1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DebugInfo.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 static cl::opt<bool> OptimizePhiTypes( 249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 250 cl::desc("Enable converting phi types in CodeGenPrepare")); 251 252 namespace { 253 254 enum ExtType { 255 ZeroExtension, // Zero extension has been seen. 256 SignExtension, // Sign extension has been seen. 257 BothExtension // This extension type is used if we saw sext after 258 // ZeroExtension had been set, or if we saw zext after 259 // SignExtension had been set. It makes the type 260 // information of a promoted instruction invalid. 261 }; 262 263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 266 using SExts = SmallVector<Instruction *, 16>; 267 using ValueToSExts = DenseMap<Value *, SExts>; 268 269 class TypePromotionTransaction; 270 271 class CodeGenPrepare : public FunctionPass { 272 const TargetMachine *TM = nullptr; 273 const TargetSubtargetInfo *SubtargetInfo; 274 const TargetLowering *TLI = nullptr; 275 const TargetRegisterInfo *TRI; 276 const TargetTransformInfo *TTI = nullptr; 277 const TargetLibraryInfo *TLInfo; 278 const LoopInfo *LI; 279 std::unique_ptr<BlockFrequencyInfo> BFI; 280 std::unique_ptr<BranchProbabilityInfo> BPI; 281 ProfileSummaryInfo *PSI; 282 283 /// As we scan instructions optimizing them, this is the next instruction 284 /// to optimize. Transforms that can invalidate this should update it. 285 BasicBlock::iterator CurInstIterator; 286 287 /// Keeps track of non-local addresses that have been sunk into a block. 288 /// This allows us to avoid inserting duplicate code for blocks with 289 /// multiple load/stores of the same address. The usage of WeakTrackingVH 290 /// enables SunkAddrs to be treated as a cache whose entries can be 291 /// invalidated if a sunken address computation has been erased. 292 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 293 294 /// Keeps track of all instructions inserted for the current function. 295 SetOfInstrs InsertedInsts; 296 297 /// Keeps track of the type of the related instruction before their 298 /// promotion for the current function. 299 InstrToOrigTy PromotedInsts; 300 301 /// Keep track of instructions removed during promotion. 302 SetOfInstrs RemovedInsts; 303 304 /// Keep track of sext chains based on their initial value. 305 DenseMap<Value *, Instruction *> SeenChainsForSExt; 306 307 /// Keep track of GEPs accessing the same data structures such as structs or 308 /// arrays that are candidates to be split later because of their large 309 /// size. 310 MapVector< 311 AssertingVH<Value>, 312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 313 LargeOffsetGEPMap; 314 315 /// Keep track of new GEP base after splitting the GEPs having large offset. 316 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 317 318 /// Map serial numbers to Large offset GEPs. 319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 320 321 /// Keep track of SExt promoted. 322 ValueToSExts ValToSExtendedUses; 323 324 /// True if the function has the OptSize attribute. 325 bool OptSize; 326 327 /// DataLayout for the Function being processed. 328 const DataLayout *DL = nullptr; 329 330 /// Building the dominator tree can be expensive, so we only build it 331 /// lazily and update it when required. 332 std::unique_ptr<DominatorTree> DT; 333 334 public: 335 static char ID; // Pass identification, replacement for typeid 336 337 CodeGenPrepare() : FunctionPass(ID) { 338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 339 } 340 341 bool runOnFunction(Function &F) override; 342 343 StringRef getPassName() const override { return "CodeGen Prepare"; } 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 // FIXME: When we can selectively preserve passes, preserve the domtree. 347 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 348 AU.addRequired<TargetLibraryInfoWrapperPass>(); 349 AU.addRequired<TargetPassConfig>(); 350 AU.addRequired<TargetTransformInfoWrapperPass>(); 351 AU.addRequired<LoopInfoWrapperPass>(); 352 } 353 354 private: 355 template <typename F> 356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 357 // Substituting can cause recursive simplifications, which can invalidate 358 // our iterator. Use a WeakTrackingVH to hold onto it in case this 359 // happens. 360 Value *CurValue = &*CurInstIterator; 361 WeakTrackingVH IterHandle(CurValue); 362 363 f(); 364 365 // If the iterator instruction was recursively deleted, start over at the 366 // start of the block. 367 if (IterHandle != CurValue) { 368 CurInstIterator = BB->begin(); 369 SunkAddrs.clear(); 370 } 371 } 372 373 // Get the DominatorTree, building if necessary. 374 DominatorTree &getDT(Function &F) { 375 if (!DT) 376 DT = std::make_unique<DominatorTree>(F); 377 return *DT; 378 } 379 380 void removeAllAssertingVHReferences(Value *V); 381 bool eliminateAssumptions(Function &F); 382 bool eliminateFallThrough(Function &F); 383 bool eliminateMostlyEmptyBlocks(Function &F); 384 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 385 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 386 void eliminateMostlyEmptyBlock(BasicBlock *BB); 387 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 388 bool isPreheader); 389 bool makeBitReverse(Instruction &I); 390 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 391 bool optimizeInst(Instruction *I, bool &ModifiedDT); 392 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 393 Type *AccessTy, unsigned AddrSpace); 394 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 395 bool optimizeInlineAsmInst(CallInst *CS); 396 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 397 bool optimizeExt(Instruction *&I); 398 bool optimizeExtUses(Instruction *I); 399 bool optimizeLoadExt(LoadInst *Load); 400 bool optimizeShiftInst(BinaryOperator *BO); 401 bool optimizeFunnelShift(IntrinsicInst *Fsh); 402 bool optimizeSelectInst(SelectInst *SI); 403 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 404 bool optimizeSwitchInst(SwitchInst *SI); 405 bool optimizeExtractElementInst(Instruction *Inst); 406 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 407 bool fixupDbgValue(Instruction *I); 408 bool placeDbgValues(Function &F); 409 bool placePseudoProbes(Function &F); 410 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 411 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 412 bool tryToPromoteExts(TypePromotionTransaction &TPT, 413 const SmallVectorImpl<Instruction *> &Exts, 414 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 415 unsigned CreatedInstsCost = 0); 416 bool mergeSExts(Function &F); 417 bool splitLargeGEPOffsets(); 418 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 419 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 420 bool optimizePhiTypes(Function &F); 421 bool performAddressTypePromotion( 422 Instruction *&Inst, 423 bool AllowPromotionWithoutCommonHeader, 424 bool HasPromoted, TypePromotionTransaction &TPT, 425 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 426 bool splitBranchCondition(Function &F, bool &ModifiedDT); 427 bool simplifyOffsetableRelocate(GCStatepointInst &I); 428 429 bool tryToSinkFreeOperands(Instruction *I); 430 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 431 Value *Arg1, CmpInst *Cmp, 432 Intrinsic::ID IID); 433 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 434 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 435 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 436 void verifyBFIUpdates(Function &F); 437 }; 438 439 } // end anonymous namespace 440 441 char CodeGenPrepare::ID = 0; 442 443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 444 "Optimize for code generation", false, false) 445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 451 "Optimize for code generation", false, false) 452 453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 454 455 bool CodeGenPrepare::runOnFunction(Function &F) { 456 if (skipFunction(F)) 457 return false; 458 459 DL = &F.getParent()->getDataLayout(); 460 461 bool EverMadeChange = false; 462 // Clear per function information. 463 InsertedInsts.clear(); 464 PromotedInsts.clear(); 465 466 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 467 SubtargetInfo = TM->getSubtargetImpl(F); 468 TLI = SubtargetInfo->getTargetLowering(); 469 TRI = SubtargetInfo->getRegisterInfo(); 470 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 471 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 472 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 473 BPI.reset(new BranchProbabilityInfo(F, *LI)); 474 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 475 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 476 OptSize = F.hasOptSize(); 477 if (ProfileGuidedSectionPrefix) { 478 // The hot attribute overwrites profile count based hotness while profile 479 // counts based hotness overwrite the cold attribute. 480 // This is a conservative behabvior. 481 if (F.hasFnAttribute(Attribute::Hot) || 482 PSI->isFunctionHotInCallGraph(&F, *BFI)) 483 F.setSectionPrefix("hot"); 484 // If PSI shows this function is not hot, we will placed the function 485 // into unlikely section if (1) PSI shows this is a cold function, or 486 // (2) the function has a attribute of cold. 487 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 488 F.hasFnAttribute(Attribute::Cold)) 489 F.setSectionPrefix("unlikely"); 490 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 491 PSI->isFunctionHotnessUnknown(F)) 492 F.setSectionPrefix("unknown"); 493 } 494 495 /// This optimization identifies DIV instructions that can be 496 /// profitably bypassed and carried out with a shorter, faster divide. 497 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 498 const DenseMap<unsigned int, unsigned int> &BypassWidths = 499 TLI->getBypassSlowDivWidths(); 500 BasicBlock* BB = &*F.begin(); 501 while (BB != nullptr) { 502 // bypassSlowDivision may create new BBs, but we don't want to reapply the 503 // optimization to those blocks. 504 BasicBlock* Next = BB->getNextNode(); 505 // F.hasOptSize is already checked in the outer if statement. 506 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 507 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 508 BB = Next; 509 } 510 } 511 512 // Get rid of @llvm.assume builtins before attempting to eliminate empty 513 // blocks, since there might be blocks that only contain @llvm.assume calls 514 // (plus arguments that we can get rid of). 515 EverMadeChange |= eliminateAssumptions(F); 516 517 // Eliminate blocks that contain only PHI nodes and an 518 // unconditional branch. 519 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 520 521 bool ModifiedDT = false; 522 if (!DisableBranchOpts) 523 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 524 525 // Split some critical edges where one of the sources is an indirect branch, 526 // to help generate sane code for PHIs involving such edges. 527 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 528 529 bool MadeChange = true; 530 while (MadeChange) { 531 MadeChange = false; 532 DT.reset(); 533 for (Function::iterator I = F.begin(); I != F.end(); ) { 534 BasicBlock *BB = &*I++; 535 bool ModifiedDTOnIteration = false; 536 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 537 538 // Restart BB iteration if the dominator tree of the Function was changed 539 if (ModifiedDTOnIteration) 540 break; 541 } 542 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 543 MadeChange |= mergeSExts(F); 544 if (!LargeOffsetGEPMap.empty()) 545 MadeChange |= splitLargeGEPOffsets(); 546 MadeChange |= optimizePhiTypes(F); 547 548 if (MadeChange) 549 eliminateFallThrough(F); 550 551 // Really free removed instructions during promotion. 552 for (Instruction *I : RemovedInsts) 553 I->deleteValue(); 554 555 EverMadeChange |= MadeChange; 556 SeenChainsForSExt.clear(); 557 ValToSExtendedUses.clear(); 558 RemovedInsts.clear(); 559 LargeOffsetGEPMap.clear(); 560 LargeOffsetGEPID.clear(); 561 } 562 563 NewGEPBases.clear(); 564 SunkAddrs.clear(); 565 566 if (!DisableBranchOpts) { 567 MadeChange = false; 568 // Use a set vector to get deterministic iteration order. The order the 569 // blocks are removed may affect whether or not PHI nodes in successors 570 // are removed. 571 SmallSetVector<BasicBlock*, 8> WorkList; 572 for (BasicBlock &BB : F) { 573 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 574 MadeChange |= ConstantFoldTerminator(&BB, true); 575 if (!MadeChange) continue; 576 577 for (BasicBlock *Succ : Successors) 578 if (pred_empty(Succ)) 579 WorkList.insert(Succ); 580 } 581 582 // Delete the dead blocks and any of their dead successors. 583 MadeChange |= !WorkList.empty(); 584 while (!WorkList.empty()) { 585 BasicBlock *BB = WorkList.pop_back_val(); 586 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 587 588 DeleteDeadBlock(BB); 589 590 for (BasicBlock *Succ : Successors) 591 if (pred_empty(Succ)) 592 WorkList.insert(Succ); 593 } 594 595 // Merge pairs of basic blocks with unconditional branches, connected by 596 // a single edge. 597 if (EverMadeChange || MadeChange) 598 MadeChange |= eliminateFallThrough(F); 599 600 EverMadeChange |= MadeChange; 601 } 602 603 if (!DisableGCOpts) { 604 SmallVector<GCStatepointInst *, 2> Statepoints; 605 for (BasicBlock &BB : F) 606 for (Instruction &I : BB) 607 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 608 Statepoints.push_back(SP); 609 for (auto &I : Statepoints) 610 EverMadeChange |= simplifyOffsetableRelocate(*I); 611 } 612 613 // Do this last to clean up use-before-def scenarios introduced by other 614 // preparatory transforms. 615 EverMadeChange |= placeDbgValues(F); 616 EverMadeChange |= placePseudoProbes(F); 617 618 #ifndef NDEBUG 619 if (VerifyBFIUpdates) 620 verifyBFIUpdates(F); 621 #endif 622 623 return EverMadeChange; 624 } 625 626 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 627 bool MadeChange = false; 628 for (BasicBlock &BB : F) { 629 CurInstIterator = BB.begin(); 630 while (CurInstIterator != BB.end()) { 631 Instruction *I = &*(CurInstIterator++); 632 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 633 MadeChange = true; 634 Value *Operand = Assume->getOperand(0); 635 Assume->eraseFromParent(); 636 637 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 638 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 639 }); 640 } 641 } 642 } 643 return MadeChange; 644 } 645 646 /// An instruction is about to be deleted, so remove all references to it in our 647 /// GEP-tracking data strcutures. 648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 649 LargeOffsetGEPMap.erase(V); 650 NewGEPBases.erase(V); 651 652 auto GEP = dyn_cast<GetElementPtrInst>(V); 653 if (!GEP) 654 return; 655 656 LargeOffsetGEPID.erase(GEP); 657 658 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 659 if (VecI == LargeOffsetGEPMap.end()) 660 return; 661 662 auto &GEPVector = VecI->second; 663 const auto &I = 664 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 665 if (I == GEPVector.end()) 666 return; 667 668 GEPVector.erase(I); 669 if (GEPVector.empty()) 670 LargeOffsetGEPMap.erase(VecI); 671 } 672 673 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 674 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 675 DominatorTree NewDT(F); 676 LoopInfo NewLI(NewDT); 677 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 678 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 679 NewBFI.verifyMatch(*BFI); 680 } 681 682 /// Merge basic blocks which are connected by a single edge, where one of the 683 /// basic blocks has a single successor pointing to the other basic block, 684 /// which has a single predecessor. 685 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 686 bool Changed = false; 687 // Scan all of the blocks in the function, except for the entry block. 688 // Use a temporary array to avoid iterator being invalidated when 689 // deleting blocks. 690 SmallVector<WeakTrackingVH, 16> Blocks; 691 for (auto &Block : llvm::drop_begin(F)) 692 Blocks.push_back(&Block); 693 694 SmallSet<WeakTrackingVH, 16> Preds; 695 for (auto &Block : Blocks) { 696 auto *BB = cast_or_null<BasicBlock>(Block); 697 if (!BB) 698 continue; 699 // If the destination block has a single pred, then this is a trivial 700 // edge, just collapse it. 701 BasicBlock *SinglePred = BB->getSinglePredecessor(); 702 703 // Don't merge if BB's address is taken. 704 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 705 706 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 707 if (Term && !Term->isConditional()) { 708 Changed = true; 709 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 710 711 // Merge BB into SinglePred and delete it. 712 MergeBlockIntoPredecessor(BB); 713 Preds.insert(SinglePred); 714 } 715 } 716 717 // (Repeatedly) merging blocks into their predecessors can create redundant 718 // debug intrinsics. 719 for (auto &Pred : Preds) 720 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 721 RemoveRedundantDbgInstrs(BB); 722 723 return Changed; 724 } 725 726 /// Find a destination block from BB if BB is mergeable empty block. 727 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 728 // If this block doesn't end with an uncond branch, ignore it. 729 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 730 if (!BI || !BI->isUnconditional()) 731 return nullptr; 732 733 // If the instruction before the branch (skipping debug info) isn't a phi 734 // node, then other stuff is happening here. 735 BasicBlock::iterator BBI = BI->getIterator(); 736 if (BBI != BB->begin()) { 737 --BBI; 738 while (isa<DbgInfoIntrinsic>(BBI)) { 739 if (BBI == BB->begin()) 740 break; 741 --BBI; 742 } 743 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 744 return nullptr; 745 } 746 747 // Do not break infinite loops. 748 BasicBlock *DestBB = BI->getSuccessor(0); 749 if (DestBB == BB) 750 return nullptr; 751 752 if (!canMergeBlocks(BB, DestBB)) 753 DestBB = nullptr; 754 755 return DestBB; 756 } 757 758 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 759 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 760 /// edges in ways that are non-optimal for isel. Start by eliminating these 761 /// blocks so we can split them the way we want them. 762 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 763 SmallPtrSet<BasicBlock *, 16> Preheaders; 764 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 765 while (!LoopList.empty()) { 766 Loop *L = LoopList.pop_back_val(); 767 llvm::append_range(LoopList, *L); 768 if (BasicBlock *Preheader = L->getLoopPreheader()) 769 Preheaders.insert(Preheader); 770 } 771 772 bool MadeChange = false; 773 // Copy blocks into a temporary array to avoid iterator invalidation issues 774 // as we remove them. 775 // Note that this intentionally skips the entry block. 776 SmallVector<WeakTrackingVH, 16> Blocks; 777 for (auto &Block : llvm::drop_begin(F)) 778 Blocks.push_back(&Block); 779 780 for (auto &Block : Blocks) { 781 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 782 if (!BB) 783 continue; 784 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 785 if (!DestBB || 786 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 787 continue; 788 789 eliminateMostlyEmptyBlock(BB); 790 MadeChange = true; 791 } 792 return MadeChange; 793 } 794 795 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 796 BasicBlock *DestBB, 797 bool isPreheader) { 798 // Do not delete loop preheaders if doing so would create a critical edge. 799 // Loop preheaders can be good locations to spill registers. If the 800 // preheader is deleted and we create a critical edge, registers may be 801 // spilled in the loop body instead. 802 if (!DisablePreheaderProtect && isPreheader && 803 !(BB->getSinglePredecessor() && 804 BB->getSinglePredecessor()->getSingleSuccessor())) 805 return false; 806 807 // Skip merging if the block's successor is also a successor to any callbr 808 // that leads to this block. 809 // FIXME: Is this really needed? Is this a correctness issue? 810 for (BasicBlock *Pred : predecessors(BB)) { 811 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 812 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 813 if (DestBB == CBI->getSuccessor(i)) 814 return false; 815 } 816 817 // Try to skip merging if the unique predecessor of BB is terminated by a 818 // switch or indirect branch instruction, and BB is used as an incoming block 819 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 820 // add COPY instructions in the predecessor of BB instead of BB (if it is not 821 // merged). Note that the critical edge created by merging such blocks wont be 822 // split in MachineSink because the jump table is not analyzable. By keeping 823 // such empty block (BB), ISel will place COPY instructions in BB, not in the 824 // predecessor of BB. 825 BasicBlock *Pred = BB->getUniquePredecessor(); 826 if (!Pred || 827 !(isa<SwitchInst>(Pred->getTerminator()) || 828 isa<IndirectBrInst>(Pred->getTerminator()))) 829 return true; 830 831 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 832 return true; 833 834 // We use a simple cost heuristic which determine skipping merging is 835 // profitable if the cost of skipping merging is less than the cost of 836 // merging : Cost(skipping merging) < Cost(merging BB), where the 837 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 838 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 839 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 840 // Freq(Pred) / Freq(BB) > 2. 841 // Note that if there are multiple empty blocks sharing the same incoming 842 // value for the PHIs in the DestBB, we consider them together. In such 843 // case, Cost(merging BB) will be the sum of their frequencies. 844 845 if (!isa<PHINode>(DestBB->begin())) 846 return true; 847 848 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 849 850 // Find all other incoming blocks from which incoming values of all PHIs in 851 // DestBB are the same as the ones from BB. 852 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 853 if (DestBBPred == BB) 854 continue; 855 856 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 857 return DestPN.getIncomingValueForBlock(BB) == 858 DestPN.getIncomingValueForBlock(DestBBPred); 859 })) 860 SameIncomingValueBBs.insert(DestBBPred); 861 } 862 863 // See if all BB's incoming values are same as the value from Pred. In this 864 // case, no reason to skip merging because COPYs are expected to be place in 865 // Pred already. 866 if (SameIncomingValueBBs.count(Pred)) 867 return true; 868 869 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 870 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 871 872 for (auto *SameValueBB : SameIncomingValueBBs) 873 if (SameValueBB->getUniquePredecessor() == Pred && 874 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 875 BBFreq += BFI->getBlockFreq(SameValueBB); 876 877 return PredFreq.getFrequency() <= 878 BBFreq.getFrequency() * FreqRatioToSkipMerge; 879 } 880 881 /// Return true if we can merge BB into DestBB if there is a single 882 /// unconditional branch between them, and BB contains no other non-phi 883 /// instructions. 884 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 885 const BasicBlock *DestBB) const { 886 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 887 // the successor. If there are more complex condition (e.g. preheaders), 888 // don't mess around with them. 889 for (const PHINode &PN : BB->phis()) { 890 for (const User *U : PN.users()) { 891 const Instruction *UI = cast<Instruction>(U); 892 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 893 return false; 894 // If User is inside DestBB block and it is a PHINode then check 895 // incoming value. If incoming value is not from BB then this is 896 // a complex condition (e.g. preheaders) we want to avoid here. 897 if (UI->getParent() == DestBB) { 898 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 899 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 900 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 901 if (Insn && Insn->getParent() == BB && 902 Insn->getParent() != UPN->getIncomingBlock(I)) 903 return false; 904 } 905 } 906 } 907 } 908 909 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 910 // and DestBB may have conflicting incoming values for the block. If so, we 911 // can't merge the block. 912 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 913 if (!DestBBPN) return true; // no conflict. 914 915 // Collect the preds of BB. 916 SmallPtrSet<const BasicBlock*, 16> BBPreds; 917 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 918 // It is faster to get preds from a PHI than with pred_iterator. 919 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 920 BBPreds.insert(BBPN->getIncomingBlock(i)); 921 } else { 922 BBPreds.insert(pred_begin(BB), pred_end(BB)); 923 } 924 925 // Walk the preds of DestBB. 926 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 927 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 928 if (BBPreds.count(Pred)) { // Common predecessor? 929 for (const PHINode &PN : DestBB->phis()) { 930 const Value *V1 = PN.getIncomingValueForBlock(Pred); 931 const Value *V2 = PN.getIncomingValueForBlock(BB); 932 933 // If V2 is a phi node in BB, look up what the mapped value will be. 934 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 935 if (V2PN->getParent() == BB) 936 V2 = V2PN->getIncomingValueForBlock(Pred); 937 938 // If there is a conflict, bail out. 939 if (V1 != V2) return false; 940 } 941 } 942 } 943 944 return true; 945 } 946 947 /// Eliminate a basic block that has only phi's and an unconditional branch in 948 /// it. 949 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 950 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 951 BasicBlock *DestBB = BI->getSuccessor(0); 952 953 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 954 << *BB << *DestBB); 955 956 // If the destination block has a single pred, then this is a trivial edge, 957 // just collapse it. 958 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 959 if (SinglePred != DestBB) { 960 assert(SinglePred == BB && 961 "Single predecessor not the same as predecessor"); 962 // Merge DestBB into SinglePred/BB and delete it. 963 MergeBlockIntoPredecessor(DestBB); 964 // Note: BB(=SinglePred) will not be deleted on this path. 965 // DestBB(=its single successor) is the one that was deleted. 966 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 967 return; 968 } 969 } 970 971 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 972 // to handle the new incoming edges it is about to have. 973 for (PHINode &PN : DestBB->phis()) { 974 // Remove the incoming value for BB, and remember it. 975 Value *InVal = PN.removeIncomingValue(BB, false); 976 977 // Two options: either the InVal is a phi node defined in BB or it is some 978 // value that dominates BB. 979 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 980 if (InValPhi && InValPhi->getParent() == BB) { 981 // Add all of the input values of the input PHI as inputs of this phi. 982 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 983 PN.addIncoming(InValPhi->getIncomingValue(i), 984 InValPhi->getIncomingBlock(i)); 985 } else { 986 // Otherwise, add one instance of the dominating value for each edge that 987 // we will be adding. 988 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 989 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 990 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 991 } else { 992 for (BasicBlock *Pred : predecessors(BB)) 993 PN.addIncoming(InVal, Pred); 994 } 995 } 996 } 997 998 // The PHIs are now updated, change everything that refers to BB to use 999 // DestBB and remove BB. 1000 BB->replaceAllUsesWith(DestBB); 1001 BB->eraseFromParent(); 1002 ++NumBlocksElim; 1003 1004 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1005 } 1006 1007 // Computes a map of base pointer relocation instructions to corresponding 1008 // derived pointer relocation instructions given a vector of all relocate calls 1009 static void computeBaseDerivedRelocateMap( 1010 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1011 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1012 &RelocateInstMap) { 1013 // Collect information in two maps: one primarily for locating the base object 1014 // while filling the second map; the second map is the final structure holding 1015 // a mapping between Base and corresponding Derived relocate calls 1016 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1017 for (auto *ThisRelocate : AllRelocateCalls) { 1018 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1019 ThisRelocate->getDerivedPtrIndex()); 1020 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1021 } 1022 for (auto &Item : RelocateIdxMap) { 1023 std::pair<unsigned, unsigned> Key = Item.first; 1024 if (Key.first == Key.second) 1025 // Base relocation: nothing to insert 1026 continue; 1027 1028 GCRelocateInst *I = Item.second; 1029 auto BaseKey = std::make_pair(Key.first, Key.first); 1030 1031 // We're iterating over RelocateIdxMap so we cannot modify it. 1032 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1033 if (MaybeBase == RelocateIdxMap.end()) 1034 // TODO: We might want to insert a new base object relocate and gep off 1035 // that, if there are enough derived object relocates. 1036 continue; 1037 1038 RelocateInstMap[MaybeBase->second].push_back(I); 1039 } 1040 } 1041 1042 // Accepts a GEP and extracts the operands into a vector provided they're all 1043 // small integer constants 1044 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1045 SmallVectorImpl<Value *> &OffsetV) { 1046 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1047 // Only accept small constant integer operands 1048 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1049 if (!Op || Op->getZExtValue() > 20) 1050 return false; 1051 } 1052 1053 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1054 OffsetV.push_back(GEP->getOperand(i)); 1055 return true; 1056 } 1057 1058 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1059 // replace, computes a replacement, and affects it. 1060 static bool 1061 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1062 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1063 bool MadeChange = false; 1064 // We must ensure the relocation of derived pointer is defined after 1065 // relocation of base pointer. If we find a relocation corresponding to base 1066 // defined earlier than relocation of base then we move relocation of base 1067 // right before found relocation. We consider only relocation in the same 1068 // basic block as relocation of base. Relocations from other basic block will 1069 // be skipped by optimization and we do not care about them. 1070 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1071 &*R != RelocatedBase; ++R) 1072 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1073 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1074 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1075 RelocatedBase->moveBefore(RI); 1076 break; 1077 } 1078 1079 for (GCRelocateInst *ToReplace : Targets) { 1080 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1081 "Not relocating a derived object of the original base object"); 1082 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1083 // A duplicate relocate call. TODO: coalesce duplicates. 1084 continue; 1085 } 1086 1087 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1088 // Base and derived relocates are in different basic blocks. 1089 // In this case transform is only valid when base dominates derived 1090 // relocate. However it would be too expensive to check dominance 1091 // for each such relocate, so we skip the whole transformation. 1092 continue; 1093 } 1094 1095 Value *Base = ToReplace->getBasePtr(); 1096 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1097 if (!Derived || Derived->getPointerOperand() != Base) 1098 continue; 1099 1100 SmallVector<Value *, 2> OffsetV; 1101 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1102 continue; 1103 1104 // Create a Builder and replace the target callsite with a gep 1105 assert(RelocatedBase->getNextNode() && 1106 "Should always have one since it's not a terminator"); 1107 1108 // Insert after RelocatedBase 1109 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1110 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1111 1112 // If gc_relocate does not match the actual type, cast it to the right type. 1113 // In theory, there must be a bitcast after gc_relocate if the type does not 1114 // match, and we should reuse it to get the derived pointer. But it could be 1115 // cases like this: 1116 // bb1: 1117 // ... 1118 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1119 // br label %merge 1120 // 1121 // bb2: 1122 // ... 1123 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1124 // br label %merge 1125 // 1126 // merge: 1127 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1128 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1129 // 1130 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1131 // no matter there is already one or not. In this way, we can handle all cases, and 1132 // the extra bitcast should be optimized away in later passes. 1133 Value *ActualRelocatedBase = RelocatedBase; 1134 if (RelocatedBase->getType() != Base->getType()) { 1135 ActualRelocatedBase = 1136 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1137 } 1138 Value *Replacement = Builder.CreateGEP( 1139 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1140 Replacement->takeName(ToReplace); 1141 // If the newly generated derived pointer's type does not match the original derived 1142 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1143 Value *ActualReplacement = Replacement; 1144 if (Replacement->getType() != ToReplace->getType()) { 1145 ActualReplacement = 1146 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1147 } 1148 ToReplace->replaceAllUsesWith(ActualReplacement); 1149 ToReplace->eraseFromParent(); 1150 1151 MadeChange = true; 1152 } 1153 return MadeChange; 1154 } 1155 1156 // Turns this: 1157 // 1158 // %base = ... 1159 // %ptr = gep %base + 15 1160 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1161 // %base' = relocate(%tok, i32 4, i32 4) 1162 // %ptr' = relocate(%tok, i32 4, i32 5) 1163 // %val = load %ptr' 1164 // 1165 // into this: 1166 // 1167 // %base = ... 1168 // %ptr = gep %base + 15 1169 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1170 // %base' = gc.relocate(%tok, i32 4, i32 4) 1171 // %ptr' = gep %base' + 15 1172 // %val = load %ptr' 1173 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1174 bool MadeChange = false; 1175 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1176 for (auto *U : I.users()) 1177 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1178 // Collect all the relocate calls associated with a statepoint 1179 AllRelocateCalls.push_back(Relocate); 1180 1181 // We need at least one base pointer relocation + one derived pointer 1182 // relocation to mangle 1183 if (AllRelocateCalls.size() < 2) 1184 return false; 1185 1186 // RelocateInstMap is a mapping from the base relocate instruction to the 1187 // corresponding derived relocate instructions 1188 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1189 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1190 if (RelocateInstMap.empty()) 1191 return false; 1192 1193 for (auto &Item : RelocateInstMap) 1194 // Item.first is the RelocatedBase to offset against 1195 // Item.second is the vector of Targets to replace 1196 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1197 return MadeChange; 1198 } 1199 1200 /// Sink the specified cast instruction into its user blocks. 1201 static bool SinkCast(CastInst *CI) { 1202 BasicBlock *DefBB = CI->getParent(); 1203 1204 /// InsertedCasts - Only insert a cast in each block once. 1205 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1206 1207 bool MadeChange = false; 1208 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1209 UI != E; ) { 1210 Use &TheUse = UI.getUse(); 1211 Instruction *User = cast<Instruction>(*UI); 1212 1213 // Figure out which BB this cast is used in. For PHI's this is the 1214 // appropriate predecessor block. 