1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Statepoint.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/IR/ValueMap.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 61 #include "llvm/Transforms/Utils/ValueMapper.h" 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "codegenprepare" 66 67 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 68 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 69 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 70 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 71 "sunken Cmps"); 72 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 73 "of sunken Casts"); 74 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 75 "computations were sunk"); 76 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 77 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 78 STATISTIC(NumAndsAdded, 79 "Number of and mask instructions added to form ext loads"); 80 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 81 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 82 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 83 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 84 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 85 86 static cl::opt<bool> DisableBranchOpts( 87 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 88 cl::desc("Disable branch optimizations in CodeGenPrepare")); 89 90 static cl::opt<bool> 91 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 92 cl::desc("Disable GC optimizations in CodeGenPrepare")); 93 94 static cl::opt<bool> DisableSelectToBranch( 95 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 96 cl::desc("Disable select to branch conversion.")); 97 98 static cl::opt<bool> AddrSinkUsingGEPs( 99 "addr-sink-using-gep", cl::Hidden, cl::init(false), 100 cl::desc("Address sinking in CGP using GEPs.")); 101 102 static cl::opt<bool> EnableAndCmpSinking( 103 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 104 cl::desc("Enable sinkinig and/cmp into branches.")); 105 106 static cl::opt<bool> DisableStoreExtract( 107 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 108 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 109 110 static cl::opt<bool> StressStoreExtract( 111 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 112 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 113 114 static cl::opt<bool> DisableExtLdPromotion( 115 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 116 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 117 "CodeGenPrepare")); 118 119 static cl::opt<bool> StressExtLdPromotion( 120 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 121 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 122 "optimization in CodeGenPrepare")); 123 124 static cl::opt<bool> DisablePreheaderProtect( 125 "disable-preheader-prot", cl::Hidden, cl::init(false), 126 cl::desc("Disable protection against removing loop preheaders")); 127 128 static cl::opt<bool> ProfileGuidedSectionPrefix( 129 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 130 cl::desc("Use profile info to add section prefix for hot/cold functions")); 131 132 static cl::opt<unsigned> FreqRatioToSkipMerge( 133 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 134 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 135 "(frequency of destination block) is greater than this ratio")); 136 137 static cl::opt<bool> ForceSplitStore( 138 "force-split-store", cl::Hidden, cl::init(false), 139 cl::desc("Force store splitting no matter what the target query says.")); 140 141 namespace { 142 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 143 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 144 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 145 class TypePromotionTransaction; 146 147 class CodeGenPrepare : public FunctionPass { 148 const TargetMachine *TM; 149 const TargetSubtargetInfo *SubtargetInfo; 150 const TargetLowering *TLI; 151 const TargetRegisterInfo *TRI; 152 const TargetTransformInfo *TTI; 153 const TargetLibraryInfo *TLInfo; 154 const LoopInfo *LI; 155 std::unique_ptr<BlockFrequencyInfo> BFI; 156 std::unique_ptr<BranchProbabilityInfo> BPI; 157 158 /// As we scan instructions optimizing them, this is the next instruction 159 /// to optimize. Transforms that can invalidate this should update it. 160 BasicBlock::iterator CurInstIterator; 161 162 /// Keeps track of non-local addresses that have been sunk into a block. 163 /// This allows us to avoid inserting duplicate code for blocks with 164 /// multiple load/stores of the same address. 165 ValueMap<Value*, Value*> SunkAddrs; 166 167 /// Keeps track of all instructions inserted for the current function. 168 SetOfInstrs InsertedInsts; 169 /// Keeps track of the type of the related instruction before their 170 /// promotion for the current function. 171 InstrToOrigTy PromotedInsts; 172 173 /// True if CFG is modified in any way. 174 bool ModifiedDT; 175 176 /// True if optimizing for size. 177 bool OptSize; 178 179 /// DataLayout for the Function being processed. 180 const DataLayout *DL; 181 182 public: 183 static char ID; // Pass identification, replacement for typeid 184 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 185 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 186 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 187 } 188 bool runOnFunction(Function &F) override; 189 190 StringRef getPassName() const override { return "CodeGen Prepare"; } 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 // FIXME: When we can selectively preserve passes, preserve the domtree. 194 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 195 AU.addRequired<TargetLibraryInfoWrapperPass>(); 196 AU.addRequired<TargetTransformInfoWrapperPass>(); 197 AU.addRequired<LoopInfoWrapperPass>(); 198 } 199 200 private: 201 bool eliminateFallThrough(Function &F); 202 bool eliminateMostlyEmptyBlocks(Function &F); 203 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 204 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 205 void eliminateMostlyEmptyBlock(BasicBlock *BB); 206 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 207 bool isPreheader); 208 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 209 bool optimizeInst(Instruction *I, bool& ModifiedDT); 210 bool optimizeMemoryInst(Instruction *I, Value *Addr, 211 Type *AccessTy, unsigned AS); 212 bool optimizeInlineAsmInst(CallInst *CS); 213 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 214 bool moveExtToFormExtLoad(Instruction *&I); 215 bool optimizeExtUses(Instruction *I); 216 bool optimizeLoadExt(LoadInst *I); 217 bool optimizeSelectInst(SelectInst *SI); 218 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 219 bool optimizeSwitchInst(SwitchInst *CI); 220 bool optimizeExtractElementInst(Instruction *Inst); 221 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 222 bool placeDbgValues(Function &F); 223 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 224 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 225 bool tryToPromoteExts(TypePromotionTransaction &TPT, 226 const SmallVectorImpl<Instruction *> &Exts, 227 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 228 unsigned CreatedInstsCost = 0); 229 bool splitBranchCondition(Function &F); 230 bool simplifyOffsetableRelocate(Instruction &I); 231 bool splitIndirectCriticalEdges(Function &F); 232 }; 233 } 234 235 char CodeGenPrepare::ID = 0; 236 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 237 "Optimize for code generation", false, false) 238 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 239 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 240 "Optimize for code generation", false, false) 241 242 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 243 return new CodeGenPrepare(TM); 244 } 245 246 bool CodeGenPrepare::runOnFunction(Function &F) { 247 if (skipFunction(F)) 248 return false; 249 250 DL = &F.getParent()->getDataLayout(); 251 252 bool EverMadeChange = false; 253 // Clear per function information. 254 InsertedInsts.clear(); 255 PromotedInsts.clear(); 256 BFI.reset(); 257 BPI.reset(); 258 259 ModifiedDT = false; 260 if (TM) { 261 SubtargetInfo = TM->getSubtargetImpl(F); 262 TLI = SubtargetInfo->getTargetLowering(); 263 TRI = SubtargetInfo->getRegisterInfo(); 264 } 265 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 266 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 267 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 268 OptSize = F.optForSize(); 269 270 if (ProfileGuidedSectionPrefix) { 271 ProfileSummaryInfo *PSI = 272 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 273 if (PSI->isFunctionEntryHot(&F)) 274 F.setSectionPrefix(".hot"); 275 else if (PSI->isFunctionEntryCold(&F)) 276 F.setSectionPrefix(".cold"); 277 } 278 279 /// This optimization identifies DIV instructions that can be 280 /// profitably bypassed and carried out with a shorter, faster divide. 281 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 282 const DenseMap<unsigned int, unsigned int> &BypassWidths = 283 TLI->getBypassSlowDivWidths(); 284 BasicBlock* BB = &*F.begin(); 285 while (BB != nullptr) { 286 // bypassSlowDivision may create new BBs, but we don't want to reapply the 287 // optimization to those blocks. 288 BasicBlock* Next = BB->getNextNode(); 289 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 290 BB = Next; 291 } 292 } 293 294 // Eliminate blocks that contain only PHI nodes and an 295 // unconditional branch. 296 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 297 298 // llvm.dbg.value is far away from the value then iSel may not be able 299 // handle it properly. iSel will drop llvm.dbg.value if it can not 300 // find a node corresponding to the value. 301 EverMadeChange |= placeDbgValues(F); 302 303 if (!DisableBranchOpts) 304 EverMadeChange |= splitBranchCondition(F); 305 306 // Split some critical edges where one of the sources is an indirect branch, 307 // to help generate sane code for PHIs involving such edges. 308 EverMadeChange |= splitIndirectCriticalEdges(F); 309 310 bool MadeChange = true; 311 while (MadeChange) { 312 MadeChange = false; 313 for (Function::iterator I = F.begin(); I != F.end(); ) { 314 BasicBlock *BB = &*I++; 315 bool ModifiedDTOnIteration = false; 316 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 317 318 // Restart BB iteration if the dominator tree of the Function was changed 319 if (ModifiedDTOnIteration) 320 break; 321 } 322 EverMadeChange |= MadeChange; 323 } 324 325 SunkAddrs.clear(); 326 327 if (!DisableBranchOpts) { 328 MadeChange = false; 329 SmallPtrSet<BasicBlock*, 8> WorkList; 330 for (BasicBlock &BB : F) { 331 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 332 MadeChange |= ConstantFoldTerminator(&BB, true); 333 if (!MadeChange) continue; 334 335 for (SmallVectorImpl<BasicBlock*>::iterator 336 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 337 if (pred_begin(*II) == pred_end(*II)) 338 WorkList.insert(*II); 339 } 340 341 // Delete the dead blocks and any of their dead successors. 342 MadeChange |= !WorkList.empty(); 343 while (!WorkList.empty()) { 344 BasicBlock *BB = *WorkList.begin(); 345 WorkList.erase(BB); 346 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 347 348 DeleteDeadBlock(BB); 349 350 for (SmallVectorImpl<BasicBlock*>::iterator 351 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 352 if (pred_begin(*II) == pred_end(*II)) 353 WorkList.insert(*II); 354 } 355 356 // Merge pairs of basic blocks with unconditional branches, connected by 357 // a single edge. 358 if (EverMadeChange || MadeChange) 359 MadeChange |= eliminateFallThrough(F); 360 361 EverMadeChange |= MadeChange; 362 } 363 364 if (!DisableGCOpts) { 365 SmallVector<Instruction *, 2> Statepoints; 366 for (BasicBlock &BB : F) 367 for (Instruction &I : BB) 368 if (isStatepoint(I)) 369 Statepoints.push_back(&I); 370 for (auto &I : Statepoints) 371 EverMadeChange |= simplifyOffsetableRelocate(*I); 372 } 373 374 return EverMadeChange; 375 } 376 377 /// Merge basic blocks which are connected by a single edge, where one of the 378 /// basic blocks has a single successor pointing to the other basic block, 379 /// which has a single predecessor. 380 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 381 bool Changed = false; 382 // Scan all of the blocks in the function, except for the entry block. 383 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 384 BasicBlock *BB = &*I++; 385 // If the destination block has a single pred, then this is a trivial 386 // edge, just collapse it. 387 BasicBlock *SinglePred = BB->getSinglePredecessor(); 388 389 // Don't merge if BB's address is taken. 390 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 391 392 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 393 if (Term && !Term->isConditional()) { 394 Changed = true; 395 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 396 // Remember if SinglePred was the entry block of the function. 397 // If so, we will need to move BB back to the entry position. 398 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 399 MergeBasicBlockIntoOnlyPred(BB, nullptr); 400 401 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 402 BB->moveBefore(&BB->getParent()->getEntryBlock()); 403 404 // We have erased a block. Update the iterator. 405 I = BB->getIterator(); 406 } 407 } 408 return Changed; 409 } 410 411 /// Find a destination block from BB if BB is mergeable empty block. 412 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 413 // If this block doesn't end with an uncond branch, ignore it. 414 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 415 if (!BI || !BI->isUnconditional()) 416 return nullptr; 417 418 // If the instruction before the branch (skipping debug info) isn't a phi 419 // node, then other stuff is happening here. 420 BasicBlock::iterator BBI = BI->getIterator(); 421 if (BBI != BB->begin()) { 422 --BBI; 423 while (isa<DbgInfoIntrinsic>(BBI)) { 424 if (BBI == BB->begin()) 425 break; 426 --BBI; 427 } 428 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 429 return nullptr; 430 } 431 432 // Do not break infinite loops. 433 BasicBlock *DestBB = BI->getSuccessor(0); 434 if (DestBB == BB) 435 return nullptr; 436 437 if (!canMergeBlocks(BB, DestBB)) 438 DestBB = nullptr; 439 440 return DestBB; 441 } 442 443 // Return the unique indirectbr predecessor of a block. This may return null 444 // even if such a predecessor exists, if it's not useful for splitting. 445 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 446 // predecessors of BB. 447 static BasicBlock * 448 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 449 // If the block doesn't have any PHIs, we don't care about it, since there's 450 // no point in splitting it. 451 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 452 if (!PN) 453 return nullptr; 454 455 // Verify we have exactly one IBR predecessor. 456 // Conservatively bail out if one of the other predecessors is not a "regular" 457 // terminator (that is, not a switch or a br). 458 BasicBlock *IBB = nullptr; 459 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 460 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 461 TerminatorInst *PredTerm = PredBB->getTerminator(); 462 switch (PredTerm->getOpcode()) { 463 case Instruction::IndirectBr: 464 if (IBB) 465 return nullptr; 466 IBB = PredBB; 467 break; 468 case Instruction::Br: 469 case Instruction::Switch: 470 OtherPreds.push_back(PredBB); 471 continue; 472 default: 473 return nullptr; 474 } 475 } 476 477 return IBB; 478 } 479 480 // Split critical edges where the source of the edge is an indirectbr 481 // instruction. This isn't always possible, but we can handle some easy cases. 482 // This is useful because MI is unable to split such critical edges, 483 // which means it will not be able to sink instructions along those edges. 484 // This is especially painful for indirect branches with many successors, where 485 // we end up having to prepare all outgoing values in the origin block. 486 // 487 // Our normal algorithm for splitting critical edges requires us to update 488 // the outgoing edges of the edge origin block, but for an indirectbr this 489 // is hard, since it would require finding and updating the block addresses 490 // the indirect branch uses. But if a block only has a single indirectbr 491 // predecessor, with the others being regular branches, we can do it in a 492 // different way. 493 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 494 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 495 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 496 // create the following structure: 497 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 498 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 499 // Check whether the function has any indirectbrs, and collect which blocks 500 // they may jump to. Since most functions don't have indirect branches, 501 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 502 SmallSetVector<BasicBlock *, 16> Targets; 503 for (auto &BB : F) { 504 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 505 if (!IBI) 506 continue; 507 508 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 509 Targets.insert(IBI->getSuccessor(Succ)); 510 } 511 512 if (Targets.empty()) 513 return false; 514 515 bool Changed = false; 516 for (BasicBlock *Target : Targets) { 517 SmallVector<BasicBlock *, 16> OtherPreds; 518 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 519 // If we did not found an indirectbr, or the indirectbr is the only 520 // incoming edge, this isn't the kind of edge we're looking for. 521 if (!IBRPred || OtherPreds.empty()) 522 continue; 523 524 // Don't even think about ehpads/landingpads. 525 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 526 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 527 continue; 528 529 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 530 // It's possible Target was its own successor through an indirectbr. 531 // In this case, the indirectbr now comes from BodyBlock. 532 if (IBRPred == Target) 533 IBRPred = BodyBlock; 534 535 // At this point Target only has PHIs, and BodyBlock has the rest of the 536 // block's body. Create a copy of Target that will be used by the "direct" 537 // preds. 538 ValueToValueMapTy VMap; 539 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 540 541 for (BasicBlock *Pred : OtherPreds) 542 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 543 544 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 545 // they are clones, so the number of PHIs are the same. 546 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 547 // (b) Leave that as the only edge in the "Indirect" PHI. 548 // (c) Merge the two in the body block. 549 BasicBlock::iterator Indirect = Target->begin(), 550 End = Target->getFirstNonPHI()->getIterator(); 551 BasicBlock::iterator Direct = DirectSucc->begin(); 552 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 553 554 assert(&*End == Target->getTerminator() && 555 "Block was expected to only contain PHIs"); 556 557 while (Indirect != End) { 558 PHINode *DirPHI = cast<PHINode>(Direct); 559 PHINode *IndPHI = cast<PHINode>(Indirect); 560 561 // Now, clean up - the direct block shouldn't get the indirect value, 562 // and vice versa. 563 DirPHI->removeIncomingValue(IBRPred); 564 Direct++; 565 566 // Advance the pointer here, to avoid invalidation issues when the old 567 // PHI is erased. 568 Indirect++; 569 570 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 571 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 572 IBRPred); 573 574 // Create a PHI in the body block, to merge the direct and indirect 575 // predecessors. 576 PHINode *MergePHI = 577 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 578 MergePHI->addIncoming(NewIndPHI, Target); 579 MergePHI->addIncoming(DirPHI, DirectSucc); 580 581 IndPHI->replaceAllUsesWith(MergePHI); 582 IndPHI->eraseFromParent(); 583 } 584 585 Changed = true; 586 } 587 588 return Changed; 589 } 590 591 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 592 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 593 /// edges in ways that are non-optimal for isel. Start by eliminating these 594 /// blocks so we can split them the way we want them. 595 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 596 SmallPtrSet<BasicBlock *, 16> Preheaders; 597 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 598 while (!LoopList.empty()) { 599 Loop *L = LoopList.pop_back_val(); 600 LoopList.insert(LoopList.end(), L->begin(), L->end()); 601 if (BasicBlock *Preheader = L->getLoopPreheader()) 602 Preheaders.insert(Preheader); 603 } 604 605 bool MadeChange = false; 606 // Note that this intentionally skips the entry block. 607 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 608 BasicBlock *BB = &*I++; 609 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 610 if (!DestBB || 611 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 612 continue; 613 614 eliminateMostlyEmptyBlock(BB); 615 MadeChange = true; 616 } 617 return MadeChange; 618 } 619 620 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 621 BasicBlock *DestBB, 622 bool isPreheader) { 623 // Do not delete loop preheaders if doing so would create a critical edge. 624 // Loop preheaders can be good locations to spill registers. If the 625 // preheader is deleted and we create a critical edge, registers may be 626 // spilled in the loop body instead. 627 if (!DisablePreheaderProtect && isPreheader && 628 !(BB->getSinglePredecessor() && 629 BB->getSinglePredecessor()->getSingleSuccessor())) 630 return false; 631 632 // Try to skip merging if the unique predecessor of BB is terminated by a 633 // switch or indirect branch instruction, and BB is used as an incoming block 634 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 635 // add COPY instructions in the predecessor of BB instead of BB (if it is not 636 // merged). Note that the critical edge created by merging such blocks wont be 637 // split in MachineSink because the jump table is not analyzable. By keeping 638 // such empty block (BB), ISel will place COPY instructions in BB, not in the 639 // predecessor of BB. 640 BasicBlock *Pred = BB->getUniquePredecessor(); 641 if (!Pred || 642 !(isa<SwitchInst>(Pred->getTerminator()) || 643 isa<IndirectBrInst>(Pred->getTerminator()))) 644 return true; 645 646 if (BB->getTerminator() != BB->getFirstNonPHI()) 647 return true; 648 649 // We use a simple cost heuristic which determine skipping merging is 650 // profitable if the cost of skipping merging is less than the cost of 651 // merging : Cost(skipping merging) < Cost(merging BB), where the 652 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 653 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 654 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 655 // Freq(Pred) / Freq(BB) > 2. 656 // Note that if there are multiple empty blocks sharing the same incoming 657 // value for the PHIs in the DestBB, we consider them together. In such 658 // case, Cost(merging BB) will be the sum of their frequencies. 659 660 if (!isa<PHINode>(DestBB->begin())) 661 return true; 662 663 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 664 665 // Find all other incoming blocks from which incoming values of all PHIs in 666 // DestBB are the same as the ones from BB. 667 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 668 ++PI) { 669 BasicBlock *DestBBPred = *PI; 670 if (DestBBPred == BB) 671 continue; 672 673 bool HasAllSameValue = true; 674 BasicBlock::const_iterator DestBBI = DestBB->begin(); 675 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 676 if (DestPN->getIncomingValueForBlock(BB) != 677 DestPN->getIncomingValueForBlock(DestBBPred)) { 678 HasAllSameValue = false; 679 break; 680 } 681 } 682 if (HasAllSameValue) 683 SameIncomingValueBBs.insert(DestBBPred); 684 } 685 686 // See if all BB's incoming values are same as the value from Pred. In this 687 // case, no reason to skip merging because COPYs are expected to be place in 688 // Pred already. 689 if (SameIncomingValueBBs.count(Pred)) 690 return true; 691 692 if (!BFI) { 693 Function &F = *BB->getParent(); 694 LoopInfo LI{DominatorTree(F)}; 695 BPI.reset(new BranchProbabilityInfo(F, LI)); 696 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 697 } 698 699 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 700 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 701 702 for (auto SameValueBB : SameIncomingValueBBs) 703 if (SameValueBB->getUniquePredecessor() == Pred && 704 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 705 BBFreq += BFI->getBlockFreq(SameValueBB); 706 707 return PredFreq.getFrequency() <= 708 BBFreq.getFrequency() * FreqRatioToSkipMerge; 709 } 710 711 /// Return true if we can merge BB into DestBB if there is a single 712 /// unconditional branch between them, and BB contains no other non-phi 713 /// instructions. 714 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 715 const BasicBlock *DestBB) const { 716 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 717 // the successor. If there are more complex condition (e.g. preheaders), 718 // don't mess around with them. 719 BasicBlock::const_iterator BBI = BB->begin(); 720 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 721 for (const User *U : PN->users()) { 722 const Instruction *UI = cast<Instruction>(U); 723 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 724 return false; 725 // If User is inside DestBB block and it is a PHINode then check 726 // incoming value. If incoming value is not from BB then this is 727 // a complex condition (e.g. preheaders) we want to avoid here. 728 if (UI->getParent() == DestBB) { 729 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 730 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 731 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 732 if (Insn && Insn->getParent() == BB && 733 Insn->getParent() != UPN->getIncomingBlock(I)) 734 return false; 735 } 736 } 737 } 738 } 739 740 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 741 // and DestBB may have conflicting incoming values for the block. If so, we 742 // can't merge the block. 743 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 744 if (!DestBBPN) return true; // no conflict. 745 746 // Collect the preds of BB. 747 SmallPtrSet<const BasicBlock*, 16> BBPreds; 748 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 749 // It is faster to get preds from a PHI than with pred_iterator. 750 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 751 BBPreds.insert(BBPN->getIncomingBlock(i)); 752 } else { 753 BBPreds.insert(pred_begin(BB), pred_end(BB)); 754 } 755 756 // Walk the preds of DestBB. 757 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 758 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 759 if (BBPreds.count(Pred)) { // Common predecessor? 760 BBI = DestBB->begin(); 761 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 762 const Value *V1 = PN->getIncomingValueForBlock(Pred); 763 const Value *V2 = PN->getIncomingValueForBlock(BB); 764 765 // If V2 is a phi node in BB, look up what the mapped value will be. 766 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 767 if (V2PN->getParent() == BB) 768 V2 = V2PN->getIncomingValueForBlock(Pred); 769 770 // If there is a conflict, bail out. 771 if (V1 != V2) return false; 772 } 773 } 774 } 775 776 return true; 777 } 778 779 780 /// Eliminate a basic block that has only phi's and an unconditional branch in 781 /// it. 782 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 783 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 784 BasicBlock *DestBB = BI->getSuccessor(0); 785 786 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 787 788 // If the destination block has a single pred, then this is a trivial edge, 789 // just collapse it. 790 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 791 if (SinglePred != DestBB) { 792 // Remember if SinglePred was the entry block of the function. If so, we 793 // will need to move BB back to the entry position. 