1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/BlockFrequencyInfo.h" 26 #include "llvm/Analysis/BranchProbabilityInfo.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LoopInfo.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/Analysis/ProfileSummaryInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineValueType.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetLowering.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/CodeGen/ValueTypes.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/Cloning.h" 90 #include "llvm/Transforms/Utils/Local.h" 91 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 92 #include "llvm/Transforms/Utils/ValueMapper.h" 93 #include <algorithm> 94 #include <cassert> 95 #include <cstdint> 96 #include <iterator> 97 #include <limits> 98 #include <memory> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 using namespace llvm::PatternMatch; 104 105 #define DEBUG_TYPE "codegenprepare" 106 107 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 108 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 109 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 110 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 111 "sunken Cmps"); 112 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 113 "of sunken Casts"); 114 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 115 "computations were sunk"); 116 STATISTIC(NumMemoryInstsPhiCreated, 117 "Number of phis created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumMemoryInstsSelectCreated, 120 "Number of select created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 123 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 124 STATISTIC(NumAndsAdded, 125 "Number of and mask instructions added to form ext loads"); 126 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 127 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 128 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 129 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 130 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 131 132 static cl::opt<bool> DisableBranchOpts( 133 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 134 cl::desc("Disable branch optimizations in CodeGenPrepare")); 135 136 static cl::opt<bool> 137 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 138 cl::desc("Disable GC optimizations in CodeGenPrepare")); 139 140 static cl::opt<bool> DisableSelectToBranch( 141 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 142 cl::desc("Disable select to branch conversion.")); 143 144 static cl::opt<bool> AddrSinkUsingGEPs( 145 "addr-sink-using-gep", cl::Hidden, cl::init(true), 146 cl::desc("Address sinking in CGP using GEPs.")); 147 148 static cl::opt<bool> EnableAndCmpSinking( 149 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 150 cl::desc("Enable sinkinig and/cmp into branches.")); 151 152 static cl::opt<bool> DisableStoreExtract( 153 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 154 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 155 156 static cl::opt<bool> StressStoreExtract( 157 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 158 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 159 160 static cl::opt<bool> DisableExtLdPromotion( 161 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 162 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 163 "CodeGenPrepare")); 164 165 static cl::opt<bool> StressExtLdPromotion( 166 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 167 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 168 "optimization in CodeGenPrepare")); 169 170 static cl::opt<bool> DisablePreheaderProtect( 171 "disable-preheader-prot", cl::Hidden, cl::init(false), 172 cl::desc("Disable protection against removing loop preheaders")); 173 174 static cl::opt<bool> ProfileGuidedSectionPrefix( 175 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 176 cl::desc("Use profile info to add section prefix for hot/cold functions")); 177 178 static cl::opt<unsigned> FreqRatioToSkipMerge( 179 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 180 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 181 "(frequency of destination block) is greater than this ratio")); 182 183 static cl::opt<bool> ForceSplitStore( 184 "force-split-store", cl::Hidden, cl::init(false), 185 cl::desc("Force store splitting no matter what the target query says.")); 186 187 static cl::opt<bool> 188 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 189 cl::desc("Enable merging of redundant sexts when one is dominating" 190 " the other."), cl::init(true)); 191 192 static cl::opt<bool> DisableComplexAddrModes( 193 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 194 cl::desc("Disables combining addressing modes with different parts " 195 "in optimizeMemoryInst.")); 196 197 static cl::opt<bool> 198 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 199 cl::desc("Allow creation of Phis in Address sinking.")); 200 201 static cl::opt<bool> 202 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(false), 203 cl::desc("Allow creation of selects in Address sinking.")); 204 205 static cl::opt<bool> AddrSinkCombineBaseReg( 206 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 207 cl::desc("Allow combining of BaseReg field in Address sinking.")); 208 209 static cl::opt<bool> AddrSinkCombineBaseGV( 210 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 211 cl::desc("Allow combining of BaseGV field in Address sinking.")); 212 213 static cl::opt<bool> AddrSinkCombineBaseOffs( 214 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 215 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineScaledReg( 218 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 220 221 namespace { 222 223 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 224 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 225 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 226 using SExts = SmallVector<Instruction *, 16>; 227 using ValueToSExts = DenseMap<Value *, SExts>; 228 229 class TypePromotionTransaction; 230 231 class CodeGenPrepare : public FunctionPass { 232 const TargetMachine *TM = nullptr; 233 const TargetSubtargetInfo *SubtargetInfo; 234 const TargetLowering *TLI = nullptr; 235 const TargetRegisterInfo *TRI; 236 const TargetTransformInfo *TTI = nullptr; 237 const TargetLibraryInfo *TLInfo; 238 const LoopInfo *LI; 239 std::unique_ptr<BlockFrequencyInfo> BFI; 240 std::unique_ptr<BranchProbabilityInfo> BPI; 241 242 /// As we scan instructions optimizing them, this is the next instruction 243 /// to optimize. Transforms that can invalidate this should update it. 244 BasicBlock::iterator CurInstIterator; 245 246 /// Keeps track of non-local addresses that have been sunk into a block. 247 /// This allows us to avoid inserting duplicate code for blocks with 248 /// multiple load/stores of the same address. The usage of WeakTrackingVH 249 /// enables SunkAddrs to be treated as a cache whose entries can be 250 /// invalidated if a sunken address computation has been erased. 251 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 252 253 /// Keeps track of all instructions inserted for the current function. 254 SetOfInstrs InsertedInsts; 255 256 /// Keeps track of the type of the related instruction before their 257 /// promotion for the current function. 258 InstrToOrigTy PromotedInsts; 259 260 /// Keep track of instructions removed during promotion. 261 SetOfInstrs RemovedInsts; 262 263 /// Keep track of sext chains based on their initial value. 264 DenseMap<Value *, Instruction *> SeenChainsForSExt; 265 266 /// Keep track of SExt promoted. 267 ValueToSExts ValToSExtendedUses; 268 269 /// True if CFG is modified in any way. 270 bool ModifiedDT; 271 272 /// True if optimizing for size. 273 bool OptSize; 274 275 /// DataLayout for the Function being processed. 276 const DataLayout *DL = nullptr; 277 278 public: 279 static char ID; // Pass identification, replacement for typeid 280 281 CodeGenPrepare() : FunctionPass(ID) { 282 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 283 } 284 285 bool runOnFunction(Function &F) override; 286 287 StringRef getPassName() const override { return "CodeGen Prepare"; } 288 289 void getAnalysisUsage(AnalysisUsage &AU) const override { 290 // FIXME: When we can selectively preserve passes, preserve the domtree. 291 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 292 AU.addRequired<TargetLibraryInfoWrapperPass>(); 293 AU.addRequired<TargetTransformInfoWrapperPass>(); 294 AU.addRequired<LoopInfoWrapperPass>(); 295 } 296 297 private: 298 bool eliminateFallThrough(Function &F); 299 bool eliminateMostlyEmptyBlocks(Function &F); 300 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 301 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 302 void eliminateMostlyEmptyBlock(BasicBlock *BB); 303 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 304 bool isPreheader); 305 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 306 bool optimizeInst(Instruction *I, bool &ModifiedDT); 307 bool optimizeMemoryInst(Instruction *I, Value *Addr, 308 Type *AccessTy, unsigned AS); 309 bool optimizeInlineAsmInst(CallInst *CS); 310 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 311 bool optimizeExt(Instruction *&I); 312 bool optimizeExtUses(Instruction *I); 313 bool optimizeLoadExt(LoadInst *I); 314 bool optimizeSelectInst(SelectInst *SI); 315 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 316 bool optimizeSwitchInst(SwitchInst *CI); 317 bool optimizeExtractElementInst(Instruction *Inst); 318 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 319 bool placeDbgValues(Function &F); 320 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 321 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 322 bool tryToPromoteExts(TypePromotionTransaction &TPT, 323 const SmallVectorImpl<Instruction *> &Exts, 324 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 325 unsigned CreatedInstsCost = 0); 326 bool mergeSExts(Function &F); 327 bool performAddressTypePromotion( 328 Instruction *&Inst, 329 bool AllowPromotionWithoutCommonHeader, 330 bool HasPromoted, TypePromotionTransaction &TPT, 331 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 332 bool splitBranchCondition(Function &F); 333 bool simplifyOffsetableRelocate(Instruction &I); 334 bool splitIndirectCriticalEdges(Function &F); 335 }; 336 337 } // end anonymous namespace 338 339 char CodeGenPrepare::ID = 0; 340 341 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 342 "Optimize for code generation", false, false) 343 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 344 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 345 "Optimize for code generation", false, false) 346 347 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 348 349 bool CodeGenPrepare::runOnFunction(Function &F) { 350 if (skipFunction(F)) 351 return false; 352 353 DL = &F.getParent()->getDataLayout(); 354 355 bool EverMadeChange = false; 356 // Clear per function information. 357 InsertedInsts.clear(); 358 PromotedInsts.clear(); 359 BFI.reset(); 360 BPI.reset(); 361 362 ModifiedDT = false; 363 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 364 TM = &TPC->getTM<TargetMachine>(); 365 SubtargetInfo = TM->getSubtargetImpl(F); 366 TLI = SubtargetInfo->getTargetLowering(); 367 TRI = SubtargetInfo->getRegisterInfo(); 368 } 369 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 370 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 371 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 372 OptSize = F.optForSize(); 373 374 ProfileSummaryInfo *PSI = 375 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 376 if (ProfileGuidedSectionPrefix) { 377 if (PSI->isFunctionHotInCallGraph(&F)) 378 F.setSectionPrefix(".hot"); 379 else if (PSI->isFunctionColdInCallGraph(&F)) 380 F.setSectionPrefix(".unlikely"); 381 } 382 383 /// This optimization identifies DIV instructions that can be 384 /// profitably bypassed and carried out with a shorter, faster divide. 385 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 386 TLI->isSlowDivBypassed()) { 387 const DenseMap<unsigned int, unsigned int> &BypassWidths = 388 TLI->getBypassSlowDivWidths(); 389 BasicBlock* BB = &*F.begin(); 390 while (BB != nullptr) { 391 // bypassSlowDivision may create new BBs, but we don't want to reapply the 392 // optimization to those blocks. 393 BasicBlock* Next = BB->getNextNode(); 394 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 395 BB = Next; 396 } 397 } 398 399 // Eliminate blocks that contain only PHI nodes and an 400 // unconditional branch. 401 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 402 403 // llvm.dbg.value is far away from the value then iSel may not be able 404 // handle it properly. iSel will drop llvm.dbg.value if it can not 405 // find a node corresponding to the value. 406 EverMadeChange |= placeDbgValues(F); 407 408 if (!DisableBranchOpts) 409 EverMadeChange |= splitBranchCondition(F); 410 411 // Split some critical edges where one of the sources is an indirect branch, 412 // to help generate sane code for PHIs involving such edges. 413 EverMadeChange |= splitIndirectCriticalEdges(F); 414 415 bool MadeChange = true; 416 while (MadeChange) { 417 MadeChange = false; 418 SeenChainsForSExt.clear(); 419 ValToSExtendedUses.clear(); 420 RemovedInsts.clear(); 421 for (Function::iterator I = F.begin(); I != F.end(); ) { 422 BasicBlock *BB = &*I++; 423 bool ModifiedDTOnIteration = false; 424 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 425 426 // Restart BB iteration if the dominator tree of the Function was changed 427 if (ModifiedDTOnIteration) 428 break; 429 } 430 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 431 MadeChange |= mergeSExts(F); 432 433 // Really free removed instructions during promotion. 434 for (Instruction *I : RemovedInsts) 435 I->deleteValue(); 436 437 EverMadeChange |= MadeChange; 438 } 439 440 SunkAddrs.clear(); 441 442 if (!DisableBranchOpts) { 443 MadeChange = false; 444 SmallPtrSet<BasicBlock*, 8> WorkList; 445 for (BasicBlock &BB : F) { 446 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 447 MadeChange |= ConstantFoldTerminator(&BB, true); 448 if (!MadeChange) continue; 449 450 for (SmallVectorImpl<BasicBlock*>::iterator 451 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 452 if (pred_begin(*II) == pred_end(*II)) 453 WorkList.insert(*II); 454 } 455 456 // Delete the dead blocks and any of their dead successors. 457 MadeChange |= !WorkList.empty(); 458 while (!WorkList.empty()) { 459 BasicBlock *BB = *WorkList.begin(); 460 WorkList.erase(BB); 461 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 462 463 DeleteDeadBlock(BB); 464 465 for (SmallVectorImpl<BasicBlock*>::iterator 466 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 467 if (pred_begin(*II) == pred_end(*II)) 468 WorkList.insert(*II); 469 } 470 471 // Merge pairs of basic blocks with unconditional branches, connected by 472 // a single edge. 473 if (EverMadeChange || MadeChange) 474 MadeChange |= eliminateFallThrough(F); 475 476 EverMadeChange |= MadeChange; 477 } 478 479 if (!DisableGCOpts) { 480 SmallVector<Instruction *, 2> Statepoints; 481 for (BasicBlock &BB : F) 482 for (Instruction &I : BB) 483 if (isStatepoint(I)) 484 Statepoints.push_back(&I); 485 for (auto &I : Statepoints) 486 EverMadeChange |= simplifyOffsetableRelocate(*I); 487 } 488 489 return EverMadeChange; 490 } 491 492 /// Merge basic blocks which are connected by a single edge, where one of the 493 /// basic blocks has a single successor pointing to the other basic block, 494 /// which has a single predecessor. 495 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 496 bool Changed = false; 497 // Scan all of the blocks in the function, except for the entry block. 498 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 499 BasicBlock *BB = &*I++; 500 // If the destination block has a single pred, then this is a trivial 501 // edge, just collapse it. 502 BasicBlock *SinglePred = BB->getSinglePredecessor(); 503 504 // Don't merge if BB's address is taken. 505 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 506 507 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 508 if (Term && !Term->isConditional()) { 509 Changed = true; 510 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 511 // Remember if SinglePred was the entry block of the function. 512 // If so, we will need to move BB back to the entry position. 513 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 514 MergeBasicBlockIntoOnlyPred(BB, nullptr); 515 516 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 517 BB->moveBefore(&BB->getParent()->getEntryBlock()); 518 519 // We have erased a block. Update the iterator. 520 I = BB->getIterator(); 521 } 522 } 523 return Changed; 524 } 525 526 /// Find a destination block from BB if BB is mergeable empty block. 527 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 528 // If this block doesn't end with an uncond branch, ignore it. 529 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 530 if (!BI || !BI->isUnconditional()) 531 return nullptr; 532 533 // If the instruction before the branch (skipping debug info) isn't a phi 534 // node, then other stuff is happening here. 535 BasicBlock::iterator BBI = BI->getIterator(); 536 if (BBI != BB->begin()) { 537 --BBI; 538 while (isa<DbgInfoIntrinsic>(BBI)) { 539 if (BBI == BB->begin()) 540 break; 541 --BBI; 542 } 543 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 544 return nullptr; 545 } 546 547 // Do not break infinite loops. 548 BasicBlock *DestBB = BI->getSuccessor(0); 549 if (DestBB == BB) 550 return nullptr; 551 552 if (!canMergeBlocks(BB, DestBB)) 553 DestBB = nullptr; 554 555 return DestBB; 556 } 557 558 // Return the unique indirectbr predecessor of a block. This may return null 559 // even if such a predecessor exists, if it's not useful for splitting. 560 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 561 // predecessors of BB. 562 static BasicBlock * 563 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 564 // If the block doesn't have any PHIs, we don't care about it, since there's 565 // no point in splitting it. 566 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 567 if (!PN) 568 return nullptr; 569 570 // Verify we have exactly one IBR predecessor. 571 // Conservatively bail out if one of the other predecessors is not a "regular" 572 // terminator (that is, not a switch or a br). 573 BasicBlock *IBB = nullptr; 574 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 575 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 576 TerminatorInst *PredTerm = PredBB->getTerminator(); 577 switch (PredTerm->getOpcode()) { 578 case Instruction::IndirectBr: 579 if (IBB) 580 return nullptr; 581 IBB = PredBB; 582 break; 583 case Instruction::Br: 584 case Instruction::Switch: 585 OtherPreds.push_back(PredBB); 586 continue; 587 default: 588 return nullptr; 589 } 590 } 591 592 return IBB; 593 } 594 595 // Split critical edges where the source of the edge is an indirectbr 596 // instruction. This isn't always possible, but we can handle some easy cases. 597 // This is useful because MI is unable to split such critical edges, 598 // which means it will not be able to sink instructions along those edges. 599 // This is especially painful for indirect branches with many successors, where 600 // we end up having to prepare all outgoing values in the origin block. 601 // 602 // Our normal algorithm for splitting critical edges requires us to update 603 // the outgoing edges of the edge origin block, but for an indirectbr this 604 // is hard, since it would require finding and updating the block addresses 605 // the indirect branch uses. But if a block only has a single indirectbr 606 // predecessor, with the others being regular branches, we can do it in a 607 // different way. 608 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 609 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 610 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 611 // create the following structure: 612 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 613 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 614 // Check whether the function has any indirectbrs, and collect which blocks 615 // they may jump to. Since most functions don't have indirect branches, 616 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 617 SmallSetVector<BasicBlock *, 16> Targets; 618 for (auto &BB : F) { 619 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 620 if (!IBI) 621 continue; 622 623 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 624 Targets.insert(IBI->getSuccessor(Succ)); 625 } 626 627 if (Targets.empty()) 628 return false; 629 630 bool Changed = false; 631 for (BasicBlock *Target : Targets) { 632 SmallVector<BasicBlock *, 16> OtherPreds; 633 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 634 // If we did not found an indirectbr, or the indirectbr is the only 635 // incoming edge, this isn't the kind of edge we're looking for. 636 if (!IBRPred || OtherPreds.empty()) 637 continue; 638 639 // Don't even think about ehpads/landingpads. 640 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 641 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 642 continue; 643 644 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 645 // It's possible Target was its own successor through an indirectbr. 646 // In this case, the indirectbr now comes from BodyBlock. 647 if (IBRPred == Target) 648 IBRPred = BodyBlock; 649 650 // At this point Target only has PHIs, and BodyBlock has the rest of the 651 // block's body. Create a copy of Target that will be used by the "direct" 652 // preds. 653 ValueToValueMapTy VMap; 654 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 655 656 for (BasicBlock *Pred : OtherPreds) { 657 // If the target is a loop to itself, then the terminator of the split 658 // block needs to be updated. 659 if (Pred == Target) 660 BodyBlock->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 661 else 662 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 663 } 664 665 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 666 // they are clones, so the number of PHIs are the same. 667 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 668 // (b) Leave that as the only edge in the "Indirect" PHI. 669 // (c) Merge the two in the body block. 670 BasicBlock::iterator Indirect = Target->begin(), 671 End = Target->getFirstNonPHI()->getIterator(); 672 BasicBlock::iterator Direct = DirectSucc->begin(); 673 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 674 675 assert(&*End == Target->getTerminator() && 676 "Block was expected to only contain PHIs"); 677 678 while (Indirect != End) { 679 PHINode *DirPHI = cast<PHINode>(Direct); 680 PHINode *IndPHI = cast<PHINode>(Indirect); 681 682 // Now, clean up - the direct block shouldn't get the indirect value, 683 // and vice versa. 684 DirPHI->removeIncomingValue(IBRPred); 685 Direct++; 686 687 // Advance the pointer here, to avoid invalidation issues when the old 688 // PHI is erased. 689 Indirect++; 690 691 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 692 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 693 IBRPred); 694 695 // Create a PHI in the body block, to merge the direct and indirect 696 // predecessors. 697 PHINode *MergePHI = 698 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 699 MergePHI->addIncoming(NewIndPHI, Target); 700 MergePHI->addIncoming(DirPHI, DirectSucc); 701 702 IndPHI->replaceAllUsesWith(MergePHI); 703 IndPHI->eraseFromParent(); 704 } 705 706 Changed = true; 707 } 708 709 return Changed; 710 } 711 712 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 713 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 714 /// edges in ways that are non-optimal for isel. Start by eliminating these 715 /// blocks so we can split them the way we want them. 716 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 717 SmallPtrSet<BasicBlock *, 16> Preheaders; 718 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 719 while (!LoopList.empty()) { 720 Loop *L = LoopList.pop_back_val(); 721 LoopList.insert(LoopList.end(), L->begin(), L->end()); 722 if (BasicBlock *Preheader = L->getLoopPreheader()) 723 Preheaders.insert(Preheader); 724 } 725 726 bool MadeChange = false; 727 // Note that this intentionally skips the entry block. 728 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 729 BasicBlock *BB = &*I++; 730 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 731 if (!DestBB || 732 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 733 continue; 734 735 eliminateMostlyEmptyBlock(BB); 736 MadeChange = true; 737 } 738 return MadeChange; 739 } 740 741 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 742 BasicBlock *DestBB, 743 bool isPreheader) { 744 // Do not delete loop preheaders if doing so would create a critical edge. 745 // Loop preheaders can be good locations to spill registers. If the 746 // preheader is deleted and we create a critical edge, registers may be 747 // spilled in the loop body instead. 748 if (!DisablePreheaderProtect && isPreheader && 749 !(BB->getSinglePredecessor() && 750 BB->getSinglePredecessor()->getSingleSuccessor())) 751 return false; 752 753 // Try to skip merging if the unique predecessor of BB is terminated by a 754 // switch or indirect branch instruction, and BB is used as an incoming block 755 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 756 // add COPY instructions in the predecessor of BB instead of BB (if it is not 757 // merged). Note that the critical edge created by merging such blocks wont be 758 // split in MachineSink because the jump table is not analyzable. By keeping 759 // such empty block (BB), ISel will place COPY instructions in BB, not in the 760 // predecessor of BB. 761 BasicBlock *Pred = BB->getUniquePredecessor(); 762 if (!Pred || 763 !(isa<SwitchInst>(Pred->getTerminator()) || 764 isa<IndirectBrInst>(Pred->getTerminator()))) 765 return true; 766 767 if (BB->getTerminator() != BB->getFirstNonPHI()) 768 return true; 769 770 // We use a simple cost heuristic which determine skipping merging is 771 // profitable if the cost of skipping merging is less than the cost of 772 // merging : Cost(skipping merging) < Cost(merging BB), where the 773 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 774 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 775 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 776 // Freq(Pred) / Freq(BB) > 2. 777 // Note that if there are multiple empty blocks sharing the same incoming 778 // value for the PHIs in the DestBB, we consider them together. In such 779 // case, Cost(merging BB) will be the sum of their frequencies. 780 781 if (!isa<PHINode>(DestBB->begin())) 782 return true; 783 784 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 785 786 // Find all other incoming blocks from which incoming values of all PHIs in 787 // DestBB are the same as the ones from BB. 788 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 789 ++PI) { 790 BasicBlock *DestBBPred = *PI; 791 if (DestBBPred == BB) 792 continue; 793 794 bool HasAllSameValue = true; 795 BasicBlock::const_iterator DestBBI = DestBB->begin(); 796 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 797 if (DestPN->getIncomingValueForBlock(BB) != 798 DestPN->getIncomingValueForBlock(DestBBPred)) { 799 HasAllSameValue = false; 800 break; 801 } 802 } 803 if (HasAllSameValue) 804 SameIncomingValueBBs.insert(DestBBPred); 805 } 806 807 // See if all BB's incoming values are same as the value from Pred. In this 808 // case, no reason to skip merging because COPYs are expected to be place in 809 // Pred already. 810 if (SameIncomingValueBBs.count(Pred)) 811 return true; 812 813 if (!BFI) { 814 Function &F = *BB->getParent(); 815 LoopInfo LI{DominatorTree(F)}; 816 BPI.reset(new BranchProbabilityInfo(F, LI)); 817 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 818 } 819 820 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 821 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 822 823 for (auto SameValueBB : SameIncomingValueBBs) 824 if (SameValueBB->getUniquePredecessor() == Pred && 825 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 826 BBFreq += BFI->getBlockFreq(SameValueBB); 827 828 return PredFreq.getFrequency() <= 829 BBFreq.getFrequency() * FreqRatioToSkipMerge; 830 } 831 832 /// Return true if we can merge BB into DestBB if there is a single 833 /// unconditional branch between them, and BB contains no other non-phi 834 /// instructions. 835 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 836 const BasicBlock *DestBB) const { 837 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 838 // the successor. If there are more complex condition (e.g. preheaders), 839 // don't mess around with them. 840 BasicBlock::const_iterator BBI = BB->begin(); 841 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 842 for (const User *U : PN->users()) { 843 const Instruction *UI = cast<Instruction>(U); 844 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 845 return false; 846 // If User is inside DestBB block and it is a PHINode then check 847 // incoming value. If incoming value is not from BB then this is 848 // a complex condition (e.g. preheaders) we want to avoid here. 849 if (UI->getParent() == DestBB) { 850 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 851 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 852 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 853 if (Insn && Insn->getParent() == BB && 854 Insn->getParent() != UPN->getIncomingBlock(I)) 855 return false; 856 } 857 } 858 } 859 } 860 861 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 862 // and DestBB may have conflicting incoming values for the block. If so, we 863 // can't merge the block. 864 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 865 if (!DestBBPN) return true; // no conflict. 866 867 // Collect the preds of BB. 868 SmallPtrSet<const BasicBlock*, 16> BBPreds; 869 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 870 // It is faster to get preds from a PHI than with pred_iterator. 871 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 872 BBPreds.insert(BBPN->getIncomingBlock(i)); 873 } else { 874 BBPreds.insert(pred_begin(BB), pred_end(BB)); 875 } 876 877 // Walk the preds of DestBB. 878 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 879 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 880 if (BBPreds.count(Pred)) { // Common predecessor? 