1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 #define DEBUG_TYPE "codegenprepare"
104 
105 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
109                       "sunken Cmps");
110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
111                        "of sunken Casts");
112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
113                           "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated,
115           "Number of phis created when address "
116           "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated,
118           "Number of select created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded,
123           "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
129 
130 static cl::opt<bool> DisableBranchOpts(
131   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
132   cl::desc("Disable branch optimizations in CodeGenPrepare"));
133 
134 static cl::opt<bool>
135     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
136                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool> DisableSelectToBranch(
139   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
140   cl::desc("Disable select to branch conversion."));
141 
142 static cl::opt<bool> AddrSinkUsingGEPs(
143   "addr-sink-using-gep", cl::Hidden, cl::init(true),
144   cl::desc("Address sinking in CGP using GEPs."));
145 
146 static cl::opt<bool> EnableAndCmpSinking(
147    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
148    cl::desc("Enable sinkinig and/cmp into branches."));
149 
150 static cl::opt<bool> DisableStoreExtract(
151     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
152     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 
154 static cl::opt<bool> StressStoreExtract(
155     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> DisableExtLdPromotion(
159     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
160     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
161              "CodeGenPrepare"));
162 
163 static cl::opt<bool> StressExtLdPromotion(
164     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166              "optimization in CodeGenPrepare"));
167 
168 static cl::opt<bool> DisablePreheaderProtect(
169     "disable-preheader-prot", cl::Hidden, cl::init(false),
170     cl::desc("Disable protection against removing loop preheaders"));
171 
172 static cl::opt<bool> ProfileGuidedSectionPrefix(
173     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
174     cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 
176 static cl::opt<unsigned> FreqRatioToSkipMerge(
177     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
178     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179              "(frequency of destination block) is greater than this ratio"));
180 
181 static cl::opt<bool> ForceSplitStore(
182     "force-split-store", cl::Hidden, cl::init(false),
183     cl::desc("Force store splitting no matter what the target query says."));
184 
185 static cl::opt<bool>
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
187     cl::desc("Enable merging of redundant sexts when one is dominating"
188     " the other."), cl::init(true));
189 
190 static cl::opt<bool> DisableComplexAddrModes(
191     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
192     cl::desc("Disables combining addressing modes with different parts "
193              "in optimizeMemoryInst."));
194 
195 static cl::opt<bool>
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
197                 cl::desc("Allow creation of Phis in Address sinking."));
198 
199 static cl::opt<bool>
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
201                    cl::desc("Allow creation of selects in Address sinking."));
202 
203 static cl::opt<bool> AddrSinkCombineBaseReg(
204     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
205     cl::desc("Allow combining of BaseReg field in Address sinking."));
206 
207 static cl::opt<bool> AddrSinkCombineBaseGV(
208     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
209     cl::desc("Allow combining of BaseGV field in Address sinking."));
210 
211 static cl::opt<bool> AddrSinkCombineBaseOffs(
212     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
213     cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 
215 static cl::opt<bool> AddrSinkCombineScaledReg(
216     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
217     cl::desc("Allow combining of ScaledReg field in Address sinking."));
218 
219 static cl::opt<bool>
220     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
221                          cl::init(true),
222                          cl::desc("Enable splitting large offset of GEP."));
223 
224 namespace {
225 
226 enum ExtType {
227   ZeroExtension,   // Zero extension has been seen.
228   SignExtension,   // Sign extension has been seen.
229   BothExtension    // This extension type is used if we saw sext after
230                    // ZeroExtension had been set, or if we saw zext after
231                    // SignExtension had been set. It makes the type
232                    // information of a promoted instruction invalid.
233 };
234 
235 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
236 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
237 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
238 using SExts = SmallVector<Instruction *, 16>;
239 using ValueToSExts = DenseMap<Value *, SExts>;
240 
241 class TypePromotionTransaction;
242 
243   class CodeGenPrepare : public FunctionPass {
244     const TargetMachine *TM = nullptr;
245     const TargetSubtargetInfo *SubtargetInfo;
246     const TargetLowering *TLI = nullptr;
247     const TargetRegisterInfo *TRI;
248     const TargetTransformInfo *TTI = nullptr;
249     const TargetLibraryInfo *TLInfo;
250     const LoopInfo *LI;
251     std::unique_ptr<BlockFrequencyInfo> BFI;
252     std::unique_ptr<BranchProbabilityInfo> BPI;
253 
254     /// As we scan instructions optimizing them, this is the next instruction
255     /// to optimize. Transforms that can invalidate this should update it.
256     BasicBlock::iterator CurInstIterator;
257 
258     /// Keeps track of non-local addresses that have been sunk into a block.
259     /// This allows us to avoid inserting duplicate code for blocks with
260     /// multiple load/stores of the same address. The usage of WeakTrackingVH
261     /// enables SunkAddrs to be treated as a cache whose entries can be
262     /// invalidated if a sunken address computation has been erased.
263     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
264 
265     /// Keeps track of all instructions inserted for the current function.
266     SetOfInstrs InsertedInsts;
267 
268     /// Keeps track of the type of the related instruction before their
269     /// promotion for the current function.
270     InstrToOrigTy PromotedInsts;
271 
272     /// Keep track of instructions removed during promotion.
273     SetOfInstrs RemovedInsts;
274 
275     /// Keep track of sext chains based on their initial value.
276     DenseMap<Value *, Instruction *> SeenChainsForSExt;
277 
278     /// Keep track of GEPs accessing the same data structures such as structs or
279     /// arrays that are candidates to be split later because of their large
280     /// size.
281     MapVector<
282         AssertingVH<Value>,
283         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
284         LargeOffsetGEPMap;
285 
286     /// Keep track of new GEP base after splitting the GEPs having large offset.
287     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
288 
289     /// Map serial numbers to Large offset GEPs.
290     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
291 
292     /// Keep track of SExt promoted.
293     ValueToSExts ValToSExtendedUses;
294 
295     /// True if CFG is modified in any way.
296     bool ModifiedDT;
297 
298     /// True if optimizing for size.
299     bool OptSize;
300 
301     /// DataLayout for the Function being processed.
302     const DataLayout *DL = nullptr;
303 
304   public:
305     static char ID; // Pass identification, replacement for typeid
306 
307     CodeGenPrepare() : FunctionPass(ID) {
308       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
309     }
310 
311     bool runOnFunction(Function &F) override;
312 
313     StringRef getPassName() const override { return "CodeGen Prepare"; }
314 
315     void getAnalysisUsage(AnalysisUsage &AU) const override {
316       // FIXME: When we can selectively preserve passes, preserve the domtree.
317       AU.addRequired<ProfileSummaryInfoWrapperPass>();
318       AU.addRequired<TargetLibraryInfoWrapperPass>();
319       AU.addRequired<TargetTransformInfoWrapperPass>();
320       AU.addRequired<LoopInfoWrapperPass>();
321     }
322 
323   private:
324     template <typename F>
325     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
326       // Substituting can cause recursive simplifications, which can invalidate
327       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
328       // happens.
329       Value *CurValue = &*CurInstIterator;
330       WeakTrackingVH IterHandle(CurValue);
331 
332       f();
333 
334       // If the iterator instruction was recursively deleted, start over at the
335       // start of the block.
336       if (IterHandle != CurValue) {
337         CurInstIterator = BB->begin();
338         SunkAddrs.clear();
339       }
340     }
341 
342     bool eliminateFallThrough(Function &F);
343     bool eliminateMostlyEmptyBlocks(Function &F);
344     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
345     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
346     void eliminateMostlyEmptyBlock(BasicBlock *BB);
347     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
348                                        bool isPreheader);
349     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
350     bool optimizeInst(Instruction *I, bool &ModifiedDT);
351     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
352                             Type *AccessTy, unsigned AddrSpace);
353     bool optimizeInlineAsmInst(CallInst *CS);
354     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
355     bool optimizeExt(Instruction *&I);
356     bool optimizeExtUses(Instruction *I);
357     bool optimizeLoadExt(LoadInst *Load);
358     bool optimizeSelectInst(SelectInst *SI);
359     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
360     bool optimizeSwitchInst(SwitchInst *SI);
361     bool optimizeExtractElementInst(Instruction *Inst);
362     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
363     bool placeDbgValues(Function &F);
364     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
365                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
366     bool tryToPromoteExts(TypePromotionTransaction &TPT,
367                           const SmallVectorImpl<Instruction *> &Exts,
368                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
369                           unsigned CreatedInstsCost = 0);
370     bool mergeSExts(Function &F);
371     bool splitLargeGEPOffsets();
372     bool performAddressTypePromotion(
373         Instruction *&Inst,
374         bool AllowPromotionWithoutCommonHeader,
375         bool HasPromoted, TypePromotionTransaction &TPT,
376         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
377     bool splitBranchCondition(Function &F);
378     bool simplifyOffsetableRelocate(Instruction &I);
379   };
380 
381 } // end anonymous namespace
382 
383 char CodeGenPrepare::ID = 0;
384 
385 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
386                       "Optimize for code generation", false, false)
387 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
388 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
389                     "Optimize for code generation", false, false)
390 
391 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
392 
393 bool CodeGenPrepare::runOnFunction(Function &F) {
394   if (skipFunction(F))
395     return false;
396 
397   DL = &F.getParent()->getDataLayout();
398 
399   bool EverMadeChange = false;
400   // Clear per function information.
401   InsertedInsts.clear();
402   PromotedInsts.clear();
403 
404   ModifiedDT = false;
405   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
406     TM = &TPC->getTM<TargetMachine>();
407     SubtargetInfo = TM->getSubtargetImpl(F);
408     TLI = SubtargetInfo->getTargetLowering();
409     TRI = SubtargetInfo->getRegisterInfo();
410   }
411   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
412   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
413   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
414   BPI.reset(new BranchProbabilityInfo(F, *LI));
415   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
416   OptSize = F.optForSize();
417 
418   ProfileSummaryInfo *PSI =
419       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
420   if (ProfileGuidedSectionPrefix) {
421     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
422       F.setSectionPrefix(".hot");
423     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
424       F.setSectionPrefix(".unlikely");
425   }
426 
427   /// This optimization identifies DIV instructions that can be
428   /// profitably bypassed and carried out with a shorter, faster divide.
429   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
430       TLI->isSlowDivBypassed()) {
431     const DenseMap<unsigned int, unsigned int> &BypassWidths =
432        TLI->getBypassSlowDivWidths();
433     BasicBlock* BB = &*F.begin();
434     while (BB != nullptr) {
435       // bypassSlowDivision may create new BBs, but we don't want to reapply the
436       // optimization to those blocks.
437       BasicBlock* Next = BB->getNextNode();
438       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
439       BB = Next;
440     }
441   }
442 
443   // Eliminate blocks that contain only PHI nodes and an
444   // unconditional branch.
445   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
446 
447   if (!DisableBranchOpts)
448     EverMadeChange |= splitBranchCondition(F);
449 
450   // Split some critical edges where one of the sources is an indirect branch,
451   // to help generate sane code for PHIs involving such edges.
452   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
453 
454   bool MadeChange = true;
455   while (MadeChange) {
456     MadeChange = false;
457     for (Function::iterator I = F.begin(); I != F.end(); ) {
458       BasicBlock *BB = &*I++;
459       bool ModifiedDTOnIteration = false;
460       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
461 
462       // Restart BB iteration if the dominator tree of the Function was changed
463       if (ModifiedDTOnIteration)
464         break;
465     }
466     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
467       MadeChange |= mergeSExts(F);
468     if (!LargeOffsetGEPMap.empty())
469       MadeChange |= splitLargeGEPOffsets();
470 
471     // Really free removed instructions during promotion.
472     for (Instruction *I : RemovedInsts)
473       I->deleteValue();
474 
475     EverMadeChange |= MadeChange;
476     SeenChainsForSExt.clear();
477     ValToSExtendedUses.clear();
478     RemovedInsts.clear();
479     LargeOffsetGEPMap.clear();
480     LargeOffsetGEPID.clear();
481   }
482 
483   SunkAddrs.clear();
484 
485   if (!DisableBranchOpts) {
486     MadeChange = false;
487     // Use a set vector to get deterministic iteration order. The order the
488     // blocks are removed may affect whether or not PHI nodes in successors
489     // are removed.
490     SmallSetVector<BasicBlock*, 8> WorkList;
491     for (BasicBlock &BB : F) {
492       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
493       MadeChange |= ConstantFoldTerminator(&BB, true);
494       if (!MadeChange) continue;
495 
496       for (SmallVectorImpl<BasicBlock*>::iterator
497              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
498         if (pred_begin(*II) == pred_end(*II))
499           WorkList.insert(*II);
500     }
501 
502     // Delete the dead blocks and any of their dead successors.
503     MadeChange |= !WorkList.empty();
504     while (!WorkList.empty()) {
505       BasicBlock *BB = WorkList.pop_back_val();
506       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
507 
508       DeleteDeadBlock(BB);
509 
510       for (SmallVectorImpl<BasicBlock*>::iterator
511              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
512         if (pred_begin(*II) == pred_end(*II))
513           WorkList.insert(*II);
514     }
515 
516     // Merge pairs of basic blocks with unconditional branches, connected by
517     // a single edge.
518     if (EverMadeChange || MadeChange)
519       MadeChange |= eliminateFallThrough(F);
520 
521     EverMadeChange |= MadeChange;
522   }
523 
524   if (!DisableGCOpts) {
525     SmallVector<Instruction *, 2> Statepoints;
526     for (BasicBlock &BB : F)
527       for (Instruction &I : BB)
528         if (isStatepoint(I))
529           Statepoints.push_back(&I);
530     for (auto &I : Statepoints)
531       EverMadeChange |= simplifyOffsetableRelocate(*I);
532   }
533 
534   // Do this last to clean up use-before-def scenarios introduced by other
535   // preparatory transforms.
536   EverMadeChange |= placeDbgValues(F);
537 
538   return EverMadeChange;
539 }
540 
541 /// Merge basic blocks which are connected by a single edge, where one of the
542 /// basic blocks has a single successor pointing to the other basic block,
543 /// which has a single predecessor.
544 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
545   bool Changed = false;
546   // Scan all of the blocks in the function, except for the entry block.
547   // Use a temporary array to avoid iterator being invalidated when
548   // deleting blocks.
549   SmallVector<WeakTrackingVH, 16> Blocks;
550   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
551     Blocks.push_back(&Block);
552 
553   for (auto &Block : Blocks) {
554     auto *BB = cast_or_null<BasicBlock>(Block);
555     if (!BB)
556       continue;
557     // If the destination block has a single pred, then this is a trivial
558     // edge, just collapse it.
559     BasicBlock *SinglePred = BB->getSinglePredecessor();
560 
561     // Don't merge if BB's address is taken.
562     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
563 
564     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
565     if (Term && !Term->isConditional()) {
566       Changed = true;
567       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
568 
569       // Merge BB into SinglePred and delete it.
570       MergeBlockIntoPredecessor(BB);
571     }
572   }
573   return Changed;
574 }
575 
576 /// Find a destination block from BB if BB is mergeable empty block.
577 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
578   // If this block doesn't end with an uncond branch, ignore it.
579   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
580   if (!BI || !BI->isUnconditional())
581     return nullptr;
582 
583   // If the instruction before the branch (skipping debug info) isn't a phi
584   // node, then other stuff is happening here.
585   BasicBlock::iterator BBI = BI->getIterator();
586   if (BBI != BB->begin()) {
587     --BBI;
588     while (isa<DbgInfoIntrinsic>(BBI)) {
589       if (BBI == BB->begin())
590         break;
591       --BBI;
592     }
593     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
594       return nullptr;
595   }
596 
597   // Do not break infinite loops.
598   BasicBlock *DestBB = BI->getSuccessor(0);
599   if (DestBB == BB)
600     return nullptr;
601 
602   if (!canMergeBlocks(BB, DestBB))
603     DestBB = nullptr;
604 
605   return DestBB;
606 }
607 
608 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
609 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
610 /// edges in ways that are non-optimal for isel. Start by eliminating these
611 /// blocks so we can split them the way we want them.
612 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
613   SmallPtrSet<BasicBlock *, 16> Preheaders;
614   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
615   while (!LoopList.empty()) {
616     Loop *L = LoopList.pop_back_val();
617     LoopList.insert(LoopList.end(), L->begin(), L->end());
618     if (BasicBlock *Preheader = L->getLoopPreheader())
619       Preheaders.insert(Preheader);
620   }
621 
622   bool MadeChange = false;
623   // Copy blocks into a temporary array to avoid iterator invalidation issues
624   // as we remove them.
625   // Note that this intentionally skips the entry block.
626   SmallVector<WeakTrackingVH, 16> Blocks;
627   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
628     Blocks.push_back(&Block);
629 
630   for (auto &Block : Blocks) {
631     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
632     if (!BB)
633       continue;
634     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
635     if (!DestBB ||
636         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
637       continue;
638 
639     eliminateMostlyEmptyBlock(BB);
640     MadeChange = true;
641   }
642   return MadeChange;
643 }
644 
645 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
646                                                    BasicBlock *DestBB,
647                                                    bool isPreheader) {
648   // Do not delete loop preheaders if doing so would create a critical edge.
649   // Loop preheaders can be good locations to spill registers. If the
650   // preheader is deleted and we create a critical edge, registers may be
651   // spilled in the loop body instead.
652   if (!DisablePreheaderProtect && isPreheader &&
653       !(BB->getSinglePredecessor() &&
654         BB->getSinglePredecessor()->getSingleSuccessor()))
655     return false;
656 
657   // Try to skip merging if the unique predecessor of BB is terminated by a
658   // switch or indirect branch instruction, and BB is used as an incoming block
659   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
660   // add COPY instructions in the predecessor of BB instead of BB (if it is not
661   // merged). Note that the critical edge created by merging such blocks wont be
662   // split in MachineSink because the jump table is not analyzable. By keeping
663   // such empty block (BB), ISel will place COPY instructions in BB, not in the
664   // predecessor of BB.
665   BasicBlock *Pred = BB->getUniquePredecessor();
666   if (!Pred ||
667       !(isa<SwitchInst>(Pred->getTerminator()) ||
668         isa<IndirectBrInst>(Pred->getTerminator())))
669     return true;
670 
671   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
672     return true;
673 
674   // We use a simple cost heuristic which determine skipping merging is
675   // profitable if the cost of skipping merging is less than the cost of
676   // merging : Cost(skipping merging) < Cost(merging BB), where the
677   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
678   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
679   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
680   //   Freq(Pred) / Freq(BB) > 2.
681   // Note that if there are multiple empty blocks sharing the same incoming
682   // value for the PHIs in the DestBB, we consider them together. In such
683   // case, Cost(merging BB) will be the sum of their frequencies.
684 
685   if (!isa<PHINode>(DestBB->begin()))
686     return true;
687 
688   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
689 
690   // Find all other incoming blocks from which incoming values of all PHIs in
691   // DestBB are the same as the ones from BB.
692   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
693        ++PI) {
694     BasicBlock *DestBBPred = *PI;
695     if (DestBBPred == BB)
696       continue;
697 
698     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
699           return DestPN.getIncomingValueForBlock(BB) ==
700                  DestPN.getIncomingValueForBlock(DestBBPred);
701         }))
702       SameIncomingValueBBs.insert(DestBBPred);
703   }
704 
705   // See if all BB's incoming values are same as the value from Pred. In this
706   // case, no reason to skip merging because COPYs are expected to be place in
707   // Pred already.
708   if (SameIncomingValueBBs.count(Pred))
709     return true;
710 
711   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
712   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
713 
714   for (auto SameValueBB : SameIncomingValueBBs)
715     if (SameValueBB->getUniquePredecessor() == Pred &&
716         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
717       BBFreq += BFI->getBlockFreq(SameValueBB);
718 
719   return PredFreq.getFrequency() <=
720          BBFreq.getFrequency() * FreqRatioToSkipMerge;
721 }
722 
723 /// Return true if we can merge BB into DestBB if there is a single
724 /// unconditional branch between them, and BB contains no other non-phi
725 /// instructions.
726 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
727                                     const BasicBlock *DestBB) const {
728   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
729   // the successor.  If there are more complex condition (e.g. preheaders),
730   // don't mess around with them.
731   for (const PHINode &PN : BB->phis()) {
732     for (const User *U : PN.users()) {
733       const Instruction *UI = cast<Instruction>(U);
734       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
735         return false;
736       // If User is inside DestBB block and it is a PHINode then check
737       // incoming value. If incoming value is not from BB then this is
738       // a complex condition (e.g. preheaders) we want to avoid here.
739       if (UI->getParent() == DestBB) {
740         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
741           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
742             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
743             if (Insn && Insn->getParent() == BB &&
744                 Insn->getParent() != UPN->getIncomingBlock(I))
745               return false;
746           }
747       }
748     }
749   }
750 
751   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
752   // and DestBB may have conflicting incoming values for the block.  If so, we
753   // can't merge the block.
754   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
755   if (!DestBBPN) return true;  // no conflict.
756 
757   // Collect the preds of BB.
758   SmallPtrSet<const BasicBlock*, 16> BBPreds;
759   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
760     // It is faster to get preds from a PHI than with pred_iterator.
761     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
762       BBPreds.insert(BBPN->getIncomingBlock(i));
763   } else {
764     BBPreds.insert(pred_begin(BB), pred_end(BB));
765   }
766 
767   // Walk the preds of DestBB.
768   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
769     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
770     if (BBPreds.count(Pred)) {   // Common predecessor?
771       for (const PHINode &PN : DestBB->phis()) {
772         const Value *V1 = PN.getIncomingValueForBlock(Pred);
773         const Value *V2 = PN.getIncomingValueForBlock(BB);
774 
775         // If V2 is a phi node in BB, look up what the mapped value will be.
776         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
777           if (V2PN->getParent() == BB)
778             V2 = V2PN->getIncomingValueForBlock(Pred);
779 
780         // If there is a conflict, bail out.
781         if (V1 != V2) return false;
782       }
783     }
784   }
785 
786   return true;
787 }
788 
789 /// Eliminate a basic block that has only phi's and an unconditional branch in
790 /// it.
791 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
792   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
793   BasicBlock *DestBB = BI->getSuccessor(0);
794 
795   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
796                     << *BB << *DestBB);
797 
798   // If the destination block has a single pred, then this is a trivial edge,
799   // just collapse it.
800   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
801     if (SinglePred != DestBB) {
802       assert(SinglePred == BB &&
803              "Single predecessor not the same as predecessor");
804       // Merge DestBB into SinglePred/BB and delete it.
805       MergeBlockIntoPredecessor(DestBB);
806       // Note: BB(=SinglePred) will not be deleted on this path.
807       // DestBB(=its single successor) is the one that was deleted.
808       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
809       return;
810     }
811   }
812 
813   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
814   // to handle the new incoming edges it is about to have.
815   for (PHINode &PN : DestBB->phis()) {
816     // Remove the incoming value for BB, and remember it.
817     Value *InVal = PN.removeIncomingValue(BB, false);
818 
819     // Two options: either the InVal is a phi node defined in BB or it is some
820     // value that dominates BB.
821     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
822     if (InValPhi && InValPhi->getParent() == BB) {
823       // Add all of the input values of the input PHI as inputs of this phi.
824       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
825         PN.addIncoming(InValPhi->getIncomingValue(i),
826                        InValPhi->getIncomingBlock(i));
827     } else {
828       // Otherwise, add one instance of the dominating value for each edge that
829       // we will be adding.
830       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
831         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
832           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
833       } else {
834         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
835           PN.addIncoming(InVal, *PI);
836       }
837     }
838   }
839 
840   // The PHIs are now updated, change everything that refers to BB to use
841   // DestBB and remove BB.
842   BB->replaceAllUsesWith(DestBB);
843   BB->eraseFromParent();
844   ++NumBlocksElim;
845 
846   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
847 }
848 
849 // Computes a map of base pointer relocation instructions to corresponding
850 // derived pointer relocation instructions given a vector of all relocate calls
851 static void computeBaseDerivedRelocateMap(
852     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
853     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
854         &RelocateInstMap) {
855   // Collect information in two maps: one primarily for locating the base object
856   // while filling the second map; the second map is the final structure holding
857   // a mapping between Base and corresponding Derived relocate calls
858   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
859   for (auto *ThisRelocate : AllRelocateCalls) {
860     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
861                             ThisRelocate->getDerivedPtrIndex());
862     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
863   }
864   for (auto &Item : RelocateIdxMap) {
865     std::pair<unsigned, unsigned> Key = Item.first;
866     if (Key.first == Key.second)
867       // Base relocation: nothing to insert
868       continue;
869 
870     GCRelocateInst *I = Item.second;
871     auto BaseKey = std::make_pair(Key.first, Key.first);
872 
873     // We're iterating over RelocateIdxMap so we cannot modify it.
874     auto MaybeBase = RelocateIdxMap.find(BaseKey);
875     if (MaybeBase == RelocateIdxMap.end())
876       // TODO: We might want to insert a new base object relocate and gep off
877       // that, if there are enough derived object relocates.
878       continue;
879 
880     RelocateInstMap[MaybeBase->second].push_back(I);
881   }
882 }
883 
884 // Accepts a GEP and extracts the operands into a vector provided they're all
885 // small integer constants
886 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
887                                           SmallVectorImpl<Value *> &OffsetV) {
888   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
889     // Only accept small constant integer operands
890     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
891     if (!Op || Op->getZExtValue() > 20)
892       return false;
893   }
894 
895   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
896     OffsetV.push_back(GEP->getOperand(i));
897   return true;
898 }
899 
900 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
901 // replace, computes a replacement, and affects it.
902 static bool
903 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
904                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
905   bool MadeChange = false;
906   // We must ensure the relocation of derived pointer is defined after
907   // relocation of base pointer. If we find a relocation corresponding to base
908   // defined earlier than relocation of base then we move relocation of base
909   // right before found relocation. We consider only relocation in the same
910   // basic block as relocation of base. Relocations from other basic block will
911   // be skipped by optimization and we do not care about them.
912   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
913        &*R != RelocatedBase; ++R)
914     if (auto RI = dyn_cast<GCRelocateInst>(R))
915       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
916         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
917           RelocatedBase->moveBefore(RI);
918           break;
919         }
920 
921   for (GCRelocateInst *ToReplace : Targets) {
922     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
923            "Not relocating a derived object of the original base object");
924     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
925       // A duplicate relocate call. TODO: coalesce duplicates.
926       continue;
927     }
928 
929     if (RelocatedBase->getParent() != ToReplace->getParent()) {
930       // Base and derived relocates are in different basic blocks.
931       // In this case transform is only valid when base dominates derived
932       // relocate. However it would be too expensive to check dominance
933       // for each such relocate, so we skip the whole transformation.
934       continue;
935     }
936 
937     Value *Base = ToReplace->getBasePtr();
938     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
939     if (!Derived || Derived->getPointerOperand() != Base)
940       continue;
941 
942     SmallVector<Value *, 2> OffsetV;
943     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
944       continue;
945 
946     // Create a Builder and replace the target callsite with a gep
947     assert(RelocatedBase->getNextNode() &&
948            "Should always have one since it's not a terminator");
949 
950     // Insert after RelocatedBase
951     IRBuilder<> Builder(RelocatedBase->getNextNode());
952     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
953 
954     // If gc_relocate does not match the actual type, cast it to the right type.
955     // In theory, there must be a bitcast after gc_relocate if the type does not
956     // match, and we should reuse it to get the derived pointer. But it could be
957     // cases like this:
958     // bb1:
959     //  ...
960     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
961     //  br label %merge
962     //
963     // bb2:
964     //  ...
965     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
966     //  br label %merge
967     //
968     // merge:
969     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
970     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
971     //
972     // In this case, we can not find the bitcast any more. So we insert a new bitcast
973     // no matter there is already one or not. In this way, we can handle all cases, and
974     // the extra bitcast should be optimized away in later passes.
975     Value *ActualRelocatedBase = RelocatedBase;
976     if (RelocatedBase->getType() != Base->getType()) {
977       ActualRelocatedBase =
978           Builder.CreateBitCast(RelocatedBase, Base->getType());
979     }
980     Value *Replacement = Builder.CreateGEP(
981         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
982     Replacement->takeName(ToReplace);
983     // If the newly generated derived pointer's type does not match the original derived
984     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
985     Value *ActualReplacement = Replacement;
986     if (Replacement->getType() != ToReplace->getType()) {
987       ActualReplacement =
988           Builder.CreateBitCast(Replacement, ToReplace->getType());
989     }
990     ToReplace->replaceAllUsesWith(ActualReplacement);
991     ToReplace->eraseFromParent();
992 
993     MadeChange = true;
994   }
995   return MadeChange;
996 }
997 
998 // Turns this:
999 //
1000 // %base = ...
