472 return nullptr; 3473 3474 // Do not promote if the operand has been added by codegenprepare. 3475 // Otherwise, it means we are undoing an optimization that is likely to be 3476 // redone, thus causing potential infinite loop. 3477 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3478 return nullptr; 3479 3480 // SExt or Trunc instructions. 3481 // Return the related handler. 3482 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3483 isa<ZExtInst>(ExtOpnd)) 3484 return promoteOperandForTruncAndAnyExt; 3485 3486 // Regular instruction. 3487 // Abort early if we will have to insert non-free instructions. 3488 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3489 return nullptr; 3490 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3491 } 3492 3493 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3494 Instruction *SExt, TypePromotionTransaction &TPT, 3495 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3496 SmallVectorImpl<Instruction *> *Exts, 3497 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3498 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3499 // get through it and this method should not be called. 3500 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3501 Value *ExtVal = SExt; 3502 bool HasMergedNonFreeExt = false; 3503 if (isa<ZExtInst>(SExtOpnd)) { 3504 // Replace s|zext(zext(opnd)) 3505 // => zext(opnd). 3506 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3507 Value *ZExt = 3508 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3509 TPT.replaceAllUsesWith(SExt, ZExt); 3510 TPT.eraseInstruction(SExt); 3511 ExtVal = ZExt; 3512 } else { 3513 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3514 // => z|sext(opnd). 3515 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3516 } 3517 CreatedInstsCost = 0; 3518 3519 // Remove dead code. 3520 if (SExtOpnd->use_empty()) 3521 TPT.eraseInstruction(SExtOpnd); 3522 3523 // Check if the extension is still needed. 3524 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3525 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3526 if (ExtInst) { 3527 if (Exts) 3528 Exts->push_back(ExtInst); 3529 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3530 } 3531 return ExtVal; 3532 } 3533 3534 // At this point we have: ext ty opnd to ty. 3535 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3536 Value *NextVal = ExtInst->getOperand(0); 3537 TPT.eraseInstruction(ExtInst, NextVal); 3538 return NextVal; 3539 } 3540 3541 Value *TypePromotionHelper::promoteOperandForOther( 3542 Instruction *Ext, TypePromotionTransaction &TPT, 3543 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3544 SmallVectorImpl<Instruction *> *Exts, 3545 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3546 bool IsSExt) { 3547 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3548 // get through it and this method should not be called. 3549 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3550 CreatedInstsCost = 0; 3551 if (!ExtOpnd->hasOneUse()) { 3552 // ExtOpnd will be promoted. 3553 // All its uses, but Ext, will need to use a truncated value of the 3554 // promoted version. 3555 // Create the truncate now. 3556 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3557 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3558 // Insert it just after the definition. 3559 ITrunc->moveAfter(ExtOpnd); 3560 if (Truncs) 3561 Truncs->push_back(ITrunc); 3562 } 3563 3564 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3565 // Restore the operand of Ext (which has been replaced by the previous call 3566 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3567 TPT.setOperand(Ext, 0, ExtOpnd); 3568 } 3569 3570 // Get through the Instruction: 3571 // 1. Update its type. 3572 // 2. Replace the uses of Ext by Inst. 3573 // 3. Extend each operand that needs to be extended. 3574 3575 // Remember the original type of the instruction before promotion. 3576 // This is useful to know that the high bits are sign extended bits. 3577 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3578 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3579 // Step #1. 3580 TPT.mutateType(ExtOpnd, Ext->getType()); 3581 // Step #2. 3582 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3583 // Step #3. 3584 Instruction *ExtForOpnd = Ext; 3585 3586 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3587 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3588 ++OpIdx) { 3589 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3590 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3591 !shouldExtOperand(ExtOpnd, OpIdx)) { 3592 DEBUG(dbgs() << "No need to propagate\n"); 3593 continue; 3594 } 3595 // Check if we can statically extend the operand. 3596 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3597 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3598 DEBUG(dbgs() << "Statically extend\n"); 3599 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3600 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3601 : Cst->getValue().zext(BitWidth); 3602 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3603 continue; 3604 } 3605 // UndefValue are typed, so we have to statically sign extend them. 3606 if (isa<UndefValue>(Opnd)) { 3607 DEBUG(dbgs() << "Statically extend\n"); 3608 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3609 continue; 3610 } 3611 3612 // Otherwise we have to explicity sign extend the operand. 3613 // Check if Ext was reused to extend an operand. 3614 if (!ExtForOpnd) { 3615 // If yes, create a new one. 3616 DEBUG(dbgs() << "More operands to ext\n"); 3617 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3618 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3619 if (!isa<Instruction>(ValForExtOpnd)) { 3620 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3621 continue; 3622 } 3623 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3624 } 3625 if (Exts) 3626 Exts->push_back(ExtForOpnd); 3627 TPT.setOperand(ExtForOpnd, 0, Opnd); 3628 3629 // Move the sign extension before the insertion point. 3630 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3631 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3632 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3633 // If more sext are required, new instructions will have to be created. 3634 ExtForOpnd = nullptr; 3635 } 3636 if (ExtForOpnd == Ext) { 3637 DEBUG(dbgs() << "Extension is useless now\n"); 3638 TPT.eraseInstruction(Ext); 3639 } 3640 return ExtOpnd; 3641 } 3642 3643 /// Check whether or not promoting an instruction to a wider type is profitable. 3644 /// \p NewCost gives the cost of extension instructions created by the 3645 /// promotion. 3646 /// \p OldCost gives the cost of extension instructions before the promotion 3647 /// plus the number of instructions that have been 3648 /// matched in the addressing mode the promotion. 3649 /// \p PromotedOperand is the value that has been promoted. 3650 /// \return True if the promotion is profitable, false otherwise. 3651 bool AddressingModeMatcher::isPromotionProfitable( 3652 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3653 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3654 // The cost of the new extensions is greater than the cost of the 3655 // old extension plus what we folded. 3656 // This is not profitable. 3657 if (NewCost > OldCost) 3658 return false; 3659 if (NewCost < OldCost) 3660 return true; 3661 // The promotion is neutral but it may help folding the sign extension in 3662 // loads for instance. 3663 // Check that we did not create an illegal instruction. 3664 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3665 } 3666 3667 /// Given an instruction or constant expr, see if we can fold the operation 3668 /// into the addressing mode. If so, update the addressing mode and return 3669 /// true, otherwise return false without modifying AddrMode. 3670 /// If \p MovedAway is not NULL, it contains the information of whether or 3671 /// not AddrInst has to be folded into the addressing mode on success. 3672 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3673 /// because it has been moved away. 3674 /// Thus AddrInst must not be added in the matched instructions. 3675 /// This state can happen when AddrInst is a sext, since it may be moved away. 3676 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3677 /// not be referenced anymore. 3678 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3679 unsigned Depth, 3680 bool *MovedAway) { 3681 // Avoid exponential behavior on extremely deep expression trees. 3682 if (Depth >= 5) return false; 3683 3684 // By default, all matched instructions stay in place. 3685 if (MovedAway) 3686 *MovedAway = false; 3687 3688 switch (Opcode) { 3689 case Instruction::PtrToInt: 3690 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3691 return matchAddr(AddrInst->getOperand(0), Depth); 3692 case Instruction::IntToPtr: { 3693 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3694 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3695 // This inttoptr is a no-op if the integer type is pointer sized. 3696 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3697 return matchAddr(AddrInst->getOperand(0), Depth); 3698 return false; 3699 } 3700 case Instruction::BitCast: 3701 // BitCast is always a noop, and we can handle it as long as it is 3702 // int->int or pointer->pointer (we don't want int<->fp or something). 3703 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3704 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3705 // Don't touch identity bitcasts. These were probably put here by LSR, 3706 // and we don't want to mess around with them. Assume it knows what it 3707 // is doing. 3708 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3709 return matchAddr(AddrInst->getOperand(0), Depth); 3710 return false; 3711 case Instruction::AddrSpaceCast: { 3712 unsigned SrcAS 3713 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3714 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3715 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3716 return matchAddr(AddrInst->getOperand(0), Depth); 3717 return false; 3718 } 3719 case Instruction::Add: { 3720 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3721 ExtAddrMode BackupAddrMode = AddrMode; 3722 unsigned OldSize = AddrModeInsts.size(); 3723 // Start a transaction at this point. 3724 // The LHS may match but not the RHS. 3725 // Therefore, we need a higher level restoration point to undo partially 3726 // matched operation. 3727 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3728 TPT.getRestorationPoint(); 3729 3730 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3731 matchAddr(AddrInst->getOperand(0), Depth+1)) 3732 return true; 3733 3734 // Restore the old addr mode info. 3735 AddrMode = BackupAddrMode; 3736 AddrModeInsts.resize(OldSize); 3737 TPT.rollback(LastKnownGood); 3738 3739 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3740 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3741 matchAddr(AddrInst->getOperand(1), Depth+1)) 3742 return true; 3743 3744 // Otherwise we definitely can't merge the ADD in. 3745 AddrMode = BackupAddrMode; 3746 AddrModeInsts.resize(OldSize); 3747 TPT.rollback(LastKnownGood); 3748 break; 3749 } 3750 //case Instruction::Or: 3751 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3752 //break; 3753 case Instruction::Mul: 3754 case Instruction::Shl: { 3755 // Can only handle X*C and X << C. 3756 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3757 if (!RHS || RHS->getBitWidth() > 64) 3758 return false; 3759 int64_t Scale = RHS->getSExtValue(); 3760 if (Opcode == Instruction::Shl) 3761 Scale = 1LL << Scale; 3762 3763 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3764 } 3765 case Instruction::GetElementPtr: { 3766 // Scan the GEP. We check it if it contains constant offsets and at most 3767 // one variable offset. 3768 int VariableOperand = -1; 3769 unsigned VariableScale = 0; 3770 3771 int64_t ConstantOffset = 0; 3772 gep_type_iterator GTI = gep_type_begin(AddrInst); 3773 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3774 if (StructType *STy = GTI.getStructTypeOrNull()) { 3775 const StructLayout *SL = DL.getStructLayout(STy); 3776 unsigned Idx = 3777 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3778 ConstantOffset += SL->getElementOffset(Idx); 3779 } else { 3780 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3781 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3782 ConstantOffset += CI->getSExtValue()*TypeSize; 3783 } else if (TypeSize) { // Scales of zero don't do anything. 3784 // We only allow one variable index at the moment. 3785 if (VariableOperand != -1) 3786 return false; 3787 3788 // Remember the variable index. 3789 VariableOperand = i; 3790 VariableScale = TypeSize; 3791 } 3792 } 3793 } 3794 3795 // A common case is for the GEP to only do a constant offset. In this case, 3796 // just add it to the disp field and check validity. 3797 if (VariableOperand == -1) { 3798 AddrMode.BaseOffs += ConstantOffset; 3799 if (ConstantOffset == 0 || 3800 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3801 // Check to see if we can fold the base pointer in too. 3802 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3803 return true; 3804 } 3805 AddrMode.BaseOffs -= ConstantOffset; 3806 return false; 3807 } 3808 3809 // Save the valid addressing mode in case we can't match. 3810 ExtAddrMode BackupAddrMode = AddrMode; 3811 unsigned OldSize = AddrModeInsts.size(); 3812 3813 // See if the scale and offset amount is valid for this target. 3814 AddrMode.BaseOffs += ConstantOffset; 3815 3816 // Match the base operand of the GEP. 3817 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3818 // If it couldn't be matched, just stuff the value in a register. 3819 if (AddrMode.HasBaseReg) { 3820 AddrMode = BackupAddrMode; 3821 AddrModeInsts.resize(OldSize); 3822 return false; 3823 } 3824 AddrMode.HasBaseReg = true; 3825 AddrMode.BaseReg = AddrInst->getOperand(0); 3826 } 3827 3828 // Match the remaining variable portion of the GEP. 3829 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3830 Depth)) { 3831 // If it couldn't be matched, try stuffing the base into a register 3832 // instead of matching it, and retrying the match of the scale. 3833 AddrMode = BackupAddrMode; 3834 AddrModeInsts.resize(OldSize); 3835 if (AddrMode.HasBaseReg) 3836 return false; 3837 AddrMode.HasBaseReg = true; 3838 AddrMode.BaseReg = AddrInst->getOperand(0); 3839 AddrMode.BaseOffs += ConstantOffset; 3840 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3841 VariableScale, Depth)) { 3842 // If even that didn't work, bail. 3843 AddrMode = BackupAddrMode; 3844 AddrModeInsts.resize(OldSize); 3845 return false; 3846 } 3847 } 3848 3849 return true; 3850 } 3851 case Instruction::SExt: 3852 case Instruction::ZExt: { 3853 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3854 if (!Ext) 3855 return false; 3856 3857 // Try to move this ext out of the way of the addressing mode. 3858 // Ask for a method for doing so. 3859 TypePromotionHelper::Action TPH = 3860 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3861 if (!TPH) 3862 return false; 3863 3864 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3865 TPT.getRestorationPoint(); 3866 unsigned CreatedInstsCost = 0; 3867 unsigned ExtCost = !TLI.isExtFree(Ext); 3868 Value *PromotedOperand = 3869 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3870 // SExt has been moved away. 3871 // Thus either it will be rematched later in the recursive calls or it is 3872 // gone. Anyway, we must not fold it into the addressing mode at this point. 