881 BBI = DestBB->begin(); 882 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 883 const Value *V1 = PN->getIncomingValueForBlock(Pred); 884 const Value *V2 = PN->getIncomingValueForBlock(BB); 885 886 // If V2 is a phi node in BB, look up what the mapped value will be. 887 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 888 if (V2PN->getParent() == BB) 889 V2 = V2PN->getIncomingValueForBlock(Pred); 890 891 // If there is a conflict, bail out. 892 if (V1 != V2) return false; 893 } 894 } 895 } 896 897 return true; 898 } 899 900 /// Eliminate a basic block that has only phi's and an unconditional branch in 901 /// it. 902 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 903 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 904 BasicBlock *DestBB = BI->getSuccessor(0); 905 906 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 907 908 // If the destination block has a single pred, then this is a trivial edge, 909 // just collapse it. 910 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 911 if (SinglePred != DestBB) { 912 // Remember if SinglePred was the entry block of the function. If so, we 913 // will need to move BB back to the entry position. 914 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 915 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 916 917 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 918 BB->moveBefore(&BB->getParent()->getEntryBlock()); 919 920 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 921 return; 922 } 923 } 924 925 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 926 // to handle the new incoming edges it is about to have. 927 PHINode *PN; 928 for (BasicBlock::iterator BBI = DestBB->begin(); 929 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 930 // Remove the incoming value for BB, and remember it. 931 Value *InVal = PN->removeIncomingValue(BB, false); 932 933 // Two options: either the InVal is a phi node defined in BB or it is some 934 // value that dominates BB. 935 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 936 if (InValPhi && InValPhi->getParent() == BB) { 937 // Add all of the input values of the input PHI as inputs of this phi. 938 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 939 PN->addIncoming(InValPhi->getIncomingValue(i), 940 InValPhi->getIncomingBlock(i)); 941 } else { 942 // Otherwise, add one instance of the dominating value for each edge that 943 // we will be adding. 944 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 945 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 946 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 947 } else { 948 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 949 PN->addIncoming(InVal, *PI); 950 } 951 } 952 } 953 954 // The PHIs are now updated, change everything that refers to BB to use 955 // DestBB and remove BB. 956 BB->replaceAllUsesWith(DestBB); 957 BB->eraseFromParent(); 958 ++NumBlocksElim; 959 960 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 961 } 962 963 // Computes a map of base pointer relocation instructions to corresponding 964 // derived pointer relocation instructions given a vector of all relocate calls 965 static void computeBaseDerivedRelocateMap( 966 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 967 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 968 &RelocateInstMap) { 969 // Collect information in two maps: one primarily for locating the base object 970 // while filling the second map; the second map is the final structure holding 971 // a mapping between Base and corresponding Derived relocate calls 972 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 973 for (auto *ThisRelocate : AllRelocateCalls) { 974 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 975 ThisRelocate->getDerivedPtrIndex()); 976 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 977 } 978 for (auto &Item : RelocateIdxMap) { 979 std::pair<unsigned, unsigned> Key = Item.first; 980 if (Key.first == Key.second) 981 // Base relocation: nothing to insert 982 continue; 983 984 GCRelocateInst *I = Item.second; 985 auto BaseKey = std::make_pair(Key.first, Key.first); 986 987 // We're iterating over RelocateIdxMap so we cannot modify it. 988 auto MaybeBase = RelocateIdxMap.find(BaseKey); 989 if (MaybeBase == RelocateIdxMap.end()) 990 // TODO: We might want to insert a new base object relocate and gep off 991 // that, if there are enough derived object relocates. 992 continue; 993 994 RelocateInstMap[MaybeBase->second].push_back(I); 995 } 996 } 997 998 // Accepts a GEP and extracts the operands into a vector provided they're all 999 // small integer constants 1000 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1001 SmallVectorImpl<Value *> &OffsetV) { 1002 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1003 // Only accept small constant integer operands 1004 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1005 if (!Op || Op->getZExtValue() > 20) 1006 return false; 1007 } 1008 1009 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1010 OffsetV.push_back(GEP->getOperand(i)); 1011 return true; 1012 } 1013 1014 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1015 // replace, computes a replacement, and affects it. 1016 static bool 1017 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1018 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1019 bool MadeChange = false; 1020 // We must ensure the relocation of derived pointer is defined after 1021 // relocation of base pointer. If we find a relocation corresponding to base 1022 // defined earlier than relocation of base then we move relocation of base 1023 // right before found relocation. We consider only relocation in the same 1024 // basic block as relocation of base. Relocations from other basic block will 1025 // be skipped by optimization and we do not care about them. 1026 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1027 &*R != RelocatedBase; ++R) 1028 if (auto RI = dyn_cast<GCRelocateInst>(R)) 1029 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1030 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1031 RelocatedBase->moveBefore(RI); 1032 break; 1033 } 1034 1035 for (GCRelocateInst *ToReplace : Targets) { 1036 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1037 "Not relocating a derived object of the original base object"); 1038 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1039 // A duplicate relocate call. TODO: coalesce duplicates. 1040 continue; 1041 } 1042 1043 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1044 // Base and derived relocates are in different basic blocks. 1045 // In this case transform is only valid when base dominates derived 1046 // relocate. However it would be too expensive to check dominance 1047 // for each such relocate, so we skip the whole transformation. 1048 continue; 1049 } 1050 1051 Value *Base = ToReplace->getBasePtr(); 1052 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1053 if (!Derived || Derived->getPointerOperand() != Base) 1054 continue; 1055 1056 SmallVector<Value *, 2> OffsetV; 1057 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1058 continue; 1059 1060 // Create a Builder and replace the target callsite with a gep 1061 assert(RelocatedBase->getNextNode() && 1062 "Should always have one since it's not a terminator"); 1063 1064 // Insert after RelocatedBase 1065 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1066 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1067 1068 // If gc_relocate does not match the actual type, cast it to the right type. 1069 // In theory, there must be a bitcast after gc_relocate if the type does not 1070 // match, and we should reuse it to get the derived pointer. But it could be 1071 // cases like this: 1072 // bb1: 1073 // ... 1074 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1075 // br label %merge 1076 // 1077 // bb2: 1078 // ... 1079 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1080 // br label %merge 1081 // 1082 // merge: 1083 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1084 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1085 // 1086 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1087 // no matter there is already one or not. In this way, we can handle all cases, and 1088 // the extra bitcast should be optimized away in later passes. 1089 Value *ActualRelocatedBase = RelocatedBase; 1090 if (RelocatedBase->getType() != Base->getType()) { 1091 ActualRelocatedBase = 1092 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1093 } 1094 Value *Replacement = Builder.CreateGEP( 1095 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1096 Replacement->takeName(ToReplace); 1097 // If the newly generated derived pointer's type does not match the original derived 1098 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1099 Value *ActualReplacement = Replacement; 1100 if (Replacement->getType() != ToReplace->getType()) { 1101 ActualReplacement = 1102 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1103 } 1104 ToReplace->replaceAllUsesWith(ActualReplacement); 1105 ToReplace->eraseFromParent(); 1106 1107 MadeChange = true; 1108 } 1109 return MadeChange; 1110 } 1111 1112 // Turns this: 1113 // 1114 // %base = ... 1115 // %ptr = gep %base + 15 1116 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1117 // %base' = relocate(%tok, i32 4, i32 4) 1118 // %ptr' = relocate(%tok, i32 4, i32 5) 1119 // %val = load %ptr' 1120 // 1121 // into this: 1122 // 1123 // %base = ... 1124 // %ptr = gep %base + 15 1125 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1126 // %base' = gc.relocate(%tok, i32 4, i32 4) 1127 // %ptr' = gep %base' + 15 1128 // %val = load %ptr' 1129 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1130 bool MadeChange = false; 1131 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1132 1133 for (auto *U : I.users()) 1134 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1135 // Collect all the relocate calls associated with a statepoint 1136 AllRelocateCalls.push_back(Relocate); 1137 1138 // We need atleast one base pointer relocation + one derived pointer 1139 // relocation to mangle 1140 if (AllRelocateCalls.size() < 2) 1141 return false; 1142 1143 // RelocateInstMap is a mapping from the base relocate instruction to the 1144 // corresponding derived relocate instructions 1145 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1146 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1147 if (RelocateInstMap.empty()) 1148 return false; 1149 1150 for (auto &Item : RelocateInstMap) 1151 // Item.first is the RelocatedBase to offset against 1152 // Item.second is the vector of Targets to replace 1153 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1154 return MadeChange; 1155 } 1156 1157 /// SinkCast - Sink the specified cast instruction into its user blocks 1158 static bool SinkCast(CastInst *CI) { 1159 BasicBlock *DefBB = CI->getParent(); 1160 1161 /// InsertedCasts - Only insert a cast in each block once. 1162 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1163 1164 bool MadeChange = false; 1165 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1166 UI != E; ) { 1167 Use &TheUse = UI.getUse(); 1168 Instruction *User = cast<Instruction>(*UI); 1169 1170 // Figure out which BB this cast is used in. For PHI's this is the 1171 // appropriate predecessor block. 1172 BasicBlock *UserBB = User->getParent(); 1173 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1174 UserBB = PN->getIncomingBlock(TheUse); 1175 } 1176 1177 // Preincrement use iterator so we don't invalidate it. 1178 ++UI; 1179 1180 // The first insertion point of a block containing an EH pad is after the 1181 // pad. If the pad is the user, we cannot sink the cast past the pad. 1182 if (User->isEHPad()) 1183 continue; 1184 1185 // If the block selected to receive the cast is an EH pad that does not 1186 // allow non-PHI instructions before the terminator, we can't sink the 1187 // cast. 1188 if (UserBB->getTerminator()->isEHPad()) 1189 continue; 1190 1191 // If this user is in the same block as the cast, don't change the cast. 1192 if (UserBB == DefBB) continue; 1193 1194 // If we have already inserted a cast into this block, use it. 1195 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1196 1197 if (!InsertedCast) { 1198 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1199 assert(InsertPt != UserBB->end()); 1200 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1201 CI->getType(), "", &*InsertPt); 1202 } 1203 1204 // Replace a use of the cast with a use of the new cast. 1205 TheUse = InsertedCast; 1206 MadeChange = true; 1207 ++NumCastUses; 1208 } 1209 1210 // If we removed all uses, nuke the cast. 1211 if (CI->use_empty()) { 1212 salvageDebugInfo(*CI); 1213 CI->eraseFromParent(); 1214 MadeChange = true; 1215 } 1216 1217 return MadeChange; 1218 } 1219 1220 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1221 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1222 /// reduce the number of virtual registers that must be created and coalesced. 1223 /// 1224 /// Return true if any changes are made. 1225 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1226 const DataLayout &DL) { 1227 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1228 // than sinking only nop casts, but is helpful on some platforms. 1229 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1230 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1231 ASC->getDestAddressSpace())) 1232 return false; 1233 } 1234 1235 // If this is a noop copy, 1236 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1237 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1238 1239 // This is an fp<->int conversion? 1240 if (SrcVT.isInteger() != DstVT.isInteger()) 1241 return false; 1242 1243 // If this is an extension, it will be a zero or sign extension, which 1244 // isn't a noop. 1245 if (SrcVT.bitsLT(DstVT)) return false; 1246 1247 // If these values will be promoted, find out what they will be promoted 1248 // to. This helps us consider truncates on PPC as noop copies when they 1249 // are. 1250 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1251 TargetLowering::TypePromoteInteger) 1252 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1253 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1254 TargetLowering::TypePromoteInteger) 1255 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1256 1257 // If, after promotion, these are the same types, this is a noop copy. 1258 if (SrcVT != DstVT) 1259 return false; 1260 1261 return SinkCast(CI); 1262 } 1263 1264 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1265 /// possible. 1266 /// 1267 /// Return true if any changes were made. 1268 static bool CombineUAddWithOverflow(CmpInst *CI) { 1269 Value *A, *B; 1270 Instruction *AddI; 1271 if (!match(CI, 1272 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1273 return false; 1274 1275 Type *Ty = AddI->getType(); 1276 if (!isa<IntegerType>(Ty)) 1277 return false; 1278 1279 // We don't want to move around uses of condition values this late, so we we 1280 // check if it is legal to create the call to the intrinsic in the basic 1281 // block containing the icmp: 1282 1283 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1284 return false; 1285 1286 #ifndef NDEBUG 1287 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1288 // for now: 1289 if (AddI->hasOneUse()) 1290 assert(*AddI->user_begin() == CI && "expected!"); 1291 #endif 1292 1293 Module *M = CI->getModule(); 1294 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1295 1296 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1297 1298 auto *UAddWithOverflow = 1299 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1300 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1301 auto *Overflow = 1302 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1303 1304 CI->replaceAllUsesWith(Overflow); 1305 AddI->replaceAllUsesWith(UAdd); 1306 CI->eraseFromParent(); 1307 AddI->eraseFromParent(); 1308 return true; 1309 } 1310 1311 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1312 /// registers that must be created and coalesced. This is a clear win except on 1313 /// targets with multiple condition code registers (PowerPC), where it might 1314 /// lose; some adjustment may be wanted there. 1315 /// 1316 /// Return true if any changes are made. 1317 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1318 BasicBlock *DefBB = CI->getParent(); 1319 1320 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1321 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1322 return false; 1323 1324 // Only insert a cmp in each block once. 1325 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1326 1327 bool MadeChange = false; 1328 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1329 UI != E; ) { 1330 Use &TheUse = UI.getUse(); 1331 Instruction *User = cast<Instruction>(*UI); 1332 1333 // Preincrement use iterator so we don't invalidate it. 1334 ++UI; 1335 1336 // Don't bother for PHI nodes. 1337 if (isa<PHINode>(User)) 1338 continue; 1339 1340 // Figure out which BB this cmp is used in. 1341 BasicBlock *UserBB = User->getParent(); 1342 1343 // If this user is in the same block as the cmp, don't change the cmp. 1344 if (UserBB == DefBB) continue; 1345 1346 // If we have already inserted a cmp into this block, use it. 1347 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1348 1349 if (!InsertedCmp) { 1350 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1351 assert(InsertPt != UserBB->end()); 1352 InsertedCmp = 1353 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1354 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1355 // Propagate the debug info. 1356 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1357 } 1358 1359 // Replace a use of the cmp with a use of the new cmp. 1360 TheUse = InsertedCmp; 1361 MadeChange = true; 1362 ++NumCmpUses; 1363 } 1364 1365 // If we removed all uses, nuke the cmp. 1366 if (CI->use_empty()) { 1367 CI->eraseFromParent(); 1368 MadeChange = true; 1369 } 1370 1371 return MadeChange; 1372 } 1373 1374 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1375 if (SinkCmpExpression(CI, TLI)) 1376 return true; 1377 1378 if (CombineUAddWithOverflow(CI)) 1379 return true; 1380 1381 return false; 1382 } 1383 1384 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1385 /// used in a compare to allow isel to generate better code for targets where 1386 /// this operation can be combined. 1387 /// 1388 /// Return true if any changes are made. 1389 static bool sinkAndCmp0Expression(Instruction *AndI, 1390 const TargetLowering &TLI, 1391 SetOfInstrs &InsertedInsts) { 1392 // Double-check that we're not trying to optimize an instruction that was 1393 // already optimized by some other part of this pass. 1394 assert(!InsertedInsts.count(AndI) && 1395 "Attempting to optimize already optimized and instruction"); 1396 (void) InsertedInsts; 1397 1398 // Nothing to do for single use in same basic block. 1399 if (AndI->hasOneUse() && 1400 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1401 return false; 1402 1403 // Try to avoid cases where sinking/duplicating is likely to increase register 1404 // pressure. 1405 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1406 !isa<ConstantInt>(AndI->getOperand(1)) && 1407 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1408 return false; 1409 1410 for (auto *U : AndI->users()) { 1411 Instruction *User = cast<Instruction>(U); 1412 1413 // Only sink for and mask feeding icmp with 0. 1414 if (!isa<ICmpInst>(User)) 1415 return false; 1416 1417 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1418 if (!CmpC || !CmpC->isZero()) 1419 return false; 1420 } 1421 1422 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1423 return false; 1424 1425 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1426 DEBUG(AndI->getParent()->dump()); 1427 1428 // Push the 'and' into the same block as the icmp 0. There should only be 1429 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1430 // others, so we don't need to keep track of which BBs we insert into. 1431 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1432 UI != E; ) { 1433 Use &TheUse = UI.getUse(); 1434 Instruction *User = cast<Instruction>(*UI); 1435 1436 // Preincrement use iterator so we don't invalidate it. 1437 ++UI; 1438 1439 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1440 1441 // Keep the 'and' in the same place if the use is already in the same block. 1442 Instruction *InsertPt = 1443 User->getParent() == AndI->getParent() ? AndI : User; 1444 Instruction *InsertedAnd = 1445 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1446 AndI->getOperand(1), "", InsertPt); 1447 // Propagate the debug info. 1448 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1449 1450 // Replace a use of the 'and' with a use of the new 'and'. 1451 TheUse = InsertedAnd; 1452 ++NumAndUses; 1453 DEBUG(User->getParent()->dump()); 1454 } 1455 1456 // We removed all uses, nuke the and. 1457 AndI->eraseFromParent(); 1458 return true; 1459 } 1460 1461 /// Check if the candidates could be combined with a shift instruction, which 1462 /// includes: 1463 /// 1. Truncate instruction 1464 /// 2. And instruction and the imm is a mask of the low bits: 1465 /// imm & (imm+1) == 0 1466 static bool isExtractBitsCandidateUse(Instruction *User) { 1467 if (!isa<TruncInst>(User)) { 1468 if (User->getOpcode() != Instruction::And || 1469 !isa<ConstantInt>(User->getOperand(1))) 1470 return false; 1471 1472 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1473 1474 if ((Cimm & (Cimm + 1)).getBoolValue()) 1475 return false; 1476 } 1477 return true; 1478 } 1479 1480 /// Sink both shift and truncate instruction to the use of truncate's BB. 1481 static bool 1482 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1483 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1484 const TargetLowering &TLI, const DataLayout &DL) { 1485 BasicBlock *UserBB = User->getParent(); 1486 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1487 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1488 bool MadeChange = false; 1489 1490 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1491 TruncE = TruncI->user_end(); 1492 TruncUI != TruncE;) { 1493 1494 Use &TruncTheUse = TruncUI.getUse(); 1495 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1496 // Preincrement use iterator so we don't invalidate it. 1497 1498 ++TruncUI; 1499 1500 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1501 if (!ISDOpcode) 1502 continue; 1503 1504 // If the use is actually a legal node, there will not be an 1505 // implicit truncate. 1506 // FIXME: always querying the result type is just an 1507 // approximation; some nodes' legality is determined by the 1508 // operand or other means. There's no good way to find out though. 1509 if (TLI.isOperationLegalOrCustom( 1510 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1511 continue; 1512 1513 // Don't bother for PHI nodes. 1514 if (isa<PHINode>(TruncUser)) 1515 continue; 1516 1517 BasicBlock *TruncUserBB = TruncUser->getParent(); 1518 1519 if (UserBB == TruncUserBB) 1520 continue; 1521 1522 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1523 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1524 1525 if (!InsertedShift && !InsertedTrunc) { 1526 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1527 assert(InsertPt != TruncUserBB->end()); 1528 // Sink the shift 1529 if (ShiftI->getOpcode() == Instruction::AShr) 1530 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1531 "", &*InsertPt); 1532 else 1533 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1534 "", &*InsertPt); 1535 1536 // Sink the trunc 1537 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1538 TruncInsertPt++; 1539 assert(TruncInsertPt != TruncUserBB->end()); 1540 1541 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1542 TruncI->getType(), "", &*TruncInsertPt); 1543 1544 MadeChange = true; 1545 1546 TruncTheUse = InsertedTrunc; 1547 } 1548 } 1549 return MadeChange; 1550 } 1551 1552 /// Sink the shift *right* instruction into user blocks if the uses could 1553 /// potentially be combined with this shift instruction and generate BitExtract 1554 /// instruction. It will only be applied if the architecture supports BitExtract 1555 /// instruction. Here is an example: 1556 /// BB1: 1557 /// %x.extract.shift = lshr i64 %arg1, 32 1558 /// BB2: 1559 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1560 /// ==> 1561 /// 1562 /// BB2: 1563 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1564 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1565 /// 1566 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1567 /// instruction. 1568 /// Return true if any changes are made. 1569 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1570 const TargetLowering &TLI, 1571 const DataLayout &DL) { 1572 BasicBlock *DefBB = ShiftI->getParent(); 1573 1574 /// Only insert instructions in each block once. 1575 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1576 1577 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1578 1579 bool MadeChange = false; 1580 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1581 UI != E;) { 1582 Use &TheUse = UI.getUse(); 1583 Instruction *User = cast<Instruction>(*UI); 1584 // Preincrement use iterator so we don't invalidate it. 1585 ++UI; 1586 1587 // Don't bother for PHI nodes. 1588 if (isa<PHINode>(User)) 1589 continue; 1590 1591 if (!isExtractBitsCandidateUse(User)) 1592 continue; 1593 1594 BasicBlock *UserBB = User->getParent(); 1595 1596 if (UserBB == DefBB) { 1597 // If the shift and truncate instruction are in the same BB. The use of 1598 // the truncate(TruncUse) may still introduce another truncate if not 1599 // legal. In this case, we would like to sink both shift and truncate 1600 // instruction to the BB of TruncUse. 1601 // for example: 1602 // BB1: 1603 // i64 shift.result = lshr i64 opnd, imm 1604 // trunc.result = trunc shift.result to i16 1605 // 1606 // BB2: 1607 // ----> We will have an implicit truncate here if the architecture does 1608 // not have i16 compare. 1609 // cmp i16 trunc.result, opnd2 1610 // 1611 if (isa<TruncInst>(User) && shiftIsLegal 1612 // If the type of the truncate is legal, no trucate will be 1613 // introduced in other basic blocks. 1614 && 1615 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1616 MadeChange = 1617 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1618 1619 continue; 1620 } 1621 // If we have already inserted a shift into this block, use it. 1622 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1623 1624 if (!InsertedShift) { 1625 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1626 assert(InsertPt != UserBB->end()); 1627 1628 if (ShiftI->getOpcode() == Instruction::AShr) 1629 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1630 "", &*InsertPt); 1631 else 1632 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1633 "", &*InsertPt); 1634 1635 MadeChange = true; 1636 } 1637 1638 // Replace a use of the shift with a use of the new shift. 1639 TheUse = InsertedShift; 1640 } 1641 1642 // If we removed all uses, nuke the shift. 1643 if (ShiftI->use_empty()) 1644 ShiftI->eraseFromParent(); 1645 1646 return MadeChange; 1647 } 1648 1649 /// If counting leading or trailing zeros is an expensive operation and a zero 1650 /// input is defined, add a check for zero to avoid calling the intrinsic. 1651 /// 1652 /// We want to transform: 1653 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1654 /// 1655 /// into: 1656 /// entry: 1657 /// %cmpz = icmp eq i64 %A, 0 1658 /// br i1 %cmpz, label %cond.end, label %cond.false 1659 /// cond.false: 1660 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1661 /// br label %cond.end 1662 /// cond.end: 1663 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1664 /// 1665 /// If the transform is performed, return true and set ModifiedDT to true. 1666 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1667 const TargetLowering *TLI, 1668 const DataLayout *DL, 1669 bool &ModifiedDT) { 1670 if (!TLI || !DL) 1671 return false; 1672 1673 // If a zero input is undefined, it doesn't make sense to despeculate that. 1674 if (match(CountZeros->getOperand(1), m_One())) 1675 return false; 1676 1677 // If it's cheap to speculate, there's nothing to do. 1678 auto IntrinsicID = CountZeros->getIntrinsicID(); 1679 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1680 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1681 return false; 1682 1683 // Only handle legal scalar cases. Anything else requires too much work. 1684 Type *Ty = CountZeros->getType(); 1685 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1686 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1687 return false; 1688 1689 // The intrinsic will be sunk behind a compare against zero and branch. 1690 BasicBlock *StartBlock = CountZeros->getParent(); 1691 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1692 1693 // Create another block after the count zero intrinsic. A PHI will be added 1694 // in this block to select the result of the intrinsic or the bit-width 1695 // constant if the input to the intrinsic is zero. 1696 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1697 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1698 1699 // Set up a builder to create a compare, conditional branch, and PHI. 1700 IRBuilder<> Builder(CountZeros->getContext()); 1701 Builder.SetInsertPoint(StartBlock->getTerminator()); 1702 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1703 1704 // Replace the unconditional branch that was created by the first split with 1705 // a compare against zero and a conditional branch. 1706 Value *Zero = Constant::getNullValue(Ty); 1707 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1708 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1709 StartBlock->getTerminator()->eraseFromParent(); 1710 1711 // Create a PHI in the end block to select either the output of the intrinsic 1712 // or the bit width of the operand. 1713 Builder.SetInsertPoint(&EndBlock->front()); 1714 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1715 CountZeros->replaceAllUsesWith(PN); 1716 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1717 PN->addIncoming(BitWidth, StartBlock); 1718 PN->addIncoming(CountZeros, CallBlock); 1719 1720 // We are explicitly handling the zero case, so we can set the intrinsic's 1721 // undefined zero argument to 'true'. This will also prevent reprocessing the 1722 // intrinsic; we only despeculate when a zero input is defined. 1723 CountZeros->setArgOperand(1, Builder.getTrue()); 1724 ModifiedDT = true; 1725 return true; 1726 } 1727 1728 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1729 BasicBlock *BB = CI->getParent(); 1730 1731 // Lower inline assembly if we can. 1732 // If we found an inline asm expession, and if the target knows how to 1733 // lower it to normal LLVM code, do so now. 1734 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1735 if (TLI->ExpandInlineAsm(CI)) { 1736 // Avoid invalidating the iterator. 1737 CurInstIterator = BB->begin(); 1738 // Avoid processing instructions out of order, which could cause 1739 // reuse before a value is defined. 1740 SunkAddrs.clear(); 1741 return true; 1742 } 1743 // Sink address computing for memory operands into the block. 