1215 BasicBlock *UserBB = User->getParent(); 1216 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1217 UserBB = PN->getIncomingBlock(TheUse); 1218 } 1219 1220 // Preincrement use iterator so we don't invalidate it. 1221 ++UI; 1222 1223 // The first insertion point of a block containing an EH pad is after the 1224 // pad. If the pad is the user, we cannot sink the cast past the pad. 1225 if (User->isEHPad()) 1226 continue; 1227 1228 // If the block selected to receive the cast is an EH pad that does not 1229 // allow non-PHI instructions before the terminator, we can't sink the 1230 // cast. 1231 if (UserBB->getTerminator()->isEHPad()) 1232 continue; 1233 1234 // If this user is in the same block as the cast, don't change the cast. 1235 if (UserBB == DefBB) continue; 1236 1237 // If we have already inserted a cast into this block, use it. 1238 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1239 1240 if (!InsertedCast) { 1241 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1242 assert(InsertPt != UserBB->end()); 1243 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1244 CI->getType(), "", &*InsertPt); 1245 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1246 } 1247 1248 // Replace a use of the cast with a use of the new cast. 1249 TheUse = InsertedCast; 1250 MadeChange = true; 1251 ++NumCastUses; 1252 } 1253 1254 // If we removed all uses, nuke the cast. 1255 if (CI->use_empty()) { 1256 salvageDebugInfo(*CI); 1257 CI->eraseFromParent(); 1258 MadeChange = true; 1259 } 1260 1261 return MadeChange; 1262 } 1263 1264 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1265 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1266 /// reduce the number of virtual registers that must be created and coalesced. 1267 /// 1268 /// Return true if any changes are made. 1269 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1270 const DataLayout &DL) { 1271 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1272 // than sinking only nop casts, but is helpful on some platforms. 1273 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1274 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1275 ASC->getDestAddressSpace())) 1276 return false; 1277 } 1278 1279 // If this is a noop copy, 1280 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1281 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1282 1283 // This is an fp<->int conversion? 1284 if (SrcVT.isInteger() != DstVT.isInteger()) 1285 return false; 1286 1287 // If this is an extension, it will be a zero or sign extension, which 1288 // isn't a noop. 1289 if (SrcVT.bitsLT(DstVT)) return false; 1290 1291 // If these values will be promoted, find out what they will be promoted 1292 // to. This helps us consider truncates on PPC as noop copies when they 1293 // are. 1294 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1295 TargetLowering::TypePromoteInteger) 1296 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1297 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1298 TargetLowering::TypePromoteInteger) 1299 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1300 1301 // If, after promotion, these are the same types, this is a noop copy. 1302 if (SrcVT != DstVT) 1303 return false; 1304 1305 return SinkCast(CI); 1306 } 1307 1308 // Match a simple increment by constant operation. Note that if a sub is 1309 // matched, the step is negated (as if the step had been canonicalized to 1310 // an add, even though we leave the instruction alone.) 1311 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1312 Constant *&Step) { 1313 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1314 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1315 m_Instruction(LHS), m_Constant(Step))))) 1316 return true; 1317 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1318 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1319 m_Instruction(LHS), m_Constant(Step))))) { 1320 Step = ConstantExpr::getNeg(Step); 1321 return true; 1322 } 1323 return false; 1324 } 1325 1326 /// If given \p PN is an inductive variable with value IVInc coming from the 1327 /// backedge, and on each iteration it gets increased by Step, return pair 1328 /// <IVInc, Step>. Otherwise, return None. 1329 static Optional<std::pair<Instruction *, Constant *> > 1330 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1331 const Loop *L = LI->getLoopFor(PN->getParent()); 1332 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1333 return None; 1334 auto *IVInc = 1335 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1336 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1337 return None; 1338 Instruction *LHS = nullptr; 1339 Constant *Step = nullptr; 1340 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1341 return std::make_pair(IVInc, Step); 1342 return None; 1343 } 1344 1345 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1346 auto *I = dyn_cast<Instruction>(V); 1347 if (!I) 1348 return false; 1349 Instruction *LHS = nullptr; 1350 Constant *Step = nullptr; 1351 if (!matchIncrement(I, LHS, Step)) 1352 return false; 1353 if (auto *PN = dyn_cast<PHINode>(LHS)) 1354 if (auto IVInc = getIVIncrement(PN, LI)) 1355 return IVInc->first == I; 1356 return false; 1357 } 1358 1359 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1360 Value *Arg0, Value *Arg1, 1361 CmpInst *Cmp, 1362 Intrinsic::ID IID) { 1363 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1364 if (!isIVIncrement(BO, LI)) 1365 return false; 1366 const Loop *L = LI->getLoopFor(BO->getParent()); 1367 assert(L && "L should not be null after isIVIncrement()"); 1368 // Do not risk on moving increment into a child loop. 1369 if (LI->getLoopFor(Cmp->getParent()) != L) 1370 return false; 1371 1372 // Finally, we need to ensure that the insert point will dominate all 1373 // existing uses of the increment. 1374 1375 auto &DT = getDT(*BO->getParent()->getParent()); 1376 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1377 // If we're moving up the dom tree, all uses are trivially dominated. 1378 // (This is the common case for code produced by LSR.) 1379 return true; 1380 1381 // Otherwise, special case the single use in the phi recurrence. 1382 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1383 }; 1384 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1385 // We used to use a dominator tree here to allow multi-block optimization. 1386 // But that was problematic because: 1387 // 1. It could cause a perf regression by hoisting the math op into the 1388 // critical path. 1389 // 2. It could cause a perf regression by creating a value that was live 1390 // across multiple blocks and increasing register pressure. 1391 // 3. Use of a dominator tree could cause large compile-time regression. 1392 // This is because we recompute the DT on every change in the main CGP 1393 // run-loop. The recomputing is probably unnecessary in many cases, so if 1394 // that was fixed, using a DT here would be ok. 1395 // 1396 // There is one important particular case we still want to handle: if BO is 1397 // the IV increment. Important properties that make it profitable: 1398 // - We can speculate IV increment anywhere in the loop (as long as the 1399 // indvar Phi is its only user); 1400 // - Upon computing Cmp, we effectively compute something equivalent to the 1401 // IV increment (despite it loops differently in the IR). So moving it up 1402 // to the cmp point does not really increase register pressure. 1403 return false; 1404 } 1405 1406 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1407 if (BO->getOpcode() == Instruction::Add && 1408 IID == Intrinsic::usub_with_overflow) { 1409 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1410 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1411 } 1412 1413 // Insert at the first instruction of the pair. 1414 Instruction *InsertPt = nullptr; 1415 for (Instruction &Iter : *Cmp->getParent()) { 1416 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1417 // the overflow intrinsic are defined. 1418 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1419 InsertPt = &Iter; 1420 break; 1421 } 1422 } 1423 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1424 1425 IRBuilder<> Builder(InsertPt); 1426 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1427 if (BO->getOpcode() != Instruction::Xor) { 1428 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1429 BO->replaceAllUsesWith(Math); 1430 } else 1431 assert(BO->hasOneUse() && 1432 "Patterns with XOr should use the BO only in the compare"); 1433 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1434 Cmp->replaceAllUsesWith(OV); 1435 Cmp->eraseFromParent(); 1436 BO->eraseFromParent(); 1437 return true; 1438 } 1439 1440 /// Match special-case patterns that check for unsigned add overflow. 1441 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1442 BinaryOperator *&Add) { 1443 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1444 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1445 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1446 1447 // We are not expecting non-canonical/degenerate code. Just bail out. 1448 if (isa<Constant>(A)) 1449 return false; 1450 1451 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1452 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1453 B = ConstantInt::get(B->getType(), 1); 1454 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1455 B = ConstantInt::get(B->getType(), -1); 1456 else 1457 return false; 1458 1459 // Check the users of the variable operand of the compare looking for an add 1460 // with the adjusted constant. 1461 for (User *U : A->users()) { 1462 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1463 Add = cast<BinaryOperator>(U); 1464 return true; 1465 } 1466 } 1467 return false; 1468 } 1469 1470 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1471 /// intrinsic. Return true if any changes were made. 1472 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1473 bool &ModifiedDT) { 1474 Value *A, *B; 1475 BinaryOperator *Add; 1476 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1477 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1478 return false; 1479 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1480 A = Add->getOperand(0); 1481 B = Add->getOperand(1); 1482 } 1483 1484 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1485 TLI->getValueType(*DL, Add->getType()), 1486 Add->hasNUsesOrMore(2))) 1487 return false; 1488 1489 // We don't want to move around uses of condition values this late, so we 1490 // check if it is legal to create the call to the intrinsic in the basic 1491 // block containing the icmp. 1492 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1493 return false; 1494 1495 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1496 Intrinsic::uadd_with_overflow)) 1497 return false; 1498 1499 // Reset callers - do not crash by iterating over a dead instruction. 1500 ModifiedDT = true; 1501 return true; 1502 } 1503 1504 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1505 bool &ModifiedDT) { 1506 // We are not expecting non-canonical/degenerate code. Just bail out. 1507 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1508 if (isa<Constant>(A) && isa<Constant>(B)) 1509 return false; 1510 1511 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1512 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1513 if (Pred == ICmpInst::ICMP_UGT) { 1514 std::swap(A, B); 1515 Pred = ICmpInst::ICMP_ULT; 1516 } 1517 // Convert special-case: (A == 0) is the same as (A u< 1). 1518 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1519 B = ConstantInt::get(B->getType(), 1); 1520 Pred = ICmpInst::ICMP_ULT; 1521 } 1522 // Convert special-case: (A != 0) is the same as (0 u< A). 1523 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1524 std::swap(A, B); 1525 Pred = ICmpInst::ICMP_ULT; 1526 } 1527 if (Pred != ICmpInst::ICMP_ULT) 1528 return false; 1529 1530 // Walk the users of a variable operand of a compare looking for a subtract or 1531 // add with that same operand. Also match the 2nd operand of the compare to 1532 // the add/sub, but that may be a negated constant operand of an add. 1533 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1534 BinaryOperator *Sub = nullptr; 1535 for (User *U : CmpVariableOperand->users()) { 1536 // A - B, A u< B --> usubo(A, B) 1537 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1538 Sub = cast<BinaryOperator>(U); 1539 break; 1540 } 1541 1542 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1543 const APInt *CmpC, *AddC; 1544 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1545 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1546 Sub = cast<BinaryOperator>(U); 1547 break; 1548 } 1549 } 1550 if (!Sub) 1551 return false; 1552 1553 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1554 TLI->getValueType(*DL, Sub->getType()), 1555 Sub->hasNUsesOrMore(2))) 1556 return false; 1557 1558 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1559 Cmp, Intrinsic::usub_with_overflow)) 1560 return false; 1561 1562 // Reset callers - do not crash by iterating over a dead instruction. 1563 ModifiedDT = true; 1564 return true; 1565 } 1566 1567 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1568 /// registers that must be created and coalesced. This is a clear win except on 1569 /// targets with multiple condition code registers (PowerPC), where it might 1570 /// lose; some adjustment may be wanted there. 1571 /// 1572 /// Return true if any changes are made. 1573 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1574 if (TLI.hasMultipleConditionRegisters()) 1575 return false; 1576 1577 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1578 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1579 return false; 1580 1581 // Only insert a cmp in each block once. 1582 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1583 1584 bool MadeChange = false; 1585 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1586 UI != E; ) { 1587 Use &TheUse = UI.getUse(); 1588 Instruction *User = cast<Instruction>(*UI); 1589 1590 // Preincrement use iterator so we don't invalidate it. 1591 ++UI; 1592 1593 // Don't bother for PHI nodes. 1594 if (isa<PHINode>(User)) 1595 continue; 1596 1597 // Figure out which BB this cmp is used in. 1598 BasicBlock *UserBB = User->getParent(); 1599 BasicBlock *DefBB = Cmp->getParent(); 1600 1601 // If this user is in the same block as the cmp, don't change the cmp. 1602 if (UserBB == DefBB) continue; 1603 1604 // If we have already inserted a cmp into this block, use it. 1605 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1606 1607 if (!InsertedCmp) { 1608 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1609 assert(InsertPt != UserBB->end()); 1610 InsertedCmp = 1611 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1612 Cmp->getOperand(0), Cmp->getOperand(1), "", 1613 &*InsertPt); 1614 // Propagate the debug info. 1615 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1616 } 1617 1618 // Replace a use of the cmp with a use of the new cmp. 1619 TheUse = InsertedCmp; 1620 MadeChange = true; 1621 ++NumCmpUses; 1622 } 1623 1624 // If we removed all uses, nuke the cmp. 1625 if (Cmp->use_empty()) { 1626 Cmp->eraseFromParent(); 1627 MadeChange = true; 1628 } 1629 1630 return MadeChange; 1631 } 1632 1633 /// For pattern like: 1634 /// 1635 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1636 /// ... 1637 /// DomBB: 1638 /// ... 1639 /// br DomCond, TrueBB, CmpBB 1640 /// CmpBB: (with DomBB being the single predecessor) 1641 /// ... 1642 /// Cmp = icmp eq CmpOp0, CmpOp1 1643 /// ... 1644 /// 1645 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1646 /// different from lowering of icmp eq (PowerPC). This function try to convert 1647 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1648 /// After that, DomCond and Cmp can use the same comparison so reduce one 1649 /// comparison. 1650 /// 1651 /// Return true if any changes are made. 1652 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1653 const TargetLowering &TLI) { 1654 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1655 return false; 1656 1657 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1658 if (Pred != ICmpInst::ICMP_EQ) 1659 return false; 1660 1661 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1662 // icmp slt/sgt would introduce more redundant LLVM IR. 1663 for (User *U : Cmp->users()) { 1664 if (isa<BranchInst>(U)) 1665 continue; 1666 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1667 continue; 1668 return false; 1669 } 1670 1671 // This is a cheap/incomplete check for dominance - just match a single 1672 // predecessor with a conditional branch. 1673 BasicBlock *CmpBB = Cmp->getParent(); 1674 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1675 if (!DomBB) 1676 return false; 1677 1678 // We want to ensure that the only way control gets to the comparison of 1679 // interest is that a less/greater than comparison on the same operands is 1680 // false. 1681 Value *DomCond; 1682 BasicBlock *TrueBB, *FalseBB; 1683 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1684 return false; 1685 if (CmpBB != FalseBB) 1686 return false; 1687 1688 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1689 ICmpInst::Predicate DomPred; 1690 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1691 return false; 1692 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1693 return false; 1694 1695 // Convert the equality comparison to the opposite of the dominating 1696 // comparison and swap the direction for all branch/select users. 1697 // We have conceptually converted: 1698 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1699 // to 1700 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1701 // And similarly for branches. 1702 for (User *U : Cmp->users()) { 1703 if (auto *BI = dyn_cast<BranchInst>(U)) { 1704 assert(BI->isConditional() && "Must be conditional"); 1705 BI->swapSuccessors(); 1706 continue; 1707 } 1708 if (auto *SI = dyn_cast<SelectInst>(U)) { 1709 // Swap operands 1710 SI->swapValues(); 1711 SI->swapProfMetadata(); 1712 continue; 1713 } 1714 llvm_unreachable("Must be a branch or a select"); 1715 } 1716 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1717 return true; 1718 } 1719 1720 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1721 if (sinkCmpExpression(Cmp, *TLI)) 1722 return true; 1723 1724 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1725 return true; 1726 1727 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1728 return true; 1729 1730 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1731 return true; 1732 1733 return false; 1734 } 1735 1736 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1737 /// used in a compare to allow isel to generate better code for targets where 1738 /// this operation can be combined. 1739 /// 1740 /// Return true if any changes are made. 1741 static bool sinkAndCmp0Expression(Instruction *AndI, 1742 const TargetLowering &TLI, 1743 SetOfInstrs &InsertedInsts) { 1744 // Double-check that we're not trying to optimize an instruction that was 1745 // already optimized by some other part of this pass. 1746 assert(!InsertedInsts.count(AndI) && 1747 "Attempting to optimize already optimized and instruction"); 1748 (void) InsertedInsts; 1749 1750 // Nothing to do for single use in same basic block. 1751 if (AndI->hasOneUse() && 1752 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1753 return false; 1754 1755 // Try to avoid cases where sinking/duplicating is likely to increase register 1756 // pressure. 1757 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1758 !isa<ConstantInt>(AndI->getOperand(1)) && 1759 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1760 return false; 1761 1762 for (auto *U : AndI->users()) { 1763 Instruction *User = cast<Instruction>(U); 1764 1765 // Only sink 'and' feeding icmp with 0. 1766 if (!isa<ICmpInst>(User)) 1767 return false; 1768 1769 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1770 if (!CmpC || !CmpC->isZero()) 1771 return false; 1772 } 1773 1774 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1775 return false; 1776 1777 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1778 LLVM_DEBUG(AndI->getParent()->dump()); 1779 1780 // Push the 'and' into the same block as the icmp 0. There should only be 1781 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1782 // others, so we don't need to keep track of which BBs we insert into. 1783 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1784 UI != E; ) { 1785 Use &TheUse = UI.getUse(); 1786 Instruction *User = cast<Instruction>(*UI); 1787 1788 // Preincrement use iterator so we don't invalidate it. 1789 ++UI; 1790 1791 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1792 1793 // Keep the 'and' in the same place if the use is already in the same block. 1794 Instruction *InsertPt = 1795 User->getParent() == AndI->getParent() ? AndI : User; 1796 Instruction *InsertedAnd = 1797 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1798 AndI->getOperand(1), "", InsertPt); 1799 // Propagate the debug info. 1800 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1801 1802 // Replace a use of the 'and' with a use of the new 'and'. 1803 TheUse = InsertedAnd; 1804 ++NumAndUses; 1805 LLVM_DEBUG(User->getParent()->dump()); 1806 } 1807 1808 // We removed all uses, nuke the and. 1809 AndI->eraseFromParent(); 1810 return true; 1811 } 1812 1813 /// Check if the candidates could be combined with a shift instruction, which 1814 /// includes: 1815 /// 1. Truncate instruction 1816 /// 2. And instruction and the imm is a mask of the low bits: 1817 /// imm & (imm+1) == 0 1818 static bool isExtractBitsCandidateUse(Instruction *User) { 1819 if (!isa<TruncInst>(User)) { 1820 if (User->getOpcode() != Instruction::And || 1821 !isa<ConstantInt>(User->getOperand(1))) 1822 return false; 1823 1824 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1825 1826 if ((Cimm & (Cimm + 1)).getBoolValue()) 1827 return false; 1828 } 1829 return true; 1830 } 1831 1832 /// Sink both shift and truncate instruction to the use of truncate's BB. 1833 static bool 1834 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1835 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1836 const TargetLowering &TLI, const DataLayout &DL) { 1837 BasicBlock *UserBB = User->getParent(); 1838 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1839 auto *TruncI = cast<TruncInst>(User); 1840 bool MadeChange = false; 1841 1842 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1843 TruncE = TruncI->user_end(); 1844 TruncUI != TruncE;) { 1845 1846 Use &TruncTheUse = TruncUI.getUse(); 1847 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1848 // Preincrement use iterator so we don't invalidate it. 1849 1850 ++TruncUI; 1851 1852 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1853 if (!ISDOpcode) 1854 continue; 1855 1856 // If the use is actually a legal node, there will not be an 1857 // implicit truncate. 1858 // FIXME: always querying the result type is just an 1859 // approximation; some nodes' legality is determined by the 1860 // operand or other means. There's no good way to find out though. 1861 if (TLI.isOperationLegalOrCustom( 1862 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1863 continue; 1864 1865 // Don't bother for PHI nodes. 1866 if (isa<PHINode>(TruncUser)) 1867 continue; 1868 1869 BasicBlock *TruncUserBB = TruncUser->getParent(); 1870 1871 if (UserBB == TruncUserBB) 1872 continue; 1873 1874 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1875 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1876 1877 if (!InsertedShift && !InsertedTrunc) { 1878 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1879 assert(InsertPt != TruncUserBB->end()); 1880 // Sink the shift 1881 if (ShiftI->getOpcode() == Instruction::AShr) 1882 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1883 "", &*InsertPt); 1884 else 1885 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1886 "", &*InsertPt); 1887 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1888 1889 // Sink the trunc 1890 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1891 TruncInsertPt++; 1892 assert(TruncInsertPt != TruncUserBB->end()); 1893 1894 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1895 TruncI->getType(), "", &*TruncInsertPt); 1896 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1897 1898 MadeChange = true; 1899 1900 TruncTheUse = InsertedTrunc; 1901 } 1902 } 1903 return MadeChange; 1904 } 1905 1906 /// Sink the shift *right* instruction into user blocks if the uses could 1907 /// potentially be combined with this shift instruction and generate BitExtract 1908 /// instruction. It will only be applied if the architecture supports BitExtract 1909 /// instruction. Here is an example: 1910 /// BB1: 1911 /// %x.extract.shift = lshr i64 %arg1, 32 1912 /// BB2: 1913 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1914 /// ==> 1915 /// 1916 /// BB2: 1917 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1918 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1919 /// 1920 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1921 /// instruction. 1922 /// Return true if any changes are made. 1923 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1924 const TargetLowering &TLI, 1925 const DataLayout &DL) { 1926 BasicBlock *DefBB = ShiftI->getParent(); 1927 1928 /// Only insert instructions in each block once. 1929 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1930 1931 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1932 1933 bool MadeChange = false; 1934 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1935 UI != E;) { 1936 Use &TheUse = UI.getUse(); 1937 Instruction *User = cast<Instruction>(*UI); 1938 // Preincrement use iterator so we don't invalidate it. 1939 ++UI; 1940 1941 // Don't bother for PHI nodes. 1942 if (isa<PHINode>(User)) 1943 continue; 1944 1945 if (!isExtractBitsCandidateUse(User)) 1946 continue; 1947 1948 BasicBlock *UserBB = User->getParent(); 1949 1950 if (UserBB == DefBB) { 1951 // If the shift and truncate instruction are in the same BB. The use of 1952 // the truncate(TruncUse) may still introduce another truncate if not 1953 // legal. In this case, we would like to sink both shift and truncate 1954 // instruction to the BB of TruncUse. 1955 // for example: 1956 // BB1: 1957 // i64 shift.result = lshr i64 opnd, imm 1958 // trunc.result = trunc shift.result to i16 1959 // 1960 // BB2: 1961 // ----> We will have an implicit truncate here if the architecture does 1962 // not have i16 compare. 1963 // cmp i16 trunc.result, opnd2 1964 // 1965 if (isa<TruncInst>(User) && shiftIsLegal 1966 // If the type of the truncate is legal, no truncate will be 1967 // introduced in other basic blocks. 1968 && 1969 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1970 MadeChange = 1971 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1972 1973 continue; 1974 } 1975 // If we have already inserted a shift into this block, use it. 1976 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1977 1978 if (!InsertedShift) { 1979 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1980 assert(InsertPt != UserBB->end()); 1981 1982 if (ShiftI->getOpcode() == Instruction::AShr) 1983 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1984 "", &*InsertPt); 1985 else 1986 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1987 "", &*InsertPt); 1988 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1989 1990 MadeChange = true; 1991 } 1992 1993 // Replace a use of the shift with a use of the new shift. 1994 TheUse = InsertedShift; 1995 } 1996 1997 // If we removed all uses, or there are none, nuke the shift. 1998 if (ShiftI->use_empty()) { 1999 salvageDebugInfo(*ShiftI); 2000 ShiftI->eraseFromParent(); 2001 MadeChange = true; 2002 } 2003 2004 return MadeChange; 2005 } 2006 2007 /// If counting leading or trailing zeros is an expensive operation and a zero 2008 /// input is defined, add a check for zero to avoid calling the intrinsic. 2009 /// 2010 /// We want to transform: 2011 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2012 /// 2013 /// into: 2014 /// entry: 2015 /// %cmpz = icmp eq i64 %A, 0 2016 /// br i1 %cmpz, label %cond.end, label %cond.false 2017 /// cond.false: 2018 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2019 /// br label %cond.end 2020 /// cond.end: 2021 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2022 /// 2023 /// If the transform is performed, return true and set ModifiedDT to true. 2024 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2025 const TargetLowering *TLI, 2026 const DataLayout *DL, 2027 bool &ModifiedDT) { 2028 // If a zero input is undefined, it doesn't make sense to despeculate that. 2029 if (match(CountZeros->getOperand(1), m_One())) 2030 return false; 2031 2032 // If it's cheap to speculate, there's nothing to do. 2033 auto IntrinsicID = CountZeros->getIntrinsicID(); 2034 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2035 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2036 return false; 2037 2038 // Only handle legal scalar cases. Anything else requires too much work. 2039 Type *Ty = CountZeros->getType(); 2040 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2041 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2042 return false; 2043 2044 // The intrinsic will be sunk behind a compare against zero and branch. 2045 BasicBlock *StartBlock = CountZeros->getParent(); 2046 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2047 2048 // Create another block after the count zero intrinsic. A PHI will be added 2049 // in this block to select the result of the intrinsic or the bit-width 2050 // constant if the input to the intrinsic is zero. 2051 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2052 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2053 2054 // Set up a builder to create a compare, conditional branch, and PHI. 2055 IRBuilder<> Builder(CountZeros->getContext()); 2056 Builder.SetInsertPoint(StartBlock->getTerminator()); 2057 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2058 2059 // Replace the unconditional branch that was created by the first split with 2060 // a compare against zero and a conditional branch. 2061 Value *Zero = Constant::getNullValue(Ty); 2062 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2063 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2064 StartBlock->getTerminator()->eraseFromParent(); 2065 2066 // Create a PHI in the end block to select either the output of the intrinsic 2067 // or the bit width of the operand. 2068 Builder.SetInsertPoint(&EndBlock->front()); 2069 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2070 CountZeros->replaceAllUsesWith(PN); 2071 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2072 PN->addIncoming(BitWidth, StartBlock); 2073 PN->addIncoming(CountZeros, CallBlock); 2074 2075 // We are explicitly handling the zero case, so we can set the intrinsic's 2076 // undefined zero argument to 'true'. This will also prevent reprocessing the 2077 // intrinsic; we only despeculate when a zero input is defined. 2078 CountZeros->setArgOperand(1, Builder.getTrue()); 2079 ModifiedDT = true; 2080 return true; 2081 } 2082 2083 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2084 BasicBlock *BB = CI->getParent(); 2085 2086 // Lower inline assembly if we can. 2087 // If we found an inline asm expession, and if the target knows how to 2088 // lower it to normal LLVM code, do so now. 2089 if (CI->isInlineAsm()) { 2090 if (TLI->ExpandInlineAsm(CI)) { 2091 // Avoid invalidating the iterator. 2092 CurInstIterator = BB->begin(); 2093 // Avoid processing instructions out of order, which could cause 2094 // reuse before a value is defined. 2095 SunkAddrs.clear(); 2096 return true; 2097 } 2098 // Sink address computing for memory operands into the block. 2099 if (optimizeInlineAsmInst(CI)) 2100 return true; 2101 } 2102 2103 // Align the pointer arguments to this call if the target thinks it's a good 2104 // idea 2105 unsigned MinSize, PrefAlign; 2106 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2107 for (auto &Arg : CI->arg_operands()) { 2108 // We want to align both objects whose address is used directly and 2109 // objects whose address is used in casts and GEPs, though it only makes 2110 // sense for GEPs if the offset is a multiple of the desired alignment and 2111 // if size - offset meets the size threshold. 2112 if (!Arg->getType()->isPointerTy()) 2113 continue; 2114 APInt Offset(DL->getIndexSizeInBits( 2115 cast<PointerType>(Arg->getType())->getAddressSpace()), 2116 0); 2117 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2118 uint64_t Offset2 = Offset.getLimitedValue(); 2119 if ((Offset2 & (PrefAlign-1)) != 0) 2120 continue; 2121 AllocaInst *AI; 2122 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2123 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2124 AI->setAlignment(Align(PrefAlign)); 2125 // Global variables can only be aligned if they are defined in this 2126 // object (i.e. they are uniquely initialized in this object), and 2127 // over-aligning global variables that have an explicit section is 2128 // forbidden. 2129 GlobalVariable *GV; 2130 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2131 GV->getPointerAlignment(*DL) < PrefAlign && 2132 DL->getTypeAllocSize(GV->getValueType()) >= 2133 MinSize + Offset2) 2134 GV->setAlignment(MaybeAlign(PrefAlign)); 2135 } 2136 // If this is a memcpy (or similar) then we may be able to improve the 2137 // alignment 2138 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2139 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2140 MaybeAlign MIDestAlign = MI->getDestAlign(); 2141 if (!MIDestAlign || DestAlign > *MIDestAlign) 2142 MI->setDestAlignment(DestAlign); 2143 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2144 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2145 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2146 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2147 MTI->setSourceAlignment(SrcAlign); 2148 } 2149 } 2150 } 2151 2152 // If we have a cold call site, try to sink addressing computation into the 2153 // cold block. This interacts with our handling for loads and stores to 2154 // ensure that we can fold all uses of a potential addressing computation 2155 // into their uses. TODO: generalize this to work over profiling data 2156 if (CI->hasFnAttr(Attribute::Cold) && 2157 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2158 for (auto &Arg : CI->arg_operands()) { 2159 if (!Arg->getType()->isPointerTy()) 2160 continue; 2161 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2162 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2163 } 2164 2165 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2166 if (II) { 2167 switch (II->getIntrinsicID()) { 2168 default: break; 2169 case Intrinsic::assume: 2170 llvm_unreachable("llvm.assume should have been removed already"); 2171 case Intrinsic::experimental_widenable_condition: { 2172 // Give up on future widening oppurtunties so that we can fold away dead 2173 // paths and merge blocks before going into block-local instruction 2174 // selection. 2175 if (II->use_empty()) { 2176 II->eraseFromParent(); 2177 return true; 2178 } 2179 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2180 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2181 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2182 }); 2183 return true; 2184 } 2185 case Intrinsic::objectsize: 2186 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2187 case Intrinsic::is_constant: 2188 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2189 case Intrinsic::aarch64_stlxr: 2190 case Intrinsic::aarch64_stxr: { 2191 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2192 if (!ExtVal || !ExtVal->hasOneUse() || 2193 ExtVal->getParent() == CI->getParent()) 2194 return false; 2195 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2196 ExtVal->moveBefore(CI); 2197 // Mark this instruction as "inserted by CGP", so that other 2198 // optimizations don't touch it. 2199 InsertedInsts.insert(ExtVal); 2200 return true; 2201 } 2202 2203 case Intrinsic::launder_invariant_group: 2204 case Intrinsic::strip_invariant_group: { 2205 Value *ArgVal = II->getArgOperand(0); 2206 auto it = LargeOffsetGEPMap.find(II); 2207 if (it != LargeOffsetGEPMap.end()) { 2208 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2209 // Make sure not to have to deal with iterator invalidation 2210 // after possibly adding ArgVal to LargeOffsetGEPMap. 2211 auto GEPs = std::move(it->second); 2212 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2213 LargeOffsetGEPMap.erase(II); 2214 } 2215 2216 II->replaceAllUsesWith(ArgVal); 2217 II->eraseFromParent(); 2218 return true; 2219 } 2220 case Intrinsic::cttz: 2221 case Intrinsic::ctlz: 2222 // If counting zeros is expensive, try to avoid it. 2223 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2224 case Intrinsic::fshl: 2225 case Intrinsic::fshr: 2226 return optimizeFunnelShift(II); 2227 case Intrinsic::dbg_value: 2228 return fixupDbgValue(II); 2229 case Intrinsic::vscale: { 2230 // If datalayout has no special restrictions on vector data layout, 2231 // replace `llvm.vscale` by an equivalent constant expression 2232 // to benefit from cheap constant propagation. 