1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/IR/ValueMap.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetLibraryInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/BuildLibCalls.h" 44 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "codegenprepare" 50 51 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 52 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 53 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 55 "sunken Cmps"); 56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 57 "of sunken Casts"); 58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 59 "computations were sunk"); 60 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 61 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 62 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 65 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 66 67 static cl::opt<bool> DisableBranchOpts( 68 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 69 cl::desc("Disable branch optimizations in CodeGenPrepare")); 70 71 static cl::opt<bool> DisableSelectToBranch( 72 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 73 cl::desc("Disable select to branch conversion.")); 74 75 static cl::opt<bool> AddrSinkUsingGEPs( 76 "addr-sink-using-gep", cl::Hidden, cl::init(false), 77 cl::desc("Address sinking in CGP using GEPs.")); 78 79 static cl::opt<bool> EnableAndCmpSinking( 80 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 81 cl::desc("Enable sinkinig and/cmp into branches.")); 82 83 namespace { 84 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 85 typedef DenseMap<Instruction *, Type *> InstrToOrigTy; 86 87 class CodeGenPrepare : public FunctionPass { 88 /// TLI - Keep a pointer of a TargetLowering to consult for determining 89 /// transformation profitability. 90 const TargetMachine *TM; 91 const TargetLowering *TLI; 92 const TargetLibraryInfo *TLInfo; 93 DominatorTree *DT; 94 95 /// CurInstIterator - As we scan instructions optimizing them, this is the 96 /// next instruction to optimize. Xforms that can invalidate this should 97 /// update it. 98 BasicBlock::iterator CurInstIterator; 99 100 /// Keeps track of non-local addresses that have been sunk into a block. 101 /// This allows us to avoid inserting duplicate code for blocks with 102 /// multiple load/stores of the same address. 103 ValueMap<Value*, Value*> SunkAddrs; 104 105 /// Keeps track of all truncates inserted for the current function. 106 SetOfInstrs InsertedTruncsSet; 107 /// Keeps track of the type of the related instruction before their 108 /// promotion for the current function. 109 InstrToOrigTy PromotedInsts; 110 111 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 112 /// be updated. 113 bool ModifiedDT; 114 115 /// OptSize - True if optimizing for size. 116 bool OptSize; 117 118 public: 119 static char ID; // Pass identification, replacement for typeid 120 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 121 : FunctionPass(ID), TM(TM), TLI(nullptr) { 122 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 123 } 124 bool runOnFunction(Function &F) override; 125 126 const char *getPassName() const override { return "CodeGen Prepare"; } 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override { 129 AU.addPreserved<DominatorTreeWrapperPass>(); 130 AU.addRequired<TargetLibraryInfo>(); 131 } 132 133 private: 134 bool EliminateFallThrough(Function &F); 135 bool EliminateMostlyEmptyBlocks(Function &F); 136 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 137 void EliminateMostlyEmptyBlock(BasicBlock *BB); 138 bool OptimizeBlock(BasicBlock &BB); 139 bool OptimizeInst(Instruction *I); 140 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 141 bool OptimizeInlineAsmInst(CallInst *CS); 142 bool OptimizeCallInst(CallInst *CI); 143 bool MoveExtToFormExtLoad(Instruction *I); 144 bool OptimizeExtUses(Instruction *I); 145 bool OptimizeSelectInst(SelectInst *SI); 146 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 147 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 148 bool PlaceDbgValues(Function &F); 149 bool sinkAndCmp(Function &F); 150 }; 151 } 152 153 char CodeGenPrepare::ID = 0; 154 static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) { 155 initializeTargetLibraryInfoPass(Registry); 156 PassInfo *PI = new PassInfo( 157 "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID, 158 PassInfo::NormalCtor_t(callDefaultCtor<CodeGenPrepare>), false, false, 159 PassInfo::TargetMachineCtor_t(callTargetMachineCtor<CodeGenPrepare>)); 160 Registry.registerPass(*PI, true); 161 return PI; 162 } 163 164 void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) { 165 CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce) 166 } 167 168 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 169 return new CodeGenPrepare(TM); 170 } 171 172 bool CodeGenPrepare::runOnFunction(Function &F) { 173 if (skipOptnoneFunction(F)) 174 return false; 175 176 bool EverMadeChange = false; 177 // Clear per function information. 178 InsertedTruncsSet.clear(); 179 PromotedInsts.clear(); 180 181 ModifiedDT = false; 182 if (TM) TLI = TM->getTargetLowering(); 183 TLInfo = &getAnalysis<TargetLibraryInfo>(); 184 DominatorTreeWrapperPass *DTWP = 185 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 186 DT = DTWP ? &DTWP->getDomTree() : nullptr; 187 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 188 Attribute::OptimizeForSize); 189 190 /// This optimization identifies DIV instructions that can be 191 /// profitably bypassed and carried out with a shorter, faster divide. 192 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 193 const DenseMap<unsigned int, unsigned int> &BypassWidths = 194 TLI->getBypassSlowDivWidths(); 195 for (Function::iterator I = F.begin(); I != F.end(); I++) 196 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 197 } 198 199 // Eliminate blocks that contain only PHI nodes and an 200 // unconditional branch. 201 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 202 203 // llvm.dbg.value is far away from the value then iSel may not be able 204 // handle it properly. iSel will drop llvm.dbg.value if it can not 205 // find a node corresponding to the value. 206 EverMadeChange |= PlaceDbgValues(F); 207 208 // If there is a mask, compare against zero, and branch that can be combined 209 // into a single target instruction, push the mask and compare into branch 210 // users. Do this before OptimizeBlock -> OptimizeInst -> 211 // OptimizeCmpExpression, which perturbs the pattern being searched for. 212 if (!DisableBranchOpts) 213 EverMadeChange |= sinkAndCmp(F); 214 215 bool MadeChange = true; 216 while (MadeChange) { 217 MadeChange = false; 218 for (Function::iterator I = F.begin(); I != F.end(); ) { 219 BasicBlock *BB = I++; 220 MadeChange |= OptimizeBlock(*BB); 221 } 222 EverMadeChange |= MadeChange; 223 } 224 225 SunkAddrs.clear(); 226 227 if (!DisableBranchOpts) { 228 MadeChange = false; 229 SmallPtrSet<BasicBlock*, 8> WorkList; 230 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 231 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 232 MadeChange |= ConstantFoldTerminator(BB, true); 233 if (!MadeChange) continue; 234 235 for (SmallVectorImpl<BasicBlock*>::iterator 236 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 237 if (pred_begin(*II) == pred_end(*II)) 238 WorkList.insert(*II); 239 } 240 241 // Delete the dead blocks and any of their dead successors. 242 MadeChange |= !WorkList.empty(); 243 while (!WorkList.empty()) { 244 BasicBlock *BB = *WorkList.begin(); 245 WorkList.erase(BB); 246 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 247 248 DeleteDeadBlock(BB); 249 250 for (SmallVectorImpl<BasicBlock*>::iterator 251 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 252 if (pred_begin(*II) == pred_end(*II)) 253 WorkList.insert(*II); 254 } 255 256 // Merge pairs of basic blocks with unconditional branches, connected by 257 // a single edge. 258 if (EverMadeChange || MadeChange) 259 MadeChange |= EliminateFallThrough(F); 260 261 if (MadeChange) 262 ModifiedDT = true; 263 EverMadeChange |= MadeChange; 264 } 265 266 if (ModifiedDT && DT) 267 DT->recalculate(F); 268 269 return EverMadeChange; 270 } 271 272 /// EliminateFallThrough - Merge basic blocks which are connected 273 /// by a single edge, where one of the basic blocks has a single successor 274 /// pointing to the other basic block, which has a single predecessor. 275 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 276 bool Changed = false; 277 // Scan all of the blocks in the function, except for the entry block. 278 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 279 BasicBlock *BB = I++; 280 // If the destination block has a single pred, then this is a trivial 281 // edge, just collapse it. 282 BasicBlock *SinglePred = BB->getSinglePredecessor(); 283 284 // Don't merge if BB's address is taken. 285 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 286 287 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 288 if (Term && !Term->isConditional()) { 289 Changed = true; 290 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 291 // Remember if SinglePred was the entry block of the function. 292 // If so, we will need to move BB back to the entry position. 293 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 294 MergeBasicBlockIntoOnlyPred(BB, this); 295 296 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 297 BB->moveBefore(&BB->getParent()->getEntryBlock()); 298 299 // We have erased a block. Update the iterator. 300 I = BB; 301 } 302 } 303 return Changed; 304 } 305 306 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 307 /// debug info directives, and an unconditional branch. Passes before isel 308 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 309 /// isel. Start by eliminating these blocks so we can split them the way we 310 /// want them. 311 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 312 bool MadeChange = false; 313 // Note that this intentionally skips the entry block. 314 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 315 BasicBlock *BB = I++; 316 317 // If this block doesn't end with an uncond branch, ignore it. 318 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 319 if (!BI || !BI->isUnconditional()) 320 continue; 321 322 // If the instruction before the branch (skipping debug info) isn't a phi 323 // node, then other stuff is happening here. 324 BasicBlock::iterator BBI = BI; 325 if (BBI != BB->begin()) { 326 --BBI; 327 while (isa<DbgInfoIntrinsic>(BBI)) { 328 if (BBI == BB->begin()) 329 break; 330 --BBI; 331 } 332 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 333 continue; 334 } 335 336 // Do not break infinite loops. 337 BasicBlock *DestBB = BI->getSuccessor(0); 338 if (DestBB == BB) 339 continue; 340 341 if (!CanMergeBlocks(BB, DestBB)) 342 continue; 343 344 EliminateMostlyEmptyBlock(BB); 345 MadeChange = true; 346 } 347 return MadeChange; 348 } 349 350 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 351 /// single uncond branch between them, and BB contains no other non-phi 352 /// instructions. 353 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 354 const BasicBlock *DestBB) const { 355 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 356 // the successor. If there are more complex condition (e.g. preheaders), 357 // don't mess around with them. 358 BasicBlock::const_iterator BBI = BB->begin(); 359 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 360 for (const User *U : PN->users()) { 361 const Instruction *UI = cast<Instruction>(U); 362 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 363 return false; 364 // If User is inside DestBB block and it is a PHINode then check 365 // incoming value. If incoming value is not from BB then this is 366 // a complex condition (e.g. preheaders) we want to avoid here. 367 if (UI->getParent() == DestBB) { 368 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 369 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 370 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 371 if (Insn && Insn->getParent() == BB && 372 Insn->getParent() != UPN->getIncomingBlock(I)) 373 return false; 374 } 375 } 376 } 377 } 378 379 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 380 // and DestBB may have conflicting incoming values for the block. If so, we 381 // can't merge the block. 382 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 383 if (!DestBBPN) return true; // no conflict. 384 385 // Collect the preds of BB. 386 SmallPtrSet<const BasicBlock*, 16> BBPreds; 387 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 388 // It is faster to get preds from a PHI than with pred_iterator. 389 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 390 BBPreds.insert(BBPN->getIncomingBlock(i)); 391 } else { 392 BBPreds.insert(pred_begin(BB), pred_end(BB)); 393 } 394 395 // Walk the preds of DestBB. 396 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 397 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 398 if (BBPreds.count(Pred)) { // Common predecessor? 399 BBI = DestBB->begin(); 400 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 401 const Value *V1 = PN->getIncomingValueForBlock(Pred); 402 const Value *V2 = PN->getIncomingValueForBlock(BB); 403 404 // If V2 is a phi node in BB, look up what the mapped value will be. 405 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 406 if (V2PN->getParent() == BB) 407 V2 = V2PN->getIncomingValueForBlock(Pred); 408 409 // If there is a conflict, bail out. 410 if (V1 != V2) return false; 411 } 412 } 413 } 414 415 return true; 416 } 417 418 419 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 420 /// an unconditional branch in it. 421 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 422 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 423 BasicBlock *DestBB = BI->getSuccessor(0); 424 425 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 426 427 // If the destination block has a single pred, then this is a trivial edge, 428 // just collapse it. 429 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 430 if (SinglePred != DestBB) { 431 // Remember if SinglePred was the entry block of the function. If so, we 432 // will need to move BB back to the entry position. 433 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 434 MergeBasicBlockIntoOnlyPred(DestBB, this); 435 436 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 437 BB->moveBefore(&BB->getParent()->getEntryBlock()); 438 439 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 440 return; 441 } 442 } 443 444 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 445 // to handle the new incoming edges it is about to have. 446 PHINode *PN; 447 for (BasicBlock::iterator BBI = DestBB->begin(); 448 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 449 // Remove the incoming value for BB, and remember it. 450 Value *InVal = PN->removeIncomingValue(BB, false); 451 452 // Two options: either the InVal is a phi node defined in BB or it is some 453 // value that dominates BB. 454 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 455 if (InValPhi && InValPhi->getParent() == BB) { 456 // Add all of the input values of the input PHI as inputs of this phi. 457 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 458 PN->addIncoming(InValPhi->getIncomingValue(i), 459 InValPhi->getIncomingBlock(i)); 460 } else { 461 // Otherwise, add one instance of the dominating value for each edge that 462 // we will be adding. 