1744 if (optimizeInlineAsmInst(CI)) 1745 return true; 1746 } 1747 1748 // Align the pointer arguments to this call if the target thinks it's a good 1749 // idea 1750 unsigned MinSize, PrefAlign; 1751 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1752 for (auto &Arg : CI->arg_operands()) { 1753 // We want to align both objects whose address is used directly and 1754 // objects whose address is used in casts and GEPs, though it only makes 1755 // sense for GEPs if the offset is a multiple of the desired alignment and 1756 // if size - offset meets the size threshold. 1757 if (!Arg->getType()->isPointerTy()) 1758 continue; 1759 APInt Offset(DL->getPointerSizeInBits( 1760 cast<PointerType>(Arg->getType())->getAddressSpace()), 1761 0); 1762 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1763 uint64_t Offset2 = Offset.getLimitedValue(); 1764 if ((Offset2 & (PrefAlign-1)) != 0) 1765 continue; 1766 AllocaInst *AI; 1767 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1768 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1769 AI->setAlignment(PrefAlign); 1770 // Global variables can only be aligned if they are defined in this 1771 // object (i.e. they are uniquely initialized in this object), and 1772 // over-aligning global variables that have an explicit section is 1773 // forbidden. 1774 GlobalVariable *GV; 1775 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1776 GV->getPointerAlignment(*DL) < PrefAlign && 1777 DL->getTypeAllocSize(GV->getValueType()) >= 1778 MinSize + Offset2) 1779 GV->setAlignment(PrefAlign); 1780 } 1781 // If this is a memcpy (or similar) then we may be able to improve the 1782 // alignment 1783 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1784 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1785 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1786 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1787 if (Align > MI->getAlignment()) 1788 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1789 } 1790 } 1791 1792 // If we have a cold call site, try to sink addressing computation into the 1793 // cold block. This interacts with our handling for loads and stores to 1794 // ensure that we can fold all uses of a potential addressing computation 1795 // into their uses. TODO: generalize this to work over profiling data 1796 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1797 for (auto &Arg : CI->arg_operands()) { 1798 if (!Arg->getType()->isPointerTy()) 1799 continue; 1800 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1801 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1802 } 1803 1804 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1805 if (II) { 1806 switch (II->getIntrinsicID()) { 1807 default: break; 1808 case Intrinsic::objectsize: { 1809 // Lower all uses of llvm.objectsize.* 1810 ConstantInt *RetVal = 1811 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1812 // Substituting this can cause recursive simplifications, which can 1813 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1814 // this 1815 // happens. 1816 Value *CurValue = &*CurInstIterator; 1817 WeakTrackingVH IterHandle(CurValue); 1818 1819 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1820 1821 // If the iterator instruction was recursively deleted, start over at the 1822 // start of the block. 1823 if (IterHandle != CurValue) { 1824 CurInstIterator = BB->begin(); 1825 SunkAddrs.clear(); 1826 } 1827 return true; 1828 } 1829 case Intrinsic::aarch64_stlxr: 1830 case Intrinsic::aarch64_stxr: { 1831 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1832 if (!ExtVal || !ExtVal->hasOneUse() || 1833 ExtVal->getParent() == CI->getParent()) 1834 return false; 1835 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1836 ExtVal->moveBefore(CI); 1837 // Mark this instruction as "inserted by CGP", so that other 1838 // optimizations don't touch it. 1839 InsertedInsts.insert(ExtVal); 1840 return true; 1841 } 1842 case Intrinsic::invariant_group_barrier: 1843 II->replaceAllUsesWith(II->getArgOperand(0)); 1844 II->eraseFromParent(); 1845 return true; 1846 1847 case Intrinsic::cttz: 1848 case Intrinsic::ctlz: 1849 // If counting zeros is expensive, try to avoid it. 1850 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1851 } 1852 1853 if (TLI) { 1854 SmallVector<Value*, 2> PtrOps; 1855 Type *AccessTy; 1856 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1857 while (!PtrOps.empty()) { 1858 Value *PtrVal = PtrOps.pop_back_val(); 1859 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1860 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1861 return true; 1862 } 1863 } 1864 } 1865 1866 // From here on out we're working with named functions. 1867 if (!CI->getCalledFunction()) return false; 1868 1869 // Lower all default uses of _chk calls. This is very similar 1870 // to what InstCombineCalls does, but here we are only lowering calls 1871 // to fortified library functions (e.g. __memcpy_chk) that have the default 1872 // "don't know" as the objectsize. Anything else should be left alone. 1873 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1874 if (Value *V = Simplifier.optimizeCall(CI)) { 1875 CI->replaceAllUsesWith(V); 1876 CI->eraseFromParent(); 1877 return true; 1878 } 1879 1880 return false; 1881 } 1882 1883 /// Look for opportunities to duplicate return instructions to the predecessor 1884 /// to enable tail call optimizations. The case it is currently looking for is: 1885 /// @code 1886 /// bb0: 1887 /// %tmp0 = tail call i32 @f0() 1888 /// br label %return 1889 /// bb1: 1890 /// %tmp1 = tail call i32 @f1() 1891 /// br label %return 1892 /// bb2: 1893 /// %tmp2 = tail call i32 @f2() 1894 /// br label %return 1895 /// return: 1896 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1897 /// ret i32 %retval 1898 /// @endcode 1899 /// 1900 /// => 1901 /// 1902 /// @code 1903 /// bb0: 1904 /// %tmp0 = tail call i32 @f0() 1905 /// ret i32 %tmp0 1906 /// bb1: 1907 /// %tmp1 = tail call i32 @f1() 1908 /// ret i32 %tmp1 1909 /// bb2: 1910 /// %tmp2 = tail call i32 @f2() 1911 /// ret i32 %tmp2 1912 /// @endcode 1913 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1914 if (!TLI) 1915 return false; 1916 1917 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1918 if (!RetI) 1919 return false; 1920 1921 PHINode *PN = nullptr; 1922 BitCastInst *BCI = nullptr; 1923 Value *V = RetI->getReturnValue(); 1924 if (V) { 1925 BCI = dyn_cast<BitCastInst>(V); 1926 if (BCI) 1927 V = BCI->getOperand(0); 1928 1929 PN = dyn_cast<PHINode>(V); 1930 if (!PN) 1931 return false; 1932 } 1933 1934 if (PN && PN->getParent() != BB) 1935 return false; 1936 1937 // Make sure there are no instructions between the PHI and return, or that the 1938 // return is the first instruction in the block. 1939 if (PN) { 1940 BasicBlock::iterator BI = BB->begin(); 1941 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1942 if (&*BI == BCI) 1943 // Also skip over the bitcast. 1944 ++BI; 1945 if (&*BI != RetI) 1946 return false; 1947 } else { 1948 BasicBlock::iterator BI = BB->begin(); 1949 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1950 if (&*BI != RetI) 1951 return false; 1952 } 1953 1954 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1955 /// call. 1956 const Function *F = BB->getParent(); 1957 SmallVector<CallInst*, 4> TailCalls; 1958 if (PN) { 1959 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1960 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1961 // Make sure the phi value is indeed produced by the tail call. 1962 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1963 TLI->mayBeEmittedAsTailCall(CI) && 1964 attributesPermitTailCall(F, CI, RetI, *TLI)) 1965 TailCalls.push_back(CI); 1966 } 1967 } else { 1968 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1969 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1970 if (!VisitedBBs.insert(*PI).second) 1971 continue; 1972 1973 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1974 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1975 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1976 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1977 if (RI == RE) 1978 continue; 1979 1980 CallInst *CI = dyn_cast<CallInst>(&*RI); 1981 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1982 attributesPermitTailCall(F, CI, RetI, *TLI)) 1983 TailCalls.push_back(CI); 1984 } 1985 } 1986 1987 bool Changed = false; 1988 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1989 CallInst *CI = TailCalls[i]; 1990 CallSite CS(CI); 1991 1992 // Conservatively require the attributes of the call to match those of the 1993 // return. Ignore noalias because it doesn't affect the call sequence. 1994 AttributeList CalleeAttrs = CS.getAttributes(); 1995 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1996 .removeAttribute(Attribute::NoAlias) != 1997 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1998 .removeAttribute(Attribute::NoAlias)) 1999 continue; 2000 2001 // Make sure the call instruction is followed by an unconditional branch to 2002 // the return block. 2003 BasicBlock *CallBB = CI->getParent(); 2004 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2005 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2006 continue; 2007 2008 // Duplicate the return into CallBB. 2009 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2010 ModifiedDT = Changed = true; 2011 ++NumRetsDup; 2012 } 2013 2014 // If we eliminated all predecessors of the block, delete the block now. 2015 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2016 BB->eraseFromParent(); 2017 2018 return Changed; 2019 } 2020 2021 //===----------------------------------------------------------------------===// 2022 // Memory Optimization 2023 //===----------------------------------------------------------------------===// 2024 2025 namespace { 2026 2027 /// This is an extended version of TargetLowering::AddrMode 2028 /// which holds actual Value*'s for register values. 2029 struct ExtAddrMode : public TargetLowering::AddrMode { 2030 Value *BaseReg = nullptr; 2031 Value *ScaledReg = nullptr; 2032 Value *OriginalValue = nullptr; 2033 2034 enum FieldName { 2035 NoField = 0x00, 2036 BaseRegField = 0x01, 2037 BaseGVField = 0x02, 2038 BaseOffsField = 0x04, 2039 ScaledRegField = 0x08, 2040 ScaleField = 0x10, 2041 MultipleFields = 0xff 2042 }; 2043 2044 ExtAddrMode() = default; 2045 2046 void print(raw_ostream &OS) const; 2047 void dump() const; 2048 2049 FieldName compare(const ExtAddrMode &other) { 2050 // First check that the types are the same on each field, as differing types 2051 // is something we can't cope with later on. 2052 if (BaseReg && other.BaseReg && 2053 BaseReg->getType() != other.BaseReg->getType()) 2054 return MultipleFields; 2055 if (BaseGV && other.BaseGV && 2056 BaseGV->getType() != other.BaseGV->getType()) 2057 return MultipleFields; 2058 if (ScaledReg && other.ScaledReg && 2059 ScaledReg->getType() != other.ScaledReg->getType()) 2060 return MultipleFields; 2061 2062 // Check each field to see if it differs. 2063 unsigned Result = NoField; 2064 if (BaseReg != other.BaseReg) 2065 Result |= BaseRegField; 2066 if (BaseGV != other.BaseGV) 2067 Result |= BaseGVField; 2068 if (BaseOffs != other.BaseOffs) 2069 Result |= BaseOffsField; 2070 if (ScaledReg != other.ScaledReg) 2071 Result |= ScaledRegField; 2072 // Don't count 0 as being a different scale, because that actually means 2073 // unscaled (which will already be counted by having no ScaledReg). 2074 if (Scale && other.Scale && Scale != other.Scale) 2075 Result |= ScaleField; 2076 2077 if (countPopulation(Result) > 1) 2078 return MultipleFields; 2079 else 2080 return static_cast<FieldName>(Result); 2081 } 2082 2083 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2084 // with no offset. 2085 bool isTrivial() { 2086 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2087 // trivial if at most one of these terms is nonzero, except that BaseGV and 2088 // BaseReg both being zero actually means a null pointer value, which we 2089 // consider to be 'non-zero' here. 2090 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2091 } 2092 2093 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2094 switch (Field) { 2095 default: 2096 return nullptr; 2097 case BaseRegField: 2098 return BaseReg; 2099 case BaseGVField: 2100 return BaseGV; 2101 case ScaledRegField: 2102 return ScaledReg; 2103 case BaseOffsField: 2104 return ConstantInt::get(IntPtrTy, BaseOffs); 2105 } 2106 } 2107 2108 void SetCombinedField(FieldName Field, Value *V, 2109 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2110 switch (Field) { 2111 default: 2112 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2113 break; 2114 case ExtAddrMode::BaseRegField: 2115 BaseReg = V; 2116 break; 2117 case ExtAddrMode::BaseGVField: 2118 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2119 // in the BaseReg field. 2120 assert(BaseReg == nullptr); 2121 BaseReg = V; 2122 BaseGV = nullptr; 2123 break; 2124 case ExtAddrMode::ScaledRegField: 2125 ScaledReg = V; 2126 // If we have a mix of scaled and unscaled addrmodes then we want scale 2127 // to be the scale and not zero. 2128 if (!Scale) 2129 for (const ExtAddrMode &AM : AddrModes) 2130 if (AM.Scale) { 2131 Scale = AM.Scale; 2132 break; 2133 } 2134 break; 2135 case ExtAddrMode::BaseOffsField: 2136 // The offset is no longer a constant, so it goes in ScaledReg with a 2137 // scale of 1. 2138 assert(ScaledReg == nullptr); 2139 ScaledReg = V; 2140 Scale = 1; 2141 BaseOffs = 0; 2142 break; 2143 } 2144 } 2145 }; 2146 2147 } // end anonymous namespace 2148 2149 #ifndef NDEBUG 2150 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2151 AM.print(OS); 2152 return OS; 2153 } 2154 #endif 2155 2156 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2157 void ExtAddrMode::print(raw_ostream &OS) const { 2158 bool NeedPlus = false; 2159 OS << "["; 2160 if (BaseGV) { 2161 OS << (NeedPlus ? " + " : "") 2162 << "GV:"; 2163 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2164 NeedPlus = true; 2165 } 2166 2167 if (BaseOffs) { 2168 OS << (NeedPlus ? " + " : "") 2169 << BaseOffs; 2170 NeedPlus = true; 2171 } 2172 2173 if (BaseReg) { 2174 OS << (NeedPlus ? " + " : "") 2175 << "Base:"; 2176 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2177 NeedPlus = true; 2178 } 2179 if (Scale) { 2180 OS << (NeedPlus ? " + " : "") 2181 << Scale << "*"; 2182 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2183 } 2184 2185 OS << ']'; 2186 } 2187 2188 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2189 print(dbgs()); 2190 dbgs() << '\n'; 2191 } 2192 #endif 2193 2194 namespace { 2195 2196 /// \brief This class provides transaction based operation on the IR. 2197 /// Every change made through this class is recorded in the internal state and 2198 /// can be undone (rollback) until commit is called. 2199 class TypePromotionTransaction { 2200 /// \brief This represents the common interface of the individual transaction. 2201 /// Each class implements the logic for doing one specific modification on 2202 /// the IR via the TypePromotionTransaction. 2203 class TypePromotionAction { 2204 protected: 2205 /// The Instruction modified. 2206 Instruction *Inst; 2207 2208 public: 2209 /// \brief Constructor of the action. 2210 /// The constructor performs the related action on the IR. 2211 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2212 2213 virtual ~TypePromotionAction() = default; 2214 2215 /// \brief Undo the modification done by this action. 2216 /// When this method is called, the IR must be in the same state as it was 2217 /// before this action was applied. 2218 /// \pre Undoing the action works if and only if the IR is in the exact same 2219 /// state as it was directly after this action was applied. 2220 virtual void undo() = 0; 2221 2222 /// \brief Advocate every change made by this action. 2223 /// When the results on the IR of the action are to be kept, it is important 2224 /// to call this function, otherwise hidden information may be kept forever. 2225 virtual void commit() { 2226 // Nothing to be done, this action is not doing anything. 2227 } 2228 }; 2229 2230 /// \brief Utility to remember the position of an instruction. 2231 class InsertionHandler { 2232 /// Position of an instruction. 2233 /// Either an instruction: 2234 /// - Is the first in a basic block: BB is used. 2235 /// - Has a previous instructon: PrevInst is used. 2236 union { 2237 Instruction *PrevInst; 2238 BasicBlock *BB; 2239 } Point; 2240 2241 /// Remember whether or not the instruction had a previous instruction. 2242 bool HasPrevInstruction; 2243 2244 public: 2245 /// \brief Record the position of \p Inst. 2246 InsertionHandler(Instruction *Inst) { 2247 BasicBlock::iterator It = Inst->getIterator(); 2248 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2249 if (HasPrevInstruction) 2250 Point.PrevInst = &*--It; 2251 else 2252 Point.BB = Inst->getParent(); 2253 } 2254 2255 /// \brief Insert \p Inst at the recorded position. 2256 void insert(Instruction *Inst) { 2257 if (HasPrevInstruction) { 2258 if (Inst->getParent()) 2259 Inst->removeFromParent(); 2260 Inst->insertAfter(Point.PrevInst); 2261 } else { 2262 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2263 if (Inst->getParent()) 2264 Inst->moveBefore(Position); 2265 else 2266 Inst->insertBefore(Position); 2267 } 2268 } 2269 }; 2270 2271 /// \brief Move an instruction before another. 2272 class InstructionMoveBefore : public TypePromotionAction { 2273 /// Original position of the instruction. 2274 InsertionHandler Position; 2275 2276 public: 2277 /// \brief Move \p Inst before \p Before. 2278 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2279 : TypePromotionAction(Inst), Position(Inst) { 2280 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2281 Inst->moveBefore(Before); 2282 } 2283 2284 /// \brief Move the instruction back to its original position. 2285 void undo() override { 2286 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2287 Position.insert(Inst); 2288 } 2289 }; 2290 2291 /// \brief Set the operand of an instruction with a new value. 2292 class OperandSetter : public TypePromotionAction { 2293 /// Original operand of the instruction. 2294 Value *Origin; 2295 2296 /// Index of the modified instruction. 2297 unsigned Idx; 2298 2299 public: 2300 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2301 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2302 : TypePromotionAction(Inst), Idx(Idx) { 2303 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2304 << "for:" << *Inst << "\n" 2305 << "with:" << *NewVal << "\n"); 2306 Origin = Inst->getOperand(Idx); 2307 Inst->setOperand(Idx, NewVal); 2308 } 2309 2310 /// \brief Restore the original value of the instruction. 2311 void undo() override { 2312 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2313 << "for: " << *Inst << "\n" 2314 << "with: " << *Origin << "\n"); 2315 Inst->setOperand(Idx, Origin); 2316 } 2317 }; 2318 2319 /// \brief Hide the operands of an instruction. 2320 /// Do as if this instruction was not using any of its operands. 2321 class OperandsHider : public TypePromotionAction { 2322 /// The list of original operands. 2323 SmallVector<Value *, 4> OriginalValues; 2324 2325 public: 2326 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2327 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2328 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2329 unsigned NumOpnds = Inst->getNumOperands(); 2330 OriginalValues.reserve(NumOpnds); 2331 for (unsigned It = 0; It < NumOpnds; ++It) { 2332 // Save the current operand. 2333 Value *Val = Inst->getOperand(It); 2334 OriginalValues.push_back(Val); 2335 // Set a dummy one. 2336 // We could use OperandSetter here, but that would imply an overhead 2337 // that we are not willing to pay. 2338 Inst->setOperand(It, UndefValue::get(Val->getType())); 2339 } 2340 } 2341 2342 /// \brief Restore the original list of uses. 2343 void undo() override { 2344 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2345 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2346 Inst->setOperand(It, OriginalValues[It]); 2347 } 2348 }; 2349 2350 /// \brief Build a truncate instruction. 2351 class TruncBuilder : public TypePromotionAction { 2352 Value *Val; 2353 2354 public: 2355 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2356 /// result. 2357 /// trunc Opnd to Ty. 2358 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2359 IRBuilder<> Builder(Opnd); 2360 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2361 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2362 } 2363 2364 /// \brief Get the built value. 2365 Value *getBuiltValue() { return Val; } 2366 2367 /// \brief Remove the built instruction. 2368 void undo() override { 2369 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2370 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2371 IVal->eraseFromParent(); 2372 } 2373 }; 2374 2375 /// \brief Build a sign extension instruction. 2376 class SExtBuilder : public TypePromotionAction { 2377 Value *Val; 2378 2379 public: 2380 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2381 /// result. 2382 /// sext Opnd to Ty. 2383 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2384 : TypePromotionAction(InsertPt) { 2385 IRBuilder<> Builder(InsertPt); 2386 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2387 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2388 } 2389 2390 /// \brief Get the built value. 2391 Value *getBuiltValue() { return Val; } 2392 2393 /// \brief Remove the built instruction. 2394 void undo() override { 2395 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2396 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2397 IVal->eraseFromParent(); 2398 } 2399 }; 2400 2401 /// \brief Build a zero extension instruction. 2402 class ZExtBuilder : public TypePromotionAction { 2403 Value *Val; 2404 2405 public: 2406 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2407 /// result. 2408 /// zext Opnd to Ty. 2409 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2410 : TypePromotionAction(InsertPt) { 2411 IRBuilder<> Builder(InsertPt); 2412 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2413 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2414 } 2415 2416 /// \brief Get the built value. 2417 Value *getBuiltValue() { return Val; } 2418 2419 /// \brief Remove the built instruction. 2420 void undo() override { 2421 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2422 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2423 IVal->eraseFromParent(); 2424 } 2425 }; 2426 2427 /// \brief Mutate an instruction to another type. 2428 class TypeMutator : public TypePromotionAction { 2429 /// Record the original type. 2430 Type *OrigTy; 2431 2432 public: 2433 /// \brief Mutate the type of \p Inst into \p NewTy. 2434 TypeMutator(Instruction *Inst, Type *NewTy) 2435 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2436 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2437 << "\n"); 2438 Inst->mutateType(NewTy); 2439 } 2440 2441 /// \brief Mutate the instruction back to its original type. 2442 void undo() override { 2443 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2444 << "\n"); 2445 Inst->mutateType(OrigTy); 2446 } 2447 }; 2448 2449 /// \brief Replace the uses of an instruction by another instruction. 2450 class UsesReplacer : public TypePromotionAction { 2451 /// Helper structure to keep track of the replaced uses. 2452 struct InstructionAndIdx { 2453 /// The instruction using the instruction. 2454 Instruction *Inst; 2455 2456 /// The index where this instruction is used for Inst. 2457 unsigned Idx; 2458 2459 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2460 : Inst(Inst), Idx(Idx) {} 2461 }; 2462 2463 /// Keep track of the original uses (pair Instruction, Index). 2464 SmallVector<InstructionAndIdx, 4> OriginalUses; 2465 2466 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2467 2468 public: 2469 /// \brief Replace all the use of \p Inst by \p New. 2470 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2471 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2472 << "\n"); 2473 // Record the original uses. 2474 for (Use &U : Inst->uses()) { 2475 Instruction *UserI = cast<Instruction>(U.getUser()); 2476 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2477 } 2478 // Now, we can replace the uses. 2479 Inst->replaceAllUsesWith(New); 2480 } 2481 2482 /// \brief Reassign the original uses of Inst to Inst. 2483 void undo() override { 2484 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2485 for (use_iterator UseIt = OriginalUses.begin(), 2486 EndIt = OriginalUses.end(); 2487 UseIt != EndIt; ++UseIt) { 2488 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2489 } 2490 } 2491 }; 2492 2493 /// \brief Remove an instruction from the IR. 2494 class InstructionRemover : public TypePromotionAction { 2495 /// Original position of the instruction. 2496 InsertionHandler Inserter; 2497 2498 /// Helper structure to hide all the link to the instruction. In other 2499 /// words, this helps to do as if the instruction was removed. 2500 OperandsHider Hider; 2501 2502 /// Keep track of the uses replaced, if any. 2503 UsesReplacer *Replacer = nullptr; 2504 2505 /// Keep track of instructions removed. 2506 SetOfInstrs &RemovedInsts; 2507 2508 public: 2509 /// \brief Remove all reference of \p Inst and optinally replace all its 2510 /// uses with New. 2511 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2512 /// \pre If !Inst->use_empty(), then New != nullptr 2513 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2514 Value *New = nullptr) 2515 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2516 RemovedInsts(RemovedInsts) { 2517 if (New) 2518 Replacer = new UsesReplacer(Inst, New); 2519 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2520 RemovedInsts.insert(Inst); 2521 /// The instructions removed here will be freed after completing 2522 /// optimizeBlock() for all blocks as we need to keep track of the 2523 /// removed instructions during promotion. 2524 Inst->removeFromParent(); 2525 } 2526 2527 ~InstructionRemover() override { delete Replacer; } 2528 2529 /// \brief Resurrect the instruction and reassign it to the proper uses if 2530 /// new value was provided when build this action. 2531 void undo() override { 2532 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2533 Inserter.insert(Inst); 2534 if (Replacer) 2535 Replacer->undo(); 2536 Hider.undo(); 2537 RemovedInsts.erase(Inst); 2538 } 2539 }; 2540 2541 public: 2542 /// Restoration point. 2543 /// The restoration point is a pointer to an action instead of an iterator 2544 /// because the iterator may be invalidated but not the pointer. 2545 using ConstRestorationPt = const TypePromotionAction *; 2546 2547 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2548 : RemovedInsts(RemovedInsts) {} 2549 2550 /// Advocate every changes made in that transaction. 2551 void commit(); 2552 2553 /// Undo all the changes made after the given point. 2554 void rollback(ConstRestorationPt Point); 2555 2556 /// Get the current restoration point. 2557 ConstRestorationPt getRestorationPoint() const; 2558 2559 /// \name API for IR modification with state keeping to support rollback. 2560 /// @{ 2561 /// Same as Instruction::setOperand. 2562 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2563 2564 /// Same as Instruction::eraseFromParent. 2565 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2566 2567 /// Same as Value::replaceAllUsesWith. 2568 void replaceAllUsesWith(Instruction *Inst, Value *New); 2569 2570 /// Same as Value::mutateType. 2571 void mutateType(Instruction *Inst, Type *NewTy); 2572 2573 /// Same as IRBuilder::createTrunc. 2574 Value *createTrunc(Instruction *Opnd, Type *Ty); 2575 2576 /// Same as IRBuilder::createSExt. 2577 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2578 2579 /// Same as IRBuilder::createZExt. 2580 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2581 2582 /// Same as Instruction::moveBefore. 2583 void moveBefore(Instruction *Inst, Instruction *Before); 2584 /// @} 2585 2586 private: 2587 /// The ordered list of actions made so far. 2588 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2589 2590 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2591 2592 SetOfInstrs &RemovedInsts; 2593 }; 2594 2595 } // end anonymous namespace 2596 2597 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2598 Value *NewVal) { 2599 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2600 Inst, Idx, NewVal)); 2601 } 2602 2603 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2604 Value *NewVal) { 2605 Actions.push_back( 2606 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2607 Inst, RemovedInsts, NewVal)); 2608 } 2609 2610 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2611 Value *New) { 2612 Actions.push_back( 2613 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2614 } 2615 2616 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2617 Actions.push_back( 2618 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2619 } 2620 2621 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2622 Type *Ty) { 2623 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2624 Value *Val = Ptr->getBuiltValue(); 2625 Actions.push_back(std::move(Ptr)); 2626 return Val; 2627 } 2628 2629 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2630 Value *Opnd, Type *Ty) { 2631 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2632 Value *Val = Ptr->getBuiltValue(); 2633 Actions.push_back(std::move(Ptr)); 2634 return Val; 2635 } 2636 2637 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2638 Value *Opnd, Type *Ty) { 2639 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2640 Value *Val = Ptr->getBuiltValue(); 2641 Actions.push_back(std::move(Ptr)); 2642 return Val; 2643 } 2644 2645 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2646 Instruction *Before) { 2647 Actions.push_back( 2648 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2649 Inst, Before)); 2650 } 2651 2652 TypePromotionTransaction::ConstRestorationPt 2653 TypePromotionTransaction::getRestorationPoint() const { 2654 return !Actions.empty() ? Actions.back().get() : nullptr; 2655 } 2656 2657 void TypePromotionTransaction::commit() { 2658 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2659 ++It) 2660 (*It)->commit(); 2661 Actions.clear(); 2662 } 2663 2664 void TypePromotionTransaction::rollback( 2665 TypePromotionTransaction::ConstRestorationPt Point) { 2666 while (!Actions.empty() && Point != Actions.back().get()) { 2667 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2668 Curr->undo(); 2669 } 2670 } 2671 2672 namespace { 2673 2674 /// \brief A helper class for matching addressing modes. 2675 /// 2676 /// This encapsulates the logic for matching the target-legal addressing modes. 