1001 // %ptr = gep %base + 15
1002 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1003 // %base' = relocate(%tok, i32 4, i32 4)
1004 // %ptr' = relocate(%tok, i32 4, i32 5)
1005 // %val = load %ptr'
1006 //
1007 // into this:
1008 //
1009 // %base = ...
1010 // %ptr = gep %base + 15
1011 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1012 // %base' = gc.relocate(%tok, i32 4, i32 4)
1013 // %ptr' = gep %base' + 15
1014 // %val = load %ptr'
1015 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1016   bool MadeChange = false;
1017   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1018 
1019   for (auto *U : I.users())
1020     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1021       // Collect all the relocate calls associated with a statepoint
1022       AllRelocateCalls.push_back(Relocate);
1023 
1024   // We need atleast one base pointer relocation + one derived pointer
1025   // relocation to mangle
1026   if (AllRelocateCalls.size() < 2)
1027     return false;
1028 
1029   // RelocateInstMap is a mapping from the base relocate instruction to the
1030   // corresponding derived relocate instructions
1031   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1032   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1033   if (RelocateInstMap.empty())
1034     return false;
1035 
1036   for (auto &Item : RelocateInstMap)
1037     // Item.first is the RelocatedBase to offset against
1038     // Item.second is the vector of Targets to replace
1039     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1040   return MadeChange;
1041 }
1042 
1043 /// SinkCast - Sink the specified cast instruction into its user blocks
1044 static bool SinkCast(CastInst *CI) {
1045   BasicBlock *DefBB = CI->getParent();
1046 
1047   /// InsertedCasts - Only insert a cast in each block once.
1048   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1049 
1050   bool MadeChange = false;
1051   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1052        UI != E; ) {
1053     Use &TheUse = UI.getUse();
1054     Instruction *User = cast<Instruction>(*UI);
1055 
1056     // Figure out which BB this cast is used in.  For PHI's this is the
1057     // appropriate predecessor block.
1058     BasicBlock *UserBB = User->getParent();
1059     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1060       UserBB = PN->getIncomingBlock(TheUse);
1061     }
1062 
1063     // Preincrement use iterator so we don't invalidate it.
1064     ++UI;
1065 
1066     // The first insertion point of a block containing an EH pad is after the
1067     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1068     if (User->isEHPad())
1069       continue;
1070 
1071     // If the block selected to receive the cast is an EH pad that does not
1072     // allow non-PHI instructions before the terminator, we can't sink the
1073     // cast.
1074     if (UserBB->getTerminator()->isEHPad())
1075       continue;
1076 
1077     // If this user is in the same block as the cast, don't change the cast.
1078     if (UserBB == DefBB) continue;
1079 
1080     // If we have already inserted a cast into this block, use it.
1081     CastInst *&InsertedCast = InsertedCasts[UserBB];
1082 
1083     if (!InsertedCast) {
1084       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1085       assert(InsertPt != UserBB->end());
1086       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1087                                       CI->getType(), "", &*InsertPt);
1088       InsertedCast->setDebugLoc(CI->getDebugLoc());
1089     }
1090 
1091     // Replace a use of the cast with a use of the new cast.
1092     TheUse = InsertedCast;
1093     MadeChange = true;
1094     ++NumCastUses;
1095   }
1096 
1097   // If we removed all uses, nuke the cast.
1098   if (CI->use_empty()) {
1099     salvageDebugInfo(*CI);
1100     CI->eraseFromParent();
1101     MadeChange = true;
1102   }
1103 
1104   return MadeChange;
1105 }
1106 
1107 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1108 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1109 /// reduce the number of virtual registers that must be created and coalesced.
1110 ///
1111 /// Return true if any changes are made.
1112 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1113                                        const DataLayout &DL) {
1114   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1115   // than sinking only nop casts, but is helpful on some platforms.
1116   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1117     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1118                                   ASC->getDestAddressSpace()))
1119       return false;
1120   }
1121 
1122   // If this is a noop copy,
1123   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1124   EVT DstVT = TLI.getValueType(DL, CI->getType());
1125 
1126   // This is an fp<->int conversion?
1127   if (SrcVT.isInteger() != DstVT.isInteger())
1128     return false;
1129 
1130   // If this is an extension, it will be a zero or sign extension, which
1131   // isn't a noop.
1132   if (SrcVT.bitsLT(DstVT)) return false;
1133 
1134   // If these values will be promoted, find out what they will be promoted
1135   // to.  This helps us consider truncates on PPC as noop copies when they
1136   // are.
1137   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1138       TargetLowering::TypePromoteInteger)
1139     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1140   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1141       TargetLowering::TypePromoteInteger)
1142     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1143 
1144   // If, after promotion, these are the same types, this is a noop copy.
1145   if (SrcVT != DstVT)
1146     return false;
1147 
1148   return SinkCast(CI);
1149 }
1150 
1151 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1152 /// possible.
1153 ///
1154 /// Return true if any changes were made.
1155 static bool CombineUAddWithOverflow(CmpInst *CI) {
1156   Value *A, *B;
1157   Instruction *AddI;
1158   if (!match(CI,
1159              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1160     return false;
1161 
1162   Type *Ty = AddI->getType();
1163   if (!isa<IntegerType>(Ty))
1164     return false;
1165 
1166   // We don't want to move around uses of condition values this late, so we we
1167   // check if it is legal to create the call to the intrinsic in the basic
1168   // block containing the icmp:
1169 
1170   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1171     return false;
1172 
1173 #ifndef NDEBUG
1174   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1175   // for now:
1176   if (AddI->hasOneUse())
1177     assert(*AddI->user_begin() == CI && "expected!");
1178 #endif
1179 
1180   Module *M = CI->getModule();
1181   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1182 
1183   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1184 
1185   DebugLoc Loc = CI->getDebugLoc();
1186   auto *UAddWithOverflow =
1187       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1188   UAddWithOverflow->setDebugLoc(Loc);
1189   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1190   UAdd->setDebugLoc(Loc);
1191   auto *Overflow =
1192       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1193   Overflow->setDebugLoc(Loc);
1194 
1195   CI->replaceAllUsesWith(Overflow);
1196   AddI->replaceAllUsesWith(UAdd);
1197   CI->eraseFromParent();
1198   AddI->eraseFromParent();
1199   return true;
1200 }
1201 
1202 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1203 /// registers that must be created and coalesced. This is a clear win except on
1204 /// targets with multiple condition code registers (PowerPC), where it might
1205 /// lose; some adjustment may be wanted there.
1206 ///
1207 /// Return true if any changes are made.
1208 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1209   BasicBlock *DefBB = CI->getParent();
1210 
1211   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1212   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1213     return false;
1214 
1215   // Only insert a cmp in each block once.
1216   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1217 
1218   bool MadeChange = false;
1219   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1220        UI != E; ) {
1221     Use &TheUse = UI.getUse();
1222     Instruction *User = cast<Instruction>(*UI);
1223 
1224     // Preincrement use iterator so we don't invalidate it.
1225     ++UI;
1226 
1227     // Don't bother for PHI nodes.
1228     if (isa<PHINode>(User))
1229       continue;
1230 
1231     // Figure out which BB this cmp is used in.
1232     BasicBlock *UserBB = User->getParent();
1233 
1234     // If this user is in the same block as the cmp, don't change the cmp.
1235     if (UserBB == DefBB) continue;
1236 
1237     // If we have already inserted a cmp into this block, use it.
1238     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1239 
1240     if (!InsertedCmp) {
1241       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1242       assert(InsertPt != UserBB->end());
1243       InsertedCmp =
1244           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1245                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1246       // Propagate the debug info.
1247       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1248     }
1249 
1250     // Replace a use of the cmp with a use of the new cmp.
1251     TheUse = InsertedCmp;
1252     MadeChange = true;
1253     ++NumCmpUses;
1254   }
1255 
1256   // If we removed all uses, nuke the cmp.
1257   if (CI->use_empty()) {
1258     CI->eraseFromParent();
1259     MadeChange = true;
1260   }
1261 
1262   return MadeChange;
1263 }
1264 
1265 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1266   if (SinkCmpExpression(CI, TLI))
1267     return true;
1268 
1269   if (CombineUAddWithOverflow(CI))
1270     return true;
1271 
1272   return false;
1273 }
1274 
1275 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1276 /// used in a compare to allow isel to generate better code for targets where
1277 /// this operation can be combined.
1278 ///
1279 /// Return true if any changes are made.
1280 static bool sinkAndCmp0Expression(Instruction *AndI,
1281                                   const TargetLowering &TLI,
1282                                   SetOfInstrs &InsertedInsts) {
1283   // Double-check that we're not trying to optimize an instruction that was
1284   // already optimized by some other part of this pass.
1285   assert(!InsertedInsts.count(AndI) &&
1286          "Attempting to optimize already optimized and instruction");
1287   (void) InsertedInsts;
1288 
1289   // Nothing to do for single use in same basic block.
1290   if (AndI->hasOneUse() &&
1291       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1292     return false;
1293 
1294   // Try to avoid cases where sinking/duplicating is likely to increase register
1295   // pressure.
1296   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1297       !isa<ConstantInt>(AndI->getOperand(1)) &&
1298       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1299     return false;
1300 
1301   for (auto *U : AndI->users()) {
1302     Instruction *User = cast<Instruction>(U);
1303 
1304     // Only sink for and mask feeding icmp with 0.
1305     if (!isa<ICmpInst>(User))
1306       return false;
1307 
1308     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1309     if (!CmpC || !CmpC->isZero())
1310       return false;
1311   }
1312 
1313   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1314     return false;
1315 
1316   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1317   LLVM_DEBUG(AndI->getParent()->dump());
1318 
1319   // Push the 'and' into the same block as the icmp 0.  There should only be
1320   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1321   // others, so we don't need to keep track of which BBs we insert into.
1322   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1323        UI != E; ) {
1324     Use &TheUse = UI.getUse();
1325     Instruction *User = cast<Instruction>(*UI);
1326 
1327     // Preincrement use iterator so we don't invalidate it.
1328     ++UI;
1329 
1330     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1331 
1332     // Keep the 'and' in the same place if the use is already in the same block.
1333     Instruction *InsertPt =
1334         User->getParent() == AndI->getParent() ? AndI : User;
1335     Instruction *InsertedAnd =
1336         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1337                                AndI->getOperand(1), "", InsertPt);
1338     // Propagate the debug info.
1339     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1340 
1341     // Replace a use of the 'and' with a use of the new 'and'.
1342     TheUse = InsertedAnd;
1343     ++NumAndUses;
1344     LLVM_DEBUG(User->getParent()->dump());
1345   }
1346 
1347   // We removed all uses, nuke the and.
1348   AndI->eraseFromParent();
1349   return true;
1350 }
1351 
1352 /// Check if the candidates could be combined with a shift instruction, which
1353 /// includes:
1354 /// 1. Truncate instruction
1355 /// 2. And instruction and the imm is a mask of the low bits:
1356 /// imm & (imm+1) == 0
1357 static bool isExtractBitsCandidateUse(Instruction *User) {
1358   if (!isa<TruncInst>(User)) {
1359     if (User->getOpcode() != Instruction::And ||
1360         !isa<ConstantInt>(User->getOperand(1)))
1361       return false;
1362 
1363     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1364 
1365     if ((Cimm & (Cimm + 1)).getBoolValue())
1366       return false;
1367   }
1368   return true;
1369 }
1370 
1371 /// Sink both shift and truncate instruction to the use of truncate's BB.
1372 static bool
1373 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1374                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1375                      const TargetLowering &TLI, const DataLayout &DL) {
1376   BasicBlock *UserBB = User->getParent();
1377   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1378   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1379   bool MadeChange = false;
1380 
1381   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1382                             TruncE = TruncI->user_end();
1383        TruncUI != TruncE;) {
1384 
1385     Use &TruncTheUse = TruncUI.getUse();
1386     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1387     // Preincrement use iterator so we don't invalidate it.
1388 
1389     ++TruncUI;
1390 
1391     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1392     if (!ISDOpcode)
1393       continue;
1394 
1395     // If the use is actually a legal node, there will not be an
1396     // implicit truncate.
1397     // FIXME: always querying the result type is just an
1398     // approximation; some nodes' legality is determined by the
1399     // operand or other means. There's no good way to find out though.
1400     if (TLI.isOperationLegalOrCustom(
1401             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1402       continue;
1403 
1404     // Don't bother for PHI nodes.
1405     if (isa<PHINode>(TruncUser))
1406       continue;
1407 
1408     BasicBlock *TruncUserBB = TruncUser->getParent();
1409 
1410     if (UserBB == TruncUserBB)
1411       continue;
1412 
1413     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1414     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1415 
1416     if (!InsertedShift && !InsertedTrunc) {
1417       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1418       assert(InsertPt != TruncUserBB->end());
1419       // Sink the shift
1420       if (ShiftI->getOpcode() == Instruction::AShr)
1421         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1422                                                    "", &*InsertPt);
1423       else
1424         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1425                                                    "", &*InsertPt);
1426       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1427 
1428       // Sink the trunc
1429       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1430       TruncInsertPt++;
1431       assert(TruncInsertPt != TruncUserBB->end());
1432 
1433       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1434                                        TruncI->getType(), "", &*TruncInsertPt);
1435       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1436 
1437       MadeChange = true;
1438 
1439       TruncTheUse = InsertedTrunc;
1440     }
1441   }
1442   return MadeChange;
1443 }
1444 
1445 /// Sink the shift *right* instruction into user blocks if the uses could
1446 /// potentially be combined with this shift instruction and generate BitExtract
1447 /// instruction. It will only be applied if the architecture supports BitExtract
1448 /// instruction. Here is an example:
1449 /// BB1:
1450 ///   %x.extract.shift = lshr i64 %arg1, 32
1451 /// BB2:
1452 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1453 /// ==>
1454 ///
1455 /// BB2:
1456 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1457 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1458 ///
1459 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1460 /// instruction.
1461 /// Return true if any changes are made.
1462 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1463                                 const TargetLowering &TLI,
1464                                 const DataLayout &DL) {
1465   BasicBlock *DefBB = ShiftI->getParent();
1466 
1467   /// Only insert instructions in each block once.
1468   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1469 
1470   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1471 
1472   bool MadeChange = false;
1473   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1474        UI != E;) {
1475     Use &TheUse = UI.getUse();
1476     Instruction *User = cast<Instruction>(*UI);
1477     // Preincrement use iterator so we don't invalidate it.
1478     ++UI;
1479 
1480     // Don't bother for PHI nodes.
1481     if (isa<PHINode>(User))
1482       continue;
1483 
1484     if (!isExtractBitsCandidateUse(User))
1485       continue;
1486 
1487     BasicBlock *UserBB = User->getParent();
1488 
1489     if (UserBB == DefBB) {
1490       // If the shift and truncate instruction are in the same BB. The use of
1491       // the truncate(TruncUse) may still introduce another truncate if not
1492       // legal. In this case, we would like to sink both shift and truncate
1493       // instruction to the BB of TruncUse.
1494       // for example:
1495       // BB1:
1496       // i64 shift.result = lshr i64 opnd, imm
1497       // trunc.result = trunc shift.result to i16
1498       //
1499       // BB2:
1500       //   ----> We will have an implicit truncate here if the architecture does
1501       //   not have i16 compare.
1502       // cmp i16 trunc.result, opnd2
1503       //
1504       if (isa<TruncInst>(User) && shiftIsLegal
1505           // If the type of the truncate is legal, no truncate will be
1506           // introduced in other basic blocks.
1507           &&
1508           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1509         MadeChange =
1510             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1511 
1512       continue;
1513     }
1514     // If we have already inserted a shift into this block, use it.
1515     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1516 
1517     if (!InsertedShift) {
1518       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1519       assert(InsertPt != UserBB->end());
1520 
1521       if (ShiftI->getOpcode() == Instruction::AShr)
1522         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1523                                                    "", &*InsertPt);
1524       else
1525         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1526                                                    "", &*InsertPt);
1527       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1528 
1529       MadeChange = true;
1530     }
1531 
1532     // Replace a use of the shift with a use of the new shift.
1533     TheUse = InsertedShift;
1534   }
1535 
1536   // If we removed all uses, nuke the shift.
1537   if (ShiftI->use_empty()) {
1538     salvageDebugInfo(*ShiftI);
1539     ShiftI->eraseFromParent();
1540   }
1541 
1542   return MadeChange;
1543 }
1544 
1545 /// If counting leading or trailing zeros is an expensive operation and a zero
1546 /// input is defined, add a check for zero to avoid calling the intrinsic.
1547 ///
1548 /// We want to transform:
1549 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1550 ///
1551 /// into:
1552 ///   entry:
1553 ///     %cmpz = icmp eq i64 %A, 0
1554 ///     br i1 %cmpz, label %cond.end, label %cond.false
1555 ///   cond.false:
1556 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1557 ///     br label %cond.end
1558 ///   cond.end:
1559 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1560 ///
1561 /// If the transform is performed, return true and set ModifiedDT to true.
1562 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1563                                   const TargetLowering *TLI,
1564                                   const DataLayout *DL,
1565                                   bool &ModifiedDT) {
1566   if (!TLI || !DL)
1567     return false;
1568 
1569   // If a zero input is undefined, it doesn't make sense to despeculate that.
1570   if (match(CountZeros->getOperand(1), m_One()))
1571     return false;
1572 
1573   // If it's cheap to speculate, there's nothing to do.
1574   auto IntrinsicID = CountZeros->getIntrinsicID();
1575   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1576       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1577     return false;
1578 
1579   // Only handle legal scalar cases. Anything else requires too much work.
1580   Type *Ty = CountZeros->getType();
1581   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1582   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1583     return false;
1584 
1585   // The intrinsic will be sunk behind a compare against zero and branch.
1586   BasicBlock *StartBlock = CountZeros->getParent();
1587   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1588 
1589   // Create another block after the count zero intrinsic. A PHI will be added
1590   // in this block to select the result of the intrinsic or the bit-width
1591   // constant if the input to the intrinsic is zero.
1592   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1593   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1594 
1595   // Set up a builder to create a compare, conditional branch, and PHI.
1596   IRBuilder<> Builder(CountZeros->getContext());
1597   Builder.SetInsertPoint(StartBlock->getTerminator());
1598   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1599 
1600   // Replace the unconditional branch that was created by the first split with
1601   // a compare against zero and a conditional branch.
1602   Value *Zero = Constant::getNullValue(Ty);
1603   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1604   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1605   StartBlock->getTerminator()->eraseFromParent();
1606 
1607   // Create a PHI in the end block to select either the output of the intrinsic
1608   // or the bit width of the operand.
1609   Builder.SetInsertPoint(&EndBlock->front());
1610   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1611   CountZeros->replaceAllUsesWith(PN);
1612   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1613   PN->addIncoming(BitWidth, StartBlock);
1614   PN->addIncoming(CountZeros, CallBlock);
1615 
1616   // We are explicitly handling the zero case, so we can set the intrinsic's
1617   // undefined zero argument to 'true'. This will also prevent reprocessing the
1618   // intrinsic; we only despeculate when a zero input is defined.
1619   CountZeros->setArgOperand(1, Builder.getTrue());
1620   ModifiedDT = true;
1621   return true;
1622 }
1623 
1624 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1625   BasicBlock *BB = CI->getParent();
1626 
1627   // Lower inline assembly if we can.
1628   // If we found an inline asm expession, and if the target knows how to
1629   // lower it to normal LLVM code, do so now.
1630   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1631     if (TLI->ExpandInlineAsm(CI)) {
1632       // Avoid invalidating the iterator.
1633       CurInstIterator = BB->begin();
1634       // Avoid processing instructions out of order, which could cause
1635       // reuse before a value is defined.
1636       SunkAddrs.clear();
1637       return true;
1638     }
1639     // Sink address computing for memory operands into the block.
1640     if (optimizeInlineAsmInst(CI))
1641       return true;
1642   }
1643 
1644   // Align the pointer arguments to this call if the target thinks it's a good
1645   // idea
1646   unsigned MinSize, PrefAlign;
1647   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1648     for (auto &Arg : CI->arg_operands()) {
1649       // We want to align both objects whose address is used directly and
1650       // objects whose address is used in casts and GEPs, though it only makes
1651       // sense for GEPs if the offset is a multiple of the desired alignment and
1652       // if size - offset meets the size threshold.
1653       if (!Arg->getType()->isPointerTy())
1654         continue;
1655       APInt Offset(DL->getIndexSizeInBits(
1656                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1657                    0);
1658       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1659       uint64_t Offset2 = Offset.getLimitedValue();
1660       if ((Offset2 & (PrefAlign-1)) != 0)
1661         continue;
1662       AllocaInst *AI;
1663       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1664           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1665         AI->setAlignment(PrefAlign);
1666       // Global variables can only be aligned if they are defined in this
1667       // object (i.e. they are uniquely initialized in this object), and
1668       // over-aligning global variables that have an explicit section is
1669       // forbidden.
1670       GlobalVariable *GV;
1671       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1672           GV->getPointerAlignment(*DL) < PrefAlign &&
1673           DL->getTypeAllocSize(GV->getValueType()) >=
1674               MinSize + Offset2)
1675         GV->setAlignment(PrefAlign);
1676     }
1677     // If this is a memcpy (or similar) then we may be able to improve the
1678     // alignment
1679     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1680       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1681       if (DestAlign > MI->getDestAlignment())
1682         MI->setDestAlignment(DestAlign);
1683       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1684         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1685         if (SrcAlign > MTI->getSourceAlignment())
1686           MTI->setSourceAlignment(SrcAlign);
1687       }
1688     }
1689   }
1690 
1691   // If we have a cold call site, try to sink addressing computation into the
1692   // cold block.  This interacts with our handling for loads and stores to
1693   // ensure that we can fold all uses of a potential addressing computation
1694   // into their uses.  TODO: generalize this to work over profiling data
1695   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1696     for (auto &Arg : CI->arg_operands()) {
1697       if (!Arg->getType()->isPointerTy())
1698         continue;
1699       unsigned AS = Arg->getType()->getPointerAddressSpace();
1700       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1701     }
1702 
1703   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1704   if (II) {
1705     switch (II->getIntrinsicID()) {
1706     default: break;
1707     case Intrinsic::objectsize: {
1708       // Lower all uses of llvm.objectsize.*
1709       ConstantInt *RetVal =
1710           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1711 
1712       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1713         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1714       });
1715       return true;
1716     }
1717     case Intrinsic::is_constant: {
1718       // If is_constant hasn't folded away yet, lower it to false now.
1719       Constant *RetVal = ConstantInt::get(II->getType(), 0);
1720       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1721         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1722       });
1723       return true;
1724     }
1725     case Intrinsic::aarch64_stlxr:
1726     case Intrinsic::aarch64_stxr: {
1727       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1728       if (!ExtVal || !ExtVal->hasOneUse() ||
1729           ExtVal->getParent() == CI->getParent())
1730         return false;
1731       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1732       ExtVal->moveBefore(CI);
1733       // Mark this instruction as "inserted by CGP", so that other
1734       // optimizations don't touch it.
1735       InsertedInsts.insert(ExtVal);
1736       return true;
1737     }
1738     case Intrinsic::launder_invariant_group:
1739     case Intrinsic::strip_invariant_group: {
1740       Value *ArgVal = II->getArgOperand(0);
1741       auto it = LargeOffsetGEPMap.find(II);
1742       if (it != LargeOffsetGEPMap.end()) {
1743           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1744           // Make sure not to have to deal with iterator invalidation
1745           // after possibly adding ArgVal to LargeOffsetGEPMap.
1746           auto GEPs = std::move(it->second);
1747           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1748           LargeOffsetGEPMap.erase(II);
1749       }
1750 
1751       II->replaceAllUsesWith(ArgVal);
1752       II->eraseFromParent();
1753       return true;
1754     }
1755     case Intrinsic::cttz:
1756     case Intrinsic::ctlz:
1757       // If counting zeros is expensive, try to avoid it.
1758       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1759     }
1760 
1761     if (TLI) {
1762       SmallVector<Value*, 2> PtrOps;
1763       Type *AccessTy;
1764       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1765         while (!PtrOps.empty()) {
1766           Value *PtrVal = PtrOps.pop_back_val();
1767           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1768           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1769             return true;
1770         }
1771     }
1772   }
1773 
1774   // From here on out we're working with named functions.
1775   if (!CI->getCalledFunction()) return false;
1776 
1777   // Lower all default uses of _chk calls.  This is very similar
1778   // to what InstCombineCalls does, but here we are only lowering calls
1779   // to fortified library functions (e.g. __memcpy_chk) that have the default
1780   // "don't know" as the objectsize.  Anything else should be left alone.
1781   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1782   if (Value *V = Simplifier.optimizeCall(CI)) {
1783     CI->replaceAllUsesWith(V);
1784     CI->eraseFromParent();
1785     return true;
1786   }
1787 
1788   return false;
1789 }
1790 
1791 /// Look for opportunities to duplicate return instructions to the predecessor
1792 /// to enable tail call optimizations. The case it is currently looking for is:
1793 /// @code
1794 /// bb0:
1795 ///   %tmp0 = tail call i32 @f0()
1796 ///   br label %return
1797 /// bb1:
1798 ///   %tmp1 = tail call i32 @f1()
1799 ///   br label %return
1800 /// bb2:
1801 ///   %tmp2 = tail call i32 @f2()
1802 ///   br label %return
1803 /// return:
1804 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1805 ///   ret i32 %retval
1806 /// @endcode
1807 ///
1808 /// =>
1809 ///
1810 /// @code
1811 /// bb0:
1812 ///   %tmp0 = tail call i32 @f0()
1813 ///   ret i32 %tmp0
1814 /// bb1:
1815 ///   %tmp1 = tail call i32 @f1()
1816 ///   ret i32 %tmp1
1817 /// bb2:
1818 ///   %tmp2 = tail call i32 @f2()
1819 ///   ret i32 %tmp2
1820 /// @endcode
1821 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1822   if (!TLI)
1823     return false;
1824 
1825   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1826   if (!RetI)
1827     return false;
1828 
1829   PHINode *PN = nullptr;
1830   BitCastInst *BCI = nullptr;
1831   Value *V = RetI->getReturnValue();
1832   if (V) {
1833     BCI = dyn_cast<BitCastInst>(V);
1834     if (BCI)
1835       V = BCI->getOperand(0);
1836 
1837     PN = dyn_cast<PHINode>(V);
1838     if (!PN)
1839       return false;
1840   }
1841 
1842   if (PN && PN->getParent() != BB)
1843     return false;
1844 
1845   // Make sure there are no instructions between the PHI and return, or that the
1846   // return is the first instruction in the block.
1847   if (PN) {
1848     BasicBlock::iterator BI = BB->begin();
1849     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1850     if (&*BI == BCI)
1851       // Also skip over the bitcast.
1852       ++BI;
1853     if (&*BI != RetI)
1854       return false;
1855   } else {
1856     BasicBlock::iterator BI = BB->begin();
1857     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1858     if (&*BI != RetI)
1859       return false;
1860   }
1861 
1862   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1863   /// call.
1864   const Function *F = BB->getParent();
1865   SmallVector<CallInst*, 4> TailCalls;
1866   if (PN) {
1867     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1868       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1869       // Make sure the phi value is indeed produced by the tail call.
1870       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1871           TLI->mayBeEmittedAsTailCall(CI) &&
1872           attributesPermitTailCall(F, CI, RetI, *TLI))
1873         TailCalls.push_back(CI);
1874     }
1875   } else {
1876     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1877     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1878       if (!VisitedBBs.insert(*PI).second)
1879         continue;
1880 
1881       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1882       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1883       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1884       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1885       if (RI == RE)
1886         continue;
1887 
1888       CallInst *CI = dyn_cast<CallInst>(&*RI);
1889       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1890           attributesPermitTailCall(F, CI, RetI, *TLI))
1891         TailCalls.push_back(CI);
1892     }
1893   }
1894 
1895   bool Changed = false;
1896   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1897     CallInst *CI = TailCalls[i];
1898     CallSite CS(CI);
1899 
1900     // Make sure the call instruction is followed by an unconditional branch to
1901     // the return block.
