1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 229 using SExts = SmallVector<Instruction *, 16>; 230 using ValueToSExts = DenseMap<Value *, SExts>; 231 232 class TypePromotionTransaction; 233 234 class CodeGenPrepare : public FunctionPass { 235 const TargetMachine *TM = nullptr; 236 const TargetSubtargetInfo *SubtargetInfo; 237 const TargetLowering *TLI = nullptr; 238 const TargetRegisterInfo *TRI; 239 const TargetTransformInfo *TTI = nullptr; 240 const TargetLibraryInfo *TLInfo; 241 const LoopInfo *LI; 242 std::unique_ptr<BlockFrequencyInfo> BFI; 243 std::unique_ptr<BranchProbabilityInfo> BPI; 244 245 /// As we scan instructions optimizing them, this is the next instruction 246 /// to optimize. Transforms that can invalidate this should update it. 247 BasicBlock::iterator CurInstIterator; 248 249 /// Keeps track of non-local addresses that have been sunk into a block. 250 /// This allows us to avoid inserting duplicate code for blocks with 251 /// multiple load/stores of the same address. The usage of WeakTrackingVH 252 /// enables SunkAddrs to be treated as a cache whose entries can be 253 /// invalidated if a sunken address computation has been erased. 254 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 255 256 /// Keeps track of all instructions inserted for the current function. 257 SetOfInstrs InsertedInsts; 258 259 /// Keeps track of the type of the related instruction before their 260 /// promotion for the current function. 261 InstrToOrigTy PromotedInsts; 262 263 /// Keep track of instructions removed during promotion. 264 SetOfInstrs RemovedInsts; 265 266 /// Keep track of sext chains based on their initial value. 267 DenseMap<Value *, Instruction *> SeenChainsForSExt; 268 269 /// Keep track of GEPs accessing the same data structures such as structs or 270 /// arrays that are candidates to be split later because of their large 271 /// size. 272 DenseMap< 273 AssertingVH<Value>, 274 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 275 LargeOffsetGEPMap; 276 277 /// Keep track of new GEP base after splitting the GEPs having large offset. 278 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 279 280 /// Map serial numbers to Large offset GEPs. 281 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 282 283 /// Keep track of SExt promoted. 284 ValueToSExts ValToSExtendedUses; 285 286 /// True if CFG is modified in any way. 287 bool ModifiedDT; 288 289 /// True if optimizing for size. 290 bool OptSize; 291 292 /// DataLayout for the Function being processed. 293 const DataLayout *DL = nullptr; 294 295 public: 296 static char ID; // Pass identification, replacement for typeid 297 298 CodeGenPrepare() : FunctionPass(ID) { 299 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 300 } 301 302 bool runOnFunction(Function &F) override; 303 304 StringRef getPassName() const override { return "CodeGen Prepare"; } 305 306 void getAnalysisUsage(AnalysisUsage &AU) const override { 307 // FIXME: When we can selectively preserve passes, preserve the domtree. 308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 309 AU.addRequired<TargetLibraryInfoWrapperPass>(); 310 AU.addRequired<TargetTransformInfoWrapperPass>(); 311 AU.addRequired<LoopInfoWrapperPass>(); 312 } 313 314 private: 315 bool eliminateFallThrough(Function &F); 316 bool eliminateMostlyEmptyBlocks(Function &F); 317 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 318 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 319 void eliminateMostlyEmptyBlock(BasicBlock *BB); 320 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 321 bool isPreheader); 322 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 323 bool optimizeInst(Instruction *I, bool &ModifiedDT); 324 bool optimizeMemoryInst(Instruction *I, Value *Addr, 325 Type *AccessTy, unsigned AS); 326 bool optimizeInlineAsmInst(CallInst *CS); 327 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 328 bool optimizeExt(Instruction *&I); 329 bool optimizeExtUses(Instruction *I); 330 bool optimizeLoadExt(LoadInst *I); 331 bool optimizeSelectInst(SelectInst *SI); 332 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 333 bool optimizeSwitchInst(SwitchInst *CI); 334 bool optimizeExtractElementInst(Instruction *Inst); 335 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 336 bool placeDbgValues(Function &F); 337 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 338 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 339 bool tryToPromoteExts(TypePromotionTransaction &TPT, 340 const SmallVectorImpl<Instruction *> &Exts, 341 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 342 unsigned CreatedInstsCost = 0); 343 bool mergeSExts(Function &F); 344 bool splitLargeGEPOffsets(); 345 bool performAddressTypePromotion( 346 Instruction *&Inst, 347 bool AllowPromotionWithoutCommonHeader, 348 bool HasPromoted, TypePromotionTransaction &TPT, 349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 350 bool splitBranchCondition(Function &F); 351 bool simplifyOffsetableRelocate(Instruction &I); 352 }; 353 354 } // end anonymous namespace 355 356 char CodeGenPrepare::ID = 0; 357 358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 359 "Optimize for code generation", false, false) 360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 362 "Optimize for code generation", false, false) 363 364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 365 366 bool CodeGenPrepare::runOnFunction(Function &F) { 367 if (skipFunction(F)) 368 return false; 369 370 DL = &F.getParent()->getDataLayout(); 371 372 bool EverMadeChange = false; 373 // Clear per function information. 374 InsertedInsts.clear(); 375 PromotedInsts.clear(); 376 377 ModifiedDT = false; 378 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 379 TM = &TPC->getTM<TargetMachine>(); 380 SubtargetInfo = TM->getSubtargetImpl(F); 381 TLI = SubtargetInfo->getTargetLowering(); 382 TRI = SubtargetInfo->getRegisterInfo(); 383 } 384 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 385 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 386 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 387 BPI.reset(new BranchProbabilityInfo(F, *LI)); 388 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 389 OptSize = F.optForSize(); 390 391 ProfileSummaryInfo *PSI = 392 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 393 if (ProfileGuidedSectionPrefix) { 394 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 395 F.setSectionPrefix(".hot"); 396 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 397 F.setSectionPrefix(".unlikely"); 398 } 399 400 /// This optimization identifies DIV instructions that can be 401 /// profitably bypassed and carried out with a shorter, faster divide. 402 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 403 TLI->isSlowDivBypassed()) { 404 const DenseMap<unsigned int, unsigned int> &BypassWidths = 405 TLI->getBypassSlowDivWidths(); 406 BasicBlock* BB = &*F.begin(); 407 while (BB != nullptr) { 408 // bypassSlowDivision may create new BBs, but we don't want to reapply the 409 // optimization to those blocks. 410 BasicBlock* Next = BB->getNextNode(); 411 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 412 BB = Next; 413 } 414 } 415 416 // Eliminate blocks that contain only PHI nodes and an 417 // unconditional branch. 418 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 419 420 // llvm.dbg.value is far away from the value then iSel may not be able 421 // handle it properly. iSel will drop llvm.dbg.value if it can not 422 // find a node corresponding to the value. 423 EverMadeChange |= placeDbgValues(F); 424 425 if (!DisableBranchOpts) 426 EverMadeChange |= splitBranchCondition(F); 427 428 // Split some critical edges where one of the sources is an indirect branch, 429 // to help generate sane code for PHIs involving such edges. 430 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 431 432 bool MadeChange = true; 433 while (MadeChange) { 434 MadeChange = false; 435 SeenChainsForSExt.clear(); 436 ValToSExtendedUses.clear(); 437 RemovedInsts.clear(); 438 LargeOffsetGEPMap.clear(); 439 LargeOffsetGEPID.clear(); 440 for (Function::iterator I = F.begin(); I != F.end(); ) { 441 BasicBlock *BB = &*I++; 442 bool ModifiedDTOnIteration = false; 443 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 444 445 // Restart BB iteration if the dominator tree of the Function was changed 446 if (ModifiedDTOnIteration) 447 break; 448 } 449 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 450 MadeChange |= mergeSExts(F); 451 if (!LargeOffsetGEPMap.empty()) 452 MadeChange |= splitLargeGEPOffsets(); 453 454 // Really free removed instructions during promotion. 455 for (Instruction *I : RemovedInsts) 456 I->deleteValue(); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 SunkAddrs.clear(); 462 463 if (!DisableBranchOpts) { 464 MadeChange = false; 465 // Use a set vector to get deterministic iteration order. The order the 466 // blocks are removed may affect whether or not PHI nodes in successors 467 // are removed. 468 SmallSetVector<BasicBlock*, 8> WorkList; 469 for (BasicBlock &BB : F) { 470 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 471 MadeChange |= ConstantFoldTerminator(&BB, true); 472 if (!MadeChange) continue; 473 474 for (SmallVectorImpl<BasicBlock*>::iterator 475 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 476 if (pred_begin(*II) == pred_end(*II)) 477 WorkList.insert(*II); 478 } 479 480 // Delete the dead blocks and any of their dead successors. 481 MadeChange |= !WorkList.empty(); 482 while (!WorkList.empty()) { 483 BasicBlock *BB = WorkList.pop_back_val(); 484 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 485 486 DeleteDeadBlock(BB); 487 488 for (SmallVectorImpl<BasicBlock*>::iterator 489 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 490 if (pred_begin(*II) == pred_end(*II)) 491 WorkList.insert(*II); 492 } 493 494 // Merge pairs of basic blocks with unconditional branches, connected by 495 // a single edge. 496 if (EverMadeChange || MadeChange) 497 MadeChange |= eliminateFallThrough(F); 498 499 EverMadeChange |= MadeChange; 500 } 501 502 if (!DisableGCOpts) { 503 SmallVector<Instruction *, 2> Statepoints; 504 for (BasicBlock &BB : F) 505 for (Instruction &I : BB) 506 if (isStatepoint(I)) 507 Statepoints.push_back(&I); 508 for (auto &I : Statepoints) 509 EverMadeChange |= simplifyOffsetableRelocate(*I); 510 } 511 512 return EverMadeChange; 513 } 514 515 /// Merge basic blocks which are connected by a single edge, where one of the 516 /// basic blocks has a single successor pointing to the other basic block, 517 /// which has a single predecessor. 518 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 519 bool Changed = false; 520 // Scan all of the blocks in the function, except for the entry block. 521 // Use a temporary array to avoid iterator being invalidated when 522 // deleting blocks. 523 SmallVector<WeakTrackingVH, 16> Blocks; 524 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 525 Blocks.push_back(&Block); 526 527 for (auto &Block : Blocks) { 528 auto *BB = cast_or_null<BasicBlock>(Block); 529 if (!BB) 530 continue; 531 // If the destination block has a single pred, then this is a trivial 532 // edge, just collapse it. 533 BasicBlock *SinglePred = BB->getSinglePredecessor(); 534 535 // Don't merge if BB's address is taken. 536 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 537 538 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 539 if (Term && !Term->isConditional()) { 540 Changed = true; 541 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 542 543 // Merge BB into SinglePred and delete it. 544 MergeBlockIntoPredecessor(BB); 545 } 546 } 547 return Changed; 548 } 549 550 /// Find a destination block from BB if BB is mergeable empty block. 551 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 552 // If this block doesn't end with an uncond branch, ignore it. 553 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 554 if (!BI || !BI->isUnconditional()) 555 return nullptr; 556 557 // If the instruction before the branch (skipping debug info) isn't a phi 558 // node, then other stuff is happening here. 559 BasicBlock::iterator BBI = BI->getIterator(); 560 if (BBI != BB->begin()) { 561 --BBI; 562 while (isa<DbgInfoIntrinsic>(BBI)) { 563 if (BBI == BB->begin()) 564 break; 565 --BBI; 566 } 567 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 568 return nullptr; 569 } 570 571 // Do not break infinite loops. 572 BasicBlock *DestBB = BI->getSuccessor(0); 573 if (DestBB == BB) 574 return nullptr; 575 576 if (!canMergeBlocks(BB, DestBB)) 577 DestBB = nullptr; 578 579 return DestBB; 580 } 581 582 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 583 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 584 /// edges in ways that are non-optimal for isel. Start by eliminating these 585 /// blocks so we can split them the way we want them. 586 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 587 SmallPtrSet<BasicBlock *, 16> Preheaders; 588 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 589 while (!LoopList.empty()) { 590 Loop *L = LoopList.pop_back_val(); 591 LoopList.insert(LoopList.end(), L->begin(), L->end()); 592 if (BasicBlock *Preheader = L->getLoopPreheader()) 593 Preheaders.insert(Preheader); 594 } 595 596 bool MadeChange = false; 597 // Copy blocks into a temporary array to avoid iterator invalidation issues 598 // as we remove them. 599 // Note that this intentionally skips the entry block. 600 SmallVector<WeakTrackingVH, 16> Blocks; 601 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 602 Blocks.push_back(&Block); 603 604 for (auto &Block : Blocks) { 605 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 606 if (!BB) 607 continue; 608 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 609 if (!DestBB || 610 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 611 continue; 612 613 eliminateMostlyEmptyBlock(BB); 614 MadeChange = true; 615 } 616 return MadeChange; 617 } 618 619 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 620 BasicBlock *DestBB, 621 bool isPreheader) { 622 // Do not delete loop preheaders if doing so would create a critical edge. 623 // Loop preheaders can be good locations to spill registers. If the 624 // preheader is deleted and we create a critical edge, registers may be 625 // spilled in the loop body instead. 626 if (!DisablePreheaderProtect && isPreheader && 627 !(BB->getSinglePredecessor() && 628 BB->getSinglePredecessor()->getSingleSuccessor())) 629 return false; 630 631 // Try to skip merging if the unique predecessor of BB is terminated by a 632 // switch or indirect branch instruction, and BB is used as an incoming block 633 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 634 // add COPY instructions in the predecessor of BB instead of BB (if it is not 635 // merged). Note that the critical edge created by merging such blocks wont be 636 // split in MachineSink because the jump table is not analyzable. By keeping 637 // such empty block (BB), ISel will place COPY instructions in BB, not in the 638 // predecessor of BB. 639 BasicBlock *Pred = BB->getUniquePredecessor(); 640 if (!Pred || 641 !(isa<SwitchInst>(Pred->getTerminator()) || 642 isa<IndirectBrInst>(Pred->getTerminator()))) 643 return true; 644 645 if (BB->getTerminator() != BB->getFirstNonPHI()) 646 return true; 647 648 // We use a simple cost heuristic which determine skipping merging is 649 // profitable if the cost of skipping merging is less than the cost of 650 // merging : Cost(skipping merging) < Cost(merging BB), where the 651 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 652 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 653 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 654 // Freq(Pred) / Freq(BB) > 2. 655 // Note that if there are multiple empty blocks sharing the same incoming 656 // value for the PHIs in the DestBB, we consider them together. In such 657 // case, Cost(merging BB) will be the sum of their frequencies. 658 659 if (!isa<PHINode>(DestBB->begin())) 660 return true; 661 662 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 663 664 // Find all other incoming blocks from which incoming values of all PHIs in 665 // DestBB are the same as the ones from BB. 666 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 667 ++PI) { 668 BasicBlock *DestBBPred = *PI; 669 if (DestBBPred == BB) 670 continue; 671 672 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 673 return DestPN.getIncomingValueForBlock(BB) == 674 DestPN.getIncomingValueForBlock(DestBBPred); 675 })) 676 SameIncomingValueBBs.insert(DestBBPred); 677 } 678 679 // See if all BB's incoming values are same as the value from Pred. In this 680 // case, no reason to skip merging because COPYs are expected to be place in 681 // Pred already. 682 if (SameIncomingValueBBs.count(Pred)) 683 return true; 684 685 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 686 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 687 688 for (auto SameValueBB : SameIncomingValueBBs) 689 if (SameValueBB->getUniquePredecessor() == Pred && 690 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 691 BBFreq += BFI->getBlockFreq(SameValueBB); 692 693 return PredFreq.getFrequency() <= 694 BBFreq.getFrequency() * FreqRatioToSkipMerge; 695 } 696 697 /// Return true if we can merge BB into DestBB if there is a single 698 /// unconditional branch between them, and BB contains no other non-phi 699 /// instructions. 700 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 701 const BasicBlock *DestBB) const { 702 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 703 // the successor. If there are more complex condition (e.g. preheaders), 704 // don't mess around with them. 705 for (const PHINode &PN : BB->phis()) { 706 for (const User *U : PN.users()) { 707 const Instruction *UI = cast<Instruction>(U); 708 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 709 return false; 710 // If User is inside DestBB block and it is a PHINode then check 711 // incoming value. If incoming value is not from BB then this is 712 // a complex condition (e.g. preheaders) we want to avoid here. 713 if (UI->getParent() == DestBB) { 714 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 715 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 716 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 717 if (Insn && Insn->getParent() == BB && 718 Insn->getParent() != UPN->getIncomingBlock(I)) 719 return false; 720 } 721 } 722 } 723 } 724 725 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 726 // and DestBB may have conflicting incoming values for the block. If so, we 727 // can't merge the block. 728 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 729 if (!DestBBPN) return true; // no conflict. 730 731 // Collect the preds of BB. 732 SmallPtrSet<const BasicBlock*, 16> BBPreds; 733 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 734 // It is faster to get preds from a PHI than with pred_iterator. 735 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 736 BBPreds.insert(BBPN->getIncomingBlock(i)); 737 } else { 738 BBPreds.insert(pred_begin(BB), pred_end(BB)); 739 } 740 741 // Walk the preds of DestBB. 742 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 743 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 744 if (BBPreds.count(Pred)) { // Common predecessor? 745 for (const PHINode &PN : DestBB->phis()) { 746 const Value *V1 = PN.getIncomingValueForBlock(Pred); 747 const Value *V2 = PN.getIncomingValueForBlock(BB); 748 749 // If V2 is a phi node in BB, look up what the mapped value will be. 750 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 751 if (V2PN->getParent() == BB) 752 V2 = V2PN->getIncomingValueForBlock(Pred); 753 754 // If there is a conflict, bail out. 755 if (V1 != V2) return false; 756 } 757 } 758 } 759 760 return true; 761 } 762 763 /// Eliminate a basic block that has only phi's and an unconditional branch in 764 /// it. 765 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 766 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 767 BasicBlock *DestBB = BI->getSuccessor(0); 768 769 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 770 << *BB << *DestBB); 771 772 // If the destination block has a single pred, then this is a trivial edge, 773 // just collapse it. 774 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 775 if (SinglePred != DestBB) { 776 assert(SinglePred == BB && 777 "Single predecessor not the same as predecessor"); 778 // Merge DestBB into SinglePred/BB and delete it. 779 MergeBlockIntoPredecessor(DestBB); 780 // Note: BB(=SinglePred) will not be deleted on this path. 781 // DestBB(=its single successor) is the one that was deleted. 782 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 783 return; 784 } 785 } 786 787 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 788 // to handle the new incoming edges it is about to have. 789 for (PHINode &PN : DestBB->phis()) { 790 // Remove the incoming value for BB, and remember it. 791 Value *InVal = PN.removeIncomingValue(BB, false); 792 793 // Two options: either the InVal is a phi node defined in BB or it is some 794 // value that dominates BB. 795 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 796 if (InValPhi && InValPhi->getParent() == BB) { 797 // Add all of the input values of the input PHI as inputs of this phi. 798 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 799 PN.addIncoming(InValPhi->getIncomingValue(i), 800 InValPhi->getIncomingBlock(i)); 801 } else { 802 // Otherwise, add one instance of the dominating value for each edge that 803 // we will be adding. 804 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 805 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 806 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 807 } else { 808 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 809 PN.addIncoming(InVal, *PI); 810 } 811 } 812 } 813 814 // The PHIs are now updated, change everything that refers to BB to use 815 // DestBB and remove BB. 816 BB->replaceAllUsesWith(DestBB); 817 BB->eraseFromParent(); 818 ++NumBlocksElim; 819 820 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 821 } 822 823 // Computes a map of base pointer relocation instructions to corresponding 824 // derived pointer relocation instructions given a vector of all relocate calls 825 static void computeBaseDerivedRelocateMap( 826 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 827 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 828 &RelocateInstMap) { 829 // Collect information in two maps: one primarily for locating the base object 830 // while filling the second map; the second map is the final structure holding 831 // a mapping between Base and corresponding Derived relocate calls 832 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 833 for (auto *ThisRelocate : AllRelocateCalls) { 834 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 835 ThisRelocate->getDerivedPtrIndex()); 836 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 837 } 838 for (auto &Item : RelocateIdxMap) { 839 std::pair<unsigned, unsigned> Key = Item.first; 840 if (Key.first == Key.second) 841 // Base relocation: nothing to insert 842 continue; 843 844 GCRelocateInst *I = Item.second; 845 auto BaseKey = std::make_pair(Key.first, Key.first); 846 847 // We're iterating over RelocateIdxMap so we cannot modify it. 848 auto MaybeBase = RelocateIdxMap.find(BaseKey); 849 if (MaybeBase == RelocateIdxMap.end()) 850 // TODO: We might want to insert a new base object relocate and gep off 851 // that, if there are enough derived object relocates. 852 continue; 853 854 RelocateInstMap[MaybeBase->second].push_back(I); 855 } 856 } 857 858 // Accepts a GEP and extracts the operands into a vector provided they're all 859 // small integer constants 860 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 861 SmallVectorImpl<Value *> &OffsetV) { 862 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 863 // Only accept small constant integer operands 864 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 865 if (!Op || Op->getZExtValue() > 20) 866 return false; 867 } 868 869 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 870 OffsetV.push_back(GEP->getOperand(i)); 871 return true; 872 } 873 874 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 875 // replace, computes a replacement, and affects it. 876 static bool 877 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 878 const SmallVectorImpl<GCRelocateInst *> &Targets) { 879 bool MadeChange = false; 880 // We must ensure the relocation of derived pointer is defined after 881 // relocation of base pointer. If we find a relocation corresponding to base 882 // defined earlier than relocation of base then we move relocation of base 883 // right before found relocation. We consider only relocation in the same 884 // basic block as relocation of base. Relocations from other basic block will 885 // be skipped by optimization and we do not care about them. 886 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 887 &*R != RelocatedBase; ++R) 888 if (auto RI = dyn_cast<GCRelocateInst>(R)) 889 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 890 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 891 RelocatedBase->moveBefore(RI); 892 break; 893 } 894 895 for (GCRelocateInst *ToReplace : Targets) { 896 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 897 "Not relocating a derived object of the original base object"); 898 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 899 // A duplicate relocate call. TODO: coalesce duplicates. 900 continue; 901 } 902 903 if (RelocatedBase->getParent() != ToReplace->getParent()) { 904 // Base and derived relocates are in different basic blocks. 905 // In this case transform is only valid when base dominates derived 906 // relocate. However it would be too expensive to check dominance 907 // for each such relocate, so we skip the whole transformation. 908 continue; 909 } 910 911 Value *Base = ToReplace->getBasePtr(); 912 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 913 if (!Derived || Derived->getPointerOperand() != Base) 914 continue; 915 916 SmallVector<Value *, 2> OffsetV; 917 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 918 continue; 919 920 // Create a Builder and replace the target callsite with a gep 921 assert(RelocatedBase->getNextNode() && 922 "Should always have one since it's not a terminator"); 923 924 // Insert after RelocatedBase 925 IRBuilder<> Builder(RelocatedBase->getNextNode()); 926 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 927 928 // If gc_relocate does not match the actual type, cast it to the right type. 929 // In theory, there must be a bitcast after gc_relocate if the type does not 930 // match, and we should reuse it to get the derived pointer. But it could be 931 // cases like this: 932 // bb1: 933 // ... 934 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 935 // br label %merge 936 // 937 // bb2: 938 // ... 939 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 940 // br label %merge 941 // 942 // merge: 943 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 944 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 945 // 946 // In this case, we can not find the bitcast any more. So we insert a new bitcast 947 // no matter there is already one or not. In this way, we can handle all cases, and 948 // the extra bitcast should be optimized away in later passes. 949 Value *ActualRelocatedBase = RelocatedBase; 950 if (RelocatedBase->getType() != Base->getType()) { 951 ActualRelocatedBase = 952 Builder.CreateBitCast(RelocatedBase, Base->getType()); 953 } 954 Value *Replacement = Builder.CreateGEP( 955 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 956 Replacement->takeName(ToReplace); 957 // If the newly generated derived pointer's type does not match the original derived 958 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 959 Value *ActualReplacement = Replacement; 960 if (Replacement->getType() != ToReplace->getType()) { 961 ActualReplacement = 962 Builder.CreateBitCast(Replacement, ToReplace->getType()); 963 } 964 ToReplace->replaceAllUsesWith(ActualReplacement); 965 ToReplace->eraseFromParent(); 966 967 MadeChange = true; 968 } 969 return MadeChange; 970 } 971 972 // Turns this: 973 // 974 // %base = ... 975 // %ptr = gep %base + 15 976 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 977 // %base' = relocate(%tok, i32 4, i32 4) 978 // %ptr' = relocate(%tok, i32 4, i32 5) 979 // %val = load %ptr' 980 // 981 // into this: 982 // 983 // %base = ... 984 // %ptr = gep %base + 15 985 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 986 // %base' = gc.relocate(%tok, i32 4, i32 4) 987 // %ptr' = gep %base' + 15 988 // %val = load %ptr' 989 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 990 bool MadeChange = false; 991 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 992 993 for (auto *U : I.users()) 994 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 995 // Collect all the relocate calls associated with a statepoint 996 AllRelocateCalls.push_back(Relocate); 997 998 // We need atleast one base pointer relocation + one derived pointer 999 // relocation to mangle 1000 if (AllRelocateCalls.size() < 2) 1001 return false; 1002 1003 // RelocateInstMap is a mapping from the base relocate instruction to the 1004 // corresponding derived relocate instructions 1005 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1006 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1007 if (RelocateInstMap.empty()) 1008 return false; 1009 1010 for (auto &Item : RelocateInstMap) 1011 // Item.first is the RelocatedBase to offset against 1012 // Item.second is the vector of Targets to replace 1013 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1014 return MadeChange; 1015 } 1016 1017 /// SinkCast - Sink the specified cast instruction into its user blocks 1018 static bool SinkCast(CastInst *CI) { 1019 BasicBlock *DefBB = CI->getParent(); 1020 1021 /// InsertedCasts - Only insert a cast in each block once. 1022 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1023 1024 bool MadeChange = false; 1025 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1026 UI != E; ) { 1027 Use &TheUse = UI.getUse(); 1028 Instruction *User = cast<Instruction>(*UI); 1029 1030 // Figure out which BB this cast is used in. For PHI's this is the 1031 // appropriate predecessor block. 