2677 class AddressingModeMatcher { 2678 SmallVectorImpl<Instruction*> &AddrModeInsts; 2679 const TargetLowering &TLI; 2680 const TargetRegisterInfo &TRI; 2681 const DataLayout &DL; 2682 2683 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2684 /// the memory instruction that we're computing this address for. 2685 Type *AccessTy; 2686 unsigned AddrSpace; 2687 Instruction *MemoryInst; 2688 2689 /// This is the addressing mode that we're building up. This is 2690 /// part of the return value of this addressing mode matching stuff. 2691 ExtAddrMode &AddrMode; 2692 2693 /// The instructions inserted by other CodeGenPrepare optimizations. 2694 const SetOfInstrs &InsertedInsts; 2695 2696 /// A map from the instructions to their type before promotion. 2697 InstrToOrigTy &PromotedInsts; 2698 2699 /// The ongoing transaction where every action should be registered. 2700 TypePromotionTransaction &TPT; 2701 2702 /// This is set to true when we should not do profitability checks. 2703 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2704 bool IgnoreProfitability; 2705 2706 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2707 const TargetLowering &TLI, 2708 const TargetRegisterInfo &TRI, 2709 Type *AT, unsigned AS, 2710 Instruction *MI, ExtAddrMode &AM, 2711 const SetOfInstrs &InsertedInsts, 2712 InstrToOrigTy &PromotedInsts, 2713 TypePromotionTransaction &TPT) 2714 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2715 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2716 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2717 PromotedInsts(PromotedInsts), TPT(TPT) { 2718 IgnoreProfitability = false; 2719 } 2720 2721 public: 2722 /// Find the maximal addressing mode that a load/store of V can fold, 2723 /// give an access type of AccessTy. This returns a list of involved 2724 /// instructions in AddrModeInsts. 2725 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2726 /// optimizations. 2727 /// \p PromotedInsts maps the instructions to their type before promotion. 2728 /// \p The ongoing transaction where every action should be registered. 2729 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2730 Instruction *MemoryInst, 2731 SmallVectorImpl<Instruction*> &AddrModeInsts, 2732 const TargetLowering &TLI, 2733 const TargetRegisterInfo &TRI, 2734 const SetOfInstrs &InsertedInsts, 2735 InstrToOrigTy &PromotedInsts, 2736 TypePromotionTransaction &TPT) { 2737 ExtAddrMode Result; 2738 2739 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2740 AccessTy, AS, 2741 MemoryInst, Result, InsertedInsts, 2742 PromotedInsts, TPT).matchAddr(V, 0); 2743 (void)Success; assert(Success && "Couldn't select *anything*?"); 2744 return Result; 2745 } 2746 2747 private: 2748 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2749 bool matchAddr(Value *V, unsigned Depth); 2750 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2751 bool *MovedAway = nullptr); 2752 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2753 ExtAddrMode &AMBefore, 2754 ExtAddrMode &AMAfter); 2755 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2756 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2757 Value *PromotedOperand) const; 2758 }; 2759 2760 /// \brief Keep track of simplification of Phi nodes. 2761 /// Accept the set of all phi nodes and erase phi node from this set 2762 /// if it is simplified. 2763 class SimplificationTracker { 2764 DenseMap<Value *, Value *> Storage; 2765 const SimplifyQuery &SQ; 2766 SmallPtrSetImpl<PHINode *> &AllPhiNodes; 2767 SmallPtrSetImpl<SelectInst *> &AllSelectNodes; 2768 2769 public: 2770 SimplificationTracker(const SimplifyQuery &sq, 2771 SmallPtrSetImpl<PHINode *> &APN, 2772 SmallPtrSetImpl<SelectInst *> &ASN) 2773 : SQ(sq), AllPhiNodes(APN), AllSelectNodes(ASN) {} 2774 2775 Value *Get(Value *V) { 2776 do { 2777 auto SV = Storage.find(V); 2778 if (SV == Storage.end()) 2779 return V; 2780 V = SV->second; 2781 } while (true); 2782 } 2783 2784 Value *Simplify(Value *Val) { 2785 SmallVector<Value *, 32> WorkList; 2786 SmallPtrSet<Value *, 32> Visited; 2787 WorkList.push_back(Val); 2788 while (!WorkList.empty()) { 2789 auto P = WorkList.pop_back_val(); 2790 if (!Visited.insert(P).second) 2791 continue; 2792 if (auto *PI = dyn_cast<Instruction>(P)) 2793 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2794 for (auto *U : PI->users()) 2795 WorkList.push_back(cast<Value>(U)); 2796 Put(PI, V); 2797 PI->replaceAllUsesWith(V); 2798 if (auto *PHI = dyn_cast<PHINode>(PI)) 2799 AllPhiNodes.erase(PHI); 2800 if (auto *Select = dyn_cast<SelectInst>(PI)) 2801 AllSelectNodes.erase(Select); 2802 PI->eraseFromParent(); 2803 } 2804 } 2805 return Get(Val); 2806 } 2807 2808 void Put(Value *From, Value *To) { 2809 Storage.insert({ From, To }); 2810 } 2811 }; 2812 2813 /// \brief A helper class for combining addressing modes. 2814 class AddressingModeCombiner { 2815 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2816 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2817 typedef std::pair<PHINode *, PHINode *> PHIPair; 2818 2819 private: 2820 /// The addressing modes we've collected. 2821 SmallVector<ExtAddrMode, 16> AddrModes; 2822 2823 /// The field in which the AddrModes differ, when we have more than one. 2824 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2825 2826 /// Are the AddrModes that we have all just equal to their original values? 2827 bool AllAddrModesTrivial = true; 2828 2829 /// Common Type for all different fields in addressing modes. 2830 Type *CommonType; 2831 2832 /// SimplifyQuery for simplifyInstruction utility. 2833 const SimplifyQuery &SQ; 2834 2835 /// Original Address. 2836 ValueInBB Original; 2837 2838 public: 2839 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2840 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2841 2842 /// \brief Get the combined AddrMode 2843 const ExtAddrMode &getAddrMode() const { 2844 return AddrModes[0]; 2845 } 2846 2847 /// \brief Add a new AddrMode if it's compatible with the AddrModes we already 2848 /// have. 2849 /// \return True iff we succeeded in doing so. 2850 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2851 // Take note of if we have any non-trivial AddrModes, as we need to detect 2852 // when all AddrModes are trivial as then we would introduce a phi or select 2853 // which just duplicates what's already there. 2854 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2855 2856 // If this is the first addrmode then everything is fine. 2857 if (AddrModes.empty()) { 2858 AddrModes.emplace_back(NewAddrMode); 2859 return true; 2860 } 2861 2862 // Figure out how different this is from the other address modes, which we 2863 // can do just by comparing against the first one given that we only care 2864 // about the cumulative difference. 2865 ExtAddrMode::FieldName ThisDifferentField = 2866 AddrModes[0].compare(NewAddrMode); 2867 if (DifferentField == ExtAddrMode::NoField) 2868 DifferentField = ThisDifferentField; 2869 else if (DifferentField != ThisDifferentField) 2870 DifferentField = ExtAddrMode::MultipleFields; 2871 2872 // If NewAddrMode differs in only one dimension, and that dimension isn't 2873 // the amount that ScaledReg is scaled by, then we can handle it by 2874 // inserting a phi/select later on. Even if NewAddMode is the same 2875 // we still need to collect it due to original value is different. 2876 // And later we will need all original values as anchors during 2877 // finding the common Phi node. 2878 if (DifferentField != ExtAddrMode::MultipleFields && 2879 DifferentField != ExtAddrMode::ScaleField) { 2880 AddrModes.emplace_back(NewAddrMode); 2881 return true; 2882 } 2883 2884 // We couldn't combine NewAddrMode with the rest, so return failure. 2885 AddrModes.clear(); 2886 return false; 2887 } 2888 2889 /// \brief Combine the addressing modes we've collected into a single 2890 /// addressing mode. 2891 /// \return True iff we successfully combined them or we only had one so 2892 /// didn't need to combine them anyway. 2893 bool combineAddrModes() { 2894 // If we have no AddrModes then they can't be combined. 2895 if (AddrModes.size() == 0) 2896 return false; 2897 2898 // A single AddrMode can trivially be combined. 2899 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2900 return true; 2901 2902 // If the AddrModes we collected are all just equal to the value they are 2903 // derived from then combining them wouldn't do anything useful. 2904 if (AllAddrModesTrivial) 2905 return false; 2906 2907 if (!addrModeCombiningAllowed()) 2908 return false; 2909 2910 // Build a map between <original value, basic block where we saw it> to 2911 // value of base register. 2912 // Bail out if there is no common type. 2913 FoldAddrToValueMapping Map; 2914 if (!initializeMap(Map)) 2915 return false; 2916 2917 Value *CommonValue = findCommon(Map); 2918 if (CommonValue) 2919 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2920 return CommonValue != nullptr; 2921 } 2922 2923 private: 2924 /// \brief Initialize Map with anchor values. For address seen in some BB 2925 /// we set the value of different field saw in this address. 2926 /// If address is not an instruction than basic block is set to null. 2927 /// At the same time we find a common type for different field we will 2928 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2929 /// Return false if there is no common type found. 2930 bool initializeMap(FoldAddrToValueMapping &Map) { 2931 // Keep track of keys where the value is null. We will need to replace it 2932 // with constant null when we know the common type. 2933 SmallVector<ValueInBB, 2> NullValue; 2934 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2935 for (auto &AM : AddrModes) { 2936 BasicBlock *BB = nullptr; 2937 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2938 BB = I->getParent(); 2939 2940 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2941 if (DV) { 2942 auto *Type = DV->getType(); 2943 if (CommonType && CommonType != Type) 2944 return false; 2945 CommonType = Type; 2946 Map[{ AM.OriginalValue, BB }] = DV; 2947 } else { 2948 NullValue.push_back({ AM.OriginalValue, BB }); 2949 } 2950 } 2951 assert(CommonType && "At least one non-null value must be!"); 2952 for (auto VIBB : NullValue) 2953 Map[VIBB] = Constant::getNullValue(CommonType); 2954 return true; 2955 } 2956 2957 /// \brief We have mapping between value A and basic block where value A 2958 /// seen to other value B where B was a field in addressing mode represented 2959 /// by A. Also we have an original value C representin an address in some 2960 /// basic block. Traversing from C through phi and selects we ended up with 2961 /// A's in a map. This utility function tries to find a value V which is a 2962 /// field in addressing mode C and traversing through phi nodes and selects 2963 /// we will end up in corresponded values B in a map. 2964 /// The utility will create a new Phi/Selects if needed. 2965 // The simple example looks as follows: 2966 // BB1: 2967 // p1 = b1 + 40 2968 // br cond BB2, BB3 2969 // BB2: 2970 // p2 = b2 + 40 2971 // br BB3 2972 // BB3: 2973 // p = phi [p1, BB1], [p2, BB2] 2974 // v = load p 2975 // Map is 2976 // <p1, BB1> -> b1 2977 // <p2, BB2> -> b2 2978 // Request is 2979 // <p, BB3> -> ? 2980 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2981 Value *findCommon(FoldAddrToValueMapping &Map) { 2982 // Tracks of new created Phi nodes. 2983 SmallPtrSet<PHINode *, 32> NewPhiNodes; 2984 // Tracks of new created Select nodes. 2985 SmallPtrSet<SelectInst *, 32> NewSelectNodes; 2986 // Tracks the simplification of new created phi nodes. The reason we use 2987 // this mapping is because we will add new created Phi nodes in AddrToBase. 2988 // Simplification of Phi nodes is recursive, so some Phi node may 2989 // be simplified after we added it to AddrToBase. 2990 // Using this mapping we can find the current value in AddrToBase. 2991 SimplificationTracker ST(SQ, NewPhiNodes, NewSelectNodes); 2992 2993 // First step, DFS to create PHI nodes for all intermediate blocks. 2994 // Also fill traverse order for the second step. 2995 SmallVector<ValueInBB, 32> TraverseOrder; 2996 InsertPlaceholders(Map, TraverseOrder, NewPhiNodes, NewSelectNodes); 2997 2998 // Second Step, fill new nodes by merged values and simplify if possible. 2999 FillPlaceholders(Map, TraverseOrder, ST); 3000 3001 if (!AddrSinkNewSelects && NewSelectNodes.size() > 0) { 3002 DestroyNodes(NewPhiNodes); 3003 DestroyNodes(NewSelectNodes); 3004 return nullptr; 3005 } 3006 3007 // Now we'd like to match New Phi nodes to existed ones. 3008 unsigned PhiNotMatchedCount = 0; 3009 if (!MatchPhiSet(NewPhiNodes, ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3010 DestroyNodes(NewPhiNodes); 3011 DestroyNodes(NewSelectNodes); 3012 return nullptr; 3013 } 3014 3015 auto *Result = ST.Get(Map.find(Original)->second); 3016 if (Result) { 3017 NumMemoryInstsPhiCreated += NewPhiNodes.size() + PhiNotMatchedCount; 3018 NumMemoryInstsSelectCreated += NewSelectNodes.size(); 3019 } 3020 return Result; 3021 } 3022 3023 /// \brief Destroy nodes from a set. 3024 template <typename T> void DestroyNodes(SmallPtrSetImpl<T *> &Instructions) { 3025 // For safe erasing, replace the Phi with dummy value first. 3026 auto Dummy = UndefValue::get(CommonType); 3027 for (auto I : Instructions) { 3028 I->replaceAllUsesWith(Dummy); 3029 I->eraseFromParent(); 3030 } 3031 } 3032 3033 /// \brief Try to match PHI node to Candidate. 3034 /// Matcher tracks the matched Phi nodes. 3035 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3036 DenseSet<PHIPair> &Matcher, 3037 SmallPtrSetImpl<PHINode *> &PhiNodesToMatch) { 3038 SmallVector<PHIPair, 8> WorkList; 3039 Matcher.insert({ PHI, Candidate }); 3040 WorkList.push_back({ PHI, Candidate }); 3041 SmallSet<PHIPair, 8> Visited; 3042 while (!WorkList.empty()) { 3043 auto Item = WorkList.pop_back_val(); 3044 if (!Visited.insert(Item).second) 3045 continue; 3046 // We iterate over all incoming values to Phi to compare them. 3047 // If values are different and both of them Phi and the first one is a 3048 // Phi we added (subject to match) and both of them is in the same basic 3049 // block then we can match our pair if values match. So we state that 3050 // these values match and add it to work list to verify that. 3051 for (auto B : Item.first->blocks()) { 3052 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3053 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3054 if (FirstValue == SecondValue) 3055 continue; 3056 3057 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3058 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3059 3060 // One of them is not Phi or 3061 // The first one is not Phi node from the set we'd like to match or 3062 // Phi nodes from different basic blocks then 3063 // we will not be able to match. 3064 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3065 FirstPhi->getParent() != SecondPhi->getParent()) 3066 return false; 3067 3068 // If we already matched them then continue. 3069 if (Matcher.count({ FirstPhi, SecondPhi })) 3070 continue; 3071 // So the values are different and does not match. So we need them to 3072 // match. 3073 Matcher.insert({ FirstPhi, SecondPhi }); 3074 // But me must check it. 3075 WorkList.push_back({ FirstPhi, SecondPhi }); 3076 } 3077 } 3078 return true; 3079 } 3080 3081 /// \brief For the given set of PHI nodes try to find their equivalents. 3082 /// Returns false if this matching fails and creation of new Phi is disabled. 3083 bool MatchPhiSet(SmallPtrSetImpl<PHINode *> &PhiNodesToMatch, 3084 SimplificationTracker &ST, bool AllowNewPhiNodes, 3085 unsigned &PhiNotMatchedCount) { 3086 DenseSet<PHIPair> Matched; 3087 SmallPtrSet<PHINode *, 8> WillNotMatch; 3088 while (PhiNodesToMatch.size()) { 3089 PHINode *PHI = *PhiNodesToMatch.begin(); 3090 3091 // Add us, if no Phi nodes in the basic block we do not match. 3092 WillNotMatch.clear(); 3093 WillNotMatch.insert(PHI); 3094 3095 // Traverse all Phis until we found equivalent or fail to do that. 3096 bool IsMatched = false; 3097 for (auto &P : PHI->getParent()->phis()) { 3098 if (&P == PHI) 3099 continue; 3100 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3101 break; 3102 // If it does not match, collect all Phi nodes from matcher. 3103 // if we end up with no match, them all these Phi nodes will not match 3104 // later. 3105 for (auto M : Matched) 3106 WillNotMatch.insert(M.first); 3107 Matched.clear(); 3108 } 3109 if (IsMatched) { 3110 // Replace all matched values and erase them. 3111 for (auto MV : Matched) { 3112 MV.first->replaceAllUsesWith(MV.second); 3113 PhiNodesToMatch.erase(MV.first); 3114 ST.Put(MV.first, MV.second); 3115 MV.first->eraseFromParent(); 3116 } 3117 Matched.clear(); 3118 continue; 3119 } 3120 // If we are not allowed to create new nodes then bail out. 3121 if (!AllowNewPhiNodes) 3122 return false; 3123 // Just remove all seen values in matcher. They will not match anything. 3124 PhiNotMatchedCount += WillNotMatch.size(); 3125 for (auto *P : WillNotMatch) 3126 PhiNodesToMatch.erase(P); 3127 } 3128 return true; 3129 } 3130 /// \brief Fill the placeholder with values from predecessors and simplify it. 3131 void FillPlaceholders(FoldAddrToValueMapping &Map, 3132 SmallVectorImpl<ValueInBB> &TraverseOrder, 3133 SimplificationTracker &ST) { 3134 while (!TraverseOrder.empty()) { 3135 auto Current = TraverseOrder.pop_back_val(); 3136 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3137 Value *CurrentValue = Current.first; 3138 BasicBlock *CurrentBlock = Current.second; 3139 Value *V = Map[Current]; 3140 3141 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3142 // CurrentValue also must be Select. 3143 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3144 auto *TrueValue = CurrentSelect->getTrueValue(); 3145 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3146 ? CurrentBlock 3147 : nullptr }; 3148 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3149 Select->setTrueValue(Map[TrueItem]); 3150 auto *FalseValue = CurrentSelect->getFalseValue(); 3151 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3152 ? CurrentBlock 3153 : nullptr }; 3154 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3155 Select->setFalseValue(Map[FalseItem]); 3156 } else { 3157 // Must be a Phi node then. 3158 PHINode *PHI = cast<PHINode>(V); 3159 // Fill the Phi node with values from predecessors. 3160 bool IsDefinedInThisBB = 3161 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3162 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3163 for (auto B : predecessors(CurrentBlock)) { 3164 Value *PV = IsDefinedInThisBB 3165 ? CurrentPhi->getIncomingValueForBlock(B) 3166 : CurrentValue; 3167 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3168 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3169 PHI->addIncoming(ST.Get(Map[item]), B); 3170 } 3171 } 3172 // Simplify if possible. 3173 Map[Current] = ST.Simplify(V); 3174 } 3175 } 3176 3177 /// Starting from value recursively iterates over predecessors up to known 3178 /// ending values represented in a map. For each traversed block inserts 3179 /// a placeholder Phi or Select. 3180 /// Reports all new created Phi/Select nodes by adding them to set. 3181 /// Also reports and order in what basic blocks have been traversed. 3182 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3183 SmallVectorImpl<ValueInBB> &TraverseOrder, 3184 SmallPtrSetImpl<PHINode *> &NewPhiNodes, 3185 SmallPtrSetImpl<SelectInst *> &NewSelectNodes) { 3186 SmallVector<ValueInBB, 32> Worklist; 3187 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3188 "Address must be a Phi or Select node"); 3189 auto *Dummy = UndefValue::get(CommonType); 3190 Worklist.push_back(Original); 3191 while (!Worklist.empty()) { 3192 auto Current = Worklist.pop_back_val(); 3193 // If value is not an instruction it is something global, constant, 3194 // parameter and we can say that this value is observable in any block. 3195 // Set block to null to denote it. 3196 // Also please take into account that it is how we build anchors. 3197 if (!isa<Instruction>(Current.first)) 3198 Current.second = nullptr; 3199 // if it is already visited or it is an ending value then skip it. 3200 if (Map.find(Current) != Map.end()) 3201 continue; 3202 TraverseOrder.push_back(Current); 3203 3204 Value *CurrentValue = Current.first; 3205 BasicBlock *CurrentBlock = Current.second; 3206 // CurrentValue must be a Phi node or select. All others must be covered 3207 // by anchors. 3208 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3209 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3210 3211 unsigned PredCount = 3212 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3213 // if Current Value is not defined in this basic block we are interested 3214 // in values in predecessors. 3215 if (!IsDefinedInThisBB) { 3216 assert(PredCount && "Unreachable block?!"); 3217 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3218 &CurrentBlock->front()); 3219 Map[Current] = PHI; 3220 NewPhiNodes.insert(PHI); 3221 // Add all predecessors in work list. 3222 for (auto B : predecessors(CurrentBlock)) 3223 Worklist.push_back({ CurrentValue, B }); 3224 continue; 3225 } 3226 // Value is defined in this basic block. 3227 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3228 // Is it OK to get metadata from OrigSelect?! 3229 // Create a Select placeholder with dummy value. 3230 SelectInst *Select = 3231 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3232 OrigSelect->getName(), OrigSelect, OrigSelect); 3233 Map[Current] = Select; 3234 NewSelectNodes.insert(Select); 3235 // We are interested in True and False value in this basic block. 3236 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3237 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3238 } else { 3239 // It must be a Phi node then. 3240 auto *CurrentPhi = cast<PHINode>(CurrentI); 3241 // Create new Phi node for merge of bases. 3242 assert(PredCount && "Unreachable block?!"); 3243 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3244 &CurrentBlock->front()); 3245 Map[Current] = PHI; 3246 NewPhiNodes.insert(PHI); 3247 3248 // Add all predecessors in work list. 3249 for (auto B : predecessors(CurrentBlock)) 3250 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3251 } 3252 } 3253 } 3254 3255 bool addrModeCombiningAllowed() { 3256 if (DisableComplexAddrModes) 3257 return false; 3258 switch (DifferentField) { 3259 default: 3260 return false; 3261 case ExtAddrMode::BaseRegField: 3262 return AddrSinkCombineBaseReg; 3263 case ExtAddrMode::BaseGVField: 3264 return AddrSinkCombineBaseGV; 3265 case ExtAddrMode::BaseOffsField: 3266 return AddrSinkCombineBaseOffs; 3267 case ExtAddrMode::ScaledRegField: 3268 return AddrSinkCombineScaledReg; 3269 } 3270 } 3271 }; 3272 } // end anonymous namespace 3273 3274 /// Try adding ScaleReg*Scale to the current addressing mode. 3275 /// Return true and update AddrMode if this addr mode is legal for the target, 3276 /// false if not. 3277 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3278 unsigned Depth) { 3279 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3280 // mode. Just process that directly. 3281 if (Scale == 1) 3282 return matchAddr(ScaleReg, Depth); 3283 3284 // If the scale is 0, it takes nothing to add this. 3285 if (Scale == 0) 3286 return true; 3287 3288 // If we already have a scale of this value, we can add to it, otherwise, we 3289 // need an available scale field. 3290 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3291 return false; 3292 3293 ExtAddrMode TestAddrMode = AddrMode; 3294 3295 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3296 // [A+B + A*7] -> [B+A*8]. 3297 TestAddrMode.Scale += Scale; 3298 TestAddrMode.ScaledReg = ScaleReg; 3299 3300 // If the new address isn't legal, bail out. 3301 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3302 return false; 3303 3304 // It was legal, so commit it. 3305 AddrMode = TestAddrMode; 3306 3307 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3308 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3309 // X*Scale + C*Scale to addr mode. 3310 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3311 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3312 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3313 TestAddrMode.ScaledReg = AddLHS; 3314 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3315 3316 // If this addressing mode is legal, commit it and remember that we folded 3317 // this instruction. 3318 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3319 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3320 AddrMode = TestAddrMode; 3321 return true; 3322 } 3323 } 3324 3325 // Otherwise, not (x+c)*scale, just return what we have. 3326 return true; 3327 } 3328 3329 /// This is a little filter, which returns true if an addressing computation 3330 /// involving I might be folded into a load/store accessing it. 3331 /// This doesn't need to be perfect, but needs to accept at least 3332 /// the set of instructions that MatchOperationAddr can. 3333 static bool MightBeFoldableInst(Instruction *I) { 3334 switch (I->getOpcode()) { 3335 case Instruction::BitCast: 3336 case Instruction::AddrSpaceCast: 3337 // Don't touch identity bitcasts. 3338 if (I->getType() == I->getOperand(0)->getType()) 3339 return false; 3340 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3341 case Instruction::PtrToInt: 3342 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3343 return true; 3344 case Instruction::IntToPtr: 3345 // We know the input is intptr_t, so this is foldable. 3346 return true; 3347 case Instruction::Add: 3348 return true; 3349 case Instruction::Mul: 3350 case Instruction::Shl: 3351 // Can only handle X*C and X << C. 3352 return isa<ConstantInt>(I->getOperand(1)); 3353 case Instruction::GetElementPtr: 3354 return true; 3355 default: 3356 return false; 3357 } 3358 } 3359 3360 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3361 /// \note \p Val is assumed to be the product of some type promotion. 3362 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3363 /// to be legal, as the non-promoted value would have had the same state. 3364 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3365 const DataLayout &DL, Value *Val) { 3366 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3367 if (!PromotedInst) 3368 return false; 3369 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3370 // If the ISDOpcode is undefined, it was undefined before the promotion. 3371 if (!ISDOpcode) 3372 return true; 3373 // Otherwise, check if the promoted instruction is legal or not. 3374 return TLI.isOperationLegalOrCustom( 3375 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3376 } 3377 3378 namespace { 3379 3380 /// \brief Hepler class to perform type promotion. 3381 class TypePromotionHelper { 3382 /// \brief Utility function to check whether or not a sign or zero extension 3383 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3384 /// either using the operands of \p Inst or promoting \p Inst. 3385 /// The type of the extension is defined by \p IsSExt. 3386 /// In other words, check if: 3387 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3388 /// #1 Promotion applies: 3389 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3390 /// #2 Operand reuses: 3391 /// ext opnd1 to ConsideredExtType. 3392 /// \p PromotedInsts maps the instructions to their type before promotion. 3393 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3394 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3395 3396 /// \brief Utility function to determine if \p OpIdx should be promoted when 3397 /// promoting \p Inst. 3398 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3399 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3400 } 3401 3402 /// \brief Utility function to promote the operand of \p Ext when this 3403 /// operand is a promotable trunc or sext or zext. 3404 /// \p PromotedInsts maps the instructions to their type before promotion. 3405 /// \p CreatedInstsCost[out] contains the cost of all instructions 3406 /// created to promote the operand of Ext. 3407 /// Newly added extensions are inserted in \p Exts. 3408 /// Newly added truncates are inserted in \p Truncs. 3409 /// Should never be called directly. 3410 /// \return The promoted value which is used instead of Ext. 3411 static Value *promoteOperandForTruncAndAnyExt( 3412 Instruction *Ext, TypePromotionTransaction &TPT, 3413 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3414 SmallVectorImpl<Instruction *> *Exts, 3415 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3416 3417 /// \brief Utility function to promote the operand of \p Ext when this 3418 /// operand is promotable and is not a supported trunc or sext. 3419 /// \p PromotedInsts maps the instructions to their type before promotion. 3420 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3421 /// created to promote the operand of Ext. 3422 /// Newly added extensions are inserted in \p Exts. 3423 /// Newly added truncates are inserted in \p Truncs. 3424 /// Should never be called directly. 3425 /// \return The promoted value which is used instead of Ext. 3426 static Value *promoteOperandForOther(Instruction *Ext, 3427 TypePromotionTransaction &TPT, 3428 InstrToOrigTy &PromotedInsts, 3429 unsigned &CreatedInstsCost, 3430 SmallVectorImpl<Instruction *> *Exts, 3431 SmallVectorImpl<Instruction *> *Truncs, 3432 const TargetLowering &TLI, bool IsSExt); 3433 3434 /// \see promoteOperandForOther. 3435 static Value *signExtendOperandForOther( 3436 Instruction *Ext, TypePromotionTransaction &TPT, 3437 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3438 SmallVectorImpl<Instruction *> *Exts, 3439 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3440 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3441 Exts, Truncs, TLI, true); 3442 } 3443 3444 /// \see promoteOperandForOther. 3445 static Value *zeroExtendOperandForOther( 3446 Instruction *Ext, TypePromotionTransaction &TPT, 3447 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3448 SmallVectorImpl<Instruction *> *Exts, 3449 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3450 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3451 Exts, Truncs, TLI, false); 3452 } 3453 3454 public: 3455 /// Type for the utility function that promotes the operand of Ext. 3456 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3457 InstrToOrigTy &PromotedInsts, 3458 unsigned &CreatedInstsCost, 3459 SmallVectorImpl<Instruction *> *Exts, 3460 SmallVectorImpl<Instruction *> *Truncs, 3461 const TargetLowering &TLI); 3462 3463 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3464 /// action to promote the operand of \p Ext instead of using Ext. 3465 /// \return NULL if no promotable action is possible with the current 3466 /// sign extension. 3467 /// \p InsertedInsts keeps track of all the instructions inserted by the 3468 /// other CodeGenPrepare optimizations. This information is important 3469 /// because we do not want to promote these instructions as CodeGenPrepare 3470 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3471 /// \p PromotedInsts maps the instructions to their type before promotion. 