3873 // E.g., 3874 // op = add opnd, 1 3875 // idx = ext op 3876 // addr = gep base, idx 3877 // is now: 3878 // promotedOpnd = ext opnd <- no match here 3879 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3880 // addr = gep base, op <- match 3881 if (MovedAway) 3882 *MovedAway = true; 3883 3884 assert(PromotedOperand && 3885 "TypePromotionHelper should have filtered out those cases"); 3886 3887 ExtAddrMode BackupAddrMode = AddrMode; 3888 unsigned OldSize = AddrModeInsts.size(); 3889 3890 if (!matchAddr(PromotedOperand, Depth) || 3891 // The total of the new cost is equal to the cost of the created 3892 // instructions. 3893 // The total of the old cost is equal to the cost of the extension plus 3894 // what we have saved in the addressing mode. 3895 !isPromotionProfitable(CreatedInstsCost, 3896 ExtCost + (AddrModeInsts.size() - OldSize), 3897 PromotedOperand)) { 3898 AddrMode = BackupAddrMode; 3899 AddrModeInsts.resize(OldSize); 3900 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3901 TPT.rollback(LastKnownGood); 3902 return false; 3903 } 3904 return true; 3905 } 3906 } 3907 return false; 3908 } 3909 3910 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3911 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3912 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3913 /// for the target. 3914 /// 3915 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3916 // Start a transaction at this point that we will rollback if the matching 3917 // fails. 3918 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3919 TPT.getRestorationPoint(); 3920 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3921 // Fold in immediates if legal for the target. 3922 AddrMode.BaseOffs += CI->getSExtValue(); 3923 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3924 return true; 3925 AddrMode.BaseOffs -= CI->getSExtValue(); 3926 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3927 // If this is a global variable, try to fold it into the addressing mode. 3928 if (!AddrMode.BaseGV) { 3929 AddrMode.BaseGV = GV; 3930 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3931 return true; 3932 AddrMode.BaseGV = nullptr; 3933 } 3934 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3935 ExtAddrMode BackupAddrMode = AddrMode; 3936 unsigned OldSize = AddrModeInsts.size(); 3937 3938 // Check to see if it is possible to fold this operation. 3939 bool MovedAway = false; 3940 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3941 // This instruction may have been moved away. If so, there is nothing 3942 // to check here. 3943 if (MovedAway) 3944 return true; 3945 // Okay, it's possible to fold this. Check to see if it is actually 3946 // *profitable* to do so. We use a simple cost model to avoid increasing 3947 // register pressure too much. 3948 if (I->hasOneUse() || 3949 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3950 AddrModeInsts.push_back(I); 3951 return true; 3952 } 3953 3954 // It isn't profitable to do this, roll back. 3955 //cerr << "NOT FOLDING: " << *I; 3956 AddrMode = BackupAddrMode; 3957 AddrModeInsts.resize(OldSize); 3958 TPT.rollback(LastKnownGood); 3959 } 3960 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3961 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3962 return true; 3963 TPT.rollback(LastKnownGood); 3964 } else if (isa<ConstantPointerNull>(Addr)) { 3965 // Null pointer gets folded without affecting the addressing mode. 3966 return true; 3967 } 3968 3969 // Worse case, the target should support [reg] addressing modes. :) 3970 if (!AddrMode.HasBaseReg) { 3971 AddrMode.HasBaseReg = true; 3972 AddrMode.BaseReg = Addr; 3973 // Still check for legality in case the target supports [imm] but not [i+r]. 3974 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3975 return true; 3976 AddrMode.HasBaseReg = false; 3977 AddrMode.BaseReg = nullptr; 3978 } 3979 3980 // If the base register is already taken, see if we can do [r+r]. 3981 if (AddrMode.Scale == 0) { 3982 AddrMode.Scale = 1; 3983 AddrMode.ScaledReg = Addr; 3984 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3985 return true; 3986 AddrMode.Scale = 0; 3987 AddrMode.ScaledReg = nullptr; 3988 } 3989 // Couldn't match. 3990 TPT.rollback(LastKnownGood); 3991 return false; 3992 } 3993 3994 /// Check to see if all uses of OpVal by the specified inline asm call are due 3995 /// to memory operands. If so, return true, otherwise return false. 3996 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3997 const TargetLowering &TLI, 3998 const TargetRegisterInfo &TRI) { 3999 const Function *F = CI->getFunction(); 4000 TargetLowering::AsmOperandInfoVector TargetConstraints = 4001 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4002 ImmutableCallSite(CI)); 4003 4004 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4005 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4006 4007 // Compute the constraint code and ConstraintType to use. 4008 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4009 4010 // If this asm operand is our Value*, and if it isn't an indirect memory 4011 // operand, we can't fold it! 4012 if (OpInfo.CallOperandVal == OpVal && 4013 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4014 !OpInfo.isIndirect)) 4015 return false; 4016 } 4017 4018 return true; 4019 } 4020 4021 // Max number of memory uses to look at before aborting the search to conserve 4022 // compile time. 4023 static constexpr int MaxMemoryUsesToScan = 20; 4024 4025 /// Recursively walk all the uses of I until we find a memory use. 4026 /// If we find an obviously non-foldable instruction, return true. 4027 /// Add the ultimately found memory instructions to MemoryUses. 4028 static bool FindAllMemoryUses( 4029 Instruction *I, 4030 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4031 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4032 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4033 // If we already considered this instruction, we're done. 4034 if (!ConsideredInsts.insert(I).second) 4035 return false; 4036 4037 // If this is an obviously unfoldable instruction, bail out. 4038 if (!MightBeFoldableInst(I)) 4039 return true; 4040 4041 const bool OptSize = I->getFunction()->optForSize(); 4042 4043 // Loop over all the uses, recursively processing them. 4044 for (Use &U : I->uses()) { 4045 // Conservatively return true if we're seeing a large number or a deep chain 4046 // of users. This avoids excessive compilation times in pathological cases. 4047 if (SeenInsts++ >= MaxMemoryUsesToScan) 4048 return true; 4049 4050 Instruction *UserI = cast<Instruction>(U.getUser()); 4051 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4052 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4053 continue; 4054 } 4055 4056 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4057 unsigned opNo = U.getOperandNo(); 4058 if (opNo != StoreInst::getPointerOperandIndex()) 4059 return true; // Storing addr, not into addr. 4060 MemoryUses.push_back(std::make_pair(SI, opNo)); 4061 continue; 4062 } 4063 4064 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4065 unsigned opNo = U.getOperandNo(); 4066 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4067 return true; // Storing addr, not into addr. 4068 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4069 continue; 4070 } 4071 4072 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4073 unsigned opNo = U.getOperandNo(); 4074 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4075 return true; // Storing addr, not into addr. 4076 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4077 continue; 4078 } 4079 4080 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4081 // If this is a cold call, we can sink the addressing calculation into 4082 // the cold path. See optimizeCallInst 4083 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4084 continue; 4085 4086 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4087 if (!IA) return true; 4088 4089 // If this is a memory operand, we're cool, otherwise bail out. 4090 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4091 return true; 4092 continue; 4093 } 4094 4095 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4096 SeenInsts)) 4097 return true; 4098 } 4099 4100 return false; 4101 } 4102 4103 /// Return true if Val is already known to be live at the use site that we're 4104 /// folding it into. If so, there is no cost to include it in the addressing 4105 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4106 /// instruction already. 4107 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4108 Value *KnownLive2) { 4109 // If Val is either of the known-live values, we know it is live! 4110 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4111 return true; 4112 4113 // All values other than instructions and arguments (e.g. constants) are live. 4114 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4115 4116 // If Val is a constant sized alloca in the entry block, it is live, this is 4117 // true because it is just a reference to the stack/frame pointer, which is 4118 // live for the whole function. 4119 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4120 if (AI->isStaticAlloca()) 4121 return true; 4122 4123 // Check to see if this value is already used in the memory instruction's 4124 // block. If so, it's already live into the block at the very least, so we 4125 // can reasonably fold it. 4126 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4127 } 4128 4129 /// It is possible for the addressing mode of the machine to fold the specified 4130 /// instruction into a load or store that ultimately uses it. 4131 /// However, the specified instruction has multiple uses. 4132 /// Given this, it may actually increase register pressure to fold it 4133 /// into the load. For example, consider this code: 4134 /// 4135 /// X = ... 4136 /// Y = X+1 4137 /// use(Y) -> nonload/store 4138 /// Z = Y+1 4139 /// load Z 4140 /// 4141 /// In this case, Y has multiple uses, and can be folded into the load of Z 4142 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4143 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4144 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4145 /// number of computations either. 4146 /// 4147 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4148 /// X was live across 'load Z' for other reasons, we actually *would* want to 4149 /// fold the addressing mode in the Z case. This would make Y die earlier. 4150 bool AddressingModeMatcher:: 4151 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4152 ExtAddrMode &AMAfter) { 4153 if (IgnoreProfitability) return true; 4154 4155 // AMBefore is the addressing mode before this instruction was folded into it, 4156 // and AMAfter is the addressing mode after the instruction was folded. Get 4157 // the set of registers referenced by AMAfter and subtract out those 4158 // referenced by AMBefore: this is the set of values which folding in this 4159 // address extends the lifetime of. 4160 // 4161 // Note that there are only two potential values being referenced here, 4162 // BaseReg and ScaleReg (global addresses are always available, as are any 4163 // folded immediates). 4164 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4165 4166 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4167 // lifetime wasn't extended by adding this instruction. 4168 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4169 BaseReg = nullptr; 4170 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4171 ScaledReg = nullptr; 4172 4173 // If folding this instruction (and it's subexprs) didn't extend any live 4174 // ranges, we're ok with it. 4175 if (!BaseReg && !ScaledReg) 4176 return true; 4177 4178 // If all uses of this instruction can have the address mode sunk into them, 4179 // we can remove the addressing mode and effectively trade one live register 4180 // for another (at worst.) In this context, folding an addressing mode into 4181 // the use is just a particularly nice way of sinking it. 4182 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4183 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4184 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4185 return false; // Has a non-memory, non-foldable use! 4186 4187 // Now that we know that all uses of this instruction are part of a chain of 4188 // computation involving only operations that could theoretically be folded 4189 // into a memory use, loop over each of these memory operation uses and see 4190 // if they could *actually* fold the instruction. The assumption is that 4191 // addressing modes are cheap and that duplicating the computation involved 4192 // many times is worthwhile, even on a fastpath. For sinking candidates 4193 // (i.e. cold call sites), this serves as a way to prevent excessive code 4194 // growth since most architectures have some reasonable small and fast way to 4195 // compute an effective address. (i.e LEA on x86) 4196 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4197 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4198 Instruction *User = MemoryUses[i].first; 4199 unsigned OpNo = MemoryUses[i].second; 4200 4201 // Get the access type of this use. If the use isn't a pointer, we don't 4202 // know what it accesses. 4203 Value *Address = User->getOperand(OpNo); 4204 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4205 if (!AddrTy) 4206 return false; 4207 Type *AddressAccessTy = AddrTy->getElementType(); 4208 unsigned AS = AddrTy->getAddressSpace(); 4209 4210 // Do a match against the root of this address, ignoring profitability. This 4211 // will tell us if the addressing mode for the memory operation will 4212 // *actually* cover the shared instruction. 4213 ExtAddrMode Result; 4214 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4215 TPT.getRestorationPoint(); 4216 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4217 AddressAccessTy, AS, 4218 MemoryInst, Result, InsertedInsts, 4219 PromotedInsts, TPT); 4220 Matcher.IgnoreProfitability = true; 4221 bool Success = Matcher.matchAddr(Address, 0); 4222 (void)Success; assert(Success && "Couldn't select *anything*?"); 4223 4224 // The match was to check the profitability, the changes made are not 4225 // part of the original matcher. Therefore, they should be dropped 4226 // otherwise the original matcher will not present the right state. 