2233 Type *ScalableVectorTy = 2234 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2235 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2236 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2237 auto *One = ConstantInt::getSigned(II->getType(), 1); 2238 auto *CGep = 2239 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2240 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2241 II->eraseFromParent(); 2242 return true; 2243 } 2244 break; 2245 } 2246 case Intrinsic::masked_gather: 2247 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2248 case Intrinsic::masked_scatter: 2249 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2250 } 2251 2252 SmallVector<Value *, 2> PtrOps; 2253 Type *AccessTy; 2254 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2255 while (!PtrOps.empty()) { 2256 Value *PtrVal = PtrOps.pop_back_val(); 2257 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2258 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2259 return true; 2260 } 2261 } 2262 2263 // From here on out we're working with named functions. 2264 if (!CI->getCalledFunction()) return false; 2265 2266 // Lower all default uses of _chk calls. This is very similar 2267 // to what InstCombineCalls does, but here we are only lowering calls 2268 // to fortified library functions (e.g. __memcpy_chk) that have the default 2269 // "don't know" as the objectsize. Anything else should be left alone. 2270 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2271 IRBuilder<> Builder(CI); 2272 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2273 CI->replaceAllUsesWith(V); 2274 CI->eraseFromParent(); 2275 return true; 2276 } 2277 2278 return false; 2279 } 2280 2281 /// Look for opportunities to duplicate return instructions to the predecessor 2282 /// to enable tail call optimizations. The case it is currently looking for is: 2283 /// @code 2284 /// bb0: 2285 /// %tmp0 = tail call i32 @f0() 2286 /// br label %return 2287 /// bb1: 2288 /// %tmp1 = tail call i32 @f1() 2289 /// br label %return 2290 /// bb2: 2291 /// %tmp2 = tail call i32 @f2() 2292 /// br label %return 2293 /// return: 2294 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2295 /// ret i32 %retval 2296 /// @endcode 2297 /// 2298 /// => 2299 /// 2300 /// @code 2301 /// bb0: 2302 /// %tmp0 = tail call i32 @f0() 2303 /// ret i32 %tmp0 2304 /// bb1: 2305 /// %tmp1 = tail call i32 @f1() 2306 /// ret i32 %tmp1 2307 /// bb2: 2308 /// %tmp2 = tail call i32 @f2() 2309 /// ret i32 %tmp2 2310 /// @endcode 2311 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2312 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2313 if (!RetI) 2314 return false; 2315 2316 PHINode *PN = nullptr; 2317 ExtractValueInst *EVI = nullptr; 2318 BitCastInst *BCI = nullptr; 2319 Value *V = RetI->getReturnValue(); 2320 if (V) { 2321 BCI = dyn_cast<BitCastInst>(V); 2322 if (BCI) 2323 V = BCI->getOperand(0); 2324 2325 EVI = dyn_cast<ExtractValueInst>(V); 2326 if (EVI) { 2327 V = EVI->getOperand(0); 2328 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2329 return false; 2330 } 2331 2332 PN = dyn_cast<PHINode>(V); 2333 if (!PN) 2334 return false; 2335 } 2336 2337 if (PN && PN->getParent() != BB) 2338 return false; 2339 2340 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2341 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2342 if (BC && BC->hasOneUse()) 2343 Inst = BC->user_back(); 2344 2345 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2346 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2347 return false; 2348 }; 2349 2350 // Make sure there are no instructions between the first instruction 2351 // and return. 2352 const Instruction *BI = BB->getFirstNonPHI(); 2353 // Skip over debug and the bitcast. 2354 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2355 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2356 BI = BI->getNextNode(); 2357 if (BI != RetI) 2358 return false; 2359 2360 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2361 /// call. 2362 const Function *F = BB->getParent(); 2363 SmallVector<BasicBlock*, 4> TailCallBBs; 2364 if (PN) { 2365 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2366 // Look through bitcasts. 2367 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2368 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2369 BasicBlock *PredBB = PN->getIncomingBlock(I); 2370 // Make sure the phi value is indeed produced by the tail call. 2371 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2372 TLI->mayBeEmittedAsTailCall(CI) && 2373 attributesPermitTailCall(F, CI, RetI, *TLI)) 2374 TailCallBBs.push_back(PredBB); 2375 } 2376 } else { 2377 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2378 for (BasicBlock *Pred : predecessors(BB)) { 2379 if (!VisitedBBs.insert(Pred).second) 2380 continue; 2381 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2382 CallInst *CI = dyn_cast<CallInst>(I); 2383 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2384 attributesPermitTailCall(F, CI, RetI, *TLI)) 2385 TailCallBBs.push_back(Pred); 2386 } 2387 } 2388 } 2389 2390 bool Changed = false; 2391 for (auto const &TailCallBB : TailCallBBs) { 2392 // Make sure the call instruction is followed by an unconditional branch to 2393 // the return block. 2394 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2395 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2396 continue; 2397 2398 // Duplicate the return into TailCallBB. 2399 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2400 assert(!VerifyBFIUpdates || 2401 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2402 BFI->setBlockFreq( 2403 BB, 2404 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2405 ModifiedDT = Changed = true; 2406 ++NumRetsDup; 2407 } 2408 2409 // If we eliminated all predecessors of the block, delete the block now. 2410 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2411 BB->eraseFromParent(); 2412 2413 return Changed; 2414 } 2415 2416 //===----------------------------------------------------------------------===// 2417 // Memory Optimization 2418 //===----------------------------------------------------------------------===// 2419 2420 namespace { 2421 2422 /// This is an extended version of TargetLowering::AddrMode 2423 /// which holds actual Value*'s for register values. 2424 struct ExtAddrMode : public TargetLowering::AddrMode { 2425 Value *BaseReg = nullptr; 2426 Value *ScaledReg = nullptr; 2427 Value *OriginalValue = nullptr; 2428 bool InBounds = true; 2429 2430 enum FieldName { 2431 NoField = 0x00, 2432 BaseRegField = 0x01, 2433 BaseGVField = 0x02, 2434 BaseOffsField = 0x04, 2435 ScaledRegField = 0x08, 2436 ScaleField = 0x10, 2437 MultipleFields = 0xff 2438 }; 2439 2440 2441 ExtAddrMode() = default; 2442 2443 void print(raw_ostream &OS) const; 2444 void dump() const; 2445 2446 FieldName compare(const ExtAddrMode &other) { 2447 // First check that the types are the same on each field, as differing types 2448 // is something we can't cope with later on. 2449 if (BaseReg && other.BaseReg && 2450 BaseReg->getType() != other.BaseReg->getType()) 2451 return MultipleFields; 2452 if (BaseGV && other.BaseGV && 2453 BaseGV->getType() != other.BaseGV->getType()) 2454 return MultipleFields; 2455 if (ScaledReg && other.ScaledReg && 2456 ScaledReg->getType() != other.ScaledReg->getType()) 2457 return MultipleFields; 2458 2459 // Conservatively reject 'inbounds' mismatches. 2460 if (InBounds != other.InBounds) 2461 return MultipleFields; 2462 2463 // Check each field to see if it differs. 2464 unsigned Result = NoField; 2465 if (BaseReg != other.BaseReg) 2466 Result |= BaseRegField; 2467 if (BaseGV != other.BaseGV) 2468 Result |= BaseGVField; 2469 if (BaseOffs != other.BaseOffs) 2470 Result |= BaseOffsField; 2471 if (ScaledReg != other.ScaledReg) 2472 Result |= ScaledRegField; 2473 // Don't count 0 as being a different scale, because that actually means 2474 // unscaled (which will already be counted by having no ScaledReg). 2475 if (Scale && other.Scale && Scale != other.Scale) 2476 Result |= ScaleField; 2477 2478 if (countPopulation(Result) > 1) 2479 return MultipleFields; 2480 else 2481 return static_cast<FieldName>(Result); 2482 } 2483 2484 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2485 // with no offset. 2486 bool isTrivial() { 2487 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2488 // trivial if at most one of these terms is nonzero, except that BaseGV and 2489 // BaseReg both being zero actually means a null pointer value, which we 2490 // consider to be 'non-zero' here. 2491 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2492 } 2493 2494 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2495 switch (Field) { 2496 default: 2497 return nullptr; 2498 case BaseRegField: 2499 return BaseReg; 2500 case BaseGVField: 2501 return BaseGV; 2502 case ScaledRegField: 2503 return ScaledReg; 2504 case BaseOffsField: 2505 return ConstantInt::get(IntPtrTy, BaseOffs); 2506 } 2507 } 2508 2509 void SetCombinedField(FieldName Field, Value *V, 2510 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2511 switch (Field) { 2512 default: 2513 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2514 break; 2515 case ExtAddrMode::BaseRegField: 2516 BaseReg = V; 2517 break; 2518 case ExtAddrMode::BaseGVField: 2519 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2520 // in the BaseReg field. 2521 assert(BaseReg == nullptr); 2522 BaseReg = V; 2523 BaseGV = nullptr; 2524 break; 2525 case ExtAddrMode::ScaledRegField: 2526 ScaledReg = V; 2527 // If we have a mix of scaled and unscaled addrmodes then we want scale 2528 // to be the scale and not zero. 2529 if (!Scale) 2530 for (const ExtAddrMode &AM : AddrModes) 2531 if (AM.Scale) { 2532 Scale = AM.Scale; 2533 break; 2534 } 2535 break; 2536 case ExtAddrMode::BaseOffsField: 2537 // The offset is no longer a constant, so it goes in ScaledReg with a 2538 // scale of 1. 2539 assert(ScaledReg == nullptr); 2540 ScaledReg = V; 2541 Scale = 1; 2542 BaseOffs = 0; 2543 break; 2544 } 2545 } 2546 }; 2547 2548 } // end anonymous namespace 2549 2550 #ifndef NDEBUG 2551 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2552 AM.print(OS); 2553 return OS; 2554 } 2555 #endif 2556 2557 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2558 void ExtAddrMode::print(raw_ostream &OS) const { 2559 bool NeedPlus = false; 2560 OS << "["; 2561 if (InBounds) 2562 OS << "inbounds "; 2563 if (BaseGV) { 2564 OS << (NeedPlus ? " + " : "") 2565 << "GV:"; 2566 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2567 NeedPlus = true; 2568 } 2569 2570 if (BaseOffs) { 2571 OS << (NeedPlus ? " + " : "") 2572 << BaseOffs; 2573 NeedPlus = true; 2574 } 2575 2576 if (BaseReg) { 2577 OS << (NeedPlus ? " + " : "") 2578 << "Base:"; 2579 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2580 NeedPlus = true; 2581 } 2582 if (Scale) { 2583 OS << (NeedPlus ? " + " : "") 2584 << Scale << "*"; 2585 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2586 } 2587 2588 OS << ']'; 2589 } 2590 2591 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2592 print(dbgs()); 2593 dbgs() << '\n'; 2594 } 2595 #endif 2596 2597 namespace { 2598 2599 /// This class provides transaction based operation on the IR. 2600 /// Every change made through this class is recorded in the internal state and 2601 /// can be undone (rollback) until commit is called. 2602 /// CGP does not check if instructions could be speculatively executed when 2603 /// moved. Preserving the original location would pessimize the debugging 2604 /// experience, as well as negatively impact the quality of sample PGO. 2605 class TypePromotionTransaction { 2606 /// This represents the common interface of the individual transaction. 2607 /// Each class implements the logic for doing one specific modification on 2608 /// the IR via the TypePromotionTransaction. 2609 class TypePromotionAction { 2610 protected: 2611 /// The Instruction modified. 2612 Instruction *Inst; 2613 2614 public: 2615 /// Constructor of the action. 2616 /// The constructor performs the related action on the IR. 2617 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2618 2619 virtual ~TypePromotionAction() = default; 2620 2621 /// Undo the modification done by this action. 2622 /// When this method is called, the IR must be in the same state as it was 2623 /// before this action was applied. 2624 /// \pre Undoing the action works if and only if the IR is in the exact same 2625 /// state as it was directly after this action was applied. 2626 virtual void undo() = 0; 2627 2628 /// Advocate every change made by this action. 2629 /// When the results on the IR of the action are to be kept, it is important 2630 /// to call this function, otherwise hidden information may be kept forever. 2631 virtual void commit() { 2632 // Nothing to be done, this action is not doing anything. 2633 } 2634 }; 2635 2636 /// Utility to remember the position of an instruction. 2637 class InsertionHandler { 2638 /// Position of an instruction. 2639 /// Either an instruction: 2640 /// - Is the first in a basic block: BB is used. 2641 /// - Has a previous instruction: PrevInst is used. 2642 union { 2643 Instruction *PrevInst; 2644 BasicBlock *BB; 2645 } Point; 2646 2647 /// Remember whether or not the instruction had a previous instruction. 2648 bool HasPrevInstruction; 2649 2650 public: 2651 /// Record the position of \p Inst. 2652 InsertionHandler(Instruction *Inst) { 2653 BasicBlock::iterator It = Inst->getIterator(); 2654 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2655 if (HasPrevInstruction) 2656 Point.PrevInst = &*--It; 2657 else 2658 Point.BB = Inst->getParent(); 2659 } 2660 2661 /// Insert \p Inst at the recorded position. 2662 void insert(Instruction *Inst) { 2663 if (HasPrevInstruction) { 2664 if (Inst->getParent()) 2665 Inst->removeFromParent(); 2666 Inst->insertAfter(Point.PrevInst); 2667 } else { 2668 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2669 if (Inst->getParent()) 2670 Inst->moveBefore(Position); 2671 else 2672 Inst->insertBefore(Position); 2673 } 2674 } 2675 }; 2676 2677 /// Move an instruction before another. 2678 class InstructionMoveBefore : public TypePromotionAction { 2679 /// Original position of the instruction. 2680 InsertionHandler Position; 2681 2682 public: 2683 /// Move \p Inst before \p Before. 2684 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2685 : TypePromotionAction(Inst), Position(Inst) { 2686 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2687 << "\n"); 2688 Inst->moveBefore(Before); 2689 } 2690 2691 /// Move the instruction back to its original position. 2692 void undo() override { 2693 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2694 Position.insert(Inst); 2695 } 2696 }; 2697 2698 /// Set the operand of an instruction with a new value. 2699 class OperandSetter : public TypePromotionAction { 2700 /// Original operand of the instruction. 2701 Value *Origin; 2702 2703 /// Index of the modified instruction. 2704 unsigned Idx; 2705 2706 public: 2707 /// Set \p Idx operand of \p Inst with \p NewVal. 2708 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2709 : TypePromotionAction(Inst), Idx(Idx) { 2710 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2711 << "for:" << *Inst << "\n" 2712 << "with:" << *NewVal << "\n"); 2713 Origin = Inst->getOperand(Idx); 2714 Inst->setOperand(Idx, NewVal); 2715 } 2716 2717 /// Restore the original value of the instruction. 2718 void undo() override { 2719 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2720 << "for: " << *Inst << "\n" 2721 << "with: " << *Origin << "\n"); 2722 Inst->setOperand(Idx, Origin); 2723 } 2724 }; 2725 2726 /// Hide the operands of an instruction. 2727 /// Do as if this instruction was not using any of its operands. 2728 class OperandsHider : public TypePromotionAction { 2729 /// The list of original operands. 2730 SmallVector<Value *, 4> OriginalValues; 2731 2732 public: 2733 /// Remove \p Inst from the uses of the operands of \p Inst. 2734 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2735 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2736 unsigned NumOpnds = Inst->getNumOperands(); 2737 OriginalValues.reserve(NumOpnds); 2738 for (unsigned It = 0; It < NumOpnds; ++It) { 2739 // Save the current operand. 2740 Value *Val = Inst->getOperand(It); 2741 OriginalValues.push_back(Val); 2742 // Set a dummy one. 2743 // We could use OperandSetter here, but that would imply an overhead 2744 // that we are not willing to pay. 2745 Inst->setOperand(It, UndefValue::get(Val->getType())); 2746 } 2747 } 2748 2749 /// Restore the original list of uses. 2750 void undo() override { 2751 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2752 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2753 Inst->setOperand(It, OriginalValues[It]); 2754 } 2755 }; 2756 2757 /// Build a truncate instruction. 2758 class TruncBuilder : public TypePromotionAction { 2759 Value *Val; 2760 2761 public: 2762 /// Build a truncate instruction of \p Opnd producing a \p Ty 2763 /// result. 2764 /// trunc Opnd to Ty. 2765 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2766 IRBuilder<> Builder(Opnd); 2767 Builder.SetCurrentDebugLocation(DebugLoc()); 2768 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2769 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2770 } 2771 2772 /// Get the built value. 2773 Value *getBuiltValue() { return Val; } 2774 2775 /// Remove the built instruction. 2776 void undo() override { 2777 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2778 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2779 IVal->eraseFromParent(); 2780 } 2781 }; 2782 2783 /// Build a sign extension instruction. 2784 class SExtBuilder : public TypePromotionAction { 2785 Value *Val; 2786 2787 public: 2788 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2789 /// result. 2790 /// sext Opnd to Ty. 2791 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2792 : TypePromotionAction(InsertPt) { 2793 IRBuilder<> Builder(InsertPt); 2794 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2795 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2796 } 2797 2798 /// Get the built value. 2799 Value *getBuiltValue() { return Val; } 2800 2801 /// Remove the built instruction. 2802 void undo() override { 2803 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2804 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2805 IVal->eraseFromParent(); 2806 } 2807 }; 2808 2809 /// Build a zero extension instruction. 2810 class ZExtBuilder : public TypePromotionAction { 2811 Value *Val; 2812 2813 public: 2814 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2815 /// result. 2816 /// zext Opnd to Ty. 2817 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2818 : TypePromotionAction(InsertPt) { 2819 IRBuilder<> Builder(InsertPt); 2820 Builder.SetCurrentDebugLocation(DebugLoc()); 2821 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2822 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2823 } 2824 2825 /// Get the built value. 2826 Value *getBuiltValue() { return Val; } 2827 2828 /// Remove the built instruction. 2829 void undo() override { 2830 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2831 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2832 IVal->eraseFromParent(); 2833 } 2834 }; 2835 2836 /// Mutate an instruction to another type. 2837 class TypeMutator : public TypePromotionAction { 2838 /// Record the original type. 2839 Type *OrigTy; 2840 2841 public: 2842 /// Mutate the type of \p Inst into \p NewTy. 2843 TypeMutator(Instruction *Inst, Type *NewTy) 2844 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2845 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2846 << "\n"); 2847 Inst->mutateType(NewTy); 2848 } 2849 2850 /// Mutate the instruction back to its original type. 2851 void undo() override { 2852 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2853 << "\n"); 2854 Inst->mutateType(OrigTy); 2855 } 2856 }; 2857 2858 /// Replace the uses of an instruction by another instruction. 2859 class UsesReplacer : public TypePromotionAction { 2860 /// Helper structure to keep track of the replaced uses. 2861 struct InstructionAndIdx { 2862 /// The instruction using the instruction. 2863 Instruction *Inst; 2864 2865 /// The index where this instruction is used for Inst. 2866 unsigned Idx; 2867 2868 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2869 : Inst(Inst), Idx(Idx) {} 2870 }; 2871 2872 /// Keep track of the original uses (pair Instruction, Index). 2873 SmallVector<InstructionAndIdx, 4> OriginalUses; 2874 /// Keep track of the debug users. 2875 SmallVector<DbgValueInst *, 1> DbgValues; 2876 2877 /// Keep track of the new value so that we can undo it by replacing 2878 /// instances of the new value with the original value. 2879 Value *New; 2880 2881 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2882 2883 public: 2884 /// Replace all the use of \p Inst by \p New. 2885 UsesReplacer(Instruction *Inst, Value *New) 2886 : TypePromotionAction(Inst), New(New) { 2887 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2888 << "\n"); 2889 // Record the original uses. 2890 for (Use &U : Inst->uses()) { 2891 Instruction *UserI = cast<Instruction>(U.getUser()); 2892 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2893 } 2894 // Record the debug uses separately. They are not in the instruction's 2895 // use list, but they are replaced by RAUW. 2896 findDbgValues(DbgValues, Inst); 2897 2898 // Now, we can replace the uses. 2899 Inst->replaceAllUsesWith(New); 2900 } 2901 2902 /// Reassign the original uses of Inst to Inst. 2903 void undo() override { 2904 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2905 for (InstructionAndIdx &Use : OriginalUses) 2906 Use.Inst->setOperand(Use.Idx, Inst); 2907 // RAUW has replaced all original uses with references to the new value, 2908 // including the debug uses. Since we are undoing the replacements, 2909 // the original debug uses must also be reinstated to maintain the 2910 // correctness and utility of debug value instructions. 2911 for (auto *DVI : DbgValues) 2912 DVI->replaceVariableLocationOp(New, Inst); 2913 } 2914 }; 2915 2916 /// Remove an instruction from the IR. 2917 class InstructionRemover : public TypePromotionAction { 2918 /// Original position of the instruction. 2919 InsertionHandler Inserter; 2920 2921 /// Helper structure to hide all the link to the instruction. In other 2922 /// words, this helps to do as if the instruction was removed. 2923 OperandsHider Hider; 2924 2925 /// Keep track of the uses replaced, if any. 2926 UsesReplacer *Replacer = nullptr; 2927 2928 /// Keep track of instructions removed. 2929 SetOfInstrs &RemovedInsts; 2930 2931 public: 2932 /// Remove all reference of \p Inst and optionally replace all its 2933 /// uses with New. 2934 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2935 /// \pre If !Inst->use_empty(), then New != nullptr 2936 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2937 Value *New = nullptr) 2938 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2939 RemovedInsts(RemovedInsts) { 2940 if (New) 2941 Replacer = new UsesReplacer(Inst, New); 2942 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2943 RemovedInsts.insert(Inst); 2944 /// The instructions removed here will be freed after completing 2945 /// optimizeBlock() for all blocks as we need to keep track of the 2946 /// removed instructions during promotion. 2947 Inst->removeFromParent(); 2948 } 2949 2950 ~InstructionRemover() override { delete Replacer; } 2951 2952 /// Resurrect the instruction and reassign it to the proper uses if 2953 /// new value was provided when build this action. 2954 void undo() override { 2955 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2956 Inserter.insert(Inst); 2957 if (Replacer) 2958 Replacer->undo(); 2959 Hider.undo(); 2960 RemovedInsts.erase(Inst); 2961 } 2962 }; 2963 2964 public: 2965 /// Restoration point. 2966 /// The restoration point is a pointer to an action instead of an iterator 2967 /// because the iterator may be invalidated but not the pointer. 2968 using ConstRestorationPt = const TypePromotionAction *; 2969 2970 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2971 : RemovedInsts(RemovedInsts) {} 2972 2973 /// Advocate every changes made in that transaction. Return true if any change 2974 /// happen. 2975 bool commit(); 2976 2977 /// Undo all the changes made after the given point. 2978 void rollback(ConstRestorationPt Point); 2979 2980 /// Get the current restoration point. 2981 ConstRestorationPt getRestorationPoint() const; 2982 2983 /// \name API for IR modification with state keeping to support rollback. 2984 /// @{ 2985 /// Same as Instruction::setOperand. 2986 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2987 2988 /// Same as Instruction::eraseFromParent. 2989 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2990 2991 /// Same as Value::replaceAllUsesWith. 2992 void replaceAllUsesWith(Instruction *Inst, Value *New); 2993 2994 /// Same as Value::mutateType. 2995 void mutateType(Instruction *Inst, Type *NewTy); 2996 2997 /// Same as IRBuilder::createTrunc. 2998 Value *createTrunc(Instruction *Opnd, Type *Ty); 2999 3000 /// Same as IRBuilder::createSExt. 3001 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 3002 3003 /// Same as IRBuilder::createZExt. 3004 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3005 3006 /// Same as Instruction::moveBefore. 3007 void moveBefore(Instruction *Inst, Instruction *Before); 3008 /// @} 3009 3010 private: 3011 /// The ordered list of actions made so far. 3012 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3013 3014 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3015 3016 SetOfInstrs &RemovedInsts; 3017 }; 3018 3019 } // end anonymous namespace 3020 3021 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3022 Value *NewVal) { 3023 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3024 Inst, Idx, NewVal)); 3025 } 3026 3027 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3028 Value *NewVal) { 3029 Actions.push_back( 3030 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3031 Inst, RemovedInsts, NewVal)); 3032 } 3033 3034 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3035 Value *New) { 3036 Actions.push_back( 3037 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3038 } 3039 3040 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3041 Actions.push_back( 3042 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3043 } 3044 3045 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3046 Type *Ty) { 3047 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3048 Value *Val = Ptr->getBuiltValue(); 3049 Actions.push_back(std::move(Ptr)); 3050 return Val; 3051 } 3052 3053 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3054 Value *Opnd, Type *Ty) { 3055 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3056 Value *Val = Ptr->getBuiltValue(); 3057 Actions.push_back(std::move(Ptr)); 3058 return Val; 3059 } 3060 3061 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3062 Value *Opnd, Type *Ty) { 3063 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3064 Value *Val = Ptr->getBuiltValue(); 3065 Actions.push_back(std::move(Ptr)); 3066 return Val; 3067 } 3068 3069 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3070 Instruction *Before) { 3071 Actions.push_back( 3072 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3073 Inst, Before)); 3074 } 3075 3076 TypePromotionTransaction::ConstRestorationPt 3077 TypePromotionTransaction::getRestorationPoint() const { 3078 return !Actions.empty() ? Actions.back().get() : nullptr; 3079 } 3080 3081 bool TypePromotionTransaction::commit() { 3082 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3083 Action->commit(); 3084 bool Modified = !Actions.empty(); 3085 Actions.clear(); 3086 return Modified; 3087 } 3088 3089 void TypePromotionTransaction::rollback( 3090 TypePromotionTransaction::ConstRestorationPt Point) { 3091 while (!Actions.empty() && Point != Actions.back().get()) { 3092 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3093 Curr->undo(); 3094 } 3095 } 3096 3097 namespace { 3098 3099 /// A helper class for matching addressing modes. 3100 /// 3101 /// This encapsulates the logic for matching the target-legal addressing modes. 3102 class AddressingModeMatcher { 3103 SmallVectorImpl<Instruction*> &AddrModeInsts; 3104 const TargetLowering &TLI; 3105 const TargetRegisterInfo &TRI; 3106 const DataLayout &DL; 3107 const LoopInfo &LI; 3108 const std::function<const DominatorTree &()> getDTFn; 3109 3110 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3111 /// the memory instruction that we're computing this address for. 3112 Type *AccessTy; 3113 unsigned AddrSpace; 3114 Instruction *MemoryInst; 3115 3116 /// This is the addressing mode that we're building up. This is 3117 /// part of the return value of this addressing mode matching stuff. 3118 ExtAddrMode &AddrMode; 3119 3120 /// The instructions inserted by other CodeGenPrepare optimizations. 3121 const SetOfInstrs &InsertedInsts; 3122 3123 /// A map from the instructions to their type before promotion. 3124 InstrToOrigTy &PromotedInsts; 3125 3126 /// The ongoing transaction where every action should be registered. 3127 TypePromotionTransaction &TPT; 3128 3129 // A GEP which has too large offset to be folded into the addressing mode. 3130 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3131 3132 /// This is set to true when we should not do profitability checks. 3133 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3134 bool IgnoreProfitability; 3135 3136 /// True if we are optimizing for size. 3137 bool OptSize; 3138 3139 ProfileSummaryInfo *PSI; 3140 BlockFrequencyInfo *BFI; 3141 3142 AddressingModeMatcher( 3143 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3144 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3145 const std::function<const DominatorTree &()> getDTFn, 3146 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3147 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3148 TypePromotionTransaction &TPT, 3149 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3150 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3151 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3152 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3153 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3154 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3155 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3156 IgnoreProfitability = false; 3157 } 3158 3159 public: 3160 /// Find the maximal addressing mode that a load/store of V can fold, 3161 /// give an access type of AccessTy. This returns a list of involved 3162 /// instructions in AddrModeInsts. 3163 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3164 /// optimizations. 3165 /// \p PromotedInsts maps the instructions to their type before promotion. 3166 /// \p The ongoing transaction where every action should be registered. 3167 static ExtAddrMode 3168 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3169 SmallVectorImpl<Instruction *> &AddrModeInsts, 3170 const TargetLowering &TLI, const LoopInfo &LI, 3171 const std::function<const DominatorTree &()> getDTFn, 3172 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3173 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3174 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3175 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3176 ExtAddrMode Result; 3177 3178 bool Success = AddressingModeMatcher( 3179 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3180 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3181 BFI).matchAddr(V, 0); 3182 (void)Success; assert(Success && "Couldn't select *anything*?"); 3183 return Result; 3184 } 3185 3186 private: 3187 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3188 bool matchAddr(Value *Addr, unsigned Depth); 3189 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3190 bool *MovedAway = nullptr); 3191 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3192 ExtAddrMode &AMBefore, 3193 ExtAddrMode &AMAfter); 3194 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3195 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3196 Value *PromotedOperand) const; 3197 }; 3198 3199 class PhiNodeSet; 3200 3201 /// An iterator for PhiNodeSet. 3202 class PhiNodeSetIterator { 3203 PhiNodeSet * const Set; 3204 size_t CurrentIndex = 0; 3205 3206 public: 3207 /// The constructor. Start should point to either a valid element, or be equal 3208 /// to the size of the underlying SmallVector of the PhiNodeSet. 3209 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3210 PHINode * operator*() const; 3211 PhiNodeSetIterator& operator++(); 3212 bool operator==(const PhiNodeSetIterator &RHS) const; 3213 bool operator!=(const PhiNodeSetIterator &RHS) const; 3214 }; 3215 3216 /// Keeps a set of PHINodes. 3217 /// 3218 /// This is a minimal set implementation for a specific use case: 3219 /// It is very fast when there are very few elements, but also provides good 3220 /// performance when there are many. It is similar to SmallPtrSet, but also 3221 /// provides iteration by insertion order, which is deterministic and stable 3222 /// across runs. It is also similar to SmallSetVector, but provides removing 3223 /// elements in O(1) time. This is achieved by not actually removing the element 3224 /// from the underlying vector, so comes at the cost of using more memory, but 3225 /// that is fine, since PhiNodeSets are used as short lived objects. 3226 class PhiNodeSet { 3227 friend class PhiNodeSetIterator; 3228 3229 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3230 using iterator = PhiNodeSetIterator; 3231 3232 /// Keeps the elements in the order of their insertion in the underlying 3233 /// vector. To achieve constant time removal, it never deletes any element. 3234 SmallVector<PHINode *, 32> NodeList; 3235 3236 /// Keeps the elements in the underlying set implementation. This (and not the 3237 /// NodeList defined above) is the source of truth on whether an element 3238 /// is actually in the collection. 3239 MapType NodeMap; 3240 3241 /// Points to the first valid (not deleted) element when the set is not empty 3242 /// and the value is not zero. Equals to the size of the underlying vector 3243 /// when the set is empty. When the value is 0, as in the beginning, the 3244 /// first element may or may not be valid. 3245 size_t FirstValidElement = 0; 3246 3247 public: 3248 /// Inserts a new element to the collection. 3249 /// \returns true if the element is actually added, i.e. was not in the 3250 /// collection before the operation. 3251 bool insert(PHINode *Ptr) { 3252 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3253 NodeList.push_back(Ptr); 3254 return true; 3255 } 3256 return false; 3257 } 3258 3259 /// Removes the element from the collection. 3260 /// \returns whether the element is actually removed, i.e. was in the 3261 /// collection before the operation. 3262 bool erase(PHINode *Ptr) { 3263 if (NodeMap.erase(Ptr)) { 3264 SkipRemovedElements(FirstValidElement); 3265 return true; 3266 } 3267 return false; 3268 } 3269 3270 /// Removes all elements and clears the collection. 3271 void clear() { 3272 NodeMap.clear(); 3273 NodeList.clear(); 3274 FirstValidElement = 0; 3275 } 3276 3277 /// \returns an iterator that will iterate the elements in the order of 3278 /// insertion. 3279 iterator begin() { 3280 if (FirstValidElement == 0) 3281 SkipRemovedElements(FirstValidElement); 3282 return PhiNodeSetIterator(this, FirstValidElement); 3283 } 3284 3285 /// \returns an iterator that points to the end of the collection. 3286 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3287 3288 /// Returns the number of elements in the collection. 3289 size_t size() const { 3290 return NodeMap.size(); 3291 } 3292 3293 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3294 size_t count(PHINode *Ptr) const { 3295 return NodeMap.count(Ptr); 3296 } 3297 3298 private: 3299 /// Updates the CurrentIndex so that it will point to a valid element. 3300 /// 3301 /// If the element of NodeList at CurrentIndex is valid, it does not 3302 /// change it. If there are no more valid elements, it updates CurrentIndex 3303 /// to point to the end of the NodeList. 3304 void SkipRemovedElements(size_t &CurrentIndex) { 3305 while (CurrentIndex < NodeList.size()) { 3306 auto it = NodeMap.find(NodeList[CurrentIndex]); 3307 // If the element has been deleted and added again later, NodeMap will 3308 // point to a different index, so CurrentIndex will still be invalid. 3309 if (it != NodeMap.end() && it->second == CurrentIndex) 3310 break; 3311 ++CurrentIndex; 3312 } 3313 } 3314 }; 3315 3316 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3317 : Set(Set), CurrentIndex(Start) {} 3318 3319 PHINode * PhiNodeSetIterator::operator*() const { 3320 assert(CurrentIndex < Set->NodeList.size() && 3321 "PhiNodeSet access out of range"); 3322 return Set->NodeList[CurrentIndex]; 3323 } 3324 3325 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3326 assert(CurrentIndex < Set->NodeList.size() && 3327 "PhiNodeSet access out of range"); 3328 ++CurrentIndex; 3329 Set->SkipRemovedElements(CurrentIndex); 3330 return *this; 3331 } 3332 3333 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3334 return CurrentIndex == RHS.CurrentIndex; 3335 } 3336 3337 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3338 return !