1032 BasicBlock *UserBB = User->getParent(); 1033 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1034 UserBB = PN->getIncomingBlock(TheUse); 1035 } 1036 1037 // Preincrement use iterator so we don't invalidate it. 1038 ++UI; 1039 1040 // The first insertion point of a block containing an EH pad is after the 1041 // pad. If the pad is the user, we cannot sink the cast past the pad. 1042 if (User->isEHPad()) 1043 continue; 1044 1045 // If the block selected to receive the cast is an EH pad that does not 1046 // allow non-PHI instructions before the terminator, we can't sink the 1047 // cast. 1048 if (UserBB->getTerminator()->isEHPad()) 1049 continue; 1050 1051 // If this user is in the same block as the cast, don't change the cast. 1052 if (UserBB == DefBB) continue; 1053 1054 // If we have already inserted a cast into this block, use it. 1055 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1056 1057 if (!InsertedCast) { 1058 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1059 assert(InsertPt != UserBB->end()); 1060 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1061 CI->getType(), "", &*InsertPt); 1062 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1063 } 1064 1065 // Replace a use of the cast with a use of the new cast. 1066 TheUse = InsertedCast; 1067 MadeChange = true; 1068 ++NumCastUses; 1069 } 1070 1071 // If we removed all uses, nuke the cast. 1072 if (CI->use_empty()) { 1073 salvageDebugInfo(*CI); 1074 CI->eraseFromParent(); 1075 MadeChange = true; 1076 } 1077 1078 return MadeChange; 1079 } 1080 1081 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1082 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1083 /// reduce the number of virtual registers that must be created and coalesced. 1084 /// 1085 /// Return true if any changes are made. 1086 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1087 const DataLayout &DL) { 1088 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1089 // than sinking only nop casts, but is helpful on some platforms. 1090 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1091 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1092 ASC->getDestAddressSpace())) 1093 return false; 1094 } 1095 1096 // If this is a noop copy, 1097 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1098 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1099 1100 // This is an fp<->int conversion? 1101 if (SrcVT.isInteger() != DstVT.isInteger()) 1102 return false; 1103 1104 // If this is an extension, it will be a zero or sign extension, which 1105 // isn't a noop. 1106 if (SrcVT.bitsLT(DstVT)) return false; 1107 1108 // If these values will be promoted, find out what they will be promoted 1109 // to. This helps us consider truncates on PPC as noop copies when they 1110 // are. 1111 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1112 TargetLowering::TypePromoteInteger) 1113 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1114 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1115 TargetLowering::TypePromoteInteger) 1116 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1117 1118 // If, after promotion, these are the same types, this is a noop copy. 1119 if (SrcVT != DstVT) 1120 return false; 1121 1122 return SinkCast(CI); 1123 } 1124 1125 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1126 /// possible. 1127 /// 1128 /// Return true if any changes were made. 1129 static bool CombineUAddWithOverflow(CmpInst *CI) { 1130 Value *A, *B; 1131 Instruction *AddI; 1132 if (!match(CI, 1133 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1134 return false; 1135 1136 Type *Ty = AddI->getType(); 1137 if (!isa<IntegerType>(Ty)) 1138 return false; 1139 1140 // We don't want to move around uses of condition values this late, so we we 1141 // check if it is legal to create the call to the intrinsic in the basic 1142 // block containing the icmp: 1143 1144 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1145 return false; 1146 1147 #ifndef NDEBUG 1148 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1149 // for now: 1150 if (AddI->hasOneUse()) 1151 assert(*AddI->user_begin() == CI && "expected!"); 1152 #endif 1153 1154 Module *M = CI->getModule(); 1155 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1156 1157 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1158 1159 auto *UAddWithOverflow = 1160 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1161 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1162 auto *Overflow = 1163 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1164 1165 CI->replaceAllUsesWith(Overflow); 1166 AddI->replaceAllUsesWith(UAdd); 1167 CI->eraseFromParent(); 1168 AddI->eraseFromParent(); 1169 return true; 1170 } 1171 1172 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1173 /// registers that must be created and coalesced. This is a clear win except on 1174 /// targets with multiple condition code registers (PowerPC), where it might 1175 /// lose; some adjustment may be wanted there. 1176 /// 1177 /// Return true if any changes are made. 1178 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1179 BasicBlock *DefBB = CI->getParent(); 1180 1181 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1182 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1183 return false; 1184 1185 // Only insert a cmp in each block once. 1186 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1187 1188 bool MadeChange = false; 1189 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1190 UI != E; ) { 1191 Use &TheUse = UI.getUse(); 1192 Instruction *User = cast<Instruction>(*UI); 1193 1194 // Preincrement use iterator so we don't invalidate it. 1195 ++UI; 1196 1197 // Don't bother for PHI nodes. 1198 if (isa<PHINode>(User)) 1199 continue; 1200 1201 // Figure out which BB this cmp is used in. 1202 BasicBlock *UserBB = User->getParent(); 1203 1204 // If this user is in the same block as the cmp, don't change the cmp. 1205 if (UserBB == DefBB) continue; 1206 1207 // If we have already inserted a cmp into this block, use it. 1208 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1209 1210 if (!InsertedCmp) { 1211 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1212 assert(InsertPt != UserBB->end()); 1213 InsertedCmp = 1214 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1215 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1216 // Propagate the debug info. 1217 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1218 } 1219 1220 // Replace a use of the cmp with a use of the new cmp. 1221 TheUse = InsertedCmp; 1222 MadeChange = true; 1223 ++NumCmpUses; 1224 } 1225 1226 // If we removed all uses, nuke the cmp. 1227 if (CI->use_empty()) { 1228 CI->eraseFromParent(); 1229 MadeChange = true; 1230 } 1231 1232 return MadeChange; 1233 } 1234 1235 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1236 if (SinkCmpExpression(CI, TLI)) 1237 return true; 1238 1239 if (CombineUAddWithOverflow(CI)) 1240 return true; 1241 1242 return false; 1243 } 1244 1245 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1246 /// used in a compare to allow isel to generate better code for targets where 1247 /// this operation can be combined. 1248 /// 1249 /// Return true if any changes are made. 1250 static bool sinkAndCmp0Expression(Instruction *AndI, 1251 const TargetLowering &TLI, 1252 SetOfInstrs &InsertedInsts) { 1253 // Double-check that we're not trying to optimize an instruction that was 1254 // already optimized by some other part of this pass. 1255 assert(!InsertedInsts.count(AndI) && 1256 "Attempting to optimize already optimized and instruction"); 1257 (void) InsertedInsts; 1258 1259 // Nothing to do for single use in same basic block. 1260 if (AndI->hasOneUse() && 1261 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1262 return false; 1263 1264 // Try to avoid cases where sinking/duplicating is likely to increase register 1265 // pressure. 1266 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1267 !isa<ConstantInt>(AndI->getOperand(1)) && 1268 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1269 return false; 1270 1271 for (auto *U : AndI->users()) { 1272 Instruction *User = cast<Instruction>(U); 1273 1274 // Only sink for and mask feeding icmp with 0. 1275 if (!isa<ICmpInst>(User)) 1276 return false; 1277 1278 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1279 if (!CmpC || !CmpC->isZero()) 1280 return false; 1281 } 1282 1283 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1284 return false; 1285 1286 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1287 LLVM_DEBUG(AndI->getParent()->dump()); 1288 1289 // Push the 'and' into the same block as the icmp 0. There should only be 1290 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1291 // others, so we don't need to keep track of which BBs we insert into. 1292 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1293 UI != E; ) { 1294 Use &TheUse = UI.getUse(); 1295 Instruction *User = cast<Instruction>(*UI); 1296 1297 // Preincrement use iterator so we don't invalidate it. 1298 ++UI; 1299 1300 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1301 1302 // Keep the 'and' in the same place if the use is already in the same block. 1303 Instruction *InsertPt = 1304 User->getParent() == AndI->getParent() ? AndI : User; 1305 Instruction *InsertedAnd = 1306 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1307 AndI->getOperand(1), "", InsertPt); 1308 // Propagate the debug info. 1309 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1310 1311 // Replace a use of the 'and' with a use of the new 'and'. 1312 TheUse = InsertedAnd; 1313 ++NumAndUses; 1314 LLVM_DEBUG(User->getParent()->dump()); 1315 } 1316 1317 // We removed all uses, nuke the and. 1318 AndI->eraseFromParent(); 1319 return true; 1320 } 1321 1322 /// Check if the candidates could be combined with a shift instruction, which 1323 /// includes: 1324 /// 1. Truncate instruction 1325 /// 2. And instruction and the imm is a mask of the low bits: 1326 /// imm & (imm+1) == 0 1327 static bool isExtractBitsCandidateUse(Instruction *User) { 1328 if (!isa<TruncInst>(User)) { 1329 if (User->getOpcode() != Instruction::And || 1330 !isa<ConstantInt>(User->getOperand(1))) 1331 return false; 1332 1333 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1334 1335 if ((Cimm & (Cimm + 1)).getBoolValue()) 1336 return false; 1337 } 1338 return true; 1339 } 1340 1341 /// Sink both shift and truncate instruction to the use of truncate's BB. 1342 static bool 1343 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1344 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1345 const TargetLowering &TLI, const DataLayout &DL) { 1346 BasicBlock *UserBB = User->getParent(); 1347 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1348 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1349 bool MadeChange = false; 1350 1351 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1352 TruncE = TruncI->user_end(); 1353 TruncUI != TruncE;) { 1354 1355 Use &TruncTheUse = TruncUI.getUse(); 1356 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1357 // Preincrement use iterator so we don't invalidate it. 1358 1359 ++TruncUI; 1360 1361 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1362 if (!ISDOpcode) 1363 continue; 1364 1365 // If the use is actually a legal node, there will not be an 1366 // implicit truncate. 1367 // FIXME: always querying the result type is just an 1368 // approximation; some nodes' legality is determined by the 1369 // operand or other means. There's no good way to find out though. 1370 if (TLI.isOperationLegalOrCustom( 1371 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1372 continue; 1373 1374 // Don't bother for PHI nodes. 1375 if (isa<PHINode>(TruncUser)) 1376 continue; 1377 1378 BasicBlock *TruncUserBB = TruncUser->getParent(); 1379 1380 if (UserBB == TruncUserBB) 1381 continue; 1382 1383 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1384 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1385 1386 if (!InsertedShift && !InsertedTrunc) { 1387 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1388 assert(InsertPt != TruncUserBB->end()); 1389 // Sink the shift 1390 if (ShiftI->getOpcode() == Instruction::AShr) 1391 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1392 "", &*InsertPt); 1393 else 1394 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1395 "", &*InsertPt); 1396 1397 // Sink the trunc 1398 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1399 TruncInsertPt++; 1400 assert(TruncInsertPt != TruncUserBB->end()); 1401 1402 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1403 TruncI->getType(), "", &*TruncInsertPt); 1404 1405 MadeChange = true; 1406 1407 TruncTheUse = InsertedTrunc; 1408 } 1409 } 1410 return MadeChange; 1411 } 1412 1413 /// Sink the shift *right* instruction into user blocks if the uses could 1414 /// potentially be combined with this shift instruction and generate BitExtract 1415 /// instruction. It will only be applied if the architecture supports BitExtract 1416 /// instruction. Here is an example: 1417 /// BB1: 1418 /// %x.extract.shift = lshr i64 %arg1, 32 1419 /// BB2: 1420 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1421 /// ==> 1422 /// 1423 /// BB2: 1424 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1425 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1426 /// 1427 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1428 /// instruction. 1429 /// Return true if any changes are made. 1430 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1431 const TargetLowering &TLI, 1432 const DataLayout &DL) { 1433 BasicBlock *DefBB = ShiftI->getParent(); 1434 1435 /// Only insert instructions in each block once. 1436 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1437 1438 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1439 1440 bool MadeChange = false; 1441 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1442 UI != E;) { 1443 Use &TheUse = UI.getUse(); 1444 Instruction *User = cast<Instruction>(*UI); 1445 // Preincrement use iterator so we don't invalidate it. 1446 ++UI; 1447 1448 // Don't bother for PHI nodes. 1449 if (isa<PHINode>(User)) 1450 continue; 1451 1452 if (!isExtractBitsCandidateUse(User)) 1453 continue; 1454 1455 BasicBlock *UserBB = User->getParent(); 1456 1457 if (UserBB == DefBB) { 1458 // If the shift and truncate instruction are in the same BB. The use of 1459 // the truncate(TruncUse) may still introduce another truncate if not 1460 // legal. In this case, we would like to sink both shift and truncate 1461 // instruction to the BB of TruncUse. 1462 // for example: 1463 // BB1: 1464 // i64 shift.result = lshr i64 opnd, imm 1465 // trunc.result = trunc shift.result to i16 1466 // 1467 // BB2: 1468 // ----> We will have an implicit truncate here if the architecture does 1469 // not have i16 compare. 1470 // cmp i16 trunc.result, opnd2 1471 // 1472 if (isa<TruncInst>(User) && shiftIsLegal 1473 // If the type of the truncate is legal, no truncate will be 1474 // introduced in other basic blocks. 1475 && 1476 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1477 MadeChange = 1478 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1479 1480 continue; 1481 } 1482 // If we have already inserted a shift into this block, use it. 1483 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1484 1485 if (!InsertedShift) { 1486 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1487 assert(InsertPt != UserBB->end()); 1488 1489 if (ShiftI->getOpcode() == Instruction::AShr) 1490 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1491 "", &*InsertPt); 1492 else 1493 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1494 "", &*InsertPt); 1495 1496 MadeChange = true; 1497 } 1498 1499 // Replace a use of the shift with a use of the new shift. 1500 TheUse = InsertedShift; 1501 } 1502 1503 // If we removed all uses, nuke the shift. 1504 if (ShiftI->use_empty()) 1505 ShiftI->eraseFromParent(); 1506 1507 return MadeChange; 1508 } 1509 1510 /// If counting leading or trailing zeros is an expensive operation and a zero 1511 /// input is defined, add a check for zero to avoid calling the intrinsic. 1512 /// 1513 /// We want to transform: 1514 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1515 /// 1516 /// into: 1517 /// entry: 1518 /// %cmpz = icmp eq i64 %A, 0 1519 /// br i1 %cmpz, label %cond.end, label %cond.false 1520 /// cond.false: 1521 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1522 /// br label %cond.end 1523 /// cond.end: 1524 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1525 /// 1526 /// If the transform is performed, return true and set ModifiedDT to true. 1527 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1528 const TargetLowering *TLI, 1529 const DataLayout *DL, 1530 bool &ModifiedDT) { 1531 if (!TLI || !DL) 1532 return false; 1533 1534 // If a zero input is undefined, it doesn't make sense to despeculate that. 1535 if (match(CountZeros->getOperand(1), m_One())) 1536 return false; 1537 1538 // If it's cheap to speculate, there's nothing to do. 1539 auto IntrinsicID = CountZeros->getIntrinsicID(); 1540 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1541 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1542 return false; 1543 1544 // Only handle legal scalar cases. Anything else requires too much work. 1545 Type *Ty = CountZeros->getType(); 1546 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1547 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1548 return false; 1549 1550 // The intrinsic will be sunk behind a compare against zero and branch. 1551 BasicBlock *StartBlock = CountZeros->getParent(); 1552 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1553 1554 // Create another block after the count zero intrinsic. A PHI will be added 1555 // in this block to select the result of the intrinsic or the bit-width 1556 // constant if the input to the intrinsic is zero. 1557 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1558 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1559 1560 // Set up a builder to create a compare, conditional branch, and PHI. 1561 IRBuilder<> Builder(CountZeros->getContext()); 1562 Builder.SetInsertPoint(StartBlock->getTerminator()); 1563 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1564 1565 // Replace the unconditional branch that was created by the first split with 1566 // a compare against zero and a conditional branch. 1567 Value *Zero = Constant::getNullValue(Ty); 1568 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1569 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1570 StartBlock->getTerminator()->eraseFromParent(); 1571 1572 // Create a PHI in the end block to select either the output of the intrinsic 1573 // or the bit width of the operand. 1574 Builder.SetInsertPoint(&EndBlock->front()); 1575 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1576 CountZeros->replaceAllUsesWith(PN); 1577 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1578 PN->addIncoming(BitWidth, StartBlock); 1579 PN->addIncoming(CountZeros, CallBlock); 1580 1581 // We are explicitly handling the zero case, so we can set the intrinsic's 1582 // undefined zero argument to 'true'. This will also prevent reprocessing the 1583 // intrinsic; we only despeculate when a zero input is defined. 1584 CountZeros->setArgOperand(1, Builder.getTrue()); 1585 ModifiedDT = true; 1586 return true; 1587 } 1588 1589 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1590 BasicBlock *BB = CI->getParent(); 1591 1592 // Lower inline assembly if we can. 1593 // If we found an inline asm expession, and if the target knows how to 1594 // lower it to normal LLVM code, do so now. 1595 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1596 if (TLI->ExpandInlineAsm(CI)) { 1597 // Avoid invalidating the iterator. 1598 CurInstIterator = BB->begin(); 1599 // Avoid processing instructions out of order, which could cause 1600 // reuse before a value is defined. 1601 SunkAddrs.clear(); 1602 return true; 1603 } 1604 // Sink address computing for memory operands into the block. 1605 if (optimizeInlineAsmInst(CI)) 1606 return true; 1607 } 1608 1609 // Align the pointer arguments to this call if the target thinks it's a good 1610 // idea 1611 unsigned MinSize, PrefAlign; 1612 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1613 for (auto &Arg : CI->arg_operands()) { 1614 // We want to align both objects whose address is used directly and 1615 // objects whose address is used in casts and GEPs, though it only makes 1616 // sense for GEPs if the offset is a multiple of the desired alignment and 1617 // if size - offset meets the size threshold. 1618 if (!Arg->getType()->isPointerTy()) 1619 continue; 1620 APInt Offset(DL->getIndexSizeInBits( 1621 cast<PointerType>(Arg->getType())->getAddressSpace()), 1622 0); 1623 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1624 uint64_t Offset2 = Offset.getLimitedValue(); 1625 if ((Offset2 & (PrefAlign-1)) != 0) 1626 continue; 1627 AllocaInst *AI; 1628 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1629 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1630 AI->setAlignment(PrefAlign); 1631 // Global variables can only be aligned if they are defined in this 1632 // object (i.e. they are uniquely initialized in this object), and 1633 // over-aligning global variables that have an explicit section is 1634 // forbidden. 1635 GlobalVariable *GV; 1636 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1637 GV->getPointerAlignment(*DL) < PrefAlign && 1638 DL->getTypeAllocSize(GV->getValueType()) >= 1639 MinSize + Offset2) 1640 GV->setAlignment(PrefAlign); 1641 } 1642 // If this is a memcpy (or similar) then we may be able to improve the 1643 // alignment 1644 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1645 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1646 if (DestAlign > MI->getDestAlignment()) 1647 MI->setDestAlignment(DestAlign); 1648 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1649 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1650 if (SrcAlign > MTI->getSourceAlignment()) 1651 MTI->setSourceAlignment(SrcAlign); 1652 } 1653 } 1654 } 1655 1656 // If we have a cold call site, try to sink addressing computation into the 1657 // cold block. This interacts with our handling for loads and stores to 1658 // ensure that we can fold all uses of a potential addressing computation 1659 // into their uses. TODO: generalize this to work over profiling data 1660 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1661 for (auto &Arg : CI->arg_operands()) { 1662 if (!Arg->getType()->isPointerTy()) 1663 continue; 1664 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1665 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1666 } 1667 1668 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1669 if (II) { 1670 switch (II->getIntrinsicID()) { 1671 default: break; 1672 case Intrinsic::objectsize: { 1673 // Lower all uses of llvm.objectsize.* 1674 ConstantInt *RetVal = 1675 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1676 // Substituting this can cause recursive simplifications, which can 1677 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1678 // this 1679 // happens. 1680 Value *CurValue = &*CurInstIterator; 1681 WeakTrackingVH IterHandle(CurValue); 1682 1683 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1684 1685 // If the iterator instruction was recursively deleted, start over at the 1686 // start of the block. 1687 if (IterHandle != CurValue) { 1688 CurInstIterator = BB->begin(); 1689 SunkAddrs.clear(); 1690 } 1691 return true; 1692 } 1693 case Intrinsic::aarch64_stlxr: 1694 case Intrinsic::aarch64_stxr: { 1695 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1696 if (!ExtVal || !ExtVal->hasOneUse() || 1697 ExtVal->getParent() == CI->getParent()) 1698 return false; 1699 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1700 ExtVal->moveBefore(CI); 1701 // Mark this instruction as "inserted by CGP", so that other 1702 // optimizations don't touch it. 1703 InsertedInsts.insert(ExtVal); 1704 return true; 1705 } 1706 case Intrinsic::launder_invariant_group: 1707 case Intrinsic::strip_invariant_group: 1708 II->replaceAllUsesWith(II->getArgOperand(0)); 1709 II->eraseFromParent(); 1710 return true; 1711 1712 case Intrinsic::cttz: 1713 case Intrinsic::ctlz: 1714 // If counting zeros is expensive, try to avoid it. 1715 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1716 } 1717 1718 if (TLI) { 1719 SmallVector<Value*, 2> PtrOps; 1720 Type *AccessTy; 1721 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1722 while (!PtrOps.empty()) { 1723 Value *PtrVal = PtrOps.pop_back_val(); 1724 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1725 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1726 return true; 1727 } 1728 } 1729 } 1730 1731 // From here on out we're working with named functions. 1732 if (!CI->getCalledFunction()) return false; 1733 1734 // Lower all default uses of _chk calls. This is very similar 1735 // to what InstCombineCalls does, but here we are only lowering calls 1736 // to fortified library functions (e.g. __memcpy_chk) that have the default 1737 // "don't know" as the objectsize. Anything else should be left alone. 1738 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1739 if (Value *V = Simplifier.optimizeCall(CI)) { 1740 CI->replaceAllUsesWith(V); 1741 CI->eraseFromParent(); 1742 return true; 1743 } 1744 1745 return false; 1746 } 1747 1748 /// Look for opportunities to duplicate return instructions to the predecessor 1749 /// to enable tail call optimizations. The case it is currently looking for is: 1750 /// @code 1751 /// bb0: 1752 /// %tmp0 = tail call i32 @f0() 1753 /// br label %return 1754 /// bb1: 1755 /// %tmp1 = tail call i32 @f1() 1756 /// br label %return 1757 /// bb2: 1758 /// %tmp2 = tail call i32 @f2() 1759 /// br label %return 1760 /// return: 1761 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1762 /// ret i32 %retval 1763 /// @endcode 1764 /// 1765 /// => 1766 /// 1767 /// @code 1768 /// bb0: 1769 /// %tmp0 = tail call i32 @f0() 1770 /// ret i32 %tmp0 1771 /// bb1: 1772 /// %tmp1 = tail call i32 @f1() 1773 /// ret i32 %tmp1 1774 /// bb2: 1775 /// %tmp2 = tail call i32 @f2() 1776 /// ret i32 %tmp2 1777 /// @endcode 1778 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1779 if (!TLI) 1780 return false; 1781 1782 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1783 if (!RetI) 1784 return false; 1785 1786 PHINode *PN = nullptr; 1787 BitCastInst *BCI = nullptr; 1788 Value *V = RetI->getReturnValue(); 1789 if (V) { 1790 BCI = dyn_cast<BitCastInst>(V); 1791 if (BCI) 1792 V = BCI->getOperand(0); 1793 1794 PN = dyn_cast<PHINode>(V); 1795 if (!PN) 1796 return false; 1797 } 1798 1799 if (PN && PN->getParent() != BB) 1800 return false; 1801 1802 // Make sure there are no instructions between the PHI and return, or that the 1803 // return is the first instruction in the block. 1804 if (PN) { 1805 BasicBlock::iterator BI = BB->begin(); 1806 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1807 if (&*BI == BCI) 1808 // Also skip over the bitcast. 1809 ++BI; 1810 if (&*BI != RetI) 1811 return false; 1812 } else { 1813 BasicBlock::iterator BI = BB->begin(); 1814 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1815 if (&*BI != RetI) 1816 return false; 1817 } 1818 1819 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1820 /// call. 1821 const Function *F = BB->getParent(); 1822 SmallVector<CallInst*, 4> TailCalls; 1823 if (PN) { 1824 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1825 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1826 // Make sure the phi value is indeed produced by the tail call. 1827 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1828 TLI->mayBeEmittedAsTailCall(CI) && 1829 attributesPermitTailCall(F, CI, RetI, *TLI)) 1830 TailCalls.push_back(CI); 1831 } 1832 } else { 1833 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1834 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1835 if (!VisitedBBs.insert(*PI).second) 1836 continue; 1837 1838 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1839 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1840 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1841 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1842 if (RI == RE) 1843 continue; 1844 1845 CallInst *CI = dyn_cast<CallInst>(&*RI); 1846 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1847 attributesPermitTailCall(F, CI, RetI, *TLI)) 1848 TailCalls.push_back(CI); 1849 } 1850 } 1851 1852 bool Changed = false; 1853 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1854 CallInst *CI = TailCalls[i]; 1855 CallSite CS(CI); 1856 1857 // Conservatively require the attributes of the call to match those of the 1858 // return. Ignore noalias because it doesn't affect the call sequence. 1859 AttributeList CalleeAttrs = CS.getAttributes(); 1860 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1861 .removeAttribute(Attribute::NoAlias) != 1862 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1863 .removeAttribute(Attribute::NoAlias)) 1864 continue; 1865 1866 // Make sure the call instruction is followed by an unconditional branch to 1867 // the return block. 