1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateAssumptions(Function &F); 381 bool eliminateFallThrough(Function &F); 382 bool eliminateMostlyEmptyBlocks(Function &F); 383 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 384 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 385 void eliminateMostlyEmptyBlock(BasicBlock *BB); 386 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 387 bool isPreheader); 388 bool makeBitReverse(Instruction &I); 389 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 390 bool optimizeInst(Instruction *I, bool &ModifiedDT); 391 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 392 Type *AccessTy, unsigned AddrSpace); 393 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 394 bool optimizeInlineAsmInst(CallInst *CS); 395 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 396 bool optimizeExt(Instruction *&I); 397 bool optimizeExtUses(Instruction *I); 398 bool optimizeLoadExt(LoadInst *Load); 399 bool optimizeShiftInst(BinaryOperator *BO); 400 bool optimizeFunnelShift(IntrinsicInst *Fsh); 401 bool optimizeSelectInst(SelectInst *SI); 402 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 403 bool optimizeSwitchInst(SwitchInst *SI); 404 bool optimizeExtractElementInst(Instruction *Inst); 405 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 406 bool fixupDbgValue(Instruction *I); 407 bool placeDbgValues(Function &F); 408 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 409 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 410 bool tryToPromoteExts(TypePromotionTransaction &TPT, 411 const SmallVectorImpl<Instruction *> &Exts, 412 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 413 unsigned CreatedInstsCost = 0); 414 bool mergeSExts(Function &F); 415 bool splitLargeGEPOffsets(); 416 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 417 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 418 bool optimizePhiTypes(Function &F); 419 bool performAddressTypePromotion( 420 Instruction *&Inst, 421 bool AllowPromotionWithoutCommonHeader, 422 bool HasPromoted, TypePromotionTransaction &TPT, 423 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 424 bool splitBranchCondition(Function &F, bool &ModifiedDT); 425 bool simplifyOffsetableRelocate(GCStatepointInst &I); 426 427 bool tryToSinkFreeOperands(Instruction *I); 428 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 429 Value *Arg1, CmpInst *Cmp, 430 Intrinsic::ID IID); 431 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 434 void verifyBFIUpdates(Function &F); 435 }; 436 437 } // end anonymous namespace 438 439 char CodeGenPrepare::ID = 0; 440 441 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 442 "Optimize for code generation", false, false) 443 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 446 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 448 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 449 "Optimize for code generation", false, false) 450 451 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 452 453 bool CodeGenPrepare::runOnFunction(Function &F) { 454 if (skipFunction(F)) 455 return false; 456 457 DL = &F.getParent()->getDataLayout(); 458 459 bool EverMadeChange = false; 460 // Clear per function information. 461 InsertedInsts.clear(); 462 PromotedInsts.clear(); 463 464 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 465 SubtargetInfo = TM->getSubtargetImpl(F); 466 TLI = SubtargetInfo->getTargetLowering(); 467 TRI = SubtargetInfo->getRegisterInfo(); 468 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 469 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 470 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 471 BPI.reset(new BranchProbabilityInfo(F, *LI)); 472 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 473 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 474 OptSize = F.hasOptSize(); 475 if (ProfileGuidedSectionPrefix) { 476 // The hot attribute overwrites profile count based hotness while profile 477 // counts based hotness overwrite the cold attribute. 478 // This is a conservative behabvior. 479 if (F.hasFnAttribute(Attribute::Hot) || 480 PSI->isFunctionHotInCallGraph(&F, *BFI)) 481 F.setSectionPrefix("hot"); 482 // If PSI shows this function is not hot, we will placed the function 483 // into unlikely section if (1) PSI shows this is a cold function, or 484 // (2) the function has a attribute of cold. 485 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 486 F.hasFnAttribute(Attribute::Cold)) 487 F.setSectionPrefix("unlikely"); 488 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 489 PSI->isFunctionHotnessUnknown(F)) 490 F.setSectionPrefix("unknown"); 491 } 492 493 /// This optimization identifies DIV instructions that can be 494 /// profitably bypassed and carried out with a shorter, faster divide. 495 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 496 const DenseMap<unsigned int, unsigned int> &BypassWidths = 497 TLI->getBypassSlowDivWidths(); 498 BasicBlock* BB = &*F.begin(); 499 while (BB != nullptr) { 500 // bypassSlowDivision may create new BBs, but we don't want to reapply the 501 // optimization to those blocks. 502 BasicBlock* Next = BB->getNextNode(); 503 // F.hasOptSize is already checked in the outer if statement. 504 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 505 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 506 BB = Next; 507 } 508 } 509 510 // Get rid of @llvm.assume builtins before attempting to eliminate empty 511 // blocks, since there might be blocks that only contain @llvm.assume calls 512 // (plus arguments that we can get rid of). 513 EverMadeChange |= eliminateAssumptions(F); 514 515 // Eliminate blocks that contain only PHI nodes and an 516 // unconditional branch. 517 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 518 519 bool ModifiedDT = false; 520 if (!DisableBranchOpts) 521 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 522 523 // Split some critical edges where one of the sources is an indirect branch, 524 // to help generate sane code for PHIs involving such edges. 525 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 526 527 bool MadeChange = true; 528 while (MadeChange) { 529 MadeChange = false; 530 DT.reset(); 531 for (Function::iterator I = F.begin(); I != F.end(); ) { 532 BasicBlock *BB = &*I++; 533 bool ModifiedDTOnIteration = false; 534 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 535 536 // Restart BB iteration if the dominator tree of the Function was changed 537 if (ModifiedDTOnIteration) 538 break; 539 } 540 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 541 MadeChange |= mergeSExts(F); 542 if (!LargeOffsetGEPMap.empty()) 543 MadeChange |= splitLargeGEPOffsets(); 544 MadeChange |= optimizePhiTypes(F); 545 546 if (MadeChange) 547 eliminateFallThrough(F); 548 549 // Really free removed instructions during promotion. 550 for (Instruction *I : RemovedInsts) 551 I->deleteValue(); 552 553 EverMadeChange |= MadeChange; 554 SeenChainsForSExt.clear(); 555 ValToSExtendedUses.clear(); 556 RemovedInsts.clear(); 557 LargeOffsetGEPMap.clear(); 558 LargeOffsetGEPID.clear(); 559 } 560 561 NewGEPBases.clear(); 562 SunkAddrs.clear(); 563 564 if (!DisableBranchOpts) { 565 MadeChange = false; 566 // Use a set vector to get deterministic iteration order. The order the 567 // blocks are removed may affect whether or not PHI nodes in successors 568 // are removed. 569 SmallSetVector<BasicBlock*, 8> WorkList; 570 for (BasicBlock &BB : F) { 571 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 572 MadeChange |= ConstantFoldTerminator(&BB, true); 573 if (!MadeChange) continue; 574 575 for (BasicBlock *Succ : Successors) 576 if (pred_empty(Succ)) 577 WorkList.insert(Succ); 578 } 579 580 // Delete the dead blocks and any of their dead successors. 581 MadeChange |= !WorkList.empty(); 582 while (!WorkList.empty()) { 583 BasicBlock *BB = WorkList.pop_back_val(); 584 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 585 586 DeleteDeadBlock(BB); 587 588 for (BasicBlock *Succ : Successors) 589 if (pred_empty(Succ)) 590 WorkList.insert(Succ); 591 } 592 593 // Merge pairs of basic blocks with unconditional branches, connected by 594 // a single edge. 595 if (EverMadeChange || MadeChange) 596 MadeChange |= eliminateFallThrough(F); 597 598 EverMadeChange |= MadeChange; 599 } 600 601 if (!DisableGCOpts) { 602 SmallVector<GCStatepointInst *, 2> Statepoints; 603 for (BasicBlock &BB : F) 604 for (Instruction &I : BB) 605 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 606 Statepoints.push_back(SP); 607 for (auto &I : Statepoints) 608 EverMadeChange |= simplifyOffsetableRelocate(*I); 609 } 610 611 // Do this last to clean up use-before-def scenarios introduced by other 612 // preparatory transforms. 613 EverMadeChange |= placeDbgValues(F); 614 615 #ifndef NDEBUG 616 if (VerifyBFIUpdates) 617 verifyBFIUpdates(F); 618 #endif 619 620 return EverMadeChange; 621 } 622 623 bool CodeGenPrepare::eliminateAssumptions(Function &F) { 624 bool MadeChange = false; 625 for (BasicBlock &BB : F) { 626 CurInstIterator = BB.begin(); 627 while (CurInstIterator != BB.end()) { 628 Instruction *I = &*(CurInstIterator++); 629 if (auto *Assume = dyn_cast<AssumeInst>(I)) { 630 MadeChange = true; 631 Value *Operand = Assume->getOperand(0); 632 Assume->eraseFromParent(); 633 634 resetIteratorIfInvalidatedWhileCalling(&BB, [&]() { 635 RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr); 636 }); 637 } 638 } 639 } 640 return MadeChange; 641 } 642 643 /// An instruction is about to be deleted, so remove all references to it in our 644 /// GEP-tracking data strcutures. 645 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 646 LargeOffsetGEPMap.erase(V); 647 NewGEPBases.erase(V); 648 649 auto GEP = dyn_cast<GetElementPtrInst>(V); 650 if (!GEP) 651 return; 652 653 LargeOffsetGEPID.erase(GEP); 654 655 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 656 if (VecI == LargeOffsetGEPMap.end()) 657 return; 658 659 auto &GEPVector = VecI->second; 660 const auto &I = 661 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 662 if (I == GEPVector.end()) 663 return; 664 665 GEPVector.erase(I); 666 if (GEPVector.empty()) 667 LargeOffsetGEPMap.erase(VecI); 668 } 669 670 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 671 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 672 DominatorTree NewDT(F); 673 LoopInfo NewLI(NewDT); 674 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 675 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 676 NewBFI.verifyMatch(*BFI); 677 } 678 679 /// Merge basic blocks which are connected by a single edge, where one of the 680 /// basic blocks has a single successor pointing to the other basic block, 681 /// which has a single predecessor. 682 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 683 bool Changed = false; 684 // Scan all of the blocks in the function, except for the entry block. 685 // Use a temporary array to avoid iterator being invalidated when 686 // deleting blocks. 687 SmallVector<WeakTrackingVH, 16> Blocks; 688 for (auto &Block : llvm::drop_begin(F)) 689 Blocks.push_back(&Block); 690 691 SmallSet<WeakTrackingVH, 16> Preds; 692 for (auto &Block : Blocks) { 693 auto *BB = cast_or_null<BasicBlock>(Block); 694 if (!BB) 695 continue; 696 // If the destination block has a single pred, then this is a trivial 697 // edge, just collapse it. 698 BasicBlock *SinglePred = BB->getSinglePredecessor(); 699 700 // Don't merge if BB's address is taken. 701 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 702 703 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 704 if (Term && !Term->isConditional()) { 705 Changed = true; 706 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 707 708 // Merge BB into SinglePred and delete it. 709 MergeBlockIntoPredecessor(BB); 710 Preds.insert(SinglePred); 711 } 712 } 713 714 // (Repeatedly) merging blocks into their predecessors can create redundant 715 // debug intrinsics. 716 for (auto &Pred : Preds) 717 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 718 RemoveRedundantDbgInstrs(BB); 719 720 return Changed; 721 } 722 723 /// Find a destination block from BB if BB is mergeable empty block. 724 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 725 // If this block doesn't end with an uncond branch, ignore it. 726 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 727 if (!BI || !BI->isUnconditional()) 728 return nullptr; 729 730 // If the instruction before the branch (skipping debug info) isn't a phi 731 // node, then other stuff is happening here. 732 BasicBlock::iterator BBI = BI->getIterator(); 733 if (BBI != BB->begin()) { 734 --BBI; 735 while (isa<DbgInfoIntrinsic>(BBI)) { 736 if (BBI == BB->begin()) 737 break; 738 --BBI; 739 } 740 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 741 return nullptr; 742 } 743 744 // Do not break infinite loops. 745 BasicBlock *DestBB = BI->getSuccessor(0); 746 if (DestBB == BB) 747 return nullptr; 748 749 if (!canMergeBlocks(BB, DestBB)) 750 DestBB = nullptr; 751 752 return DestBB; 753 } 754 755 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 756 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 757 /// edges in ways that are non-optimal for isel. Start by eliminating these 758 /// blocks so we can split them the way we want them. 759 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 760 SmallPtrSet<BasicBlock *, 16> Preheaders; 761 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 762 while (!LoopList.empty()) { 763 Loop *L = LoopList.pop_back_val(); 764 llvm::append_range(LoopList, *L); 765 if (BasicBlock *Preheader = L->getLoopPreheader()) 766 Preheaders.insert(Preheader); 767 } 768 769 bool MadeChange = false; 770 // Copy blocks into a temporary array to avoid iterator invalidation issues 771 // as we remove them. 772 // Note that this intentionally skips the entry block. 773 SmallVector<WeakTrackingVH, 16> Blocks; 774 for (auto &Block : llvm::drop_begin(F)) 775 Blocks.push_back(&Block); 776 777 for (auto &Block : Blocks) { 778 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 779 if (!BB) 780 continue; 781 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 782 if (!DestBB || 783 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 784 continue; 785 786 eliminateMostlyEmptyBlock(BB); 787 MadeChange = true; 788 } 789 return MadeChange; 790 } 791 792 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 793 BasicBlock *DestBB, 794 bool isPreheader) { 795 // Do not delete loop preheaders if doing so would create a critical edge. 796 // Loop preheaders can be good locations to spill registers. If the 797 // preheader is deleted and we create a critical edge, registers may be 798 // spilled in the loop body instead. 799 if (!DisablePreheaderProtect && isPreheader && 800 !(BB->getSinglePredecessor() && 801 BB->getSinglePredecessor()->getSingleSuccessor())) 802 return false; 803 804 // Skip merging if the block's successor is also a successor to any callbr 805 // that leads to this block. 806 // FIXME: Is this really needed? Is this a correctness issue? 807 for (BasicBlock *Pred : predecessors(BB)) { 808 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 809 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 810 if (DestBB == CBI->getSuccessor(i)) 811 return false; 812 } 813 814 // Try to skip merging if the unique predecessor of BB is terminated by a 815 // switch or indirect branch instruction, and BB is used as an incoming block 816 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 817 // add COPY instructions in the predecessor of BB instead of BB (if it is not 818 // merged). Note that the critical edge created by merging such blocks wont be 819 // split in MachineSink because the jump table is not analyzable. By keeping 820 // such empty block (BB), ISel will place COPY instructions in BB, not in the 821 // predecessor of BB. 822 BasicBlock *Pred = BB->getUniquePredecessor(); 823 if (!Pred || 824 !(isa<SwitchInst>(Pred->getTerminator()) || 825 isa<IndirectBrInst>(Pred->getTerminator()))) 826 return true; 827 828 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 829 return true; 830 831 // We use a simple cost heuristic which determine skipping merging is 832 // profitable if the cost of skipping merging is less than the cost of 833 // merging : Cost(skipping merging) < Cost(merging BB), where the 834 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 835 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 836 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 837 // Freq(Pred) / Freq(BB) > 2. 838 // Note that if there are multiple empty blocks sharing the same incoming 839 // value for the PHIs in the DestBB, we consider them together. In such 840 // case, Cost(merging BB) will be the sum of their frequencies. 841 842 if (!isa<PHINode>(DestBB->begin())) 843 return true; 844 845 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 846 847 // Find all other incoming blocks from which incoming values of all PHIs in 848 // DestBB are the same as the ones from BB. 849 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 850 if (DestBBPred == BB) 851 continue; 852 853 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 854 return DestPN.getIncomingValueForBlock(BB) == 855 DestPN.getIncomingValueForBlock(DestBBPred); 856 })) 857 SameIncomingValueBBs.insert(DestBBPred); 858 } 859 860 // See if all BB's incoming values are same as the value from Pred. In this 861 // case, no reason to skip merging because COPYs are expected to be place in 862 // Pred already. 863 if (SameIncomingValueBBs.count(Pred)) 864 return true; 865 866 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 867 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 868 869 for (auto *SameValueBB : SameIncomingValueBBs) 870 if (SameValueBB->getUniquePredecessor() == Pred && 871 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 872 BBFreq += BFI->getBlockFreq(SameValueBB); 873 874 return PredFreq.getFrequency() <= 875 BBFreq.getFrequency() * FreqRatioToSkipMerge; 876 } 877 878 /// Return true if we can merge BB into DestBB if there is a single 879 /// unconditional branch between them, and BB contains no other non-phi 880 /// instructions. 881 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 882 const BasicBlock *DestBB) const { 883 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 884 // the successor. If there are more complex condition (e.g. preheaders), 885 // don't mess around with them. 886 for (const PHINode &PN : BB->phis()) { 887 for (const User *U : PN.users()) { 888 const Instruction *UI = cast<Instruction>(U); 889 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 890 return false; 891 // If User is inside DestBB block and it is a PHINode then check 892 // incoming value. If incoming value is not from BB then this is 893 // a complex condition (e.g. preheaders) we want to avoid here. 894 if (UI->getParent() == DestBB) { 895 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 896 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 897 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 898 if (Insn && Insn->getParent() == BB && 899 Insn->getParent() != UPN->getIncomingBlock(I)) 900 return false; 901 } 902 } 903 } 904 } 905 906 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 907 // and DestBB may have conflicting incoming values for the block. If so, we 908 // can't merge the block. 909 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 910 if (!DestBBPN) return true; // no conflict. 911 912 // Collect the preds of BB. 913 SmallPtrSet<const BasicBlock*, 16> BBPreds; 914 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 915 // It is faster to get preds from a PHI than with pred_iterator. 916 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 917 BBPreds.insert(BBPN->getIncomingBlock(i)); 918 } else { 919 BBPreds.insert(pred_begin(BB), pred_end(BB)); 920 } 921 922 // Walk the preds of DestBB. 923 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 924 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 925 if (BBPreds.count(Pred)) { // Common predecessor? 926 for (const PHINode &PN : DestBB->phis()) { 927 const Value *V1 = PN.getIncomingValueForBlock(Pred); 928 const Value *V2 = PN.getIncomingValueForBlock(BB); 929 930 // If V2 is a phi node in BB, look up what the mapped value will be. 931 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 932 if (V2PN->getParent() == BB) 933 V2 = V2PN->getIncomingValueForBlock(Pred); 934 935 // If there is a conflict, bail out. 936 if (V1 != V2) return false; 937 } 938 } 939 } 940 941 return true; 942 } 943 944 /// Eliminate a basic block that has only phi's and an unconditional branch in 945 /// it. 946 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 947 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 948 BasicBlock *DestBB = BI->getSuccessor(0); 949 950 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 951 << *BB << *DestBB); 952 953 // If the destination block has a single pred, then this is a trivial edge, 954 // just collapse it. 955 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 956 if (SinglePred != DestBB) { 957 assert(SinglePred == BB && 958 "Single predecessor not the same as predecessor"); 959 // Merge DestBB into SinglePred/BB and delete it. 960 MergeBlockIntoPredecessor(DestBB); 961 // Note: BB(=SinglePred) will not be deleted on this path. 962 // DestBB(=its single successor) is the one that was deleted. 963 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 964 return; 965 } 966 } 967 968 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 969 // to handle the new incoming edges it is about to have. 970 for (PHINode &PN : DestBB->phis()) { 971 // Remove the incoming value for BB, and remember it. 972 Value *InVal = PN.removeIncomingValue(BB, false); 973 974 // Two options: either the InVal is a phi node defined in BB or it is some 975 // value that dominates BB. 976 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 977 if (InValPhi && InValPhi->getParent() == BB) { 978 // Add all of the input values of the input PHI as inputs of this phi. 979 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 980 PN.addIncoming(InValPhi->getIncomingValue(i), 981 InValPhi->getIncomingBlock(i)); 982 } else { 983 // Otherwise, add one instance of the dominating value for each edge that 984 // we will be adding. 985 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 986 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 987 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 988 } else { 989 for (BasicBlock *Pred : predecessors(BB)) 990 PN.addIncoming(InVal, Pred); 991 } 992 } 993 } 994 995 // The PHIs are now updated, change everything that refers to BB to use 996 // DestBB and remove BB. 997 BB->replaceAllUsesWith(DestBB); 998 BB->eraseFromParent(); 999 ++NumBlocksElim; 1000 1001 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 1002 } 1003 1004 // Computes a map of base pointer relocation instructions to corresponding 1005 // derived pointer relocation instructions given a vector of all relocate calls 1006 static void computeBaseDerivedRelocateMap( 1007 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 1008 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 1009 &RelocateInstMap) { 1010 // Collect information in two maps: one primarily for locating the base object 1011 // while filling the second map; the second map is the final structure holding 1012 // a mapping between Base and corresponding Derived relocate calls 1013 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 1014 for (auto *ThisRelocate : AllRelocateCalls) { 1015 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 1016 ThisRelocate->getDerivedPtrIndex()); 1017 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 1018 } 1019 for (auto &Item : RelocateIdxMap) { 1020 std::pair<unsigned, unsigned> Key = Item.first; 1021 if (Key.first == Key.second) 1022 // Base relocation: nothing to insert 1023 continue; 1024 1025 GCRelocateInst *I = Item.second; 1026 auto BaseKey = std::make_pair(Key.first, Key.first); 1027 1028 // We're iterating over RelocateIdxMap so we cannot modify it. 1029 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1030 if (MaybeBase == RelocateIdxMap.end()) 1031 // TODO: We might want to insert a new base object relocate and gep off 1032 // that, if there are enough derived object relocates. 1033 continue; 1034 1035 RelocateInstMap[MaybeBase->second].push_back(I); 1036 } 1037 } 1038 1039 // Accepts a GEP and extracts the operands into a vector provided they're all 1040 // small integer constants 1041 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1042 SmallVectorImpl<Value *> &OffsetV) { 1043 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1044 // Only accept small constant integer operands 1045 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1046 if (!Op || Op->getZExtValue() > 20) 1047 return false; 1048 } 1049 1050 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1051 OffsetV.push_back(GEP->getOperand(i)); 1052 return true; 1053 } 1054 1055 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1056 // replace, computes a replacement, and affects it. 1057 static bool 1058 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1059 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1060 bool MadeChange = false; 1061 // We must ensure the relocation of derived pointer is defined after 1062 // relocation of base pointer. If we find a relocation corresponding to base 1063 // defined earlier than relocation of base then we move relocation of base 1064 // right before found relocation. We consider only relocation in the same 1065 // basic block as relocation of base. Relocations from other basic block will 1066 // be skipped by optimization and we do not care about them. 1067 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1068 &*R != RelocatedBase; ++R) 1069 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1070 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1071 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1072 RelocatedBase->moveBefore(RI); 1073 break; 1074 } 1075 1076 for (GCRelocateInst *ToReplace : Targets) { 1077 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1078 "Not relocating a derived object of the original base object"); 1079 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1080 // A duplicate relocate call. TODO: coalesce duplicates. 1081 continue; 1082 } 1083 1084 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1085 // Base and derived relocates are in different basic blocks. 1086 // In this case transform is only valid when base dominates derived 1087 // relocate. However it would be too expensive to check dominance 1088 // for each such relocate, so we skip the whole transformation. 1089 continue; 1090 } 1091 1092 Value *Base = ToReplace->getBasePtr(); 1093 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1094 if (!Derived || Derived->getPointerOperand() != Base) 1095 continue; 1096 1097 SmallVector<Value *, 2> OffsetV; 1098 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1099 continue; 1100 1101 // Create a Builder and replace the target callsite with a gep 1102 assert(RelocatedBase->getNextNode() && 1103 "Should always have one since it's not a terminator"); 1104 1105 // Insert after RelocatedBase 1106 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1107 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1108 1109 // If gc_relocate does not match the actual type, cast it to the right type. 1110 // In theory, there must be a bitcast after gc_relocate if the type does not 1111 // match, and we should reuse it to get the derived pointer. But it could be 1112 // cases like this: 1113 // bb1: 1114 // ... 1115 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1116 // br label %merge 1117 // 1118 // bb2: 1119 // ... 1120 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1121 // br label %merge 1122 // 1123 // merge: 1124 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1125 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1126 // 1127 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1128 // no matter there is already one or not. In this way, we can handle all cases, and 1129 // the extra bitcast should be optimized away in later passes. 1130 Value *ActualRelocatedBase = RelocatedBase; 1131 if (RelocatedBase->getType() != Base->getType()) { 1132 ActualRelocatedBase = 1133 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1134 } 1135 Value *Replacement = Builder.CreateGEP( 1136 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1137 Replacement->takeName(ToReplace); 1138 // If the newly generated derived pointer's type does not match the original derived 1139 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1140 Value *ActualReplacement = Replacement; 1141 if (Replacement->getType() != ToReplace->getType()) { 1142 ActualReplacement = 1143 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1144 } 1145 ToReplace->replaceAllUsesWith(ActualReplacement); 1146 ToReplace->eraseFromParent(); 1147 1148 MadeChange = true; 1149 } 1150 return MadeChange; 1151 } 1152 1153 // Turns this: 1154 // 1155 // %base = ... 1156 // %ptr = gep %base + 15 1157 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1158 // %base' = relocate(%tok, i32 4, i32 4) 1159 // %ptr' = relocate(%tok, i32 4, i32 5) 1160 // %val = load %ptr' 1161 // 1162 // into this: 1163 // 1164 // %base = ... 1165 // %ptr = gep %base + 15 1166 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1167 // %base' = gc.relocate(%tok, i32 4, i32 4) 1168 // %ptr' = gep %base' + 15 1169 // %val = load %ptr' 1170 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1171 bool MadeChange = false; 1172 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1173 for (auto *U : I.users()) 1174 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1175 // Collect all the relocate calls associated with a statepoint 1176 AllRelocateCalls.push_back(Relocate); 1177 1178 // We need at least one base pointer relocation + one derived pointer 1179 // relocation to mangle 1180 if (AllRelocateCalls.size() < 2) 1181 return false; 1182 1183 // RelocateInstMap is a mapping from the base relocate instruction to the 1184 // corresponding derived relocate instructions 1185 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1186 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1187 if (RelocateInstMap.empty()) 1188 return false; 1189 1190 for (auto &Item : RelocateInstMap) 1191 // Item.first is the RelocatedBase to offset against 1192 // Item.second is the vector of Targets to replace 1193 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1194 return MadeChange; 1195 } 1196 1197 /// Sink the specified cast instruction into its user blocks. 1198 static bool SinkCast(CastInst *CI) { 1199 BasicBlock *DefBB = CI->getParent(); 1200 1201 /// InsertedCasts - Only insert a cast in each block once. 1202 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1203 1204 bool MadeChange = false; 1205 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1206 UI != E; ) { 1207 Use &TheUse = UI.getUse(); 1208 Instruction *User = cast<Instruction>(*UI); 1209 1210 // Figure out which BB this cast is used in. For PHI's this is the 1211 // appropriate predecessor block. 1212 BasicBlock *UserBB = User->getParent(); 1213 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1214 UserBB = PN->getIncomingBlock(TheUse); 1215 } 1216 1217 // Preincrement use iterator so we don't invalidate it. 1218 ++UI; 1219 1220 // The first insertion point of a block containing an EH pad is after the 1221 // pad. If the pad is the user, we cannot sink the cast past the pad. 1222 if (User->isEHPad()) 1223 continue; 1224 1225 // If the block selected to receive the cast is an EH pad that does not 1226 // allow non-PHI instructions before the terminator, we can't sink the 1227 // cast. 1228 if (UserBB->getTerminator()->isEHPad()) 1229 continue; 1230 1231 // If this user is in the same block as the cast, don't change the cast. 1232 if (UserBB == DefBB) continue; 1233 1234 // If we have already inserted a cast into this block, use it. 1235 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1236 1237 if (!InsertedCast) { 1238 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1239 assert(InsertPt != UserBB->end()); 1240 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1241 CI->getType(), "", &*InsertPt); 1242 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1243 } 1244 1245 // Replace a use of the cast with a use of the new cast. 1246 TheUse = InsertedCast; 1247 MadeChange = true; 1248 ++NumCastUses; 1249 } 1250 1251 // If we removed all uses, nuke the cast. 1252 if (CI->use_empty()) { 1253 salvageDebugInfo(*CI); 1254 CI->eraseFromParent(); 1255 MadeChange = true; 1256 } 1257 1258 return MadeChange; 1259 } 1260 1261 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1262 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1263 /// reduce the number of virtual registers that must be created and coalesced. 1264 /// 1265 /// Return true if any changes are made. 1266 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1267 const DataLayout &DL) { 1268 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1269 // than sinking only nop casts, but is helpful on some platforms. 1270 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1271 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1272 ASC->getDestAddressSpace())) 1273 return false; 1274 } 1275 1276 // If this is a noop copy, 1277 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1278 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1279 1280 // This is an fp<->int conversion? 1281 if (SrcVT.isInteger() != DstVT.isInteger()) 1282 return false; 1283 1284 // If this is an extension, it will be a zero or sign extension, which 1285 // isn't a noop. 1286 if (SrcVT.bitsLT(DstVT)) return false; 1287 1288 // If these values will be promoted, find out what they will be promoted 1289 // to. This helps us consider truncates on PPC as noop copies when they 1290 // are. 1291 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1292 TargetLowering::TypePromoteInteger) 1293 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1294 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1295 TargetLowering::TypePromoteInteger) 1296 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1297 1298 // If, after promotion, these are the same types, this is a noop copy. 1299 if (SrcVT != DstVT) 1300 return false; 1301 1302 return SinkCast(CI); 1303 } 1304 1305 // Match a simple increment by constant operation. Note that if a sub is 1306 // matched, the step is negated (as if the step had been canonicalized to 1307 // an add, even though we leave the instruction alone.) 1308 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS, 1309 Constant *&Step) { 1310 if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) || 1311 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>( 1312 m_Instruction(LHS), m_Constant(Step))))) 1313 return true; 1314 if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) || 1315 match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>( 1316 m_Instruction(LHS), m_Constant(Step))))) { 1317 Step = ConstantExpr::getNeg(Step); 1318 return true; 1319 } 1320 return false; 1321 } 1322 1323 /// If given \p PN is an inductive variable with value IVInc coming from the 1324 /// backedge, and on each iteration it gets increased by Step, return pair 1325 /// <IVInc, Step>. Otherwise, return None. 1326 static Optional<std::pair<Instruction *, Constant *> > 1327 getIVIncrement(const PHINode *PN, const LoopInfo *LI) { 1328 const Loop *L = LI->getLoopFor(PN->getParent()); 1329 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1330 return None; 1331 auto *IVInc = 1332 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 1333 if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L) 1334 return None; 1335 Instruction *LHS = nullptr; 1336 Constant *Step = nullptr; 1337 if (matchIncrement(IVInc, LHS, Step) && LHS == PN) 1338 return std::make_pair(IVInc, Step); 1339 return None; 1340 } 1341 1342 static bool isIVIncrement(const Value *V, const LoopInfo *LI) { 1343 auto *I = dyn_cast<Instruction>(V); 1344 if (!I) 1345 return false; 1346 Instruction *LHS = nullptr; 1347 Constant *Step = nullptr; 1348 if (!matchIncrement(I, LHS, Step)) 1349 return false; 1350 if (auto *PN = dyn_cast<PHINode>(LHS)) 1351 if (auto IVInc = getIVIncrement(PN, LI)) 1352 return IVInc->first == I; 1353 return false; 1354 } 1355 1356 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1357 Value *Arg0, Value *Arg1, 1358 CmpInst *Cmp, 1359 Intrinsic::ID IID) { 1360 auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1361 if (!isIVIncrement(BO, LI)) 1362 return false; 1363 const Loop *L = LI->getLoopFor(BO->getParent()); 1364 assert(L && "L should not be null after isIVIncrement()"); 1365 // Do not risk on moving increment into a child loop. 1366 if (LI->getLoopFor(Cmp->getParent()) != L) 1367 return false; 1368 1369 // Finally, we need to ensure that the insert point will dominate all 1370 // existing uses of the increment. 