4227 TPT.rollback(LastKnownGood); 4228 4229 // If the match didn't cover I, then it won't be shared by it. 4230 if (!is_contained(MatchedAddrModeInsts, I)) 4231 return false; 4232 4233 MatchedAddrModeInsts.clear(); 4234 } 4235 4236 return true; 4237 } 4238 4239 /// Return true if the specified values are defined in a 4240 /// different basic block than BB. 4241 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4242 if (Instruction *I = dyn_cast<Instruction>(V)) 4243 return I->getParent() != BB; 4244 return false; 4245 } 4246 4247 /// Sink addressing mode computation immediate before MemoryInst if doing so 4248 /// can be done without increasing register pressure. The need for the 4249 /// register pressure constraint means this can end up being an all or nothing 4250 /// decision for all uses of the same addressing computation. 4251 /// 4252 /// Load and Store Instructions often have addressing modes that can do 4253 /// significant amounts of computation. As such, instruction selection will try 4254 /// to get the load or store to do as much computation as possible for the 4255 /// program. The problem is that isel can only see within a single block. As 4256 /// such, we sink as much legal addressing mode work into the block as possible. 4257 /// 4258 /// This method is used to optimize both load/store and inline asms with memory 4259 /// operands. It's also used to sink addressing computations feeding into cold 4260 /// call sites into their (cold) basic block. 4261 /// 4262 /// The motivation for handling sinking into cold blocks is that doing so can 4263 /// both enable other address mode sinking (by satisfying the register pressure 4264 /// constraint above), and reduce register pressure globally (by removing the 4265 /// addressing mode computation from the fast path entirely.). 4266 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4267 Type *AccessTy, unsigned AddrSpace) { 4268 Value *Repl = Addr; 4269 4270 // Try to collapse single-value PHI nodes. This is necessary to undo 4271 // unprofitable PRE transformations. 4272 SmallVector<Value*, 8> worklist; 4273 SmallPtrSet<Value*, 16> Visited; 4274 worklist.push_back(Addr); 4275 4276 // Use a worklist to iteratively look through PHI and select nodes, and 4277 // ensure that the addressing mode obtained from the non-PHI/select roots of 4278 // the graph are compatible. 4279 bool PhiOrSelectSeen = false; 4280 SmallVector<Instruction*, 16> AddrModeInsts; 4281 const SimplifyQuery SQ(*DL, TLInfo); 4282 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4283 TypePromotionTransaction TPT(RemovedInsts); 4284 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4285 TPT.getRestorationPoint(); 4286 while (!worklist.empty()) { 4287 Value *V = worklist.back(); 4288 worklist.pop_back(); 4289 4290 // We allow traversing cyclic Phi nodes. 4291 // In case of success after this loop we ensure that traversing through 4292 // Phi nodes ends up with all cases to compute address of the form 4293 // BaseGV + Base + Scale * Index + Offset 4294 // where Scale and Offset are constans and BaseGV, Base and Index 4295 // are exactly the same Values in all cases. 4296 // It means that BaseGV, Scale and Offset dominate our memory instruction 4297 // and have the same value as they had in address computation represented 4298 // as Phi. So we can safely sink address computation to memory instruction. 4299 if (!Visited.insert(V).second) 4300 continue; 4301 4302 // For a PHI node, push all of its incoming values. 4303 if (PHINode *P = dyn_cast<PHINode>(V)) { 4304 for (Value *IncValue : P->incoming_values()) 4305 worklist.push_back(IncValue); 4306 PhiOrSelectSeen = true; 4307 continue; 4308 } 4309 // Similar for select. 4310 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4311 worklist.push_back(SI->getFalseValue()); 4312 worklist.push_back(SI->getTrueValue()); 4313 PhiOrSelectSeen = true; 4314 continue; 4315 } 4316 4317 // For non-PHIs, determine the addressing mode being computed. Note that 4318 // the result may differ depending on what other uses our candidate 4319 // addressing instructions might have. 4320 AddrModeInsts.clear(); 4321 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4322 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4323 InsertedInsts, PromotedInsts, TPT); 4324 NewAddrMode.OriginalValue = V; 4325 4326 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4327 break; 4328 } 4329 4330 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4331 // or we have multiple but either couldn't combine them or combining them 4332 // wouldn't do anything useful, bail out now. 4333 if (!AddrModes.combineAddrModes()) { 4334 TPT.rollback(LastKnownGood); 4335 return false; 4336 } 4337 TPT.commit(); 4338 4339 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4340 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4341 4342 // If all the instructions matched are already in this BB, don't do anything. 4343 // If we saw a Phi node then it is not local definitely, and if we saw a select 4344 // then we want to push the address calculation past it even if it's already 4345 // in this BB. 4346 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4347 return IsNonLocalValue(V, MemoryInst->getParent()); 4348 })) { 4349 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4350 return false; 4351 } 4352 4353 // Insert this computation right after this user. Since our caller is 4354 // scanning from the top of the BB to the bottom, reuse of the expr are 4355 // guaranteed to happen later. 4356 IRBuilder<> Builder(MemoryInst); 4357 4358 // Now that we determined the addressing expression we want to use and know 4359 // that we have to sink it into this block. Check to see if we have already 4360 // done this for some other load/store instr in this block. If so, reuse the 4361 // computation. 4362 Value *&SunkAddr = SunkAddrs[Addr]; 4363 if (SunkAddr) { 4364 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4365 << *MemoryInst << "\n"); 4366 if (SunkAddr->getType() != Addr->getType()) 4367 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4368 } else if (AddrSinkUsingGEPs || 4369 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4370 SubtargetInfo->useAA())) { 4371 // By default, we use the GEP-based method when AA is used later. This 4372 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4373 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4374 << *MemoryInst << "\n"); 4375 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4376 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4377 4378 // First, find the pointer. 4379 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4380 ResultPtr = AddrMode.BaseReg; 4381 AddrMode.BaseReg = nullptr; 4382 } 4383 4384 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4385 // We can't add more than one pointer together, nor can we scale a 4386 // pointer (both of which seem meaningless). 4387 if (ResultPtr || AddrMode.Scale != 1) 4388 return false; 4389 4390 ResultPtr = AddrMode.ScaledReg; 4391 AddrMode.Scale = 0; 4392 } 4393 4394 // It is only safe to sign extend the BaseReg if we know that the math 4395 // required to create it did not overflow before we extend it. Since 4396 // the original IR value was tossed in favor of a constant back when 4397 // the AddrMode was created we need to bail out gracefully if widths 4398 // do not match instead of extending it. 4399 // 4400 // (See below for code to add the scale.) 4401 if (AddrMode.Scale) { 4402 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4403 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4404 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4405 return false; 4406 } 4407 4408 if (AddrMode.BaseGV) { 4409 if (ResultPtr) 4410 return false; 4411 4412 ResultPtr = AddrMode.BaseGV; 4413 } 4414 4415 // If the real base value actually came from an inttoptr, then the matcher 4416 // will look through it and provide only the integer value. In that case, 4417 // use it here. 4418 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4419 if (!ResultPtr && AddrMode.BaseReg) { 4420 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4421 "sunkaddr"); 4422 AddrMode.BaseReg = nullptr; 4423 } else if (!ResultPtr && AddrMode.Scale == 1) { 4424 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4425 "sunkaddr"); 4426 AddrMode.Scale = 0; 4427 } 4428 } 4429 4430 if (!ResultPtr && 4431 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4432 SunkAddr = Constant::getNullValue(Addr->getType()); 4433 } else if (!ResultPtr) { 4434 return false; 4435 } else { 4436 Type *I8PtrTy = 4437 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4438 Type *I8Ty = Builder.getInt8Ty(); 4439 4440 // Start with the base register. Do this first so that subsequent address 4441 // matching finds it last, which will prevent it from trying to match it 4442 // as the scaled value in case it happens to be a mul. That would be 4443 // problematic if we've sunk a different mul for the scale, because then 4444 // we'd end up sinking both muls. 4445 if (AddrMode.BaseReg) { 4446 Value *V = AddrMode.BaseReg; 4447 if (V->getType() != IntPtrTy) 4448 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4449 4450 ResultIndex = V; 4451 } 4452 4453 // Add the scale value. 4454 if (AddrMode.Scale) { 4455 Value *V = AddrMode.ScaledReg; 4456 if (V->getType() == IntPtrTy) { 4457 // done. 4458 } else { 4459 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4460 cast<IntegerType>(V->getType())->getBitWidth() && 4461 "We can't transform if ScaledReg is too narrow"); 4462 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4463 } 4464 4465 if (AddrMode.Scale != 1) 4466 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4467 "sunkaddr"); 4468 if (ResultIndex) 4469 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4470 else 4471 ResultIndex = V; 4472 } 4473 4474 // Add in the Base Offset if present. 4475 if (AddrMode.BaseOffs) { 4476 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4477 if (ResultIndex) { 4478 // We need to add this separately from the scale above to help with 4479 // SDAG consecutive load/store merging. 4480 if (ResultPtr->getType() != I8PtrTy) 4481 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4482 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4483 } 4484 4485 ResultIndex = V; 4486 } 4487 4488 if (!ResultIndex) { 4489 SunkAddr = ResultPtr; 4490 } else { 4491 if (ResultPtr->getType() != I8PtrTy) 4492 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4493 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4494 } 4495 4496 if (SunkAddr->getType() != Addr->getType()) 4497 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4498 } 4499 } else { 4500 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4501 // non-integral pointers, so in that case bail out now. 4502 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4503 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4504 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4505 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4506 if (DL->isNonIntegralPointerType(Addr->getType()) || 4507 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4508 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4509 (AddrMode.BaseGV && 4510 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4511 return false; 4512 4513 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4514 << *MemoryInst << "\n"); 4515 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4516 Value *Result = nullptr; 4517 4518 // Start with the base register. Do this first so that subsequent address 4519 // matching finds it last, which will prevent it from trying to match it 4520 // as the scaled value in case it happens to be a mul. That would be 4521 // problematic if we've sunk a different mul for the scale, because then 4522 // we'd end up sinking both muls. 4523 if (AddrMode.BaseReg) { 4524 Value *V = AddrMode.BaseReg; 4525 if (V->getType()->isPointerTy()) 4526 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4527 if (V->getType() != IntPtrTy) 4528 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4529 Result = V; 4530 } 4531 4532 // Add the scale value. 4533 if (AddrMode.Scale) { 4534 Value *V = AddrMode.ScaledReg; 4535 if (V->getType() == IntPtrTy) { 4536 // done. 4537 } else if (V->getType()->isPointerTy()) { 4538 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4539 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4540 cast<IntegerType>(V->getType())->getBitWidth()) { 4541 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4542 } else { 4543 // It is only safe to sign extend the BaseReg if we know that the math 4544 // required to create it did not overflow before we extend it. Since 4545 // the original IR value was tossed in favor of a constant back when 4546 // the AddrMode was created we need to bail out gracefully if widths 4547 // do not match instead of extending it. 4548 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4549 if (I && (Result != AddrMode.BaseReg)) 4550 I->eraseFromParent(); 4551 return false; 4552 } 4553 if (AddrMode.Scale != 1) 4554 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4555 "sunkaddr"); 4556 if (Result) 4557 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4558 else 4559 Result = V; 4560 } 4561 4562 // Add in the BaseGV if present. 4563 if (AddrMode.BaseGV) { 4564 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4565 if (Result) 4566 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4567 else 4568 Result = V; 4569 } 4570 4571 // Add in the Base Offset if present. 4572 if (AddrMode.BaseOffs) { 4573 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4574 if (Result) 4575 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4576 else 4577 Result = V; 4578 } 4579 4580 if (!Result) 4581 SunkAddr = Constant::getNullValue(Addr->getType()); 4582 else 4583 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4584 } 4585 4586 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4587 4588 // If we have no uses, recursively delete the value and all dead instructions 4589 // using it. 4590 if (Repl->use_empty()) { 4591 // This can cause recursive deletion, which can invalidate our iterator. 4592 // Use a WeakTrackingVH to hold onto it in case this happens. 4593 Value *CurValue = &*CurInstIterator; 4594 WeakTrackingVH IterHandle(CurValue); 4595 BasicBlock *BB = CurInstIterator->getParent(); 4596 4597 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4598 4599 if (IterHandle != CurValue) { 4600 // If the iterator instruction was recursively deleted, start over at the 4601 // start of the block. 4602 CurInstIterator = BB->begin(); 4603 SunkAddrs.clear(); 4604 } 4605 } 4606 ++NumMemoryInsts; 4607 return true; 4608 } 4609 4610 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4611 /// address computing into the block when possible / profitable. 