1902     BasicBlock *CallBB = CI->getParent();
1903     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1904     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1905       continue;
1906 
1907     // Duplicate the return into CallBB.
1908     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1909     ModifiedDT = Changed = true;
1910     ++NumRetsDup;
1911   }
1912 
1913   // If we eliminated all predecessors of the block, delete the block now.
1914   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1915     BB->eraseFromParent();
1916 
1917   return Changed;
1918 }
1919 
1920 //===----------------------------------------------------------------------===//
1921 // Memory Optimization
1922 //===----------------------------------------------------------------------===//
1923 
1924 namespace {
1925 
1926 /// This is an extended version of TargetLowering::AddrMode
1927 /// which holds actual Value*'s for register values.
1928 struct ExtAddrMode : public TargetLowering::AddrMode {
1929   Value *BaseReg = nullptr;
1930   Value *ScaledReg = nullptr;
1931   Value *OriginalValue = nullptr;
1932 
1933   enum FieldName {
1934     NoField        = 0x00,
1935     BaseRegField   = 0x01,
1936     BaseGVField    = 0x02,
1937     BaseOffsField  = 0x04,
1938     ScaledRegField = 0x08,
1939     ScaleField     = 0x10,
1940     MultipleFields = 0xff
1941   };
1942 
1943   ExtAddrMode() = default;
1944 
1945   void print(raw_ostream &OS) const;
1946   void dump() const;
1947 
1948   FieldName compare(const ExtAddrMode &other) {
1949     // First check that the types are the same on each field, as differing types
1950     // is something we can't cope with later on.
1951     if (BaseReg && other.BaseReg &&
1952         BaseReg->getType() != other.BaseReg->getType())
1953       return MultipleFields;
1954     if (BaseGV && other.BaseGV &&
1955         BaseGV->getType() != other.BaseGV->getType())
1956       return MultipleFields;
1957     if (ScaledReg && other.ScaledReg &&
1958         ScaledReg->getType() != other.ScaledReg->getType())
1959       return MultipleFields;
1960 
1961     // Check each field to see if it differs.
1962     unsigned Result = NoField;
1963     if (BaseReg != other.BaseReg)
1964       Result |= BaseRegField;
1965     if (BaseGV != other.BaseGV)
1966       Result |= BaseGVField;
1967     if (BaseOffs != other.BaseOffs)
1968       Result |= BaseOffsField;
1969     if (ScaledReg != other.ScaledReg)
1970       Result |= ScaledRegField;
1971     // Don't count 0 as being a different scale, because that actually means
1972     // unscaled (which will already be counted by having no ScaledReg).
1973     if (Scale && other.Scale && Scale != other.Scale)
1974       Result |= ScaleField;
1975 
1976     if (countPopulation(Result) > 1)
1977       return MultipleFields;
1978     else
1979       return static_cast<FieldName>(Result);
1980   }
1981 
1982   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1983   // with no offset.
1984   bool isTrivial() {
1985     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1986     // trivial if at most one of these terms is nonzero, except that BaseGV and
1987     // BaseReg both being zero actually means a null pointer value, which we
1988     // consider to be 'non-zero' here.
1989     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1990   }
1991 
1992   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1993     switch (Field) {
1994     default:
1995       return nullptr;
1996     case BaseRegField:
1997       return BaseReg;
1998     case BaseGVField:
1999       return BaseGV;
2000     case ScaledRegField:
2001       return ScaledReg;
2002     case BaseOffsField:
2003       return ConstantInt::get(IntPtrTy, BaseOffs);
2004     }
2005   }
2006 
2007   void SetCombinedField(FieldName Field, Value *V,
2008                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2009     switch (Field) {
2010     default:
2011       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2012       break;
2013     case ExtAddrMode::BaseRegField:
2014       BaseReg = V;
2015       break;
2016     case ExtAddrMode::BaseGVField:
2017       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2018       // in the BaseReg field.
2019       assert(BaseReg == nullptr);
2020       BaseReg = V;
2021       BaseGV = nullptr;
2022       break;
2023     case ExtAddrMode::ScaledRegField:
2024       ScaledReg = V;
2025       // If we have a mix of scaled and unscaled addrmodes then we want scale
2026       // to be the scale and not zero.
2027       if (!Scale)
2028         for (const ExtAddrMode &AM : AddrModes)
2029           if (AM.Scale) {
2030             Scale = AM.Scale;
2031             break;
2032           }
2033       break;
2034     case ExtAddrMode::BaseOffsField:
2035       // The offset is no longer a constant, so it goes in ScaledReg with a
2036       // scale of 1.
2037       assert(ScaledReg == nullptr);
2038       ScaledReg = V;
2039       Scale = 1;
2040       BaseOffs = 0;
2041       break;
2042     }
2043   }
2044 };
2045 
2046 } // end anonymous namespace
2047 
2048 #ifndef NDEBUG
2049 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2050   AM.print(OS);
2051   return OS;
2052 }
2053 #endif
2054 
2055 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2056 void ExtAddrMode::print(raw_ostream &OS) const {
2057   bool NeedPlus = false;
2058   OS << "[";
2059   if (BaseGV) {
2060     OS << (NeedPlus ? " + " : "")
2061        << "GV:";
2062     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2063     NeedPlus = true;
2064   }
2065 
2066   if (BaseOffs) {
2067     OS << (NeedPlus ? " + " : "")
2068        << BaseOffs;
2069     NeedPlus = true;
2070   }
2071 
2072   if (BaseReg) {
2073     OS << (NeedPlus ? " + " : "")
2074        << "Base:";
2075     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2076     NeedPlus = true;
2077   }
2078   if (Scale) {
2079     OS << (NeedPlus ? " + " : "")
2080        << Scale << "*";
2081     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2082   }
2083 
2084   OS << ']';
2085 }
2086 
2087 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2088   print(dbgs());
2089   dbgs() << '\n';
2090 }
2091 #endif
2092 
2093 namespace {
2094 
2095 /// This class provides transaction based operation on the IR.
2096 /// Every change made through this class is recorded in the internal state and
2097 /// can be undone (rollback) until commit is called.
2098 class TypePromotionTransaction {
2099   /// This represents the common interface of the individual transaction.
2100   /// Each class implements the logic for doing one specific modification on
2101   /// the IR via the TypePromotionTransaction.
2102   class TypePromotionAction {
2103   protected:
2104     /// The Instruction modified.
2105     Instruction *Inst;
2106 
2107   public:
2108     /// Constructor of the action.
2109     /// The constructor performs the related action on the IR.
2110     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2111 
2112     virtual ~TypePromotionAction() = default;
2113 
2114     /// Undo the modification done by this action.
2115     /// When this method is called, the IR must be in the same state as it was
2116     /// before this action was applied.
2117     /// \pre Undoing the action works if and only if the IR is in the exact same
2118     /// state as it was directly after this action was applied.
2119     virtual void undo() = 0;
2120 
2121     /// Advocate every change made by this action.
2122     /// When the results on the IR of the action are to be kept, it is important
2123     /// to call this function, otherwise hidden information may be kept forever.
2124     virtual void commit() {
2125       // Nothing to be done, this action is not doing anything.
2126     }
2127   };
2128 
2129   /// Utility to remember the position of an instruction.
2130   class InsertionHandler {
2131     /// Position of an instruction.
2132     /// Either an instruction:
2133     /// - Is the first in a basic block: BB is used.
2134     /// - Has a previous instruction: PrevInst is used.
2135     union {
2136       Instruction *PrevInst;
2137       BasicBlock *BB;
2138     } Point;
2139 
2140     /// Remember whether or not the instruction had a previous instruction.
2141     bool HasPrevInstruction;
2142 
2143   public:
2144     /// Record the position of \p Inst.
2145     InsertionHandler(Instruction *Inst) {
2146       BasicBlock::iterator It = Inst->getIterator();
2147       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2148       if (HasPrevInstruction)
2149         Point.PrevInst = &*--It;
2150       else
2151         Point.BB = Inst->getParent();
2152     }
2153 
2154     /// Insert \p Inst at the recorded position.
2155     void insert(Instruction *Inst) {
2156       if (HasPrevInstruction) {
2157         if (Inst->getParent())
2158           Inst->removeFromParent();
2159         Inst->insertAfter(Point.PrevInst);
2160       } else {
2161         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2162         if (Inst->getParent())
2163           Inst->moveBefore(Position);
2164         else
2165           Inst->insertBefore(Position);
2166       }
2167     }
2168   };
2169 
2170   /// Move an instruction before another.
2171   class InstructionMoveBefore : public TypePromotionAction {
2172     /// Original position of the instruction.
2173     InsertionHandler Position;
2174 
2175   public:
2176     /// Move \p Inst before \p Before.
2177     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2178         : TypePromotionAction(Inst), Position(Inst) {
2179       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2180                         << "\n");
2181       Inst->moveBefore(Before);
2182     }
2183 
2184     /// Move the instruction back to its original position.
2185     void undo() override {
2186       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2187       Position.insert(Inst);
2188     }
2189   };
2190 
2191   /// Set the operand of an instruction with a new value.
2192   class OperandSetter : public TypePromotionAction {
2193     /// Original operand of the instruction.
2194     Value *Origin;
2195 
2196     /// Index of the modified instruction.
2197     unsigned Idx;
2198 
2199   public:
2200     /// Set \p Idx operand of \p Inst with \p NewVal.
2201     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2202         : TypePromotionAction(Inst), Idx(Idx) {
2203       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2204                         << "for:" << *Inst << "\n"
2205                         << "with:" << *NewVal << "\n");
2206       Origin = Inst->getOperand(Idx);
2207       Inst->setOperand(Idx, NewVal);
2208     }
2209 
2210     /// Restore the original value of the instruction.
2211     void undo() override {
2212       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2213                         << "for: " << *Inst << "\n"
2214                         << "with: " << *Origin << "\n");
2215       Inst->setOperand(Idx, Origin);
2216     }
2217   };
2218 
2219   /// Hide the operands of an instruction.
2220   /// Do as if this instruction was not using any of its operands.
2221   class OperandsHider : public TypePromotionAction {
2222     /// The list of original operands.
2223     SmallVector<Value *, 4> OriginalValues;
2224 
2225   public:
2226     /// Remove \p Inst from the uses of the operands of \p Inst.
2227     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2228       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2229       unsigned NumOpnds = Inst->getNumOperands();
2230       OriginalValues.reserve(NumOpnds);
2231       for (unsigned It = 0; It < NumOpnds; ++It) {
2232         // Save the current operand.
2233         Value *Val = Inst->getOperand(It);
2234         OriginalValues.push_back(Val);
2235         // Set a dummy one.
2236         // We could use OperandSetter here, but that would imply an overhead
2237         // that we are not willing to pay.
2238         Inst->setOperand(It, UndefValue::get(Val->getType()));
2239       }
2240     }
2241 
2242     /// Restore the original list of uses.
2243     void undo() override {
2244       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2245       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2246         Inst->setOperand(It, OriginalValues[It]);
2247     }
2248   };
2249 
2250   /// Build a truncate instruction.
2251   class TruncBuilder : public TypePromotionAction {
2252     Value *Val;
2253 
2254   public:
2255     /// Build a truncate instruction of \p Opnd producing a \p Ty
2256     /// result.
2257     /// trunc Opnd to Ty.
2258     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2259       IRBuilder<> Builder(Opnd);
2260       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2261       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2262     }
2263 
2264     /// Get the built value.
2265     Value *getBuiltValue() { return Val; }
2266 
2267     /// Remove the built instruction.
2268     void undo() override {
2269       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2270       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2271         IVal->eraseFromParent();
2272     }
2273   };
2274 
2275   /// Build a sign extension instruction.
2276   class SExtBuilder : public TypePromotionAction {
2277     Value *Val;
2278 
2279   public:
2280     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2281     /// result.
2282     /// sext Opnd to Ty.
2283     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2284         : TypePromotionAction(InsertPt) {
2285       IRBuilder<> Builder(InsertPt);
2286       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2287       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2288     }
2289 
2290     /// Get the built value.
2291     Value *getBuiltValue() { return Val; }
2292 
2293     /// Remove the built instruction.
2294     void undo() override {
2295       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2296       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2297         IVal->eraseFromParent();
2298     }
2299   };
2300 
2301   /// Build a zero extension instruction.
2302   class ZExtBuilder : public TypePromotionAction {
2303     Value *Val;
2304 
2305   public:
2306     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2307     /// result.
2308     /// zext Opnd to Ty.
2309     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2310         : TypePromotionAction(InsertPt) {
2311       IRBuilder<> Builder(InsertPt);
2312       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2313       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2314     }
2315 
2316     /// Get the built value.
2317     Value *getBuiltValue() { return Val; }
2318 
2319     /// Remove the built instruction.
2320     void undo() override {
2321       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2322       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2323         IVal->eraseFromParent();
2324     }
2325   };
2326 
2327   /// Mutate an instruction to another type.
2328   class TypeMutator : public TypePromotionAction {
2329     /// Record the original type.
2330     Type *OrigTy;
2331 
2332   public:
2333     /// Mutate the type of \p Inst into \p NewTy.
2334     TypeMutator(Instruction *Inst, Type *NewTy)
2335         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2336       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2337                         << "\n");
2338       Inst->mutateType(NewTy);
2339     }
2340 
2341     /// Mutate the instruction back to its original type.
2342     void undo() override {
2343       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2344                         << "\n");
2345       Inst->mutateType(OrigTy);
2346     }
2347   };
2348 
2349   /// Replace the uses of an instruction by another instruction.
2350   class UsesReplacer : public TypePromotionAction {
2351     /// Helper structure to keep track of the replaced uses.
2352     struct InstructionAndIdx {
2353       /// The instruction using the instruction.
2354       Instruction *Inst;
2355 
2356       /// The index where this instruction is used for Inst.
2357       unsigned Idx;
2358 
2359       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2360           : Inst(Inst), Idx(Idx) {}
2361     };
2362 
2363     /// Keep track of the original uses (pair Instruction, Index).
2364     SmallVector<InstructionAndIdx, 4> OriginalUses;
2365 
2366     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2367 
2368   public:
2369     /// Replace all the use of \p Inst by \p New.
2370     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2371       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2372                         << "\n");
2373       // Record the original uses.
2374       for (Use &U : Inst->uses()) {
2375         Instruction *UserI = cast<Instruction>(U.getUser());
2376         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2377       }
2378       // Now, we can replace the uses.
2379       Inst->replaceAllUsesWith(New);
2380     }
2381 
2382     /// Reassign the original uses of Inst to Inst.
2383     void undo() override {
2384       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2385       for (use_iterator UseIt = OriginalUses.begin(),
2386                         EndIt = OriginalUses.end();
2387            UseIt != EndIt; ++UseIt) {
2388         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2389       }
2390     }
2391   };
2392 
2393   /// Remove an instruction from the IR.
2394   class InstructionRemover : public TypePromotionAction {
2395     /// Original position of the instruction.
2396     InsertionHandler Inserter;
2397 
2398     /// Helper structure to hide all the link to the instruction. In other
2399     /// words, this helps to do as if the instruction was removed.
2400     OperandsHider Hider;
2401 
2402     /// Keep track of the uses replaced, if any.
2403     UsesReplacer *Replacer = nullptr;
2404 
2405     /// Keep track of instructions removed.
2406     SetOfInstrs &RemovedInsts;
2407 
2408   public:
2409     /// Remove all reference of \p Inst and optionally replace all its
2410     /// uses with New.
2411     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2412     /// \pre If !Inst->use_empty(), then New != nullptr
2413     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2414                        Value *New = nullptr)
2415         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2416           RemovedInsts(RemovedInsts) {
2417       if (New)
2418         Replacer = new UsesReplacer(Inst, New);
2419       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2420       RemovedInsts.insert(Inst);
2421       /// The instructions removed here will be freed after completing
2422       /// optimizeBlock() for all blocks as we need to keep track of the
2423       /// removed instructions during promotion.
2424       Inst->removeFromParent();
2425     }
2426 
2427     ~InstructionRemover() override { delete Replacer; }
2428 
2429     /// Resurrect the instruction and reassign it to the proper uses if
2430     /// new value was provided when build this action.
2431     void undo() override {
2432       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2433       Inserter.insert(Inst);
2434       if (Replacer)
2435         Replacer->undo();
2436       Hider.undo();
2437       RemovedInsts.erase(Inst);
2438     }
2439   };
2440 
2441 public:
2442   /// Restoration point.
2443   /// The restoration point is a pointer to an action instead of an iterator
2444   /// because the iterator may be invalidated but not the pointer.
2445   using ConstRestorationPt = const TypePromotionAction *;
2446 
2447   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2448       : RemovedInsts(RemovedInsts) {}
2449 
2450   /// Advocate every changes made in that transaction.
2451   void commit();
2452 
2453   /// Undo all the changes made after the given point.
2454   void rollback(ConstRestorationPt Point);
2455 
2456   /// Get the current restoration point.
2457   ConstRestorationPt getRestorationPoint() const;
2458 
2459   /// \name API for IR modification with state keeping to support rollback.
2460   /// @{
2461   /// Same as Instruction::setOperand.
2462   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2463 
2464   /// Same as Instruction::eraseFromParent.
2465   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2466 
2467   /// Same as Value::replaceAllUsesWith.
2468   void replaceAllUsesWith(Instruction *Inst, Value *New);
2469 
2470   /// Same as Value::mutateType.
2471   void mutateType(Instruction *Inst, Type *NewTy);
2472 
2473   /// Same as IRBuilder::createTrunc.
2474   Value *createTrunc(Instruction *Opnd, Type *Ty);
2475 
2476   /// Same as IRBuilder::createSExt.
2477   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2478 
2479   /// Same as IRBuilder::createZExt.
2480   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2481 
2482   /// Same as Instruction::moveBefore.
2483   void moveBefore(Instruction *Inst, Instruction *Before);
2484   /// @}
2485 
2486 private:
2487   /// The ordered list of actions made so far.
2488   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2489 
2490   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2491 
2492   SetOfInstrs &RemovedInsts;
2493 };
2494 
2495 } // end anonymous namespace
2496 
2497 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2498                                           Value *NewVal) {
2499   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2500       Inst, Idx, NewVal));
2501 }
2502 
2503 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2504                                                 Value *NewVal) {
2505   Actions.push_back(
2506       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2507           Inst, RemovedInsts, NewVal));
2508 }
2509 
2510 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2511                                                   Value *New) {
2512   Actions.push_back(
2513       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2514 }
2515 
2516 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2517   Actions.push_back(
2518       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2519 }
2520 
2521 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2522                                              Type *Ty) {
2523   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2524   Value *Val = Ptr->getBuiltValue();
2525   Actions.push_back(std::move(Ptr));
2526   return Val;
2527 }
2528 
2529 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2530                                             Value *Opnd, Type *Ty) {
2531   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2532   Value *Val = Ptr->getBuiltValue();
2533   Actions.push_back(std::move(Ptr));
2534   return Val;
2535 }
2536 
2537 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2538                                             Value *Opnd, Type *Ty) {
2539   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2540   Value *Val = Ptr->getBuiltValue();
2541   Actions.push_back(std::move(Ptr));
2542   return Val;
2543 }
2544 
2545 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2546                                           Instruction *Before) {
2547   Actions.push_back(
2548       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2549           Inst, Before));
2550 }
2551 
2552 TypePromotionTransaction::ConstRestorationPt
2553 TypePromotionTransaction::getRestorationPoint() const {
2554   return !Actions.empty() ? Actions.back().get() : nullptr;
2555 }
2556 
2557 void TypePromotionTransaction::commit() {
2558   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2559        ++It)
2560     (*It)->commit();
2561   Actions.clear();
2562 }
2563 
2564 void TypePromotionTransaction::rollback(
2565     TypePromotionTransaction::ConstRestorationPt Point) {
2566   while (!Actions.empty() && Point != Actions.back().get()) {
2567     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2568     Curr->undo();
2569   }
2570 }
2571 
2572 namespace {
2573 
2574 /// A helper class for matching addressing modes.
2575 ///
2576 /// This encapsulates the logic for matching the target-legal addressing modes.
2577 class AddressingModeMatcher {
2578   SmallVectorImpl<Instruction*> &AddrModeInsts;
2579   const TargetLowering &TLI;
2580   const TargetRegisterInfo &TRI;
2581   const DataLayout &DL;
2582 
2583   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2584   /// the memory instruction that we're computing this address for.
2585   Type *AccessTy;
2586   unsigned AddrSpace;
2587   Instruction *MemoryInst;
2588 
2589   /// This is the addressing mode that we're building up. This is
2590   /// part of the return value of this addressing mode matching stuff.
2591   ExtAddrMode &AddrMode;
2592 
2593   /// The instructions inserted by other CodeGenPrepare optimizations.
2594   const SetOfInstrs &InsertedInsts;
2595 
2596   /// A map from the instructions to their type before promotion.
2597   InstrToOrigTy &PromotedInsts;
2598 
2599   /// The ongoing transaction where every action should be registered.
2600   TypePromotionTransaction &TPT;
2601 
2602   // A GEP which has too large offset to be folded into the addressing mode.
2603   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2604 
2605   /// This is set to true when we should not do profitability checks.
2606   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2607   bool IgnoreProfitability;
2608 
2609   AddressingModeMatcher(
2610       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2611       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2612       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2613       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2614       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2615       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2616         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2617         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2618         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2619     IgnoreProfitability = false;
2620   }
2621 
2622 public:
2623   /// Find the maximal addressing mode that a load/store of V can fold,
2624   /// give an access type of AccessTy.  This returns a list of involved
2625   /// instructions in AddrModeInsts.
2626   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2627   /// optimizations.
2628   /// \p PromotedInsts maps the instructions to their type before promotion.
2629   /// \p The ongoing transaction where every action should be registered.
2630   static ExtAddrMode
2631   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2632         SmallVectorImpl<Instruction *> &AddrModeInsts,
2633         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2634         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2635         TypePromotionTransaction &TPT,
2636         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2637     ExtAddrMode Result;
2638 
2639     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2640                                          MemoryInst, Result, InsertedInsts,
2641                                          PromotedInsts, TPT, LargeOffsetGEP)
2642                        .matchAddr(V, 0);
2643     (void)Success; assert(Success && "Couldn't select *anything*?");
2644     return Result;
2645   }
2646 
2647 private:
2648   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2649   bool matchAddr(Value *Addr, unsigned Depth);
2650   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2651                           bool *MovedAway = nullptr);
2652   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2653                                             ExtAddrMode &AMBefore,
2654                                             ExtAddrMode &AMAfter);
2655   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2656   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2657                              Value *PromotedOperand) const;
2658 };
2659 
2660 class PhiNodeSet;
2661 
2662 /// An iterator for PhiNodeSet.
2663 class PhiNodeSetIterator {
2664   PhiNodeSet * const Set;
2665   size_t CurrentIndex = 0;
2666 
2667 public:
2668   /// The constructor. Start should point to either a valid element, or be equal
2669   /// to the size of the underlying SmallVector of the PhiNodeSet.
2670   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2671   PHINode * operator*() const;
2672   PhiNodeSetIterator& operator++();
2673   bool operator==(const PhiNodeSetIterator &RHS) const;
2674   bool operator!=(const PhiNodeSetIterator &RHS) const;
2675 };
2676 
2677 /// Keeps a set of PHINodes.
2678 ///
2679 /// This is a minimal set implementation for a specific use case:
2680 /// It is very fast when there are very few elements, but also provides good
2681 /// performance when there are many. It is similar to SmallPtrSet, but also
2682 /// provides iteration by insertion order, which is deterministic and stable
2683 /// across runs. It is also similar to SmallSetVector, but provides removing
2684 /// elements in O(1) time. This is achieved by not actually removing the element
2685 /// from the underlying vector, so comes at the cost of using more memory, but
2686 /// that is fine, since PhiNodeSets are used as short lived objects.
2687 class PhiNodeSet {
2688   friend class PhiNodeSetIterator;
2689 
2690   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2691   using iterator =  PhiNodeSetIterator;
2692 
2693   /// Keeps the elements in the order of their insertion in the underlying
2694   /// vector. To achieve constant time removal, it never deletes any element.
2695   SmallVector<PHINode *, 32> NodeList;
2696 
2697   /// Keeps the elements in the underlying set implementation. This (and not the
2698   /// NodeList defined above) is the source of truth on whether an element
2699   /// is actually in the collection.
2700   MapType NodeMap;
2701 
2702   /// Points to the first valid (not deleted) element when the set is not empty
2703   /// and the value is not zero. Equals to the size of the underlying vector
2704   /// when the set is empty. When the value is 0, as in the beginning, the
2705   /// first element may or may not be valid.
2706   size_t FirstValidElement = 0;
2707 
2708 public:
2709   /// Inserts a new element to the collection.
2710   /// \returns true if the element is actually added, i.e. was not in the
2711   /// collection before the operation.
2712   bool insert(PHINode *Ptr) {
2713     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2714       NodeList.push_back(Ptr);
2715       return true;
2716     }
2717     return false;
2718   }
2719 
2720   /// Removes the element from the collection.
2721   /// \returns whether the element is actually removed, i.e. was in the
2722   /// collection before the operation.
2723   bool erase(PHINode *Ptr) {
2724     auto it = NodeMap.find(Ptr);
2725     if (it != NodeMap.end()) {
2726       NodeMap.erase(Ptr);
2727       SkipRemovedElements(FirstValidElement);
2728       return true;
2729     }
2730     return false;
2731   }
2732 
2733   /// Removes all elements and clears the collection.
2734   void clear() {
2735     NodeMap.clear();
2736     NodeList.clear();
2737     FirstValidElement = 0;
2738   }
2739 
2740   /// \returns an iterator that will iterate the elements in the order of
2741   /// insertion.
2742   iterator begin() {
2743     if (FirstValidElement == 0)
2744       SkipRemovedElements(FirstValidElement);
2745     return PhiNodeSetIterator(this, FirstValidElement);
2746   }
2747 
2748   /// \returns an iterator that points to the end of the collection.
2749   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2750 
2751   /// Returns the number of elements in the collection.
2752   size_t size() const {
2753     return NodeMap.size();
2754   }
2755 
2756   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2757   size_t count(PHINode *Ptr) const {
2758     return NodeMap.count(Ptr);
2759   }
2760 
2761 private:
2762   /// Updates the CurrentIndex so that it will point to a valid element.
2763   ///
2764   /// If the element of NodeList at CurrentIndex is valid, it does not
2765   /// change it. If there are no more valid elements, it updates CurrentIndex
2766   /// to point to the end of the NodeList.
2767   void SkipRemovedElements(size_t &CurrentIndex) {
2768     while (CurrentIndex < NodeList.size()) {
2769       auto it = NodeMap.find(NodeList[CurrentIndex]);
2770       // If the element has been deleted and added again later, NodeMap will
2771       // point to a different index, so CurrentIndex will still be invalid.
2772       if (it != NodeMap.end() && it->second == CurrentIndex)
2773         break;
2774       ++CurrentIndex;
2775     }
2776   }
2777 };
2778 
2779 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2780     : Set(Set), CurrentIndex(Start) {}
2781 
2782 PHINode * PhiNodeSetIterator::operator*() const {
2783   assert(CurrentIndex < Set->NodeList.size() &&
2784          "PhiNodeSet access out of range");
2785   return Set->NodeList[CurrentIndex];
2786 }
2787 
2788 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2789   assert(CurrentIndex < Set->NodeList.size() &&
2790          "PhiNodeSet access out of range");
2791   ++CurrentIndex;
2792   Set->SkipRemovedElements(CurrentIndex);
2793   return *this;
2794 }
2795 
2796 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2797   return CurrentIndex == RHS.CurrentIndex;
2798 }
2799 
2800 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2801   return !((*this) == RHS);
2802 }
2803 
2804 /// Keep track of simplification of Phi nodes.
2805 /// Accept the set of all phi nodes and erase phi node from this set
2806 /// if it is simplified.
2807 class SimplificationTracker {
2808   DenseMap<Value *, Value *> Storage;
2809   const SimplifyQuery &SQ;
2810   // Tracks newly created Phi nodes. The elements are iterated by insertion
2811   // order.
2812   PhiNodeSet AllPhiNodes;
2813   // Tracks newly created Select nodes.