463 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 464 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 465 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 466 } else { 467 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 468 PN->addIncoming(InVal, *PI); 469 } 470 } 471 } 472 473 // The PHIs are now updated, change everything that refers to BB to use 474 // DestBB and remove BB. 475 BB->replaceAllUsesWith(DestBB); 476 if (DT && !ModifiedDT) { 477 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 478 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 479 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 480 DT->changeImmediateDominator(DestBB, NewIDom); 481 DT->eraseNode(BB); 482 } 483 BB->eraseFromParent(); 484 ++NumBlocksElim; 485 486 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 487 } 488 489 /// SinkCast - Sink the specified cast instruction into its user blocks 490 static bool SinkCast(CastInst *CI) { 491 BasicBlock *DefBB = CI->getParent(); 492 493 /// InsertedCasts - Only insert a cast in each block once. 494 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 495 496 bool MadeChange = false; 497 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 498 UI != E; ) { 499 Use &TheUse = UI.getUse(); 500 Instruction *User = cast<Instruction>(*UI); 501 502 // Figure out which BB this cast is used in. For PHI's this is the 503 // appropriate predecessor block. 504 BasicBlock *UserBB = User->getParent(); 505 if (PHINode *PN = dyn_cast<PHINode>(User)) { 506 UserBB = PN->getIncomingBlock(TheUse); 507 } 508 509 // Preincrement use iterator so we don't invalidate it. 510 ++UI; 511 512 // If this user is in the same block as the cast, don't change the cast. 513 if (UserBB == DefBB) continue; 514 515 // If we have already inserted a cast into this block, use it. 516 CastInst *&InsertedCast = InsertedCasts[UserBB]; 517 518 if (!InsertedCast) { 519 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 520 InsertedCast = 521 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 522 InsertPt); 523 MadeChange = true; 524 } 525 526 // Replace a use of the cast with a use of the new cast. 527 TheUse = InsertedCast; 528 ++NumCastUses; 529 } 530 531 // If we removed all uses, nuke the cast. 532 if (CI->use_empty()) { 533 CI->eraseFromParent(); 534 MadeChange = true; 535 } 536 537 return MadeChange; 538 } 539 540 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 541 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 542 /// sink it into user blocks to reduce the number of virtual 543 /// registers that must be created and coalesced. 544 /// 545 /// Return true if any changes are made. 546 /// 547 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 548 // If this is a noop copy, 549 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 550 EVT DstVT = TLI.getValueType(CI->getType()); 551 552 // This is an fp<->int conversion? 553 if (SrcVT.isInteger() != DstVT.isInteger()) 554 return false; 555 556 // If this is an extension, it will be a zero or sign extension, which 557 // isn't a noop. 558 if (SrcVT.bitsLT(DstVT)) return false; 559 560 // If these values will be promoted, find out what they will be promoted 561 // to. This helps us consider truncates on PPC as noop copies when they 562 // are. 563 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 564 TargetLowering::TypePromoteInteger) 565 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 566 if (TLI.getTypeAction(CI->getContext(), DstVT) == 567 TargetLowering::TypePromoteInteger) 568 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 569 570 // If, after promotion, these are the same types, this is a noop copy. 571 if (SrcVT != DstVT) 572 return false; 573 574 return SinkCast(CI); 575 } 576 577 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 578 /// the number of virtual registers that must be created and coalesced. This is 579 /// a clear win except on targets with multiple condition code registers 580 /// (PowerPC), where it might lose; some adjustment may be wanted there. 581 /// 582 /// Return true if any changes are made. 583 static bool OptimizeCmpExpression(CmpInst *CI) { 584 BasicBlock *DefBB = CI->getParent(); 585 586 /// InsertedCmp - Only insert a cmp in each block once. 587 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 588 589 bool MadeChange = false; 590 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 591 UI != E; ) { 592 Use &TheUse = UI.getUse(); 593 Instruction *User = cast<Instruction>(*UI); 594 595 // Preincrement use iterator so we don't invalidate it. 596 ++UI; 597 598 // Don't bother for PHI nodes. 599 if (isa<PHINode>(User)) 600 continue; 601 602 // Figure out which BB this cmp is used in. 603 BasicBlock *UserBB = User->getParent(); 604 605 // If this user is in the same block as the cmp, don't change the cmp. 606 if (UserBB == DefBB) continue; 607 608 // If we have already inserted a cmp into this block, use it. 609 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 610 611 if (!InsertedCmp) { 612 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 613 InsertedCmp = 614 CmpInst::Create(CI->getOpcode(), 615 CI->getPredicate(), CI->getOperand(0), 616 CI->getOperand(1), "", InsertPt); 617 MadeChange = true; 618 } 619 620 // Replace a use of the cmp with a use of the new cmp. 621 TheUse = InsertedCmp; 622 ++NumCmpUses; 623 } 624 625 // If we removed all uses, nuke the cmp. 626 if (CI->use_empty()) 627 CI->eraseFromParent(); 628 629 return MadeChange; 630 } 631 632 /// isExtractBitsCandidateUse - Check if the candidates could 633 /// be combined with shift instruction, which includes: 634 /// 1. Truncate instruction 635 /// 2. And instruction and the imm is a mask of the low bits: 636 /// imm & (imm+1) == 0 637 static bool isExtractBitsCandidateUse(Instruction *User) { 638 if (!isa<TruncInst>(User)) { 639 if (User->getOpcode() != Instruction::And || 640 !isa<ConstantInt>(User->getOperand(1))) 641 return false; 642 643 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 644 645 if ((Cimm & (Cimm + 1)).getBoolValue()) 646 return false; 647 } 648 return true; 649 } 650 651 /// SinkShiftAndTruncate - sink both shift and truncate instruction 652 /// to the use of truncate's BB. 653 static bool 654 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 655 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 656 const TargetLowering &TLI) { 657 BasicBlock *UserBB = User->getParent(); 658 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 659 TruncInst *TruncI = dyn_cast<TruncInst>(User); 660 bool MadeChange = false; 661 662 for (Value::user_iterator TruncUI = TruncI->user_begin(), 663 TruncE = TruncI->user_end(); 664 TruncUI != TruncE;) { 665 666 Use &TruncTheUse = TruncUI.getUse(); 667 Instruction *TruncUser = cast<Instruction>(*TruncUI); 668 // Preincrement use iterator so we don't invalidate it. 669 670 ++TruncUI; 671 672 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 673 if (!ISDOpcode) 674 continue; 675 676 // If the use is actually a legal node, there will not be an implicit 677 // truncate. 678 if (TLI.isOperationLegalOrCustom(ISDOpcode, 679 EVT::getEVT(TruncUser->getType()))) 680 continue; 681 682 // Don't bother for PHI nodes. 683 if (isa<PHINode>(TruncUser)) 684 continue; 685 686 BasicBlock *TruncUserBB = TruncUser->getParent(); 687 688 if (UserBB == TruncUserBB) 689 continue; 690 691 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 692 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 693 694 if (!InsertedShift && !InsertedTrunc) { 695 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 696 // Sink the shift 697 if (ShiftI->getOpcode() == Instruction::AShr) 698 InsertedShift = 699 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 700 else 701 InsertedShift = 702 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 703 704 // Sink the trunc 705 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 706 TruncInsertPt++; 707 708 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 709 TruncI->getType(), "", TruncInsertPt); 710 711 MadeChange = true; 712 713 TruncTheUse = InsertedTrunc; 714 } 715 } 716 return MadeChange; 717 } 718 719 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 720 /// the uses could potentially be combined with this shift instruction and 721 /// generate BitExtract instruction. It will only be applied if the architecture 722 /// supports BitExtract instruction. Here is an example: 723 /// BB1: 724 /// %x.extract.shift = lshr i64 %arg1, 32 725 /// BB2: 726 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 727 /// ==> 728 /// 729 /// BB2: 730 /// %x.extract.shift.1 = lshr i64 %arg1, 32 731 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 732 /// 733 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 734 /// instruction. 735 /// Return true if any changes are made. 736 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 737 const TargetLowering &TLI) { 738 BasicBlock *DefBB = ShiftI->getParent(); 739 740 /// Only insert instructions in each block once. 741 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 742 743 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 744 745 bool MadeChange = false; 746 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 747 UI != E;) { 748 Use &TheUse = UI.getUse(); 749 Instruction *User = cast<Instruction>(*UI); 750 // Preincrement use iterator so we don't invalidate it. 751 ++UI; 752 753 // Don't bother for PHI nodes. 754 if (isa<PHINode>(User)) 755 continue; 756 757 if (!isExtractBitsCandidateUse(User)) 758 continue; 759 760 BasicBlock *UserBB = User->getParent(); 761 762 if (UserBB == DefBB) { 763 // If the shift and truncate instruction are in the same BB. The use of 764 // the truncate(TruncUse) may still introduce another truncate if not 765 // legal. In this case, we would like to sink both shift and truncate 766 // instruction to the BB of TruncUse. 767 // for example: 768 // BB1: 769 // i64 shift.result = lshr i64 opnd, imm 770 // trunc.result = trunc shift.result to i16 771 // 772 // BB2: 773 // ----> We will have an implicit truncate here if the architecture does 774 // not have i16 compare. 775 // cmp i16 trunc.result, opnd2 776 // 777 if (isa<TruncInst>(User) && shiftIsLegal 778 // If the type of the truncate is legal, no trucate will be 779 // introduced in other basic blocks. 780 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 781 MadeChange = 782 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 783 784 continue; 785 } 786 // If we have already inserted a shift into this block, use it. 787 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 788 789 if (!InsertedShift) { 790 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 791 792 if (ShiftI->getOpcode() == Instruction::AShr) 793 InsertedShift = 794 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 795 else 796 InsertedShift = 797 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 798 799 MadeChange = true; 800 } 801 802 // Replace a use of the shift with a use of the new shift. 803 TheUse = InsertedShift; 804 } 805 806 // If we removed all uses, nuke the shift. 807 if (ShiftI->use_empty()) 808 ShiftI->eraseFromParent(); 809 810 return MadeChange; 811 } 812 813 namespace { 814 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { 815 protected: 816 void replaceCall(Value *With) override { 817 CI->replaceAllUsesWith(With); 818 CI->eraseFromParent(); 819 } 820 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override { 821 if (ConstantInt *SizeCI = 822 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) 823 return SizeCI->isAllOnesValue(); 824 return false; 825 } 826 }; 827 } // end anonymous namespace 828 829 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { 830 BasicBlock *BB = CI->getParent(); 831 832 // Lower inline assembly if we can. 833 // If we found an inline asm expession, and if the target knows how to 834 // lower it to normal LLVM code, do so now. 835 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 836 if (TLI->ExpandInlineAsm(CI)) { 837 // Avoid invalidating the iterator. 838 CurInstIterator = BB->begin(); 839 // Avoid processing instructions out of order, which could cause 840 // reuse before a value is defined. 841 SunkAddrs.clear(); 842 return true; 843 } 844 // Sink address computing for memory operands into the block. 845 if (OptimizeInlineAsmInst(CI)) 846 return true; 847 } 848 849 // Lower all uses of llvm.objectsize.* 850 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 851 if (II && II->getIntrinsicID() == Intrinsic::objectsize) { 852 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 853 Type *ReturnTy = CI->getType(); 854 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 855 856 // Substituting this can cause recursive simplifications, which can 857 // invalidate our iterator. Use a WeakVH to hold onto it in case this 858 // happens. 859 WeakVH IterHandle(CurInstIterator); 860 861 replaceAndRecursivelySimplify(CI, RetVal, 862 TLI ? TLI->getDataLayout() : nullptr, 863 TLInfo, ModifiedDT ? nullptr : DT); 864 865 // If the iterator instruction was recursively deleted, start over at the 866 // start of the block. 867 if (IterHandle != CurInstIterator) { 868 CurInstIterator = BB->begin(); 869 SunkAddrs.clear(); 870 } 871 return true; 872 } 873 874 if (II && TLI) { 875 SmallVector<Value*, 2> PtrOps; 876 Type *AccessTy; 877 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 878 while (!PtrOps.empty()) 879 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 880 return true; 881 } 882 883 // From here on out we're working with named functions. 884 if (!CI->getCalledFunction()) return false; 885 886 // We'll need DataLayout from here on out. 887 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 888 if (!TD) return false; 889 890 // Lower all default uses of _chk calls. This is very similar 891 // to what InstCombineCalls does, but here we are only lowering calls 892 // that have the default "don't know" as the objectsize. Anything else 893 // should be left alone. 