1868 BasicBlock *CallBB = CI->getParent(); 1869 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1870 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1871 continue; 1872 1873 // Duplicate the return into CallBB. 1874 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1875 ModifiedDT = Changed = true; 1876 ++NumRetsDup; 1877 } 1878 1879 // If we eliminated all predecessors of the block, delete the block now. 1880 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1881 BB->eraseFromParent(); 1882 1883 return Changed; 1884 } 1885 1886 //===----------------------------------------------------------------------===// 1887 // Memory Optimization 1888 //===----------------------------------------------------------------------===// 1889 1890 namespace { 1891 1892 /// This is an extended version of TargetLowering::AddrMode 1893 /// which holds actual Value*'s for register values. 1894 struct ExtAddrMode : public TargetLowering::AddrMode { 1895 Value *BaseReg = nullptr; 1896 Value *ScaledReg = nullptr; 1897 Value *OriginalValue = nullptr; 1898 1899 enum FieldName { 1900 NoField = 0x00, 1901 BaseRegField = 0x01, 1902 BaseGVField = 0x02, 1903 BaseOffsField = 0x04, 1904 ScaledRegField = 0x08, 1905 ScaleField = 0x10, 1906 MultipleFields = 0xff 1907 }; 1908 1909 ExtAddrMode() = default; 1910 1911 void print(raw_ostream &OS) const; 1912 void dump() const; 1913 1914 FieldName compare(const ExtAddrMode &other) { 1915 // First check that the types are the same on each field, as differing types 1916 // is something we can't cope with later on. 1917 if (BaseReg && other.BaseReg && 1918 BaseReg->getType() != other.BaseReg->getType()) 1919 return MultipleFields; 1920 if (BaseGV && other.BaseGV && 1921 BaseGV->getType() != other.BaseGV->getType()) 1922 return MultipleFields; 1923 if (ScaledReg && other.ScaledReg && 1924 ScaledReg->getType() != other.ScaledReg->getType()) 1925 return MultipleFields; 1926 1927 // Check each field to see if it differs. 1928 unsigned Result = NoField; 1929 if (BaseReg != other.BaseReg) 1930 Result |= BaseRegField; 1931 if (BaseGV != other.BaseGV) 1932 Result |= BaseGVField; 1933 if (BaseOffs != other.BaseOffs) 1934 Result |= BaseOffsField; 1935 if (ScaledReg != other.ScaledReg) 1936 Result |= ScaledRegField; 1937 // Don't count 0 as being a different scale, because that actually means 1938 // unscaled (which will already be counted by having no ScaledReg). 1939 if (Scale && other.Scale && Scale != other.Scale) 1940 Result |= ScaleField; 1941 1942 if (countPopulation(Result) > 1) 1943 return MultipleFields; 1944 else 1945 return static_cast<FieldName>(Result); 1946 } 1947 1948 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1949 // with no offset. 1950 bool isTrivial() { 1951 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1952 // trivial if at most one of these terms is nonzero, except that BaseGV and 1953 // BaseReg both being zero actually means a null pointer value, which we 1954 // consider to be 'non-zero' here. 1955 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1956 } 1957 1958 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1959 switch (Field) { 1960 default: 1961 return nullptr; 1962 case BaseRegField: 1963 return BaseReg; 1964 case BaseGVField: 1965 return BaseGV; 1966 case ScaledRegField: 1967 return ScaledReg; 1968 case BaseOffsField: 1969 return ConstantInt::get(IntPtrTy, BaseOffs); 1970 } 1971 } 1972 1973 void SetCombinedField(FieldName Field, Value *V, 1974 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1975 switch (Field) { 1976 default: 1977 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1978 break; 1979 case ExtAddrMode::BaseRegField: 1980 BaseReg = V; 1981 break; 1982 case ExtAddrMode::BaseGVField: 1983 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1984 // in the BaseReg field. 1985 assert(BaseReg == nullptr); 1986 BaseReg = V; 1987 BaseGV = nullptr; 1988 break; 1989 case ExtAddrMode::ScaledRegField: 1990 ScaledReg = V; 1991 // If we have a mix of scaled and unscaled addrmodes then we want scale 1992 // to be the scale and not zero. 1993 if (!Scale) 1994 for (const ExtAddrMode &AM : AddrModes) 1995 if (AM.Scale) { 1996 Scale = AM.Scale; 1997 break; 1998 } 1999 break; 2000 case ExtAddrMode::BaseOffsField: 2001 // The offset is no longer a constant, so it goes in ScaledReg with a 2002 // scale of 1. 2003 assert(ScaledReg == nullptr); 2004 ScaledReg = V; 2005 Scale = 1; 2006 BaseOffs = 0; 2007 break; 2008 } 2009 } 2010 }; 2011 2012 } // end anonymous namespace 2013 2014 #ifndef NDEBUG 2015 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2016 AM.print(OS); 2017 return OS; 2018 } 2019 #endif 2020 2021 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2022 void ExtAddrMode::print(raw_ostream &OS) const { 2023 bool NeedPlus = false; 2024 OS << "["; 2025 if (BaseGV) { 2026 OS << (NeedPlus ? " + " : "") 2027 << "GV:"; 2028 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2029 NeedPlus = true; 2030 } 2031 2032 if (BaseOffs) { 2033 OS << (NeedPlus ? " + " : "") 2034 << BaseOffs; 2035 NeedPlus = true; 2036 } 2037 2038 if (BaseReg) { 2039 OS << (NeedPlus ? " + " : "") 2040 << "Base:"; 2041 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2042 NeedPlus = true; 2043 } 2044 if (Scale) { 2045 OS << (NeedPlus ? " + " : "") 2046 << Scale << "*"; 2047 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2048 } 2049 2050 OS << ']'; 2051 } 2052 2053 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2054 print(dbgs()); 2055 dbgs() << '\n'; 2056 } 2057 #endif 2058 2059 namespace { 2060 2061 /// This class provides transaction based operation on the IR. 2062 /// Every change made through this class is recorded in the internal state and 2063 /// can be undone (rollback) until commit is called. 2064 class TypePromotionTransaction { 2065 /// This represents the common interface of the individual transaction. 2066 /// Each class implements the logic for doing one specific modification on 2067 /// the IR via the TypePromotionTransaction. 2068 class TypePromotionAction { 2069 protected: 2070 /// The Instruction modified. 2071 Instruction *Inst; 2072 2073 public: 2074 /// Constructor of the action. 2075 /// The constructor performs the related action on the IR. 2076 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2077 2078 virtual ~TypePromotionAction() = default; 2079 2080 /// Undo the modification done by this action. 2081 /// When this method is called, the IR must be in the same state as it was 2082 /// before this action was applied. 2083 /// \pre Undoing the action works if and only if the IR is in the exact same 2084 /// state as it was directly after this action was applied. 2085 virtual void undo() = 0; 2086 2087 /// Advocate every change made by this action. 2088 /// When the results on the IR of the action are to be kept, it is important 2089 /// to call this function, otherwise hidden information may be kept forever. 2090 virtual void commit() { 2091 // Nothing to be done, this action is not doing anything. 2092 } 2093 }; 2094 2095 /// Utility to remember the position of an instruction. 2096 class InsertionHandler { 2097 /// Position of an instruction. 2098 /// Either an instruction: 2099 /// - Is the first in a basic block: BB is used. 2100 /// - Has a previous instruction: PrevInst is used. 2101 union { 2102 Instruction *PrevInst; 2103 BasicBlock *BB; 2104 } Point; 2105 2106 /// Remember whether or not the instruction had a previous instruction. 2107 bool HasPrevInstruction; 2108 2109 public: 2110 /// Record the position of \p Inst. 2111 InsertionHandler(Instruction *Inst) { 2112 BasicBlock::iterator It = Inst->getIterator(); 2113 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2114 if (HasPrevInstruction) 2115 Point.PrevInst = &*--It; 2116 else 2117 Point.BB = Inst->getParent(); 2118 } 2119 2120 /// Insert \p Inst at the recorded position. 2121 void insert(Instruction *Inst) { 2122 if (HasPrevInstruction) { 2123 if (Inst->getParent()) 2124 Inst->removeFromParent(); 2125 Inst->insertAfter(Point.PrevInst); 2126 } else { 2127 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2128 if (Inst->getParent()) 2129 Inst->moveBefore(Position); 2130 else 2131 Inst->insertBefore(Position); 2132 } 2133 } 2134 }; 2135 2136 /// Move an instruction before another. 2137 class InstructionMoveBefore : public TypePromotionAction { 2138 /// Original position of the instruction. 2139 InsertionHandler Position; 2140 2141 public: 2142 /// Move \p Inst before \p Before. 2143 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2144 : TypePromotionAction(Inst), Position(Inst) { 2145 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2146 << "\n"); 2147 Inst->moveBefore(Before); 2148 } 2149 2150 /// Move the instruction back to its original position. 2151 void undo() override { 2152 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2153 Position.insert(Inst); 2154 } 2155 }; 2156 2157 /// Set the operand of an instruction with a new value. 2158 class OperandSetter : public TypePromotionAction { 2159 /// Original operand of the instruction. 2160 Value *Origin; 2161 2162 /// Index of the modified instruction. 2163 unsigned Idx; 2164 2165 public: 2166 /// Set \p Idx operand of \p Inst with \p NewVal. 2167 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2168 : TypePromotionAction(Inst), Idx(Idx) { 2169 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2170 << "for:" << *Inst << "\n" 2171 << "with:" << *NewVal << "\n"); 2172 Origin = Inst->getOperand(Idx); 2173 Inst->setOperand(Idx, NewVal); 2174 } 2175 2176 /// Restore the original value of the instruction. 2177 void undo() override { 2178 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2179 << "for: " << *Inst << "\n" 2180 << "with: " << *Origin << "\n"); 2181 Inst->setOperand(Idx, Origin); 2182 } 2183 }; 2184 2185 /// Hide the operands of an instruction. 2186 /// Do as if this instruction was not using any of its operands. 2187 class OperandsHider : public TypePromotionAction { 2188 /// The list of original operands. 2189 SmallVector<Value *, 4> OriginalValues; 2190 2191 public: 2192 /// Remove \p Inst from the uses of the operands of \p Inst. 2193 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2194 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2195 unsigned NumOpnds = Inst->getNumOperands(); 2196 OriginalValues.reserve(NumOpnds); 2197 for (unsigned It = 0; It < NumOpnds; ++It) { 2198 // Save the current operand. 2199 Value *Val = Inst->getOperand(It); 2200 OriginalValues.push_back(Val); 2201 // Set a dummy one. 2202 // We could use OperandSetter here, but that would imply an overhead 2203 // that we are not willing to pay. 2204 Inst->setOperand(It, UndefValue::get(Val->getType())); 2205 } 2206 } 2207 2208 /// Restore the original list of uses. 2209 void undo() override { 2210 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2211 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2212 Inst->setOperand(It, OriginalValues[It]); 2213 } 2214 }; 2215 2216 /// Build a truncate instruction. 2217 class TruncBuilder : public TypePromotionAction { 2218 Value *Val; 2219 2220 public: 2221 /// Build a truncate instruction of \p Opnd producing a \p Ty 2222 /// result. 2223 /// trunc Opnd to Ty. 2224 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2225 IRBuilder<> Builder(Opnd); 2226 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2227 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2228 } 2229 2230 /// Get the built value. 2231 Value *getBuiltValue() { return Val; } 2232 2233 /// Remove the built instruction. 2234 void undo() override { 2235 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2236 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2237 IVal->eraseFromParent(); 2238 } 2239 }; 2240 2241 /// Build a sign extension instruction. 2242 class SExtBuilder : public TypePromotionAction { 2243 Value *Val; 2244 2245 public: 2246 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2247 /// result. 2248 /// sext Opnd to Ty. 2249 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2250 : TypePromotionAction(InsertPt) { 2251 IRBuilder<> Builder(InsertPt); 2252 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2253 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2254 } 2255 2256 /// Get the built value. 2257 Value *getBuiltValue() { return Val; } 2258 2259 /// Remove the built instruction. 2260 void undo() override { 2261 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2262 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2263 IVal->eraseFromParent(); 2264 } 2265 }; 2266 2267 /// Build a zero extension instruction. 2268 class ZExtBuilder : public TypePromotionAction { 2269 Value *Val; 2270 2271 public: 2272 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2273 /// result. 2274 /// zext Opnd to Ty. 2275 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2276 : TypePromotionAction(InsertPt) { 2277 IRBuilder<> Builder(InsertPt); 2278 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2279 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2280 } 2281 2282 /// Get the built value. 2283 Value *getBuiltValue() { return Val; } 2284 2285 /// Remove the built instruction. 2286 void undo() override { 2287 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2288 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2289 IVal->eraseFromParent(); 2290 } 2291 }; 2292 2293 /// Mutate an instruction to another type. 2294 class TypeMutator : public TypePromotionAction { 2295 /// Record the original type. 2296 Type *OrigTy; 2297 2298 public: 2299 /// Mutate the type of \p Inst into \p NewTy. 2300 TypeMutator(Instruction *Inst, Type *NewTy) 2301 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2302 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2303 << "\n"); 2304 Inst->mutateType(NewTy); 2305 } 2306 2307 /// Mutate the instruction back to its original type. 2308 void undo() override { 2309 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2310 << "\n"); 2311 Inst->mutateType(OrigTy); 2312 } 2313 }; 2314 2315 /// Replace the uses of an instruction by another instruction. 2316 class UsesReplacer : public TypePromotionAction { 2317 /// Helper structure to keep track of the replaced uses. 2318 struct InstructionAndIdx { 2319 /// The instruction using the instruction. 2320 Instruction *Inst; 2321 2322 /// The index where this instruction is used for Inst. 2323 unsigned Idx; 2324 2325 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2326 : Inst(Inst), Idx(Idx) {} 2327 }; 2328 2329 /// Keep track of the original uses (pair Instruction, Index). 2330 SmallVector<InstructionAndIdx, 4> OriginalUses; 2331 2332 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2333 2334 public: 2335 /// Replace all the use of \p Inst by \p New. 2336 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2337 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2338 << "\n"); 2339 // Record the original uses. 2340 for (Use &U : Inst->uses()) { 2341 Instruction *UserI = cast<Instruction>(U.getUser()); 2342 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2343 } 2344 // Now, we can replace the uses. 2345 Inst->replaceAllUsesWith(New); 2346 } 2347 2348 /// Reassign the original uses of Inst to Inst. 2349 void undo() override { 2350 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2351 for (use_iterator UseIt = OriginalUses.begin(), 2352 EndIt = OriginalUses.end(); 2353 UseIt != EndIt; ++UseIt) { 2354 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2355 } 2356 } 2357 }; 2358 2359 /// Remove an instruction from the IR. 2360 class InstructionRemover : public TypePromotionAction { 2361 /// Original position of the instruction. 2362 InsertionHandler Inserter; 2363 2364 /// Helper structure to hide all the link to the instruction. In other 2365 /// words, this helps to do as if the instruction was removed. 2366 OperandsHider Hider; 2367 2368 /// Keep track of the uses replaced, if any. 2369 UsesReplacer *Replacer = nullptr; 2370 2371 /// Keep track of instructions removed. 2372 SetOfInstrs &RemovedInsts; 2373 2374 public: 2375 /// Remove all reference of \p Inst and optionally replace all its 2376 /// uses with New. 2377 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2378 /// \pre If !Inst->use_empty(), then New != nullptr 2379 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2380 Value *New = nullptr) 2381 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2382 RemovedInsts(RemovedInsts) { 2383 if (New) 2384 Replacer = new UsesReplacer(Inst, New); 2385 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2386 RemovedInsts.insert(Inst); 2387 /// The instructions removed here will be freed after completing 2388 /// optimizeBlock() for all blocks as we need to keep track of the 2389 /// removed instructions during promotion. 2390 Inst->removeFromParent(); 2391 } 2392 2393 ~InstructionRemover() override { delete Replacer; } 2394 2395 /// Resurrect the instruction and reassign it to the proper uses if 2396 /// new value was provided when build this action. 2397 void undo() override { 2398 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2399 Inserter.insert(Inst); 2400 if (Replacer) 2401 Replacer->undo(); 2402 Hider.undo(); 2403 RemovedInsts.erase(Inst); 2404 } 2405 }; 2406 2407 public: 2408 /// Restoration point. 2409 /// The restoration point is a pointer to an action instead of an iterator 2410 /// because the iterator may be invalidated but not the pointer. 2411 using ConstRestorationPt = const TypePromotionAction *; 2412 2413 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2414 : RemovedInsts(RemovedInsts) {} 2415 2416 /// Advocate every changes made in that transaction. 2417 void commit(); 2418 2419 /// Undo all the changes made after the given point. 2420 void rollback(ConstRestorationPt Point); 2421 2422 /// Get the current restoration point. 2423 ConstRestorationPt getRestorationPoint() const; 2424 2425 /// \name API for IR modification with state keeping to support rollback. 2426 /// @{ 2427 /// Same as Instruction::setOperand. 2428 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2429 2430 /// Same as Instruction::eraseFromParent. 2431 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2432 2433 /// Same as Value::replaceAllUsesWith. 2434 void replaceAllUsesWith(Instruction *Inst, Value *New); 2435 2436 /// Same as Value::mutateType. 2437 void mutateType(Instruction *Inst, Type *NewTy); 2438 2439 /// Same as IRBuilder::createTrunc. 2440 Value *createTrunc(Instruction *Opnd, Type *Ty); 2441 2442 /// Same as IRBuilder::createSExt. 2443 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2444 2445 /// Same as IRBuilder::createZExt. 2446 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2447 2448 /// Same as Instruction::moveBefore. 2449 void moveBefore(Instruction *Inst, Instruction *Before); 2450 /// @} 2451 2452 private: 2453 /// The ordered list of actions made so far. 2454 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2455 2456 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2457 2458 SetOfInstrs &RemovedInsts; 2459 }; 2460 2461 } // end anonymous namespace 2462 2463 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2464 Value *NewVal) { 2465 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2466 Inst, Idx, NewVal)); 2467 } 2468 2469 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2470 Value *NewVal) { 2471 Actions.push_back( 2472 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2473 Inst, RemovedInsts, NewVal)); 2474 } 2475 2476 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2477 Value *New) { 2478 Actions.push_back( 2479 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2480 } 2481 2482 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2483 Actions.push_back( 2484 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2485 } 2486 2487 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2488 Type *Ty) { 2489 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2490 Value *Val = Ptr->getBuiltValue(); 2491 Actions.push_back(std::move(Ptr)); 2492 return Val; 2493 } 2494 2495 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2496 Value *Opnd, Type *Ty) { 2497 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2498 Value *Val = Ptr->getBuiltValue(); 2499 Actions.push_back(std::move(Ptr)); 2500 return Val; 2501 } 2502 2503 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2504 Value *Opnd, Type *Ty) { 2505 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2506 Value *Val = Ptr->getBuiltValue(); 2507 Actions.push_back(std::move(Ptr)); 2508 return Val; 2509 } 2510 2511 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2512 Instruction *Before) { 2513 Actions.push_back( 2514 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2515 Inst, Before)); 2516 } 2517 2518 TypePromotionTransaction::ConstRestorationPt 2519 TypePromotionTransaction::getRestorationPoint() const { 2520 return !Actions.empty() ? Actions.back().get() : nullptr; 2521 } 2522 2523 void TypePromotionTransaction::commit() { 2524 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2525 ++It) 2526 (*It)->commit(); 2527 Actions.clear(); 2528 } 2529 2530 void TypePromotionTransaction::rollback( 2531 TypePromotionTransaction::ConstRestorationPt Point) { 2532 while (!Actions.empty() && Point != Actions.back().get()) { 2533 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2534 Curr->undo(); 2535 } 2536 } 2537 2538 namespace { 2539 2540 /// A helper class for matching addressing modes. 2541 /// 2542 /// This encapsulates the logic for matching the target-legal addressing modes. 2543 class AddressingModeMatcher { 2544 SmallVectorImpl<Instruction*> &AddrModeInsts; 2545 const TargetLowering &TLI; 2546 const TargetRegisterInfo &TRI; 2547 const DataLayout &DL; 2548 2549 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2550 /// the memory instruction that we're computing this address for. 2551 Type *AccessTy; 2552 unsigned AddrSpace; 2553 Instruction *MemoryInst; 2554 2555 /// This is the addressing mode that we're building up. This is 2556 /// part of the return value of this addressing mode matching stuff. 2557 ExtAddrMode &AddrMode; 2558 2559 /// The instructions inserted by other CodeGenPrepare optimizations. 2560 const SetOfInstrs &InsertedInsts; 2561 2562 /// A map from the instructions to their type before promotion. 2563 InstrToOrigTy &PromotedInsts; 2564 2565 /// The ongoing transaction where every action should be registered. 2566 TypePromotionTransaction &TPT; 2567 2568 // A GEP which has too large offset to be folded into the addressing mode. 2569 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2570 2571 /// This is set to true when we should not do profitability checks. 2572 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2573 bool IgnoreProfitability; 2574 2575 AddressingModeMatcher( 2576 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2577 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2578 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2579 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2580 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2581 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2582 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2583 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2584 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2585 IgnoreProfitability = false; 2586 } 2587 2588 public: 2589 /// Find the maximal addressing mode that a load/store of V can fold, 2590 /// give an access type of AccessTy. This returns a list of involved 2591 /// instructions in AddrModeInsts. 2592 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2593 /// optimizations. 2594 /// \p PromotedInsts maps the instructions to their type before promotion. 2595 /// \p The ongoing transaction where every action should be registered. 2596 static ExtAddrMode 2597 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2598 SmallVectorImpl<Instruction *> &AddrModeInsts, 2599 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2600 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2601 TypePromotionTransaction &TPT, 2602 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2603 ExtAddrMode Result; 2604 2605 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2606 MemoryInst, Result, InsertedInsts, 2607 PromotedInsts, TPT, LargeOffsetGEP) 2608 .matchAddr(V, 0); 2609 (void)Success; assert(Success && "Couldn't select *anything*?"); 2610 return Result; 2611 } 2612 2613 private: 2614 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2615 bool matchAddr(Value *V, unsigned Depth); 2616 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2617 bool *MovedAway = nullptr); 2618 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2619 ExtAddrMode &AMBefore, 2620 ExtAddrMode &AMAfter); 2621 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2622 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2623 Value *PromotedOperand) const; 2624 }; 2625 2626 /// Keep track of simplification of Phi nodes. 2627 /// Accept the set of all phi nodes and erase phi node from this set 2628 /// if it is simplified. 2629 class SimplificationTracker { 2630 DenseMap<Value *, Value *> Storage; 2631 const SimplifyQuery &SQ; 2632 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2633 // order when iterating over the set in MatchPhiSet. 2634 SmallSetVector<PHINode *, 32> AllPhiNodes; 2635 // Tracks newly created Select nodes. 2636 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2637 2638 public: 2639 SimplificationTracker(const SimplifyQuery &sq) 2640 : SQ(sq) {} 2641 2642 Value *Get(Value *V) { 2643 do { 2644 auto SV = Storage.find(V); 2645 if (SV == Storage.end()) 2646 return V; 2647 V = SV->second; 2648 } while (true); 2649 } 2650 2651 Value *Simplify(Value *Val) { 2652 SmallVector<Value *, 32> WorkList; 2653 SmallPtrSet<Value *, 32> Visited; 2654 WorkList.push_back(Val); 2655 while (!WorkList.empty()) { 2656 auto P = WorkList.pop_back_val(); 2657 if (!Visited.insert(P).second) 2658 continue; 2659 if (auto *PI = dyn_cast<Instruction>(P)) 2660 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2661 for (auto *U : PI->users()) 2662 WorkList.push_back(cast<Value>(U)); 2663 Put(PI, V); 2664 PI->replaceAllUsesWith(V); 2665 if (auto *PHI = dyn_cast<PHINode>(PI)) 2666 AllPhiNodes.remove(PHI); 2667 if (auto *Select = dyn_cast<SelectInst>(PI)) 2668 AllSelectNodes.erase(Select); 2669 PI->eraseFromParent(); 2670 } 2671 } 2672 return Get(Val); 2673 } 2674 2675 void Put(Value *From, Value *To) { 2676 Storage.insert({ From, To }); 2677 } 2678 2679 void ReplacePhi(PHINode *From, PHINode *To) { 2680 Value* OldReplacement = Get(From); 2681 while (OldReplacement != From) { 2682 From = To; 2683 To = dyn_cast<PHINode>(OldReplacement); 2684 OldReplacement = Get(From); 2685 } 2686 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2687 Put(From, To); 2688 From->replaceAllUsesWith(To); 2689 AllPhiNodes.remove(From); 2690 From->eraseFromParent(); 2691 } 2692 2693 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2694 2695 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2696 2697 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2698 2699 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2700 2701 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2702 2703 void destroyNewNodes(Type *CommonType) { 2704 // For safe erasing, replace the uses with dummy value first. 2705 auto Dummy = UndefValue::get(CommonType); 2706 for (auto I : AllPhiNodes) { 2707 I->replaceAllUsesWith(Dummy); 2708 I->eraseFromParent(); 2709 } 2710 AllPhiNodes.clear(); 2711 for (auto I : AllSelectNodes) { 2712 I->replaceAllUsesWith(Dummy); 2713 I->eraseFromParent(); 2714 } 2715 AllSelectNodes.clear(); 2716 } 2717 }; 2718 2719 /// A helper class for combining addressing modes. 2720 class AddressingModeCombiner { 2721 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2722 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2723 typedef std::pair<PHINode *, PHINode *> PHIPair; 2724 2725 private: 2726 /// The addressing modes we've collected. 2727 SmallVector<ExtAddrMode, 16> AddrModes; 2728 2729 /// The field in which the AddrModes differ, when we have more than one. 2730 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2731 2732 /// Are the AddrModes that we have all just equal to their original values? 2733 bool AllAddrModesTrivial = true; 2734 2735 /// Common Type for all different fields in addressing modes. 2736 Type *CommonType; 2737 2738 /// SimplifyQuery for simplifyInstruction utility. 2739 const SimplifyQuery &SQ; 2740 2741 /// Original Address. 2742 ValueInBB Original; 2743 2744 public: 2745 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2746 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2747 2748 /// Get the combined AddrMode 2749 const ExtAddrMode &getAddrMode() const { 2750 return AddrModes[0]; 2751 } 2752 2753 /// Add a new AddrMode if it's compatible with the AddrModes we already 2754 /// have. 2755 /// \return True iff we succeeded in doing so. 2756 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2757 // Take note of if we have any non-trivial AddrModes, as we need to detect 2758 // when all AddrModes are trivial as then we would introduce a phi or select 2759 // which just duplicates what's already there. 2760 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2761 2762 // If this is the first addrmode then everything is fine. 2763 if (AddrModes.empty()) { 2764 AddrModes.emplace_back(NewAddrMode); 2765 return true; 2766 } 2767 2768 // Figure out how different this is from the other address modes, which we 2769 // can do just by comparing against the first one given that we only care 2770 // about the cumulative difference. 