2814   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2815 
2816 public:
2817   SimplificationTracker(const SimplifyQuery &sq)
2818       : SQ(sq) {}
2819 
2820   Value *Get(Value *V) {
2821     do {
2822       auto SV = Storage.find(V);
2823       if (SV == Storage.end())
2824         return V;
2825       V = SV->second;
2826     } while (true);
2827   }
2828 
2829   Value *Simplify(Value *Val) {
2830     SmallVector<Value *, 32> WorkList;
2831     SmallPtrSet<Value *, 32> Visited;
2832     WorkList.push_back(Val);
2833     while (!WorkList.empty()) {
2834       auto P = WorkList.pop_back_val();
2835       if (!Visited.insert(P).second)
2836         continue;
2837       if (auto *PI = dyn_cast<Instruction>(P))
2838         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2839           for (auto *U : PI->users())
2840             WorkList.push_back(cast<Value>(U));
2841           Put(PI, V);
2842           PI->replaceAllUsesWith(V);
2843           if (auto *PHI = dyn_cast<PHINode>(PI))
2844             AllPhiNodes.erase(PHI);
2845           if (auto *Select = dyn_cast<SelectInst>(PI))
2846             AllSelectNodes.erase(Select);
2847           PI->eraseFromParent();
2848         }
2849     }
2850     return Get(Val);
2851   }
2852 
2853   void Put(Value *From, Value *To) {
2854     Storage.insert({ From, To });
2855   }
2856 
2857   void ReplacePhi(PHINode *From, PHINode *To) {
2858     Value* OldReplacement = Get(From);
2859     while (OldReplacement != From) {
2860       From = To;
2861       To = dyn_cast<PHINode>(OldReplacement);
2862       OldReplacement = Get(From);
2863     }
2864     assert(Get(To) == To && "Replacement PHI node is already replaced.");
2865     Put(From, To);
2866     From->replaceAllUsesWith(To);
2867     AllPhiNodes.erase(From);
2868     From->eraseFromParent();
2869   }
2870 
2871   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
2872 
2873   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2874 
2875   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2876 
2877   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2878 
2879   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2880 
2881   void destroyNewNodes(Type *CommonType) {
2882     // For safe erasing, replace the uses with dummy value first.
2883     auto Dummy = UndefValue::get(CommonType);
2884     for (auto I : AllPhiNodes) {
2885       I->replaceAllUsesWith(Dummy);
2886       I->eraseFromParent();
2887     }
2888     AllPhiNodes.clear();
2889     for (auto I : AllSelectNodes) {
2890       I->replaceAllUsesWith(Dummy);
2891       I->eraseFromParent();
2892     }
2893     AllSelectNodes.clear();
2894   }
2895 };
2896 
2897 /// A helper class for combining addressing modes.
2898 class AddressingModeCombiner {
2899   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
2900   typedef std::pair<PHINode *, PHINode *> PHIPair;
2901 
2902 private:
2903   /// The addressing modes we've collected.
2904   SmallVector<ExtAddrMode, 16> AddrModes;
2905 
2906   /// The field in which the AddrModes differ, when we have more than one.
2907   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2908 
2909   /// Are the AddrModes that we have all just equal to their original values?
2910   bool AllAddrModesTrivial = true;
2911 
2912   /// Common Type for all different fields in addressing modes.
2913   Type *CommonType;
2914 
2915   /// SimplifyQuery for simplifyInstruction utility.
2916   const SimplifyQuery &SQ;
2917 
2918   /// Original Address.
2919   Value *Original;
2920 
2921 public:
2922   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
2923       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2924 
2925   /// Get the combined AddrMode
2926   const ExtAddrMode &getAddrMode() const {
2927     return AddrModes[0];
2928   }
2929 
2930   /// Add a new AddrMode if it's compatible with the AddrModes we already
2931   /// have.
2932   /// \return True iff we succeeded in doing so.
2933   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2934     // Take note of if we have any non-trivial AddrModes, as we need to detect
2935     // when all AddrModes are trivial as then we would introduce a phi or select
2936     // which just duplicates what's already there.
2937     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2938 
2939     // If this is the first addrmode then everything is fine.
2940     if (AddrModes.empty()) {
2941       AddrModes.emplace_back(NewAddrMode);
2942       return true;
2943     }
2944 
2945     // Figure out how different this is from the other address modes, which we
2946     // can do just by comparing against the first one given that we only care
2947     // about the cumulative difference.
2948     ExtAddrMode::FieldName ThisDifferentField =
2949       AddrModes[0].compare(NewAddrMode);
2950     if (DifferentField == ExtAddrMode::NoField)
2951       DifferentField = ThisDifferentField;
2952     else if (DifferentField != ThisDifferentField)
2953       DifferentField = ExtAddrMode::MultipleFields;
2954 
2955     // If NewAddrMode differs in more than one dimension we cannot handle it.
2956     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2957 
2958     // If Scale Field is different then we reject.
2959     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2960 
2961     // We also must reject the case when base offset is different and
2962     // scale reg is not null, we cannot handle this case due to merge of
2963     // different offsets will be used as ScaleReg.
2964     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2965                               !NewAddrMode.ScaledReg);
2966 
2967     // We also must reject the case when GV is different and BaseReg installed
2968     // due to we want to use base reg as a merge of GV values.
2969     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2970                               !NewAddrMode.HasBaseReg);
2971 
2972     // Even if NewAddMode is the same we still need to collect it due to
2973     // original value is different. And later we will need all original values
2974     // as anchors during finding the common Phi node.
2975     if (CanHandle)
2976       AddrModes.emplace_back(NewAddrMode);
2977     else
2978       AddrModes.clear();
2979 
2980     return CanHandle;
2981   }
2982 
2983   /// Combine the addressing modes we've collected into a single
2984   /// addressing mode.
2985   /// \return True iff we successfully combined them or we only had one so
2986   /// didn't need to combine them anyway.
2987   bool combineAddrModes() {
2988     // If we have no AddrModes then they can't be combined.
2989     if (AddrModes.size() == 0)
2990       return false;
2991 
2992     // A single AddrMode can trivially be combined.
2993     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2994       return true;
2995 
2996     // If the AddrModes we collected are all just equal to the value they are
2997     // derived from then combining them wouldn't do anything useful.
2998     if (AllAddrModesTrivial)
2999       return false;
3000 
3001     if (!addrModeCombiningAllowed())
3002       return false;
3003 
3004     // Build a map between <original value, basic block where we saw it> to
3005     // value of base register.
3006     // Bail out if there is no common type.
3007     FoldAddrToValueMapping Map;
3008     if (!initializeMap(Map))
3009       return false;
3010 
3011     Value *CommonValue = findCommon(Map);
3012     if (CommonValue)
3013       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3014     return CommonValue != nullptr;
3015   }
3016 
3017 private:
3018   /// Initialize Map with anchor values. For address seen
3019   /// we set the value of different field saw in this address.
3020   /// At the same time we find a common type for different field we will
3021   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3022   /// Return false if there is no common type found.
3023   bool initializeMap(FoldAddrToValueMapping &Map) {
3024     // Keep track of keys where the value is null. We will need to replace it
3025     // with constant null when we know the common type.
3026     SmallVector<Value *, 2> NullValue;
3027     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3028     for (auto &AM : AddrModes) {
3029       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3030       if (DV) {
3031         auto *Type = DV->getType();
3032         if (CommonType && CommonType != Type)
3033           return false;
3034         CommonType = Type;
3035         Map[AM.OriginalValue] = DV;
3036       } else {
3037         NullValue.push_back(AM.OriginalValue);
3038       }
3039     }
3040     assert(CommonType && "At least one non-null value must be!");
3041     for (auto *V : NullValue)
3042       Map[V] = Constant::getNullValue(CommonType);
3043     return true;
3044   }
3045 
3046   /// We have mapping between value A and other value B where B was a field in
3047   /// addressing mode represented by A. Also we have an original value C
3048   /// representing an address we start with. Traversing from C through phi and
3049   /// selects we ended up with A's in a map. This utility function tries to find
3050   /// a value V which is a field in addressing mode C and traversing through phi
3051   /// nodes and selects we will end up in corresponded values B in a map.
3052   /// The utility will create a new Phi/Selects if needed.
3053   // The simple example looks as follows:
3054   // BB1:
3055   //   p1 = b1 + 40
3056   //   br cond BB2, BB3
3057   // BB2:
3058   //   p2 = b2 + 40
3059   //   br BB3
3060   // BB3:
3061   //   p = phi [p1, BB1], [p2, BB2]
3062   //   v = load p
3063   // Map is
3064   //   p1 -> b1
3065   //   p2 -> b2
3066   // Request is
3067   //   p -> ?
3068   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3069   Value *findCommon(FoldAddrToValueMapping &Map) {
3070     // Tracks the simplification of newly created phi nodes. The reason we use
3071     // this mapping is because we will add new created Phi nodes in AddrToBase.
3072     // Simplification of Phi nodes is recursive, so some Phi node may
3073     // be simplified after we added it to AddrToBase. In reality this
3074     // simplification is possible only if original phi/selects were not
3075     // simplified yet.
3076     // Using this mapping we can find the current value in AddrToBase.
3077     SimplificationTracker ST(SQ);
3078 
3079     // First step, DFS to create PHI nodes for all intermediate blocks.
3080     // Also fill traverse order for the second step.
3081     SmallVector<Value *, 32> TraverseOrder;
3082     InsertPlaceholders(Map, TraverseOrder, ST);
3083 
3084     // Second Step, fill new nodes by merged values and simplify if possible.
3085     FillPlaceholders(Map, TraverseOrder, ST);
3086 
3087     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3088       ST.destroyNewNodes(CommonType);
3089       return nullptr;
3090     }
3091 
3092     // Now we'd like to match New Phi nodes to existed ones.
3093     unsigned PhiNotMatchedCount = 0;
3094     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3095       ST.destroyNewNodes(CommonType);
3096       return nullptr;
3097     }
3098 
3099     auto *Result = ST.Get(Map.find(Original)->second);
3100     if (Result) {
3101       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3102       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3103     }
3104     return Result;
3105   }
3106 
3107   /// Try to match PHI node to Candidate.
3108   /// Matcher tracks the matched Phi nodes.
3109   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3110                     SmallSetVector<PHIPair, 8> &Matcher,
3111                     PhiNodeSet &PhiNodesToMatch) {
3112     SmallVector<PHIPair, 8> WorkList;
3113     Matcher.insert({ PHI, Candidate });
3114     WorkList.push_back({ PHI, Candidate });
3115     SmallSet<PHIPair, 8> Visited;
3116     while (!WorkList.empty()) {
3117       auto Item = WorkList.pop_back_val();
3118       if (!Visited.insert(Item).second)
3119         continue;
3120       // We iterate over all incoming values to Phi to compare them.
3121       // If values are different and both of them Phi and the first one is a
3122       // Phi we added (subject to match) and both of them is in the same basic
3123       // block then we can match our pair if values match. So we state that
3124       // these values match and add it to work list to verify that.
3125       for (auto B : Item.first->blocks()) {
3126         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3127         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3128         if (FirstValue == SecondValue)
3129           continue;
3130 
3131         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3132         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3133 
3134         // One of them is not Phi or
3135         // The first one is not Phi node from the set we'd like to match or
3136         // Phi nodes from different basic blocks then
3137         // we will not be able to match.
3138         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3139             FirstPhi->getParent() != SecondPhi->getParent())
3140           return false;
3141 
3142         // If we already matched them then continue.
3143         if (Matcher.count({ FirstPhi, SecondPhi }))
3144           continue;
3145         // So the values are different and does not match. So we need them to
3146         // match.
3147         Matcher.insert({ FirstPhi, SecondPhi });
3148         // But me must check it.
3149         WorkList.push_back({ FirstPhi, SecondPhi });
3150       }
3151     }
3152     return true;
3153   }
3154 
3155   /// For the given set of PHI nodes (in the SimplificationTracker) try
3156   /// to find their equivalents.
3157   /// Returns false if this matching fails and creation of new Phi is disabled.
3158   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3159                    unsigned &PhiNotMatchedCount) {
3160     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3161     // order, so the replacements (ReplacePhi) are also done in a deterministic
3162     // order.
3163     SmallSetVector<PHIPair, 8> Matched;
3164     SmallPtrSet<PHINode *, 8> WillNotMatch;
3165     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3166     while (PhiNodesToMatch.size()) {
3167       PHINode *PHI = *PhiNodesToMatch.begin();
3168 
3169       // Add us, if no Phi nodes in the basic block we do not match.
3170       WillNotMatch.clear();
3171       WillNotMatch.insert(PHI);
3172 
3173       // Traverse all Phis until we found equivalent or fail to do that.
3174       bool IsMatched = false;
3175       for (auto &P : PHI->getParent()->phis()) {
3176         if (&P == PHI)
3177           continue;
3178         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3179           break;
3180         // If it does not match, collect all Phi nodes from matcher.
3181         // if we end up with no match, them all these Phi nodes will not match
3182         // later.
3183         for (auto M : Matched)
3184           WillNotMatch.insert(M.first);
3185         Matched.clear();
3186       }
3187       if (IsMatched) {
3188         // Replace all matched values and erase them.
3189         for (auto MV : Matched)
3190           ST.ReplacePhi(MV.first, MV.second);
3191         Matched.clear();
3192         continue;
3193       }
3194       // If we are not allowed to create new nodes then bail out.
3195       if (!AllowNewPhiNodes)
3196         return false;
3197       // Just remove all seen values in matcher. They will not match anything.
3198       PhiNotMatchedCount += WillNotMatch.size();
3199       for (auto *P : WillNotMatch)
3200         PhiNodesToMatch.erase(P);
3201     }
3202     return true;
3203   }
3204   /// Fill the placeholders with values from predecessors and simplify them.
3205   void FillPlaceholders(FoldAddrToValueMapping &Map,
3206                         SmallVectorImpl<Value *> &TraverseOrder,
3207                         SimplificationTracker &ST) {
3208     while (!TraverseOrder.empty()) {
3209       Value *Current = TraverseOrder.pop_back_val();
3210       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3211       Value *V = Map[Current];
3212 
3213       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3214         // CurrentValue also must be Select.
3215         auto *CurrentSelect = cast<SelectInst>(Current);
3216         auto *TrueValue = CurrentSelect->getTrueValue();
3217         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3218         Select->setTrueValue(ST.Get(Map[TrueValue]));
3219         auto *FalseValue = CurrentSelect->getFalseValue();
3220         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3221         Select->setFalseValue(ST.Get(Map[FalseValue]));
3222       } else {
3223         // Must be a Phi node then.
3224         PHINode *PHI = cast<PHINode>(V);
3225         auto *CurrentPhi = dyn_cast<PHINode>(Current);
3226         // Fill the Phi node with values from predecessors.
3227         for (auto B : predecessors(PHI->getParent())) {
3228           Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3229           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3230           PHI->addIncoming(ST.Get(Map[PV]), B);
3231         }
3232       }
3233       Map[Current] = ST.Simplify(V);
3234     }
3235   }
3236 
3237   /// Starting from original value recursively iterates over def-use chain up to
3238   /// known ending values represented in a map. For each traversed phi/select
3239   /// inserts a placeholder Phi or Select.
3240   /// Reports all new created Phi/Select nodes by adding them to set.
3241   /// Also reports and order in what values have been traversed.
3242   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3243                           SmallVectorImpl<Value *> &TraverseOrder,
3244                           SimplificationTracker &ST) {
3245     SmallVector<Value *, 32> Worklist;
3246     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3247            "Address must be a Phi or Select node");
3248     auto *Dummy = UndefValue::get(CommonType);
3249     Worklist.push_back(Original);
3250     while (!Worklist.empty()) {
3251       Value *Current = Worklist.pop_back_val();
3252       // if it is already visited or it is an ending value then skip it.
3253       if (Map.find(Current) != Map.end())
3254         continue;
3255       TraverseOrder.push_back(Current);
3256 
3257       // CurrentValue must be a Phi node or select. All others must be covered
3258       // by anchors.
3259       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3260         // Is it OK to get metadata from OrigSelect?!
3261         // Create a Select placeholder with dummy value.
3262         SelectInst *Select = SelectInst::Create(
3263             CurrentSelect->getCondition(), Dummy, Dummy,
3264             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3265         Map[Current] = Select;
3266         ST.insertNewSelect(Select);
3267         // We are interested in True and False values.
3268         Worklist.push_back(CurrentSelect->getTrueValue());
3269         Worklist.push_back(CurrentSelect->getFalseValue());
3270       } else {
3271         // It must be a Phi node then.
3272         PHINode *CurrentPhi = cast<PHINode>(Current);
3273         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3274         PHINode *PHI =
3275             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3276         Map[Current] = PHI;
3277         ST.insertNewPhi(PHI);
3278         for (Value *P : CurrentPhi->incoming_values())
3279           Worklist.push_back(P);
3280       }
3281     }
3282   }
3283 
3284   bool addrModeCombiningAllowed() {
3285     if (DisableComplexAddrModes)
3286       return false;
3287     switch (DifferentField) {
3288     default:
3289       return false;
3290     case ExtAddrMode::BaseRegField:
3291       return AddrSinkCombineBaseReg;
3292     case ExtAddrMode::BaseGVField:
3293       return AddrSinkCombineBaseGV;
3294     case ExtAddrMode::BaseOffsField:
3295       return AddrSinkCombineBaseOffs;
3296     case ExtAddrMode::ScaledRegField:
3297       return AddrSinkCombineScaledReg;
3298     }
3299   }
3300 };
3301 } // end anonymous namespace
3302 
3303 /// Try adding ScaleReg*Scale to the current addressing mode.
3304 /// Return true and update AddrMode if this addr mode is legal for the target,
3305 /// false if not.
3306 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3307                                              unsigned Depth) {
3308   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3309   // mode.  Just process that directly.
3310   if (Scale == 1)
3311     return matchAddr(ScaleReg, Depth);
3312 
3313   // If the scale is 0, it takes nothing to add this.
3314   if (Scale == 0)
3315     return true;
3316 
3317   // If we already have a scale of this value, we can add to it, otherwise, we
3318   // need an available scale field.
3319   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3320     return false;
3321 
3322   ExtAddrMode TestAddrMode = AddrMode;
3323 
3324   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3325   // [A+B + A*7] -> [B+A*8].
3326   TestAddrMode.Scale += Scale;
3327   TestAddrMode.ScaledReg = ScaleReg;
3328 
3329   // If the new address isn't legal, bail out.
3330   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3331     return false;
3332 
3333   // It was legal, so commit it.
3334   AddrMode = TestAddrMode;
3335 
3336   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3337   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3338   // X*Scale + C*Scale to addr mode.
3339   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3340   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3341       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3342     TestAddrMode.ScaledReg = AddLHS;
3343     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3344 
3345     // If this addressing mode is legal, commit it and remember that we folded
3346     // this instruction.
3347     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3348       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3349       AddrMode = TestAddrMode;
3350       return true;
3351     }
3352   }
3353 
3354   // Otherwise, not (x+c)*scale, just return what we have.
3355   return true;
3356 }
3357 
3358 /// This is a little filter, which returns true if an addressing computation
3359 /// involving I might be folded into a load/store accessing it.
3360 /// This doesn't need to be perfect, but needs to accept at least
3361 /// the set of instructions that MatchOperationAddr can.
3362 static bool MightBeFoldableInst(Instruction *I) {
3363   switch (I->getOpcode()) {
3364   case Instruction::BitCast:
3365   case Instruction::AddrSpaceCast:
3366     // Don't touch identity bitcasts.
3367     if (I->getType() == I->getOperand(0)->getType())
3368       return false;
3369     return I->getType()->isIntOrPtrTy();
3370   case Instruction::PtrToInt:
3371     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3372     return true;
3373   case Instruction::IntToPtr:
3374     // We know the input is intptr_t, so this is foldable.
3375     return true;
3376   case Instruction::Add:
3377     return true;
3378   case Instruction::Mul:
3379   case Instruction::Shl:
3380     // Can only handle X*C and X << C.
3381     return isa<ConstantInt>(I->getOperand(1));
3382   case Instruction::GetElementPtr:
3383     return true;
3384   default:
3385     return false;
3386   }
3387 }
3388 
3389 /// Check whether or not \p Val is a legal instruction for \p TLI.
3390 /// \note \p Val is assumed to be the product of some type promotion.
3391 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3392 /// to be legal, as the non-promoted value would have had the same state.
3393 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3394                                        const DataLayout &DL, Value *Val) {
3395   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3396   if (!PromotedInst)
3397     return false;
3398   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3399   // If the ISDOpcode is undefined, it was undefined before the promotion.
3400   if (!ISDOpcode)
3401     return true;
3402   // Otherwise, check if the promoted instruction is legal or not.
3403   return TLI.isOperationLegalOrCustom(
3404       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3405 }
3406 
3407 namespace {
3408 
3409 /// Hepler class to perform type promotion.
3410 class TypePromotionHelper {
3411   /// Utility function to add a promoted instruction \p ExtOpnd to
3412   /// \p PromotedInsts and record the type of extension we have seen.
3413   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3414                               Instruction *ExtOpnd,
3415                               bool IsSExt) {
3416     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3417     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3418     if (It != PromotedInsts.end()) {
3419       // If the new extension is same as original, the information in
3420       // PromotedInsts[ExtOpnd] is still correct.
3421       if (It->second.getInt() == ExtTy)
3422         return;
3423 
3424       // Now the new extension is different from old extension, we make
3425       // the type information invalid by setting extension type to
3426       // BothExtension.
3427       ExtTy = BothExtension;
3428     }
3429     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3430   }
3431 
3432   /// Utility function to query the original type of instruction \p Opnd
3433   /// with a matched extension type. If the extension doesn't match, we
3434   /// cannot use the information we had on the original type.
3435   /// BothExtension doesn't match any extension type.
3436   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3437                                  Instruction *Opnd,
3438                                  bool IsSExt) {
3439     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3440     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3441     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3442       return It->second.getPointer();
3443     return nullptr;
3444   }
3445 
3446   /// Utility function to check whether or not a sign or zero extension
3447   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3448   /// either using the operands of \p Inst or promoting \p Inst.
3449   /// The type of the extension is defined by \p IsSExt.
3450   /// In other words, check if:
3451   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3452   /// #1 Promotion applies:
3453   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3454   /// #2 Operand reuses:
3455   /// ext opnd1 to ConsideredExtType.
3456   /// \p PromotedInsts maps the instructions to their type before promotion.
3457   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3458                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3459 
3460   /// Utility function to determine if \p OpIdx should be promoted when
3461   /// promoting \p Inst.
3462   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3463     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3464   }
3465 
3466   /// Utility function to promote the operand of \p Ext when this
3467   /// operand is a promotable trunc or sext or zext.
3468   /// \p PromotedInsts maps the instructions to their type before promotion.
3469   /// \p CreatedInstsCost[out] contains the cost of all instructions
3470   /// created to promote the operand of Ext.
3471   /// Newly added extensions are inserted in \p Exts.
3472   /// Newly added truncates are inserted in \p Truncs.
3473   /// Should never be called directly.
3474   /// \return The promoted value which is used instead of Ext.
3475   static Value *promoteOperandForTruncAndAnyExt(
3476       Instruction *Ext, TypePromotionTransaction &TPT,
3477       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3478       SmallVectorImpl<Instruction *> *Exts,
3479       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3480 
3481   /// Utility function to promote the operand of \p Ext when this
3482   /// operand is promotable and is not a supported trunc or sext.
3483   /// \p PromotedInsts maps the instructions to their type before promotion.
3484   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3485   /// created to promote the operand of Ext.
3486   /// Newly added extensions are inserted in \p Exts.
3487   /// Newly added truncates are inserted in \p Truncs.
3488   /// Should never be called directly.
3489   /// \return The promoted value which is used instead of Ext.
3490   static Value *promoteOperandForOther(Instruction *Ext,
3491                                        TypePromotionTransaction &TPT,
3492                                        InstrToOrigTy &PromotedInsts,
3493                                        unsigned &CreatedInstsCost,
3494                                        SmallVectorImpl<Instruction *> *Exts,
3495                                        SmallVectorImpl<Instruction *> *Truncs,
3496                                        const TargetLowering &TLI, bool IsSExt);
3497 
3498   /// \see promoteOperandForOther.
3499   static Value *signExtendOperandForOther(
3500       Instruction *Ext, TypePromotionTransaction &TPT,
3501       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3502       SmallVectorImpl<Instruction *> *Exts,
3503       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3504     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3505                                   Exts, Truncs, TLI, true);
3506   }
3507 
3508   /// \see promoteOperandForOther.
3509   static Value *zeroExtendOperandForOther(
3510       Instruction *Ext, TypePromotionTransaction &TPT,
3511       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3512       SmallVectorImpl<Instruction *> *Exts,
3513       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3514     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3515                                   Exts, Truncs, TLI, false);
3516   }
3517 
3518 public:
3519   /// Type for the utility function that promotes the operand of Ext.
3520   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3521                             InstrToOrigTy &PromotedInsts,
3522                             unsigned &CreatedInstsCost,
3523                             SmallVectorImpl<Instruction *> *Exts,
3524                             SmallVectorImpl<Instruction *> *Truncs,
3525                             const TargetLowering &TLI);
3526 
3527   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3528   /// action to promote the operand of \p Ext instead of using Ext.
3529   /// \return NULL if no promotable action is possible with the current
3530   /// sign extension.
3531   /// \p InsertedInsts keeps track of all the instructions inserted by the
3532   /// other CodeGenPrepare optimizations. This information is important
3533   /// because we do not want to promote these instructions as CodeGenPrepare
3534   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3535   /// \p PromotedInsts maps the instructions to their type before promotion.
3536   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3537                           const TargetLowering &TLI,
3538                           const InstrToOrigTy &PromotedInsts);
3539 };
3540 
3541 } // end anonymous namespace
3542 
3543 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3544                                         Type *ConsideredExtType,
3545                                         const InstrToOrigTy &PromotedInsts,
3546                                         bool IsSExt) {
3547   // The promotion helper does not know how to deal with vector types yet.
3548   // To be able to fix that, we would need to fix the places where we
3549   // statically extend, e.g., constants and such.
3550   if (Inst->getType()->isVectorTy())
3551     return false;
3552 
3553   // We can always get through zext.
3554   if (isa<ZExtInst>(Inst))
3555     return true;
3556 
3557   // sext(sext) is ok too.
3558   if (IsSExt && isa<SExtInst>(Inst))
3559     return true;
3560 
3561   // We can get through binary operator, if it is legal. In other words, the
3562   // binary operator must have a nuw or nsw flag.
3563   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3564   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3565       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3566        (IsSExt && BinOp->hasNoSignedWrap())))
3567     return true;
3568 
3569   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3570   if ((Inst->getOpcode() == Instruction::And ||
3571        Inst->getOpcode() == Instruction::Or))
3572     return true;
3573 
3574   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3575   if (Inst->getOpcode() == Instruction::Xor) {
3576     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3577     // Make sure it is not a NOT.
3578     if (Cst && !Cst->getValue().isAllOnesValue())
3579       return true;
3580   }
3581 
3582   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3583   // It may change a poisoned value into a regular value, like
3584   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3585   //          poisoned value                    regular value
3586   // It should be OK since undef covers valid value.
3587   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3588     return true;
3589 
3590   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3591   // It may change a poisoned value into a regular value, like
3592   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3593   //          poisoned value                    regular value
3594   // It should be OK since undef covers valid value.
3595   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3596     const Instruction *ExtInst =
3597         dyn_cast<const Instruction>(*Inst->user_begin());
3598     if (ExtInst->hasOneUse()) {
3599       const Instruction *AndInst =
3600           dyn_cast<const Instruction>(*ExtInst->user_begin());
3601       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3602         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3603         if (Cst &&
3604             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3605           return true;
3606       }
3607     }
3608   }
3609 
3610   // Check if we can do the following simplification.
3611   // ext(trunc(opnd)) --> ext(opnd)
3612   if (!isa<TruncInst>(Inst))
3613     return false;
3614 
3615   Value *OpndVal = Inst->getOperand(0);
3616   // Check if we can use this operand in the extension.
3617   // If the type is larger than the result type of the extension, we cannot.
3618   if (!OpndVal->getType()->isIntegerTy() ||
3619       OpndVal->getType()->getIntegerBitWidth() >
3620           ConsideredExtType->getIntegerBitWidth())
3621     return false;
3622 
3623   // If the operand of the truncate is not an instruction, we will not have
3624   // any information on the dropped bits.