794 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 795 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 796 797 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 798 BB->moveBefore(&BB->getParent()->getEntryBlock()); 799 800 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 801 return; 802 } 803 } 804 805 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 806 // to handle the new incoming edges it is about to have. 807 PHINode *PN; 808 for (BasicBlock::iterator BBI = DestBB->begin(); 809 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 810 // Remove the incoming value for BB, and remember it. 811 Value *InVal = PN->removeIncomingValue(BB, false); 812 813 // Two options: either the InVal is a phi node defined in BB or it is some 814 // value that dominates BB. 815 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 816 if (InValPhi && InValPhi->getParent() == BB) { 817 // Add all of the input values of the input PHI as inputs of this phi. 818 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 819 PN->addIncoming(InValPhi->getIncomingValue(i), 820 InValPhi->getIncomingBlock(i)); 821 } else { 822 // Otherwise, add one instance of the dominating value for each edge that 823 // we will be adding. 824 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 825 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 826 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 827 } else { 828 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 829 PN->addIncoming(InVal, *PI); 830 } 831 } 832 } 833 834 // The PHIs are now updated, change everything that refers to BB to use 835 // DestBB and remove BB. 836 BB->replaceAllUsesWith(DestBB); 837 BB->eraseFromParent(); 838 ++NumBlocksElim; 839 840 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 841 } 842 843 // Computes a map of base pointer relocation instructions to corresponding 844 // derived pointer relocation instructions given a vector of all relocate calls 845 static void computeBaseDerivedRelocateMap( 846 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 847 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 848 &RelocateInstMap) { 849 // Collect information in two maps: one primarily for locating the base object 850 // while filling the second map; the second map is the final structure holding 851 // a mapping between Base and corresponding Derived relocate calls 852 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 853 for (auto *ThisRelocate : AllRelocateCalls) { 854 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 855 ThisRelocate->getDerivedPtrIndex()); 856 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 857 } 858 for (auto &Item : RelocateIdxMap) { 859 std::pair<unsigned, unsigned> Key = Item.first; 860 if (Key.first == Key.second) 861 // Base relocation: nothing to insert 862 continue; 863 864 GCRelocateInst *I = Item.second; 865 auto BaseKey = std::make_pair(Key.first, Key.first); 866 867 // We're iterating over RelocateIdxMap so we cannot modify it. 868 auto MaybeBase = RelocateIdxMap.find(BaseKey); 869 if (MaybeBase == RelocateIdxMap.end()) 870 // TODO: We might want to insert a new base object relocate and gep off 871 // that, if there are enough derived object relocates. 872 continue; 873 874 RelocateInstMap[MaybeBase->second].push_back(I); 875 } 876 } 877 878 // Accepts a GEP and extracts the operands into a vector provided they're all 879 // small integer constants 880 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 881 SmallVectorImpl<Value *> &OffsetV) { 882 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 883 // Only accept small constant integer operands 884 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 885 if (!Op || Op->getZExtValue() > 20) 886 return false; 887 } 888 889 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 890 OffsetV.push_back(GEP->getOperand(i)); 891 return true; 892 } 893 894 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 895 // replace, computes a replacement, and affects it. 896 static bool 897 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 898 const SmallVectorImpl<GCRelocateInst *> &Targets) { 899 bool MadeChange = false; 900 for (GCRelocateInst *ToReplace : Targets) { 901 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 902 "Not relocating a derived object of the original base object"); 903 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 904 // A duplicate relocate call. TODO: coalesce duplicates. 905 continue; 906 } 907 908 if (RelocatedBase->getParent() != ToReplace->getParent()) { 909 // Base and derived relocates are in different basic blocks. 910 // In this case transform is only valid when base dominates derived 911 // relocate. However it would be too expensive to check dominance 912 // for each such relocate, so we skip the whole transformation. 913 continue; 914 } 915 916 Value *Base = ToReplace->getBasePtr(); 917 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 918 if (!Derived || Derived->getPointerOperand() != Base) 919 continue; 920 921 SmallVector<Value *, 2> OffsetV; 922 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 923 continue; 924 925 // Create a Builder and replace the target callsite with a gep 926 assert(RelocatedBase->getNextNode() && 927 "Should always have one since it's not a terminator"); 928 929 // Insert after RelocatedBase 930 IRBuilder<> Builder(RelocatedBase->getNextNode()); 931 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 932 933 // If gc_relocate does not match the actual type, cast it to the right type. 934 // In theory, there must be a bitcast after gc_relocate if the type does not 935 // match, and we should reuse it to get the derived pointer. But it could be 936 // cases like this: 937 // bb1: 938 // ... 939 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 940 // br label %merge 941 // 942 // bb2: 943 // ... 944 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 945 // br label %merge 946 // 947 // merge: 948 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 949 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 950 // 951 // In this case, we can not find the bitcast any more. So we insert a new bitcast 952 // no matter there is already one or not. In this way, we can handle all cases, and 953 // the extra bitcast should be optimized away in later passes. 954 Value *ActualRelocatedBase = RelocatedBase; 955 if (RelocatedBase->getType() != Base->getType()) { 956 ActualRelocatedBase = 957 Builder.CreateBitCast(RelocatedBase, Base->getType()); 958 } 959 Value *Replacement = Builder.CreateGEP( 960 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 961 Replacement->takeName(ToReplace); 962 // If the newly generated derived pointer's type does not match the original derived 963 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 964 Value *ActualReplacement = Replacement; 965 if (Replacement->getType() != ToReplace->getType()) { 966 ActualReplacement = 967 Builder.CreateBitCast(Replacement, ToReplace->getType()); 968 } 969 ToReplace->replaceAllUsesWith(ActualReplacement); 970 ToReplace->eraseFromParent(); 971 972 MadeChange = true; 973 } 974 return MadeChange; 975 } 976 977 // Turns this: 978 // 979 // %base = ... 980 // %ptr = gep %base + 15 981 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 982 // %base' = relocate(%tok, i32 4, i32 4) 983 // %ptr' = relocate(%tok, i32 4, i32 5) 984 // %val = load %ptr' 985 // 986 // into this: 987 // 988 // %base = ... 989 // %ptr = gep %base + 15 990 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 991 // %base' = gc.relocate(%tok, i32 4, i32 4) 992 // %ptr' = gep %base' + 15 993 // %val = load %ptr' 994 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 995 bool MadeChange = false; 996 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 997 998 for (auto *U : I.users()) 999 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1000 // Collect all the relocate calls associated with a statepoint 1001 AllRelocateCalls.push_back(Relocate); 1002 1003 // We need atleast one base pointer relocation + one derived pointer 1004 // relocation to mangle 1005 if (AllRelocateCalls.size() < 2) 1006 return false; 1007 1008 // RelocateInstMap is a mapping from the base relocate instruction to the 1009 // corresponding derived relocate instructions 1010 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1011 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1012 if (RelocateInstMap.empty()) 1013 return false; 1014 1015 for (auto &Item : RelocateInstMap) 1016 // Item.first is the RelocatedBase to offset against 1017 // Item.second is the vector of Targets to replace 1018 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1019 return MadeChange; 1020 } 1021 1022 /// SinkCast - Sink the specified cast instruction into its user blocks 1023 static bool SinkCast(CastInst *CI) { 1024 BasicBlock *DefBB = CI->getParent(); 1025 1026 /// InsertedCasts - Only insert a cast in each block once. 1027 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1028 1029 bool MadeChange = false; 1030 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1031 UI != E; ) { 1032 Use &TheUse = UI.getUse(); 1033 Instruction *User = cast<Instruction>(*UI); 1034 1035 // Figure out which BB this cast is used in. For PHI's this is the 1036 // appropriate predecessor block. 1037 BasicBlock *UserBB = User->getParent(); 1038 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1039 UserBB = PN->getIncomingBlock(TheUse); 1040 } 1041 1042 // Preincrement use iterator so we don't invalidate it. 1043 ++UI; 1044 1045 // The first insertion point of a block containing an EH pad is after the 1046 // pad. If the pad is the user, we cannot sink the cast past the pad. 1047 if (User->isEHPad()) 1048 continue; 1049 1050 // If the block selected to receive the cast is an EH pad that does not 1051 // allow non-PHI instructions before the terminator, we can't sink the 1052 // cast. 1053 if (UserBB->getTerminator()->isEHPad()) 1054 continue; 1055 1056 // If this user is in the same block as the cast, don't change the cast. 1057 if (UserBB == DefBB) continue; 1058 1059 // If we have already inserted a cast into this block, use it. 1060 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1061 1062 if (!InsertedCast) { 1063 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1064 assert(InsertPt != UserBB->end()); 1065 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1066 CI->getType(), "", &*InsertPt); 1067 } 1068 1069 // Replace a use of the cast with a use of the new cast. 1070 TheUse = InsertedCast; 1071 MadeChange = true; 1072 ++NumCastUses; 1073 } 1074 1075 // If we removed all uses, nuke the cast. 1076 if (CI->use_empty()) { 1077 CI->eraseFromParent(); 1078 MadeChange = true; 1079 } 1080 1081 return MadeChange; 1082 } 1083 1084 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1085 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1086 /// reduce the number of virtual registers that must be created and coalesced. 1087 /// 1088 /// Return true if any changes are made. 1089 /// 1090 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1091 const DataLayout &DL) { 1092 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1093 // than sinking only nop casts, but is helpful on some platforms. 1094 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1095 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1096 ASC->getDestAddressSpace())) 1097 return false; 1098 } 1099 1100 // If this is a noop copy, 1101 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1102 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1103 1104 // This is an fp<->int conversion? 1105 if (SrcVT.isInteger() != DstVT.isInteger()) 1106 return false; 1107 1108 // If this is an extension, it will be a zero or sign extension, which 1109 // isn't a noop. 1110 if (SrcVT.bitsLT(DstVT)) return false; 1111 1112 // If these values will be promoted, find out what they will be promoted 1113 // to. This helps us consider truncates on PPC as noop copies when they 1114 // are. 1115 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1116 TargetLowering::TypePromoteInteger) 1117 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1118 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1119 TargetLowering::TypePromoteInteger) 1120 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1121 1122 // If, after promotion, these are the same types, this is a noop copy. 1123 if (SrcVT != DstVT) 1124 return false; 1125 1126 return SinkCast(CI); 1127 } 1128 1129 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1130 /// possible. 1131 /// 1132 /// Return true if any changes were made. 1133 static bool CombineUAddWithOverflow(CmpInst *CI) { 1134 Value *A, *B; 1135 Instruction *AddI; 1136 if (!match(CI, 1137 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1138 return false; 1139 1140 Type *Ty = AddI->getType(); 1141 if (!isa<IntegerType>(Ty)) 1142 return false; 1143 1144 // We don't want to move around uses of condition values this late, so we we 1145 // check if it is legal to create the call to the intrinsic in the basic 1146 // block containing the icmp: 1147 1148 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1149 return false; 1150 1151 #ifndef NDEBUG 1152 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1153 // for now: 1154 if (AddI->hasOneUse()) 1155 assert(*AddI->user_begin() == CI && "expected!"); 1156 #endif 1157 1158 Module *M = CI->getModule(); 1159 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1160 1161 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1162 1163 auto *UAddWithOverflow = 1164 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1165 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1166 auto *Overflow = 1167 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1168 1169 CI->replaceAllUsesWith(Overflow); 1170 AddI->replaceAllUsesWith(UAdd); 1171 CI->eraseFromParent(); 1172 AddI->eraseFromParent(); 1173 return true; 1174 } 1175 1176 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1177 /// registers that must be created and coalesced. This is a clear win except on 1178 /// targets with multiple condition code registers (PowerPC), where it might 1179 /// lose; some adjustment may be wanted there. 1180 /// 1181 /// Return true if any changes are made. 1182 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1183 BasicBlock *DefBB = CI->getParent(); 1184 1185 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1186 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1187 return false; 1188 1189 // Only insert a cmp in each block once. 1190 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1191 1192 bool MadeChange = false; 1193 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1194 UI != E; ) { 1195 Use &TheUse = UI.getUse(); 1196 Instruction *User = cast<Instruction>(*UI); 1197 1198 // Preincrement use iterator so we don't invalidate it. 1199 ++UI; 1200 1201 // Don't bother for PHI nodes. 1202 if (isa<PHINode>(User)) 1203 continue; 1204 1205 // Figure out which BB this cmp is used in. 1206 BasicBlock *UserBB = User->getParent(); 1207 1208 // If this user is in the same block as the cmp, don't change the cmp. 1209 if (UserBB == DefBB) continue; 1210 1211 // If we have already inserted a cmp into this block, use it. 1212 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1213 1214 if (!InsertedCmp) { 1215 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1216 assert(InsertPt != UserBB->end()); 1217 InsertedCmp = 1218 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1219 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1220 // Propagate the debug info. 1221 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1222 } 1223 1224 // Replace a use of the cmp with a use of the new cmp. 1225 TheUse = InsertedCmp; 1226 MadeChange = true; 1227 ++NumCmpUses; 1228 } 1229 1230 // If we removed all uses, nuke the cmp. 1231 if (CI->use_empty()) { 1232 CI->eraseFromParent(); 1233 MadeChange = true; 1234 } 1235 1236 return MadeChange; 1237 } 1238 1239 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1240 if (SinkCmpExpression(CI, TLI)) 1241 return true; 1242 1243 if (CombineUAddWithOverflow(CI)) 1244 return true; 1245 1246 return false; 1247 } 1248 1249 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1250 /// used in a compare to allow isel to generate better code for targets where 1251 /// this operation can be combined. 1252 /// 1253 /// Return true if any changes are made. 1254 static bool sinkAndCmp0Expression(Instruction *AndI, 1255 const TargetLowering &TLI, 1256 SetOfInstrs &InsertedInsts) { 1257 // Double-check that we're not trying to optimize an instruction that was 1258 // already optimized by some other part of this pass. 1259 assert(!InsertedInsts.count(AndI) && 1260 "Attempting to optimize already optimized and instruction"); 1261 (void) InsertedInsts; 1262 1263 // Nothing to do for single use in same basic block. 1264 if (AndI->hasOneUse() && 1265 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1266 return false; 1267 1268 // Try to avoid cases where sinking/duplicating is likely to increase register 1269 // pressure. 1270 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1271 !isa<ConstantInt>(AndI->getOperand(1)) && 1272 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1273 return false; 1274 1275 for (auto *U : AndI->users()) { 1276 Instruction *User = cast<Instruction>(U); 1277 1278 // Only sink for and mask feeding icmp with 0. 1279 if (!isa<ICmpInst>(User)) 1280 return false; 1281 1282 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1283 if (!CmpC || !CmpC->isZero()) 1284 return false; 1285 } 1286 1287 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1288 return false; 1289 1290 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1291 DEBUG(AndI->getParent()->dump()); 1292 1293 // Push the 'and' into the same block as the icmp 0. There should only be 1294 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1295 // others, so we don't need to keep track of which BBs we insert into. 1296 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1297 UI != E; ) { 1298 Use &TheUse = UI.getUse(); 1299 Instruction *User = cast<Instruction>(*UI); 1300 1301 // Preincrement use iterator so we don't invalidate it. 1302 ++UI; 1303 1304 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1305 1306 // Keep the 'and' in the same place if the use is already in the same block. 1307 Instruction *InsertPt = 1308 User->getParent() == AndI->getParent() ? AndI : User; 1309 Instruction *InsertedAnd = 1310 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1311 AndI->getOperand(1), "", InsertPt); 1312 // Propagate the debug info. 1313 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1314 1315 // Replace a use of the 'and' with a use of the new 'and'. 1316 TheUse = InsertedAnd; 1317 ++NumAndUses; 1318 DEBUG(User->getParent()->dump()); 1319 } 1320 1321 // We removed all uses, nuke the and. 1322 AndI->eraseFromParent(); 1323 return true; 1324 } 1325 1326 /// Check if the candidates could be combined with a shift instruction, which 1327 /// includes: 1328 /// 1. Truncate instruction 1329 /// 2. And instruction and the imm is a mask of the low bits: 1330 /// imm & (imm+1) == 0 1331 static bool isExtractBitsCandidateUse(Instruction *User) { 1332 if (!isa<TruncInst>(User)) { 1333 if (User->getOpcode() != Instruction::And || 1334 !isa<ConstantInt>(User->getOperand(1))) 1335 return false; 1336 1337 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1338 1339 if ((Cimm & (Cimm + 1)).getBoolValue()) 1340 return false; 1341 } 1342 return true; 1343 } 1344 1345 /// Sink both shift and truncate instruction to the use of truncate's BB. 1346 static bool 1347 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1348 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1349 const TargetLowering &TLI, const DataLayout &DL) { 1350 BasicBlock *UserBB = User->getParent(); 1351 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1352 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1353 bool MadeChange = false; 1354 1355 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1356 TruncE = TruncI->user_end(); 1357 TruncUI != TruncE;) { 1358 1359 Use &TruncTheUse = TruncUI.getUse(); 1360 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1361 // Preincrement use iterator so we don't invalidate it. 1362 1363 ++TruncUI; 1364 1365 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1366 if (!ISDOpcode) 1367 continue; 1368 1369 // If the use is actually a legal node, there will not be an 1370 // implicit truncate. 1371 // FIXME: always querying the result type is just an 1372 // approximation; some nodes' legality is determined by the 1373 // operand or other means. There's no good way to find out though. 1374 if (TLI.isOperationLegalOrCustom( 1375 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1376 continue; 1377 1378 // Don't bother for PHI nodes. 1379 if (isa<PHINode>(TruncUser)) 1380 continue; 1381 1382 BasicBlock *TruncUserBB = TruncUser->getParent(); 1383 1384 if (UserBB == TruncUserBB) 1385 continue; 1386 1387 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1388 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1389 1390 if (!InsertedShift && !InsertedTrunc) { 1391 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1392 assert(InsertPt != TruncUserBB->end()); 1393 // Sink the shift 1394 if (ShiftI->getOpcode() == Instruction::AShr) 1395 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1396 "", &*InsertPt); 1397 else 1398 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1399 "", &*InsertPt); 1400 1401 // Sink the trunc 1402 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1403 TruncInsertPt++; 1404 assert(TruncInsertPt != TruncUserBB->end()); 1405 1406 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1407 TruncI->getType(), "", &*TruncInsertPt); 1408 1409 MadeChange = true; 1410 1411 TruncTheUse = InsertedTrunc; 1412 } 1413 } 1414 return MadeChange; 1415 } 1416 1417 /// Sink the shift *right* instruction into user blocks if the uses could 1418 /// potentially be combined with this shift instruction and generate BitExtract 1419 /// instruction. It will only be applied if the architecture supports BitExtract 1420 /// instruction. Here is an example: 1421 /// BB1: 1422 /// %x.extract.shift = lshr i64 %arg1, 32 1423 /// BB2: 1424 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1425 /// ==> 1426 /// 1427 /// BB2: 1428 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1429 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1430 /// 1431 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1432 /// instruction. 1433 /// Return true if any changes are made. 1434 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1435 const TargetLowering &TLI, 1436 const DataLayout &DL) { 1437 BasicBlock *DefBB = ShiftI->getParent(); 1438 1439 /// Only insert instructions in each block once. 1440 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1441 1442 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1443 1444 bool MadeChange = false; 1445 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1446 UI != E;) { 1447 Use &TheUse = UI.getUse(); 1448 Instruction *User = cast<Instruction>(*UI); 1449 // Preincrement use iterator so we don't invalidate it. 1450 ++UI; 1451 1452 // Don't bother for PHI nodes. 1453 if (isa<PHINode>(User)) 1454 continue; 1455 1456 if (!isExtractBitsCandidateUse(User)) 1457 continue; 1458 1459 BasicBlock *UserBB = User->getParent(); 1460 1461 if (UserBB == DefBB) { 1462 // If the shift and truncate instruction are in the same BB. The use of 1463 // the truncate(TruncUse) may still introduce another truncate if not 1464 // legal. In this case, we would like to sink both shift and truncate 1465 // instruction to the BB of TruncUse. 1466 // for example: 1467 // BB1: 1468 // i64 shift.result = lshr i64 opnd, imm 1469 // trunc.result = trunc shift.result to i16 1470 // 1471 // BB2: 1472 // ----> We will have an implicit truncate here if the architecture does 1473 // not have i16 compare. 1474 // cmp i16 trunc.result, opnd2 1475 // 1476 if (isa<TruncInst>(User) && shiftIsLegal 1477 // If the type of the truncate is legal, no trucate will be 1478 // introduced in other basic blocks. 1479 && 1480 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1481 MadeChange = 1482 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1483 1484 continue; 1485 } 1486 // If we have already inserted a shift into this block, use it. 1487 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1488 1489 if (!InsertedShift) { 1490 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1491 assert(InsertPt != UserBB->end()); 1492 1493 if (ShiftI->getOpcode() == Instruction::AShr) 1494 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1495 "", &*InsertPt); 1496 else 1497 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1498 "", &*InsertPt); 1499 1500 MadeChange = true; 1501 } 1502 1503 // Replace a use of the shift with a use of the new shift. 1504 TheUse = InsertedShift; 1505 } 1506 1507 // If we removed all uses, nuke the shift. 1508 if (ShiftI->use_empty()) 1509 ShiftI->eraseFromParent(); 1510 1511 return MadeChange; 1512 } 1513 1514 // Translate a masked load intrinsic like 1515 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1516 // <16 x i1> %mask, <16 x i32> %passthru) 1517 // to a chain of basic blocks, with loading element one-by-one if 1518 // the appropriate mask bit is set 1519 // 1520 // %1 = bitcast i8* %addr to i32* 1521 // %2 = extractelement <16 x i1> %mask, i32 0 1522 // %3 = icmp eq i1 %2, true 1523 // br i1 %3, label %cond.load, label %else 1524 // 1525 //cond.load: ; preds = %0 1526 // %4 = getelementptr i32* %1, i32 0 1527 // %5 = load i32* %4 1528 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1529 // br label %else 1530 // 1531 //else: ; preds = %0, %cond.load 1532 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1533 // %7 = extractelement <16 x i1> %mask, i32 1 1534 // %8 = icmp eq i1 %7, true 1535 // br i1 %8, label %cond.load1, label %else2 1536 // 1537 //cond.load1: ; preds = %else 1538 // %9 = getelementptr i32* %1, i32 1 1539 // %10 = load i32* %9 1540 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1541 // br label %else2 1542 // 1543 //else2: ; preds = %else, %cond.load1 1544 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1545 // %12 = extractelement <16 x i1> %mask, i32 2 1546 // %13 = icmp eq i1 %12, true 1547 // br i1 %13, label %cond.load4, label %else5 1548 // 1549 static void scalarizeMaskedLoad(CallInst *CI) { 1550 Value *Ptr = CI->getArgOperand(0); 1551 Value *Alignment = CI->getArgOperand(1); 1552 Value *Mask = CI->getArgOperand(2); 1553 Value *Src0 = CI->getArgOperand(3); 1554 1555 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1556 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1557 assert(VecType && "Unexpected return type of masked load intrinsic"); 1558 1559 Type *EltTy = CI->getType()->getVectorElementType(); 1560 1561 IRBuilder<> Builder(CI->getContext()); 1562 Instruction *InsertPt = CI; 1563 BasicBlock *IfBlock = CI->getParent(); 1564 BasicBlock *CondBlock = nullptr; 1565 BasicBlock *PrevIfBlock = CI->getParent(); 1566 1567 Builder.SetInsertPoint(InsertPt); 1568 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1569 1570 // Short-cut if the mask is all-true. 1571 bool IsAllOnesMask = isa<Constant>(Mask) && 1572 cast<Constant>(Mask)->isAllOnesValue(); 1573 1574 if (IsAllOnesMask) { 1575 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1576 CI->replaceAllUsesWith(NewI); 1577 CI->eraseFromParent(); 1578 return; 1579 } 1580 1581 // Adjust alignment for the scalar instruction. 