((*this) == RHS); 3339 } 3340 3341 /// Keep track of simplification of Phi nodes. 3342 /// Accept the set of all phi nodes and erase phi node from this set 3343 /// if it is simplified. 3344 class SimplificationTracker { 3345 DenseMap<Value *, Value *> Storage; 3346 const SimplifyQuery &SQ; 3347 // Tracks newly created Phi nodes. The elements are iterated by insertion 3348 // order. 3349 PhiNodeSet AllPhiNodes; 3350 // Tracks newly created Select nodes. 3351 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3352 3353 public: 3354 SimplificationTracker(const SimplifyQuery &sq) 3355 : SQ(sq) {} 3356 3357 Value *Get(Value *V) { 3358 do { 3359 auto SV = Storage.find(V); 3360 if (SV == Storage.end()) 3361 return V; 3362 V = SV->second; 3363 } while (true); 3364 } 3365 3366 Value *Simplify(Value *Val) { 3367 SmallVector<Value *, 32> WorkList; 3368 SmallPtrSet<Value *, 32> Visited; 3369 WorkList.push_back(Val); 3370 while (!WorkList.empty()) { 3371 auto *P = WorkList.pop_back_val(); 3372 if (!Visited.insert(P).second) 3373 continue; 3374 if (auto *PI = dyn_cast<Instruction>(P)) 3375 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3376 for (auto *U : PI->users()) 3377 WorkList.push_back(cast<Value>(U)); 3378 Put(PI, V); 3379 PI->replaceAllUsesWith(V); 3380 if (auto *PHI = dyn_cast<PHINode>(PI)) 3381 AllPhiNodes.erase(PHI); 3382 if (auto *Select = dyn_cast<SelectInst>(PI)) 3383 AllSelectNodes.erase(Select); 3384 PI->eraseFromParent(); 3385 } 3386 } 3387 return Get(Val); 3388 } 3389 3390 void Put(Value *From, Value *To) { 3391 Storage.insert({ From, To }); 3392 } 3393 3394 void ReplacePhi(PHINode *From, PHINode *To) { 3395 Value* OldReplacement = Get(From); 3396 while (OldReplacement != From) { 3397 From = To; 3398 To = dyn_cast<PHINode>(OldReplacement); 3399 OldReplacement = Get(From); 3400 } 3401 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3402 Put(From, To); 3403 From->replaceAllUsesWith(To); 3404 AllPhiNodes.erase(From); 3405 From->eraseFromParent(); 3406 } 3407 3408 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3409 3410 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3411 3412 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3413 3414 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3415 3416 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3417 3418 void destroyNewNodes(Type *CommonType) { 3419 // For safe erasing, replace the uses with dummy value first. 3420 auto *Dummy = UndefValue::get(CommonType); 3421 for (auto *I : AllPhiNodes) { 3422 I->replaceAllUsesWith(Dummy); 3423 I->eraseFromParent(); 3424 } 3425 AllPhiNodes.clear(); 3426 for (auto *I : AllSelectNodes) { 3427 I->replaceAllUsesWith(Dummy); 3428 I->eraseFromParent(); 3429 } 3430 AllSelectNodes.clear(); 3431 } 3432 }; 3433 3434 /// A helper class for combining addressing modes. 3435 class AddressingModeCombiner { 3436 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3437 typedef std::pair<PHINode *, PHINode *> PHIPair; 3438 3439 private: 3440 /// The addressing modes we've collected. 3441 SmallVector<ExtAddrMode, 16> AddrModes; 3442 3443 /// The field in which the AddrModes differ, when we have more than one. 3444 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3445 3446 /// Are the AddrModes that we have all just equal to their original values? 3447 bool AllAddrModesTrivial = true; 3448 3449 /// Common Type for all different fields in addressing modes. 3450 Type *CommonType; 3451 3452 /// SimplifyQuery for simplifyInstruction utility. 3453 const SimplifyQuery &SQ; 3454 3455 /// Original Address. 3456 Value *Original; 3457 3458 public: 3459 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3460 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3461 3462 /// Get the combined AddrMode 3463 const ExtAddrMode &getAddrMode() const { 3464 return AddrModes[0]; 3465 } 3466 3467 /// Add a new AddrMode if it's compatible with the AddrModes we already 3468 /// have. 3469 /// \return True iff we succeeded in doing so. 3470 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3471 // Take note of if we have any non-trivial AddrModes, as we need to detect 3472 // when all AddrModes are trivial as then we would introduce a phi or select 3473 // which just duplicates what's already there. 3474 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3475 3476 // If this is the first addrmode then everything is fine. 3477 if (AddrModes.empty()) { 3478 AddrModes.emplace_back(NewAddrMode); 3479 return true; 3480 } 3481 3482 // Figure out how different this is from the other address modes, which we 3483 // can do just by comparing against the first one given that we only care 3484 // about the cumulative difference. 3485 ExtAddrMode::FieldName ThisDifferentField = 3486 AddrModes[0].compare(NewAddrMode); 3487 if (DifferentField == ExtAddrMode::NoField) 3488 DifferentField = ThisDifferentField; 3489 else if (DifferentField != ThisDifferentField) 3490 DifferentField = ExtAddrMode::MultipleFields; 3491 3492 // If NewAddrMode differs in more than one dimension we cannot handle it. 3493 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3494 3495 // If Scale Field is different then we reject. 3496 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3497 3498 // We also must reject the case when base offset is different and 3499 // scale reg is not null, we cannot handle this case due to merge of 3500 // different offsets will be used as ScaleReg. 3501 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3502 !NewAddrMode.ScaledReg); 3503 3504 // We also must reject the case when GV is different and BaseReg installed 3505 // due to we want to use base reg as a merge of GV values. 3506 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3507 !NewAddrMode.HasBaseReg); 3508 3509 // Even if NewAddMode is the same we still need to collect it due to 3510 // original value is different. And later we will need all original values 3511 // as anchors during finding the common Phi node. 3512 if (CanHandle) 3513 AddrModes.emplace_back(NewAddrMode); 3514 else 3515 AddrModes.clear(); 3516 3517 return CanHandle; 3518 } 3519 3520 /// Combine the addressing modes we've collected into a single 3521 /// addressing mode. 3522 /// \return True iff we successfully combined them or we only had one so 3523 /// didn't need to combine them anyway. 3524 bool combineAddrModes() { 3525 // If we have no AddrModes then they can't be combined. 3526 if (AddrModes.size() == 0) 3527 return false; 3528 3529 // A single AddrMode can trivially be combined. 3530 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3531 return true; 3532 3533 // If the AddrModes we collected are all just equal to the value they are 3534 // derived from then combining them wouldn't do anything useful. 3535 if (AllAddrModesTrivial) 3536 return false; 3537 3538 if (!addrModeCombiningAllowed()) 3539 return false; 3540 3541 // Build a map between <original value, basic block where we saw it> to 3542 // value of base register. 3543 // Bail out if there is no common type. 3544 FoldAddrToValueMapping Map; 3545 if (!initializeMap(Map)) 3546 return false; 3547 3548 Value *CommonValue = findCommon(Map); 3549 if (CommonValue) 3550 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3551 return CommonValue != nullptr; 3552 } 3553 3554 private: 3555 /// Initialize Map with anchor values. For address seen 3556 /// we set the value of different field saw in this address. 3557 /// At the same time we find a common type for different field we will 3558 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3559 /// Return false if there is no common type found. 3560 bool initializeMap(FoldAddrToValueMapping &Map) { 3561 // Keep track of keys where the value is null. We will need to replace it 3562 // with constant null when we know the common type. 3563 SmallVector<Value *, 2> NullValue; 3564 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3565 for (auto &AM : AddrModes) { 3566 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3567 if (DV) { 3568 auto *Type = DV->getType(); 3569 if (CommonType && CommonType != Type) 3570 return false; 3571 CommonType = Type; 3572 Map[AM.OriginalValue] = DV; 3573 } else { 3574 NullValue.push_back(AM.OriginalValue); 3575 } 3576 } 3577 assert(CommonType && "At least one non-null value must be!"); 3578 for (auto *V : NullValue) 3579 Map[V] = Constant::getNullValue(CommonType); 3580 return true; 3581 } 3582 3583 /// We have mapping between value A and other value B where B was a field in 3584 /// addressing mode represented by A. Also we have an original value C 3585 /// representing an address we start with. Traversing from C through phi and 3586 /// selects we ended up with A's in a map. This utility function tries to find 3587 /// a value V which is a field in addressing mode C and traversing through phi 3588 /// nodes and selects we will end up in corresponded values B in a map. 3589 /// The utility will create a new Phi/Selects if needed. 3590 // The simple example looks as follows: 3591 // BB1: 3592 // p1 = b1 + 40 3593 // br cond BB2, BB3 3594 // BB2: 3595 // p2 = b2 + 40 3596 // br BB3 3597 // BB3: 3598 // p = phi [p1, BB1], [p2, BB2] 3599 // v = load p 3600 // Map is 3601 // p1 -> b1 3602 // p2 -> b2 3603 // Request is 3604 // p -> ? 3605 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3606 Value *findCommon(FoldAddrToValueMapping &Map) { 3607 // Tracks the simplification of newly created phi nodes. The reason we use 3608 // this mapping is because we will add new created Phi nodes in AddrToBase. 3609 // Simplification of Phi nodes is recursive, so some Phi node may 3610 // be simplified after we added it to AddrToBase. In reality this 3611 // simplification is possible only if original phi/selects were not 3612 // simplified yet. 3613 // Using this mapping we can find the current value in AddrToBase. 3614 SimplificationTracker ST(SQ); 3615 3616 // First step, DFS to create PHI nodes for all intermediate blocks. 3617 // Also fill traverse order for the second step. 3618 SmallVector<Value *, 32> TraverseOrder; 3619 InsertPlaceholders(Map, TraverseOrder, ST); 3620 3621 // Second Step, fill new nodes by merged values and simplify if possible. 3622 FillPlaceholders(Map, TraverseOrder, ST); 3623 3624 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3625 ST.destroyNewNodes(CommonType); 3626 return nullptr; 3627 } 3628 3629 // Now we'd like to match New Phi nodes to existed ones. 3630 unsigned PhiNotMatchedCount = 0; 3631 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3632 ST.destroyNewNodes(CommonType); 3633 return nullptr; 3634 } 3635 3636 auto *Result = ST.Get(Map.find(Original)->second); 3637 if (Result) { 3638 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3639 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3640 } 3641 return Result; 3642 } 3643 3644 /// Try to match PHI node to Candidate. 3645 /// Matcher tracks the matched Phi nodes. 3646 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3647 SmallSetVector<PHIPair, 8> &Matcher, 3648 PhiNodeSet &PhiNodesToMatch) { 3649 SmallVector<PHIPair, 8> WorkList; 3650 Matcher.insert({ PHI, Candidate }); 3651 SmallSet<PHINode *, 8> MatchedPHIs; 3652 MatchedPHIs.insert(PHI); 3653 WorkList.push_back({ PHI, Candidate }); 3654 SmallSet<PHIPair, 8> Visited; 3655 while (!WorkList.empty()) { 3656 auto Item = WorkList.pop_back_val(); 3657 if (!Visited.insert(Item).second) 3658 continue; 3659 // We iterate over all incoming values to Phi to compare them. 3660 // If values are different and both of them Phi and the first one is a 3661 // Phi we added (subject to match) and both of them is in the same basic 3662 // block then we can match our pair if values match. So we state that 3663 // these values match and add it to work list to verify that. 3664 for (auto B : Item.first->blocks()) { 3665 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3666 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3667 if (FirstValue == SecondValue) 3668 continue; 3669 3670 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3671 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3672 3673 // One of them is not Phi or 3674 // The first one is not Phi node from the set we'd like to match or 3675 // Phi nodes from different basic blocks then 3676 // we will not be able to match. 3677 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3678 FirstPhi->getParent() != SecondPhi->getParent()) 3679 return false; 3680 3681 // If we already matched them then continue. 3682 if (Matcher.count({ FirstPhi, SecondPhi })) 3683 continue; 3684 // So the values are different and does not match. So we need them to 3685 // match. (But we register no more than one match per PHI node, so that 3686 // we won't later try to replace them twice.) 3687 if (MatchedPHIs.insert(FirstPhi).second) 3688 Matcher.insert({ FirstPhi, SecondPhi }); 3689 // But me must check it. 3690 WorkList.push_back({ FirstPhi, SecondPhi }); 3691 } 3692 } 3693 return true; 3694 } 3695 3696 /// For the given set of PHI nodes (in the SimplificationTracker) try 3697 /// to find their equivalents. 3698 /// Returns false if this matching fails and creation of new Phi is disabled. 3699 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3700 unsigned &PhiNotMatchedCount) { 3701 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3702 // order, so the replacements (ReplacePhi) are also done in a deterministic 3703 // order. 3704 SmallSetVector<PHIPair, 8> Matched; 3705 SmallPtrSet<PHINode *, 8> WillNotMatch; 3706 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3707 while (PhiNodesToMatch.size()) { 3708 PHINode *PHI = *PhiNodesToMatch.begin(); 3709 3710 // Add us, if no Phi nodes in the basic block we do not match. 3711 WillNotMatch.clear(); 3712 WillNotMatch.insert(PHI); 3713 3714 // Traverse all Phis until we found equivalent or fail to do that. 3715 bool IsMatched = false; 3716 for (auto &P : PHI->getParent()->phis()) { 3717 if (&P == PHI) 3718 continue; 3719 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3720 break; 3721 // If it does not match, collect all Phi nodes from matcher. 3722 // if we end up with no match, them all these Phi nodes will not match 3723 // later. 3724 for (auto M : Matched) 3725 WillNotMatch.insert(M.first); 3726 Matched.clear(); 3727 } 3728 if (IsMatched) { 3729 // Replace all matched values and erase them. 3730 for (auto MV : Matched) 3731 ST.ReplacePhi(MV.first, MV.second); 3732 Matched.clear(); 3733 continue; 3734 } 3735 // If we are not allowed to create new nodes then bail out. 3736 if (!AllowNewPhiNodes) 3737 return false; 3738 // Just remove all seen values in matcher. They will not match anything. 3739 PhiNotMatchedCount += WillNotMatch.size(); 3740 for (auto *P : WillNotMatch) 3741 PhiNodesToMatch.erase(P); 3742 } 3743 return true; 3744 } 3745 /// Fill the placeholders with values from predecessors and simplify them. 3746 void FillPlaceholders(FoldAddrToValueMapping &Map, 3747 SmallVectorImpl<Value *> &TraverseOrder, 3748 SimplificationTracker &ST) { 3749 while (!TraverseOrder.empty()) { 3750 Value *Current = TraverseOrder.pop_back_val(); 3751 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3752 Value *V = Map[Current]; 3753 3754 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3755 // CurrentValue also must be Select. 3756 auto *CurrentSelect = cast<SelectInst>(Current); 3757 auto *TrueValue = CurrentSelect->getTrueValue(); 3758 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3759 Select->setTrueValue(ST.Get(Map[TrueValue])); 3760 auto *FalseValue = CurrentSelect->getFalseValue(); 3761 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3762 Select->setFalseValue(ST.Get(Map[FalseValue])); 3763 } else { 3764 // Must be a Phi node then. 3765 auto *PHI = cast<PHINode>(V); 3766 // Fill the Phi node with values from predecessors. 3767 for (auto *B : predecessors(PHI->getParent())) { 3768 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3769 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3770 PHI->addIncoming(ST.Get(Map[PV]), B); 3771 } 3772 } 3773 Map[Current] = ST.Simplify(V); 3774 } 3775 } 3776 3777 /// Starting from original value recursively iterates over def-use chain up to 3778 /// known ending values represented in a map. For each traversed phi/select 3779 /// inserts a placeholder Phi or Select. 3780 /// Reports all new created Phi/Select nodes by adding them to set. 3781 /// Also reports and order in what values have been traversed. 3782 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3783 SmallVectorImpl<Value *> &TraverseOrder, 3784 SimplificationTracker &ST) { 3785 SmallVector<Value *, 32> Worklist; 3786 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3787 "Address must be a Phi or Select node"); 3788 auto *Dummy = UndefValue::get(CommonType); 3789 Worklist.push_back(Original); 3790 while (!Worklist.empty()) { 3791 Value *Current = Worklist.pop_back_val(); 3792 // if it is already visited or it is an ending value then skip it. 3793 if (Map.find(Current) != Map.end()) 3794 continue; 3795 TraverseOrder.push_back(Current); 3796 3797 // CurrentValue must be a Phi node or select. All others must be covered 3798 // by anchors. 3799 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3800 // Is it OK to get metadata from OrigSelect?! 3801 // Create a Select placeholder with dummy value. 3802 SelectInst *Select = SelectInst::Create( 3803 CurrentSelect->getCondition(), Dummy, Dummy, 3804 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3805 Map[Current] = Select; 3806 ST.insertNewSelect(Select); 3807 // We are interested in True and False values. 3808 Worklist.push_back(CurrentSelect->getTrueValue()); 3809 Worklist.push_back(CurrentSelect->getFalseValue()); 3810 } else { 3811 // It must be a Phi node then. 3812 PHINode *CurrentPhi = cast<PHINode>(Current); 3813 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3814 PHINode *PHI = 3815 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3816 Map[Current] = PHI; 3817 ST.insertNewPhi(PHI); 3818 append_range(Worklist, CurrentPhi->incoming_values()); 3819 } 3820 } 3821 } 3822 3823 bool addrModeCombiningAllowed() { 3824 if (DisableComplexAddrModes) 3825 return false; 3826 switch (DifferentField) { 3827 default: 3828 return false; 3829 case ExtAddrMode::BaseRegField: 3830 return AddrSinkCombineBaseReg; 3831 case ExtAddrMode::BaseGVField: 3832 return AddrSinkCombineBaseGV; 3833 case ExtAddrMode::BaseOffsField: 3834 return AddrSinkCombineBaseOffs; 3835 case ExtAddrMode::ScaledRegField: 3836 return AddrSinkCombineScaledReg; 3837 } 3838 } 3839 }; 3840 } // end anonymous namespace 3841 3842 /// Try adding ScaleReg*Scale to the current addressing mode. 3843 /// Return true and update AddrMode if this addr mode is legal for the target, 3844 /// false if not. 3845 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3846 unsigned Depth) { 3847 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3848 // mode. Just process that directly. 3849 if (Scale == 1) 3850 return matchAddr(ScaleReg, Depth); 3851 3852 // If the scale is 0, it takes nothing to add this. 3853 if (Scale == 0) 3854 return true; 3855 3856 // If we already have a scale of this value, we can add to it, otherwise, we 3857 // need an available scale field. 3858 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3859 return false; 3860 3861 ExtAddrMode TestAddrMode = AddrMode; 3862 3863 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3864 // [A+B + A*7] -> [B+A*8]. 3865 TestAddrMode.Scale += Scale; 3866 TestAddrMode.ScaledReg = ScaleReg; 3867 3868 // If the new address isn't legal, bail out. 3869 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3870 return false; 3871 3872 // It was legal, so commit it. 3873 AddrMode = TestAddrMode; 3874 3875 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3876 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3877 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3878 // go any further: we can reuse it and cannot eliminate it. 3879 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3880 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3881 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3882 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3883 TestAddrMode.InBounds = false; 3884 TestAddrMode.ScaledReg = AddLHS; 3885 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3886 3887 // If this addressing mode is legal, commit it and remember that we folded 3888 // this instruction. 3889 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3890 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3891 AddrMode = TestAddrMode; 3892 return true; 3893 } 3894 // Restore status quo. 3895 TestAddrMode = AddrMode; 3896 } 3897 3898 // If this is an add recurrence with a constant step, return the increment 3899 // instruction and the canonicalized step. 3900 auto GetConstantStep = [this](const Value * V) 3901 ->Optional<std::pair<Instruction *, APInt> > { 3902 auto *PN = dyn_cast<PHINode>(V); 3903 if (!PN) 3904 return None; 3905 auto IVInc = getIVIncrement(PN, &LI); 3906 if (!IVInc) 3907 return None; 3908 // TODO: The result of the intrinsics above is two-compliment. However when 3909 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3910 // If it has nuw or nsw flags, we need to make sure that these flags are 3911 // inferrable at the point of memory instruction. Otherwise we are replacing 3912 // well-defined two-compliment computation with poison. Currently, to avoid 3913 // potentially complex analysis needed to prove this, we reject such cases. 3914 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3915 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3916 return None; 3917 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3918 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3919 return None; 3920 }; 3921 3922 // Try to account for the following special case: 3923 // 1. ScaleReg is an inductive variable; 3924 // 2. We use it with non-zero offset; 3925 // 3. IV's increment is available at the point of memory instruction. 3926 // 3927 // In this case, we may reuse the IV increment instead of the IV Phi to 3928 // achieve the following advantages: 3929 // 1. If IV step matches the offset, we will have no need in the offset; 3930 // 2. Even if they don't match, we will reduce the overlap of living IV 3931 // and IV increment, that will potentially lead to better register 3932 // assignment. 3933 if (AddrMode.BaseOffs) { 3934 if (auto IVStep = GetConstantStep(ScaleReg)) { 3935 Instruction *IVInc = IVStep->first; 3936 // The following assert is important to ensure a lack of infinite loops. 3937 // This transforms is (intentionally) the inverse of the one just above. 3938 // If they don't agree on the definition of an increment, we'd alternate 3939 // back and forth indefinitely. 3940 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3941 APInt Step = IVStep->second; 3942 APInt Offset = Step * AddrMode.Scale; 3943 if (Offset.isSignedIntN(64)) { 3944 TestAddrMode.InBounds = false; 3945 TestAddrMode.ScaledReg = IVInc; 3946 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3947 // If this addressing mode is legal, commit it.. 3948 // (Note that we defer the (expensive) domtree base legality check 3949 // to the very last possible point.) 3950 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3951 getDTFn().dominates(IVInc, MemoryInst)) { 3952 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3953 AddrMode = TestAddrMode; 3954 return true; 3955 } 3956 // Restore status quo. 3957 TestAddrMode = AddrMode; 3958 } 3959 } 3960 } 3961 3962 // Otherwise, just return what we have. 3963 return true; 3964 } 3965 3966 /// This is a little filter, which returns true if an addressing computation 3967 /// involving I might be folded into a load/store accessing it. 3968 /// This doesn't need to be perfect, but needs to accept at least 3969 /// the set of instructions that MatchOperationAddr can. 3970 static bool MightBeFoldableInst(Instruction *I) { 3971 switch (I->getOpcode()) { 3972 case Instruction::BitCast: 3973 case Instruction::AddrSpaceCast: 3974 // Don't touch identity bitcasts. 3975 if (I->getType() == I->getOperand(0)->getType()) 3976 return false; 3977 return I->getType()->isIntOrPtrTy(); 3978 case Instruction::PtrToInt: 3979 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3980 return true; 3981 case Instruction::IntToPtr: 3982 // We know the input is intptr_t, so this is foldable. 3983 return true; 3984 case Instruction::Add: 3985 return true; 3986 case Instruction::Mul: 3987 case Instruction::Shl: 3988 // Can only handle X*C and X << C. 3989 return isa<ConstantInt>(I->getOperand(1)); 3990 case Instruction::GetElementPtr: 3991 return true; 3992 default: 3993 return false; 3994 } 3995 } 3996 3997 /// Check whether or not \p Val is a legal instruction for \p TLI. 3998 /// \note \p Val is assumed to be the product of some type promotion. 3999 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 4000 /// to be legal, as the non-promoted value would have had the same state. 4001 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 4002 const DataLayout &DL, Value *Val) { 4003 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4004 if (!PromotedInst) 4005 return false; 4006 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4007 // If the ISDOpcode is undefined, it was undefined before the promotion. 4008 if (!ISDOpcode) 4009 return true; 4010 // Otherwise, check if the promoted instruction is legal or not. 4011 return TLI.isOperationLegalOrCustom( 4012 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4013 } 4014 4015 namespace { 4016 4017 /// Hepler class to perform type promotion. 4018 class TypePromotionHelper { 4019 /// Utility function to add a promoted instruction \p ExtOpnd to 4020 /// \p PromotedInsts and record the type of extension we have seen. 4021 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4022 Instruction *ExtOpnd, 4023 bool IsSExt) { 4024 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4025 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4026 if (It != PromotedInsts.end()) { 4027 // If the new extension is same as original, the information in 4028 // PromotedInsts[ExtOpnd] is still correct. 4029 if (It->second.getInt() == ExtTy) 4030 return; 4031 4032 // Now the new extension is different from old extension, we make 4033 // the type information invalid by setting extension type to 4034 // BothExtension. 4035 ExtTy = BothExtension; 4036 } 4037 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4038 } 4039 4040 /// Utility function to query the original type of instruction \p Opnd 4041 /// with a matched extension type. If the extension doesn't match, we 4042 /// cannot use the information we had on the original type. 4043 /// BothExtension doesn't match any extension type. 4044 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4045 Instruction *Opnd, 4046 bool IsSExt) { 4047 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4048 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4049 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4050 return It->second.getPointer(); 4051 return nullptr; 4052 } 4053 4054 /// Utility function to check whether or not a sign or zero extension 4055 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4056 /// either using the operands of \p Inst or promoting \p Inst. 4057 /// The type of the extension is defined by \p IsSExt. 4058 /// In other words, check if: 4059 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4060 /// #1 Promotion applies: 4061 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4062 /// #2 Operand reuses: 4063 /// ext opnd1 to ConsideredExtType. 4064 /// \p PromotedInsts maps the instructions to their type before promotion. 4065 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4066 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4067 4068 /// Utility function to determine if \p OpIdx should be promoted when 4069 /// promoting \p Inst. 4070 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4071 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4072 } 4073 4074 /// Utility function to promote the operand of \p Ext when this 4075 /// operand is a promotable trunc or sext or zext. 4076 /// \p PromotedInsts maps the instructions to their type before promotion. 4077 /// \p CreatedInstsCost[out] contains the cost of all instructions 4078 /// created to promote the operand of Ext. 4079 /// Newly added extensions are inserted in \p Exts. 4080 /// Newly added truncates are inserted in \p Truncs. 4081 /// Should never be called directly. 4082 /// \return The promoted value which is used instead of Ext. 4083 static Value *promoteOperandForTruncAndAnyExt( 4084 Instruction *Ext, TypePromotionTransaction &TPT, 4085 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4086 SmallVectorImpl<Instruction *> *Exts, 4087 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4088 4089 /// Utility function to promote the operand of \p Ext when this 4090 /// operand is promotable and is not a supported trunc or sext. 4091 /// \p PromotedInsts maps the instructions to their type before promotion. 4092 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4093 /// created to promote the operand of Ext. 4094 /// Newly added extensions are inserted in \p Exts. 4095 /// Newly added truncates are inserted in \p Truncs. 4096 /// Should never be called directly. 4097 /// \return The promoted value which is used instead of Ext. 4098 static Value *promoteOperandForOther(Instruction *Ext, 4099 TypePromotionTransaction &TPT, 4100 InstrToOrigTy &PromotedInsts, 4101 unsigned &CreatedInstsCost, 4102 SmallVectorImpl<Instruction *> *Exts, 4103 SmallVectorImpl<Instruction *> *Truncs, 4104 const TargetLowering &TLI, bool IsSExt); 4105 4106 /// \see promoteOperandForOther. 4107 static Value *signExtendOperandForOther( 4108 Instruction *Ext, TypePromotionTransaction &TPT, 4109 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4110 SmallVectorImpl<Instruction *> *Exts, 4111 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4112 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4113 Exts, Truncs, TLI, true); 4114 } 4115 4116 /// \see promoteOperandForOther. 4117 static Value *zeroExtendOperandForOther( 4118 Instruction *Ext, TypePromotionTransaction &TPT, 4119 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4120 SmallVectorImpl<Instruction *> *Exts, 4121 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4122 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4123 Exts, Truncs, TLI, false); 4124 } 4125 4126 public: 4127 /// Type for the utility function that promotes the operand of Ext. 4128 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4129 InstrToOrigTy &PromotedInsts, 4130 unsigned &CreatedInstsCost, 4131 SmallVectorImpl<Instruction *> *Exts, 4132 SmallVectorImpl<Instruction *> *Truncs, 4133 const TargetLowering &TLI); 4134 4135 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4136 /// action to promote the operand of \p Ext instead of using Ext. 4137 /// \return NULL if no promotable action is possible with the current 4138 /// sign extension. 4139 /// \p InsertedInsts keeps track of all the instructions inserted by the 4140 /// other CodeGenPrepare optimizations. This information is important 4141 /// because we do not want to promote these instructions as CodeGenPrepare 4142 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4143 /// \p PromotedInsts maps the instructions to their type before promotion. 4144 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4145 const TargetLowering &TLI, 4146 const InstrToOrigTy &PromotedInsts); 4147 }; 4148 4149 } // end anonymous namespace 4150 4151 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4152 Type *ConsideredExtType, 4153 const InstrToOrigTy &PromotedInsts, 4154 bool IsSExt) { 4155 // The promotion helper does not know how to deal with vector types yet. 4156 // To be able to fix that, we would need to fix the places where we 4157 // statically extend, e.g., constants and such. 4158 if (Inst->getType()->isVectorTy()) 4159 return false; 4160 4161 // We can always get through zext. 4162 if (isa<ZExtInst>(Inst)) 4163 return true; 4164 4165 // sext(sext) is ok too. 4166 if (IsSExt && isa<SExtInst>(Inst)) 4167 return true; 4168 4169 // We can get through binary operator, if it is legal. In other words, the 4170 // binary operator must have a nuw or nsw flag. 4171 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4172 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4173 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4174 (IsSExt && BinOp->hasNoSignedWrap()))) 4175 return true; 4176 4177 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4178 if ((Inst->getOpcode() == Instruction::And || 4179 Inst->getOpcode() == Instruction::Or)) 4180 return true; 4181 4182 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4183 if (Inst->getOpcode() == Instruction::Xor) { 4184 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4185 // Make sure it is not a NOT. 4186 if (Cst && !Cst->getValue().isAllOnesValue()) 4187 return true; 4188 } 4189 4190 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4191 // It may change a poisoned value into a regular value, like 4192 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4193 // poisoned value regular value 4194 // It should be OK since undef covers valid value. 4195 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4196 return true; 4197 4198 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4199 // It may change a poisoned value into a regular value, like 4200 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4201 // poisoned value regular value 4202 // It should be OK since undef covers valid value. 4203 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4204 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4205 if (ExtInst->hasOneUse()) { 4206 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4207 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4208 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4209 if (Cst && 4210 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4211 return true; 4212 } 4213 } 4214 } 4215 4216 // Check if we can do the following simplification. 4217 // ext(trunc(opnd)) --> ext(opnd) 4218 if (!isa<TruncInst>(Inst)) 4219 return false; 4220 4221 Value *OpndVal = Inst->getOperand(0); 4222 // Check if we can use this operand in the extension. 4223 // If the type is larger than the result type of the extension, we cannot. 4224 if (!OpndVal->getType()->isIntegerTy() || 4225 OpndVal->getType()->getIntegerBitWidth() > 4226 ConsideredExtType->getIntegerBitWidth()) 4227 return false; 4228 4229 // If the operand of the truncate is not an instruction, we will not have 4230 // any information on the dropped bits. 4231 // (Actually we could for constant but it is not worth the extra logic). 4232 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4233 if (!Opnd) 4234 return false; 4235 4236 // Check if the source of the type is narrow enough. 4237 // I.e., check that trunc just drops extended bits of the same kind of 4238 // the extension. 4239 // #1 get the type of the operand and check the kind of the extended bits. 4240 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4241 if (OpndType) 4242 ; 4243 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4244 OpndType = Opnd->getOperand(0)->getType(); 4245 else 4246 return false; 4247 4248 // #2 check that the truncate just drops extended bits. 4249 return Inst->getType()->getIntegerBitWidth() >= 4250 OpndType->getIntegerBitWidth(); 4251 } 4252 4253 TypePromotionHelper::Action TypePromotionHelper::getAction( 4254 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4255 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4256 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4257 "Unexpected instruction type"); 4258 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4259 Type *ExtTy = Ext->getType(); 4260 bool IsSExt = isa<SExtInst>(Ext); 4261 // If the operand of the extension is not an instruction, we cannot 4262 // get through. 4263 // If it, check we can get through. 4264 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4265 return nullptr; 4266 4267 // Do not promote if the operand has been added by codegenprepare. 4268 // Otherwise, it means we are undoing an optimization that is likely to be 4269 // redone, thus causing potential infinite loop. 4270 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4271 return nullptr; 4272 4273 // SExt or Trunc instructions. 4274 // Return the related handler. 