1371 1372 auto &DT = getDT(*BO->getParent()->getParent()); 1373 if (DT.dominates(Cmp->getParent(), BO->getParent())) 1374 // If we're moving up the dom tree, all uses are trivially dominated. 1375 // (This is the common case for code produced by LSR.) 1376 return true; 1377 1378 // Otherwise, special case the single use in the phi recurrence. 1379 return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch()); 1380 }; 1381 if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) { 1382 // We used to use a dominator tree here to allow multi-block optimization. 1383 // But that was problematic because: 1384 // 1. It could cause a perf regression by hoisting the math op into the 1385 // critical path. 1386 // 2. It could cause a perf regression by creating a value that was live 1387 // across multiple blocks and increasing register pressure. 1388 // 3. Use of a dominator tree could cause large compile-time regression. 1389 // This is because we recompute the DT on every change in the main CGP 1390 // run-loop. The recomputing is probably unnecessary in many cases, so if 1391 // that was fixed, using a DT here would be ok. 1392 // 1393 // There is one important particular case we still want to handle: if BO is 1394 // the IV increment. Important properties that make it profitable: 1395 // - We can speculate IV increment anywhere in the loop (as long as the 1396 // indvar Phi is its only user); 1397 // - Upon computing Cmp, we effectively compute something equivalent to the 1398 // IV increment (despite it loops differently in the IR). So moving it up 1399 // to the cmp point does not really increase register pressure. 1400 return false; 1401 } 1402 1403 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1404 if (BO->getOpcode() == Instruction::Add && 1405 IID == Intrinsic::usub_with_overflow) { 1406 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1407 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1408 } 1409 1410 // Insert at the first instruction of the pair. 1411 Instruction *InsertPt = nullptr; 1412 for (Instruction &Iter : *Cmp->getParent()) { 1413 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1414 // the overflow intrinsic are defined. 1415 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1416 InsertPt = &Iter; 1417 break; 1418 } 1419 } 1420 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1421 1422 IRBuilder<> Builder(InsertPt); 1423 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1424 if (BO->getOpcode() != Instruction::Xor) { 1425 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1426 BO->replaceAllUsesWith(Math); 1427 } else 1428 assert(BO->hasOneUse() && 1429 "Patterns with XOr should use the BO only in the compare"); 1430 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1431 Cmp->replaceAllUsesWith(OV); 1432 Cmp->eraseFromParent(); 1433 BO->eraseFromParent(); 1434 return true; 1435 } 1436 1437 /// Match special-case patterns that check for unsigned add overflow. 1438 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1439 BinaryOperator *&Add) { 1440 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1441 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1442 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1443 1444 // We are not expecting non-canonical/degenerate code. Just bail out. 1445 if (isa<Constant>(A)) 1446 return false; 1447 1448 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1449 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1450 B = ConstantInt::get(B->getType(), 1); 1451 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1452 B = ConstantInt::get(B->getType(), -1); 1453 else 1454 return false; 1455 1456 // Check the users of the variable operand of the compare looking for an add 1457 // with the adjusted constant. 1458 for (User *U : A->users()) { 1459 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1460 Add = cast<BinaryOperator>(U); 1461 return true; 1462 } 1463 } 1464 return false; 1465 } 1466 1467 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1468 /// intrinsic. Return true if any changes were made. 1469 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1470 bool &ModifiedDT) { 1471 Value *A, *B; 1472 BinaryOperator *Add; 1473 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1474 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1475 return false; 1476 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1477 A = Add->getOperand(0); 1478 B = Add->getOperand(1); 1479 } 1480 1481 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1482 TLI->getValueType(*DL, Add->getType()), 1483 Add->hasNUsesOrMore(2))) 1484 return false; 1485 1486 // We don't want to move around uses of condition values this late, so we 1487 // check if it is legal to create the call to the intrinsic in the basic 1488 // block containing the icmp. 1489 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1490 return false; 1491 1492 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1493 Intrinsic::uadd_with_overflow)) 1494 return false; 1495 1496 // Reset callers - do not crash by iterating over a dead instruction. 1497 ModifiedDT = true; 1498 return true; 1499 } 1500 1501 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1502 bool &ModifiedDT) { 1503 // We are not expecting non-canonical/degenerate code. Just bail out. 1504 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1505 if (isa<Constant>(A) && isa<Constant>(B)) 1506 return false; 1507 1508 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1509 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1510 if (Pred == ICmpInst::ICMP_UGT) { 1511 std::swap(A, B); 1512 Pred = ICmpInst::ICMP_ULT; 1513 } 1514 // Convert special-case: (A == 0) is the same as (A u< 1). 1515 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1516 B = ConstantInt::get(B->getType(), 1); 1517 Pred = ICmpInst::ICMP_ULT; 1518 } 1519 // Convert special-case: (A != 0) is the same as (0 u< A). 1520 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1521 std::swap(A, B); 1522 Pred = ICmpInst::ICMP_ULT; 1523 } 1524 if (Pred != ICmpInst::ICMP_ULT) 1525 return false; 1526 1527 // Walk the users of a variable operand of a compare looking for a subtract or 1528 // add with that same operand. Also match the 2nd operand of the compare to 1529 // the add/sub, but that may be a negated constant operand of an add. 1530 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1531 BinaryOperator *Sub = nullptr; 1532 for (User *U : CmpVariableOperand->users()) { 1533 // A - B, A u< B --> usubo(A, B) 1534 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1535 Sub = cast<BinaryOperator>(U); 1536 break; 1537 } 1538 1539 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1540 const APInt *CmpC, *AddC; 1541 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1542 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1543 Sub = cast<BinaryOperator>(U); 1544 break; 1545 } 1546 } 1547 if (!Sub) 1548 return false; 1549 1550 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1551 TLI->getValueType(*DL, Sub->getType()), 1552 Sub->hasNUsesOrMore(2))) 1553 return false; 1554 1555 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1556 Cmp, Intrinsic::usub_with_overflow)) 1557 return false; 1558 1559 // Reset callers - do not crash by iterating over a dead instruction. 1560 ModifiedDT = true; 1561 return true; 1562 } 1563 1564 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1565 /// registers that must be created and coalesced. This is a clear win except on 1566 /// targets with multiple condition code registers (PowerPC), where it might 1567 /// lose; some adjustment may be wanted there. 1568 /// 1569 /// Return true if any changes are made. 1570 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1571 if (TLI.hasMultipleConditionRegisters()) 1572 return false; 1573 1574 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1575 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1576 return false; 1577 1578 // Only insert a cmp in each block once. 1579 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1580 1581 bool MadeChange = false; 1582 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1583 UI != E; ) { 1584 Use &TheUse = UI.getUse(); 1585 Instruction *User = cast<Instruction>(*UI); 1586 1587 // Preincrement use iterator so we don't invalidate it. 1588 ++UI; 1589 1590 // Don't bother for PHI nodes. 1591 if (isa<PHINode>(User)) 1592 continue; 1593 1594 // Figure out which BB this cmp is used in. 1595 BasicBlock *UserBB = User->getParent(); 1596 BasicBlock *DefBB = Cmp->getParent(); 1597 1598 // If this user is in the same block as the cmp, don't change the cmp. 1599 if (UserBB == DefBB) continue; 1600 1601 // If we have already inserted a cmp into this block, use it. 1602 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1603 1604 if (!InsertedCmp) { 1605 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1606 assert(InsertPt != UserBB->end()); 1607 InsertedCmp = 1608 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1609 Cmp->getOperand(0), Cmp->getOperand(1), "", 1610 &*InsertPt); 1611 // Propagate the debug info. 1612 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1613 } 1614 1615 // Replace a use of the cmp with a use of the new cmp. 1616 TheUse = InsertedCmp; 1617 MadeChange = true; 1618 ++NumCmpUses; 1619 } 1620 1621 // If we removed all uses, nuke the cmp. 1622 if (Cmp->use_empty()) { 1623 Cmp->eraseFromParent(); 1624 MadeChange = true; 1625 } 1626 1627 return MadeChange; 1628 } 1629 1630 /// For pattern like: 1631 /// 1632 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1633 /// ... 1634 /// DomBB: 1635 /// ... 1636 /// br DomCond, TrueBB, CmpBB 1637 /// CmpBB: (with DomBB being the single predecessor) 1638 /// ... 1639 /// Cmp = icmp eq CmpOp0, CmpOp1 1640 /// ... 1641 /// 1642 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1643 /// different from lowering of icmp eq (PowerPC). This function try to convert 1644 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1645 /// After that, DomCond and Cmp can use the same comparison so reduce one 1646 /// comparison. 1647 /// 1648 /// Return true if any changes are made. 1649 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1650 const TargetLowering &TLI) { 1651 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1652 return false; 1653 1654 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1655 if (Pred != ICmpInst::ICMP_EQ) 1656 return false; 1657 1658 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1659 // icmp slt/sgt would introduce more redundant LLVM IR. 1660 for (User *U : Cmp->users()) { 1661 if (isa<BranchInst>(U)) 1662 continue; 1663 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1664 continue; 1665 return false; 1666 } 1667 1668 // This is a cheap/incomplete check for dominance - just match a single 1669 // predecessor with a conditional branch. 1670 BasicBlock *CmpBB = Cmp->getParent(); 1671 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1672 if (!DomBB) 1673 return false; 1674 1675 // We want to ensure that the only way control gets to the comparison of 1676 // interest is that a less/greater than comparison on the same operands is 1677 // false. 1678 Value *DomCond; 1679 BasicBlock *TrueBB, *FalseBB; 1680 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1681 return false; 1682 if (CmpBB != FalseBB) 1683 return false; 1684 1685 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1686 ICmpInst::Predicate DomPred; 1687 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1688 return false; 1689 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1690 return false; 1691 1692 // Convert the equality comparison to the opposite of the dominating 1693 // comparison and swap the direction for all branch/select users. 1694 // We have conceptually converted: 1695 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1696 // to 1697 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1698 // And similarly for branches. 1699 for (User *U : Cmp->users()) { 1700 if (auto *BI = dyn_cast<BranchInst>(U)) { 1701 assert(BI->isConditional() && "Must be conditional"); 1702 BI->swapSuccessors(); 1703 continue; 1704 } 1705 if (auto *SI = dyn_cast<SelectInst>(U)) { 1706 // Swap operands 1707 SI->swapValues(); 1708 SI->swapProfMetadata(); 1709 continue; 1710 } 1711 llvm_unreachable("Must be a branch or a select"); 1712 } 1713 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1714 return true; 1715 } 1716 1717 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1718 if (sinkCmpExpression(Cmp, *TLI)) 1719 return true; 1720 1721 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1722 return true; 1723 1724 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1725 return true; 1726 1727 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1728 return true; 1729 1730 return false; 1731 } 1732 1733 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1734 /// used in a compare to allow isel to generate better code for targets where 1735 /// this operation can be combined. 1736 /// 1737 /// Return true if any changes are made. 1738 static bool sinkAndCmp0Expression(Instruction *AndI, 1739 const TargetLowering &TLI, 1740 SetOfInstrs &InsertedInsts) { 1741 // Double-check that we're not trying to optimize an instruction that was 1742 // already optimized by some other part of this pass. 1743 assert(!InsertedInsts.count(AndI) && 1744 "Attempting to optimize already optimized and instruction"); 1745 (void) InsertedInsts; 1746 1747 // Nothing to do for single use in same basic block. 1748 if (AndI->hasOneUse() && 1749 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1750 return false; 1751 1752 // Try to avoid cases where sinking/duplicating is likely to increase register 1753 // pressure. 1754 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1755 !isa<ConstantInt>(AndI->getOperand(1)) && 1756 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1757 return false; 1758 1759 for (auto *U : AndI->users()) { 1760 Instruction *User = cast<Instruction>(U); 1761 1762 // Only sink 'and' feeding icmp with 0. 1763 if (!isa<ICmpInst>(User)) 1764 return false; 1765 1766 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1767 if (!CmpC || !CmpC->isZero()) 1768 return false; 1769 } 1770 1771 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1772 return false; 1773 1774 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1775 LLVM_DEBUG(AndI->getParent()->dump()); 1776 1777 // Push the 'and' into the same block as the icmp 0. There should only be 1778 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1779 // others, so we don't need to keep track of which BBs we insert into. 1780 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1781 UI != E; ) { 1782 Use &TheUse = UI.getUse(); 1783 Instruction *User = cast<Instruction>(*UI); 1784 1785 // Preincrement use iterator so we don't invalidate it. 1786 ++UI; 1787 1788 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1789 1790 // Keep the 'and' in the same place if the use is already in the same block. 1791 Instruction *InsertPt = 1792 User->getParent() == AndI->getParent() ? AndI : User; 1793 Instruction *InsertedAnd = 1794 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1795 AndI->getOperand(1), "", InsertPt); 1796 // Propagate the debug info. 1797 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1798 1799 // Replace a use of the 'and' with a use of the new 'and'. 1800 TheUse = InsertedAnd; 1801 ++NumAndUses; 1802 LLVM_DEBUG(User->getParent()->dump()); 1803 } 1804 1805 // We removed all uses, nuke the and. 1806 AndI->eraseFromParent(); 1807 return true; 1808 } 1809 1810 /// Check if the candidates could be combined with a shift instruction, which 1811 /// includes: 1812 /// 1. Truncate instruction 1813 /// 2. And instruction and the imm is a mask of the low bits: 1814 /// imm & (imm+1) == 0 1815 static bool isExtractBitsCandidateUse(Instruction *User) { 1816 if (!isa<TruncInst>(User)) { 1817 if (User->getOpcode() != Instruction::And || 1818 !isa<ConstantInt>(User->getOperand(1))) 1819 return false; 1820 1821 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1822 1823 if ((Cimm & (Cimm + 1)).getBoolValue()) 1824 return false; 1825 } 1826 return true; 1827 } 1828 1829 /// Sink both shift and truncate instruction to the use of truncate's BB. 1830 static bool 1831 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1832 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1833 const TargetLowering &TLI, const DataLayout &DL) { 1834 BasicBlock *UserBB = User->getParent(); 1835 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1836 auto *TruncI = cast<TruncInst>(User); 1837 bool MadeChange = false; 1838 1839 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1840 TruncE = TruncI->user_end(); 1841 TruncUI != TruncE;) { 1842 1843 Use &TruncTheUse = TruncUI.getUse(); 1844 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1845 // Preincrement use iterator so we don't invalidate it. 1846 1847 ++TruncUI; 1848 1849 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1850 if (!ISDOpcode) 1851 continue; 1852 1853 // If the use is actually a legal node, there will not be an 1854 // implicit truncate. 1855 // FIXME: always querying the result type is just an 1856 // approximation; some nodes' legality is determined by the 1857 // operand or other means. There's no good way to find out though. 1858 if (TLI.isOperationLegalOrCustom( 1859 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1860 continue; 1861 1862 // Don't bother for PHI nodes. 1863 if (isa<PHINode>(TruncUser)) 1864 continue; 1865 1866 BasicBlock *TruncUserBB = TruncUser->getParent(); 1867 1868 if (UserBB == TruncUserBB) 1869 continue; 1870 1871 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1872 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1873 1874 if (!InsertedShift && !InsertedTrunc) { 1875 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1876 assert(InsertPt != TruncUserBB->end()); 1877 // Sink the shift 1878 if (ShiftI->getOpcode() == Instruction::AShr) 1879 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1880 "", &*InsertPt); 1881 else 1882 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1883 "", &*InsertPt); 1884 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1885 1886 // Sink the trunc 1887 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1888 TruncInsertPt++; 1889 assert(TruncInsertPt != TruncUserBB->end()); 1890 1891 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1892 TruncI->getType(), "", &*TruncInsertPt); 1893 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1894 1895 MadeChange = true; 1896 1897 TruncTheUse = InsertedTrunc; 1898 } 1899 } 1900 return MadeChange; 1901 } 1902 1903 /// Sink the shift *right* instruction into user blocks if the uses could 1904 /// potentially be combined with this shift instruction and generate BitExtract 1905 /// instruction. It will only be applied if the architecture supports BitExtract 1906 /// instruction. Here is an example: 1907 /// BB1: 1908 /// %x.extract.shift = lshr i64 %arg1, 32 1909 /// BB2: 1910 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1911 /// ==> 1912 /// 1913 /// BB2: 1914 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1915 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1916 /// 1917 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1918 /// instruction. 1919 /// Return true if any changes are made. 1920 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1921 const TargetLowering &TLI, 1922 const DataLayout &DL) { 1923 BasicBlock *DefBB = ShiftI->getParent(); 1924 1925 /// Only insert instructions in each block once. 1926 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1927 1928 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1929 1930 bool MadeChange = false; 1931 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1932 UI != E;) { 1933 Use &TheUse = UI.getUse(); 1934 Instruction *User = cast<Instruction>(*UI); 1935 // Preincrement use iterator so we don't invalidate it. 1936 ++UI; 1937 1938 // Don't bother for PHI nodes. 1939 if (isa<PHINode>(User)) 1940 continue; 1941 1942 if (!isExtractBitsCandidateUse(User)) 1943 continue; 1944 1945 BasicBlock *UserBB = User->getParent(); 1946 1947 if (UserBB == DefBB) { 1948 // If the shift and truncate instruction are in the same BB. The use of 1949 // the truncate(TruncUse) may still introduce another truncate if not 1950 // legal. In this case, we would like to sink both shift and truncate 1951 // instruction to the BB of TruncUse. 1952 // for example: 1953 // BB1: 1954 // i64 shift.result = lshr i64 opnd, imm 1955 // trunc.result = trunc shift.result to i16 1956 // 1957 // BB2: 1958 // ----> We will have an implicit truncate here if the architecture does 1959 // not have i16 compare. 1960 // cmp i16 trunc.result, opnd2 1961 // 1962 if (isa<TruncInst>(User) && shiftIsLegal 1963 // If the type of the truncate is legal, no truncate will be 1964 // introduced in other basic blocks. 1965 && 1966 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1967 MadeChange = 1968 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1969 1970 continue; 1971 } 1972 // If we have already inserted a shift into this block, use it. 1973 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1974 1975 if (!InsertedShift) { 1976 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1977 assert(InsertPt != UserBB->end()); 1978 1979 if (ShiftI->getOpcode() == Instruction::AShr) 1980 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1981 "", &*InsertPt); 1982 else 1983 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1984 "", &*InsertPt); 1985 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1986 1987 MadeChange = true; 1988 } 1989 1990 // Replace a use of the shift with a use of the new shift. 1991 TheUse = InsertedShift; 1992 } 1993 1994 // If we removed all uses, or there are none, nuke the shift. 1995 if (ShiftI->use_empty()) { 1996 salvageDebugInfo(*ShiftI); 1997 ShiftI->eraseFromParent(); 1998 MadeChange = true; 1999 } 2000 2001 return MadeChange; 2002 } 2003 2004 /// If counting leading or trailing zeros is an expensive operation and a zero 2005 /// input is defined, add a check for zero to avoid calling the intrinsic. 2006 /// 2007 /// We want to transform: 2008 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2009 /// 2010 /// into: 2011 /// entry: 2012 /// %cmpz = icmp eq i64 %A, 0 2013 /// br i1 %cmpz, label %cond.end, label %cond.false 2014 /// cond.false: 2015 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2016 /// br label %cond.end 2017 /// cond.end: 2018 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2019 /// 2020 /// If the transform is performed, return true and set ModifiedDT to true. 2021 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2022 const TargetLowering *TLI, 2023 const DataLayout *DL, 2024 bool &ModifiedDT) { 2025 // If a zero input is undefined, it doesn't make sense to despeculate that. 2026 if (match(CountZeros->getOperand(1), m_One())) 2027 return false; 2028 2029 // If it's cheap to speculate, there's nothing to do. 2030 auto IntrinsicID = CountZeros->getIntrinsicID(); 2031 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2032 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2033 return false; 2034 2035 // Only handle legal scalar cases. Anything else requires too much work. 2036 Type *Ty = CountZeros->getType(); 2037 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2038 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2039 return false; 2040 2041 // The intrinsic will be sunk behind a compare against zero and branch. 2042 BasicBlock *StartBlock = CountZeros->getParent(); 2043 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2044 2045 // Create another block after the count zero intrinsic. A PHI will be added 2046 // in this block to select the result of the intrinsic or the bit-width 2047 // constant if the input to the intrinsic is zero. 2048 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2049 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2050 2051 // Set up a builder to create a compare, conditional branch, and PHI. 2052 IRBuilder<> Builder(CountZeros->getContext()); 2053 Builder.SetInsertPoint(StartBlock->getTerminator()); 2054 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2055 2056 // Replace the unconditional branch that was created by the first split with 2057 // a compare against zero and a conditional branch. 2058 Value *Zero = Constant::getNullValue(Ty); 2059 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2060 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2061 StartBlock->getTerminator()->eraseFromParent(); 2062 2063 // Create a PHI in the end block to select either the output of the intrinsic 2064 // or the bit width of the operand. 2065 Builder.SetInsertPoint(&EndBlock->front()); 2066 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2067 CountZeros->replaceAllUsesWith(PN); 2068 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2069 PN->addIncoming(BitWidth, StartBlock); 2070 PN->addIncoming(CountZeros, CallBlock); 2071 2072 // We are explicitly handling the zero case, so we can set the intrinsic's 2073 // undefined zero argument to 'true'. This will also prevent reprocessing the 2074 // intrinsic; we only despeculate when a zero input is defined. 2075 CountZeros->setArgOperand(1, Builder.getTrue()); 2076 ModifiedDT = true; 2077 return true; 2078 } 2079 2080 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2081 BasicBlock *BB = CI->getParent(); 2082 2083 // Lower inline assembly if we can. 2084 // If we found an inline asm expession, and if the target knows how to 2085 // lower it to normal LLVM code, do so now. 2086 if (CI->isInlineAsm()) { 2087 if (TLI->ExpandInlineAsm(CI)) { 2088 // Avoid invalidating the iterator. 2089 CurInstIterator = BB->begin(); 2090 // Avoid processing instructions out of order, which could cause 2091 // reuse before a value is defined. 2092 SunkAddrs.clear(); 2093 return true; 2094 } 2095 // Sink address computing for memory operands into the block. 2096 if (optimizeInlineAsmInst(CI)) 2097 return true; 2098 } 2099 2100 // Align the pointer arguments to this call if the target thinks it's a good 2101 // idea 2102 unsigned MinSize, PrefAlign; 2103 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2104 for (auto &Arg : CI->arg_operands()) { 2105 // We want to align both objects whose address is used directly and 2106 // objects whose address is used in casts and GEPs, though it only makes 2107 // sense for GEPs if the offset is a multiple of the desired alignment and 2108 // if size - offset meets the size threshold. 2109 if (!Arg->getType()->isPointerTy()) 2110 continue; 2111 APInt Offset(DL->getIndexSizeInBits( 2112 cast<PointerType>(Arg->getType())->getAddressSpace()), 2113 0); 2114 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2115 uint64_t Offset2 = Offset.getLimitedValue(); 2116 if ((Offset2 & (PrefAlign-1)) != 0) 2117 continue; 2118 AllocaInst *AI; 2119 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2120 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2121 AI->setAlignment(Align(PrefAlign)); 2122 // Global variables can only be aligned if they are defined in this 2123 // object (i.e. they are uniquely initialized in this object), and 2124 // over-aligning global variables that have an explicit section is 2125 // forbidden. 2126 GlobalVariable *GV; 2127 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2128 GV->getPointerAlignment(*DL) < PrefAlign && 2129 DL->getTypeAllocSize(GV->getValueType()) >= 2130 MinSize + Offset2) 2131 GV->setAlignment(MaybeAlign(PrefAlign)); 2132 } 2133 // If this is a memcpy (or similar) then we may be able to improve the 2134 // alignment 2135 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2136 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2137 MaybeAlign MIDestAlign = MI->getDestAlign(); 2138 if (!MIDestAlign || DestAlign > *MIDestAlign) 2139 MI->setDestAlignment(DestAlign); 2140 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2141 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2142 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2143 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2144 MTI->setSourceAlignment(SrcAlign); 2145 } 2146 } 2147 } 2148 2149 // If we have a cold call site, try to sink addressing computation into the 2150 // cold block. This interacts with our handling for loads and stores to 2151 // ensure that we can fold all uses of a potential addressing computation 2152 // into their uses. TODO: generalize this to work over profiling data 2153 if (CI->hasFnAttr(Attribute::Cold) && 2154 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2155 for (auto &Arg : CI->arg_operands()) { 2156 if (!Arg->getType()->isPointerTy()) 2157 continue; 2158 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2159 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2160 } 2161 2162 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2163 if (II) { 2164 switch (II->getIntrinsicID()) { 2165 default: break; 2166 case Intrinsic::assume: 2167 llvm_unreachable("llvm.assume should have been removed already"); 2168 case Intrinsic::experimental_widenable_condition: { 2169 // Give up on future widening oppurtunties so that we can fold away dead 2170 // paths and merge blocks before going into block-local instruction 2171 // selection. 2172 if (II->use_empty()) { 2173 II->eraseFromParent(); 2174 return true; 2175 } 2176 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2177 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2178 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2179 }); 2180 return true; 2181 } 2182 case Intrinsic::objectsize: 2183 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2184 case Intrinsic::is_constant: 2185 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2186 case Intrinsic::aarch64_stlxr: 2187 case Intrinsic::aarch64_stxr: { 2188 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2189 if (!ExtVal || !ExtVal->hasOneUse() || 2190 ExtVal->getParent() == CI->getParent()) 2191 return false; 2192 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2193 ExtVal->moveBefore(CI); 2194 // Mark this instruction as "inserted by CGP", so that other 2195 // optimizations don't touch it. 2196 InsertedInsts.insert(ExtVal); 2197 return true; 2198 } 2199 2200 case Intrinsic::launder_invariant_group: 2201 case Intrinsic::strip_invariant_group: { 2202 Value *ArgVal = II->getArgOperand(0); 2203 auto it = LargeOffsetGEPMap.find(II); 2204 if (it != LargeOffsetGEPMap.end()) { 2205 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2206 // Make sure not to have to deal with iterator invalidation 2207 // after possibly adding ArgVal to LargeOffsetGEPMap. 2208 auto GEPs = std::move(it->second); 2209 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2210 LargeOffsetGEPMap.erase(II); 2211 } 2212 2213 II->replaceAllUsesWith(ArgVal); 2214 II->eraseFromParent(); 2215 return true; 2216 } 2217 case Intrinsic::cttz: 2218 case Intrinsic::ctlz: 2219 // If counting zeros is expensive, try to avoid it. 2220 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2221 case Intrinsic::fshl: 2222 case Intrinsic::fshr: 2223 return optimizeFunnelShift(II); 2224 case Intrinsic::dbg_value: 2225 return fixupDbgValue(II); 2226 case Intrinsic::vscale: { 2227 // If datalayout has no special restrictions on vector data layout, 2228 // replace `llvm.vscale` by an equivalent constant expression 2229 // to benefit from cheap constant propagation. 2230 Type *ScalableVectorTy = 2231 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2232 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2233 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2234 auto *One = ConstantInt::getSigned(II->getType(), 1); 2235 auto *CGep = 2236 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2237 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2238 II->eraseFromParent(); 2239 return true; 2240 } 2241 break; 2242 } 2243 case Intrinsic::masked_gather: 2244 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2245 case Intrinsic::masked_scatter: 2246 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2247 } 2248 2249 SmallVector<Value *, 2> PtrOps; 2250 Type *AccessTy; 2251 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2252 while (!PtrOps.empty()) { 2253 Value *PtrVal = PtrOps.pop_back_val(); 2254 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2255 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2256 return true; 2257 } 2258 } 2259 2260 // From here on out we're working with named functions. 2261 if (!CI->getCalledFunction()) return false; 2262 2263 // Lower all default uses of _chk calls. This is very similar 2264 // to what InstCombineCalls does, but here we are only lowering calls 2265 // to fortified library functions (e.g. __memcpy_chk) that have the default 2266 // "don't know" as the objectsize. Anything else should be left alone. 2267 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2268 IRBuilder<> Builder(CI); 2269 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2270 CI->replaceAllUsesWith(V); 2271 CI->eraseFromParent(); 2272 return true; 2273 } 2274 2275 return false; 2276 } 2277 2278 /// Look for opportunities to duplicate return instructions to the predecessor 2279 /// to enable tail call optimizations. The case it is currently looking for is: 2280 /// @code 2281 /// bb0: 2282 /// %tmp0 = tail call i32 @f0() 2283 /// br label %return 2284 /// bb1: 2285 /// %tmp1 = tail call i32 @f1() 2286 /// br label %return 2287 /// bb2: 2288 /// %tmp2 = tail call i32 @f2() 2289 /// br label %return 2290 /// return: 2291 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2292 /// ret i32 %retval 2293 /// @endcode 2294 /// 2295 /// => 2296 /// 2297 /// @code 2298 /// bb0: 2299 /// %tmp0 = tail call i32 @f0() 2300 /// ret i32 %tmp0 2301 /// bb1: 2302 /// %tmp1 = tail call i32 @f1() 2303 /// ret i32 %tmp1 2304 /// bb2: 2305 /// %tmp2 = tail call i32 @f2() 2306 /// ret i32 %tmp2 2307 /// @endcode 2308 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2309 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2310 if (!RetI) 2311 return false; 2312 2313 PHINode *PN = nullptr; 2314 ExtractValueInst *EVI = nullptr; 2315 BitCastInst *BCI = nullptr; 2316 Value *V = RetI->getReturnValue(); 2317 if (V) { 2318 BCI = dyn_cast<BitCastInst>(V); 2319 if (BCI) 2320 V = BCI->getOperand(0); 2321 2322 EVI = dyn_cast<ExtractValueInst>(V); 2323 if (EVI) { 2324 V = EVI->getOperand(0); 2325 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2326 return false; 2327 } 2328 2329 PN = dyn_cast<PHINode>(V); 2330 if (!PN) 2331 return false; 2332 } 2333 2334 if (PN && PN->getParent() != BB) 2335 return false; 2336 2337 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2338 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2339 if (BC && BC->hasOneUse()) 2340 Inst = BC->user_back(); 2341 2342 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2343 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2344 return false; 2345 }; 2346 2347 // Make sure there are no instructions between the first instruction 2348 // and return. 2349 const Instruction *BI = BB->getFirstNonPHI(); 2350 // Skip over debug and the bitcast. 