1582 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1583 // Bitcast %addr fron i8* to EltTy* 1584 Type *NewPtrType = 1585 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1586 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1587 unsigned VectorWidth = VecType->getNumElements(); 1588 1589 Value *UndefVal = UndefValue::get(VecType); 1590 1591 // The result vector 1592 Value *VResult = UndefVal; 1593 1594 if (isa<ConstantVector>(Mask)) { 1595 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1596 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1597 continue; 1598 Value *Gep = 1599 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1600 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1601 VResult = Builder.CreateInsertElement(VResult, Load, 1602 Builder.getInt32(Idx)); 1603 } 1604 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1605 CI->replaceAllUsesWith(NewI); 1606 CI->eraseFromParent(); 1607 return; 1608 } 1609 1610 PHINode *Phi = nullptr; 1611 Value *PrevPhi = UndefVal; 1612 1613 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1614 1615 // Fill the "else" block, created in the previous iteration 1616 // 1617 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1618 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1619 // %to_load = icmp eq i1 %mask_1, true 1620 // br i1 %to_load, label %cond.load, label %else 1621 // 1622 if (Idx > 0) { 1623 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1624 Phi->addIncoming(VResult, CondBlock); 1625 Phi->addIncoming(PrevPhi, PrevIfBlock); 1626 PrevPhi = Phi; 1627 VResult = Phi; 1628 } 1629 1630 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1631 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1632 ConstantInt::get(Predicate->getType(), 1)); 1633 1634 // Create "cond" block 1635 // 1636 // %EltAddr = getelementptr i32* %1, i32 0 1637 // %Elt = load i32* %EltAddr 1638 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1639 // 1640 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1641 Builder.SetInsertPoint(InsertPt); 1642 1643 Value *Gep = 1644 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1645 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1646 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1647 1648 // Create "else" block, fill it in the next iteration 1649 BasicBlock *NewIfBlock = 1650 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1651 Builder.SetInsertPoint(InsertPt); 1652 Instruction *OldBr = IfBlock->getTerminator(); 1653 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1654 OldBr->eraseFromParent(); 1655 PrevIfBlock = IfBlock; 1656 IfBlock = NewIfBlock; 1657 } 1658 1659 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1660 Phi->addIncoming(VResult, CondBlock); 1661 Phi->addIncoming(PrevPhi, PrevIfBlock); 1662 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1663 CI->replaceAllUsesWith(NewI); 1664 CI->eraseFromParent(); 1665 } 1666 1667 // Translate a masked store intrinsic, like 1668 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1669 // <16 x i1> %mask) 1670 // to a chain of basic blocks, that stores element one-by-one if 1671 // the appropriate mask bit is set 1672 // 1673 // %1 = bitcast i8* %addr to i32* 1674 // %2 = extractelement <16 x i1> %mask, i32 0 1675 // %3 = icmp eq i1 %2, true 1676 // br i1 %3, label %cond.store, label %else 1677 // 1678 // cond.store: ; preds = %0 1679 // %4 = extractelement <16 x i32> %val, i32 0 1680 // %5 = getelementptr i32* %1, i32 0 1681 // store i32 %4, i32* %5 1682 // br label %else 1683 // 1684 // else: ; preds = %0, %cond.store 1685 // %6 = extractelement <16 x i1> %mask, i32 1 1686 // %7 = icmp eq i1 %6, true 1687 // br i1 %7, label %cond.store1, label %else2 1688 // 1689 // cond.store1: ; preds = %else 1690 // %8 = extractelement <16 x i32> %val, i32 1 1691 // %9 = getelementptr i32* %1, i32 1 1692 // store i32 %8, i32* %9 1693 // br label %else2 1694 // . . . 1695 static void scalarizeMaskedStore(CallInst *CI) { 1696 Value *Src = CI->getArgOperand(0); 1697 Value *Ptr = CI->getArgOperand(1); 1698 Value *Alignment = CI->getArgOperand(2); 1699 Value *Mask = CI->getArgOperand(3); 1700 1701 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1702 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1703 assert(VecType && "Unexpected data type in masked store intrinsic"); 1704 1705 Type *EltTy = VecType->getElementType(); 1706 1707 IRBuilder<> Builder(CI->getContext()); 1708 Instruction *InsertPt = CI; 1709 BasicBlock *IfBlock = CI->getParent(); 1710 Builder.SetInsertPoint(InsertPt); 1711 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1712 1713 // Short-cut if the mask is all-true. 1714 bool IsAllOnesMask = isa<Constant>(Mask) && 1715 cast<Constant>(Mask)->isAllOnesValue(); 1716 1717 if (IsAllOnesMask) { 1718 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1719 CI->eraseFromParent(); 1720 return; 1721 } 1722 1723 // Adjust alignment for the scalar instruction. 1724 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1725 // Bitcast %addr fron i8* to EltTy* 1726 Type *NewPtrType = 1727 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1728 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1729 unsigned VectorWidth = VecType->getNumElements(); 1730 1731 if (isa<ConstantVector>(Mask)) { 1732 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1733 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1734 continue; 1735 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1736 Value *Gep = 1737 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1738 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1739 } 1740 CI->eraseFromParent(); 1741 return; 1742 } 1743 1744 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1745 1746 // Fill the "else" block, created in the previous iteration 1747 // 1748 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1749 // %to_store = icmp eq i1 %mask_1, true 1750 // br i1 %to_store, label %cond.store, label %else 1751 // 1752 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1753 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1754 ConstantInt::get(Predicate->getType(), 1)); 1755 1756 // Create "cond" block 1757 // 1758 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1759 // %EltAddr = getelementptr i32* %1, i32 0 1760 // %store i32 %OneElt, i32* %EltAddr 1761 // 1762 BasicBlock *CondBlock = 1763 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1764 Builder.SetInsertPoint(InsertPt); 1765 1766 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1767 Value *Gep = 1768 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1769 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1770 1771 // Create "else" block, fill it in the next iteration 1772 BasicBlock *NewIfBlock = 1773 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1774 Builder.SetInsertPoint(InsertPt); 1775 Instruction *OldBr = IfBlock->getTerminator(); 1776 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1777 OldBr->eraseFromParent(); 1778 IfBlock = NewIfBlock; 1779 } 1780 CI->eraseFromParent(); 1781 } 1782 1783 // Translate a masked gather intrinsic like 1784 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1785 // <16 x i1> %Mask, <16 x i32> %Src) 1786 // to a chain of basic blocks, with loading element one-by-one if 1787 // the appropriate mask bit is set 1788 // 1789 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1790 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1791 // % ToLoad0 = icmp eq i1 % Mask0, true 1792 // br i1 % ToLoad0, label %cond.load, label %else 1793 // 1794 // cond.load: 1795 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1796 // % Load0 = load i32, i32* % Ptr0, align 4 1797 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1798 // br label %else 1799 // 1800 // else: 1801 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1802 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1803 // % ToLoad1 = icmp eq i1 % Mask1, true 1804 // br i1 % ToLoad1, label %cond.load1, label %else2 1805 // 1806 // cond.load1: 1807 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1808 // % Load1 = load i32, i32* % Ptr1, align 4 1809 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1810 // br label %else2 1811 // . . . 1812 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1813 // ret <16 x i32> %Result 1814 static void scalarizeMaskedGather(CallInst *CI) { 1815 Value *Ptrs = CI->getArgOperand(0); 1816 Value *Alignment = CI->getArgOperand(1); 1817 Value *Mask = CI->getArgOperand(2); 1818 Value *Src0 = CI->getArgOperand(3); 1819 1820 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1821 1822 assert(VecType && "Unexpected return type of masked load intrinsic"); 1823 1824 IRBuilder<> Builder(CI->getContext()); 1825 Instruction *InsertPt = CI; 1826 BasicBlock *IfBlock = CI->getParent(); 1827 BasicBlock *CondBlock = nullptr; 1828 BasicBlock *PrevIfBlock = CI->getParent(); 1829 Builder.SetInsertPoint(InsertPt); 1830 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1831 1832 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1833 1834 Value *UndefVal = UndefValue::get(VecType); 1835 1836 // The result vector 1837 Value *VResult = UndefVal; 1838 unsigned VectorWidth = VecType->getNumElements(); 1839 1840 // Shorten the way if the mask is a vector of constants. 1841 bool IsConstMask = isa<ConstantVector>(Mask); 1842 1843 if (IsConstMask) { 1844 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1845 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1846 continue; 1847 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1848 "Ptr" + Twine(Idx)); 1849 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1850 "Load" + Twine(Idx)); 1851 VResult = Builder.CreateInsertElement(VResult, Load, 1852 Builder.getInt32(Idx), 1853 "Res" + Twine(Idx)); 1854 } 1855 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1856 CI->replaceAllUsesWith(NewI); 1857 CI->eraseFromParent(); 1858 return; 1859 } 1860 1861 PHINode *Phi = nullptr; 1862 Value *PrevPhi = UndefVal; 1863 1864 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1865 1866 // Fill the "else" block, created in the previous iteration 1867 // 1868 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1869 // %ToLoad1 = icmp eq i1 %Mask1, true 1870 // br i1 %ToLoad1, label %cond.load, label %else 1871 // 1872 if (Idx > 0) { 1873 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1874 Phi->addIncoming(VResult, CondBlock); 1875 Phi->addIncoming(PrevPhi, PrevIfBlock); 1876 PrevPhi = Phi; 1877 VResult = Phi; 1878 } 1879 1880 Value *Predicate = Builder.CreateExtractElement(Mask, 1881 Builder.getInt32(Idx), 1882 "Mask" + Twine(Idx)); 1883 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1884 ConstantInt::get(Predicate->getType(), 1), 1885 "ToLoad" + Twine(Idx)); 1886 1887 // Create "cond" block 1888 // 1889 // %EltAddr = getelementptr i32* %1, i32 0 1890 // %Elt = load i32* %EltAddr 1891 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1892 // 1893 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1894 Builder.SetInsertPoint(InsertPt); 1895 1896 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1897 "Ptr" + Twine(Idx)); 1898 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1899 "Load" + Twine(Idx)); 1900 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1901 "Res" + Twine(Idx)); 1902 1903 // Create "else" block, fill it in the next iteration 1904 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1905 Builder.SetInsertPoint(InsertPt); 1906 Instruction *OldBr = IfBlock->getTerminator(); 1907 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1908 OldBr->eraseFromParent(); 1909 PrevIfBlock = IfBlock; 1910 IfBlock = NewIfBlock; 1911 } 1912 1913 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1914 Phi->addIncoming(VResult, CondBlock); 1915 Phi->addIncoming(PrevPhi, PrevIfBlock); 1916 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1917 CI->replaceAllUsesWith(NewI); 1918 CI->eraseFromParent(); 1919 } 1920 1921 // Translate a masked scatter intrinsic, like 1922 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1923 // <16 x i1> %Mask) 1924 // to a chain of basic blocks, that stores element one-by-one if 1925 // the appropriate mask bit is set. 1926 // 1927 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1928 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1929 // % ToStore0 = icmp eq i1 % Mask0, true 1930 // br i1 %ToStore0, label %cond.store, label %else 1931 // 1932 // cond.store: 1933 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1934 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1935 // store i32 %Elt0, i32* % Ptr0, align 4 1936 // br label %else 1937 // 1938 // else: 1939 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1940 // % ToStore1 = icmp eq i1 % Mask1, true 1941 // br i1 % ToStore1, label %cond.store1, label %else2 1942 // 1943 // cond.store1: 1944 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1945 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1946 // store i32 % Elt1, i32* % Ptr1, align 4 1947 // br label %else2 1948 // . . . 1949 static void scalarizeMaskedScatter(CallInst *CI) { 1950 Value *Src = CI->getArgOperand(0); 1951 Value *Ptrs = CI->getArgOperand(1); 1952 Value *Alignment = CI->getArgOperand(2); 1953 Value *Mask = CI->getArgOperand(3); 1954 1955 assert(isa<VectorType>(Src->getType()) && 1956 "Unexpected data type in masked scatter intrinsic"); 1957 assert(isa<VectorType>(Ptrs->getType()) && 1958 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1959 "Vector of pointers is expected in masked scatter intrinsic"); 1960 1961 IRBuilder<> Builder(CI->getContext()); 1962 Instruction *InsertPt = CI; 1963 BasicBlock *IfBlock = CI->getParent(); 1964 Builder.SetInsertPoint(InsertPt); 1965 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1966 1967 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1968 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1969 1970 // Shorten the way if the mask is a vector of constants. 1971 bool IsConstMask = isa<ConstantVector>(Mask); 1972 1973 if (IsConstMask) { 1974 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1975 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1976 continue; 1977 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1978 "Elt" + Twine(Idx)); 1979 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1980 "Ptr" + Twine(Idx)); 1981 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1982 } 1983 CI->eraseFromParent(); 1984 return; 1985 } 1986 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1987 // Fill the "else" block, created in the previous iteration 1988 // 1989 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1990 // % ToStore = icmp eq i1 % Mask1, true 1991 // br i1 % ToStore, label %cond.store, label %else 1992 // 1993 Value *Predicate = Builder.CreateExtractElement(Mask, 1994 Builder.getInt32(Idx), 1995 "Mask" + Twine(Idx)); 1996 Value *Cmp = 1997 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1998 ConstantInt::get(Predicate->getType(), 1), 1999 "ToStore" + Twine(Idx)); 2000 2001 // Create "cond" block 2002 // 2003 // % Elt1 = extractelement <16 x i32> %Src, i32 1 2004 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 2005 // %store i32 % Elt1, i32* % Ptr1 2006 // 2007 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2008 Builder.SetInsertPoint(InsertPt); 2009 2010 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 2011 "Elt" + Twine(Idx)); 2012 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 2013 "Ptr" + Twine(Idx)); 2014 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 2015 2016 // Create "else" block, fill it in the next iteration 2017 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2018 Builder.SetInsertPoint(InsertPt); 2019 Instruction *OldBr = IfBlock->getTerminator(); 2020 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2021 OldBr->eraseFromParent(); 2022 IfBlock = NewIfBlock; 2023 } 2024 CI->eraseFromParent(); 2025 } 2026 2027 /// If counting leading or trailing zeros is an expensive operation and a zero 2028 /// input is defined, add a check for zero to avoid calling the intrinsic. 2029 /// 2030 /// We want to transform: 2031 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2032 /// 2033 /// into: 2034 /// entry: 2035 /// %cmpz = icmp eq i64 %A, 0 2036 /// br i1 %cmpz, label %cond.end, label %cond.false 2037 /// cond.false: 2038 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2039 /// br label %cond.end 2040 /// cond.end: 2041 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2042 /// 2043 /// If the transform is performed, return true and set ModifiedDT to true. 2044 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2045 const TargetLowering *TLI, 2046 const DataLayout *DL, 2047 bool &ModifiedDT) { 2048 if (!TLI || !DL) 2049 return false; 2050 2051 // If a zero input is undefined, it doesn't make sense to despeculate that. 2052 if (match(CountZeros->getOperand(1), m_One())) 2053 return false; 2054 2055 // If it's cheap to speculate, there's nothing to do. 2056 auto IntrinsicID = CountZeros->getIntrinsicID(); 2057 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2058 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2059 return false; 2060 2061 // Only handle legal scalar cases. Anything else requires too much work. 2062 Type *Ty = CountZeros->getType(); 2063 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2064 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2065 return false; 2066 2067 // The intrinsic will be sunk behind a compare against zero and branch. 2068 BasicBlock *StartBlock = CountZeros->getParent(); 2069 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2070 2071 // Create another block after the count zero intrinsic. A PHI will be added 2072 // in this block to select the result of the intrinsic or the bit-width 2073 // constant if the input to the intrinsic is zero. 2074 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2075 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2076 2077 // Set up a builder to create a compare, conditional branch, and PHI. 2078 IRBuilder<> Builder(CountZeros->getContext()); 2079 Builder.SetInsertPoint(StartBlock->getTerminator()); 2080 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2081 2082 // Replace the unconditional branch that was created by the first split with 2083 // a compare against zero and a conditional branch. 2084 Value *Zero = Constant::getNullValue(Ty); 2085 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2086 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2087 StartBlock->getTerminator()->eraseFromParent(); 2088 2089 // Create a PHI in the end block to select either the output of the intrinsic 2090 // or the bit width of the operand. 2091 Builder.SetInsertPoint(&EndBlock->front()); 2092 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2093 CountZeros->replaceAllUsesWith(PN); 2094 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2095 PN->addIncoming(BitWidth, StartBlock); 2096 PN->addIncoming(CountZeros, CallBlock); 2097 2098 // We are explicitly handling the zero case, so we can set the intrinsic's 2099 // undefined zero argument to 'true'. This will also prevent reprocessing the 2100 // intrinsic; we only despeculate when a zero input is defined. 2101 CountZeros->setArgOperand(1, Builder.getTrue()); 2102 ModifiedDT = true; 2103 return true; 2104 } 2105 2106 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 2107 BasicBlock *BB = CI->getParent(); 2108 2109 // Lower inline assembly if we can. 2110 // If we found an inline asm expession, and if the target knows how to 2111 // lower it to normal LLVM code, do so now. 2112 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2113 if (TLI->ExpandInlineAsm(CI)) { 2114 // Avoid invalidating the iterator. 2115 CurInstIterator = BB->begin(); 2116 // Avoid processing instructions out of order, which could cause 2117 // reuse before a value is defined. 2118 SunkAddrs.clear(); 2119 return true; 2120 } 2121 // Sink address computing for memory operands into the block. 2122 if (optimizeInlineAsmInst(CI)) 2123 return true; 2124 } 2125 2126 // Align the pointer arguments to this call if the target thinks it's a good 2127 // idea 2128 unsigned MinSize, PrefAlign; 2129 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2130 for (auto &Arg : CI->arg_operands()) { 2131 // We want to align both objects whose address is used directly and 2132 // objects whose address is used in casts and GEPs, though it only makes 2133 // sense for GEPs if the offset is a multiple of the desired alignment and 2134 // if size - offset meets the size threshold. 2135 if (!Arg->getType()->isPointerTy()) 2136 continue; 2137 APInt Offset(DL->getPointerSizeInBits( 2138 cast<PointerType>(Arg->getType())->getAddressSpace()), 2139 0); 2140 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2141 uint64_t Offset2 = Offset.getLimitedValue(); 2142 if ((Offset2 & (PrefAlign-1)) != 0) 2143 continue; 2144 AllocaInst *AI; 2145 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2146 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2147 AI->setAlignment(PrefAlign); 2148 // Global variables can only be aligned if they are defined in this 2149 // object (i.e. they are uniquely initialized in this object), and 2150 // over-aligning global variables that have an explicit section is 2151 // forbidden. 2152 GlobalVariable *GV; 2153 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2154 GV->getPointerAlignment(*DL) < PrefAlign && 2155 DL->getTypeAllocSize(GV->getValueType()) >= 2156 MinSize + Offset2) 2157 GV->setAlignment(PrefAlign); 2158 } 2159 // If this is a memcpy (or similar) then we may be able to improve the 2160 // alignment 2161 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2162 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2163 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2164 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2165 if (Align > MI->getAlignment()) 2166 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2167 } 2168 } 2169 2170 // If we have a cold call site, try to sink addressing computation into the 2171 // cold block. This interacts with our handling for loads and stores to 2172 // ensure that we can fold all uses of a potential addressing computation 2173 // into their uses. TODO: generalize this to work over profiling data 2174 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2175 for (auto &Arg : CI->arg_operands()) { 2176 if (!Arg->getType()->isPointerTy()) 2177 continue; 2178 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2179 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2180 } 2181 2182 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2183 if (II) { 2184 switch (II->getIntrinsicID()) { 2185 default: break; 2186 case Intrinsic::objectsize: { 2187 // Lower all uses of llvm.objectsize.* 2188 ConstantInt *RetVal = 2189 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2190 // Substituting this can cause recursive simplifications, which can 2191 // invalidate our iterator. Use a WeakVH to hold onto it in case this 2192 // happens. 2193 Value *CurValue = &*CurInstIterator; 2194 WeakVH IterHandle(CurValue); 2195 2196 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2197 2198 // If the iterator instruction was recursively deleted, start over at the 2199 // start of the block. 2200 if (IterHandle != CurValue) { 2201 CurInstIterator = BB->begin(); 2202 SunkAddrs.clear(); 2203 } 2204 return true; 2205 } 2206 case Intrinsic::masked_load: { 2207 // Scalarize unsupported vector masked load 2208 if (!TTI->isLegalMaskedLoad(CI->getType())) { 2209 scalarizeMaskedLoad(CI); 2210 ModifiedDT = true; 2211 return true; 2212 } 2213 return false; 2214 } 2215 case Intrinsic::masked_store: { 2216 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 2217 scalarizeMaskedStore(CI); 2218 ModifiedDT = true; 2219 return true; 2220 } 2221 return false; 2222 } 2223 case Intrinsic::masked_gather: { 2224 if (!TTI->isLegalMaskedGather(CI->getType())) { 2225 scalarizeMaskedGather(CI); 2226 ModifiedDT = true; 2227 return true; 2228 } 2229 return false; 2230 } 2231 case Intrinsic::masked_scatter: { 2232 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2233 scalarizeMaskedScatter(CI); 2234 ModifiedDT = true; 2235 return true; 2236 } 2237 return false; 2238 } 2239 case Intrinsic::aarch64_stlxr: 2240 case Intrinsic::aarch64_stxr: { 2241 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2242 if (!ExtVal || !ExtVal->hasOneUse() || 2243 ExtVal->getParent() == CI->getParent()) 2244 return false; 2245 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2246 ExtVal->moveBefore(CI); 2247 // Mark this instruction as "inserted by CGP", so that other 2248 // optimizations don't touch it. 2249 InsertedInsts.insert(ExtVal); 2250 return true; 2251 } 2252 case Intrinsic::invariant_group_barrier: 2253 II->replaceAllUsesWith(II->getArgOperand(0)); 2254 II->eraseFromParent(); 2255 return true; 2256 2257 case Intrinsic::cttz: 2258 case Intrinsic::ctlz: 2259 // If counting zeros is expensive, try to avoid it. 2260 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2261 } 2262 2263 if (TLI) { 2264 SmallVector<Value*, 2> PtrOps; 2265 Type *AccessTy; 2266 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2267 while (!PtrOps.empty()) { 2268 Value *PtrVal = PtrOps.pop_back_val(); 2269 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2270 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2271 return true; 2272 } 2273 } 2274 } 2275 2276 // From here on out we're working with named functions. 2277 if (!CI->getCalledFunction()) return false; 2278 2279 // Lower all default uses of _chk calls. This is very similar 2280 // to what InstCombineCalls does, but here we are only lowering calls 2281 // to fortified library functions (e.g. __memcpy_chk) that have the default 2282 // "don't know" as the objectsize. Anything else should be left alone. 2283 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2284 if (Value *V = Simplifier.optimizeCall(CI)) { 2285 CI->replaceAllUsesWith(V); 2286 CI->eraseFromParent(); 2287 return true; 2288 } 2289 return false; 2290 } 2291 2292 /// Look for opportunities to duplicate return instructions to the predecessor 2293 /// to enable tail call optimizations. The case it is currently looking for is: 2294 /// @code 2295 /// bb0: 2296 /// %tmp0 = tail call i32 @f0() 2297 /// br label %return 2298 /// bb1: 2299 /// %tmp1 = tail call i32 @f1() 2300 /// br label %return 2301 /// bb2: 2302 /// %tmp2 = tail call i32 @f2() 2303 /// br label %return 2304 /// return: 2305 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2306 /// ret i32 %retval 2307 /// @endcode 2308 /// 2309 /// => 2310 /// 2311 /// @code 2312 /// bb0: 2313 /// %tmp0 = tail call i32 @f0() 2314 /// ret i32 %tmp0 2315 /// bb1: 2316 /// %tmp1 = tail call i32 @f1() 2317 /// ret i32 %tmp1 2318 /// bb2: 2319 /// %tmp2 = tail call i32 @f2() 2320 /// ret i32 %tmp2 2321 /// @endcode 2322 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2323 if (!TLI) 2324 return false; 2325 2326 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2327 if (!RetI) 2328 return false; 2329 2330 PHINode *PN = nullptr; 2331 BitCastInst *BCI = nullptr; 2332 Value *V = RetI->getReturnValue(); 2333 if (V) { 2334 BCI = dyn_cast<BitCastInst>(V); 2335 if (BCI) 2336 V = BCI->getOperand(0); 2337 2338 PN = dyn_cast<PHINode>(V); 2339 if (!PN) 2340 return false; 2341 } 2342 2343 if (PN && PN->getParent() != BB) 2344 return false; 2345 2346 // Make sure there are no instructions between the PHI and return, or that the 2347 // return is the first instruction in the block. 2348 if (PN) { 2349 BasicBlock::iterator BI = BB->begin(); 2350 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2351 if (&*BI == BCI) 2352 // Also skip over the bitcast. 2353 ++BI; 2354 if (&*BI != RetI) 2355 return false; 2356 } else { 2357 BasicBlock::iterator BI = BB->begin(); 2358 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2359 if (&*BI != RetI) 2360 return false; 2361 } 2362 2363 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2364 /// call. 2365 const Function *F = BB->getParent(); 2366 SmallVector<CallInst*, 4> TailCalls; 2367 if (PN) { 2368 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2369 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2370 // Make sure the phi value is indeed produced by the tail call. 2371 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2372 TLI->mayBeEmittedAsTailCall(CI) && 2373 attributesPermitTailCall(F, CI, RetI, *TLI)) 2374 TailCalls.push_back(CI); 2375 } 2376 } else { 2377 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2378 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2379 if (!VisitedBBs.insert(*PI).second) 2380 continue; 2381 2382 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2383 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2384 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2385 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2386 if (RI == RE) 2387 continue; 2388 2389 CallInst *CI = dyn_cast<CallInst>(&*RI); 2390 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2391 attributesPermitTailCall(F, CI, RetI, *TLI)) 2392 TailCalls.push_back(CI); 2393 } 2394 } 2395 2396 bool Changed = false; 2397 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2398 CallInst *CI = TailCalls[i]; 2399 CallSite CS(CI); 2400 2401 // Conservatively require the attributes of the call to match those of the 2402 // return. Ignore noalias because it doesn't affect the call sequence. 