4275 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4276 isa<ZExtInst>(ExtOpnd)) 4277 return promoteOperandForTruncAndAnyExt; 4278 4279 // Regular instruction. 4280 // Abort early if we will have to insert non-free instructions. 4281 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4282 return nullptr; 4283 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4284 } 4285 4286 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4287 Instruction *SExt, TypePromotionTransaction &TPT, 4288 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4289 SmallVectorImpl<Instruction *> *Exts, 4290 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4291 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4292 // get through it and this method should not be called. 4293 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4294 Value *ExtVal = SExt; 4295 bool HasMergedNonFreeExt = false; 4296 if (isa<ZExtInst>(SExtOpnd)) { 4297 // Replace s|zext(zext(opnd)) 4298 // => zext(opnd). 4299 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4300 Value *ZExt = 4301 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4302 TPT.replaceAllUsesWith(SExt, ZExt); 4303 TPT.eraseInstruction(SExt); 4304 ExtVal = ZExt; 4305 } else { 4306 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4307 // => z|sext(opnd). 4308 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4309 } 4310 CreatedInstsCost = 0; 4311 4312 // Remove dead code. 4313 if (SExtOpnd->use_empty()) 4314 TPT.eraseInstruction(SExtOpnd); 4315 4316 // Check if the extension is still needed. 4317 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4318 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4319 if (ExtInst) { 4320 if (Exts) 4321 Exts->push_back(ExtInst); 4322 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4323 } 4324 return ExtVal; 4325 } 4326 4327 // At this point we have: ext ty opnd to ty. 4328 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4329 Value *NextVal = ExtInst->getOperand(0); 4330 TPT.eraseInstruction(ExtInst, NextVal); 4331 return NextVal; 4332 } 4333 4334 Value *TypePromotionHelper::promoteOperandForOther( 4335 Instruction *Ext, TypePromotionTransaction &TPT, 4336 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4337 SmallVectorImpl<Instruction *> *Exts, 4338 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4339 bool IsSExt) { 4340 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4341 // get through it and this method should not be called. 4342 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4343 CreatedInstsCost = 0; 4344 if (!ExtOpnd->hasOneUse()) { 4345 // ExtOpnd will be promoted. 4346 // All its uses, but Ext, will need to use a truncated value of the 4347 // promoted version. 4348 // Create the truncate now. 4349 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4350 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4351 // Insert it just after the definition. 4352 ITrunc->moveAfter(ExtOpnd); 4353 if (Truncs) 4354 Truncs->push_back(ITrunc); 4355 } 4356 4357 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4358 // Restore the operand of Ext (which has been replaced by the previous call 4359 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4360 TPT.setOperand(Ext, 0, ExtOpnd); 4361 } 4362 4363 // Get through the Instruction: 4364 // 1. Update its type. 4365 // 2. Replace the uses of Ext by Inst. 4366 // 3. Extend each operand that needs to be extended. 4367 4368 // Remember the original type of the instruction before promotion. 4369 // This is useful to know that the high bits are sign extended bits. 4370 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4371 // Step #1. 4372 TPT.mutateType(ExtOpnd, Ext->getType()); 4373 // Step #2. 4374 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4375 // Step #3. 4376 Instruction *ExtForOpnd = Ext; 4377 4378 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4379 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4380 ++OpIdx) { 4381 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4382 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4383 !shouldExtOperand(ExtOpnd, OpIdx)) { 4384 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4385 continue; 4386 } 4387 // Check if we can statically extend the operand. 4388 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4389 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4390 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4391 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4392 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4393 : Cst->getValue().zext(BitWidth); 4394 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4395 continue; 4396 } 4397 // UndefValue are typed, so we have to statically sign extend them. 4398 if (isa<UndefValue>(Opnd)) { 4399 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4400 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4401 continue; 4402 } 4403 4404 // Otherwise we have to explicitly sign extend the operand. 4405 // Check if Ext was reused to extend an operand. 4406 if (!ExtForOpnd) { 4407 // If yes, create a new one. 4408 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4409 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4410 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4411 if (!isa<Instruction>(ValForExtOpnd)) { 4412 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4413 continue; 4414 } 4415 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4416 } 4417 if (Exts) 4418 Exts->push_back(ExtForOpnd); 4419 TPT.setOperand(ExtForOpnd, 0, Opnd); 4420 4421 // Move the sign extension before the insertion point. 4422 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4423 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4424 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4425 // If more sext are required, new instructions will have to be created. 4426 ExtForOpnd = nullptr; 4427 } 4428 if (ExtForOpnd == Ext) { 4429 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4430 TPT.eraseInstruction(Ext); 4431 } 4432 return ExtOpnd; 4433 } 4434 4435 /// Check whether or not promoting an instruction to a wider type is profitable. 4436 /// \p NewCost gives the cost of extension instructions created by the 4437 /// promotion. 4438 /// \p OldCost gives the cost of extension instructions before the promotion 4439 /// plus the number of instructions that have been 4440 /// matched in the addressing mode the promotion. 4441 /// \p PromotedOperand is the value that has been promoted. 4442 /// \return True if the promotion is profitable, false otherwise. 4443 bool AddressingModeMatcher::isPromotionProfitable( 4444 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4445 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4446 << '\n'); 4447 // The cost of the new extensions is greater than the cost of the 4448 // old extension plus what we folded. 4449 // This is not profitable. 4450 if (NewCost > OldCost) 4451 return false; 4452 if (NewCost < OldCost) 4453 return true; 4454 // The promotion is neutral but it may help folding the sign extension in 4455 // loads for instance. 4456 // Check that we did not create an illegal instruction. 4457 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4458 } 4459 4460 /// Given an instruction or constant expr, see if we can fold the operation 4461 /// into the addressing mode. If so, update the addressing mode and return 4462 /// true, otherwise return false without modifying AddrMode. 4463 /// If \p MovedAway is not NULL, it contains the information of whether or 4464 /// not AddrInst has to be folded into the addressing mode on success. 4465 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4466 /// because it has been moved away. 4467 /// Thus AddrInst must not be added in the matched instructions. 4468 /// This state can happen when AddrInst is a sext, since it may be moved away. 4469 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4470 /// not be referenced anymore. 4471 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4472 unsigned Depth, 4473 bool *MovedAway) { 4474 // Avoid exponential behavior on extremely deep expression trees. 4475 if (Depth >= 5) return false; 4476 4477 // By default, all matched instructions stay in place. 4478 if (MovedAway) 4479 *MovedAway = false; 4480 4481 switch (Opcode) { 4482 case Instruction::PtrToInt: 4483 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4484 return matchAddr(AddrInst->getOperand(0), Depth); 4485 case Instruction::IntToPtr: { 4486 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4487 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4488 // This inttoptr is a no-op if the integer type is pointer sized. 4489 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4490 return matchAddr(AddrInst->getOperand(0), Depth); 4491 return false; 4492 } 4493 case Instruction::BitCast: 4494 // BitCast is always a noop, and we can handle it as long as it is 4495 // int->int or pointer->pointer (we don't want int<->fp or something). 4496 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4497 // Don't touch identity bitcasts. These were probably put here by LSR, 4498 // and we don't want to mess around with them. Assume it knows what it 4499 // is doing. 4500 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4501 return matchAddr(AddrInst->getOperand(0), Depth); 4502 return false; 4503 case Instruction::AddrSpaceCast: { 4504 unsigned SrcAS 4505 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4506 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4507 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4508 return matchAddr(AddrInst->getOperand(0), Depth); 4509 return false; 4510 } 4511 case Instruction::Add: { 4512 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4513 ExtAddrMode BackupAddrMode = AddrMode; 4514 unsigned OldSize = AddrModeInsts.size(); 4515 // Start a transaction at this point. 4516 // The LHS may match but not the RHS. 4517 // Therefore, we need a higher level restoration point to undo partially 4518 // matched operation. 4519 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4520 TPT.getRestorationPoint(); 4521 4522 AddrMode.InBounds = false; 4523 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4524 matchAddr(AddrInst->getOperand(0), Depth+1)) 4525 return true; 4526 4527 // Restore the old addr mode info. 4528 AddrMode = BackupAddrMode; 4529 AddrModeInsts.resize(OldSize); 4530 TPT.rollback(LastKnownGood); 4531 4532 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4533 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4534 matchAddr(AddrInst->getOperand(1), Depth+1)) 4535 return true; 4536 4537 // Otherwise we definitely can't merge the ADD in. 4538 AddrMode = BackupAddrMode; 4539 AddrModeInsts.resize(OldSize); 4540 TPT.rollback(LastKnownGood); 4541 break; 4542 } 4543 //case Instruction::Or: 4544 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4545 //break; 4546 case Instruction::Mul: 4547 case Instruction::Shl: { 4548 // Can only handle X*C and X << C. 4549 AddrMode.InBounds = false; 4550 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4551 if (!RHS || RHS->getBitWidth() > 64) 4552 return false; 4553 int64_t Scale = RHS->getSExtValue(); 4554 if (Opcode == Instruction::Shl) 4555 Scale = 1LL << Scale; 4556 4557 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4558 } 4559 case Instruction::GetElementPtr: { 4560 // Scan the GEP. We check it if it contains constant offsets and at most 4561 // one variable offset. 4562 int VariableOperand = -1; 4563 unsigned VariableScale = 0; 4564 4565 int64_t ConstantOffset = 0; 4566 gep_type_iterator GTI = gep_type_begin(AddrInst); 4567 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4568 if (StructType *STy = GTI.getStructTypeOrNull()) { 4569 const StructLayout *SL = DL.getStructLayout(STy); 4570 unsigned Idx = 4571 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4572 ConstantOffset += SL->getElementOffset(Idx); 4573 } else { 4574 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4575 if (TS.isNonZero()) { 4576 // The optimisations below currently only work for fixed offsets. 4577 if (TS.isScalable()) 4578 return false; 4579 int64_t TypeSize = TS.getFixedSize(); 4580 if (ConstantInt *CI = 4581 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4582 const APInt &CVal = CI->getValue(); 4583 if (CVal.getMinSignedBits() <= 64) { 4584 ConstantOffset += CVal.getSExtValue() * TypeSize; 4585 continue; 4586 } 4587 } 4588 // We only allow one variable index at the moment. 4589 if (VariableOperand != -1) 4590 return false; 4591 4592 // Remember the variable index. 4593 VariableOperand = i; 4594 VariableScale = TypeSize; 4595 } 4596 } 4597 } 4598 4599 // A common case is for the GEP to only do a constant offset. In this case, 4600 // just add it to the disp field and check validity. 4601 if (VariableOperand == -1) { 4602 AddrMode.BaseOffs += ConstantOffset; 4603 if (ConstantOffset == 0 || 4604 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4605 // Check to see if we can fold the base pointer in too. 4606 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4607 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4608 AddrMode.InBounds = false; 4609 return true; 4610 } 4611 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4612 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4613 ConstantOffset > 0) { 4614 // Record GEPs with non-zero offsets as candidates for splitting in the 4615 // event that the offset cannot fit into the r+i addressing mode. 4616 // Simple and common case that only one GEP is used in calculating the 4617 // address for the memory access. 4618 Value *Base = AddrInst->getOperand(0); 4619 auto *BaseI = dyn_cast<Instruction>(Base); 4620 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4621 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4622 (BaseI && !isa<CastInst>(BaseI) && 4623 !isa<GetElementPtrInst>(BaseI))) { 4624 // Make sure the parent block allows inserting non-PHI instructions 4625 // before the terminator. 4626 BasicBlock *Parent = 4627 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4628 if (!Parent->getTerminator()->isEHPad()) 4629 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4630 } 4631 } 4632 AddrMode.BaseOffs -= ConstantOffset; 4633 return false; 4634 } 4635 4636 // Save the valid addressing mode in case we can't match. 4637 ExtAddrMode BackupAddrMode = AddrMode; 4638 unsigned OldSize = AddrModeInsts.size(); 4639 4640 // See if the scale and offset amount is valid for this target. 4641 AddrMode.BaseOffs += ConstantOffset; 4642 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4643 AddrMode.InBounds = false; 4644 4645 // Match the base operand of the GEP. 4646 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4647 // If it couldn't be matched, just stuff the value in a register. 4648 if (AddrMode.HasBaseReg) { 4649 AddrMode = BackupAddrMode; 4650 AddrModeInsts.resize(OldSize); 4651 return false; 4652 } 4653 AddrMode.HasBaseReg = true; 4654 AddrMode.BaseReg = AddrInst->getOperand(0); 4655 } 4656 4657 // Match the remaining variable portion of the GEP. 4658 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4659 Depth)) { 4660 // If it couldn't be matched, try stuffing the base into a register 4661 // instead of matching it, and retrying the match of the scale. 4662 AddrMode = BackupAddrMode; 4663 AddrModeInsts.resize(OldSize); 4664 if (AddrMode.HasBaseReg) 4665 return false; 4666 AddrMode.HasBaseReg = true; 4667 AddrMode.BaseReg = AddrInst->getOperand(0); 4668 AddrMode.BaseOffs += ConstantOffset; 4669 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4670 VariableScale, Depth)) { 4671 // If even that didn't work, bail. 4672 AddrMode = BackupAddrMode; 4673 AddrModeInsts.resize(OldSize); 4674 return false; 4675 } 4676 } 4677 4678 return true; 4679 } 4680 case Instruction::SExt: 4681 case Instruction::ZExt: { 4682 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4683 if (!Ext) 4684 return false; 4685 4686 // Try to move this ext out of the way of the addressing mode. 4687 // Ask for a method for doing so. 4688 TypePromotionHelper::Action TPH = 4689 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4690 if (!TPH) 4691 return false; 4692 4693 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4694 TPT.getRestorationPoint(); 4695 unsigned CreatedInstsCost = 0; 4696 unsigned ExtCost = !TLI.isExtFree(Ext); 4697 Value *PromotedOperand = 4698 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4699 // SExt has been moved away. 4700 // Thus either it will be rematched later in the recursive calls or it is 4701 // gone. Anyway, we must not fold it into the addressing mode at this point. 4702 // E.g., 4703 // op = add opnd, 1 4704 // idx = ext op 4705 // addr = gep base, idx 4706 // is now: 4707 // promotedOpnd = ext opnd <- no match here 4708 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4709 // addr = gep base, op <- match 4710 if (MovedAway) 4711 *MovedAway = true; 4712 4713 assert(PromotedOperand && 4714 "TypePromotionHelper should have filtered out those cases"); 4715 4716 ExtAddrMode BackupAddrMode = AddrMode; 4717 unsigned OldSize = AddrModeInsts.size(); 4718 4719 if (!matchAddr(PromotedOperand, Depth) || 4720 // The total of the new cost is equal to the cost of the created 4721 // instructions. 4722 // The total of the old cost is equal to the cost of the extension plus 4723 // what we have saved in the addressing mode. 4724 !isPromotionProfitable(CreatedInstsCost, 4725 ExtCost + (AddrModeInsts.size() - OldSize), 4726 PromotedOperand)) { 4727 AddrMode = BackupAddrMode; 4728 AddrModeInsts.resize(OldSize); 4729 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4730 TPT.rollback(LastKnownGood); 4731 return false; 4732 } 4733 return true; 4734 } 4735 } 4736 return false; 4737 } 4738 4739 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4740 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4741 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4742 /// for the target. 4743 /// 4744 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4745 // Start a transaction at this point that we will rollback if the matching 4746 // fails. 4747 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4748 TPT.getRestorationPoint(); 4749 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4750 if (CI->getValue().isSignedIntN(64)) { 4751 // Fold in immediates if legal for the target. 4752 AddrMode.BaseOffs += CI->getSExtValue(); 4753 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4754 return true; 4755 AddrMode.BaseOffs -= CI->getSExtValue(); 4756 } 4757 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4758 // If this is a global variable, try to fold it into the addressing mode. 4759 if (!AddrMode.BaseGV) { 4760 AddrMode.BaseGV = GV; 4761 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4762 return true; 4763 AddrMode.BaseGV = nullptr; 4764 } 4765 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4766 ExtAddrMode BackupAddrMode = AddrMode; 4767 unsigned OldSize = AddrModeInsts.size(); 4768 4769 // Check to see if it is possible to fold this operation. 4770 bool MovedAway = false; 4771 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4772 // This instruction may have been moved away. If so, there is nothing 4773 // to check here. 4774 if (MovedAway) 4775 return true; 4776 // Okay, it's possible to fold this. Check to see if it is actually 4777 // *profitable* to do so. We use a simple cost model to avoid increasing 4778 // register pressure too much. 4779 if (I->hasOneUse() || 4780 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4781 AddrModeInsts.push_back(I); 4782 return true; 4783 } 4784 4785 // It isn't profitable to do this, roll back. 4786 //cerr << "NOT FOLDING: " << *I; 4787 AddrMode = BackupAddrMode; 4788 AddrModeInsts.resize(OldSize); 4789 TPT.rollback(LastKnownGood); 4790 } 4791 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4792 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4793 return true; 4794 TPT.rollback(LastKnownGood); 4795 } else if (isa<ConstantPointerNull>(Addr)) { 4796 // Null pointer gets folded without affecting the addressing mode. 4797 return true; 4798 } 4799 4800 // Worse case, the target should support [reg] addressing modes. :) 4801 if (!AddrMode.HasBaseReg) { 4802 AddrMode.HasBaseReg = true; 4803 AddrMode.BaseReg = Addr; 4804 // Still check for legality in case the target supports [imm] but not [i+r]. 4805 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4806 return true; 4807 AddrMode.HasBaseReg = false; 4808 AddrMode.BaseReg = nullptr; 4809 } 4810 4811 // If the base register is already taken, see if we can do [r+r]. 4812 if (AddrMode.Scale == 0) { 4813 AddrMode.Scale = 1; 4814 AddrMode.ScaledReg = Addr; 4815 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4816 return true; 4817 AddrMode.Scale = 0; 4818 AddrMode.ScaledReg = nullptr; 4819 } 4820 // Couldn't match. 4821 TPT.rollback(LastKnownGood); 4822 return false; 4823 } 4824 4825 /// Check to see if all uses of OpVal by the specified inline asm call are due 4826 /// to memory operands. If so, return true, otherwise return false. 4827 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4828 const TargetLowering &TLI, 4829 const TargetRegisterInfo &TRI) { 4830 const Function *F = CI->getFunction(); 4831 TargetLowering::AsmOperandInfoVector TargetConstraints = 4832 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4833 4834 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4835 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4836 4837 // Compute the constraint code and ConstraintType to use. 4838 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4839 4840 // If this asm operand is our Value*, and if it isn't an indirect memory 4841 // operand, we can't fold it! 4842 if (OpInfo.CallOperandVal == OpVal && 4843 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4844 !OpInfo.isIndirect)) 4845 return false; 4846 } 4847 4848 return true; 4849 } 4850 4851 // Max number of memory uses to look at before aborting the search to conserve 4852 // compile time. 4853 static constexpr int MaxMemoryUsesToScan = 20; 4854 4855 /// Recursively walk all the uses of I until we find a memory use. 4856 /// If we find an obviously non-foldable instruction, return true. 4857 /// Add the ultimately found memory instructions to MemoryUses. 4858 static bool FindAllMemoryUses( 4859 Instruction *I, 4860 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4861 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4862 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4863 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4864 // If we already considered this instruction, we're done. 4865 if (!ConsideredInsts.insert(I).second) 4866 return false; 4867 4868 // If this is an obviously unfoldable instruction, bail out. 4869 if (!MightBeFoldableInst(I)) 4870 return true; 4871 4872 // Loop over all the uses, recursively processing them. 4873 for (Use &U : I->uses()) { 4874 // Conservatively return true if we're seeing a large number or a deep chain 4875 // of users. This avoids excessive compilation times in pathological cases. 4876 if (SeenInsts++ >= MaxMemoryUsesToScan) 4877 return true; 4878 4879 Instruction *UserI = cast<Instruction>(U.getUser()); 4880 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4881 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4882 continue; 4883 } 4884 4885 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4886 unsigned opNo = U.getOperandNo(); 4887 if (opNo != StoreInst::getPointerOperandIndex()) 4888 return true; // Storing addr, not into addr. 4889 MemoryUses.push_back(std::make_pair(SI, opNo)); 4890 continue; 4891 } 4892 4893 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4894 unsigned opNo = U.getOperandNo(); 4895 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4896 return true; // Storing addr, not into addr. 4897 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4898 continue; 4899 } 4900 4901 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4902 unsigned opNo = U.getOperandNo(); 4903 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4904 return true; // Storing addr, not into addr. 4905 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4906 continue; 4907 } 4908 4909 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4910 if (CI->hasFnAttr(Attribute::Cold)) { 4911 // If this is a cold call, we can sink the addressing calculation into 4912 // the cold path. See optimizeCallInst 4913 bool OptForSize = OptSize || 4914 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4915 if (!OptForSize) 4916 continue; 4917 } 4918 4919 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4920 if (!IA) return true; 4921 4922 // If this is a memory operand, we're cool, otherwise bail out. 4923 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4924 return true; 4925 continue; 4926 } 4927 4928 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4929 PSI, BFI, SeenInsts)) 4930 return true; 4931 } 4932 4933 return false; 4934 } 4935 4936 /// Return true if Val is already known to be live at the use site that we're 4937 /// folding it into. If so, there is no cost to include it in the addressing 4938 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4939 /// instruction already. 4940 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4941 Value *KnownLive2) { 4942 // If Val is either of the known-live values, we know it is live! 4943 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4944 return true; 4945 4946 // All values other than instructions and arguments (e.g. constants) are live. 4947 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4948 4949 // If Val is a constant sized alloca in the entry block, it is live, this is 4950 // true because it is just a reference to the stack/frame pointer, which is 4951 // live for the whole function. 4952 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4953 if (AI->isStaticAlloca()) 4954 return true; 4955 4956 // Check to see if this value is already used in the memory instruction's 4957 // block. If so, it's already live into the block at the very least, so we 4958 // can reasonably fold it. 4959 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4960 } 4961 4962 /// It is possible for the addressing mode of the machine to fold the specified 4963 /// instruction into a load or store that ultimately uses it. 4964 /// However, the specified instruction has multiple uses. 4965 /// Given this, it may actually increase register pressure to fold it 4966 /// into the load. For example, consider this code: 4967 /// 4968 /// X = ... 4969 /// Y = X+1 4970 /// use(Y) -> nonload/store 4971 /// Z = Y+1 4972 /// load Z 4973 /// 4974 /// In this case, Y has multiple uses, and can be folded into the load of Z 4975 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4976 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4977 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4978 /// number of computations either. 4979 /// 4980 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4981 /// X was live across 'load Z' for other reasons, we actually *would* want to 4982 /// fold the addressing mode in the Z case. This would make Y die earlier. 4983 bool AddressingModeMatcher:: 4984 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4985 ExtAddrMode &AMAfter) { 4986 if (IgnoreProfitability) return true; 4987 4988 // AMBefore is the addressing mode before this instruction was folded into it, 4989 // and AMAfter is the addressing mode after the instruction was folded. Get 4990 // the set of registers referenced by AMAfter and subtract out those 4991 // referenced by AMBefore: this is the set of values which folding in this 4992 // address extends the lifetime of. 4993 // 4994 // Note that there are only two potential values being referenced here, 4995 // BaseReg and ScaleReg (global addresses are always available, as are any 4996 // folded immediates). 4997 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4998 4999 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 5000 // lifetime wasn't extended by adding this instruction. 5001 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5002 BaseReg = nullptr; 5003 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5004 ScaledReg = nullptr; 5005 5006 // If folding this instruction (and it's subexprs) didn't extend any live 5007 // ranges, we're ok with it. 5008 if (!BaseReg && !ScaledReg) 5009 return true; 5010 5011 // If all uses of this instruction can have the address mode sunk into them, 5012 // we can remove the addressing mode and effectively trade one live register 5013 // for another (at worst.) In this context, folding an addressing mode into 5014 // the use is just a particularly nice way of sinking it. 5015 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 5016 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5017 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5018 PSI, BFI)) 5019 return false; // Has a non-memory, non-foldable use! 5020 5021 // Now that we know that all uses of this instruction are part of a chain of 5022 // computation involving only operations that could theoretically be folded 5023 // into a memory use, loop over each of these memory operation uses and see 5024 // if they could *actually* fold the instruction. The assumption is that 5025 // addressing modes are cheap and that duplicating the computation involved 5026 // many times is worthwhile, even on a fastpath. For sinking candidates 5027 // (i.e. cold call sites), this serves as a way to prevent excessive code 5028 // growth since most architectures have some reasonable small and fast way to 5029 // compute an effective address. (i.e LEA on x86) 5030 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5031 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5032 Instruction *User = MemoryUses[i].first; 5033 unsigned OpNo = MemoryUses[i].second; 5034 5035 // Get the access type of this use. If the use isn't a pointer, we don't 5036 // know what it accesses. 5037 Value *Address = User->getOperand(OpNo); 5038 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5039 if (!AddrTy) 5040 return false; 5041 Type *AddressAccessTy = AddrTy->getElementType(); 5042 unsigned AS = AddrTy->getAddressSpace(); 5043 5044 // Do a match against the root of this address, ignoring profitability. This 5045 // will tell us if the addressing mode for the memory operation will 5046 // *actually* cover the shared instruction. 5047 ExtAddrMode Result; 5048 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5049 0); 5050 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5051 TPT.getRestorationPoint(); 5052 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5053 AddressAccessTy, AS, MemoryInst, Result, 5054 InsertedInsts, PromotedInsts, TPT, 5055 LargeOffsetGEP, OptSize, PSI, BFI); 5056 Matcher.IgnoreProfitability = true; 5057 bool Success = Matcher.matchAddr(Address, 0); 5058 (void)Success; assert(Success && "Couldn't select *anything*?"); 5059 5060 // The match was to check the profitability, the changes made are not 5061 // part of the original matcher. Therefore, they should be dropped 5062 // otherwise the original matcher will not present the right state. 5063 TPT.rollback(LastKnownGood); 5064 5065 // If the match didn't cover I, then it won't be shared by it. 5066 if (!is_contained(MatchedAddrModeInsts, I)) 5067 return false; 5068 5069 MatchedAddrModeInsts.clear(); 5070 } 5071 5072 return true; 5073 } 5074 5075 /// Return true if the specified values are defined in a 5076 /// different basic block than BB. 5077 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5078 if (Instruction *I = dyn_cast<Instruction>(V)) 5079 return I->getParent() != BB; 5080 return false; 5081 } 5082 5083 /// Sink addressing mode computation immediate before MemoryInst if doing so 5084 /// can be done without increasing register pressure. The need for the 5085 /// register pressure constraint means this can end up being an all or nothing 5086 /// decision for all uses of the same addressing computation. 5087 /// 5088 /// Load and Store Instructions often have addressing modes that can do 5089 /// significant amounts of computation. As such, instruction selection will try 5090 /// to get the load or store to do as much computation as possible for the 5091 /// program. The problem is that isel can only see within a single block. As 5092 /// such, we sink as much legal addressing mode work into the block as possible. 5093 /// 5094 /// This method is used to optimize both load/store and inline asms with memory 5095 /// operands. It's also used to sink addressing computations feeding into cold 5096 /// call sites into their (cold) basic block. 5097 /// 5098 /// The motivation for handling sinking into cold blocks is that doing so can 5099 /// both enable other address mode sinking (by satisfying the register pressure 5100 /// constraint above), and reduce register pressure globally (by removing the 5101 /// addressing mode computation from the fast path entirely.). 5102 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5103 Type *AccessTy, unsigned AddrSpace) { 5104 Value *Repl = Addr; 5105 5106 // Try to collapse single-value PHI nodes. This is necessary to undo 5107 // unprofitable PRE transformations. 5108 SmallVector<Value*, 8> worklist; 5109 SmallPtrSet<Value*, 16> Visited; 5110 worklist.push_back(Addr); 5111 5112 // Use a worklist to iteratively look through PHI and select nodes, and 5113 // ensure that the addressing mode obtained from the non-PHI/select roots of 5114 // the graph are compatible. 5115 bool PhiOrSelectSeen = false; 5116 SmallVector<Instruction*, 16> AddrModeInsts; 5117 const SimplifyQuery SQ(*DL, TLInfo); 5118 AddressingModeCombiner AddrModes(SQ, Addr); 5119 TypePromotionTransaction TPT(RemovedInsts); 5120 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5121 TPT.getRestorationPoint(); 5122 while (!worklist.empty()) { 5123 Value *V = worklist.back(); 5124 worklist.pop_back(); 5125 5126 // We allow traversing cyclic Phi nodes. 5127 // In case of success after this loop we ensure that traversing through 5128 // Phi nodes ends up with all cases to compute address of the form 5129 // BaseGV + Base + Scale * Index + Offset 5130 // where Scale and Offset are constans and BaseGV, Base and Index 5131 // are exactly the same Values in all cases. 5132 // It means that BaseGV, Scale and Offset dominate our memory instruction 5133 // and have the same value as they had in address computation represented 5134 // as Phi. So we can safely sink address computation to memory instruction. 5135 if (!Visited.insert(V).second) 5136 continue; 5137 5138 // For a PHI node, push all of its incoming values. 5139 if (PHINode *P = dyn_cast<PHINode>(V)) { 5140 append_range(worklist, P->incoming_values()); 5141 PhiOrSelectSeen = true; 5142 continue; 5143 } 5144 // Similar for select. 5145 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5146 worklist.push_back(SI->getFalseValue()); 5147 worklist.push_back(SI->getTrueValue()); 5148 PhiOrSelectSeen = true; 5149 continue; 5150 } 5151 5152 // For non-PHIs, determine the addressing mode being computed. Note that 5153 // the result may differ depending on what other uses our candidate 5154 // addressing instructions might have. 5155 AddrModeInsts.clear(); 5156 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5157 0); 5158 // Defer the query (and possible computation of) the dom tree to point of 5159 // actual use. It's expected that most address matches don't actually need 5160 // the domtree. 5161 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5162 Function *F = MemoryInst->getParent()->getParent(); 5163 return this->getDT(*F); 5164 }; 5165 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5166 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5167 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5168 BFI.get()); 5169 5170 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5171 if (GEP && !NewGEPBases.count(GEP)) { 5172 // If splitting the underlying data structure can reduce the offset of a 5173 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5174 // previously split data structures. 5175 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5176 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5177 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5178 } 5179 5180 NewAddrMode.OriginalValue = V; 5181 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5182 break; 5183 } 5184 5185 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5186 // or we have multiple but either couldn't combine them or combining them 5187 // wouldn't do anything useful, bail out now. 5188 if (!AddrModes.combineAddrModes()) { 5189 TPT.rollback(LastKnownGood); 5190 return false; 5191 } 5192 bool Modified = TPT.commit(); 5193 5194 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5195 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5196 5197 // If all the instructions matched are already in this BB, don't do anything. 