3625   // (Actually we could for constant but it is not worth the extra logic).
3626   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3627   if (!Opnd)
3628     return false;
3629 
3630   // Check if the source of the type is narrow enough.
3631   // I.e., check that trunc just drops extended bits of the same kind of
3632   // the extension.
3633   // #1 get the type of the operand and check the kind of the extended bits.
3634   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3635   if (OpndType)
3636     ;
3637   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3638     OpndType = Opnd->getOperand(0)->getType();
3639   else
3640     return false;
3641 
3642   // #2 check that the truncate just drops extended bits.
3643   return Inst->getType()->getIntegerBitWidth() >=
3644          OpndType->getIntegerBitWidth();
3645 }
3646 
3647 TypePromotionHelper::Action TypePromotionHelper::getAction(
3648     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3649     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3650   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3651          "Unexpected instruction type");
3652   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3653   Type *ExtTy = Ext->getType();
3654   bool IsSExt = isa<SExtInst>(Ext);
3655   // If the operand of the extension is not an instruction, we cannot
3656   // get through.
3657   // If it, check we can get through.
3658   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3659     return nullptr;
3660 
3661   // Do not promote if the operand has been added by codegenprepare.
3662   // Otherwise, it means we are undoing an optimization that is likely to be
3663   // redone, thus causing potential infinite loop.
3664   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3665     return nullptr;
3666 
3667   // SExt or Trunc instructions.
3668   // Return the related handler.
3669   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3670       isa<ZExtInst>(ExtOpnd))
3671     return promoteOperandForTruncAndAnyExt;
3672 
3673   // Regular instruction.
3674   // Abort early if we will have to insert non-free instructions.
3675   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3676     return nullptr;
3677   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3678 }
3679 
3680 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3681     Instruction *SExt, TypePromotionTransaction &TPT,
3682     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3683     SmallVectorImpl<Instruction *> *Exts,
3684     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3685   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3686   // get through it and this method should not be called.
3687   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3688   Value *ExtVal = SExt;
3689   bool HasMergedNonFreeExt = false;
3690   if (isa<ZExtInst>(SExtOpnd)) {
3691     // Replace s|zext(zext(opnd))
3692     // => zext(opnd).
3693     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3694     Value *ZExt =
3695         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3696     TPT.replaceAllUsesWith(SExt, ZExt);
3697     TPT.eraseInstruction(SExt);
3698     ExtVal = ZExt;
3699   } else {
3700     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3701     // => z|sext(opnd).
3702     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3703   }
3704   CreatedInstsCost = 0;
3705 
3706   // Remove dead code.
3707   if (SExtOpnd->use_empty())
3708     TPT.eraseInstruction(SExtOpnd);
3709 
3710   // Check if the extension is still needed.
3711   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3712   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3713     if (ExtInst) {
3714       if (Exts)
3715         Exts->push_back(ExtInst);
3716       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3717     }
3718     return ExtVal;
3719   }
3720 
3721   // At this point we have: ext ty opnd to ty.
3722   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3723   Value *NextVal = ExtInst->getOperand(0);
3724   TPT.eraseInstruction(ExtInst, NextVal);
3725   return NextVal;
3726 }
3727 
3728 Value *TypePromotionHelper::promoteOperandForOther(
3729     Instruction *Ext, TypePromotionTransaction &TPT,
3730     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3731     SmallVectorImpl<Instruction *> *Exts,
3732     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3733     bool IsSExt) {
3734   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3735   // get through it and this method should not be called.
3736   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3737   CreatedInstsCost = 0;
3738   if (!ExtOpnd->hasOneUse()) {
3739     // ExtOpnd will be promoted.
3740     // All its uses, but Ext, will need to use a truncated value of the
3741     // promoted version.
3742     // Create the truncate now.
3743     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3744     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3745       // Insert it just after the definition.
3746       ITrunc->moveAfter(ExtOpnd);
3747       if (Truncs)
3748         Truncs->push_back(ITrunc);
3749     }
3750 
3751     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3752     // Restore the operand of Ext (which has been replaced by the previous call
3753     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3754     TPT.setOperand(Ext, 0, ExtOpnd);
3755   }
3756 
3757   // Get through the Instruction:
3758   // 1. Update its type.
3759   // 2. Replace the uses of Ext by Inst.
3760   // 3. Extend each operand that needs to be extended.
3761 
3762   // Remember the original type of the instruction before promotion.
3763   // This is useful to know that the high bits are sign extended bits.
3764   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3765   // Step #1.
3766   TPT.mutateType(ExtOpnd, Ext->getType());
3767   // Step #2.
3768   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3769   // Step #3.
3770   Instruction *ExtForOpnd = Ext;
3771 
3772   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3773   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3774        ++OpIdx) {
3775     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3776     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3777         !shouldExtOperand(ExtOpnd, OpIdx)) {
3778       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3779       continue;
3780     }
3781     // Check if we can statically extend the operand.
3782     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3783     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3784       LLVM_DEBUG(dbgs() << "Statically extend\n");
3785       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3786       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3787                             : Cst->getValue().zext(BitWidth);
3788       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3789       continue;
3790     }
3791     // UndefValue are typed, so we have to statically sign extend them.
3792     if (isa<UndefValue>(Opnd)) {
3793       LLVM_DEBUG(dbgs() << "Statically extend\n");
3794       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3795       continue;
3796     }
3797 
3798     // Otherwise we have to explicitly sign extend the operand.
3799     // Check if Ext was reused to extend an operand.
3800     if (!ExtForOpnd) {
3801       // If yes, create a new one.
3802       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3803       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3804         : TPT.createZExt(Ext, Opnd, Ext->getType());
3805       if (!isa<Instruction>(ValForExtOpnd)) {
3806         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3807         continue;
3808       }
3809       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3810     }
3811     if (Exts)
3812       Exts->push_back(ExtForOpnd);
3813     TPT.setOperand(ExtForOpnd, 0, Opnd);
3814 
3815     // Move the sign extension before the insertion point.
3816     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3817     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3818     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3819     // If more sext are required, new instructions will have to be created.
3820     ExtForOpnd = nullptr;
3821   }
3822   if (ExtForOpnd == Ext) {
3823     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3824     TPT.eraseInstruction(Ext);
3825   }
3826   return ExtOpnd;
3827 }
3828 
3829 /// Check whether or not promoting an instruction to a wider type is profitable.
3830 /// \p NewCost gives the cost of extension instructions created by the
3831 /// promotion.
3832 /// \p OldCost gives the cost of extension instructions before the promotion
3833 /// plus the number of instructions that have been
3834 /// matched in the addressing mode the promotion.
3835 /// \p PromotedOperand is the value that has been promoted.
3836 /// \return True if the promotion is profitable, false otherwise.
3837 bool AddressingModeMatcher::isPromotionProfitable(
3838     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3839   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3840                     << '\n');
3841   // The cost of the new extensions is greater than the cost of the
3842   // old extension plus what we folded.
3843   // This is not profitable.
3844   if (NewCost > OldCost)
3845     return false;
3846   if (NewCost < OldCost)
3847     return true;
3848   // The promotion is neutral but it may help folding the sign extension in
3849   // loads for instance.
3850   // Check that we did not create an illegal instruction.
3851   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3852 }
3853 
3854 /// Given an instruction or constant expr, see if we can fold the operation
3855 /// into the addressing mode. If so, update the addressing mode and return
3856 /// true, otherwise return false without modifying AddrMode.
3857 /// If \p MovedAway is not NULL, it contains the information of whether or
3858 /// not AddrInst has to be folded into the addressing mode on success.
3859 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3860 /// because it has been moved away.
3861 /// Thus AddrInst must not be added in the matched instructions.
3862 /// This state can happen when AddrInst is a sext, since it may be moved away.
3863 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3864 /// not be referenced anymore.
3865 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3866                                                unsigned Depth,
3867                                                bool *MovedAway) {
3868   // Avoid exponential behavior on extremely deep expression trees.
3869   if (Depth >= 5) return false;
3870 
3871   // By default, all matched instructions stay in place.
3872   if (MovedAway)
3873     *MovedAway = false;
3874 
3875   switch (Opcode) {
3876   case Instruction::PtrToInt:
3877     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3878     return matchAddr(AddrInst->getOperand(0), Depth);
3879   case Instruction::IntToPtr: {
3880     auto AS = AddrInst->getType()->getPointerAddressSpace();
3881     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3882     // This inttoptr is a no-op if the integer type is pointer sized.
3883     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3884       return matchAddr(AddrInst->getOperand(0), Depth);
3885     return false;
3886   }
3887   case Instruction::BitCast:
3888     // BitCast is always a noop, and we can handle it as long as it is
3889     // int->int or pointer->pointer (we don't want int<->fp or something).
3890     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
3891         // Don't touch identity bitcasts.  These were probably put here by LSR,
3892         // and we don't want to mess around with them.  Assume it knows what it
3893         // is doing.
3894         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3895       return matchAddr(AddrInst->getOperand(0), Depth);
3896     return false;
3897   case Instruction::AddrSpaceCast: {
3898     unsigned SrcAS
3899       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3900     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3901     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3902       return matchAddr(AddrInst->getOperand(0), Depth);
3903     return false;
3904   }
3905   case Instruction::Add: {
3906     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3907     ExtAddrMode BackupAddrMode = AddrMode;
3908     unsigned OldSize = AddrModeInsts.size();
3909     // Start a transaction at this point.
3910     // The LHS may match but not the RHS.
3911     // Therefore, we need a higher level restoration point to undo partially
3912     // matched operation.
3913     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3914         TPT.getRestorationPoint();
3915 
3916     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3917         matchAddr(AddrInst->getOperand(0), Depth+1))
3918       return true;
3919 
3920     // Restore the old addr mode info.
3921     AddrMode = BackupAddrMode;
3922     AddrModeInsts.resize(OldSize);
3923     TPT.rollback(LastKnownGood);
3924 
3925     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3926     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3927         matchAddr(AddrInst->getOperand(1), Depth+1))
3928       return true;
3929 
3930     // Otherwise we definitely can't merge the ADD in.
3931     AddrMode = BackupAddrMode;
3932     AddrModeInsts.resize(OldSize);
3933     TPT.rollback(LastKnownGood);
3934     break;
3935   }
3936   //case Instruction::Or:
3937   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3938   //break;
3939   case Instruction::Mul:
3940   case Instruction::Shl: {
3941     // Can only handle X*C and X << C.
3942     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3943     if (!RHS || RHS->getBitWidth() > 64)
3944       return false;
3945     int64_t Scale = RHS->getSExtValue();
3946     if (Opcode == Instruction::Shl)
3947       Scale = 1LL << Scale;
3948 
3949     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3950   }
3951   case Instruction::GetElementPtr: {
3952     // Scan the GEP.  We check it if it contains constant offsets and at most
3953     // one variable offset.
3954     int VariableOperand = -1;
3955     unsigned VariableScale = 0;
3956 
3957     int64_t ConstantOffset = 0;
3958     gep_type_iterator GTI = gep_type_begin(AddrInst);
3959     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3960       if (StructType *STy = GTI.getStructTypeOrNull()) {
3961         const StructLayout *SL = DL.getStructLayout(STy);
3962         unsigned Idx =
3963           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3964         ConstantOffset += SL->getElementOffset(Idx);
3965       } else {
3966         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3967         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3968           const APInt &CVal = CI->getValue();
3969           if (CVal.getMinSignedBits() <= 64) {
3970             ConstantOffset += CVal.getSExtValue() * TypeSize;
3971             continue;
3972           }
3973         }
3974         if (TypeSize) {  // Scales of zero don't do anything.
3975           // We only allow one variable index at the moment.
3976           if (VariableOperand != -1)
3977             return false;
3978 
3979           // Remember the variable index.
3980           VariableOperand = i;
3981           VariableScale = TypeSize;
3982         }
3983       }
3984     }
3985 
3986     // A common case is for the GEP to only do a constant offset.  In this case,
3987     // just add it to the disp field and check validity.
3988     if (VariableOperand == -1) {
3989       AddrMode.BaseOffs += ConstantOffset;
3990       if (ConstantOffset == 0 ||
3991           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3992         // Check to see if we can fold the base pointer in too.
3993         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3994           return true;
3995       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
3996                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
3997                  ConstantOffset > 0) {
3998         // Record GEPs with non-zero offsets as candidates for splitting in the
3999         // event that the offset cannot fit into the r+i addressing mode.
4000         // Simple and common case that only one GEP is used in calculating the
4001         // address for the memory access.
4002         Value *Base = AddrInst->getOperand(0);
4003         auto *BaseI = dyn_cast<Instruction>(Base);
4004         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4005         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4006             (BaseI && !isa<CastInst>(BaseI) &&
4007              !isa<GetElementPtrInst>(BaseI))) {
4008           // If the base is an instruction, make sure the GEP is not in the same
4009           // basic block as the base. If the base is an argument or global
4010           // value, make sure the GEP is not in the entry block.  Otherwise,
4011           // instruction selection can undo the split.  Also make sure the
4012           // parent block allows inserting non-PHI instructions before the
4013           // terminator.
4014           BasicBlock *Parent =
4015               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4016           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
4017             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4018         }
4019       }
4020       AddrMode.BaseOffs -= ConstantOffset;
4021       return false;
4022     }
4023 
4024     // Save the valid addressing mode in case we can't match.
4025     ExtAddrMode BackupAddrMode = AddrMode;
4026     unsigned OldSize = AddrModeInsts.size();
4027 
4028     // See if the scale and offset amount is valid for this target.
4029     AddrMode.BaseOffs += ConstantOffset;
4030 
4031     // Match the base operand of the GEP.
4032     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4033       // If it couldn't be matched, just stuff the value in a register.
4034       if (AddrMode.HasBaseReg) {
4035         AddrMode = BackupAddrMode;
4036         AddrModeInsts.resize(OldSize);
4037         return false;
4038       }
4039       AddrMode.HasBaseReg = true;
4040       AddrMode.BaseReg = AddrInst->getOperand(0);
4041     }
4042 
4043     // Match the remaining variable portion of the GEP.
4044     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4045                           Depth)) {
4046       // If it couldn't be matched, try stuffing the base into a register
4047       // instead of matching it, and retrying the match of the scale.
4048       AddrMode = BackupAddrMode;
4049       AddrModeInsts.resize(OldSize);
4050       if (AddrMode.HasBaseReg)
4051         return false;
4052       AddrMode.HasBaseReg = true;
4053       AddrMode.BaseReg = AddrInst->getOperand(0);
4054       AddrMode.BaseOffs += ConstantOffset;
4055       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4056                             VariableScale, Depth)) {
4057         // If even that didn't work, bail.
4058         AddrMode = BackupAddrMode;
4059         AddrModeInsts.resize(OldSize);
4060         return false;
4061       }
4062     }
4063 
4064     return true;
4065   }
4066   case Instruction::SExt:
4067   case Instruction::ZExt: {
4068     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4069     if (!Ext)
4070       return false;
4071 
4072     // Try to move this ext out of the way of the addressing mode.
4073     // Ask for a method for doing so.
4074     TypePromotionHelper::Action TPH =
4075         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4076     if (!TPH)
4077       return false;
4078 
4079     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4080         TPT.getRestorationPoint();
4081     unsigned CreatedInstsCost = 0;
4082     unsigned ExtCost = !TLI.isExtFree(Ext);
4083     Value *PromotedOperand =
4084         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4085     // SExt has been moved away.
4086     // Thus either it will be rematched later in the recursive calls or it is
4087     // gone. Anyway, we must not fold it into the addressing mode at this point.
4088     // E.g.,
4089     // op = add opnd, 1
4090     // idx = ext op
4091     // addr = gep base, idx
4092     // is now:
4093     // promotedOpnd = ext opnd            <- no match here
4094     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4095     // addr = gep base, op                <- match
4096     if (MovedAway)
4097       *MovedAway = true;
4098 
4099     assert(PromotedOperand &&
4100            "TypePromotionHelper should have filtered out those cases");
4101 
4102     ExtAddrMode BackupAddrMode = AddrMode;
4103     unsigned OldSize = AddrModeInsts.size();
4104 
4105     if (!matchAddr(PromotedOperand, Depth) ||
4106         // The total of the new cost is equal to the cost of the created
4107         // instructions.
4108         // The total of the old cost is equal to the cost of the extension plus
4109         // what we have saved in the addressing mode.
4110         !isPromotionProfitable(CreatedInstsCost,
4111                                ExtCost + (AddrModeInsts.size() - OldSize),
4112                                PromotedOperand)) {
4113       AddrMode = BackupAddrMode;
4114       AddrModeInsts.resize(OldSize);
4115       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4116       TPT.rollback(LastKnownGood);
4117       return false;
4118     }
4119     return true;
4120   }
4121   }
4122   return false;
4123 }
4124 
4125 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4126 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4127 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4128 /// for the target.
4129 ///
4130 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4131   // Start a transaction at this point that we will rollback if the matching
4132   // fails.
4133   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4134       TPT.getRestorationPoint();
4135   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4136     // Fold in immediates if legal for the target.
4137     AddrMode.BaseOffs += CI->getSExtValue();
4138     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4139       return true;
4140     AddrMode.BaseOffs -= CI->getSExtValue();
4141   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4142     // If this is a global variable, try to fold it into the addressing mode.
4143     if (!AddrMode.BaseGV) {
4144       AddrMode.BaseGV = GV;
4145       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4146         return true;
4147       AddrMode.BaseGV = nullptr;
4148     }
4149   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4150     ExtAddrMode BackupAddrMode = AddrMode;
4151     unsigned OldSize = AddrModeInsts.size();
4152 
4153     // Check to see if it is possible to fold this operation.
4154     bool MovedAway = false;
4155     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4156       // This instruction may have been moved away. If so, there is nothing
4157       // to check here.
4158       if (MovedAway)
4159         return true;
4160       // Okay, it's possible to fold this.  Check to see if it is actually
4161       // *profitable* to do so.  We use a simple cost model to avoid increasing
4162       // register pressure too much.
4163       if (I->hasOneUse() ||
4164           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4165         AddrModeInsts.push_back(I);
4166         return true;
4167       }
4168 
4169       // It isn't profitable to do this, roll back.
4170       //cerr << "NOT FOLDING: " << *I;
4171       AddrMode = BackupAddrMode;
4172       AddrModeInsts.resize(OldSize);
4173       TPT.rollback(LastKnownGood);
4174     }
4175   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4176     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4177       return true;
4178     TPT.rollback(LastKnownGood);
4179   } else if (isa<ConstantPointerNull>(Addr)) {
4180     // Null pointer gets folded without affecting the addressing mode.
4181     return true;
4182   }
4183 
4184   // Worse case, the target should support [reg] addressing modes. :)
4185   if (!AddrMode.HasBaseReg) {
4186     AddrMode.HasBaseReg = true;
4187     AddrMode.BaseReg = Addr;
4188     // Still check for legality in case the target supports [imm] but not [i+r].
4189     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4190       return true;
4191     AddrMode.HasBaseReg = false;
4192     AddrMode.BaseReg = nullptr;
4193   }
4194 
4195   // If the base register is already taken, see if we can do [r+r].
4196   if (AddrMode.Scale == 0) {
4197     AddrMode.Scale = 1;
4198     AddrMode.ScaledReg = Addr;
4199     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4200       return true;
4201     AddrMode.Scale = 0;
4202     AddrMode.ScaledReg = nullptr;
4203   }
4204   // Couldn't match.
4205   TPT.rollback(LastKnownGood);
4206   return false;
4207 }
4208 
4209 /// Check to see if all uses of OpVal by the specified inline asm call are due
4210 /// to memory operands. If so, return true, otherwise return false.
4211 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4212                                     const TargetLowering &TLI,
4213                                     const TargetRegisterInfo &TRI) {
4214   const Function *F = CI->getFunction();
4215   TargetLowering::AsmOperandInfoVector TargetConstraints =
4216       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4217                             ImmutableCallSite(CI));
4218 
4219   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4220     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4221 
4222     // Compute the constraint code and ConstraintType to use.
4223     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4224 
4225     // If this asm operand is our Value*, and if it isn't an indirect memory
4226     // operand, we can't fold it!
4227     if (OpInfo.CallOperandVal == OpVal &&
4228         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4229          !OpInfo.isIndirect))
4230       return false;
4231   }
4232 
4233   return true;
4234 }
4235 
4236 // Max number of memory uses to look at before aborting the search to conserve
4237 // compile time.
4238 static constexpr int MaxMemoryUsesToScan = 20;
4239 
4240 /// Recursively walk all the uses of I until we find a memory use.
4241 /// If we find an obviously non-foldable instruction, return true.
4242 /// Add the ultimately found memory instructions to MemoryUses.
4243 static bool FindAllMemoryUses(
4244     Instruction *I,
4245     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4246     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4247     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4248   // If we already considered this instruction, we're done.
4249   if (!ConsideredInsts.insert(I).second)
4250     return false;
4251 
4252   // If this is an obviously unfoldable instruction, bail out.
4253   if (!MightBeFoldableInst(I))
4254     return true;
4255 
4256   const bool OptSize = I->getFunction()->optForSize();
4257 
4258   // Loop over all the uses, recursively processing them.
4259   for (Use &U : I->uses()) {
4260     // Conservatively return true if we're seeing a large number or a deep chain
4261     // of users. This avoids excessive compilation times in pathological cases.
4262     if (SeenInsts++ >= MaxMemoryUsesToScan)
4263       return true;
4264 
4265     Instruction *UserI = cast<Instruction>(U.getUser());
4266     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4267       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4268       continue;
4269     }
4270 
4271     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4272       unsigned opNo = U.getOperandNo();
4273       if (opNo != StoreInst::getPointerOperandIndex())
4274         return true; // Storing addr, not into addr.
4275       MemoryUses.push_back(std::make_pair(SI, opNo));
4276       continue;
4277     }
4278 
4279     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4280       unsigned opNo = U.getOperandNo();
4281       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4282         return true; // Storing addr, not into addr.
4283       MemoryUses.push_back(std::make_pair(RMW, opNo));
4284       continue;
4285     }
4286 
4287     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4288       unsigned opNo = U.getOperandNo();
4289       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4290         return true; // Storing addr, not into addr.
4291       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4292       continue;
4293     }
4294 
4295     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4296       // If this is a cold call, we can sink the addressing calculation into
4297       // the cold path.  See optimizeCallInst
4298       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4299         continue;
4300 
4301       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4302       if (!IA) return true;
4303 
4304       // If this is a memory operand, we're cool, otherwise bail out.
4305       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4306         return true;
4307       continue;
4308     }
4309 
4310     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4311                           SeenInsts))
4312       return true;
4313   }
4314 
4315   return false;
4316 }
4317 
4318 /// Return true if Val is already known to be live at the use site that we're
4319 /// folding it into. If so, there is no cost to include it in the addressing
4320 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4321 /// instruction already.
4322 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4323                                                    Value *KnownLive2) {
4324   // If Val is either of the known-live values, we know it is live!
4325   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4326     return true;
4327 
4328   // All values other than instructions and arguments (e.g. constants) are live.
4329   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4330 
4331   // If Val is a constant sized alloca in the entry block, it is live, this is
4332   // true because it is just a reference to the stack/frame pointer, which is
4333   // live for the whole function.
4334   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4335     if (AI->isStaticAlloca())
4336       return true;
4337 
4338   // Check to see if this value is already used in the memory instruction's
4339   // block.  If so, it's already live into the block at the very least, so we
4340   // can reasonably fold it.
4341   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4342 }
4343 
4344 /// It is possible for the addressing mode of the machine to fold the specified
4345 /// instruction into a load or store that ultimately uses it.
4346 /// However, the specified instruction has multiple uses.
4347 /// Given this, it may actually increase register pressure to fold it
4348 /// into the load. For example, consider this code:
4349 ///
4350 ///     X = ...
4351 ///     Y = X+1
4352 ///     use(Y)   -> nonload/store
4353 ///     Z = Y+1
4354 ///     load Z
4355 ///
4356 /// In this case, Y has multiple uses, and can be folded into the load of Z
4357 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4358 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4359 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4360 /// number of computations either.
4361 ///
4362 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4363 /// X was live across 'load Z' for other reasons, we actually *would* want to
4364 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4365 bool AddressingModeMatcher::
4366 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4367                                      ExtAddrMode &AMAfter) {
4368   if (IgnoreProfitability) return true;
4369 
4370   // AMBefore is the addressing mode before this instruction was folded into it,
4371   // and AMAfter is the addressing mode after the instruction was folded.  Get
4372   // the set of registers referenced by AMAfter and subtract out those
4373   // referenced by AMBefore: this is the set of values which folding in this
4374   // address extends the lifetime of.
4375   //
4376   // Note that there are only two potential values being referenced here,
4377   // BaseReg and ScaleReg (global addresses are always available, as are any
4378   // folded immediates).
4379   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4380 
4381   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4382   // lifetime wasn't extended by adding this instruction.
4383   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4384     BaseReg = nullptr;
4385   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4386     ScaledReg = nullptr;
4387 
4388   // If folding this instruction (and it's subexprs) didn't extend any live
4389   // ranges, we're ok with it.
4390   if (!BaseReg && !ScaledReg)
4391     return true;
4392 
4393   // If all uses of this instruction can have the address mode sunk into them,
4394   // we can remove the addressing mode and effectively trade one live register
4395   // for another (at worst.)  In this context, folding an addressing mode into
4396   // the use is just a particularly nice way of sinking it.
4397   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4398   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4399   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4400     return false;  // Has a non-memory, non-foldable use!
4401 
4402   // Now that we know that all uses of this instruction are part of a chain of
4403   // computation involving only operations that could theoretically be folded
4404   // into a memory use, loop over each of these memory operation uses and see
4405   // if they could  *actually* fold the instruction.  The assumption is that
4406   // addressing modes are cheap and that duplicating the computation involved
4407   // many times is worthwhile, even on a fastpath. For sinking candidates
4408   // (i.e. cold call sites), this serves as a way to prevent excessive code
4409   // growth since most architectures have some reasonable small and fast way to
4410   // compute an effective address.  (i.e LEA on x86)
4411   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4412   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4413     Instruction *User = MemoryUses[i].first;
4414     unsigned OpNo = MemoryUses[i].second;
4415 
4416     // Get the access type of this use.  If the use isn't a pointer, we don't
4417     // know what it accesses.
4418     Value *Address = User->getOperand(OpNo);
4419     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4420     if (!AddrTy)
4421       return false;
4422     Type *AddressAccessTy = AddrTy->getElementType();
4423     unsigned AS = AddrTy->getAddressSpace();
4424 
4425     // Do a match against the root of this address, ignoring profitability. This
4426     // will tell us if the addressing mode for the memory operation will
4427     // *actually* cover the shared instruction.
4428     ExtAddrMode Result;
4429     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4430                                                                       0);
4431     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4432         TPT.getRestorationPoint();
4433     AddressingModeMatcher Matcher(
4434         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4435         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4436     Matcher.IgnoreProfitability = true;
4437     bool Success = Matcher.matchAddr(Address, 0);
4438     (void)Success; assert(Success && "Couldn't select *anything*?");
4439 
4440     // The match was to check the profitability, the changes made are not
4441     // part of the original matcher. Therefore, they should be dropped
4442     // otherwise the original matcher will not present the right state.
4443     TPT.rollback(LastKnownGood);
4444 
4445     // If the match didn't cover I, then it won't be shared by it.
4446     if (!is_contained(MatchedAddrModeInsts, I))
4447       return false;
4448 
4449     MatchedAddrModeInsts.clear();
4450   }
4451 
4452   return true;
4453 }
4454 
4455 /// Return true if the specified values are defined in a
4456 /// different basic block than BB.
4457 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4458   if (Instruction *I = dyn_cast<Instruction>(V))
4459     return I->getParent() != BB;
4460   return false;
4461 }
4462 
4463 /// Sink addressing mode computation immediate before MemoryInst if doing so
4464 /// can be done without increasing register pressure.  The need for the
4465 /// register pressure constraint means this can end up being an all or nothing
4466 /// decision for all uses of the same addressing computation.
4467 ///
4468 /// Load and Store Instructions often have addressing modes that can do
4469 /// significant amounts of computation. As such, instruction selection will try
4470 /// to get the load or store to do as much computation as possible for the
4471 /// program. The problem is that isel can only see within a single block. As
4472 /// such, we sink as much legal addressing mode work into the block as possible.