894 CodeGenPrepareFortifiedLibCalls Simplifier; 895 return Simplifier.fold(CI, TD, TLInfo); 896 } 897 898 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 899 /// instructions to the predecessor to enable tail call optimizations. The 900 /// case it is currently looking for is: 901 /// @code 902 /// bb0: 903 /// %tmp0 = tail call i32 @f0() 904 /// br label %return 905 /// bb1: 906 /// %tmp1 = tail call i32 @f1() 907 /// br label %return 908 /// bb2: 909 /// %tmp2 = tail call i32 @f2() 910 /// br label %return 911 /// return: 912 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 913 /// ret i32 %retval 914 /// @endcode 915 /// 916 /// => 917 /// 918 /// @code 919 /// bb0: 920 /// %tmp0 = tail call i32 @f0() 921 /// ret i32 %tmp0 922 /// bb1: 923 /// %tmp1 = tail call i32 @f1() 924 /// ret i32 %tmp1 925 /// bb2: 926 /// %tmp2 = tail call i32 @f2() 927 /// ret i32 %tmp2 928 /// @endcode 929 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 930 if (!TLI) 931 return false; 932 933 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 934 if (!RI) 935 return false; 936 937 PHINode *PN = nullptr; 938 BitCastInst *BCI = nullptr; 939 Value *V = RI->getReturnValue(); 940 if (V) { 941 BCI = dyn_cast<BitCastInst>(V); 942 if (BCI) 943 V = BCI->getOperand(0); 944 945 PN = dyn_cast<PHINode>(V); 946 if (!PN) 947 return false; 948 } 949 950 if (PN && PN->getParent() != BB) 951 return false; 952 953 // It's not safe to eliminate the sign / zero extension of the return value. 954 // See llvm::isInTailCallPosition(). 955 const Function *F = BB->getParent(); 956 AttributeSet CallerAttrs = F->getAttributes(); 957 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 958 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 959 return false; 960 961 // Make sure there are no instructions between the PHI and return, or that the 962 // return is the first instruction in the block. 963 if (PN) { 964 BasicBlock::iterator BI = BB->begin(); 965 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 966 if (&*BI == BCI) 967 // Also skip over the bitcast. 968 ++BI; 969 if (&*BI != RI) 970 return false; 971 } else { 972 BasicBlock::iterator BI = BB->begin(); 973 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 974 if (&*BI != RI) 975 return false; 976 } 977 978 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 979 /// call. 980 SmallVector<CallInst*, 4> TailCalls; 981 if (PN) { 982 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 983 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 984 // Make sure the phi value is indeed produced by the tail call. 985 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 986 TLI->mayBeEmittedAsTailCall(CI)) 987 TailCalls.push_back(CI); 988 } 989 } else { 990 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 991 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 992 if (!VisitedBBs.insert(*PI)) 993 continue; 994 995 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 996 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 997 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 998 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 999 if (RI == RE) 1000 continue; 1001 1002 CallInst *CI = dyn_cast<CallInst>(&*RI); 1003 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1004 TailCalls.push_back(CI); 1005 } 1006 } 1007 1008 bool Changed = false; 1009 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1010 CallInst *CI = TailCalls[i]; 1011 CallSite CS(CI); 1012 1013 // Conservatively require the attributes of the call to match those of the 1014 // return. Ignore noalias because it doesn't affect the call sequence. 1015 AttributeSet CalleeAttrs = CS.getAttributes(); 1016 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1017 removeAttribute(Attribute::NoAlias) != 1018 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1019 removeAttribute(Attribute::NoAlias)) 1020 continue; 1021 1022 // Make sure the call instruction is followed by an unconditional branch to 1023 // the return block. 1024 BasicBlock *CallBB = CI->getParent(); 1025 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1026 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1027 continue; 1028 1029 // Duplicate the return into CallBB. 1030 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1031 ModifiedDT = Changed = true; 1032 ++NumRetsDup; 1033 } 1034 1035 // If we eliminated all predecessors of the block, delete the block now. 1036 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1037 BB->eraseFromParent(); 1038 1039 return Changed; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // Memory Optimization 1044 //===----------------------------------------------------------------------===// 1045 1046 namespace { 1047 1048 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1049 /// which holds actual Value*'s for register values. 1050 struct ExtAddrMode : public TargetLowering::AddrMode { 1051 Value *BaseReg; 1052 Value *ScaledReg; 1053 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1054 void print(raw_ostream &OS) const; 1055 void dump() const; 1056 1057 bool operator==(const ExtAddrMode& O) const { 1058 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1059 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1060 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1061 } 1062 }; 1063 1064 #ifndef NDEBUG 1065 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1066 AM.print(OS); 1067 return OS; 1068 } 1069 #endif 1070 1071 void ExtAddrMode::print(raw_ostream &OS) const { 1072 bool NeedPlus = false; 1073 OS << "["; 1074 if (BaseGV) { 1075 OS << (NeedPlus ? " + " : "") 1076 << "GV:"; 1077 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1078 NeedPlus = true; 1079 } 1080 1081 if (BaseOffs) 1082 OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; 1083 1084 if (BaseReg) { 1085 OS << (NeedPlus ? " + " : "") 1086 << "Base:"; 1087 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1088 NeedPlus = true; 1089 } 1090 if (Scale) { 1091 OS << (NeedPlus ? " + " : "") 1092 << Scale << "*"; 1093 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1094 } 1095 1096 OS << ']'; 1097 } 1098 1099 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1100 void ExtAddrMode::dump() const { 1101 print(dbgs()); 1102 dbgs() << '\n'; 1103 } 1104 #endif 1105 1106 /// \brief This class provides transaction based operation on the IR. 1107 /// Every change made through this class is recorded in the internal state and 1108 /// can be undone (rollback) until commit is called. 1109 class TypePromotionTransaction { 1110 1111 /// \brief This represents the common interface of the individual transaction. 1112 /// Each class implements the logic for doing one specific modification on 1113 /// the IR via the TypePromotionTransaction. 1114 class TypePromotionAction { 1115 protected: 1116 /// The Instruction modified. 1117 Instruction *Inst; 1118 1119 public: 1120 /// \brief Constructor of the action. 1121 /// The constructor performs the related action on the IR. 1122 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1123 1124 virtual ~TypePromotionAction() {} 1125 1126 /// \brief Undo the modification done by this action. 1127 /// When this method is called, the IR must be in the same state as it was 1128 /// before this action was applied. 1129 /// \pre Undoing the action works if and only if the IR is in the exact same 1130 /// state as it was directly after this action was applied. 1131 virtual void undo() = 0; 1132 1133 /// \brief Advocate every change made by this action. 1134 /// When the results on the IR of the action are to be kept, it is important 1135 /// to call this function, otherwise hidden information may be kept forever. 1136 virtual void commit() { 1137 // Nothing to be done, this action is not doing anything. 1138 } 1139 }; 1140 1141 /// \brief Utility to remember the position of an instruction. 1142 class InsertionHandler { 1143 /// Position of an instruction. 1144 /// Either an instruction: 1145 /// - Is the first in a basic block: BB is used. 1146 /// - Has a previous instructon: PrevInst is used. 1147 union { 1148 Instruction *PrevInst; 1149 BasicBlock *BB; 1150 } Point; 1151 /// Remember whether or not the instruction had a previous instruction. 1152 bool HasPrevInstruction; 1153 1154 public: 1155 /// \brief Record the position of \p Inst. 1156 InsertionHandler(Instruction *Inst) { 1157 BasicBlock::iterator It = Inst; 1158 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1159 if (HasPrevInstruction) 1160 Point.PrevInst = --It; 1161 else 1162 Point.BB = Inst->getParent(); 1163 } 1164 1165 /// \brief Insert \p Inst at the recorded position. 1166 void insert(Instruction *Inst) { 1167 if (HasPrevInstruction) { 1168 if (Inst->getParent()) 1169 Inst->removeFromParent(); 1170 Inst->insertAfter(Point.PrevInst); 1171 } else { 1172 Instruction *Position = Point.BB->getFirstInsertionPt(); 1173 if (Inst->getParent()) 1174 Inst->moveBefore(Position); 1175 else 1176 Inst->insertBefore(Position); 1177 } 1178 } 1179 }; 1180 1181 /// \brief Move an instruction before another. 1182 class InstructionMoveBefore : public TypePromotionAction { 1183 /// Original position of the instruction. 1184 InsertionHandler Position; 1185 1186 public: 1187 /// \brief Move \p Inst before \p Before. 1188 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1189 : TypePromotionAction(Inst), Position(Inst) { 1190 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1191 Inst->moveBefore(Before); 1192 } 1193 1194 /// \brief Move the instruction back to its original position. 1195 void undo() override { 1196 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1197 Position.insert(Inst); 1198 } 1199 }; 1200 1201 /// \brief Set the operand of an instruction with a new value. 1202 class OperandSetter : public TypePromotionAction { 1203 /// Original operand of the instruction. 1204 Value *Origin; 1205 /// Index of the modified instruction. 1206 unsigned Idx; 1207 1208 public: 1209 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1210 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1211 : TypePromotionAction(Inst), Idx(Idx) { 1212 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1213 << "for:" << *Inst << "\n" 1214 << "with:" << *NewVal << "\n"); 1215 Origin = Inst->getOperand(Idx); 1216 Inst->setOperand(Idx, NewVal); 1217 } 1218 1219 /// \brief Restore the original value of the instruction. 1220 void undo() override { 1221 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1222 << "for: " << *Inst << "\n" 1223 << "with: " << *Origin << "\n"); 1224 Inst->setOperand(Idx, Origin); 1225 } 1226 }; 1227 1228 /// \brief Hide the operands of an instruction. 1229 /// Do as if this instruction was not using any of its operands. 1230 class OperandsHider : public TypePromotionAction { 1231 /// The list of original operands. 1232 SmallVector<Value *, 4> OriginalValues; 1233 1234 public: 1235 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1236 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1237 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1238 unsigned NumOpnds = Inst->getNumOperands(); 1239 OriginalValues.reserve(NumOpnds); 1240 for (unsigned It = 0; It < NumOpnds; ++It) { 1241 // Save the current operand. 1242 Value *Val = Inst->getOperand(It); 1243 OriginalValues.push_back(Val); 1244 // Set a dummy one. 1245 // We could use OperandSetter here, but that would implied an overhead 1246 // that we are not willing to pay. 1247 Inst->setOperand(It, UndefValue::get(Val->getType())); 1248 } 1249 } 1250 1251 /// \brief Restore the original list of uses. 1252 void undo() override { 1253 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1254 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1255 Inst->setOperand(It, OriginalValues[It]); 1256 } 1257 }; 1258 1259 /// \brief Build a truncate instruction. 1260 class TruncBuilder : public TypePromotionAction { 1261 public: 1262 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1263 /// result. 1264 /// trunc Opnd to Ty. 1265 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1266 IRBuilder<> Builder(Opnd); 1267 Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted")); 1268 DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n"); 1269 } 1270 1271 /// \brief Get the built instruction. 1272 Instruction *getBuiltInstruction() { return Inst; } 1273 1274 /// \brief Remove the built instruction. 1275 void undo() override { 1276 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n"); 1277 Inst->eraseFromParent(); 1278 } 1279 }; 1280 1281 /// \brief Build a sign extension instruction. 1282 class SExtBuilder : public TypePromotionAction { 1283 public: 1284 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1285 /// result. 1286 /// sext Opnd to Ty. 1287 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1288 : TypePromotionAction(Inst) { 1289 IRBuilder<> Builder(InsertPt); 1290 Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted")); 1291 DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n"); 1292 } 1293 1294 /// \brief Get the built instruction. 1295 Instruction *getBuiltInstruction() { return Inst; } 1296 1297 /// \brief Remove the built instruction. 1298 void undo() override { 1299 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n"); 1300 Inst->eraseFromParent(); 1301 } 1302 }; 1303 1304 /// \brief Mutate an instruction to another type. 1305 class TypeMutator : public TypePromotionAction { 1306 /// Record the original type. 1307 Type *OrigTy; 1308 1309 public: 1310 /// \brief Mutate the type of \p Inst into \p NewTy. 1311 TypeMutator(Instruction *Inst, Type *NewTy) 1312 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1313 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1314 << "\n"); 1315 Inst->mutateType(NewTy); 1316 } 1317 1318 /// \brief Mutate the instruction back to its original type. 1319 void undo() override { 1320 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1321 << "\n"); 1322 Inst->mutateType(OrigTy); 1323 } 1324 }; 1325 1326 /// \brief Replace the uses of an instruction by another instruction. 1327 class UsesReplacer : public TypePromotionAction { 1328 /// Helper structure to keep track of the replaced uses. 1329 struct InstructionAndIdx { 1330 /// The instruction using the instruction. 1331 Instruction *Inst; 1332 /// The index where this instruction is used for Inst. 1333 unsigned Idx; 1334 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1335 : Inst(Inst), Idx(Idx) {} 1336 }; 1337 1338 /// Keep track of the original uses (pair Instruction, Index). 1339 SmallVector<InstructionAndIdx, 4> OriginalUses; 1340 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1341 1342 public: 1343 /// \brief Replace all the use of \p Inst by \p New. 1344 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1345 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1346 << "\n"); 1347 // Record the original uses. 1348 for (Use &U : Inst->uses()) { 1349 Instruction *UserI = cast<Instruction>(U.getUser()); 1350 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1351 } 1352 // Now, we can replace the uses. 1353 Inst->replaceAllUsesWith(New); 1354 } 1355 1356 /// \brief Reassign the original uses of Inst to Inst. 1357 void undo() override { 1358 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1359 for (use_iterator UseIt = OriginalUses.begin(), 1360 EndIt = OriginalUses.end(); 1361 UseIt != EndIt; ++UseIt) { 1362 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1363 } 1364 } 1365 }; 1366 1367 /// \brief Remove an instruction from the IR. 1368 class InstructionRemover : public TypePromotionAction { 1369 /// Original position of the instruction. 