2771 ExtAddrMode::FieldName ThisDifferentField = 2772 AddrModes[0].compare(NewAddrMode); 2773 if (DifferentField == ExtAddrMode::NoField) 2774 DifferentField = ThisDifferentField; 2775 else if (DifferentField != ThisDifferentField) 2776 DifferentField = ExtAddrMode::MultipleFields; 2777 2778 // If NewAddrMode differs in more than one dimension we cannot handle it. 2779 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2780 2781 // If Scale Field is different then we reject. 2782 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2783 2784 // We also must reject the case when base offset is different and 2785 // scale reg is not null, we cannot handle this case due to merge of 2786 // different offsets will be used as ScaleReg. 2787 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2788 !NewAddrMode.ScaledReg); 2789 2790 // We also must reject the case when GV is different and BaseReg installed 2791 // due to we want to use base reg as a merge of GV values. 2792 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2793 !NewAddrMode.HasBaseReg); 2794 2795 // Even if NewAddMode is the same we still need to collect it due to 2796 // original value is different. And later we will need all original values 2797 // as anchors during finding the common Phi node. 2798 if (CanHandle) 2799 AddrModes.emplace_back(NewAddrMode); 2800 else 2801 AddrModes.clear(); 2802 2803 return CanHandle; 2804 } 2805 2806 /// Combine the addressing modes we've collected into a single 2807 /// addressing mode. 2808 /// \return True iff we successfully combined them or we only had one so 2809 /// didn't need to combine them anyway. 2810 bool combineAddrModes() { 2811 // If we have no AddrModes then they can't be combined. 2812 if (AddrModes.size() == 0) 2813 return false; 2814 2815 // A single AddrMode can trivially be combined. 2816 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2817 return true; 2818 2819 // If the AddrModes we collected are all just equal to the value they are 2820 // derived from then combining them wouldn't do anything useful. 2821 if (AllAddrModesTrivial) 2822 return false; 2823 2824 if (!addrModeCombiningAllowed()) 2825 return false; 2826 2827 // Build a map between <original value, basic block where we saw it> to 2828 // value of base register. 2829 // Bail out if there is no common type. 2830 FoldAddrToValueMapping Map; 2831 if (!initializeMap(Map)) 2832 return false; 2833 2834 Value *CommonValue = findCommon(Map); 2835 if (CommonValue) 2836 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2837 return CommonValue != nullptr; 2838 } 2839 2840 private: 2841 /// Initialize Map with anchor values. For address seen in some BB 2842 /// we set the value of different field saw in this address. 2843 /// If address is not an instruction than basic block is set to null. 2844 /// At the same time we find a common type for different field we will 2845 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2846 /// Return false if there is no common type found. 2847 bool initializeMap(FoldAddrToValueMapping &Map) { 2848 // Keep track of keys where the value is null. We will need to replace it 2849 // with constant null when we know the common type. 2850 SmallVector<ValueInBB, 2> NullValue; 2851 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2852 for (auto &AM : AddrModes) { 2853 BasicBlock *BB = nullptr; 2854 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2855 BB = I->getParent(); 2856 2857 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2858 if (DV) { 2859 auto *Type = DV->getType(); 2860 if (CommonType && CommonType != Type) 2861 return false; 2862 CommonType = Type; 2863 Map[{ AM.OriginalValue, BB }] = DV; 2864 } else { 2865 NullValue.push_back({ AM.OriginalValue, BB }); 2866 } 2867 } 2868 assert(CommonType && "At least one non-null value must be!"); 2869 for (auto VIBB : NullValue) 2870 Map[VIBB] = Constant::getNullValue(CommonType); 2871 return true; 2872 } 2873 2874 /// We have mapping between value A and basic block where value A 2875 /// seen to other value B where B was a field in addressing mode represented 2876 /// by A. Also we have an original value C representing an address in some 2877 /// basic block. Traversing from C through phi and selects we ended up with 2878 /// A's in a map. This utility function tries to find a value V which is a 2879 /// field in addressing mode C and traversing through phi nodes and selects 2880 /// we will end up in corresponded values B in a map. 2881 /// The utility will create a new Phi/Selects if needed. 2882 // The simple example looks as follows: 2883 // BB1: 2884 // p1 = b1 + 40 2885 // br cond BB2, BB3 2886 // BB2: 2887 // p2 = b2 + 40 2888 // br BB3 2889 // BB3: 2890 // p = phi [p1, BB1], [p2, BB2] 2891 // v = load p 2892 // Map is 2893 // <p1, BB1> -> b1 2894 // <p2, BB2> -> b2 2895 // Request is 2896 // <p, BB3> -> ? 2897 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2898 Value *findCommon(FoldAddrToValueMapping &Map) { 2899 // Tracks the simplification of newly created phi nodes. The reason we use 2900 // this mapping is because we will add new created Phi nodes in AddrToBase. 2901 // Simplification of Phi nodes is recursive, so some Phi node may 2902 // be simplified after we added it to AddrToBase. 2903 // Using this mapping we can find the current value in AddrToBase. 2904 SimplificationTracker ST(SQ); 2905 2906 // First step, DFS to create PHI nodes for all intermediate blocks. 2907 // Also fill traverse order for the second step. 2908 SmallVector<ValueInBB, 32> TraverseOrder; 2909 InsertPlaceholders(Map, TraverseOrder, ST); 2910 2911 // Second Step, fill new nodes by merged values and simplify if possible. 2912 FillPlaceholders(Map, TraverseOrder, ST); 2913 2914 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2915 ST.destroyNewNodes(CommonType); 2916 return nullptr; 2917 } 2918 2919 // Now we'd like to match New Phi nodes to existed ones. 2920 unsigned PhiNotMatchedCount = 0; 2921 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2922 ST.destroyNewNodes(CommonType); 2923 return nullptr; 2924 } 2925 2926 auto *Result = ST.Get(Map.find(Original)->second); 2927 if (Result) { 2928 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2929 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2930 } 2931 return Result; 2932 } 2933 2934 /// Try to match PHI node to Candidate. 2935 /// Matcher tracks the matched Phi nodes. 2936 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2937 SmallSetVector<PHIPair, 8> &Matcher, 2938 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2939 SmallVector<PHIPair, 8> WorkList; 2940 Matcher.insert({ PHI, Candidate }); 2941 WorkList.push_back({ PHI, Candidate }); 2942 SmallSet<PHIPair, 8> Visited; 2943 while (!WorkList.empty()) { 2944 auto Item = WorkList.pop_back_val(); 2945 if (!Visited.insert(Item).second) 2946 continue; 2947 // We iterate over all incoming values to Phi to compare them. 2948 // If values are different and both of them Phi and the first one is a 2949 // Phi we added (subject to match) and both of them is in the same basic 2950 // block then we can match our pair if values match. So we state that 2951 // these values match and add it to work list to verify that. 2952 for (auto B : Item.first->blocks()) { 2953 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2954 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2955 if (FirstValue == SecondValue) 2956 continue; 2957 2958 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2959 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2960 2961 // One of them is not Phi or 2962 // The first one is not Phi node from the set we'd like to match or 2963 // Phi nodes from different basic blocks then 2964 // we will not be able to match. 2965 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2966 FirstPhi->getParent() != SecondPhi->getParent()) 2967 return false; 2968 2969 // If we already matched them then continue. 2970 if (Matcher.count({ FirstPhi, SecondPhi })) 2971 continue; 2972 // So the values are different and does not match. So we need them to 2973 // match. 2974 Matcher.insert({ FirstPhi, SecondPhi }); 2975 // But me must check it. 2976 WorkList.push_back({ FirstPhi, SecondPhi }); 2977 } 2978 } 2979 return true; 2980 } 2981 2982 /// For the given set of PHI nodes (in the SimplificationTracker) try 2983 /// to find their equivalents. 2984 /// Returns false if this matching fails and creation of new Phi is disabled. 2985 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2986 unsigned &PhiNotMatchedCount) { 2987 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2988 // in a deterministic order below. 2989 SmallSetVector<PHIPair, 8> Matched; 2990 SmallPtrSet<PHINode *, 8> WillNotMatch; 2991 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2992 while (PhiNodesToMatch.size()) { 2993 PHINode *PHI = *PhiNodesToMatch.begin(); 2994 2995 // Add us, if no Phi nodes in the basic block we do not match. 2996 WillNotMatch.clear(); 2997 WillNotMatch.insert(PHI); 2998 2999 // Traverse all Phis until we found equivalent or fail to do that. 3000 bool IsMatched = false; 3001 for (auto &P : PHI->getParent()->phis()) { 3002 if (&P == PHI) 3003 continue; 3004 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3005 break; 3006 // If it does not match, collect all Phi nodes from matcher. 3007 // if we end up with no match, them all these Phi nodes will not match 3008 // later. 3009 for (auto M : Matched) 3010 WillNotMatch.insert(M.first); 3011 Matched.clear(); 3012 } 3013 if (IsMatched) { 3014 // Replace all matched values and erase them. 3015 for (auto MV : Matched) 3016 ST.ReplacePhi(MV.first, MV.second); 3017 Matched.clear(); 3018 continue; 3019 } 3020 // If we are not allowed to create new nodes then bail out. 3021 if (!AllowNewPhiNodes) 3022 return false; 3023 // Just remove all seen values in matcher. They will not match anything. 3024 PhiNotMatchedCount += WillNotMatch.size(); 3025 for (auto *P : WillNotMatch) 3026 PhiNodesToMatch.remove(P); 3027 } 3028 return true; 3029 } 3030 /// Fill the placeholder with values from predecessors and simplify it. 3031 void FillPlaceholders(FoldAddrToValueMapping &Map, 3032 SmallVectorImpl<ValueInBB> &TraverseOrder, 3033 SimplificationTracker &ST) { 3034 while (!TraverseOrder.empty()) { 3035 auto Current = TraverseOrder.pop_back_val(); 3036 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3037 Value *CurrentValue = Current.first; 3038 BasicBlock *CurrentBlock = Current.second; 3039 Value *V = Map[Current]; 3040 3041 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3042 // CurrentValue also must be Select. 3043 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3044 auto *TrueValue = CurrentSelect->getTrueValue(); 3045 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3046 ? CurrentBlock 3047 : nullptr }; 3048 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3049 Select->setTrueValue(ST.Get(Map[TrueItem])); 3050 auto *FalseValue = CurrentSelect->getFalseValue(); 3051 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3052 ? CurrentBlock 3053 : nullptr }; 3054 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3055 Select->setFalseValue(ST.Get(Map[FalseItem])); 3056 } else { 3057 // Must be a Phi node then. 3058 PHINode *PHI = cast<PHINode>(V); 3059 // Fill the Phi node with values from predecessors. 3060 bool IsDefinedInThisBB = 3061 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3062 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3063 for (auto B : predecessors(CurrentBlock)) { 3064 Value *PV = IsDefinedInThisBB 3065 ? CurrentPhi->getIncomingValueForBlock(B) 3066 : CurrentValue; 3067 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3068 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3069 PHI->addIncoming(ST.Get(Map[item]), B); 3070 } 3071 } 3072 // Simplify if possible. 3073 Map[Current] = ST.Simplify(V); 3074 } 3075 } 3076 3077 /// Starting from value recursively iterates over predecessors up to known 3078 /// ending values represented in a map. For each traversed block inserts 3079 /// a placeholder Phi or Select. 3080 /// Reports all new created Phi/Select nodes by adding them to set. 3081 /// Also reports and order in what basic blocks have been traversed. 3082 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3083 SmallVectorImpl<ValueInBB> &TraverseOrder, 3084 SimplificationTracker &ST) { 3085 SmallVector<ValueInBB, 32> Worklist; 3086 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3087 "Address must be a Phi or Select node"); 3088 auto *Dummy = UndefValue::get(CommonType); 3089 Worklist.push_back(Original); 3090 while (!Worklist.empty()) { 3091 auto Current = Worklist.pop_back_val(); 3092 // If value is not an instruction it is something global, constant, 3093 // parameter and we can say that this value is observable in any block. 3094 // Set block to null to denote it. 3095 // Also please take into account that it is how we build anchors. 3096 if (!isa<Instruction>(Current.first)) 3097 Current.second = nullptr; 3098 // if it is already visited or it is an ending value then skip it. 3099 if (Map.find(Current) != Map.end()) 3100 continue; 3101 TraverseOrder.push_back(Current); 3102 3103 Value *CurrentValue = Current.first; 3104 BasicBlock *CurrentBlock = Current.second; 3105 // CurrentValue must be a Phi node or select. All others must be covered 3106 // by anchors. 3107 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3108 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3109 3110 unsigned PredCount = pred_size(CurrentBlock); 3111 // if Current Value is not defined in this basic block we are interested 3112 // in values in predecessors. 3113 if (!IsDefinedInThisBB) { 3114 assert(PredCount && "Unreachable block?!"); 3115 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3116 &CurrentBlock->front()); 3117 Map[Current] = PHI; 3118 ST.insertNewPhi(PHI); 3119 // Add all predecessors in work list. 3120 for (auto B : predecessors(CurrentBlock)) 3121 Worklist.push_back({ CurrentValue, B }); 3122 continue; 3123 } 3124 // Value is defined in this basic block. 3125 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3126 // Is it OK to get metadata from OrigSelect?! 3127 // Create a Select placeholder with dummy value. 3128 SelectInst *Select = 3129 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3130 OrigSelect->getName(), OrigSelect, OrigSelect); 3131 Map[Current] = Select; 3132 ST.insertNewSelect(Select); 3133 // We are interested in True and False value in this basic block. 3134 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3135 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3136 } else { 3137 // It must be a Phi node then. 3138 auto *CurrentPhi = cast<PHINode>(CurrentI); 3139 // Create new Phi node for merge of bases. 3140 assert(PredCount && "Unreachable block?!"); 3141 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3142 &CurrentBlock->front()); 3143 Map[Current] = PHI; 3144 ST.insertNewPhi(PHI); 3145 3146 // Add all predecessors in work list. 3147 for (auto B : predecessors(CurrentBlock)) 3148 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3149 } 3150 } 3151 } 3152 3153 bool addrModeCombiningAllowed() { 3154 if (DisableComplexAddrModes) 3155 return false; 3156 switch (DifferentField) { 3157 default: 3158 return false; 3159 case ExtAddrMode::BaseRegField: 3160 return AddrSinkCombineBaseReg; 3161 case ExtAddrMode::BaseGVField: 3162 return AddrSinkCombineBaseGV; 3163 case ExtAddrMode::BaseOffsField: 3164 return AddrSinkCombineBaseOffs; 3165 case ExtAddrMode::ScaledRegField: 3166 return AddrSinkCombineScaledReg; 3167 } 3168 } 3169 }; 3170 } // end anonymous namespace 3171 3172 /// Try adding ScaleReg*Scale to the current addressing mode. 3173 /// Return true and update AddrMode if this addr mode is legal for the target, 3174 /// false if not. 3175 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3176 unsigned Depth) { 3177 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3178 // mode. Just process that directly. 3179 if (Scale == 1) 3180 return matchAddr(ScaleReg, Depth); 3181 3182 // If the scale is 0, it takes nothing to add this. 3183 if (Scale == 0) 3184 return true; 3185 3186 // If we already have a scale of this value, we can add to it, otherwise, we 3187 // need an available scale field. 3188 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3189 return false; 3190 3191 ExtAddrMode TestAddrMode = AddrMode; 3192 3193 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3194 // [A+B + A*7] -> [B+A*8]. 3195 TestAddrMode.Scale += Scale; 3196 TestAddrMode.ScaledReg = ScaleReg; 3197 3198 // If the new address isn't legal, bail out. 3199 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3200 return false; 3201 3202 // It was legal, so commit it. 3203 AddrMode = TestAddrMode; 3204 3205 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3206 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3207 // X*Scale + C*Scale to addr mode. 3208 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3209 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3210 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3211 TestAddrMode.ScaledReg = AddLHS; 3212 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3213 3214 // If this addressing mode is legal, commit it and remember that we folded 3215 // this instruction. 3216 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3217 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3218 AddrMode = TestAddrMode; 3219 return true; 3220 } 3221 } 3222 3223 // Otherwise, not (x+c)*scale, just return what we have. 3224 return true; 3225 } 3226 3227 /// This is a little filter, which returns true if an addressing computation 3228 /// involving I might be folded into a load/store accessing it. 3229 /// This doesn't need to be perfect, but needs to accept at least 3230 /// the set of instructions that MatchOperationAddr can. 3231 static bool MightBeFoldableInst(Instruction *I) { 3232 switch (I->getOpcode()) { 3233 case Instruction::BitCast: 3234 case Instruction::AddrSpaceCast: 3235 // Don't touch identity bitcasts. 3236 if (I->getType() == I->getOperand(0)->getType()) 3237 return false; 3238 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3239 case Instruction::PtrToInt: 3240 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3241 return true; 3242 case Instruction::IntToPtr: 3243 // We know the input is intptr_t, so this is foldable. 3244 return true; 3245 case Instruction::Add: 3246 return true; 3247 case Instruction::Mul: 3248 case Instruction::Shl: 3249 // Can only handle X*C and X << C. 3250 return isa<ConstantInt>(I->getOperand(1)); 3251 case Instruction::GetElementPtr: 3252 return true; 3253 default: 3254 return false; 3255 } 3256 } 3257 3258 /// Check whether or not \p Val is a legal instruction for \p TLI. 3259 /// \note \p Val is assumed to be the product of some type promotion. 3260 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3261 /// to be legal, as the non-promoted value would have had the same state. 3262 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3263 const DataLayout &DL, Value *Val) { 3264 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3265 if (!PromotedInst) 3266 return false; 3267 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3268 // If the ISDOpcode is undefined, it was undefined before the promotion. 3269 if (!ISDOpcode) 3270 return true; 3271 // Otherwise, check if the promoted instruction is legal or not. 3272 return TLI.isOperationLegalOrCustom( 3273 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3274 } 3275 3276 namespace { 3277 3278 /// Hepler class to perform type promotion. 3279 class TypePromotionHelper { 3280 /// Utility function to check whether or not a sign or zero extension 3281 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3282 /// either using the operands of \p Inst or promoting \p Inst. 3283 /// The type of the extension is defined by \p IsSExt. 3284 /// In other words, check if: 3285 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3286 /// #1 Promotion applies: 3287 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3288 /// #2 Operand reuses: 3289 /// ext opnd1 to ConsideredExtType. 3290 /// \p PromotedInsts maps the instructions to their type before promotion. 3291 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3292 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3293 3294 /// Utility function to determine if \p OpIdx should be promoted when 3295 /// promoting \p Inst. 3296 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3297 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3298 } 3299 3300 /// Utility function to promote the operand of \p Ext when this 3301 /// operand is a promotable trunc or sext or zext. 3302 /// \p PromotedInsts maps the instructions to their type before promotion. 3303 /// \p CreatedInstsCost[out] contains the cost of all instructions 3304 /// created to promote the operand of Ext. 3305 /// Newly added extensions are inserted in \p Exts. 3306 /// Newly added truncates are inserted in \p Truncs. 3307 /// Should never be called directly. 3308 /// \return The promoted value which is used instead of Ext. 3309 static Value *promoteOperandForTruncAndAnyExt( 3310 Instruction *Ext, TypePromotionTransaction &TPT, 3311 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3312 SmallVectorImpl<Instruction *> *Exts, 3313 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3314 3315 /// Utility function to promote the operand of \p Ext when this 3316 /// operand is promotable and is not a supported trunc or sext. 3317 /// \p PromotedInsts maps the instructions to their type before promotion. 3318 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3319 /// created to promote the operand of Ext. 3320 /// Newly added extensions are inserted in \p Exts. 3321 /// Newly added truncates are inserted in \p Truncs. 3322 /// Should never be called directly. 3323 /// \return The promoted value which is used instead of Ext. 3324 static Value *promoteOperandForOther(Instruction *Ext, 3325 TypePromotionTransaction &TPT, 3326 InstrToOrigTy &PromotedInsts, 3327 unsigned &CreatedInstsCost, 3328 SmallVectorImpl<Instruction *> *Exts, 3329 SmallVectorImpl<Instruction *> *Truncs, 3330 const TargetLowering &TLI, bool IsSExt); 3331 3332 /// \see promoteOperandForOther. 3333 static Value *signExtendOperandForOther( 3334 Instruction *Ext, TypePromotionTransaction &TPT, 3335 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3336 SmallVectorImpl<Instruction *> *Exts, 3337 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3338 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3339 Exts, Truncs, TLI, true); 3340 } 3341 3342 /// \see promoteOperandForOther. 3343 static Value *zeroExtendOperandForOther( 3344 Instruction *Ext, TypePromotionTransaction &TPT, 3345 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3346 SmallVectorImpl<Instruction *> *Exts, 3347 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3348 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3349 Exts, Truncs, TLI, false); 3350 } 3351 3352 public: 3353 /// Type for the utility function that promotes the operand of Ext. 3354 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3355 InstrToOrigTy &PromotedInsts, 3356 unsigned &CreatedInstsCost, 3357 SmallVectorImpl<Instruction *> *Exts, 3358 SmallVectorImpl<Instruction *> *Truncs, 3359 const TargetLowering &TLI); 3360 3361 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3362 /// action to promote the operand of \p Ext instead of using Ext. 3363 /// \return NULL if no promotable action is possible with the current 3364 /// sign extension. 3365 /// \p InsertedInsts keeps track of all the instructions inserted by the 3366 /// other CodeGenPrepare optimizations. This information is important 3367 /// because we do not want to promote these instructions as CodeGenPrepare 3368 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3369 /// \p PromotedInsts maps the instructions to their type before promotion. 3370 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3371 const TargetLowering &TLI, 3372 const InstrToOrigTy &PromotedInsts); 3373 }; 3374 3375 } // end anonymous namespace 3376 3377 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3378 Type *ConsideredExtType, 3379 const InstrToOrigTy &PromotedInsts, 3380 bool IsSExt) { 3381 // The promotion helper does not know how to deal with vector types yet. 3382 // To be able to fix that, we would need to fix the places where we 3383 // statically extend, e.g., constants and such. 3384 if (Inst->getType()->isVectorTy()) 3385 return false; 3386 3387 // We can always get through zext. 3388 if (isa<ZExtInst>(Inst)) 3389 return true; 3390 3391 // sext(sext) is ok too. 3392 if (IsSExt && isa<SExtInst>(Inst)) 3393 return true; 3394 3395 // We can get through binary operator, if it is legal. In other words, the 3396 // binary operator must have a nuw or nsw flag. 3397 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3398 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3399 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3400 (IsSExt && BinOp->hasNoSignedWrap()))) 3401 return true; 3402 3403 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3404 if ((Inst->getOpcode() == Instruction::And || 3405 Inst->getOpcode() == Instruction::Or)) 3406 return true; 3407 3408 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3409 if (Inst->getOpcode() == Instruction::Xor) { 3410 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3411 // Make sure it is not a NOT. 3412 if (Cst && !Cst->getValue().isAllOnesValue()) 3413 return true; 3414 } 3415 3416 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3417 // It may change a poisoned value into a regular value, like 3418 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3419 // poisoned value regular value 3420 // It should be OK since undef covers valid value. 3421 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3422 return true; 3423 3424 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3425 // It may change a poisoned value into a regular value, like 3426 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3427 // poisoned value regular value 3428 // It should be OK since undef covers valid value. 3429 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3430 const Instruction *ExtInst = 3431 dyn_cast<const Instruction>(*Inst->user_begin()); 3432 if (ExtInst->hasOneUse()) { 3433 const Instruction *AndInst = 3434 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3435 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3436 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3437 if (Cst && 3438 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3439 return true; 3440 } 3441 } 3442 } 3443 3444 // Check if we can do the following simplification. 3445 // ext(trunc(opnd)) --> ext(opnd) 3446 if (!isa<TruncInst>(Inst)) 3447 return false; 3448 3449 Value *OpndVal = Inst->getOperand(0); 3450 // Check if we can use this operand in the extension. 3451 // If the type is larger than the result type of the extension, we cannot. 3452 if (!OpndVal->getType()->isIntegerTy() || 3453 OpndVal->getType()->getIntegerBitWidth() > 3454 ConsideredExtType->getIntegerBitWidth()) 3455 return false; 3456 3457 // If the operand of the truncate is not an instruction, we will not have 3458 // any information on the dropped bits. 3459 // (Actually we could for constant but it is not worth the extra logic). 3460 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3461 if (!Opnd) 3462 return false; 3463 3464 // Check if the source of the type is narrow enough. 3465 // I.e., check that trunc just drops extended bits of the same kind of 3466 // the extension. 3467 // #1 get the type of the operand and check the kind of the extended bits. 3468 const Type *OpndType; 3469 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3470 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3471 OpndType = It->second.getPointer(); 3472 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3473 OpndType = Opnd->getOperand(0)->getType(); 3474 else 3475 return false; 3476 3477 // #2 check that the truncate just drops extended bits. 3478 return Inst->getType()->getIntegerBitWidth() >= 3479 OpndType->getIntegerBitWidth(); 3480 } 3481 3482 TypePromotionHelper::Action TypePromotionHelper::getAction( 3483 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3484 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3485 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3486 "Unexpected instruction type"); 3487 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3488 Type *ExtTy = Ext->getType(); 3489 bool IsSExt = isa<SExtInst>(Ext); 3490 // If the operand of the extension is not an instruction, we cannot 3491 // get through. 3492 // If it, check we can get through. 3493 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3494 return nullptr; 3495 3496 // Do not promote if the operand has been added by codegenprepare. 3497 // Otherwise, it means we are undoing an optimization that is likely to be 3498 // redone, thus causing potential infinite loop. 3499 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3500 return nullptr; 3501 3502 // SExt or Trunc instructions. 3503 // Return the related handler. 3504 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3505 isa<ZExtInst>(ExtOpnd)) 3506 return promoteOperandForTruncAndAnyExt; 3507 3508 // Regular instruction. 3509 // Abort early if we will have to insert non-free instructions. 3510 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3511 return nullptr; 3512 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3513 } 3514 3515 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3516 Instruction *SExt, TypePromotionTransaction &TPT, 3517 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3518 SmallVectorImpl<Instruction *> *Exts, 3519 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3520 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3521 // get through it and this method should not be called. 