2403 AttributeList CalleeAttrs = CS.getAttributes(); 2404 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2405 .removeAttribute(Attribute::NoAlias) != 2406 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 2407 .removeAttribute(Attribute::NoAlias)) 2408 continue; 2409 2410 // Make sure the call instruction is followed by an unconditional branch to 2411 // the return block. 2412 BasicBlock *CallBB = CI->getParent(); 2413 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2414 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2415 continue; 2416 2417 // Duplicate the return into CallBB. 2418 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2419 ModifiedDT = Changed = true; 2420 ++NumRetsDup; 2421 } 2422 2423 // If we eliminated all predecessors of the block, delete the block now. 2424 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2425 BB->eraseFromParent(); 2426 2427 return Changed; 2428 } 2429 2430 //===----------------------------------------------------------------------===// 2431 // Memory Optimization 2432 //===----------------------------------------------------------------------===// 2433 2434 namespace { 2435 2436 /// This is an extended version of TargetLowering::AddrMode 2437 /// which holds actual Value*'s for register values. 2438 struct ExtAddrMode : public TargetLowering::AddrMode { 2439 Value *BaseReg; 2440 Value *ScaledReg; 2441 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2442 void print(raw_ostream &OS) const; 2443 void dump() const; 2444 2445 bool operator==(const ExtAddrMode& O) const { 2446 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2447 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2448 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2449 } 2450 }; 2451 2452 #ifndef NDEBUG 2453 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2454 AM.print(OS); 2455 return OS; 2456 } 2457 #endif 2458 2459 void ExtAddrMode::print(raw_ostream &OS) const { 2460 bool NeedPlus = false; 2461 OS << "["; 2462 if (BaseGV) { 2463 OS << (NeedPlus ? " + " : "") 2464 << "GV:"; 2465 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2466 NeedPlus = true; 2467 } 2468 2469 if (BaseOffs) { 2470 OS << (NeedPlus ? " + " : "") 2471 << BaseOffs; 2472 NeedPlus = true; 2473 } 2474 2475 if (BaseReg) { 2476 OS << (NeedPlus ? " + " : "") 2477 << "Base:"; 2478 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2479 NeedPlus = true; 2480 } 2481 if (Scale) { 2482 OS << (NeedPlus ? " + " : "") 2483 << Scale << "*"; 2484 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2485 } 2486 2487 OS << ']'; 2488 } 2489 2490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2491 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2492 print(dbgs()); 2493 dbgs() << '\n'; 2494 } 2495 #endif 2496 2497 /// \brief This class provides transaction based operation on the IR. 2498 /// Every change made through this class is recorded in the internal state and 2499 /// can be undone (rollback) until commit is called. 2500 class TypePromotionTransaction { 2501 2502 /// \brief This represents the common interface of the individual transaction. 2503 /// Each class implements the logic for doing one specific modification on 2504 /// the IR via the TypePromotionTransaction. 2505 class TypePromotionAction { 2506 protected: 2507 /// The Instruction modified. 2508 Instruction *Inst; 2509 2510 public: 2511 /// \brief Constructor of the action. 2512 /// The constructor performs the related action on the IR. 2513 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2514 2515 virtual ~TypePromotionAction() {} 2516 2517 /// \brief Undo the modification done by this action. 2518 /// When this method is called, the IR must be in the same state as it was 2519 /// before this action was applied. 2520 /// \pre Undoing the action works if and only if the IR is in the exact same 2521 /// state as it was directly after this action was applied. 2522 virtual void undo() = 0; 2523 2524 /// \brief Advocate every change made by this action. 2525 /// When the results on the IR of the action are to be kept, it is important 2526 /// to call this function, otherwise hidden information may be kept forever. 2527 virtual void commit() { 2528 // Nothing to be done, this action is not doing anything. 2529 } 2530 }; 2531 2532 /// \brief Utility to remember the position of an instruction. 2533 class InsertionHandler { 2534 /// Position of an instruction. 2535 /// Either an instruction: 2536 /// - Is the first in a basic block: BB is used. 2537 /// - Has a previous instructon: PrevInst is used. 2538 union { 2539 Instruction *PrevInst; 2540 BasicBlock *BB; 2541 } Point; 2542 /// Remember whether or not the instruction had a previous instruction. 2543 bool HasPrevInstruction; 2544 2545 public: 2546 /// \brief Record the position of \p Inst. 2547 InsertionHandler(Instruction *Inst) { 2548 BasicBlock::iterator It = Inst->getIterator(); 2549 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2550 if (HasPrevInstruction) 2551 Point.PrevInst = &*--It; 2552 else 2553 Point.BB = Inst->getParent(); 2554 } 2555 2556 /// \brief Insert \p Inst at the recorded position. 2557 void insert(Instruction *Inst) { 2558 if (HasPrevInstruction) { 2559 if (Inst->getParent()) 2560 Inst->removeFromParent(); 2561 Inst->insertAfter(Point.PrevInst); 2562 } else { 2563 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2564 if (Inst->getParent()) 2565 Inst->moveBefore(Position); 2566 else 2567 Inst->insertBefore(Position); 2568 } 2569 } 2570 }; 2571 2572 /// \brief Move an instruction before another. 2573 class InstructionMoveBefore : public TypePromotionAction { 2574 /// Original position of the instruction. 2575 InsertionHandler Position; 2576 2577 public: 2578 /// \brief Move \p Inst before \p Before. 2579 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2580 : TypePromotionAction(Inst), Position(Inst) { 2581 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2582 Inst->moveBefore(Before); 2583 } 2584 2585 /// \brief Move the instruction back to its original position. 2586 void undo() override { 2587 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2588 Position.insert(Inst); 2589 } 2590 }; 2591 2592 /// \brief Set the operand of an instruction with a new value. 2593 class OperandSetter : public TypePromotionAction { 2594 /// Original operand of the instruction. 2595 Value *Origin; 2596 /// Index of the modified instruction. 2597 unsigned Idx; 2598 2599 public: 2600 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2601 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2602 : TypePromotionAction(Inst), Idx(Idx) { 2603 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2604 << "for:" << *Inst << "\n" 2605 << "with:" << *NewVal << "\n"); 2606 Origin = Inst->getOperand(Idx); 2607 Inst->setOperand(Idx, NewVal); 2608 } 2609 2610 /// \brief Restore the original value of the instruction. 2611 void undo() override { 2612 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2613 << "for: " << *Inst << "\n" 2614 << "with: " << *Origin << "\n"); 2615 Inst->setOperand(Idx, Origin); 2616 } 2617 }; 2618 2619 /// \brief Hide the operands of an instruction. 2620 /// Do as if this instruction was not using any of its operands. 2621 class OperandsHider : public TypePromotionAction { 2622 /// The list of original operands. 2623 SmallVector<Value *, 4> OriginalValues; 2624 2625 public: 2626 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2627 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2628 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2629 unsigned NumOpnds = Inst->getNumOperands(); 2630 OriginalValues.reserve(NumOpnds); 2631 for (unsigned It = 0; It < NumOpnds; ++It) { 2632 // Save the current operand. 2633 Value *Val = Inst->getOperand(It); 2634 OriginalValues.push_back(Val); 2635 // Set a dummy one. 2636 // We could use OperandSetter here, but that would imply an overhead 2637 // that we are not willing to pay. 2638 Inst->setOperand(It, UndefValue::get(Val->getType())); 2639 } 2640 } 2641 2642 /// \brief Restore the original list of uses. 2643 void undo() override { 2644 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2645 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2646 Inst->setOperand(It, OriginalValues[It]); 2647 } 2648 }; 2649 2650 /// \brief Build a truncate instruction. 2651 class TruncBuilder : public TypePromotionAction { 2652 Value *Val; 2653 public: 2654 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2655 /// result. 2656 /// trunc Opnd to Ty. 2657 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2658 IRBuilder<> Builder(Opnd); 2659 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2660 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2661 } 2662 2663 /// \brief Get the built value. 2664 Value *getBuiltValue() { return Val; } 2665 2666 /// \brief Remove the built instruction. 2667 void undo() override { 2668 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2669 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2670 IVal->eraseFromParent(); 2671 } 2672 }; 2673 2674 /// \brief Build a sign extension instruction. 2675 class SExtBuilder : public TypePromotionAction { 2676 Value *Val; 2677 public: 2678 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2679 /// result. 2680 /// sext Opnd to Ty. 2681 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2682 : TypePromotionAction(InsertPt) { 2683 IRBuilder<> Builder(InsertPt); 2684 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2685 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2686 } 2687 2688 /// \brief Get the built value. 2689 Value *getBuiltValue() { return Val; } 2690 2691 /// \brief Remove the built instruction. 2692 void undo() override { 2693 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2694 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2695 IVal->eraseFromParent(); 2696 } 2697 }; 2698 2699 /// \brief Build a zero extension instruction. 2700 class ZExtBuilder : public TypePromotionAction { 2701 Value *Val; 2702 public: 2703 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2704 /// result. 2705 /// zext Opnd to Ty. 2706 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2707 : TypePromotionAction(InsertPt) { 2708 IRBuilder<> Builder(InsertPt); 2709 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2710 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2711 } 2712 2713 /// \brief Get the built value. 2714 Value *getBuiltValue() { return Val; } 2715 2716 /// \brief Remove the built instruction. 2717 void undo() override { 2718 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2719 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2720 IVal->eraseFromParent(); 2721 } 2722 }; 2723 2724 /// \brief Mutate an instruction to another type. 2725 class TypeMutator : public TypePromotionAction { 2726 /// Record the original type. 2727 Type *OrigTy; 2728 2729 public: 2730 /// \brief Mutate the type of \p Inst into \p NewTy. 2731 TypeMutator(Instruction *Inst, Type *NewTy) 2732 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2733 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2734 << "\n"); 2735 Inst->mutateType(NewTy); 2736 } 2737 2738 /// \brief Mutate the instruction back to its original type. 2739 void undo() override { 2740 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2741 << "\n"); 2742 Inst->mutateType(OrigTy); 2743 } 2744 }; 2745 2746 /// \brief Replace the uses of an instruction by another instruction. 2747 class UsesReplacer : public TypePromotionAction { 2748 /// Helper structure to keep track of the replaced uses. 2749 struct InstructionAndIdx { 2750 /// The instruction using the instruction. 2751 Instruction *Inst; 2752 /// The index where this instruction is used for Inst. 2753 unsigned Idx; 2754 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2755 : Inst(Inst), Idx(Idx) {} 2756 }; 2757 2758 /// Keep track of the original uses (pair Instruction, Index). 2759 SmallVector<InstructionAndIdx, 4> OriginalUses; 2760 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2761 2762 public: 2763 /// \brief Replace all the use of \p Inst by \p New. 2764 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2765 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2766 << "\n"); 2767 // Record the original uses. 2768 for (Use &U : Inst->uses()) { 2769 Instruction *UserI = cast<Instruction>(U.getUser()); 2770 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2771 } 2772 // Now, we can replace the uses. 2773 Inst->replaceAllUsesWith(New); 2774 } 2775 2776 /// \brief Reassign the original uses of Inst to Inst. 2777 void undo() override { 2778 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2779 for (use_iterator UseIt = OriginalUses.begin(), 2780 EndIt = OriginalUses.end(); 2781 UseIt != EndIt; ++UseIt) { 2782 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2783 } 2784 } 2785 }; 2786 2787 /// \brief Remove an instruction from the IR. 2788 class InstructionRemover : public TypePromotionAction { 2789 /// Original position of the instruction. 2790 InsertionHandler Inserter; 2791 /// Helper structure to hide all the link to the instruction. In other 2792 /// words, this helps to do as if the instruction was removed. 2793 OperandsHider Hider; 2794 /// Keep track of the uses replaced, if any. 2795 UsesReplacer *Replacer; 2796 2797 public: 2798 /// \brief Remove all reference of \p Inst and optinally replace all its 2799 /// uses with New. 2800 /// \pre If !Inst->use_empty(), then New != nullptr 2801 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2802 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2803 Replacer(nullptr) { 2804 if (New) 2805 Replacer = new UsesReplacer(Inst, New); 2806 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2807 Inst->removeFromParent(); 2808 } 2809 2810 ~InstructionRemover() override { delete Replacer; } 2811 2812 /// \brief Really remove the instruction. 2813 void commit() override { delete Inst; } 2814 2815 /// \brief Resurrect the instruction and reassign it to the proper uses if 2816 /// new value was provided when build this action. 2817 void undo() override { 2818 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2819 Inserter.insert(Inst); 2820 if (Replacer) 2821 Replacer->undo(); 2822 Hider.undo(); 2823 } 2824 }; 2825 2826 public: 2827 /// Restoration point. 2828 /// The restoration point is a pointer to an action instead of an iterator 2829 /// because the iterator may be invalidated but not the pointer. 2830 typedef const TypePromotionAction *ConstRestorationPt; 2831 /// Advocate every changes made in that transaction. 2832 void commit(); 2833 /// Undo all the changes made after the given point. 2834 void rollback(ConstRestorationPt Point); 2835 /// Get the current restoration point. 2836 ConstRestorationPt getRestorationPoint() const; 2837 2838 /// \name API for IR modification with state keeping to support rollback. 2839 /// @{ 2840 /// Same as Instruction::setOperand. 2841 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2842 /// Same as Instruction::eraseFromParent. 2843 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2844 /// Same as Value::replaceAllUsesWith. 2845 void replaceAllUsesWith(Instruction *Inst, Value *New); 2846 /// Same as Value::mutateType. 2847 void mutateType(Instruction *Inst, Type *NewTy); 2848 /// Same as IRBuilder::createTrunc. 2849 Value *createTrunc(Instruction *Opnd, Type *Ty); 2850 /// Same as IRBuilder::createSExt. 2851 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2852 /// Same as IRBuilder::createZExt. 2853 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2854 /// Same as Instruction::moveBefore. 2855 void moveBefore(Instruction *Inst, Instruction *Before); 2856 /// @} 2857 2858 private: 2859 /// The ordered list of actions made so far. 2860 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2861 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2862 }; 2863 2864 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2865 Value *NewVal) { 2866 Actions.push_back( 2867 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2868 } 2869 2870 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2871 Value *NewVal) { 2872 Actions.push_back( 2873 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2874 } 2875 2876 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2877 Value *New) { 2878 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2879 } 2880 2881 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2882 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2883 } 2884 2885 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2886 Type *Ty) { 2887 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2888 Value *Val = Ptr->getBuiltValue(); 2889 Actions.push_back(std::move(Ptr)); 2890 return Val; 2891 } 2892 2893 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2894 Value *Opnd, Type *Ty) { 2895 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2896 Value *Val = Ptr->getBuiltValue(); 2897 Actions.push_back(std::move(Ptr)); 2898 return Val; 2899 } 2900 2901 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2902 Value *Opnd, Type *Ty) { 2903 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2904 Value *Val = Ptr->getBuiltValue(); 2905 Actions.push_back(std::move(Ptr)); 2906 return Val; 2907 } 2908 2909 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2910 Instruction *Before) { 2911 Actions.push_back( 2912 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2913 } 2914 2915 TypePromotionTransaction::ConstRestorationPt 2916 TypePromotionTransaction::getRestorationPoint() const { 2917 return !Actions.empty() ? Actions.back().get() : nullptr; 2918 } 2919 2920 void TypePromotionTransaction::commit() { 2921 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2922 ++It) 2923 (*It)->commit(); 2924 Actions.clear(); 2925 } 2926 2927 void TypePromotionTransaction::rollback( 2928 TypePromotionTransaction::ConstRestorationPt Point) { 2929 while (!Actions.empty() && Point != Actions.back().get()) { 2930 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2931 Curr->undo(); 2932 } 2933 } 2934 2935 /// \brief A helper class for matching addressing modes. 2936 /// 2937 /// This encapsulates the logic for matching the target-legal addressing modes. 2938 class AddressingModeMatcher { 2939 SmallVectorImpl<Instruction*> &AddrModeInsts; 2940 const TargetLowering &TLI; 2941 const TargetRegisterInfo &TRI; 2942 const DataLayout &DL; 2943 2944 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2945 /// the memory instruction that we're computing this address for. 2946 Type *AccessTy; 2947 unsigned AddrSpace; 2948 Instruction *MemoryInst; 2949 2950 /// This is the addressing mode that we're building up. This is 2951 /// part of the return value of this addressing mode matching stuff. 2952 ExtAddrMode &AddrMode; 2953 2954 /// The instructions inserted by other CodeGenPrepare optimizations. 2955 const SetOfInstrs &InsertedInsts; 2956 /// A map from the instructions to their type before promotion. 2957 InstrToOrigTy &PromotedInsts; 2958 /// The ongoing transaction where every action should be registered. 2959 TypePromotionTransaction &TPT; 2960 2961 /// This is set to true when we should not do profitability checks. 2962 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2963 bool IgnoreProfitability; 2964 2965 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2966 const TargetLowering &TLI, 2967 const TargetRegisterInfo &TRI, 2968 Type *AT, unsigned AS, 2969 Instruction *MI, ExtAddrMode &AM, 2970 const SetOfInstrs &InsertedInsts, 2971 InstrToOrigTy &PromotedInsts, 2972 TypePromotionTransaction &TPT) 2973 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2974 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2975 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2976 PromotedInsts(PromotedInsts), TPT(TPT) { 2977 IgnoreProfitability = false; 2978 } 2979 public: 2980 2981 /// Find the maximal addressing mode that a load/store of V can fold, 2982 /// give an access type of AccessTy. This returns a list of involved 2983 /// instructions in AddrModeInsts. 2984 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2985 /// optimizations. 2986 /// \p PromotedInsts maps the instructions to their type before promotion. 2987 /// \p The ongoing transaction where every action should be registered. 2988 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2989 Instruction *MemoryInst, 2990 SmallVectorImpl<Instruction*> &AddrModeInsts, 2991 const TargetLowering &TLI, 2992 const TargetRegisterInfo &TRI, 2993 const SetOfInstrs &InsertedInsts, 2994 InstrToOrigTy &PromotedInsts, 2995 TypePromotionTransaction &TPT) { 2996 ExtAddrMode Result; 2997 2998 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2999 AccessTy, AS, 3000 MemoryInst, Result, InsertedInsts, 3001 PromotedInsts, TPT).matchAddr(V, 0); 3002 (void)Success; assert(Success && "Couldn't select *anything*?"); 3003 return Result; 3004 } 3005 private: 3006 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3007 bool matchAddr(Value *V, unsigned Depth); 3008 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3009 bool *MovedAway = nullptr); 3010 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3011 ExtAddrMode &AMBefore, 3012 ExtAddrMode &AMAfter); 3013 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3014 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3015 Value *PromotedOperand) const; 3016 }; 3017 3018 /// Try adding ScaleReg*Scale to the current addressing mode. 3019 /// Return true and update AddrMode if this addr mode is legal for the target, 3020 /// false if not. 3021 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3022 unsigned Depth) { 3023 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3024 // mode. Just process that directly. 3025 if (Scale == 1) 3026 return matchAddr(ScaleReg, Depth); 3027 3028 // If the scale is 0, it takes nothing to add this. 3029 if (Scale == 0) 3030 return true; 3031 3032 // If we already have a scale of this value, we can add to it, otherwise, we 3033 // need an available scale field. 3034 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3035 return false; 3036 3037 ExtAddrMode TestAddrMode = AddrMode; 3038 3039 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3040 // [A+B + A*7] -> [B+A*8]. 3041 TestAddrMode.Scale += Scale; 3042 TestAddrMode.ScaledReg = ScaleReg; 3043 3044 // If the new address isn't legal, bail out. 3045 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3046 return false; 3047 3048 // It was legal, so commit it. 3049 AddrMode = TestAddrMode; 3050 3051 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3052 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3053 // X*Scale + C*Scale to addr mode. 3054 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3055 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3056 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3057 TestAddrMode.ScaledReg = AddLHS; 3058 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3059 3060 // If this addressing mode is legal, commit it and remember that we folded 3061 // this instruction. 3062 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3063 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3064 AddrMode = TestAddrMode; 3065 return true; 3066 } 3067 } 3068 3069 // Otherwise, not (x+c)*scale, just return what we have. 3070 return true; 3071 } 3072 3073 /// This is a little filter, which returns true if an addressing computation 3074 /// involving I might be folded into a load/store accessing it. 3075 /// This doesn't need to be perfect, but needs to accept at least 3076 /// the set of instructions that MatchOperationAddr can. 3077 static bool MightBeFoldableInst(Instruction *I) { 3078 switch (I->getOpcode()) { 3079 case Instruction::BitCast: 3080 case Instruction::AddrSpaceCast: 3081 // Don't touch identity bitcasts. 3082 if (I->getType() == I->getOperand(0)->getType()) 3083 return false; 3084 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3085 case Instruction::PtrToInt: 3086 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3087 return true; 3088 case Instruction::IntToPtr: 3089 // We know the input is intptr_t, so this is foldable. 3090 return true; 3091 case Instruction::Add: 3092 return true; 3093 case Instruction::Mul: 3094 case Instruction::Shl: 3095 // Can only handle X*C and X << C. 3096 return isa<ConstantInt>(I->getOperand(1)); 3097 case Instruction::GetElementPtr: 3098 return true; 3099 default: 3100 return false; 3101 } 3102 } 3103 3104 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3105 /// \note \p Val is assumed to be the product of some type promotion. 3106 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3107 /// to be legal, as the non-promoted value would have had the same state. 3108 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3109 const DataLayout &DL, Value *Val) { 3110 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3111 if (!PromotedInst) 3112 return false; 3113 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3114 // If the ISDOpcode is undefined, it was undefined before the promotion. 3115 if (!ISDOpcode) 3116 return true; 3117 // Otherwise, check if the promoted instruction is legal or not. 3118 return TLI.isOperationLegalOrCustom( 3119 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3120 } 3121 3122 /// \brief Hepler class to perform type promotion. 3123 class TypePromotionHelper { 3124 /// \brief Utility function to check whether or not a sign or zero extension 3125 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3126 /// either using the operands of \p Inst or promoting \p Inst. 3127 /// The type of the extension is defined by \p IsSExt. 3128 /// In other words, check if: 3129 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3130 /// #1 Promotion applies: 3131 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3132 /// #2 Operand reuses: 3133 /// ext opnd1 to ConsideredExtType. 3134 /// \p PromotedInsts maps the instructions to their type before promotion. 3135 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3136 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3137 3138 /// \brief Utility function to determine if \p OpIdx should be promoted when 3139 /// promoting \p Inst. 3140 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3141 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3142 } 3143 3144 /// \brief Utility function to promote the operand of \p Ext when this 3145 /// operand is a promotable trunc or sext or zext. 3146 /// \p PromotedInsts maps the instructions to their type before promotion. 3147 /// \p CreatedInstsCost[out] contains the cost of all instructions 3148 /// created to promote the operand of Ext. 3149 /// Newly added extensions are inserted in \p Exts. 3150 /// Newly added truncates are inserted in \p Truncs. 3151 /// Should never be called directly. 3152 /// \return The promoted value which is used instead of Ext. 3153 static Value *promoteOperandForTruncAndAnyExt( 3154 Instruction *Ext, TypePromotionTransaction &TPT, 3155 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3156 SmallVectorImpl<Instruction *> *Exts, 3157 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3158 3159 /// \brief Utility function to promote the operand of \p Ext when this 3160 /// operand is promotable and is not a supported trunc or sext. 3161 /// \p PromotedInsts maps the instructions to their type before promotion. 3162 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3163 /// created to promote the operand of Ext. 3164 /// Newly added extensions are inserted in \p Exts. 3165 /// Newly added truncates are inserted in \p Truncs. 3166 /// Should never be called directly. 3167 /// \return The promoted value which is used instead of Ext. 3168 static Value *promoteOperandForOther(Instruction *Ext, 3169 TypePromotionTransaction &TPT, 3170 InstrToOrigTy &PromotedInsts, 3171 unsigned &CreatedInstsCost, 3172 SmallVectorImpl<Instruction *> *Exts, 3173 SmallVectorImpl<Instruction *> *Truncs, 3174 const TargetLowering &TLI, bool IsSExt); 3175 3176 /// \see promoteOperandForOther. 