3472 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3473 const TargetLowering &TLI, 3474 const InstrToOrigTy &PromotedInsts); 3475 }; 3476 3477 } // end anonymous namespace 3478 3479 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3480 Type *ConsideredExtType, 3481 const InstrToOrigTy &PromotedInsts, 3482 bool IsSExt) { 3483 // The promotion helper does not know how to deal with vector types yet. 3484 // To be able to fix that, we would need to fix the places where we 3485 // statically extend, e.g., constants and such. 3486 if (Inst->getType()->isVectorTy()) 3487 return false; 3488 3489 // We can always get through zext. 3490 if (isa<ZExtInst>(Inst)) 3491 return true; 3492 3493 // sext(sext) is ok too. 3494 if (IsSExt && isa<SExtInst>(Inst)) 3495 return true; 3496 3497 // We can get through binary operator, if it is legal. In other words, the 3498 // binary operator must have a nuw or nsw flag. 3499 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3500 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3501 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3502 (IsSExt && BinOp->hasNoSignedWrap()))) 3503 return true; 3504 3505 // Check if we can do the following simplification. 3506 // ext(trunc(opnd)) --> ext(opnd) 3507 if (!isa<TruncInst>(Inst)) 3508 return false; 3509 3510 Value *OpndVal = Inst->getOperand(0); 3511 // Check if we can use this operand in the extension. 3512 // If the type is larger than the result type of the extension, we cannot. 3513 if (!OpndVal->getType()->isIntegerTy() || 3514 OpndVal->getType()->getIntegerBitWidth() > 3515 ConsideredExtType->getIntegerBitWidth()) 3516 return false; 3517 3518 // If the operand of the truncate is not an instruction, we will not have 3519 // any information on the dropped bits. 3520 // (Actually we could for constant but it is not worth the extra logic). 3521 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3522 if (!Opnd) 3523 return false; 3524 3525 // Check if the source of the type is narrow enough. 3526 // I.e., check that trunc just drops extended bits of the same kind of 3527 // the extension. 3528 // #1 get the type of the operand and check the kind of the extended bits. 3529 const Type *OpndType; 3530 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3531 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3532 OpndType = It->second.getPointer(); 3533 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3534 OpndType = Opnd->getOperand(0)->getType(); 3535 else 3536 return false; 3537 3538 // #2 check that the truncate just drops extended bits. 3539 return Inst->getType()->getIntegerBitWidth() >= 3540 OpndType->getIntegerBitWidth(); 3541 } 3542 3543 TypePromotionHelper::Action TypePromotionHelper::getAction( 3544 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3545 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3546 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3547 "Unexpected instruction type"); 3548 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3549 Type *ExtTy = Ext->getType(); 3550 bool IsSExt = isa<SExtInst>(Ext); 3551 // If the operand of the extension is not an instruction, we cannot 3552 // get through. 3553 // If it, check we can get through. 3554 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3555 return nullptr; 3556 3557 // Do not promote if the operand has been added by codegenprepare. 3558 // Otherwise, it means we are undoing an optimization that is likely to be 3559 // redone, thus causing potential infinite loop. 3560 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3561 return nullptr; 3562 3563 // SExt or Trunc instructions. 3564 // Return the related handler. 3565 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3566 isa<ZExtInst>(ExtOpnd)) 3567 return promoteOperandForTruncAndAnyExt; 3568 3569 // Regular instruction. 3570 // Abort early if we will have to insert non-free instructions. 3571 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3572 return nullptr; 3573 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3574 } 3575 3576 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3577 Instruction *SExt, TypePromotionTransaction &TPT, 3578 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3579 SmallVectorImpl<Instruction *> *Exts, 3580 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3581 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3582 // get through it and this method should not be called. 3583 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3584 Value *ExtVal = SExt; 3585 bool HasMergedNonFreeExt = false; 3586 if (isa<ZExtInst>(SExtOpnd)) { 3587 // Replace s|zext(zext(opnd)) 3588 // => zext(opnd). 3589 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3590 Value *ZExt = 3591 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3592 TPT.replaceAllUsesWith(SExt, ZExt); 3593 TPT.eraseInstruction(SExt); 3594 ExtVal = ZExt; 3595 } else { 3596 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3597 // => z|sext(opnd). 3598 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3599 } 3600 CreatedInstsCost = 0; 3601 3602 // Remove dead code. 3603 if (SExtOpnd->use_empty()) 3604 TPT.eraseInstruction(SExtOpnd); 3605 3606 // Check if the extension is still needed. 3607 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3608 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3609 if (ExtInst) { 3610 if (Exts) 3611 Exts->push_back(ExtInst); 3612 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3613 } 3614 return ExtVal; 3615 } 3616 3617 // At this point we have: ext ty opnd to ty. 3618 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3619 Value *NextVal = ExtInst->getOperand(0); 3620 TPT.eraseInstruction(ExtInst, NextVal); 3621 return NextVal; 3622 } 3623 3624 Value *TypePromotionHelper::promoteOperandForOther( 3625 Instruction *Ext, TypePromotionTransaction &TPT, 3626 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3627 SmallVectorImpl<Instruction *> *Exts, 3628 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3629 bool IsSExt) { 3630 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3631 // get through it and this method should not be called. 3632 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3633 CreatedInstsCost = 0; 3634 if (!ExtOpnd->hasOneUse()) { 3635 // ExtOpnd will be promoted. 3636 // All its uses, but Ext, will need to use a truncated value of the 3637 // promoted version. 3638 // Create the truncate now. 3639 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3640 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3641 // Insert it just after the definition. 3642 ITrunc->moveAfter(ExtOpnd); 3643 if (Truncs) 3644 Truncs->push_back(ITrunc); 3645 } 3646 3647 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3648 // Restore the operand of Ext (which has been replaced by the previous call 3649 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3650 TPT.setOperand(Ext, 0, ExtOpnd); 3651 } 3652 3653 // Get through the Instruction: 3654 // 1. Update its type. 3655 // 2. Replace the uses of Ext by Inst. 3656 // 3. Extend each operand that needs to be extended. 3657 3658 // Remember the original type of the instruction before promotion. 3659 // This is useful to know that the high bits are sign extended bits. 3660 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3661 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3662 // Step #1. 3663 TPT.mutateType(ExtOpnd, Ext->getType()); 3664 // Step #2. 3665 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3666 // Step #3. 3667 Instruction *ExtForOpnd = Ext; 3668 3669 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3670 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3671 ++OpIdx) { 3672 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3673 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3674 !shouldExtOperand(ExtOpnd, OpIdx)) { 3675 DEBUG(dbgs() << "No need to propagate\n"); 3676 continue; 3677 } 3678 // Check if we can statically extend the operand. 3679 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3680 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3681 DEBUG(dbgs() << "Statically extend\n"); 3682 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3683 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3684 : Cst->getValue().zext(BitWidth); 3685 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3686 continue; 3687 } 3688 // UndefValue are typed, so we have to statically sign extend them. 3689 if (isa<UndefValue>(Opnd)) { 3690 DEBUG(dbgs() << "Statically extend\n"); 3691 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3692 continue; 3693 } 3694 3695 // Otherwise we have to explicity sign extend the operand. 3696 // Check if Ext was reused to extend an operand. 3697 if (!ExtForOpnd) { 3698 // If yes, create a new one. 3699 DEBUG(dbgs() << "More operands to ext\n"); 3700 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3701 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3702 if (!isa<Instruction>(ValForExtOpnd)) { 3703 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3704 continue; 3705 } 3706 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3707 } 3708 if (Exts) 3709 Exts->push_back(ExtForOpnd); 3710 TPT.setOperand(ExtForOpnd, 0, Opnd); 3711 3712 // Move the sign extension before the insertion point. 3713 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3714 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3715 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3716 // If more sext are required, new instructions will have to be created. 3717 ExtForOpnd = nullptr; 3718 } 3719 if (ExtForOpnd == Ext) { 3720 DEBUG(dbgs() << "Extension is useless now\n"); 3721 TPT.eraseInstruction(Ext); 3722 } 3723 return ExtOpnd; 3724 } 3725 3726 /// Check whether or not promoting an instruction to a wider type is profitable. 3727 /// \p NewCost gives the cost of extension instructions created by the 3728 /// promotion. 3729 /// \p OldCost gives the cost of extension instructions before the promotion 3730 /// plus the number of instructions that have been 3731 /// matched in the addressing mode the promotion. 3732 /// \p PromotedOperand is the value that has been promoted. 3733 /// \return True if the promotion is profitable, false otherwise. 3734 bool AddressingModeMatcher::isPromotionProfitable( 3735 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3736 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3737 // The cost of the new extensions is greater than the cost of the 3738 // old extension plus what we folded. 3739 // This is not profitable. 3740 if (NewCost > OldCost) 3741 return false; 3742 if (NewCost < OldCost) 3743 return true; 3744 // The promotion is neutral but it may help folding the sign extension in 3745 // loads for instance. 3746 // Check that we did not create an illegal instruction. 3747 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3748 } 3749 3750 /// Given an instruction or constant expr, see if we can fold the operation 3751 /// into the addressing mode. If so, update the addressing mode and return 3752 /// true, otherwise return false without modifying AddrMode. 3753 /// If \p MovedAway is not NULL, it contains the information of whether or 3754 /// not AddrInst has to be folded into the addressing mode on success. 3755 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3756 /// because it has been moved away. 3757 /// Thus AddrInst must not be added in the matched instructions. 3758 /// This state can happen when AddrInst is a sext, since it may be moved away. 3759 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3760 /// not be referenced anymore. 3761 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3762 unsigned Depth, 3763 bool *MovedAway) { 3764 // Avoid exponential behavior on extremely deep expression trees. 3765 if (Depth >= 5) return false; 3766 3767 // By default, all matched instructions stay in place. 3768 if (MovedAway) 3769 *MovedAway = false; 3770 3771 switch (Opcode) { 3772 case Instruction::PtrToInt: 3773 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3774 return matchAddr(AddrInst->getOperand(0), Depth); 3775 case Instruction::IntToPtr: { 3776 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3777 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3778 // This inttoptr is a no-op if the integer type is pointer sized. 3779 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3780 return matchAddr(AddrInst->getOperand(0), Depth); 3781 return false; 3782 } 3783 case Instruction::BitCast: 3784 // BitCast is always a noop, and we can handle it as long as it is 3785 // int->int or pointer->pointer (we don't want int<->fp or something). 3786 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3787 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3788 // Don't touch identity bitcasts. These were probably put here by LSR, 3789 // and we don't want to mess around with them. Assume it knows what it 3790 // is doing. 3791 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3792 return matchAddr(AddrInst->getOperand(0), Depth); 3793 return false; 3794 case Instruction::AddrSpaceCast: { 3795 unsigned SrcAS 3796 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3797 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3798 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3799 return matchAddr(AddrInst->getOperand(0), Depth); 3800 return false; 3801 } 3802 case Instruction::Add: { 3803 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3804 ExtAddrMode BackupAddrMode = AddrMode; 3805 unsigned OldSize = AddrModeInsts.size(); 3806 // Start a transaction at this point. 3807 // The LHS may match but not the RHS. 3808 // Therefore, we need a higher level restoration point to undo partially 3809 // matched operation. 3810 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3811 TPT.getRestorationPoint(); 3812 3813 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3814 matchAddr(AddrInst->getOperand(0), Depth+1)) 3815 return true; 3816 3817 // Restore the old addr mode info. 3818 AddrMode = BackupAddrMode; 3819 AddrModeInsts.resize(OldSize); 3820 TPT.rollback(LastKnownGood); 3821 3822 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3823 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3824 matchAddr(AddrInst->getOperand(1), Depth+1)) 3825 return true; 3826 3827 // Otherwise we definitely can't merge the ADD in. 3828 AddrMode = BackupAddrMode; 3829 AddrModeInsts.resize(OldSize); 3830 TPT.rollback(LastKnownGood); 3831 break; 3832 } 3833 //case Instruction::Or: 3834 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3835 //break; 3836 case Instruction::Mul: 3837 case Instruction::Shl: { 3838 // Can only handle X*C and X << C. 3839 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3840 if (!RHS || RHS->getBitWidth() > 64) 3841 return false; 3842 int64_t Scale = RHS->getSExtValue(); 3843 if (Opcode == Instruction::Shl) 3844 Scale = 1LL << Scale; 3845 3846 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3847 } 3848 case Instruction::GetElementPtr: { 3849 // Scan the GEP. We check it if it contains constant offsets and at most 3850 // one variable offset. 3851 int VariableOperand = -1; 3852 unsigned VariableScale = 0; 3853 3854 int64_t ConstantOffset = 0; 3855 gep_type_iterator GTI = gep_type_begin(AddrInst); 3856 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3857 if (StructType *STy = GTI.getStructTypeOrNull()) { 3858 const StructLayout *SL = DL.getStructLayout(STy); 3859 unsigned Idx = 3860 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3861 ConstantOffset += SL->getElementOffset(Idx); 3862 } else { 3863 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3864 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3865 ConstantOffset += CI->getSExtValue()*TypeSize; 3866 } else if (TypeSize) { // Scales of zero don't do anything. 3867 // We only allow one variable index at the moment. 3868 if (VariableOperand != -1) 3869 return false; 3870 3871 // Remember the variable index. 3872 VariableOperand = i; 3873 VariableScale = TypeSize; 3874 } 3875 } 3876 } 3877 3878 // A common case is for the GEP to only do a constant offset. In this case, 3879 // just add it to the disp field and check validity. 3880 if (VariableOperand == -1) { 3881 AddrMode.BaseOffs += ConstantOffset; 3882 if (ConstantOffset == 0 || 3883 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3884 // Check to see if we can fold the base pointer in too. 3885 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3886 return true; 3887 } 3888 AddrMode.BaseOffs -= ConstantOffset; 3889 return false; 3890 } 3891 3892 // Save the valid addressing mode in case we can't match. 3893 ExtAddrMode BackupAddrMode = AddrMode; 3894 unsigned OldSize = AddrModeInsts.size(); 3895 3896 // See if the scale and offset amount is valid for this target. 3897 AddrMode.BaseOffs += ConstantOffset; 3898 3899 // Match the base operand of the GEP. 3900 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3901 // If it couldn't be matched, just stuff the value in a register. 3902 if (AddrMode.HasBaseReg) { 3903 AddrMode = BackupAddrMode; 3904 AddrModeInsts.resize(OldSize); 3905 return false; 3906 } 3907 AddrMode.HasBaseReg = true; 3908 AddrMode.BaseReg = AddrInst->getOperand(0); 3909 } 3910 3911 // Match the remaining variable portion of the GEP. 3912 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3913 Depth)) { 3914 // If it couldn't be matched, try stuffing the base into a register 3915 // instead of matching it, and retrying the match of the scale. 3916 AddrMode = BackupAddrMode; 3917 AddrModeInsts.resize(OldSize); 3918 if (AddrMode.HasBaseReg) 3919 return false; 3920 AddrMode.HasBaseReg = true; 3921 AddrMode.BaseReg = AddrInst->getOperand(0); 3922 AddrMode.BaseOffs += ConstantOffset; 3923 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3924 VariableScale, Depth)) { 3925 // If even that didn't work, bail. 3926 AddrMode = BackupAddrMode; 3927 AddrModeInsts.resize(OldSize); 3928 return false; 3929 } 3930 } 3931 3932 return true; 3933 } 3934 case Instruction::SExt: 3935 case Instruction::ZExt: { 3936 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3937 if (!Ext) 3938 return false; 3939 3940 // Try to move this ext out of the way of the addressing mode. 3941 // Ask for a method for doing so. 3942 TypePromotionHelper::Action TPH = 3943 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3944 if (!TPH) 3945 return false; 3946 3947 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3948 TPT.getRestorationPoint(); 3949 unsigned CreatedInstsCost = 0; 3950 unsigned ExtCost = !TLI.isExtFree(Ext); 3951 Value *PromotedOperand = 3952 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3953 // SExt has been moved away. 3954 // Thus either it will be rematched later in the recursive calls or it is 3955 // gone. Anyway, we must not fold it into the addressing mode at this point. 3956 // E.g., 3957 // op = add opnd, 1 3958 // idx = ext op 3959 // addr = gep base, idx 3960 // is now: 3961 // promotedOpnd = ext opnd <- no match here 3962 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3963 // addr = gep base, op <- match 3964 if (MovedAway) 3965 *MovedAway = true; 3966 3967 assert(PromotedOperand && 3968 "TypePromotionHelper should have filtered out those cases"); 3969 3970 ExtAddrMode BackupAddrMode = AddrMode; 3971 unsigned OldSize = AddrModeInsts.size(); 3972 3973 if (!matchAddr(PromotedOperand, Depth) || 3974 // The total of the new cost is equal to the cost of the created 3975 // instructions. 3976 // The total of the old cost is equal to the cost of the extension plus 3977 // what we have saved in the addressing mode. 3978 !isPromotionProfitable(CreatedInstsCost, 3979 ExtCost + (AddrModeInsts.size() - OldSize), 3980 PromotedOperand)) { 3981 AddrMode = BackupAddrMode; 3982 AddrModeInsts.resize(OldSize); 3983 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3984 TPT.rollback(LastKnownGood); 3985 return false; 3986 } 3987 return true; 3988 } 3989 } 3990 return false; 3991 } 3992 3993 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3994 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3995 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3996 /// for the target. 3997 /// 3998 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3999 // Start a transaction at this point that we will rollback if the matching 4000 // fails. 4001 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4002 TPT.getRestorationPoint(); 4003 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4004 // Fold in immediates if legal for the target. 4005 AddrMode.BaseOffs += CI->getSExtValue(); 4006 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4007 return true; 4008 AddrMode.BaseOffs -= CI->getSExtValue(); 4009 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4010 // If this is a global variable, try to fold it into the addressing mode. 4011 if (!AddrMode.BaseGV) { 4012 AddrMode.BaseGV = GV; 4013 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4014 return true; 4015 AddrMode.BaseGV = nullptr; 4016 } 4017 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4018 ExtAddrMode BackupAddrMode = AddrMode; 4019 unsigned OldSize = AddrModeInsts.size(); 4020 4021 // Check to see if it is possible to fold this operation. 4022 bool MovedAway = false; 4023 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4024 // This instruction may have been moved away. If so, there is nothing 4025 // to check here. 4026 if (MovedAway) 4027 return true; 4028 // Okay, it's possible to fold this. Check to see if it is actually 4029 // *profitable* to do so. We use a simple cost model to avoid increasing 4030 // register pressure too much. 4031 if (I->hasOneUse() || 4032 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4033 AddrModeInsts.push_back(I); 4034 return true; 4035 } 4036 4037 // It isn't profitable to do this, roll back. 4038 //cerr << "NOT FOLDING: " << *I; 4039 AddrMode = BackupAddrMode; 4040 AddrModeInsts.resize(OldSize); 4041 TPT.rollback(LastKnownGood); 4042 } 4043 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4044 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4045 return true; 4046 TPT.rollback(LastKnownGood); 4047 } else if (isa<ConstantPointerNull>(Addr)) { 4048 // Null pointer gets folded without affecting the addressing mode. 4049 return true; 4050 } 4051 4052 // Worse case, the target should support [reg] addressing modes. :) 4053 if (!AddrMode.HasBaseReg) { 4054 AddrMode.HasBaseReg = true; 4055 AddrMode.BaseReg = Addr; 4056 // Still check for legality in case the target supports [imm] but not [i+r]. 4057 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4058 return true; 4059 AddrMode.HasBaseReg = false; 4060 AddrMode.BaseReg = nullptr; 4061 } 4062 4063 // If the base register is already taken, see if we can do [r+r]. 4064 if (AddrMode.Scale == 0) { 4065 AddrMode.Scale = 1; 4066 AddrMode.ScaledReg = Addr; 4067 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4068 return true; 4069 AddrMode.Scale = 0; 4070 AddrMode.ScaledReg = nullptr; 4071 } 4072 // Couldn't match. 4073 TPT.rollback(LastKnownGood); 4074 return false; 4075 } 4076 4077 /// Check to see if all uses of OpVal by the specified inline asm call are due 4078 /// to memory operands. If so, return true, otherwise return false. 4079 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4080 const TargetLowering &TLI, 4081 const TargetRegisterInfo &TRI) { 4082 const Function *F = CI->getFunction(); 4083 TargetLowering::AsmOperandInfoVector TargetConstraints = 4084 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4085 ImmutableCallSite(CI)); 4086 4087 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4088 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4089 4090 // Compute the constraint code and ConstraintType to use. 4091 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4092 4093 // If this asm operand is our Value*, and if it isn't an indirect memory 4094 // operand, we can't fold it! 4095 if (OpInfo.CallOperandVal == OpVal && 4096 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4097 !OpInfo.isIndirect)) 4098 return false; 4099 } 4100 4101 return true; 4102 } 4103 4104 // Max number of memory uses to look at before aborting the search to conserve 4105 // compile time. 4106 static constexpr int MaxMemoryUsesToScan = 20; 4107 4108 /// Recursively walk all the uses of I until we find a memory use. 4109 /// If we find an obviously non-foldable instruction, return true. 4110 /// Add the ultimately found memory instructions to MemoryUses. 4111 static bool FindAllMemoryUses( 4112 Instruction *I, 4113 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4114 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4115 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4116 // If we already considered this instruction, we're done. 4117 if (!ConsideredInsts.insert(I).second) 4118 return false; 4119 4120 // If this is an obviously unfoldable instruction, bail out. 4121 if (!MightBeFoldableInst(I)) 4122 return true; 4123 4124 const bool OptSize = I->getFunction()->optForSize(); 4125 4126 // Loop over all the uses, recursively processing them. 4127 for (Use &U : I->uses()) { 4128 // Conservatively return true if we're seeing a large number or a deep chain 4129 // of users. This avoids excessive compilation times in pathological cases. 4130 if (SeenInsts++ >= MaxMemoryUsesToScan) 4131 return true; 4132 4133 Instruction *UserI = cast<Instruction>(U.getUser()); 4134 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4135 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4136 continue; 4137 } 4138 4139 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4140 unsigned opNo = U.getOperandNo(); 4141 if (opNo != StoreInst::getPointerOperandIndex()) 4142 return true; // Storing addr, not into addr. 4143 MemoryUses.push_back(std::make_pair(SI, opNo)); 4144 continue; 4145 } 4146 4147 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4148 unsigned opNo = U.getOperandNo(); 4149 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4150 return true; // Storing addr, not into addr. 4151 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4152 continue; 4153 } 4154 4155 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4156 unsigned opNo = U.getOperandNo(); 4157 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4158 return true; // Storing addr, not into addr. 4159 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4160 continue; 4161 } 4162 4163 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4164 // If this is a cold call, we can sink the addressing calculation into 4165 // the cold path. See optimizeCallInst 4166 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4167 continue; 4168 4169 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4170 if (!IA) return true; 4171 4172 // If this is a memory operand, we're cool, otherwise bail out. 4173 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4174 return true; 4175 continue; 4176 } 4177 4178 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4179 SeenInsts)) 4180 return true; 4181 } 4182 4183 return false; 4184 } 4185 4186 /// Return true if Val is already known to be live at the use site that we're 4187 /// folding it into. If so, there is no cost to include it in the addressing 4188 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4189 /// instruction already. 4190 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4191 Value *KnownLive2) { 4192 // If Val is either of the known-live values, we know it is live! 4193 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4194 return true; 4195 4196 // All values other than instructions and arguments (e.g. constants) are live. 4197 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4198 4199 // If Val is a constant sized alloca in the entry block, it is live, this is 4200 // true because it is just a reference to the stack/frame pointer, which is 4201 // live for the whole function. 4202 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4203 if (AI->isStaticAlloca()) 4204 return true; 4205 4206 // Check to see if this value is already used in the memory instruction's 4207 // block. If so, it's already live into the block at the very least, so we 4208 // can reasonably fold it. 4209 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4210 } 4211 4212 /// It is possible for the addressing mode of the machine to fold the specified 4213 /// instruction into a load or store that ultimately uses it. 4214 /// However, the specified instruction has multiple uses. 4215 /// Given this, it may actually increase register pressure to fold it 4216 /// into the load. For example, consider this code: 4217 /// 4218 /// X = ... 4219 /// Y = X+1 4220 /// use(Y) -> nonload/store 4221 /// Z = Y+1 4222 /// load Z 4223 /// 4224 /// In this case, Y has multiple uses, and can be folded into the load of Z 4225 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4226 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4227 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4228 /// number of computations either. 4229 /// 4230 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4231 /// X was live across 'load Z' for other reasons, we actually *would* want to 4232 /// fold the addressing mode in the Z case. This would make Y die earlier. 4233 bool AddressingModeMatcher:: 4234 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4235 ExtAddrMode &AMAfter) { 4236 if (IgnoreProfitability) return true; 4237 4238 // AMBefore is the addressing mode before this instruction was folded into it, 4239 // and AMAfter is the addressing mode after the instruction was folded. Get 4240 // the set of registers referenced by AMAfter and subtract out those 4241 // referenced by AMBefore: this is the set of values which folding in this 4242 // address extends the lifetime of. 4243 // 4244 // Note that there are only two potential values being referenced here, 4245 // BaseReg and ScaleReg (global addresses are always available, as are any 4246 // folded immediates). 4247 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4248 4249 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4250 // lifetime wasn't extended by adding this instruction. 