4473 ///
4474 /// This method is used to optimize both load/store and inline asms with memory
4475 /// operands.  It's also used to sink addressing computations feeding into cold
4476 /// call sites into their (cold) basic block.
4477 ///
4478 /// The motivation for handling sinking into cold blocks is that doing so can
4479 /// both enable other address mode sinking (by satisfying the register pressure
4480 /// constraint above), and reduce register pressure globally (by removing the
4481 /// addressing mode computation from the fast path entirely.).
4482 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4483                                         Type *AccessTy, unsigned AddrSpace) {
4484   Value *Repl = Addr;
4485 
4486   // Try to collapse single-value PHI nodes.  This is necessary to undo
4487   // unprofitable PRE transformations.
4488   SmallVector<Value*, 8> worklist;
4489   SmallPtrSet<Value*, 16> Visited;
4490   worklist.push_back(Addr);
4491 
4492   // Use a worklist to iteratively look through PHI and select nodes, and
4493   // ensure that the addressing mode obtained from the non-PHI/select roots of
4494   // the graph are compatible.
4495   bool PhiOrSelectSeen = false;
4496   SmallVector<Instruction*, 16> AddrModeInsts;
4497   const SimplifyQuery SQ(*DL, TLInfo);
4498   AddressingModeCombiner AddrModes(SQ, Addr);
4499   TypePromotionTransaction TPT(RemovedInsts);
4500   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4501       TPT.getRestorationPoint();
4502   while (!worklist.empty()) {
4503     Value *V = worklist.back();
4504     worklist.pop_back();
4505 
4506     // We allow traversing cyclic Phi nodes.
4507     // In case of success after this loop we ensure that traversing through
4508     // Phi nodes ends up with all cases to compute address of the form
4509     //    BaseGV + Base + Scale * Index + Offset
4510     // where Scale and Offset are constans and BaseGV, Base and Index
4511     // are exactly the same Values in all cases.
4512     // It means that BaseGV, Scale and Offset dominate our memory instruction
4513     // and have the same value as they had in address computation represented
4514     // as Phi. So we can safely sink address computation to memory instruction.
4515     if (!Visited.insert(V).second)
4516       continue;
4517 
4518     // For a PHI node, push all of its incoming values.
4519     if (PHINode *P = dyn_cast<PHINode>(V)) {
4520       for (Value *IncValue : P->incoming_values())
4521         worklist.push_back(IncValue);
4522       PhiOrSelectSeen = true;
4523       continue;
4524     }
4525     // Similar for select.
4526     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4527       worklist.push_back(SI->getFalseValue());
4528       worklist.push_back(SI->getTrueValue());
4529       PhiOrSelectSeen = true;
4530       continue;
4531     }
4532 
4533     // For non-PHIs, determine the addressing mode being computed.  Note that
4534     // the result may differ depending on what other uses our candidate
4535     // addressing instructions might have.
4536     AddrModeInsts.clear();
4537     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4538                                                                       0);
4539     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4540         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4541         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4542 
4543     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4544     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4545         !NewGEPBases.count(GEP)) {
4546       // If splitting the underlying data structure can reduce the offset of a
4547       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4548       // previously split data structures.
4549       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4550       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4551         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4552     }
4553 
4554     NewAddrMode.OriginalValue = V;
4555     if (!AddrModes.addNewAddrMode(NewAddrMode))
4556       break;
4557   }
4558 
4559   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4560   // or we have multiple but either couldn't combine them or combining them
4561   // wouldn't do anything useful, bail out now.
4562   if (!AddrModes.combineAddrModes()) {
4563     TPT.rollback(LastKnownGood);
4564     return false;
4565   }
4566   TPT.commit();
4567 
4568   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4569   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4570 
4571   // If all the instructions matched are already in this BB, don't do anything.
4572   // If we saw a Phi node then it is not local definitely, and if we saw a select
4573   // then we want to push the address calculation past it even if it's already
4574   // in this BB.
4575   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4576         return IsNonLocalValue(V, MemoryInst->getParent());
4577                   })) {
4578     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4579                       << "\n");
4580     return false;
4581   }
4582 
4583   // Insert this computation right after this user.  Since our caller is
4584   // scanning from the top of the BB to the bottom, reuse of the expr are
4585   // guaranteed to happen later.
4586   IRBuilder<> Builder(MemoryInst);
4587 
4588   // Now that we determined the addressing expression we want to use and know
4589   // that we have to sink it into this block.  Check to see if we have already
4590   // done this for some other load/store instr in this block.  If so, reuse
4591   // the computation.  Before attempting reuse, check if the address is valid
4592   // as it may have been erased.
4593 
4594   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4595 
4596   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4597   if (SunkAddr) {
4598     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4599                       << " for " << *MemoryInst << "\n");
4600     if (SunkAddr->getType() != Addr->getType())
4601       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4602   } else if (AddrSinkUsingGEPs ||
4603              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4604     // By default, we use the GEP-based method when AA is used later. This
4605     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4606     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4607                       << " for " << *MemoryInst << "\n");
4608     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4609     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4610 
4611     // First, find the pointer.
4612     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4613       ResultPtr = AddrMode.BaseReg;
4614       AddrMode.BaseReg = nullptr;
4615     }
4616 
4617     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4618       // We can't add more than one pointer together, nor can we scale a
4619       // pointer (both of which seem meaningless).
4620       if (ResultPtr || AddrMode.Scale != 1)
4621         return false;
4622 
4623       ResultPtr = AddrMode.ScaledReg;
4624       AddrMode.Scale = 0;
4625     }
4626 
4627     // It is only safe to sign extend the BaseReg if we know that the math
4628     // required to create it did not overflow before we extend it. Since
4629     // the original IR value was tossed in favor of a constant back when
4630     // the AddrMode was created we need to bail out gracefully if widths
4631     // do not match instead of extending it.
4632     //
4633     // (See below for code to add the scale.)
4634     if (AddrMode.Scale) {
4635       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4636       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4637           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4638         return false;
4639     }
4640 
4641     if (AddrMode.BaseGV) {
4642       if (ResultPtr)
4643         return false;
4644 
4645       ResultPtr = AddrMode.BaseGV;
4646     }
4647 
4648     // If the real base value actually came from an inttoptr, then the matcher
4649     // will look through it and provide only the integer value. In that case,
4650     // use it here.
4651     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4652       if (!ResultPtr && AddrMode.BaseReg) {
4653         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4654                                            "sunkaddr");
4655         AddrMode.BaseReg = nullptr;
4656       } else if (!ResultPtr && AddrMode.Scale == 1) {
4657         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4658                                            "sunkaddr");
4659         AddrMode.Scale = 0;
4660       }
4661     }
4662 
4663     if (!ResultPtr &&
4664         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4665       SunkAddr = Constant::getNullValue(Addr->getType());
4666     } else if (!ResultPtr) {
4667       return false;
4668     } else {
4669       Type *I8PtrTy =
4670           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4671       Type *I8Ty = Builder.getInt8Ty();
4672 
4673       // Start with the base register. Do this first so that subsequent address
4674       // matching finds it last, which will prevent it from trying to match it
4675       // as the scaled value in case it happens to be a mul. That would be
4676       // problematic if we've sunk a different mul for the scale, because then
4677       // we'd end up sinking both muls.
4678       if (AddrMode.BaseReg) {
4679         Value *V = AddrMode.BaseReg;
4680         if (V->getType() != IntPtrTy)
4681           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4682 
4683         ResultIndex = V;
4684       }
4685 
4686       // Add the scale value.
4687       if (AddrMode.Scale) {
4688         Value *V = AddrMode.ScaledReg;
4689         if (V->getType() == IntPtrTy) {
4690           // done.
4691         } else {
4692           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4693                  cast<IntegerType>(V->getType())->getBitWidth() &&
4694                  "We can't transform if ScaledReg is too narrow");
4695           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4696         }
4697 
4698         if (AddrMode.Scale != 1)
4699           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4700                                 "sunkaddr");
4701         if (ResultIndex)
4702           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4703         else
4704           ResultIndex = V;
4705       }
4706 
4707       // Add in the Base Offset if present.
4708       if (AddrMode.BaseOffs) {
4709         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4710         if (ResultIndex) {
4711           // We need to add this separately from the scale above to help with
4712           // SDAG consecutive load/store merging.
4713           if (ResultPtr->getType() != I8PtrTy)
4714             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4715           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4716         }
4717 
4718         ResultIndex = V;
4719       }
4720 
4721       if (!ResultIndex) {
4722         SunkAddr = ResultPtr;
4723       } else {
4724         if (ResultPtr->getType() != I8PtrTy)
4725           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4726         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4727       }
4728 
4729       if (SunkAddr->getType() != Addr->getType())
4730         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4731     }
4732   } else {
4733     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4734     // non-integral pointers, so in that case bail out now.
4735     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4736     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4737     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4738     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4739     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4740         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4741         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4742         (AddrMode.BaseGV &&
4743          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4744       return false;
4745 
4746     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4747                       << " for " << *MemoryInst << "\n");
4748     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4749     Value *Result = nullptr;
4750 
4751     // Start with the base register. Do this first so that subsequent address
4752     // matching finds it last, which will prevent it from trying to match it
4753     // as the scaled value in case it happens to be a mul. That would be
4754     // problematic if we've sunk a different mul for the scale, because then
4755     // we'd end up sinking both muls.
4756     if (AddrMode.BaseReg) {
4757       Value *V = AddrMode.BaseReg;
4758       if (V->getType()->isPointerTy())
4759         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4760       if (V->getType() != IntPtrTy)
4761         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4762       Result = V;
4763     }
4764 
4765     // Add the scale value.
4766     if (AddrMode.Scale) {
4767       Value *V = AddrMode.ScaledReg;
4768       if (V->getType() == IntPtrTy) {
4769         // done.
4770       } else if (V->getType()->isPointerTy()) {
4771         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4772       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4773                  cast<IntegerType>(V->getType())->getBitWidth()) {
4774         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4775       } else {
4776         // It is only safe to sign extend the BaseReg if we know that the math
4777         // required to create it did not overflow before we extend it. Since
4778         // the original IR value was tossed in favor of a constant back when
4779         // the AddrMode was created we need to bail out gracefully if widths
4780         // do not match instead of extending it.
4781         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4782         if (I && (Result != AddrMode.BaseReg))
4783           I->eraseFromParent();
4784         return false;
4785       }
4786       if (AddrMode.Scale != 1)
4787         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4788                               "sunkaddr");
4789       if (Result)
4790         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4791       else
4792         Result = V;
4793     }
4794 
4795     // Add in the BaseGV if present.
4796     if (AddrMode.BaseGV) {
4797       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4798       if (Result)
4799         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4800       else
4801         Result = V;
4802     }
4803 
4804     // Add in the Base Offset if present.
4805     if (AddrMode.BaseOffs) {
4806       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4807       if (Result)
4808         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4809       else
4810         Result = V;
4811     }
4812 
4813     if (!Result)
4814       SunkAddr = Constant::getNullValue(Addr->getType());
4815     else
4816       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4817   }
4818 
4819   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4820   // Store the newly computed address into the cache. In the case we reused a
4821   // value, this should be idempotent.
4822   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4823 
4824   // If we have no uses, recursively delete the value and all dead instructions
4825   // using it.
4826   if (Repl->use_empty()) {
4827     // This can cause recursive deletion, which can invalidate our iterator.
4828     // Use a WeakTrackingVH to hold onto it in case this happens.
4829     Value *CurValue = &*CurInstIterator;
4830     WeakTrackingVH IterHandle(CurValue);
4831     BasicBlock *BB = CurInstIterator->getParent();
4832 
4833     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4834 
4835     if (IterHandle != CurValue) {
4836       // If the iterator instruction was recursively deleted, start over at the
4837       // start of the block.
4838       CurInstIterator = BB->begin();
4839       SunkAddrs.clear();
4840     }
4841   }
4842   ++NumMemoryInsts;
4843   return true;
4844 }
4845 
4846 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4847 /// address computing into the block when possible / profitable.
4848 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4849   bool MadeChange = false;
4850 
4851   const TargetRegisterInfo *TRI =
4852       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4853   TargetLowering::AsmOperandInfoVector TargetConstraints =
4854       TLI->ParseConstraints(*DL, TRI, CS);
4855   unsigned ArgNo = 0;
4856   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4857     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4858 
4859     // Compute the constraint code and ConstraintType to use.
4860     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4861 
4862     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4863         OpInfo.isIndirect) {
4864       Value *OpVal = CS->getArgOperand(ArgNo++);
4865       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4866     } else if (OpInfo.Type == InlineAsm::isInput)
4867       ArgNo++;
4868   }
4869 
4870   return MadeChange;
4871 }
4872 
4873 /// Check if all the uses of \p Val are equivalent (or free) zero or
4874 /// sign extensions.
4875 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4876   assert(!Val->use_empty() && "Input must have at least one use");
4877   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4878   bool IsSExt = isa<SExtInst>(FirstUser);
4879   Type *ExtTy = FirstUser->getType();
4880   for (const User *U : Val->users()) {
4881     const Instruction *UI = cast<Instruction>(U);
4882     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4883       return false;
4884     Type *CurTy = UI->getType();
4885     // Same input and output types: Same instruction after CSE.
4886     if (CurTy == ExtTy)
4887       continue;
4888 
4889     // If IsSExt is true, we are in this situation:
4890     // a = Val
4891     // b = sext ty1 a to ty2
4892     // c = sext ty1 a to ty3
4893     // Assuming ty2 is shorter than ty3, this could be turned into:
4894     // a = Val
4895     // b = sext ty1 a to ty2
4896     // c = sext ty2 b to ty3
4897     // However, the last sext is not free.
4898     if (IsSExt)
4899       return false;
4900 
4901     // This is a ZExt, maybe this is free to extend from one type to another.
4902     // In that case, we would not account for a different use.
4903     Type *NarrowTy;
4904     Type *LargeTy;
4905     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4906         CurTy->getScalarType()->getIntegerBitWidth()) {
4907       NarrowTy = CurTy;
4908       LargeTy = ExtTy;
4909     } else {
4910       NarrowTy = ExtTy;
4911       LargeTy = CurTy;
4912     }
4913 
4914     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4915       return false;
4916   }
4917   // All uses are the same or can be derived from one another for free.
4918   return true;
4919 }
4920 
4921 /// Try to speculatively promote extensions in \p Exts and continue
4922 /// promoting through newly promoted operands recursively as far as doing so is
4923 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4924 /// When some promotion happened, \p TPT contains the proper state to revert
4925 /// them.
4926 ///
4927 /// \return true if some promotion happened, false otherwise.
4928 bool CodeGenPrepare::tryToPromoteExts(
4929     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4930     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4931     unsigned CreatedInstsCost) {
4932   bool Promoted = false;
4933 
4934   // Iterate over all the extensions to try to promote them.
4935   for (auto I : Exts) {
4936     // Early check if we directly have ext(load).
4937     if (isa<LoadInst>(I->getOperand(0))) {
4938       ProfitablyMovedExts.push_back(I);
4939       continue;
4940     }
4941 
4942     // Check whether or not we want to do any promotion.  The reason we have
4943     // this check inside the for loop is to catch the case where an extension
4944     // is directly fed by a load because in such case the extension can be moved
4945     // up without any promotion on its operands.
4946     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4947       return false;
4948 
4949     // Get the action to perform the promotion.
4950     TypePromotionHelper::Action TPH =
4951         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4952     // Check if we can promote.
4953     if (!TPH) {
4954       // Save the current extension as we cannot move up through its operand.
4955       ProfitablyMovedExts.push_back(I);
4956       continue;
4957     }
4958 
4959     // Save the current state.
4960     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4961         TPT.getRestorationPoint();
4962     SmallVector<Instruction *, 4> NewExts;
4963     unsigned NewCreatedInstsCost = 0;
4964     unsigned ExtCost = !TLI->isExtFree(I);
4965     // Promote.
4966     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4967                              &NewExts, nullptr, *TLI);
4968     assert(PromotedVal &&
4969            "TypePromotionHelper should have filtered out those cases");
4970 
4971     // We would be able to merge only one extension in a load.
4972     // Therefore, if we have more than 1 new extension we heuristically
4973     // cut this search path, because it means we degrade the code quality.
4974     // With exactly 2, the transformation is neutral, because we will merge
4975     // one extension but leave one. However, we optimistically keep going,
4976     // because the new extension may be removed too.
4977     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4978     // FIXME: It would be possible to propagate a negative value instead of
4979     // conservatively ceiling it to 0.
4980     TotalCreatedInstsCost =
4981         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4982     if (!StressExtLdPromotion &&
4983         (TotalCreatedInstsCost > 1 ||
4984          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4985       // This promotion is not profitable, rollback to the previous state, and
4986       // save the current extension in ProfitablyMovedExts as the latest
4987       // speculative promotion turned out to be unprofitable.
4988       TPT.rollback(LastKnownGood);
4989       ProfitablyMovedExts.push_back(I);
4990       continue;
4991     }
4992     // Continue promoting NewExts as far as doing so is profitable.
4993     SmallVector<Instruction *, 2> NewlyMovedExts;
4994     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4995     bool NewPromoted = false;
4996     for (auto ExtInst : NewlyMovedExts) {
4997       Instruction *MovedExt = cast<Instruction>(ExtInst);
4998       Value *ExtOperand = MovedExt->getOperand(0);
4999       // If we have reached to a load, we need this extra profitability check
5000       // as it could potentially be merged into an ext(load).
5001       if (isa<LoadInst>(ExtOperand) &&
5002           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5003             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5004         continue;
5005 
5006       ProfitablyMovedExts.push_back(MovedExt);
5007       NewPromoted = true;
5008     }
5009 
5010     // If none of speculative promotions for NewExts is profitable, rollback
5011     // and save the current extension (I) as the last profitable extension.
5012     if (!NewPromoted) {
5013       TPT.rollback(LastKnownGood);
5014       ProfitablyMovedExts.push_back(I);
5015       continue;
5016     }
5017     // The promotion is profitable.
5018     Promoted = true;
5019   }
5020   return Promoted;
5021 }
5022 
5023 /// Merging redundant sexts when one is dominating the other.
5024 bool CodeGenPrepare::mergeSExts(Function &F) {
5025   DominatorTree DT(F);
5026   bool Changed = false;
5027   for (auto &Entry : ValToSExtendedUses) {
5028     SExts &Insts = Entry.second;
5029     SExts CurPts;
5030     for (Instruction *Inst : Insts) {
5031       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5032           Inst->getOperand(0) != Entry.first)
5033         continue;
5034       bool inserted = false;
5035       for (auto &Pt : CurPts) {
5036         if (DT.dominates(Inst, Pt)) {
5037           Pt->replaceAllUsesWith(Inst);
5038           RemovedInsts.insert(Pt);
5039           Pt->removeFromParent();
5040           Pt = Inst;
5041           inserted = true;
5042           Changed = true;
5043           break;
5044         }
5045         if (!DT.dominates(Pt, Inst))
5046           // Give up if we need to merge in a common dominator as the
5047           // experiments show it is not profitable.
5048           continue;
5049         Inst->replaceAllUsesWith(Pt);
5050         RemovedInsts.insert(Inst);
5051         Inst->removeFromParent();
5052         inserted = true;
5053         Changed = true;
5054         break;
5055       }
5056       if (!inserted)
5057         CurPts.push_back(Inst);
5058     }
5059   }
5060   return Changed;
5061 }
5062 
5063 // Spliting large data structures so that the GEPs accessing them can have
5064 // smaller offsets so that they can be sunk to the same blocks as their users.
5065 // For example, a large struct starting from %base is splitted into two parts
5066 // where the second part starts from %new_base.
5067 //
5068 // Before:
5069 // BB0:
5070 //   %base     =
5071 //
5072 // BB1:
5073 //   %gep0     = gep %base, off0
5074 //   %gep1     = gep %base, off1
5075 //   %gep2     = gep %base, off2
5076 //
5077 // BB2:
5078 //   %load1    = load %gep0
5079 //   %load2    = load %gep1
5080 //   %load3    = load %gep2
5081 //
5082 // After:
5083 // BB0:
5084 //   %base     =
5085 //   %new_base = gep %base, off0
5086 //
5087 // BB1:
5088 //   %new_gep0 = %new_base
5089 //   %new_gep1 = gep %new_base, off1 - off0
5090 //   %new_gep2 = gep %new_base, off2 - off0
5091 //
5092 // BB2:
5093 //   %load1    = load i32, i32* %new_gep0
5094 //   %load2    = load i32, i32* %new_gep1
5095 //   %load3    = load i32, i32* %new_gep2
5096 //
5097 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5098 // their offsets are smaller enough to fit into the addressing mode.
5099 bool CodeGenPrepare::splitLargeGEPOffsets() {
5100   bool Changed = false;
5101   for (auto &Entry : LargeOffsetGEPMap) {
5102     Value *OldBase = Entry.first;
5103     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5104         &LargeOffsetGEPs = Entry.second;
5105     auto compareGEPOffset =
5106         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5107             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5108           if (LHS.first == RHS.first)
5109             return false;
5110           if (LHS.second != RHS.second)
5111             return LHS.second < RHS.second;
5112           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5113         };
5114     // Sorting all the GEPs of the same data structures based on the offsets.
5115     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5116     LargeOffsetGEPs.erase(
5117         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5118         LargeOffsetGEPs.end());
5119     // Skip if all the GEPs have the same offsets.
5120     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5121       continue;
5122     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5123     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5124     Value *NewBaseGEP = nullptr;
5125 
5126     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5127     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5128       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5129       int64_t Offset = LargeOffsetGEP->second;
5130       if (Offset != BaseOffset) {
5131         TargetLowering::AddrMode AddrMode;
5132         AddrMode.BaseOffs = Offset - BaseOffset;
5133         // The result type of the GEP might not be the type of the memory
5134         // access.
5135         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5136                                         GEP->getResultElementType(),
5137                                         GEP->getAddressSpace())) {
5138           // We need to create a new base if the offset to the current base is
5139           // too large to fit into the addressing mode. So, a very large struct
5140           // may be splitted into several parts.
5141           BaseGEP = GEP;
5142           BaseOffset = Offset;
5143           NewBaseGEP = nullptr;
5144         }
5145       }
5146 
5147       // Generate a new GEP to replace the current one.
5148       IRBuilder<> Builder(GEP);
5149       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5150       Type *I8PtrTy =
5151           Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace());
5152       Type *I8Ty = Builder.getInt8Ty();
5153 
5154       if (!NewBaseGEP) {
5155         // Create a new base if we don't have one yet.  Find the insertion
5156         // pointer for the new base first.
5157         BasicBlock::iterator NewBaseInsertPt;
5158         BasicBlock *NewBaseInsertBB;
5159         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5160           // If the base of the struct is an instruction, the new base will be
5161           // inserted close to it.
5162           NewBaseInsertBB = BaseI->getParent();
5163           if (isa<PHINode>(BaseI))
5164             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5165           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5166             NewBaseInsertBB =
5167                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5168             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5169           } else
5170             NewBaseInsertPt = std::next(BaseI->getIterator());
5171         } else {
5172           // If the current base is an argument or global value, the new base
5173           // will be inserted to the entry block.
5174           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5175           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5176         }
5177         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5178         // Create a new base.
5179         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5180         NewBaseGEP = OldBase;
5181         if (NewBaseGEP->getType() != I8PtrTy)
5182           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5183         NewBaseGEP =
5184             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5185         NewGEPBases.insert(NewBaseGEP);
5186       }
5187 
5188       Value *NewGEP = NewBaseGEP;
5189       if (Offset == BaseOffset) {
5190         if (GEP->getType() != I8PtrTy)
5191           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5192       } else {
5193         // Calculate the new offset for the new GEP.
5194         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5195         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5196 
5197         if (GEP->getType() != I8PtrTy)
5198           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5199       }
5200       GEP->replaceAllUsesWith(NewGEP);
5201       LargeOffsetGEPID.erase(GEP);
5202       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5203       GEP->eraseFromParent();
5204       Changed = true;
5205     }
5206   }
5207   return Changed;
5208 }
5209 
5210 /// Return true, if an ext(load) can be formed from an extension in
5211 /// \p MovedExts.
5212 bool CodeGenPrepare::canFormExtLd(
5213     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5214     Instruction *&Inst, bool HasPromoted) {
5215   for (auto *MovedExtInst : MovedExts) {
5216     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5217       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5218       Inst = MovedExtInst;
5219       break;
5220     }
5221   }
5222   if (!LI)
5223     return false;
5224 
5225   // If they're already in the same block, there's nothing to do.
5226   // Make the cheap checks first if we did not promote.
5227   // If we promoted, we need to check if it is indeed profitable.
5228   if (!HasPromoted && LI->getParent() == Inst->getParent())
5229     return false;
5230 
5231   return TLI->isExtLoad(LI, Inst, *DL);
5232 }
5233 
5234 /// Move a zext or sext fed by a load into the same basic block as the load,
5235 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5236 /// extend into the load.
5237 ///
5238 /// E.g.,
5239 /// \code
5240 /// %ld = load i32* %addr
5241 /// %add = add nuw i32 %ld, 4
5242 /// %zext = zext i32 %add to i64
5243 // \endcode
5244 /// =>
5245 /// \code
5246 /// %ld = load i32* %addr
5247 /// %zext = zext i32 %ld to i64
5248 /// %add = add nuw i64 %zext, 4
5249 /// \encode
5250 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5251 /// allow us to match zext(load i32*) to i64.
5252 ///
5253 /// Also, try to promote the computations used to obtain a sign extended
5254 /// value used into memory accesses.
5255 /// E.g.,
5256 /// \code
5257 /// a = add nsw i32 b, 3
5258 /// d = sext i32 a to i64
5259 /// e = getelementptr ..., i64 d
5260 /// \endcode
5261 /// =>
5262 /// \code
5263 /// f = sext i32 b to i64
5264 /// a = add nsw i64 f, 3
5265 /// e = getelementptr ..., i64 a
5266 /// \endcode
5267 ///
5268 /// \p Inst[in/out] the extension may be modified during the process if some
5269 /// promotions apply.
5270 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5271   // ExtLoad formation and address type promotion infrastructure requires TLI to
5272   // be effective.
5273   if (!TLI)
5274     return false;
5275 
5276   bool AllowPromotionWithoutCommonHeader = false;
5277   /// See if it is an interesting sext operations for the address type
5278   /// promotion before trying to promote it, e.g., the ones with the right
5279   /// type and used in memory accesses.
5280   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5281       *Inst, AllowPromotionWithoutCommonHeader);
5282   TypePromotionTransaction TPT(RemovedInsts);
5283   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5284       TPT.getRestorationPoint();
5285   SmallVector<Instruction *, 1> Exts;
5286   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5287   Exts.push_back(Inst);
5288 
5289   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5290 
5291   // Look for a load being extended.
5292   LoadInst *LI = nullptr;
5293   Instruction *ExtFedByLoad;
5294 
5295   // Try to promote a chain of computation if it allows to form an extended
5296   // load.
5297   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5298     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5299     TPT.commit();
5300     // Move the extend into the same block as the load
5301     ExtFedByLoad->moveAfter(LI);
5302     // CGP does not check if the zext would be speculatively executed when moved
5303     // to the same basic block as the load. Preserving its original location
5304     // would pessimize the debugging experience, as well as negatively impact
5305     // the quality of sample pgo. We don't want to use "line 0" as that has a
5306     // size cost in the line-table section and logically the zext can be seen as
5307     // part of the load. Therefore we conservatively reuse the same debug
5308     // location for the load and the zext.
5309     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5310     ++NumExtsMoved;
5311     Inst = ExtFedByLoad;
5312     return true;
5313   }
5314 
5315   // Continue promoting SExts if known as considerable depending on targets.
5316   if (ATPConsiderable &&
5317       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5318                                   HasPromoted, TPT, SpeculativelyMovedExts))
5319     return true;
5320 
5321   TPT.rollback(LastKnownGood);
5322   return false;
5323 }
5324 
5325 // Perform address type promotion if doing so is profitable.
5326 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5327 // instructions that sign extended the same initial value. However, if
5328 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5329 // extension is just profitable.