3177 static Value *signExtendOperandForOther( 3178 Instruction *Ext, TypePromotionTransaction &TPT, 3179 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3180 SmallVectorImpl<Instruction *> *Exts, 3181 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3182 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3183 Exts, Truncs, TLI, true); 3184 } 3185 3186 /// \see promoteOperandForOther. 3187 static Value *zeroExtendOperandForOther( 3188 Instruction *Ext, TypePromotionTransaction &TPT, 3189 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3190 SmallVectorImpl<Instruction *> *Exts, 3191 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3192 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3193 Exts, Truncs, TLI, false); 3194 } 3195 3196 public: 3197 /// Type for the utility function that promotes the operand of Ext. 3198 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3199 InstrToOrigTy &PromotedInsts, 3200 unsigned &CreatedInstsCost, 3201 SmallVectorImpl<Instruction *> *Exts, 3202 SmallVectorImpl<Instruction *> *Truncs, 3203 const TargetLowering &TLI); 3204 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3205 /// action to promote the operand of \p Ext instead of using Ext. 3206 /// \return NULL if no promotable action is possible with the current 3207 /// sign extension. 3208 /// \p InsertedInsts keeps track of all the instructions inserted by the 3209 /// other CodeGenPrepare optimizations. This information is important 3210 /// because we do not want to promote these instructions as CodeGenPrepare 3211 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3212 /// \p PromotedInsts maps the instructions to their type before promotion. 3213 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3214 const TargetLowering &TLI, 3215 const InstrToOrigTy &PromotedInsts); 3216 }; 3217 3218 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3219 Type *ConsideredExtType, 3220 const InstrToOrigTy &PromotedInsts, 3221 bool IsSExt) { 3222 // The promotion helper does not know how to deal with vector types yet. 3223 // To be able to fix that, we would need to fix the places where we 3224 // statically extend, e.g., constants and such. 3225 if (Inst->getType()->isVectorTy()) 3226 return false; 3227 3228 // We can always get through zext. 3229 if (isa<ZExtInst>(Inst)) 3230 return true; 3231 3232 // sext(sext) is ok too. 3233 if (IsSExt && isa<SExtInst>(Inst)) 3234 return true; 3235 3236 // We can get through binary operator, if it is legal. In other words, the 3237 // binary operator must have a nuw or nsw flag. 3238 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3239 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3240 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3241 (IsSExt && BinOp->hasNoSignedWrap()))) 3242 return true; 3243 3244 // Check if we can do the following simplification. 3245 // ext(trunc(opnd)) --> ext(opnd) 3246 if (!isa<TruncInst>(Inst)) 3247 return false; 3248 3249 Value *OpndVal = Inst->getOperand(0); 3250 // Check if we can use this operand in the extension. 3251 // If the type is larger than the result type of the extension, we cannot. 3252 if (!OpndVal->getType()->isIntegerTy() || 3253 OpndVal->getType()->getIntegerBitWidth() > 3254 ConsideredExtType->getIntegerBitWidth()) 3255 return false; 3256 3257 // If the operand of the truncate is not an instruction, we will not have 3258 // any information on the dropped bits. 3259 // (Actually we could for constant but it is not worth the extra logic). 3260 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3261 if (!Opnd) 3262 return false; 3263 3264 // Check if the source of the type is narrow enough. 3265 // I.e., check that trunc just drops extended bits of the same kind of 3266 // the extension. 3267 // #1 get the type of the operand and check the kind of the extended bits. 3268 const Type *OpndType; 3269 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3270 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3271 OpndType = It->second.getPointer(); 3272 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3273 OpndType = Opnd->getOperand(0)->getType(); 3274 else 3275 return false; 3276 3277 // #2 check that the truncate just drops extended bits. 3278 return Inst->getType()->getIntegerBitWidth() >= 3279 OpndType->getIntegerBitWidth(); 3280 } 3281 3282 TypePromotionHelper::Action TypePromotionHelper::getAction( 3283 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3284 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3285 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3286 "Unexpected instruction type"); 3287 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3288 Type *ExtTy = Ext->getType(); 3289 bool IsSExt = isa<SExtInst>(Ext); 3290 // If the operand of the extension is not an instruction, we cannot 3291 // get through. 3292 // If it, check we can get through. 3293 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3294 return nullptr; 3295 3296 // Do not promote if the operand has been added by codegenprepare. 3297 // Otherwise, it means we are undoing an optimization that is likely to be 3298 // redone, thus causing potential infinite loop. 3299 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3300 return nullptr; 3301 3302 // SExt or Trunc instructions. 3303 // Return the related handler. 3304 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3305 isa<ZExtInst>(ExtOpnd)) 3306 return promoteOperandForTruncAndAnyExt; 3307 3308 // Regular instruction. 3309 // Abort early if we will have to insert non-free instructions. 3310 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3311 return nullptr; 3312 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3313 } 3314 3315 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3316 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3317 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3318 SmallVectorImpl<Instruction *> *Exts, 3319 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3320 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3321 // get through it and this method should not be called. 3322 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3323 Value *ExtVal = SExt; 3324 bool HasMergedNonFreeExt = false; 3325 if (isa<ZExtInst>(SExtOpnd)) { 3326 // Replace s|zext(zext(opnd)) 3327 // => zext(opnd). 3328 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3329 Value *ZExt = 3330 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3331 TPT.replaceAllUsesWith(SExt, ZExt); 3332 TPT.eraseInstruction(SExt); 3333 ExtVal = ZExt; 3334 } else { 3335 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3336 // => z|sext(opnd). 3337 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3338 } 3339 CreatedInstsCost = 0; 3340 3341 // Remove dead code. 3342 if (SExtOpnd->use_empty()) 3343 TPT.eraseInstruction(SExtOpnd); 3344 3345 // Check if the extension is still needed. 3346 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3347 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3348 if (ExtInst) { 3349 if (Exts) 3350 Exts->push_back(ExtInst); 3351 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3352 } 3353 return ExtVal; 3354 } 3355 3356 // At this point we have: ext ty opnd to ty. 3357 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3358 Value *NextVal = ExtInst->getOperand(0); 3359 TPT.eraseInstruction(ExtInst, NextVal); 3360 return NextVal; 3361 } 3362 3363 Value *TypePromotionHelper::promoteOperandForOther( 3364 Instruction *Ext, TypePromotionTransaction &TPT, 3365 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3366 SmallVectorImpl<Instruction *> *Exts, 3367 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3368 bool IsSExt) { 3369 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3370 // get through it and this method should not be called. 3371 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3372 CreatedInstsCost = 0; 3373 if (!ExtOpnd->hasOneUse()) { 3374 // ExtOpnd will be promoted. 3375 // All its uses, but Ext, will need to use a truncated value of the 3376 // promoted version. 3377 // Create the truncate now. 3378 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3379 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3380 ITrunc->removeFromParent(); 3381 // Insert it just after the definition. 3382 ITrunc->insertAfter(ExtOpnd); 3383 if (Truncs) 3384 Truncs->push_back(ITrunc); 3385 } 3386 3387 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3388 // Restore the operand of Ext (which has been replaced by the previous call 3389 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3390 TPT.setOperand(Ext, 0, ExtOpnd); 3391 } 3392 3393 // Get through the Instruction: 3394 // 1. Update its type. 3395 // 2. Replace the uses of Ext by Inst. 3396 // 3. Extend each operand that needs to be extended. 3397 3398 // Remember the original type of the instruction before promotion. 3399 // This is useful to know that the high bits are sign extended bits. 3400 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3401 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3402 // Step #1. 3403 TPT.mutateType(ExtOpnd, Ext->getType()); 3404 // Step #2. 3405 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3406 // Step #3. 3407 Instruction *ExtForOpnd = Ext; 3408 3409 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3410 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3411 ++OpIdx) { 3412 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3413 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3414 !shouldExtOperand(ExtOpnd, OpIdx)) { 3415 DEBUG(dbgs() << "No need to propagate\n"); 3416 continue; 3417 } 3418 // Check if we can statically extend the operand. 3419 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3420 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3421 DEBUG(dbgs() << "Statically extend\n"); 3422 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3423 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3424 : Cst->getValue().zext(BitWidth); 3425 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3426 continue; 3427 } 3428 // UndefValue are typed, so we have to statically sign extend them. 3429 if (isa<UndefValue>(Opnd)) { 3430 DEBUG(dbgs() << "Statically extend\n"); 3431 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3432 continue; 3433 } 3434 3435 // Otherwise we have to explicity sign extend the operand. 3436 // Check if Ext was reused to extend an operand. 3437 if (!ExtForOpnd) { 3438 // If yes, create a new one. 3439 DEBUG(dbgs() << "More operands to ext\n"); 3440 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3441 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3442 if (!isa<Instruction>(ValForExtOpnd)) { 3443 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3444 continue; 3445 } 3446 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3447 } 3448 if (Exts) 3449 Exts->push_back(ExtForOpnd); 3450 TPT.setOperand(ExtForOpnd, 0, Opnd); 3451 3452 // Move the sign extension before the insertion point. 3453 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3454 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3455 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3456 // If more sext are required, new instructions will have to be created. 3457 ExtForOpnd = nullptr; 3458 } 3459 if (ExtForOpnd == Ext) { 3460 DEBUG(dbgs() << "Extension is useless now\n"); 3461 TPT.eraseInstruction(Ext); 3462 } 3463 return ExtOpnd; 3464 } 3465 3466 /// Check whether or not promoting an instruction to a wider type is profitable. 3467 /// \p NewCost gives the cost of extension instructions created by the 3468 /// promotion. 3469 /// \p OldCost gives the cost of extension instructions before the promotion 3470 /// plus the number of instructions that have been 3471 /// matched in the addressing mode the promotion. 3472 /// \p PromotedOperand is the value that has been promoted. 3473 /// \return True if the promotion is profitable, false otherwise. 3474 bool AddressingModeMatcher::isPromotionProfitable( 3475 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3476 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3477 // The cost of the new extensions is greater than the cost of the 3478 // old extension plus what we folded. 3479 // This is not profitable. 3480 if (NewCost > OldCost) 3481 return false; 3482 if (NewCost < OldCost) 3483 return true; 3484 // The promotion is neutral but it may help folding the sign extension in 3485 // loads for instance. 3486 // Check that we did not create an illegal instruction. 3487 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3488 } 3489 3490 /// Given an instruction or constant expr, see if we can fold the operation 3491 /// into the addressing mode. If so, update the addressing mode and return 3492 /// true, otherwise return false without modifying AddrMode. 3493 /// If \p MovedAway is not NULL, it contains the information of whether or 3494 /// not AddrInst has to be folded into the addressing mode on success. 3495 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3496 /// because it has been moved away. 3497 /// Thus AddrInst must not be added in the matched instructions. 3498 /// This state can happen when AddrInst is a sext, since it may be moved away. 3499 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3500 /// not be referenced anymore. 3501 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3502 unsigned Depth, 3503 bool *MovedAway) { 3504 // Avoid exponential behavior on extremely deep expression trees. 3505 if (Depth >= 5) return false; 3506 3507 // By default, all matched instructions stay in place. 3508 if (MovedAway) 3509 *MovedAway = false; 3510 3511 switch (Opcode) { 3512 case Instruction::PtrToInt: 3513 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3514 return matchAddr(AddrInst->getOperand(0), Depth); 3515 case Instruction::IntToPtr: { 3516 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3517 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3518 // This inttoptr is a no-op if the integer type is pointer sized. 3519 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3520 return matchAddr(AddrInst->getOperand(0), Depth); 3521 return false; 3522 } 3523 case Instruction::BitCast: 3524 // BitCast is always a noop, and we can handle it as long as it is 3525 // int->int or pointer->pointer (we don't want int<->fp or something). 3526 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3527 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3528 // Don't touch identity bitcasts. These were probably put here by LSR, 3529 // and we don't want to mess around with them. Assume it knows what it 3530 // is doing. 3531 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3532 return matchAddr(AddrInst->getOperand(0), Depth); 3533 return false; 3534 case Instruction::AddrSpaceCast: { 3535 unsigned SrcAS 3536 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3537 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3538 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3539 return matchAddr(AddrInst->getOperand(0), Depth); 3540 return false; 3541 } 3542 case Instruction::Add: { 3543 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3544 ExtAddrMode BackupAddrMode = AddrMode; 3545 unsigned OldSize = AddrModeInsts.size(); 3546 // Start a transaction at this point. 3547 // The LHS may match but not the RHS. 3548 // Therefore, we need a higher level restoration point to undo partially 3549 // matched operation. 3550 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3551 TPT.getRestorationPoint(); 3552 3553 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3554 matchAddr(AddrInst->getOperand(0), Depth+1)) 3555 return true; 3556 3557 // Restore the old addr mode info. 3558 AddrMode = BackupAddrMode; 3559 AddrModeInsts.resize(OldSize); 3560 TPT.rollback(LastKnownGood); 3561 3562 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3563 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3564 matchAddr(AddrInst->getOperand(1), Depth+1)) 3565 return true; 3566 3567 // Otherwise we definitely can't merge the ADD in. 3568 AddrMode = BackupAddrMode; 3569 AddrModeInsts.resize(OldSize); 3570 TPT.rollback(LastKnownGood); 3571 break; 3572 } 3573 //case Instruction::Or: 3574 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3575 //break; 3576 case Instruction::Mul: 3577 case Instruction::Shl: { 3578 // Can only handle X*C and X << C. 3579 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3580 if (!RHS) 3581 return false; 3582 int64_t Scale = RHS->getSExtValue(); 3583 if (Opcode == Instruction::Shl) 3584 Scale = 1LL << Scale; 3585 3586 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3587 } 3588 case Instruction::GetElementPtr: { 3589 // Scan the GEP. We check it if it contains constant offsets and at most 3590 // one variable offset. 3591 int VariableOperand = -1; 3592 unsigned VariableScale = 0; 3593 3594 int64_t ConstantOffset = 0; 3595 gep_type_iterator GTI = gep_type_begin(AddrInst); 3596 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3597 if (StructType *STy = GTI.getStructTypeOrNull()) { 3598 const StructLayout *SL = DL.getStructLayout(STy); 3599 unsigned Idx = 3600 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3601 ConstantOffset += SL->getElementOffset(Idx); 3602 } else { 3603 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3604 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3605 ConstantOffset += CI->getSExtValue()*TypeSize; 3606 } else if (TypeSize) { // Scales of zero don't do anything. 3607 // We only allow one variable index at the moment. 3608 if (VariableOperand != -1) 3609 return false; 3610 3611 // Remember the variable index. 3612 VariableOperand = i; 3613 VariableScale = TypeSize; 3614 } 3615 } 3616 } 3617 3618 // A common case is for the GEP to only do a constant offset. In this case, 3619 // just add it to the disp field and check validity. 3620 if (VariableOperand == -1) { 3621 AddrMode.BaseOffs += ConstantOffset; 3622 if (ConstantOffset == 0 || 3623 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3624 // Check to see if we can fold the base pointer in too. 3625 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3626 return true; 3627 } 3628 AddrMode.BaseOffs -= ConstantOffset; 3629 return false; 3630 } 3631 3632 // Save the valid addressing mode in case we can't match. 3633 ExtAddrMode BackupAddrMode = AddrMode; 3634 unsigned OldSize = AddrModeInsts.size(); 3635 3636 // See if the scale and offset amount is valid for this target. 3637 AddrMode.BaseOffs += ConstantOffset; 3638 3639 // Match the base operand of the GEP. 3640 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3641 // If it couldn't be matched, just stuff the value in a register. 3642 if (AddrMode.HasBaseReg) { 3643 AddrMode = BackupAddrMode; 3644 AddrModeInsts.resize(OldSize); 3645 return false; 3646 } 3647 AddrMode.HasBaseReg = true; 3648 AddrMode.BaseReg = AddrInst->getOperand(0); 3649 } 3650 3651 // Match the remaining variable portion of the GEP. 3652 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3653 Depth)) { 3654 // If it couldn't be matched, try stuffing the base into a register 3655 // instead of matching it, and retrying the match of the scale. 3656 AddrMode = BackupAddrMode; 3657 AddrModeInsts.resize(OldSize); 3658 if (AddrMode.HasBaseReg) 3659 return false; 3660 AddrMode.HasBaseReg = true; 3661 AddrMode.BaseReg = AddrInst->getOperand(0); 3662 AddrMode.BaseOffs += ConstantOffset; 3663 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3664 VariableScale, Depth)) { 3665 // If even that didn't work, bail. 3666 AddrMode = BackupAddrMode; 3667 AddrModeInsts.resize(OldSize); 3668 return false; 3669 } 3670 } 3671 3672 return true; 3673 } 3674 case Instruction::SExt: 3675 case Instruction::ZExt: { 3676 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3677 if (!Ext) 3678 return false; 3679 3680 // Try to move this ext out of the way of the addressing mode. 3681 // Ask for a method for doing so. 3682 TypePromotionHelper::Action TPH = 3683 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3684 if (!TPH) 3685 return false; 3686 3687 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3688 TPT.getRestorationPoint(); 3689 unsigned CreatedInstsCost = 0; 3690 unsigned ExtCost = !TLI.isExtFree(Ext); 3691 Value *PromotedOperand = 3692 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3693 // SExt has been moved away. 3694 // Thus either it will be rematched later in the recursive calls or it is 3695 // gone. Anyway, we must not fold it into the addressing mode at this point. 3696 // E.g., 3697 // op = add opnd, 1 3698 // idx = ext op 3699 // addr = gep base, idx 3700 // is now: 3701 // promotedOpnd = ext opnd <- no match here 3702 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3703 // addr = gep base, op <- match 3704 if (MovedAway) 3705 *MovedAway = true; 3706 3707 assert(PromotedOperand && 3708 "TypePromotionHelper should have filtered out those cases"); 3709 3710 ExtAddrMode BackupAddrMode = AddrMode; 3711 unsigned OldSize = AddrModeInsts.size(); 3712 3713 if (!matchAddr(PromotedOperand, Depth) || 3714 // The total of the new cost is equal to the cost of the created 3715 // instructions. 3716 // The total of the old cost is equal to the cost of the extension plus 3717 // what we have saved in the addressing mode. 3718 !isPromotionProfitable(CreatedInstsCost, 3719 ExtCost + (AddrModeInsts.size() - OldSize), 3720 PromotedOperand)) { 3721 AddrMode = BackupAddrMode; 3722 AddrModeInsts.resize(OldSize); 3723 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3724 TPT.rollback(LastKnownGood); 3725 return false; 3726 } 3727 return true; 3728 } 3729 } 3730 return false; 3731 } 3732 3733 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3734 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3735 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3736 /// for the target. 3737 /// 3738 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3739 // Start a transaction at this point that we will rollback if the matching 3740 // fails. 3741 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3742 TPT.getRestorationPoint(); 3743 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3744 // Fold in immediates if legal for the target. 3745 AddrMode.BaseOffs += CI->getSExtValue(); 3746 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3747 return true; 3748 AddrMode.BaseOffs -= CI->getSExtValue(); 3749 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3750 // If this is a global variable, try to fold it into the addressing mode. 3751 if (!AddrMode.BaseGV) { 3752 AddrMode.BaseGV = GV; 3753 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3754 return true; 3755 AddrMode.BaseGV = nullptr; 3756 } 3757 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3758 ExtAddrMode BackupAddrMode = AddrMode; 3759 unsigned OldSize = AddrModeInsts.size(); 3760 3761 // Check to see if it is possible to fold this operation. 3762 bool MovedAway = false; 3763 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3764 // This instruction may have been moved away. If so, there is nothing 3765 // to check here. 3766 if (MovedAway) 3767 return true; 3768 // Okay, it's possible to fold this. Check to see if it is actually 3769 // *profitable* to do so. We use a simple cost model to avoid increasing 3770 // register pressure too much. 3771 if (I->hasOneUse() || 3772 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3773 AddrModeInsts.push_back(I); 3774 return true; 3775 } 3776 3777 // It isn't profitable to do this, roll back. 3778 //cerr << "NOT FOLDING: " << *I; 3779 AddrMode = BackupAddrMode; 3780 AddrModeInsts.resize(OldSize); 3781 TPT.rollback(LastKnownGood); 3782 } 3783 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3784 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3785 return true; 3786 TPT.rollback(LastKnownGood); 3787 } else if (isa<ConstantPointerNull>(Addr)) { 3788 // Null pointer gets folded without affecting the addressing mode. 3789 return true; 3790 } 3791 3792 // Worse case, the target should support [reg] addressing modes. :) 3793 if (!AddrMode.HasBaseReg) { 3794 AddrMode.HasBaseReg = true; 3795 AddrMode.BaseReg = Addr; 3796 // Still check for legality in case the target supports [imm] but not [i+r]. 3797 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3798 return true; 3799 AddrMode.HasBaseReg = false; 3800 AddrMode.BaseReg = nullptr; 3801 } 3802 3803 // If the base register is already taken, see if we can do [r+r]. 3804 if (AddrMode.Scale == 0) { 3805 AddrMode.Scale = 1; 3806 AddrMode.ScaledReg = Addr; 3807 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3808 return true; 3809 AddrMode.Scale = 0; 3810 AddrMode.ScaledReg = nullptr; 3811 } 3812 // Couldn't match. 3813 TPT.rollback(LastKnownGood); 3814 return false; 3815 } 3816 3817 /// Check to see if all uses of OpVal by the specified inline asm call are due 3818 /// to memory operands. If so, return true, otherwise return false. 3819 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3820 const TargetLowering &TLI, 3821 const TargetRegisterInfo &TRI) { 3822 const Function *F = CI->getParent()->getParent(); 3823 TargetLowering::AsmOperandInfoVector TargetConstraints = 3824 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3825 ImmutableCallSite(CI)); 3826 3827 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3828 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3829 3830 // Compute the constraint code and ConstraintType to use. 3831 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3832 3833 // If this asm operand is our Value*, and if it isn't an indirect memory 3834 // operand, we can't fold it! 3835 if (OpInfo.CallOperandVal == OpVal && 3836 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3837 !OpInfo.isIndirect)) 3838 return false; 3839 } 3840 3841 return true; 3842 } 3843 3844 /// Recursively walk all the uses of I until we find a memory use. 3845 /// If we find an obviously non-foldable instruction, return true. 3846 /// Add the ultimately found memory instructions to MemoryUses. 3847 static bool FindAllMemoryUses( 3848 Instruction *I, 3849 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3850 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3851 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3852 // If we already considered this instruction, we're done. 3853 if (!ConsideredInsts.insert(I).second) 3854 return false; 3855 3856 // If this is an obviously unfoldable instruction, bail out. 3857 if (!MightBeFoldableInst(I)) 3858 return true; 3859 3860 const bool OptSize = I->getFunction()->optForSize(); 3861 3862 // Loop over all the uses, recursively processing them. 3863 for (Use &U : I->uses()) { 3864 Instruction *UserI = cast<Instruction>(U.getUser()); 3865 3866 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3867 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3868 continue; 3869 } 3870 3871 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3872 unsigned opNo = U.getOperandNo(); 3873 if (opNo != StoreInst::getPointerOperandIndex()) 3874 return true; // Storing addr, not into addr. 3875 MemoryUses.push_back(std::make_pair(SI, opNo)); 3876 continue; 3877 } 3878 3879 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 3880 unsigned opNo = U.getOperandNo(); 3881 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 3882 return true; // Storing addr, not into addr. 3883 MemoryUses.push_back(std::make_pair(RMW, opNo)); 3884 continue; 3885 } 3886 3887 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 3888 unsigned opNo = U.getOperandNo(); 3889 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 3890 return true; // Storing addr, not into addr. 3891 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 3892 continue; 3893 } 3894 3895 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3896 // If this is a cold call, we can sink the addressing calculation into 3897 // the cold path. See optimizeCallInst 3898 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3899 continue; 3900 3901 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3902 if (!IA) return true; 3903 3904 // If this is a memory operand, we're cool, otherwise bail out. 3905 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3906 return true; 3907 continue; 3908 } 3909 3910 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3911 return true; 3912 } 3913 3914 return false; 3915 } 3916 3917 /// Return true if Val is already known to be live at the use site that we're 3918 /// folding it into. If so, there is no cost to include it in the addressing 3919 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3920 /// instruction already. 