4612 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4613 bool MadeChange = false; 4614 4615 const TargetRegisterInfo *TRI = 4616 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4617 TargetLowering::AsmOperandInfoVector TargetConstraints = 4618 TLI->ParseConstraints(*DL, TRI, CS); 4619 unsigned ArgNo = 0; 4620 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4621 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4622 4623 // Compute the constraint code and ConstraintType to use. 4624 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4625 4626 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4627 OpInfo.isIndirect) { 4628 Value *OpVal = CS->getArgOperand(ArgNo++); 4629 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4630 } else if (OpInfo.Type == InlineAsm::isInput) 4631 ArgNo++; 4632 } 4633 4634 return MadeChange; 4635 } 4636 4637 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4638 /// sign extensions. 4639 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4640 assert(!Val->use_empty() && "Input must have at least one use"); 4641 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4642 bool IsSExt = isa<SExtInst>(FirstUser); 4643 Type *ExtTy = FirstUser->getType(); 4644 for (const User *U : Val->users()) { 4645 const Instruction *UI = cast<Instruction>(U); 4646 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4647 return false; 4648 Type *CurTy = UI->getType(); 4649 // Same input and output types: Same instruction after CSE. 4650 if (CurTy == ExtTy) 4651 continue; 4652 4653 // If IsSExt is true, we are in this situation: 4654 // a = Val 4655 // b = sext ty1 a to ty2 4656 // c = sext ty1 a to ty3 4657 // Assuming ty2 is shorter than ty3, this could be turned into: 4658 // a = Val 4659 // b = sext ty1 a to ty2 4660 // c = sext ty2 b to ty3 4661 // However, the last sext is not free. 4662 if (IsSExt) 4663 return false; 4664 4665 // This is a ZExt, maybe this is free to extend from one type to another. 4666 // In that case, we would not account for a different use. 4667 Type *NarrowTy; 4668 Type *LargeTy; 4669 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4670 CurTy->getScalarType()->getIntegerBitWidth()) { 4671 NarrowTy = CurTy; 4672 LargeTy = ExtTy; 4673 } else { 4674 NarrowTy = ExtTy; 4675 LargeTy = CurTy; 4676 } 4677 4678 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4679 return false; 4680 } 4681 // All uses are the same or can be derived from one another for free. 4682 return true; 4683 } 4684 4685 /// \brief Try to speculatively promote extensions in \p Exts and continue 4686 /// promoting through newly promoted operands recursively as far as doing so is 4687 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4688 /// When some promotion happened, \p TPT contains the proper state to revert 4689 /// them. 4690 /// 4691 /// \return true if some promotion happened, false otherwise. 4692 bool CodeGenPrepare::tryToPromoteExts( 4693 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4694 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4695 unsigned CreatedInstsCost) { 4696 bool Promoted = false; 4697 4698 // Iterate over all the extensions to try to promote them. 4699 for (auto I : Exts) { 4700 // Early check if we directly have ext(load). 4701 if (isa<LoadInst>(I->getOperand(0))) { 4702 ProfitablyMovedExts.push_back(I); 4703 continue; 4704 } 4705 4706 // Check whether or not we want to do any promotion. The reason we have 4707 // this check inside the for loop is to catch the case where an extension 4708 // is directly fed by a load because in such case the extension can be moved 4709 // up without any promotion on its operands. 4710 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4711 return false; 4712 4713 // Get the action to perform the promotion. 4714 TypePromotionHelper::Action TPH = 4715 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4716 // Check if we can promote. 4717 if (!TPH) { 4718 // Save the current extension as we cannot move up through its operand. 4719 ProfitablyMovedExts.push_back(I); 4720 continue; 4721 } 4722 4723 // Save the current state. 4724 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4725 TPT.getRestorationPoint(); 4726 SmallVector<Instruction *, 4> NewExts; 4727 unsigned NewCreatedInstsCost = 0; 4728 unsigned ExtCost = !TLI->isExtFree(I); 4729 // Promote. 4730 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4731 &NewExts, nullptr, *TLI); 4732 assert(PromotedVal && 4733 "TypePromotionHelper should have filtered out those cases"); 4734 4735 // We would be able to merge only one extension in a load. 4736 // Therefore, if we have more than 1 new extension we heuristically 4737 // cut this search path, because it means we degrade the code quality. 4738 // With exactly 2, the transformation is neutral, because we will merge 4739 // one extension but leave one. However, we optimistically keep going, 4740 // because the new extension may be removed too. 4741 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4742 // FIXME: It would be possible to propagate a negative value instead of 4743 // conservatively ceiling it to 0. 4744 TotalCreatedInstsCost = 4745 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4746 if (!StressExtLdPromotion && 4747 (TotalCreatedInstsCost > 1 || 4748 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4749 // This promotion is not profitable, rollback to the previous state, and 4750 // save the current extension in ProfitablyMovedExts as the latest 4751 // speculative promotion turned out to be unprofitable. 4752 TPT.rollback(LastKnownGood); 4753 ProfitablyMovedExts.push_back(I); 4754 continue; 4755 } 4756 // Continue promoting NewExts as far as doing so is profitable. 4757 SmallVector<Instruction *, 2> NewlyMovedExts; 4758 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4759 bool NewPromoted = false; 4760 for (auto ExtInst : NewlyMovedExts) { 4761 Instruction *MovedExt = cast<Instruction>(ExtInst); 4762 Value *ExtOperand = MovedExt->getOperand(0); 4763 // If we have reached to a load, we need this extra profitability check 4764 // as it could potentially be merged into an ext(load). 4765 if (isa<LoadInst>(ExtOperand) && 4766 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4767 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4768 continue; 4769 4770 ProfitablyMovedExts.push_back(MovedExt); 4771 NewPromoted = true; 4772 } 4773 4774 // If none of speculative promotions for NewExts is profitable, rollback 4775 // and save the current extension (I) as the last profitable extension. 4776 if (!NewPromoted) { 4777 TPT.rollback(LastKnownGood); 4778 ProfitablyMovedExts.push_back(I); 4779 continue; 4780 } 4781 // The promotion is profitable. 4782 Promoted = true; 4783 } 4784 return Promoted; 4785 } 4786 4787 /// Merging redundant sexts when one is dominating the other. 4788 bool CodeGenPrepare::mergeSExts(Function &F) { 4789 DominatorTree DT(F); 4790 bool Changed = false; 4791 for (auto &Entry : ValToSExtendedUses) { 4792 SExts &Insts = Entry.second; 4793 SExts CurPts; 4794 for (Instruction *Inst : Insts) { 4795 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4796 Inst->getOperand(0) != Entry.first) 4797 continue; 4798 bool inserted = false; 4799 for (auto &Pt : CurPts) { 4800 if (DT.dominates(Inst, Pt)) { 4801 Pt->replaceAllUsesWith(Inst); 4802 RemovedInsts.insert(Pt); 4803 Pt->removeFromParent(); 4804 Pt = Inst; 4805 inserted = true; 4806 Changed = true; 4807 break; 4808 } 4809 if (!DT.dominates(Pt, Inst)) 4810 // Give up if we need to merge in a common dominator as the 4811 // expermients show it is not profitable. 4812 continue; 4813 Inst->replaceAllUsesWith(Pt); 4814 RemovedInsts.insert(Inst); 4815 Inst->removeFromParent(); 4816 inserted = true; 4817 Changed = true; 4818 break; 4819 } 4820 if (!inserted) 4821 CurPts.push_back(Inst); 4822 } 4823 } 4824 return Changed; 4825 } 4826 4827 /// Return true, if an ext(load) can be formed from an extension in 4828 /// \p MovedExts. 4829 bool CodeGenPrepare::canFormExtLd( 4830 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4831 Instruction *&Inst, bool HasPromoted) { 4832 for (auto *MovedExtInst : MovedExts) { 4833 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4834 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4835 Inst = MovedExtInst; 4836 break; 4837 } 4838 } 4839 if (!LI) 4840 return false; 4841 4842 // If they're already in the same block, there's nothing to do. 4843 // Make the cheap checks first if we did not promote. 4844 // If we promoted, we need to check if it is indeed profitable. 4845 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4846 return false; 4847 4848 return TLI->isExtLoad(LI, Inst, *DL); 4849 } 4850 4851 /// Move a zext or sext fed by a load into the same basic block as the load, 4852 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4853 /// extend into the load. 4854 /// 4855 /// E.g., 4856 /// \code 4857 /// %ld = load i32* %addr 4858 /// %add = add nuw i32 %ld, 4 4859 /// %zext = zext i32 %add to i64 4860 // \endcode 4861 /// => 4862 /// \code 4863 /// %ld = load i32* %addr 4864 /// %zext = zext i32 %ld to i64 4865 /// %add = add nuw i64 %zext, 4 4866 /// \encode 4867 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4868 /// allow us to match zext(load i32*) to i64. 4869 /// 4870 /// Also, try to promote the computations used to obtain a sign extended 4871 /// value used into memory accesses. 4872 /// E.g., 4873 /// \code 4874 /// a = add nsw i32 b, 3 4875 /// d = sext i32 a to i64 4876 /// e = getelementptr ..., i64 d 4877 /// \endcode 4878 /// => 4879 /// \code 4880 /// f = sext i32 b to i64 4881 /// a = add nsw i64 f, 3 4882 /// e = getelementptr ..., i64 a 4883 /// \endcode 4884 /// 4885 /// \p Inst[in/out] the extension may be modified during the process if some 4886 /// promotions apply. 4887 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4888 // ExtLoad formation and address type promotion infrastructure requires TLI to 4889 // be effective. 4890 if (!TLI) 4891 return false; 4892 4893 bool AllowPromotionWithoutCommonHeader = false; 4894 /// See if it is an interesting sext operations for the address type 4895 /// promotion before trying to promote it, e.g., the ones with the right 4896 /// type and used in memory accesses. 4897 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4898 *Inst, AllowPromotionWithoutCommonHeader); 4899 TypePromotionTransaction TPT(RemovedInsts); 4900 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4901 TPT.getRestorationPoint(); 4902 SmallVector<Instruction *, 1> Exts; 4903 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4904 Exts.push_back(Inst); 4905 4906 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4907 4908 // Look for a load being extended. 4909 LoadInst *LI = nullptr; 4910 Instruction *ExtFedByLoad; 4911 4912 // Try to promote a chain of computation if it allows to form an extended 4913 // load. 4914 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4915 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4916 TPT.commit(); 4917 // Move the extend into the same block as the load 4918 ExtFedByLoad->moveAfter(LI); 4919 // CGP does not check if the zext would be speculatively executed when moved 4920 // to the same basic block as the load. Preserving its original location 4921 // would pessimize the debugging experience, as well as negatively impact 4922 // the quality of sample pgo. We don't want to use "line 0" as that has a 4923 // size cost in the line-table section and logically the zext can be seen as 4924 // part of the load. Therefore we conservatively reuse the same debug 4925 // location for the load and the zext. 4926 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4927 ++NumExtsMoved; 4928 Inst = ExtFedByLoad; 4929 return true; 4930 } 4931 4932 // Continue promoting SExts if known as considerable depending on targets. 4933 if (ATPConsiderable && 4934 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4935 HasPromoted, TPT, SpeculativelyMovedExts)) 4936 return true; 4937 4938 TPT.rollback(LastKnownGood); 4939 return false; 4940 } 4941 4942 // Perform address type promotion if doing so is profitable. 4943 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4944 // instructions that sign extended the same initial value. However, if 4945 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4946 // extension is just profitable. 4947 bool CodeGenPrepare::performAddressTypePromotion( 4948 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4949 bool HasPromoted, TypePromotionTransaction &TPT, 4950 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4951 bool Promoted = false; 4952 SmallPtrSet<Instruction *, 1> UnhandledExts; 4953 bool AllSeenFirst = true; 4954 for (auto I : SpeculativelyMovedExts) { 4955 Value *HeadOfChain = I->getOperand(0); 4956 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4957 SeenChainsForSExt.find(HeadOfChain); 4958 // If there is an unhandled SExt which has the same header, try to promote 4959 // it as well. 4960 if (AlreadySeen != SeenChainsForSExt.end()) { 4961 if (AlreadySeen->second != nullptr) 4962 UnhandledExts.insert(AlreadySeen->second); 4963 AllSeenFirst = false; 4964 } 4965 } 4966 4967 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4968 SpeculativelyMovedExts.size() == 1)) { 4969 TPT.commit(); 4970 if (HasPromoted) 4971 Promoted = true; 4972 for (auto I : SpeculativelyMovedExts) { 4973 Value *HeadOfChain = I->getOperand(0); 4974 SeenChainsForSExt[HeadOfChain] = nullptr; 4975 ValToSExtendedUses[HeadOfChain].push_back(I); 4976 } 4977 // Update Inst as promotion happen. 4978 Inst = SpeculativelyMovedExts.pop_back_val(); 4979 } else { 4980 // This is the first chain visited from the header, keep the current chain 4981 // as unhandled. Defer to promote this until we encounter another SExt 4982 // chain derived from the same header. 4983 for (auto I : SpeculativelyMovedExts) { 4984 Value *HeadOfChain = I->getOperand(0); 4985 SeenChainsForSExt[HeadOfChain] = Inst; 4986 } 4987 return false; 4988 } 4989 4990 if (!AllSeenFirst && !UnhandledExts.empty()) 4991 for (auto VisitedSExt : UnhandledExts) { 4992 if (RemovedInsts.count(VisitedSExt)) 4993 continue; 4994 TypePromotionTransaction TPT(RemovedInsts); 4995 SmallVector<Instruction *, 1> Exts; 4996 SmallVector<Instruction *, 2> Chains; 4997 Exts.push_back(VisitedSExt); 4998 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4999 TPT.commit(); 5000 if (HasPromoted) 5001 Promoted = true; 5002 for (auto I : Chains) { 5003 Value *HeadOfChain = I->getOperand(0); 5004 // Mark this as handled. 5005 SeenChainsForSExt[HeadOfChain] = nullptr; 5006 ValToSExtendedUses[HeadOfChain].push_back(I); 5007 } 5008 } 5009 return Promoted; 5010 } 5011 5012 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5013 BasicBlock *DefBB = I->getParent(); 5014 5015 // If the result of a {s|z}ext and its source are both live out, rewrite all 5016 // other uses of the source with result of extension. 5017 Value *Src = I->getOperand(0); 5018 if (Src->hasOneUse()) 5019 return false; 5020 5021 // Only do this xform if truncating is free. 5022 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5023 return false; 5024 5025 // Only safe to perform the optimization if the source is also defined in 5026 // this block. 