5198 // If we saw a Phi node then it is not local definitely, and if we saw a select 5199 // then we want to push the address calculation past it even if it's already 5200 // in this BB. 5201 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5202 return IsNonLocalValue(V, MemoryInst->getParent()); 5203 })) { 5204 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5205 << "\n"); 5206 return Modified; 5207 } 5208 5209 // Insert this computation right after this user. Since our caller is 5210 // scanning from the top of the BB to the bottom, reuse of the expr are 5211 // guaranteed to happen later. 5212 IRBuilder<> Builder(MemoryInst); 5213 5214 // Now that we determined the addressing expression we want to use and know 5215 // that we have to sink it into this block. Check to see if we have already 5216 // done this for some other load/store instr in this block. If so, reuse 5217 // the computation. Before attempting reuse, check if the address is valid 5218 // as it may have been erased. 5219 5220 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5221 5222 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5223 if (SunkAddr) { 5224 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5225 << " for " << *MemoryInst << "\n"); 5226 if (SunkAddr->getType() != Addr->getType()) 5227 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5228 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5229 SubtargetInfo->addrSinkUsingGEPs())) { 5230 // By default, we use the GEP-based method when AA is used later. This 5231 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5232 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5233 << " for " << *MemoryInst << "\n"); 5234 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5235 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5236 5237 // First, find the pointer. 5238 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5239 ResultPtr = AddrMode.BaseReg; 5240 AddrMode.BaseReg = nullptr; 5241 } 5242 5243 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5244 // We can't add more than one pointer together, nor can we scale a 5245 // pointer (both of which seem meaningless). 5246 if (ResultPtr || AddrMode.Scale != 1) 5247 return Modified; 5248 5249 ResultPtr = AddrMode.ScaledReg; 5250 AddrMode.Scale = 0; 5251 } 5252 5253 // It is only safe to sign extend the BaseReg if we know that the math 5254 // required to create it did not overflow before we extend it. Since 5255 // the original IR value was tossed in favor of a constant back when 5256 // the AddrMode was created we need to bail out gracefully if widths 5257 // do not match instead of extending it. 5258 // 5259 // (See below for code to add the scale.) 5260 if (AddrMode.Scale) { 5261 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5262 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5263 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5264 return Modified; 5265 } 5266 5267 if (AddrMode.BaseGV) { 5268 if (ResultPtr) 5269 return Modified; 5270 5271 ResultPtr = AddrMode.BaseGV; 5272 } 5273 5274 // If the real base value actually came from an inttoptr, then the matcher 5275 // will look through it and provide only the integer value. In that case, 5276 // use it here. 5277 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5278 if (!ResultPtr && AddrMode.BaseReg) { 5279 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5280 "sunkaddr"); 5281 AddrMode.BaseReg = nullptr; 5282 } else if (!ResultPtr && AddrMode.Scale == 1) { 5283 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5284 "sunkaddr"); 5285 AddrMode.Scale = 0; 5286 } 5287 } 5288 5289 if (!ResultPtr && 5290 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5291 SunkAddr = Constant::getNullValue(Addr->getType()); 5292 } else if (!ResultPtr) { 5293 return Modified; 5294 } else { 5295 Type *I8PtrTy = 5296 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5297 Type *I8Ty = Builder.getInt8Ty(); 5298 5299 // Start with the base register. Do this first so that subsequent address 5300 // matching finds it last, which will prevent it from trying to match it 5301 // as the scaled value in case it happens to be a mul. That would be 5302 // problematic if we've sunk a different mul for the scale, because then 5303 // we'd end up sinking both muls. 5304 if (AddrMode.BaseReg) { 5305 Value *V = AddrMode.BaseReg; 5306 if (V->getType() != IntPtrTy) 5307 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5308 5309 ResultIndex = V; 5310 } 5311 5312 // Add the scale value. 5313 if (AddrMode.Scale) { 5314 Value *V = AddrMode.ScaledReg; 5315 if (V->getType() == IntPtrTy) { 5316 // done. 5317 } else { 5318 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5319 cast<IntegerType>(V->getType())->getBitWidth() && 5320 "We can't transform if ScaledReg is too narrow"); 5321 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5322 } 5323 5324 if (AddrMode.Scale != 1) 5325 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5326 "sunkaddr"); 5327 if (ResultIndex) 5328 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5329 else 5330 ResultIndex = V; 5331 } 5332 5333 // Add in the Base Offset if present. 5334 if (AddrMode.BaseOffs) { 5335 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5336 if (ResultIndex) { 5337 // We need to add this separately from the scale above to help with 5338 // SDAG consecutive load/store merging. 5339 if (ResultPtr->getType() != I8PtrTy) 5340 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5341 ResultPtr = 5342 AddrMode.InBounds 5343 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5344 "sunkaddr") 5345 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5346 } 5347 5348 ResultIndex = V; 5349 } 5350 5351 if (!ResultIndex) { 5352 SunkAddr = ResultPtr; 5353 } else { 5354 if (ResultPtr->getType() != I8PtrTy) 5355 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5356 SunkAddr = 5357 AddrMode.InBounds 5358 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5359 "sunkaddr") 5360 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5361 } 5362 5363 if (SunkAddr->getType() != Addr->getType()) 5364 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5365 } 5366 } else { 5367 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5368 // non-integral pointers, so in that case bail out now. 5369 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5370 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5371 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5372 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5373 if (DL->isNonIntegralPointerType(Addr->getType()) || 5374 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5375 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5376 (AddrMode.BaseGV && 5377 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5378 return Modified; 5379 5380 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5381 << " for " << *MemoryInst << "\n"); 5382 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5383 Value *Result = nullptr; 5384 5385 // Start with the base register. Do this first so that subsequent address 5386 // matching finds it last, which will prevent it from trying to match it 5387 // as the scaled value in case it happens to be a mul. That would be 5388 // problematic if we've sunk a different mul for the scale, because then 5389 // we'd end up sinking both muls. 5390 if (AddrMode.BaseReg) { 5391 Value *V = AddrMode.BaseReg; 5392 if (V->getType()->isPointerTy()) 5393 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5394 if (V->getType() != IntPtrTy) 5395 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5396 Result = V; 5397 } 5398 5399 // Add the scale value. 5400 if (AddrMode.Scale) { 5401 Value *V = AddrMode.ScaledReg; 5402 if (V->getType() == IntPtrTy) { 5403 // done. 5404 } else if (V->getType()->isPointerTy()) { 5405 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5406 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5407 cast<IntegerType>(V->getType())->getBitWidth()) { 5408 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5409 } else { 5410 // It is only safe to sign extend the BaseReg if we know that the math 5411 // required to create it did not overflow before we extend it. Since 5412 // the original IR value was tossed in favor of a constant back when 5413 // the AddrMode was created we need to bail out gracefully if widths 5414 // do not match instead of extending it. 5415 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5416 if (I && (Result != AddrMode.BaseReg)) 5417 I->eraseFromParent(); 5418 return Modified; 5419 } 5420 if (AddrMode.Scale != 1) 5421 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5422 "sunkaddr"); 5423 if (Result) 5424 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5425 else 5426 Result = V; 5427 } 5428 5429 // Add in the BaseGV if present. 5430 if (AddrMode.BaseGV) { 5431 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5432 if (Result) 5433 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5434 else 5435 Result = V; 5436 } 5437 5438 // Add in the Base Offset if present. 5439 if (AddrMode.BaseOffs) { 5440 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5441 if (Result) 5442 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5443 else 5444 Result = V; 5445 } 5446 5447 if (!Result) 5448 SunkAddr = Constant::getNullValue(Addr->getType()); 5449 else 5450 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5451 } 5452 5453 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5454 // Store the newly computed address into the cache. In the case we reused a 5455 // value, this should be idempotent. 5456 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5457 5458 // If we have no uses, recursively delete the value and all dead instructions 5459 // using it. 5460 if (Repl->use_empty()) { 5461 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5462 RecursivelyDeleteTriviallyDeadInstructions( 5463 Repl, TLInfo, nullptr, 5464 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5465 }); 5466 } 5467 ++NumMemoryInsts; 5468 return true; 5469 } 5470 5471 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5472 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5473 /// only handle a 2 operand GEP in the same basic block or a splat constant 5474 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5475 /// index. 5476 /// 5477 /// If the existing GEP has a vector base pointer that is splat, we can look 5478 /// through the splat to find the scalar pointer. If we can't find a scalar 5479 /// pointer there's nothing we can do. 5480 /// 5481 /// If we have a GEP with more than 2 indices where the middle indices are all 5482 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5483 /// 5484 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5485 /// followed by a GEP with an all zeroes vector index. This will enable 5486 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5487 /// zero index. 5488 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5489 Value *Ptr) { 5490 Value *NewAddr; 5491 5492 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5493 // Don't optimize GEPs that don't have indices. 5494 if (!GEP->hasIndices()) 5495 return false; 5496 5497 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5498 // FIXME: We should support this by sinking the GEP. 5499 if (MemoryInst->getParent() != GEP->getParent()) 5500 return false; 5501 5502 SmallVector<Value *, 2> Ops(GEP->operands()); 5503 5504 bool RewriteGEP = false; 5505 5506 if (Ops[0]->getType()->isVectorTy()) { 5507 Ops[0] = getSplatValue(Ops[0]); 5508 if (!Ops[0]) 5509 return false; 5510 RewriteGEP = true; 5511 } 5512 5513 unsigned FinalIndex = Ops.size() - 1; 5514 5515 // Ensure all but the last index is 0. 5516 // FIXME: This isn't strictly required. All that's required is that they are 5517 // all scalars or splats. 5518 for (unsigned i = 1; i < FinalIndex; ++i) { 5519 auto *C = dyn_cast<Constant>(Ops[i]); 5520 if (!C) 5521 return false; 5522 if (isa<VectorType>(C->getType())) 5523 C = C->getSplatValue(); 5524 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5525 if (!CI || !CI->isZero()) 5526 return false; 5527 // Scalarize the index if needed. 5528 Ops[i] = CI; 5529 } 5530 5531 // Try to scalarize the final index. 5532 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5533 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5534 auto *C = dyn_cast<ConstantInt>(V); 5535 // Don't scalarize all zeros vector. 5536 if (!C || !C->isZero()) { 5537 Ops[FinalIndex] = V; 5538 RewriteGEP = true; 5539 } 5540 } 5541 } 5542 5543 // If we made any changes or the we have extra operands, we need to generate 5544 // new instructions. 5545 if (!RewriteGEP && Ops.size() == 2) 5546 return false; 5547 5548 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5549 5550 IRBuilder<> Builder(MemoryInst); 5551 5552 Type *SourceTy = GEP->getSourceElementType(); 5553 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5554 5555 // If the final index isn't a vector, emit a scalar GEP containing all ops 5556 // and a vector GEP with all zeroes final index. 5557 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5558 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5559 makeArrayRef(Ops).drop_front()); 5560 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5561 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5562 } else { 5563 Value *Base = Ops[0]; 5564 Value *Index = Ops[FinalIndex]; 5565 5566 // Create a scalar GEP if there are more than 2 operands. 5567 if (Ops.size() != 2) { 5568 // Replace the last index with 0. 5569 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5570 Base = Builder.CreateGEP(SourceTy, Base, 5571 makeArrayRef(Ops).drop_front()); 5572 } 5573 5574 // Now create the GEP with scalar pointer and vector index. 5575 NewAddr = Builder.CreateGEP(Base, Index); 5576 } 5577 } else if (!isa<Constant>(Ptr)) { 5578 // Not a GEP, maybe its a splat and we can create a GEP to enable 5579 // SelectionDAGBuilder to use it as a uniform base. 5580 Value *V = getSplatValue(Ptr); 5581 if (!V) 5582 return false; 5583 5584 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5585 5586 IRBuilder<> Builder(MemoryInst); 5587 5588 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5589 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5590 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5591 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5592 } else { 5593 // Constant, SelectionDAGBuilder knows to check if its a splat. 5594 return false; 5595 } 5596 5597 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5598 5599 // If we have no uses, recursively delete the value and all dead instructions 5600 // using it. 5601 if (Ptr->use_empty()) 5602 RecursivelyDeleteTriviallyDeadInstructions( 5603 Ptr, TLInfo, nullptr, 5604 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5605 5606 return true; 5607 } 5608 5609 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5610 /// address computing into the block when possible / profitable. 5611 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5612 bool MadeChange = false; 5613 5614 const TargetRegisterInfo *TRI = 5615 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5616 TargetLowering::AsmOperandInfoVector TargetConstraints = 5617 TLI->ParseConstraints(*DL, TRI, *CS); 5618 unsigned ArgNo = 0; 5619 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5620 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5621 5622 // Compute the constraint code and ConstraintType to use. 5623 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5624 5625 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5626 OpInfo.isIndirect) { 5627 Value *OpVal = CS->getArgOperand(ArgNo++); 5628 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5629 } else if (OpInfo.Type == InlineAsm::isInput) 5630 ArgNo++; 5631 } 5632 5633 return MadeChange; 5634 } 5635 5636 /// Check if all the uses of \p Val are equivalent (or free) zero or 5637 /// sign extensions. 5638 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5639 assert(!Val->use_empty() && "Input must have at least one use"); 5640 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5641 bool IsSExt = isa<SExtInst>(FirstUser); 5642 Type *ExtTy = FirstUser->getType(); 5643 for (const User *U : Val->users()) { 5644 const Instruction *UI = cast<Instruction>(U); 5645 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5646 return false; 5647 Type *CurTy = UI->getType(); 5648 // Same input and output types: Same instruction after CSE. 5649 if (CurTy == ExtTy) 5650 continue; 5651 5652 // If IsSExt is true, we are in this situation: 5653 // a = Val 5654 // b = sext ty1 a to ty2 5655 // c = sext ty1 a to ty3 5656 // Assuming ty2 is shorter than ty3, this could be turned into: 5657 // a = Val 5658 // b = sext ty1 a to ty2 5659 // c = sext ty2 b to ty3 5660 // However, the last sext is not free. 5661 if (IsSExt) 5662 return false; 5663 5664 // This is a ZExt, maybe this is free to extend from one type to another. 5665 // In that case, we would not account for a different use. 5666 Type *NarrowTy; 5667 Type *LargeTy; 5668 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5669 CurTy->getScalarType()->getIntegerBitWidth()) { 5670 NarrowTy = CurTy; 5671 LargeTy = ExtTy; 5672 } else { 5673 NarrowTy = ExtTy; 5674 LargeTy = CurTy; 5675 } 5676 5677 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5678 return false; 5679 } 5680 // All uses are the same or can be derived from one another for free. 5681 return true; 5682 } 5683 5684 /// Try to speculatively promote extensions in \p Exts and continue 5685 /// promoting through newly promoted operands recursively as far as doing so is 5686 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5687 /// When some promotion happened, \p TPT contains the proper state to revert 5688 /// them. 5689 /// 5690 /// \return true if some promotion happened, false otherwise. 5691 bool CodeGenPrepare::tryToPromoteExts( 5692 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5693 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5694 unsigned CreatedInstsCost) { 5695 bool Promoted = false; 5696 5697 // Iterate over all the extensions to try to promote them. 5698 for (auto *I : Exts) { 5699 // Early check if we directly have ext(load). 5700 if (isa<LoadInst>(I->getOperand(0))) { 5701 ProfitablyMovedExts.push_back(I); 5702 continue; 5703 } 5704 5705 // Check whether or not we want to do any promotion. The reason we have 5706 // this check inside the for loop is to catch the case where an extension 5707 // is directly fed by a load because in such case the extension can be moved 5708 // up without any promotion on its operands. 5709 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5710 return false; 5711 5712 // Get the action to perform the promotion. 5713 TypePromotionHelper::Action TPH = 5714 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5715 // Check if we can promote. 5716 if (!TPH) { 5717 // Save the current extension as we cannot move up through its operand. 5718 ProfitablyMovedExts.push_back(I); 5719 continue; 5720 } 5721 5722 // Save the current state. 5723 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5724 TPT.getRestorationPoint(); 5725 SmallVector<Instruction *, 4> NewExts; 5726 unsigned NewCreatedInstsCost = 0; 5727 unsigned ExtCost = !TLI->isExtFree(I); 5728 // Promote. 5729 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5730 &NewExts, nullptr, *TLI); 5731 assert(PromotedVal && 5732 "TypePromotionHelper should have filtered out those cases"); 5733 5734 // We would be able to merge only one extension in a load. 5735 // Therefore, if we have more than 1 new extension we heuristically 5736 // cut this search path, because it means we degrade the code quality. 5737 // With exactly 2, the transformation is neutral, because we will merge 5738 // one extension but leave one. However, we optimistically keep going, 5739 // because the new extension may be removed too. 5740 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5741 // FIXME: It would be possible to propagate a negative value instead of 5742 // conservatively ceiling it to 0. 5743 TotalCreatedInstsCost = 5744 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5745 if (!StressExtLdPromotion && 5746 (TotalCreatedInstsCost > 1 || 5747 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5748 // This promotion is not profitable, rollback to the previous state, and 5749 // save the current extension in ProfitablyMovedExts as the latest 5750 // speculative promotion turned out to be unprofitable. 5751 TPT.rollback(LastKnownGood); 5752 ProfitablyMovedExts.push_back(I); 5753 continue; 5754 } 5755 // Continue promoting NewExts as far as doing so is profitable. 5756 SmallVector<Instruction *, 2> NewlyMovedExts; 5757 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5758 bool NewPromoted = false; 5759 for (auto *ExtInst : NewlyMovedExts) { 5760 Instruction *MovedExt = cast<Instruction>(ExtInst); 5761 Value *ExtOperand = MovedExt->getOperand(0); 5762 // If we have reached to a load, we need this extra profitability check 5763 // as it could potentially be merged into an ext(load). 5764 if (isa<LoadInst>(ExtOperand) && 5765 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5766 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5767 continue; 5768 5769 ProfitablyMovedExts.push_back(MovedExt); 5770 NewPromoted = true; 5771 } 5772 5773 // If none of speculative promotions for NewExts is profitable, rollback 5774 // and save the current extension (I) as the last profitable extension. 5775 if (!NewPromoted) { 5776 TPT.rollback(LastKnownGood); 5777 ProfitablyMovedExts.push_back(I); 5778 continue; 5779 } 5780 // The promotion is profitable. 5781 Promoted = true; 5782 } 5783 return Promoted; 5784 } 5785 5786 /// Merging redundant sexts when one is dominating the other. 5787 bool CodeGenPrepare::mergeSExts(Function &F) { 5788 bool Changed = false; 5789 for (auto &Entry : ValToSExtendedUses) { 5790 SExts &Insts = Entry.second; 5791 SExts CurPts; 5792 for (Instruction *Inst : Insts) { 5793 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5794 Inst->getOperand(0) != Entry.first) 5795 continue; 5796 bool inserted = false; 5797 for (auto &Pt : CurPts) { 5798 if (getDT(F).dominates(Inst, Pt)) { 5799 Pt->replaceAllUsesWith(Inst); 5800 RemovedInsts.insert(Pt); 5801 Pt->removeFromParent(); 5802 Pt = Inst; 5803 inserted = true; 5804 Changed = true; 5805 break; 5806 } 5807 if (!getDT(F).dominates(Pt, Inst)) 5808 // Give up if we need to merge in a common dominator as the 5809 // experiments show it is not profitable. 5810 continue; 5811 Inst->replaceAllUsesWith(Pt); 5812 RemovedInsts.insert(Inst); 5813 Inst->removeFromParent(); 5814 inserted = true; 5815 Changed = true; 5816 break; 5817 } 5818 if (!inserted) 5819 CurPts.push_back(Inst); 5820 } 5821 } 5822 return Changed; 5823 } 5824 5825 // Splitting large data structures so that the GEPs accessing them can have 5826 // smaller offsets so that they can be sunk to the same blocks as their users. 5827 // For example, a large struct starting from %base is split into two parts 5828 // where the second part starts from %new_base. 5829 // 5830 // Before: 5831 // BB0: 5832 // %base = 5833 // 5834 // BB1: 5835 // %gep0 = gep %base, off0 5836 // %gep1 = gep %base, off1 5837 // %gep2 = gep %base, off2 5838 // 5839 // BB2: 5840 // %load1 = load %gep0 5841 // %load2 = load %gep1 5842 // %load3 = load %gep2 5843 // 5844 // After: 5845 // BB0: 5846 // %base = 5847 // %new_base = gep %base, off0 5848 // 5849 // BB1: 5850 // %new_gep0 = %new_base 5851 // %new_gep1 = gep %new_base, off1 - off0 5852 // %new_gep2 = gep %new_base, off2 - off0 5853 // 5854 // BB2: 5855 // %load1 = load i32, i32* %new_gep0 5856 // %load2 = load i32, i32* %new_gep1 5857 // %load3 = load i32, i32* %new_gep2 5858 // 5859 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5860 // their offsets are smaller enough to fit into the addressing mode. 5861 bool CodeGenPrepare::splitLargeGEPOffsets() { 5862 bool Changed = false; 5863 for (auto &Entry : LargeOffsetGEPMap) { 5864 Value *OldBase = Entry.first; 5865 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5866 &LargeOffsetGEPs = Entry.second; 5867 auto compareGEPOffset = 5868 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5869 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5870 if (LHS.first == RHS.first) 5871 return false; 5872 if (LHS.second != RHS.second) 5873 return LHS.second < RHS.second; 5874 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5875 }; 5876 // Sorting all the GEPs of the same data structures based on the offsets. 5877 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5878 LargeOffsetGEPs.erase( 5879 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5880 LargeOffsetGEPs.end()); 5881 // Skip if all the GEPs have the same offsets. 5882 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5883 continue; 5884 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5885 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5886 Value *NewBaseGEP = nullptr; 5887 5888 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5889 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5890 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5891 int64_t Offset = LargeOffsetGEP->second; 5892 if (Offset != BaseOffset) { 5893 TargetLowering::AddrMode AddrMode; 5894 AddrMode.BaseOffs = Offset - BaseOffset; 5895 // The result type of the GEP might not be the type of the memory 5896 // access. 5897 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5898 GEP->getResultElementType(), 5899 GEP->getAddressSpace())) { 5900 // We need to create a new base if the offset to the current base is 5901 // too large to fit into the addressing mode. So, a very large struct 5902 // may be split into several parts. 5903 BaseGEP = GEP; 5904 BaseOffset = Offset; 5905 NewBaseGEP = nullptr; 5906 } 5907 } 5908 5909 // Generate a new GEP to replace the current one. 5910 LLVMContext &Ctx = GEP->getContext(); 5911 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5912 Type *I8PtrTy = 5913 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5914 Type *I8Ty = Type::getInt8Ty(Ctx); 5915 5916 if (!NewBaseGEP) { 5917 // Create a new base if we don't have one yet. Find the insertion 5918 // pointer for the new base first. 5919 BasicBlock::iterator NewBaseInsertPt; 5920 BasicBlock *NewBaseInsertBB; 5921 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5922 // If the base of the struct is an instruction, the new base will be 5923 // inserted close to it. 5924 NewBaseInsertBB = BaseI->getParent(); 5925 if (isa<PHINode>(BaseI)) 5926 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5927 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5928 NewBaseInsertBB = 5929 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5930 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5931 } else 5932 NewBaseInsertPt = std::next(BaseI->getIterator()); 5933 } else { 5934 // If the current base is an argument or global value, the new base 5935 // will be inserted to the entry block. 5936 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5937 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5938 } 5939 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5940 // Create a new base. 5941 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5942 NewBaseGEP = OldBase; 5943 if (NewBaseGEP->getType() != I8PtrTy) 5944 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5945 NewBaseGEP = 5946 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5947 NewGEPBases.insert(NewBaseGEP); 5948 } 5949 5950 IRBuilder<> Builder(GEP); 5951 Value *NewGEP = NewBaseGEP; 5952 if (Offset == BaseOffset) { 5953 if (GEP->getType() != I8PtrTy) 5954 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5955 } else { 5956 // Calculate the new offset for the new GEP. 5957 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5958 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5959 5960 if (GEP->getType() != I8PtrTy) 5961 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5962 } 5963 GEP->replaceAllUsesWith(NewGEP); 5964 LargeOffsetGEPID.erase(GEP); 5965 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5966 GEP->eraseFromParent(); 5967 Changed = true; 5968 } 5969 } 5970 return Changed; 5971 } 5972 5973 bool CodeGenPrepare::optimizePhiType( 5974 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5975 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5976 // We are looking for a collection on interconnected phi nodes that together 5977 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5978 // are of the same type. Convert the whole set of nodes to the type of the 5979 // bitcast. 5980 Type *PhiTy = I->getType(); 5981 Type *ConvertTy = nullptr; 5982 if (Visited.count(I) || 5983 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5984 return false; 5985 5986 SmallVector<Instruction *, 4> Worklist; 5987 Worklist.push_back(cast<Instruction>(I)); 5988 SmallPtrSet<PHINode *, 4> PhiNodes; 5989 PhiNodes.insert(I); 5990 Visited.insert(I); 5991 SmallPtrSet<Instruction *, 4> Defs; 5992 SmallPtrSet<Instruction *, 4> Uses; 5993 // This works by adding extra bitcasts between load/stores and removing 5994 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5995 // we can get in the situation where we remove a bitcast in one iteration 5996 // just to add it again in the next. We need to ensure that at least one 5997 // bitcast we remove are anchored to something that will not change back. 5998 bool AnyAnchored = false; 5999 6000 while (!Worklist.empty()) { 6001 Instruction *II = Worklist.pop_back_val(); 6002 6003 if (auto *Phi = dyn_cast<PHINode>(II)) { 6004 // Handle Defs, which might also be PHI's 6005 for (Value *V : Phi->incoming_values()) { 6006 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6007 if (!PhiNodes.count(OpPhi)) { 6008 if (Visited.count(OpPhi)) 6009 return false; 6010 PhiNodes.insert(OpPhi); 6011 Visited.insert(OpPhi); 6012 Worklist.push_back(OpPhi); 6013 } 6014 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6015 if (!OpLoad->isSimple()) 6016 return false; 6017 if (!Defs.count(OpLoad)) { 6018 Defs.insert(OpLoad); 6019 Worklist.push_back(OpLoad); 6020 } 6021 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6022 if (!Defs.count(OpEx)) { 6023 Defs.insert(OpEx); 6024 Worklist.push_back(OpEx); 6025 } 6026 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6027 if (!ConvertTy) 6028 ConvertTy = OpBC->getOperand(0)->getType(); 6029 if (OpBC->getOperand(0)->getType() != ConvertTy) 6030 return false; 6031 if (!Defs.count(OpBC)) { 6032 Defs.insert(OpBC); 6033 Worklist.push_back(OpBC); 6034 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6035 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6036 } 6037 } else if (!isa<UndefValue>(V)) { 6038 return false; 6039 } 6040 } 6041 } 6042 6043 // Handle uses which might also be phi's 6044 for (User *V : II->users()) { 6045 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6046 if (!PhiNodes.count(OpPhi)) { 6047 if (Visited.count(OpPhi)) 6048 return false; 6049 PhiNodes.insert(OpPhi); 6050 Visited.insert(OpPhi); 6051 Worklist.push_back(OpPhi); 6052 } 6053 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6054 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6055 return false; 6056 Uses.insert(OpStore); 6057 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6058 if (!ConvertTy) 6059 ConvertTy = OpBC->getType(); 6060 if (OpBC->getType() != ConvertTy) 6061 return false; 6062 Uses.insert(OpBC); 6063 AnyAnchored |= 6064 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6065 } else { 6066 return false; 6067 } 6068 } 6069 } 6070 6071 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6072 return false; 6073 6074 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6075 << *ConvertTy << "\n"); 6076 6077 // Create all the new phi nodes of the new type, and bitcast any loads to the 6078 // correct type. 6079 ValueToValueMap ValMap; 6080 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6081 for (Instruction *D : Defs) { 6082 if (isa<BitCastInst>(D)) { 6083 ValMap[D] = D->getOperand(0); 6084 DeletedInstrs.insert(D); 6085 } else { 6086 ValMap[D] = 6087 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6088 } 6089 } 6090 for (PHINode *Phi : PhiNodes) 6091 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6092 Phi->getName() + ".tc", Phi); 6093 // Pipe together all the PhiNodes. 6094 for (PHINode *Phi : PhiNodes) { 6095 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6096 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6097 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6098 Phi->getIncomingBlock(i)); 6099 Visited.insert(NewPhi); 6100 } 6101 // And finally pipe up the stores and bitcasts 6102 for (Instruction *U : Uses) { 6103 if (isa<BitCastInst>(U)) { 6104 DeletedInstrs.insert(U); 6105 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6106 } else { 6107 U->setOperand(0, 6108 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6109 } 6110 } 6111 6112 // Save the removed phis to be deleted later. 6113 for (PHINode *Phi : PhiNodes) 6114 DeletedInstrs.insert(Phi); 6115 return true; 6116 } 6117 6118 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6119 if (!OptimizePhiTypes) 6120 return false; 6121 6122 bool Changed = false; 6123 SmallPtrSet<PHINode *, 4> Visited; 6124 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6125 6126 // Attempt to optimize all the phis in the functions to the correct type. 6127 for (auto &BB : F) 6128 for (auto &Phi : BB.phis()) 6129 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6130 6131 // Remove any old phi's that have been converted. 6132 for (auto *I : DeletedInstrs) { 6133 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6134 I->eraseFromParent(); 6135 } 6136 6137 return Changed; 6138 } 6139 6140 /// Return true, if an ext(load) can be formed from an extension in 6141 /// \p MovedExts. 6142 bool CodeGenPrepare::canFormExtLd( 6143 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6144 Instruction *&Inst, bool HasPromoted) { 6145 for (auto *MovedExtInst : MovedExts) { 6146 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6147 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6148 Inst = MovedExtInst; 6149 break; 6150 } 6151 } 6152 if (!LI) 6153 return false; 6154 6155 // If they're already in the same block, there's nothing to do. 6156 // Make the cheap checks first if we did not promote. 6157 // If we promoted, we need to check if it is indeed profitable. 6158 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6159 return false; 6160 6161 return TLI->isExtLoad(LI, Inst, *DL); 6162 } 6163 6164 /// Move a zext or sext fed by a load into the same basic block as the load, 6165 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6166 /// extend into the load. 6167 /// 6168 /// E.g., 6169 /// \code 6170 /// %ld = load i32* %addr 6171 /// %add = add nuw i32 %ld, 4 6172 /// %zext = zext i32 %add to i64 6173 // \endcode 6174 /// => 6175 /// \code 6176 /// %ld = load i32* %addr 6177 /// %zext = zext i32 %ld to i64 6178 /// %add = add nuw i64 %zext, 4 6179 /// \encode 6180 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6181 /// allow us to match zext(load i32*) to i64. 6182 /// 6183 /// Also, try to promote the computations used to obtain a sign extended 6184 /// value used into memory accesses. 6185 /// E.g., 6186 /// \code 6187 /// a = add nsw i32 b, 3 6188 /// d = sext i32 a to i64 6189 /// e = getelementptr ..., i64 d 6190 /// \endcode 6191 /// => 6192 /// \code 6193 /// f = sext i32 b to i64 6194 /// a = add nsw i64 f, 3 6195 /// e = getelementptr ..., i64 a 6196 /// \endcode 6197 /// 6198 /// \p Inst[in/out] the extension may be modified during the process if some 6199 /// promotions apply. 6200 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6201 bool AllowPromotionWithoutCommonHeader = false; 6202 /// See if it is an interesting sext operations for the address type 6203 /// promotion before trying to promote it, e.g., the ones with the right 6204 /// type and used in memory accesses. 6205 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6206 *Inst, AllowPromotionWithoutCommonHeader); 6207 TypePromotionTransaction TPT(RemovedInsts); 6208 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6209 TPT.getRestorationPoint(); 6210 SmallVector<Instruction *, 1> Exts; 6211 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6212 Exts.push_back(Inst); 6213 6214 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6215 6216 // Look for a load being extended. 