3921 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3922 Value *KnownLive2) { 3923 // If Val is either of the known-live values, we know it is live! 3924 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3925 return true; 3926 3927 // All values other than instructions and arguments (e.g. constants) are live. 3928 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3929 3930 // If Val is a constant sized alloca in the entry block, it is live, this is 3931 // true because it is just a reference to the stack/frame pointer, which is 3932 // live for the whole function. 3933 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3934 if (AI->isStaticAlloca()) 3935 return true; 3936 3937 // Check to see if this value is already used in the memory instruction's 3938 // block. If so, it's already live into the block at the very least, so we 3939 // can reasonably fold it. 3940 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3941 } 3942 3943 /// It is possible for the addressing mode of the machine to fold the specified 3944 /// instruction into a load or store that ultimately uses it. 3945 /// However, the specified instruction has multiple uses. 3946 /// Given this, it may actually increase register pressure to fold it 3947 /// into the load. For example, consider this code: 3948 /// 3949 /// X = ... 3950 /// Y = X+1 3951 /// use(Y) -> nonload/store 3952 /// Z = Y+1 3953 /// load Z 3954 /// 3955 /// In this case, Y has multiple uses, and can be folded into the load of Z 3956 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3957 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3958 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3959 /// number of computations either. 3960 /// 3961 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3962 /// X was live across 'load Z' for other reasons, we actually *would* want to 3963 /// fold the addressing mode in the Z case. This would make Y die earlier. 3964 bool AddressingModeMatcher:: 3965 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3966 ExtAddrMode &AMAfter) { 3967 if (IgnoreProfitability) return true; 3968 3969 // AMBefore is the addressing mode before this instruction was folded into it, 3970 // and AMAfter is the addressing mode after the instruction was folded. Get 3971 // the set of registers referenced by AMAfter and subtract out those 3972 // referenced by AMBefore: this is the set of values which folding in this 3973 // address extends the lifetime of. 3974 // 3975 // Note that there are only two potential values being referenced here, 3976 // BaseReg and ScaleReg (global addresses are always available, as are any 3977 // folded immediates). 3978 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3979 3980 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3981 // lifetime wasn't extended by adding this instruction. 3982 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3983 BaseReg = nullptr; 3984 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3985 ScaledReg = nullptr; 3986 3987 // If folding this instruction (and it's subexprs) didn't extend any live 3988 // ranges, we're ok with it. 3989 if (!BaseReg && !ScaledReg) 3990 return true; 3991 3992 // If all uses of this instruction can have the address mode sunk into them, 3993 // we can remove the addressing mode and effectively trade one live register 3994 // for another (at worst.) In this context, folding an addressing mode into 3995 // the use is just a particularly nice way of sinking it. 3996 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3997 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3998 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3999 return false; // Has a non-memory, non-foldable use! 4000 4001 // Now that we know that all uses of this instruction are part of a chain of 4002 // computation involving only operations that could theoretically be folded 4003 // into a memory use, loop over each of these memory operation uses and see 4004 // if they could *actually* fold the instruction. The assumption is that 4005 // addressing modes are cheap and that duplicating the computation involved 4006 // many times is worthwhile, even on a fastpath. For sinking candidates 4007 // (i.e. cold call sites), this serves as a way to prevent excessive code 4008 // growth since most architectures have some reasonable small and fast way to 4009 // compute an effective address. (i.e LEA on x86) 4010 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4011 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4012 Instruction *User = MemoryUses[i].first; 4013 unsigned OpNo = MemoryUses[i].second; 4014 4015 // Get the access type of this use. If the use isn't a pointer, we don't 4016 // know what it accesses. 4017 Value *Address = User->getOperand(OpNo); 4018 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4019 if (!AddrTy) 4020 return false; 4021 Type *AddressAccessTy = AddrTy->getElementType(); 4022 unsigned AS = AddrTy->getAddressSpace(); 4023 4024 // Do a match against the root of this address, ignoring profitability. This 4025 // will tell us if the addressing mode for the memory operation will 4026 // *actually* cover the shared instruction. 4027 ExtAddrMode Result; 4028 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4029 TPT.getRestorationPoint(); 4030 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4031 AddressAccessTy, AS, 4032 MemoryInst, Result, InsertedInsts, 4033 PromotedInsts, TPT); 4034 Matcher.IgnoreProfitability = true; 4035 bool Success = Matcher.matchAddr(Address, 0); 4036 (void)Success; assert(Success && "Couldn't select *anything*?"); 4037 4038 // The match was to check the profitability, the changes made are not 4039 // part of the original matcher. Therefore, they should be dropped 4040 // otherwise the original matcher will not present the right state. 4041 TPT.rollback(LastKnownGood); 4042 4043 // If the match didn't cover I, then it won't be shared by it. 4044 if (!is_contained(MatchedAddrModeInsts, I)) 4045 return false; 4046 4047 MatchedAddrModeInsts.clear(); 4048 } 4049 4050 return true; 4051 } 4052 4053 } // end anonymous namespace 4054 4055 /// Return true if the specified values are defined in a 4056 /// different basic block than BB. 4057 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4058 if (Instruction *I = dyn_cast<Instruction>(V)) 4059 return I->getParent() != BB; 4060 return false; 4061 } 4062 4063 /// Sink addressing mode computation immediate before MemoryInst if doing so 4064 /// can be done without increasing register pressure. The need for the 4065 /// register pressure constraint means this can end up being an all or nothing 4066 /// decision for all uses of the same addressing computation. 4067 /// 4068 /// Load and Store Instructions often have addressing modes that can do 4069 /// significant amounts of computation. As such, instruction selection will try 4070 /// to get the load or store to do as much computation as possible for the 4071 /// program. The problem is that isel can only see within a single block. As 4072 /// such, we sink as much legal addressing mode work into the block as possible. 4073 /// 4074 /// This method is used to optimize both load/store and inline asms with memory 4075 /// operands. It's also used to sink addressing computations feeding into cold 4076 /// call sites into their (cold) basic block. 4077 /// 4078 /// The motivation for handling sinking into cold blocks is that doing so can 4079 /// both enable other address mode sinking (by satisfying the register pressure 4080 /// constraint above), and reduce register pressure globally (by removing the 4081 /// addressing mode computation from the fast path entirely.). 4082 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4083 Type *AccessTy, unsigned AddrSpace) { 4084 Value *Repl = Addr; 4085 4086 // Try to collapse single-value PHI nodes. This is necessary to undo 4087 // unprofitable PRE transformations. 4088 SmallVector<Value*, 8> worklist; 4089 SmallPtrSet<Value*, 16> Visited; 4090 worklist.push_back(Addr); 4091 4092 // Use a worklist to iteratively look through PHI nodes, and ensure that 4093 // the addressing mode obtained from the non-PHI roots of the graph 4094 // are equivalent. 4095 Value *Consensus = nullptr; 4096 unsigned NumUsesConsensus = 0; 4097 bool IsNumUsesConsensusValid = false; 4098 SmallVector<Instruction*, 16> AddrModeInsts; 4099 ExtAddrMode AddrMode; 4100 TypePromotionTransaction TPT; 4101 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4102 TPT.getRestorationPoint(); 4103 while (!worklist.empty()) { 4104 Value *V = worklist.back(); 4105 worklist.pop_back(); 4106 4107 // Break use-def graph loops. 4108 if (!Visited.insert(V).second) { 4109 Consensus = nullptr; 4110 break; 4111 } 4112 4113 // For a PHI node, push all of its incoming values. 4114 if (PHINode *P = dyn_cast<PHINode>(V)) { 4115 for (Value *IncValue : P->incoming_values()) 4116 worklist.push_back(IncValue); 4117 continue; 4118 } 4119 4120 // For non-PHIs, determine the addressing mode being computed. Note that 4121 // the result may differ depending on what other uses our candidate 4122 // addressing instructions might have. 4123 SmallVector<Instruction*, 16> NewAddrModeInsts; 4124 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4125 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4126 InsertedInsts, PromotedInsts, TPT); 4127 4128 // This check is broken into two cases with very similar code to avoid using 4129 // getNumUses() as much as possible. Some values have a lot of uses, so 4130 // calling getNumUses() unconditionally caused a significant compile-time 4131 // regression. 4132 if (!Consensus) { 4133 Consensus = V; 4134 AddrMode = NewAddrMode; 4135 AddrModeInsts = NewAddrModeInsts; 4136 continue; 4137 } else if (NewAddrMode == AddrMode) { 4138 if (!IsNumUsesConsensusValid) { 4139 NumUsesConsensus = Consensus->getNumUses(); 4140 IsNumUsesConsensusValid = true; 4141 } 4142 4143 // Ensure that the obtained addressing mode is equivalent to that obtained 4144 // for all other roots of the PHI traversal. Also, when choosing one 4145 // such root as representative, select the one with the most uses in order 4146 // to keep the cost modeling heuristics in AddressingModeMatcher 4147 // applicable. 4148 unsigned NumUses = V->getNumUses(); 4149 if (NumUses > NumUsesConsensus) { 4150 Consensus = V; 4151 NumUsesConsensus = NumUses; 4152 AddrModeInsts = NewAddrModeInsts; 4153 } 4154 continue; 4155 } 4156 4157 Consensus = nullptr; 4158 break; 4159 } 4160 4161 // If the addressing mode couldn't be determined, or if multiple different 4162 // ones were determined, bail out now. 4163 if (!Consensus) { 4164 TPT.rollback(LastKnownGood); 4165 return false; 4166 } 4167 TPT.commit(); 4168 4169 // If all the instructions matched are already in this BB, don't do anything. 4170 if (none_of(AddrModeInsts, [&](Value *V) { 4171 return IsNonLocalValue(V, MemoryInst->getParent()); 4172 })) { 4173 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4174 return false; 4175 } 4176 4177 // Insert this computation right after this user. Since our caller is 4178 // scanning from the top of the BB to the bottom, reuse of the expr are 4179 // guaranteed to happen later. 4180 IRBuilder<> Builder(MemoryInst); 4181 4182 // Now that we determined the addressing expression we want to use and know 4183 // that we have to sink it into this block. Check to see if we have already 4184 // done this for some other load/store instr in this block. If so, reuse the 4185 // computation. 4186 Value *&SunkAddr = SunkAddrs[Addr]; 4187 if (SunkAddr) { 4188 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4189 << *MemoryInst << "\n"); 4190 if (SunkAddr->getType() != Addr->getType()) 4191 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4192 } else if (AddrSinkUsingGEPs || 4193 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4194 SubtargetInfo->useAA())) { 4195 // By default, we use the GEP-based method when AA is used later. This 4196 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4197 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4198 << *MemoryInst << "\n"); 4199 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4200 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4201 4202 // First, find the pointer. 4203 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4204 ResultPtr = AddrMode.BaseReg; 4205 AddrMode.BaseReg = nullptr; 4206 } 4207 4208 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4209 // We can't add more than one pointer together, nor can we scale a 4210 // pointer (both of which seem meaningless). 4211 if (ResultPtr || AddrMode.Scale != 1) 4212 return false; 4213 4214 ResultPtr = AddrMode.ScaledReg; 4215 AddrMode.Scale = 0; 4216 } 4217 4218 if (AddrMode.BaseGV) { 4219 if (ResultPtr) 4220 return false; 4221 4222 ResultPtr = AddrMode.BaseGV; 4223 } 4224 4225 // If the real base value actually came from an inttoptr, then the matcher 4226 // will look through it and provide only the integer value. In that case, 4227 // use it here. 4228 if (!ResultPtr && AddrMode.BaseReg) { 4229 ResultPtr = 4230 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4231 AddrMode.BaseReg = nullptr; 4232 } else if (!ResultPtr && AddrMode.Scale == 1) { 4233 ResultPtr = 4234 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4235 AddrMode.Scale = 0; 4236 } 4237 4238 if (!ResultPtr && 4239 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4240 SunkAddr = Constant::getNullValue(Addr->getType()); 4241 } else if (!ResultPtr) { 4242 return false; 4243 } else { 4244 Type *I8PtrTy = 4245 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4246 Type *I8Ty = Builder.getInt8Ty(); 4247 4248 // Start with the base register. Do this first so that subsequent address 4249 // matching finds it last, which will prevent it from trying to match it 4250 // as the scaled value in case it happens to be a mul. That would be 4251 // problematic if we've sunk a different mul for the scale, because then 4252 // we'd end up sinking both muls. 4253 if (AddrMode.BaseReg) { 4254 Value *V = AddrMode.BaseReg; 4255 if (V->getType() != IntPtrTy) 4256 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4257 4258 ResultIndex = V; 4259 } 4260 4261 // Add the scale value. 4262 if (AddrMode.Scale) { 4263 Value *V = AddrMode.ScaledReg; 4264 if (V->getType() == IntPtrTy) { 4265 // done. 4266 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4267 cast<IntegerType>(V->getType())->getBitWidth()) { 4268 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4269 } else { 4270 // It is only safe to sign extend the BaseReg if we know that the math 4271 // required to create it did not overflow before we extend it. Since 4272 // the original IR value was tossed in favor of a constant back when 4273 // the AddrMode was created we need to bail out gracefully if widths 4274 // do not match instead of extending it. 4275 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4276 if (I && (ResultIndex != AddrMode.BaseReg)) 4277 I->eraseFromParent(); 4278 return false; 4279 } 4280 4281 if (AddrMode.Scale != 1) 4282 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4283 "sunkaddr"); 4284 if (ResultIndex) 4285 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4286 else 4287 ResultIndex = V; 4288 } 4289 4290 // Add in the Base Offset if present. 4291 if (AddrMode.BaseOffs) { 4292 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4293 if (ResultIndex) { 4294 // We need to add this separately from the scale above to help with 4295 // SDAG consecutive load/store merging. 4296 if (ResultPtr->getType() != I8PtrTy) 4297 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4298 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4299 } 4300 4301 ResultIndex = V; 4302 } 4303 4304 if (!ResultIndex) { 4305 SunkAddr = ResultPtr; 4306 } else { 4307 if (ResultPtr->getType() != I8PtrTy) 4308 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4309 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4310 } 4311 4312 if (SunkAddr->getType() != Addr->getType()) 4313 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4314 } 4315 } else { 4316 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4317 << *MemoryInst << "\n"); 4318 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4319 Value *Result = nullptr; 4320 4321 // Start with the base register. Do this first so that subsequent address 4322 // matching finds it last, which will prevent it from trying to match it 4323 // as the scaled value in case it happens to be a mul. That would be 4324 // problematic if we've sunk a different mul for the scale, because then 4325 // we'd end up sinking both muls. 4326 if (AddrMode.BaseReg) { 4327 Value *V = AddrMode.BaseReg; 4328 if (V->getType()->isPointerTy()) 4329 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4330 if (V->getType() != IntPtrTy) 4331 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4332 Result = V; 4333 } 4334 4335 // Add the scale value. 4336 if (AddrMode.Scale) { 4337 Value *V = AddrMode.ScaledReg; 4338 if (V->getType() == IntPtrTy) { 4339 // done. 4340 } else if (V->getType()->isPointerTy()) { 4341 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4342 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4343 cast<IntegerType>(V->getType())->getBitWidth()) { 4344 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4345 } else { 4346 // It is only safe to sign extend the BaseReg if we know that the math 4347 // required to create it did not overflow before we extend it. Since 4348 // the original IR value was tossed in favor of a constant back when 4349 // the AddrMode was created we need to bail out gracefully if widths 4350 // do not match instead of extending it. 4351 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4352 if (I && (Result != AddrMode.BaseReg)) 4353 I->eraseFromParent(); 4354 return false; 4355 } 4356 if (AddrMode.Scale != 1) 4357 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4358 "sunkaddr"); 4359 if (Result) 4360 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4361 else 4362 Result = V; 4363 } 4364 4365 // Add in the BaseGV if present. 4366 if (AddrMode.BaseGV) { 4367 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4368 if (Result) 4369 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4370 else 4371 Result = V; 4372 } 4373 4374 // Add in the Base Offset if present. 4375 if (AddrMode.BaseOffs) { 4376 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4377 if (Result) 4378 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4379 else 4380 Result = V; 4381 } 4382 4383 if (!Result) 4384 SunkAddr = Constant::getNullValue(Addr->getType()); 4385 else 4386 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4387 } 4388 4389 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4390 4391 // If we have no uses, recursively delete the value and all dead instructions 4392 // using it. 4393 if (Repl->use_empty()) { 4394 // This can cause recursive deletion, which can invalidate our iterator. 4395 // Use a WeakVH to hold onto it in case this happens. 4396 Value *CurValue = &*CurInstIterator; 4397 WeakVH IterHandle(CurValue); 4398 BasicBlock *BB = CurInstIterator->getParent(); 4399 4400 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4401 4402 if (IterHandle != CurValue) { 4403 // If the iterator instruction was recursively deleted, start over at the 4404 // start of the block. 4405 CurInstIterator = BB->begin(); 4406 SunkAddrs.clear(); 4407 } 4408 } 4409 ++NumMemoryInsts; 4410 return true; 4411 } 4412 4413 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4414 /// address computing into the block when possible / profitable. 4415 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4416 bool MadeChange = false; 4417 4418 const TargetRegisterInfo *TRI = 4419 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4420 TargetLowering::AsmOperandInfoVector TargetConstraints = 4421 TLI->ParseConstraints(*DL, TRI, CS); 4422 unsigned ArgNo = 0; 4423 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4424 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4425 4426 // Compute the constraint code and ConstraintType to use. 4427 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4428 4429 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4430 OpInfo.isIndirect) { 4431 Value *OpVal = CS->getArgOperand(ArgNo++); 4432 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4433 } else if (OpInfo.Type == InlineAsm::isInput) 4434 ArgNo++; 4435 } 4436 4437 return MadeChange; 4438 } 4439 4440 /// \brief Check if all the uses of \p Val are equivalent (or free) zero or 4441 /// sign extensions. 4442 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4443 assert(!Val->use_empty() && "Input must have at least one use"); 4444 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4445 bool IsSExt = isa<SExtInst>(FirstUser); 4446 Type *ExtTy = FirstUser->getType(); 4447 for (const User *U : Val->users()) { 4448 const Instruction *UI = cast<Instruction>(U); 4449 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4450 return false; 4451 Type *CurTy = UI->getType(); 4452 // Same input and output types: Same instruction after CSE. 4453 if (CurTy == ExtTy) 4454 continue; 4455 4456 // If IsSExt is true, we are in this situation: 4457 // a = Val 4458 // b = sext ty1 a to ty2 4459 // c = sext ty1 a to ty3 4460 // Assuming ty2 is shorter than ty3, this could be turned into: 4461 // a = Val 4462 // b = sext ty1 a to ty2 4463 // c = sext ty2 b to ty3 4464 // However, the last sext is not free. 4465 if (IsSExt) 4466 return false; 4467 4468 // This is a ZExt, maybe this is free to extend from one type to another. 4469 // In that case, we would not account for a different use. 4470 Type *NarrowTy; 4471 Type *LargeTy; 4472 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4473 CurTy->getScalarType()->getIntegerBitWidth()) { 4474 NarrowTy = CurTy; 4475 LargeTy = ExtTy; 4476 } else { 4477 NarrowTy = ExtTy; 4478 LargeTy = CurTy; 4479 } 4480 4481 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4482 return false; 4483 } 4484 // All uses are the same or can be derived from one another for free. 4485 return true; 4486 } 4487 4488 /// \brief Try to speculatively promote extensions in \p Exts and continue 4489 /// promoting through newly promoted operands recursively as far as doing so is 4490 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4491 /// When some promotion happened, \p TPT contains the proper state to revert 4492 /// them. 4493 /// 4494 /// \return true if some promotion happened, false otherwise. 4495 /// 4496 /// Example: 4497 /// \code 4498 /// %ld = load i32* %addr 4499 /// %add = add nuw i32 %ld, 4 4500 /// %zext = zext i32 %add to i64 4501 /// \endcode 4502 /// => 4503 /// \code 4504 /// %ld = load i32* %addr 4505 /// %zext = zext i32 %ld to i64 4506 /// %add = add nuw i64 %zext, 4 4507 /// \endcode 4508 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4509 bool CodeGenPrepare::tryToPromoteExts( 4510 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4511 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4512 unsigned CreatedInstsCost) { 4513 bool Promoted = false; 4514 4515 // Iterate over all the extensions to try to promote them. 4516 for (auto I : Exts) { 4517 // Early check if we directly have ext(load). 4518 if (isa<LoadInst>(I->getOperand(0))) { 4519 ProfitablyMovedExts.push_back(I); 4520 continue; 4521 } 4522 4523 // Check whether or not we want to do any promotion. The reason we have 4524 // this check inside the for loop is to catch the case where an extension 4525 // is directly fed by a load because in such case the extension can be moved 4526 // up without any promotion on its operands. 4527 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4528 return false; 4529 4530 // Get the action to perform the promotion. 4531 TypePromotionHelper::Action TPH = 4532 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4533 // Check if we can promote. 4534 if (!TPH) { 4535 // Save the current extension as we cannot move up through its operand. 4536 ProfitablyMovedExts.push_back(I); 4537 continue; 4538 } 4539 4540 // Save the current state. 4541 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4542 TPT.getRestorationPoint(); 4543 SmallVector<Instruction *, 4> NewExts; 4544 unsigned NewCreatedInstsCost = 0; 4545 unsigned ExtCost = !TLI->isExtFree(I); 4546 // Promote. 4547 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4548 &NewExts, nullptr, *TLI); 4549 assert(PromotedVal && 4550 "TypePromotionHelper should have filtered out those cases"); 4551 4552 // We would be able to merge only one extension in a load. 4553 // Therefore, if we have more than 1 new extension we heuristically 4554 // cut this search path, because it means we degrade the code quality. 4555 // With exactly 2, the transformation is neutral, because we will merge 4556 // one extension but leave one. However, we optimistically keep going, 4557 // because the new extension may be removed too. 4558 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4559 // FIXME: It would be possible to propagate a negative value instead of 4560 // conservatively ceiling it to 0. 4561 TotalCreatedInstsCost = 4562 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4563 if (!StressExtLdPromotion && 4564 (TotalCreatedInstsCost > 1 || 4565 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4566 // This promotion is not profitable, rollback to the previous state, and 4567 // save the current extension in ProfitablyMovedExts as the latest 4568 // speculative promotion turned out to be unprofitable. 4569 TPT.rollback(LastKnownGood); 4570 ProfitablyMovedExts.push_back(I); 4571 continue; 4572 } 4573 // Continue promoting NewExts as far as doing so is profitable. 4574 SmallVector<Instruction *, 2> NewlyMovedExts; 4575 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4576 bool NewPromoted = false; 4577 for (auto ExtInst : NewlyMovedExts) { 4578 Instruction *MovedExt = cast<Instruction>(ExtInst); 4579 Value *ExtOperand = MovedExt->getOperand(0); 4580 // If we have reached to a load, we need this extra profitability check 4581 // as it could potentially be merged into an ext(load). 4582 if (isa<LoadInst>(ExtOperand) && 4583 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4584 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4585 continue; 4586 4587 ProfitablyMovedExts.push_back(MovedExt); 4588 NewPromoted = true; 4589 } 4590 4591 // If none of speculative promotions for NewExts is profitable, rollback 4592 // and save the current extension (I) as the last profitable extension. 4593 if (!NewPromoted) { 4594 TPT.rollback(LastKnownGood); 4595 ProfitablyMovedExts.push_back(I); 4596 continue; 4597 } 4598 // The promotion is profitable. 4599 Promoted = true; 4600 } 4601 return Promoted; 4602 } 4603 4604 /// Return true, if an ext(load) can be formed from an extension in 4605 /// \p MovedExts. 4606 bool CodeGenPrepare::canFormExtLd( 4607 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4608 Instruction *&Inst, bool HasPromoted) { 4609 for (auto *MovedExtInst : MovedExts) { 4610 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4611 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4612 Inst = MovedExtInst; 4613 break; 4614 } 4615 } 4616 if (!LI) 4617 return false; 4618 4619 // If they're already in the same block, there's nothing to do. 4620 // Make the cheap checks first if we did not promote. 4621 // If we promoted, we need to check if it is indeed profitable. 4622 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4623 return false; 4624 4625 EVT VT = TLI->getValueType(*DL, Inst->getType()); 4626 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4627 4628 // If the load has other users and the truncate is not free, this probably 4629 // isn't worthwhile. 4630 if (!LI->hasOneUse() && (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4631 !TLI->isTruncateFree(Inst->getType(), LI->getType())) 4632 return false; 4633 4634 // Check whether the target supports casts folded into loads. 