5027 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5028 return false; 5029 5030 bool DefIsLiveOut = false; 5031 for (User *U : I->users()) { 5032 Instruction *UI = cast<Instruction>(U); 5033 5034 // Figure out which BB this ext is used in. 5035 BasicBlock *UserBB = UI->getParent(); 5036 if (UserBB == DefBB) continue; 5037 DefIsLiveOut = true; 5038 break; 5039 } 5040 if (!DefIsLiveOut) 5041 return false; 5042 5043 // Make sure none of the uses are PHI nodes. 5044 for (User *U : Src->users()) { 5045 Instruction *UI = cast<Instruction>(U); 5046 BasicBlock *UserBB = UI->getParent(); 5047 if (UserBB == DefBB) continue; 5048 // Be conservative. We don't want this xform to end up introducing 5049 // reloads just before load / store instructions. 5050 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5051 return false; 5052 } 5053 5054 // InsertedTruncs - Only insert one trunc in each block once. 5055 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5056 5057 bool MadeChange = false; 5058 for (Use &U : Src->uses()) { 5059 Instruction *User = cast<Instruction>(U.getUser()); 5060 5061 // Figure out which BB this ext is used in. 5062 BasicBlock *UserBB = User->getParent(); 5063 if (UserBB == DefBB) continue; 5064 5065 // Both src and def are live in this block. Rewrite the use. 5066 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5067 5068 if (!InsertedTrunc) { 5069 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5070 assert(InsertPt != UserBB->end()); 5071 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5072 InsertedInsts.insert(InsertedTrunc); 5073 } 5074 5075 // Replace a use of the {s|z}ext source with a use of the result. 5076 U = InsertedTrunc; 5077 ++NumExtUses; 5078 MadeChange = true; 5079 } 5080 5081 return MadeChange; 5082 } 5083 5084 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5085 // just after the load if the target can fold this into one extload instruction, 5086 // with the hope of eliminating some of the other later "and" instructions using 5087 // the loaded value. "and"s that are made trivially redundant by the insertion 5088 // of the new "and" are removed by this function, while others (e.g. those whose 5089 // path from the load goes through a phi) are left for isel to potentially 5090 // remove. 5091 // 5092 // For example: 5093 // 5094 // b0: 5095 // x = load i32 5096 // ... 5097 // b1: 5098 // y = and x, 0xff 5099 // z = use y 5100 // 5101 // becomes: 5102 // 5103 // b0: 5104 // x = load i32 5105 // x' = and x, 0xff 5106 // ... 5107 // b1: 5108 // z = use x' 5109 // 5110 // whereas: 5111 // 5112 // b0: 5113 // x1 = load i32 5114 // ... 5115 // b1: 5116 // x2 = load i32 5117 // ... 5118 // b2: 5119 // x = phi x1, x2 5120 // y = and x, 0xff 5121 // 5122 // becomes (after a call to optimizeLoadExt for each load): 5123 // 5124 // b0: 5125 // x1 = load i32 5126 // x1' = and x1, 0xff 5127 // ... 5128 // b1: 5129 // x2 = load i32 5130 // x2' = and x2, 0xff 5131 // ... 5132 // b2: 5133 // x = phi x1', x2' 5134 // y = and x, 0xff 5135 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5136 if (!Load->isSimple() || 5137 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5138 return false; 5139 5140 // Skip loads we've already transformed. 5141 if (Load->hasOneUse() && 5142 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5143 return false; 5144 5145 // Look at all uses of Load, looking through phis, to determine how many bits 5146 // of the loaded value are needed. 5147 SmallVector<Instruction *, 8> WorkList; 5148 SmallPtrSet<Instruction *, 16> Visited; 5149 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5150 for (auto *U : Load->users()) 5151 WorkList.push_back(cast<Instruction>(U)); 5152 5153 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5154 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5155 APInt DemandBits(BitWidth, 0); 5156 APInt WidestAndBits(BitWidth, 0); 5157 5158 while (!WorkList.empty()) { 5159 Instruction *I = WorkList.back(); 5160 WorkList.pop_back(); 5161 5162 // Break use-def graph loops. 5163 if (!Visited.insert(I).second) 5164 continue; 5165 5166 // For a PHI node, push all of its users. 5167 if (auto *Phi = dyn_cast<PHINode>(I)) { 5168 for (auto *U : Phi->users()) 5169 WorkList.push_back(cast<Instruction>(U)); 5170 continue; 5171 } 5172 5173 switch (I->getOpcode()) { 5174 case Instruction::And: { 5175 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5176 if (!AndC) 5177 return false; 5178 APInt AndBits = AndC->getValue(); 5179 DemandBits |= AndBits; 5180 // Keep track of the widest and mask we see. 5181 if (AndBits.ugt(WidestAndBits)) 5182 WidestAndBits = AndBits; 5183 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5184 AndsToMaybeRemove.push_back(I); 5185 break; 5186 } 5187 5188 case Instruction::Shl: { 5189 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5190 if (!ShlC) 5191 return false; 5192 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5193 DemandBits.setLowBits(BitWidth - ShiftAmt); 5194 break; 5195 } 5196 5197 case Instruction::Trunc: { 5198 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5199 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5200 DemandBits.setLowBits(TruncBitWidth); 5201 break; 5202 } 5203 5204 default: 5205 return false; 5206 } 5207 } 5208 5209 uint32_t ActiveBits = DemandBits.getActiveBits(); 5210 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5211 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5212 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5213 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5214 // followed by an AND. 5215 // TODO: Look into removing this restriction by fixing backends to either 5216 // return false for isLoadExtLegal for i1 or have them select this pattern to 5217 // a single instruction. 5218 // 5219 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5220 // mask, since these are the only ands that will be removed by isel. 5221 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5222 WidestAndBits != DemandBits) 5223 return false; 5224 5225 LLVMContext &Ctx = Load->getType()->getContext(); 5226 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5227 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5228 5229 // Reject cases that won't be matched as extloads. 5230 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5231 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5232 return false; 5233 5234 IRBuilder<> Builder(Load->getNextNode()); 5235 auto *NewAnd = dyn_cast<Instruction>( 5236 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5237 // Mark this instruction as "inserted by CGP", so that other 5238 // optimizations don't touch it. 5239 InsertedInsts.insert(NewAnd); 5240 5241 // Replace all uses of load with new and (except for the use of load in the 5242 // new and itself). 5243 Load->replaceAllUsesWith(NewAnd); 5244 NewAnd->setOperand(0, Load); 5245 5246 // Remove any and instructions that are now redundant. 5247 for (auto *And : AndsToMaybeRemove) 5248 // Check that the and mask is the same as the one we decided to put on the 5249 // new and. 5250 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5251 And->replaceAllUsesWith(NewAnd); 5252 if (&*CurInstIterator == And) 5253 CurInstIterator = std::next(And->getIterator()); 5254 And->eraseFromParent(); 5255 ++NumAndUses; 5256 } 5257 5258 ++NumAndsAdded; 5259 return true; 5260 } 5261 5262 /// Check if V (an operand of a select instruction) is an expensive instruction 5263 /// that is only used once. 5264 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5265 auto *I = dyn_cast<Instruction>(V); 5266 // If it's safe to speculatively execute, then it should not have side 5267 // effects; therefore, it's safe to sink and possibly *not* execute. 5268 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5269 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5270 } 5271 5272 /// Returns true if a SelectInst should be turned into an explicit branch. 5273 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5274 const TargetLowering *TLI, 5275 SelectInst *SI) { 5276 // If even a predictable select is cheap, then a branch can't be cheaper. 5277 if (!TLI->isPredictableSelectExpensive()) 5278 return false; 5279 5280 // FIXME: This should use the same heuristics as IfConversion to determine 5281 // whether a select is better represented as a branch. 5282 5283 // If metadata tells us that the select condition is obviously predictable, 5284 // then we want to replace the select with a branch. 5285 uint64_t TrueWeight, FalseWeight; 5286 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5287 uint64_t Max = std::max(TrueWeight, FalseWeight); 5288 uint64_t Sum = TrueWeight + FalseWeight; 5289 if (Sum != 0) { 5290 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5291 if (Probability > TLI->getPredictableBranchThreshold()) 5292 return true; 5293 } 5294 } 5295 5296 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5297 5298 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5299 // comparison condition. If the compare has more than one use, there's 5300 // probably another cmov or setcc around, so it's not worth emitting a branch. 5301 if (!Cmp || !Cmp->hasOneUse()) 5302 return false; 5303 5304 // If either operand of the select is expensive and only needed on one side 5305 // of the select, we should form a branch. 5306 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5307 sinkSelectOperand(TTI, SI->getFalseValue())) 5308 return true; 5309 5310 return false; 5311 } 5312 5313 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5314 /// false value of \p SI. If the true/false value of \p SI is defined by any 5315 /// select instructions in \p Selects, look through the defining select 5316 /// instruction until the true/false value is not defined in \p Selects. 5317 static Value *getTrueOrFalseValue( 5318 SelectInst *SI, bool isTrue, 5319 const SmallPtrSet<const Instruction *, 2> &Selects) { 5320 Value *V; 5321 5322 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5323 DefSI = dyn_cast<SelectInst>(V)) { 5324 assert(DefSI->getCondition() == SI->getCondition() && 5325 "The condition of DefSI does not match with SI"); 5326 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5327 } 5328 return V; 5329 } 5330 5331 /// If we have a SelectInst that will likely profit from branch prediction, 5332 /// turn it into a branch. 5333 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5334 // Find all consecutive select instructions that share the same condition. 5335 SmallVector<SelectInst *, 2> ASI; 5336 ASI.push_back(SI); 5337 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5338 It != SI->getParent()->end(); ++It) { 5339 SelectInst *I = dyn_cast<SelectInst>(&*It); 5340 if (I && SI->getCondition() == I->getCondition()) { 5341 ASI.push_back(I); 5342 } else { 5343 break; 5344 } 5345 } 5346 5347 SelectInst *LastSI = ASI.back(); 5348 // Increment the current iterator to skip all the rest of select instructions 5349 // because they will be either "not lowered" or "all lowered" to branch. 5350 CurInstIterator = std::next(LastSI->getIterator()); 5351 5352 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5353 5354 // Can we convert the 'select' to CF ? 5355 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5356 SI->getMetadata(LLVMContext::MD_unpredictable)) 5357 return false; 5358 5359 TargetLowering::SelectSupportKind SelectKind; 5360 if (VectorCond) 5361 SelectKind = TargetLowering::VectorMaskSelect; 5362 else if (SI->getType()->isVectorTy()) 5363 SelectKind = TargetLowering::ScalarCondVectorVal; 5364 else 5365 SelectKind = TargetLowering::ScalarValSelect; 5366 5367 if (TLI->isSelectSupported(SelectKind) && 5368 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5369 return false; 5370 5371 ModifiedDT = true; 5372 5373 // Transform a sequence like this: 5374 // start: 5375 // %cmp = cmp uge i32 %a, %b 5376 // %sel = select i1 %cmp, i32 %c, i32 %d 5377 // 5378 // Into: 5379 // start: 5380 // %cmp = cmp uge i32 %a, %b 5381 // br i1 %cmp, label %select.true, label %select.false 5382 // select.true: 5383 // br label %select.end 5384 // select.false: 5385 // br label %select.end 5386 // select.end: 5387 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5388 // 5389 // In addition, we may sink instructions that produce %c or %d from 5390 // the entry block into the destination(s) of the new branch. 5391 // If the true or false blocks do not contain a sunken instruction, that 5392 // block and its branch may be optimized away. In that case, one side of the 5393 // first branch will point directly to select.end, and the corresponding PHI 5394 // predecessor block will be the start block. 5395 5396 // First, we split the block containing the select into 2 blocks. 5397 BasicBlock *StartBlock = SI->getParent(); 5398 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5399 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5400 5401 // Delete the unconditional branch that was just created by the split. 5402 StartBlock->getTerminator()->eraseFromParent(); 5403 5404 // These are the new basic blocks for the conditional branch. 5405 // At least one will become an actual new basic block. 5406 BasicBlock *TrueBlock = nullptr; 5407 BasicBlock *FalseBlock = nullptr; 5408 BranchInst *TrueBranch = nullptr; 5409 BranchInst *FalseBranch = nullptr; 5410 5411 // Sink expensive instructions into the conditional blocks to avoid executing 5412 // them speculatively. 5413 for (SelectInst *SI : ASI) { 5414 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5415 if (TrueBlock == nullptr) { 5416 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5417 EndBlock->getParent(), EndBlock); 5418 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5419 } 5420 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5421 TrueInst->moveBefore(TrueBranch); 5422 } 5423 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5424 if (FalseBlock == nullptr) { 5425 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5426 EndBlock->getParent(), EndBlock); 5427 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5428 } 5429 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5430 FalseInst->moveBefore(FalseBranch); 5431 } 5432 } 5433 5434 // If there was nothing to sink, then arbitrarily choose the 'false' side 5435 // for a new input value to the PHI. 5436 if (TrueBlock == FalseBlock) { 5437 assert(TrueBlock == nullptr && 5438 "Unexpected basic block transform while optimizing select"); 5439 5440 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5441 EndBlock->getParent(), EndBlock); 5442 BranchInst::Create(EndBlock, FalseBlock); 5443 } 5444 5445 // Insert the real conditional branch based on the original condition. 