2351 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2352 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2353 BI = BI->getNextNode(); 2354 if (BI != RetI) 2355 return false; 2356 2357 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2358 /// call. 2359 const Function *F = BB->getParent(); 2360 SmallVector<BasicBlock*, 4> TailCallBBs; 2361 if (PN) { 2362 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2363 // Look through bitcasts. 2364 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2365 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2366 BasicBlock *PredBB = PN->getIncomingBlock(I); 2367 // Make sure the phi value is indeed produced by the tail call. 2368 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2369 TLI->mayBeEmittedAsTailCall(CI) && 2370 attributesPermitTailCall(F, CI, RetI, *TLI)) 2371 TailCallBBs.push_back(PredBB); 2372 } 2373 } else { 2374 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2375 for (BasicBlock *Pred : predecessors(BB)) { 2376 if (!VisitedBBs.insert(Pred).second) 2377 continue; 2378 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2379 CallInst *CI = dyn_cast<CallInst>(I); 2380 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2381 attributesPermitTailCall(F, CI, RetI, *TLI)) 2382 TailCallBBs.push_back(Pred); 2383 } 2384 } 2385 } 2386 2387 bool Changed = false; 2388 for (auto const &TailCallBB : TailCallBBs) { 2389 // Make sure the call instruction is followed by an unconditional branch to 2390 // the return block. 2391 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2392 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2393 continue; 2394 2395 // Duplicate the return into TailCallBB. 2396 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2397 assert(!VerifyBFIUpdates || 2398 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2399 BFI->setBlockFreq( 2400 BB, 2401 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2402 ModifiedDT = Changed = true; 2403 ++NumRetsDup; 2404 } 2405 2406 // If we eliminated all predecessors of the block, delete the block now. 2407 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2408 BB->eraseFromParent(); 2409 2410 return Changed; 2411 } 2412 2413 //===----------------------------------------------------------------------===// 2414 // Memory Optimization 2415 //===----------------------------------------------------------------------===// 2416 2417 namespace { 2418 2419 /// This is an extended version of TargetLowering::AddrMode 2420 /// which holds actual Value*'s for register values. 2421 struct ExtAddrMode : public TargetLowering::AddrMode { 2422 Value *BaseReg = nullptr; 2423 Value *ScaledReg = nullptr; 2424 Value *OriginalValue = nullptr; 2425 bool InBounds = true; 2426 2427 enum FieldName { 2428 NoField = 0x00, 2429 BaseRegField = 0x01, 2430 BaseGVField = 0x02, 2431 BaseOffsField = 0x04, 2432 ScaledRegField = 0x08, 2433 ScaleField = 0x10, 2434 MultipleFields = 0xff 2435 }; 2436 2437 2438 ExtAddrMode() = default; 2439 2440 void print(raw_ostream &OS) const; 2441 void dump() const; 2442 2443 FieldName compare(const ExtAddrMode &other) { 2444 // First check that the types are the same on each field, as differing types 2445 // is something we can't cope with later on. 2446 if (BaseReg && other.BaseReg && 2447 BaseReg->getType() != other.BaseReg->getType()) 2448 return MultipleFields; 2449 if (BaseGV && other.BaseGV && 2450 BaseGV->getType() != other.BaseGV->getType()) 2451 return MultipleFields; 2452 if (ScaledReg && other.ScaledReg && 2453 ScaledReg->getType() != other.ScaledReg->getType()) 2454 return MultipleFields; 2455 2456 // Conservatively reject 'inbounds' mismatches. 2457 if (InBounds != other.InBounds) 2458 return MultipleFields; 2459 2460 // Check each field to see if it differs. 2461 unsigned Result = NoField; 2462 if (BaseReg != other.BaseReg) 2463 Result |= BaseRegField; 2464 if (BaseGV != other.BaseGV) 2465 Result |= BaseGVField; 2466 if (BaseOffs != other.BaseOffs) 2467 Result |= BaseOffsField; 2468 if (ScaledReg != other.ScaledReg) 2469 Result |= ScaledRegField; 2470 // Don't count 0 as being a different scale, because that actually means 2471 // unscaled (which will already be counted by having no ScaledReg). 2472 if (Scale && other.Scale && Scale != other.Scale) 2473 Result |= ScaleField; 2474 2475 if (countPopulation(Result) > 1) 2476 return MultipleFields; 2477 else 2478 return static_cast<FieldName>(Result); 2479 } 2480 2481 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2482 // with no offset. 2483 bool isTrivial() { 2484 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2485 // trivial if at most one of these terms is nonzero, except that BaseGV and 2486 // BaseReg both being zero actually means a null pointer value, which we 2487 // consider to be 'non-zero' here. 2488 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2489 } 2490 2491 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2492 switch (Field) { 2493 default: 2494 return nullptr; 2495 case BaseRegField: 2496 return BaseReg; 2497 case BaseGVField: 2498 return BaseGV; 2499 case ScaledRegField: 2500 return ScaledReg; 2501 case BaseOffsField: 2502 return ConstantInt::get(IntPtrTy, BaseOffs); 2503 } 2504 } 2505 2506 void SetCombinedField(FieldName Field, Value *V, 2507 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2508 switch (Field) { 2509 default: 2510 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2511 break; 2512 case ExtAddrMode::BaseRegField: 2513 BaseReg = V; 2514 break; 2515 case ExtAddrMode::BaseGVField: 2516 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2517 // in the BaseReg field. 2518 assert(BaseReg == nullptr); 2519 BaseReg = V; 2520 BaseGV = nullptr; 2521 break; 2522 case ExtAddrMode::ScaledRegField: 2523 ScaledReg = V; 2524 // If we have a mix of scaled and unscaled addrmodes then we want scale 2525 // to be the scale and not zero. 2526 if (!Scale) 2527 for (const ExtAddrMode &AM : AddrModes) 2528 if (AM.Scale) { 2529 Scale = AM.Scale; 2530 break; 2531 } 2532 break; 2533 case ExtAddrMode::BaseOffsField: 2534 // The offset is no longer a constant, so it goes in ScaledReg with a 2535 // scale of 1. 2536 assert(ScaledReg == nullptr); 2537 ScaledReg = V; 2538 Scale = 1; 2539 BaseOffs = 0; 2540 break; 2541 } 2542 } 2543 }; 2544 2545 } // end anonymous namespace 2546 2547 #ifndef NDEBUG 2548 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2549 AM.print(OS); 2550 return OS; 2551 } 2552 #endif 2553 2554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2555 void ExtAddrMode::print(raw_ostream &OS) const { 2556 bool NeedPlus = false; 2557 OS << "["; 2558 if (InBounds) 2559 OS << "inbounds "; 2560 if (BaseGV) { 2561 OS << (NeedPlus ? " + " : "") 2562 << "GV:"; 2563 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2564 NeedPlus = true; 2565 } 2566 2567 if (BaseOffs) { 2568 OS << (NeedPlus ? " + " : "") 2569 << BaseOffs; 2570 NeedPlus = true; 2571 } 2572 2573 if (BaseReg) { 2574 OS << (NeedPlus ? " + " : "") 2575 << "Base:"; 2576 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2577 NeedPlus = true; 2578 } 2579 if (Scale) { 2580 OS << (NeedPlus ? " + " : "") 2581 << Scale << "*"; 2582 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2583 } 2584 2585 OS << ']'; 2586 } 2587 2588 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2589 print(dbgs()); 2590 dbgs() << '\n'; 2591 } 2592 #endif 2593 2594 namespace { 2595 2596 /// This class provides transaction based operation on the IR. 2597 /// Every change made through this class is recorded in the internal state and 2598 /// can be undone (rollback) until commit is called. 2599 /// CGP does not check if instructions could be speculatively executed when 2600 /// moved. Preserving the original location would pessimize the debugging 2601 /// experience, as well as negatively impact the quality of sample PGO. 2602 class TypePromotionTransaction { 2603 /// This represents the common interface of the individual transaction. 2604 /// Each class implements the logic for doing one specific modification on 2605 /// the IR via the TypePromotionTransaction. 2606 class TypePromotionAction { 2607 protected: 2608 /// The Instruction modified. 2609 Instruction *Inst; 2610 2611 public: 2612 /// Constructor of the action. 2613 /// The constructor performs the related action on the IR. 2614 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2615 2616 virtual ~TypePromotionAction() = default; 2617 2618 /// Undo the modification done by this action. 2619 /// When this method is called, the IR must be in the same state as it was 2620 /// before this action was applied. 2621 /// \pre Undoing the action works if and only if the IR is in the exact same 2622 /// state as it was directly after this action was applied. 2623 virtual void undo() = 0; 2624 2625 /// Advocate every change made by this action. 2626 /// When the results on the IR of the action are to be kept, it is important 2627 /// to call this function, otherwise hidden information may be kept forever. 2628 virtual void commit() { 2629 // Nothing to be done, this action is not doing anything. 2630 } 2631 }; 2632 2633 /// Utility to remember the position of an instruction. 2634 class InsertionHandler { 2635 /// Position of an instruction. 2636 /// Either an instruction: 2637 /// - Is the first in a basic block: BB is used. 2638 /// - Has a previous instruction: PrevInst is used. 2639 union { 2640 Instruction *PrevInst; 2641 BasicBlock *BB; 2642 } Point; 2643 2644 /// Remember whether or not the instruction had a previous instruction. 2645 bool HasPrevInstruction; 2646 2647 public: 2648 /// Record the position of \p Inst. 2649 InsertionHandler(Instruction *Inst) { 2650 BasicBlock::iterator It = Inst->getIterator(); 2651 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2652 if (HasPrevInstruction) 2653 Point.PrevInst = &*--It; 2654 else 2655 Point.BB = Inst->getParent(); 2656 } 2657 2658 /// Insert \p Inst at the recorded position. 2659 void insert(Instruction *Inst) { 2660 if (HasPrevInstruction) { 2661 if (Inst->getParent()) 2662 Inst->removeFromParent(); 2663 Inst->insertAfter(Point.PrevInst); 2664 } else { 2665 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2666 if (Inst->getParent()) 2667 Inst->moveBefore(Position); 2668 else 2669 Inst->insertBefore(Position); 2670 } 2671 } 2672 }; 2673 2674 /// Move an instruction before another. 2675 class InstructionMoveBefore : public TypePromotionAction { 2676 /// Original position of the instruction. 2677 InsertionHandler Position; 2678 2679 public: 2680 /// Move \p Inst before \p Before. 2681 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2682 : TypePromotionAction(Inst), Position(Inst) { 2683 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2684 << "\n"); 2685 Inst->moveBefore(Before); 2686 } 2687 2688 /// Move the instruction back to its original position. 2689 void undo() override { 2690 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2691 Position.insert(Inst); 2692 } 2693 }; 2694 2695 /// Set the operand of an instruction with a new value. 2696 class OperandSetter : public TypePromotionAction { 2697 /// Original operand of the instruction. 2698 Value *Origin; 2699 2700 /// Index of the modified instruction. 2701 unsigned Idx; 2702 2703 public: 2704 /// Set \p Idx operand of \p Inst with \p NewVal. 2705 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2706 : TypePromotionAction(Inst), Idx(Idx) { 2707 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2708 << "for:" << *Inst << "\n" 2709 << "with:" << *NewVal << "\n"); 2710 Origin = Inst->getOperand(Idx); 2711 Inst->setOperand(Idx, NewVal); 2712 } 2713 2714 /// Restore the original value of the instruction. 2715 void undo() override { 2716 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2717 << "for: " << *Inst << "\n" 2718 << "with: " << *Origin << "\n"); 2719 Inst->setOperand(Idx, Origin); 2720 } 2721 }; 2722 2723 /// Hide the operands of an instruction. 2724 /// Do as if this instruction was not using any of its operands. 2725 class OperandsHider : public TypePromotionAction { 2726 /// The list of original operands. 2727 SmallVector<Value *, 4> OriginalValues; 2728 2729 public: 2730 /// Remove \p Inst from the uses of the operands of \p Inst. 2731 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2732 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2733 unsigned NumOpnds = Inst->getNumOperands(); 2734 OriginalValues.reserve(NumOpnds); 2735 for (unsigned It = 0; It < NumOpnds; ++It) { 2736 // Save the current operand. 2737 Value *Val = Inst->getOperand(It); 2738 OriginalValues.push_back(Val); 2739 // Set a dummy one. 2740 // We could use OperandSetter here, but that would imply an overhead 2741 // that we are not willing to pay. 2742 Inst->setOperand(It, UndefValue::get(Val->getType())); 2743 } 2744 } 2745 2746 /// Restore the original list of uses. 2747 void undo() override { 2748 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2749 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2750 Inst->setOperand(It, OriginalValues[It]); 2751 } 2752 }; 2753 2754 /// Build a truncate instruction. 2755 class TruncBuilder : public TypePromotionAction { 2756 Value *Val; 2757 2758 public: 2759 /// Build a truncate instruction of \p Opnd producing a \p Ty 2760 /// result. 2761 /// trunc Opnd to Ty. 2762 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2763 IRBuilder<> Builder(Opnd); 2764 Builder.SetCurrentDebugLocation(DebugLoc()); 2765 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2766 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2767 } 2768 2769 /// Get the built value. 2770 Value *getBuiltValue() { return Val; } 2771 2772 /// Remove the built instruction. 2773 void undo() override { 2774 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2775 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2776 IVal->eraseFromParent(); 2777 } 2778 }; 2779 2780 /// Build a sign extension instruction. 2781 class SExtBuilder : public TypePromotionAction { 2782 Value *Val; 2783 2784 public: 2785 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2786 /// result. 2787 /// sext Opnd to Ty. 2788 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2789 : TypePromotionAction(InsertPt) { 2790 IRBuilder<> Builder(InsertPt); 2791 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2792 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2793 } 2794 2795 /// Get the built value. 2796 Value *getBuiltValue() { return Val; } 2797 2798 /// Remove the built instruction. 2799 void undo() override { 2800 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2801 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2802 IVal->eraseFromParent(); 2803 } 2804 }; 2805 2806 /// Build a zero extension instruction. 2807 class ZExtBuilder : public TypePromotionAction { 2808 Value *Val; 2809 2810 public: 2811 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2812 /// result. 2813 /// zext Opnd to Ty. 2814 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2815 : TypePromotionAction(InsertPt) { 2816 IRBuilder<> Builder(InsertPt); 2817 Builder.SetCurrentDebugLocation(DebugLoc()); 2818 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2819 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2820 } 2821 2822 /// Get the built value. 2823 Value *getBuiltValue() { return Val; } 2824 2825 /// Remove the built instruction. 2826 void undo() override { 2827 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2828 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2829 IVal->eraseFromParent(); 2830 } 2831 }; 2832 2833 /// Mutate an instruction to another type. 2834 class TypeMutator : public TypePromotionAction { 2835 /// Record the original type. 2836 Type *OrigTy; 2837 2838 public: 2839 /// Mutate the type of \p Inst into \p NewTy. 2840 TypeMutator(Instruction *Inst, Type *NewTy) 2841 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2842 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2843 << "\n"); 2844 Inst->mutateType(NewTy); 2845 } 2846 2847 /// Mutate the instruction back to its original type. 2848 void undo() override { 2849 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2850 << "\n"); 2851 Inst->mutateType(OrigTy); 2852 } 2853 }; 2854 2855 /// Replace the uses of an instruction by another instruction. 2856 class UsesReplacer : public TypePromotionAction { 2857 /// Helper structure to keep track of the replaced uses. 2858 struct InstructionAndIdx { 2859 /// The instruction using the instruction. 2860 Instruction *Inst; 2861 2862 /// The index where this instruction is used for Inst. 2863 unsigned Idx; 2864 2865 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2866 : Inst(Inst), Idx(Idx) {} 2867 }; 2868 2869 /// Keep track of the original uses (pair Instruction, Index). 2870 SmallVector<InstructionAndIdx, 4> OriginalUses; 2871 /// Keep track of the debug users. 2872 SmallVector<DbgValueInst *, 1> DbgValues; 2873 2874 /// Keep track of the new value so that we can undo it by replacing 2875 /// instances of the new value with the original value. 2876 Value *New; 2877 2878 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2879 2880 public: 2881 /// Replace all the use of \p Inst by \p New. 2882 UsesReplacer(Instruction *Inst, Value *New) 2883 : TypePromotionAction(Inst), New(New) { 2884 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2885 << "\n"); 2886 // Record the original uses. 2887 for (Use &U : Inst->uses()) { 2888 Instruction *UserI = cast<Instruction>(U.getUser()); 2889 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2890 } 2891 // Record the debug uses separately. They are not in the instruction's 2892 // use list, but they are replaced by RAUW. 2893 findDbgValues(DbgValues, Inst); 2894 2895 // Now, we can replace the uses. 2896 Inst->replaceAllUsesWith(New); 2897 } 2898 2899 /// Reassign the original uses of Inst to Inst. 2900 void undo() override { 2901 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2902 for (InstructionAndIdx &Use : OriginalUses) 2903 Use.Inst->setOperand(Use.Idx, Inst); 2904 // RAUW has replaced all original uses with references to the new value, 2905 // including the debug uses. Since we are undoing the replacements, 2906 // the original debug uses must also be reinstated to maintain the 2907 // correctness and utility of debug value instructions. 2908 for (auto *DVI : DbgValues) 2909 DVI->replaceVariableLocationOp(New, Inst); 2910 } 2911 }; 2912 2913 /// Remove an instruction from the IR. 2914 class InstructionRemover : public TypePromotionAction { 2915 /// Original position of the instruction. 2916 InsertionHandler Inserter; 2917 2918 /// Helper structure to hide all the link to the instruction. In other 2919 /// words, this helps to do as if the instruction was removed. 2920 OperandsHider Hider; 2921 2922 /// Keep track of the uses replaced, if any. 2923 UsesReplacer *Replacer = nullptr; 2924 2925 /// Keep track of instructions removed. 2926 SetOfInstrs &RemovedInsts; 2927 2928 public: 2929 /// Remove all reference of \p Inst and optionally replace all its 2930 /// uses with New. 2931 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2932 /// \pre If !Inst->use_empty(), then New != nullptr 2933 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2934 Value *New = nullptr) 2935 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2936 RemovedInsts(RemovedInsts) { 2937 if (New) 2938 Replacer = new UsesReplacer(Inst, New); 2939 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2940 RemovedInsts.insert(Inst); 2941 /// The instructions removed here will be freed after completing 2942 /// optimizeBlock() for all blocks as we need to keep track of the 2943 /// removed instructions during promotion. 2944 Inst->removeFromParent(); 2945 } 2946 2947 ~InstructionRemover() override { delete Replacer; } 2948 2949 /// Resurrect the instruction and reassign it to the proper uses if 2950 /// new value was provided when build this action. 2951 void undo() override { 2952 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2953 Inserter.insert(Inst); 2954 if (Replacer) 2955 Replacer->undo(); 2956 Hider.undo(); 2957 RemovedInsts.erase(Inst); 2958 } 2959 }; 2960 2961 public: 2962 /// Restoration point. 2963 /// The restoration point is a pointer to an action instead of an iterator 2964 /// because the iterator may be invalidated but not the pointer. 2965 using ConstRestorationPt = const TypePromotionAction *; 2966 2967 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2968 : RemovedInsts(RemovedInsts) {} 2969 2970 /// Advocate every changes made in that transaction. Return true if any change 2971 /// happen. 2972 bool commit(); 2973 2974 /// Undo all the changes made after the given point. 2975 void rollback(ConstRestorationPt Point); 2976 2977 /// Get the current restoration point. 2978 ConstRestorationPt getRestorationPoint() const; 2979 2980 /// \name API for IR modification with state keeping to support rollback. 2981 /// @{ 2982 /// Same as Instruction::setOperand. 2983 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2984 2985 /// Same as Instruction::eraseFromParent. 2986 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2987 2988 /// Same as Value::replaceAllUsesWith. 2989 void replaceAllUsesWith(Instruction *Inst, Value *New); 2990 2991 /// Same as Value::mutateType. 2992 void mutateType(Instruction *Inst, Type *NewTy); 2993 2994 /// Same as IRBuilder::createTrunc. 2995 Value *createTrunc(Instruction *Opnd, Type *Ty); 2996 2997 /// Same as IRBuilder::createSExt. 2998 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2999 3000 /// Same as IRBuilder::createZExt. 3001 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 3002 3003 /// Same as Instruction::moveBefore. 3004 void moveBefore(Instruction *Inst, Instruction *Before); 3005 /// @} 3006 3007 private: 3008 /// The ordered list of actions made so far. 3009 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 3010 3011 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 3012 3013 SetOfInstrs &RemovedInsts; 3014 }; 3015 3016 } // end anonymous namespace 3017 3018 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 3019 Value *NewVal) { 3020 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 3021 Inst, Idx, NewVal)); 3022 } 3023 3024 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 3025 Value *NewVal) { 3026 Actions.push_back( 3027 std::make_unique<TypePromotionTransaction::InstructionRemover>( 3028 Inst, RemovedInsts, NewVal)); 3029 } 3030 3031 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 3032 Value *New) { 3033 Actions.push_back( 3034 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 3035 } 3036 3037 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 3038 Actions.push_back( 3039 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 3040 } 3041 3042 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 3043 Type *Ty) { 3044 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 3045 Value *Val = Ptr->getBuiltValue(); 3046 Actions.push_back(std::move(Ptr)); 3047 return Val; 3048 } 3049 3050 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 3051 Value *Opnd, Type *Ty) { 3052 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 3053 Value *Val = Ptr->getBuiltValue(); 3054 Actions.push_back(std::move(Ptr)); 3055 return Val; 3056 } 3057 3058 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3059 Value *Opnd, Type *Ty) { 3060 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3061 Value *Val = Ptr->getBuiltValue(); 3062 Actions.push_back(std::move(Ptr)); 3063 return Val; 3064 } 3065 3066 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3067 Instruction *Before) { 3068 Actions.push_back( 3069 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3070 Inst, Before)); 3071 } 3072 3073 TypePromotionTransaction::ConstRestorationPt 3074 TypePromotionTransaction::getRestorationPoint() const { 3075 return !Actions.empty() ? Actions.back().get() : nullptr; 3076 } 3077 3078 bool TypePromotionTransaction::commit() { 3079 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3080 Action->commit(); 3081 bool Modified = !Actions.empty(); 3082 Actions.clear(); 3083 return Modified; 3084 } 3085 3086 void TypePromotionTransaction::rollback( 3087 TypePromotionTransaction::ConstRestorationPt Point) { 3088 while (!Actions.empty() && Point != Actions.back().get()) { 3089 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3090 Curr->undo(); 3091 } 3092 } 3093 3094 namespace { 3095 3096 /// A helper class for matching addressing modes. 3097 /// 3098 /// This encapsulates the logic for matching the target-legal addressing modes. 3099 class AddressingModeMatcher { 3100 SmallVectorImpl<Instruction*> &AddrModeInsts; 3101 const TargetLowering &TLI; 3102 const TargetRegisterInfo &TRI; 3103 const DataLayout &DL; 3104 const LoopInfo &LI; 3105 const std::function<const DominatorTree &()> getDTFn; 3106 3107 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3108 /// the memory instruction that we're computing this address for. 3109 Type *AccessTy; 3110 unsigned AddrSpace; 3111 Instruction *MemoryInst; 3112 3113 /// This is the addressing mode that we're building up. This is 3114 /// part of the return value of this addressing mode matching stuff. 3115 ExtAddrMode &AddrMode; 3116 3117 /// The instructions inserted by other CodeGenPrepare optimizations. 3118 const SetOfInstrs &InsertedInsts; 3119 3120 /// A map from the instructions to their type before promotion. 3121 InstrToOrigTy &PromotedInsts; 3122 3123 /// The ongoing transaction where every action should be registered. 3124 TypePromotionTransaction &TPT; 3125 3126 // A GEP which has too large offset to be folded into the addressing mode. 3127 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3128 3129 /// This is set to true when we should not do profitability checks. 3130 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3131 bool IgnoreProfitability; 3132 3133 /// True if we are optimizing for size. 3134 bool OptSize; 3135 3136 ProfileSummaryInfo *PSI; 3137 BlockFrequencyInfo *BFI; 3138 3139 AddressingModeMatcher( 3140 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3141 const TargetRegisterInfo &TRI, const LoopInfo &LI, 3142 const std::function<const DominatorTree &()> getDTFn, 3143 Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM, 3144 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3145 TypePromotionTransaction &TPT, 3146 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3147 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3148 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3149 DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn), 3150 AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM), 3151 InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT), 3152 LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) { 3153 IgnoreProfitability = false; 3154 } 3155 3156 public: 3157 /// Find the maximal addressing mode that a load/store of V can fold, 3158 /// give an access type of AccessTy. This returns a list of involved 3159 /// instructions in AddrModeInsts. 3160 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3161 /// optimizations. 3162 /// \p PromotedInsts maps the instructions to their type before promotion. 3163 /// \p The ongoing transaction where every action should be registered. 3164 static ExtAddrMode 3165 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3166 SmallVectorImpl<Instruction *> &AddrModeInsts, 3167 const TargetLowering &TLI, const LoopInfo &LI, 3168 const std::function<const DominatorTree &()> getDTFn, 3169 const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts, 3170 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3171 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3172 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3173 ExtAddrMode Result; 3174 3175 bool Success = AddressingModeMatcher( 3176 AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result, 3177 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 3178 BFI).matchAddr(V, 0); 3179 (void)Success; assert(Success && "Couldn't select *anything*?"); 3180 return Result; 3181 } 3182 3183 private: 3184 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3185 bool matchAddr(Value *Addr, unsigned Depth); 3186 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3187 bool *MovedAway = nullptr); 3188 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3189 ExtAddrMode &AMBefore, 3190 ExtAddrMode &AMAfter); 3191 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3192 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3193 Value *PromotedOperand) const; 3194 }; 3195 3196 class PhiNodeSet; 3197 3198 /// An iterator for PhiNodeSet. 3199 class PhiNodeSetIterator { 3200 PhiNodeSet * const Set; 3201 size_t CurrentIndex = 0; 3202 3203 public: 3204 /// The constructor. Start should point to either a valid element, or be equal 3205 /// to the size of the underlying SmallVector of the PhiNodeSet. 3206 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3207 PHINode * operator*() const; 3208 PhiNodeSetIterator& operator++(); 3209 bool operator==(const PhiNodeSetIterator &RHS) const; 3210 bool operator!=(const PhiNodeSetIterator &RHS) const; 3211 }; 3212 3213 /// Keeps a set of PHINodes. 3214 /// 3215 /// This is a minimal set implementation for a specific use case: 3216 /// It is very fast when there are very few elements, but also provides good 3217 /// performance when there are many. It is similar to SmallPtrSet, but also 3218 /// provides iteration by insertion order, which is deterministic and stable 3219 /// across runs. It is also similar to SmallSetVector, but provides removing 3220 /// elements in O(1) time. This is achieved by not actually removing the element 3221 /// from the underlying vector, so comes at the cost of using more memory, but 3222 /// that is fine, since PhiNodeSets are used as short lived objects. 3223 class PhiNodeSet { 3224 friend class PhiNodeSetIterator; 3225 3226 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3227 using iterator = PhiNodeSetIterator; 3228 3229 /// Keeps the elements in the order of their insertion in the underlying 3230 /// vector. To achieve constant time removal, it never deletes any element. 3231 SmallVector<PHINode *, 32> NodeList; 3232 3233 /// Keeps the elements in the underlying set implementation. This (and not the 3234 /// NodeList defined above) is the source of truth on whether an element 3235 /// is actually in the collection. 3236 MapType NodeMap; 3237 3238 /// Points to the first valid (not deleted) element when the set is not empty 3239 /// and the value is not zero. Equals to the size of the underlying vector 3240 /// when the set is empty. When the value is 0, as in the beginning, the 3241 /// first element may or may not be valid. 3242 size_t FirstValidElement = 0; 3243 3244 public: 3245 /// Inserts a new element to the collection. 3246 /// \returns true if the element is actually added, i.e. was not in the 3247 /// collection before the operation. 3248 bool insert(PHINode *Ptr) { 3249 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3250 NodeList.push_back(Ptr); 3251 return true; 3252 } 3253 return false; 3254 } 3255 3256 /// Removes the element from the collection. 3257 /// \returns whether the element is actually removed, i.e. was in the 3258 /// collection before the operation. 3259 bool erase(PHINode *Ptr) { 3260 if (NodeMap.erase(Ptr)) { 3261 SkipRemovedElements(FirstValidElement); 3262 return true; 3263 } 3264 return false; 3265 } 3266 3267 /// Removes all elements and clears the collection. 3268 void clear() { 3269 NodeMap.clear(); 3270 NodeList.clear(); 3271 FirstValidElement = 0; 3272 } 3273 3274 /// \returns an iterator that will iterate the elements in the order of 3275 /// insertion. 3276 iterator begin() { 3277 if (FirstValidElement == 0) 3278 SkipRemovedElements(FirstValidElement); 3279 return PhiNodeSetIterator(this, FirstValidElement); 3280 } 3281 3282 /// \returns an iterator that points to the end of the collection. 3283 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3284 3285 /// Returns the number of elements in the collection. 3286 size_t size() const { 3287 return NodeMap.size(); 3288 } 3289 3290 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3291 size_t count(PHINode *Ptr) const { 3292 return NodeMap.count(Ptr); 3293 } 3294 3295 private: 3296 /// Updates the CurrentIndex so that it will point to a valid element. 3297 /// 3298 /// If the element of NodeList at CurrentIndex is valid, it does not 3299 /// change it. If there are no more valid elements, it updates CurrentIndex 3300 /// to point to the end of the NodeList. 3301 void SkipRemovedElements(size_t &CurrentIndex) { 3302 while (CurrentIndex < NodeList.size()) { 3303 auto it = NodeMap.find(NodeList[CurrentIndex]); 3304 // If the element has been deleted and added again later, NodeMap will 3305 // point to a different index, so CurrentIndex will still be invalid. 3306 if (it != NodeMap.end() && it->second == CurrentIndex) 3307 break; 3308 ++CurrentIndex; 3309 } 3310 } 3311 }; 3312 3313 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3314 : Set(Set), CurrentIndex(Start) {} 3315 3316 PHINode * PhiNodeSetIterator::operator*() const { 3317 assert(CurrentIndex < Set->NodeList.size() && 3318 "PhiNodeSet access out of range"); 3319 return Set->NodeList[CurrentIndex]; 3320 } 3321 3322 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3323 assert(CurrentIndex < Set->NodeList.size() && 3324 "PhiNodeSet access out of range"); 3325 ++CurrentIndex; 3326 Set->SkipRemovedElements(CurrentIndex); 3327 return *this; 3328 } 3329 3330 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3331 return CurrentIndex == RHS.CurrentIndex; 3332 } 3333 3334 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3335 return !((*this) == RHS); 3336 } 3337 3338 /// Keep track of simplification of Phi nodes. 3339 /// Accept the set of all phi nodes and erase phi node from this set 3340 /// if it is simplified. 3341 class SimplificationTracker { 3342 DenseMap<Value *, Value *> Storage; 3343 const SimplifyQuery &SQ; 3344 // Tracks newly created Phi nodes. The elements are iterated by insertion 3345 // order. 3346 PhiNodeSet AllPhiNodes; 3347 // Tracks newly created Select nodes. 3348 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3349 3350 public: 3351 SimplificationTracker(const SimplifyQuery &sq) 3352 : SQ(sq) {} 3353 3354 Value *Get(Value *V) { 3355 do { 3356 auto SV = Storage.find(V); 3357 if (SV == Storage.end()) 3358 return V; 3359 V = SV->second; 3360 } while (true); 3361 } 3362 3363 Value *Simplify(Value *Val) { 3364 SmallVector<Value *, 32> WorkList; 3365 SmallPtrSet<Value *, 32> Visited; 3366 WorkList.push_back(Val); 3367 while (!WorkList.empty()) { 3368 auto *P = WorkList.pop_back_val(); 3369 if (!Visited.insert(P).second) 3370 continue; 3371 if (auto *PI = dyn_cast<Instruction>(P)) 3372 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3373 for (auto *U : PI->users()) 3374 WorkList.push_back(cast<Value>(U)); 3375 Put(PI, V); 3376 PI->replaceAllUsesWith(V); 3377 if (auto *PHI = dyn_cast<PHINode>(PI)) 3378 AllPhiNodes.erase(PHI); 3379 if (auto *Select = dyn_cast<SelectInst>(PI)) 3380 AllSelectNodes.erase(Select); 3381 PI->eraseFromParent(); 3382 } 3383 } 3384 return Get(Val); 3385 } 3386 3387 void Put(Value *From, Value *To) { 3388 Storage.insert({ From, To }); 3389 } 3390 3391 void ReplacePhi(PHINode *From, PHINode *To) { 3392 Value* OldReplacement = Get(From); 3393 while (OldReplacement != From) { 3394 From = To; 3395 To = dyn_cast<PHINode>(OldReplacement); 3396 OldReplacement = Get(From); 3397 } 3398 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3399 Put(From, To); 3400 From->replaceAllUsesWith(To); 3401 AllPhiNodes.erase(From); 3402 From->eraseFromParent(); 3403 } 3404 3405 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3406 3407 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3408 3409 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3410 3411 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3412 3413 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3414 3415 void destroyNewNodes(Type *CommonType) { 3416 // For safe erasing, replace the uses with dummy value first. 