1370 InsertionHandler Inserter; 1371 /// Helper structure to hide all the link to the instruction. In other 1372 /// words, this helps to do as if the instruction was removed. 1373 OperandsHider Hider; 1374 /// Keep track of the uses replaced, if any. 1375 UsesReplacer *Replacer; 1376 1377 public: 1378 /// \brief Remove all reference of \p Inst and optinally replace all its 1379 /// uses with New. 1380 /// \pre If !Inst->use_empty(), then New != nullptr 1381 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1382 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1383 Replacer(nullptr) { 1384 if (New) 1385 Replacer = new UsesReplacer(Inst, New); 1386 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1387 Inst->removeFromParent(); 1388 } 1389 1390 ~InstructionRemover() { delete Replacer; } 1391 1392 /// \brief Really remove the instruction. 1393 void commit() override { delete Inst; } 1394 1395 /// \brief Resurrect the instruction and reassign it to the proper uses if 1396 /// new value was provided when build this action. 1397 void undo() override { 1398 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1399 Inserter.insert(Inst); 1400 if (Replacer) 1401 Replacer->undo(); 1402 Hider.undo(); 1403 } 1404 }; 1405 1406 public: 1407 /// Restoration point. 1408 /// The restoration point is a pointer to an action instead of an iterator 1409 /// because the iterator may be invalidated but not the pointer. 1410 typedef const TypePromotionAction *ConstRestorationPt; 1411 /// Advocate every changes made in that transaction. 1412 void commit(); 1413 /// Undo all the changes made after the given point. 1414 void rollback(ConstRestorationPt Point); 1415 /// Get the current restoration point. 1416 ConstRestorationPt getRestorationPoint() const; 1417 1418 /// \name API for IR modification with state keeping to support rollback. 1419 /// @{ 1420 /// Same as Instruction::setOperand. 1421 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1422 /// Same as Instruction::eraseFromParent. 1423 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1424 /// Same as Value::replaceAllUsesWith. 1425 void replaceAllUsesWith(Instruction *Inst, Value *New); 1426 /// Same as Value::mutateType. 1427 void mutateType(Instruction *Inst, Type *NewTy); 1428 /// Same as IRBuilder::createTrunc. 1429 Instruction *createTrunc(Instruction *Opnd, Type *Ty); 1430 /// Same as IRBuilder::createSExt. 1431 Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1432 /// Same as Instruction::moveBefore. 1433 void moveBefore(Instruction *Inst, Instruction *Before); 1434 /// @} 1435 1436 private: 1437 /// The ordered list of actions made so far. 1438 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1439 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1440 }; 1441 1442 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1443 Value *NewVal) { 1444 Actions.push_back( 1445 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1446 } 1447 1448 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1449 Value *NewVal) { 1450 Actions.push_back( 1451 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1452 } 1453 1454 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1455 Value *New) { 1456 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1457 } 1458 1459 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1460 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1461 } 1462 1463 Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1464 Type *Ty) { 1465 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1466 Instruction *I = Ptr->getBuiltInstruction(); 1467 Actions.push_back(std::move(Ptr)); 1468 return I; 1469 } 1470 1471 Instruction *TypePromotionTransaction::createSExt(Instruction *Inst, 1472 Value *Opnd, Type *Ty) { 1473 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1474 Instruction *I = Ptr->getBuiltInstruction(); 1475 Actions.push_back(std::move(Ptr)); 1476 return I; 1477 } 1478 1479 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1480 Instruction *Before) { 1481 Actions.push_back( 1482 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1483 } 1484 1485 TypePromotionTransaction::ConstRestorationPt 1486 TypePromotionTransaction::getRestorationPoint() const { 1487 return !Actions.empty() ? Actions.back().get() : nullptr; 1488 } 1489 1490 void TypePromotionTransaction::commit() { 1491 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1492 ++It) 1493 (*It)->commit(); 1494 Actions.clear(); 1495 } 1496 1497 void TypePromotionTransaction::rollback( 1498 TypePromotionTransaction::ConstRestorationPt Point) { 1499 while (!Actions.empty() && Point != Actions.back().get()) { 1500 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1501 Curr->undo(); 1502 } 1503 } 1504 1505 /// \brief A helper class for matching addressing modes. 1506 /// 1507 /// This encapsulates the logic for matching the target-legal addressing modes. 1508 class AddressingModeMatcher { 1509 SmallVectorImpl<Instruction*> &AddrModeInsts; 1510 const TargetLowering &TLI; 1511 1512 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1513 /// the memory instruction that we're computing this address for. 1514 Type *AccessTy; 1515 Instruction *MemoryInst; 1516 1517 /// AddrMode - This is the addressing mode that we're building up. This is 1518 /// part of the return value of this addressing mode matching stuff. 1519 ExtAddrMode &AddrMode; 1520 1521 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1522 const SetOfInstrs &InsertedTruncs; 1523 /// A map from the instructions to their type before promotion. 1524 InstrToOrigTy &PromotedInsts; 1525 /// The ongoing transaction where every action should be registered. 1526 TypePromotionTransaction &TPT; 1527 1528 /// IgnoreProfitability - This is set to true when we should not do 1529 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1530 /// always returns true. 1531 bool IgnoreProfitability; 1532 1533 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1534 const TargetLowering &T, Type *AT, 1535 Instruction *MI, ExtAddrMode &AM, 1536 const SetOfInstrs &InsertedTruncs, 1537 InstrToOrigTy &PromotedInsts, 1538 TypePromotionTransaction &TPT) 1539 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1540 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1541 IgnoreProfitability = false; 1542 } 1543 public: 1544 1545 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1546 /// give an access type of AccessTy. This returns a list of involved 1547 /// instructions in AddrModeInsts. 1548 /// \p InsertedTruncs The truncate instruction inserted by other 1549 /// CodeGenPrepare 1550 /// optimizations. 1551 /// \p PromotedInsts maps the instructions to their type before promotion. 1552 /// \p The ongoing transaction where every action should be registered. 1553 static ExtAddrMode Match(Value *V, Type *AccessTy, 1554 Instruction *MemoryInst, 1555 SmallVectorImpl<Instruction*> &AddrModeInsts, 1556 const TargetLowering &TLI, 1557 const SetOfInstrs &InsertedTruncs, 1558 InstrToOrigTy &PromotedInsts, 1559 TypePromotionTransaction &TPT) { 1560 ExtAddrMode Result; 1561 1562 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 1563 MemoryInst, Result, InsertedTruncs, 1564 PromotedInsts, TPT).MatchAddr(V, 0); 1565 (void)Success; assert(Success && "Couldn't select *anything*?"); 1566 return Result; 1567 } 1568 private: 1569 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 1570 bool MatchAddr(Value *V, unsigned Depth); 1571 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 1572 bool *MovedAway = nullptr); 1573 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 1574 ExtAddrMode &AMBefore, 1575 ExtAddrMode &AMAfter); 1576 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 1577 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 1578 Value *PromotedOperand) const; 1579 }; 1580 1581 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 1582 /// Return true and update AddrMode if this addr mode is legal for the target, 1583 /// false if not. 1584 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 1585 unsigned Depth) { 1586 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 1587 // mode. Just process that directly. 1588 if (Scale == 1) 1589 return MatchAddr(ScaleReg, Depth); 1590 1591 // If the scale is 0, it takes nothing to add this. 1592 if (Scale == 0) 1593 return true; 1594 1595 // If we already have a scale of this value, we can add to it, otherwise, we 1596 // need an available scale field. 1597 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 1598 return false; 1599 1600 ExtAddrMode TestAddrMode = AddrMode; 1601 1602 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 1603 // [A+B + A*7] -> [B+A*8]. 1604 TestAddrMode.Scale += Scale; 1605 TestAddrMode.ScaledReg = ScaleReg; 1606 1607 // If the new address isn't legal, bail out. 1608 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 1609 return false; 1610 1611 // It was legal, so commit it. 1612 AddrMode = TestAddrMode; 1613 1614 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 1615 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 1616 // X*Scale + C*Scale to addr mode. 1617 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 1618 if (isa<Instruction>(ScaleReg) && // not a constant expr. 1619 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 1620 TestAddrMode.ScaledReg = AddLHS; 1621 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 1622 1623 // If this addressing mode is legal, commit it and remember that we folded 1624 // this instruction. 1625 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 1626 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 1627 AddrMode = TestAddrMode; 1628 return true; 1629 } 1630 } 1631 1632 // Otherwise, not (x+c)*scale, just return what we have. 1633 return true; 1634 } 1635 1636 /// MightBeFoldableInst - This is a little filter, which returns true if an 1637 /// addressing computation involving I might be folded into a load/store 1638 /// accessing it. This doesn't need to be perfect, but needs to accept at least 1639 /// the set of instructions that MatchOperationAddr can. 1640 static bool MightBeFoldableInst(Instruction *I) { 1641 switch (I->getOpcode()) { 1642 case Instruction::BitCast: 1643 // Don't touch identity bitcasts. 1644 if (I->getType() == I->getOperand(0)->getType()) 1645 return false; 1646 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 1647 case Instruction::PtrToInt: 1648 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1649 return true; 1650 case Instruction::IntToPtr: 1651 // We know the input is intptr_t, so this is foldable. 1652 return true; 1653 case Instruction::Add: 1654 return true; 1655 case Instruction::Mul: 1656 case Instruction::Shl: 1657 // Can only handle X*C and X << C. 1658 return isa<ConstantInt>(I->getOperand(1)); 1659 case Instruction::GetElementPtr: 1660 return true; 1661 default: 1662 return false; 1663 } 1664 } 1665 1666 /// \brief Hepler class to perform type promotion. 1667 class TypePromotionHelper { 1668 /// \brief Utility function to check whether or not a sign extension of 1669 /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either 1670 /// using the operands of \p Inst or promoting \p Inst. 1671 /// In other words, check if: 1672 /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType. 1673 /// #1 Promotion applies: 1674 /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...). 1675 /// #2 Operand reuses: 1676 /// sext opnd1 to ConsideredSExtType. 1677 /// \p PromotedInsts maps the instructions to their type before promotion. 1678 static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType, 1679 const InstrToOrigTy &PromotedInsts); 1680 1681 /// \brief Utility function to determine if \p OpIdx should be promoted when 1682 /// promoting \p Inst. 1683 static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) { 1684 if (isa<SelectInst>(Inst) && OpIdx == 0) 1685 return false; 1686 return true; 1687 } 1688 1689 /// \brief Utility function to promote the operand of \p SExt when this 1690 /// operand is a promotable trunc or sext. 1691 /// \p PromotedInsts maps the instructions to their type before promotion. 1692 /// \p CreatedInsts[out] contains how many non-free instructions have been 1693 /// created to promote the operand of SExt. 1694 /// Should never be called directly. 1695 /// \return The promoted value which is used instead of SExt. 1696 static Value *promoteOperandForTruncAndSExt(Instruction *SExt, 1697 TypePromotionTransaction &TPT, 1698 InstrToOrigTy &PromotedInsts, 1699 unsigned &CreatedInsts); 1700 1701 /// \brief Utility function to promote the operand of \p SExt when this 1702 /// operand is promotable and is not a supported trunc or sext. 1703 /// \p PromotedInsts maps the instructions to their type before promotion. 1704 /// \p CreatedInsts[out] contains how many non-free instructions have been 1705 /// created to promote the operand of SExt. 1706 /// Should never be called directly. 1707 /// \return The promoted value which is used instead of SExt. 1708 static Value *promoteOperandForOther(Instruction *SExt, 1709 TypePromotionTransaction &TPT, 1710 InstrToOrigTy &PromotedInsts, 1711 unsigned &CreatedInsts); 1712 1713 public: 1714 /// Type for the utility function that promotes the operand of SExt. 1715 typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT, 1716 InstrToOrigTy &PromotedInsts, 1717 unsigned &CreatedInsts); 1718 /// \brief Given a sign extend instruction \p SExt, return the approriate 1719 /// action to promote the operand of \p SExt instead of using SExt. 1720 /// \return NULL if no promotable action is possible with the current 1721 /// sign extension. 1722 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 1723 /// the others CodeGenPrepare optimizations. This information is important 1724 /// because we do not want to promote these instructions as CodeGenPrepare 1725 /// will reinsert them later. Thus creating an infinite loop: create/remove. 1726 /// \p PromotedInsts maps the instructions to their type before promotion. 1727 static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1728 const TargetLowering &TLI, 1729 const InstrToOrigTy &PromotedInsts); 1730 }; 1731 1732 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 1733 Type *ConsideredSExtType, 1734 const InstrToOrigTy &PromotedInsts) { 1735 // We can always get through sext. 1736 if (isa<SExtInst>(Inst)) 1737 return true; 1738 1739 // We can get through binary operator, if it is legal. In other words, the 1740 // binary operator must have a nuw or nsw flag. 1741 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 1742 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 1743 (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap())) 1744 return true; 1745 1746 // Check if we can do the following simplification. 