3522 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3523 Value *ExtVal = SExt; 3524 bool HasMergedNonFreeExt = false; 3525 if (isa<ZExtInst>(SExtOpnd)) { 3526 // Replace s|zext(zext(opnd)) 3527 // => zext(opnd). 3528 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3529 Value *ZExt = 3530 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3531 TPT.replaceAllUsesWith(SExt, ZExt); 3532 TPT.eraseInstruction(SExt); 3533 ExtVal = ZExt; 3534 } else { 3535 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3536 // => z|sext(opnd). 3537 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3538 } 3539 CreatedInstsCost = 0; 3540 3541 // Remove dead code. 3542 if (SExtOpnd->use_empty()) 3543 TPT.eraseInstruction(SExtOpnd); 3544 3545 // Check if the extension is still needed. 3546 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3547 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3548 if (ExtInst) { 3549 if (Exts) 3550 Exts->push_back(ExtInst); 3551 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3552 } 3553 return ExtVal; 3554 } 3555 3556 // At this point we have: ext ty opnd to ty. 3557 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3558 Value *NextVal = ExtInst->getOperand(0); 3559 TPT.eraseInstruction(ExtInst, NextVal); 3560 return NextVal; 3561 } 3562 3563 Value *TypePromotionHelper::promoteOperandForOther( 3564 Instruction *Ext, TypePromotionTransaction &TPT, 3565 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3566 SmallVectorImpl<Instruction *> *Exts, 3567 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3568 bool IsSExt) { 3569 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3570 // get through it and this method should not be called. 3571 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3572 CreatedInstsCost = 0; 3573 if (!ExtOpnd->hasOneUse()) { 3574 // ExtOpnd will be promoted. 3575 // All its uses, but Ext, will need to use a truncated value of the 3576 // promoted version. 3577 // Create the truncate now. 3578 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3579 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3580 // Insert it just after the definition. 3581 ITrunc->moveAfter(ExtOpnd); 3582 if (Truncs) 3583 Truncs->push_back(ITrunc); 3584 } 3585 3586 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3587 // Restore the operand of Ext (which has been replaced by the previous call 3588 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3589 TPT.setOperand(Ext, 0, ExtOpnd); 3590 } 3591 3592 // Get through the Instruction: 3593 // 1. Update its type. 3594 // 2. Replace the uses of Ext by Inst. 3595 // 3. Extend each operand that needs to be extended. 3596 3597 // Remember the original type of the instruction before promotion. 3598 // This is useful to know that the high bits are sign extended bits. 3599 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3600 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3601 // Step #1. 3602 TPT.mutateType(ExtOpnd, Ext->getType()); 3603 // Step #2. 3604 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3605 // Step #3. 3606 Instruction *ExtForOpnd = Ext; 3607 3608 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3609 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3610 ++OpIdx) { 3611 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3612 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3613 !shouldExtOperand(ExtOpnd, OpIdx)) { 3614 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3615 continue; 3616 } 3617 // Check if we can statically extend the operand. 3618 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3619 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3620 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3621 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3622 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3623 : Cst->getValue().zext(BitWidth); 3624 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3625 continue; 3626 } 3627 // UndefValue are typed, so we have to statically sign extend them. 3628 if (isa<UndefValue>(Opnd)) { 3629 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3630 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3631 continue; 3632 } 3633 3634 // Otherwise we have to explicitly sign extend the operand. 3635 // Check if Ext was reused to extend an operand. 3636 if (!ExtForOpnd) { 3637 // If yes, create a new one. 3638 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3639 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3640 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3641 if (!isa<Instruction>(ValForExtOpnd)) { 3642 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3643 continue; 3644 } 3645 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3646 } 3647 if (Exts) 3648 Exts->push_back(ExtForOpnd); 3649 TPT.setOperand(ExtForOpnd, 0, Opnd); 3650 3651 // Move the sign extension before the insertion point. 3652 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3653 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3654 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3655 // If more sext are required, new instructions will have to be created. 3656 ExtForOpnd = nullptr; 3657 } 3658 if (ExtForOpnd == Ext) { 3659 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3660 TPT.eraseInstruction(Ext); 3661 } 3662 return ExtOpnd; 3663 } 3664 3665 /// Check whether or not promoting an instruction to a wider type is profitable. 3666 /// \p NewCost gives the cost of extension instructions created by the 3667 /// promotion. 3668 /// \p OldCost gives the cost of extension instructions before the promotion 3669 /// plus the number of instructions that have been 3670 /// matched in the addressing mode the promotion. 3671 /// \p PromotedOperand is the value that has been promoted. 3672 /// \return True if the promotion is profitable, false otherwise. 3673 bool AddressingModeMatcher::isPromotionProfitable( 3674 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3675 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3676 << '\n'); 3677 // The cost of the new extensions is greater than the cost of the 3678 // old extension plus what we folded. 3679 // This is not profitable. 3680 if (NewCost > OldCost) 3681 return false; 3682 if (NewCost < OldCost) 3683 return true; 3684 // The promotion is neutral but it may help folding the sign extension in 3685 // loads for instance. 3686 // Check that we did not create an illegal instruction. 3687 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3688 } 3689 3690 /// Given an instruction or constant expr, see if we can fold the operation 3691 /// into the addressing mode. If so, update the addressing mode and return 3692 /// true, otherwise return false without modifying AddrMode. 3693 /// If \p MovedAway is not NULL, it contains the information of whether or 3694 /// not AddrInst has to be folded into the addressing mode on success. 3695 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3696 /// because it has been moved away. 3697 /// Thus AddrInst must not be added in the matched instructions. 3698 /// This state can happen when AddrInst is a sext, since it may be moved away. 3699 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3700 /// not be referenced anymore. 3701 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3702 unsigned Depth, 3703 bool *MovedAway) { 3704 // Avoid exponential behavior on extremely deep expression trees. 3705 if (Depth >= 5) return false; 3706 3707 // By default, all matched instructions stay in place. 3708 if (MovedAway) 3709 *MovedAway = false; 3710 3711 switch (Opcode) { 3712 case Instruction::PtrToInt: 3713 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3714 return matchAddr(AddrInst->getOperand(0), Depth); 3715 case Instruction::IntToPtr: { 3716 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3717 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3718 // This inttoptr is a no-op if the integer type is pointer sized. 3719 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3720 return matchAddr(AddrInst->getOperand(0), Depth); 3721 return false; 3722 } 3723 case Instruction::BitCast: 3724 // BitCast is always a noop, and we can handle it as long as it is 3725 // int->int or pointer->pointer (we don't want int<->fp or something). 3726 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3727 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3728 // Don't touch identity bitcasts. These were probably put here by LSR, 3729 // and we don't want to mess around with them. Assume it knows what it 3730 // is doing. 3731 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3732 return matchAddr(AddrInst->getOperand(0), Depth); 3733 return false; 3734 case Instruction::AddrSpaceCast: { 3735 unsigned SrcAS 3736 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3737 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3738 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3739 return matchAddr(AddrInst->getOperand(0), Depth); 3740 return false; 3741 } 3742 case Instruction::Add: { 3743 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3744 ExtAddrMode BackupAddrMode = AddrMode; 3745 unsigned OldSize = AddrModeInsts.size(); 3746 // Start a transaction at this point. 3747 // The LHS may match but not the RHS. 3748 // Therefore, we need a higher level restoration point to undo partially 3749 // matched operation. 3750 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3751 TPT.getRestorationPoint(); 3752 3753 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3754 matchAddr(AddrInst->getOperand(0), Depth+1)) 3755 return true; 3756 3757 // Restore the old addr mode info. 3758 AddrMode = BackupAddrMode; 3759 AddrModeInsts.resize(OldSize); 3760 TPT.rollback(LastKnownGood); 3761 3762 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3763 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3764 matchAddr(AddrInst->getOperand(1), Depth+1)) 3765 return true; 3766 3767 // Otherwise we definitely can't merge the ADD in. 3768 AddrMode = BackupAddrMode; 3769 AddrModeInsts.resize(OldSize); 3770 TPT.rollback(LastKnownGood); 3771 break; 3772 } 3773 //case Instruction::Or: 3774 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3775 //break; 3776 case Instruction::Mul: 3777 case Instruction::Shl: { 3778 // Can only handle X*C and X << C. 3779 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3780 if (!RHS || RHS->getBitWidth() > 64) 3781 return false; 3782 int64_t Scale = RHS->getSExtValue(); 3783 if (Opcode == Instruction::Shl) 3784 Scale = 1LL << Scale; 3785 3786 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3787 } 3788 case Instruction::GetElementPtr: { 3789 // Scan the GEP. We check it if it contains constant offsets and at most 3790 // one variable offset. 3791 int VariableOperand = -1; 3792 unsigned VariableScale = 0; 3793 3794 int64_t ConstantOffset = 0; 3795 gep_type_iterator GTI = gep_type_begin(AddrInst); 3796 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3797 if (StructType *STy = GTI.getStructTypeOrNull()) { 3798 const StructLayout *SL = DL.getStructLayout(STy); 3799 unsigned Idx = 3800 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3801 ConstantOffset += SL->getElementOffset(Idx); 3802 } else { 3803 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3804 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3805 ConstantOffset += CI->getSExtValue() * TypeSize; 3806 } else if (TypeSize) { // Scales of zero don't do anything. 3807 // We only allow one variable index at the moment. 3808 if (VariableOperand != -1) 3809 return false; 3810 3811 // Remember the variable index. 3812 VariableOperand = i; 3813 VariableScale = TypeSize; 3814 } 3815 } 3816 } 3817 3818 // A common case is for the GEP to only do a constant offset. In this case, 3819 // just add it to the disp field and check validity. 3820 if (VariableOperand == -1) { 3821 AddrMode.BaseOffs += ConstantOffset; 3822 if (ConstantOffset == 0 || 3823 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3824 // Check to see if we can fold the base pointer in too. 3825 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3826 return true; 3827 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3828 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3829 ConstantOffset > 0) { 3830 // Record GEPs with non-zero offsets as candidates for splitting in the 3831 // event that the offset cannot fit into the r+i addressing mode. 3832 // Simple and common case that only one GEP is used in calculating the 3833 // address for the memory access. 3834 Value *Base = AddrInst->getOperand(0); 3835 auto *BaseI = dyn_cast<Instruction>(Base); 3836 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3837 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3838 (BaseI && !isa<CastInst>(BaseI) && 3839 !isa<GetElementPtrInst>(BaseI))) { 3840 // If the base is an instruction, make sure the GEP is not in the same 3841 // basic block as the base. If the base is an argument or global 3842 // value, make sure the GEP is not in the entry block. Otherwise, 3843 // instruction selection can undo the split. Also make sure the 3844 // parent block allows inserting non-PHI instructions before the 3845 // terminator. 3846 BasicBlock *Parent = 3847 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3848 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3849 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3850 } 3851 } 3852 AddrMode.BaseOffs -= ConstantOffset; 3853 return false; 3854 } 3855 3856 // Save the valid addressing mode in case we can't match. 3857 ExtAddrMode BackupAddrMode = AddrMode; 3858 unsigned OldSize = AddrModeInsts.size(); 3859 3860 // See if the scale and offset amount is valid for this target. 3861 AddrMode.BaseOffs += ConstantOffset; 3862 3863 // Match the base operand of the GEP. 3864 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3865 // If it couldn't be matched, just stuff the value in a register. 3866 if (AddrMode.HasBaseReg) { 3867 AddrMode = BackupAddrMode; 3868 AddrModeInsts.resize(OldSize); 3869 return false; 3870 } 3871 AddrMode.HasBaseReg = true; 3872 AddrMode.BaseReg = AddrInst->getOperand(0); 3873 } 3874 3875 // Match the remaining variable portion of the GEP. 3876 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3877 Depth)) { 3878 // If it couldn't be matched, try stuffing the base into a register 3879 // instead of matching it, and retrying the match of the scale. 3880 AddrMode = BackupAddrMode; 3881 AddrModeInsts.resize(OldSize); 3882 if (AddrMode.HasBaseReg) 3883 return false; 3884 AddrMode.HasBaseReg = true; 3885 AddrMode.BaseReg = AddrInst->getOperand(0); 3886 AddrMode.BaseOffs += ConstantOffset; 3887 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3888 VariableScale, Depth)) { 3889 // If even that didn't work, bail. 3890 AddrMode = BackupAddrMode; 3891 AddrModeInsts.resize(OldSize); 3892 return false; 3893 } 3894 } 3895 3896 return true; 3897 } 3898 case Instruction::SExt: 3899 case Instruction::ZExt: { 3900 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3901 if (!Ext) 3902 return false; 3903 3904 // Try to move this ext out of the way of the addressing mode. 3905 // Ask for a method for doing so. 3906 TypePromotionHelper::Action TPH = 3907 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3908 if (!TPH) 3909 return false; 3910 3911 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3912 TPT.getRestorationPoint(); 3913 unsigned CreatedInstsCost = 0; 3914 unsigned ExtCost = !TLI.isExtFree(Ext); 3915 Value *PromotedOperand = 3916 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3917 // SExt has been moved away. 3918 // Thus either it will be rematched later in the recursive calls or it is 3919 // gone. Anyway, we must not fold it into the addressing mode at this point. 3920 // E.g., 3921 // op = add opnd, 1 3922 // idx = ext op 3923 // addr = gep base, idx 3924 // is now: 3925 // promotedOpnd = ext opnd <- no match here 3926 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3927 // addr = gep base, op <- match 3928 if (MovedAway) 3929 *MovedAway = true; 3930 3931 assert(PromotedOperand && 3932 "TypePromotionHelper should have filtered out those cases"); 3933 3934 ExtAddrMode BackupAddrMode = AddrMode; 3935 unsigned OldSize = AddrModeInsts.size(); 3936 3937 if (!matchAddr(PromotedOperand, Depth) || 3938 // The total of the new cost is equal to the cost of the created 3939 // instructions. 3940 // The total of the old cost is equal to the cost of the extension plus 3941 // what we have saved in the addressing mode. 3942 !isPromotionProfitable(CreatedInstsCost, 3943 ExtCost + (AddrModeInsts.size() - OldSize), 3944 PromotedOperand)) { 3945 AddrMode = BackupAddrMode; 3946 AddrModeInsts.resize(OldSize); 3947 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3948 TPT.rollback(LastKnownGood); 3949 return false; 3950 } 3951 return true; 3952 } 3953 } 3954 return false; 3955 } 3956 3957 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3958 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3959 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3960 /// for the target. 3961 /// 3962 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3963 // Start a transaction at this point that we will rollback if the matching 3964 // fails. 3965 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3966 TPT.getRestorationPoint(); 3967 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3968 // Fold in immediates if legal for the target. 3969 AddrMode.BaseOffs += CI->getSExtValue(); 3970 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3971 return true; 3972 AddrMode.BaseOffs -= CI->getSExtValue(); 3973 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3974 // If this is a global variable, try to fold it into the addressing mode. 3975 if (!AddrMode.BaseGV) { 3976 AddrMode.BaseGV = GV; 3977 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3978 return true; 3979 AddrMode.BaseGV = nullptr; 3980 } 3981 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3982 ExtAddrMode BackupAddrMode = AddrMode; 3983 unsigned OldSize = AddrModeInsts.size(); 3984 3985 // Check to see if it is possible to fold this operation. 3986 bool MovedAway = false; 3987 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3988 // This instruction may have been moved away. If so, there is nothing 3989 // to check here. 3990 if (MovedAway) 3991 return true; 3992 // Okay, it's possible to fold this. Check to see if it is actually 3993 // *profitable* to do so. We use a simple cost model to avoid increasing 3994 // register pressure too much. 3995 if (I->hasOneUse() || 3996 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3997 AddrModeInsts.push_back(I); 3998 return true; 3999 } 4000 4001 // It isn't profitable to do this, roll back. 4002 //cerr << "NOT FOLDING: " << *I; 4003 AddrMode = BackupAddrMode; 4004 AddrModeInsts.resize(OldSize); 4005 TPT.rollback(LastKnownGood); 4006 } 4007 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4008 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4009 return true; 4010 TPT.rollback(LastKnownGood); 4011 } else if (isa<ConstantPointerNull>(Addr)) { 4012 // Null pointer gets folded without affecting the addressing mode. 4013 return true; 4014 } 4015 4016 // Worse case, the target should support [reg] addressing modes. :) 4017 if (!AddrMode.HasBaseReg) { 4018 AddrMode.HasBaseReg = true; 4019 AddrMode.BaseReg = Addr; 4020 // Still check for legality in case the target supports [imm] but not [i+r]. 4021 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4022 return true; 4023 AddrMode.HasBaseReg = false; 4024 AddrMode.BaseReg = nullptr; 4025 } 4026 4027 // If the base register is already taken, see if we can do [r+r]. 4028 if (AddrMode.Scale == 0) { 4029 AddrMode.Scale = 1; 4030 AddrMode.ScaledReg = Addr; 4031 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4032 return true; 4033 AddrMode.Scale = 0; 4034 AddrMode.ScaledReg = nullptr; 4035 } 4036 // Couldn't match. 4037 TPT.rollback(LastKnownGood); 4038 return false; 4039 } 4040 4041 /// Check to see if all uses of OpVal by the specified inline asm call are due 4042 /// to memory operands. If so, return true, otherwise return false. 4043 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4044 const TargetLowering &TLI, 4045 const TargetRegisterInfo &TRI) { 4046 const Function *F = CI->getFunction(); 4047 TargetLowering::AsmOperandInfoVector TargetConstraints = 4048 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4049 ImmutableCallSite(CI)); 4050 4051 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4052 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4053 4054 // Compute the constraint code and ConstraintType to use. 4055 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4056 4057 // If this asm operand is our Value*, and if it isn't an indirect memory 4058 // operand, we can't fold it! 4059 if (OpInfo.CallOperandVal == OpVal && 4060 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4061 !OpInfo.isIndirect)) 4062 return false; 4063 } 4064 4065 return true; 4066 } 4067 4068 // Max number of memory uses to look at before aborting the search to conserve 4069 // compile time. 4070 static constexpr int MaxMemoryUsesToScan = 20; 4071 4072 /// Recursively walk all the uses of I until we find a memory use. 4073 /// If we find an obviously non-foldable instruction, return true. 4074 /// Add the ultimately found memory instructions to MemoryUses. 4075 static bool FindAllMemoryUses( 4076 Instruction *I, 4077 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4078 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4079 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4080 // If we already considered this instruction, we're done. 4081 if (!ConsideredInsts.insert(I).second) 4082 return false; 4083 4084 // If this is an obviously unfoldable instruction, bail out. 4085 if (!MightBeFoldableInst(I)) 4086 return true; 4087 4088 const bool OptSize = I->getFunction()->optForSize(); 4089 4090 // Loop over all the uses, recursively processing them. 4091 for (Use &U : I->uses()) { 4092 // Conservatively return true if we're seeing a large number or a deep chain 4093 // of users. This avoids excessive compilation times in pathological cases. 4094 if (SeenInsts++ >= MaxMemoryUsesToScan) 4095 return true; 4096 4097 Instruction *UserI = cast<Instruction>(U.getUser()); 4098 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4099 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4100 continue; 4101 } 4102 4103 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4104 unsigned opNo = U.getOperandNo(); 4105 if (opNo != StoreInst::getPointerOperandIndex()) 4106 return true; // Storing addr, not into addr. 4107 MemoryUses.push_back(std::make_pair(SI, opNo)); 4108 continue; 4109 } 4110 4111 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4112 unsigned opNo = U.getOperandNo(); 4113 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4114 return true; // Storing addr, not into addr. 4115 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4116 continue; 4117 } 4118 4119 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4120 unsigned opNo = U.getOperandNo(); 4121 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4122 return true; // Storing addr, not into addr. 4123 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4124 continue; 4125 } 4126 4127 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4128 // If this is a cold call, we can sink the addressing calculation into 4129 // the cold path. See optimizeCallInst 4130 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4131 continue; 4132 4133 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4134 if (!IA) return true; 4135 4136 // If this is a memory operand, we're cool, otherwise bail out. 4137 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4138 return true; 4139 continue; 4140 } 4141 4142 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4143 SeenInsts)) 4144 return true; 4145 } 4146 4147 return false; 4148 } 4149 4150 /// Return true if Val is already known to be live at the use site that we're 4151 /// folding it into. If so, there is no cost to include it in the addressing 4152 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4153 /// instruction already. 4154 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4155 Value *KnownLive2) { 4156 // If Val is either of the known-live values, we know it is live! 4157 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4158 return true; 4159 4160 // All values other than instructions and arguments (e.g. constants) are live. 4161 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4162 4163 // If Val is a constant sized alloca in the entry block, it is live, this is 4164 // true because it is just a reference to the stack/frame pointer, which is 4165 // live for the whole function. 4166 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4167 if (AI->isStaticAlloca()) 4168 return true; 4169 4170 // Check to see if this value is already used in the memory instruction's 4171 // block. If so, it's already live into the block at the very least, so we 4172 // can reasonably fold it. 4173 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4174 } 4175 4176 /// It is possible for the addressing mode of the machine to fold the specified 4177 /// instruction into a load or store that ultimately uses it. 4178 /// However, the specified instruction has multiple uses. 4179 /// Given this, it may actually increase register pressure to fold it 4180 /// into the load. For example, consider this code: 4181 /// 4182 /// X = ... 4183 /// Y = X+1 4184 /// use(Y) -> nonload/store 4185 /// Z = Y+1 4186 /// load Z 4187 /// 4188 /// In this case, Y has multiple uses, and can be folded into the load of Z 4189 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4190 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4191 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4192 /// number of computations either. 4193 /// 4194 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4195 /// X was live across 'load Z' for other reasons, we actually *would* want to 4196 /// fold the addressing mode in the Z case. This would make Y die earlier. 4197 bool AddressingModeMatcher:: 4198 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4199 ExtAddrMode &AMAfter) { 4200 if (IgnoreProfitability) return true; 4201 4202 // AMBefore is the addressing mode before this instruction was folded into it, 4203 // and AMAfter is the addressing mode after the instruction was folded. Get 4204 // the set of registers referenced by AMAfter and subtract out those 4205 // referenced by AMBefore: this is the set of values which folding in this 4206 // address extends the lifetime of. 4207 // 4208 // Note that there are only two potential values being referenced here, 4209 // BaseReg and ScaleReg (global addresses are always available, as are any 4210 // folded immediates). 4211 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4212 4213 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4214 // lifetime wasn't extended by adding this instruction. 4215 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4216 BaseReg = nullptr; 4217 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4218 ScaledReg = nullptr; 4219 4220 // If folding this instruction (and it's subexprs) didn't extend any live 4221 // ranges, we're ok with it. 4222 if (!BaseReg && !ScaledReg) 4223 return true; 4224 4225 // If all uses of this instruction can have the address mode sunk into them, 4226 // we can remove the addressing mode and effectively trade one live register 4227 // for another (at worst.) In this context, folding an addressing mode into 4228 // the use is just a particularly nice way of sinking it. 4229 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4230 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4231 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4232 return false; // Has a non-memory, non-foldable use! 4233 4234 // Now that we know that all uses of this instruction are part of a chain of 4235 // computation involving only operations that could theoretically be folded 4236 // into a memory use, loop over each of these memory operation uses and see 4237 // if they could *actually* fold the instruction. The assumption is that 4238 // addressing modes are cheap and that duplicating the computation involved 4239 // many times is worthwhile, even on a fastpath. For sinking candidates 4240 // (i.e. cold call sites), this serves as a way to prevent excessive code 4241 // growth since most architectures have some reasonable small and fast way to 4242 // compute an effective address. (i.e LEA on x86) 4243 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4244 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4245 Instruction *User = MemoryUses[i].first; 4246 unsigned OpNo = MemoryUses[i].second; 4247 4248 // Get the access type of this use. If the use isn't a pointer, we don't 4249 // know what it accesses. 4250 Value *Address = User->getOperand(OpNo); 4251 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4252 if (!AddrTy) 4253 return false; 4254 Type *AddressAccessTy = AddrTy->getElementType(); 4255 unsigned AS = AddrTy->getAddressSpace(); 4256 4257 // Do a match against the root of this address, ignoring profitability. This 4258 // will tell us if the addressing mode for the memory operation will 4259 // *actually* cover the shared instruction. 