5446 // If we did not create a new block for one of the 'true' or 'false' paths 5447 // of the condition, it means that side of the branch goes to the end block 5448 // directly and the path originates from the start block from the point of 5449 // view of the new PHI. 5450 BasicBlock *TT, *FT; 5451 if (TrueBlock == nullptr) { 5452 TT = EndBlock; 5453 FT = FalseBlock; 5454 TrueBlock = StartBlock; 5455 } else if (FalseBlock == nullptr) { 5456 TT = TrueBlock; 5457 FT = EndBlock; 5458 FalseBlock = StartBlock; 5459 } else { 5460 TT = TrueBlock; 5461 FT = FalseBlock; 5462 } 5463 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5464 5465 SmallPtrSet<const Instruction *, 2> INS; 5466 INS.insert(ASI.begin(), ASI.end()); 5467 // Use reverse iterator because later select may use the value of the 5468 // earlier select, and we need to propagate value through earlier select 5469 // to get the PHI operand. 5470 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5471 SelectInst *SI = *It; 5472 // The select itself is replaced with a PHI Node. 5473 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5474 PN->takeName(SI); 5475 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5476 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5477 5478 SI->replaceAllUsesWith(PN); 5479 SI->eraseFromParent(); 5480 INS.erase(SI); 5481 ++NumSelectsExpanded; 5482 } 5483 5484 // Instruct OptimizeBlock to skip to the next block. 5485 CurInstIterator = StartBlock->end(); 5486 return true; 5487 } 5488 5489 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5490 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5491 int SplatElem = -1; 5492 for (unsigned i = 0; i < Mask.size(); ++i) { 5493 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5494 return false; 5495 SplatElem = Mask[i]; 5496 } 5497 5498 return true; 5499 } 5500 5501 /// Some targets have expensive vector shifts if the lanes aren't all the same 5502 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5503 /// it's often worth sinking a shufflevector splat down to its use so that 5504 /// codegen can spot all lanes are identical. 5505 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5506 BasicBlock *DefBB = SVI->getParent(); 5507 5508 // Only do this xform if variable vector shifts are particularly expensive. 5509 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5510 return false; 5511 5512 // We only expect better codegen by sinking a shuffle if we can recognise a 5513 // constant splat. 5514 if (!isBroadcastShuffle(SVI)) 5515 return false; 5516 5517 // InsertedShuffles - Only insert a shuffle in each block once. 5518 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5519 5520 bool MadeChange = false; 5521 for (User *U : SVI->users()) { 5522 Instruction *UI = cast<Instruction>(U); 5523 5524 // Figure out which BB this ext is used in. 5525 BasicBlock *UserBB = UI->getParent(); 5526 if (UserBB == DefBB) continue; 5527 5528 // For now only apply this when the splat is used by a shift instruction. 5529 if (!UI->isShift()) continue; 5530 5531 // Everything checks out, sink the shuffle if the user's block doesn't 5532 // already have a copy. 5533 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5534 5535 if (!InsertedShuffle) { 5536 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5537 assert(InsertPt != UserBB->end()); 5538 InsertedShuffle = 5539 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5540 SVI->getOperand(2), "", &*InsertPt); 5541 } 5542 5543 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5544 MadeChange = true; 5545 } 5546 5547 // If we removed all uses, nuke the shuffle. 5548 if (SVI->use_empty()) { 5549 SVI->eraseFromParent(); 5550 MadeChange = true; 5551 } 5552 5553 return MadeChange; 5554 } 5555 5556 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5557 if (!TLI || !DL) 5558 return false; 5559 5560 Value *Cond = SI->getCondition(); 5561 Type *OldType = Cond->getType(); 5562 LLVMContext &Context = Cond->getContext(); 5563 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5564 unsigned RegWidth = RegType.getSizeInBits(); 5565 5566 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5567 return false; 5568 5569 // If the register width is greater than the type width, expand the condition 5570 // of the switch instruction and each case constant to the width of the 5571 // register. By widening the type of the switch condition, subsequent 5572 // comparisons (for case comparisons) will not need to be extended to the 5573 // preferred register width, so we will potentially eliminate N-1 extends, 5574 // where N is the number of cases in the switch. 5575 auto *NewType = Type::getIntNTy(Context, RegWidth); 5576 5577 // Zero-extend the switch condition and case constants unless the switch 5578 // condition is a function argument that is already being sign-extended. 5579 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5580 // everything instead. 5581 Instruction::CastOps ExtType = Instruction::ZExt; 5582 if (auto *Arg = dyn_cast<Argument>(Cond)) 5583 if (Arg->hasSExtAttr()) 5584 ExtType = Instruction::SExt; 5585 5586 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5587 ExtInst->insertBefore(SI); 5588 SI->setCondition(ExtInst); 5589 for (auto Case : SI->cases()) { 5590 APInt NarrowConst = Case.getCaseValue()->getValue(); 5591 APInt WideConst = (ExtType == Instruction::ZExt) ? 5592 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5593 Case.setValue(ConstantInt::get(Context, WideConst)); 5594 } 5595 5596 return true; 5597 } 5598 5599 5600 namespace { 5601 5602 /// \brief Helper class to promote a scalar operation to a vector one. 5603 /// This class is used to move downward extractelement transition. 5604 /// E.g., 5605 /// a = vector_op <2 x i32> 5606 /// b = extractelement <2 x i32> a, i32 0 5607 /// c = scalar_op b 5608 /// store c 5609 /// 5610 /// => 5611 /// a = vector_op <2 x i32> 5612 /// c = vector_op a (equivalent to scalar_op on the related lane) 5613 /// * d = extractelement <2 x i32> c, i32 0 5614 /// * store d 5615 /// Assuming both extractelement and store can be combine, we get rid of the 5616 /// transition. 5617 class VectorPromoteHelper { 5618 /// DataLayout associated with the current module. 5619 const DataLayout &DL; 5620 5621 /// Used to perform some checks on the legality of vector operations. 5622 const TargetLowering &TLI; 5623 5624 /// Used to estimated the cost of the promoted chain. 5625 const TargetTransformInfo &TTI; 5626 5627 /// The transition being moved downwards. 5628 Instruction *Transition; 5629 5630 /// The sequence of instructions to be promoted. 5631 SmallVector<Instruction *, 4> InstsToBePromoted; 5632 5633 /// Cost of combining a store and an extract. 5634 unsigned StoreExtractCombineCost; 5635 5636 /// Instruction that will be combined with the transition. 5637 Instruction *CombineInst = nullptr; 5638 5639 /// \brief The instruction that represents the current end of the transition. 5640 /// Since we are faking the promotion until we reach the end of the chain 5641 /// of computation, we need a way to get the current end of the transition. 5642 Instruction *getEndOfTransition() const { 5643 if (InstsToBePromoted.empty()) 5644 return Transition; 5645 return InstsToBePromoted.back(); 5646 } 5647 5648 /// \brief Return the index of the original value in the transition. 5649 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5650 /// c, is at index 0. 5651 unsigned getTransitionOriginalValueIdx() const { 5652 assert(isa<ExtractElementInst>(Transition) && 5653 "Other kind of transitions are not supported yet"); 5654 return 0; 5655 } 5656 5657 /// \brief Return the index of the index in the transition. 5658 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5659 /// is at index 1. 5660 unsigned getTransitionIdx() const { 5661 assert(isa<ExtractElementInst>(Transition) && 5662 "Other kind of transitions are not supported yet"); 5663 return 1; 5664 } 5665 5666 /// \brief Get the type of the transition. 5667 /// This is the type of the original value. 5668 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5669 /// transition is <2 x i32>. 5670 Type *getTransitionType() const { 5671 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5672 } 5673 5674 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5675 /// I.e., we have the following sequence: 5676 /// Def = Transition <ty1> a to <ty2> 5677 /// b = ToBePromoted <ty2> Def, ... 5678 /// => 5679 /// b = ToBePromoted <ty1> a, ... 5680 /// Def = Transition <ty1> ToBePromoted to <ty2> 5681 void promoteImpl(Instruction *ToBePromoted); 5682 5683 /// \brief Check whether or not it is profitable to promote all the 5684 /// instructions enqueued to be promoted. 5685 bool isProfitableToPromote() { 5686 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5687 unsigned Index = isa<ConstantInt>(ValIdx) 5688 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5689 : -1; 5690 Type *PromotedType = getTransitionType(); 5691 5692 StoreInst *ST = cast<StoreInst>(CombineInst); 5693 unsigned AS = ST->getPointerAddressSpace(); 5694 unsigned Align = ST->getAlignment(); 5695 // Check if this store is supported. 5696 if (!TLI.allowsMisalignedMemoryAccesses( 5697 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5698 Align)) { 5699 // If this is not supported, there is no way we can combine 5700 // the extract with the store. 5701 return false; 5702 } 5703 5704 // The scalar chain of computation has to pay for the transition 5705 // scalar to vector. 5706 // The vector chain has to account for the combining cost. 5707 uint64_t ScalarCost = 5708 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5709 uint64_t VectorCost = StoreExtractCombineCost; 5710 for (const auto &Inst : InstsToBePromoted) { 5711 // Compute the cost. 5712 // By construction, all instructions being promoted are arithmetic ones. 5713 // Moreover, one argument is a constant that can be viewed as a splat 5714 // constant. 5715 Value *Arg0 = Inst->getOperand(0); 5716 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5717 isa<ConstantFP>(Arg0); 5718 TargetTransformInfo::OperandValueKind Arg0OVK = 5719 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5720 : TargetTransformInfo::OK_AnyValue; 5721 TargetTransformInfo::OperandValueKind Arg1OVK = 5722 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5723 : TargetTransformInfo::OK_AnyValue; 5724 ScalarCost += TTI.getArithmeticInstrCost( 5725 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5726 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5727 Arg0OVK, Arg1OVK); 5728 } 5729 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5730 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5731 return ScalarCost > VectorCost; 5732 } 5733 5734 /// \brief Generate a constant vector with \p Val with the same 5735 /// number of elements as the transition. 5736 /// \p UseSplat defines whether or not \p Val should be replicated 5737 /// across the whole vector. 5738 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5739 /// otherwise we generate a vector with as many undef as possible: 5740 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5741 /// used at the index of the extract. 5742 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5743 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5744 if (!UseSplat) { 5745 // If we cannot determine where the constant must be, we have to 5746 // use a splat constant. 5747 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5748 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5749 ExtractIdx = CstVal->getSExtValue(); 5750 else 5751 UseSplat = true; 5752 } 5753 5754 unsigned End = getTransitionType()->getVectorNumElements(); 5755 if (UseSplat) 5756 return ConstantVector::getSplat(End, Val); 5757 5758 SmallVector<Constant *, 4> ConstVec; 5759 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5760 for (unsigned Idx = 0; Idx != End; ++Idx) { 5761 if (Idx == ExtractIdx) 5762 ConstVec.push_back(Val); 5763 else 5764 ConstVec.push_back(UndefVal); 5765 } 5766 return ConstantVector::get(ConstVec); 5767 } 5768 5769 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5770 /// in \p Use can trigger undefined behavior. 5771 static bool canCauseUndefinedBehavior(const Instruction *Use, 5772 unsigned OperandIdx) { 5773 // This is not safe to introduce undef when the operand is on 5774 // the right hand side of a division-like instruction. 5775 if (OperandIdx != 1) 5776 return false; 5777 switch (Use->getOpcode()) { 5778 default: 5779 return false; 5780 case Instruction::SDiv: 5781 case Instruction::UDiv: 5782 case Instruction::SRem: 5783 case Instruction::URem: 5784 return true; 5785 case Instruction::FDiv: 5786 case Instruction::FRem: 5787 return !Use->hasNoNaNs(); 5788 } 5789 llvm_unreachable(nullptr); 5790 } 5791 5792 public: 5793 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5794 const TargetTransformInfo &TTI, Instruction *Transition, 5795 unsigned CombineCost) 5796 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5797 StoreExtractCombineCost(CombineCost) { 5798 assert(Transition && "Do not know how to promote null"); 5799 } 5800 5801 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5802 bool canPromote(const Instruction *ToBePromoted) const { 5803 // We could support CastInst too. 5804 return isa<BinaryOperator>(ToBePromoted); 5805 } 5806 5807 /// \brief Check if it is profitable to promote \p ToBePromoted 5808 /// by moving downward the transition through. 5809 bool shouldPromote(const Instruction *ToBePromoted) const { 5810 // Promote only if all the operands can be statically expanded. 5811 // Indeed, we do not want to introduce any new kind of transitions. 5812 for (const Use &U : ToBePromoted->operands()) { 5813 const Value *Val = U.get(); 5814 if (Val == getEndOfTransition()) { 5815 // If the use is a division and the transition is on the rhs, 5816 // we cannot promote the operation, otherwise we may create a 5817 // division by zero. 5818 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5819 return false; 5820 continue; 5821 } 5822 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5823 !isa<ConstantFP>(Val)) 5824 return false; 5825 } 5826 // Check that the resulting operation is legal. 5827 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5828 if (!ISDOpcode) 5829 return false; 5830 return StressStoreExtract || 5831 TLI.isOperationLegalOrCustom( 5832 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5833 } 5834 5835 /// \brief Check whether or not \p Use can be combined 5836 /// with the transition. 5837 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5838 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5839 5840 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5841 void enqueueForPromotion(Instruction *ToBePromoted) { 5842 InstsToBePromoted.push_back(ToBePromoted); 5843 } 5844 5845 /// \brief Set the instruction that will be combined with the transition. 5846 void recordCombineInstruction(Instruction *ToBeCombined) { 5847 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5848 CombineInst = ToBeCombined; 5849 } 5850 5851 /// \brief Promote all the instructions enqueued for promotion if it is 5852 /// is profitable. 5853 /// \return True if the promotion happened, false otherwise. 5854 bool promote() { 5855 // Check if there is something to promote. 