1747 // sext(trunc(sext)) --> sext 1748 if (!isa<TruncInst>(Inst)) 1749 return false; 1750 1751 Value *OpndVal = Inst->getOperand(0); 1752 // Check if we can use this operand in the sext. 1753 // If the type is larger than the result type of the sign extension, 1754 // we cannot. 1755 if (OpndVal->getType()->getIntegerBitWidth() > 1756 ConsideredSExtType->getIntegerBitWidth()) 1757 return false; 1758 1759 // If the operand of the truncate is not an instruction, we will not have 1760 // any information on the dropped bits. 1761 // (Actually we could for constant but it is not worth the extra logic). 1762 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 1763 if (!Opnd) 1764 return false; 1765 1766 // Check if the source of the type is narrow enough. 1767 // I.e., check that trunc just drops sign extended bits. 1768 // #1 get the type of the operand. 1769 const Type *OpndType; 1770 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 1771 if (It != PromotedInsts.end()) 1772 OpndType = It->second; 1773 else if (isa<SExtInst>(Opnd)) 1774 OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType(); 1775 else 1776 return false; 1777 1778 // #2 check that the truncate just drop sign extended bits. 1779 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 1780 return true; 1781 1782 return false; 1783 } 1784 1785 TypePromotionHelper::Action TypePromotionHelper::getAction( 1786 Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1787 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 1788 Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0)); 1789 Type *SExtTy = SExt->getType(); 1790 // If the operand of the sign extension is not an instruction, we cannot 1791 // get through. 1792 // If it, check we can get through. 1793 if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts)) 1794 return nullptr; 1795 1796 // Do not promote if the operand has been added by codegenprepare. 1797 // Otherwise, it means we are undoing an optimization that is likely to be 1798 // redone, thus causing potential infinite loop. 1799 if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd)) 1800 return nullptr; 1801 1802 // SExt or Trunc instructions. 1803 // Return the related handler. 1804 if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd)) 1805 return promoteOperandForTruncAndSExt; 1806 1807 // Regular instruction. 1808 // Abort early if we will have to insert non-free instructions. 1809 if (!SExtOpnd->hasOneUse() && 1810 !TLI.isTruncateFree(SExtTy, SExtOpnd->getType())) 1811 return nullptr; 1812 return promoteOperandForOther; 1813 } 1814 1815 Value *TypePromotionHelper::promoteOperandForTruncAndSExt( 1816 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 1817 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) { 1818 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1819 // get through it and this method should not be called. 1820 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1821 // Replace sext(trunc(opnd)) or sext(sext(opnd)) 1822 // => sext(opnd). 1823 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 1824 CreatedInsts = 0; 1825 1826 // Remove dead code. 1827 if (SExtOpnd->use_empty()) 1828 TPT.eraseInstruction(SExtOpnd); 1829 1830 // Check if the sext is still needed. 1831 if (SExt->getType() != SExt->getOperand(0)->getType()) 1832 return SExt; 1833 1834 // At this point we have: sext ty opnd to ty. 1835 // Reassign the uses of SExt to the opnd and remove SExt. 1836 Value *NextVal = SExt->getOperand(0); 1837 TPT.eraseInstruction(SExt, NextVal); 1838 return NextVal; 1839 } 1840 1841 Value * 1842 TypePromotionHelper::promoteOperandForOther(Instruction *SExt, 1843 TypePromotionTransaction &TPT, 1844 InstrToOrigTy &PromotedInsts, 1845 unsigned &CreatedInsts) { 1846 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1847 // get through it and this method should not be called. 1848 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1849 CreatedInsts = 0; 1850 if (!SExtOpnd->hasOneUse()) { 1851 // SExtOpnd will be promoted. 1852 // All its uses, but SExt, will need to use a truncated value of the 1853 // promoted version. 1854 // Create the truncate now. 1855 Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType()); 1856 Trunc->removeFromParent(); 1857 // Insert it just after the definition. 1858 Trunc->insertAfter(SExtOpnd); 1859 1860 TPT.replaceAllUsesWith(SExtOpnd, Trunc); 1861 // Restore the operand of SExt (which has been replace by the previous call 1862 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 1863 TPT.setOperand(SExt, 0, SExtOpnd); 1864 } 1865 1866 // Get through the Instruction: 1867 // 1. Update its type. 1868 // 2. Replace the uses of SExt by Inst. 1869 // 3. Sign extend each operand that needs to be sign extended. 1870 1871 // Remember the original type of the instruction before promotion. 1872 // This is useful to know that the high bits are sign extended bits. 1873 PromotedInsts.insert( 1874 std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType())); 1875 // Step #1. 1876 TPT.mutateType(SExtOpnd, SExt->getType()); 1877 // Step #2. 1878 TPT.replaceAllUsesWith(SExt, SExtOpnd); 1879 // Step #3. 1880 Instruction *SExtForOpnd = SExt; 1881 1882 DEBUG(dbgs() << "Propagate SExt to operands\n"); 1883 for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 1884 ++OpIdx) { 1885 DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n'); 1886 if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() || 1887 !shouldSExtOperand(SExtOpnd, OpIdx)) { 1888 DEBUG(dbgs() << "No need to propagate\n"); 1889 continue; 1890 } 1891 // Check if we can statically sign extend the operand. 1892 Value *Opnd = SExtOpnd->getOperand(OpIdx); 1893 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 1894 DEBUG(dbgs() << "Statically sign extend\n"); 1895 TPT.setOperand( 1896 SExtOpnd, OpIdx, 1897 ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue())); 1898 continue; 1899 } 1900 // UndefValue are typed, so we have to statically sign extend them. 1901 if (isa<UndefValue>(Opnd)) { 1902 DEBUG(dbgs() << "Statically sign extend\n"); 1903 TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType())); 1904 continue; 1905 } 1906 1907 // Otherwise we have to explicity sign extend the operand. 1908 // Check if SExt was reused to sign extend an operand. 1909 if (!SExtForOpnd) { 1910 // If yes, create a new one. 1911 DEBUG(dbgs() << "More operands to sext\n"); 1912 SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType()); 1913 ++CreatedInsts; 1914 } 1915 1916 TPT.setOperand(SExtForOpnd, 0, Opnd); 1917 1918 // Move the sign extension before the insertion point. 1919 TPT.moveBefore(SExtForOpnd, SExtOpnd); 1920 TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd); 1921 // If more sext are required, new instructions will have to be created. 1922 SExtForOpnd = nullptr; 1923 } 1924 if (SExtForOpnd == SExt) { 1925 DEBUG(dbgs() << "Sign extension is useless now\n"); 1926 TPT.eraseInstruction(SExt); 1927 } 1928 return SExtOpnd; 1929 } 1930 1931 /// IsPromotionProfitable - Check whether or not promoting an instruction 1932 /// to a wider type was profitable. 1933 /// \p MatchedSize gives the number of instructions that have been matched 1934 /// in the addressing mode after the promotion was applied. 1935 /// \p SizeWithPromotion gives the number of created instructions for 1936 /// the promotion plus the number of instructions that have been 1937 /// matched in the addressing mode before the promotion. 1938 /// \p PromotedOperand is the value that has been promoted. 1939 /// \return True if the promotion is profitable, false otherwise. 1940 bool 1941 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 1942 unsigned SizeWithPromotion, 1943 Value *PromotedOperand) const { 1944 // We folded less instructions than what we created to promote the operand. 1945 // This is not profitable. 1946 if (MatchedSize < SizeWithPromotion) 1947 return false; 1948 if (MatchedSize > SizeWithPromotion) 1949 return true; 1950 // The promotion is neutral but it may help folding the sign extension in 1951 // loads for instance. 1952 // Check that we did not create an illegal instruction. 1953 Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand); 1954 if (!PromotedInst) 1955 return false; 1956 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 1957 // If the ISDOpcode is undefined, it was undefined before the promotion. 1958 if (!ISDOpcode) 1959 return true; 1960 // Otherwise, check if the promoted instruction is legal or not. 1961 return TLI.isOperationLegalOrCustom(ISDOpcode, 1962 EVT::getEVT(PromotedInst->getType())); 1963 } 1964 1965 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 1966 /// fold the operation into the addressing mode. If so, update the addressing 1967 /// mode and return true, otherwise return false without modifying AddrMode. 1968 /// If \p MovedAway is not NULL, it contains the information of whether or 1969 /// not AddrInst has to be folded into the addressing mode on success. 1970 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 1971 /// because it has been moved away. 1972 /// Thus AddrInst must not be added in the matched instructions. 1973 /// This state can happen when AddrInst is a sext, since it may be moved away. 1974 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 1975 /// not be referenced anymore. 1976 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 1977 unsigned Depth, 1978 bool *MovedAway) { 1979 // Avoid exponential behavior on extremely deep expression trees. 1980 if (Depth >= 5) return false; 1981 1982 // By default, all matched instructions stay in place. 1983 if (MovedAway) 1984 *MovedAway = false; 1985 1986 switch (Opcode) { 1987 case Instruction::PtrToInt: 1988 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1989 return MatchAddr(AddrInst->getOperand(0), Depth); 1990 case Instruction::IntToPtr: 1991 // This inttoptr is a no-op if the integer type is pointer sized. 1992 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 1993 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 1994 return MatchAddr(AddrInst->getOperand(0), Depth); 1995 return false; 1996 case Instruction::BitCast: 1997 // BitCast is always a noop, and we can handle it as long as it is 1998 // int->int or pointer->pointer (we don't want int<->fp or something). 1999 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2000 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2001 // Don't touch identity bitcasts. These were probably put here by LSR, 2002 // and we don't want to mess around with them. Assume it knows what it 2003 // is doing. 2004 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2005 return MatchAddr(AddrInst->getOperand(0), Depth); 2006 return false; 2007 case Instruction::Add: { 2008 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2009 ExtAddrMode BackupAddrMode = AddrMode; 2010 unsigned OldSize = AddrModeInsts.size(); 2011 // Start a transaction at this point. 2012 // The LHS may match but not the RHS. 2013 // Therefore, we need a higher level restoration point to undo partially 2014 // matched operation. 2015 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2016 TPT.getRestorationPoint(); 2017 2018 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2019 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2020 return true; 2021 2022 // Restore the old addr mode info. 2023 AddrMode = BackupAddrMode; 2024 AddrModeInsts.resize(OldSize); 2025 TPT.rollback(LastKnownGood); 2026 2027 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2028 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2029 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2030 return true; 2031 2032 // Otherwise we definitely can't merge the ADD in. 2033 AddrMode = BackupAddrMode; 2034 AddrModeInsts.resize(OldSize); 2035 TPT.rollback(LastKnownGood); 2036 break; 2037 } 2038 //case Instruction::Or: 2039 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2040 //break; 2041 case Instruction::Mul: 2042 case Instruction::Shl: { 2043 // Can only handle X*C and X << C. 2044 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2045 if (!RHS) return false; 2046 int64_t Scale = RHS->getSExtValue(); 2047 if (Opcode == Instruction::Shl) 2048 Scale = 1LL << Scale; 2049 2050 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2051 } 2052 case Instruction::GetElementPtr: { 2053 // Scan the GEP. We check it if it contains constant offsets and at most 2054 // one variable offset. 2055 int VariableOperand = -1; 2056 unsigned VariableScale = 0; 2057 2058 int64_t ConstantOffset = 0; 2059 const DataLayout *TD = TLI.getDataLayout(); 2060 gep_type_iterator GTI = gep_type_begin(AddrInst); 2061 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2062 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2063 const StructLayout *SL = TD->getStructLayout(STy); 2064 unsigned Idx = 2065 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2066 ConstantOffset += SL->getElementOffset(Idx); 2067 } else { 2068 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2069 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2070 ConstantOffset += CI->getSExtValue()*TypeSize; 2071 } else if (TypeSize) { // Scales of zero don't do anything. 2072 // We only allow one variable index at the moment. 2073 if (VariableOperand != -1) 2074 return false; 2075 2076 // Remember the variable index. 2077 VariableOperand = i; 2078 VariableScale = TypeSize; 2079 } 2080 } 2081 } 2082 2083 // A common case is for the GEP to only do a constant offset. In this case, 2084 // just add it to the disp field and check validity. 2085 if (VariableOperand == -1) { 2086 AddrMode.BaseOffs += ConstantOffset; 2087 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2088 // Check to see if we can fold the base pointer in too. 2089 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2090 return true; 2091 } 2092 AddrMode.BaseOffs -= ConstantOffset; 2093 return false; 2094 } 2095 2096 // Save the valid addressing mode in case we can't match. 2097 ExtAddrMode BackupAddrMode = AddrMode; 2098 unsigned OldSize = AddrModeInsts.size(); 2099 2100 // See if the scale and offset amount is valid for this target. 2101 AddrMode.BaseOffs += ConstantOffset; 2102 2103 // Match the base operand of the GEP. 2104 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2105 // If it couldn't be matched, just stuff the value in a register. 