4251 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4252 BaseReg = nullptr; 4253 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4254 ScaledReg = nullptr; 4255 4256 // If folding this instruction (and it's subexprs) didn't extend any live 4257 // ranges, we're ok with it. 4258 if (!BaseReg && !ScaledReg) 4259 return true; 4260 4261 // If all uses of this instruction can have the address mode sunk into them, 4262 // we can remove the addressing mode and effectively trade one live register 4263 // for another (at worst.) In this context, folding an addressing mode into 4264 // the use is just a particularly nice way of sinking it. 4265 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4266 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4267 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4268 return false; // Has a non-memory, non-foldable use! 4269 4270 // Now that we know that all uses of this instruction are part of a chain of 4271 // computation involving only operations that could theoretically be folded 4272 // into a memory use, loop over each of these memory operation uses and see 4273 // if they could *actually* fold the instruction. The assumption is that 4274 // addressing modes are cheap and that duplicating the computation involved 4275 // many times is worthwhile, even on a fastpath. For sinking candidates 4276 // (i.e. cold call sites), this serves as a way to prevent excessive code 4277 // growth since most architectures have some reasonable small and fast way to 4278 // compute an effective address. (i.e LEA on x86) 4279 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4280 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4281 Instruction *User = MemoryUses[i].first; 4282 unsigned OpNo = MemoryUses[i].second; 4283 4284 // Get the access type of this use. If the use isn't a pointer, we don't 4285 // know what it accesses. 4286 Value *Address = User->getOperand(OpNo); 4287 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4288 if (!AddrTy) 4289 return false; 4290 Type *AddressAccessTy = AddrTy->getElementType(); 4291 unsigned AS = AddrTy->getAddressSpace(); 4292 4293 // Do a match against the root of this address, ignoring profitability. This 4294 // will tell us if the addressing mode for the memory operation will 4295 // *actually* cover the shared instruction. 4296 ExtAddrMode Result; 4297 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4298 TPT.getRestorationPoint(); 4299 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4300 AddressAccessTy, AS, 4301 MemoryInst, Result, InsertedInsts, 4302 PromotedInsts, TPT); 4303 Matcher.IgnoreProfitability = true; 4304 bool Success = Matcher.matchAddr(Address, 0); 4305 (void)Success; assert(Success && "Couldn't select *anything*?"); 4306 4307 // The match was to check the profitability, the changes made are not 4308 // part of the original matcher. Therefore, they should be dropped 4309 // otherwise the original matcher will not present the right state. 4310 TPT.rollback(LastKnownGood); 4311 4312 // If the match didn't cover I, then it won't be shared by it. 4313 if (!is_contained(MatchedAddrModeInsts, I)) 4314 return false; 4315 4316 MatchedAddrModeInsts.clear(); 4317 } 4318 4319 return true; 4320 } 4321 4322 /// Return true if the specified values are defined in a 4323 /// different basic block than BB. 4324 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4325 if (Instruction *I = dyn_cast<Instruction>(V)) 4326 return I->getParent() != BB; 4327 return false; 4328 } 4329 4330 /// Sink addressing mode computation immediate before MemoryInst if doing so 4331 /// can be done without increasing register pressure. The need for the 4332 /// register pressure constraint means this can end up being an all or nothing 4333 /// decision for all uses of the same addressing computation. 4334 /// 4335 /// Load and Store Instructions often have addressing modes that can do 4336 /// significant amounts of computation. As such, instruction selection will try 4337 /// to get the load or store to do as much computation as possible for the 4338 /// program. The problem is that isel can only see within a single block. As 4339 /// such, we sink as much legal addressing mode work into the block as possible. 4340 /// 4341 /// This method is used to optimize both load/store and inline asms with memory 4342 /// operands. It's also used to sink addressing computations feeding into cold 4343 /// call sites into their (cold) basic block. 4344 /// 4345 /// The motivation for handling sinking into cold blocks is that doing so can 4346 /// both enable other address mode sinking (by satisfying the register pressure 4347 /// constraint above), and reduce register pressure globally (by removing the 4348 /// addressing mode computation from the fast path entirely.). 4349 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4350 Type *AccessTy, unsigned AddrSpace) { 4351 Value *Repl = Addr; 4352 4353 // Try to collapse single-value PHI nodes. This is necessary to undo 4354 // unprofitable PRE transformations. 4355 SmallVector<Value*, 8> worklist; 4356 SmallPtrSet<Value*, 16> Visited; 4357 worklist.push_back(Addr); 4358 4359 // Use a worklist to iteratively look through PHI and select nodes, and 4360 // ensure that the addressing mode obtained from the non-PHI/select roots of 4361 // the graph are compatible. 4362 bool PhiOrSelectSeen = false; 4363 SmallVector<Instruction*, 16> AddrModeInsts; 4364 const SimplifyQuery SQ(*DL, TLInfo); 4365 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4366 TypePromotionTransaction TPT(RemovedInsts); 4367 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4368 TPT.getRestorationPoint(); 4369 while (!worklist.empty()) { 4370 Value *V = worklist.back(); 4371 worklist.pop_back(); 4372 4373 // We allow traversing cyclic Phi nodes. 4374 // In case of success after this loop we ensure that traversing through 4375 // Phi nodes ends up with all cases to compute address of the form 4376 // BaseGV + Base + Scale * Index + Offset 4377 // where Scale and Offset are constans and BaseGV, Base and Index 4378 // are exactly the same Values in all cases. 4379 // It means that BaseGV, Scale and Offset dominate our memory instruction 4380 // and have the same value as they had in address computation represented 4381 // as Phi. So we can safely sink address computation to memory instruction. 4382 if (!Visited.insert(V).second) 4383 continue; 4384 4385 // For a PHI node, push all of its incoming values. 4386 if (PHINode *P = dyn_cast<PHINode>(V)) { 4387 for (Value *IncValue : P->incoming_values()) 4388 worklist.push_back(IncValue); 4389 PhiOrSelectSeen = true; 4390 continue; 4391 } 4392 // Similar for select. 4393 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4394 worklist.push_back(SI->getFalseValue()); 4395 worklist.push_back(SI->getTrueValue()); 4396 PhiOrSelectSeen = true; 4397 continue; 4398 } 4399 4400 // For non-PHIs, determine the addressing mode being computed. Note that 4401 // the result may differ depending on what other uses our candidate 4402 // addressing instructions might have. 4403 AddrModeInsts.clear(); 4404 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4405 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4406 InsertedInsts, PromotedInsts, TPT); 4407 NewAddrMode.OriginalValue = V; 4408 4409 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4410 break; 4411 } 4412 4413 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4414 // or we have multiple but either couldn't combine them or combining them 4415 // wouldn't do anything useful, bail out now. 4416 if (!AddrModes.combineAddrModes()) { 4417 TPT.rollback(LastKnownGood); 4418 return false; 4419 } 4420 TPT.commit(); 4421 4422 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4423 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4424 4425 // If all the instructions matched are already in this BB, don't do anything. 4426 // If we saw a Phi node then it is not local definitely, and if we saw a select 4427 // then we want to push the address calculation past it even if it's already 4428 // in this BB. 4429 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4430 return IsNonLocalValue(V, MemoryInst->getParent()); 4431 })) { 4432 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4433 return false; 4434 } 4435 4436 // Insert this computation right after this user. Since our caller is 4437 // scanning from the top of the BB to the bottom, reuse of the expr are 4438 // guaranteed to happen later. 4439 IRBuilder<> Builder(MemoryInst); 4440 4441 // Now that we determined the addressing expression we want to use and know 4442 // that we have to sink it into this block. Check to see if we have already 4443 // done this for some other load/store instr in this block. If so, reuse 4444 // the computation. Before attempting reuse, check if the address is valid 4445 // as it may have been erased. 4446 4447 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4448 4449 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4450 if (SunkAddr) { 4451 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4452 << *MemoryInst << "\n"); 4453 if (SunkAddr->getType() != Addr->getType()) 4454 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4455 } else if (AddrSinkUsingGEPs || 4456 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4457 SubtargetInfo->useAA())) { 4458 // By default, we use the GEP-based method when AA is used later. This 4459 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4460 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4461 << *MemoryInst << "\n"); 4462 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4463 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4464 4465 // First, find the pointer. 4466 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4467 ResultPtr = AddrMode.BaseReg; 4468 AddrMode.BaseReg = nullptr; 4469 } 4470 4471 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4472 // We can't add more than one pointer together, nor can we scale a 4473 // pointer (both of which seem meaningless). 4474 if (ResultPtr || AddrMode.Scale != 1) 4475 return false; 4476 4477 ResultPtr = AddrMode.ScaledReg; 4478 AddrMode.Scale = 0; 4479 } 4480 4481 // It is only safe to sign extend the BaseReg if we know that the math 4482 // required to create it did not overflow before we extend it. Since 4483 // the original IR value was tossed in favor of a constant back when 4484 // the AddrMode was created we need to bail out gracefully if widths 4485 // do not match instead of extending it. 4486 // 4487 // (See below for code to add the scale.) 4488 if (AddrMode.Scale) { 4489 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4490 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4491 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4492 return false; 4493 } 4494 4495 if (AddrMode.BaseGV) { 4496 if (ResultPtr) 4497 return false; 4498 4499 ResultPtr = AddrMode.BaseGV; 4500 } 4501 4502 // If the real base value actually came from an inttoptr, then the matcher 4503 // will look through it and provide only the integer value. In that case, 4504 // use it here. 4505 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4506 if (!ResultPtr && AddrMode.BaseReg) { 4507 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4508 "sunkaddr"); 4509 AddrMode.BaseReg = nullptr; 4510 } else if (!ResultPtr && AddrMode.Scale == 1) { 4511 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4512 "sunkaddr"); 4513 AddrMode.Scale = 0; 4514 } 4515 } 4516 4517 if (!ResultPtr && 4518 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4519 SunkAddr = Constant::getNullValue(Addr->getType()); 4520 } else if (!ResultPtr) { 4521 return false; 4522 } else { 4523 Type *I8PtrTy = 4524 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4525 Type *I8Ty = Builder.getInt8Ty(); 4526 4527 // Start with the base register. Do this first so that subsequent address 4528 // matching finds it last, which will prevent it from trying to match it 4529 // as the scaled value in case it happens to be a mul. That would be 4530 // problematic if we've sunk a different mul for the scale, because then 4531 // we'd end up sinking both muls. 4532 if (AddrMode.BaseReg) { 4533 Value *V = AddrMode.BaseReg; 4534 if (V->getType() != IntPtrTy) 4535 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4536 4537 ResultIndex = V; 4538 } 4539 4540 // Add the scale value. 4541 if (AddrMode.Scale) { 4542 Value *V = AddrMode.ScaledReg; 4543 if (V->getType() == IntPtrTy) { 4544 // done. 4545 } else { 4546 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4547 cast<IntegerType>(V->getType())->getBitWidth() && 4548 "We can't transform if ScaledReg is too narrow"); 4549 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4550 } 4551 4552 if (AddrMode.Scale != 1) 4553 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4554 "sunkaddr"); 4555 if (ResultIndex) 4556 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4557 else 4558 ResultIndex = V; 4559 } 4560 4561 // Add in the Base Offset if present. 4562 if (AddrMode.BaseOffs) { 4563 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4564 if (ResultIndex) { 4565 // We need to add this separately from the scale above to help with 4566 // SDAG consecutive load/store merging. 4567 if (ResultPtr->getType() != I8PtrTy) 4568 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4569 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4570 } 4571 4572 ResultIndex = V; 4573 } 4574 4575 if (!ResultIndex) { 4576 SunkAddr = ResultPtr; 4577 } else { 4578 if (ResultPtr->getType() != I8PtrTy) 4579 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4580 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4581 } 4582 4583 if (SunkAddr->getType() != Addr->getType()) 4584 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4585 } 4586 } else { 4587 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4588 // non-integral pointers, so in that case bail out now. 4589 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4590 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4591 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4592 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4593 if (DL->isNonIntegralPointerType(Addr->getType()) || 4594 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4595 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4596 (AddrMode.BaseGV && 4597 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4598 return false; 4599 4600 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4601 << *MemoryInst << "\n"); 4602 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4603 Value *Result = nullptr; 4604 4605 // Start with the base register. Do this first so that subsequent address 4606 // matching finds it last, which will prevent it from trying to match it 4607 // as the scaled value in case it happens to be a mul. That would be 4608 // problematic if we've sunk a different mul for the scale, because then 4609 // we'd end up sinking both muls. 4610 if (AddrMode.BaseReg) { 4611 Value *V = AddrMode.BaseReg; 4612 if (V->getType()->isPointerTy()) 4613 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4614 if (V->getType() != IntPtrTy) 4615 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4616 Result = V; 4617 } 4618 4619 // Add the scale value. 4620 if (AddrMode.Scale) { 4621 Value *V = AddrMode.ScaledReg; 4622 if (V->getType() == IntPtrTy) { 4623 // done. 4624 } else if (V->getType()->isPointerTy()) { 4625 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4626 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4627 cast<IntegerType>(V->getType())->getBitWidth()) { 4628 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4629 } else { 4630 // It is only safe to sign extend the BaseReg if we know that the math 4631 // required to create it did not overflow before we extend it. Since 4632 // the original IR value was tossed in favor of a constant back when 4633 // the AddrMode was created we need to bail out gracefully if widths 4634 // do not match instead of extending it. 4635 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4636 if (I && (Result != AddrMode.BaseReg)) 4637 I->eraseFromParent(); 4638 return false; 4639 } 4640 if (AddrMode.Scale != 1) 4641 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4642 "sunkaddr"); 4643 if (Result) 4644 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4645 else 4646 Result = V; 4647 } 4648 4649 // Add in the BaseGV if present. 4650 if (AddrMode.BaseGV) { 4651 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4652 if (Result) 4653 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4654 else 4655 Result = V; 4656 } 4657 4658 // Add in the Base Offset if present. 4659 if (AddrMode.BaseOffs) { 4660 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4661 if (Result) 4662 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4663 else 4664 Result = V; 4665 } 4666 4667 if (!Result) 4668 SunkAddr = Constant::getNullValue(Addr->getType()); 4669 else 4670 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4671 } 4672 4673 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4674 // Store the newly computed address into the cache. In the case we reused a 4675 // value, this should be idempotent. 4676 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4677 4678 // If we have no uses, recursively delete the value and all dead instructions 4679 // using it. 4680 if (Repl->use_empty()) { 4681 // This can cause recursive deletion, which can invalidate our iterator. 4682 // Use a WeakTrackingVH to hold onto it in case this happens. 4683 Value *CurValue = &*CurInstIterator; 4684 WeakTrackingVH IterHandle(CurValue); 4685 BasicBlock *BB = CurInstIterator->getParent(); 4686 4687 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4688 4689 if (IterHandle != CurValue) { 4690 // If the iterator instruction was recursively deleted, start over at the 4691 // start of the block. 4692 CurInstIterator = BB->begin(); 4693 SunkAddrs.clear(); 4694 } 4695 } 4696 ++NumMemoryInsts; 4697 return true; 4698 } 4699 4700 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4701 /// address computing into the block when possible / profitable. 4702 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4703 bool MadeChange = false; 4704 4705 const TargetRegisterInfo *TRI = 4706 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4707 TargetLowering::AsmOperandInfoVector TargetConstraints = 4708 TLI->ParseConstraints(*DL, TRI, CS); 4709 unsigned ArgNo = 0; 4710 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4711 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4712 4713 // Compute the constraint code and ConstraintType to use. 4714 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4715 4716 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4717 OpInfo.isIndirect) { 4718 Value *OpVal = CS->getArgOperand(ArgNo++); 4719 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4720 } else if (OpInfo.Type == InlineAsm::isInput) 4721 ArgNo++; 4722 } 4723 4724 return MadeChange; 4725 } 4726 4727 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4728 /// sign extensions. 4729 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4730 assert(!Val->use_empty() && "Input must have at least one use"); 4731 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4732 bool IsSExt = isa<SExtInst>(FirstUser); 4733 Type *ExtTy = FirstUser->getType(); 4734 for (const User *U : Val->users()) { 4735 const Instruction *UI = cast<Instruction>(U); 4736 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4737 return false; 4738 Type *CurTy = UI->getType(); 4739 // Same input and output types: Same instruction after CSE. 4740 if (CurTy == ExtTy) 4741 continue; 4742 4743 // If IsSExt is true, we are in this situation: 4744 // a = Val 4745 // b = sext ty1 a to ty2 4746 // c = sext ty1 a to ty3 4747 // Assuming ty2 is shorter than ty3, this could be turned into: 4748 // a = Val 4749 // b = sext ty1 a to ty2 4750 // c = sext ty2 b to ty3 4751 // However, the last sext is not free. 4752 if (IsSExt) 4753 return false; 4754 4755 // This is a ZExt, maybe this is free to extend from one type to another. 4756 // In that case, we would not account for a different use. 4757 Type *NarrowTy; 4758 Type *LargeTy; 4759 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4760 CurTy->getScalarType()->getIntegerBitWidth()) { 4761 NarrowTy = CurTy; 4762 LargeTy = ExtTy; 4763 } else { 4764 NarrowTy = ExtTy; 4765 LargeTy = CurTy; 4766 } 4767 4768 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4769 return false; 4770 } 4771 // All uses are the same or can be derived from one another for free. 4772 return true; 4773 } 4774 4775 /// \brief Try to speculatively promote extensions in \p Exts and continue 4776 /// promoting through newly promoted operands recursively as far as doing so is 4777 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4778 /// When some promotion happened, \p TPT contains the proper state to revert 4779 /// them. 4780 /// 4781 /// \return true if some promotion happened, false otherwise. 4782 bool CodeGenPrepare::tryToPromoteExts( 4783 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4784 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4785 unsigned CreatedInstsCost) { 4786 bool Promoted = false; 4787 4788 // Iterate over all the extensions to try to promote them. 4789 for (auto I : Exts) { 4790 // Early check if we directly have ext(load). 4791 if (isa<LoadInst>(I->getOperand(0))) { 4792 ProfitablyMovedExts.push_back(I); 4793 continue; 4794 } 4795 4796 // Check whether or not we want to do any promotion. The reason we have 4797 // this check inside the for loop is to catch the case where an extension 4798 // is directly fed by a load because in such case the extension can be moved 4799 // up without any promotion on its operands. 4800 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4801 return false; 4802 4803 // Get the action to perform the promotion. 4804 TypePromotionHelper::Action TPH = 4805 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4806 // Check if we can promote. 4807 if (!TPH) { 4808 // Save the current extension as we cannot move up through its operand. 4809 ProfitablyMovedExts.push_back(I); 4810 continue; 4811 } 4812 4813 // Save the current state. 4814 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4815 TPT.getRestorationPoint(); 4816 SmallVector<Instruction *, 4> NewExts; 4817 unsigned NewCreatedInstsCost = 0; 4818 unsigned ExtCost = !TLI->isExtFree(I); 4819 // Promote. 4820 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4821 &NewExts, nullptr, *TLI); 4822 assert(PromotedVal && 4823 "TypePromotionHelper should have filtered out those cases"); 4824 4825 // We would be able to merge only one extension in a load. 4826 // Therefore, if we have more than 1 new extension we heuristically 4827 // cut this search path, because it means we degrade the code quality. 4828 // With exactly 2, the transformation is neutral, because we will merge 4829 // one extension but leave one. However, we optimistically keep going, 4830 // because the new extension may be removed too. 4831 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4832 // FIXME: It would be possible to propagate a negative value instead of 4833 // conservatively ceiling it to 0. 4834 TotalCreatedInstsCost = 4835 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4836 if (!StressExtLdPromotion && 4837 (TotalCreatedInstsCost > 1 || 4838 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4839 // This promotion is not profitable, rollback to the previous state, and 4840 // save the current extension in ProfitablyMovedExts as the latest 4841 // speculative promotion turned out to be unprofitable. 4842 TPT.rollback(LastKnownGood); 4843 ProfitablyMovedExts.push_back(I); 4844 continue; 4845 } 4846 // Continue promoting NewExts as far as doing so is profitable. 4847 SmallVector<Instruction *, 2> NewlyMovedExts; 4848 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4849 bool NewPromoted = false; 4850 for (auto ExtInst : NewlyMovedExts) { 4851 Instruction *MovedExt = cast<Instruction>(ExtInst); 4852 Value *ExtOperand = MovedExt->getOperand(0); 4853 // If we have reached to a load, we need this extra profitability check 4854 // as it could potentially be merged into an ext(load). 4855 if (isa<LoadInst>(ExtOperand) && 4856 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4857 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4858 continue; 4859 4860 ProfitablyMovedExts.push_back(MovedExt); 4861 NewPromoted = true; 4862 } 4863 4864 // If none of speculative promotions for NewExts is profitable, rollback 4865 // and save the current extension (I) as the last profitable extension. 4866 if (!NewPromoted) { 4867 TPT.rollback(LastKnownGood); 4868 ProfitablyMovedExts.push_back(I); 4869 continue; 4870 } 4871 // The promotion is profitable. 4872 Promoted = true; 4873 } 4874 return Promoted; 4875 } 4876 4877 /// Merging redundant sexts when one is dominating the other. 4878 bool CodeGenPrepare::mergeSExts(Function &F) { 4879 DominatorTree DT(F); 4880 bool Changed = false; 4881 for (auto &Entry : ValToSExtendedUses) { 4882 SExts &Insts = Entry.second; 4883 SExts CurPts; 4884 for (Instruction *Inst : Insts) { 4885 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4886 Inst->getOperand(0) != Entry.first) 4887 continue; 4888 bool inserted = false; 4889 for (auto &Pt : CurPts) { 4890 if (DT.dominates(Inst, Pt)) { 4891 Pt->replaceAllUsesWith(Inst); 4892 RemovedInsts.insert(Pt); 4893 Pt->removeFromParent(); 4894 Pt = Inst; 4895 inserted = true; 4896 Changed = true; 4897 break; 4898 } 4899 if (!DT.dominates(Pt, Inst)) 4900 // Give up if we need to merge in a common dominator as the 4901 // expermients show it is not profitable. 4902 continue; 4903 Inst->replaceAllUsesWith(Pt); 4904 RemovedInsts.insert(Inst); 4905 Inst->removeFromParent(); 4906 inserted = true; 4907 Changed = true; 4908 break; 4909 } 4910 if (!inserted) 4911 CurPts.push_back(Inst); 4912 } 4913 } 4914 return Changed; 4915 } 4916 4917 /// Return true, if an ext(load) can be formed from an extension in 4918 /// \p MovedExts. 4919 bool CodeGenPrepare::canFormExtLd( 4920 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4921 Instruction *&Inst, bool HasPromoted) { 4922 for (auto *MovedExtInst : MovedExts) { 4923 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4924 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4925 Inst = MovedExtInst; 4926 break; 4927 } 4928 } 4929 if (!LI) 4930 return false; 4931 4932 // If they're already in the same block, there's nothing to do. 4933 // Make the cheap checks first if we did not promote. 4934 // If we promoted, we need to check if it is indeed profitable. 4935 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4936 return false; 4937 4938 return TLI->isExtLoad(LI, Inst, *DL); 4939 } 4940 4941 /// Move a zext or sext fed by a load into the same basic block as the load, 4942 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4943 /// extend into the load. 4944 /// 4945 /// E.g., 4946 /// \code 4947 /// %ld = load i32* %addr 4948 /// %add = add nuw i32 %ld, 4 4949 /// %zext = zext i32 %add to i64 4950 // \endcode 4951 /// => 4952 /// \code 4953 /// %ld = load i32* %addr 4954 /// %zext = zext i32 %ld to i64 4955 /// %add = add nuw i64 %zext, 4 4956 /// \encode 4957 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4958 /// allow us to match zext(load i32*) to i64. 4959 /// 4960 /// Also, try to promote the computations used to obtain a sign extended 4961 /// value used into memory accesses. 4962 /// E.g., 4963 /// \code 4964 /// a = add nsw i32 b, 3 4965 /// d = sext i32 a to i64 4966 /// e = getelementptr ..., i64 d 4967 /// \endcode 4968 /// => 4969 /// \code 4970 /// f = sext i32 b to i64 4971 /// a = add nsw i64 f, 3 4972 /// e = getelementptr ..., i64 a 4973 /// \endcode 4974 /// 4975 /// \p Inst[in/out] the extension may be modified during the process if some 4976 /// promotions apply. 4977 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4978 // ExtLoad formation and address type promotion infrastructure requires TLI to 4979 // be effective. 4980 if (!TLI) 4981 return false; 4982 4983 bool AllowPromotionWithoutCommonHeader = false; 4984 /// See if it is an interesting sext operations for the address type 4985 /// promotion before trying to promote it, e.g., the ones with the right 4986 /// type and used in memory accesses. 4987 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4988 *Inst, AllowPromotionWithoutCommonHeader); 4989 TypePromotionTransaction TPT(RemovedInsts); 4990 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4991 TPT.getRestorationPoint(); 4992 SmallVector<Instruction *, 1> Exts; 4993 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4994 Exts.push_back(Inst); 4995 4996 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4997 4998 // Look for a load being extended. 4999 LoadInst *LI = nullptr; 5000 Instruction *ExtFedByLoad; 5001 5002 // Try to promote a chain of computation if it allows to form an extended 5003 // load. 5004 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5005 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5006 TPT.commit(); 5007 // Move the extend into the same block as the load 5008 ExtFedByLoad->moveAfter(LI); 5009 // CGP does not check if the zext would be speculatively executed when moved 5010 // to the same basic block as the load. Preserving its original location 5011 // would pessimize the debugging experience, as well as negatively impact 5012 // the quality of sample pgo. We don't want to use "line 0" as that has a 5013 // size cost in the line-table section and logically the zext can be seen as 5014 // part of the load. Therefore we conservatively reuse the same debug 5015 // location for the load and the zext. 5016 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5017 ++NumExtsMoved; 5018 Inst = ExtFedByLoad; 5019 return true; 5020 } 5021 5022 // Continue promoting SExts if known as considerable depending on targets. 5023 if (ATPConsiderable && 5024 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5025 HasPromoted, TPT, SpeculativelyMovedExts)) 5026 return true; 5027 5028 TPT.rollback(LastKnownGood); 5029 return false; 5030 } 5031 5032 // Perform address type promotion if doing so is profitable. 5033 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5034 // instructions that sign extended the same initial value. However, if 5035 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5036 // extension is just profitable. 5037 bool CodeGenPrepare::performAddressTypePromotion( 5038 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5039 bool HasPromoted, TypePromotionTransaction &TPT, 5040 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5041 bool Promoted = false; 5042 SmallPtrSet<Instruction *, 1> UnhandledExts; 5043 bool AllSeenFirst = true; 5044 for (auto I : SpeculativelyMovedExts) { 5045 Value *HeadOfChain = I->getOperand(0); 5046 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5047 SeenChainsForSExt.find(HeadOfChain); 5048 // If there is an unhandled SExt which has the same header, try to promote 5049 // it as well. 5050 if (AlreadySeen != SeenChainsForSExt.end()) { 5051 if (AlreadySeen->second != nullptr) 5052 UnhandledExts.insert(AlreadySeen->second); 5053 AllSeenFirst = false; 5054 } 5055 } 5056 5057 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5058 SpeculativelyMovedExts.size() == 1)) { 5059 TPT.commit(); 5060 if (HasPromoted) 5061 Promoted = true; 5062 for (auto I : SpeculativelyMovedExts) { 5063 Value *HeadOfChain = I->getOperand(0); 5064 SeenChainsForSExt[HeadOfChain] = nullptr; 5065 ValToSExtendedUses[HeadOfChain].push_back(I); 5066 } 5067 // Update Inst as promotion happen. 