5856 // Right now, if we do not have anything to combine with, 5857 // we assume the promotion is not profitable. 5858 if (InstsToBePromoted.empty() || !CombineInst) 5859 return false; 5860 5861 // Check cost. 5862 if (!StressStoreExtract && !isProfitableToPromote()) 5863 return false; 5864 5865 // Promote. 5866 for (auto &ToBePromoted : InstsToBePromoted) 5867 promoteImpl(ToBePromoted); 5868 InstsToBePromoted.clear(); 5869 return true; 5870 } 5871 }; 5872 5873 } // end anonymous namespace 5874 5875 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5876 // At this point, we know that all the operands of ToBePromoted but Def 5877 // can be statically promoted. 5878 // For Def, we need to use its parameter in ToBePromoted: 5879 // b = ToBePromoted ty1 a 5880 // Def = Transition ty1 b to ty2 5881 // Move the transition down. 5882 // 1. Replace all uses of the promoted operation by the transition. 5883 // = ... b => = ... Def. 5884 assert(ToBePromoted->getType() == Transition->getType() && 5885 "The type of the result of the transition does not match " 5886 "the final type"); 5887 ToBePromoted->replaceAllUsesWith(Transition); 5888 // 2. Update the type of the uses. 5889 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5890 Type *TransitionTy = getTransitionType(); 5891 ToBePromoted->mutateType(TransitionTy); 5892 // 3. Update all the operands of the promoted operation with promoted 5893 // operands. 5894 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5895 for (Use &U : ToBePromoted->operands()) { 5896 Value *Val = U.get(); 5897 Value *NewVal = nullptr; 5898 if (Val == Transition) 5899 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5900 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5901 isa<ConstantFP>(Val)) { 5902 // Use a splat constant if it is not safe to use undef. 5903 NewVal = getConstantVector( 5904 cast<Constant>(Val), 5905 isa<UndefValue>(Val) || 5906 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5907 } else 5908 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5909 "this?"); 5910 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5911 } 5912 Transition->moveAfter(ToBePromoted); 5913 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5914 } 5915 5916 /// Some targets can do store(extractelement) with one instruction. 5917 /// Try to push the extractelement towards the stores when the target 5918 /// has this feature and this is profitable. 5919 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5920 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5921 if (DisableStoreExtract || !TLI || 5922 (!StressStoreExtract && 5923 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5924 Inst->getOperand(1), CombineCost))) 5925 return false; 5926 5927 // At this point we know that Inst is a vector to scalar transition. 5928 // Try to move it down the def-use chain, until: 5929 // - We can combine the transition with its single use 5930 // => we got rid of the transition. 5931 // - We escape the current basic block 5932 // => we would need to check that we are moving it at a cheaper place and 5933 // we do not do that for now. 5934 BasicBlock *Parent = Inst->getParent(); 5935 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5936 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5937 // If the transition has more than one use, assume this is not going to be 5938 // beneficial. 5939 while (Inst->hasOneUse()) { 5940 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5941 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5942 5943 if (ToBePromoted->getParent() != Parent) { 5944 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5945 << ToBePromoted->getParent()->getName() 5946 << ") than the transition (" << Parent->getName() << ").\n"); 5947 return false; 5948 } 5949 5950 if (VPH.canCombine(ToBePromoted)) { 5951 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5952 << "will be combined with: " << *ToBePromoted << '\n'); 5953 VPH.recordCombineInstruction(ToBePromoted); 5954 bool Changed = VPH.promote(); 5955 NumStoreExtractExposed += Changed; 5956 return Changed; 5957 } 5958 5959 DEBUG(dbgs() << "Try promoting.\n"); 5960 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5961 return false; 5962 5963 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5964 5965 VPH.enqueueForPromotion(ToBePromoted); 5966 Inst = ToBePromoted; 5967 } 5968 return false; 5969 } 5970 5971 /// For the instruction sequence of store below, F and I values 5972 /// are bundled together as an i64 value before being stored into memory. 5973 /// Sometimes it is more efficent to generate separate stores for F and I, 5974 /// which can remove the bitwise instructions or sink them to colder places. 5975 /// 5976 /// (store (or (zext (bitcast F to i32) to i64), 5977 /// (shl (zext I to i64), 32)), addr) --> 5978 /// (store F, addr) and (store I, addr+4) 5979 /// 5980 /// Similarly, splitting for other merged store can also be beneficial, like: 5981 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5982 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5983 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5984 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5985 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5986 /// 5987 /// We allow each target to determine specifically which kind of splitting is 5988 /// supported. 5989 /// 5990 /// The store patterns are commonly seen from the simple code snippet below 5991 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5992 /// void goo(const std::pair<int, float> &); 5993 /// hoo() { 5994 /// ... 5995 /// goo(std::make_pair(tmp, ftmp)); 5996 /// ... 5997 /// } 5998 /// 5999 /// Although we already have similar splitting in DAG Combine, we duplicate 6000 /// it in CodeGenPrepare to catch the case in which pattern is across 6001 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6002 /// during code expansion. 6003 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6004 const TargetLowering &TLI) { 6005 // Handle simple but common cases only. 6006 Type *StoreType = SI.getValueOperand()->getType(); 6007 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6008 DL.getTypeSizeInBits(StoreType) == 0) 6009 return false; 6010 6011 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6012 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6013 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6014 DL.getTypeSizeInBits(SplitStoreType)) 6015 return false; 6016 6017 // Match the following patterns: 6018 // (store (or (zext LValue to i64), 6019 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6020 // or 6021 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6022 // (zext LValue to i64), 6023 // Expect both operands of OR and the first operand of SHL have only 6024 // one use. 6025 Value *LValue, *HValue; 6026 if (!match(SI.getValueOperand(), 6027 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6028 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6029 m_SpecificInt(HalfValBitSize)))))) 6030 return false; 6031 6032 // Check LValue and HValue are int with size less or equal than 32. 6033 if (!LValue->getType()->isIntegerTy() || 6034 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6035 !HValue->getType()->isIntegerTy() || 6036 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6037 return false; 6038 6039 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6040 // as the input of target query. 6041 auto *LBC = dyn_cast<BitCastInst>(LValue); 6042 auto *HBC = dyn_cast<BitCastInst>(HValue); 6043 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6044 : EVT::getEVT(LValue->getType()); 6045 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6046 : EVT::getEVT(HValue->getType()); 6047 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6048 return false; 6049 6050 // Start to split store. 6051 IRBuilder<> Builder(SI.getContext()); 6052 Builder.SetInsertPoint(&SI); 6053 6054 // If LValue/HValue is a bitcast in another BB, create a new one in current 6055 // BB so it may be merged with the splitted stores by dag combiner. 6056 if (LBC && LBC->getParent() != SI.getParent()) 6057 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6058 if (HBC && HBC->getParent() != SI.getParent()) 6059 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6060 6061 auto CreateSplitStore = [&](Value *V, bool Upper) { 6062 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6063 Value *Addr = Builder.CreateBitCast( 6064 SI.getOperand(1), 6065 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6066 if (Upper) 6067 Addr = Builder.CreateGEP( 6068 SplitStoreType, Addr, 6069 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6070 Builder.CreateAlignedStore( 6071 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6072 }; 6073 6074 CreateSplitStore(LValue, false); 6075 CreateSplitStore(HValue, true); 6076 6077 // Delete the old store. 6078 SI.eraseFromParent(); 6079 return true; 6080 } 6081 6082 // Return true if the GEP has two operands, the first operand is of a sequential 6083 // type, and the second operand is a constant. 6084 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6085 gep_type_iterator I = gep_type_begin(*GEP); 6086 return GEP->getNumOperands() == 2 && 6087 I.isSequential() && 6088 isa<ConstantInt>(GEP->getOperand(1)); 6089 } 6090 6091 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6092 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6093 // reducing liveness interference across those edges benefits global register 6094 // allocation. Currently handles only certain cases. 6095 // 6096 // For example, unmerge %GEPI and %UGEPI as below. 6097 // 6098 // ---------- BEFORE ---------- 6099 // SrcBlock: 6100 // ... 6101 // %GEPIOp = ... 6102 // ... 6103 // %GEPI = gep %GEPIOp, Idx 6104 // ... 6105 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6106 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6107 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6108 // %UGEPI) 6109 // 6110 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6111 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6112 // ... 6113 // 6114 // DstBi: 6115 // ... 6116 // %UGEPI = gep %GEPIOp, UIdx 6117 // ... 6118 // --------------------------- 6119 // 6120 // ---------- AFTER ---------- 6121 // SrcBlock: 6122 // ... (same as above) 6123 // (* %GEPI is still alive on the indirectbr edges) 6124 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6125 // unmerging) 6126 // ... 6127 // 6128 // DstBi: 6129 // ... 6130 // %UGEPI = gep %GEPI, (UIdx-Idx) 6131 // ... 6132 // --------------------------- 6133 // 6134 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6135 // no longer alive on them. 6136 // 6137 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6138 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6139 // not to disable further simplications and optimizations as a result of GEP 6140 // merging. 6141 // 6142 // Note this unmerging may increase the length of the data flow critical path 6143 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6144 // between the register pressure and the length of data-flow critical 6145 // path. Restricting this to the uncommon IndirectBr case would minimize the 6146 // impact of potentially longer critical path, if any, and the impact on compile 6147 // time. 6148 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6149 const TargetTransformInfo *TTI) { 6150 BasicBlock *SrcBlock = GEPI->getParent(); 6151 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6152 // (non-IndirectBr) cases exit early here. 6153 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6154 return false; 6155 // Check that GEPI is a simple gep with a single constant index. 6156 if (!GEPSequentialConstIndexed(GEPI)) 6157 return false; 6158 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6159 // Check that GEPI is a cheap one. 6160 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6161 > TargetTransformInfo::TCC_Basic) 6162 return false; 6163 Value *GEPIOp = GEPI->getOperand(0); 6164 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6165 if (!isa<Instruction>(GEPIOp)) 6166 return false; 6167 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6168 if (GEPIOpI->getParent() != SrcBlock) 6169 return false; 6170 // Check that GEP is used outside the block, meaning it's alive on the 6171 // IndirectBr edge(s). 6172 if (find_if(GEPI->users(), [&](User *Usr) { 6173 if (auto *I = dyn_cast<Instruction>(Usr)) { 6174 if (I->getParent() != SrcBlock) { 6175 return true; 6176 } 6177 } 6178 return false; 6179 }) == GEPI->users().end()) 6180 return false; 6181 // The second elements of the GEP chains to be unmerged. 6182 std::vector<GetElementPtrInst *> UGEPIs; 6183 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6184 // on IndirectBr edges. 6185 for (User *Usr : GEPIOp->users()) { 6186 if (Usr == GEPI) continue; 6187 // Check if Usr is an Instruction. If not, give up. 6188 if (!isa<Instruction>(Usr)) 6189 return false; 6190 auto *UI = cast<Instruction>(Usr); 6191 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6192 if (UI->getParent() == SrcBlock) 6193 continue; 6194 // Check if Usr is a GEP. If not, give up. 6195 if (!isa<GetElementPtrInst>(Usr)) 6196 return false; 6197 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6198 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6199 // the pointer operand to it. If so, record it in the vector. If not, give 6200 // up. 6201 if (!GEPSequentialConstIndexed(UGEPI)) 6202 return false; 6203 if (UGEPI->getOperand(0) != GEPIOp) 6204 return false; 6205 if (GEPIIdx->getType() != 6206 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6207 return false; 6208 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6209 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6210 > TargetTransformInfo::TCC_Basic) 6211 return false; 6212 UGEPIs.push_back(UGEPI); 6213 } 6214 if (UGEPIs.size() == 0) 6215 return false; 6216 // Check the materializing cost of (Uidx-Idx). 6217 for (GetElementPtrInst *UGEPI : UGEPIs) { 6218 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6219 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6220 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6221 if (ImmCost > TargetTransformInfo::TCC_Basic) 6222 return false; 6223 } 6224 // Now unmerge between GEPI and UGEPIs. 6225 for (GetElementPtrInst *UGEPI : UGEPIs) { 6226 UGEPI->setOperand(0, GEPI); 6227 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6228 Constant *NewUGEPIIdx = 6229 ConstantInt::get(GEPIIdx->getType(), 6230 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6231 UGEPI->setOperand(1, NewUGEPIIdx); 6232 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6233 // inbounds to avoid UB. 6234 if (!GEPI->isInBounds()) { 6235 UGEPI->setIsInBounds(false); 6236 } 6237 } 6238 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6239 // alive on IndirectBr edges). 