2106 if (AddrMode.HasBaseReg) { 2107 AddrMode = BackupAddrMode; 2108 AddrModeInsts.resize(OldSize); 2109 return false; 2110 } 2111 AddrMode.HasBaseReg = true; 2112 AddrMode.BaseReg = AddrInst->getOperand(0); 2113 } 2114 2115 // Match the remaining variable portion of the GEP. 2116 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2117 Depth)) { 2118 // If it couldn't be matched, try stuffing the base into a register 2119 // instead of matching it, and retrying the match of the scale. 2120 AddrMode = BackupAddrMode; 2121 AddrModeInsts.resize(OldSize); 2122 if (AddrMode.HasBaseReg) 2123 return false; 2124 AddrMode.HasBaseReg = true; 2125 AddrMode.BaseReg = AddrInst->getOperand(0); 2126 AddrMode.BaseOffs += ConstantOffset; 2127 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2128 VariableScale, Depth)) { 2129 // If even that didn't work, bail. 2130 AddrMode = BackupAddrMode; 2131 AddrModeInsts.resize(OldSize); 2132 return false; 2133 } 2134 } 2135 2136 return true; 2137 } 2138 case Instruction::SExt: { 2139 // Try to move this sext out of the way of the addressing mode. 2140 Instruction *SExt = cast<Instruction>(AddrInst); 2141 // Ask for a method for doing so. 2142 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 2143 SExt, InsertedTruncs, TLI, PromotedInsts); 2144 if (!TPH) 2145 return false; 2146 2147 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2148 TPT.getRestorationPoint(); 2149 unsigned CreatedInsts = 0; 2150 Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts); 2151 // SExt has been moved away. 2152 // Thus either it will be rematched later in the recursive calls or it is 2153 // gone. Anyway, we must not fold it into the addressing mode at this point. 2154 // E.g., 2155 // op = add opnd, 1 2156 // idx = sext op 2157 // addr = gep base, idx 2158 // is now: 2159 // promotedOpnd = sext opnd <- no match here 2160 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2161 // addr = gep base, op <- match 2162 if (MovedAway) 2163 *MovedAway = true; 2164 2165 assert(PromotedOperand && 2166 "TypePromotionHelper should have filtered out those cases"); 2167 2168 ExtAddrMode BackupAddrMode = AddrMode; 2169 unsigned OldSize = AddrModeInsts.size(); 2170 2171 if (!MatchAddr(PromotedOperand, Depth) || 2172 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2173 PromotedOperand)) { 2174 AddrMode = BackupAddrMode; 2175 AddrModeInsts.resize(OldSize); 2176 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2177 TPT.rollback(LastKnownGood); 2178 return false; 2179 } 2180 return true; 2181 } 2182 } 2183 return false; 2184 } 2185 2186 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2187 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2188 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2189 /// or intptr_t for the target. 2190 /// 2191 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2192 // Start a transaction at this point that we will rollback if the matching 2193 // fails. 2194 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2195 TPT.getRestorationPoint(); 2196 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2197 // Fold in immediates if legal for the target. 2198 AddrMode.BaseOffs += CI->getSExtValue(); 2199 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2200 return true; 2201 AddrMode.BaseOffs -= CI->getSExtValue(); 2202 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2203 // If this is a global variable, try to fold it into the addressing mode. 2204 if (!AddrMode.BaseGV) { 2205 AddrMode.BaseGV = GV; 2206 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2207 return true; 2208 AddrMode.BaseGV = nullptr; 2209 } 2210 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2211 ExtAddrMode BackupAddrMode = AddrMode; 2212 unsigned OldSize = AddrModeInsts.size(); 2213 2214 // Check to see if it is possible to fold this operation. 2215 bool MovedAway = false; 2216 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2217 // This instruction may have been move away. If so, there is nothing 2218 // to check here. 2219 if (MovedAway) 2220 return true; 2221 // Okay, it's possible to fold this. Check to see if it is actually 2222 // *profitable* to do so. We use a simple cost model to avoid increasing 2223 // register pressure too much. 2224 if (I->hasOneUse() || 2225 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2226 AddrModeInsts.push_back(I); 2227 return true; 2228 } 2229 2230 // It isn't profitable to do this, roll back. 2231 //cerr << "NOT FOLDING: " << *I; 2232 AddrMode = BackupAddrMode; 2233 AddrModeInsts.resize(OldSize); 2234 TPT.rollback(LastKnownGood); 2235 } 2236 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2237 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2238 return true; 2239 TPT.rollback(LastKnownGood); 2240 } else if (isa<ConstantPointerNull>(Addr)) { 2241 // Null pointer gets folded without affecting the addressing mode. 2242 return true; 2243 } 2244 2245 // Worse case, the target should support [reg] addressing modes. :) 2246 if (!AddrMode.HasBaseReg) { 2247 AddrMode.HasBaseReg = true; 2248 AddrMode.BaseReg = Addr; 2249 // Still check for legality in case the target supports [imm] but not [i+r]. 2250 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2251 return true; 2252 AddrMode.HasBaseReg = false; 2253 AddrMode.BaseReg = nullptr; 2254 } 2255 2256 // If the base register is already taken, see if we can do [r+r]. 2257 if (AddrMode.Scale == 0) { 2258 AddrMode.Scale = 1; 2259 AddrMode.ScaledReg = Addr; 2260 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2261 return true; 2262 AddrMode.Scale = 0; 2263 AddrMode.ScaledReg = nullptr; 2264 } 2265 // Couldn't match. 2266 TPT.rollback(LastKnownGood); 2267 return false; 2268 } 2269 2270 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2271 /// inline asm call are due to memory operands. If so, return true, otherwise 2272 /// return false. 2273 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2274 const TargetLowering &TLI) { 2275 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2276 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2277 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2278 2279 // Compute the constraint code and ConstraintType to use. 2280 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2281 2282 // If this asm operand is our Value*, and if it isn't an indirect memory 2283 // operand, we can't fold it! 2284 if (OpInfo.CallOperandVal == OpVal && 2285 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2286 !OpInfo.isIndirect)) 2287 return false; 2288 } 2289 2290 return true; 2291 } 2292 2293 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2294 /// memory use. If we find an obviously non-foldable instruction, return true. 2295 /// Add the ultimately found memory instructions to MemoryUses. 2296 static bool FindAllMemoryUses(Instruction *I, 2297 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2298 SmallPtrSet<Instruction*, 16> &ConsideredInsts, 2299 const TargetLowering &TLI) { 2300 // If we already considered this instruction, we're done. 2301 if (!ConsideredInsts.insert(I)) 2302 return false; 2303 2304 // If this is an obviously unfoldable instruction, bail out. 2305 if (!MightBeFoldableInst(I)) 2306 return true; 2307 2308 // Loop over all the uses, recursively processing them. 2309 for (Use &U : I->uses()) { 2310 Instruction *UserI = cast<Instruction>(U.getUser()); 2311 2312 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2313 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2314 continue; 2315 } 2316 2317 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2318 unsigned opNo = U.getOperandNo(); 2319 if (opNo == 0) return true; // Storing addr, not into addr. 2320 MemoryUses.push_back(std::make_pair(SI, opNo)); 2321 continue; 2322 } 2323 2324 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2325 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2326 if (!IA) return true; 2327 2328 // If this is a memory operand, we're cool, otherwise bail out. 2329 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2330 return true; 2331 continue; 2332 } 2333 2334 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2335 return true; 2336 } 2337 2338 return false; 2339 } 2340 2341 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2342 /// the use site that we're folding it into. If so, there is no cost to 2343 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2344 /// that we know are live at the instruction already. 2345 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2346 Value *KnownLive2) { 2347 // If Val is either of the known-live values, we know it is live! 2348 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2349 return true; 2350 2351 // All values other than instructions and arguments (e.g. constants) are live. 2352 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2353 2354 // If Val is a constant sized alloca in the entry block, it is live, this is 2355 // true because it is just a reference to the stack/frame pointer, which is 2356 // live for the whole function. 2357 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2358 if (AI->isStaticAlloca()) 2359 return true; 2360 2361 // Check to see if this value is already used in the memory instruction's 2362 // block. If so, it's already live into the block at the very least, so we 2363 // can reasonably fold it. 2364 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2365 } 2366 2367 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2368 /// mode of the machine to fold the specified instruction into a load or store 2369 /// that ultimately uses it. However, the specified instruction has multiple 2370 /// uses. Given this, it may actually increase register pressure to fold it 2371 /// into the load. For example, consider this code: 2372 /// 2373 /// X = ... 2374 /// Y = X+1 2375 /// use(Y) -> nonload/store 2376 /// Z = Y+1 2377 /// load Z 2378 /// 2379 /// In this case, Y has multiple uses, and can be folded into the load of Z 2380 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2381 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2382 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2383 /// number of computations either. 2384 /// 2385 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2386 /// X was live across 'load Z' for other reasons, we actually *would* want to 2387 /// fold the addressing mode in the Z case. This would make Y die earlier. 2388 bool AddressingModeMatcher:: 2389 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2390 ExtAddrMode &AMAfter) { 2391 if (IgnoreProfitability) return true; 2392 2393 // AMBefore is the addressing mode before this instruction was folded into it, 2394 // and AMAfter is the addressing mode after the instruction was folded. Get 2395 // the set of registers referenced by AMAfter and subtract out those 2396 // referenced by AMBefore: this is the set of values which folding in this 2397 // address extends the lifetime of. 2398 // 2399 // Note that there are only two potential values being referenced here, 2400 // BaseReg and ScaleReg (global addresses are always available, as are any 2401 // folded immediates). 2402 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2403 2404 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2405 // lifetime wasn't extended by adding this instruction. 2406 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2407 BaseReg = nullptr; 2408 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2409 ScaledReg = nullptr; 2410 2411 // If folding this instruction (and it's subexprs) didn't extend any live 2412 // ranges, we're ok with it. 2413 if (!BaseReg && !ScaledReg) 2414 return true; 2415 2416 // If all uses of this instruction are ultimately load/store/inlineasm's, 2417 // check to see if their addressing modes will include this instruction. If 2418 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2419 // uses. 2420 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2421 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2422 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2423 return false; // Has a non-memory, non-foldable use! 2424 2425 // Now that we know that all uses of this instruction are part of a chain of 2426 // computation involving only operations that could theoretically be folded 2427 // into a memory use, loop over each of these uses and see if they could 2428 // *actually* fold the instruction. 2429 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2430 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2431 Instruction *User = MemoryUses[i].first; 2432 unsigned OpNo = MemoryUses[i].second; 2433 2434 // Get the access type of this use. If the use isn't a pointer, we don't 2435 // know what it accesses. 2436 Value *Address = User->getOperand(OpNo); 2437 if (!Address->getType()->isPointerTy()) 2438 return false; 2439 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2440 2441 // Do a match against the root of this address, ignoring profitability. This 2442 // will tell us if the addressing mode for the memory operation will 2443 // *actually* cover the shared instruction. 2444 ExtAddrMode Result; 2445 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2446 TPT.getRestorationPoint(); 2447 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2448 MemoryInst, Result, InsertedTruncs, 2449 PromotedInsts, TPT); 2450 Matcher.IgnoreProfitability = true; 2451 bool Success = Matcher.MatchAddr(Address, 0); 2452 (void)Success; assert(Success && "Couldn't select *anything*?"); 2453 2454 // The match was to check the profitability, the changes made are not 2455 // part of the original matcher. Therefore, they should be dropped 2456 // otherwise the original matcher will not present the right state. 2457 TPT.rollback(LastKnownGood); 2458 2459 // If the match didn't cover I, then it won't be shared by it. 2460 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 2461 I) == MatchedAddrModeInsts.end()) 2462 return false; 2463 2464 MatchedAddrModeInsts.clear(); 2465 } 2466 2467 return true; 2468 } 2469 2470 } // end anonymous namespace 2471 2472 /// IsNonLocalValue - Return true if the specified values are defined in a 2473 /// different basic block than BB. 2474 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 2475 if (Instruction *I = dyn_cast<Instruction>(V)) 2476 return I->getParent() != BB; 2477 return false; 2478 } 2479 2480 /// OptimizeMemoryInst - Load and Store Instructions often have 2481 /// addressing modes that can do significant amounts of computation. As such, 2482 /// instruction selection will try to get the load or store to do as much 2483 /// computation as possible for the program. The problem is that isel can only 2484 /// see within a single block. As such, we sink as much legal addressing mode 2485 /// stuff into the block as possible. 2486 /// 2487 /// This method is used to optimize both load/store and inline asms with memory 2488 /// operands. 2489 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 2490 Type *AccessTy) { 2491 Value *Repl = Addr; 2492 2493 // Try to collapse single-value PHI nodes. This is necessary to undo 2494 // unprofitable PRE transformations. 