3417 auto *Dummy = UndefValue::get(CommonType); 3418 for (auto *I : AllPhiNodes) { 3419 I->replaceAllUsesWith(Dummy); 3420 I->eraseFromParent(); 3421 } 3422 AllPhiNodes.clear(); 3423 for (auto *I : AllSelectNodes) { 3424 I->replaceAllUsesWith(Dummy); 3425 I->eraseFromParent(); 3426 } 3427 AllSelectNodes.clear(); 3428 } 3429 }; 3430 3431 /// A helper class for combining addressing modes. 3432 class AddressingModeCombiner { 3433 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3434 typedef std::pair<PHINode *, PHINode *> PHIPair; 3435 3436 private: 3437 /// The addressing modes we've collected. 3438 SmallVector<ExtAddrMode, 16> AddrModes; 3439 3440 /// The field in which the AddrModes differ, when we have more than one. 3441 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3442 3443 /// Are the AddrModes that we have all just equal to their original values? 3444 bool AllAddrModesTrivial = true; 3445 3446 /// Common Type for all different fields in addressing modes. 3447 Type *CommonType; 3448 3449 /// SimplifyQuery for simplifyInstruction utility. 3450 const SimplifyQuery &SQ; 3451 3452 /// Original Address. 3453 Value *Original; 3454 3455 public: 3456 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3457 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3458 3459 /// Get the combined AddrMode 3460 const ExtAddrMode &getAddrMode() const { 3461 return AddrModes[0]; 3462 } 3463 3464 /// Add a new AddrMode if it's compatible with the AddrModes we already 3465 /// have. 3466 /// \return True iff we succeeded in doing so. 3467 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3468 // Take note of if we have any non-trivial AddrModes, as we need to detect 3469 // when all AddrModes are trivial as then we would introduce a phi or select 3470 // which just duplicates what's already there. 3471 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3472 3473 // If this is the first addrmode then everything is fine. 3474 if (AddrModes.empty()) { 3475 AddrModes.emplace_back(NewAddrMode); 3476 return true; 3477 } 3478 3479 // Figure out how different this is from the other address modes, which we 3480 // can do just by comparing against the first one given that we only care 3481 // about the cumulative difference. 3482 ExtAddrMode::FieldName ThisDifferentField = 3483 AddrModes[0].compare(NewAddrMode); 3484 if (DifferentField == ExtAddrMode::NoField) 3485 DifferentField = ThisDifferentField; 3486 else if (DifferentField != ThisDifferentField) 3487 DifferentField = ExtAddrMode::MultipleFields; 3488 3489 // If NewAddrMode differs in more than one dimension we cannot handle it. 3490 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3491 3492 // If Scale Field is different then we reject. 3493 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3494 3495 // We also must reject the case when base offset is different and 3496 // scale reg is not null, we cannot handle this case due to merge of 3497 // different offsets will be used as ScaleReg. 3498 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3499 !NewAddrMode.ScaledReg); 3500 3501 // We also must reject the case when GV is different and BaseReg installed 3502 // due to we want to use base reg as a merge of GV values. 3503 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3504 !NewAddrMode.HasBaseReg); 3505 3506 // Even if NewAddMode is the same we still need to collect it due to 3507 // original value is different. And later we will need all original values 3508 // as anchors during finding the common Phi node. 3509 if (CanHandle) 3510 AddrModes.emplace_back(NewAddrMode); 3511 else 3512 AddrModes.clear(); 3513 3514 return CanHandle; 3515 } 3516 3517 /// Combine the addressing modes we've collected into a single 3518 /// addressing mode. 3519 /// \return True iff we successfully combined them or we only had one so 3520 /// didn't need to combine them anyway. 3521 bool combineAddrModes() { 3522 // If we have no AddrModes then they can't be combined. 3523 if (AddrModes.size() == 0) 3524 return false; 3525 3526 // A single AddrMode can trivially be combined. 3527 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3528 return true; 3529 3530 // If the AddrModes we collected are all just equal to the value they are 3531 // derived from then combining them wouldn't do anything useful. 3532 if (AllAddrModesTrivial) 3533 return false; 3534 3535 if (!addrModeCombiningAllowed()) 3536 return false; 3537 3538 // Build a map between <original value, basic block where we saw it> to 3539 // value of base register. 3540 // Bail out if there is no common type. 3541 FoldAddrToValueMapping Map; 3542 if (!initializeMap(Map)) 3543 return false; 3544 3545 Value *CommonValue = findCommon(Map); 3546 if (CommonValue) 3547 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3548 return CommonValue != nullptr; 3549 } 3550 3551 private: 3552 /// Initialize Map with anchor values. For address seen 3553 /// we set the value of different field saw in this address. 3554 /// At the same time we find a common type for different field we will 3555 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3556 /// Return false if there is no common type found. 3557 bool initializeMap(FoldAddrToValueMapping &Map) { 3558 // Keep track of keys where the value is null. We will need to replace it 3559 // with constant null when we know the common type. 3560 SmallVector<Value *, 2> NullValue; 3561 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3562 for (auto &AM : AddrModes) { 3563 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3564 if (DV) { 3565 auto *Type = DV->getType(); 3566 if (CommonType && CommonType != Type) 3567 return false; 3568 CommonType = Type; 3569 Map[AM.OriginalValue] = DV; 3570 } else { 3571 NullValue.push_back(AM.OriginalValue); 3572 } 3573 } 3574 assert(CommonType && "At least one non-null value must be!"); 3575 for (auto *V : NullValue) 3576 Map[V] = Constant::getNullValue(CommonType); 3577 return true; 3578 } 3579 3580 /// We have mapping between value A and other value B where B was a field in 3581 /// addressing mode represented by A. Also we have an original value C 3582 /// representing an address we start with. Traversing from C through phi and 3583 /// selects we ended up with A's in a map. This utility function tries to find 3584 /// a value V which is a field in addressing mode C and traversing through phi 3585 /// nodes and selects we will end up in corresponded values B in a map. 3586 /// The utility will create a new Phi/Selects if needed. 3587 // The simple example looks as follows: 3588 // BB1: 3589 // p1 = b1 + 40 3590 // br cond BB2, BB3 3591 // BB2: 3592 // p2 = b2 + 40 3593 // br BB3 3594 // BB3: 3595 // p = phi [p1, BB1], [p2, BB2] 3596 // v = load p 3597 // Map is 3598 // p1 -> b1 3599 // p2 -> b2 3600 // Request is 3601 // p -> ? 3602 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3603 Value *findCommon(FoldAddrToValueMapping &Map) { 3604 // Tracks the simplification of newly created phi nodes. The reason we use 3605 // this mapping is because we will add new created Phi nodes in AddrToBase. 3606 // Simplification of Phi nodes is recursive, so some Phi node may 3607 // be simplified after we added it to AddrToBase. In reality this 3608 // simplification is possible only if original phi/selects were not 3609 // simplified yet. 3610 // Using this mapping we can find the current value in AddrToBase. 3611 SimplificationTracker ST(SQ); 3612 3613 // First step, DFS to create PHI nodes for all intermediate blocks. 3614 // Also fill traverse order for the second step. 3615 SmallVector<Value *, 32> TraverseOrder; 3616 InsertPlaceholders(Map, TraverseOrder, ST); 3617 3618 // Second Step, fill new nodes by merged values and simplify if possible. 3619 FillPlaceholders(Map, TraverseOrder, ST); 3620 3621 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3622 ST.destroyNewNodes(CommonType); 3623 return nullptr; 3624 } 3625 3626 // Now we'd like to match New Phi nodes to existed ones. 3627 unsigned PhiNotMatchedCount = 0; 3628 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3629 ST.destroyNewNodes(CommonType); 3630 return nullptr; 3631 } 3632 3633 auto *Result = ST.Get(Map.find(Original)->second); 3634 if (Result) { 3635 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3636 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3637 } 3638 return Result; 3639 } 3640 3641 /// Try to match PHI node to Candidate. 3642 /// Matcher tracks the matched Phi nodes. 3643 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3644 SmallSetVector<PHIPair, 8> &Matcher, 3645 PhiNodeSet &PhiNodesToMatch) { 3646 SmallVector<PHIPair, 8> WorkList; 3647 Matcher.insert({ PHI, Candidate }); 3648 SmallSet<PHINode *, 8> MatchedPHIs; 3649 MatchedPHIs.insert(PHI); 3650 WorkList.push_back({ PHI, Candidate }); 3651 SmallSet<PHIPair, 8> Visited; 3652 while (!WorkList.empty()) { 3653 auto Item = WorkList.pop_back_val(); 3654 if (!Visited.insert(Item).second) 3655 continue; 3656 // We iterate over all incoming values to Phi to compare them. 3657 // If values are different and both of them Phi and the first one is a 3658 // Phi we added (subject to match) and both of them is in the same basic 3659 // block then we can match our pair if values match. So we state that 3660 // these values match and add it to work list to verify that. 3661 for (auto B : Item.first->blocks()) { 3662 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3663 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3664 if (FirstValue == SecondValue) 3665 continue; 3666 3667 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3668 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3669 3670 // One of them is not Phi or 3671 // The first one is not Phi node from the set we'd like to match or 3672 // Phi nodes from different basic blocks then 3673 // we will not be able to match. 3674 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3675 FirstPhi->getParent() != SecondPhi->getParent()) 3676 return false; 3677 3678 // If we already matched them then continue. 3679 if (Matcher.count({ FirstPhi, SecondPhi })) 3680 continue; 3681 // So the values are different and does not match. So we need them to 3682 // match. (But we register no more than one match per PHI node, so that 3683 // we won't later try to replace them twice.) 3684 if (MatchedPHIs.insert(FirstPhi).second) 3685 Matcher.insert({ FirstPhi, SecondPhi }); 3686 // But me must check it. 3687 WorkList.push_back({ FirstPhi, SecondPhi }); 3688 } 3689 } 3690 return true; 3691 } 3692 3693 /// For the given set of PHI nodes (in the SimplificationTracker) try 3694 /// to find their equivalents. 3695 /// Returns false if this matching fails and creation of new Phi is disabled. 3696 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3697 unsigned &PhiNotMatchedCount) { 3698 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3699 // order, so the replacements (ReplacePhi) are also done in a deterministic 3700 // order. 3701 SmallSetVector<PHIPair, 8> Matched; 3702 SmallPtrSet<PHINode *, 8> WillNotMatch; 3703 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3704 while (PhiNodesToMatch.size()) { 3705 PHINode *PHI = *PhiNodesToMatch.begin(); 3706 3707 // Add us, if no Phi nodes in the basic block we do not match. 3708 WillNotMatch.clear(); 3709 WillNotMatch.insert(PHI); 3710 3711 // Traverse all Phis until we found equivalent or fail to do that. 3712 bool IsMatched = false; 3713 for (auto &P : PHI->getParent()->phis()) { 3714 if (&P == PHI) 3715 continue; 3716 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3717 break; 3718 // If it does not match, collect all Phi nodes from matcher. 3719 // if we end up with no match, them all these Phi nodes will not match 3720 // later. 3721 for (auto M : Matched) 3722 WillNotMatch.insert(M.first); 3723 Matched.clear(); 3724 } 3725 if (IsMatched) { 3726 // Replace all matched values and erase them. 3727 for (auto MV : Matched) 3728 ST.ReplacePhi(MV.first, MV.second); 3729 Matched.clear(); 3730 continue; 3731 } 3732 // If we are not allowed to create new nodes then bail out. 3733 if (!AllowNewPhiNodes) 3734 return false; 3735 // Just remove all seen values in matcher. They will not match anything. 3736 PhiNotMatchedCount += WillNotMatch.size(); 3737 for (auto *P : WillNotMatch) 3738 PhiNodesToMatch.erase(P); 3739 } 3740 return true; 3741 } 3742 /// Fill the placeholders with values from predecessors and simplify them. 3743 void FillPlaceholders(FoldAddrToValueMapping &Map, 3744 SmallVectorImpl<Value *> &TraverseOrder, 3745 SimplificationTracker &ST) { 3746 while (!TraverseOrder.empty()) { 3747 Value *Current = TraverseOrder.pop_back_val(); 3748 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3749 Value *V = Map[Current]; 3750 3751 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3752 // CurrentValue also must be Select. 3753 auto *CurrentSelect = cast<SelectInst>(Current); 3754 auto *TrueValue = CurrentSelect->getTrueValue(); 3755 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3756 Select->setTrueValue(ST.Get(Map[TrueValue])); 3757 auto *FalseValue = CurrentSelect->getFalseValue(); 3758 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3759 Select->setFalseValue(ST.Get(Map[FalseValue])); 3760 } else { 3761 // Must be a Phi node then. 3762 auto *PHI = cast<PHINode>(V); 3763 // Fill the Phi node with values from predecessors. 3764 for (auto *B : predecessors(PHI->getParent())) { 3765 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3766 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3767 PHI->addIncoming(ST.Get(Map[PV]), B); 3768 } 3769 } 3770 Map[Current] = ST.Simplify(V); 3771 } 3772 } 3773 3774 /// Starting from original value recursively iterates over def-use chain up to 3775 /// known ending values represented in a map. For each traversed phi/select 3776 /// inserts a placeholder Phi or Select. 3777 /// Reports all new created Phi/Select nodes by adding them to set. 3778 /// Also reports and order in what values have been traversed. 3779 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3780 SmallVectorImpl<Value *> &TraverseOrder, 3781 SimplificationTracker &ST) { 3782 SmallVector<Value *, 32> Worklist; 3783 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3784 "Address must be a Phi or Select node"); 3785 auto *Dummy = UndefValue::get(CommonType); 3786 Worklist.push_back(Original); 3787 while (!Worklist.empty()) { 3788 Value *Current = Worklist.pop_back_val(); 3789 // if it is already visited or it is an ending value then skip it. 3790 if (Map.find(Current) != Map.end()) 3791 continue; 3792 TraverseOrder.push_back(Current); 3793 3794 // CurrentValue must be a Phi node or select. All others must be covered 3795 // by anchors. 3796 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3797 // Is it OK to get metadata from OrigSelect?! 3798 // Create a Select placeholder with dummy value. 3799 SelectInst *Select = SelectInst::Create( 3800 CurrentSelect->getCondition(), Dummy, Dummy, 3801 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3802 Map[Current] = Select; 3803 ST.insertNewSelect(Select); 3804 // We are interested in True and False values. 3805 Worklist.push_back(CurrentSelect->getTrueValue()); 3806 Worklist.push_back(CurrentSelect->getFalseValue()); 3807 } else { 3808 // It must be a Phi node then. 3809 PHINode *CurrentPhi = cast<PHINode>(Current); 3810 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3811 PHINode *PHI = 3812 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3813 Map[Current] = PHI; 3814 ST.insertNewPhi(PHI); 3815 append_range(Worklist, CurrentPhi->incoming_values()); 3816 } 3817 } 3818 } 3819 3820 bool addrModeCombiningAllowed() { 3821 if (DisableComplexAddrModes) 3822 return false; 3823 switch (DifferentField) { 3824 default: 3825 return false; 3826 case ExtAddrMode::BaseRegField: 3827 return AddrSinkCombineBaseReg; 3828 case ExtAddrMode::BaseGVField: 3829 return AddrSinkCombineBaseGV; 3830 case ExtAddrMode::BaseOffsField: 3831 return AddrSinkCombineBaseOffs; 3832 case ExtAddrMode::ScaledRegField: 3833 return AddrSinkCombineScaledReg; 3834 } 3835 } 3836 }; 3837 } // end anonymous namespace 3838 3839 /// Try adding ScaleReg*Scale to the current addressing mode. 3840 /// Return true and update AddrMode if this addr mode is legal for the target, 3841 /// false if not. 3842 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3843 unsigned Depth) { 3844 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3845 // mode. Just process that directly. 3846 if (Scale == 1) 3847 return matchAddr(ScaleReg, Depth); 3848 3849 // If the scale is 0, it takes nothing to add this. 3850 if (Scale == 0) 3851 return true; 3852 3853 // If we already have a scale of this value, we can add to it, otherwise, we 3854 // need an available scale field. 3855 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3856 return false; 3857 3858 ExtAddrMode TestAddrMode = AddrMode; 3859 3860 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3861 // [A+B + A*7] -> [B+A*8]. 3862 TestAddrMode.Scale += Scale; 3863 TestAddrMode.ScaledReg = ScaleReg; 3864 3865 // If the new address isn't legal, bail out. 3866 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3867 return false; 3868 3869 // It was legal, so commit it. 3870 AddrMode = TestAddrMode; 3871 3872 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3873 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3874 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not 3875 // go any further: we can reuse it and cannot eliminate it. 3876 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3877 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3878 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3879 !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) { 3880 TestAddrMode.InBounds = false; 3881 TestAddrMode.ScaledReg = AddLHS; 3882 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3883 3884 // If this addressing mode is legal, commit it and remember that we folded 3885 // this instruction. 3886 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3887 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3888 AddrMode = TestAddrMode; 3889 return true; 3890 } 3891 // Restore status quo. 3892 TestAddrMode = AddrMode; 3893 } 3894 3895 // If this is an add recurrence with a constant step, return the increment 3896 // instruction and the canonicalized step. 3897 auto GetConstantStep = [this](const Value * V) 3898 ->Optional<std::pair<Instruction *, APInt> > { 3899 auto *PN = dyn_cast<PHINode>(V); 3900 if (!PN) 3901 return None; 3902 auto IVInc = getIVIncrement(PN, &LI); 3903 if (!IVInc) 3904 return None; 3905 // TODO: The result of the intrinsics above is two-compliment. However when 3906 // IV inc is expressed as add or sub, iv.next is potentially a poison value. 3907 // If it has nuw or nsw flags, we need to make sure that these flags are 3908 // inferrable at the point of memory instruction. Otherwise we are replacing 3909 // well-defined two-compliment computation with poison. Currently, to avoid 3910 // potentially complex analysis needed to prove this, we reject such cases. 3911 if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first)) 3912 if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap()) 3913 return None; 3914 if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second)) 3915 return std::make_pair(IVInc->first, ConstantStep->getValue()); 3916 return None; 3917 }; 3918 3919 // Try to account for the following special case: 3920 // 1. ScaleReg is an inductive variable; 3921 // 2. We use it with non-zero offset; 3922 // 3. IV's increment is available at the point of memory instruction. 3923 // 3924 // In this case, we may reuse the IV increment instead of the IV Phi to 3925 // achieve the following advantages: 3926 // 1. If IV step matches the offset, we will have no need in the offset; 3927 // 2. Even if they don't match, we will reduce the overlap of living IV 3928 // and IV increment, that will potentially lead to better register 3929 // assignment. 3930 if (AddrMode.BaseOffs) { 3931 if (auto IVStep = GetConstantStep(ScaleReg)) { 3932 Instruction *IVInc = IVStep->first; 3933 // The following assert is important to ensure a lack of infinite loops. 3934 // This transforms is (intentionally) the inverse of the one just above. 3935 // If they don't agree on the definition of an increment, we'd alternate 3936 // back and forth indefinitely. 3937 assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep"); 3938 APInt Step = IVStep->second; 3939 APInt Offset = Step * AddrMode.Scale; 3940 if (Offset.isSignedIntN(64)) { 3941 TestAddrMode.InBounds = false; 3942 TestAddrMode.ScaledReg = IVInc; 3943 TestAddrMode.BaseOffs -= Offset.getLimitedValue(); 3944 // If this addressing mode is legal, commit it.. 3945 // (Note that we defer the (expensive) domtree base legality check 3946 // to the very last possible point.) 3947 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) && 3948 getDTFn().dominates(IVInc, MemoryInst)) { 3949 AddrModeInsts.push_back(cast<Instruction>(IVInc)); 3950 AddrMode = TestAddrMode; 3951 return true; 3952 } 3953 // Restore status quo. 3954 TestAddrMode = AddrMode; 3955 } 3956 } 3957 } 3958 3959 // Otherwise, just return what we have. 3960 return true; 3961 } 3962 3963 /// This is a little filter, which returns true if an addressing computation 3964 /// involving I might be folded into a load/store accessing it. 3965 /// This doesn't need to be perfect, but needs to accept at least 3966 /// the set of instructions that MatchOperationAddr can. 3967 static bool MightBeFoldableInst(Instruction *I) { 3968 switch (I->getOpcode()) { 3969 case Instruction::BitCast: 3970 case Instruction::AddrSpaceCast: 3971 // Don't touch identity bitcasts. 3972 if (I->getType() == I->getOperand(0)->getType()) 3973 return false; 3974 return I->getType()->isIntOrPtrTy(); 3975 case Instruction::PtrToInt: 3976 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3977 return true; 3978 case Instruction::IntToPtr: 3979 // We know the input is intptr_t, so this is foldable. 3980 return true; 3981 case Instruction::Add: 3982 return true; 3983 case Instruction::Mul: 3984 case Instruction::Shl: 3985 // Can only handle X*C and X << C. 3986 return isa<ConstantInt>(I->getOperand(1)); 3987 case Instruction::GetElementPtr: 3988 return true; 3989 default: 3990 return false; 3991 } 3992 } 3993 3994 /// Check whether or not \p Val is a legal instruction for \p TLI. 3995 /// \note \p Val is assumed to be the product of some type promotion. 3996 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3997 /// to be legal, as the non-promoted value would have had the same state. 3998 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3999 const DataLayout &DL, Value *Val) { 4000 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 4001 if (!PromotedInst) 4002 return false; 4003 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 4004 // If the ISDOpcode is undefined, it was undefined before the promotion. 4005 if (!ISDOpcode) 4006 return true; 4007 // Otherwise, check if the promoted instruction is legal or not. 4008 return TLI.isOperationLegalOrCustom( 4009 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 4010 } 4011 4012 namespace { 4013 4014 /// Hepler class to perform type promotion. 4015 class TypePromotionHelper { 4016 /// Utility function to add a promoted instruction \p ExtOpnd to 4017 /// \p PromotedInsts and record the type of extension we have seen. 4018 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 4019 Instruction *ExtOpnd, 4020 bool IsSExt) { 4021 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4022 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 4023 if (It != PromotedInsts.end()) { 4024 // If the new extension is same as original, the information in 4025 // PromotedInsts[ExtOpnd] is still correct. 4026 if (It->second.getInt() == ExtTy) 4027 return; 4028 4029 // Now the new extension is different from old extension, we make 4030 // the type information invalid by setting extension type to 4031 // BothExtension. 4032 ExtTy = BothExtension; 4033 } 4034 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 4035 } 4036 4037 /// Utility function to query the original type of instruction \p Opnd 4038 /// with a matched extension type. If the extension doesn't match, we 4039 /// cannot use the information we had on the original type. 4040 /// BothExtension doesn't match any extension type. 4041 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 4042 Instruction *Opnd, 4043 bool IsSExt) { 4044 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 4045 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 4046 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 4047 return It->second.getPointer(); 4048 return nullptr; 4049 } 4050 4051 /// Utility function to check whether or not a sign or zero extension 4052 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 4053 /// either using the operands of \p Inst or promoting \p Inst. 4054 /// The type of the extension is defined by \p IsSExt. 4055 /// In other words, check if: 4056 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 4057 /// #1 Promotion applies: 4058 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 4059 /// #2 Operand reuses: 4060 /// ext opnd1 to ConsideredExtType. 4061 /// \p PromotedInsts maps the instructions to their type before promotion. 4062 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 4063 const InstrToOrigTy &PromotedInsts, bool IsSExt); 4064 4065 /// Utility function to determine if \p OpIdx should be promoted when 4066 /// promoting \p Inst. 4067 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 4068 return !(isa<SelectInst>(Inst) && OpIdx == 0); 4069 } 4070 4071 /// Utility function to promote the operand of \p Ext when this 4072 /// operand is a promotable trunc or sext or zext. 4073 /// \p PromotedInsts maps the instructions to their type before promotion. 4074 /// \p CreatedInstsCost[out] contains the cost of all instructions 4075 /// created to promote the operand of Ext. 4076 /// Newly added extensions are inserted in \p Exts. 4077 /// Newly added truncates are inserted in \p Truncs. 4078 /// Should never be called directly. 4079 /// \return The promoted value which is used instead of Ext. 4080 static Value *promoteOperandForTruncAndAnyExt( 4081 Instruction *Ext, TypePromotionTransaction &TPT, 4082 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4083 SmallVectorImpl<Instruction *> *Exts, 4084 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 4085 4086 /// Utility function to promote the operand of \p Ext when this 4087 /// operand is promotable and is not a supported trunc or sext. 4088 /// \p PromotedInsts maps the instructions to their type before promotion. 4089 /// \p CreatedInstsCost[out] contains the cost of all the instructions 4090 /// created to promote the operand of Ext. 4091 /// Newly added extensions are inserted in \p Exts. 4092 /// Newly added truncates are inserted in \p Truncs. 4093 /// Should never be called directly. 4094 /// \return The promoted value which is used instead of Ext. 4095 static Value *promoteOperandForOther(Instruction *Ext, 4096 TypePromotionTransaction &TPT, 4097 InstrToOrigTy &PromotedInsts, 4098 unsigned &CreatedInstsCost, 4099 SmallVectorImpl<Instruction *> *Exts, 4100 SmallVectorImpl<Instruction *> *Truncs, 4101 const TargetLowering &TLI, bool IsSExt); 4102 4103 /// \see promoteOperandForOther. 4104 static Value *signExtendOperandForOther( 4105 Instruction *Ext, TypePromotionTransaction &TPT, 4106 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4107 SmallVectorImpl<Instruction *> *Exts, 4108 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4109 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4110 Exts, Truncs, TLI, true); 4111 } 4112 4113 /// \see promoteOperandForOther. 4114 static Value *zeroExtendOperandForOther( 4115 Instruction *Ext, TypePromotionTransaction &TPT, 4116 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4117 SmallVectorImpl<Instruction *> *Exts, 4118 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4119 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 4120 Exts, Truncs, TLI, false); 4121 } 4122 4123 public: 4124 /// Type for the utility function that promotes the operand of Ext. 4125 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4126 InstrToOrigTy &PromotedInsts, 4127 unsigned &CreatedInstsCost, 4128 SmallVectorImpl<Instruction *> *Exts, 4129 SmallVectorImpl<Instruction *> *Truncs, 4130 const TargetLowering &TLI); 4131 4132 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4133 /// action to promote the operand of \p Ext instead of using Ext. 4134 /// \return NULL if no promotable action is possible with the current 4135 /// sign extension. 4136 /// \p InsertedInsts keeps track of all the instructions inserted by the 4137 /// other CodeGenPrepare optimizations. This information is important 4138 /// because we do not want to promote these instructions as CodeGenPrepare 4139 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4140 /// \p PromotedInsts maps the instructions to their type before promotion. 4141 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4142 const TargetLowering &TLI, 4143 const InstrToOrigTy &PromotedInsts); 4144 }; 4145 4146 } // end anonymous namespace 4147 4148 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4149 Type *ConsideredExtType, 4150 const InstrToOrigTy &PromotedInsts, 4151 bool IsSExt) { 4152 // The promotion helper does not know how to deal with vector types yet. 4153 // To be able to fix that, we would need to fix the places where we 4154 // statically extend, e.g., constants and such. 4155 if (Inst->getType()->isVectorTy()) 4156 return false; 4157 4158 // We can always get through zext. 4159 if (isa<ZExtInst>(Inst)) 4160 return true; 4161 4162 // sext(sext) is ok too. 4163 if (IsSExt && isa<SExtInst>(Inst)) 4164 return true; 4165 4166 // We can get through binary operator, if it is legal. In other words, the 4167 // binary operator must have a nuw or nsw flag. 4168 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4169 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4170 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4171 (IsSExt && BinOp->hasNoSignedWrap()))) 4172 return true; 4173 4174 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4175 if ((Inst->getOpcode() == Instruction::And || 4176 Inst->getOpcode() == Instruction::Or)) 4177 return true; 4178 4179 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4180 if (Inst->getOpcode() == Instruction::Xor) { 4181 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4182 // Make sure it is not a NOT. 4183 if (Cst && !Cst->getValue().isAllOnesValue()) 4184 return true; 4185 } 4186 4187 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4188 // It may change a poisoned value into a regular value, like 4189 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4190 // poisoned value regular value 4191 // It should be OK since undef covers valid value. 4192 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4193 return true; 4194 4195 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4196 // It may change a poisoned value into a regular value, like 4197 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4198 // poisoned value regular value 4199 // It should be OK since undef covers valid value. 4200 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4201 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4202 if (ExtInst->hasOneUse()) { 4203 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4204 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4205 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4206 if (Cst && 4207 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4208 return true; 4209 } 4210 } 4211 } 4212 4213 // Check if we can do the following simplification. 4214 // ext(trunc(opnd)) --> ext(opnd) 4215 if (!isa<TruncInst>(Inst)) 4216 return false; 4217 4218 Value *OpndVal = Inst->getOperand(0); 4219 // Check if we can use this operand in the extension. 4220 // If the type is larger than the result type of the extension, we cannot. 4221 if (!OpndVal->getType()->isIntegerTy() || 4222 OpndVal->getType()->getIntegerBitWidth() > 4223 ConsideredExtType->getIntegerBitWidth()) 4224 return false; 4225 4226 // If the operand of the truncate is not an instruction, we will not have 4227 // any information on the dropped bits. 4228 // (Actually we could for constant but it is not worth the extra logic). 4229 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4230 if (!Opnd) 4231 return false; 4232 4233 // Check if the source of the type is narrow enough. 4234 // I.e., check that trunc just drops extended bits of the same kind of 4235 // the extension. 4236 // #1 get the type of the operand and check the kind of the extended bits. 4237 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4238 if (OpndType) 4239 ; 4240 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4241 OpndType = Opnd->getOperand(0)->getType(); 4242 else 4243 return false; 4244 4245 // #2 check that the truncate just drops extended bits. 4246 return Inst->getType()->getIntegerBitWidth() >= 4247 OpndType->getIntegerBitWidth(); 4248 } 4249 4250 TypePromotionHelper::Action TypePromotionHelper::getAction( 4251 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4252 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4253 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4254 "Unexpected instruction type"); 4255 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4256 Type *ExtTy = Ext->getType(); 4257 bool IsSExt = isa<SExtInst>(Ext); 4258 // If the operand of the extension is not an instruction, we cannot 4259 // get through. 4260 // If it, check we can get through. 4261 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4262 return nullptr; 4263 4264 // Do not promote if the operand has been added by codegenprepare. 4265 // Otherwise, it means we are undoing an optimization that is likely to be 4266 // redone, thus causing potential infinite loop. 4267 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4268 return nullptr; 4269 4270 // SExt or Trunc instructions. 4271 // Return the related handler. 4272 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4273 isa<ZExtInst>(ExtOpnd)) 4274 return promoteOperandForTruncAndAnyExt; 4275 4276 // Regular instruction. 4277 // Abort early if we will have to insert non-free instructions. 4278 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4279 return nullptr; 4280 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4281 } 4282 4283 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4284 Instruction *SExt, TypePromotionTransaction &TPT, 4285 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4286 SmallVectorImpl<Instruction *> *Exts, 4287 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4288 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4289 // get through it and this method should not be called. 4290 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4291 Value *ExtVal = SExt; 4292 bool HasMergedNonFreeExt = false; 4293 if (isa<ZExtInst>(SExtOpnd)) { 4294 // Replace s|zext(zext(opnd)) 4295 // => zext(opnd). 4296 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4297 Value *ZExt = 4298 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4299 TPT.replaceAllUsesWith(SExt, ZExt); 4300 TPT.eraseInstruction(SExt); 4301 ExtVal = ZExt; 4302 } else { 4303 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4304 // => z|sext(opnd). 4305 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4306 } 4307 CreatedInstsCost = 0; 4308 4309 // Remove dead code. 4310 if (SExtOpnd->use_empty()) 4311 TPT.eraseInstruction(SExtOpnd); 4312 4313 // Check if the extension is still needed. 