6217 LoadInst *LI = nullptr; 6218 Instruction *ExtFedByLoad; 6219 6220 // Try to promote a chain of computation if it allows to form an extended 6221 // load. 6222 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6223 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6224 TPT.commit(); 6225 // Move the extend into the same block as the load. 6226 ExtFedByLoad->moveAfter(LI); 6227 ++NumExtsMoved; 6228 Inst = ExtFedByLoad; 6229 return true; 6230 } 6231 6232 // Continue promoting SExts if known as considerable depending on targets. 6233 if (ATPConsiderable && 6234 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6235 HasPromoted, TPT, SpeculativelyMovedExts)) 6236 return true; 6237 6238 TPT.rollback(LastKnownGood); 6239 return false; 6240 } 6241 6242 // Perform address type promotion if doing so is profitable. 6243 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6244 // instructions that sign extended the same initial value. However, if 6245 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6246 // extension is just profitable. 6247 bool CodeGenPrepare::performAddressTypePromotion( 6248 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6249 bool HasPromoted, TypePromotionTransaction &TPT, 6250 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6251 bool Promoted = false; 6252 SmallPtrSet<Instruction *, 1> UnhandledExts; 6253 bool AllSeenFirst = true; 6254 for (auto *I : SpeculativelyMovedExts) { 6255 Value *HeadOfChain = I->getOperand(0); 6256 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6257 SeenChainsForSExt.find(HeadOfChain); 6258 // If there is an unhandled SExt which has the same header, try to promote 6259 // it as well. 6260 if (AlreadySeen != SeenChainsForSExt.end()) { 6261 if (AlreadySeen->second != nullptr) 6262 UnhandledExts.insert(AlreadySeen->second); 6263 AllSeenFirst = false; 6264 } 6265 } 6266 6267 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6268 SpeculativelyMovedExts.size() == 1)) { 6269 TPT.commit(); 6270 if (HasPromoted) 6271 Promoted = true; 6272 for (auto *I : SpeculativelyMovedExts) { 6273 Value *HeadOfChain = I->getOperand(0); 6274 SeenChainsForSExt[HeadOfChain] = nullptr; 6275 ValToSExtendedUses[HeadOfChain].push_back(I); 6276 } 6277 // Update Inst as promotion happen. 6278 Inst = SpeculativelyMovedExts.pop_back_val(); 6279 } else { 6280 // This is the first chain visited from the header, keep the current chain 6281 // as unhandled. Defer to promote this until we encounter another SExt 6282 // chain derived from the same header. 6283 for (auto *I : SpeculativelyMovedExts) { 6284 Value *HeadOfChain = I->getOperand(0); 6285 SeenChainsForSExt[HeadOfChain] = Inst; 6286 } 6287 return false; 6288 } 6289 6290 if (!AllSeenFirst && !UnhandledExts.empty()) 6291 for (auto *VisitedSExt : UnhandledExts) { 6292 if (RemovedInsts.count(VisitedSExt)) 6293 continue; 6294 TypePromotionTransaction TPT(RemovedInsts); 6295 SmallVector<Instruction *, 1> Exts; 6296 SmallVector<Instruction *, 2> Chains; 6297 Exts.push_back(VisitedSExt); 6298 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6299 TPT.commit(); 6300 if (HasPromoted) 6301 Promoted = true; 6302 for (auto *I : Chains) { 6303 Value *HeadOfChain = I->getOperand(0); 6304 // Mark this as handled. 6305 SeenChainsForSExt[HeadOfChain] = nullptr; 6306 ValToSExtendedUses[HeadOfChain].push_back(I); 6307 } 6308 } 6309 return Promoted; 6310 } 6311 6312 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6313 BasicBlock *DefBB = I->getParent(); 6314 6315 // If the result of a {s|z}ext and its source are both live out, rewrite all 6316 // other uses of the source with result of extension. 6317 Value *Src = I->getOperand(0); 6318 if (Src->hasOneUse()) 6319 return false; 6320 6321 // Only do this xform if truncating is free. 6322 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6323 return false; 6324 6325 // Only safe to perform the optimization if the source is also defined in 6326 // this block. 6327 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6328 return false; 6329 6330 bool DefIsLiveOut = false; 6331 for (User *U : I->users()) { 6332 Instruction *UI = cast<Instruction>(U); 6333 6334 // Figure out which BB this ext is used in. 6335 BasicBlock *UserBB = UI->getParent(); 6336 if (UserBB == DefBB) continue; 6337 DefIsLiveOut = true; 6338 break; 6339 } 6340 if (!DefIsLiveOut) 6341 return false; 6342 6343 // Make sure none of the uses are PHI nodes. 6344 for (User *U : Src->users()) { 6345 Instruction *UI = cast<Instruction>(U); 6346 BasicBlock *UserBB = UI->getParent(); 6347 if (UserBB == DefBB) continue; 6348 // Be conservative. We don't want this xform to end up introducing 6349 // reloads just before load / store instructions. 6350 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6351 return false; 6352 } 6353 6354 // InsertedTruncs - Only insert one trunc in each block once. 6355 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6356 6357 bool MadeChange = false; 6358 for (Use &U : Src->uses()) { 6359 Instruction *User = cast<Instruction>(U.getUser()); 6360 6361 // Figure out which BB this ext is used in. 6362 BasicBlock *UserBB = User->getParent(); 6363 if (UserBB == DefBB) continue; 6364 6365 // Both src and def are live in this block. Rewrite the use. 6366 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6367 6368 if (!InsertedTrunc) { 6369 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6370 assert(InsertPt != UserBB->end()); 6371 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6372 InsertedInsts.insert(InsertedTrunc); 6373 } 6374 6375 // Replace a use of the {s|z}ext source with a use of the result. 6376 U = InsertedTrunc; 6377 ++NumExtUses; 6378 MadeChange = true; 6379 } 6380 6381 return MadeChange; 6382 } 6383 6384 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6385 // just after the load if the target can fold this into one extload instruction, 6386 // with the hope of eliminating some of the other later "and" instructions using 6387 // the loaded value. "and"s that are made trivially redundant by the insertion 6388 // of the new "and" are removed by this function, while others (e.g. those whose 6389 // path from the load goes through a phi) are left for isel to potentially 6390 // remove. 6391 // 6392 // For example: 6393 // 6394 // b0: 6395 // x = load i32 6396 // ... 6397 // b1: 6398 // y = and x, 0xff 6399 // z = use y 6400 // 6401 // becomes: 6402 // 6403 // b0: 6404 // x = load i32 6405 // x' = and x, 0xff 6406 // ... 6407 // b1: 6408 // z = use x' 6409 // 6410 // whereas: 6411 // 6412 // b0: 6413 // x1 = load i32 6414 // ... 6415 // b1: 6416 // x2 = load i32 6417 // ... 6418 // b2: 6419 // x = phi x1, x2 6420 // y = and x, 0xff 6421 // 6422 // becomes (after a call to optimizeLoadExt for each load): 6423 // 6424 // b0: 6425 // x1 = load i32 6426 // x1' = and x1, 0xff 6427 // ... 6428 // b1: 6429 // x2 = load i32 6430 // x2' = and x2, 0xff 6431 // ... 6432 // b2: 6433 // x = phi x1', x2' 6434 // y = and x, 0xff 6435 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6436 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6437 return false; 6438 6439 // Skip loads we've already transformed. 6440 if (Load->hasOneUse() && 6441 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6442 return false; 6443 6444 // Look at all uses of Load, looking through phis, to determine how many bits 6445 // of the loaded value are needed. 6446 SmallVector<Instruction *, 8> WorkList; 6447 SmallPtrSet<Instruction *, 16> Visited; 6448 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6449 for (auto *U : Load->users()) 6450 WorkList.push_back(cast<Instruction>(U)); 6451 6452 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6453 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6454 APInt DemandBits(BitWidth, 0); 6455 APInt WidestAndBits(BitWidth, 0); 6456 6457 while (!WorkList.empty()) { 6458 Instruction *I = WorkList.back(); 6459 WorkList.pop_back(); 6460 6461 // Break use-def graph loops. 6462 if (!Visited.insert(I).second) 6463 continue; 6464 6465 // For a PHI node, push all of its users. 6466 if (auto *Phi = dyn_cast<PHINode>(I)) { 6467 for (auto *U : Phi->users()) 6468 WorkList.push_back(cast<Instruction>(U)); 6469 continue; 6470 } 6471 6472 switch (I->getOpcode()) { 6473 case Instruction::And: { 6474 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6475 if (!AndC) 6476 return false; 6477 APInt AndBits = AndC->getValue(); 6478 DemandBits |= AndBits; 6479 // Keep track of the widest and mask we see. 6480 if (AndBits.ugt(WidestAndBits)) 6481 WidestAndBits = AndBits; 6482 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6483 AndsToMaybeRemove.push_back(I); 6484 break; 6485 } 6486 6487 case Instruction::Shl: { 6488 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6489 if (!ShlC) 6490 return false; 6491 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6492 DemandBits.setLowBits(BitWidth - ShiftAmt); 6493 break; 6494 } 6495 6496 case Instruction::Trunc: { 6497 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6498 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6499 DemandBits.setLowBits(TruncBitWidth); 6500 break; 6501 } 6502 6503 default: 6504 return false; 6505 } 6506 } 6507 6508 uint32_t ActiveBits = DemandBits.getActiveBits(); 6509 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6510 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6511 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6512 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6513 // followed by an AND. 6514 // TODO: Look into removing this restriction by fixing backends to either 6515 // return false for isLoadExtLegal for i1 or have them select this pattern to 6516 // a single instruction. 6517 // 6518 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6519 // mask, since these are the only ands that will be removed by isel. 6520 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6521 WidestAndBits != DemandBits) 6522 return false; 6523 6524 LLVMContext &Ctx = Load->getType()->getContext(); 6525 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6526 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6527 6528 // Reject cases that won't be matched as extloads. 6529 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6530 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6531 return false; 6532 6533 IRBuilder<> Builder(Load->getNextNode()); 6534 auto *NewAnd = cast<Instruction>( 6535 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6536 // Mark this instruction as "inserted by CGP", so that other 6537 // optimizations don't touch it. 6538 InsertedInsts.insert(NewAnd); 6539 6540 // Replace all uses of load with new and (except for the use of load in the 6541 // new and itself). 6542 Load->replaceAllUsesWith(NewAnd); 6543 NewAnd->setOperand(0, Load); 6544 6545 // Remove any and instructions that are now redundant. 6546 for (auto *And : AndsToMaybeRemove) 6547 // Check that the and mask is the same as the one we decided to put on the 6548 // new and. 6549 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6550 And->replaceAllUsesWith(NewAnd); 6551 if (&*CurInstIterator == And) 6552 CurInstIterator = std::next(And->getIterator()); 6553 And->eraseFromParent(); 6554 ++NumAndUses; 6555 } 6556 6557 ++NumAndsAdded; 6558 return true; 6559 } 6560 6561 /// Check if V (an operand of a select instruction) is an expensive instruction 6562 /// that is only used once. 6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6564 auto *I = dyn_cast<Instruction>(V); 6565 // If it's safe to speculatively execute, then it should not have side 6566 // effects; therefore, it's safe to sink and possibly *not* execute. 6567 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6568 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6569 TargetTransformInfo::TCC_Expensive; 6570 } 6571 6572 /// Returns true if a SelectInst should be turned into an explicit branch. 6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6574 const TargetLowering *TLI, 6575 SelectInst *SI) { 6576 // If even a predictable select is cheap, then a branch can't be cheaper. 6577 if (!TLI->isPredictableSelectExpensive()) 6578 return false; 6579 6580 // FIXME: This should use the same heuristics as IfConversion to determine 6581 // whether a select is better represented as a branch. 6582 6583 // If metadata tells us that the select condition is obviously predictable, 6584 // then we want to replace the select with a branch. 6585 uint64_t TrueWeight, FalseWeight; 6586 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6587 uint64_t Max = std::max(TrueWeight, FalseWeight); 6588 uint64_t Sum = TrueWeight + FalseWeight; 6589 if (Sum != 0) { 6590 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6591 if (Probability > TTI->getPredictableBranchThreshold()) 6592 return true; 6593 } 6594 } 6595 6596 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6597 6598 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6599 // comparison condition. If the compare has more than one use, there's 6600 // probably another cmov or setcc around, so it's not worth emitting a branch. 6601 if (!Cmp || !Cmp->hasOneUse()) 6602 return false; 6603 6604 // If either operand of the select is expensive and only needed on one side 6605 // of the select, we should form a branch. 6606 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6607 sinkSelectOperand(TTI, SI->getFalseValue())) 6608 return true; 6609 6610 return false; 6611 } 6612 6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6614 /// false value of \p SI. If the true/false value of \p SI is defined by any 6615 /// select instructions in \p Selects, look through the defining select 6616 /// instruction until the true/false value is not defined in \p Selects. 6617 static Value *getTrueOrFalseValue( 6618 SelectInst *SI, bool isTrue, 6619 const SmallPtrSet<const Instruction *, 2> &Selects) { 6620 Value *V = nullptr; 6621 6622 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6623 DefSI = dyn_cast<SelectInst>(V)) { 6624 assert(DefSI->getCondition() == SI->getCondition() && 6625 "The condition of DefSI does not match with SI"); 6626 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6627 } 6628 6629 assert(V && "Failed to get select true/false value"); 6630 return V; 6631 } 6632 6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6634 assert(Shift->isShift() && "Expected a shift"); 6635 6636 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6637 // general vector shifts, and (3) the shift amount is a select-of-splatted 6638 // values, hoist the shifts before the select: 6639 // shift Op0, (select Cond, TVal, FVal) --> 6640 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6641 // 6642 // This is inverting a generic IR transform when we know that the cost of a 6643 // general vector shift is more than the cost of 2 shift-by-scalars. 6644 // We can't do this effectively in SDAG because we may not be able to 6645 // determine if the select operands are splats from within a basic block. 6646 Type *Ty = Shift->getType(); 6647 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6648 return false; 6649 Value *Cond, *TVal, *FVal; 6650 if (!match(Shift->getOperand(1), 6651 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6652 return false; 6653 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6654 return false; 6655 6656 IRBuilder<> Builder(Shift); 6657 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6658 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6659 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6660 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6661 Shift->replaceAllUsesWith(NewSel); 6662 Shift->eraseFromParent(); 6663 return true; 6664 } 6665 6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6667 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6668 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6669 "Expected a funnel shift"); 6670 6671 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6672 // than general vector shifts, and (3) the shift amount is select-of-splatted 6673 // values, hoist the funnel shifts before the select: 6674 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6675 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6676 // 6677 // This is inverting a generic IR transform when we know that the cost of a 6678 // general vector shift is more than the cost of 2 shift-by-scalars. 6679 // We can't do this effectively in SDAG because we may not be able to 6680 // determine if the select operands are splats from within a basic block. 6681 Type *Ty = Fsh->getType(); 6682 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6683 return false; 6684 Value *Cond, *TVal, *FVal; 6685 if (!match(Fsh->getOperand(2), 6686 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6687 return false; 6688 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6689 return false; 6690 6691 IRBuilder<> Builder(Fsh); 6692 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6693 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6694 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6695 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6696 Fsh->replaceAllUsesWith(NewSel); 6697 Fsh->eraseFromParent(); 6698 return true; 6699 } 6700 6701 /// If we have a SelectInst that will likely profit from branch prediction, 6702 /// turn it into a branch. 6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6704 if (DisableSelectToBranch) 6705 return false; 6706 6707 // Find all consecutive select instructions that share the same condition. 6708 SmallVector<SelectInst *, 2> ASI; 6709 ASI.push_back(SI); 6710 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6711 It != SI->getParent()->end(); ++It) { 6712 SelectInst *I = dyn_cast<SelectInst>(&*It); 6713 if (I && SI->getCondition() == I->getCondition()) { 6714 ASI.push_back(I); 6715 } else { 6716 break; 6717 } 6718 } 6719 6720 SelectInst *LastSI = ASI.back(); 6721 // Increment the current iterator to skip all the rest of select instructions 6722 // because they will be either "not lowered" or "all lowered" to branch. 6723 CurInstIterator = std::next(LastSI->getIterator()); 6724 6725 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6726 6727 // Can we convert the 'select' to CF ? 6728 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6729 return false; 6730 6731 TargetLowering::SelectSupportKind SelectKind; 6732 if (VectorCond) 6733 SelectKind = TargetLowering::VectorMaskSelect; 6734 else if (SI->getType()->isVectorTy()) 6735 SelectKind = TargetLowering::ScalarCondVectorVal; 6736 else 6737 SelectKind = TargetLowering::ScalarValSelect; 6738 6739 if (TLI->isSelectSupported(SelectKind) && 6740 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6741 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6742 return false; 6743 6744 // The DominatorTree needs to be rebuilt by any consumers after this 6745 // transformation. We simply reset here rather than setting the ModifiedDT 6746 // flag to avoid restarting the function walk in runOnFunction for each 6747 // select optimized. 6748 DT.reset(); 6749 6750 // Transform a sequence like this: 6751 // start: 6752 // %cmp = cmp uge i32 %a, %b 6753 // %sel = select i1 %cmp, i32 %c, i32 %d 6754 // 6755 // Into: 6756 // start: 6757 // %cmp = cmp uge i32 %a, %b 6758 // %cmp.frozen = freeze %cmp 6759 // br i1 %cmp.frozen, label %select.true, label %select.false 6760 // select.true: 6761 // br label %select.end 6762 // select.false: 6763 // br label %select.end 6764 // select.end: 6765 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6766 // 6767 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6768 // In addition, we may sink instructions that produce %c or %d from 6769 // the entry block into the destination(s) of the new branch. 6770 // If the true or false blocks do not contain a sunken instruction, that 6771 // block and its branch may be optimized away. In that case, one side of the 6772 // first branch will point directly to select.end, and the corresponding PHI 6773 // predecessor block will be the start block. 6774 6775 // First, we split the block containing the select into 2 blocks. 6776 BasicBlock *StartBlock = SI->getParent(); 6777 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6778 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6779 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6780 6781 // Delete the unconditional branch that was just created by the split. 6782 StartBlock->getTerminator()->eraseFromParent(); 6783 6784 // These are the new basic blocks for the conditional branch. 6785 // At least one will become an actual new basic block. 6786 BasicBlock *TrueBlock = nullptr; 6787 BasicBlock *FalseBlock = nullptr; 6788 BranchInst *TrueBranch = nullptr; 6789 BranchInst *FalseBranch = nullptr; 6790 6791 // Sink expensive instructions into the conditional blocks to avoid executing 6792 // them speculatively. 6793 for (SelectInst *SI : ASI) { 6794 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6795 if (TrueBlock == nullptr) { 6796 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6797 EndBlock->getParent(), EndBlock); 6798 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6799 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6800 } 6801 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6802 TrueInst->moveBefore(TrueBranch); 6803 } 6804 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6805 if (FalseBlock == nullptr) { 6806 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6807 EndBlock->getParent(), EndBlock); 6808 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6809 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6810 } 6811 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6812 FalseInst->moveBefore(FalseBranch); 6813 } 6814 } 6815 6816 // If there was nothing to sink, then arbitrarily choose the 'false' side 6817 // for a new input value to the PHI. 6818 if (TrueBlock == FalseBlock) { 6819 assert(TrueBlock == nullptr && 6820 "Unexpected basic block transform while optimizing select"); 6821 6822 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6823 EndBlock->getParent(), EndBlock); 6824 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6825 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6826 } 6827 6828 // Insert the real conditional branch based on the original condition. 6829 // If we did not create a new block for one of the 'true' or 'false' paths 6830 // of the condition, it means that side of the branch goes to the end block 6831 // directly and the path originates from the start block from the point of 6832 // view of the new PHI. 6833 BasicBlock *TT, *FT; 6834 if (TrueBlock == nullptr) { 6835 TT = EndBlock; 6836 FT = FalseBlock; 6837 TrueBlock = StartBlock; 6838 } else if (FalseBlock == nullptr) { 6839 TT = TrueBlock; 6840 FT = EndBlock; 6841 FalseBlock = StartBlock; 6842 } else { 6843 TT = TrueBlock; 6844 FT = FalseBlock; 6845 } 6846 IRBuilder<> IB(SI); 6847 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6848 IB.CreateCondBr(CondFr, TT, FT, SI); 6849 6850 SmallPtrSet<const Instruction *, 2> INS; 6851 INS.insert(ASI.begin(), ASI.end()); 6852 // Use reverse iterator because later select may use the value of the 6853 // earlier select, and we need to propagate value through earlier select 6854 // to get the PHI operand. 6855 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6856 SelectInst *SI = *It; 6857 // The select itself is replaced with a PHI Node. 6858 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6859 PN->takeName(SI); 6860 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6861 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6862 PN->setDebugLoc(SI->getDebugLoc()); 6863 6864 SI->replaceAllUsesWith(PN); 6865 SI->eraseFromParent(); 6866 INS.erase(SI); 6867 ++NumSelectsExpanded; 6868 } 6869 6870 // Instruct OptimizeBlock to skip to the next block. 6871 CurInstIterator = StartBlock->end(); 6872 return true; 6873 } 6874 6875 /// Some targets only accept certain types for splat inputs. For example a VDUP 6876 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6877 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6878 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6879 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6880 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6881 m_Undef(), m_ZeroMask()))) 6882 return false; 6883 Type *NewType = TLI->shouldConvertSplatType(SVI); 6884 if (!NewType) 6885 return false; 6886 6887 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6888 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6889 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6890 "Expected a type of the same size!"); 6891 auto *NewVecType = 6892 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6893 6894 // Create a bitcast (shuffle (insert (bitcast(..)))) 6895 IRBuilder<> Builder(SVI->getContext()); 6896 Builder.SetInsertPoint(SVI); 6897 Value *BC1 = Builder.CreateBitCast( 6898 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6899 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6900 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6901 6902 SVI->replaceAllUsesWith(BC2); 6903 RecursivelyDeleteTriviallyDeadInstructions( 6904 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6905 6906 // Also hoist the bitcast up to its operand if it they are not in the same 6907 // block. 6908 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6909 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6910 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6911 !Op->isTerminator() && !Op->isEHPad()) 6912 BCI->moveAfter(Op); 6913 6914 return true; 6915 } 6916 6917 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6918 // If the operands of I can be folded into a target instruction together with 6919 // I, duplicate and sink them. 6920 SmallVector<Use *, 4> OpsToSink; 6921 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6922 return false; 6923 6924 // OpsToSink can contain multiple uses in a use chain (e.g. 6925 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6926 // uses must come first, so we process the ops in reverse order so as to not 6927 // create invalid IR. 6928 BasicBlock *TargetBB = I->getParent(); 6929 bool Changed = false; 6930 SmallVector<Use *, 4> ToReplace; 6931 for (Use *U : reverse(OpsToSink)) { 6932 auto *UI = cast<Instruction>(U->get()); 6933 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6934 continue; 6935 ToReplace.push_back(U); 6936 } 6937 6938 SetVector<Instruction *> MaybeDead; 6939 DenseMap<Instruction *, Instruction *> NewInstructions; 6940 Instruction *InsertPoint = I; 6941 for (Use *U : ToReplace) { 6942 auto *UI = cast<Instruction>(U->get()); 6943 Instruction *NI = UI->clone(); 6944 NewInstructions[UI] = NI; 6945 MaybeDead.insert(UI); 6946 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6947 NI->insertBefore(InsertPoint); 6948 InsertPoint = NI; 6949 InsertedInsts.insert(NI); 6950 6951 // Update the use for the new instruction, making sure that we update the 6952 // sunk instruction uses, if it is part of a chain that has already been 6953 // sunk. 6954 Instruction *OldI = cast<Instruction>(U->getUser()); 6955 if (NewInstructions.count(OldI)) 6956 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6957 else 6958 U->set(NI); 6959 Changed = true; 6960 } 6961 6962 // Remove instructions that are dead after sinking. 6963 for (auto *I : MaybeDead) { 6964 if (!I->hasNUsesOrMore(1)) { 6965 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6966 I->eraseFromParent(); 6967 } 6968 } 6969 6970 return Changed; 6971 } 6972 6973 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6974 Value *Cond = SI->getCondition(); 6975 Type *OldType = Cond->getType(); 6976 LLVMContext &Context = Cond->getContext(); 6977 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6978 unsigned RegWidth = RegType.getSizeInBits(); 6979 6980 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6981 return false; 6982 6983 // If the register width is greater than the type width, expand the condition 6984 // of the switch instruction and each case constant to the width of the 6985 // register. By widening the type of the switch condition, subsequent 6986 // comparisons (for case comparisons) will not need to be extended to the 6987 // preferred register width, so we will potentially eliminate N-1 extends, 6988 // where N is the number of cases in the switch. 6989 auto *NewType = Type::getIntNTy(Context, RegWidth); 6990 6991 // Zero-extend the switch condition and case constants unless the switch 6992 // condition is a function argument that is already being sign-extended. 6993 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6994 // everything instead. 6995 Instruction::CastOps ExtType = Instruction::ZExt; 6996 if (auto *Arg = dyn_cast<Argument>(Cond)) 6997 if (Arg->hasSExtAttr()) 6998 ExtType = Instruction::SExt; 6999 7000 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 7001 ExtInst->insertBefore(SI); 7002 ExtInst->setDebugLoc(SI->getDebugLoc()); 7003 SI->setCondition(ExtInst); 7004 for (auto Case : SI->cases()) { 7005 APInt NarrowConst = Case.getCaseValue()->getValue(); 7006 APInt WideConst = (ExtType == Instruction::ZExt) ? 7007 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7008 Case.setValue(ConstantInt::get(Context, WideConst)); 7009 } 7010 7011 return true; 7012 } 7013 7014 7015 namespace { 7016 7017 /// Helper class to promote a scalar operation to a vector one. 7018 /// This class is used to move downward extractelement transition. 7019 /// E.g., 7020 /// a = vector_op <2 x i32> 7021 /// b = extractelement <2 x i32> a, i32 0 7022 /// c = scalar_op b 7023 /// store c 7024 /// 7025 /// => 7026 /// a = vector_op <2 x i32> 7027 /// c = vector_op a (equivalent to scalar_op on the related lane) 7028 /// * d = extractelement <2 x i32> c, i32 0 7029 /// * store d 7030 /// Assuming both extractelement and store can be combine, we get rid of the 7031 /// transition. 7032 class VectorPromoteHelper { 7033 /// DataLayout associated with the current module. 7034 const DataLayout &DL; 7035 7036 /// Used to perform some checks on the legality of vector operations. 7037 const TargetLowering &TLI; 7038 7039 /// Used to estimated the cost of the promoted chain. 7040 const TargetTransformInfo &TTI; 7041 7042 /// The transition being moved downwards. 7043 Instruction *Transition; 7044 7045 /// The sequence of instructions to be promoted. 7046 SmallVector<Instruction *, 4> InstsToBePromoted; 7047 7048 /// Cost of combining a store and an extract. 7049 unsigned StoreExtractCombineCost; 7050 7051 /// Instruction that will be combined with the transition. 7052 Instruction *CombineInst = nullptr; 7053 7054 /// The instruction that represents the current end of the transition. 7055 /// Since we are faking the promotion until we reach the end of the chain 7056 /// of computation, we need a way to get the current end of the transition. 7057 Instruction *getEndOfTransition() const { 7058 if (InstsToBePromoted.empty()) 7059 return Transition; 7060 return InstsToBePromoted.back(); 7061 } 7062 7063 /// Return the index of the original value in the transition. 7064 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7065 /// c, is at index 0. 7066 unsigned getTransitionOriginalValueIdx() const { 7067 assert(isa<ExtractElementInst>(Transition) && 7068 "Other kind of transitions are not supported yet"); 7069 return 0; 7070 } 7071 7072 /// Return the index of the index in the transition. 7073 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7074 /// is at index 1. 7075 unsigned getTransitionIdx() const { 7076 assert(isa<ExtractElementInst>(Transition) && 7077 "Other kind of transitions are not supported yet"); 7078 return 1; 7079 } 7080 7081 /// Get the type of the transition. 7082 /// This is the type of the original value. 7083 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7084 /// transition is <2 x i32>. 7085 Type *getTransitionType() const { 7086 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7087 } 7088 7089 /// Promote \p ToBePromoted by moving \p Def downward through. 7090 /// I.e., we have the following sequence: 7091 /// Def = Transition <ty1> a to <ty2> 7092 /// b = ToBePromoted <ty2> Def, ... 7093 /// => 7094 /// b = ToBePromoted <ty1> a, ... 7095 /// Def = Transition <ty1> ToBePromoted to <ty2> 7096 void promoteImpl(Instruction *ToBePromoted); 7097 7098 /// Check whether or not it is profitable to promote all the 7099 /// instructions enqueued to be promoted. 7100 bool isProfitableToPromote() { 7101 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7102 unsigned Index = isa<ConstantInt>(ValIdx) 7103 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7104 : -1; 7105 Type *PromotedType = getTransitionType(); 7106 7107 StoreInst *ST = cast<StoreInst>(CombineInst); 7108 unsigned AS = ST->getPointerAddressSpace(); 7109 // Check if this store is supported. 7110 if (!TLI.allowsMisalignedMemoryAccesses( 7111 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7112 ST->getAlign())) { 7113 // If this is not supported, there is no way we can combine 7114 // the extract with the store. 7115 return false; 7116 } 7117 7118 // The scalar chain of computation has to pay for the transition 7119 // scalar to vector. 7120 // The vector chain has to account for the combining cost. 7121 InstructionCost ScalarCost = 7122 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7123 InstructionCost VectorCost = StoreExtractCombineCost; 7124 enum TargetTransformInfo::TargetCostKind CostKind = 7125 TargetTransformInfo::TCK_RecipThroughput; 7126 for (const auto &Inst : InstsToBePromoted) { 7127 // Compute the cost. 7128 // By construction, all instructions being promoted are arithmetic ones. 7129 // Moreover, one argument is a constant that can be viewed as a splat 7130 // constant. 7131 Value *Arg0 = Inst->getOperand(0); 7132 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7133 isa<ConstantFP>(Arg0); 7134 TargetTransformInfo::OperandValueKind Arg0OVK = 7135 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7136 : TargetTransformInfo::OK_AnyValue; 7137 TargetTransformInfo::OperandValueKind Arg1OVK = 7138 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7139 : TargetTransformInfo::OK_AnyValue; 7140 ScalarCost += TTI.getArithmeticInstrCost( 7141 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7142 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7143 CostKind, 7144 Arg0OVK, Arg1OVK); 7145 } 7146 LLVM_DEBUG( 7147 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7148 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7149 return ScalarCost > VectorCost; 7150 } 7151 7152 /// Generate a constant vector with \p Val with the same 7153 /// number of elements as the transition. 7154 /// \p UseSplat defines whether or not \p Val should be replicated 7155 /// across the whole vector. 7156 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7157 /// otherwise we generate a vector with as many undef as possible: 7158 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7159 /// used at the index of the extract. 7160 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7161 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7162 if (!UseSplat) { 7163 // If we cannot determine where the constant must be, we have to 7164 // use a splat constant. 7165 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7166 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7167 ExtractIdx = CstVal->getSExtValue(); 7168 else 7169 UseSplat = true; 7170 } 7171 7172 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7173 if (UseSplat) 7174 return ConstantVector::getSplat(EC, Val); 7175 7176 if (!EC.isScalable()) { 7177 SmallVector<Constant *, 4> ConstVec; 7178 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7179 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7180 if (Idx == ExtractIdx) 7181 ConstVec.push_back(Val); 7182 else 7183 ConstVec.push_back(UndefVal); 7184 } 7185 return ConstantVector::get(ConstVec); 7186 } else 7187 llvm_unreachable( 7188 "Generate scalable vector for non-splat is unimplemented"); 7189 } 7190 7191 /// Check if promoting to a vector type an operand at \p OperandIdx 7192 /// in \p Use can trigger undefined behavior. 7193 static bool canCauseUndefinedBehavior(const Instruction *Use, 7194 unsigned OperandIdx) { 7195 // This is not safe to introduce undef when the operand is on 7196 // the right hand side of a division-like instruction. 7197 if (OperandIdx != 1) 7198 return false; 7199 switch (Use->getOpcode()) { 7200 default: 7201 return false; 7202 case Instruction::SDiv: 7203 case Instruction::UDiv: 7204 case Instruction::SRem: 7205 case Instruction::URem: 7206 return true; 7207 case Instruction::FDiv: 7208 case Instruction::FRem: 7209 return !Use->hasNoNaNs(); 7210 } 7211 llvm_unreachable(nullptr); 7212 } 7213 7214 public: 7215 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7216 const TargetTransformInfo &TTI, Instruction *Transition, 7217 unsigned CombineCost) 7218 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7219 StoreExtractCombineCost(CombineCost) { 7220 assert(Transition && "Do not know how to promote null"); 7221 } 7222 7223 /// Check if we can promote \p ToBePromoted to \p Type. 7224 bool canPromote(const Instruction *ToBePromoted) const { 7225 // We could support CastInst too. 7226 return isa<BinaryOperator>(ToBePromoted); 7227 } 7228 7229 /// Check if it is profitable to promote \p ToBePromoted 7230 /// by moving downward the transition through. 