5068 Inst = SpeculativelyMovedExts.pop_back_val(); 5069 } else { 5070 // This is the first chain visited from the header, keep the current chain 5071 // as unhandled. Defer to promote this until we encounter another SExt 5072 // chain derived from the same header. 5073 for (auto I : SpeculativelyMovedExts) { 5074 Value *HeadOfChain = I->getOperand(0); 5075 SeenChainsForSExt[HeadOfChain] = Inst; 5076 } 5077 return false; 5078 } 5079 5080 if (!AllSeenFirst && !UnhandledExts.empty()) 5081 for (auto VisitedSExt : UnhandledExts) { 5082 if (RemovedInsts.count(VisitedSExt)) 5083 continue; 5084 TypePromotionTransaction TPT(RemovedInsts); 5085 SmallVector<Instruction *, 1> Exts; 5086 SmallVector<Instruction *, 2> Chains; 5087 Exts.push_back(VisitedSExt); 5088 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5089 TPT.commit(); 5090 if (HasPromoted) 5091 Promoted = true; 5092 for (auto I : Chains) { 5093 Value *HeadOfChain = I->getOperand(0); 5094 // Mark this as handled. 5095 SeenChainsForSExt[HeadOfChain] = nullptr; 5096 ValToSExtendedUses[HeadOfChain].push_back(I); 5097 } 5098 } 5099 return Promoted; 5100 } 5101 5102 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5103 BasicBlock *DefBB = I->getParent(); 5104 5105 // If the result of a {s|z}ext and its source are both live out, rewrite all 5106 // other uses of the source with result of extension. 5107 Value *Src = I->getOperand(0); 5108 if (Src->hasOneUse()) 5109 return false; 5110 5111 // Only do this xform if truncating is free. 5112 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5113 return false; 5114 5115 // Only safe to perform the optimization if the source is also defined in 5116 // this block. 5117 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5118 return false; 5119 5120 bool DefIsLiveOut = false; 5121 for (User *U : I->users()) { 5122 Instruction *UI = cast<Instruction>(U); 5123 5124 // Figure out which BB this ext is used in. 5125 BasicBlock *UserBB = UI->getParent(); 5126 if (UserBB == DefBB) continue; 5127 DefIsLiveOut = true; 5128 break; 5129 } 5130 if (!DefIsLiveOut) 5131 return false; 5132 5133 // Make sure none of the uses are PHI nodes. 5134 for (User *U : Src->users()) { 5135 Instruction *UI = cast<Instruction>(U); 5136 BasicBlock *UserBB = UI->getParent(); 5137 if (UserBB == DefBB) continue; 5138 // Be conservative. We don't want this xform to end up introducing 5139 // reloads just before load / store instructions. 5140 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5141 return false; 5142 } 5143 5144 // InsertedTruncs - Only insert one trunc in each block once. 5145 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5146 5147 bool MadeChange = false; 5148 for (Use &U : Src->uses()) { 5149 Instruction *User = cast<Instruction>(U.getUser()); 5150 5151 // Figure out which BB this ext is used in. 5152 BasicBlock *UserBB = User->getParent(); 5153 if (UserBB == DefBB) continue; 5154 5155 // Both src and def are live in this block. Rewrite the use. 5156 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5157 5158 if (!InsertedTrunc) { 5159 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5160 assert(InsertPt != UserBB->end()); 5161 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5162 InsertedInsts.insert(InsertedTrunc); 5163 } 5164 5165 // Replace a use of the {s|z}ext source with a use of the result. 5166 U = InsertedTrunc; 5167 ++NumExtUses; 5168 MadeChange = true; 5169 } 5170 5171 return MadeChange; 5172 } 5173 5174 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5175 // just after the load if the target can fold this into one extload instruction, 5176 // with the hope of eliminating some of the other later "and" instructions using 5177 // the loaded value. "and"s that are made trivially redundant by the insertion 5178 // of the new "and" are removed by this function, while others (e.g. those whose 5179 // path from the load goes through a phi) are left for isel to potentially 5180 // remove. 5181 // 5182 // For example: 5183 // 5184 // b0: 5185 // x = load i32 5186 // ... 5187 // b1: 5188 // y = and x, 0xff 5189 // z = use y 5190 // 5191 // becomes: 5192 // 5193 // b0: 5194 // x = load i32 5195 // x' = and x, 0xff 5196 // ... 5197 // b1: 5198 // z = use x' 5199 // 5200 // whereas: 5201 // 5202 // b0: 5203 // x1 = load i32 5204 // ... 5205 // b1: 5206 // x2 = load i32 5207 // ... 5208 // b2: 5209 // x = phi x1, x2 5210 // y = and x, 0xff 5211 // 5212 // becomes (after a call to optimizeLoadExt for each load): 5213 // 5214 // b0: 5215 // x1 = load i32 5216 // x1' = and x1, 0xff 5217 // ... 5218 // b1: 5219 // x2 = load i32 5220 // x2' = and x2, 0xff 5221 // ... 5222 // b2: 5223 // x = phi x1', x2' 5224 // y = and x, 0xff 5225 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5226 if (!Load->isSimple() || 5227 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5228 return false; 5229 5230 // Skip loads we've already transformed. 5231 if (Load->hasOneUse() && 5232 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5233 return false; 5234 5235 // Look at all uses of Load, looking through phis, to determine how many bits 5236 // of the loaded value are needed. 5237 SmallVector<Instruction *, 8> WorkList; 5238 SmallPtrSet<Instruction *, 16> Visited; 5239 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5240 for (auto *U : Load->users()) 5241 WorkList.push_back(cast<Instruction>(U)); 5242 5243 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5244 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5245 APInt DemandBits(BitWidth, 0); 5246 APInt WidestAndBits(BitWidth, 0); 5247 5248 while (!WorkList.empty()) { 5249 Instruction *I = WorkList.back(); 5250 WorkList.pop_back(); 5251 5252 // Break use-def graph loops. 5253 if (!Visited.insert(I).second) 5254 continue; 5255 5256 // For a PHI node, push all of its users. 5257 if (auto *Phi = dyn_cast<PHINode>(I)) { 5258 for (auto *U : Phi->users()) 5259 WorkList.push_back(cast<Instruction>(U)); 5260 continue; 5261 } 5262 5263 switch (I->getOpcode()) { 5264 case Instruction::And: { 5265 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5266 if (!AndC) 5267 return false; 5268 APInt AndBits = AndC->getValue(); 5269 DemandBits |= AndBits; 5270 // Keep track of the widest and mask we see. 5271 if (AndBits.ugt(WidestAndBits)) 5272 WidestAndBits = AndBits; 5273 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5274 AndsToMaybeRemove.push_back(I); 5275 break; 5276 } 5277 5278 case Instruction::Shl: { 5279 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5280 if (!ShlC) 5281 return false; 5282 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5283 DemandBits.setLowBits(BitWidth - ShiftAmt); 5284 break; 5285 } 5286 5287 case Instruction::Trunc: { 5288 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5289 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5290 DemandBits.setLowBits(TruncBitWidth); 5291 break; 5292 } 5293 5294 default: 5295 return false; 5296 } 5297 } 5298 5299 uint32_t ActiveBits = DemandBits.getActiveBits(); 5300 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5301 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5302 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5303 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5304 // followed by an AND. 5305 // TODO: Look into removing this restriction by fixing backends to either 5306 // return false for isLoadExtLegal for i1 or have them select this pattern to 5307 // a single instruction. 5308 // 5309 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5310 // mask, since these are the only ands that will be removed by isel. 5311 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5312 WidestAndBits != DemandBits) 5313 return false; 5314 5315 LLVMContext &Ctx = Load->getType()->getContext(); 5316 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5317 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5318 5319 // Reject cases that won't be matched as extloads. 5320 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5321 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5322 return false; 5323 5324 IRBuilder<> Builder(Load->getNextNode()); 5325 auto *NewAnd = dyn_cast<Instruction>( 5326 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5327 // Mark this instruction as "inserted by CGP", so that other 5328 // optimizations don't touch it. 5329 InsertedInsts.insert(NewAnd); 5330 5331 // Replace all uses of load with new and (except for the use of load in the 5332 // new and itself). 5333 Load->replaceAllUsesWith(NewAnd); 5334 NewAnd->setOperand(0, Load); 5335 5336 // Remove any and instructions that are now redundant. 5337 for (auto *And : AndsToMaybeRemove) 5338 // Check that the and mask is the same as the one we decided to put on the 5339 // new and. 5340 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5341 And->replaceAllUsesWith(NewAnd); 5342 if (&*CurInstIterator == And) 5343 CurInstIterator = std::next(And->getIterator()); 5344 And->eraseFromParent(); 5345 ++NumAndUses; 5346 } 5347 5348 ++NumAndsAdded; 5349 return true; 5350 } 5351 5352 /// Check if V (an operand of a select instruction) is an expensive instruction 5353 /// that is only used once. 5354 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5355 auto *I = dyn_cast<Instruction>(V); 5356 // If it's safe to speculatively execute, then it should not have side 5357 // effects; therefore, it's safe to sink and possibly *not* execute. 5358 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5359 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5360 } 5361 5362 /// Returns true if a SelectInst should be turned into an explicit branch. 5363 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5364 const TargetLowering *TLI, 5365 SelectInst *SI) { 5366 // If even a predictable select is cheap, then a branch can't be cheaper. 5367 if (!TLI->isPredictableSelectExpensive()) 5368 return false; 5369 5370 // FIXME: This should use the same heuristics as IfConversion to determine 5371 // whether a select is better represented as a branch. 5372 5373 // If metadata tells us that the select condition is obviously predictable, 5374 // then we want to replace the select with a branch. 5375 uint64_t TrueWeight, FalseWeight; 5376 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5377 uint64_t Max = std::max(TrueWeight, FalseWeight); 5378 uint64_t Sum = TrueWeight + FalseWeight; 5379 if (Sum != 0) { 5380 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5381 if (Probability > TLI->getPredictableBranchThreshold()) 5382 return true; 5383 } 5384 } 5385 5386 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5387 5388 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5389 // comparison condition. If the compare has more than one use, there's 5390 // probably another cmov or setcc around, so it's not worth emitting a branch. 5391 if (!Cmp || !Cmp->hasOneUse()) 5392 return false; 5393 5394 // If either operand of the select is expensive and only needed on one side 5395 // of the select, we should form a branch. 5396 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5397 sinkSelectOperand(TTI, SI->getFalseValue())) 5398 return true; 5399 5400 return false; 5401 } 5402 5403 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5404 /// false value of \p SI. If the true/false value of \p SI is defined by any 5405 /// select instructions in \p Selects, look through the defining select 5406 /// instruction until the true/false value is not defined in \p Selects. 5407 static Value *getTrueOrFalseValue( 5408 SelectInst *SI, bool isTrue, 5409 const SmallPtrSet<const Instruction *, 2> &Selects) { 5410 Value *V; 5411 5412 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5413 DefSI = dyn_cast<SelectInst>(V)) { 5414 assert(DefSI->getCondition() == SI->getCondition() && 5415 "The condition of DefSI does not match with SI"); 5416 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5417 } 5418 return V; 5419 } 5420 5421 /// If we have a SelectInst that will likely profit from branch prediction, 5422 /// turn it into a branch. 5423 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5424 // Find all consecutive select instructions that share the same condition. 5425 SmallVector<SelectInst *, 2> ASI; 5426 ASI.push_back(SI); 5427 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5428 It != SI->getParent()->end(); ++It) { 5429 SelectInst *I = dyn_cast<SelectInst>(&*It); 5430 if (I && SI->getCondition() == I->getCondition()) { 5431 ASI.push_back(I); 5432 } else { 5433 break; 5434 } 5435 } 5436 5437 SelectInst *LastSI = ASI.back(); 5438 // Increment the current iterator to skip all the rest of select instructions 5439 // because they will be either "not lowered" or "all lowered" to branch. 5440 CurInstIterator = std::next(LastSI->getIterator()); 5441 5442 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5443 5444 // Can we convert the 'select' to CF ? 5445 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5446 SI->getMetadata(LLVMContext::MD_unpredictable)) 5447 return false; 5448 5449 TargetLowering::SelectSupportKind SelectKind; 5450 if (VectorCond) 5451 SelectKind = TargetLowering::VectorMaskSelect; 5452 else if (SI->getType()->isVectorTy()) 5453 SelectKind = TargetLowering::ScalarCondVectorVal; 5454 else 5455 SelectKind = TargetLowering::ScalarValSelect; 5456 5457 if (TLI->isSelectSupported(SelectKind) && 5458 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5459 return false; 5460 5461 ModifiedDT = true; 5462 5463 // Transform a sequence like this: 5464 // start: 5465 // %cmp = cmp uge i32 %a, %b 5466 // %sel = select i1 %cmp, i32 %c, i32 %d 5467 // 5468 // Into: 5469 // start: 5470 // %cmp = cmp uge i32 %a, %b 5471 // br i1 %cmp, label %select.true, label %select.false 5472 // select.true: 5473 // br label %select.end 5474 // select.false: 5475 // br label %select.end 5476 // select.end: 5477 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5478 // 5479 // In addition, we may sink instructions that produce %c or %d from 5480 // the entry block into the destination(s) of the new branch. 5481 // If the true or false blocks do not contain a sunken instruction, that 5482 // block and its branch may be optimized away. In that case, one side of the 5483 // first branch will point directly to select.end, and the corresponding PHI 5484 // predecessor block will be the start block. 5485 5486 // First, we split the block containing the select into 2 blocks. 5487 BasicBlock *StartBlock = SI->getParent(); 5488 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5489 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5490 5491 // Delete the unconditional branch that was just created by the split. 5492 StartBlock->getTerminator()->eraseFromParent(); 5493 5494 // These are the new basic blocks for the conditional branch. 5495 // At least one will become an actual new basic block. 5496 BasicBlock *TrueBlock = nullptr; 5497 BasicBlock *FalseBlock = nullptr; 5498 BranchInst *TrueBranch = nullptr; 5499 BranchInst *FalseBranch = nullptr; 5500 5501 // Sink expensive instructions into the conditional blocks to avoid executing 5502 // them speculatively. 5503 for (SelectInst *SI : ASI) { 5504 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5505 if (TrueBlock == nullptr) { 5506 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5507 EndBlock->getParent(), EndBlock); 5508 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5509 } 5510 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5511 TrueInst->moveBefore(TrueBranch); 5512 } 5513 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5514 if (FalseBlock == nullptr) { 5515 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5516 EndBlock->getParent(), EndBlock); 5517 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5518 } 5519 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5520 FalseInst->moveBefore(FalseBranch); 5521 } 5522 } 5523 5524 // If there was nothing to sink, then arbitrarily choose the 'false' side 5525 // for a new input value to the PHI. 5526 if (TrueBlock == FalseBlock) { 5527 assert(TrueBlock == nullptr && 5528 "Unexpected basic block transform while optimizing select"); 5529 5530 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5531 EndBlock->getParent(), EndBlock); 5532 BranchInst::Create(EndBlock, FalseBlock); 5533 } 5534 5535 // Insert the real conditional branch based on the original condition. 5536 // If we did not create a new block for one of the 'true' or 'false' paths 5537 // of the condition, it means that side of the branch goes to the end block 5538 // directly and the path originates from the start block from the point of 5539 // view of the new PHI. 5540 BasicBlock *TT, *FT; 5541 if (TrueBlock == nullptr) { 5542 TT = EndBlock; 5543 FT = FalseBlock; 5544 TrueBlock = StartBlock; 5545 } else if (FalseBlock == nullptr) { 5546 TT = TrueBlock; 5547 FT = EndBlock; 5548 FalseBlock = StartBlock; 5549 } else { 5550 TT = TrueBlock; 5551 FT = FalseBlock; 5552 } 5553 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5554 5555 SmallPtrSet<const Instruction *, 2> INS; 5556 INS.insert(ASI.begin(), ASI.end()); 5557 // Use reverse iterator because later select may use the value of the 5558 // earlier select, and we need to propagate value through earlier select 5559 // to get the PHI operand. 5560 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5561 SelectInst *SI = *It; 5562 // The select itself is replaced with a PHI Node. 5563 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5564 PN->takeName(SI); 5565 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5566 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5567 5568 SI->replaceAllUsesWith(PN); 5569 SI->eraseFromParent(); 5570 INS.erase(SI); 5571 ++NumSelectsExpanded; 5572 } 5573 5574 // Instruct OptimizeBlock to skip to the next block. 5575 CurInstIterator = StartBlock->end(); 5576 return true; 5577 } 5578 5579 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5580 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5581 int SplatElem = -1; 5582 for (unsigned i = 0; i < Mask.size(); ++i) { 5583 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5584 return false; 5585 SplatElem = Mask[i]; 5586 } 5587 5588 return true; 5589 } 5590 5591 /// Some targets have expensive vector shifts if the lanes aren't all the same 5592 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5593 /// it's often worth sinking a shufflevector splat down to its use so that 5594 /// codegen can spot all lanes are identical. 5595 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5596 BasicBlock *DefBB = SVI->getParent(); 5597 5598 // Only do this xform if variable vector shifts are particularly expensive. 5599 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5600 return false; 5601 5602 // We only expect better codegen by sinking a shuffle if we can recognise a 5603 // constant splat. 5604 if (!isBroadcastShuffle(SVI)) 5605 return false; 5606 5607 // InsertedShuffles - Only insert a shuffle in each block once. 5608 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5609 5610 bool MadeChange = false; 5611 for (User *U : SVI->users()) { 5612 Instruction *UI = cast<Instruction>(U); 5613 5614 // Figure out which BB this ext is used in. 5615 BasicBlock *UserBB = UI->getParent(); 5616 if (UserBB == DefBB) continue; 5617 5618 // For now only apply this when the splat is used by a shift instruction. 5619 if (!UI->isShift()) continue; 5620 5621 // Everything checks out, sink the shuffle if the user's block doesn't 5622 // already have a copy. 5623 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5624 5625 if (!InsertedShuffle) { 5626 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5627 assert(InsertPt != UserBB->end()); 5628 InsertedShuffle = 5629 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5630 SVI->getOperand(2), "", &*InsertPt); 5631 } 5632 5633 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5634 MadeChange = true; 5635 } 5636 5637 // If we removed all uses, nuke the shuffle. 5638 if (SVI->use_empty()) { 5639 SVI->eraseFromParent(); 5640 MadeChange = true; 5641 } 5642 5643 return MadeChange; 5644 } 5645 5646 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5647 if (!TLI || !DL) 5648 return false; 5649 5650 Value *Cond = SI->getCondition(); 5651 Type *OldType = Cond->getType(); 5652 LLVMContext &Context = Cond->getContext(); 5653 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5654 unsigned RegWidth = RegType.getSizeInBits(); 5655 5656 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5657 return false; 5658 5659 // If the register width is greater than the type width, expand the condition 5660 // of the switch instruction and each case constant to the width of the 5661 // register. By widening the type of the switch condition, subsequent 5662 // comparisons (for case comparisons) will not need to be extended to the 5663 // preferred register width, so we will potentially eliminate N-1 extends, 5664 // where N is the number of cases in the switch. 5665 auto *NewType = Type::getIntNTy(Context, RegWidth); 5666 5667 // Zero-extend the switch condition and case constants unless the switch 5668 // condition is a function argument that is already being sign-extended. 5669 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5670 // everything instead. 5671 Instruction::CastOps ExtType = Instruction::ZExt; 5672 if (auto *Arg = dyn_cast<Argument>(Cond)) 5673 if (Arg->hasSExtAttr()) 5674 ExtType = Instruction::SExt; 5675 5676 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5677 ExtInst->insertBefore(SI); 5678 SI->setCondition(ExtInst); 5679 for (auto Case : SI->cases()) { 5680 APInt NarrowConst = Case.getCaseValue()->getValue(); 5681 APInt WideConst = (ExtType == Instruction::ZExt) ? 5682 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5683 Case.setValue(ConstantInt::get(Context, WideConst)); 5684 } 5685 5686 return true; 5687 } 5688 5689 5690 namespace { 5691 5692 /// \brief Helper class to promote a scalar operation to a vector one. 5693 /// This class is used to move downward extractelement transition. 5694 /// E.g., 5695 /// a = vector_op <2 x i32> 5696 /// b = extractelement <2 x i32> a, i32 0 5697 /// c = scalar_op b 5698 /// store c 5699 /// 5700 /// => 5701 /// a = vector_op <2 x i32> 5702 /// c = vector_op a (equivalent to scalar_op on the related lane) 5703 /// * d = extractelement <2 x i32> c, i32 0 5704 /// * store d 5705 /// Assuming both extractelement and store can be combine, we get rid of the 5706 /// transition. 5707 class VectorPromoteHelper { 5708 /// DataLayout associated with the current module. 5709 const DataLayout &DL; 5710 5711 /// Used to perform some checks on the legality of vector operations. 5712 const TargetLowering &TLI; 5713 5714 /// Used to estimated the cost of the promoted chain. 5715 const TargetTransformInfo &TTI; 5716 5717 /// The transition being moved downwards. 5718 Instruction *Transition; 5719 5720 /// The sequence of instructions to be promoted. 5721 SmallVector<Instruction *, 4> InstsToBePromoted; 5722 5723 /// Cost of combining a store and an extract. 5724 unsigned StoreExtractCombineCost; 5725 5726 /// Instruction that will be combined with the transition. 5727 Instruction *CombineInst = nullptr; 5728 5729 /// \brief The instruction that represents the current end of the transition. 5730 /// Since we are faking the promotion until we reach the end of the chain 5731 /// of computation, we need a way to get the current end of the transition. 5732 Instruction *getEndOfTransition() const { 5733 if (InstsToBePromoted.empty()) 5734 return Transition; 5735 return InstsToBePromoted.back(); 5736 } 5737 5738 /// \brief Return the index of the original value in the transition. 5739 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5740 /// c, is at index 0. 5741 unsigned getTransitionOriginalValueIdx() const { 5742 assert(isa<ExtractElementInst>(Transition) && 5743 "Other kind of transitions are not supported yet"); 5744 return 0; 5745 } 5746 5747 /// \brief Return the index of the index in the transition. 5748 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5749 /// is at index 1. 5750 unsigned getTransitionIdx() const { 5751 assert(isa<ExtractElementInst>(Transition) && 5752 "Other kind of transitions are not supported yet"); 5753 return 1; 5754 } 5755 5756 /// \brief Get the type of the transition. 5757 /// This is the type of the original value. 5758 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5759 /// transition is <2 x i32>. 5760 Type *getTransitionType() const { 5761 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5762 } 5763 5764 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5765 /// I.e., we have the following sequence: 5766 /// Def = Transition <ty1> a to <ty2> 5767 /// b = ToBePromoted <ty2> Def, ... 5768 /// => 5769 /// b = ToBePromoted <ty1> a, ... 5770 /// Def = Transition <ty1> ToBePromoted to <ty2> 5771 void promoteImpl(Instruction *ToBePromoted); 5772 5773 /// \brief Check whether or not it is profitable to promote all the 5774 /// instructions enqueued to be promoted. 5775 bool isProfitableToPromote() { 5776 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5777 unsigned Index = isa<ConstantInt>(ValIdx) 5778 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5779 : -1; 5780 Type *PromotedType = getTransitionType(); 5781 5782 StoreInst *ST = cast<StoreInst>(CombineInst); 5783 unsigned AS = ST->getPointerAddressSpace(); 5784 unsigned Align = ST->getAlignment(); 5785 // Check if this store is supported. 5786 if (!TLI.allowsMisalignedMemoryAccesses( 5787 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5788 Align)) { 5789 // If this is not supported, there is no way we can combine 5790 // the extract with the store. 5791 return false; 5792 } 5793 5794 // The scalar chain of computation has to pay for the transition 5795 // scalar to vector. 5796 // The vector chain has to account for the combining cost. 5797 uint64_t ScalarCost = 5798 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5799 uint64_t VectorCost = StoreExtractCombineCost; 5800 for (const auto &Inst : InstsToBePromoted) { 5801 // Compute the cost. 5802 // By construction, all instructions being promoted are arithmetic ones. 5803 // Moreover, one argument is a constant that can be viewed as a splat 5804 // constant. 5805 Value *Arg0 = Inst->getOperand(0); 5806 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5807 isa<ConstantFP>(Arg0); 5808 TargetTransformInfo::OperandValueKind Arg0OVK = 5809 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5810 : TargetTransformInfo::OK_AnyValue; 5811 TargetTransformInfo::OperandValueKind Arg1OVK = 5812 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5813 : TargetTransformInfo::OK_AnyValue; 5814 ScalarCost += TTI.getArithmeticInstrCost( 5815 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5816 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5817 Arg0OVK, Arg1OVK); 5818 } 5819 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5820 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5821 return ScalarCost > VectorCost; 5822 } 5823 5824 /// \brief Generate a constant vector with \p Val with the same 5825 /// number of elements as the transition. 5826 /// \p UseSplat defines whether or not \p Val should be replicated 5827 /// across the whole vector. 5828 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5829 /// otherwise we generate a vector with as many undef as possible: 5830 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5831 /// used at the index of the extract. 5832 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5833 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5834 if (!UseSplat) { 5835 // If we cannot determine where the constant must be, we have to 5836 // use a splat constant. 5837 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5838 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5839 ExtractIdx = CstVal->getSExtValue(); 5840 else 5841 UseSplat = true; 5842 } 5843 5844 unsigned End = getTransitionType()->getVectorNumElements(); 5845 if (UseSplat) 5846 return ConstantVector::getSplat(End, Val); 5847 5848 SmallVector<Constant *, 4> ConstVec; 5849 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5850 for (unsigned Idx = 0; Idx != End; ++Idx) { 5851 if (Idx == ExtractIdx) 5852 ConstVec.push_back(Val); 5853 else 5854 ConstVec.push_back(UndefVal); 5855 } 5856 return ConstantVector::get(ConstVec); 5857 } 5858 5859 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5860 /// in \p Use can trigger undefined behavior. 5861 static bool canCauseUndefinedBehavior(const Instruction *Use, 5862 unsigned OperandIdx) { 5863 // This is not safe to introduce undef when the operand is on 5864 // the right hand side of a division-like instruction. 5865 if (OperandIdx != 1) 5866 return false; 5867 switch (Use->getOpcode()) { 5868 default: 5869 return false; 5870 case Instruction::SDiv: 5871 case Instruction::UDiv: 5872 case Instruction::SRem: 5873 case Instruction::URem: 5874 return true; 5875 case Instruction::FDiv: 5876 case Instruction::FRem: 5877 return !Use->hasNoNaNs(); 5878 } 5879 llvm_unreachable(nullptr); 5880 } 5881 5882 public: 5883 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5884 const TargetTransformInfo &TTI, Instruction *Transition, 5885 unsigned CombineCost) 5886 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5887 StoreExtractCombineCost(CombineCost) { 5888 assert(Transition && "Do not know how to promote null"); 5889 } 5890 5891 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5892 bool canPromote(const Instruction *ToBePromoted) const { 5893 // We could support CastInst too. 5894 return isa<BinaryOperator>(ToBePromoted); 5895 } 5896 5897 /// \brief Check if it is profitable to promote \p ToBePromoted 5898 /// by moving downward the transition through. 5899 bool shouldPromote(const Instruction *ToBePromoted) const { 5900 // Promote only if all the operands can be statically expanded. 5901 // Indeed, we do not want to introduce any new kind of transitions. 5902 for (const Use &U : ToBePromoted->operands()) { 5903 const Value *Val = U.get(); 5904 if (Val == getEndOfTransition()) { 5905 // If the use is a division and the transition is on the rhs, 5906 // we cannot promote the operation, otherwise we may create a 5907 // division by zero. 5908 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5909 return false; 5910 continue; 5911 } 5912 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5913 !isa<ConstantFP>(Val)) 5914 return false; 5915 } 5916 // Check that the resulting operation is legal. 5917 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5918 if (!ISDOpcode) 5919 return false; 5920 return StressStoreExtract || 5921 TLI.isOperationLegalOrCustom( 5922 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5923 } 5924 5925 /// \brief Check whether or not \p Use can be combined 5926 /// with the transition. 