4635 unsigned LType; 4636 if (isa<ZExtInst>(Inst)) 4637 LType = ISD::ZEXTLOAD; 4638 else { 4639 assert(isa<SExtInst>(Inst) && "Unexpected ext type!"); 4640 LType = ISD::SEXTLOAD; 4641 } 4642 4643 return TLI->isLoadExtLegal(LType, VT, LoadVT); 4644 } 4645 4646 /// Move a zext or sext fed by a load into the same basic block as the load, 4647 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4648 /// extend into the load. 4649 /// \p I[in/out] the extension may be modified during the process if some 4650 /// promotions apply. 4651 /// 4652 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4653 // ExtLoad formation infrastructure requires TLI to be effective. 4654 if (!TLI) 4655 return false; 4656 4657 // Try to promote a chain of computation if it allows to form 4658 // an extended load. 4659 TypePromotionTransaction TPT; 4660 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4661 TPT.getRestorationPoint(); 4662 SmallVector<Instruction *, 1> Exts; 4663 SmallVector<Instruction *, 2> LastMovedExts; 4664 Exts.push_back(I); 4665 4666 bool HasPromoted = tryToPromoteExts(TPT, Exts, LastMovedExts); 4667 4668 // Look for a load being extended. 4669 LoadInst *LI = nullptr; 4670 Instruction *OldExt = I; 4671 if (!canFormExtLd(LastMovedExts, LI, I, HasPromoted)) { 4672 I = OldExt; 4673 TPT.rollback(LastKnownGood); 4674 return false; 4675 } 4676 4677 // Move the extend into the same block as the load, so that SelectionDAG 4678 // can fold it. 4679 TPT.commit(); 4680 I->removeFromParent(); 4681 I->insertAfter(LI); 4682 // CGP does not check if the zext would be speculatively executed when moved 4683 // to the same basic block as the load. Preserving its original location would 4684 // pessimize the debugging experience, as well as negatively impact the 4685 // quality of sample pgo. We don't want to use "line 0" as that has a 4686 // size cost in the line-table section and logically the zext can be seen as 4687 // part of the load. Therefore we conservatively reuse the same debug location 4688 // for the load and the zext. 4689 I->setDebugLoc(LI->getDebugLoc()); 4690 ++NumExtsMoved; 4691 return true; 4692 } 4693 4694 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4695 BasicBlock *DefBB = I->getParent(); 4696 4697 // If the result of a {s|z}ext and its source are both live out, rewrite all 4698 // other uses of the source with result of extension. 4699 Value *Src = I->getOperand(0); 4700 if (Src->hasOneUse()) 4701 return false; 4702 4703 // Only do this xform if truncating is free. 4704 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4705 return false; 4706 4707 // Only safe to perform the optimization if the source is also defined in 4708 // this block. 4709 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4710 return false; 4711 4712 bool DefIsLiveOut = false; 4713 for (User *U : I->users()) { 4714 Instruction *UI = cast<Instruction>(U); 4715 4716 // Figure out which BB this ext is used in. 4717 BasicBlock *UserBB = UI->getParent(); 4718 if (UserBB == DefBB) continue; 4719 DefIsLiveOut = true; 4720 break; 4721 } 4722 if (!DefIsLiveOut) 4723 return false; 4724 4725 // Make sure none of the uses are PHI nodes. 4726 for (User *U : Src->users()) { 4727 Instruction *UI = cast<Instruction>(U); 4728 BasicBlock *UserBB = UI->getParent(); 4729 if (UserBB == DefBB) continue; 4730 // Be conservative. We don't want this xform to end up introducing 4731 // reloads just before load / store instructions. 4732 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4733 return false; 4734 } 4735 4736 // InsertedTruncs - Only insert one trunc in each block once. 4737 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4738 4739 bool MadeChange = false; 4740 for (Use &U : Src->uses()) { 4741 Instruction *User = cast<Instruction>(U.getUser()); 4742 4743 // Figure out which BB this ext is used in. 4744 BasicBlock *UserBB = User->getParent(); 4745 if (UserBB == DefBB) continue; 4746 4747 // Both src and def are live in this block. Rewrite the use. 4748 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4749 4750 if (!InsertedTrunc) { 4751 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4752 assert(InsertPt != UserBB->end()); 4753 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4754 InsertedInsts.insert(InsertedTrunc); 4755 } 4756 4757 // Replace a use of the {s|z}ext source with a use of the result. 4758 U = InsertedTrunc; 4759 ++NumExtUses; 4760 MadeChange = true; 4761 } 4762 4763 return MadeChange; 4764 } 4765 4766 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4767 // just after the load if the target can fold this into one extload instruction, 4768 // with the hope of eliminating some of the other later "and" instructions using 4769 // the loaded value. "and"s that are made trivially redundant by the insertion 4770 // of the new "and" are removed by this function, while others (e.g. those whose 4771 // path from the load goes through a phi) are left for isel to potentially 4772 // remove. 4773 // 4774 // For example: 4775 // 4776 // b0: 4777 // x = load i32 4778 // ... 4779 // b1: 4780 // y = and x, 0xff 4781 // z = use y 4782 // 4783 // becomes: 4784 // 4785 // b0: 4786 // x = load i32 4787 // x' = and x, 0xff 4788 // ... 4789 // b1: 4790 // z = use x' 4791 // 4792 // whereas: 4793 // 4794 // b0: 4795 // x1 = load i32 4796 // ... 4797 // b1: 4798 // x2 = load i32 4799 // ... 4800 // b2: 4801 // x = phi x1, x2 4802 // y = and x, 0xff 4803 // 4804 // becomes (after a call to optimizeLoadExt for each load): 4805 // 4806 // b0: 4807 // x1 = load i32 4808 // x1' = and x1, 0xff 4809 // ... 4810 // b1: 4811 // x2 = load i32 4812 // x2' = and x2, 0xff 4813 // ... 4814 // b2: 4815 // x = phi x1', x2' 4816 // y = and x, 0xff 4817 // 4818 4819 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4820 4821 if (!Load->isSimple() || 4822 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4823 return false; 4824 4825 // Skip loads we've already transformed. 4826 if (Load->hasOneUse() && 4827 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 4828 return false; 4829 4830 // Look at all uses of Load, looking through phis, to determine how many bits 4831 // of the loaded value are needed. 4832 SmallVector<Instruction *, 8> WorkList; 4833 SmallPtrSet<Instruction *, 16> Visited; 4834 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4835 for (auto *U : Load->users()) 4836 WorkList.push_back(cast<Instruction>(U)); 4837 4838 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4839 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4840 APInt DemandBits(BitWidth, 0); 4841 APInt WidestAndBits(BitWidth, 0); 4842 4843 while (!WorkList.empty()) { 4844 Instruction *I = WorkList.back(); 4845 WorkList.pop_back(); 4846 4847 // Break use-def graph loops. 4848 if (!Visited.insert(I).second) 4849 continue; 4850 4851 // For a PHI node, push all of its users. 4852 if (auto *Phi = dyn_cast<PHINode>(I)) { 4853 for (auto *U : Phi->users()) 4854 WorkList.push_back(cast<Instruction>(U)); 4855 continue; 4856 } 4857 4858 switch (I->getOpcode()) { 4859 case llvm::Instruction::And: { 4860 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4861 if (!AndC) 4862 return false; 4863 APInt AndBits = AndC->getValue(); 4864 DemandBits |= AndBits; 4865 // Keep track of the widest and mask we see. 4866 if (AndBits.ugt(WidestAndBits)) 4867 WidestAndBits = AndBits; 4868 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4869 AndsToMaybeRemove.push_back(I); 4870 break; 4871 } 4872 4873 case llvm::Instruction::Shl: { 4874 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4875 if (!ShlC) 4876 return false; 4877 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4878 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4879 DemandBits |= ShlDemandBits; 4880 break; 4881 } 4882 4883 case llvm::Instruction::Trunc: { 4884 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4885 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4886 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4887 DemandBits |= TruncBits; 4888 break; 4889 } 4890 4891 default: 4892 return false; 4893 } 4894 } 4895 4896 uint32_t ActiveBits = DemandBits.getActiveBits(); 4897 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4898 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4899 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4900 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4901 // followed by an AND. 4902 // TODO: Look into removing this restriction by fixing backends to either 4903 // return false for isLoadExtLegal for i1 or have them select this pattern to 4904 // a single instruction. 4905 // 4906 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4907 // mask, since these are the only ands that will be removed by isel. 4908 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4909 WidestAndBits != DemandBits) 4910 return false; 4911 4912 LLVMContext &Ctx = Load->getType()->getContext(); 4913 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4914 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4915 4916 // Reject cases that won't be matched as extloads. 4917 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4918 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4919 return false; 4920 4921 IRBuilder<> Builder(Load->getNextNode()); 4922 auto *NewAnd = dyn_cast<Instruction>( 4923 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4924 // Mark this instruction as "inserted by CGP", so that other 4925 // optimizations don't touch it. 4926 InsertedInsts.insert(NewAnd); 4927 4928 // Replace all uses of load with new and (except for the use of load in the 4929 // new and itself). 4930 Load->replaceAllUsesWith(NewAnd); 4931 NewAnd->setOperand(0, Load); 4932 4933 // Remove any and instructions that are now redundant. 4934 for (auto *And : AndsToMaybeRemove) 4935 // Check that the and mask is the same as the one we decided to put on the 4936 // new and. 4937 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4938 And->replaceAllUsesWith(NewAnd); 4939 if (&*CurInstIterator == And) 4940 CurInstIterator = std::next(And->getIterator()); 4941 And->eraseFromParent(); 4942 ++NumAndUses; 4943 } 4944 4945 ++NumAndsAdded; 4946 return true; 4947 } 4948 4949 /// Check if V (an operand of a select instruction) is an expensive instruction 4950 /// that is only used once. 4951 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4952 auto *I = dyn_cast<Instruction>(V); 4953 // If it's safe to speculatively execute, then it should not have side 4954 // effects; therefore, it's safe to sink and possibly *not* execute. 4955 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4956 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4957 } 4958 4959 /// Returns true if a SelectInst should be turned into an explicit branch. 4960 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4961 const TargetLowering *TLI, 4962 SelectInst *SI) { 4963 // If even a predictable select is cheap, then a branch can't be cheaper. 4964 if (!TLI->isPredictableSelectExpensive()) 4965 return false; 4966 4967 // FIXME: This should use the same heuristics as IfConversion to determine 4968 // whether a select is better represented as a branch. 4969 4970 // If metadata tells us that the select condition is obviously predictable, 4971 // then we want to replace the select with a branch. 4972 uint64_t TrueWeight, FalseWeight; 4973 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4974 uint64_t Max = std::max(TrueWeight, FalseWeight); 4975 uint64_t Sum = TrueWeight + FalseWeight; 4976 if (Sum != 0) { 4977 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4978 if (Probability > TLI->getPredictableBranchThreshold()) 4979 return true; 4980 } 4981 } 4982 4983 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4984 4985 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4986 // comparison condition. If the compare has more than one use, there's 4987 // probably another cmov or setcc around, so it's not worth emitting a branch. 4988 if (!Cmp || !Cmp->hasOneUse()) 4989 return false; 4990 4991 // If either operand of the select is expensive and only needed on one side 4992 // of the select, we should form a branch. 4993 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4994 sinkSelectOperand(TTI, SI->getFalseValue())) 4995 return true; 4996 4997 return false; 4998 } 4999 5000 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5001 /// false value of \p SI. If the true/false value of \p SI is defined by any 5002 /// select instructions in \p Selects, look through the defining select 5003 /// instruction until the true/false value is not defined in \p Selects. 5004 static Value *getTrueOrFalseValue( 5005 SelectInst *SI, bool isTrue, 5006 const SmallPtrSet<const Instruction *, 2> &Selects) { 5007 Value *V; 5008 5009 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5010 DefSI = dyn_cast<SelectInst>(V)) { 5011 assert(DefSI->getCondition() == SI->getCondition() && 5012 "The condition of DefSI does not match with SI"); 5013 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5014 } 5015 return V; 5016 } 5017 5018 /// If we have a SelectInst that will likely profit from branch prediction, 5019 /// turn it into a branch. 5020 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5021 // Find all consecutive select instructions that share the same condition. 5022 SmallVector<SelectInst *, 2> ASI; 5023 ASI.push_back(SI); 5024 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5025 It != SI->getParent()->end(); ++It) { 5026 SelectInst *I = dyn_cast<SelectInst>(&*It); 5027 if (I && SI->getCondition() == I->getCondition()) { 5028 ASI.push_back(I); 5029 } else { 5030 break; 5031 } 5032 } 5033 5034 SelectInst *LastSI = ASI.back(); 5035 // Increment the current iterator to skip all the rest of select instructions 5036 // because they will be either "not lowered" or "all lowered" to branch. 5037 CurInstIterator = std::next(LastSI->getIterator()); 5038 5039 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5040 5041 // Can we convert the 'select' to CF ? 5042 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5043 SI->getMetadata(LLVMContext::MD_unpredictable)) 5044 return false; 5045 5046 TargetLowering::SelectSupportKind SelectKind; 5047 if (VectorCond) 5048 SelectKind = TargetLowering::VectorMaskSelect; 5049 else if (SI->getType()->isVectorTy()) 5050 SelectKind = TargetLowering::ScalarCondVectorVal; 5051 else 5052 SelectKind = TargetLowering::ScalarValSelect; 5053 5054 if (TLI->isSelectSupported(SelectKind) && 5055 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5056 return false; 5057 5058 ModifiedDT = true; 5059 5060 // Transform a sequence like this: 5061 // start: 5062 // %cmp = cmp uge i32 %a, %b 5063 // %sel = select i1 %cmp, i32 %c, i32 %d 5064 // 5065 // Into: 5066 // start: 5067 // %cmp = cmp uge i32 %a, %b 5068 // br i1 %cmp, label %select.true, label %select.false 5069 // select.true: 5070 // br label %select.end 5071 // select.false: 5072 // br label %select.end 5073 // select.end: 5074 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5075 // 5076 // In addition, we may sink instructions that produce %c or %d from 5077 // the entry block into the destination(s) of the new branch. 5078 // If the true or false blocks do not contain a sunken instruction, that 5079 // block and its branch may be optimized away. In that case, one side of the 5080 // first branch will point directly to select.end, and the corresponding PHI 5081 // predecessor block will be the start block. 5082 5083 // First, we split the block containing the select into 2 blocks. 5084 BasicBlock *StartBlock = SI->getParent(); 5085 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5086 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5087 5088 // Delete the unconditional branch that was just created by the split. 5089 StartBlock->getTerminator()->eraseFromParent(); 5090 5091 // These are the new basic blocks for the conditional branch. 5092 // At least one will become an actual new basic block. 5093 BasicBlock *TrueBlock = nullptr; 5094 BasicBlock *FalseBlock = nullptr; 5095 BranchInst *TrueBranch = nullptr; 5096 BranchInst *FalseBranch = nullptr; 5097 5098 // Sink expensive instructions into the conditional blocks to avoid executing 5099 // them speculatively. 5100 for (SelectInst *SI : ASI) { 5101 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5102 if (TrueBlock == nullptr) { 5103 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5104 EndBlock->getParent(), EndBlock); 5105 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5106 } 5107 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5108 TrueInst->moveBefore(TrueBranch); 5109 } 5110 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5111 if (FalseBlock == nullptr) { 5112 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5113 EndBlock->getParent(), EndBlock); 5114 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5115 } 5116 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5117 FalseInst->moveBefore(FalseBranch); 5118 } 5119 } 5120 5121 // If there was nothing to sink, then arbitrarily choose the 'false' side 5122 // for a new input value to the PHI. 5123 if (TrueBlock == FalseBlock) { 5124 assert(TrueBlock == nullptr && 5125 "Unexpected basic block transform while optimizing select"); 5126 5127 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5128 EndBlock->getParent(), EndBlock); 5129 BranchInst::Create(EndBlock, FalseBlock); 5130 } 5131 5132 // Insert the real conditional branch based on the original condition. 5133 // If we did not create a new block for one of the 'true' or 'false' paths 5134 // of the condition, it means that side of the branch goes to the end block 5135 // directly and the path originates from the start block from the point of 5136 // view of the new PHI. 5137 BasicBlock *TT, *FT; 5138 if (TrueBlock == nullptr) { 5139 TT = EndBlock; 5140 FT = FalseBlock; 5141 TrueBlock = StartBlock; 5142 } else if (FalseBlock == nullptr) { 5143 TT = TrueBlock; 5144 FT = EndBlock; 5145 FalseBlock = StartBlock; 5146 } else { 5147 TT = TrueBlock; 5148 FT = FalseBlock; 5149 } 5150 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5151 5152 SmallPtrSet<const Instruction *, 2> INS; 5153 INS.insert(ASI.begin(), ASI.end()); 5154 // Use reverse iterator because later select may use the value of the 5155 // earlier select, and we need to propagate value through earlier select 5156 // to get the PHI operand. 5157 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5158 SelectInst *SI = *It; 5159 // The select itself is replaced with a PHI Node. 5160 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5161 PN->takeName(SI); 5162 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5163 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5164 5165 SI->replaceAllUsesWith(PN); 5166 SI->eraseFromParent(); 5167 INS.erase(SI); 5168 ++NumSelectsExpanded; 5169 } 5170 5171 // Instruct OptimizeBlock to skip to the next block. 5172 CurInstIterator = StartBlock->end(); 5173 return true; 5174 } 5175 5176 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5177 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5178 int SplatElem = -1; 5179 for (unsigned i = 0; i < Mask.size(); ++i) { 5180 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5181 return false; 5182 SplatElem = Mask[i]; 5183 } 5184 5185 return true; 5186 } 5187 5188 /// Some targets have expensive vector shifts if the lanes aren't all the same 5189 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5190 /// it's often worth sinking a shufflevector splat down to its use so that 5191 /// codegen can spot all lanes are identical. 5192 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5193 BasicBlock *DefBB = SVI->getParent(); 5194 5195 // Only do this xform if variable vector shifts are particularly expensive. 5196 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5197 return false; 5198 5199 // We only expect better codegen by sinking a shuffle if we can recognise a 5200 // constant splat. 5201 if (!isBroadcastShuffle(SVI)) 5202 return false; 5203 5204 // InsertedShuffles - Only insert a shuffle in each block once. 5205 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5206 5207 bool MadeChange = false; 5208 for (User *U : SVI->users()) { 5209 Instruction *UI = cast<Instruction>(U); 5210 5211 // Figure out which BB this ext is used in. 5212 BasicBlock *UserBB = UI->getParent(); 5213 if (UserBB == DefBB) continue; 5214 5215 // For now only apply this when the splat is used by a shift instruction. 5216 if (!UI->isShift()) continue; 5217 5218 // Everything checks out, sink the shuffle if the user's block doesn't 5219 // already have a copy. 5220 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5221 5222 if (!InsertedShuffle) { 5223 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5224 assert(InsertPt != UserBB->end()); 5225 InsertedShuffle = 5226 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5227 SVI->getOperand(2), "", &*InsertPt); 5228 } 5229 5230 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5231 MadeChange = true; 5232 } 5233 5234 // If we removed all uses, nuke the shuffle. 5235 if (SVI->use_empty()) { 5236 SVI->eraseFromParent(); 5237 MadeChange = true; 5238 } 5239 5240 return MadeChange; 5241 } 5242 5243 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5244 if (!TLI || !DL) 5245 return false; 5246 5247 Value *Cond = SI->getCondition(); 5248 Type *OldType = Cond->getType(); 5249 LLVMContext &Context = Cond->getContext(); 5250 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5251 unsigned RegWidth = RegType.getSizeInBits(); 5252 5253 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5254 return false; 5255 5256 // If the register width is greater than the type width, expand the condition 5257 // of the switch instruction and each case constant to the width of the 5258 // register. By widening the type of the switch condition, subsequent 5259 // comparisons (for case comparisons) will not need to be extended to the 5260 // preferred register width, so we will potentially eliminate N-1 extends, 5261 // where N is the number of cases in the switch. 5262 auto *NewType = Type::getIntNTy(Context, RegWidth); 5263 5264 // Zero-extend the switch condition and case constants unless the switch 5265 // condition is a function argument that is already being sign-extended. 5266 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5267 // everything instead. 5268 Instruction::CastOps ExtType = Instruction::ZExt; 5269 if (auto *Arg = dyn_cast<Argument>(Cond)) 5270 if (Arg->hasSExtAttr()) 5271 ExtType = Instruction::SExt; 5272 5273 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5274 ExtInst->insertBefore(SI); 5275 SI->setCondition(ExtInst); 5276 for (SwitchInst::CaseIt Case : SI->cases()) { 5277 APInt NarrowConst = Case.getCaseValue()->getValue(); 5278 APInt WideConst = (ExtType == Instruction::ZExt) ? 5279 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5280 Case.setValue(ConstantInt::get(Context, WideConst)); 5281 } 5282 5283 return true; 5284 } 5285 5286 namespace { 5287 /// \brief Helper class to promote a scalar operation to a vector one. 5288 /// This class is used to move downward extractelement transition. 5289 /// E.g., 5290 /// a = vector_op <2 x i32> 5291 /// b = extractelement <2 x i32> a, i32 0 5292 /// c = scalar_op b 5293 /// store c 5294 /// 5295 /// => 5296 /// a = vector_op <2 x i32> 5297 /// c = vector_op a (equivalent to scalar_op on the related lane) 5298 /// * d = extractelement <2 x i32> c, i32 0 5299 /// * store d 5300 /// Assuming both extractelement and store can be combine, we get rid of the 5301 /// transition. 5302 class VectorPromoteHelper { 5303 /// DataLayout associated with the current module. 5304 const DataLayout &DL; 5305 5306 /// Used to perform some checks on the legality of vector operations. 5307 const TargetLowering &TLI; 5308 5309 /// Used to estimated the cost of the promoted chain. 5310 const TargetTransformInfo &TTI; 5311 5312 /// The transition being moved downwards. 5313 Instruction *Transition; 5314 /// The sequence of instructions to be promoted. 5315 SmallVector<Instruction *, 4> InstsToBePromoted; 5316 /// Cost of combining a store and an extract. 5317 unsigned StoreExtractCombineCost; 5318 /// Instruction that will be combined with the transition. 5319 Instruction *CombineInst; 5320 5321 /// \brief The instruction that represents the current end of the transition. 5322 /// Since we are faking the promotion until we reach the end of the chain 5323 /// of computation, we need a way to get the current end of the transition. 5324 Instruction *getEndOfTransition() const { 5325 if (InstsToBePromoted.empty()) 5326 return Transition; 5327 return InstsToBePromoted.back(); 5328 } 5329 5330 /// \brief Return the index of the original value in the transition. 5331 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5332 /// c, is at index 0. 5333 unsigned getTransitionOriginalValueIdx() const { 5334 assert(isa<ExtractElementInst>(Transition) && 5335 "Other kind of transitions are not supported yet"); 5336 return 0; 5337 } 5338 5339 /// \brief Return the index of the index in the transition. 5340 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5341 /// is at index 1. 5342 unsigned getTransitionIdx() const { 5343 assert(isa<ExtractElementInst>(Transition) && 5344 "Other kind of transitions are not supported yet"); 5345 return 1; 5346 } 5347 5348 /// \brief Get the type of the transition. 5349 /// This is the type of the original value. 5350 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5351 /// transition is <2 x i32>. 5352 Type *getTransitionType() const { 5353 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5354 } 5355 5356 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5357 /// I.e., we have the following sequence: 5358 /// Def = Transition <ty1> a to <ty2> 5359 /// b = ToBePromoted <ty2> Def, ... 5360 /// => 5361 /// b = ToBePromoted <ty1> a, ... 5362 /// Def = Transition <ty1> ToBePromoted to <ty2> 5363 void promoteImpl(Instruction *ToBePromoted); 5364 5365 /// \brief Check whether or not it is profitable to promote all the 5366 /// instructions enqueued to be promoted. 5367 bool isProfitableToPromote() { 5368 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5369 unsigned Index = isa<ConstantInt>(ValIdx) 5370 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5371 : -1; 5372 Type *PromotedType = getTransitionType(); 5373 5374 StoreInst *ST = cast<StoreInst>(CombineInst); 5375 unsigned AS = ST->getPointerAddressSpace(); 5376 unsigned Align = ST->getAlignment(); 5377 // Check if this store is supported. 5378 if (!TLI.allowsMisalignedMemoryAccesses( 5379 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5380 Align)) { 5381 // If this is not supported, there is no way we can combine 5382 // the extract with the store. 5383 return false; 5384 } 5385 5386 // The scalar chain of computation has to pay for the transition 5387 // scalar to vector. 5388 // The vector chain has to account for the combining cost. 5389 uint64_t ScalarCost = 5390 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5391 uint64_t VectorCost = StoreExtractCombineCost; 5392 for (const auto &Inst : InstsToBePromoted) { 5393 // Compute the cost. 5394 // By construction, all instructions being promoted are arithmetic ones. 5395 // Moreover, one argument is a constant that can be viewed as a splat 5396 // constant. 5397 Value *Arg0 = Inst->getOperand(0); 5398 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5399 isa<ConstantFP>(Arg0); 5400 TargetTransformInfo::OperandValueKind Arg0OVK = 5401 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5402 : TargetTransformInfo::OK_AnyValue; 5403 TargetTransformInfo::OperandValueKind Arg1OVK = 5404 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5405 : TargetTransformInfo::OK_AnyValue; 5406 ScalarCost += TTI.getArithmeticInstrCost( 5407 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5408 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5409 Arg0OVK, Arg1OVK); 5410 } 5411 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5412 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5413 return ScalarCost > VectorCost; 5414 } 5415 5416 /// \brief Generate a constant vector with \p Val with the same 5417 /// number of elements as the transition. 