4314 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4315 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4316 if (ExtInst) { 4317 if (Exts) 4318 Exts->push_back(ExtInst); 4319 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4320 } 4321 return ExtVal; 4322 } 4323 4324 // At this point we have: ext ty opnd to ty. 4325 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4326 Value *NextVal = ExtInst->getOperand(0); 4327 TPT.eraseInstruction(ExtInst, NextVal); 4328 return NextVal; 4329 } 4330 4331 Value *TypePromotionHelper::promoteOperandForOther( 4332 Instruction *Ext, TypePromotionTransaction &TPT, 4333 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4334 SmallVectorImpl<Instruction *> *Exts, 4335 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4336 bool IsSExt) { 4337 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4338 // get through it and this method should not be called. 4339 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4340 CreatedInstsCost = 0; 4341 if (!ExtOpnd->hasOneUse()) { 4342 // ExtOpnd will be promoted. 4343 // All its uses, but Ext, will need to use a truncated value of the 4344 // promoted version. 4345 // Create the truncate now. 4346 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4347 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4348 // Insert it just after the definition. 4349 ITrunc->moveAfter(ExtOpnd); 4350 if (Truncs) 4351 Truncs->push_back(ITrunc); 4352 } 4353 4354 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4355 // Restore the operand of Ext (which has been replaced by the previous call 4356 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4357 TPT.setOperand(Ext, 0, ExtOpnd); 4358 } 4359 4360 // Get through the Instruction: 4361 // 1. Update its type. 4362 // 2. Replace the uses of Ext by Inst. 4363 // 3. Extend each operand that needs to be extended. 4364 4365 // Remember the original type of the instruction before promotion. 4366 // This is useful to know that the high bits are sign extended bits. 4367 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4368 // Step #1. 4369 TPT.mutateType(ExtOpnd, Ext->getType()); 4370 // Step #2. 4371 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4372 // Step #3. 4373 Instruction *ExtForOpnd = Ext; 4374 4375 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4376 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4377 ++OpIdx) { 4378 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4379 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4380 !shouldExtOperand(ExtOpnd, OpIdx)) { 4381 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4382 continue; 4383 } 4384 // Check if we can statically extend the operand. 4385 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4386 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4387 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4388 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4389 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4390 : Cst->getValue().zext(BitWidth); 4391 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4392 continue; 4393 } 4394 // UndefValue are typed, so we have to statically sign extend them. 4395 if (isa<UndefValue>(Opnd)) { 4396 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4397 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4398 continue; 4399 } 4400 4401 // Otherwise we have to explicitly sign extend the operand. 4402 // Check if Ext was reused to extend an operand. 4403 if (!ExtForOpnd) { 4404 // If yes, create a new one. 4405 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4406 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4407 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4408 if (!isa<Instruction>(ValForExtOpnd)) { 4409 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4410 continue; 4411 } 4412 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4413 } 4414 if (Exts) 4415 Exts->push_back(ExtForOpnd); 4416 TPT.setOperand(ExtForOpnd, 0, Opnd); 4417 4418 // Move the sign extension before the insertion point. 4419 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4420 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4421 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4422 // If more sext are required, new instructions will have to be created. 4423 ExtForOpnd = nullptr; 4424 } 4425 if (ExtForOpnd == Ext) { 4426 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4427 TPT.eraseInstruction(Ext); 4428 } 4429 return ExtOpnd; 4430 } 4431 4432 /// Check whether or not promoting an instruction to a wider type is profitable. 4433 /// \p NewCost gives the cost of extension instructions created by the 4434 /// promotion. 4435 /// \p OldCost gives the cost of extension instructions before the promotion 4436 /// plus the number of instructions that have been 4437 /// matched in the addressing mode the promotion. 4438 /// \p PromotedOperand is the value that has been promoted. 4439 /// \return True if the promotion is profitable, false otherwise. 4440 bool AddressingModeMatcher::isPromotionProfitable( 4441 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4442 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4443 << '\n'); 4444 // The cost of the new extensions is greater than the cost of the 4445 // old extension plus what we folded. 4446 // This is not profitable. 4447 if (NewCost > OldCost) 4448 return false; 4449 if (NewCost < OldCost) 4450 return true; 4451 // The promotion is neutral but it may help folding the sign extension in 4452 // loads for instance. 4453 // Check that we did not create an illegal instruction. 4454 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4455 } 4456 4457 /// Given an instruction or constant expr, see if we can fold the operation 4458 /// into the addressing mode. If so, update the addressing mode and return 4459 /// true, otherwise return false without modifying AddrMode. 4460 /// If \p MovedAway is not NULL, it contains the information of whether or 4461 /// not AddrInst has to be folded into the addressing mode on success. 4462 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4463 /// because it has been moved away. 4464 /// Thus AddrInst must not be added in the matched instructions. 4465 /// This state can happen when AddrInst is a sext, since it may be moved away. 4466 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4467 /// not be referenced anymore. 4468 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4469 unsigned Depth, 4470 bool *MovedAway) { 4471 // Avoid exponential behavior on extremely deep expression trees. 4472 if (Depth >= 5) return false; 4473 4474 // By default, all matched instructions stay in place. 4475 if (MovedAway) 4476 *MovedAway = false; 4477 4478 switch (Opcode) { 4479 case Instruction::PtrToInt: 4480 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4481 return matchAddr(AddrInst->getOperand(0), Depth); 4482 case Instruction::IntToPtr: { 4483 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4484 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4485 // This inttoptr is a no-op if the integer type is pointer sized. 4486 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4487 return matchAddr(AddrInst->getOperand(0), Depth); 4488 return false; 4489 } 4490 case Instruction::BitCast: 4491 // BitCast is always a noop, and we can handle it as long as it is 4492 // int->int or pointer->pointer (we don't want int<->fp or something). 4493 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4494 // Don't touch identity bitcasts. These were probably put here by LSR, 4495 // and we don't want to mess around with them. Assume it knows what it 4496 // is doing. 4497 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4498 return matchAddr(AddrInst->getOperand(0), Depth); 4499 return false; 4500 case Instruction::AddrSpaceCast: { 4501 unsigned SrcAS 4502 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4503 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4504 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4505 return matchAddr(AddrInst->getOperand(0), Depth); 4506 return false; 4507 } 4508 case Instruction::Add: { 4509 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4510 ExtAddrMode BackupAddrMode = AddrMode; 4511 unsigned OldSize = AddrModeInsts.size(); 4512 // Start a transaction at this point. 4513 // The LHS may match but not the RHS. 4514 // Therefore, we need a higher level restoration point to undo partially 4515 // matched operation. 4516 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4517 TPT.getRestorationPoint(); 4518 4519 AddrMode.InBounds = false; 4520 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4521 matchAddr(AddrInst->getOperand(0), Depth+1)) 4522 return true; 4523 4524 // Restore the old addr mode info. 4525 AddrMode = BackupAddrMode; 4526 AddrModeInsts.resize(OldSize); 4527 TPT.rollback(LastKnownGood); 4528 4529 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4530 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4531 matchAddr(AddrInst->getOperand(1), Depth+1)) 4532 return true; 4533 4534 // Otherwise we definitely can't merge the ADD in. 4535 AddrMode = BackupAddrMode; 4536 AddrModeInsts.resize(OldSize); 4537 TPT.rollback(LastKnownGood); 4538 break; 4539 } 4540 //case Instruction::Or: 4541 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4542 //break; 4543 case Instruction::Mul: 4544 case Instruction::Shl: { 4545 // Can only handle X*C and X << C. 4546 AddrMode.InBounds = false; 4547 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4548 if (!RHS || RHS->getBitWidth() > 64) 4549 return false; 4550 int64_t Scale = RHS->getSExtValue(); 4551 if (Opcode == Instruction::Shl) 4552 Scale = 1LL << Scale; 4553 4554 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4555 } 4556 case Instruction::GetElementPtr: { 4557 // Scan the GEP. We check it if it contains constant offsets and at most 4558 // one variable offset. 4559 int VariableOperand = -1; 4560 unsigned VariableScale = 0; 4561 4562 int64_t ConstantOffset = 0; 4563 gep_type_iterator GTI = gep_type_begin(AddrInst); 4564 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4565 if (StructType *STy = GTI.getStructTypeOrNull()) { 4566 const StructLayout *SL = DL.getStructLayout(STy); 4567 unsigned Idx = 4568 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4569 ConstantOffset += SL->getElementOffset(Idx); 4570 } else { 4571 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4572 if (TS.isNonZero()) { 4573 // The optimisations below currently only work for fixed offsets. 4574 if (TS.isScalable()) 4575 return false; 4576 int64_t TypeSize = TS.getFixedSize(); 4577 if (ConstantInt *CI = 4578 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4579 const APInt &CVal = CI->getValue(); 4580 if (CVal.getMinSignedBits() <= 64) { 4581 ConstantOffset += CVal.getSExtValue() * TypeSize; 4582 continue; 4583 } 4584 } 4585 // We only allow one variable index at the moment. 4586 if (VariableOperand != -1) 4587 return false; 4588 4589 // Remember the variable index. 4590 VariableOperand = i; 4591 VariableScale = TypeSize; 4592 } 4593 } 4594 } 4595 4596 // A common case is for the GEP to only do a constant offset. In this case, 4597 // just add it to the disp field and check validity. 4598 if (VariableOperand == -1) { 4599 AddrMode.BaseOffs += ConstantOffset; 4600 if (ConstantOffset == 0 || 4601 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4602 // Check to see if we can fold the base pointer in too. 4603 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4604 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4605 AddrMode.InBounds = false; 4606 return true; 4607 } 4608 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4609 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4610 ConstantOffset > 0) { 4611 // Record GEPs with non-zero offsets as candidates for splitting in the 4612 // event that the offset cannot fit into the r+i addressing mode. 4613 // Simple and common case that only one GEP is used in calculating the 4614 // address for the memory access. 4615 Value *Base = AddrInst->getOperand(0); 4616 auto *BaseI = dyn_cast<Instruction>(Base); 4617 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4618 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4619 (BaseI && !isa<CastInst>(BaseI) && 4620 !isa<GetElementPtrInst>(BaseI))) { 4621 // Make sure the parent block allows inserting non-PHI instructions 4622 // before the terminator. 4623 BasicBlock *Parent = 4624 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4625 if (!Parent->getTerminator()->isEHPad()) 4626 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4627 } 4628 } 4629 AddrMode.BaseOffs -= ConstantOffset; 4630 return false; 4631 } 4632 4633 // Save the valid addressing mode in case we can't match. 4634 ExtAddrMode BackupAddrMode = AddrMode; 4635 unsigned OldSize = AddrModeInsts.size(); 4636 4637 // See if the scale and offset amount is valid for this target. 4638 AddrMode.BaseOffs += ConstantOffset; 4639 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4640 AddrMode.InBounds = false; 4641 4642 // Match the base operand of the GEP. 4643 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4644 // If it couldn't be matched, just stuff the value in a register. 4645 if (AddrMode.HasBaseReg) { 4646 AddrMode = BackupAddrMode; 4647 AddrModeInsts.resize(OldSize); 4648 return false; 4649 } 4650 AddrMode.HasBaseReg = true; 4651 AddrMode.BaseReg = AddrInst->getOperand(0); 4652 } 4653 4654 // Match the remaining variable portion of the GEP. 4655 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4656 Depth)) { 4657 // If it couldn't be matched, try stuffing the base into a register 4658 // instead of matching it, and retrying the match of the scale. 4659 AddrMode = BackupAddrMode; 4660 AddrModeInsts.resize(OldSize); 4661 if (AddrMode.HasBaseReg) 4662 return false; 4663 AddrMode.HasBaseReg = true; 4664 AddrMode.BaseReg = AddrInst->getOperand(0); 4665 AddrMode.BaseOffs += ConstantOffset; 4666 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4667 VariableScale, Depth)) { 4668 // If even that didn't work, bail. 4669 AddrMode = BackupAddrMode; 4670 AddrModeInsts.resize(OldSize); 4671 return false; 4672 } 4673 } 4674 4675 return true; 4676 } 4677 case Instruction::SExt: 4678 case Instruction::ZExt: { 4679 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4680 if (!Ext) 4681 return false; 4682 4683 // Try to move this ext out of the way of the addressing mode. 4684 // Ask for a method for doing so. 4685 TypePromotionHelper::Action TPH = 4686 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4687 if (!TPH) 4688 return false; 4689 4690 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4691 TPT.getRestorationPoint(); 4692 unsigned CreatedInstsCost = 0; 4693 unsigned ExtCost = !TLI.isExtFree(Ext); 4694 Value *PromotedOperand = 4695 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4696 // SExt has been moved away. 4697 // Thus either it will be rematched later in the recursive calls or it is 4698 // gone. Anyway, we must not fold it into the addressing mode at this point. 4699 // E.g., 4700 // op = add opnd, 1 4701 // idx = ext op 4702 // addr = gep base, idx 4703 // is now: 4704 // promotedOpnd = ext opnd <- no match here 4705 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4706 // addr = gep base, op <- match 4707 if (MovedAway) 4708 *MovedAway = true; 4709 4710 assert(PromotedOperand && 4711 "TypePromotionHelper should have filtered out those cases"); 4712 4713 ExtAddrMode BackupAddrMode = AddrMode; 4714 unsigned OldSize = AddrModeInsts.size(); 4715 4716 if (!matchAddr(PromotedOperand, Depth) || 4717 // The total of the new cost is equal to the cost of the created 4718 // instructions. 4719 // The total of the old cost is equal to the cost of the extension plus 4720 // what we have saved in the addressing mode. 4721 !isPromotionProfitable(CreatedInstsCost, 4722 ExtCost + (AddrModeInsts.size() - OldSize), 4723 PromotedOperand)) { 4724 AddrMode = BackupAddrMode; 4725 AddrModeInsts.resize(OldSize); 4726 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4727 TPT.rollback(LastKnownGood); 4728 return false; 4729 } 4730 return true; 4731 } 4732 } 4733 return false; 4734 } 4735 4736 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4737 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4738 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4739 /// for the target. 4740 /// 4741 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4742 // Start a transaction at this point that we will rollback if the matching 4743 // fails. 4744 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4745 TPT.getRestorationPoint(); 4746 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4747 if (CI->getValue().isSignedIntN(64)) { 4748 // Fold in immediates if legal for the target. 4749 AddrMode.BaseOffs += CI->getSExtValue(); 4750 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4751 return true; 4752 AddrMode.BaseOffs -= CI->getSExtValue(); 4753 } 4754 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4755 // If this is a global variable, try to fold it into the addressing mode. 4756 if (!AddrMode.BaseGV) { 4757 AddrMode.BaseGV = GV; 4758 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4759 return true; 4760 AddrMode.BaseGV = nullptr; 4761 } 4762 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4763 ExtAddrMode BackupAddrMode = AddrMode; 4764 unsigned OldSize = AddrModeInsts.size(); 4765 4766 // Check to see if it is possible to fold this operation. 4767 bool MovedAway = false; 4768 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4769 // This instruction may have been moved away. If so, there is nothing 4770 // to check here. 4771 if (MovedAway) 4772 return true; 4773 // Okay, it's possible to fold this. Check to see if it is actually 4774 // *profitable* to do so. We use a simple cost model to avoid increasing 4775 // register pressure too much. 4776 if (I->hasOneUse() || 4777 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4778 AddrModeInsts.push_back(I); 4779 return true; 4780 } 4781 4782 // It isn't profitable to do this, roll back. 4783 //cerr << "NOT FOLDING: " << *I; 4784 AddrMode = BackupAddrMode; 4785 AddrModeInsts.resize(OldSize); 4786 TPT.rollback(LastKnownGood); 4787 } 4788 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4789 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4790 return true; 4791 TPT.rollback(LastKnownGood); 4792 } else if (isa<ConstantPointerNull>(Addr)) { 4793 // Null pointer gets folded without affecting the addressing mode. 4794 return true; 4795 } 4796 4797 // Worse case, the target should support [reg] addressing modes. :) 4798 if (!AddrMode.HasBaseReg) { 4799 AddrMode.HasBaseReg = true; 4800 AddrMode.BaseReg = Addr; 4801 // Still check for legality in case the target supports [imm] but not [i+r]. 4802 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4803 return true; 4804 AddrMode.HasBaseReg = false; 4805 AddrMode.BaseReg = nullptr; 4806 } 4807 4808 // If the base register is already taken, see if we can do [r+r]. 4809 if (AddrMode.Scale == 0) { 4810 AddrMode.Scale = 1; 4811 AddrMode.ScaledReg = Addr; 4812 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4813 return true; 4814 AddrMode.Scale = 0; 4815 AddrMode.ScaledReg = nullptr; 4816 } 4817 // Couldn't match. 4818 TPT.rollback(LastKnownGood); 4819 return false; 4820 } 4821 4822 /// Check to see if all uses of OpVal by the specified inline asm call are due 4823 /// to memory operands. If so, return true, otherwise return false. 4824 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4825 const TargetLowering &TLI, 4826 const TargetRegisterInfo &TRI) { 4827 const Function *F = CI->getFunction(); 4828 TargetLowering::AsmOperandInfoVector TargetConstraints = 4829 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4830 4831 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4832 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4833 4834 // Compute the constraint code and ConstraintType to use. 4835 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4836 4837 // If this asm operand is our Value*, and if it isn't an indirect memory 4838 // operand, we can't fold it! 4839 if (OpInfo.CallOperandVal == OpVal && 4840 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4841 !OpInfo.isIndirect)) 4842 return false; 4843 } 4844 4845 return true; 4846 } 4847 4848 // Max number of memory uses to look at before aborting the search to conserve 4849 // compile time. 4850 static constexpr int MaxMemoryUsesToScan = 20; 4851 4852 /// Recursively walk all the uses of I until we find a memory use. 4853 /// If we find an obviously non-foldable instruction, return true. 4854 /// Add the ultimately found memory instructions to MemoryUses. 4855 static bool FindAllMemoryUses( 4856 Instruction *I, 4857 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4858 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4859 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4860 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4861 // If we already considered this instruction, we're done. 4862 if (!ConsideredInsts.insert(I).second) 4863 return false; 4864 4865 // If this is an obviously unfoldable instruction, bail out. 4866 if (!MightBeFoldableInst(I)) 4867 return true; 4868 4869 // Loop over all the uses, recursively processing them. 4870 for (Use &U : I->uses()) { 4871 // Conservatively return true if we're seeing a large number or a deep chain 4872 // of users. This avoids excessive compilation times in pathological cases. 4873 if (SeenInsts++ >= MaxMemoryUsesToScan) 4874 return true; 4875 4876 Instruction *UserI = cast<Instruction>(U.getUser()); 4877 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4878 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4879 continue; 4880 } 4881 4882 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4883 unsigned opNo = U.getOperandNo(); 4884 if (opNo != StoreInst::getPointerOperandIndex()) 4885 return true; // Storing addr, not into addr. 4886 MemoryUses.push_back(std::make_pair(SI, opNo)); 4887 continue; 4888 } 4889 4890 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4891 unsigned opNo = U.getOperandNo(); 4892 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4893 return true; // Storing addr, not into addr. 4894 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4895 continue; 4896 } 4897 4898 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4899 unsigned opNo = U.getOperandNo(); 4900 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4901 return true; // Storing addr, not into addr. 4902 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4903 continue; 4904 } 4905 4906 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4907 if (CI->hasFnAttr(Attribute::Cold)) { 4908 // If this is a cold call, we can sink the addressing calculation into 4909 // the cold path. See optimizeCallInst 4910 bool OptForSize = OptSize || 4911 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4912 if (!OptForSize) 4913 continue; 4914 } 4915 4916 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4917 if (!IA) return true; 4918 4919 // If this is a memory operand, we're cool, otherwise bail out. 4920 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4921 return true; 4922 continue; 4923 } 4924 4925 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4926 PSI, BFI, SeenInsts)) 4927 return true; 4928 } 4929 4930 return false; 4931 } 4932 4933 /// Return true if Val is already known to be live at the use site that we're 4934 /// folding it into. If so, there is no cost to include it in the addressing 4935 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4936 /// instruction already. 4937 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4938 Value *KnownLive2) { 4939 // If Val is either of the known-live values, we know it is live! 4940 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4941 return true; 4942 4943 // All values other than instructions and arguments (e.g. constants) are live. 4944 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4945 4946 // If Val is a constant sized alloca in the entry block, it is live, this is 4947 // true because it is just a reference to the stack/frame pointer, which is 4948 // live for the whole function. 4949 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4950 if (AI->isStaticAlloca()) 4951 return true; 4952 4953 // Check to see if this value is already used in the memory instruction's 4954 // block. If so, it's already live into the block at the very least, so we 4955 // can reasonably fold it. 4956 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4957 } 4958 4959 /// It is possible for the addressing mode of the machine to fold the specified 4960 /// instruction into a load or store that ultimately uses it. 4961 /// However, the specified instruction has multiple uses. 4962 /// Given this, it may actually increase register pressure to fold it 4963 /// into the load. For example, consider this code: 4964 /// 4965 /// X = ... 4966 /// Y = X+1 4967 /// use(Y) -> nonload/store 4968 /// Z = Y+1 4969 /// load Z 4970 /// 4971 /// In this case, Y has multiple uses, and can be folded into the load of Z 4972 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4973 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4974 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4975 /// number of computations either. 4976 /// 4977 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4978 /// X was live across 'load Z' for other reasons, we actually *would* want to 4979 /// fold the addressing mode in the Z case. This would make Y die earlier. 4980 bool AddressingModeMatcher:: 4981 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4982 ExtAddrMode &AMAfter) { 4983 if (IgnoreProfitability) return true; 4984 4985 // AMBefore is the addressing mode before this instruction was folded into it, 4986 // and AMAfter is the addressing mode after the instruction was folded. Get 4987 // the set of registers referenced by AMAfter and subtract out those 4988 // referenced by AMBefore: this is the set of values which folding in this 4989 // address extends the lifetime of. 4990 // 4991 // Note that there are only two potential values being referenced here, 4992 // BaseReg and ScaleReg (global addresses are always available, as are any 4993 // folded immediates). 4994 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4995 4996 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4997 // lifetime wasn't extended by adding this instruction. 4998 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4999 BaseReg = nullptr; 5000 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 5001 ScaledReg = nullptr; 5002 5003 // If folding this instruction (and it's subexprs) didn't extend any live 5004 // ranges, we're ok with it. 5005 if (!BaseReg && !ScaledReg) 5006 return true; 5007 5008 // If all uses of this instruction can have the address mode sunk into them, 5009 // we can remove the addressing mode and effectively trade one live register 5010 // for another (at worst.) In this context, folding an addressing mode into 5011 // the use is just a particularly nice way of sinking it. 5012 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 5013 SmallPtrSet<Instruction*, 16> ConsideredInsts; 5014 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 5015 PSI, BFI)) 5016 return false; // Has a non-memory, non-foldable use! 5017 5018 // Now that we know that all uses of this instruction are part of a chain of 5019 // computation involving only operations that could theoretically be folded 5020 // into a memory use, loop over each of these memory operation uses and see 5021 // if they could *actually* fold the instruction. The assumption is that 5022 // addressing modes are cheap and that duplicating the computation involved 5023 // many times is worthwhile, even on a fastpath. For sinking candidates 5024 // (i.e. cold call sites), this serves as a way to prevent excessive code 5025 // growth since most architectures have some reasonable small and fast way to 5026 // compute an effective address. (i.e LEA on x86) 5027 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 5028 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 5029 Instruction *User = MemoryUses[i].first; 5030 unsigned OpNo = MemoryUses[i].second; 5031 5032 // Get the access type of this use. If the use isn't a pointer, we don't 5033 // know what it accesses. 5034 Value *Address = User->getOperand(OpNo); 5035 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 5036 if (!AddrTy) 5037 return false; 5038 Type *AddressAccessTy = AddrTy->getElementType(); 5039 unsigned AS = AddrTy->getAddressSpace(); 5040 5041 // Do a match against the root of this address, ignoring profitability. This 5042 // will tell us if the addressing mode for the memory operation will 5043 // *actually* cover the shared instruction. 5044 ExtAddrMode Result; 5045 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5046 0); 5047 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5048 TPT.getRestorationPoint(); 5049 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn, 5050 AddressAccessTy, AS, MemoryInst, Result, 5051 InsertedInsts, PromotedInsts, TPT, 5052 LargeOffsetGEP, OptSize, PSI, BFI); 5053 Matcher.IgnoreProfitability = true; 5054 bool Success = Matcher.matchAddr(Address, 0); 5055 (void)Success; assert(Success && "Couldn't select *anything*?"); 5056 5057 // The match was to check the profitability, the changes made are not 5058 // part of the original matcher. Therefore, they should be dropped 5059 // otherwise the original matcher will not present the right state. 5060 TPT.rollback(LastKnownGood); 5061 5062 // If the match didn't cover I, then it won't be shared by it. 5063 if (!is_contained(MatchedAddrModeInsts, I)) 5064 return false; 5065 5066 MatchedAddrModeInsts.clear(); 5067 } 5068 5069 return true; 5070 } 5071 5072 /// Return true if the specified values are defined in a 5073 /// different basic block than BB. 5074 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 5075 if (Instruction *I = dyn_cast<Instruction>(V)) 5076 return I->getParent() != BB; 5077 return false; 5078 } 5079 5080 /// Sink addressing mode computation immediate before MemoryInst if doing so 5081 /// can be done without increasing register pressure. The need for the 5082 /// register pressure constraint means this can end up being an all or nothing 5083 /// decision for all uses of the same addressing computation. 5084 /// 5085 /// Load and Store Instructions often have addressing modes that can do 5086 /// significant amounts of computation. As such, instruction selection will try 5087 /// to get the load or store to do as much computation as possible for the 5088 /// program. The problem is that isel can only see within a single block. As 5089 /// such, we sink as much legal addressing mode work into the block as possible. 5090 /// 5091 /// This method is used to optimize both load/store and inline asms with memory 5092 /// operands. It's also used to sink addressing computations feeding into cold 5093 /// call sites into their (cold) basic block. 5094 /// 5095 /// The motivation for handling sinking into cold blocks is that doing so can 5096 /// both enable other address mode sinking (by satisfying the register pressure 5097 /// constraint above), and reduce register pressure globally (by removing the 5098 /// addressing mode computation from the fast path entirely.). 5099 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 5100 Type *AccessTy, unsigned AddrSpace) { 5101 Value *Repl = Addr; 5102 5103 // Try to collapse single-value PHI nodes. This is necessary to undo 5104 // unprofitable PRE transformations. 5105 SmallVector<Value*, 8> worklist; 5106 SmallPtrSet<Value*, 16> Visited; 5107 worklist.push_back(Addr); 5108 5109 // Use a worklist to iteratively look through PHI and select nodes, and 5110 // ensure that the addressing mode obtained from the non-PHI/select roots of 5111 // the graph are compatible. 5112 bool PhiOrSelectSeen = false; 5113 SmallVector<Instruction*, 16> AddrModeInsts; 5114 const SimplifyQuery SQ(*DL, TLInfo); 5115 AddressingModeCombiner AddrModes(SQ, Addr); 5116 TypePromotionTransaction TPT(RemovedInsts); 5117 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5118 TPT.getRestorationPoint(); 5119 while (!worklist.empty()) { 5120 Value *V = worklist.back(); 5121 worklist.pop_back(); 5122 5123 // We allow traversing cyclic Phi nodes. 5124 // In case of success after this loop we ensure that traversing through 5125 // Phi nodes ends up with all cases to compute address of the form 5126 // BaseGV + Base + Scale * Index + Offset 5127 // where Scale and Offset are constans and BaseGV, Base and Index 5128 // are exactly the same Values in all cases. 5129 // It means that BaseGV, Scale and Offset dominate our memory instruction 5130 // and have the same value as they had in address computation represented 5131 // as Phi. So we can safely sink address computation to memory instruction. 5132 if (!Visited.insert(V).second) 5133 continue; 5134 5135 // For a PHI node, push all of its incoming values. 5136 if (PHINode *P = dyn_cast<PHINode>(V)) { 5137 append_range(worklist, P->incoming_values()); 5138 PhiOrSelectSeen = true; 5139 continue; 5140 } 5141 // Similar for select. 5142 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5143 worklist.push_back(SI->getFalseValue()); 5144 worklist.push_back(SI->getTrueValue()); 5145 PhiOrSelectSeen = true; 5146 continue; 5147 } 5148 5149 // For non-PHIs, determine the addressing mode being computed. Note that 5150 // the result may differ depending on what other uses our candidate 5151 // addressing instructions might have. 5152 AddrModeInsts.clear(); 5153 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5154 0); 5155 // Defer the query (and possible computation of) the dom tree to point of 5156 // actual use. It's expected that most address matches don't actually need 5157 // the domtree. 5158 auto getDTFn = [MemoryInst, this]() -> const DominatorTree & { 5159 Function *F = MemoryInst->getParent()->getParent(); 5160 return this->getDT(*F); 5161 }; 5162 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5163 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn, 5164 *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5165 BFI.get()); 5166 5167 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5168 if (GEP && !NewGEPBases.count(GEP)) { 5169 // If splitting the underlying data structure can reduce the offset of a 5170 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5171 // previously split data structures. 5172 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5173 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5174 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5175 } 5176 5177 NewAddrMode.OriginalValue = V; 5178 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5179 break; 5180 } 5181 5182 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5183 // or we have multiple but either couldn't combine them or combining them 5184 // wouldn't do anything useful, bail out now. 5185 if (!AddrModes.combineAddrModes()) { 5186 TPT.rollback(LastKnownGood); 5187 return false; 5188 } 5189 bool Modified = TPT.commit(); 5190 5191 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5192 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5193 5194 // If all the instructions matched are already in this BB, don't do anything. 5195 // If we saw a Phi node then it is not local definitely, and if we saw a select 5196 // then we want to push the address calculation past it even if it's already 5197 // in this BB. 5198 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5199 return IsNonLocalValue(V, MemoryInst->getParent()); 5200 })) { 5201 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5202 << "\n"); 5203 return Modified; 5204 } 5205 5206 // Insert this computation right after this user. Since our caller is 5207 // scanning from the top of the BB to the bottom, reuse of the expr are 5208 // guaranteed to happen later. 5209 IRBuilder<> Builder(MemoryInst); 5210 5211 // Now that we determined the addressing expression we want to use and know 5212 // that we have to sink it into this block. Check to see if we have already 5213 // done this for some other load/store instr in this block. If so, reuse 5214 // the computation. Before attempting reuse, check if the address is valid 5215 // as it may have been erased. 