4260 ExtAddrMode Result; 4261 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4262 0); 4263 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4264 TPT.getRestorationPoint(); 4265 AddressingModeMatcher Matcher( 4266 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4267 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4268 Matcher.IgnoreProfitability = true; 4269 bool Success = Matcher.matchAddr(Address, 0); 4270 (void)Success; assert(Success && "Couldn't select *anything*?"); 4271 4272 // The match was to check the profitability, the changes made are not 4273 // part of the original matcher. Therefore, they should be dropped 4274 // otherwise the original matcher will not present the right state. 4275 TPT.rollback(LastKnownGood); 4276 4277 // If the match didn't cover I, then it won't be shared by it. 4278 if (!is_contained(MatchedAddrModeInsts, I)) 4279 return false; 4280 4281 MatchedAddrModeInsts.clear(); 4282 } 4283 4284 return true; 4285 } 4286 4287 /// Return true if the specified values are defined in a 4288 /// different basic block than BB. 4289 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4290 if (Instruction *I = dyn_cast<Instruction>(V)) 4291 return I->getParent() != BB; 4292 return false; 4293 } 4294 4295 /// Sink addressing mode computation immediate before MemoryInst if doing so 4296 /// can be done without increasing register pressure. The need for the 4297 /// register pressure constraint means this can end up being an all or nothing 4298 /// decision for all uses of the same addressing computation. 4299 /// 4300 /// Load and Store Instructions often have addressing modes that can do 4301 /// significant amounts of computation. As such, instruction selection will try 4302 /// to get the load or store to do as much computation as possible for the 4303 /// program. The problem is that isel can only see within a single block. As 4304 /// such, we sink as much legal addressing mode work into the block as possible. 4305 /// 4306 /// This method is used to optimize both load/store and inline asms with memory 4307 /// operands. It's also used to sink addressing computations feeding into cold 4308 /// call sites into their (cold) basic block. 4309 /// 4310 /// The motivation for handling sinking into cold blocks is that doing so can 4311 /// both enable other address mode sinking (by satisfying the register pressure 4312 /// constraint above), and reduce register pressure globally (by removing the 4313 /// addressing mode computation from the fast path entirely.). 4314 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4315 Type *AccessTy, unsigned AddrSpace) { 4316 Value *Repl = Addr; 4317 4318 // Try to collapse single-value PHI nodes. This is necessary to undo 4319 // unprofitable PRE transformations. 4320 SmallVector<Value*, 8> worklist; 4321 SmallPtrSet<Value*, 16> Visited; 4322 worklist.push_back(Addr); 4323 4324 // Use a worklist to iteratively look through PHI and select nodes, and 4325 // ensure that the addressing mode obtained from the non-PHI/select roots of 4326 // the graph are compatible. 4327 bool PhiOrSelectSeen = false; 4328 SmallVector<Instruction*, 16> AddrModeInsts; 4329 const SimplifyQuery SQ(*DL, TLInfo); 4330 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4331 TypePromotionTransaction TPT(RemovedInsts); 4332 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4333 TPT.getRestorationPoint(); 4334 while (!worklist.empty()) { 4335 Value *V = worklist.back(); 4336 worklist.pop_back(); 4337 4338 // We allow traversing cyclic Phi nodes. 4339 // In case of success after this loop we ensure that traversing through 4340 // Phi nodes ends up with all cases to compute address of the form 4341 // BaseGV + Base + Scale * Index + Offset 4342 // where Scale and Offset are constans and BaseGV, Base and Index 4343 // are exactly the same Values in all cases. 4344 // It means that BaseGV, Scale and Offset dominate our memory instruction 4345 // and have the same value as they had in address computation represented 4346 // as Phi. So we can safely sink address computation to memory instruction. 4347 if (!Visited.insert(V).second) 4348 continue; 4349 4350 // For a PHI node, push all of its incoming values. 4351 if (PHINode *P = dyn_cast<PHINode>(V)) { 4352 for (Value *IncValue : P->incoming_values()) 4353 worklist.push_back(IncValue); 4354 PhiOrSelectSeen = true; 4355 continue; 4356 } 4357 // Similar for select. 4358 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4359 worklist.push_back(SI->getFalseValue()); 4360 worklist.push_back(SI->getTrueValue()); 4361 PhiOrSelectSeen = true; 4362 continue; 4363 } 4364 4365 // For non-PHIs, determine the addressing mode being computed. Note that 4366 // the result may differ depending on what other uses our candidate 4367 // addressing instructions might have. 4368 AddrModeInsts.clear(); 4369 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4370 0); 4371 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4372 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4373 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4374 4375 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4376 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4377 !NewGEPBases.count(GEP)) { 4378 // If splitting the underlying data structure can reduce the offset of a 4379 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4380 // previously split data structures. 4381 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4382 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4383 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4384 } 4385 4386 NewAddrMode.OriginalValue = V; 4387 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4388 break; 4389 } 4390 4391 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4392 // or we have multiple but either couldn't combine them or combining them 4393 // wouldn't do anything useful, bail out now. 4394 if (!AddrModes.combineAddrModes()) { 4395 TPT.rollback(LastKnownGood); 4396 return false; 4397 } 4398 TPT.commit(); 4399 4400 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4401 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4402 4403 // If all the instructions matched are already in this BB, don't do anything. 4404 // If we saw a Phi node then it is not local definitely, and if we saw a select 4405 // then we want to push the address calculation past it even if it's already 4406 // in this BB. 4407 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4408 return IsNonLocalValue(V, MemoryInst->getParent()); 4409 })) { 4410 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4411 << "\n"); 4412 return false; 4413 } 4414 4415 // Insert this computation right after this user. Since our caller is 4416 // scanning from the top of the BB to the bottom, reuse of the expr are 4417 // guaranteed to happen later. 4418 IRBuilder<> Builder(MemoryInst); 4419 4420 // Now that we determined the addressing expression we want to use and know 4421 // that we have to sink it into this block. Check to see if we have already 4422 // done this for some other load/store instr in this block. If so, reuse 4423 // the computation. Before attempting reuse, check if the address is valid 4424 // as it may have been erased. 4425 4426 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4427 4428 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4429 if (SunkAddr) { 4430 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4431 << " for " << *MemoryInst << "\n"); 4432 if (SunkAddr->getType() != Addr->getType()) 4433 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4434 } else if (AddrSinkUsingGEPs || 4435 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4436 // By default, we use the GEP-based method when AA is used later. This 4437 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4438 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4439 << " for " << *MemoryInst << "\n"); 4440 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4441 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4442 4443 // First, find the pointer. 4444 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4445 ResultPtr = AddrMode.BaseReg; 4446 AddrMode.BaseReg = nullptr; 4447 } 4448 4449 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4450 // We can't add more than one pointer together, nor can we scale a 4451 // pointer (both of which seem meaningless). 4452 if (ResultPtr || AddrMode.Scale != 1) 4453 return false; 4454 4455 ResultPtr = AddrMode.ScaledReg; 4456 AddrMode.Scale = 0; 4457 } 4458 4459 // It is only safe to sign extend the BaseReg if we know that the math 4460 // required to create it did not overflow before we extend it. Since 4461 // the original IR value was tossed in favor of a constant back when 4462 // the AddrMode was created we need to bail out gracefully if widths 4463 // do not match instead of extending it. 4464 // 4465 // (See below for code to add the scale.) 4466 if (AddrMode.Scale) { 4467 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4468 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4469 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4470 return false; 4471 } 4472 4473 if (AddrMode.BaseGV) { 4474 if (ResultPtr) 4475 return false; 4476 4477 ResultPtr = AddrMode.BaseGV; 4478 } 4479 4480 // If the real base value actually came from an inttoptr, then the matcher 4481 // will look through it and provide only the integer value. In that case, 4482 // use it here. 4483 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4484 if (!ResultPtr && AddrMode.BaseReg) { 4485 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4486 "sunkaddr"); 4487 AddrMode.BaseReg = nullptr; 4488 } else if (!ResultPtr && AddrMode.Scale == 1) { 4489 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4490 "sunkaddr"); 4491 AddrMode.Scale = 0; 4492 } 4493 } 4494 4495 if (!ResultPtr && 4496 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4497 SunkAddr = Constant::getNullValue(Addr->getType()); 4498 } else if (!ResultPtr) { 4499 return false; 4500 } else { 4501 Type *I8PtrTy = 4502 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4503 Type *I8Ty = Builder.getInt8Ty(); 4504 4505 // Start with the base register. Do this first so that subsequent address 4506 // matching finds it last, which will prevent it from trying to match it 4507 // as the scaled value in case it happens to be a mul. That would be 4508 // problematic if we've sunk a different mul for the scale, because then 4509 // we'd end up sinking both muls. 4510 if (AddrMode.BaseReg) { 4511 Value *V = AddrMode.BaseReg; 4512 if (V->getType() != IntPtrTy) 4513 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4514 4515 ResultIndex = V; 4516 } 4517 4518 // Add the scale value. 4519 if (AddrMode.Scale) { 4520 Value *V = AddrMode.ScaledReg; 4521 if (V->getType() == IntPtrTy) { 4522 // done. 4523 } else { 4524 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4525 cast<IntegerType>(V->getType())->getBitWidth() && 4526 "We can't transform if ScaledReg is too narrow"); 4527 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4528 } 4529 4530 if (AddrMode.Scale != 1) 4531 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4532 "sunkaddr"); 4533 if (ResultIndex) 4534 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4535 else 4536 ResultIndex = V; 4537 } 4538 4539 // Add in the Base Offset if present. 4540 if (AddrMode.BaseOffs) { 4541 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4542 if (ResultIndex) { 4543 // We need to add this separately from the scale above to help with 4544 // SDAG consecutive load/store merging. 4545 if (ResultPtr->getType() != I8PtrTy) 4546 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4547 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4548 } 4549 4550 ResultIndex = V; 4551 } 4552 4553 if (!ResultIndex) { 4554 SunkAddr = ResultPtr; 4555 } else { 4556 if (ResultPtr->getType() != I8PtrTy) 4557 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4558 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4559 } 4560 4561 if (SunkAddr->getType() != Addr->getType()) 4562 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4563 } 4564 } else { 4565 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4566 // non-integral pointers, so in that case bail out now. 4567 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4568 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4569 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4570 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4571 if (DL->isNonIntegralPointerType(Addr->getType()) || 4572 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4573 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4574 (AddrMode.BaseGV && 4575 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4576 return false; 4577 4578 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4579 << " for " << *MemoryInst << "\n"); 4580 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4581 Value *Result = nullptr; 4582 4583 // Start with the base register. Do this first so that subsequent address 4584 // matching finds it last, which will prevent it from trying to match it 4585 // as the scaled value in case it happens to be a mul. That would be 4586 // problematic if we've sunk a different mul for the scale, because then 4587 // we'd end up sinking both muls. 4588 if (AddrMode.BaseReg) { 4589 Value *V = AddrMode.BaseReg; 4590 if (V->getType()->isPointerTy()) 4591 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4592 if (V->getType() != IntPtrTy) 4593 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4594 Result = V; 4595 } 4596 4597 // Add the scale value. 4598 if (AddrMode.Scale) { 4599 Value *V = AddrMode.ScaledReg; 4600 if (V->getType() == IntPtrTy) { 4601 // done. 4602 } else if (V->getType()->isPointerTy()) { 4603 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4604 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4605 cast<IntegerType>(V->getType())->getBitWidth()) { 4606 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4607 } else { 4608 // It is only safe to sign extend the BaseReg if we know that the math 4609 // required to create it did not overflow before we extend it. Since 4610 // the original IR value was tossed in favor of a constant back when 4611 // the AddrMode was created we need to bail out gracefully if widths 4612 // do not match instead of extending it. 4613 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4614 if (I && (Result != AddrMode.BaseReg)) 4615 I->eraseFromParent(); 4616 return false; 4617 } 4618 if (AddrMode.Scale != 1) 4619 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4620 "sunkaddr"); 4621 if (Result) 4622 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4623 else 4624 Result = V; 4625 } 4626 4627 // Add in the BaseGV if present. 4628 if (AddrMode.BaseGV) { 4629 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4630 if (Result) 4631 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4632 else 4633 Result = V; 4634 } 4635 4636 // Add in the Base Offset if present. 4637 if (AddrMode.BaseOffs) { 4638 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4639 if (Result) 4640 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4641 else 4642 Result = V; 4643 } 4644 4645 if (!Result) 4646 SunkAddr = Constant::getNullValue(Addr->getType()); 4647 else 4648 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4649 } 4650 4651 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4652 // Store the newly computed address into the cache. In the case we reused a 4653 // value, this should be idempotent. 4654 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4655 4656 // If we have no uses, recursively delete the value and all dead instructions 4657 // using it. 4658 if (Repl->use_empty()) { 4659 // This can cause recursive deletion, which can invalidate our iterator. 4660 // Use a WeakTrackingVH to hold onto it in case this happens. 4661 Value *CurValue = &*CurInstIterator; 4662 WeakTrackingVH IterHandle(CurValue); 4663 BasicBlock *BB = CurInstIterator->getParent(); 4664 4665 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4666 4667 if (IterHandle != CurValue) { 4668 // If the iterator instruction was recursively deleted, start over at the 4669 // start of the block. 4670 CurInstIterator = BB->begin(); 4671 SunkAddrs.clear(); 4672 } 4673 } 4674 ++NumMemoryInsts; 4675 return true; 4676 } 4677 4678 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4679 /// address computing into the block when possible / profitable. 4680 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4681 bool MadeChange = false; 4682 4683 const TargetRegisterInfo *TRI = 4684 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4685 TargetLowering::AsmOperandInfoVector TargetConstraints = 4686 TLI->ParseConstraints(*DL, TRI, CS); 4687 unsigned ArgNo = 0; 4688 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4689 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4690 4691 // Compute the constraint code and ConstraintType to use. 4692 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4693 4694 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4695 OpInfo.isIndirect) { 4696 Value *OpVal = CS->getArgOperand(ArgNo++); 4697 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4698 } else if (OpInfo.Type == InlineAsm::isInput) 4699 ArgNo++; 4700 } 4701 4702 return MadeChange; 4703 } 4704 4705 /// Check if all the uses of \p Val are equivalent (or free) zero or 4706 /// sign extensions. 4707 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4708 assert(!Val->use_empty() && "Input must have at least one use"); 4709 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4710 bool IsSExt = isa<SExtInst>(FirstUser); 4711 Type *ExtTy = FirstUser->getType(); 4712 for (const User *U : Val->users()) { 4713 const Instruction *UI = cast<Instruction>(U); 4714 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4715 return false; 4716 Type *CurTy = UI->getType(); 4717 // Same input and output types: Same instruction after CSE. 4718 if (CurTy == ExtTy) 4719 continue; 4720 4721 // If IsSExt is true, we are in this situation: 4722 // a = Val 4723 // b = sext ty1 a to ty2 4724 // c = sext ty1 a to ty3 4725 // Assuming ty2 is shorter than ty3, this could be turned into: 4726 // a = Val 4727 // b = sext ty1 a to ty2 4728 // c = sext ty2 b to ty3 4729 // However, the last sext is not free. 4730 if (IsSExt) 4731 return false; 4732 4733 // This is a ZExt, maybe this is free to extend from one type to another. 4734 // In that case, we would not account for a different use. 4735 Type *NarrowTy; 4736 Type *LargeTy; 4737 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4738 CurTy->getScalarType()->getIntegerBitWidth()) { 4739 NarrowTy = CurTy; 4740 LargeTy = ExtTy; 4741 } else { 4742 NarrowTy = ExtTy; 4743 LargeTy = CurTy; 4744 } 4745 4746 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4747 return false; 4748 } 4749 // All uses are the same or can be derived from one another for free. 4750 return true; 4751 } 4752 4753 /// Try to speculatively promote extensions in \p Exts and continue 4754 /// promoting through newly promoted operands recursively as far as doing so is 4755 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4756 /// When some promotion happened, \p TPT contains the proper state to revert 4757 /// them. 4758 /// 4759 /// \return true if some promotion happened, false otherwise. 4760 bool CodeGenPrepare::tryToPromoteExts( 4761 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4762 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4763 unsigned CreatedInstsCost) { 4764 bool Promoted = false; 4765 4766 // Iterate over all the extensions to try to promote them. 4767 for (auto I : Exts) { 4768 // Early check if we directly have ext(load). 4769 if (isa<LoadInst>(I->getOperand(0))) { 4770 ProfitablyMovedExts.push_back(I); 4771 continue; 4772 } 4773 4774 // Check whether or not we want to do any promotion. The reason we have 4775 // this check inside the for loop is to catch the case where an extension 4776 // is directly fed by a load because in such case the extension can be moved 4777 // up without any promotion on its operands. 4778 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4779 return false; 4780 4781 // Get the action to perform the promotion. 4782 TypePromotionHelper::Action TPH = 4783 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4784 // Check if we can promote. 4785 if (!TPH) { 4786 // Save the current extension as we cannot move up through its operand. 4787 ProfitablyMovedExts.push_back(I); 4788 continue; 4789 } 4790 4791 // Save the current state. 4792 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4793 TPT.getRestorationPoint(); 4794 SmallVector<Instruction *, 4> NewExts; 4795 unsigned NewCreatedInstsCost = 0; 4796 unsigned ExtCost = !TLI->isExtFree(I); 4797 // Promote. 4798 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4799 &NewExts, nullptr, *TLI); 4800 assert(PromotedVal && 4801 "TypePromotionHelper should have filtered out those cases"); 4802 4803 // We would be able to merge only one extension in a load. 4804 // Therefore, if we have more than 1 new extension we heuristically 4805 // cut this search path, because it means we degrade the code quality. 4806 // With exactly 2, the transformation is neutral, because we will merge 4807 // one extension but leave one. However, we optimistically keep going, 4808 // because the new extension may be removed too. 4809 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4810 // FIXME: It would be possible to propagate a negative value instead of 4811 // conservatively ceiling it to 0. 4812 TotalCreatedInstsCost = 4813 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4814 if (!StressExtLdPromotion && 4815 (TotalCreatedInstsCost > 1 || 4816 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4817 // This promotion is not profitable, rollback to the previous state, and 4818 // save the current extension in ProfitablyMovedExts as the latest 4819 // speculative promotion turned out to be unprofitable. 4820 TPT.rollback(LastKnownGood); 4821 ProfitablyMovedExts.push_back(I); 4822 continue; 4823 } 4824 // Continue promoting NewExts as far as doing so is profitable. 4825 SmallVector<Instruction *, 2> NewlyMovedExts; 4826 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4827 bool NewPromoted = false; 4828 for (auto ExtInst : NewlyMovedExts) { 4829 Instruction *MovedExt = cast<Instruction>(ExtInst); 4830 Value *ExtOperand = MovedExt->getOperand(0); 4831 // If we have reached to a load, we need this extra profitability check 4832 // as it could potentially be merged into an ext(load). 4833 if (isa<LoadInst>(ExtOperand) && 4834 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4835 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4836 continue; 4837 4838 ProfitablyMovedExts.push_back(MovedExt); 4839 NewPromoted = true; 4840 } 4841 4842 // If none of speculative promotions for NewExts is profitable, rollback 4843 // and save the current extension (I) as the last profitable extension. 4844 if (!NewPromoted) { 4845 TPT.rollback(LastKnownGood); 4846 ProfitablyMovedExts.push_back(I); 4847 continue; 4848 } 4849 // The promotion is profitable. 4850 Promoted = true; 4851 } 4852 return Promoted; 4853 } 4854 4855 /// Merging redundant sexts when one is dominating the other. 4856 bool CodeGenPrepare::mergeSExts(Function &F) { 4857 DominatorTree DT(F); 4858 bool Changed = false; 4859 for (auto &Entry : ValToSExtendedUses) { 4860 SExts &Insts = Entry.second; 4861 SExts CurPts; 4862 for (Instruction *Inst : Insts) { 4863 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4864 Inst->getOperand(0) != Entry.first) 4865 continue; 4866 bool inserted = false; 4867 for (auto &Pt : CurPts) { 4868 if (DT.dominates(Inst, Pt)) { 4869 Pt->replaceAllUsesWith(Inst); 4870 RemovedInsts.insert(Pt); 4871 Pt->removeFromParent(); 4872 Pt = Inst; 4873 inserted = true; 4874 Changed = true; 4875 break; 4876 } 4877 if (!DT.dominates(Pt, Inst)) 4878 // Give up if we need to merge in a common dominator as the 4879 // experiments show it is not profitable. 4880 continue; 4881 Inst->replaceAllUsesWith(Pt); 4882 RemovedInsts.insert(Inst); 4883 Inst->removeFromParent(); 4884 inserted = true; 4885 Changed = true; 4886 break; 4887 } 4888 if (!inserted) 4889 CurPts.push_back(Inst); 4890 } 4891 } 4892 return Changed; 4893 } 4894 4895 // Spliting large data structures so that the GEPs accessing them can have 4896 // smaller offsets so that they can be sunk to the same blocks as their users. 4897 // For example, a large struct starting from %base is splitted into two parts 4898 // where the second part starts from %new_base. 4899 // 4900 // Before: 4901 // BB0: 4902 // %base = 4903 // 4904 // BB1: 4905 // %gep0 = gep %base, off0 4906 // %gep1 = gep %base, off1 4907 // %gep2 = gep %base, off2 4908 // 4909 // BB2: 4910 // %load1 = load %gep0 4911 // %load2 = load %gep1 4912 // %load3 = load %gep2 4913 // 4914 // After: 4915 // BB0: 4916 // %base = 4917 // %new_base = gep %base, off0 4918 // 4919 // BB1: 4920 // %new_gep0 = %new_base 4921 // %new_gep1 = gep %new_base, off1 - off0 4922 // %new_gep2 = gep %new_base, off2 - off0 4923 // 4924 // BB2: 4925 // %load1 = load i32, i32* %new_gep0 4926 // %load2 = load i32, i32* %new_gep1 4927 // %load3 = load i32, i32* %new_gep2 4928 // 4929 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4930 // their offsets are smaller enough to fit into the addressing mode. 4931 bool CodeGenPrepare::splitLargeGEPOffsets() { 4932 bool Changed = false; 4933 for (auto &Entry : LargeOffsetGEPMap) { 4934 Value *OldBase = Entry.first; 4935 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4936 &LargeOffsetGEPs = Entry.second; 4937 auto compareGEPOffset = 4938 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4939 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4940 if (LHS.first == RHS.first) 4941 return false; 4942 if (LHS.second != RHS.second) 4943 return LHS.second < RHS.second; 4944 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4945 }; 4946 // Sorting all the GEPs of the same data structures based on the offsets. 4947 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4948 compareGEPOffset); 4949 LargeOffsetGEPs.erase( 4950 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 4951 LargeOffsetGEPs.end()); 4952 // Skip if all the GEPs have the same offsets. 4953 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 4954 continue; 4955 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 4956 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 4957 Value *NewBaseGEP = nullptr; 4958 4959 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 4960 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 4961 GetElementPtrInst *GEP = LargeOffsetGEP->first; 4962 int64_t Offset = LargeOffsetGEP->second; 4963 if (Offset != BaseOffset) { 4964 TargetLowering::AddrMode AddrMode; 4965 AddrMode.BaseOffs = Offset - BaseOffset; 4966 // The result type of the GEP might not be the type of the memory 4967 // access. 4968 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 4969 GEP->getResultElementType(), 4970 GEP->getAddressSpace())) { 4971 // We need to create a new base if the offset to the current base is 4972 // too large to fit into the addressing mode. So, a very large struct 4973 // may be splitted into several parts. 4974 BaseGEP = GEP; 4975 BaseOffset = Offset; 4976 NewBaseGEP = nullptr; 4977 } 4978 } 4979 4980 // Generate a new GEP to replace the current one. 4981 IRBuilder<> Builder(GEP); 4982 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 4983 Type *I8PtrTy = 4984 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 4985 Type *I8Ty = Builder.getInt8Ty(); 4986 4987 if (!NewBaseGEP) { 4988 // Create a new base if we don't have one yet. Find the insertion 4989 // pointer for the new base first. 4990 BasicBlock::iterator NewBaseInsertPt; 4991 BasicBlock *NewBaseInsertBB; 4992 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 4993 // If the base of the struct is an instruction, the new base will be 4994 // inserted close to it. 4995 NewBaseInsertBB = BaseI->getParent(); 4996 if (isa<PHINode>(BaseI)) 4997 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4998 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 4999 NewBaseInsertBB = 5000 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5001 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5002 } else 5003 NewBaseInsertPt = std::next(BaseI->getIterator()); 5004 } else { 5005 // If the current base is an argument or global value, the new base 5006 // will be inserted to the entry block. 5007 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5008 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5009 } 5010 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5011 // Create a new base. 5012 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5013 NewBaseGEP = OldBase; 5014 if (NewBaseGEP->getType() != I8PtrTy) 5015 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5016 NewBaseGEP = 5017 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5018 NewGEPBases.insert(NewBaseGEP); 5019 } 5020 5021 Value *NewGEP = NewBaseGEP; 5022 if (Offset == BaseOffset) { 5023 if (GEP->getType() != I8PtrTy) 5024 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5025 } else { 5026 // Calculate the new offset for the new GEP. 5027 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5028 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5029 5030 if (GEP->getType() != I8PtrTy) 5031 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5032 } 5033 GEP->replaceAllUsesWith(NewGEP); 5034 LargeOffsetGEPID.erase(GEP); 5035 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5036 GEP->eraseFromParent(); 5037 Changed = true; 5038 } 5039 } 5040 return Changed; 5041 } 5042 5043 /// Return true, if an ext(load) can be formed from an extension in 5044 /// \p MovedExts. 