5418 /// \p UseSplat defines whether or not \p Val should be replicated 5419 /// across the whole vector. 5420 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5421 /// otherwise we generate a vector with as many undef as possible: 5422 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5423 /// used at the index of the extract. 5424 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5425 unsigned ExtractIdx = UINT_MAX; 5426 if (!UseSplat) { 5427 // If we cannot determine where the constant must be, we have to 5428 // use a splat constant. 5429 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5430 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5431 ExtractIdx = CstVal->getSExtValue(); 5432 else 5433 UseSplat = true; 5434 } 5435 5436 unsigned End = getTransitionType()->getVectorNumElements(); 5437 if (UseSplat) 5438 return ConstantVector::getSplat(End, Val); 5439 5440 SmallVector<Constant *, 4> ConstVec; 5441 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5442 for (unsigned Idx = 0; Idx != End; ++Idx) { 5443 if (Idx == ExtractIdx) 5444 ConstVec.push_back(Val); 5445 else 5446 ConstVec.push_back(UndefVal); 5447 } 5448 return ConstantVector::get(ConstVec); 5449 } 5450 5451 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5452 /// in \p Use can trigger undefined behavior. 5453 static bool canCauseUndefinedBehavior(const Instruction *Use, 5454 unsigned OperandIdx) { 5455 // This is not safe to introduce undef when the operand is on 5456 // the right hand side of a division-like instruction. 5457 if (OperandIdx != 1) 5458 return false; 5459 switch (Use->getOpcode()) { 5460 default: 5461 return false; 5462 case Instruction::SDiv: 5463 case Instruction::UDiv: 5464 case Instruction::SRem: 5465 case Instruction::URem: 5466 return true; 5467 case Instruction::FDiv: 5468 case Instruction::FRem: 5469 return !Use->hasNoNaNs(); 5470 } 5471 llvm_unreachable(nullptr); 5472 } 5473 5474 public: 5475 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5476 const TargetTransformInfo &TTI, Instruction *Transition, 5477 unsigned CombineCost) 5478 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5479 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5480 assert(Transition && "Do not know how to promote null"); 5481 } 5482 5483 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5484 bool canPromote(const Instruction *ToBePromoted) const { 5485 // We could support CastInst too. 5486 return isa<BinaryOperator>(ToBePromoted); 5487 } 5488 5489 /// \brief Check if it is profitable to promote \p ToBePromoted 5490 /// by moving downward the transition through. 5491 bool shouldPromote(const Instruction *ToBePromoted) const { 5492 // Promote only if all the operands can be statically expanded. 5493 // Indeed, we do not want to introduce any new kind of transitions. 5494 for (const Use &U : ToBePromoted->operands()) { 5495 const Value *Val = U.get(); 5496 if (Val == getEndOfTransition()) { 5497 // If the use is a division and the transition is on the rhs, 5498 // we cannot promote the operation, otherwise we may create a 5499 // division by zero. 5500 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5501 return false; 5502 continue; 5503 } 5504 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5505 !isa<ConstantFP>(Val)) 5506 return false; 5507 } 5508 // Check that the resulting operation is legal. 5509 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5510 if (!ISDOpcode) 5511 return false; 5512 return StressStoreExtract || 5513 TLI.isOperationLegalOrCustom( 5514 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5515 } 5516 5517 /// \brief Check whether or not \p Use can be combined 5518 /// with the transition. 5519 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5520 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5521 5522 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5523 void enqueueForPromotion(Instruction *ToBePromoted) { 5524 InstsToBePromoted.push_back(ToBePromoted); 5525 } 5526 5527 /// \brief Set the instruction that will be combined with the transition. 5528 void recordCombineInstruction(Instruction *ToBeCombined) { 5529 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5530 CombineInst = ToBeCombined; 5531 } 5532 5533 /// \brief Promote all the instructions enqueued for promotion if it is 5534 /// is profitable. 5535 /// \return True if the promotion happened, false otherwise. 5536 bool promote() { 5537 // Check if there is something to promote. 5538 // Right now, if we do not have anything to combine with, 5539 // we assume the promotion is not profitable. 5540 if (InstsToBePromoted.empty() || !CombineInst) 5541 return false; 5542 5543 // Check cost. 5544 if (!StressStoreExtract && !isProfitableToPromote()) 5545 return false; 5546 5547 // Promote. 5548 for (auto &ToBePromoted : InstsToBePromoted) 5549 promoteImpl(ToBePromoted); 5550 InstsToBePromoted.clear(); 5551 return true; 5552 } 5553 }; 5554 } // End of anonymous namespace. 5555 5556 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5557 // At this point, we know that all the operands of ToBePromoted but Def 5558 // can be statically promoted. 5559 // For Def, we need to use its parameter in ToBePromoted: 5560 // b = ToBePromoted ty1 a 5561 // Def = Transition ty1 b to ty2 5562 // Move the transition down. 5563 // 1. Replace all uses of the promoted operation by the transition. 5564 // = ... b => = ... Def. 5565 assert(ToBePromoted->getType() == Transition->getType() && 5566 "The type of the result of the transition does not match " 5567 "the final type"); 5568 ToBePromoted->replaceAllUsesWith(Transition); 5569 // 2. Update the type of the uses. 5570 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5571 Type *TransitionTy = getTransitionType(); 5572 ToBePromoted->mutateType(TransitionTy); 5573 // 3. Update all the operands of the promoted operation with promoted 5574 // operands. 5575 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5576 for (Use &U : ToBePromoted->operands()) { 5577 Value *Val = U.get(); 5578 Value *NewVal = nullptr; 5579 if (Val == Transition) 5580 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5581 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5582 isa<ConstantFP>(Val)) { 5583 // Use a splat constant if it is not safe to use undef. 5584 NewVal = getConstantVector( 5585 cast<Constant>(Val), 5586 isa<UndefValue>(Val) || 5587 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5588 } else 5589 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5590 "this?"); 5591 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5592 } 5593 Transition->removeFromParent(); 5594 Transition->insertAfter(ToBePromoted); 5595 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5596 } 5597 5598 /// Some targets can do store(extractelement) with one instruction. 5599 /// Try to push the extractelement towards the stores when the target 5600 /// has this feature and this is profitable. 5601 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5602 unsigned CombineCost = UINT_MAX; 5603 if (DisableStoreExtract || !TLI || 5604 (!StressStoreExtract && 5605 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5606 Inst->getOperand(1), CombineCost))) 5607 return false; 5608 5609 // At this point we know that Inst is a vector to scalar transition. 5610 // Try to move it down the def-use chain, until: 5611 // - We can combine the transition with its single use 5612 // => we got rid of the transition. 5613 // - We escape the current basic block 5614 // => we would need to check that we are moving it at a cheaper place and 5615 // we do not do that for now. 5616 BasicBlock *Parent = Inst->getParent(); 5617 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5618 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5619 // If the transition has more than one use, assume this is not going to be 5620 // beneficial. 5621 while (Inst->hasOneUse()) { 5622 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5623 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5624 5625 if (ToBePromoted->getParent() != Parent) { 5626 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5627 << ToBePromoted->getParent()->getName() 5628 << ") than the transition (" << Parent->getName() << ").\n"); 5629 return false; 5630 } 5631 5632 if (VPH.canCombine(ToBePromoted)) { 5633 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5634 << "will be combined with: " << *ToBePromoted << '\n'); 5635 VPH.recordCombineInstruction(ToBePromoted); 5636 bool Changed = VPH.promote(); 5637 NumStoreExtractExposed += Changed; 5638 return Changed; 5639 } 5640 5641 DEBUG(dbgs() << "Try promoting.\n"); 5642 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5643 return false; 5644 5645 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5646 5647 VPH.enqueueForPromotion(ToBePromoted); 5648 Inst = ToBePromoted; 5649 } 5650 return false; 5651 } 5652 5653 /// For the instruction sequence of store below, F and I values 5654 /// are bundled together as an i64 value before being stored into memory. 5655 /// Sometimes it is more efficent to generate separate stores for F and I, 5656 /// which can remove the bitwise instructions or sink them to colder places. 5657 /// 5658 /// (store (or (zext (bitcast F to i32) to i64), 5659 /// (shl (zext I to i64), 32)), addr) --> 5660 /// (store F, addr) and (store I, addr+4) 5661 /// 5662 /// Similarly, splitting for other merged store can also be beneficial, like: 5663 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5664 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5665 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5666 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5667 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5668 /// 5669 /// We allow each target to determine specifically which kind of splitting is 5670 /// supported. 5671 /// 5672 /// The store patterns are commonly seen from the simple code snippet below 5673 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5674 /// void goo(const std::pair<int, float> &); 5675 /// hoo() { 5676 /// ... 5677 /// goo(std::make_pair(tmp, ftmp)); 5678 /// ... 5679 /// } 5680 /// 5681 /// Although we already have similar splitting in DAG Combine, we duplicate 5682 /// it in CodeGenPrepare to catch the case in which pattern is across 5683 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5684 /// during code expansion. 5685 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5686 const TargetLowering &TLI) { 5687 // Handle simple but common cases only. 5688 Type *StoreType = SI.getValueOperand()->getType(); 5689 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5690 DL.getTypeSizeInBits(StoreType) == 0) 5691 return false; 5692 5693 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5694 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5695 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5696 DL.getTypeSizeInBits(SplitStoreType)) 5697 return false; 5698 5699 // Match the following patterns: 5700 // (store (or (zext LValue to i64), 5701 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5702 // or 5703 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5704 // (zext LValue to i64), 5705 // Expect both operands of OR and the first operand of SHL have only 5706 // one use. 5707 Value *LValue, *HValue; 5708 if (!match(SI.getValueOperand(), 5709 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5710 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5711 m_SpecificInt(HalfValBitSize)))))) 5712 return false; 5713 5714 // Check LValue and HValue are int with size less or equal than 32. 5715 if (!LValue->getType()->isIntegerTy() || 5716 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5717 !HValue->getType()->isIntegerTy() || 5718 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5719 return false; 5720 5721 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5722 // as the input of target query. 5723 auto *LBC = dyn_cast<BitCastInst>(LValue); 5724 auto *HBC = dyn_cast<BitCastInst>(HValue); 5725 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5726 : EVT::getEVT(LValue->getType()); 5727 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5728 : EVT::getEVT(HValue->getType()); 5729 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5730 return false; 5731 5732 // Start to split store. 5733 IRBuilder<> Builder(SI.getContext()); 5734 Builder.SetInsertPoint(&SI); 5735 5736 // If LValue/HValue is a bitcast in another BB, create a new one in current 5737 // BB so it may be merged with the splitted stores by dag combiner. 5738 if (LBC && LBC->getParent() != SI.getParent()) 5739 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5740 if (HBC && HBC->getParent() != SI.getParent()) 5741 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5742 5743 auto CreateSplitStore = [&](Value *V, bool Upper) { 5744 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5745 Value *Addr = Builder.CreateBitCast( 5746 SI.getOperand(1), 5747 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5748 if (Upper) 5749 Addr = Builder.CreateGEP( 5750 SplitStoreType, Addr, 5751 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5752 Builder.CreateAlignedStore( 5753 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5754 }; 5755 5756 CreateSplitStore(LValue, false); 5757 CreateSplitStore(HValue, true); 5758 5759 // Delete the old store. 5760 SI.eraseFromParent(); 5761 return true; 5762 } 5763 5764 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5765 // Bail out if we inserted the instruction to prevent optimizations from 5766 // stepping on each other's toes. 5767 if (InsertedInsts.count(I)) 5768 return false; 5769 5770 if (PHINode *P = dyn_cast<PHINode>(I)) { 5771 // It is possible for very late stage optimizations (such as SimplifyCFG) 5772 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5773 // trivial PHI, go ahead and zap it here. 5774 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5775 P->replaceAllUsesWith(V); 5776 P->eraseFromParent(); 5777 ++NumPHIsElim; 5778 return true; 5779 } 5780 return false; 5781 } 5782 5783 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5784 // If the source of the cast is a constant, then this should have 5785 // already been constant folded. The only reason NOT to constant fold 5786 // it is if something (e.g. LSR) was careful to place the constant 5787 // evaluation in a block other than then one that uses it (e.g. to hoist 5788 // the address of globals out of a loop). If this is the case, we don't 5789 // want to forward-subst the cast. 5790 if (isa<Constant>(CI->getOperand(0))) 5791 return false; 5792 5793 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5794 return true; 5795 5796 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5797 /// Sink a zext or sext into its user blocks if the target type doesn't 5798 /// fit in one register 5799 if (TLI && 5800 TLI->getTypeAction(CI->getContext(), 5801 TLI->getValueType(*DL, CI->getType())) == 5802 TargetLowering::TypeExpandInteger) { 5803 return SinkCast(CI); 5804 } else { 5805 bool MadeChange = moveExtToFormExtLoad(I); 5806 return MadeChange | optimizeExtUses(I); 5807 } 5808 } 5809 return false; 5810 } 5811 5812 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5813 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5814 return OptimizeCmpExpression(CI, TLI); 5815 5816 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5817 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5818 if (TLI) { 5819 bool Modified = optimizeLoadExt(LI); 5820 unsigned AS = LI->getPointerAddressSpace(); 5821 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5822 return Modified; 5823 } 5824 return false; 5825 } 5826 5827 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5828 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5829 return true; 5830 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5831 if (TLI) { 5832 unsigned AS = SI->getPointerAddressSpace(); 5833 return optimizeMemoryInst(I, SI->getOperand(1), 5834 SI->getOperand(0)->getType(), AS); 5835 } 5836 return false; 5837 } 5838 5839 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 5840 unsigned AS = RMW->getPointerAddressSpace(); 5841 return optimizeMemoryInst(I, RMW->getPointerOperand(), 5842 RMW->getType(), AS); 5843 } 5844 5845 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 5846 unsigned AS = CmpX->getPointerAddressSpace(); 5847 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 5848 CmpX->getCompareOperand()->getType(), AS); 5849 } 5850 5851 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5852 5853 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 5854 EnableAndCmpSinking && TLI) 5855 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 5856 5857 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5858 BinOp->getOpcode() == Instruction::LShr)) { 5859 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5860 if (TLI && CI && TLI->hasExtractBitsInsn()) 5861 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5862 5863 return false; 5864 } 5865 5866 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5867 if (GEPI->hasAllZeroIndices()) { 5868 /// The GEP operand must be a pointer, so must its result -> BitCast 5869 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5870 GEPI->getName(), GEPI); 5871 GEPI->replaceAllUsesWith(NC); 5872 GEPI->eraseFromParent(); 5873 ++NumGEPsElim; 5874 optimizeInst(NC, ModifiedDT); 5875 return true; 5876 } 5877 return false; 5878 } 5879 5880 if (CallInst *CI = dyn_cast<CallInst>(I)) 5881 return optimizeCallInst(CI, ModifiedDT); 5882 5883 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5884 return optimizeSelectInst(SI); 5885 5886 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5887 return optimizeShuffleVectorInst(SVI); 5888 5889 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5890 return optimizeSwitchInst(Switch); 5891 5892 if (isa<ExtractElementInst>(I)) 5893 return optimizeExtractElementInst(I); 5894 5895 return false; 5896 } 5897 5898 /// Given an OR instruction, check to see if this is a bitreverse 5899 /// idiom. If so, insert the new intrinsic and return true. 5900 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5901 const TargetLowering &TLI) { 5902 if (!I.getType()->isIntegerTy() || 5903 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5904 TLI.getValueType(DL, I.getType(), true))) 5905 return false; 5906 5907 SmallVector<Instruction*, 4> Insts; 5908 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5909 return false; 5910 Instruction *LastInst = Insts.back(); 5911 I.replaceAllUsesWith(LastInst); 5912 RecursivelyDeleteTriviallyDeadInstructions(&I); 5913 return true; 5914 } 5915 5916 // In this pass we look for GEP and cast instructions that are used 5917 // across basic blocks and rewrite them to improve basic-block-at-a-time 5918 // selection. 5919 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5920 SunkAddrs.clear(); 5921 bool MadeChange = false; 5922 5923 CurInstIterator = BB.begin(); 5924 while (CurInstIterator != BB.end()) { 5925 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5926 if (ModifiedDT) 5927 return true; 5928 } 5929 5930 bool MadeBitReverse = true; 5931 while (TLI && MadeBitReverse) { 5932 MadeBitReverse = false; 5933 for (auto &I : reverse(BB)) { 5934 if (makeBitReverse(I, *DL, *TLI)) { 5935 MadeBitReverse = MadeChange = true; 5936 ModifiedDT = true; 5937 break; 5938 } 5939 } 5940 } 5941 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5942 5943 return MadeChange; 5944 } 5945 5946 // llvm.dbg.value is far away from the value then iSel may not be able 5947 // handle it properly. iSel will drop llvm.dbg.value if it can not 5948 // find a node corresponding to the value. 5949 bool CodeGenPrepare::placeDbgValues(Function &F) { 5950 bool MadeChange = false; 5951 for (BasicBlock &BB : F) { 5952 Instruction *PrevNonDbgInst = nullptr; 5953 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5954 Instruction *Insn = &*BI++; 5955 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5956 // Leave dbg.values that refer to an alloca alone. These 5957 // instrinsics describe the address of a variable (= the alloca) 5958 // being taken. They should not be moved next to the alloca 5959 // (and to the beginning of the scope), but rather stay close to 5960 // where said address is used. 5961 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5962 PrevNonDbgInst = Insn; 5963 continue; 5964 } 5965 5966 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5967 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5968 // If VI is a phi in a block with an EHPad terminator, we can't insert 5969 // after it. 5970 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5971 continue; 5972 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5973 DVI->removeFromParent(); 5974 if (isa<PHINode>(VI)) 5975 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5976 else 5977 DVI->insertAfter(VI); 5978 MadeChange = true; 5979 ++NumDbgValueMoved; 5980 } 5981 } 5982 } 5983 return MadeChange; 5984 } 5985 5986 /// \brief Scale down both weights to fit into uint32_t. 5987 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5988 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5989 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5990 NewTrue = NewTrue / Scale; 5991 NewFalse = NewFalse / Scale; 5992 } 5993 5994 /// \brief Some targets prefer to split a conditional branch like: 5995 /// \code 5996 /// %0 = icmp ne i32 %a, 0 5997 /// %1 = icmp ne i32 %b, 0 5998 /// %or.cond = or i1 %0, %1 5999 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6000 /// \endcode 6001 /// into multiple branch instructions like: 6002 /// \code 6003 /// bb1: 6004 /// %0 = icmp ne i32 %a, 0 6005 /// br i1 %0, label %TrueBB, label %bb2 6006 /// bb2: 6007 /// %1 = icmp ne i32 %b, 0 6008 /// br i1 %1, label %TrueBB, label %FalseBB 6009 /// \endcode 6010 /// This usually allows instruction selection to do even further optimizations 6011 /// and combine the compare with the branch instruction. Currently this is 6012 /// applied for targets which have "cheap" jump instructions. 6013 /// 6014 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6015 /// 6016 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6017 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6018 return false; 6019 6020 bool MadeChange = false; 6021 for (auto &BB : F) { 6022 // Does this BB end with the following? 6023 // %cond1 = icmp|fcmp|binary instruction ... 6024 // %cond2 = icmp|fcmp|binary instruction ... 6025 // %cond.or = or|and i1 %cond1, cond2 6026 // br i1 %cond.or label %dest1, label %dest2" 6027 BinaryOperator *LogicOp; 6028 BasicBlock *TBB, *FBB; 6029 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6030 continue; 6031 6032 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6033 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6034 continue; 6035 6036 unsigned Opc; 6037 Value *Cond1, *Cond2; 6038 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6039 m_OneUse(m_Value(Cond2))))) 6040 Opc = Instruction::And; 6041 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6042 m_OneUse(m_Value(Cond2))))) 6043 Opc = Instruction::Or; 6044 else 6045 continue; 6046 6047 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6048 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6049 continue; 6050 6051 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6052 6053 // Create a new BB. 6054 auto TmpBB = 6055 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6056 BB.getParent(), BB.getNextNode()); 6057 6058 // Update original basic block by using the first condition directly by the 6059 // branch instruction and removing the no longer needed and/or instruction. 6060 Br1->setCondition(Cond1); 6061 LogicOp->eraseFromParent(); 6062 6063 // Depending on the conditon we have to either replace the true or the false 6064 // successor of the original branch instruction. 6065 if (Opc == Instruction::And) 6066 Br1->setSuccessor(0, TmpBB); 6067 else 6068 Br1->setSuccessor(1, TmpBB); 6069 6070 // Fill in the new basic block. 6071 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6072 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6073 I->removeFromParent(); 6074 I->insertBefore(Br2); 6075 } 6076 6077 // Update PHI nodes in both successors. The original BB needs to be 6078 // replaced in one succesor's PHI nodes, because the branch comes now from 6079 // the newly generated BB (NewBB). In the other successor we need to add one 6080 // incoming edge to the PHI nodes, because both branch instructions target 6081 // now the same successor. Depending on the original branch condition 6082 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6083 // we perform the correct update for the PHI nodes. 6084 // This doesn't change the successor order of the just created branch 6085 // instruction (or any other instruction). 6086 if (Opc == Instruction::Or) 6087 std::swap(TBB, FBB); 6088 6089 // Replace the old BB with the new BB. 6090 for (auto &I : *TBB) { 6091 PHINode *PN = dyn_cast<PHINode>(&I); 6092 if (!PN) 6093 break; 6094 int i; 6095 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6096 PN->setIncomingBlock(i, TmpBB); 6097 } 6098 6099 // Add another incoming edge form the new BB. 6100 for (auto &I : *FBB) { 6101 PHINode *PN = dyn_cast<PHINode>(&I); 6102 if (!PN) 6103 break; 6104 auto *Val = PN->getIncomingValueForBlock(&BB); 6105 PN->addIncoming(Val, TmpBB); 6106 } 6107 6108 // Update the branch weights (from SelectionDAGBuilder:: 6109 // FindMergedConditions). 6110 if (Opc == Instruction::Or) { 6111 // Codegen X | Y as: 6112 // BB1: 6113 // jmp_if_X TBB 6114 // jmp TmpBB 6115 // TmpBB: 6116 // jmp_if_Y TBB 6117 // jmp FBB 6118 // 6119 6120 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6121 // The requirement is that 6122 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6123 // = TrueProb for orignal BB. 6124 // Assuming the orignal weights are A and B, one choice is to set BB1's 6125 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6126 // assumes that 6127 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6128 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6129 // TmpBB, but the math is more complicated. 6130 uint64_t TrueWeight, FalseWeight; 6131 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6132 uint64_t NewTrueWeight = TrueWeight; 6133 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6134 scaleWeights(NewTrueWeight, NewFalseWeight); 6135 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6136 .createBranchWeights(TrueWeight, FalseWeight)); 6137 6138 NewTrueWeight = TrueWeight; 6139 NewFalseWeight = 2 * FalseWeight; 6140 scaleWeights(NewTrueWeight, NewFalseWeight); 6141 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6142 .createBranchWeights(TrueWeight, FalseWeight)); 6143 } 6144 } else { 6145 // Codegen X & Y as: 6146 // BB1: 6147 // jmp_if_X TmpBB 6148 // jmp FBB 6149 // TmpBB: 6150 // jmp_if_Y TBB 6151 // jmp FBB 6152 // 6153 // This requires creation of TmpBB after CurBB. 6154 6155 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6156 // The requirement is that 6157 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6158 // = FalseProb for orignal BB. 6159 // Assuming the orignal weights are A and B, one choice is to set BB1's 6160 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6161 // assumes that 6162 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6163 uint64_t TrueWeight, FalseWeight; 6164 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6165 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6166 uint64_t NewFalseWeight = FalseWeight; 6167 scaleWeights(NewTrueWeight, NewFalseWeight); 6168 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6169 .createBranchWeights(TrueWeight, FalseWeight)); 6170 6171 NewTrueWeight = 2 * TrueWeight; 6172 NewFalseWeight = FalseWeight; 6173 scaleWeights(NewTrueWeight, NewFalseWeight); 6174 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6175 .createBranchWeights(TrueWeight, FalseWeight)); 6176 } 6177 } 6178 6179 // Note: No point in getting fancy here, since the DT info is never 6180 // available to CodeGenPrepare. 6181 ModifiedDT = true; 6182 6183 MadeChange = true; 6184 6185 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6186 TmpBB->dump()); 6187 } 6188 return MadeChange; 6189 } 6190