5216 5217 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5218 5219 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5220 if (SunkAddr) { 5221 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5222 << " for " << *MemoryInst << "\n"); 5223 if (SunkAddr->getType() != Addr->getType()) 5224 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5225 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5226 SubtargetInfo->addrSinkUsingGEPs())) { 5227 // By default, we use the GEP-based method when AA is used later. This 5228 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5229 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5230 << " for " << *MemoryInst << "\n"); 5231 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5232 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5233 5234 // First, find the pointer. 5235 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5236 ResultPtr = AddrMode.BaseReg; 5237 AddrMode.BaseReg = nullptr; 5238 } 5239 5240 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5241 // We can't add more than one pointer together, nor can we scale a 5242 // pointer (both of which seem meaningless). 5243 if (ResultPtr || AddrMode.Scale != 1) 5244 return Modified; 5245 5246 ResultPtr = AddrMode.ScaledReg; 5247 AddrMode.Scale = 0; 5248 } 5249 5250 // It is only safe to sign extend the BaseReg if we know that the math 5251 // required to create it did not overflow before we extend it. Since 5252 // the original IR value was tossed in favor of a constant back when 5253 // the AddrMode was created we need to bail out gracefully if widths 5254 // do not match instead of extending it. 5255 // 5256 // (See below for code to add the scale.) 5257 if (AddrMode.Scale) { 5258 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5259 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5260 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5261 return Modified; 5262 } 5263 5264 if (AddrMode.BaseGV) { 5265 if (ResultPtr) 5266 return Modified; 5267 5268 ResultPtr = AddrMode.BaseGV; 5269 } 5270 5271 // If the real base value actually came from an inttoptr, then the matcher 5272 // will look through it and provide only the integer value. In that case, 5273 // use it here. 5274 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5275 if (!ResultPtr && AddrMode.BaseReg) { 5276 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5277 "sunkaddr"); 5278 AddrMode.BaseReg = nullptr; 5279 } else if (!ResultPtr && AddrMode.Scale == 1) { 5280 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5281 "sunkaddr"); 5282 AddrMode.Scale = 0; 5283 } 5284 } 5285 5286 if (!ResultPtr && 5287 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5288 SunkAddr = Constant::getNullValue(Addr->getType()); 5289 } else if (!ResultPtr) { 5290 return Modified; 5291 } else { 5292 Type *I8PtrTy = 5293 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5294 Type *I8Ty = Builder.getInt8Ty(); 5295 5296 // Start with the base register. Do this first so that subsequent address 5297 // matching finds it last, which will prevent it from trying to match it 5298 // as the scaled value in case it happens to be a mul. That would be 5299 // problematic if we've sunk a different mul for the scale, because then 5300 // we'd end up sinking both muls. 5301 if (AddrMode.BaseReg) { 5302 Value *V = AddrMode.BaseReg; 5303 if (V->getType() != IntPtrTy) 5304 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5305 5306 ResultIndex = V; 5307 } 5308 5309 // Add the scale value. 5310 if (AddrMode.Scale) { 5311 Value *V = AddrMode.ScaledReg; 5312 if (V->getType() == IntPtrTy) { 5313 // done. 5314 } else { 5315 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5316 cast<IntegerType>(V->getType())->getBitWidth() && 5317 "We can't transform if ScaledReg is too narrow"); 5318 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5319 } 5320 5321 if (AddrMode.Scale != 1) 5322 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5323 "sunkaddr"); 5324 if (ResultIndex) 5325 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5326 else 5327 ResultIndex = V; 5328 } 5329 5330 // Add in the Base Offset if present. 5331 if (AddrMode.BaseOffs) { 5332 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5333 if (ResultIndex) { 5334 // We need to add this separately from the scale above to help with 5335 // SDAG consecutive load/store merging. 5336 if (ResultPtr->getType() != I8PtrTy) 5337 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5338 ResultPtr = 5339 AddrMode.InBounds 5340 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5341 "sunkaddr") 5342 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5343 } 5344 5345 ResultIndex = V; 5346 } 5347 5348 if (!ResultIndex) { 5349 SunkAddr = ResultPtr; 5350 } else { 5351 if (ResultPtr->getType() != I8PtrTy) 5352 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5353 SunkAddr = 5354 AddrMode.InBounds 5355 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5356 "sunkaddr") 5357 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5358 } 5359 5360 if (SunkAddr->getType() != Addr->getType()) 5361 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5362 } 5363 } else { 5364 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5365 // non-integral pointers, so in that case bail out now. 5366 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5367 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5368 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5369 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5370 if (DL->isNonIntegralPointerType(Addr->getType()) || 5371 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5372 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5373 (AddrMode.BaseGV && 5374 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5375 return Modified; 5376 5377 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5378 << " for " << *MemoryInst << "\n"); 5379 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5380 Value *Result = nullptr; 5381 5382 // Start with the base register. Do this first so that subsequent address 5383 // matching finds it last, which will prevent it from trying to match it 5384 // as the scaled value in case it happens to be a mul. That would be 5385 // problematic if we've sunk a different mul for the scale, because then 5386 // we'd end up sinking both muls. 5387 if (AddrMode.BaseReg) { 5388 Value *V = AddrMode.BaseReg; 5389 if (V->getType()->isPointerTy()) 5390 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5391 if (V->getType() != IntPtrTy) 5392 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5393 Result = V; 5394 } 5395 5396 // Add the scale value. 5397 if (AddrMode.Scale) { 5398 Value *V = AddrMode.ScaledReg; 5399 if (V->getType() == IntPtrTy) { 5400 // done. 5401 } else if (V->getType()->isPointerTy()) { 5402 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5403 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5404 cast<IntegerType>(V->getType())->getBitWidth()) { 5405 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5406 } else { 5407 // It is only safe to sign extend the BaseReg if we know that the math 5408 // required to create it did not overflow before we extend it. Since 5409 // the original IR value was tossed in favor of a constant back when 5410 // the AddrMode was created we need to bail out gracefully if widths 5411 // do not match instead of extending it. 5412 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5413 if (I && (Result != AddrMode.BaseReg)) 5414 I->eraseFromParent(); 5415 return Modified; 5416 } 5417 if (AddrMode.Scale != 1) 5418 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5419 "sunkaddr"); 5420 if (Result) 5421 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5422 else 5423 Result = V; 5424 } 5425 5426 // Add in the BaseGV if present. 5427 if (AddrMode.BaseGV) { 5428 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5429 if (Result) 5430 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5431 else 5432 Result = V; 5433 } 5434 5435 // Add in the Base Offset if present. 5436 if (AddrMode.BaseOffs) { 5437 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5438 if (Result) 5439 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5440 else 5441 Result = V; 5442 } 5443 5444 if (!Result) 5445 SunkAddr = Constant::getNullValue(Addr->getType()); 5446 else 5447 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5448 } 5449 5450 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5451 // Store the newly computed address into the cache. In the case we reused a 5452 // value, this should be idempotent. 5453 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5454 5455 // If we have no uses, recursively delete the value and all dead instructions 5456 // using it. 5457 if (Repl->use_empty()) { 5458 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5459 RecursivelyDeleteTriviallyDeadInstructions( 5460 Repl, TLInfo, nullptr, 5461 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5462 }); 5463 } 5464 ++NumMemoryInsts; 5465 return true; 5466 } 5467 5468 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5469 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5470 /// only handle a 2 operand GEP in the same basic block or a splat constant 5471 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5472 /// index. 5473 /// 5474 /// If the existing GEP has a vector base pointer that is splat, we can look 5475 /// through the splat to find the scalar pointer. If we can't find a scalar 5476 /// pointer there's nothing we can do. 5477 /// 5478 /// If we have a GEP with more than 2 indices where the middle indices are all 5479 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5480 /// 5481 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5482 /// followed by a GEP with an all zeroes vector index. This will enable 5483 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5484 /// zero index. 5485 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5486 Value *Ptr) { 5487 Value *NewAddr; 5488 5489 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5490 // Don't optimize GEPs that don't have indices. 5491 if (!GEP->hasIndices()) 5492 return false; 5493 5494 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5495 // FIXME: We should support this by sinking the GEP. 5496 if (MemoryInst->getParent() != GEP->getParent()) 5497 return false; 5498 5499 SmallVector<Value *, 2> Ops(GEP->operands()); 5500 5501 bool RewriteGEP = false; 5502 5503 if (Ops[0]->getType()->isVectorTy()) { 5504 Ops[0] = getSplatValue(Ops[0]); 5505 if (!Ops[0]) 5506 return false; 5507 RewriteGEP = true; 5508 } 5509 5510 unsigned FinalIndex = Ops.size() - 1; 5511 5512 // Ensure all but the last index is 0. 5513 // FIXME: This isn't strictly required. All that's required is that they are 5514 // all scalars or splats. 5515 for (unsigned i = 1; i < FinalIndex; ++i) { 5516 auto *C = dyn_cast<Constant>(Ops[i]); 5517 if (!C) 5518 return false; 5519 if (isa<VectorType>(C->getType())) 5520 C = C->getSplatValue(); 5521 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5522 if (!CI || !CI->isZero()) 5523 return false; 5524 // Scalarize the index if needed. 5525 Ops[i] = CI; 5526 } 5527 5528 // Try to scalarize the final index. 5529 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5530 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5531 auto *C = dyn_cast<ConstantInt>(V); 5532 // Don't scalarize all zeros vector. 5533 if (!C || !C->isZero()) { 5534 Ops[FinalIndex] = V; 5535 RewriteGEP = true; 5536 } 5537 } 5538 } 5539 5540 // If we made any changes or the we have extra operands, we need to generate 5541 // new instructions. 5542 if (!RewriteGEP && Ops.size() == 2) 5543 return false; 5544 5545 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5546 5547 IRBuilder<> Builder(MemoryInst); 5548 5549 Type *SourceTy = GEP->getSourceElementType(); 5550 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5551 5552 // If the final index isn't a vector, emit a scalar GEP containing all ops 5553 // and a vector GEP with all zeroes final index. 5554 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5555 NewAddr = Builder.CreateGEP(SourceTy, Ops[0], 5556 makeArrayRef(Ops).drop_front()); 5557 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5558 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5559 } else { 5560 Value *Base = Ops[0]; 5561 Value *Index = Ops[FinalIndex]; 5562 5563 // Create a scalar GEP if there are more than 2 operands. 5564 if (Ops.size() != 2) { 5565 // Replace the last index with 0. 5566 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5567 Base = Builder.CreateGEP(SourceTy, Base, 5568 makeArrayRef(Ops).drop_front()); 5569 } 5570 5571 // Now create the GEP with scalar pointer and vector index. 5572 NewAddr = Builder.CreateGEP(Base, Index); 5573 } 5574 } else if (!isa<Constant>(Ptr)) { 5575 // Not a GEP, maybe its a splat and we can create a GEP to enable 5576 // SelectionDAGBuilder to use it as a uniform base. 5577 Value *V = getSplatValue(Ptr); 5578 if (!V) 5579 return false; 5580 5581 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5582 5583 IRBuilder<> Builder(MemoryInst); 5584 5585 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5586 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5587 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5588 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5589 } else { 5590 // Constant, SelectionDAGBuilder knows to check if its a splat. 5591 return false; 5592 } 5593 5594 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5595 5596 // If we have no uses, recursively delete the value and all dead instructions 5597 // using it. 5598 if (Ptr->use_empty()) 5599 RecursivelyDeleteTriviallyDeadInstructions( 5600 Ptr, TLInfo, nullptr, 5601 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5602 5603 return true; 5604 } 5605 5606 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5607 /// address computing into the block when possible / profitable. 5608 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5609 bool MadeChange = false; 5610 5611 const TargetRegisterInfo *TRI = 5612 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5613 TargetLowering::AsmOperandInfoVector TargetConstraints = 5614 TLI->ParseConstraints(*DL, TRI, *CS); 5615 unsigned ArgNo = 0; 5616 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5617 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5618 5619 // Compute the constraint code and ConstraintType to use. 5620 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5621 5622 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5623 OpInfo.isIndirect) { 5624 Value *OpVal = CS->getArgOperand(ArgNo++); 5625 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5626 } else if (OpInfo.Type == InlineAsm::isInput) 5627 ArgNo++; 5628 } 5629 5630 return MadeChange; 5631 } 5632 5633 /// Check if all the uses of \p Val are equivalent (or free) zero or 5634 /// sign extensions. 5635 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5636 assert(!Val->use_empty() && "Input must have at least one use"); 5637 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5638 bool IsSExt = isa<SExtInst>(FirstUser); 5639 Type *ExtTy = FirstUser->getType(); 5640 for (const User *U : Val->users()) { 5641 const Instruction *UI = cast<Instruction>(U); 5642 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5643 return false; 5644 Type *CurTy = UI->getType(); 5645 // Same input and output types: Same instruction after CSE. 5646 if (CurTy == ExtTy) 5647 continue; 5648 5649 // If IsSExt is true, we are in this situation: 5650 // a = Val 5651 // b = sext ty1 a to ty2 5652 // c = sext ty1 a to ty3 5653 // Assuming ty2 is shorter than ty3, this could be turned into: 5654 // a = Val 5655 // b = sext ty1 a to ty2 5656 // c = sext ty2 b to ty3 5657 // However, the last sext is not free. 5658 if (IsSExt) 5659 return false; 5660 5661 // This is a ZExt, maybe this is free to extend from one type to another. 5662 // In that case, we would not account for a different use. 5663 Type *NarrowTy; 5664 Type *LargeTy; 5665 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5666 CurTy->getScalarType()->getIntegerBitWidth()) { 5667 NarrowTy = CurTy; 5668 LargeTy = ExtTy; 5669 } else { 5670 NarrowTy = ExtTy; 5671 LargeTy = CurTy; 5672 } 5673 5674 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5675 return false; 5676 } 5677 // All uses are the same or can be derived from one another for free. 5678 return true; 5679 } 5680 5681 /// Try to speculatively promote extensions in \p Exts and continue 5682 /// promoting through newly promoted operands recursively as far as doing so is 5683 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5684 /// When some promotion happened, \p TPT contains the proper state to revert 5685 /// them. 5686 /// 5687 /// \return true if some promotion happened, false otherwise. 5688 bool CodeGenPrepare::tryToPromoteExts( 5689 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5690 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5691 unsigned CreatedInstsCost) { 5692 bool Promoted = false; 5693 5694 // Iterate over all the extensions to try to promote them. 5695 for (auto *I : Exts) { 5696 // Early check if we directly have ext(load). 5697 if (isa<LoadInst>(I->getOperand(0))) { 5698 ProfitablyMovedExts.push_back(I); 5699 continue; 5700 } 5701 5702 // Check whether or not we want to do any promotion. The reason we have 5703 // this check inside the for loop is to catch the case where an extension 5704 // is directly fed by a load because in such case the extension can be moved 5705 // up without any promotion on its operands. 5706 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5707 return false; 5708 5709 // Get the action to perform the promotion. 5710 TypePromotionHelper::Action TPH = 5711 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5712 // Check if we can promote. 5713 if (!TPH) { 5714 // Save the current extension as we cannot move up through its operand. 5715 ProfitablyMovedExts.push_back(I); 5716 continue; 5717 } 5718 5719 // Save the current state. 5720 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5721 TPT.getRestorationPoint(); 5722 SmallVector<Instruction *, 4> NewExts; 5723 unsigned NewCreatedInstsCost = 0; 5724 unsigned ExtCost = !TLI->isExtFree(I); 5725 // Promote. 5726 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5727 &NewExts, nullptr, *TLI); 5728 assert(PromotedVal && 5729 "TypePromotionHelper should have filtered out those cases"); 5730 5731 // We would be able to merge only one extension in a load. 5732 // Therefore, if we have more than 1 new extension we heuristically 5733 // cut this search path, because it means we degrade the code quality. 5734 // With exactly 2, the transformation is neutral, because we will merge 5735 // one extension but leave one. However, we optimistically keep going, 5736 // because the new extension may be removed too. 5737 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5738 // FIXME: It would be possible to propagate a negative value instead of 5739 // conservatively ceiling it to 0. 5740 TotalCreatedInstsCost = 5741 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5742 if (!StressExtLdPromotion && 5743 (TotalCreatedInstsCost > 1 || 5744 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5745 // This promotion is not profitable, rollback to the previous state, and 5746 // save the current extension in ProfitablyMovedExts as the latest 5747 // speculative promotion turned out to be unprofitable. 5748 TPT.rollback(LastKnownGood); 5749 ProfitablyMovedExts.push_back(I); 5750 continue; 5751 } 5752 // Continue promoting NewExts as far as doing so is profitable. 5753 SmallVector<Instruction *, 2> NewlyMovedExts; 5754 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5755 bool NewPromoted = false; 5756 for (auto *ExtInst : NewlyMovedExts) { 5757 Instruction *MovedExt = cast<Instruction>(ExtInst); 5758 Value *ExtOperand = MovedExt->getOperand(0); 5759 // If we have reached to a load, we need this extra profitability check 5760 // as it could potentially be merged into an ext(load). 5761 if (isa<LoadInst>(ExtOperand) && 5762 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5763 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5764 continue; 5765 5766 ProfitablyMovedExts.push_back(MovedExt); 5767 NewPromoted = true; 5768 } 5769 5770 // If none of speculative promotions for NewExts is profitable, rollback 5771 // and save the current extension (I) as the last profitable extension. 5772 if (!NewPromoted) { 5773 TPT.rollback(LastKnownGood); 5774 ProfitablyMovedExts.push_back(I); 5775 continue; 5776 } 5777 // The promotion is profitable. 5778 Promoted = true; 5779 } 5780 return Promoted; 5781 } 5782 5783 /// Merging redundant sexts when one is dominating the other. 5784 bool CodeGenPrepare::mergeSExts(Function &F) { 5785 bool Changed = false; 5786 for (auto &Entry : ValToSExtendedUses) { 5787 SExts &Insts = Entry.second; 5788 SExts CurPts; 5789 for (Instruction *Inst : Insts) { 5790 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5791 Inst->getOperand(0) != Entry.first) 5792 continue; 5793 bool inserted = false; 5794 for (auto &Pt : CurPts) { 5795 if (getDT(F).dominates(Inst, Pt)) { 5796 Pt->replaceAllUsesWith(Inst); 5797 RemovedInsts.insert(Pt); 5798 Pt->removeFromParent(); 5799 Pt = Inst; 5800 inserted = true; 5801 Changed = true; 5802 break; 5803 } 5804 if (!getDT(F).dominates(Pt, Inst)) 5805 // Give up if we need to merge in a common dominator as the 5806 // experiments show it is not profitable. 5807 continue; 5808 Inst->replaceAllUsesWith(Pt); 5809 RemovedInsts.insert(Inst); 5810 Inst->removeFromParent(); 5811 inserted = true; 5812 Changed = true; 5813 break; 5814 } 5815 if (!inserted) 5816 CurPts.push_back(Inst); 5817 } 5818 } 5819 return Changed; 5820 } 5821 5822 // Splitting large data structures so that the GEPs accessing them can have 5823 // smaller offsets so that they can be sunk to the same blocks as their users. 5824 // For example, a large struct starting from %base is split into two parts 5825 // where the second part starts from %new_base. 5826 // 5827 // Before: 5828 // BB0: 5829 // %base = 5830 // 5831 // BB1: 5832 // %gep0 = gep %base, off0 5833 // %gep1 = gep %base, off1 5834 // %gep2 = gep %base, off2 5835 // 5836 // BB2: 5837 // %load1 = load %gep0 5838 // %load2 = load %gep1 5839 // %load3 = load %gep2 5840 // 5841 // After: 5842 // BB0: 5843 // %base = 5844 // %new_base = gep %base, off0 5845 // 5846 // BB1: 5847 // %new_gep0 = %new_base 5848 // %new_gep1 = gep %new_base, off1 - off0 5849 // %new_gep2 = gep %new_base, off2 - off0 5850 // 5851 // BB2: 5852 // %load1 = load i32, i32* %new_gep0 5853 // %load2 = load i32, i32* %new_gep1 5854 // %load3 = load i32, i32* %new_gep2 5855 // 5856 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5857 // their offsets are smaller enough to fit into the addressing mode. 5858 bool CodeGenPrepare::splitLargeGEPOffsets() { 5859 bool Changed = false; 5860 for (auto &Entry : LargeOffsetGEPMap) { 5861 Value *OldBase = Entry.first; 5862 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5863 &LargeOffsetGEPs = Entry.second; 5864 auto compareGEPOffset = 5865 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5866 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5867 if (LHS.first == RHS.first) 5868 return false; 5869 if (LHS.second != RHS.second) 5870 return LHS.second < RHS.second; 5871 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5872 }; 5873 // Sorting all the GEPs of the same data structures based on the offsets. 5874 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5875 LargeOffsetGEPs.erase( 5876 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5877 LargeOffsetGEPs.end()); 5878 // Skip if all the GEPs have the same offsets. 5879 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5880 continue; 5881 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5882 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5883 Value *NewBaseGEP = nullptr; 5884 5885 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5886 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5887 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5888 int64_t Offset = LargeOffsetGEP->second; 5889 if (Offset != BaseOffset) { 5890 TargetLowering::AddrMode AddrMode; 5891 AddrMode.BaseOffs = Offset - BaseOffset; 5892 // The result type of the GEP might not be the type of the memory 5893 // access. 5894 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5895 GEP->getResultElementType(), 5896 GEP->getAddressSpace())) { 5897 // We need to create a new base if the offset to the current base is 5898 // too large to fit into the addressing mode. So, a very large struct 5899 // may be split into several parts. 5900 BaseGEP = GEP; 5901 BaseOffset = Offset; 5902 NewBaseGEP = nullptr; 5903 } 5904 } 5905 5906 // Generate a new GEP to replace the current one. 5907 LLVMContext &Ctx = GEP->getContext(); 5908 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5909 Type *I8PtrTy = 5910 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5911 Type *I8Ty = Type::getInt8Ty(Ctx); 5912 5913 if (!NewBaseGEP) { 5914 // Create a new base if we don't have one yet. Find the insertion 5915 // pointer for the new base first. 5916 BasicBlock::iterator NewBaseInsertPt; 5917 BasicBlock *NewBaseInsertBB; 5918 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5919 // If the base of the struct is an instruction, the new base will be 5920 // inserted close to it. 5921 NewBaseInsertBB = BaseI->getParent(); 5922 if (isa<PHINode>(BaseI)) 5923 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5924 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5925 NewBaseInsertBB = 5926 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5927 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5928 } else 5929 NewBaseInsertPt = std::next(BaseI->getIterator()); 5930 } else { 5931 // If the current base is an argument or global value, the new base 5932 // will be inserted to the entry block. 5933 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5934 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5935 } 5936 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5937 // Create a new base. 5938 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5939 NewBaseGEP = OldBase; 5940 if (NewBaseGEP->getType() != I8PtrTy) 5941 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5942 NewBaseGEP = 5943 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5944 NewGEPBases.insert(NewBaseGEP); 5945 } 5946 5947 IRBuilder<> Builder(GEP); 5948 Value *NewGEP = NewBaseGEP; 5949 if (Offset == BaseOffset) { 5950 if (GEP->getType() != I8PtrTy) 5951 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5952 } else { 5953 // Calculate the new offset for the new GEP. 5954 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5955 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5956 5957 if (GEP->getType() != I8PtrTy) 5958 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5959 } 5960 GEP->replaceAllUsesWith(NewGEP); 5961 LargeOffsetGEPID.erase(GEP); 5962 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5963 GEP->eraseFromParent(); 5964 Changed = true; 5965 } 5966 } 5967 return Changed; 5968 } 5969 5970 bool CodeGenPrepare::optimizePhiType( 5971 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5972 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5973 // We are looking for a collection on interconnected phi nodes that together 5974 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5975 // are of the same type. Convert the whole set of nodes to the type of the 5976 // bitcast. 5977 Type *PhiTy = I->getType(); 5978 Type *ConvertTy = nullptr; 5979 if (Visited.count(I) || 5980 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5981 return false; 5982 5983 SmallVector<Instruction *, 4> Worklist; 5984 Worklist.push_back(cast<Instruction>(I)); 5985 SmallPtrSet<PHINode *, 4> PhiNodes; 5986 PhiNodes.insert(I); 5987 Visited.insert(I); 5988 SmallPtrSet<Instruction *, 4> Defs; 5989 SmallPtrSet<Instruction *, 4> Uses; 5990 // This works by adding extra bitcasts between load/stores and removing 5991 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5992 // we can get in the situation where we remove a bitcast in one iteration 5993 // just to add it again in the next. We need to ensure that at least one 5994 // bitcast we remove are anchored to something that will not change back. 5995 bool AnyAnchored = false; 5996 5997 while (!Worklist.empty()) { 5998 Instruction *II = Worklist.pop_back_val(); 5999 6000 if (auto *Phi = dyn_cast<PHINode>(II)) { 6001 // Handle Defs, which might also be PHI's 6002 for (Value *V : Phi->incoming_values()) { 6003 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6004 if (!PhiNodes.count(OpPhi)) { 6005 if (Visited.count(OpPhi)) 6006 return false; 6007 PhiNodes.insert(OpPhi); 6008 Visited.insert(OpPhi); 6009 Worklist.push_back(OpPhi); 6010 } 6011 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 6012 if (!OpLoad->isSimple()) 6013 return false; 6014 if (!Defs.count(OpLoad)) { 6015 Defs.insert(OpLoad); 6016 Worklist.push_back(OpLoad); 6017 } 6018 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 6019 if (!Defs.count(OpEx)) { 6020 Defs.insert(OpEx); 6021 Worklist.push_back(OpEx); 6022 } 6023 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6024 if (!ConvertTy) 6025 ConvertTy = OpBC->getOperand(0)->getType(); 6026 if (OpBC->getOperand(0)->getType() != ConvertTy) 6027 return false; 6028 if (!Defs.count(OpBC)) { 6029 Defs.insert(OpBC); 6030 Worklist.push_back(OpBC); 6031 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 6032 !isa<ExtractElementInst>(OpBC->getOperand(0)); 6033 } 6034 } else if (!isa<UndefValue>(V)) { 6035 return false; 6036 } 6037 } 6038 } 6039 6040 // Handle uses which might also be phi's 6041 for (User *V : II->users()) { 6042 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 6043 if (!PhiNodes.count(OpPhi)) { 6044 if (Visited.count(OpPhi)) 6045 return false; 6046 PhiNodes.insert(OpPhi); 6047 Visited.insert(OpPhi); 6048 Worklist.push_back(OpPhi); 6049 } 6050 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 6051 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 6052 return false; 6053 Uses.insert(OpStore); 6054 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 6055 if (!ConvertTy) 6056 ConvertTy = OpBC->getType(); 6057 if (OpBC->getType() != ConvertTy) 6058 return false; 6059 Uses.insert(OpBC); 6060 AnyAnchored |= 6061 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 6062 } else { 6063 return false; 6064 } 6065 } 6066 } 6067 6068 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 6069 return false; 6070 6071 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 6072 << *ConvertTy << "\n"); 6073 6074 // Create all the new phi nodes of the new type, and bitcast any loads to the 6075 // correct type. 6076 ValueToValueMap ValMap; 6077 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 6078 for (Instruction *D : Defs) { 6079 if (isa<BitCastInst>(D)) { 6080 ValMap[D] = D->getOperand(0); 6081 DeletedInstrs.insert(D); 6082 } else { 6083 ValMap[D] = 6084 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 6085 } 6086 } 6087 for (PHINode *Phi : PhiNodes) 6088 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 6089 Phi->getName() + ".tc", Phi); 6090 // Pipe together all the PhiNodes. 6091 for (PHINode *Phi : PhiNodes) { 6092 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 6093 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 6094 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 6095 Phi->getIncomingBlock(i)); 6096 Visited.insert(NewPhi); 6097 } 6098 // And finally pipe up the stores and bitcasts 6099 for (Instruction *U : Uses) { 6100 if (isa<BitCastInst>(U)) { 6101 DeletedInstrs.insert(U); 6102 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 6103 } else { 6104 U->setOperand(0, 6105 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 6106 } 6107 } 6108 6109 // Save the removed phis to be deleted later. 6110 for (PHINode *Phi : PhiNodes) 6111 DeletedInstrs.insert(Phi); 6112 return true; 6113 } 6114 6115 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 6116 if (!OptimizePhiTypes) 6117 return false; 6118 6119 bool Changed = false; 6120 SmallPtrSet<PHINode *, 4> Visited; 6121 SmallPtrSet<Instruction *, 4> DeletedInstrs; 6122 6123 // Attempt to optimize all the phis in the functions to the correct type. 6124 for (auto &BB : F) 6125 for (auto &Phi : BB.phis()) 6126 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 6127 6128 // Remove any old phi's that have been converted. 6129 for (auto *I : DeletedInstrs) { 6130 I->replaceAllUsesWith(UndefValue::get(I->getType())); 6131 I->eraseFromParent(); 6132 } 6133 6134 return Changed; 6135 } 6136 6137 /// Return true, if an ext(load) can be formed from an extension in 6138 /// \p MovedExts. 6139 bool CodeGenPrepare::canFormExtLd( 6140 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6141 Instruction *&Inst, bool HasPromoted) { 6142 for (auto *MovedExtInst : MovedExts) { 6143 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6144 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6145 Inst = MovedExtInst; 6146 break; 6147 } 6148 } 6149 if (!LI) 6150 return false; 6151 6152 // If they're already in the same block, there's nothing to do. 6153 // Make the cheap checks first if we did not promote. 6154 // If we promoted, we need to check if it is indeed profitable. 6155 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6156 return false; 6157 6158 return TLI->isExtLoad(LI, Inst, *DL); 6159 } 6160 6161 /// Move a zext or sext fed by a load into the same basic block as the load, 6162 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6163 /// extend into the load. 6164 /// 6165 /// E.g., 6166 /// \code 6167 /// %ld = load i32* %addr 6168 /// %add = add nuw i32 %ld, 4 6169 /// %zext = zext i32 %add to i64 6170 // \endcode 6171 /// => 6172 /// \code 6173 /// %ld = load i32* %addr 6174 /// %zext = zext i32 %ld to i64 6175 /// %add = add nuw i64 %zext, 4 6176 /// \encode 6177 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6178 /// allow us to match zext(load i32*) to i64. 6179 /// 6180 /// Also, try to promote the computations used to obtain a sign extended 6181 /// value used into memory accesses. 6182 /// E.g., 6183 /// \code 6184 /// a = add nsw i32 b, 3 6185 /// d = sext i32 a to i64 6186 /// e = getelementptr ..., i64 d 6187 /// \endcode 6188 /// => 6189 /// \code 6190 /// f = sext i32 b to i64 6191 /// a = add nsw i64 f, 3 6192 /// e = getelementptr ..., i64 a 6193 /// \endcode 6194 /// 6195 /// \p Inst[in/out] the extension may be modified during the process if some 6196 /// promotions apply. 6197 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6198 bool AllowPromotionWithoutCommonHeader = false; 6199 /// See if it is an interesting sext operations for the address type 6200 /// promotion before trying to promote it, e.g., the ones with the right 6201 /// type and used in memory accesses. 6202 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6203 *Inst, AllowPromotionWithoutCommonHeader); 6204 TypePromotionTransaction TPT(RemovedInsts); 6205 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6206 TPT.getRestorationPoint(); 6207 SmallVector<Instruction *, 1> Exts; 6208 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6209 Exts.push_back(Inst); 6210 6211 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6212 6213 // Look for a load being extended. 6214 LoadInst *LI = nullptr; 6215 Instruction *ExtFedByLoad; 6216 6217 // Try to promote a chain of computation if it allows to form an extended 6218 // load. 6219 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6220 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6221 TPT.commit(); 6222 // Move the extend into the same block as the load. 6223 ExtFedByLoad->moveAfter(LI); 6224 ++NumExtsMoved; 6225 Inst = ExtFedByLoad; 6226 return true; 6227 } 6228 6229 // Continue promoting SExts if known as considerable depending on targets. 6230 if (ATPConsiderable && 6231 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6232 HasPromoted, TPT, SpeculativelyMovedExts)) 6233 return true; 6234 6235 TPT.rollback(LastKnownGood); 6236 return false; 6237 } 6238 6239 // Perform address type promotion if doing so is profitable. 