5045 bool CodeGenPrepare::canFormExtLd( 5046 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5047 Instruction *&Inst, bool HasPromoted) { 5048 for (auto *MovedExtInst : MovedExts) { 5049 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5050 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5051 Inst = MovedExtInst; 5052 break; 5053 } 5054 } 5055 if (!LI) 5056 return false; 5057 5058 // If they're already in the same block, there's nothing to do. 5059 // Make the cheap checks first if we did not promote. 5060 // If we promoted, we need to check if it is indeed profitable. 5061 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5062 return false; 5063 5064 return TLI->isExtLoad(LI, Inst, *DL); 5065 } 5066 5067 /// Move a zext or sext fed by a load into the same basic block as the load, 5068 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5069 /// extend into the load. 5070 /// 5071 /// E.g., 5072 /// \code 5073 /// %ld = load i32* %addr 5074 /// %add = add nuw i32 %ld, 4 5075 /// %zext = zext i32 %add to i64 5076 // \endcode 5077 /// => 5078 /// \code 5079 /// %ld = load i32* %addr 5080 /// %zext = zext i32 %ld to i64 5081 /// %add = add nuw i64 %zext, 4 5082 /// \encode 5083 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5084 /// allow us to match zext(load i32*) to i64. 5085 /// 5086 /// Also, try to promote the computations used to obtain a sign extended 5087 /// value used into memory accesses. 5088 /// E.g., 5089 /// \code 5090 /// a = add nsw i32 b, 3 5091 /// d = sext i32 a to i64 5092 /// e = getelementptr ..., i64 d 5093 /// \endcode 5094 /// => 5095 /// \code 5096 /// f = sext i32 b to i64 5097 /// a = add nsw i64 f, 3 5098 /// e = getelementptr ..., i64 a 5099 /// \endcode 5100 /// 5101 /// \p Inst[in/out] the extension may be modified during the process if some 5102 /// promotions apply. 5103 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5104 // ExtLoad formation and address type promotion infrastructure requires TLI to 5105 // be effective. 5106 if (!TLI) 5107 return false; 5108 5109 bool AllowPromotionWithoutCommonHeader = false; 5110 /// See if it is an interesting sext operations for the address type 5111 /// promotion before trying to promote it, e.g., the ones with the right 5112 /// type and used in memory accesses. 5113 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5114 *Inst, AllowPromotionWithoutCommonHeader); 5115 TypePromotionTransaction TPT(RemovedInsts); 5116 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5117 TPT.getRestorationPoint(); 5118 SmallVector<Instruction *, 1> Exts; 5119 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5120 Exts.push_back(Inst); 5121 5122 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5123 5124 // Look for a load being extended. 5125 LoadInst *LI = nullptr; 5126 Instruction *ExtFedByLoad; 5127 5128 // Try to promote a chain of computation if it allows to form an extended 5129 // load. 5130 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5131 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5132 TPT.commit(); 5133 // Move the extend into the same block as the load 5134 ExtFedByLoad->moveAfter(LI); 5135 // CGP does not check if the zext would be speculatively executed when moved 5136 // to the same basic block as the load. Preserving its original location 5137 // would pessimize the debugging experience, as well as negatively impact 5138 // the quality of sample pgo. We don't want to use "line 0" as that has a 5139 // size cost in the line-table section and logically the zext can be seen as 5140 // part of the load. Therefore we conservatively reuse the same debug 5141 // location for the load and the zext. 5142 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5143 ++NumExtsMoved; 5144 Inst = ExtFedByLoad; 5145 return true; 5146 } 5147 5148 // Continue promoting SExts if known as considerable depending on targets. 5149 if (ATPConsiderable && 5150 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5151 HasPromoted, TPT, SpeculativelyMovedExts)) 5152 return true; 5153 5154 TPT.rollback(LastKnownGood); 5155 return false; 5156 } 5157 5158 // Perform address type promotion if doing so is profitable. 5159 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5160 // instructions that sign extended the same initial value. However, if 5161 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5162 // extension is just profitable. 5163 bool CodeGenPrepare::performAddressTypePromotion( 5164 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5165 bool HasPromoted, TypePromotionTransaction &TPT, 5166 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5167 bool Promoted = false; 5168 SmallPtrSet<Instruction *, 1> UnhandledExts; 5169 bool AllSeenFirst = true; 5170 for (auto I : SpeculativelyMovedExts) { 5171 Value *HeadOfChain = I->getOperand(0); 5172 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5173 SeenChainsForSExt.find(HeadOfChain); 5174 // If there is an unhandled SExt which has the same header, try to promote 5175 // it as well. 5176 if (AlreadySeen != SeenChainsForSExt.end()) { 5177 if (AlreadySeen->second != nullptr) 5178 UnhandledExts.insert(AlreadySeen->second); 5179 AllSeenFirst = false; 5180 } 5181 } 5182 5183 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5184 SpeculativelyMovedExts.size() == 1)) { 5185 TPT.commit(); 5186 if (HasPromoted) 5187 Promoted = true; 5188 for (auto I : SpeculativelyMovedExts) { 5189 Value *HeadOfChain = I->getOperand(0); 5190 SeenChainsForSExt[HeadOfChain] = nullptr; 5191 ValToSExtendedUses[HeadOfChain].push_back(I); 5192 } 5193 // Update Inst as promotion happen. 5194 Inst = SpeculativelyMovedExts.pop_back_val(); 5195 } else { 5196 // This is the first chain visited from the header, keep the current chain 5197 // as unhandled. Defer to promote this until we encounter another SExt 5198 // chain derived from the same header. 5199 for (auto I : SpeculativelyMovedExts) { 5200 Value *HeadOfChain = I->getOperand(0); 5201 SeenChainsForSExt[HeadOfChain] = Inst; 5202 } 5203 return false; 5204 } 5205 5206 if (!AllSeenFirst && !UnhandledExts.empty()) 5207 for (auto VisitedSExt : UnhandledExts) { 5208 if (RemovedInsts.count(VisitedSExt)) 5209 continue; 5210 TypePromotionTransaction TPT(RemovedInsts); 5211 SmallVector<Instruction *, 1> Exts; 5212 SmallVector<Instruction *, 2> Chains; 5213 Exts.push_back(VisitedSExt); 5214 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5215 TPT.commit(); 5216 if (HasPromoted) 5217 Promoted = true; 5218 for (auto I : Chains) { 5219 Value *HeadOfChain = I->getOperand(0); 5220 // Mark this as handled. 5221 SeenChainsForSExt[HeadOfChain] = nullptr; 5222 ValToSExtendedUses[HeadOfChain].push_back(I); 5223 } 5224 } 5225 return Promoted; 5226 } 5227 5228 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5229 BasicBlock *DefBB = I->getParent(); 5230 5231 // If the result of a {s|z}ext and its source are both live out, rewrite all 5232 // other uses of the source with result of extension. 5233 Value *Src = I->getOperand(0); 5234 if (Src->hasOneUse()) 5235 return false; 5236 5237 // Only do this xform if truncating is free. 5238 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5239 return false; 5240 5241 // Only safe to perform the optimization if the source is also defined in 5242 // this block. 5243 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5244 return false; 5245 5246 bool DefIsLiveOut = false; 5247 for (User *U : I->users()) { 5248 Instruction *UI = cast<Instruction>(U); 5249 5250 // Figure out which BB this ext is used in. 5251 BasicBlock *UserBB = UI->getParent(); 5252 if (UserBB == DefBB) continue; 5253 DefIsLiveOut = true; 5254 break; 5255 } 5256 if (!DefIsLiveOut) 5257 return false; 5258 5259 // Make sure none of the uses are PHI nodes. 5260 for (User *U : Src->users()) { 5261 Instruction *UI = cast<Instruction>(U); 5262 BasicBlock *UserBB = UI->getParent(); 5263 if (UserBB == DefBB) continue; 5264 // Be conservative. We don't want this xform to end up introducing 5265 // reloads just before load / store instructions. 5266 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5267 return false; 5268 } 5269 5270 // InsertedTruncs - Only insert one trunc in each block once. 5271 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5272 5273 bool MadeChange = false; 5274 for (Use &U : Src->uses()) { 5275 Instruction *User = cast<Instruction>(U.getUser()); 5276 5277 // Figure out which BB this ext is used in. 5278 BasicBlock *UserBB = User->getParent(); 5279 if (UserBB == DefBB) continue; 5280 5281 // Both src and def are live in this block. Rewrite the use. 5282 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5283 5284 if (!InsertedTrunc) { 5285 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5286 assert(InsertPt != UserBB->end()); 5287 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5288 InsertedInsts.insert(InsertedTrunc); 5289 } 5290 5291 // Replace a use of the {s|z}ext source with a use of the result. 5292 U = InsertedTrunc; 5293 ++NumExtUses; 5294 MadeChange = true; 5295 } 5296 5297 return MadeChange; 5298 } 5299 5300 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5301 // just after the load if the target can fold this into one extload instruction, 5302 // with the hope of eliminating some of the other later "and" instructions using 5303 // the loaded value. "and"s that are made trivially redundant by the insertion 5304 // of the new "and" are removed by this function, while others (e.g. those whose 5305 // path from the load goes through a phi) are left for isel to potentially 5306 // remove. 5307 // 5308 // For example: 5309 // 5310 // b0: 5311 // x = load i32 5312 // ... 5313 // b1: 5314 // y = and x, 0xff 5315 // z = use y 5316 // 5317 // becomes: 5318 // 5319 // b0: 5320 // x = load i32 5321 // x' = and x, 0xff 5322 // ... 5323 // b1: 5324 // z = use x' 5325 // 5326 // whereas: 5327 // 5328 // b0: 5329 // x1 = load i32 5330 // ... 5331 // b1: 5332 // x2 = load i32 5333 // ... 5334 // b2: 5335 // x = phi x1, x2 5336 // y = and x, 0xff 5337 // 5338 // becomes (after a call to optimizeLoadExt for each load): 5339 // 5340 // b0: 5341 // x1 = load i32 5342 // x1' = and x1, 0xff 5343 // ... 5344 // b1: 5345 // x2 = load i32 5346 // x2' = and x2, 0xff 5347 // ... 5348 // b2: 5349 // x = phi x1', x2' 5350 // y = and x, 0xff 5351 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5352 if (!Load->isSimple() || 5353 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5354 return false; 5355 5356 // Skip loads we've already transformed. 5357 if (Load->hasOneUse() && 5358 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5359 return false; 5360 5361 // Look at all uses of Load, looking through phis, to determine how many bits 5362 // of the loaded value are needed. 5363 SmallVector<Instruction *, 8> WorkList; 5364 SmallPtrSet<Instruction *, 16> Visited; 5365 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5366 for (auto *U : Load->users()) 5367 WorkList.push_back(cast<Instruction>(U)); 5368 5369 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5370 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5371 APInt DemandBits(BitWidth, 0); 5372 APInt WidestAndBits(BitWidth, 0); 5373 5374 while (!WorkList.empty()) { 5375 Instruction *I = WorkList.back(); 5376 WorkList.pop_back(); 5377 5378 // Break use-def graph loops. 5379 if (!Visited.insert(I).second) 5380 continue; 5381 5382 // For a PHI node, push all of its users. 5383 if (auto *Phi = dyn_cast<PHINode>(I)) { 5384 for (auto *U : Phi->users()) 5385 WorkList.push_back(cast<Instruction>(U)); 5386 continue; 5387 } 5388 5389 switch (I->getOpcode()) { 5390 case Instruction::And: { 5391 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5392 if (!AndC) 5393 return false; 5394 APInt AndBits = AndC->getValue(); 5395 DemandBits |= AndBits; 5396 // Keep track of the widest and mask we see. 5397 if (AndBits.ugt(WidestAndBits)) 5398 WidestAndBits = AndBits; 5399 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5400 AndsToMaybeRemove.push_back(I); 5401 break; 5402 } 5403 5404 case Instruction::Shl: { 5405 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5406 if (!ShlC) 5407 return false; 5408 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5409 DemandBits.setLowBits(BitWidth - ShiftAmt); 5410 break; 5411 } 5412 5413 case Instruction::Trunc: { 5414 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5415 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5416 DemandBits.setLowBits(TruncBitWidth); 5417 break; 5418 } 5419 5420 default: 5421 return false; 5422 } 5423 } 5424 5425 uint32_t ActiveBits = DemandBits.getActiveBits(); 5426 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5427 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5428 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5429 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5430 // followed by an AND. 5431 // TODO: Look into removing this restriction by fixing backends to either 5432 // return false for isLoadExtLegal for i1 or have them select this pattern to 5433 // a single instruction. 5434 // 5435 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5436 // mask, since these are the only ands that will be removed by isel. 5437 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5438 WidestAndBits != DemandBits) 5439 return false; 5440 5441 LLVMContext &Ctx = Load->getType()->getContext(); 5442 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5443 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5444 5445 // Reject cases that won't be matched as extloads. 5446 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5447 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5448 return false; 5449 5450 IRBuilder<> Builder(Load->getNextNode()); 5451 auto *NewAnd = dyn_cast<Instruction>( 5452 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5453 // Mark this instruction as "inserted by CGP", so that other 5454 // optimizations don't touch it. 5455 InsertedInsts.insert(NewAnd); 5456 5457 // Replace all uses of load with new and (except for the use of load in the 5458 // new and itself). 5459 Load->replaceAllUsesWith(NewAnd); 5460 NewAnd->setOperand(0, Load); 5461 5462 // Remove any and instructions that are now redundant. 5463 for (auto *And : AndsToMaybeRemove) 5464 // Check that the and mask is the same as the one we decided to put on the 5465 // new and. 5466 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5467 And->replaceAllUsesWith(NewAnd); 5468 if (&*CurInstIterator == And) 5469 CurInstIterator = std::next(And->getIterator()); 5470 And->eraseFromParent(); 5471 ++NumAndUses; 5472 } 5473 5474 ++NumAndsAdded; 5475 return true; 5476 } 5477 5478 /// Check if V (an operand of a select instruction) is an expensive instruction 5479 /// that is only used once. 5480 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5481 auto *I = dyn_cast<Instruction>(V); 5482 // If it's safe to speculatively execute, then it should not have side 5483 // effects; therefore, it's safe to sink and possibly *not* execute. 5484 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5485 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5486 } 5487 5488 /// Returns true if a SelectInst should be turned into an explicit branch. 5489 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5490 const TargetLowering *TLI, 5491 SelectInst *SI) { 5492 // If even a predictable select is cheap, then a branch can't be cheaper. 5493 if (!TLI->isPredictableSelectExpensive()) 5494 return false; 5495 5496 // FIXME: This should use the same heuristics as IfConversion to determine 5497 // whether a select is better represented as a branch. 5498 5499 // If metadata tells us that the select condition is obviously predictable, 5500 // then we want to replace the select with a branch. 5501 uint64_t TrueWeight, FalseWeight; 5502 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5503 uint64_t Max = std::max(TrueWeight, FalseWeight); 5504 uint64_t Sum = TrueWeight + FalseWeight; 5505 if (Sum != 0) { 5506 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5507 if (Probability > TLI->getPredictableBranchThreshold()) 5508 return true; 5509 } 5510 } 5511 5512 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5513 5514 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5515 // comparison condition. If the compare has more than one use, there's 5516 // probably another cmov or setcc around, so it's not worth emitting a branch. 5517 if (!Cmp || !Cmp->hasOneUse()) 5518 return false; 5519 5520 // If either operand of the select is expensive and only needed on one side 5521 // of the select, we should form a branch. 5522 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5523 sinkSelectOperand(TTI, SI->getFalseValue())) 5524 return true; 5525 5526 return false; 5527 } 5528 5529 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5530 /// false value of \p SI. If the true/false value of \p SI is defined by any 5531 /// select instructions in \p Selects, look through the defining select 5532 /// instruction until the true/false value is not defined in \p Selects. 5533 static Value *getTrueOrFalseValue( 5534 SelectInst *SI, bool isTrue, 5535 const SmallPtrSet<const Instruction *, 2> &Selects) { 5536 Value *V; 5537 5538 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5539 DefSI = dyn_cast<SelectInst>(V)) { 5540 assert(DefSI->getCondition() == SI->getCondition() && 5541 "The condition of DefSI does not match with SI"); 5542 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5543 } 5544 return V; 5545 } 5546 5547 /// If we have a SelectInst that will likely profit from branch prediction, 5548 /// turn it into a branch. 5549 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5550 // Find all consecutive select instructions that share the same condition. 5551 SmallVector<SelectInst *, 2> ASI; 5552 ASI.push_back(SI); 5553 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5554 It != SI->getParent()->end(); ++It) { 5555 SelectInst *I = dyn_cast<SelectInst>(&*It); 5556 if (I && SI->getCondition() == I->getCondition()) { 5557 ASI.push_back(I); 5558 } else { 5559 break; 5560 } 5561 } 5562 5563 SelectInst *LastSI = ASI.back(); 5564 // Increment the current iterator to skip all the rest of select instructions 5565 // because they will be either "not lowered" or "all lowered" to branch. 5566 CurInstIterator = std::next(LastSI->getIterator()); 5567 5568 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5569 5570 // Can we convert the 'select' to CF ? 5571 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5572 SI->getMetadata(LLVMContext::MD_unpredictable)) 5573 return false; 5574 5575 TargetLowering::SelectSupportKind SelectKind; 5576 if (VectorCond) 5577 SelectKind = TargetLowering::VectorMaskSelect; 5578 else if (SI->getType()->isVectorTy()) 5579 SelectKind = TargetLowering::ScalarCondVectorVal; 5580 else 5581 SelectKind = TargetLowering::ScalarValSelect; 5582 5583 if (TLI->isSelectSupported(SelectKind) && 5584 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5585 return false; 5586 5587 ModifiedDT = true; 5588 5589 // Transform a sequence like this: 5590 // start: 5591 // %cmp = cmp uge i32 %a, %b 5592 // %sel = select i1 %cmp, i32 %c, i32 %d 5593 // 5594 // Into: 5595 // start: 5596 // %cmp = cmp uge i32 %a, %b 5597 // br i1 %cmp, label %select.true, label %select.false 5598 // select.true: 5599 // br label %select.end 5600 // select.false: 5601 // br label %select.end 5602 // select.end: 5603 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5604 // 5605 // In addition, we may sink instructions that produce %c or %d from 5606 // the entry block into the destination(s) of the new branch. 5607 // If the true or false blocks do not contain a sunken instruction, that 5608 // block and its branch may be optimized away. In that case, one side of the 5609 // first branch will point directly to select.end, and the corresponding PHI 5610 // predecessor block will be the start block. 5611 5612 // First, we split the block containing the select into 2 blocks. 5613 BasicBlock *StartBlock = SI->getParent(); 5614 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5615 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5616 5617 // Delete the unconditional branch that was just created by the split. 5618 StartBlock->getTerminator()->eraseFromParent(); 5619 5620 // These are the new basic blocks for the conditional branch. 5621 // At least one will become an actual new basic block. 5622 BasicBlock *TrueBlock = nullptr; 5623 BasicBlock *FalseBlock = nullptr; 5624 BranchInst *TrueBranch = nullptr; 5625 BranchInst *FalseBranch = nullptr; 5626 5627 // Sink expensive instructions into the conditional blocks to avoid executing 5628 // them speculatively. 5629 for (SelectInst *SI : ASI) { 5630 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5631 if (TrueBlock == nullptr) { 5632 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5633 EndBlock->getParent(), EndBlock); 5634 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5635 } 5636 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5637 TrueInst->moveBefore(TrueBranch); 5638 } 5639 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5640 if (FalseBlock == nullptr) { 5641 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5642 EndBlock->getParent(), EndBlock); 5643 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5644 } 5645 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5646 FalseInst->moveBefore(FalseBranch); 5647 } 5648 } 5649 5650 // If there was nothing to sink, then arbitrarily choose the 'false' side 5651 // for a new input value to the PHI. 5652 if (TrueBlock == FalseBlock) { 5653 assert(TrueBlock == nullptr && 5654 "Unexpected basic block transform while optimizing select"); 5655 5656 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5657 EndBlock->getParent(), EndBlock); 5658 BranchInst::Create(EndBlock, FalseBlock); 5659 } 5660 5661 // Insert the real conditional branch based on the original condition. 5662 // If we did not create a new block for one of the 'true' or 'false' paths 5663 // of the condition, it means that side of the branch goes to the end block 5664 // directly and the path originates from the start block from the point of 5665 // view of the new PHI. 5666 BasicBlock *TT, *FT; 5667 if (TrueBlock == nullptr) { 5668 TT = EndBlock; 5669 FT = FalseBlock; 5670 TrueBlock = StartBlock; 5671 } else if (FalseBlock == nullptr) { 5672 TT = TrueBlock; 5673 FT = EndBlock; 5674 FalseBlock = StartBlock; 5675 } else { 5676 TT = TrueBlock; 5677 FT = FalseBlock; 5678 } 5679 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5680 5681 SmallPtrSet<const Instruction *, 2> INS; 5682 INS.insert(ASI.begin(), ASI.end()); 5683 // Use reverse iterator because later select may use the value of the 5684 // earlier select, and we need to propagate value through earlier select 5685 // to get the PHI operand. 5686 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5687 SelectInst *SI = *It; 5688 // The select itself is replaced with a PHI Node. 5689 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5690 PN->takeName(SI); 5691 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5692 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5693 5694 SI->replaceAllUsesWith(PN); 5695 SI->eraseFromParent(); 5696 INS.erase(SI); 5697 ++NumSelectsExpanded; 5698 } 5699 5700 // Instruct OptimizeBlock to skip to the next block. 5701 CurInstIterator = StartBlock->end(); 5702 return true; 5703 } 5704 5705 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5706 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5707 int SplatElem = -1; 5708 for (unsigned i = 0; i < Mask.size(); ++i) { 5709 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5710 return false; 5711 SplatElem = Mask[i]; 5712 } 5713 5714 return true; 5715 } 5716 5717 /// Some targets have expensive vector shifts if the lanes aren't all the same 5718 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5719 /// it's often worth sinking a shufflevector splat down to its use so that 5720 /// codegen can spot all lanes are identical. 5721 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5722 BasicBlock *DefBB = SVI->getParent(); 5723 5724 // Only do this xform if variable vector shifts are particularly expensive. 5725 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5726 return false; 5727 5728 // We only expect better codegen by sinking a shuffle if we can recognise a 5729 // constant splat. 5730 if (!isBroadcastShuffle(SVI)) 5731 return false; 5732 5733 // InsertedShuffles - Only insert a shuffle in each block once. 5734 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5735 5736 bool MadeChange = false; 5737 for (User *U : SVI->users()) { 5738 Instruction *UI = cast<Instruction>(U); 5739 5740 // Figure out which BB this ext is used in. 5741 BasicBlock *UserBB = UI->getParent(); 5742 if (UserBB == DefBB) continue; 5743 5744 // For now only apply this when the splat is used by a shift instruction. 5745 if (!UI->isShift()) continue; 5746 5747 // Everything checks out, sink the shuffle if the user's block doesn't 5748 // already have a copy. 5749 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5750 5751 if (!InsertedShuffle) { 5752 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5753 assert(InsertPt != UserBB->end()); 5754 InsertedShuffle = 5755 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5756 SVI->getOperand(2), "", &*InsertPt); 5757 } 5758 5759 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5760 MadeChange = true; 5761 } 5762 5763 // If we removed all uses, nuke the shuffle. 5764 if (SVI->use_empty()) { 5765 SVI->eraseFromParent(); 5766 MadeChange = true; 5767 } 5768 5769 return MadeChange; 5770 } 5771 5772 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5773 if (!TLI || !DL) 5774 return false; 5775 5776 Value *Cond = SI->getCondition(); 5777 Type *OldType = Cond->getType(); 5778 LLVMContext &Context = Cond->getContext(); 5779 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5780 unsigned RegWidth = RegType.getSizeInBits(); 5781 5782 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5783 return false; 5784 5785 // If the register width is greater than the type width, expand the condition 5786 // of the switch instruction and each case constant to the width of the 5787 // register. By widening the type of the switch condition, subsequent 5788 // comparisons (for case comparisons) will not need to be extended to the 5789 // preferred register width, so we will potentially eliminate N-1 extends, 5790 // where N is the number of cases in the switch. 5791 auto *NewType = Type::getIntNTy(Context, RegWidth); 5792 5793 // Zero-extend the switch condition and case constants unless the switch 5794 // condition is a function argument that is already being sign-extended. 5795 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5796 // everything instead. 5797 Instruction::CastOps ExtType = Instruction::ZExt; 5798 if (auto *Arg = dyn_cast<Argument>(Cond)) 5799 if (Arg->hasSExtAttr()) 5800 ExtType = Instruction::SExt; 5801 5802 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5803 ExtInst->insertBefore(SI); 5804 SI->setCondition(ExtInst); 5805 for (auto Case : SI->cases()) { 5806 APInt NarrowConst = Case.getCaseValue()->getValue(); 5807 APInt WideConst = (ExtType == Instruction::ZExt) ? 5808 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5809 Case.setValue(ConstantInt::get(Context, WideConst)); 5810 } 5811 5812 return true; 5813 } 5814 5815 5816 namespace { 5817 5818 /// Helper class to promote a scalar operation to a vector one. 5819 /// This class is used to move downward extractelement transition. 5820 /// E.g., 5821 /// a = vector_op <2 x i32> 5822 /// b = extractelement <2 x i32> a, i32 0 5823 /// c = scalar_op b 5824 /// store c 5825 /// 5826 /// => 5827 /// a = vector_op <2 x i32> 5828 /// c = vector_op a (equivalent to scalar_op on the related lane) 5829 /// * d = extractelement <2 x i32> c, i32 0 5830 /// * store d 5831 /// Assuming both extractelement and store can be combine, we get rid of the 5832 /// transition. 5833 class VectorPromoteHelper { 5834 /// DataLayout associated with the current module. 5835 const DataLayout &DL; 5836 5837 /// Used to perform some checks on the legality of vector operations. 5838 const TargetLowering &TLI; 5839 5840 /// Used to estimated the cost of the promoted chain. 5841 const TargetTransformInfo &TTI; 5842 5843 /// The transition being moved downwards. 5844 Instruction *Transition; 5845 5846 /// The sequence of instructions to be promoted. 5847 SmallVector<Instruction *, 4> InstsToBePromoted; 5848 5849 /// Cost of combining a store and an extract. 5850 unsigned StoreExtractCombineCost; 5851 5852 /// Instruction that will be combined with the transition. 5853 Instruction *CombineInst = nullptr; 5854 5855 /// The instruction that represents the current end of the transition. 5856 /// Since we are faking the promotion until we reach the end of the chain 5857 /// of computation, we need a way to get the current end of the transition. 5858 Instruction *getEndOfTransition() const { 5859 if (InstsToBePromoted.empty()) 5860 return Transition; 5861 return InstsToBePromoted.back(); 5862 } 5863 5864 /// Return the index of the original value in the transition. 5865 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5866 /// c, is at index 0. 5867 unsigned getTransitionOriginalValueIdx() const { 5868 assert(isa<ExtractElementInst>(Transition) && 5869 "Other kind of transitions are not supported yet"); 5870 return 0; 5871 } 5872 5873 /// Return the index of the index in the transition. 5874 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5875 /// is at index 1. 5876 unsigned getTransitionIdx() const { 5877 assert(isa<ExtractElementInst>(Transition) && 5878 "Other kind of transitions are not supported yet"); 5879 return 1; 5880 } 5881 5882 /// Get the type of the transition. 5883 /// This is the type of the original value. 