2495 SmallVector<Value*, 8> worklist; 2496 SmallPtrSet<Value*, 16> Visited; 2497 worklist.push_back(Addr); 2498 2499 // Use a worklist to iteratively look through PHI nodes, and ensure that 2500 // the addressing mode obtained from the non-PHI roots of the graph 2501 // are equivalent. 2502 Value *Consensus = nullptr; 2503 unsigned NumUsesConsensus = 0; 2504 bool IsNumUsesConsensusValid = false; 2505 SmallVector<Instruction*, 16> AddrModeInsts; 2506 ExtAddrMode AddrMode; 2507 TypePromotionTransaction TPT; 2508 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2509 TPT.getRestorationPoint(); 2510 while (!worklist.empty()) { 2511 Value *V = worklist.back(); 2512 worklist.pop_back(); 2513 2514 // Break use-def graph loops. 2515 if (!Visited.insert(V)) { 2516 Consensus = nullptr; 2517 break; 2518 } 2519 2520 // For a PHI node, push all of its incoming values. 2521 if (PHINode *P = dyn_cast<PHINode>(V)) { 2522 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 2523 worklist.push_back(P->getIncomingValue(i)); 2524 continue; 2525 } 2526 2527 // For non-PHIs, determine the addressing mode being computed. 2528 SmallVector<Instruction*, 16> NewAddrModeInsts; 2529 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 2530 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 2531 PromotedInsts, TPT); 2532 2533 // This check is broken into two cases with very similar code to avoid using 2534 // getNumUses() as much as possible. Some values have a lot of uses, so 2535 // calling getNumUses() unconditionally caused a significant compile-time 2536 // regression. 2537 if (!Consensus) { 2538 Consensus = V; 2539 AddrMode = NewAddrMode; 2540 AddrModeInsts = NewAddrModeInsts; 2541 continue; 2542 } else if (NewAddrMode == AddrMode) { 2543 if (!IsNumUsesConsensusValid) { 2544 NumUsesConsensus = Consensus->getNumUses(); 2545 IsNumUsesConsensusValid = true; 2546 } 2547 2548 // Ensure that the obtained addressing mode is equivalent to that obtained 2549 // for all other roots of the PHI traversal. Also, when choosing one 2550 // such root as representative, select the one with the most uses in order 2551 // to keep the cost modeling heuristics in AddressingModeMatcher 2552 // applicable. 2553 unsigned NumUses = V->getNumUses(); 2554 if (NumUses > NumUsesConsensus) { 2555 Consensus = V; 2556 NumUsesConsensus = NumUses; 2557 AddrModeInsts = NewAddrModeInsts; 2558 } 2559 continue; 2560 } 2561 2562 Consensus = nullptr; 2563 break; 2564 } 2565 2566 // If the addressing mode couldn't be determined, or if multiple different 2567 // ones were determined, bail out now. 2568 if (!Consensus) { 2569 TPT.rollback(LastKnownGood); 2570 return false; 2571 } 2572 TPT.commit(); 2573 2574 // Check to see if any of the instructions supersumed by this addr mode are 2575 // non-local to I's BB. 2576 bool AnyNonLocal = false; 2577 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 2578 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 2579 AnyNonLocal = true; 2580 break; 2581 } 2582 } 2583 2584 // If all the instructions matched are already in this BB, don't do anything. 2585 if (!AnyNonLocal) { 2586 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 2587 return false; 2588 } 2589 2590 // Insert this computation right after this user. Since our caller is 2591 // scanning from the top of the BB to the bottom, reuse of the expr are 2592 // guaranteed to happen later. 2593 IRBuilder<> Builder(MemoryInst); 2594 2595 // Now that we determined the addressing expression we want to use and know 2596 // that we have to sink it into this block. Check to see if we have already 2597 // done this for some other load/store instr in this block. If so, reuse the 2598 // computation. 2599 Value *&SunkAddr = SunkAddrs[Addr]; 2600 if (SunkAddr) { 2601 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 2602 << *MemoryInst); 2603 if (SunkAddr->getType() != Addr->getType()) 2604 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2605 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 2606 TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) { 2607 // By default, we use the GEP-based method when AA is used later. This 2608 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 2609 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2610 << *MemoryInst); 2611 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2612 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 2613 2614 // First, find the pointer. 2615 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 2616 ResultPtr = AddrMode.BaseReg; 2617 AddrMode.BaseReg = nullptr; 2618 } 2619 2620 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 2621 // We can't add more than one pointer together, nor can we scale a 2622 // pointer (both of which seem meaningless). 2623 if (ResultPtr || AddrMode.Scale != 1) 2624 return false; 2625 2626 ResultPtr = AddrMode.ScaledReg; 2627 AddrMode.Scale = 0; 2628 } 2629 2630 if (AddrMode.BaseGV) { 2631 if (ResultPtr) 2632 return false; 2633 2634 ResultPtr = AddrMode.BaseGV; 2635 } 2636 2637 // If the real base value actually came from an inttoptr, then the matcher 2638 // will look through it and provide only the integer value. In that case, 2639 // use it here. 2640 if (!ResultPtr && AddrMode.BaseReg) { 2641 ResultPtr = 2642 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 2643 AddrMode.BaseReg = nullptr; 2644 } else if (!ResultPtr && AddrMode.Scale == 1) { 2645 ResultPtr = 2646 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 2647 AddrMode.Scale = 0; 2648 } 2649 2650 if (!ResultPtr && 2651 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 2652 SunkAddr = Constant::getNullValue(Addr->getType()); 2653 } else if (!ResultPtr) { 2654 return false; 2655 } else { 2656 Type *I8PtrTy = 2657 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 2658 2659 // Start with the base register. Do this first so that subsequent address 2660 // matching finds it last, which will prevent it from trying to match it 2661 // as the scaled value in case it happens to be a mul. That would be 2662 // problematic if we've sunk a different mul for the scale, because then 2663 // we'd end up sinking both muls. 2664 if (AddrMode.BaseReg) { 2665 Value *V = AddrMode.BaseReg; 2666 if (V->getType() != IntPtrTy) 2667 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2668 2669 ResultIndex = V; 2670 } 2671 2672 // Add the scale value. 2673 if (AddrMode.Scale) { 2674 Value *V = AddrMode.ScaledReg; 2675 if (V->getType() == IntPtrTy) { 2676 // done. 2677 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2678 cast<IntegerType>(V->getType())->getBitWidth()) { 2679 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2680 } else { 2681 // It is only safe to sign extend the BaseReg if we know that the math 2682 // required to create it did not overflow before we extend it. Since 2683 // the original IR value was tossed in favor of a constant back when 2684 // the AddrMode was created we need to bail out gracefully if widths 2685 // do not match instead of extending it. 2686 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 2687 if (I && (ResultIndex != AddrMode.BaseReg)) 2688 I->eraseFromParent(); 2689 return false; 2690 } 2691 2692 if (AddrMode.Scale != 1) 2693 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2694 "sunkaddr"); 2695 if (ResultIndex) 2696 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 2697 else 2698 ResultIndex = V; 2699 } 2700 2701 // Add in the Base Offset if present. 2702 if (AddrMode.BaseOffs) { 2703 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2704 if (ResultIndex) { 2705 // We need to add this separately from the scale above to help with 2706 // SDAG consecutive load/store merging. 2707 if (ResultPtr->getType() != I8PtrTy) 2708 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2709 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2710 } 2711 2712 ResultIndex = V; 2713 } 2714 2715 if (!ResultIndex) { 2716 SunkAddr = ResultPtr; 2717 } else { 2718 if (ResultPtr->getType() != I8PtrTy) 2719 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2720 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2721 } 2722 2723 if (SunkAddr->getType() != Addr->getType()) 2724 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2725 } 2726 } else { 2727 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2728 << *MemoryInst); 2729 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2730 Value *Result = nullptr; 2731 2732 // Start with the base register. Do this first so that subsequent address 2733 // matching finds it last, which will prevent it from trying to match it 2734 // as the scaled value in case it happens to be a mul. That would be 2735 // problematic if we've sunk a different mul for the scale, because then 2736 // we'd end up sinking both muls. 2737 if (AddrMode.BaseReg) { 2738 Value *V = AddrMode.BaseReg; 2739 if (V->getType()->isPointerTy()) 2740 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2741 if (V->getType() != IntPtrTy) 2742 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2743 Result = V; 2744 } 2745 2746 // Add the scale value. 2747 if (AddrMode.Scale) { 2748 Value *V = AddrMode.ScaledReg; 2749 if (V->getType() == IntPtrTy) { 2750 // done. 2751 } else if (V->getType()->isPointerTy()) { 2752 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2753 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2754 cast<IntegerType>(V->getType())->getBitWidth()) { 2755 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2756 } else { 2757 // It is only safe to sign extend the BaseReg if we know that the math 2758 // required to create it did not overflow before we extend it. Since 2759 // the original IR value was tossed in favor of a constant back when 2760 // the AddrMode was created we need to bail out gracefully if widths 2761 // do not match instead of extending it. 2762 Instruction *I = dyn_cast<Instruction>(Result); 2763 if (I && (Result != AddrMode.BaseReg)) 2764 I->eraseFromParent(); 2765 return false; 2766 } 2767 if (AddrMode.Scale != 1) 2768 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2769 "sunkaddr"); 2770 if (Result) 2771 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2772 else 2773 Result = V; 2774 } 2775 2776 // Add in the BaseGV if present. 2777 if (AddrMode.BaseGV) { 2778 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 2779 if (Result) 2780 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2781 else 2782 Result = V; 2783 } 2784 2785 // Add in the Base Offset if present. 2786 if (AddrMode.BaseOffs) { 2787 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2788 if (Result) 2789 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2790 else 2791 Result = V; 2792 } 2793 2794 if (!Result) 2795 SunkAddr = Constant::getNullValue(Addr->getType()); 2796 else 2797 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 2798 } 2799 2800 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 2801 2802 // If we have no uses, recursively delete the value and all dead instructions 2803 // using it. 2804 if (Repl->use_empty()) { 2805 // This can cause recursive deletion, which can invalidate our iterator. 2806 // Use a WeakVH to hold onto it in case this happens. 2807 WeakVH IterHandle(CurInstIterator); 2808 BasicBlock *BB = CurInstIterator->getParent(); 2809 2810 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 2811 2812 if (IterHandle != CurInstIterator) { 2813 // If the iterator instruction was recursively deleted, start over at the 2814 // start of the block. 2815 CurInstIterator = BB->begin(); 2816 SunkAddrs.clear(); 2817 } 2818 } 2819 ++NumMemoryInsts; 2820 return true; 2821 } 2822 2823 /// OptimizeInlineAsmInst - If there are any memory operands, use 2824 /// OptimizeMemoryInst to sink their address computing into the block when 2825 /// possible / profitable. 2826 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 2827 bool MadeChange = false; 2828 2829 TargetLowering::AsmOperandInfoVector 2830 TargetConstraints = TLI->ParseConstraints(CS); 2831 unsigned ArgNo = 0; 2832 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2833 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2834 2835 // Compute the constraint code and ConstraintType to use. 2836 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2837 2838 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 2839 OpInfo.isIndirect) { 2840 Value *OpVal = CS->getArgOperand(ArgNo++); 2841 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 2842 } else if (OpInfo.Type == InlineAsm::isInput) 2843 ArgNo++; 2844 } 2845 2846 return MadeChange; 2847 } 2848 2849 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 2850 /// basic block as the load, unless conditions are unfavorable. This allows 2851 /// SelectionDAG to fold the extend into the load. 2852 /// 2853 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { 2854 // Look for a load being extended. 2855 LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); 2856 if (!LI) return false; 2857 2858 // If they're already in the same block, there's nothing to do. 2859 if (LI->getParent() == I->getParent()) 2860 return false; 2861 2862 // If the load has other users and the truncate is not free, this probably 2863 // isn't worthwhile. 2864 if (!LI->hasOneUse() && 2865 TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || 2866 !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && 2867 !TLI->isTruncateFree(I->getType(), LI->getType())) 2868 return false; 2869 2870 // Check whether the target supports casts folded into loads. 2871 unsigned LType; 2872 if (isa<ZExtInst>(I)) 2873 LType = ISD::ZEXTLOAD; 2874 else { 2875 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 2876 LType = ISD::SEXTLOAD; 2877 } 2878 if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) 2879 return false; 2880 2881 // Move the extend into the same block as the load, so that SelectionDAG 2882 // can fold it. 2883 I->removeFromParent(); 2884 I->insertAfter(LI); 2885 ++NumExtsMoved; 2886 return true; 2887 } 2888 2889 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 2890 BasicBlock *DefBB = I->getParent(); 2891 2892 // If the result of a {s|z}ext and its source are both live out, rewrite all 2893 // other uses of the source with result of extension. 2894 Value *Src = I->getOperand(0); 2895 if (Src->hasOneUse()) 2896 return false; 2897 2898 // Only do this xform if truncating is free. 2899 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 2900 return false; 2901 2902 // Only safe to perform the optimization if the source is also defined in 2903 // this block. 2904 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 2905 return false; 2906 2907 bool DefIsLiveOut = false; 2908 for (User *U : I->users()) { 2909 Instruction *UI = cast<Instruction>(U); 2910 2911 // Figure out which BB this ext is used in. 2912 BasicBlock *UserBB = UI->getParent(); 2913 if (UserBB == DefBB) continue; 2914 DefIsLiveOut = true; 2915 break; 2916 } 2917 if (!DefIsLiveOut) 2918 return false; 2919 2920 // Make sure none of the uses are PHI nodes. 