6240 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6241 // instructions that sign extended the same initial value. However, if 6242 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6243 // extension is just profitable. 6244 bool CodeGenPrepare::performAddressTypePromotion( 6245 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6246 bool HasPromoted, TypePromotionTransaction &TPT, 6247 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6248 bool Promoted = false; 6249 SmallPtrSet<Instruction *, 1> UnhandledExts; 6250 bool AllSeenFirst = true; 6251 for (auto *I : SpeculativelyMovedExts) { 6252 Value *HeadOfChain = I->getOperand(0); 6253 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6254 SeenChainsForSExt.find(HeadOfChain); 6255 // If there is an unhandled SExt which has the same header, try to promote 6256 // it as well. 6257 if (AlreadySeen != SeenChainsForSExt.end()) { 6258 if (AlreadySeen->second != nullptr) 6259 UnhandledExts.insert(AlreadySeen->second); 6260 AllSeenFirst = false; 6261 } 6262 } 6263 6264 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6265 SpeculativelyMovedExts.size() == 1)) { 6266 TPT.commit(); 6267 if (HasPromoted) 6268 Promoted = true; 6269 for (auto *I : SpeculativelyMovedExts) { 6270 Value *HeadOfChain = I->getOperand(0); 6271 SeenChainsForSExt[HeadOfChain] = nullptr; 6272 ValToSExtendedUses[HeadOfChain].push_back(I); 6273 } 6274 // Update Inst as promotion happen. 6275 Inst = SpeculativelyMovedExts.pop_back_val(); 6276 } else { 6277 // This is the first chain visited from the header, keep the current chain 6278 // as unhandled. Defer to promote this until we encounter another SExt 6279 // chain derived from the same header. 6280 for (auto *I : SpeculativelyMovedExts) { 6281 Value *HeadOfChain = I->getOperand(0); 6282 SeenChainsForSExt[HeadOfChain] = Inst; 6283 } 6284 return false; 6285 } 6286 6287 if (!AllSeenFirst && !UnhandledExts.empty()) 6288 for (auto *VisitedSExt : UnhandledExts) { 6289 if (RemovedInsts.count(VisitedSExt)) 6290 continue; 6291 TypePromotionTransaction TPT(RemovedInsts); 6292 SmallVector<Instruction *, 1> Exts; 6293 SmallVector<Instruction *, 2> Chains; 6294 Exts.push_back(VisitedSExt); 6295 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6296 TPT.commit(); 6297 if (HasPromoted) 6298 Promoted = true; 6299 for (auto *I : Chains) { 6300 Value *HeadOfChain = I->getOperand(0); 6301 // Mark this as handled. 6302 SeenChainsForSExt[HeadOfChain] = nullptr; 6303 ValToSExtendedUses[HeadOfChain].push_back(I); 6304 } 6305 } 6306 return Promoted; 6307 } 6308 6309 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6310 BasicBlock *DefBB = I->getParent(); 6311 6312 // If the result of a {s|z}ext and its source are both live out, rewrite all 6313 // other uses of the source with result of extension. 6314 Value *Src = I->getOperand(0); 6315 if (Src->hasOneUse()) 6316 return false; 6317 6318 // Only do this xform if truncating is free. 6319 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6320 return false; 6321 6322 // Only safe to perform the optimization if the source is also defined in 6323 // this block. 6324 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6325 return false; 6326 6327 bool DefIsLiveOut = false; 6328 for (User *U : I->users()) { 6329 Instruction *UI = cast<Instruction>(U); 6330 6331 // Figure out which BB this ext is used in. 6332 BasicBlock *UserBB = UI->getParent(); 6333 if (UserBB == DefBB) continue; 6334 DefIsLiveOut = true; 6335 break; 6336 } 6337 if (!DefIsLiveOut) 6338 return false; 6339 6340 // Make sure none of the uses are PHI nodes. 6341 for (User *U : Src->users()) { 6342 Instruction *UI = cast<Instruction>(U); 6343 BasicBlock *UserBB = UI->getParent(); 6344 if (UserBB == DefBB) continue; 6345 // Be conservative. We don't want this xform to end up introducing 6346 // reloads just before load / store instructions. 6347 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6348 return false; 6349 } 6350 6351 // InsertedTruncs - Only insert one trunc in each block once. 6352 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6353 6354 bool MadeChange = false; 6355 for (Use &U : Src->uses()) { 6356 Instruction *User = cast<Instruction>(U.getUser()); 6357 6358 // Figure out which BB this ext is used in. 6359 BasicBlock *UserBB = User->getParent(); 6360 if (UserBB == DefBB) continue; 6361 6362 // Both src and def are live in this block. Rewrite the use. 6363 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6364 6365 if (!InsertedTrunc) { 6366 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6367 assert(InsertPt != UserBB->end()); 6368 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6369 InsertedInsts.insert(InsertedTrunc); 6370 } 6371 6372 // Replace a use of the {s|z}ext source with a use of the result. 6373 U = InsertedTrunc; 6374 ++NumExtUses; 6375 MadeChange = true; 6376 } 6377 6378 return MadeChange; 6379 } 6380 6381 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6382 // just after the load if the target can fold this into one extload instruction, 6383 // with the hope of eliminating some of the other later "and" instructions using 6384 // the loaded value. "and"s that are made trivially redundant by the insertion 6385 // of the new "and" are removed by this function, while others (e.g. those whose 6386 // path from the load goes through a phi) are left for isel to potentially 6387 // remove. 6388 // 6389 // For example: 6390 // 6391 // b0: 6392 // x = load i32 6393 // ... 6394 // b1: 6395 // y = and x, 0xff 6396 // z = use y 6397 // 6398 // becomes: 6399 // 6400 // b0: 6401 // x = load i32 6402 // x' = and x, 0xff 6403 // ... 6404 // b1: 6405 // z = use x' 6406 // 6407 // whereas: 6408 // 6409 // b0: 6410 // x1 = load i32 6411 // ... 6412 // b1: 6413 // x2 = load i32 6414 // ... 6415 // b2: 6416 // x = phi x1, x2 6417 // y = and x, 0xff 6418 // 6419 // becomes (after a call to optimizeLoadExt for each load): 6420 // 6421 // b0: 6422 // x1 = load i32 6423 // x1' = and x1, 0xff 6424 // ... 6425 // b1: 6426 // x2 = load i32 6427 // x2' = and x2, 0xff 6428 // ... 6429 // b2: 6430 // x = phi x1', x2' 6431 // y = and x, 0xff 6432 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6433 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6434 return false; 6435 6436 // Skip loads we've already transformed. 6437 if (Load->hasOneUse() && 6438 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6439 return false; 6440 6441 // Look at all uses of Load, looking through phis, to determine how many bits 6442 // of the loaded value are needed. 6443 SmallVector<Instruction *, 8> WorkList; 6444 SmallPtrSet<Instruction *, 16> Visited; 6445 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6446 for (auto *U : Load->users()) 6447 WorkList.push_back(cast<Instruction>(U)); 6448 6449 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6450 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6451 APInt DemandBits(BitWidth, 0); 6452 APInt WidestAndBits(BitWidth, 0); 6453 6454 while (!WorkList.empty()) { 6455 Instruction *I = WorkList.back(); 6456 WorkList.pop_back(); 6457 6458 // Break use-def graph loops. 6459 if (!Visited.insert(I).second) 6460 continue; 6461 6462 // For a PHI node, push all of its users. 6463 if (auto *Phi = dyn_cast<PHINode>(I)) { 6464 for (auto *U : Phi->users()) 6465 WorkList.push_back(cast<Instruction>(U)); 6466 continue; 6467 } 6468 6469 switch (I->getOpcode()) { 6470 case Instruction::And: { 6471 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6472 if (!AndC) 6473 return false; 6474 APInt AndBits = AndC->getValue(); 6475 DemandBits |= AndBits; 6476 // Keep track of the widest and mask we see. 6477 if (AndBits.ugt(WidestAndBits)) 6478 WidestAndBits = AndBits; 6479 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6480 AndsToMaybeRemove.push_back(I); 6481 break; 6482 } 6483 6484 case Instruction::Shl: { 6485 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6486 if (!ShlC) 6487 return false; 6488 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6489 DemandBits.setLowBits(BitWidth - ShiftAmt); 6490 break; 6491 } 6492 6493 case Instruction::Trunc: { 6494 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6495 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6496 DemandBits.setLowBits(TruncBitWidth); 6497 break; 6498 } 6499 6500 default: 6501 return false; 6502 } 6503 } 6504 6505 uint32_t ActiveBits = DemandBits.getActiveBits(); 6506 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6507 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6508 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6509 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6510 // followed by an AND. 6511 // TODO: Look into removing this restriction by fixing backends to either 6512 // return false for isLoadExtLegal for i1 or have them select this pattern to 6513 // a single instruction. 6514 // 6515 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6516 // mask, since these are the only ands that will be removed by isel. 6517 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6518 WidestAndBits != DemandBits) 6519 return false; 6520 6521 LLVMContext &Ctx = Load->getType()->getContext(); 6522 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6523 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6524 6525 // Reject cases that won't be matched as extloads. 6526 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6527 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6528 return false; 6529 6530 IRBuilder<> Builder(Load->getNextNode()); 6531 auto *NewAnd = cast<Instruction>( 6532 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6533 // Mark this instruction as "inserted by CGP", so that other 6534 // optimizations don't touch it. 6535 InsertedInsts.insert(NewAnd); 6536 6537 // Replace all uses of load with new and (except for the use of load in the 6538 // new and itself). 6539 Load->replaceAllUsesWith(NewAnd); 6540 NewAnd->setOperand(0, Load); 6541 6542 // Remove any and instructions that are now redundant. 6543 for (auto *And : AndsToMaybeRemove) 6544 // Check that the and mask is the same as the one we decided to put on the 6545 // new and. 6546 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6547 And->replaceAllUsesWith(NewAnd); 6548 if (&*CurInstIterator == And) 6549 CurInstIterator = std::next(And->getIterator()); 6550 And->eraseFromParent(); 6551 ++NumAndUses; 6552 } 6553 6554 ++NumAndsAdded; 6555 return true; 6556 } 6557 6558 /// Check if V (an operand of a select instruction) is an expensive instruction 6559 /// that is only used once. 6560 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6561 auto *I = dyn_cast<Instruction>(V); 6562 // If it's safe to speculatively execute, then it should not have side 6563 // effects; therefore, it's safe to sink and possibly *not* execute. 6564 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6565 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6566 TargetTransformInfo::TCC_Expensive; 6567 } 6568 6569 /// Returns true if a SelectInst should be turned into an explicit branch. 6570 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6571 const TargetLowering *TLI, 6572 SelectInst *SI) { 6573 // If even a predictable select is cheap, then a branch can't be cheaper. 6574 if (!TLI->isPredictableSelectExpensive()) 6575 return false; 6576 6577 // FIXME: This should use the same heuristics as IfConversion to determine 6578 // whether a select is better represented as a branch. 6579 6580 // If metadata tells us that the select condition is obviously predictable, 6581 // then we want to replace the select with a branch. 6582 uint64_t TrueWeight, FalseWeight; 6583 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6584 uint64_t Max = std::max(TrueWeight, FalseWeight); 6585 uint64_t Sum = TrueWeight + FalseWeight; 6586 if (Sum != 0) { 6587 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6588 if (Probability > TTI->getPredictableBranchThreshold()) 6589 return true; 6590 } 6591 } 6592 6593 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6594 6595 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6596 // comparison condition. If the compare has more than one use, there's 6597 // probably another cmov or setcc around, so it's not worth emitting a branch. 6598 if (!Cmp || !Cmp->hasOneUse()) 6599 return false; 6600 6601 // If either operand of the select is expensive and only needed on one side 6602 // of the select, we should form a branch. 6603 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6604 sinkSelectOperand(TTI, SI->getFalseValue())) 6605 return true; 6606 6607 return false; 6608 } 6609 6610 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6611 /// false value of \p SI. If the true/false value of \p SI is defined by any 6612 /// select instructions in \p Selects, look through the defining select 6613 /// instruction until the true/false value is not defined in \p Selects. 6614 static Value *getTrueOrFalseValue( 6615 SelectInst *SI, bool isTrue, 6616 const SmallPtrSet<const Instruction *, 2> &Selects) { 6617 Value *V = nullptr; 6618 6619 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6620 DefSI = dyn_cast<SelectInst>(V)) { 6621 assert(DefSI->getCondition() == SI->getCondition() && 6622 "The condition of DefSI does not match with SI"); 6623 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6624 } 6625 6626 assert(V && "Failed to get select true/false value"); 6627 return V; 6628 } 6629 6630 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6631 assert(Shift->isShift() && "Expected a shift"); 6632 6633 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6634 // general vector shifts, and (3) the shift amount is a select-of-splatted 6635 // values, hoist the shifts before the select: 6636 // shift Op0, (select Cond, TVal, FVal) --> 6637 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6638 // 6639 // This is inverting a generic IR transform when we know that the cost of a 6640 // general vector shift is more than the cost of 2 shift-by-scalars. 6641 // We can't do this effectively in SDAG because we may not be able to 6642 // determine if the select operands are splats from within a basic block. 6643 Type *Ty = Shift->getType(); 6644 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6645 return false; 6646 Value *Cond, *TVal, *FVal; 6647 if (!match(Shift->getOperand(1), 6648 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6649 return false; 6650 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6651 return false; 6652 6653 IRBuilder<> Builder(Shift); 6654 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6655 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6656 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6657 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6658 Shift->replaceAllUsesWith(NewSel); 6659 Shift->eraseFromParent(); 6660 return true; 6661 } 6662 6663 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6664 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6665 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6666 "Expected a funnel shift"); 6667 6668 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6669 // than general vector shifts, and (3) the shift amount is select-of-splatted 6670 // values, hoist the funnel shifts before the select: 6671 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6672 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6673 // 6674 // This is inverting a generic IR transform when we know that the cost of a 6675 // general vector shift is more than the cost of 2 shift-by-scalars. 6676 // We can't do this effectively in SDAG because we may not be able to 6677 // determine if the select operands are splats from within a basic block. 6678 Type *Ty = Fsh->getType(); 6679 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6680 return false; 6681 Value *Cond, *TVal, *FVal; 6682 if (!match(Fsh->getOperand(2), 6683 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6684 return false; 6685 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6686 return false; 6687 6688 IRBuilder<> Builder(Fsh); 6689 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6690 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6691 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6692 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6693 Fsh->replaceAllUsesWith(NewSel); 6694 Fsh->eraseFromParent(); 6695 return true; 6696 } 6697 6698 /// If we have a SelectInst that will likely profit from branch prediction, 6699 /// turn it into a branch. 6700 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6701 if (DisableSelectToBranch) 6702 return false; 6703 6704 // Find all consecutive select instructions that share the same condition. 6705 SmallVector<SelectInst *, 2> ASI; 6706 ASI.push_back(SI); 6707 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6708 It != SI->getParent()->end(); ++It) { 6709 SelectInst *I = dyn_cast<SelectInst>(&*It); 6710 if (I && SI->getCondition() == I->getCondition()) { 6711 ASI.push_back(I); 6712 } else { 6713 break; 6714 } 6715 } 6716 6717 SelectInst *LastSI = ASI.back(); 6718 // Increment the current iterator to skip all the rest of select instructions 6719 // because they will be either "not lowered" or "all lowered" to branch. 6720 CurInstIterator = std::next(LastSI->getIterator()); 6721 6722 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6723 6724 // Can we convert the 'select' to CF ? 6725 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6726 return false; 6727 6728 TargetLowering::SelectSupportKind SelectKind; 6729 if (VectorCond) 6730 SelectKind = TargetLowering::VectorMaskSelect; 6731 else if (SI->getType()->isVectorTy()) 6732 SelectKind = TargetLowering::ScalarCondVectorVal; 6733 else 6734 SelectKind = TargetLowering::ScalarValSelect; 6735 6736 if (TLI->isSelectSupported(SelectKind) && 6737 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6738 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6739 return false; 6740 6741 // The DominatorTree needs to be rebuilt by any consumers after this 6742 // transformation. We simply reset here rather than setting the ModifiedDT 6743 // flag to avoid restarting the function walk in runOnFunction for each 6744 // select optimized. 6745 DT.reset(); 6746 6747 // Transform a sequence like this: 6748 // start: 6749 // %cmp = cmp uge i32 %a, %b 6750 // %sel = select i1 %cmp, i32 %c, i32 %d 6751 // 6752 // Into: 6753 // start: 6754 // %cmp = cmp uge i32 %a, %b 6755 // %cmp.frozen = freeze %cmp 6756 // br i1 %cmp.frozen, label %select.true, label %select.false 6757 // select.true: 6758 // br label %select.end 6759 // select.false: 6760 // br label %select.end 6761 // select.end: 6762 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6763 // 6764 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6765 // In addition, we may sink instructions that produce %c or %d from 6766 // the entry block into the destination(s) of the new branch. 6767 // If the true or false blocks do not contain a sunken instruction, that 6768 // block and its branch may be optimized away. In that case, one side of the 6769 // first branch will point directly to select.end, and the corresponding PHI 6770 // predecessor block will be the start block. 6771 6772 // First, we split the block containing the select into 2 blocks. 6773 BasicBlock *StartBlock = SI->getParent(); 6774 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6775 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6776 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6777 6778 // Delete the unconditional branch that was just created by the split. 6779 StartBlock->getTerminator()->eraseFromParent(); 6780 6781 // These are the new basic blocks for the conditional branch. 6782 // At least one will become an actual new basic block. 6783 BasicBlock *TrueBlock = nullptr; 6784 BasicBlock *FalseBlock = nullptr; 6785 BranchInst *TrueBranch = nullptr; 6786 BranchInst *FalseBranch = nullptr; 6787 6788 // Sink expensive instructions into the conditional blocks to avoid executing 6789 // them speculatively. 6790 for (SelectInst *SI : ASI) { 6791 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6792 if (TrueBlock == nullptr) { 6793 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6794 EndBlock->getParent(), EndBlock); 6795 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6796 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6797 } 6798 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6799 TrueInst->moveBefore(TrueBranch); 6800 } 6801 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6802 if (FalseBlock == nullptr) { 6803 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6804 EndBlock->getParent(), EndBlock); 6805 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6806 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6807 } 6808 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6809 FalseInst->moveBefore(FalseBranch); 6810 } 6811 } 6812 6813 // If there was nothing to sink, then arbitrarily choose the 'false' side 6814 // for a new input value to the PHI. 6815 if (TrueBlock == FalseBlock) { 6816 assert(TrueBlock == nullptr && 6817 "Unexpected basic block transform while optimizing select"); 6818 6819 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6820 EndBlock->getParent(), EndBlock); 6821 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6822 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6823 } 6824 6825 // Insert the real conditional branch based on the original condition. 6826 // If we did not create a new block for one of the 'true' or 'false' paths 6827 // of the condition, it means that side of the branch goes to the end block 6828 // directly and the path originates from the start block from the point of 6829 // view of the new PHI. 6830 BasicBlock *TT, *FT; 6831 if (TrueBlock == nullptr) { 6832 TT = EndBlock; 6833 FT = FalseBlock; 6834 TrueBlock = StartBlock; 6835 } else if (FalseBlock == nullptr) { 6836 TT = TrueBlock; 6837 FT = EndBlock; 6838 FalseBlock = StartBlock; 6839 } else { 6840 TT = TrueBlock; 6841 FT = FalseBlock; 6842 } 6843 IRBuilder<> IB(SI); 6844 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6845 IB.CreateCondBr(CondFr, TT, FT, SI); 6846 6847 SmallPtrSet<const Instruction *, 2> INS; 6848 INS.insert(ASI.begin(), ASI.end()); 6849 // Use reverse iterator because later select may use the value of the 6850 // earlier select, and we need to propagate value through earlier select 6851 // to get the PHI operand. 6852 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6853 SelectInst *SI = *It; 6854 // The select itself is replaced with a PHI Node. 6855 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6856 PN->takeName(SI); 6857 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6858 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6859 PN->setDebugLoc(SI->getDebugLoc()); 6860 6861 SI->replaceAllUsesWith(PN); 6862 SI->eraseFromParent(); 6863 INS.erase(SI); 6864 ++NumSelectsExpanded; 6865 } 6866 6867 // Instruct OptimizeBlock to skip to the next block. 6868 CurInstIterator = StartBlock->end(); 6869 return true; 6870 } 6871 6872 /// Some targets only accept certain types for splat inputs. For example a VDUP 6873 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6874 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6875 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6876 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6877 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6878 m_Undef(), m_ZeroMask()))) 6879 return false; 6880 Type *NewType = TLI->shouldConvertSplatType(SVI); 6881 if (!NewType) 6882 return false; 6883 6884 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6885 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6886 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6887 "Expected a type of the same size!"); 6888 auto *NewVecType = 6889 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6890 6891 // Create a bitcast (shuffle (insert (bitcast(..)))) 6892 IRBuilder<> Builder(SVI->getContext()); 6893 Builder.SetInsertPoint(SVI); 6894 Value *BC1 = Builder.CreateBitCast( 6895 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6896 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6897 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6898 6899 SVI->replaceAllUsesWith(BC2); 6900 RecursivelyDeleteTriviallyDeadInstructions( 6901 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6902 6903 // Also hoist the bitcast up to its operand if it they are not in the same 6904 // block. 6905 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6906 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6907 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6908 !Op->isTerminator() && !Op->isEHPad()) 6909 BCI->moveAfter(Op); 6910 6911 return true; 6912 } 6913 6914 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6915 // If the operands of I can be folded into a target instruction together with 6916 // I, duplicate and sink them. 6917 SmallVector<Use *, 4> OpsToSink; 6918 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6919 return false; 6920 6921 // OpsToSink can contain multiple uses in a use chain (e.g. 6922 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6923 // uses must come first, so we process the ops in reverse order so as to not 6924 // create invalid IR. 6925 BasicBlock *TargetBB = I->getParent(); 6926 bool Changed = false; 6927 SmallVector<Use *, 4> ToReplace; 6928 for (Use *U : reverse(OpsToSink)) { 6929 auto *UI = cast<Instruction>(U->get()); 6930 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6931 continue; 6932 ToReplace.push_back(U); 6933 } 6934 6935 SetVector<Instruction *> MaybeDead; 6936 DenseMap<Instruction *, Instruction *> NewInstructions; 6937 Instruction *InsertPoint = I; 6938 for (Use *U : ToReplace) { 6939 auto *UI = cast<Instruction>(U->get()); 6940 Instruction *NI = UI->clone(); 6941 NewInstructions[UI] = NI; 6942 MaybeDead.insert(UI); 6943 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6944 NI->insertBefore(InsertPoint); 6945 InsertPoint = NI; 6946 InsertedInsts.insert(NI); 6947 6948 // Update the use for the new instruction, making sure that we update the 6949 // sunk instruction uses, if it is part of a chain that has already been 6950 // sunk. 6951 Instruction *OldI = cast<Instruction>(U->getUser()); 6952 if (NewInstructions.count(OldI)) 6953 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6954 else 6955 U->set(NI); 6956 Changed = true; 6957 } 6958 6959 // Remove instructions that are dead after sinking. 6960 for (auto *I : MaybeDead) { 6961 if (!I->hasNUsesOrMore(1)) { 6962 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6963 I->eraseFromParent(); 6964 } 6965 } 6966 6967 return Changed; 6968 } 6969 6970 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6971 Value *Cond = SI->getCondition(); 6972 Type *OldType = Cond->getType(); 6973 LLVMContext &Context = Cond->getContext(); 6974 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6975 unsigned RegWidth = RegType.getSizeInBits(); 6976 6977 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6978 return false; 6979 6980 // If the register width is greater than the type width, expand the condition 6981 // of the switch instruction and each case constant to the width of the 6982 // register. By widening the type of the switch condition, subsequent 6983 // comparisons (for case comparisons) will not need to be extended to the 6984 // preferred register width, so we will potentially eliminate N-1 extends, 6985 // where N is the number of cases in the switch. 6986 auto *NewType = Type::getIntNTy(Context, RegWidth); 6987 6988 // Zero-extend the switch condition and case constants unless the switch 6989 // condition is a function argument that is already being sign-extended. 6990 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6991 // everything instead. 6992 Instruction::CastOps ExtType = Instruction::ZExt; 6993 if (auto *Arg = dyn_cast<Argument>(Cond)) 6994 if (Arg->hasSExtAttr()) 6995 ExtType = Instruction::SExt; 6996 6997 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6998 ExtInst->insertBefore(SI); 6999 ExtInst->setDebugLoc(SI->getDebugLoc()); 7000 SI->setCondition(ExtInst); 7001 for (auto Case : SI->cases()) { 7002 APInt NarrowConst = Case.getCaseValue()->getValue(); 7003 APInt WideConst = (ExtType == Instruction::ZExt) ? 7004 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 7005 Case.setValue(ConstantInt::get(Context, WideConst)); 7006 } 7007 7008 return true; 7009 } 7010 7011 7012 namespace { 7013 7014 /// Helper class to promote a scalar operation to a vector one. 7015 /// This class is used to move downward extractelement transition. 7016 /// E.g., 7017 /// a = vector_op <2 x i32> 7018 /// b = extractelement <2 x i32> a, i32 0 7019 /// c = scalar_op b 7020 /// store c 7021 /// 7022 /// => 7023 /// a = vector_op <2 x i32> 7024 /// c = vector_op a (equivalent to scalar_op on the related lane) 7025 /// * d = extractelement <2 x i32> c, i32 0 7026 /// * store d 7027 /// Assuming both extractelement and store can be combine, we get rid of the 7028 /// transition. 7029 class VectorPromoteHelper { 7030 /// DataLayout associated with the current module. 7031 const DataLayout &DL; 7032 7033 /// Used to perform some checks on the legality of vector operations. 7034 const TargetLowering &TLI; 7035 7036 /// Used to estimated the cost of the promoted chain. 7037 const TargetTransformInfo &TTI; 7038 7039 /// The transition being moved downwards. 7040 Instruction *Transition; 7041 7042 /// The sequence of instructions to be promoted. 7043 SmallVector<Instruction *, 4> InstsToBePromoted; 7044 7045 /// Cost of combining a store and an extract. 7046 unsigned StoreExtractCombineCost; 7047 7048 /// Instruction that will be combined with the transition. 7049 Instruction *CombineInst = nullptr; 7050 7051 /// The instruction that represents the current end of the transition. 7052 /// Since we are faking the promotion until we reach the end of the chain 7053 /// of computation, we need a way to get the current end of the transition. 7054 Instruction *getEndOfTransition() const { 7055 if (InstsToBePromoted.empty()) 7056 return Transition; 7057 return InstsToBePromoted.back(); 7058 } 7059 7060 /// Return the index of the original value in the transition. 7061 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 7062 /// c, is at index 0. 7063 unsigned getTransitionOriginalValueIdx() const { 7064 assert(isa<ExtractElementInst>(Transition) && 7065 "Other kind of transitions are not supported yet"); 7066 return 0; 7067 } 7068 7069 /// Return the index of the index in the transition. 7070 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 7071 /// is at index 1. 7072 unsigned getTransitionIdx() const { 7073 assert(isa<ExtractElementInst>(Transition) && 7074 "Other kind of transitions are not supported yet"); 7075 return 1; 7076 } 7077 7078 /// Get the type of the transition. 7079 /// This is the type of the original value. 7080 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 7081 /// transition is <2 x i32>. 7082 Type *getTransitionType() const { 7083 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 7084 } 7085 7086 /// Promote \p ToBePromoted by moving \p Def downward through. 7087 /// I.e., we have the following sequence: 7088 /// Def = Transition <ty1> a to <ty2> 7089 /// b = ToBePromoted <ty2> Def, ... 7090 /// => 7091 /// b = ToBePromoted <ty1> a, ... 7092 /// Def = Transition <ty1> ToBePromoted to <ty2> 7093 void promoteImpl(Instruction *ToBePromoted); 7094 7095 /// Check whether or not it is profitable to promote all the 7096 /// instructions enqueued to be promoted. 7097 bool isProfitableToPromote() { 7098 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 7099 unsigned Index = isa<ConstantInt>(ValIdx) 7100 ? cast<ConstantInt>(ValIdx)->getZExtValue() 7101 : -1; 7102 Type *PromotedType = getTransitionType(); 7103 7104 StoreInst *ST = cast<StoreInst>(CombineInst); 7105 unsigned AS = ST->getPointerAddressSpace(); 7106 // Check if this store is supported. 7107 if (!TLI.allowsMisalignedMemoryAccesses( 7108 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 7109 ST->getAlign())) { 7110 // If this is not supported, there is no way we can combine 7111 // the extract with the store. 7112 return false; 7113 } 7114 7115 // The scalar chain of computation has to pay for the transition 7116 // scalar to vector. 7117 // The vector chain has to account for the combining cost. 7118 InstructionCost ScalarCost = 7119 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 7120 InstructionCost VectorCost = StoreExtractCombineCost; 7121 enum TargetTransformInfo::TargetCostKind CostKind = 7122 TargetTransformInfo::TCK_RecipThroughput; 7123 for (const auto &Inst : InstsToBePromoted) { 7124 // Compute the cost. 7125 // By construction, all instructions being promoted are arithmetic ones. 7126 // Moreover, one argument is a constant that can be viewed as a splat 7127 // constant. 7128 Value *Arg0 = Inst->getOperand(0); 7129 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 7130 isa<ConstantFP>(Arg0); 7131 TargetTransformInfo::OperandValueKind Arg0OVK = 7132 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7133 : TargetTransformInfo::OK_AnyValue; 7134 TargetTransformInfo::OperandValueKind Arg1OVK = 7135 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 7136 : TargetTransformInfo::OK_AnyValue; 7137 ScalarCost += TTI.getArithmeticInstrCost( 7138 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7139 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7140 CostKind, 7141 Arg0OVK, Arg1OVK); 7142 } 7143 LLVM_DEBUG( 7144 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7145 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7146 return ScalarCost > VectorCost; 7147 } 7148 7149 /// Generate a constant vector with \p Val with the same 7150 /// number of elements as the transition. 7151 /// \p UseSplat defines whether or not \p Val should be replicated 7152 /// across the whole vector. 7153 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7154 /// otherwise we generate a vector with as many undef as possible: 7155 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7156 /// used at the index of the extract. 7157 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7158 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7159 if (!UseSplat) { 7160 // If we cannot determine where the constant must be, we have to 7161 // use a splat constant. 7162 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7163 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7164 ExtractIdx = CstVal->getSExtValue(); 7165 else 7166 UseSplat = true; 7167 } 7168 7169 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7170 if (UseSplat) 7171 return ConstantVector::getSplat(EC, Val); 7172 7173 if (!EC.isScalable()) { 7174 SmallVector<Constant *, 4> ConstVec; 7175 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7176 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7177 if (Idx == ExtractIdx) 7178 ConstVec.push_back(Val); 7179 else 7180 ConstVec.push_back(UndefVal); 7181 } 7182 return ConstantVector::get(ConstVec); 7183 } else 7184 llvm_unreachable( 7185 "Generate scalable vector for non-splat is unimplemented"); 7186 } 7187 7188 /// Check if promoting to a vector type an operand at \p OperandIdx 7189 /// in \p Use can trigger undefined behavior. 7190 static bool canCauseUndefinedBehavior(const Instruction *Use, 7191 unsigned OperandIdx) { 7192 // This is not safe to introduce undef when the operand is on 7193 // the right hand side of a division-like instruction. 7194 if (OperandIdx != 1) 7195 return false; 7196 switch (Use->getOpcode()) { 7197 default: 7198 return false; 7199 case Instruction::SDiv: 7200 case Instruction::UDiv: 7201 case Instruction::SRem: 7202 case Instruction::URem: 7203 return true; 7204 case Instruction::FDiv: 7205 case Instruction::FRem: 7206 return !Use->hasNoNaNs(); 7207 } 7208 llvm_unreachable(nullptr); 7209 } 7210 7211 public: 7212 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7213 const TargetTransformInfo &TTI, Instruction *Transition, 7214 unsigned CombineCost) 7215 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7216 StoreExtractCombineCost(CombineCost) { 7217 assert(Transition && "Do not know how to promote null"); 7218 } 7219 7220 /// Check if we can promote \p ToBePromoted to \p Type. 7221 bool canPromote(const Instruction *ToBePromoted) const { 7222 // We could support CastInst too. 7223 return isa<BinaryOperator>(ToBePromoted); 7224 } 7225 7226 /// Check if it is profitable to promote \p ToBePromoted 7227 /// by moving downward the transition through. 