5927 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5928 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5929 5930 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5931 void enqueueForPromotion(Instruction *ToBePromoted) { 5932 InstsToBePromoted.push_back(ToBePromoted); 5933 } 5934 5935 /// \brief Set the instruction that will be combined with the transition. 5936 void recordCombineInstruction(Instruction *ToBeCombined) { 5937 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5938 CombineInst = ToBeCombined; 5939 } 5940 5941 /// \brief Promote all the instructions enqueued for promotion if it is 5942 /// is profitable. 5943 /// \return True if the promotion happened, false otherwise. 5944 bool promote() { 5945 // Check if there is something to promote. 5946 // Right now, if we do not have anything to combine with, 5947 // we assume the promotion is not profitable. 5948 if (InstsToBePromoted.empty() || !CombineInst) 5949 return false; 5950 5951 // Check cost. 5952 if (!StressStoreExtract && !isProfitableToPromote()) 5953 return false; 5954 5955 // Promote. 5956 for (auto &ToBePromoted : InstsToBePromoted) 5957 promoteImpl(ToBePromoted); 5958 InstsToBePromoted.clear(); 5959 return true; 5960 } 5961 }; 5962 5963 } // end anonymous namespace 5964 5965 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5966 // At this point, we know that all the operands of ToBePromoted but Def 5967 // can be statically promoted. 5968 // For Def, we need to use its parameter in ToBePromoted: 5969 // b = ToBePromoted ty1 a 5970 // Def = Transition ty1 b to ty2 5971 // Move the transition down. 5972 // 1. Replace all uses of the promoted operation by the transition. 5973 // = ... b => = ... Def. 5974 assert(ToBePromoted->getType() == Transition->getType() && 5975 "The type of the result of the transition does not match " 5976 "the final type"); 5977 ToBePromoted->replaceAllUsesWith(Transition); 5978 // 2. Update the type of the uses. 5979 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5980 Type *TransitionTy = getTransitionType(); 5981 ToBePromoted->mutateType(TransitionTy); 5982 // 3. Update all the operands of the promoted operation with promoted 5983 // operands. 5984 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5985 for (Use &U : ToBePromoted->operands()) { 5986 Value *Val = U.get(); 5987 Value *NewVal = nullptr; 5988 if (Val == Transition) 5989 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5990 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5991 isa<ConstantFP>(Val)) { 5992 // Use a splat constant if it is not safe to use undef. 5993 NewVal = getConstantVector( 5994 cast<Constant>(Val), 5995 isa<UndefValue>(Val) || 5996 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5997 } else 5998 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5999 "this?"); 6000 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6001 } 6002 Transition->moveAfter(ToBePromoted); 6003 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6004 } 6005 6006 /// Some targets can do store(extractelement) with one instruction. 6007 /// Try to push the extractelement towards the stores when the target 6008 /// has this feature and this is profitable. 6009 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6010 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6011 if (DisableStoreExtract || !TLI || 6012 (!StressStoreExtract && 6013 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6014 Inst->getOperand(1), CombineCost))) 6015 return false; 6016 6017 // At this point we know that Inst is a vector to scalar transition. 6018 // Try to move it down the def-use chain, until: 6019 // - We can combine the transition with its single use 6020 // => we got rid of the transition. 6021 // - We escape the current basic block 6022 // => we would need to check that we are moving it at a cheaper place and 6023 // we do not do that for now. 6024 BasicBlock *Parent = Inst->getParent(); 6025 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6026 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6027 // If the transition has more than one use, assume this is not going to be 6028 // beneficial. 6029 while (Inst->hasOneUse()) { 6030 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6031 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6032 6033 if (ToBePromoted->getParent() != Parent) { 6034 DEBUG(dbgs() << "Instruction to promote is in a different block (" 6035 << ToBePromoted->getParent()->getName() 6036 << ") than the transition (" << Parent->getName() << ").\n"); 6037 return false; 6038 } 6039 6040 if (VPH.canCombine(ToBePromoted)) { 6041 DEBUG(dbgs() << "Assume " << *Inst << '\n' 6042 << "will be combined with: " << *ToBePromoted << '\n'); 6043 VPH.recordCombineInstruction(ToBePromoted); 6044 bool Changed = VPH.promote(); 6045 NumStoreExtractExposed += Changed; 6046 return Changed; 6047 } 6048 6049 DEBUG(dbgs() << "Try promoting.\n"); 6050 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6051 return false; 6052 6053 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6054 6055 VPH.enqueueForPromotion(ToBePromoted); 6056 Inst = ToBePromoted; 6057 } 6058 return false; 6059 } 6060 6061 /// For the instruction sequence of store below, F and I values 6062 /// are bundled together as an i64 value before being stored into memory. 6063 /// Sometimes it is more efficent to generate separate stores for F and I, 6064 /// which can remove the bitwise instructions or sink them to colder places. 6065 /// 6066 /// (store (or (zext (bitcast F to i32) to i64), 6067 /// (shl (zext I to i64), 32)), addr) --> 6068 /// (store F, addr) and (store I, addr+4) 6069 /// 6070 /// Similarly, splitting for other merged store can also be beneficial, like: 6071 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6072 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6073 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6074 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6075 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6076 /// 6077 /// We allow each target to determine specifically which kind of splitting is 6078 /// supported. 6079 /// 6080 /// The store patterns are commonly seen from the simple code snippet below 6081 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6082 /// void goo(const std::pair<int, float> &); 6083 /// hoo() { 6084 /// ... 6085 /// goo(std::make_pair(tmp, ftmp)); 6086 /// ... 6087 /// } 6088 /// 6089 /// Although we already have similar splitting in DAG Combine, we duplicate 6090 /// it in CodeGenPrepare to catch the case in which pattern is across 6091 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6092 /// during code expansion. 6093 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6094 const TargetLowering &TLI) { 6095 // Handle simple but common cases only. 6096 Type *StoreType = SI.getValueOperand()->getType(); 6097 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6098 DL.getTypeSizeInBits(StoreType) == 0) 6099 return false; 6100 6101 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6102 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6103 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6104 DL.getTypeSizeInBits(SplitStoreType)) 6105 return false; 6106 6107 // Match the following patterns: 6108 // (store (or (zext LValue to i64), 6109 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6110 // or 6111 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6112 // (zext LValue to i64), 6113 // Expect both operands of OR and the first operand of SHL have only 6114 // one use. 6115 Value *LValue, *HValue; 6116 if (!match(SI.getValueOperand(), 6117 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6118 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6119 m_SpecificInt(HalfValBitSize)))))) 6120 return false; 6121 6122 // Check LValue and HValue are int with size less or equal than 32. 6123 if (!LValue->getType()->isIntegerTy() || 6124 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6125 !HValue->getType()->isIntegerTy() || 6126 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6127 return false; 6128 6129 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6130 // as the input of target query. 6131 auto *LBC = dyn_cast<BitCastInst>(LValue); 6132 auto *HBC = dyn_cast<BitCastInst>(HValue); 6133 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6134 : EVT::getEVT(LValue->getType()); 6135 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6136 : EVT::getEVT(HValue->getType()); 6137 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6138 return false; 6139 6140 // Start to split store. 6141 IRBuilder<> Builder(SI.getContext()); 6142 Builder.SetInsertPoint(&SI); 6143 6144 // If LValue/HValue is a bitcast in another BB, create a new one in current 6145 // BB so it may be merged with the splitted stores by dag combiner. 6146 if (LBC && LBC->getParent() != SI.getParent()) 6147 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6148 if (HBC && HBC->getParent() != SI.getParent()) 6149 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6150 6151 auto CreateSplitStore = [&](Value *V, bool Upper) { 6152 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6153 Value *Addr = Builder.CreateBitCast( 6154 SI.getOperand(1), 6155 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6156 if (Upper) 6157 Addr = Builder.CreateGEP( 6158 SplitStoreType, Addr, 6159 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6160 Builder.CreateAlignedStore( 6161 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6162 }; 6163 6164 CreateSplitStore(LValue, false); 6165 CreateSplitStore(HValue, true); 6166 6167 // Delete the old store. 6168 SI.eraseFromParent(); 6169 return true; 6170 } 6171 6172 // Return true if the GEP has two operands, the first operand is of a sequential 6173 // type, and the second operand is a constant. 6174 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6175 gep_type_iterator I = gep_type_begin(*GEP); 6176 return GEP->getNumOperands() == 2 && 6177 I.isSequential() && 6178 isa<ConstantInt>(GEP->getOperand(1)); 6179 } 6180 6181 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6182 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6183 // reducing liveness interference across those edges benefits global register 6184 // allocation. Currently handles only certain cases. 6185 // 6186 // For example, unmerge %GEPI and %UGEPI as below. 6187 // 6188 // ---------- BEFORE ---------- 6189 // SrcBlock: 6190 // ... 6191 // %GEPIOp = ... 6192 // ... 6193 // %GEPI = gep %GEPIOp, Idx 6194 // ... 6195 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6196 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6197 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6198 // %UGEPI) 6199 // 6200 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6201 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6202 // ... 6203 // 6204 // DstBi: 6205 // ... 6206 // %UGEPI = gep %GEPIOp, UIdx 6207 // ... 6208 // --------------------------- 6209 // 6210 // ---------- AFTER ---------- 6211 // SrcBlock: 6212 // ... (same as above) 6213 // (* %GEPI is still alive on the indirectbr edges) 6214 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6215 // unmerging) 6216 // ... 6217 // 6218 // DstBi: 6219 // ... 6220 // %UGEPI = gep %GEPI, (UIdx-Idx) 6221 // ... 6222 // --------------------------- 6223 // 6224 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6225 // no longer alive on them. 6226 // 6227 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6228 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6229 // not to disable further simplications and optimizations as a result of GEP 6230 // merging. 6231 // 6232 // Note this unmerging may increase the length of the data flow critical path 6233 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6234 // between the register pressure and the length of data-flow critical 6235 // path. Restricting this to the uncommon IndirectBr case would minimize the 6236 // impact of potentially longer critical path, if any, and the impact on compile 6237 // time. 6238 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6239 const TargetTransformInfo *TTI) { 6240 BasicBlock *SrcBlock = GEPI->getParent(); 6241 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6242 // (non-IndirectBr) cases exit early here. 6243 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6244 return false; 6245 // Check that GEPI is a simple gep with a single constant index. 6246 if (!GEPSequentialConstIndexed(GEPI)) 6247 return false; 6248 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6249 // Check that GEPI is a cheap one. 6250 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6251 > TargetTransformInfo::TCC_Basic) 6252 return false; 6253 Value *GEPIOp = GEPI->getOperand(0); 6254 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6255 if (!isa<Instruction>(GEPIOp)) 6256 return false; 6257 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6258 if (GEPIOpI->getParent() != SrcBlock) 6259 return false; 6260 // Check that GEP is used outside the block, meaning it's alive on the 6261 // IndirectBr edge(s). 6262 if (find_if(GEPI->users(), [&](User *Usr) { 6263 if (auto *I = dyn_cast<Instruction>(Usr)) { 6264 if (I->getParent() != SrcBlock) { 6265 return true; 6266 } 6267 } 6268 return false; 6269 }) == GEPI->users().end()) 6270 return false; 6271 // The second elements of the GEP chains to be unmerged. 6272 std::vector<GetElementPtrInst *> UGEPIs; 6273 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6274 // on IndirectBr edges. 6275 for (User *Usr : GEPIOp->users()) { 6276 if (Usr == GEPI) continue; 6277 // Check if Usr is an Instruction. If not, give up. 6278 if (!isa<Instruction>(Usr)) 6279 return false; 6280 auto *UI = cast<Instruction>(Usr); 6281 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6282 if (UI->getParent() == SrcBlock) 6283 continue; 6284 // Check if Usr is a GEP. If not, give up. 6285 if (!isa<GetElementPtrInst>(Usr)) 6286 return false; 6287 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6288 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6289 // the pointer operand to it. If so, record it in the vector. If not, give 6290 // up. 6291 if (!GEPSequentialConstIndexed(UGEPI)) 6292 return false; 6293 if (UGEPI->getOperand(0) != GEPIOp) 6294 return false; 6295 if (GEPIIdx->getType() != 6296 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6297 return false; 6298 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6299 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6300 > TargetTransformInfo::TCC_Basic) 6301 return false; 6302 UGEPIs.push_back(UGEPI); 6303 } 6304 if (UGEPIs.size() == 0) 6305 return false; 6306 // Check the materializing cost of (Uidx-Idx). 6307 for (GetElementPtrInst *UGEPI : UGEPIs) { 6308 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6309 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6310 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6311 if (ImmCost > TargetTransformInfo::TCC_Basic) 6312 return false; 6313 } 6314 // Now unmerge between GEPI and UGEPIs. 6315 for (GetElementPtrInst *UGEPI : UGEPIs) { 6316 UGEPI->setOperand(0, GEPI); 6317 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6318 Constant *NewUGEPIIdx = 6319 ConstantInt::get(GEPIIdx->getType(), 6320 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6321 UGEPI->setOperand(1, NewUGEPIIdx); 6322 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6323 // inbounds to avoid UB. 6324 if (!GEPI->isInBounds()) { 6325 UGEPI->setIsInBounds(false); 6326 } 6327 } 6328 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6329 // alive on IndirectBr edges). 6330 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6331 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6332 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6333 return true; 6334 } 6335 6336 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6337 // Bail out if we inserted the instruction to prevent optimizations from 6338 // stepping on each other's toes. 6339 if (InsertedInsts.count(I)) 6340 return false; 6341 6342 if (PHINode *P = dyn_cast<PHINode>(I)) { 6343 // It is possible for very late stage optimizations (such as SimplifyCFG) 6344 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6345 // trivial PHI, go ahead and zap it here. 6346 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6347 P->replaceAllUsesWith(V); 6348 P->eraseFromParent(); 6349 ++NumPHIsElim; 6350 return true; 6351 } 6352 return false; 6353 } 6354 6355 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6356 // If the source of the cast is a constant, then this should have 6357 // already been constant folded. The only reason NOT to constant fold 6358 // it is if something (e.g. LSR) was careful to place the constant 6359 // evaluation in a block other than then one that uses it (e.g. to hoist 6360 // the address of globals out of a loop). If this is the case, we don't 6361 // want to forward-subst the cast. 6362 if (isa<Constant>(CI->getOperand(0))) 6363 return false; 6364 6365 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6366 return true; 6367 6368 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6369 /// Sink a zext or sext into its user blocks if the target type doesn't 6370 /// fit in one register 6371 if (TLI && 6372 TLI->getTypeAction(CI->getContext(), 6373 TLI->getValueType(*DL, CI->getType())) == 6374 TargetLowering::TypeExpandInteger) { 6375 return SinkCast(CI); 6376 } else { 6377 bool MadeChange = optimizeExt(I); 6378 return MadeChange | optimizeExtUses(I); 6379 } 6380 } 6381 return false; 6382 } 6383 6384 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6385 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6386 return OptimizeCmpExpression(CI, TLI); 6387 6388 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6389 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6390 if (TLI) { 6391 bool Modified = optimizeLoadExt(LI); 6392 unsigned AS = LI->getPointerAddressSpace(); 6393 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6394 return Modified; 6395 } 6396 return false; 6397 } 6398 6399 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6400 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6401 return true; 6402 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6403 if (TLI) { 6404 unsigned AS = SI->getPointerAddressSpace(); 6405 return optimizeMemoryInst(I, SI->getOperand(1), 6406 SI->getOperand(0)->getType(), AS); 6407 } 6408 return false; 6409 } 6410 6411 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6412 unsigned AS = RMW->getPointerAddressSpace(); 6413 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6414 RMW->getType(), AS); 6415 } 6416 6417 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6418 unsigned AS = CmpX->getPointerAddressSpace(); 6419 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6420 CmpX->getCompareOperand()->getType(), AS); 6421 } 6422 6423 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6424 6425 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6426 EnableAndCmpSinking && TLI) 6427 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6428 6429 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6430 BinOp->getOpcode() == Instruction::LShr)) { 6431 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6432 if (TLI && CI && TLI->hasExtractBitsInsn()) 6433 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6434 6435 return false; 6436 } 6437 6438 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6439 if (GEPI->hasAllZeroIndices()) { 6440 /// The GEP operand must be a pointer, so must its result -> BitCast 6441 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6442 GEPI->getName(), GEPI); 6443 GEPI->replaceAllUsesWith(NC); 6444 GEPI->eraseFromParent(); 6445 ++NumGEPsElim; 6446 optimizeInst(NC, ModifiedDT); 6447 return true; 6448 } 6449 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6450 return true; 6451 } 6452 return false; 6453 } 6454 6455 if (CallInst *CI = dyn_cast<CallInst>(I)) 6456 return optimizeCallInst(CI, ModifiedDT); 6457 6458 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6459 return optimizeSelectInst(SI); 6460 6461 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6462 return optimizeShuffleVectorInst(SVI); 6463 6464 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6465 return optimizeSwitchInst(Switch); 6466 6467 if (isa<ExtractElementInst>(I)) 6468 return optimizeExtractElementInst(I); 6469 6470 return false; 6471 } 6472 6473 /// Given an OR instruction, check to see if this is a bitreverse 6474 /// idiom. If so, insert the new intrinsic and return true. 6475 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6476 const TargetLowering &TLI) { 6477 if (!I.getType()->isIntegerTy() || 6478 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6479 TLI.getValueType(DL, I.getType(), true))) 6480 return false; 6481 6482 SmallVector<Instruction*, 4> Insts; 6483 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6484 return false; 6485 Instruction *LastInst = Insts.back(); 6486 I.replaceAllUsesWith(LastInst); 6487 RecursivelyDeleteTriviallyDeadInstructions(&I); 6488 return true; 6489 } 6490 6491 // In this pass we look for GEP and cast instructions that are used 6492 // across basic blocks and rewrite them to improve basic-block-at-a-time 6493 // selection. 6494 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6495 SunkAddrs.clear(); 6496 bool MadeChange = false; 6497 6498 CurInstIterator = BB.begin(); 6499 while (CurInstIterator != BB.end()) { 6500 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6501 if (ModifiedDT) 6502 return true; 6503 } 6504 6505 bool MadeBitReverse = true; 6506 while (TLI && MadeBitReverse) { 6507 MadeBitReverse = false; 6508 for (auto &I : reverse(BB)) { 6509 if (makeBitReverse(I, *DL, *TLI)) { 6510 MadeBitReverse = MadeChange = true; 6511 ModifiedDT = true; 6512 break; 6513 } 6514 } 6515 } 6516 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6517 6518 return MadeChange; 6519 } 6520 6521 // llvm.dbg.value is far away from the value then iSel may not be able 6522 // handle it properly. iSel will drop llvm.dbg.value if it can not 6523 // find a node corresponding to the value. 6524 bool CodeGenPrepare::placeDbgValues(Function &F) { 6525 bool MadeChange = false; 6526 for (BasicBlock &BB : F) { 6527 Instruction *PrevNonDbgInst = nullptr; 6528 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6529 Instruction *Insn = &*BI++; 6530 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6531 // Leave dbg.values that refer to an alloca alone. These 6532 // intrinsics describe the address of a variable (= the alloca) 6533 // being taken. They should not be moved next to the alloca 6534 // (and to the beginning of the scope), but rather stay close to 6535 // where said address is used. 6536 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6537 PrevNonDbgInst = Insn; 6538 continue; 6539 } 6540 6541 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6542 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6543 // If VI is a phi in a block with an EHPad terminator, we can't insert 6544 // after it. 6545 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6546 continue; 6547 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6548 DVI->removeFromParent(); 6549 if (isa<PHINode>(VI)) 6550 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6551 else 6552 DVI->insertAfter(VI); 6553 MadeChange = true; 6554 ++NumDbgValueMoved; 6555 } 6556 } 6557 } 6558 return MadeChange; 6559 } 6560 6561 /// \brief Scale down both weights to fit into uint32_t. 6562 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6563 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6564 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6565 NewTrue = NewTrue / Scale; 6566 NewFalse = NewFalse / Scale; 6567 } 6568 6569 /// \brief Some targets prefer to split a conditional branch like: 6570 /// \code 6571 /// %0 = icmp ne i32 %a, 0 6572 /// %1 = icmp ne i32 %b, 0 6573 /// %or.cond = or i1 %0, %1 6574 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6575 /// \endcode 6576 /// into multiple branch instructions like: 6577 /// \code 6578 /// bb1: 6579 /// %0 = icmp ne i32 %a, 0 6580 /// br i1 %0, label %TrueBB, label %bb2 6581 /// bb2: 6582 /// %1 = icmp ne i32 %b, 0 6583 /// br i1 %1, label %TrueBB, label %FalseBB 6584 /// \endcode 6585 /// This usually allows instruction selection to do even further optimizations 6586 /// and combine the compare with the branch instruction. Currently this is 6587 /// applied for targets which have "cheap" jump instructions. 6588 /// 6589 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6590 /// 6591 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6592 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6593 return false; 6594 6595 bool MadeChange = false; 6596 for (auto &BB : F) { 6597 // Does this BB end with the following? 6598 // %cond1 = icmp|fcmp|binary instruction ... 6599 // %cond2 = icmp|fcmp|binary instruction ... 6600 // %cond.or = or|and i1 %cond1, cond2 6601 // br i1 %cond.or label %dest1, label %dest2" 6602 BinaryOperator *LogicOp; 6603 BasicBlock *TBB, *FBB; 6604 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6605 continue; 6606 6607 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6608 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6609 continue; 6610 6611 unsigned Opc; 6612 Value *Cond1, *Cond2; 6613 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6614 m_OneUse(m_Value(Cond2))))) 6615 Opc = Instruction::And; 6616 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6617 m_OneUse(m_Value(Cond2))))) 6618 Opc = Instruction::Or; 6619 else 6620 continue; 6621 6622 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6623 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6624 continue; 6625 6626 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6627 6628 // Create a new BB. 6629 auto TmpBB = 6630 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6631 BB.getParent(), BB.getNextNode()); 6632 6633 // Update original basic block by using the first condition directly by the 6634 // branch instruction and removing the no longer needed and/or instruction. 6635 Br1->setCondition(Cond1); 6636 LogicOp->eraseFromParent(); 6637 6638 // Depending on the conditon we have to either replace the true or the false 6639 // successor of the original branch instruction. 6640 if (Opc == Instruction::And) 6641 Br1->setSuccessor(0, TmpBB); 6642 else 6643 Br1->setSuccessor(1, TmpBB); 6644 6645 // Fill in the new basic block. 6646 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6647 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6648 I->removeFromParent(); 6649 I->insertBefore(Br2); 6650 } 6651 6652 // Update PHI nodes in both successors. The original BB needs to be 6653 // replaced in one successor's PHI nodes, because the branch comes now from 6654 // the newly generated BB (NewBB). In the other successor we need to add one 6655 // incoming edge to the PHI nodes, because both branch instructions target 6656 // now the same successor. Depending on the original branch condition 6657 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6658 // we perform the correct update for the PHI nodes. 6659 // This doesn't change the successor order of the just created branch 6660 // instruction (or any other instruction). 6661 if (Opc == Instruction::Or) 6662 std::swap(TBB, FBB); 6663 6664 // Replace the old BB with the new BB. 6665 for (auto &I : *TBB) { 6666 PHINode *PN = dyn_cast<PHINode>(&I); 6667 if (!PN) 6668 break; 6669 int i; 6670 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6671 PN->setIncomingBlock(i, TmpBB); 6672 } 6673 6674 // Add another incoming edge form the new BB. 6675 for (auto &I : *FBB) { 6676 PHINode *PN = dyn_cast<PHINode>(&I); 6677 if (!PN) 6678 break; 6679 auto *Val = PN->getIncomingValueForBlock(&BB); 6680 PN->addIncoming(Val, TmpBB); 6681 } 6682 6683 // Update the branch weights (from SelectionDAGBuilder:: 6684 // FindMergedConditions). 6685 if (Opc == Instruction::Or) { 6686 // Codegen X | Y as: 6687 // BB1: 6688 // jmp_if_X TBB 6689 // jmp TmpBB 6690 // TmpBB: 6691 // jmp_if_Y TBB 6692 // jmp FBB 6693 // 6694 6695 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6696 // The requirement is that 6697 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6698 // = TrueProb for orignal BB. 6699 // Assuming the orignal weights are A and B, one choice is to set BB1's 6700 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6701 // assumes that 6702 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6703 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6704 // TmpBB, but the math is more complicated. 6705 uint64_t TrueWeight, FalseWeight; 6706 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6707 uint64_t NewTrueWeight = TrueWeight; 6708 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6709 scaleWeights(NewTrueWeight, NewFalseWeight); 6710 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6711 .createBranchWeights(TrueWeight, FalseWeight)); 6712 6713 NewTrueWeight = TrueWeight; 6714 NewFalseWeight = 2 * FalseWeight; 6715 scaleWeights(NewTrueWeight, NewFalseWeight); 6716 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6717 .createBranchWeights(TrueWeight, FalseWeight)); 6718 } 6719 } else { 6720 // Codegen X & Y as: 6721 // BB1: 6722 // jmp_if_X TmpBB 6723 // jmp FBB 6724 // TmpBB: 6725 // jmp_if_Y TBB 6726 // jmp FBB 6727 // 6728 // This requires creation of TmpBB after CurBB. 6729 6730 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6731 // The requirement is that 6732 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6733 // = FalseProb for orignal BB. 6734 // Assuming the orignal weights are A and B, one choice is to set BB1's 6735 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6736 // assumes that 6737 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6738 uint64_t TrueWeight, FalseWeight; 6739 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6740 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6741 uint64_t NewFalseWeight = FalseWeight; 6742 scaleWeights(NewTrueWeight, NewFalseWeight); 6743 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6744 .createBranchWeights(TrueWeight, FalseWeight)); 6745 6746 NewTrueWeight = 2 * TrueWeight; 6747 NewFalseWeight = FalseWeight; 6748 scaleWeights(NewTrueWeight, NewFalseWeight); 6749 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6750 .createBranchWeights(TrueWeight, FalseWeight)); 6751 } 6752 } 6753 6754 // Note: No point in getting fancy here, since the DT info is never 6755 // available to CodeGenPrepare. 6756 ModifiedDT = true; 6757 6758 MadeChange = true; 6759 6760 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6761 TmpBB->dump()); 6762 } 6763 return MadeChange; 6764 } 6765