2921 for (User *U : Src->users()) { 2922 Instruction *UI = cast<Instruction>(U); 2923 BasicBlock *UserBB = UI->getParent(); 2924 if (UserBB == DefBB) continue; 2925 // Be conservative. We don't want this xform to end up introducing 2926 // reloads just before load / store instructions. 2927 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 2928 return false; 2929 } 2930 2931 // InsertedTruncs - Only insert one trunc in each block once. 2932 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 2933 2934 bool MadeChange = false; 2935 for (Use &U : Src->uses()) { 2936 Instruction *User = cast<Instruction>(U.getUser()); 2937 2938 // Figure out which BB this ext is used in. 2939 BasicBlock *UserBB = User->getParent(); 2940 if (UserBB == DefBB) continue; 2941 2942 // Both src and def are live in this block. Rewrite the use. 2943 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 2944 2945 if (!InsertedTrunc) { 2946 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2947 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 2948 InsertedTruncsSet.insert(InsertedTrunc); 2949 } 2950 2951 // Replace a use of the {s|z}ext source with a use of the result. 2952 U = InsertedTrunc; 2953 ++NumExtUses; 2954 MadeChange = true; 2955 } 2956 2957 return MadeChange; 2958 } 2959 2960 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 2961 /// turned into an explicit branch. 2962 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 2963 // FIXME: This should use the same heuristics as IfConversion to determine 2964 // whether a select is better represented as a branch. This requires that 2965 // branch probability metadata is preserved for the select, which is not the 2966 // case currently. 2967 2968 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2969 2970 // If the branch is predicted right, an out of order CPU can avoid blocking on 2971 // the compare. Emit cmovs on compares with a memory operand as branches to 2972 // avoid stalls on the load from memory. If the compare has more than one use 2973 // there's probably another cmov or setcc around so it's not worth emitting a 2974 // branch. 2975 if (!Cmp) 2976 return false; 2977 2978 Value *CmpOp0 = Cmp->getOperand(0); 2979 Value *CmpOp1 = Cmp->getOperand(1); 2980 2981 // We check that the memory operand has one use to avoid uses of the loaded 2982 // value directly after the compare, making branches unprofitable. 2983 return Cmp->hasOneUse() && 2984 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 2985 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 2986 } 2987 2988 2989 /// If we have a SelectInst that will likely profit from branch prediction, 2990 /// turn it into a branch. 2991 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 2992 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 2993 2994 // Can we convert the 'select' to CF ? 2995 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 2996 return false; 2997 2998 TargetLowering::SelectSupportKind SelectKind; 2999 if (VectorCond) 3000 SelectKind = TargetLowering::VectorMaskSelect; 3001 else if (SI->getType()->isVectorTy()) 3002 SelectKind = TargetLowering::ScalarCondVectorVal; 3003 else 3004 SelectKind = TargetLowering::ScalarValSelect; 3005 3006 // Do we have efficient codegen support for this kind of 'selects' ? 3007 if (TLI->isSelectSupported(SelectKind)) { 3008 // We have efficient codegen support for the select instruction. 3009 // Check if it is profitable to keep this 'select'. 3010 if (!TLI->isPredictableSelectExpensive() || 3011 !isFormingBranchFromSelectProfitable(SI)) 3012 return false; 3013 } 3014 3015 ModifiedDT = true; 3016 3017 // First, we split the block containing the select into 2 blocks. 3018 BasicBlock *StartBlock = SI->getParent(); 3019 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3020 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3021 3022 // Create a new block serving as the landing pad for the branch. 3023 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3024 NextBlock->getParent(), NextBlock); 3025 3026 // Move the unconditional branch from the block with the select in it into our 3027 // landing pad block. 3028 StartBlock->getTerminator()->eraseFromParent(); 3029 BranchInst::Create(NextBlock, SmallBlock); 3030 3031 // Insert the real conditional branch based on the original condition. 3032 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3033 3034 // The select itself is replaced with a PHI Node. 3035 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3036 PN->takeName(SI); 3037 PN->addIncoming(SI->getTrueValue(), StartBlock); 3038 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3039 SI->replaceAllUsesWith(PN); 3040 SI->eraseFromParent(); 3041 3042 // Instruct OptimizeBlock to skip to the next block. 3043 CurInstIterator = StartBlock->end(); 3044 ++NumSelectsExpanded; 3045 return true; 3046 } 3047 3048 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3049 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3050 int SplatElem = -1; 3051 for (unsigned i = 0; i < Mask.size(); ++i) { 3052 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3053 return false; 3054 SplatElem = Mask[i]; 3055 } 3056 3057 return true; 3058 } 3059 3060 /// Some targets have expensive vector shifts if the lanes aren't all the same 3061 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3062 /// it's often worth sinking a shufflevector splat down to its use so that 3063 /// codegen can spot all lanes are identical. 3064 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3065 BasicBlock *DefBB = SVI->getParent(); 3066 3067 // Only do this xform if variable vector shifts are particularly expensive. 3068 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3069 return false; 3070 3071 // We only expect better codegen by sinking a shuffle if we can recognise a 3072 // constant splat. 3073 if (!isBroadcastShuffle(SVI)) 3074 return false; 3075 3076 // InsertedShuffles - Only insert a shuffle in each block once. 3077 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3078 3079 bool MadeChange = false; 3080 for (User *U : SVI->users()) { 3081 Instruction *UI = cast<Instruction>(U); 3082 3083 // Figure out which BB this ext is used in. 3084 BasicBlock *UserBB = UI->getParent(); 3085 if (UserBB == DefBB) continue; 3086 3087 // For now only apply this when the splat is used by a shift instruction. 3088 if (!UI->isShift()) continue; 3089 3090 // Everything checks out, sink the shuffle if the user's block doesn't 3091 // already have a copy. 3092 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3093 3094 if (!InsertedShuffle) { 3095 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3096 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3097 SVI->getOperand(1), 3098 SVI->getOperand(2), "", InsertPt); 3099 } 3100 3101 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3102 MadeChange = true; 3103 } 3104 3105 // If we removed all uses, nuke the shuffle. 3106 if (SVI->use_empty()) { 3107 SVI->eraseFromParent(); 3108 MadeChange = true; 3109 } 3110 3111 return MadeChange; 3112 } 3113 3114 bool CodeGenPrepare::OptimizeInst(Instruction *I) { 3115 if (PHINode *P = dyn_cast<PHINode>(I)) { 3116 // It is possible for very late stage optimizations (such as SimplifyCFG) 3117 // to introduce PHI nodes too late to be cleaned up. If we detect such a 3118 // trivial PHI, go ahead and zap it here. 3119 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 3120 TLInfo, DT)) { 3121 P->replaceAllUsesWith(V); 3122 P->eraseFromParent(); 3123 ++NumPHIsElim; 3124 return true; 3125 } 3126 return false; 3127 } 3128 3129 if (CastInst *CI = dyn_cast<CastInst>(I)) { 3130 // If the source of the cast is a constant, then this should have 3131 // already been constant folded. The only reason NOT to constant fold 3132 // it is if something (e.g. LSR) was careful to place the constant 3133 // evaluation in a block other than then one that uses it (e.g. to hoist 3134 // the address of globals out of a loop). If this is the case, we don't 3135 // want to forward-subst the cast. 3136 if (isa<Constant>(CI->getOperand(0))) 3137 return false; 3138 3139 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 3140 return true; 3141 3142 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 3143 /// Sink a zext or sext into its user blocks if the target type doesn't 3144 /// fit in one register 3145 if (TLI && TLI->getTypeAction(CI->getContext(), 3146 TLI->getValueType(CI->getType())) == 3147 TargetLowering::TypeExpandInteger) { 3148 return SinkCast(CI); 3149 } else { 3150 bool MadeChange = MoveExtToFormExtLoad(I); 3151 return MadeChange | OptimizeExtUses(I); 3152 } 3153 } 3154 return false; 3155 } 3156 3157 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 3158 if (!TLI || !TLI->hasMultipleConditionRegisters()) 3159 return OptimizeCmpExpression(CI); 3160 3161 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3162 if (TLI) 3163 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 3164 return false; 3165 } 3166 3167 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3168 if (TLI) 3169 return OptimizeMemoryInst(I, SI->getOperand(1), 3170 SI->getOperand(0)->getType()); 3171 return false; 3172 } 3173 3174 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 3175 3176 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 3177 BinOp->getOpcode() == Instruction::LShr)) { 3178 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 3179 if (TLI && CI && TLI->hasExtractBitsInsn()) 3180 return OptimizeExtractBits(BinOp, CI, *TLI); 3181 3182 return false; 3183 } 3184 3185 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 3186 if (GEPI->hasAllZeroIndices()) { 3187 /// The GEP operand must be a pointer, so must its result -> BitCast 3188 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 3189 GEPI->getName(), GEPI); 3190 GEPI->replaceAllUsesWith(NC); 3191 GEPI->eraseFromParent(); 3192 ++NumGEPsElim; 3193 OptimizeInst(NC); 3194 return true; 3195 } 3196 return false; 3197 } 3198 3199 if (CallInst *CI = dyn_cast<CallInst>(I)) 3200 return OptimizeCallInst(CI); 3201 3202 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 3203 return OptimizeSelectInst(SI); 3204 3205 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 3206 return OptimizeShuffleVectorInst(SVI); 3207 3208 return false; 3209 } 3210 3211 // In this pass we look for GEP and cast instructions that are used 3212 // across basic blocks and rewrite them to improve basic-block-at-a-time 3213 // selection. 3214 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { 3215 SunkAddrs.clear(); 3216 bool MadeChange = false; 3217 3218 CurInstIterator = BB.begin(); 3219 while (CurInstIterator != BB.end()) 3220 MadeChange |= OptimizeInst(CurInstIterator++); 3221 3222 MadeChange |= DupRetToEnableTailCallOpts(&BB); 3223 3224 return MadeChange; 3225 } 3226 3227 // llvm.dbg.value is far away from the value then iSel may not be able 3228 // handle it properly. iSel will drop llvm.dbg.value if it can not 3229 // find a node corresponding to the value. 3230 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 3231 bool MadeChange = false; 3232 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 3233 Instruction *PrevNonDbgInst = nullptr; 3234 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { 3235 Instruction *Insn = BI; ++BI; 3236 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 3237 // Leave dbg.values that refer to an alloca alone. These 3238 // instrinsics describe the address of a variable (= the alloca) 3239 // being taken. They should not be moved next to the alloca 3240 // (and to the beginning of the scope), but rather stay close to 3241 // where said address is used. 3242 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 3243 PrevNonDbgInst = Insn; 3244 continue; 3245 } 3246 3247 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 3248 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 3249 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 3250 DVI->removeFromParent(); 3251 if (isa<PHINode>(VI)) 3252 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 3253 else 3254 DVI->insertAfter(VI); 3255 MadeChange = true; 3256 ++NumDbgValueMoved; 3257 } 3258 } 3259 } 3260 return MadeChange; 3261 } 3262 3263 // If there is a sequence that branches based on comparing a single bit 3264 // against zero that can be combined into a single instruction, and the 3265 // target supports folding these into a single instruction, sink the 3266 // mask and compare into the branch uses. Do this before OptimizeBlock -> 3267 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 3268 // searched for. 3269 bool CodeGenPrepare::sinkAndCmp(Function &F) { 3270 if (!EnableAndCmpSinking) 3271 return false; 3272 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 3273 return false; 3274 bool MadeChange = false; 3275 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 3276 BasicBlock *BB = I++; 3277 3278 // Does this BB end with the following? 3279 // %andVal = and %val, #single-bit-set 3280 // %icmpVal = icmp %andResult, 0 3281 // br i1 %cmpVal label %dest1, label %dest2" 3282 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 3283 if (!Brcc || !Brcc->isConditional()) 3284 continue; 3285 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 3286 if (!Cmp || Cmp->getParent() != BB) 3287 continue; 3288 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 3289 if (!Zero || !Zero->isZero()) 3290 continue; 3291 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 3292 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 3293 continue; 3294 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 3295 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 3296 continue; 3297 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 3298 3299 // Push the "and; icmp" for any users that are conditional branches. 3300 // Since there can only be one branch use per BB, we don't need to keep 3301 // track of which BBs we insert into. 3302 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 3303 UI != E; ) { 3304 Use &TheUse = *UI; 3305 // Find brcc use. 3306 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 3307 ++UI; 3308 if (!BrccUser || !BrccUser->isConditional()) 3309 continue; 3310 BasicBlock *UserBB = BrccUser->getParent(); 3311 if (UserBB == BB) continue; 3312 DEBUG(dbgs() << "found Brcc use\n"); 3313 3314 // Sink the "and; icmp" to use. 3315 MadeChange = true; 3316 BinaryOperator *NewAnd = 3317 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 3318 BrccUser); 3319 CmpInst *NewCmp = 3320 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 3321 "", BrccUser); 3322 TheUse = NewCmp; 3323 ++NumAndCmpsMoved; 3324 DEBUG(BrccUser->getParent()->dump()); 3325 } 3326 } 3327 return MadeChange; 3328 } 3329