7231 bool shouldPromote(const Instruction *ToBePromoted) const { 7232 // Promote only if all the operands can be statically expanded. 7233 // Indeed, we do not want to introduce any new kind of transitions. 7234 for (const Use &U : ToBePromoted->operands()) { 7235 const Value *Val = U.get(); 7236 if (Val == getEndOfTransition()) { 7237 // If the use is a division and the transition is on the rhs, 7238 // we cannot promote the operation, otherwise we may create a 7239 // division by zero. 7240 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7241 return false; 7242 continue; 7243 } 7244 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7245 !isa<ConstantFP>(Val)) 7246 return false; 7247 } 7248 // Check that the resulting operation is legal. 7249 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7250 if (!ISDOpcode) 7251 return false; 7252 return StressStoreExtract || 7253 TLI.isOperationLegalOrCustom( 7254 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7255 } 7256 7257 /// Check whether or not \p Use can be combined 7258 /// with the transition. 7259 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7260 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7261 7262 /// Record \p ToBePromoted as part of the chain to be promoted. 7263 void enqueueForPromotion(Instruction *ToBePromoted) { 7264 InstsToBePromoted.push_back(ToBePromoted); 7265 } 7266 7267 /// Set the instruction that will be combined with the transition. 7268 void recordCombineInstruction(Instruction *ToBeCombined) { 7269 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7270 CombineInst = ToBeCombined; 7271 } 7272 7273 /// Promote all the instructions enqueued for promotion if it is 7274 /// is profitable. 7275 /// \return True if the promotion happened, false otherwise. 7276 bool promote() { 7277 // Check if there is something to promote. 7278 // Right now, if we do not have anything to combine with, 7279 // we assume the promotion is not profitable. 7280 if (InstsToBePromoted.empty() || !CombineInst) 7281 return false; 7282 7283 // Check cost. 7284 if (!StressStoreExtract && !isProfitableToPromote()) 7285 return false; 7286 7287 // Promote. 7288 for (auto &ToBePromoted : InstsToBePromoted) 7289 promoteImpl(ToBePromoted); 7290 InstsToBePromoted.clear(); 7291 return true; 7292 } 7293 }; 7294 7295 } // end anonymous namespace 7296 7297 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7298 // At this point, we know that all the operands of ToBePromoted but Def 7299 // can be statically promoted. 7300 // For Def, we need to use its parameter in ToBePromoted: 7301 // b = ToBePromoted ty1 a 7302 // Def = Transition ty1 b to ty2 7303 // Move the transition down. 7304 // 1. Replace all uses of the promoted operation by the transition. 7305 // = ... b => = ... Def. 7306 assert(ToBePromoted->getType() == Transition->getType() && 7307 "The type of the result of the transition does not match " 7308 "the final type"); 7309 ToBePromoted->replaceAllUsesWith(Transition); 7310 // 2. Update the type of the uses. 7311 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7312 Type *TransitionTy = getTransitionType(); 7313 ToBePromoted->mutateType(TransitionTy); 7314 // 3. Update all the operands of the promoted operation with promoted 7315 // operands. 7316 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7317 for (Use &U : ToBePromoted->operands()) { 7318 Value *Val = U.get(); 7319 Value *NewVal = nullptr; 7320 if (Val == Transition) 7321 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7322 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7323 isa<ConstantFP>(Val)) { 7324 // Use a splat constant if it is not safe to use undef. 7325 NewVal = getConstantVector( 7326 cast<Constant>(Val), 7327 isa<UndefValue>(Val) || 7328 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7329 } else 7330 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7331 "this?"); 7332 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7333 } 7334 Transition->moveAfter(ToBePromoted); 7335 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7336 } 7337 7338 /// Some targets can do store(extractelement) with one instruction. 7339 /// Try to push the extractelement towards the stores when the target 7340 /// has this feature and this is profitable. 7341 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7342 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7343 if (DisableStoreExtract || 7344 (!StressStoreExtract && 7345 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7346 Inst->getOperand(1), CombineCost))) 7347 return false; 7348 7349 // At this point we know that Inst is a vector to scalar transition. 7350 // Try to move it down the def-use chain, until: 7351 // - We can combine the transition with its single use 7352 // => we got rid of the transition. 7353 // - We escape the current basic block 7354 // => we would need to check that we are moving it at a cheaper place and 7355 // we do not do that for now. 7356 BasicBlock *Parent = Inst->getParent(); 7357 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7358 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7359 // If the transition has more than one use, assume this is not going to be 7360 // beneficial. 7361 while (Inst->hasOneUse()) { 7362 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7363 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7364 7365 if (ToBePromoted->getParent() != Parent) { 7366 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7367 << ToBePromoted->getParent()->getName() 7368 << ") than the transition (" << Parent->getName() 7369 << ").\n"); 7370 return false; 7371 } 7372 7373 if (VPH.canCombine(ToBePromoted)) { 7374 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7375 << "will be combined with: " << *ToBePromoted << '\n'); 7376 VPH.recordCombineInstruction(ToBePromoted); 7377 bool Changed = VPH.promote(); 7378 NumStoreExtractExposed += Changed; 7379 return Changed; 7380 } 7381 7382 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7383 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7384 return false; 7385 7386 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7387 7388 VPH.enqueueForPromotion(ToBePromoted); 7389 Inst = ToBePromoted; 7390 } 7391 return false; 7392 } 7393 7394 /// For the instruction sequence of store below, F and I values 7395 /// are bundled together as an i64 value before being stored into memory. 7396 /// Sometimes it is more efficient to generate separate stores for F and I, 7397 /// which can remove the bitwise instructions or sink them to colder places. 7398 /// 7399 /// (store (or (zext (bitcast F to i32) to i64), 7400 /// (shl (zext I to i64), 32)), addr) --> 7401 /// (store F, addr) and (store I, addr+4) 7402 /// 7403 /// Similarly, splitting for other merged store can also be beneficial, like: 7404 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7405 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7406 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7407 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7408 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7409 /// 7410 /// We allow each target to determine specifically which kind of splitting is 7411 /// supported. 7412 /// 7413 /// The store patterns are commonly seen from the simple code snippet below 7414 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7415 /// void goo(const std::pair<int, float> &); 7416 /// hoo() { 7417 /// ... 7418 /// goo(std::make_pair(tmp, ftmp)); 7419 /// ... 7420 /// } 7421 /// 7422 /// Although we already have similar splitting in DAG Combine, we duplicate 7423 /// it in CodeGenPrepare to catch the case in which pattern is across 7424 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7425 /// during code expansion. 7426 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7427 const TargetLowering &TLI) { 7428 // Handle simple but common cases only. 7429 Type *StoreType = SI.getValueOperand()->getType(); 7430 7431 // The code below assumes shifting a value by <number of bits>, 7432 // whereas scalable vectors would have to be shifted by 7433 // <2log(vscale) + number of bits> in order to store the 7434 // low/high parts. Bailing out for now. 7435 if (isa<ScalableVectorType>(StoreType)) 7436 return false; 7437 7438 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7439 DL.getTypeSizeInBits(StoreType) == 0) 7440 return false; 7441 7442 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7443 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7444 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7445 return false; 7446 7447 // Don't split the store if it is volatile. 7448 if (SI.isVolatile()) 7449 return false; 7450 7451 // Match the following patterns: 7452 // (store (or (zext LValue to i64), 7453 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7454 // or 7455 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7456 // (zext LValue to i64), 7457 // Expect both operands of OR and the first operand of SHL have only 7458 // one use. 7459 Value *LValue, *HValue; 7460 if (!match(SI.getValueOperand(), 7461 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7462 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7463 m_SpecificInt(HalfValBitSize)))))) 7464 return false; 7465 7466 // Check LValue and HValue are int with size less or equal than 32. 7467 if (!LValue->getType()->isIntegerTy() || 7468 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7469 !HValue->getType()->isIntegerTy() || 7470 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7471 return false; 7472 7473 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7474 // as the input of target query. 7475 auto *LBC = dyn_cast<BitCastInst>(LValue); 7476 auto *HBC = dyn_cast<BitCastInst>(HValue); 7477 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7478 : EVT::getEVT(LValue->getType()); 7479 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7480 : EVT::getEVT(HValue->getType()); 7481 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7482 return false; 7483 7484 // Start to split store. 7485 IRBuilder<> Builder(SI.getContext()); 7486 Builder.SetInsertPoint(&SI); 7487 7488 // If LValue/HValue is a bitcast in another BB, create a new one in current 7489 // BB so it may be merged with the splitted stores by dag combiner. 7490 if (LBC && LBC->getParent() != SI.getParent()) 7491 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7492 if (HBC && HBC->getParent() != SI.getParent()) 7493 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7494 7495 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7496 auto CreateSplitStore = [&](Value *V, bool Upper) { 7497 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7498 Value *Addr = Builder.CreateBitCast( 7499 SI.getOperand(1), 7500 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7501 Align Alignment = SI.getAlign(); 7502 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7503 if (IsOffsetStore) { 7504 Addr = Builder.CreateGEP( 7505 SplitStoreType, Addr, 7506 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7507 7508 // When splitting the store in half, naturally one half will retain the 7509 // alignment of the original wider store, regardless of whether it was 7510 // over-aligned or not, while the other will require adjustment. 7511 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7512 } 7513 Builder.CreateAlignedStore(V, Addr, Alignment); 7514 }; 7515 7516 CreateSplitStore(LValue, false); 7517 CreateSplitStore(HValue, true); 7518 7519 // Delete the old store. 7520 SI.eraseFromParent(); 7521 return true; 7522 } 7523 7524 // Return true if the GEP has two operands, the first operand is of a sequential 7525 // type, and the second operand is a constant. 7526 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7527 gep_type_iterator I = gep_type_begin(*GEP); 7528 return GEP->getNumOperands() == 2 && 7529 I.isSequential() && 7530 isa<ConstantInt>(GEP->getOperand(1)); 7531 } 7532 7533 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7534 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7535 // reducing liveness interference across those edges benefits global register 7536 // allocation. Currently handles only certain cases. 7537 // 7538 // For example, unmerge %GEPI and %UGEPI as below. 7539 // 7540 // ---------- BEFORE ---------- 7541 // SrcBlock: 7542 // ... 7543 // %GEPIOp = ... 7544 // ... 7545 // %GEPI = gep %GEPIOp, Idx 7546 // ... 7547 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7548 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7549 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7550 // %UGEPI) 7551 // 7552 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7553 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7554 // ... 7555 // 7556 // DstBi: 7557 // ... 7558 // %UGEPI = gep %GEPIOp, UIdx 7559 // ... 7560 // --------------------------- 7561 // 7562 // ---------- AFTER ---------- 7563 // SrcBlock: 7564 // ... (same as above) 7565 // (* %GEPI is still alive on the indirectbr edges) 7566 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7567 // unmerging) 7568 // ... 7569 // 7570 // DstBi: 7571 // ... 7572 // %UGEPI = gep %GEPI, (UIdx-Idx) 7573 // ... 7574 // --------------------------- 7575 // 7576 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7577 // no longer alive on them. 7578 // 7579 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7580 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7581 // not to disable further simplications and optimizations as a result of GEP 7582 // merging. 7583 // 7584 // Note this unmerging may increase the length of the data flow critical path 7585 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7586 // between the register pressure and the length of data-flow critical 7587 // path. Restricting this to the uncommon IndirectBr case would minimize the 7588 // impact of potentially longer critical path, if any, and the impact on compile 7589 // time. 7590 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7591 const TargetTransformInfo *TTI) { 7592 BasicBlock *SrcBlock = GEPI->getParent(); 7593 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7594 // (non-IndirectBr) cases exit early here. 7595 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7596 return false; 7597 // Check that GEPI is a simple gep with a single constant index. 7598 if (!GEPSequentialConstIndexed(GEPI)) 7599 return false; 7600 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7601 // Check that GEPI is a cheap one. 7602 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7603 TargetTransformInfo::TCK_SizeAndLatency) 7604 > TargetTransformInfo::TCC_Basic) 7605 return false; 7606 Value *GEPIOp = GEPI->getOperand(0); 7607 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7608 if (!isa<Instruction>(GEPIOp)) 7609 return false; 7610 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7611 if (GEPIOpI->getParent() != SrcBlock) 7612 return false; 7613 // Check that GEP is used outside the block, meaning it's alive on the 7614 // IndirectBr edge(s). 7615 if (find_if(GEPI->users(), [&](User *Usr) { 7616 if (auto *I = dyn_cast<Instruction>(Usr)) { 7617 if (I->getParent() != SrcBlock) { 7618 return true; 7619 } 7620 } 7621 return false; 7622 }) == GEPI->users().end()) 7623 return false; 7624 // The second elements of the GEP chains to be unmerged. 7625 std::vector<GetElementPtrInst *> UGEPIs; 7626 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7627 // on IndirectBr edges. 7628 for (User *Usr : GEPIOp->users()) { 7629 if (Usr == GEPI) continue; 7630 // Check if Usr is an Instruction. If not, give up. 7631 if (!isa<Instruction>(Usr)) 7632 return false; 7633 auto *UI = cast<Instruction>(Usr); 7634 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7635 if (UI->getParent() == SrcBlock) 7636 continue; 7637 // Check if Usr is a GEP. If not, give up. 7638 if (!isa<GetElementPtrInst>(Usr)) 7639 return false; 7640 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7641 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7642 // the pointer operand to it. If so, record it in the vector. If not, give 7643 // up. 7644 if (!GEPSequentialConstIndexed(UGEPI)) 7645 return false; 7646 if (UGEPI->getOperand(0) != GEPIOp) 7647 return false; 7648 if (GEPIIdx->getType() != 7649 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7650 return false; 7651 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7652 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7653 TargetTransformInfo::TCK_SizeAndLatency) 7654 > TargetTransformInfo::TCC_Basic) 7655 return false; 7656 UGEPIs.push_back(UGEPI); 7657 } 7658 if (UGEPIs.size() == 0) 7659 return false; 7660 // Check the materializing cost of (Uidx-Idx). 7661 for (GetElementPtrInst *UGEPI : UGEPIs) { 7662 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7663 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7664 unsigned ImmCost = 7665 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7666 TargetTransformInfo::TCK_SizeAndLatency); 7667 if (ImmCost > TargetTransformInfo::TCC_Basic) 7668 return false; 7669 } 7670 // Now unmerge between GEPI and UGEPIs. 7671 for (GetElementPtrInst *UGEPI : UGEPIs) { 7672 UGEPI->setOperand(0, GEPI); 7673 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7674 Constant *NewUGEPIIdx = 7675 ConstantInt::get(GEPIIdx->getType(), 7676 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7677 UGEPI->setOperand(1, NewUGEPIIdx); 7678 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7679 // inbounds to avoid UB. 7680 if (!GEPI->isInBounds()) { 7681 UGEPI->setIsInBounds(false); 7682 } 7683 } 7684 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7685 // alive on IndirectBr edges). 7686 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7687 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7688 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7689 return true; 7690 } 7691 7692 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7693 // Bail out if we inserted the instruction to prevent optimizations from 7694 // stepping on each other's toes. 7695 if (InsertedInsts.count(I)) 7696 return false; 7697 7698 // TODO: Move into the switch on opcode below here. 7699 if (PHINode *P = dyn_cast<PHINode>(I)) { 7700 // It is possible for very late stage optimizations (such as SimplifyCFG) 7701 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7702 // trivial PHI, go ahead and zap it here. 7703 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7704 LargeOffsetGEPMap.erase(P); 7705 P->replaceAllUsesWith(V); 7706 P->eraseFromParent(); 7707 ++NumPHIsElim; 7708 return true; 7709 } 7710 return false; 7711 } 7712 7713 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7714 // If the source of the cast is a constant, then this should have 7715 // already been constant folded. The only reason NOT to constant fold 7716 // it is if something (e.g. LSR) was careful to place the constant 7717 // evaluation in a block other than then one that uses it (e.g. to hoist 7718 // the address of globals out of a loop). If this is the case, we don't 7719 // want to forward-subst the cast. 7720 if (isa<Constant>(CI->getOperand(0))) 7721 return false; 7722 7723 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7724 return true; 7725 7726 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7727 /// Sink a zext or sext into its user blocks if the target type doesn't 7728 /// fit in one register 7729 if (TLI->getTypeAction(CI->getContext(), 7730 TLI->getValueType(*DL, CI->getType())) == 7731 TargetLowering::TypeExpandInteger) { 7732 return SinkCast(CI); 7733 } else { 7734 bool MadeChange = optimizeExt(I); 7735 return MadeChange | optimizeExtUses(I); 7736 } 7737 } 7738 return false; 7739 } 7740 7741 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7742 if (optimizeCmp(Cmp, ModifiedDT)) 7743 return true; 7744 7745 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7746 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7747 bool Modified = optimizeLoadExt(LI); 7748 unsigned AS = LI->getPointerAddressSpace(); 7749 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7750 return Modified; 7751 } 7752 7753 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7754 if (splitMergedValStore(*SI, *DL, *TLI)) 7755 return true; 7756 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7757 unsigned AS = SI->getPointerAddressSpace(); 7758 return optimizeMemoryInst(I, SI->getOperand(1), 7759 SI->getOperand(0)->getType(), AS); 7760 } 7761 7762 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7763 unsigned AS = RMW->getPointerAddressSpace(); 7764 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7765 RMW->getType(), AS); 7766 } 7767 7768 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7769 unsigned AS = CmpX->getPointerAddressSpace(); 7770 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7771 CmpX->getCompareOperand()->getType(), AS); 7772 } 7773 7774 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7775 7776 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7777 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7778 7779 // TODO: Move this into the switch on opcode - it handles shifts already. 7780 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7781 BinOp->getOpcode() == Instruction::LShr)) { 7782 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7783 if (CI && TLI->hasExtractBitsInsn()) 7784 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7785 return true; 7786 } 7787 7788 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7789 if (GEPI->hasAllZeroIndices()) { 7790 /// The GEP operand must be a pointer, so must its result -> BitCast 7791 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7792 GEPI->getName(), GEPI); 7793 NC->setDebugLoc(GEPI->getDebugLoc()); 7794 GEPI->replaceAllUsesWith(NC); 7795 GEPI->eraseFromParent(); 7796 ++NumGEPsElim; 7797 optimizeInst(NC, ModifiedDT); 7798 return true; 7799 } 7800 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7801 return true; 7802 } 7803 return false; 7804 } 7805 7806 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7807 // freeze(icmp a, const)) -> icmp (freeze a), const 7808 // This helps generate efficient conditional jumps. 7809 Instruction *CmpI = nullptr; 7810 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7811 CmpI = II; 7812 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7813 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7814 7815 if (CmpI && CmpI->hasOneUse()) { 7816 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7817 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7818 isa<ConstantPointerNull>(Op0); 7819 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7820 isa<ConstantPointerNull>(Op1); 7821 if (Const0 || Const1) { 7822 if (!Const0 || !Const1) { 7823 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7824 F->takeName(FI); 7825 CmpI->setOperand(Const0 ? 1 : 0, F); 7826 } 7827 FI->replaceAllUsesWith(CmpI); 7828 FI->eraseFromParent(); 7829 return true; 7830 } 7831 } 7832 return false; 7833 } 7834 7835 if (tryToSinkFreeOperands(I)) 7836 return true; 7837 7838 switch (I->getOpcode()) { 7839 case Instruction::Shl: 7840 case Instruction::LShr: 7841 case Instruction::AShr: 7842 return optimizeShiftInst(cast<BinaryOperator>(I)); 7843 case Instruction::Call: 7844 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7845 case Instruction::Select: 7846 return optimizeSelectInst(cast<SelectInst>(I)); 7847 case Instruction::ShuffleVector: 7848 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7849 case Instruction::Switch: 7850 return optimizeSwitchInst(cast<SwitchInst>(I)); 7851 case Instruction::ExtractElement: 7852 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7853 } 7854 7855 return false; 7856 } 7857 7858 /// Given an OR instruction, check to see if this is a bitreverse 7859 /// idiom. If so, insert the new intrinsic and return true. 7860 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7861 if (!I.getType()->isIntegerTy() || 7862 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7863 TLI->getValueType(*DL, I.getType(), true))) 7864 return false; 7865 7866 SmallVector<Instruction*, 4> Insts; 7867 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7868 return false; 7869 Instruction *LastInst = Insts.back(); 7870 I.replaceAllUsesWith(LastInst); 7871 RecursivelyDeleteTriviallyDeadInstructions( 7872 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7873 return true; 7874 } 7875 7876 // In this pass we look for GEP and cast instructions that are used 7877 // across basic blocks and rewrite them to improve basic-block-at-a-time 7878 // selection. 7879 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7880 SunkAddrs.clear(); 7881 bool MadeChange = false; 7882 7883 CurInstIterator = BB.begin(); 7884 while (CurInstIterator != BB.end()) { 7885 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7886 if (ModifiedDT) 7887 return true; 7888 } 7889 7890 bool MadeBitReverse = true; 7891 while (MadeBitReverse) { 7892 MadeBitReverse = false; 7893 for (auto &I : reverse(BB)) { 7894 if (makeBitReverse(I)) { 7895 MadeBitReverse = MadeChange = true; 7896 break; 7897 } 7898 } 7899 } 7900 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7901 7902 return MadeChange; 7903 } 7904 7905 // Some CGP optimizations may move or alter what's computed in a block. Check 7906 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7907 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7908 assert(isa<DbgValueInst>(I)); 7909 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7910 7911 // Does this dbg.value refer to a sunk address calculation? 7912 bool AnyChange = false; 7913 for (Value *Location : DVI.getValues()) { 7914 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7915 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7916 if (SunkAddr) { 7917 // Point dbg.value at locally computed address, which should give the best 7918 // opportunity to be accurately lowered. This update may change the type 7919 // of pointer being referred to; however this makes no difference to 7920 // debugging information, and we can't generate bitcasts that may affect 7921 // codegen. 7922 DVI.replaceVariableLocationOp(Location, SunkAddr); 7923 AnyChange = true; 7924 } 7925 } 7926 return AnyChange; 7927 } 7928 7929 // A llvm.dbg.value may be using a value before its definition, due to 7930 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7931 // them by moving the dbg.value to immediately after the value definition. 7932 // FIXME: Ideally this should never be necessary, and this has the potential 7933 // to re-order dbg.value intrinsics. 7934 bool CodeGenPrepare::placeDbgValues(Function &F) { 7935 bool MadeChange = false; 7936 DominatorTree DT(F); 7937 7938 for (BasicBlock &BB : F) { 7939 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7940 Instruction *Insn = &*BI++; 7941 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7942 if (!DVI) 7943 continue; 7944 7945 SmallVector<Instruction *, 4> VIs; 7946 for (Value *V : DVI->getValues()) 7947 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 7948 VIs.push_back(VI); 7949 7950 // This DVI may depend on multiple instructions, complicating any 7951 // potential sink. This block takes the defensive approach, opting to 7952 // "undef" the DVI if it has more than one instruction and any of them do 7953 // not dominate DVI. 7954 for (Instruction *VI : VIs) { 7955 if (VI->isTerminator()) 7956 continue; 7957 7958 // If VI is a phi in a block with an EHPad terminator, we can't insert 7959 // after it. 7960 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7961 continue; 7962 7963 // If the defining instruction dominates the dbg.value, we do not need 7964 // to move the dbg.value. 7965 if (DT.dominates(VI, DVI)) 7966 continue; 7967 7968 // If we depend on multiple instructions and any of them doesn't 7969 // dominate this DVI, we probably can't salvage it: moving it to 7970 // after any of the instructions could cause us to lose the others. 7971 if (VIs.size() > 1) { 7972 LLVM_DEBUG( 7973 dbgs() 7974 << "Unable to find valid location for Debug Value, undefing:\n" 7975 << *DVI); 7976 DVI->setUndef(); 7977 break; 7978 } 7979 7980 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7981 << *DVI << ' ' << *VI); 7982 DVI->removeFromParent(); 7983 if (isa<PHINode>(VI)) 7984 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7985 else 7986 DVI->insertAfter(VI); 7987 MadeChange = true; 7988 ++NumDbgValueMoved; 7989 } 7990 } 7991 } 7992 return MadeChange; 7993 } 7994 7995 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered 7996 // probes can be chained dependencies of other regular DAG nodes and block DAG 7997 // combine optimizations. 7998 bool CodeGenPrepare::placePseudoProbes(Function &F) { 7999 bool MadeChange = false; 8000 for (auto &Block : F) { 8001 // Move the rest probes to the beginning of the block. 8002 auto FirstInst = Block.getFirstInsertionPt(); 8003 while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst()) 8004 ++FirstInst; 8005 BasicBlock::iterator I(FirstInst); 8006 I++; 8007 while (I != Block.end()) { 8008 if (auto *II = dyn_cast<PseudoProbeInst>(I++)) { 8009 II->moveBefore(&*FirstInst); 8010 MadeChange = true; 8011 } 8012 } 8013 } 8014 return MadeChange; 8015 } 8016 8017 /// Scale down both weights to fit into uint32_t. 8018 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 8019 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 8020 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 8021 NewTrue = NewTrue / Scale; 8022 NewFalse = NewFalse / Scale; 8023 } 8024 8025 /// Some targets prefer to split a conditional branch like: 8026 /// \code 8027 /// %0 = icmp ne i32 %a, 0 8028 /// %1 = icmp ne i32 %b, 0 8029 /// %or.cond = or i1 %0, %1 8030 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8031 /// \endcode 8032 /// into multiple branch instructions like: 8033 /// \code 8034 /// bb1: 8035 /// %0 = icmp ne i32 %a, 0 8036 /// br i1 %0, label %TrueBB, label %bb2 8037 /// bb2: 8038 /// %1 = icmp ne i32 %b, 0 8039 /// br i1 %1, label %TrueBB, label %FalseBB 8040 /// \endcode 8041 /// This usually allows instruction selection to do even further optimizations 8042 /// and combine the compare with the branch instruction. Currently this is 8043 /// applied for targets which have "cheap" jump instructions. 8044 /// 8045 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8046 /// 8047 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8048 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8049 return false; 8050 8051 bool MadeChange = false; 8052 for (auto &BB : F) { 8053 // Does this BB end with the following? 8054 // %cond1 = icmp|fcmp|binary instruction ... 8055 // %cond2 = icmp|fcmp|binary instruction ... 8056 // %cond.or = or|and i1 %cond1, cond2 8057 // br i1 %cond.or label %dest1, label %dest2" 8058 Instruction *LogicOp; 8059 BasicBlock *TBB, *FBB; 8060 if (!match(BB.getTerminator(), 8061 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8062 continue; 8063 8064 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8065 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8066 continue; 8067 8068 // The merging of mostly empty BB can cause a degenerate branch. 8069 if (TBB == FBB) 8070 continue; 8071 8072 unsigned Opc; 8073 Value *Cond1, *Cond2; 8074 if (match(LogicOp, 8075 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8076 Opc = Instruction::And; 8077 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8078 m_OneUse(m_Value(Cond2))))) 8079 Opc = Instruction::Or; 8080 else 8081 continue; 8082 8083 auto IsGoodCond = [](Value *Cond) { 8084 return match( 8085 Cond, 8086 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8087 m_LogicalOr(m_Value(), m_Value())))); 8088 }; 8089 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8090 continue; 8091 8092 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8093 8094 // Create a new BB. 8095 auto *TmpBB = 8096 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8097 BB.getParent(), BB.getNextNode()); 8098 8099 // Update original basic block by using the first condition directly by the 8100 // branch instruction and removing the no longer needed and/or instruction. 8101 Br1->setCondition(Cond1); 8102 LogicOp->eraseFromParent(); 8103 8104 // Depending on the condition we have to either replace the true or the 8105 // false successor of the original branch instruction. 8106 if (Opc == Instruction::And) 8107 Br1->setSuccessor(0, TmpBB); 8108 else 8109 Br1->setSuccessor(1, TmpBB); 8110 8111 // Fill in the new basic block. 8112 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8113 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8114 I->removeFromParent(); 8115 I->insertBefore(Br2); 8116 } 8117 8118 // Update PHI nodes in both successors. The original BB needs to be 8119 // replaced in one successor's PHI nodes, because the branch comes now from 8120 // the newly generated BB (NewBB). In the other successor we need to add one 8121 // incoming edge to the PHI nodes, because both branch instructions target 8122 // now the same successor. Depending on the original branch condition 8123 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8124 // we perform the correct update for the PHI nodes. 8125 // This doesn't change the successor order of the just created branch 8126 // instruction (or any other instruction). 8127 if (Opc == Instruction::Or) 8128 std::swap(TBB, FBB); 8129 8130 // Replace the old BB with the new BB. 8131 TBB->replacePhiUsesWith(&BB, TmpBB); 8132 8133 // Add another incoming edge form the new BB. 8134 for (PHINode &PN : FBB->phis()) { 8135 auto *Val = PN.getIncomingValueForBlock(&BB); 8136 PN.addIncoming(Val, TmpBB); 8137 } 8138 8139 // Update the branch weights (from SelectionDAGBuilder:: 8140 // FindMergedConditions). 8141 if (Opc == Instruction::Or) { 8142 // Codegen X | Y as: 8143 // BB1: 8144 // jmp_if_X TBB 8145 // jmp TmpBB 8146 // TmpBB: 8147 // jmp_if_Y TBB 8148 // jmp FBB 8149 // 8150 8151 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8152 // The requirement is that 8153 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8154 // = TrueProb for original BB. 8155 // Assuming the original weights are A and B, one choice is to set BB1's 8156 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8157 // assumes that 8158 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8159 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8160 // TmpBB, but the math is more complicated. 8161 uint64_t TrueWeight, FalseWeight; 8162 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8163 uint64_t NewTrueWeight = TrueWeight; 8164 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8165 scaleWeights(NewTrueWeight, NewFalseWeight); 8166 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8167 .createBranchWeights(TrueWeight, FalseWeight)); 8168 8169 NewTrueWeight = TrueWeight; 8170 NewFalseWeight = 2 * FalseWeight; 8171 scaleWeights(NewTrueWeight, NewFalseWeight); 8172 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8173 .createBranchWeights(TrueWeight, FalseWeight)); 8174 } 8175 } else { 8176 // Codegen X & Y as: 8177 // BB1: 8178 // jmp_if_X TmpBB 8179 // jmp FBB 8180 // TmpBB: 8181 // jmp_if_Y TBB 8182 // jmp FBB 8183 // 8184 // This requires creation of TmpBB after CurBB. 8185 8186 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8187 // The requirement is that 8188 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8189 // = FalseProb for original BB. 8190 // Assuming the original weights are A and B, one choice is to set BB1's 8191 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8192 // assumes that 8193 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8194 uint64_t TrueWeight, FalseWeight; 8195 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8196 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8197 uint64_t NewFalseWeight = FalseWeight; 8198 scaleWeights(NewTrueWeight, NewFalseWeight); 8199 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8200 .createBranchWeights(TrueWeight, FalseWeight)); 8201 8202 NewTrueWeight = 2 * TrueWeight; 8203 NewFalseWeight = FalseWeight; 8204 scaleWeights(NewTrueWeight, NewFalseWeight); 8205 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8206 .createBranchWeights(TrueWeight, FalseWeight)); 8207 } 8208 } 8209 8210 ModifiedDT = true; 8211 MadeChange = true; 8212 8213 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8214 TmpBB->dump()); 8215 } 8216 return MadeChange; 8217 } 8218