6240 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6241 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6242 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6243 return true; 6244 } 6245 6246 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6247 // Bail out if we inserted the instruction to prevent optimizations from 6248 // stepping on each other's toes. 6249 if (InsertedInsts.count(I)) 6250 return false; 6251 6252 if (PHINode *P = dyn_cast<PHINode>(I)) { 6253 // It is possible for very late stage optimizations (such as SimplifyCFG) 6254 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6255 // trivial PHI, go ahead and zap it here. 6256 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6257 P->replaceAllUsesWith(V); 6258 P->eraseFromParent(); 6259 ++NumPHIsElim; 6260 return true; 6261 } 6262 return false; 6263 } 6264 6265 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6266 // If the source of the cast is a constant, then this should have 6267 // already been constant folded. The only reason NOT to constant fold 6268 // it is if something (e.g. LSR) was careful to place the constant 6269 // evaluation in a block other than then one that uses it (e.g. to hoist 6270 // the address of globals out of a loop). If this is the case, we don't 6271 // want to forward-subst the cast. 6272 if (isa<Constant>(CI->getOperand(0))) 6273 return false; 6274 6275 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6276 return true; 6277 6278 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6279 /// Sink a zext or sext into its user blocks if the target type doesn't 6280 /// fit in one register 6281 if (TLI && 6282 TLI->getTypeAction(CI->getContext(), 6283 TLI->getValueType(*DL, CI->getType())) == 6284 TargetLowering::TypeExpandInteger) { 6285 return SinkCast(CI); 6286 } else { 6287 bool MadeChange = optimizeExt(I); 6288 return MadeChange | optimizeExtUses(I); 6289 } 6290 } 6291 return false; 6292 } 6293 6294 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6295 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6296 return OptimizeCmpExpression(CI, TLI); 6297 6298 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6299 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6300 if (TLI) { 6301 bool Modified = optimizeLoadExt(LI); 6302 unsigned AS = LI->getPointerAddressSpace(); 6303 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6304 return Modified; 6305 } 6306 return false; 6307 } 6308 6309 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6310 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6311 return true; 6312 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6313 if (TLI) { 6314 unsigned AS = SI->getPointerAddressSpace(); 6315 return optimizeMemoryInst(I, SI->getOperand(1), 6316 SI->getOperand(0)->getType(), AS); 6317 } 6318 return false; 6319 } 6320 6321 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6322 unsigned AS = RMW->getPointerAddressSpace(); 6323 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6324 RMW->getType(), AS); 6325 } 6326 6327 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6328 unsigned AS = CmpX->getPointerAddressSpace(); 6329 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6330 CmpX->getCompareOperand()->getType(), AS); 6331 } 6332 6333 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6334 6335 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6336 EnableAndCmpSinking && TLI) 6337 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6338 6339 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6340 BinOp->getOpcode() == Instruction::LShr)) { 6341 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6342 if (TLI && CI && TLI->hasExtractBitsInsn()) 6343 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6344 6345 return false; 6346 } 6347 6348 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6349 if (GEPI->hasAllZeroIndices()) { 6350 /// The GEP operand must be a pointer, so must its result -> BitCast 6351 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6352 GEPI->getName(), GEPI); 6353 GEPI->replaceAllUsesWith(NC); 6354 GEPI->eraseFromParent(); 6355 ++NumGEPsElim; 6356 optimizeInst(NC, ModifiedDT); 6357 return true; 6358 } 6359 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6360 return true; 6361 } 6362 return false; 6363 } 6364 6365 if (CallInst *CI = dyn_cast<CallInst>(I)) 6366 return optimizeCallInst(CI, ModifiedDT); 6367 6368 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6369 return optimizeSelectInst(SI); 6370 6371 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6372 return optimizeShuffleVectorInst(SVI); 6373 6374 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6375 return optimizeSwitchInst(Switch); 6376 6377 if (isa<ExtractElementInst>(I)) 6378 return optimizeExtractElementInst(I); 6379 6380 return false; 6381 } 6382 6383 /// Given an OR instruction, check to see if this is a bitreverse 6384 /// idiom. If so, insert the new intrinsic and return true. 6385 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6386 const TargetLowering &TLI) { 6387 if (!I.getType()->isIntegerTy() || 6388 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6389 TLI.getValueType(DL, I.getType(), true))) 6390 return false; 6391 6392 SmallVector<Instruction*, 4> Insts; 6393 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6394 return false; 6395 Instruction *LastInst = Insts.back(); 6396 I.replaceAllUsesWith(LastInst); 6397 RecursivelyDeleteTriviallyDeadInstructions(&I); 6398 return true; 6399 } 6400 6401 // In this pass we look for GEP and cast instructions that are used 6402 // across basic blocks and rewrite them to improve basic-block-at-a-time 6403 // selection. 6404 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6405 SunkAddrs.clear(); 6406 bool MadeChange = false; 6407 6408 CurInstIterator = BB.begin(); 6409 while (CurInstIterator != BB.end()) { 6410 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6411 if (ModifiedDT) 6412 return true; 6413 } 6414 6415 bool MadeBitReverse = true; 6416 while (TLI && MadeBitReverse) { 6417 MadeBitReverse = false; 6418 for (auto &I : reverse(BB)) { 6419 if (makeBitReverse(I, *DL, *TLI)) { 6420 MadeBitReverse = MadeChange = true; 6421 ModifiedDT = true; 6422 break; 6423 } 6424 } 6425 } 6426 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6427 6428 return MadeChange; 6429 } 6430 6431 // llvm.dbg.value is far away from the value then iSel may not be able 6432 // handle it properly. iSel will drop llvm.dbg.value if it can not 6433 // find a node corresponding to the value. 6434 bool CodeGenPrepare::placeDbgValues(Function &F) { 6435 bool MadeChange = false; 6436 for (BasicBlock &BB : F) { 6437 Instruction *PrevNonDbgInst = nullptr; 6438 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6439 Instruction *Insn = &*BI++; 6440 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6441 // Leave dbg.values that refer to an alloca alone. These 6442 // intrinsics describe the address of a variable (= the alloca) 6443 // being taken. They should not be moved next to the alloca 6444 // (and to the beginning of the scope), but rather stay close to 6445 // where said address is used. 6446 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6447 PrevNonDbgInst = Insn; 6448 continue; 6449 } 6450 6451 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6452 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6453 // If VI is a phi in a block with an EHPad terminator, we can't insert 6454 // after it. 6455 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6456 continue; 6457 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6458 DVI->removeFromParent(); 6459 if (isa<PHINode>(VI)) 6460 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6461 else 6462 DVI->insertAfter(VI); 6463 MadeChange = true; 6464 ++NumDbgValueMoved; 6465 } 6466 } 6467 } 6468 return MadeChange; 6469 } 6470 6471 /// \brief Scale down both weights to fit into uint32_t. 6472 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6473 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6474 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6475 NewTrue = NewTrue / Scale; 6476 NewFalse = NewFalse / Scale; 6477 } 6478 6479 /// \brief Some targets prefer to split a conditional branch like: 6480 /// \code 6481 /// %0 = icmp ne i32 %a, 0 6482 /// %1 = icmp ne i32 %b, 0 6483 /// %or.cond = or i1 %0, %1 6484 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6485 /// \endcode 6486 /// into multiple branch instructions like: 6487 /// \code 6488 /// bb1: 6489 /// %0 = icmp ne i32 %a, 0 6490 /// br i1 %0, label %TrueBB, label %bb2 6491 /// bb2: 6492 /// %1 = icmp ne i32 %b, 0 6493 /// br i1 %1, label %TrueBB, label %FalseBB 6494 /// \endcode 6495 /// This usually allows instruction selection to do even further optimizations 6496 /// and combine the compare with the branch instruction. Currently this is 6497 /// applied for targets which have "cheap" jump instructions. 6498 /// 6499 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6500 /// 6501 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6502 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6503 return false; 6504 6505 bool MadeChange = false; 6506 for (auto &BB : F) { 6507 // Does this BB end with the following? 6508 // %cond1 = icmp|fcmp|binary instruction ... 6509 // %cond2 = icmp|fcmp|binary instruction ... 6510 // %cond.or = or|and i1 %cond1, cond2 6511 // br i1 %cond.or label %dest1, label %dest2" 6512 BinaryOperator *LogicOp; 6513 BasicBlock *TBB, *FBB; 6514 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6515 continue; 6516 6517 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6518 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6519 continue; 6520 6521 unsigned Opc; 6522 Value *Cond1, *Cond2; 6523 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6524 m_OneUse(m_Value(Cond2))))) 6525 Opc = Instruction::And; 6526 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6527 m_OneUse(m_Value(Cond2))))) 6528 Opc = Instruction::Or; 6529 else 6530 continue; 6531 6532 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6533 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6534 continue; 6535 6536 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6537 6538 // Create a new BB. 6539 auto TmpBB = 6540 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6541 BB.getParent(), BB.getNextNode()); 6542 6543 // Update original basic block by using the first condition directly by the 6544 // branch instruction and removing the no longer needed and/or instruction. 6545 Br1->setCondition(Cond1); 6546 LogicOp->eraseFromParent(); 6547 6548 // Depending on the conditon we have to either replace the true or the false 6549 // successor of the original branch instruction. 6550 if (Opc == Instruction::And) 6551 Br1->setSuccessor(0, TmpBB); 6552 else 6553 Br1->setSuccessor(1, TmpBB); 6554 6555 // Fill in the new basic block. 6556 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6557 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6558 I->removeFromParent(); 6559 I->insertBefore(Br2); 6560 } 6561 6562 // Update PHI nodes in both successors. The original BB needs to be 6563 // replaced in one successor's PHI nodes, because the branch comes now from 6564 // the newly generated BB (NewBB). In the other successor we need to add one 6565 // incoming edge to the PHI nodes, because both branch instructions target 6566 // now the same successor. Depending on the original branch condition 6567 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6568 // we perform the correct update for the PHI nodes. 6569 // This doesn't change the successor order of the just created branch 6570 // instruction (or any other instruction). 6571 if (Opc == Instruction::Or) 6572 std::swap(TBB, FBB); 6573 6574 // Replace the old BB with the new BB. 6575 for (auto &I : *TBB) { 6576 PHINode *PN = dyn_cast<PHINode>(&I); 6577 if (!PN) 6578 break; 6579 int i; 6580 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6581 PN->setIncomingBlock(i, TmpBB); 6582 } 6583 6584 // Add another incoming edge form the new BB. 6585 for (auto &I : *FBB) { 6586 PHINode *PN = dyn_cast<PHINode>(&I); 6587 if (!PN) 6588 break; 6589 auto *Val = PN->getIncomingValueForBlock(&BB); 6590 PN->addIncoming(Val, TmpBB); 6591 } 6592 6593 // Update the branch weights (from SelectionDAGBuilder:: 6594 // FindMergedConditions). 6595 if (Opc == Instruction::Or) { 6596 // Codegen X | Y as: 6597 // BB1: 6598 // jmp_if_X TBB 6599 // jmp TmpBB 6600 // TmpBB: 6601 // jmp_if_Y TBB 6602 // jmp FBB 6603 // 6604 6605 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6606 // The requirement is that 6607 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6608 // = TrueProb for orignal BB. 6609 // Assuming the orignal weights are A and B, one choice is to set BB1's 6610 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6611 // assumes that 6612 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6613 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6614 // TmpBB, but the math is more complicated. 6615 uint64_t TrueWeight, FalseWeight; 6616 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6617 uint64_t NewTrueWeight = TrueWeight; 6618 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6619 scaleWeights(NewTrueWeight, NewFalseWeight); 6620 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6621 .createBranchWeights(TrueWeight, FalseWeight)); 6622 6623 NewTrueWeight = TrueWeight; 6624 NewFalseWeight = 2 * FalseWeight; 6625 scaleWeights(NewTrueWeight, NewFalseWeight); 6626 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6627 .createBranchWeights(TrueWeight, FalseWeight)); 6628 } 6629 } else { 6630 // Codegen X & Y as: 6631 // BB1: 6632 // jmp_if_X TmpBB 6633 // jmp FBB 6634 // TmpBB: 6635 // jmp_if_Y TBB 6636 // jmp FBB 6637 // 6638 // This requires creation of TmpBB after CurBB. 6639 6640 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6641 // The requirement is that 6642 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6643 // = FalseProb for orignal BB. 6644 // Assuming the orignal weights are A and B, one choice is to set BB1's 6645 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6646 // assumes that 6647 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6648 uint64_t TrueWeight, FalseWeight; 6649 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6650 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6651 uint64_t NewFalseWeight = FalseWeight; 6652 scaleWeights(NewTrueWeight, NewFalseWeight); 6653 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6654 .createBranchWeights(TrueWeight, FalseWeight)); 6655 6656 NewTrueWeight = 2 * TrueWeight; 6657 NewFalseWeight = FalseWeight; 6658 scaleWeights(NewTrueWeight, NewFalseWeight); 6659 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6660 .createBranchWeights(TrueWeight, FalseWeight)); 6661 } 6662 } 6663 6664 // Note: No point in getting fancy here, since the DT info is never 6665 // available to CodeGenPrepare. 6666 ModifiedDT = true; 6667 6668 MadeChange = true; 6669 6670 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6671 TmpBB->dump()); 6672 } 6673 return MadeChange; 6674 } 6675