5330 bool CodeGenPrepare::performAddressTypePromotion(
5331     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5332     bool HasPromoted, TypePromotionTransaction &TPT,
5333     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5334   bool Promoted = false;
5335   SmallPtrSet<Instruction *, 1> UnhandledExts;
5336   bool AllSeenFirst = true;
5337   for (auto I : SpeculativelyMovedExts) {
5338     Value *HeadOfChain = I->getOperand(0);
5339     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5340         SeenChainsForSExt.find(HeadOfChain);
5341     // If there is an unhandled SExt which has the same header, try to promote
5342     // it as well.
5343     if (AlreadySeen != SeenChainsForSExt.end()) {
5344       if (AlreadySeen->second != nullptr)
5345         UnhandledExts.insert(AlreadySeen->second);
5346       AllSeenFirst = false;
5347     }
5348   }
5349 
5350   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5351                         SpeculativelyMovedExts.size() == 1)) {
5352     TPT.commit();
5353     if (HasPromoted)
5354       Promoted = true;
5355     for (auto I : SpeculativelyMovedExts) {
5356       Value *HeadOfChain = I->getOperand(0);
5357       SeenChainsForSExt[HeadOfChain] = nullptr;
5358       ValToSExtendedUses[HeadOfChain].push_back(I);
5359     }
5360     // Update Inst as promotion happen.
5361     Inst = SpeculativelyMovedExts.pop_back_val();
5362   } else {
5363     // This is the first chain visited from the header, keep the current chain
5364     // as unhandled. Defer to promote this until we encounter another SExt
5365     // chain derived from the same header.
5366     for (auto I : SpeculativelyMovedExts) {
5367       Value *HeadOfChain = I->getOperand(0);
5368       SeenChainsForSExt[HeadOfChain] = Inst;
5369     }
5370     return false;
5371   }
5372 
5373   if (!AllSeenFirst && !UnhandledExts.empty())
5374     for (auto VisitedSExt : UnhandledExts) {
5375       if (RemovedInsts.count(VisitedSExt))
5376         continue;
5377       TypePromotionTransaction TPT(RemovedInsts);
5378       SmallVector<Instruction *, 1> Exts;
5379       SmallVector<Instruction *, 2> Chains;
5380       Exts.push_back(VisitedSExt);
5381       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5382       TPT.commit();
5383       if (HasPromoted)
5384         Promoted = true;
5385       for (auto I : Chains) {
5386         Value *HeadOfChain = I->getOperand(0);
5387         // Mark this as handled.
5388         SeenChainsForSExt[HeadOfChain] = nullptr;
5389         ValToSExtendedUses[HeadOfChain].push_back(I);
5390       }
5391     }
5392   return Promoted;
5393 }
5394 
5395 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5396   BasicBlock *DefBB = I->getParent();
5397 
5398   // If the result of a {s|z}ext and its source are both live out, rewrite all
5399   // other uses of the source with result of extension.
5400   Value *Src = I->getOperand(0);
5401   if (Src->hasOneUse())
5402     return false;
5403 
5404   // Only do this xform if truncating is free.
5405   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5406     return false;
5407 
5408   // Only safe to perform the optimization if the source is also defined in
5409   // this block.
5410   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5411     return false;
5412 
5413   bool DefIsLiveOut = false;
5414   for (User *U : I->users()) {
5415     Instruction *UI = cast<Instruction>(U);
5416 
5417     // Figure out which BB this ext is used in.
5418     BasicBlock *UserBB = UI->getParent();
5419     if (UserBB == DefBB) continue;
5420     DefIsLiveOut = true;
5421     break;
5422   }
5423   if (!DefIsLiveOut)
5424     return false;
5425 
5426   // Make sure none of the uses are PHI nodes.
5427   for (User *U : Src->users()) {
5428     Instruction *UI = cast<Instruction>(U);
5429     BasicBlock *UserBB = UI->getParent();
5430     if (UserBB == DefBB) continue;
5431     // Be conservative. We don't want this xform to end up introducing
5432     // reloads just before load / store instructions.
5433     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5434       return false;
5435   }
5436 
5437   // InsertedTruncs - Only insert one trunc in each block once.
5438   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5439 
5440   bool MadeChange = false;
5441   for (Use &U : Src->uses()) {
5442     Instruction *User = cast<Instruction>(U.getUser());
5443 
5444     // Figure out which BB this ext is used in.
5445     BasicBlock *UserBB = User->getParent();
5446     if (UserBB == DefBB) continue;
5447 
5448     // Both src and def are live in this block. Rewrite the use.
5449     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5450 
5451     if (!InsertedTrunc) {
5452       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5453       assert(InsertPt != UserBB->end());
5454       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5455       InsertedInsts.insert(InsertedTrunc);
5456     }
5457 
5458     // Replace a use of the {s|z}ext source with a use of the result.
5459     U = InsertedTrunc;
5460     ++NumExtUses;
5461     MadeChange = true;
5462   }
5463 
5464   return MadeChange;
5465 }
5466 
5467 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5468 // just after the load if the target can fold this into one extload instruction,
5469 // with the hope of eliminating some of the other later "and" instructions using
5470 // the loaded value.  "and"s that are made trivially redundant by the insertion
5471 // of the new "and" are removed by this function, while others (e.g. those whose
5472 // path from the load goes through a phi) are left for isel to potentially
5473 // remove.
5474 //
5475 // For example:
5476 //
5477 // b0:
5478 //   x = load i32
5479 //   ...
5480 // b1:
5481 //   y = and x, 0xff
5482 //   z = use y
5483 //
5484 // becomes:
5485 //
5486 // b0:
5487 //   x = load i32
5488 //   x' = and x, 0xff
5489 //   ...
5490 // b1:
5491 //   z = use x'
5492 //
5493 // whereas:
5494 //
5495 // b0:
5496 //   x1 = load i32
5497 //   ...
5498 // b1:
5499 //   x2 = load i32
5500 //   ...
5501 // b2:
5502 //   x = phi x1, x2
5503 //   y = and x, 0xff
5504 //
5505 // becomes (after a call to optimizeLoadExt for each load):
5506 //
5507 // b0:
5508 //   x1 = load i32
5509 //   x1' = and x1, 0xff
5510 //   ...
5511 // b1:
5512 //   x2 = load i32
5513 //   x2' = and x2, 0xff
5514 //   ...
5515 // b2:
5516 //   x = phi x1', x2'
5517 //   y = and x, 0xff
5518 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5519   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5520     return false;
5521 
5522   // Skip loads we've already transformed.
5523   if (Load->hasOneUse() &&
5524       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5525     return false;
5526 
5527   // Look at all uses of Load, looking through phis, to determine how many bits
5528   // of the loaded value are needed.
5529   SmallVector<Instruction *, 8> WorkList;
5530   SmallPtrSet<Instruction *, 16> Visited;
5531   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5532   for (auto *U : Load->users())
5533     WorkList.push_back(cast<Instruction>(U));
5534 
5535   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5536   unsigned BitWidth = LoadResultVT.getSizeInBits();
5537   APInt DemandBits(BitWidth, 0);
5538   APInt WidestAndBits(BitWidth, 0);
5539 
5540   while (!WorkList.empty()) {
5541     Instruction *I = WorkList.back();
5542     WorkList.pop_back();
5543 
5544     // Break use-def graph loops.
5545     if (!Visited.insert(I).second)
5546       continue;
5547 
5548     // For a PHI node, push all of its users.
5549     if (auto *Phi = dyn_cast<PHINode>(I)) {
5550       for (auto *U : Phi->users())
5551         WorkList.push_back(cast<Instruction>(U));
5552       continue;
5553     }
5554 
5555     switch (I->getOpcode()) {
5556     case Instruction::And: {
5557       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5558       if (!AndC)
5559         return false;
5560       APInt AndBits = AndC->getValue();
5561       DemandBits |= AndBits;
5562       // Keep track of the widest and mask we see.
5563       if (AndBits.ugt(WidestAndBits))
5564         WidestAndBits = AndBits;
5565       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5566         AndsToMaybeRemove.push_back(I);
5567       break;
5568     }
5569 
5570     case Instruction::Shl: {
5571       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5572       if (!ShlC)
5573         return false;
5574       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5575       DemandBits.setLowBits(BitWidth - ShiftAmt);
5576       break;
5577     }
5578 
5579     case Instruction::Trunc: {
5580       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5581       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5582       DemandBits.setLowBits(TruncBitWidth);
5583       break;
5584     }
5585 
5586     default:
5587       return false;
5588     }
5589   }
5590 
5591   uint32_t ActiveBits = DemandBits.getActiveBits();
5592   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5593   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5594   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5595   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5596   // followed by an AND.
5597   // TODO: Look into removing this restriction by fixing backends to either
5598   // return false for isLoadExtLegal for i1 or have them select this pattern to
5599   // a single instruction.
5600   //
5601   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5602   // mask, since these are the only ands that will be removed by isel.
5603   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5604       WidestAndBits != DemandBits)
5605     return false;
5606 
5607   LLVMContext &Ctx = Load->getType()->getContext();
5608   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5609   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5610 
5611   // Reject cases that won't be matched as extloads.
5612   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5613       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5614     return false;
5615 
5616   IRBuilder<> Builder(Load->getNextNode());
5617   auto *NewAnd = dyn_cast<Instruction>(
5618       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5619   // Mark this instruction as "inserted by CGP", so that other
5620   // optimizations don't touch it.
5621   InsertedInsts.insert(NewAnd);
5622 
5623   // Replace all uses of load with new and (except for the use of load in the
5624   // new and itself).
5625   Load->replaceAllUsesWith(NewAnd);
5626   NewAnd->setOperand(0, Load);
5627 
5628   // Remove any and instructions that are now redundant.
5629   for (auto *And : AndsToMaybeRemove)
5630     // Check that the and mask is the same as the one we decided to put on the
5631     // new and.
5632     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5633       And->replaceAllUsesWith(NewAnd);
5634       if (&*CurInstIterator == And)
5635         CurInstIterator = std::next(And->getIterator());
5636       And->eraseFromParent();
5637       ++NumAndUses;
5638     }
5639 
5640   ++NumAndsAdded;
5641   return true;
5642 }
5643 
5644 /// Check if V (an operand of a select instruction) is an expensive instruction
5645 /// that is only used once.
5646 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5647   auto *I = dyn_cast<Instruction>(V);
5648   // If it's safe to speculatively execute, then it should not have side
5649   // effects; therefore, it's safe to sink and possibly *not* execute.
5650   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5651          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5652 }
5653 
5654 /// Returns true if a SelectInst should be turned into an explicit branch.
5655 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5656                                                 const TargetLowering *TLI,
5657                                                 SelectInst *SI) {
5658   // If even a predictable select is cheap, then a branch can't be cheaper.
5659   if (!TLI->isPredictableSelectExpensive())
5660     return false;
5661 
5662   // FIXME: This should use the same heuristics as IfConversion to determine
5663   // whether a select is better represented as a branch.
5664 
5665   // If metadata tells us that the select condition is obviously predictable,
5666   // then we want to replace the select with a branch.
5667   uint64_t TrueWeight, FalseWeight;
5668   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5669     uint64_t Max = std::max(TrueWeight, FalseWeight);
5670     uint64_t Sum = TrueWeight + FalseWeight;
5671     if (Sum != 0) {
5672       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5673       if (Probability > TLI->getPredictableBranchThreshold())
5674         return true;
5675     }
5676   }
5677 
5678   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5679 
5680   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5681   // comparison condition. If the compare has more than one use, there's
5682   // probably another cmov or setcc around, so it's not worth emitting a branch.
5683   if (!Cmp || !Cmp->hasOneUse())
5684     return false;
5685 
5686   // If either operand of the select is expensive and only needed on one side
5687   // of the select, we should form a branch.
5688   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5689       sinkSelectOperand(TTI, SI->getFalseValue()))
5690     return true;
5691 
5692   return false;
5693 }
5694 
5695 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5696 /// false value of \p SI. If the true/false value of \p SI is defined by any
5697 /// select instructions in \p Selects, look through the defining select
5698 /// instruction until the true/false value is not defined in \p Selects.
5699 static Value *getTrueOrFalseValue(
5700     SelectInst *SI, bool isTrue,
5701     const SmallPtrSet<const Instruction *, 2> &Selects) {
5702   Value *V;
5703 
5704   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5705        DefSI = dyn_cast<SelectInst>(V)) {
5706     assert(DefSI->getCondition() == SI->getCondition() &&
5707            "The condition of DefSI does not match with SI");
5708     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5709   }
5710   return V;
5711 }
5712 
5713 /// If we have a SelectInst that will likely profit from branch prediction,
5714 /// turn it into a branch.
5715 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5716   // If branch conversion isn't desirable, exit early.
5717   if (DisableSelectToBranch || OptSize || !TLI)
5718     return false;
5719 
5720   // Find all consecutive select instructions that share the same condition.
5721   SmallVector<SelectInst *, 2> ASI;
5722   ASI.push_back(SI);
5723   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5724        It != SI->getParent()->end(); ++It) {
5725     SelectInst *I = dyn_cast<SelectInst>(&*It);
5726     if (I && SI->getCondition() == I->getCondition()) {
5727       ASI.push_back(I);
5728     } else {
5729       break;
5730     }
5731   }
5732 
5733   SelectInst *LastSI = ASI.back();
5734   // Increment the current iterator to skip all the rest of select instructions
5735   // because they will be either "not lowered" or "all lowered" to branch.
5736   CurInstIterator = std::next(LastSI->getIterator());
5737 
5738   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5739 
5740   // Can we convert the 'select' to CF ?
5741   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5742     return false;
5743 
5744   TargetLowering::SelectSupportKind SelectKind;
5745   if (VectorCond)
5746     SelectKind = TargetLowering::VectorMaskSelect;
5747   else if (SI->getType()->isVectorTy())
5748     SelectKind = TargetLowering::ScalarCondVectorVal;
5749   else
5750     SelectKind = TargetLowering::ScalarValSelect;
5751 
5752   if (TLI->isSelectSupported(SelectKind) &&
5753       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5754     return false;
5755 
5756   ModifiedDT = true;
5757 
5758   // Transform a sequence like this:
5759   //    start:
5760   //       %cmp = cmp uge i32 %a, %b
5761   //       %sel = select i1 %cmp, i32 %c, i32 %d
5762   //
5763   // Into:
5764   //    start:
5765   //       %cmp = cmp uge i32 %a, %b
5766   //       br i1 %cmp, label %select.true, label %select.false
5767   //    select.true:
5768   //       br label %select.end
5769   //    select.false:
5770   //       br label %select.end
5771   //    select.end:
5772   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5773   //
5774   // In addition, we may sink instructions that produce %c or %d from
5775   // the entry block into the destination(s) of the new branch.
5776   // If the true or false blocks do not contain a sunken instruction, that
5777   // block and its branch may be optimized away. In that case, one side of the
5778   // first branch will point directly to select.end, and the corresponding PHI
5779   // predecessor block will be the start block.
5780 
5781   // First, we split the block containing the select into 2 blocks.
5782   BasicBlock *StartBlock = SI->getParent();
5783   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5784   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5785 
5786   // Delete the unconditional branch that was just created by the split.
5787   StartBlock->getTerminator()->eraseFromParent();
5788 
5789   // These are the new basic blocks for the conditional branch.
5790   // At least one will become an actual new basic block.
5791   BasicBlock *TrueBlock = nullptr;
5792   BasicBlock *FalseBlock = nullptr;
5793   BranchInst *TrueBranch = nullptr;
5794   BranchInst *FalseBranch = nullptr;
5795 
5796   // Sink expensive instructions into the conditional blocks to avoid executing
5797   // them speculatively.
5798   for (SelectInst *SI : ASI) {
5799     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5800       if (TrueBlock == nullptr) {
5801         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5802                                        EndBlock->getParent(), EndBlock);
5803         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5804         TrueBranch->setDebugLoc(SI->getDebugLoc());
5805       }
5806       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5807       TrueInst->moveBefore(TrueBranch);
5808     }
5809     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5810       if (FalseBlock == nullptr) {
5811         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5812                                         EndBlock->getParent(), EndBlock);
5813         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5814         FalseBranch->setDebugLoc(SI->getDebugLoc());
5815       }
5816       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5817       FalseInst->moveBefore(FalseBranch);
5818     }
5819   }
5820 
5821   // If there was nothing to sink, then arbitrarily choose the 'false' side
5822   // for a new input value to the PHI.
5823   if (TrueBlock == FalseBlock) {
5824     assert(TrueBlock == nullptr &&
5825            "Unexpected basic block transform while optimizing select");
5826 
5827     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5828                                     EndBlock->getParent(), EndBlock);
5829     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5830     FalseBranch->setDebugLoc(SI->getDebugLoc());
5831   }
5832 
5833   // Insert the real conditional branch based on the original condition.
5834   // If we did not create a new block for one of the 'true' or 'false' paths
5835   // of the condition, it means that side of the branch goes to the end block
5836   // directly and the path originates from the start block from the point of
5837   // view of the new PHI.
5838   BasicBlock *TT, *FT;
5839   if (TrueBlock == nullptr) {
5840     TT = EndBlock;
5841     FT = FalseBlock;
5842     TrueBlock = StartBlock;
5843   } else if (FalseBlock == nullptr) {
5844     TT = TrueBlock;
5845     FT = EndBlock;
5846     FalseBlock = StartBlock;
5847   } else {
5848     TT = TrueBlock;
5849     FT = FalseBlock;
5850   }
5851   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5852 
5853   SmallPtrSet<const Instruction *, 2> INS;
5854   INS.insert(ASI.begin(), ASI.end());
5855   // Use reverse iterator because later select may use the value of the
5856   // earlier select, and we need to propagate value through earlier select
5857   // to get the PHI operand.
5858   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5859     SelectInst *SI = *It;
5860     // The select itself is replaced with a PHI Node.
5861     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5862     PN->takeName(SI);
5863     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5864     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5865     PN->setDebugLoc(SI->getDebugLoc());
5866 
5867     SI->replaceAllUsesWith(PN);
5868     SI->eraseFromParent();
5869     INS.erase(SI);
5870     ++NumSelectsExpanded;
5871   }
5872 
5873   // Instruct OptimizeBlock to skip to the next block.
5874   CurInstIterator = StartBlock->end();
5875   return true;
5876 }
5877 
5878 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5879   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5880   int SplatElem = -1;
5881   for (unsigned i = 0; i < Mask.size(); ++i) {
5882     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5883       return false;
5884     SplatElem = Mask[i];
5885   }
5886 
5887   return true;
5888 }
5889 
5890 /// Some targets have expensive vector shifts if the lanes aren't all the same
5891 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5892 /// it's often worth sinking a shufflevector splat down to its use so that
5893 /// codegen can spot all lanes are identical.
5894 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5895   BasicBlock *DefBB = SVI->getParent();
5896 
5897   // Only do this xform if variable vector shifts are particularly expensive.
5898   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5899     return false;
5900 
5901   // We only expect better codegen by sinking a shuffle if we can recognise a
5902   // constant splat.
5903   if (!isBroadcastShuffle(SVI))
5904     return false;
5905 
5906   // InsertedShuffles - Only insert a shuffle in each block once.
5907   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5908 
5909   bool MadeChange = false;
5910   for (User *U : SVI->users()) {
5911     Instruction *UI = cast<Instruction>(U);
5912 
5913     // Figure out which BB this ext is used in.
5914     BasicBlock *UserBB = UI->getParent();
5915     if (UserBB == DefBB) continue;
5916 
5917     // For now only apply this when the splat is used by a shift instruction.
5918     if (!UI->isShift()) continue;
5919 
5920     // Everything checks out, sink the shuffle if the user's block doesn't
5921     // already have a copy.
5922     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5923 
5924     if (!InsertedShuffle) {
5925       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5926       assert(InsertPt != UserBB->end());
5927       InsertedShuffle =
5928           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5929                                 SVI->getOperand(2), "", &*InsertPt);
5930     }
5931 
5932     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5933     MadeChange = true;
5934   }
5935 
5936   // If we removed all uses, nuke the shuffle.
5937   if (SVI->use_empty()) {
5938     SVI->eraseFromParent();
5939     MadeChange = true;
5940   }
5941 
5942   return MadeChange;
5943 }
5944 
5945 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5946   if (!TLI || !DL)
5947     return false;
5948 
5949   Value *Cond = SI->getCondition();
5950   Type *OldType = Cond->getType();
5951   LLVMContext &Context = Cond->getContext();
5952   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5953   unsigned RegWidth = RegType.getSizeInBits();
5954 
5955   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5956     return false;
5957 
5958   // If the register width is greater than the type width, expand the condition
5959   // of the switch instruction and each case constant to the width of the
5960   // register. By widening the type of the switch condition, subsequent
5961   // comparisons (for case comparisons) will not need to be extended to the
5962   // preferred register width, so we will potentially eliminate N-1 extends,
5963   // where N is the number of cases in the switch.
5964   auto *NewType = Type::getIntNTy(Context, RegWidth);
5965 
5966   // Zero-extend the switch condition and case constants unless the switch
5967   // condition is a function argument that is already being sign-extended.
5968   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5969   // everything instead.
5970   Instruction::CastOps ExtType = Instruction::ZExt;
5971   if (auto *Arg = dyn_cast<Argument>(Cond))
5972     if (Arg->hasSExtAttr())
5973       ExtType = Instruction::SExt;
5974 
5975   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5976   ExtInst->insertBefore(SI);
5977   ExtInst->setDebugLoc(SI->getDebugLoc());
5978   SI->setCondition(ExtInst);
5979   for (auto Case : SI->cases()) {
5980     APInt NarrowConst = Case.getCaseValue()->getValue();
5981     APInt WideConst = (ExtType == Instruction::ZExt) ?
5982                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5983     Case.setValue(ConstantInt::get(Context, WideConst));
5984   }
5985 
5986   return true;
5987 }
5988 
5989 
5990 namespace {
5991 
5992 /// Helper class to promote a scalar operation to a vector one.
5993 /// This class is used to move downward extractelement transition.
5994 /// E.g.,
5995 /// a = vector_op <2 x i32>
5996 /// b = extractelement <2 x i32> a, i32 0
5997 /// c = scalar_op b
5998 /// store c
5999 ///
6000 /// =>
6001 /// a = vector_op <2 x i32>
6002 /// c = vector_op a (equivalent to scalar_op on the related lane)
6003 /// * d = extractelement <2 x i32> c, i32 0
6004 /// * store d
6005 /// Assuming both extractelement and store can be combine, we get rid of the
6006 /// transition.
6007 class VectorPromoteHelper {
6008   /// DataLayout associated with the current module.
6009   const DataLayout &DL;
6010 
6011   /// Used to perform some checks on the legality of vector operations.
6012   const TargetLowering &TLI;
6013 
6014   /// Used to estimated the cost of the promoted chain.
6015   const TargetTransformInfo &TTI;
6016 
6017   /// The transition being moved downwards.
6018   Instruction *Transition;
6019 
6020   /// The sequence of instructions to be promoted.
6021   SmallVector<Instruction *, 4> InstsToBePromoted;
6022 
6023   /// Cost of combining a store and an extract.
6024   unsigned StoreExtractCombineCost;
6025 
6026   /// Instruction that will be combined with the transition.
6027   Instruction *CombineInst = nullptr;
6028 
6029   /// The instruction that represents the current end of the transition.
6030   /// Since we are faking the promotion until we reach the end of the chain
6031   /// of computation, we need a way to get the current end of the transition.
6032   Instruction *getEndOfTransition() const {
6033     if (InstsToBePromoted.empty())
6034       return Transition;
6035     return InstsToBePromoted.back();
6036   }
6037 
6038   /// Return the index of the original value in the transition.
6039   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6040   /// c, is at index 0.
6041   unsigned getTransitionOriginalValueIdx() const {
6042     assert(isa<ExtractElementInst>(Transition) &&
6043            "Other kind of transitions are not supported yet");
6044     return 0;
6045   }
6046 
6047   /// Return the index of the index in the transition.
6048   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6049   /// is at index 1.
6050   unsigned getTransitionIdx() const {
6051     assert(isa<ExtractElementInst>(Transition) &&
6052            "Other kind of transitions are not supported yet");
6053     return 1;
6054   }
6055 
6056   /// Get the type of the transition.
6057   /// This is the type of the original value.
6058   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6059   /// transition is <2 x i32>.
6060   Type *getTransitionType() const {
6061     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6062   }
6063 
6064   /// Promote \p ToBePromoted by moving \p Def downward through.
6065   /// I.e., we have the following sequence:
6066   /// Def = Transition <ty1> a to <ty2>
6067   /// b = ToBePromoted <ty2> Def, ...
6068   /// =>
6069   /// b = ToBePromoted <ty1> a, ...
6070   /// Def = Transition <ty1> ToBePromoted to <ty2>
6071   void promoteImpl(Instruction *ToBePromoted);
6072 
6073   /// Check whether or not it is profitable to promote all the
6074   /// instructions enqueued to be promoted.
6075   bool isProfitableToPromote() {
6076     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6077     unsigned Index = isa<ConstantInt>(ValIdx)
6078                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6079                          : -1;
6080     Type *PromotedType = getTransitionType();
6081 
6082     StoreInst *ST = cast<StoreInst>(CombineInst);
6083     unsigned AS = ST->getPointerAddressSpace();
6084     unsigned Align = ST->getAlignment();
6085     // Check if this store is supported.
6086     if (!TLI.allowsMisalignedMemoryAccesses(
6087             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6088             Align)) {
6089       // If this is not supported, there is no way we can combine
6090       // the extract with the store.
6091       return false;
6092     }
6093 
6094     // The scalar chain of computation has to pay for the transition
6095     // scalar to vector.
6096     // The vector chain has to account for the combining cost.
6097     uint64_t ScalarCost =
6098         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6099     uint64_t VectorCost = StoreExtractCombineCost;
6100     for (const auto &Inst : InstsToBePromoted) {
6101       // Compute the cost.
6102       // By construction, all instructions being promoted are arithmetic ones.
6103       // Moreover, one argument is a constant that can be viewed as a splat
6104       // constant.
6105       Value *Arg0 = Inst->getOperand(0);
6106       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6107                             isa<ConstantFP>(Arg0);
6108       TargetTransformInfo::OperandValueKind Arg0OVK =
6109           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6110                          : TargetTransformInfo::OK_AnyValue;
6111       TargetTransformInfo::OperandValueKind Arg1OVK =
6112           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6113                           : TargetTransformInfo::OK_AnyValue;
6114       ScalarCost += TTI.getArithmeticInstrCost(
6115           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6116       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6117                                                Arg0OVK, Arg1OVK);
6118     }
6119     LLVM_DEBUG(
6120         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6121                << ScalarCost << "\nVector: " << VectorCost << '\n');
6122     return ScalarCost > VectorCost;
6123   }
6124 
6125   /// Generate a constant vector with \p Val with the same
6126   /// number of elements as the transition.
6127   /// \p UseSplat defines whether or not \p Val should be replicated
6128   /// across the whole vector.
6129   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6130   /// otherwise we generate a vector with as many undef as possible:
6131   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6132   /// used at the index of the extract.
6133   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6134     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6135     if (!UseSplat) {
6136       // If we cannot determine where the constant must be, we have to
6137       // use a splat constant.
6138       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6139       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6140         ExtractIdx = CstVal->getSExtValue();
6141       else
6142         UseSplat = true;
6143     }
6144 
6145     unsigned End = getTransitionType()->getVectorNumElements();
6146     if (UseSplat)
6147       return ConstantVector::getSplat(End, Val);
6148 
6149     SmallVector<Constant *, 4> ConstVec;
6150     UndefValue *UndefVal = UndefValue::get(Val->getType());
6151     for (unsigned Idx = 0; Idx != End; ++Idx) {
6152       if (Idx == ExtractIdx)
6153         ConstVec.push_back(Val);
6154       else
6155         ConstVec.push_back(UndefVal);
6156     }
6157     return ConstantVector::get(ConstVec);
6158   }
6159 
6160   /// Check if promoting to a vector type an operand at \p OperandIdx
6161   /// in \p Use can trigger undefined behavior.
6162   static bool canCauseUndefinedBehavior(const Instruction *Use,
6163                                         unsigned OperandIdx) {
6164     // This is not safe to introduce undef when the operand is on
6165     // the right hand side of a division-like instruction.