7228 bool shouldPromote(const Instruction *ToBePromoted) const { 7229 // Promote only if all the operands can be statically expanded. 7230 // Indeed, we do not want to introduce any new kind of transitions. 7231 for (const Use &U : ToBePromoted->operands()) { 7232 const Value *Val = U.get(); 7233 if (Val == getEndOfTransition()) { 7234 // If the use is a division and the transition is on the rhs, 7235 // we cannot promote the operation, otherwise we may create a 7236 // division by zero. 7237 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7238 return false; 7239 continue; 7240 } 7241 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7242 !isa<ConstantFP>(Val)) 7243 return false; 7244 } 7245 // Check that the resulting operation is legal. 7246 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7247 if (!ISDOpcode) 7248 return false; 7249 return StressStoreExtract || 7250 TLI.isOperationLegalOrCustom( 7251 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7252 } 7253 7254 /// Check whether or not \p Use can be combined 7255 /// with the transition. 7256 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7257 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7258 7259 /// Record \p ToBePromoted as part of the chain to be promoted. 7260 void enqueueForPromotion(Instruction *ToBePromoted) { 7261 InstsToBePromoted.push_back(ToBePromoted); 7262 } 7263 7264 /// Set the instruction that will be combined with the transition. 7265 void recordCombineInstruction(Instruction *ToBeCombined) { 7266 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7267 CombineInst = ToBeCombined; 7268 } 7269 7270 /// Promote all the instructions enqueued for promotion if it is 7271 /// is profitable. 7272 /// \return True if the promotion happened, false otherwise. 7273 bool promote() { 7274 // Check if there is something to promote. 7275 // Right now, if we do not have anything to combine with, 7276 // we assume the promotion is not profitable. 7277 if (InstsToBePromoted.empty() || !CombineInst) 7278 return false; 7279 7280 // Check cost. 7281 if (!StressStoreExtract && !isProfitableToPromote()) 7282 return false; 7283 7284 // Promote. 7285 for (auto &ToBePromoted : InstsToBePromoted) 7286 promoteImpl(ToBePromoted); 7287 InstsToBePromoted.clear(); 7288 return true; 7289 } 7290 }; 7291 7292 } // end anonymous namespace 7293 7294 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7295 // At this point, we know that all the operands of ToBePromoted but Def 7296 // can be statically promoted. 7297 // For Def, we need to use its parameter in ToBePromoted: 7298 // b = ToBePromoted ty1 a 7299 // Def = Transition ty1 b to ty2 7300 // Move the transition down. 7301 // 1. Replace all uses of the promoted operation by the transition. 7302 // = ... b => = ... Def. 7303 assert(ToBePromoted->getType() == Transition->getType() && 7304 "The type of the result of the transition does not match " 7305 "the final type"); 7306 ToBePromoted->replaceAllUsesWith(Transition); 7307 // 2. Update the type of the uses. 7308 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7309 Type *TransitionTy = getTransitionType(); 7310 ToBePromoted->mutateType(TransitionTy); 7311 // 3. Update all the operands of the promoted operation with promoted 7312 // operands. 7313 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7314 for (Use &U : ToBePromoted->operands()) { 7315 Value *Val = U.get(); 7316 Value *NewVal = nullptr; 7317 if (Val == Transition) 7318 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7319 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7320 isa<ConstantFP>(Val)) { 7321 // Use a splat constant if it is not safe to use undef. 7322 NewVal = getConstantVector( 7323 cast<Constant>(Val), 7324 isa<UndefValue>(Val) || 7325 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7326 } else 7327 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7328 "this?"); 7329 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7330 } 7331 Transition->moveAfter(ToBePromoted); 7332 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7333 } 7334 7335 /// Some targets can do store(extractelement) with one instruction. 7336 /// Try to push the extractelement towards the stores when the target 7337 /// has this feature and this is profitable. 7338 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7339 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7340 if (DisableStoreExtract || 7341 (!StressStoreExtract && 7342 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7343 Inst->getOperand(1), CombineCost))) 7344 return false; 7345 7346 // At this point we know that Inst is a vector to scalar transition. 7347 // Try to move it down the def-use chain, until: 7348 // - We can combine the transition with its single use 7349 // => we got rid of the transition. 7350 // - We escape the current basic block 7351 // => we would need to check that we are moving it at a cheaper place and 7352 // we do not do that for now. 7353 BasicBlock *Parent = Inst->getParent(); 7354 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7355 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7356 // If the transition has more than one use, assume this is not going to be 7357 // beneficial. 7358 while (Inst->hasOneUse()) { 7359 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7360 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7361 7362 if (ToBePromoted->getParent() != Parent) { 7363 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7364 << ToBePromoted->getParent()->getName() 7365 << ") than the transition (" << Parent->getName() 7366 << ").\n"); 7367 return false; 7368 } 7369 7370 if (VPH.canCombine(ToBePromoted)) { 7371 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7372 << "will be combined with: " << *ToBePromoted << '\n'); 7373 VPH.recordCombineInstruction(ToBePromoted); 7374 bool Changed = VPH.promote(); 7375 NumStoreExtractExposed += Changed; 7376 return Changed; 7377 } 7378 7379 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7380 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7381 return false; 7382 7383 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7384 7385 VPH.enqueueForPromotion(ToBePromoted); 7386 Inst = ToBePromoted; 7387 } 7388 return false; 7389 } 7390 7391 /// For the instruction sequence of store below, F and I values 7392 /// are bundled together as an i64 value before being stored into memory. 7393 /// Sometimes it is more efficient to generate separate stores for F and I, 7394 /// which can remove the bitwise instructions or sink them to colder places. 7395 /// 7396 /// (store (or (zext (bitcast F to i32) to i64), 7397 /// (shl (zext I to i64), 32)), addr) --> 7398 /// (store F, addr) and (store I, addr+4) 7399 /// 7400 /// Similarly, splitting for other merged store can also be beneficial, like: 7401 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7402 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7403 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7404 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7405 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7406 /// 7407 /// We allow each target to determine specifically which kind of splitting is 7408 /// supported. 7409 /// 7410 /// The store patterns are commonly seen from the simple code snippet below 7411 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7412 /// void goo(const std::pair<int, float> &); 7413 /// hoo() { 7414 /// ... 7415 /// goo(std::make_pair(tmp, ftmp)); 7416 /// ... 7417 /// } 7418 /// 7419 /// Although we already have similar splitting in DAG Combine, we duplicate 7420 /// it in CodeGenPrepare to catch the case in which pattern is across 7421 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7422 /// during code expansion. 7423 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7424 const TargetLowering &TLI) { 7425 // Handle simple but common cases only. 7426 Type *StoreType = SI.getValueOperand()->getType(); 7427 7428 // The code below assumes shifting a value by <number of bits>, 7429 // whereas scalable vectors would have to be shifted by 7430 // <2log(vscale) + number of bits> in order to store the 7431 // low/high parts. Bailing out for now. 7432 if (isa<ScalableVectorType>(StoreType)) 7433 return false; 7434 7435 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7436 DL.getTypeSizeInBits(StoreType) == 0) 7437 return false; 7438 7439 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7440 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7441 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7442 return false; 7443 7444 // Don't split the store if it is volatile. 7445 if (SI.isVolatile()) 7446 return false; 7447 7448 // Match the following patterns: 7449 // (store (or (zext LValue to i64), 7450 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7451 // or 7452 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7453 // (zext LValue to i64), 7454 // Expect both operands of OR and the first operand of SHL have only 7455 // one use. 7456 Value *LValue, *HValue; 7457 if (!match(SI.getValueOperand(), 7458 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7459 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7460 m_SpecificInt(HalfValBitSize)))))) 7461 return false; 7462 7463 // Check LValue and HValue are int with size less or equal than 32. 7464 if (!LValue->getType()->isIntegerTy() || 7465 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7466 !HValue->getType()->isIntegerTy() || 7467 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7468 return false; 7469 7470 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7471 // as the input of target query. 7472 auto *LBC = dyn_cast<BitCastInst>(LValue); 7473 auto *HBC = dyn_cast<BitCastInst>(HValue); 7474 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7475 : EVT::getEVT(LValue->getType()); 7476 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7477 : EVT::getEVT(HValue->getType()); 7478 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7479 return false; 7480 7481 // Start to split store. 7482 IRBuilder<> Builder(SI.getContext()); 7483 Builder.SetInsertPoint(&SI); 7484 7485 // If LValue/HValue is a bitcast in another BB, create a new one in current 7486 // BB so it may be merged with the splitted stores by dag combiner. 7487 if (LBC && LBC->getParent() != SI.getParent()) 7488 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7489 if (HBC && HBC->getParent() != SI.getParent()) 7490 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7491 7492 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7493 auto CreateSplitStore = [&](Value *V, bool Upper) { 7494 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7495 Value *Addr = Builder.CreateBitCast( 7496 SI.getOperand(1), 7497 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7498 Align Alignment = SI.getAlign(); 7499 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7500 if (IsOffsetStore) { 7501 Addr = Builder.CreateGEP( 7502 SplitStoreType, Addr, 7503 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7504 7505 // When splitting the store in half, naturally one half will retain the 7506 // alignment of the original wider store, regardless of whether it was 7507 // over-aligned or not, while the other will require adjustment. 7508 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7509 } 7510 Builder.CreateAlignedStore(V, Addr, Alignment); 7511 }; 7512 7513 CreateSplitStore(LValue, false); 7514 CreateSplitStore(HValue, true); 7515 7516 // Delete the old store. 7517 SI.eraseFromParent(); 7518 return true; 7519 } 7520 7521 // Return true if the GEP has two operands, the first operand is of a sequential 7522 // type, and the second operand is a constant. 7523 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7524 gep_type_iterator I = gep_type_begin(*GEP); 7525 return GEP->getNumOperands() == 2 && 7526 I.isSequential() && 7527 isa<ConstantInt>(GEP->getOperand(1)); 7528 } 7529 7530 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7531 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7532 // reducing liveness interference across those edges benefits global register 7533 // allocation. Currently handles only certain cases. 7534 // 7535 // For example, unmerge %GEPI and %UGEPI as below. 7536 // 7537 // ---------- BEFORE ---------- 7538 // SrcBlock: 7539 // ... 7540 // %GEPIOp = ... 7541 // ... 7542 // %GEPI = gep %GEPIOp, Idx 7543 // ... 7544 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7545 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7546 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7547 // %UGEPI) 7548 // 7549 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7550 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7551 // ... 7552 // 7553 // DstBi: 7554 // ... 7555 // %UGEPI = gep %GEPIOp, UIdx 7556 // ... 7557 // --------------------------- 7558 // 7559 // ---------- AFTER ---------- 7560 // SrcBlock: 7561 // ... (same as above) 7562 // (* %GEPI is still alive on the indirectbr edges) 7563 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7564 // unmerging) 7565 // ... 7566 // 7567 // DstBi: 7568 // ... 7569 // %UGEPI = gep %GEPI, (UIdx-Idx) 7570 // ... 7571 // --------------------------- 7572 // 7573 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7574 // no longer alive on them. 7575 // 7576 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7577 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7578 // not to disable further simplications and optimizations as a result of GEP 7579 // merging. 7580 // 7581 // Note this unmerging may increase the length of the data flow critical path 7582 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7583 // between the register pressure and the length of data-flow critical 7584 // path. Restricting this to the uncommon IndirectBr case would minimize the 7585 // impact of potentially longer critical path, if any, and the impact on compile 7586 // time. 7587 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7588 const TargetTransformInfo *TTI) { 7589 BasicBlock *SrcBlock = GEPI->getParent(); 7590 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7591 // (non-IndirectBr) cases exit early here. 7592 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7593 return false; 7594 // Check that GEPI is a simple gep with a single constant index. 7595 if (!GEPSequentialConstIndexed(GEPI)) 7596 return false; 7597 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7598 // Check that GEPI is a cheap one. 7599 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7600 TargetTransformInfo::TCK_SizeAndLatency) 7601 > TargetTransformInfo::TCC_Basic) 7602 return false; 7603 Value *GEPIOp = GEPI->getOperand(0); 7604 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7605 if (!isa<Instruction>(GEPIOp)) 7606 return false; 7607 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7608 if (GEPIOpI->getParent() != SrcBlock) 7609 return false; 7610 // Check that GEP is used outside the block, meaning it's alive on the 7611 // IndirectBr edge(s). 7612 if (find_if(GEPI->users(), [&](User *Usr) { 7613 if (auto *I = dyn_cast<Instruction>(Usr)) { 7614 if (I->getParent() != SrcBlock) { 7615 return true; 7616 } 7617 } 7618 return false; 7619 }) == GEPI->users().end()) 7620 return false; 7621 // The second elements of the GEP chains to be unmerged. 7622 std::vector<GetElementPtrInst *> UGEPIs; 7623 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7624 // on IndirectBr edges. 7625 for (User *Usr : GEPIOp->users()) { 7626 if (Usr == GEPI) continue; 7627 // Check if Usr is an Instruction. If not, give up. 7628 if (!isa<Instruction>(Usr)) 7629 return false; 7630 auto *UI = cast<Instruction>(Usr); 7631 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7632 if (UI->getParent() == SrcBlock) 7633 continue; 7634 // Check if Usr is a GEP. If not, give up. 7635 if (!isa<GetElementPtrInst>(Usr)) 7636 return false; 7637 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7638 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7639 // the pointer operand to it. If so, record it in the vector. If not, give 7640 // up. 7641 if (!GEPSequentialConstIndexed(UGEPI)) 7642 return false; 7643 if (UGEPI->getOperand(0) != GEPIOp) 7644 return false; 7645 if (GEPIIdx->getType() != 7646 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7647 return false; 7648 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7649 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7650 TargetTransformInfo::TCK_SizeAndLatency) 7651 > TargetTransformInfo::TCC_Basic) 7652 return false; 7653 UGEPIs.push_back(UGEPI); 7654 } 7655 if (UGEPIs.size() == 0) 7656 return false; 7657 // Check the materializing cost of (Uidx-Idx). 7658 for (GetElementPtrInst *UGEPI : UGEPIs) { 7659 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7660 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7661 unsigned ImmCost = 7662 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7663 TargetTransformInfo::TCK_SizeAndLatency); 7664 if (ImmCost > TargetTransformInfo::TCC_Basic) 7665 return false; 7666 } 7667 // Now unmerge between GEPI and UGEPIs. 7668 for (GetElementPtrInst *UGEPI : UGEPIs) { 7669 UGEPI->setOperand(0, GEPI); 7670 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7671 Constant *NewUGEPIIdx = 7672 ConstantInt::get(GEPIIdx->getType(), 7673 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7674 UGEPI->setOperand(1, NewUGEPIIdx); 7675 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7676 // inbounds to avoid UB. 7677 if (!GEPI->isInBounds()) { 7678 UGEPI->setIsInBounds(false); 7679 } 7680 } 7681 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7682 // alive on IndirectBr edges). 7683 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7684 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7685 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7686 return true; 7687 } 7688 7689 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7690 // Bail out if we inserted the instruction to prevent optimizations from 7691 // stepping on each other's toes. 7692 if (InsertedInsts.count(I)) 7693 return false; 7694 7695 // TODO: Move into the switch on opcode below here. 7696 if (PHINode *P = dyn_cast<PHINode>(I)) { 7697 // It is possible for very late stage optimizations (such as SimplifyCFG) 7698 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7699 // trivial PHI, go ahead and zap it here. 7700 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7701 LargeOffsetGEPMap.erase(P); 7702 P->replaceAllUsesWith(V); 7703 P->eraseFromParent(); 7704 ++NumPHIsElim; 7705 return true; 7706 } 7707 return false; 7708 } 7709 7710 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7711 // If the source of the cast is a constant, then this should have 7712 // already been constant folded. The only reason NOT to constant fold 7713 // it is if something (e.g. LSR) was careful to place the constant 7714 // evaluation in a block other than then one that uses it (e.g. to hoist 7715 // the address of globals out of a loop). If this is the case, we don't 7716 // want to forward-subst the cast. 7717 if (isa<Constant>(CI->getOperand(0))) 7718 return false; 7719 7720 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7721 return true; 7722 7723 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7724 /// Sink a zext or sext into its user blocks if the target type doesn't 7725 /// fit in one register 7726 if (TLI->getTypeAction(CI->getContext(), 7727 TLI->getValueType(*DL, CI->getType())) == 7728 TargetLowering::TypeExpandInteger) { 7729 return SinkCast(CI); 7730 } else { 7731 bool MadeChange = optimizeExt(I); 7732 return MadeChange | optimizeExtUses(I); 7733 } 7734 } 7735 return false; 7736 } 7737 7738 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7739 if (optimizeCmp(Cmp, ModifiedDT)) 7740 return true; 7741 7742 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7743 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7744 bool Modified = optimizeLoadExt(LI); 7745 unsigned AS = LI->getPointerAddressSpace(); 7746 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7747 return Modified; 7748 } 7749 7750 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7751 if (splitMergedValStore(*SI, *DL, *TLI)) 7752 return true; 7753 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7754 unsigned AS = SI->getPointerAddressSpace(); 7755 return optimizeMemoryInst(I, SI->getOperand(1), 7756 SI->getOperand(0)->getType(), AS); 7757 } 7758 7759 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7760 unsigned AS = RMW->getPointerAddressSpace(); 7761 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7762 RMW->getType(), AS); 7763 } 7764 7765 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7766 unsigned AS = CmpX->getPointerAddressSpace(); 7767 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7768 CmpX->getCompareOperand()->getType(), AS); 7769 } 7770 7771 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7772 7773 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7774 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7775 7776 // TODO: Move this into the switch on opcode - it handles shifts already. 7777 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7778 BinOp->getOpcode() == Instruction::LShr)) { 7779 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7780 if (CI && TLI->hasExtractBitsInsn()) 7781 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7782 return true; 7783 } 7784 7785 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7786 if (GEPI->hasAllZeroIndices()) { 7787 /// The GEP operand must be a pointer, so must its result -> BitCast 7788 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7789 GEPI->getName(), GEPI); 7790 NC->setDebugLoc(GEPI->getDebugLoc()); 7791 GEPI->replaceAllUsesWith(NC); 7792 GEPI->eraseFromParent(); 7793 ++NumGEPsElim; 7794 optimizeInst(NC, ModifiedDT); 7795 return true; 7796 } 7797 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7798 return true; 7799 } 7800 return false; 7801 } 7802 7803 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7804 // freeze(icmp a, const)) -> icmp (freeze a), const 7805 // This helps generate efficient conditional jumps. 7806 Instruction *CmpI = nullptr; 7807 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7808 CmpI = II; 7809 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7810 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7811 7812 if (CmpI && CmpI->hasOneUse()) { 7813 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7814 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7815 isa<ConstantPointerNull>(Op0); 7816 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7817 isa<ConstantPointerNull>(Op1); 7818 if (Const0 || Const1) { 7819 if (!Const0 || !Const1) { 7820 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7821 F->takeName(FI); 7822 CmpI->setOperand(Const0 ? 1 : 0, F); 7823 } 7824 FI->replaceAllUsesWith(CmpI); 7825 FI->eraseFromParent(); 7826 return true; 7827 } 7828 } 7829 return false; 7830 } 7831 7832 if (tryToSinkFreeOperands(I)) 7833 return true; 7834 7835 switch (I->getOpcode()) { 7836 case Instruction::Shl: 7837 case Instruction::LShr: 7838 case Instruction::AShr: 7839 return optimizeShiftInst(cast<BinaryOperator>(I)); 7840 case Instruction::Call: 7841 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7842 case Instruction::Select: 7843 return optimizeSelectInst(cast<SelectInst>(I)); 7844 case Instruction::ShuffleVector: 7845 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7846 case Instruction::Switch: 7847 return optimizeSwitchInst(cast<SwitchInst>(I)); 7848 case Instruction::ExtractElement: 7849 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7850 } 7851 7852 return false; 7853 } 7854 7855 /// Given an OR instruction, check to see if this is a bitreverse 7856 /// idiom. If so, insert the new intrinsic and return true. 7857 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7858 if (!I.getType()->isIntegerTy() || 7859 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7860 TLI->getValueType(*DL, I.getType(), true))) 7861 return false; 7862 7863 SmallVector<Instruction*, 4> Insts; 7864 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7865 return false; 7866 Instruction *LastInst = Insts.back(); 7867 I.replaceAllUsesWith(LastInst); 7868 RecursivelyDeleteTriviallyDeadInstructions( 7869 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7870 return true; 7871 } 7872 7873 // In this pass we look for GEP and cast instructions that are used 7874 // across basic blocks and rewrite them to improve basic-block-at-a-time 7875 // selection. 7876 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7877 SunkAddrs.clear(); 7878 bool MadeChange = false; 7879 7880 CurInstIterator = BB.begin(); 7881 while (CurInstIterator != BB.end()) { 7882 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7883 if (ModifiedDT) 7884 return true; 7885 } 7886 7887 bool MadeBitReverse = true; 7888 while (MadeBitReverse) { 7889 MadeBitReverse = false; 7890 for (auto &I : reverse(BB)) { 7891 if (makeBitReverse(I)) { 7892 MadeBitReverse = MadeChange = true; 7893 break; 7894 } 7895 } 7896 } 7897 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7898 7899 return MadeChange; 7900 } 7901 7902 // Some CGP optimizations may move or alter what's computed in a block. Check 7903 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7904 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7905 assert(isa<DbgValueInst>(I)); 7906 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7907 7908 // Does this dbg.value refer to a sunk address calculation? 7909 bool AnyChange = false; 7910 for (Value *Location : DVI.getValues()) { 7911 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7912 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7913 if (SunkAddr) { 7914 // Point dbg.value at locally computed address, which should give the best 7915 // opportunity to be accurately lowered. This update may change the type 7916 // of pointer being referred to; however this makes no difference to 7917 // debugging information, and we can't generate bitcasts that may affect 7918 // codegen. 7919 DVI.replaceVariableLocationOp(Location, SunkAddr); 7920 AnyChange = true; 7921 } 7922 } 7923 return AnyChange; 7924 } 7925 7926 // A llvm.dbg.value may be using a value before its definition, due to 7927 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7928 // them by moving the dbg.value to immediately after the value definition. 7929 // FIXME: Ideally this should never be necessary, and this has the potential 7930 // to re-order dbg.value intrinsics. 7931 bool CodeGenPrepare::placeDbgValues(Function &F) { 7932 bool MadeChange = false; 7933 DominatorTree DT(F); 7934 7935 for (BasicBlock &BB : F) { 7936 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7937 Instruction *Insn = &*BI++; 7938 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7939 if (!DVI) 7940 continue; 7941 7942 SmallVector<Instruction *, 4> VIs; 7943 for (Value *V : DVI->getValues()) 7944 if (Instruction *VI = dyn_cast_or_null<Instruction>(V)) 7945 VIs.push_back(VI); 7946 7947 // This DVI may depend on multiple instructions, complicating any 7948 // potential sink. This block takes the defensive approach, opting to 7949 // "undef" the DVI if it has more than one instruction and any of them do 7950 // not dominate DVI. 7951 for (Instruction *VI : VIs) { 7952 if (VI->isTerminator()) 7953 continue; 7954 7955 // If VI is a phi in a block with an EHPad terminator, we can't insert 7956 // after it. 7957 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7958 continue; 7959 7960 // If the defining instruction dominates the dbg.value, we do not need 7961 // to move the dbg.value. 7962 if (DT.dominates(VI, DVI)) 7963 continue; 7964 7965 // If we depend on multiple instructions and any of them doesn't 7966 // dominate this DVI, we probably can't salvage it: moving it to 7967 // after any of the instructions could cause us to lose the others. 7968 if (VIs.size() > 1) { 7969 LLVM_DEBUG( 7970 dbgs() 7971 << "Unable to find valid location for Debug Value, undefing:\n" 7972 << *DVI); 7973 DVI->setUndef(); 7974 break; 7975 } 7976 7977 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7978 << *DVI << ' ' << *VI); 7979 DVI->removeFromParent(); 7980 if (isa<PHINode>(VI)) 7981 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7982 else 7983 DVI->insertAfter(VI); 7984 MadeChange = true; 7985 ++NumDbgValueMoved; 7986 } 7987 } 7988 } 7989 return MadeChange; 7990 } 7991 7992 /// Scale down both weights to fit into uint32_t. 7993 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7994 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7995 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7996 NewTrue = NewTrue / Scale; 7997 NewFalse = NewFalse / Scale; 7998 } 7999 8000 /// Some targets prefer to split a conditional branch like: 8001 /// \code 8002 /// %0 = icmp ne i32 %a, 0 8003 /// %1 = icmp ne i32 %b, 0 8004 /// %or.cond = or i1 %0, %1 8005 /// br i1 %or.cond, label %TrueBB, label %FalseBB 8006 /// \endcode 8007 /// into multiple branch instructions like: 8008 /// \code 8009 /// bb1: 8010 /// %0 = icmp ne i32 %a, 0 8011 /// br i1 %0, label %TrueBB, label %bb2 8012 /// bb2: 8013 /// %1 = icmp ne i32 %b, 0 8014 /// br i1 %1, label %TrueBB, label %FalseBB 8015 /// \endcode 8016 /// This usually allows instruction selection to do even further optimizations 8017 /// and combine the compare with the branch instruction. Currently this is 8018 /// applied for targets which have "cheap" jump instructions. 8019 /// 8020 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 8021 /// 8022 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 8023 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 8024 return false; 8025 8026 bool MadeChange = false; 8027 for (auto &BB : F) { 8028 // Does this BB end with the following? 8029 // %cond1 = icmp|fcmp|binary instruction ... 8030 // %cond2 = icmp|fcmp|binary instruction ... 8031 // %cond.or = or|and i1 %cond1, cond2 8032 // br i1 %cond.or label %dest1, label %dest2" 8033 Instruction *LogicOp; 8034 BasicBlock *TBB, *FBB; 8035 if (!match(BB.getTerminator(), 8036 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 8037 continue; 8038 8039 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 8040 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 8041 continue; 8042 8043 // The merging of mostly empty BB can cause a degenerate branch. 8044 if (TBB == FBB) 8045 continue; 8046 8047 unsigned Opc; 8048 Value *Cond1, *Cond2; 8049 if (match(LogicOp, 8050 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 8051 Opc = Instruction::And; 8052 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 8053 m_OneUse(m_Value(Cond2))))) 8054 Opc = Instruction::Or; 8055 else 8056 continue; 8057 8058 auto IsGoodCond = [](Value *Cond) { 8059 return match( 8060 Cond, 8061 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 8062 m_LogicalOr(m_Value(), m_Value())))); 8063 }; 8064 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 8065 continue; 8066 8067 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 8068 8069 // Create a new BB. 8070 auto *TmpBB = 8071 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 8072 BB.getParent(), BB.getNextNode()); 8073 8074 // Update original basic block by using the first condition directly by the 8075 // branch instruction and removing the no longer needed and/or instruction. 8076 Br1->setCondition(Cond1); 8077 LogicOp->eraseFromParent(); 8078 8079 // Depending on the condition we have to either replace the true or the 8080 // false successor of the original branch instruction. 8081 if (Opc == Instruction::And) 8082 Br1->setSuccessor(0, TmpBB); 8083 else 8084 Br1->setSuccessor(1, TmpBB); 8085 8086 // Fill in the new basic block. 8087 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 8088 if (auto *I = dyn_cast<Instruction>(Cond2)) { 8089 I->removeFromParent(); 8090 I->insertBefore(Br2); 8091 } 8092 8093 // Update PHI nodes in both successors. The original BB needs to be 8094 // replaced in one successor's PHI nodes, because the branch comes now from 8095 // the newly generated BB (NewBB). In the other successor we need to add one 8096 // incoming edge to the PHI nodes, because both branch instructions target 8097 // now the same successor. Depending on the original branch condition 8098 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 8099 // we perform the correct update for the PHI nodes. 8100 // This doesn't change the successor order of the just created branch 8101 // instruction (or any other instruction). 8102 if (Opc == Instruction::Or) 8103 std::swap(TBB, FBB); 8104 8105 // Replace the old BB with the new BB. 8106 TBB->replacePhiUsesWith(&BB, TmpBB); 8107 8108 // Add another incoming edge form the new BB. 8109 for (PHINode &PN : FBB->phis()) { 8110 auto *Val = PN.getIncomingValueForBlock(&BB); 8111 PN.addIncoming(Val, TmpBB); 8112 } 8113 8114 // Update the branch weights (from SelectionDAGBuilder:: 8115 // FindMergedConditions). 8116 if (Opc == Instruction::Or) { 8117 // Codegen X | Y as: 8118 // BB1: 8119 // jmp_if_X TBB 8120 // jmp TmpBB 8121 // TmpBB: 8122 // jmp_if_Y TBB 8123 // jmp FBB 8124 // 8125 8126 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 8127 // The requirement is that 8128 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 8129 // = TrueProb for original BB. 8130 // Assuming the original weights are A and B, one choice is to set BB1's 8131 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 8132 // assumes that 8133 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 8134 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 8135 // TmpBB, but the math is more complicated. 8136 uint64_t TrueWeight, FalseWeight; 8137 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8138 uint64_t NewTrueWeight = TrueWeight; 8139 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 8140 scaleWeights(NewTrueWeight, NewFalseWeight); 8141 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8142 .createBranchWeights(TrueWeight, FalseWeight)); 8143 8144 NewTrueWeight = TrueWeight; 8145 NewFalseWeight = 2 * FalseWeight; 8146 scaleWeights(NewTrueWeight, NewFalseWeight); 8147 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8148 .createBranchWeights(TrueWeight, FalseWeight)); 8149 } 8150 } else { 8151 // Codegen X & Y as: 8152 // BB1: 8153 // jmp_if_X TmpBB 8154 // jmp FBB 8155 // TmpBB: 8156 // jmp_if_Y TBB 8157 // jmp FBB 8158 // 8159 // This requires creation of TmpBB after CurBB. 8160 8161 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8162 // The requirement is that 8163 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8164 // = FalseProb for original BB. 8165 // Assuming the original weights are A and B, one choice is to set BB1's 8166 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8167 // assumes that 8168 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8169 uint64_t TrueWeight, FalseWeight; 8170 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8171 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8172 uint64_t NewFalseWeight = FalseWeight; 8173 scaleWeights(NewTrueWeight, NewFalseWeight); 8174 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8175 .createBranchWeights(TrueWeight, FalseWeight)); 8176 8177 NewTrueWeight = 2 * TrueWeight; 8178 NewFalseWeight = FalseWeight; 8179 scaleWeights(NewTrueWeight, NewFalseWeight); 8180 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8181 .createBranchWeights(TrueWeight, FalseWeight)); 8182 } 8183 } 8184 8185 ModifiedDT = true; 8186 MadeChange = true; 8187 8188 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8189 TmpBB->dump()); 8190 } 8191 return MadeChange; 8192 } 8193