6166     if (OperandIdx != 1)
6167       return false;
6168     switch (Use->getOpcode()) {
6169     default:
6170       return false;
6171     case Instruction::SDiv:
6172     case Instruction::UDiv:
6173     case Instruction::SRem:
6174     case Instruction::URem:
6175       return true;
6176     case Instruction::FDiv:
6177     case Instruction::FRem:
6178       return !Use->hasNoNaNs();
6179     }
6180     llvm_unreachable(nullptr);
6181   }
6182 
6183 public:
6184   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6185                       const TargetTransformInfo &TTI, Instruction *Transition,
6186                       unsigned CombineCost)
6187       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6188         StoreExtractCombineCost(CombineCost) {
6189     assert(Transition && "Do not know how to promote null");
6190   }
6191 
6192   /// Check if we can promote \p ToBePromoted to \p Type.
6193   bool canPromote(const Instruction *ToBePromoted) const {
6194     // We could support CastInst too.
6195     return isa<BinaryOperator>(ToBePromoted);
6196   }
6197 
6198   /// Check if it is profitable to promote \p ToBePromoted
6199   /// by moving downward the transition through.
6200   bool shouldPromote(const Instruction *ToBePromoted) const {
6201     // Promote only if all the operands can be statically expanded.
6202     // Indeed, we do not want to introduce any new kind of transitions.
6203     for (const Use &U : ToBePromoted->operands()) {
6204       const Value *Val = U.get();
6205       if (Val == getEndOfTransition()) {
6206         // If the use is a division and the transition is on the rhs,
6207         // we cannot promote the operation, otherwise we may create a
6208         // division by zero.
6209         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6210           return false;
6211         continue;
6212       }
6213       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6214           !isa<ConstantFP>(Val))
6215         return false;
6216     }
6217     // Check that the resulting operation is legal.
6218     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6219     if (!ISDOpcode)
6220       return false;
6221     return StressStoreExtract ||
6222            TLI.isOperationLegalOrCustom(
6223                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6224   }
6225 
6226   /// Check whether or not \p Use can be combined
6227   /// with the transition.
6228   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6229   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6230 
6231   /// Record \p ToBePromoted as part of the chain to be promoted.
6232   void enqueueForPromotion(Instruction *ToBePromoted) {
6233     InstsToBePromoted.push_back(ToBePromoted);
6234   }
6235 
6236   /// Set the instruction that will be combined with the transition.
6237   void recordCombineInstruction(Instruction *ToBeCombined) {
6238     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6239     CombineInst = ToBeCombined;
6240   }
6241 
6242   /// Promote all the instructions enqueued for promotion if it is
6243   /// is profitable.
6244   /// \return True if the promotion happened, false otherwise.
6245   bool promote() {
6246     // Check if there is something to promote.
6247     // Right now, if we do not have anything to combine with,
6248     // we assume the promotion is not profitable.
6249     if (InstsToBePromoted.empty() || !CombineInst)
6250       return false;
6251 
6252     // Check cost.
6253     if (!StressStoreExtract && !isProfitableToPromote())
6254       return false;
6255 
6256     // Promote.
6257     for (auto &ToBePromoted : InstsToBePromoted)
6258       promoteImpl(ToBePromoted);
6259     InstsToBePromoted.clear();
6260     return true;
6261   }
6262 };
6263 
6264 } // end anonymous namespace
6265 
6266 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6267   // At this point, we know that all the operands of ToBePromoted but Def
6268   // can be statically promoted.
6269   // For Def, we need to use its parameter in ToBePromoted:
6270   // b = ToBePromoted ty1 a
6271   // Def = Transition ty1 b to ty2
6272   // Move the transition down.
6273   // 1. Replace all uses of the promoted operation by the transition.
6274   // = ... b => = ... Def.
6275   assert(ToBePromoted->getType() == Transition->getType() &&
6276          "The type of the result of the transition does not match "
6277          "the final type");
6278   ToBePromoted->replaceAllUsesWith(Transition);
6279   // 2. Update the type of the uses.
6280   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6281   Type *TransitionTy = getTransitionType();
6282   ToBePromoted->mutateType(TransitionTy);
6283   // 3. Update all the operands of the promoted operation with promoted
6284   // operands.
6285   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6286   for (Use &U : ToBePromoted->operands()) {
6287     Value *Val = U.get();
6288     Value *NewVal = nullptr;
6289     if (Val == Transition)
6290       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6291     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6292              isa<ConstantFP>(Val)) {
6293       // Use a splat constant if it is not safe to use undef.
6294       NewVal = getConstantVector(
6295           cast<Constant>(Val),
6296           isa<UndefValue>(Val) ||
6297               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6298     } else
6299       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6300                        "this?");
6301     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6302   }
6303   Transition->moveAfter(ToBePromoted);
6304   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6305 }
6306 
6307 /// Some targets can do store(extractelement) with one instruction.
6308 /// Try to push the extractelement towards the stores when the target
6309 /// has this feature and this is profitable.
6310 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6311   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6312   if (DisableStoreExtract || !TLI ||
6313       (!StressStoreExtract &&
6314        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6315                                        Inst->getOperand(1), CombineCost)))
6316     return false;
6317 
6318   // At this point we know that Inst is a vector to scalar transition.
6319   // Try to move it down the def-use chain, until:
6320   // - We can combine the transition with its single use
6321   //   => we got rid of the transition.
6322   // - We escape the current basic block
6323   //   => we would need to check that we are moving it at a cheaper place and
6324   //      we do not do that for now.
6325   BasicBlock *Parent = Inst->getParent();
6326   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6327   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6328   // If the transition has more than one use, assume this is not going to be
6329   // beneficial.
6330   while (Inst->hasOneUse()) {
6331     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6332     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6333 
6334     if (ToBePromoted->getParent() != Parent) {
6335       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6336                         << ToBePromoted->getParent()->getName()
6337                         << ") than the transition (" << Parent->getName()
6338                         << ").\n");
6339       return false;
6340     }
6341 
6342     if (VPH.canCombine(ToBePromoted)) {
6343       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6344                         << "will be combined with: " << *ToBePromoted << '\n');
6345       VPH.recordCombineInstruction(ToBePromoted);
6346       bool Changed = VPH.promote();
6347       NumStoreExtractExposed += Changed;
6348       return Changed;
6349     }
6350 
6351     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6352     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6353       return false;
6354 
6355     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6356 
6357     VPH.enqueueForPromotion(ToBePromoted);
6358     Inst = ToBePromoted;
6359   }
6360   return false;
6361 }
6362 
6363 /// For the instruction sequence of store below, F and I values
6364 /// are bundled together as an i64 value before being stored into memory.
6365 /// Sometimes it is more efficient to generate separate stores for F and I,
6366 /// which can remove the bitwise instructions or sink them to colder places.
6367 ///
6368 ///   (store (or (zext (bitcast F to i32) to i64),
6369 ///              (shl (zext I to i64), 32)), addr)  -->
6370 ///   (store F, addr) and (store I, addr+4)
6371 ///
6372 /// Similarly, splitting for other merged store can also be beneficial, like:
6373 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6374 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6375 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6376 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6377 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6378 ///
6379 /// We allow each target to determine specifically which kind of splitting is
6380 /// supported.
6381 ///
6382 /// The store patterns are commonly seen from the simple code snippet below
6383 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6384 ///   void goo(const std::pair<int, float> &);
6385 ///   hoo() {
6386 ///     ...
6387 ///     goo(std::make_pair(tmp, ftmp));
6388 ///     ...
6389 ///   }
6390 ///
6391 /// Although we already have similar splitting in DAG Combine, we duplicate
6392 /// it in CodeGenPrepare to catch the case in which pattern is across
6393 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6394 /// during code expansion.
6395 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6396                                 const TargetLowering &TLI) {
6397   // Handle simple but common cases only.
6398   Type *StoreType = SI.getValueOperand()->getType();
6399   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6400       DL.getTypeSizeInBits(StoreType) == 0)
6401     return false;
6402 
6403   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6404   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6405   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6406       DL.getTypeSizeInBits(SplitStoreType))
6407     return false;
6408 
6409   // Match the following patterns:
6410   // (store (or (zext LValue to i64),
6411   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6412   //  or
6413   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6414   //            (zext LValue to i64),
6415   // Expect both operands of OR and the first operand of SHL have only
6416   // one use.
6417   Value *LValue, *HValue;
6418   if (!match(SI.getValueOperand(),
6419              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6420                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6421                                    m_SpecificInt(HalfValBitSize))))))
6422     return false;
6423 
6424   // Check LValue and HValue are int with size less or equal than 32.
6425   if (!LValue->getType()->isIntegerTy() ||
6426       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6427       !HValue->getType()->isIntegerTy() ||
6428       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6429     return false;
6430 
6431   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6432   // as the input of target query.
6433   auto *LBC = dyn_cast<BitCastInst>(LValue);
6434   auto *HBC = dyn_cast<BitCastInst>(HValue);
6435   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6436                   : EVT::getEVT(LValue->getType());
6437   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6438                    : EVT::getEVT(HValue->getType());
6439   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6440     return false;
6441 
6442   // Start to split store.
6443   IRBuilder<> Builder(SI.getContext());
6444   Builder.SetInsertPoint(&SI);
6445 
6446   // If LValue/HValue is a bitcast in another BB, create a new one in current
6447   // BB so it may be merged with the splitted stores by dag combiner.
6448   if (LBC && LBC->getParent() != SI.getParent())
6449     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6450   if (HBC && HBC->getParent() != SI.getParent())
6451     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6452 
6453   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6454   auto CreateSplitStore = [&](Value *V, bool Upper) {
6455     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6456     Value *Addr = Builder.CreateBitCast(
6457         SI.getOperand(1),
6458         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6459     if ((IsLE && Upper) || (!IsLE && !Upper))
6460       Addr = Builder.CreateGEP(
6461           SplitStoreType, Addr,
6462           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6463     Builder.CreateAlignedStore(
6464         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6465   };
6466 
6467   CreateSplitStore(LValue, false);
6468   CreateSplitStore(HValue, true);
6469 
6470   // Delete the old store.
6471   SI.eraseFromParent();
6472   return true;
6473 }
6474 
6475 // Return true if the GEP has two operands, the first operand is of a sequential
6476 // type, and the second operand is a constant.
6477 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6478   gep_type_iterator I = gep_type_begin(*GEP);
6479   return GEP->getNumOperands() == 2 &&
6480       I.isSequential() &&
6481       isa<ConstantInt>(GEP->getOperand(1));
6482 }
6483 
6484 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6485 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6486 // reducing liveness interference across those edges benefits global register
6487 // allocation. Currently handles only certain cases.
6488 //
6489 // For example, unmerge %GEPI and %UGEPI as below.
6490 //
6491 // ---------- BEFORE ----------
6492 // SrcBlock:
6493 //   ...
6494 //   %GEPIOp = ...
6495 //   ...
6496 //   %GEPI = gep %GEPIOp, Idx
6497 //   ...
6498 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6499 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6500 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6501 //   %UGEPI)
6502 //
6503 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6504 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6505 // ...
6506 //
6507 // DstBi:
6508 //   ...
6509 //   %UGEPI = gep %GEPIOp, UIdx
6510 // ...
6511 // ---------------------------
6512 //
6513 // ---------- AFTER ----------
6514 // SrcBlock:
6515 //   ... (same as above)
6516 //    (* %GEPI is still alive on the indirectbr edges)
6517 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6518 //    unmerging)
6519 // ...
6520 //
6521 // DstBi:
6522 //   ...
6523 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6524 //   ...
6525 // ---------------------------
6526 //
6527 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6528 // no longer alive on them.
6529 //
6530 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6531 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6532 // not to disable further simplications and optimizations as a result of GEP
6533 // merging.
6534 //
6535 // Note this unmerging may increase the length of the data flow critical path
6536 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6537 // between the register pressure and the length of data-flow critical
6538 // path. Restricting this to the uncommon IndirectBr case would minimize the
6539 // impact of potentially longer critical path, if any, and the impact on compile
6540 // time.
6541 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6542                                              const TargetTransformInfo *TTI) {
6543   BasicBlock *SrcBlock = GEPI->getParent();
6544   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6545   // (non-IndirectBr) cases exit early here.
6546   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6547     return false;
6548   // Check that GEPI is a simple gep with a single constant index.
6549   if (!GEPSequentialConstIndexed(GEPI))
6550     return false;
6551   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6552   // Check that GEPI is a cheap one.
6553   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6554       > TargetTransformInfo::TCC_Basic)
6555     return false;
6556   Value *GEPIOp = GEPI->getOperand(0);
6557   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6558   if (!isa<Instruction>(GEPIOp))
6559     return false;
6560   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6561   if (GEPIOpI->getParent() != SrcBlock)
6562     return false;
6563   // Check that GEP is used outside the block, meaning it's alive on the
6564   // IndirectBr edge(s).
6565   if (find_if(GEPI->users(), [&](User *Usr) {
6566         if (auto *I = dyn_cast<Instruction>(Usr)) {
6567           if (I->getParent() != SrcBlock) {
6568             return true;
6569           }
6570         }
6571         return false;
6572       }) == GEPI->users().end())
6573     return false;
6574   // The second elements of the GEP chains to be unmerged.
6575   std::vector<GetElementPtrInst *> UGEPIs;
6576   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6577   // on IndirectBr edges.
6578   for (User *Usr : GEPIOp->users()) {
6579     if (Usr == GEPI) continue;
6580     // Check if Usr is an Instruction. If not, give up.
6581     if (!isa<Instruction>(Usr))
6582       return false;
6583     auto *UI = cast<Instruction>(Usr);
6584     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6585     if (UI->getParent() == SrcBlock)
6586       continue;
6587     // Check if Usr is a GEP. If not, give up.
6588     if (!isa<GetElementPtrInst>(Usr))
6589       return false;
6590     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6591     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6592     // the pointer operand to it. If so, record it in the vector. If not, give
6593     // up.
6594     if (!GEPSequentialConstIndexed(UGEPI))
6595       return false;
6596     if (UGEPI->getOperand(0) != GEPIOp)
6597       return false;
6598     if (GEPIIdx->getType() !=
6599         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6600       return false;
6601     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6602     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6603         > TargetTransformInfo::TCC_Basic)
6604       return false;
6605     UGEPIs.push_back(UGEPI);
6606   }
6607   if (UGEPIs.size() == 0)
6608     return false;
6609   // Check the materializing cost of (Uidx-Idx).
6610   for (GetElementPtrInst *UGEPI : UGEPIs) {
6611     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6612     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6613     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6614     if (ImmCost > TargetTransformInfo::TCC_Basic)
6615       return false;
6616   }
6617   // Now unmerge between GEPI and UGEPIs.
6618   for (GetElementPtrInst *UGEPI : UGEPIs) {
6619     UGEPI->setOperand(0, GEPI);
6620     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6621     Constant *NewUGEPIIdx =
6622         ConstantInt::get(GEPIIdx->getType(),
6623                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6624     UGEPI->setOperand(1, NewUGEPIIdx);
6625     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6626     // inbounds to avoid UB.
6627     if (!GEPI->isInBounds()) {
6628       UGEPI->setIsInBounds(false);
6629     }
6630   }
6631   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6632   // alive on IndirectBr edges).
6633   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6634         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6635       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6636   return true;
6637 }
6638 
6639 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6640   // Bail out if we inserted the instruction to prevent optimizations from
6641   // stepping on each other's toes.
6642   if (InsertedInsts.count(I))
6643     return false;
6644 
6645   if (PHINode *P = dyn_cast<PHINode>(I)) {
6646     // It is possible for very late stage optimizations (such as SimplifyCFG)
6647     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6648     // trivial PHI, go ahead and zap it here.
6649     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6650       P->replaceAllUsesWith(V);
6651       P->eraseFromParent();
6652       ++NumPHIsElim;
6653       return true;
6654     }
6655     return false;
6656   }
6657 
6658   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6659     // If the source of the cast is a constant, then this should have
6660     // already been constant folded.  The only reason NOT to constant fold
6661     // it is if something (e.g. LSR) was careful to place the constant
6662     // evaluation in a block other than then one that uses it (e.g. to hoist
6663     // the address of globals out of a loop).  If this is the case, we don't
6664     // want to forward-subst the cast.
6665     if (isa<Constant>(CI->getOperand(0)))
6666       return false;
6667 
6668     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6669       return true;
6670 
6671     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6672       /// Sink a zext or sext into its user blocks if the target type doesn't
6673       /// fit in one register
6674       if (TLI &&
6675           TLI->getTypeAction(CI->getContext(),
6676                              TLI->getValueType(*DL, CI->getType())) ==
6677               TargetLowering::TypeExpandInteger) {
6678         return SinkCast(CI);
6679       } else {
6680         bool MadeChange = optimizeExt(I);
6681         return MadeChange | optimizeExtUses(I);
6682       }
6683     }
6684     return false;
6685   }
6686 
6687   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6688     if (!TLI || !TLI->hasMultipleConditionRegisters())
6689       return OptimizeCmpExpression(CI, TLI);
6690 
6691   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6692     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6693     if (TLI) {
6694       bool Modified = optimizeLoadExt(LI);
6695       unsigned AS = LI->getPointerAddressSpace();
6696       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6697       return Modified;
6698     }
6699     return false;
6700   }
6701 
6702   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6703     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6704       return true;
6705     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6706     if (TLI) {
6707       unsigned AS = SI->getPointerAddressSpace();
6708       return optimizeMemoryInst(I, SI->getOperand(1),
6709                                 SI->getOperand(0)->getType(), AS);
6710     }
6711     return false;
6712   }
6713 
6714   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6715       unsigned AS = RMW->getPointerAddressSpace();
6716       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6717                                 RMW->getType(), AS);
6718   }
6719 
6720   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6721       unsigned AS = CmpX->getPointerAddressSpace();
6722       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6723                                 CmpX->getCompareOperand()->getType(), AS);
6724   }
6725 
6726   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6727 
6728   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6729       EnableAndCmpSinking && TLI)
6730     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6731 
6732   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6733                 BinOp->getOpcode() == Instruction::LShr)) {
6734     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6735     if (TLI && CI && TLI->hasExtractBitsInsn())
6736       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6737 
6738     return false;
6739   }
6740 
6741   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6742     if (GEPI->hasAllZeroIndices()) {
6743       /// The GEP operand must be a pointer, so must its result -> BitCast
6744       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6745                                         GEPI->getName(), GEPI);
6746       NC->setDebugLoc(GEPI->getDebugLoc());
6747       GEPI->replaceAllUsesWith(NC);
6748       GEPI->eraseFromParent();
6749       ++NumGEPsElim;
6750       optimizeInst(NC, ModifiedDT);
6751       return true;
6752     }
6753     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6754       return true;
6755     }
6756     return false;
6757   }
6758 
6759   if (CallInst *CI = dyn_cast<CallInst>(I))
6760     return optimizeCallInst(CI, ModifiedDT);
6761 
6762   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6763     return optimizeSelectInst(SI);
6764 
6765   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6766     return optimizeShuffleVectorInst(SVI);
6767 
6768   if (auto *Switch = dyn_cast<SwitchInst>(I))
6769     return optimizeSwitchInst(Switch);
6770 
6771   if (isa<ExtractElementInst>(I))
6772     return optimizeExtractElementInst(I);
6773 
6774   return false;
6775 }
6776 
6777 /// Given an OR instruction, check to see if this is a bitreverse
6778 /// idiom. If so, insert the new intrinsic and return true.
6779 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6780                            const TargetLowering &TLI) {
6781   if (!I.getType()->isIntegerTy() ||
6782       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6783                                     TLI.getValueType(DL, I.getType(), true)))
6784     return false;
6785 
6786   SmallVector<Instruction*, 4> Insts;
6787   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6788     return false;
6789   Instruction *LastInst = Insts.back();
6790   I.replaceAllUsesWith(LastInst);
6791   RecursivelyDeleteTriviallyDeadInstructions(&I);
6792   return true;
6793 }
6794 
6795 // In this pass we look for GEP and cast instructions that are used
6796 // across basic blocks and rewrite them to improve basic-block-at-a-time
6797 // selection.
6798 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6799   SunkAddrs.clear();
6800   bool MadeChange = false;
6801 
6802   CurInstIterator = BB.begin();
6803   while (CurInstIterator != BB.end()) {
6804     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6805     if (ModifiedDT)
6806       return true;
6807   }
6808 
6809   bool MadeBitReverse = true;
6810   while (TLI && MadeBitReverse) {
6811     MadeBitReverse = false;
6812     for (auto &I : reverse(BB)) {
6813       if (makeBitReverse(I, *DL, *TLI)) {
6814         MadeBitReverse = MadeChange = true;
6815         ModifiedDT = true;
6816         break;
6817       }
6818     }
6819   }
6820   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6821 
6822   return MadeChange;
6823 }
6824 
6825 // llvm.dbg.value is far away from the value then iSel may not be able
6826 // handle it properly. iSel will drop llvm.dbg.value if it can not
6827 // find a node corresponding to the value.
6828 bool CodeGenPrepare::placeDbgValues(Function &F) {
6829   bool MadeChange = false;
6830   for (BasicBlock &BB : F) {
6831     Instruction *PrevNonDbgInst = nullptr;
6832     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6833       Instruction *Insn = &*BI++;
6834       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6835       // Leave dbg.values that refer to an alloca alone. These
6836       // intrinsics describe the address of a variable (= the alloca)
6837       // being taken.  They should not be moved next to the alloca
6838       // (and to the beginning of the scope), but rather stay close to
6839       // where said address is used.
6840       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6841         PrevNonDbgInst = Insn;
6842         continue;
6843       }
6844 
6845       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6846       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6847         // If VI is a phi in a block with an EHPad terminator, we can't insert
6848         // after it.
6849         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6850           continue;
6851         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6852                           << *DVI << ' ' << *VI);
6853         DVI->removeFromParent();
6854         if (isa<PHINode>(VI))
6855           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6856         else
6857           DVI->insertAfter(VI);
6858         MadeChange = true;
6859         ++NumDbgValueMoved;
6860       }
6861     }
6862   }
6863   return MadeChange;
6864 }
6865 
6866 /// Scale down both weights to fit into uint32_t.
6867 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6868   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6869   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6870   NewTrue = NewTrue / Scale;
6871   NewFalse = NewFalse / Scale;
6872 }
6873 
6874 /// Some targets prefer to split a conditional branch like:
6875 /// \code
6876 ///   %0 = icmp ne i32 %a, 0
6877 ///   %1 = icmp ne i32 %b, 0
6878 ///   %or.cond = or i1 %0, %1
6879 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6880 /// \endcode
6881 /// into multiple branch instructions like:
6882 /// \code
6883 ///   bb1:
6884 ///     %0 = icmp ne i32 %a, 0
6885 ///     br i1 %0, label %TrueBB, label %bb2
6886 ///   bb2:
6887 ///     %1 = icmp ne i32 %b, 0
6888 ///     br i1 %1, label %TrueBB, label %FalseBB
6889 /// \endcode
6890 /// This usually allows instruction selection to do even further optimizations
6891 /// and combine the compare with the branch instruction. Currently this is
6892 /// applied for targets which have "cheap" jump instructions.
6893 ///
6894 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6895 ///
6896 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6897   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6898     return false;
6899 
6900   bool MadeChange = false;
6901   for (auto &BB : F) {
6902     // Does this BB end with the following?
6903     //   %cond1 = icmp|fcmp|binary instruction ...
6904     //   %cond2 = icmp|fcmp|binary instruction ...
6905     //   %cond.or = or|and i1 %cond1, cond2
6906     //   br i1 %cond.or label %dest1, label %dest2"
6907     BinaryOperator *LogicOp;
6908     BasicBlock *TBB, *FBB;
6909     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6910       continue;
6911 
6912     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6913     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6914       continue;
6915 
6916     unsigned Opc;
6917     Value *Cond1, *Cond2;
6918     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6919                              m_OneUse(m_Value(Cond2)))))
6920       Opc = Instruction::And;
6921     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6922                                  m_OneUse(m_Value(Cond2)))))
6923       Opc = Instruction::Or;
6924     else
6925       continue;
6926 
6927     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6928         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6929       continue;
6930 
6931     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6932 
6933     // Create a new BB.
6934     auto TmpBB =
6935         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6936                            BB.getParent(), BB.getNextNode());
6937 
6938     // Update original basic block by using the first condition directly by the
6939     // branch instruction and removing the no longer needed and/or instruction.
6940     Br1->setCondition(Cond1);
6941     LogicOp->eraseFromParent();
6942 
6943     // Depending on the condition we have to either replace the true or the
6944     // false successor of the original branch instruction.
6945     if (Opc == Instruction::And)
6946       Br1->setSuccessor(0, TmpBB);
6947     else
6948       Br1->setSuccessor(1, TmpBB);
6949 
6950     // Fill in the new basic block.
6951     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6952     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6953       I->removeFromParent();
6954       I->insertBefore(Br2);
6955     }
6956 
6957     // Update PHI nodes in both successors. The original BB needs to be
6958     // replaced in one successor's PHI nodes, because the branch comes now from
6959     // the newly generated BB (NewBB). In the other successor we need to add one
6960     // incoming edge to the PHI nodes, because both branch instructions target
6961     // now the same successor. Depending on the original branch condition
6962     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6963     // we perform the correct update for the PHI nodes.
6964     // This doesn't change the successor order of the just created branch
6965     // instruction (or any other instruction).
6966     if (Opc == Instruction::Or)
6967       std::swap(TBB, FBB);
6968 
6969     // Replace the old BB with the new BB.
6970     for (PHINode &PN : TBB->phis()) {
6971       int i;
6972       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6973         PN.setIncomingBlock(i, TmpBB);
6974     }
6975 
6976     // Add another incoming edge form the new BB.
6977     for (PHINode &PN : FBB->phis()) {
6978       auto *Val = PN.getIncomingValueForBlock(&BB);
6979       PN.addIncoming(Val, TmpBB);
6980     }
6981 
6982     // Update the branch weights (from SelectionDAGBuilder::
6983     // FindMergedConditions).
6984     if (Opc == Instruction::Or) {
6985       // Codegen X | Y as:
6986       // BB1:
6987       //   jmp_if_X TBB
6988       //   jmp TmpBB
6989       // TmpBB:
6990       //   jmp_if_Y TBB
6991       //   jmp FBB
6992       //
6993 
6994       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6995       // The requirement is that
6996       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6997       //     = TrueProb for original BB.
6998       // Assuming the original weights are A and B, one choice is to set BB1's
6999       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7000       // assumes that
7001       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7002       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7003       // TmpBB, but the math is more complicated.
7004       uint64_t TrueWeight, FalseWeight;
7005       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7006         uint64_t NewTrueWeight = TrueWeight;
7007         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7008         scaleWeights(NewTrueWeight, NewFalseWeight);
7009         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7010                          .createBranchWeights(TrueWeight, FalseWeight));
7011 
7012         NewTrueWeight = TrueWeight;
7013         NewFalseWeight = 2 * FalseWeight;
7014         scaleWeights(NewTrueWeight, NewFalseWeight);
7015         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7016                          .createBranchWeights(TrueWeight, FalseWeight));
7017       }
7018     } else {
7019       // Codegen X & Y as:
7020       // BB1:
7021       //   jmp_if_X TmpBB
7022       //   jmp FBB
7023       // TmpBB:
7024       //   jmp_if_Y TBB
7025       //   jmp FBB
7026       //
7027       //  This requires creation of TmpBB after CurBB.
7028 
7029       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7030       // The requirement is that
7031       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7032       //     = FalseProb for original BB.
7033       // Assuming the original weights are A and B, one choice is to set BB1's
7034       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7035       // assumes that
7036       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7037       uint64_t TrueWeight, FalseWeight;
7038       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7039         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7040         uint64_t NewFalseWeight = FalseWeight;
7041         scaleWeights(NewTrueWeight, NewFalseWeight);
7042         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7043                          .createBranchWeights(TrueWeight, FalseWeight));
7044 
7045         NewTrueWeight = 2 * TrueWeight;
7046         NewFalseWeight = FalseWeight;
7047         scaleWeights(NewTrueWeight, NewFalseWeight);
7048         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7049                          .createBranchWeights(TrueWeight, FalseWeight));
7050       }
7051     }
7052 
7053     // Note: No point in getting fancy here, since the DT info is never
7054     // available to CodeGenPrepare.
7055     ModifiedDT = true;
7056 
7057     MadeChange = true;
7058 
7059     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7060                TmpBB->dump());
7061   }
7062   return MadeChange;
7063 }
7064