5884 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5885 /// transition is <2 x i32>. 5886 Type *getTransitionType() const { 5887 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5888 } 5889 5890 /// Promote \p ToBePromoted by moving \p Def downward through. 5891 /// I.e., we have the following sequence: 5892 /// Def = Transition <ty1> a to <ty2> 5893 /// b = ToBePromoted <ty2> Def, ... 5894 /// => 5895 /// b = ToBePromoted <ty1> a, ... 5896 /// Def = Transition <ty1> ToBePromoted to <ty2> 5897 void promoteImpl(Instruction *ToBePromoted); 5898 5899 /// Check whether or not it is profitable to promote all the 5900 /// instructions enqueued to be promoted. 5901 bool isProfitableToPromote() { 5902 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5903 unsigned Index = isa<ConstantInt>(ValIdx) 5904 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5905 : -1; 5906 Type *PromotedType = getTransitionType(); 5907 5908 StoreInst *ST = cast<StoreInst>(CombineInst); 5909 unsigned AS = ST->getPointerAddressSpace(); 5910 unsigned Align = ST->getAlignment(); 5911 // Check if this store is supported. 5912 if (!TLI.allowsMisalignedMemoryAccesses( 5913 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5914 Align)) { 5915 // If this is not supported, there is no way we can combine 5916 // the extract with the store. 5917 return false; 5918 } 5919 5920 // The scalar chain of computation has to pay for the transition 5921 // scalar to vector. 5922 // The vector chain has to account for the combining cost. 5923 uint64_t ScalarCost = 5924 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5925 uint64_t VectorCost = StoreExtractCombineCost; 5926 for (const auto &Inst : InstsToBePromoted) { 5927 // Compute the cost. 5928 // By construction, all instructions being promoted are arithmetic ones. 5929 // Moreover, one argument is a constant that can be viewed as a splat 5930 // constant. 5931 Value *Arg0 = Inst->getOperand(0); 5932 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5933 isa<ConstantFP>(Arg0); 5934 TargetTransformInfo::OperandValueKind Arg0OVK = 5935 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5936 : TargetTransformInfo::OK_AnyValue; 5937 TargetTransformInfo::OperandValueKind Arg1OVK = 5938 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5939 : TargetTransformInfo::OK_AnyValue; 5940 ScalarCost += TTI.getArithmeticInstrCost( 5941 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5942 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5943 Arg0OVK, Arg1OVK); 5944 } 5945 LLVM_DEBUG( 5946 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5947 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5948 return ScalarCost > VectorCost; 5949 } 5950 5951 /// Generate a constant vector with \p Val with the same 5952 /// number of elements as the transition. 5953 /// \p UseSplat defines whether or not \p Val should be replicated 5954 /// across the whole vector. 5955 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5956 /// otherwise we generate a vector with as many undef as possible: 5957 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5958 /// used at the index of the extract. 5959 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5960 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5961 if (!UseSplat) { 5962 // If we cannot determine where the constant must be, we have to 5963 // use a splat constant. 5964 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5965 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5966 ExtractIdx = CstVal->getSExtValue(); 5967 else 5968 UseSplat = true; 5969 } 5970 5971 unsigned End = getTransitionType()->getVectorNumElements(); 5972 if (UseSplat) 5973 return ConstantVector::getSplat(End, Val); 5974 5975 SmallVector<Constant *, 4> ConstVec; 5976 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5977 for (unsigned Idx = 0; Idx != End; ++Idx) { 5978 if (Idx == ExtractIdx) 5979 ConstVec.push_back(Val); 5980 else 5981 ConstVec.push_back(UndefVal); 5982 } 5983 return ConstantVector::get(ConstVec); 5984 } 5985 5986 /// Check if promoting to a vector type an operand at \p OperandIdx 5987 /// in \p Use can trigger undefined behavior. 5988 static bool canCauseUndefinedBehavior(const Instruction *Use, 5989 unsigned OperandIdx) { 5990 // This is not safe to introduce undef when the operand is on 5991 // the right hand side of a division-like instruction. 5992 if (OperandIdx != 1) 5993 return false; 5994 switch (Use->getOpcode()) { 5995 default: 5996 return false; 5997 case Instruction::SDiv: 5998 case Instruction::UDiv: 5999 case Instruction::SRem: 6000 case Instruction::URem: 6001 return true; 6002 case Instruction::FDiv: 6003 case Instruction::FRem: 6004 return !Use->hasNoNaNs(); 6005 } 6006 llvm_unreachable(nullptr); 6007 } 6008 6009 public: 6010 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6011 const TargetTransformInfo &TTI, Instruction *Transition, 6012 unsigned CombineCost) 6013 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6014 StoreExtractCombineCost(CombineCost) { 6015 assert(Transition && "Do not know how to promote null"); 6016 } 6017 6018 /// Check if we can promote \p ToBePromoted to \p Type. 6019 bool canPromote(const Instruction *ToBePromoted) const { 6020 // We could support CastInst too. 6021 return isa<BinaryOperator>(ToBePromoted); 6022 } 6023 6024 /// Check if it is profitable to promote \p ToBePromoted 6025 /// by moving downward the transition through. 6026 bool shouldPromote(const Instruction *ToBePromoted) const { 6027 // Promote only if all the operands can be statically expanded. 6028 // Indeed, we do not want to introduce any new kind of transitions. 6029 for (const Use &U : ToBePromoted->operands()) { 6030 const Value *Val = U.get(); 6031 if (Val == getEndOfTransition()) { 6032 // If the use is a division and the transition is on the rhs, 6033 // we cannot promote the operation, otherwise we may create a 6034 // division by zero. 6035 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6036 return false; 6037 continue; 6038 } 6039 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6040 !isa<ConstantFP>(Val)) 6041 return false; 6042 } 6043 // Check that the resulting operation is legal. 6044 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6045 if (!ISDOpcode) 6046 return false; 6047 return StressStoreExtract || 6048 TLI.isOperationLegalOrCustom( 6049 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6050 } 6051 6052 /// Check whether or not \p Use can be combined 6053 /// with the transition. 6054 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6055 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6056 6057 /// Record \p ToBePromoted as part of the chain to be promoted. 6058 void enqueueForPromotion(Instruction *ToBePromoted) { 6059 InstsToBePromoted.push_back(ToBePromoted); 6060 } 6061 6062 /// Set the instruction that will be combined with the transition. 6063 void recordCombineInstruction(Instruction *ToBeCombined) { 6064 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6065 CombineInst = ToBeCombined; 6066 } 6067 6068 /// Promote all the instructions enqueued for promotion if it is 6069 /// is profitable. 6070 /// \return True if the promotion happened, false otherwise. 6071 bool promote() { 6072 // Check if there is something to promote. 6073 // Right now, if we do not have anything to combine with, 6074 // we assume the promotion is not profitable. 6075 if (InstsToBePromoted.empty() || !CombineInst) 6076 return false; 6077 6078 // Check cost. 6079 if (!StressStoreExtract && !isProfitableToPromote()) 6080 return false; 6081 6082 // Promote. 6083 for (auto &ToBePromoted : InstsToBePromoted) 6084 promoteImpl(ToBePromoted); 6085 InstsToBePromoted.clear(); 6086 return true; 6087 } 6088 }; 6089 6090 } // end anonymous namespace 6091 6092 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6093 // At this point, we know that all the operands of ToBePromoted but Def 6094 // can be statically promoted. 6095 // For Def, we need to use its parameter in ToBePromoted: 6096 // b = ToBePromoted ty1 a 6097 // Def = Transition ty1 b to ty2 6098 // Move the transition down. 6099 // 1. Replace all uses of the promoted operation by the transition. 6100 // = ... b => = ... Def. 6101 assert(ToBePromoted->getType() == Transition->getType() && 6102 "The type of the result of the transition does not match " 6103 "the final type"); 6104 ToBePromoted->replaceAllUsesWith(Transition); 6105 // 2. Update the type of the uses. 6106 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6107 Type *TransitionTy = getTransitionType(); 6108 ToBePromoted->mutateType(TransitionTy); 6109 // 3. Update all the operands of the promoted operation with promoted 6110 // operands. 6111 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6112 for (Use &U : ToBePromoted->operands()) { 6113 Value *Val = U.get(); 6114 Value *NewVal = nullptr; 6115 if (Val == Transition) 6116 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6117 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6118 isa<ConstantFP>(Val)) { 6119 // Use a splat constant if it is not safe to use undef. 6120 NewVal = getConstantVector( 6121 cast<Constant>(Val), 6122 isa<UndefValue>(Val) || 6123 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6124 } else 6125 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6126 "this?"); 6127 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6128 } 6129 Transition->moveAfter(ToBePromoted); 6130 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6131 } 6132 6133 /// Some targets can do store(extractelement) with one instruction. 6134 /// Try to push the extractelement towards the stores when the target 6135 /// has this feature and this is profitable. 6136 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6137 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6138 if (DisableStoreExtract || !TLI || 6139 (!StressStoreExtract && 6140 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6141 Inst->getOperand(1), CombineCost))) 6142 return false; 6143 6144 // At this point we know that Inst is a vector to scalar transition. 6145 // Try to move it down the def-use chain, until: 6146 // - We can combine the transition with its single use 6147 // => we got rid of the transition. 6148 // - We escape the current basic block 6149 // => we would need to check that we are moving it at a cheaper place and 6150 // we do not do that for now. 6151 BasicBlock *Parent = Inst->getParent(); 6152 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6153 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6154 // If the transition has more than one use, assume this is not going to be 6155 // beneficial. 6156 while (Inst->hasOneUse()) { 6157 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6158 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6159 6160 if (ToBePromoted->getParent() != Parent) { 6161 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6162 << ToBePromoted->getParent()->getName() 6163 << ") than the transition (" << Parent->getName() 6164 << ").\n"); 6165 return false; 6166 } 6167 6168 if (VPH.canCombine(ToBePromoted)) { 6169 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6170 << "will be combined with: " << *ToBePromoted << '\n'); 6171 VPH.recordCombineInstruction(ToBePromoted); 6172 bool Changed = VPH.promote(); 6173 NumStoreExtractExposed += Changed; 6174 return Changed; 6175 } 6176 6177 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6178 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6179 return false; 6180 6181 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6182 6183 VPH.enqueueForPromotion(ToBePromoted); 6184 Inst = ToBePromoted; 6185 } 6186 return false; 6187 } 6188 6189 /// For the instruction sequence of store below, F and I values 6190 /// are bundled together as an i64 value before being stored into memory. 6191 /// Sometimes it is more efficient to generate separate stores for F and I, 6192 /// which can remove the bitwise instructions or sink them to colder places. 6193 /// 6194 /// (store (or (zext (bitcast F to i32) to i64), 6195 /// (shl (zext I to i64), 32)), addr) --> 6196 /// (store F, addr) and (store I, addr+4) 6197 /// 6198 /// Similarly, splitting for other merged store can also be beneficial, like: 6199 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6200 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6201 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6202 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6203 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6204 /// 6205 /// We allow each target to determine specifically which kind of splitting is 6206 /// supported. 6207 /// 6208 /// The store patterns are commonly seen from the simple code snippet below 6209 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6210 /// void goo(const std::pair<int, float> &); 6211 /// hoo() { 6212 /// ... 6213 /// goo(std::make_pair(tmp, ftmp)); 6214 /// ... 6215 /// } 6216 /// 6217 /// Although we already have similar splitting in DAG Combine, we duplicate 6218 /// it in CodeGenPrepare to catch the case in which pattern is across 6219 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6220 /// during code expansion. 6221 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6222 const TargetLowering &TLI) { 6223 // Handle simple but common cases only. 6224 Type *StoreType = SI.getValueOperand()->getType(); 6225 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6226 DL.getTypeSizeInBits(StoreType) == 0) 6227 return false; 6228 6229 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6230 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6231 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6232 DL.getTypeSizeInBits(SplitStoreType)) 6233 return false; 6234 6235 // Match the following patterns: 6236 // (store (or (zext LValue to i64), 6237 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6238 // or 6239 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6240 // (zext LValue to i64), 6241 // Expect both operands of OR and the first operand of SHL have only 6242 // one use. 6243 Value *LValue, *HValue; 6244 if (!match(SI.getValueOperand(), 6245 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6246 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6247 m_SpecificInt(HalfValBitSize)))))) 6248 return false; 6249 6250 // Check LValue and HValue are int with size less or equal than 32. 6251 if (!LValue->getType()->isIntegerTy() || 6252 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6253 !HValue->getType()->isIntegerTy() || 6254 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6255 return false; 6256 6257 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6258 // as the input of target query. 6259 auto *LBC = dyn_cast<BitCastInst>(LValue); 6260 auto *HBC = dyn_cast<BitCastInst>(HValue); 6261 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6262 : EVT::getEVT(LValue->getType()); 6263 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6264 : EVT::getEVT(HValue->getType()); 6265 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6266 return false; 6267 6268 // Start to split store. 6269 IRBuilder<> Builder(SI.getContext()); 6270 Builder.SetInsertPoint(&SI); 6271 6272 // If LValue/HValue is a bitcast in another BB, create a new one in current 6273 // BB so it may be merged with the splitted stores by dag combiner. 6274 if (LBC && LBC->getParent() != SI.getParent()) 6275 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6276 if (HBC && HBC->getParent() != SI.getParent()) 6277 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6278 6279 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6280 auto CreateSplitStore = [&](Value *V, bool Upper) { 6281 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6282 Value *Addr = Builder.CreateBitCast( 6283 SI.getOperand(1), 6284 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6285 if ((IsLE && Upper) || (!IsLE && !Upper)) 6286 Addr = Builder.CreateGEP( 6287 SplitStoreType, Addr, 6288 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6289 Builder.CreateAlignedStore( 6290 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6291 }; 6292 6293 CreateSplitStore(LValue, false); 6294 CreateSplitStore(HValue, true); 6295 6296 // Delete the old store. 6297 SI.eraseFromParent(); 6298 return true; 6299 } 6300 6301 // Return true if the GEP has two operands, the first operand is of a sequential 6302 // type, and the second operand is a constant. 6303 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6304 gep_type_iterator I = gep_type_begin(*GEP); 6305 return GEP->getNumOperands() == 2 && 6306 I.isSequential() && 6307 isa<ConstantInt>(GEP->getOperand(1)); 6308 } 6309 6310 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6311 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6312 // reducing liveness interference across those edges benefits global register 6313 // allocation. Currently handles only certain cases. 6314 // 6315 // For example, unmerge %GEPI and %UGEPI as below. 6316 // 6317 // ---------- BEFORE ---------- 6318 // SrcBlock: 6319 // ... 6320 // %GEPIOp = ... 6321 // ... 6322 // %GEPI = gep %GEPIOp, Idx 6323 // ... 6324 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6325 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6326 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6327 // %UGEPI) 6328 // 6329 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6330 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6331 // ... 6332 // 6333 // DstBi: 6334 // ... 6335 // %UGEPI = gep %GEPIOp, UIdx 6336 // ... 6337 // --------------------------- 6338 // 6339 // ---------- AFTER ---------- 6340 // SrcBlock: 6341 // ... (same as above) 6342 // (* %GEPI is still alive on the indirectbr edges) 6343 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6344 // unmerging) 6345 // ... 6346 // 6347 // DstBi: 6348 // ... 6349 // %UGEPI = gep %GEPI, (UIdx-Idx) 6350 // ... 6351 // --------------------------- 6352 // 6353 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6354 // no longer alive on them. 6355 // 6356 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6357 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6358 // not to disable further simplications and optimizations as a result of GEP 6359 // merging. 6360 // 6361 // Note this unmerging may increase the length of the data flow critical path 6362 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6363 // between the register pressure and the length of data-flow critical 6364 // path. Restricting this to the uncommon IndirectBr case would minimize the 6365 // impact of potentially longer critical path, if any, and the impact on compile 6366 // time. 6367 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6368 const TargetTransformInfo *TTI) { 6369 BasicBlock *SrcBlock = GEPI->getParent(); 6370 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6371 // (non-IndirectBr) cases exit early here. 6372 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6373 return false; 6374 // Check that GEPI is a simple gep with a single constant index. 6375 if (!GEPSequentialConstIndexed(GEPI)) 6376 return false; 6377 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6378 // Check that GEPI is a cheap one. 6379 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6380 > TargetTransformInfo::TCC_Basic) 6381 return false; 6382 Value *GEPIOp = GEPI->getOperand(0); 6383 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6384 if (!isa<Instruction>(GEPIOp)) 6385 return false; 6386 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6387 if (GEPIOpI->getParent() != SrcBlock) 6388 return false; 6389 // Check that GEP is used outside the block, meaning it's alive on the 6390 // IndirectBr edge(s). 6391 if (find_if(GEPI->users(), [&](User *Usr) { 6392 if (auto *I = dyn_cast<Instruction>(Usr)) { 6393 if (I->getParent() != SrcBlock) { 6394 return true; 6395 } 6396 } 6397 return false; 6398 }) == GEPI->users().end()) 6399 return false; 6400 // The second elements of the GEP chains to be unmerged. 6401 std::vector<GetElementPtrInst *> UGEPIs; 6402 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6403 // on IndirectBr edges. 6404 for (User *Usr : GEPIOp->users()) { 6405 if (Usr == GEPI) continue; 6406 // Check if Usr is an Instruction. If not, give up. 6407 if (!isa<Instruction>(Usr)) 6408 return false; 6409 auto *UI = cast<Instruction>(Usr); 6410 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6411 if (UI->getParent() == SrcBlock) 6412 continue; 6413 // Check if Usr is a GEP. If not, give up. 6414 if (!isa<GetElementPtrInst>(Usr)) 6415 return false; 6416 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6417 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6418 // the pointer operand to it. If so, record it in the vector. If not, give 6419 // up. 6420 if (!GEPSequentialConstIndexed(UGEPI)) 6421 return false; 6422 if (UGEPI->getOperand(0) != GEPIOp) 6423 return false; 6424 if (GEPIIdx->getType() != 6425 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6426 return false; 6427 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6428 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6429 > TargetTransformInfo::TCC_Basic) 6430 return false; 6431 UGEPIs.push_back(UGEPI); 6432 } 6433 if (UGEPIs.size() == 0) 6434 return false; 6435 // Check the materializing cost of (Uidx-Idx). 6436 for (GetElementPtrInst *UGEPI : UGEPIs) { 6437 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6438 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6439 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6440 if (ImmCost > TargetTransformInfo::TCC_Basic) 6441 return false; 6442 } 6443 // Now unmerge between GEPI and UGEPIs. 6444 for (GetElementPtrInst *UGEPI : UGEPIs) { 6445 UGEPI->setOperand(0, GEPI); 6446 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6447 Constant *NewUGEPIIdx = 6448 ConstantInt::get(GEPIIdx->getType(), 6449 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6450 UGEPI->setOperand(1, NewUGEPIIdx); 6451 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6452 // inbounds to avoid UB. 6453 if (!GEPI->isInBounds()) { 6454 UGEPI->setIsInBounds(false); 6455 } 6456 } 6457 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6458 // alive on IndirectBr edges). 6459 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6460 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6461 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6462 return true; 6463 } 6464 6465 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6466 // Bail out if we inserted the instruction to prevent optimizations from 6467 // stepping on each other's toes. 6468 if (InsertedInsts.count(I)) 6469 return false; 6470 6471 if (PHINode *P = dyn_cast<PHINode>(I)) { 6472 // It is possible for very late stage optimizations (such as SimplifyCFG) 6473 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6474 // trivial PHI, go ahead and zap it here. 6475 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6476 P->replaceAllUsesWith(V); 6477 P->eraseFromParent(); 6478 ++NumPHIsElim; 6479 return true; 6480 } 6481 return false; 6482 } 6483 6484 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6485 // If the source of the cast is a constant, then this should have 6486 // already been constant folded. The only reason NOT to constant fold 6487 // it is if something (e.g. LSR) was careful to place the constant 6488 // evaluation in a block other than then one that uses it (e.g. to hoist 6489 // the address of globals out of a loop). If this is the case, we don't 6490 // want to forward-subst the cast. 6491 if (isa<Constant>(CI->getOperand(0))) 6492 return false; 6493 6494 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6495 return true; 6496 6497 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6498 /// Sink a zext or sext into its user blocks if the target type doesn't 6499 /// fit in one register 6500 if (TLI && 6501 TLI->getTypeAction(CI->getContext(), 6502 TLI->getValueType(*DL, CI->getType())) == 6503 TargetLowering::TypeExpandInteger) { 6504 return SinkCast(CI); 6505 } else { 6506 bool MadeChange = optimizeExt(I); 6507 return MadeChange | optimizeExtUses(I); 6508 } 6509 } 6510 return false; 6511 } 6512 6513 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6514 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6515 return OptimizeCmpExpression(CI, TLI); 6516 6517 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6518 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6519 if (TLI) { 6520 bool Modified = optimizeLoadExt(LI); 6521 unsigned AS = LI->getPointerAddressSpace(); 6522 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6523 return Modified; 6524 } 6525 return false; 6526 } 6527 6528 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6529 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6530 return true; 6531 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6532 if (TLI) { 6533 unsigned AS = SI->getPointerAddressSpace(); 6534 return optimizeMemoryInst(I, SI->getOperand(1), 6535 SI->getOperand(0)->getType(), AS); 6536 } 6537 return false; 6538 } 6539 6540 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6541 unsigned AS = RMW->getPointerAddressSpace(); 6542 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6543 RMW->getType(), AS); 6544 } 6545 6546 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6547 unsigned AS = CmpX->getPointerAddressSpace(); 6548 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6549 CmpX->getCompareOperand()->getType(), AS); 6550 } 6551 6552 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6553 6554 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6555 EnableAndCmpSinking && TLI) 6556 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6557 6558 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6559 BinOp->getOpcode() == Instruction::LShr)) { 6560 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6561 if (TLI && CI && TLI->hasExtractBitsInsn()) 6562 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6563 6564 return false; 6565 } 6566 6567 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6568 if (GEPI->hasAllZeroIndices()) { 6569 /// The GEP operand must be a pointer, so must its result -> BitCast 6570 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6571 GEPI->getName(), GEPI); 6572 NC->setDebugLoc(GEPI->getDebugLoc()); 6573 GEPI->replaceAllUsesWith(NC); 6574 GEPI->eraseFromParent(); 6575 ++NumGEPsElim; 6576 optimizeInst(NC, ModifiedDT); 6577 return true; 6578 } 6579 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6580 return true; 6581 } 6582 return false; 6583 } 6584 6585 if (CallInst *CI = dyn_cast<CallInst>(I)) 6586 return optimizeCallInst(CI, ModifiedDT); 6587 6588 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6589 return optimizeSelectInst(SI); 6590 6591 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6592 return optimizeShuffleVectorInst(SVI); 6593 6594 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6595 return optimizeSwitchInst(Switch); 6596 6597 if (isa<ExtractElementInst>(I)) 6598 return optimizeExtractElementInst(I); 6599 6600 return false; 6601 } 6602 6603 /// Given an OR instruction, check to see if this is a bitreverse 6604 /// idiom. If so, insert the new intrinsic and return true. 6605 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6606 const TargetLowering &TLI) { 6607 if (!I.getType()->isIntegerTy() || 6608 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6609 TLI.getValueType(DL, I.getType(), true))) 6610 return false; 6611 6612 SmallVector<Instruction*, 4> Insts; 6613 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6614 return false; 6615 Instruction *LastInst = Insts.back(); 6616 I.replaceAllUsesWith(LastInst); 6617 RecursivelyDeleteTriviallyDeadInstructions(&I); 6618 return true; 6619 } 6620 6621 // In this pass we look for GEP and cast instructions that are used 6622 // across basic blocks and rewrite them to improve basic-block-at-a-time 6623 // selection. 6624 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6625 SunkAddrs.clear(); 6626 bool MadeChange = false; 6627 6628 CurInstIterator = BB.begin(); 6629 while (CurInstIterator != BB.end()) { 6630 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6631 if (ModifiedDT) 6632 return true; 6633 } 6634 6635 bool MadeBitReverse = true; 6636 while (TLI && MadeBitReverse) { 6637 MadeBitReverse = false; 6638 for (auto &I : reverse(BB)) { 6639 if (makeBitReverse(I, *DL, *TLI)) { 6640 MadeBitReverse = MadeChange = true; 6641 ModifiedDT = true; 6642 break; 6643 } 6644 } 6645 } 6646 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6647 6648 return MadeChange; 6649 } 6650 6651 // llvm.dbg.value is far away from the value then iSel may not be able 6652 // handle it properly. iSel will drop llvm.dbg.value if it can not 6653 // find a node corresponding to the value. 6654 bool CodeGenPrepare::placeDbgValues(Function &F) { 6655 bool MadeChange = false; 6656 for (BasicBlock &BB : F) { 6657 Instruction *PrevNonDbgInst = nullptr; 6658 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6659 Instruction *Insn = &*BI++; 6660 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6661 // Leave dbg.values that refer to an alloca alone. These 6662 // intrinsics describe the address of a variable (= the alloca) 6663 // being taken. They should not be moved next to the alloca 6664 // (and to the beginning of the scope), but rather stay close to 6665 // where said address is used. 6666 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6667 PrevNonDbgInst = Insn; 6668 continue; 6669 } 6670 6671 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6672 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6673 // If VI is a phi in a block with an EHPad terminator, we can't insert 6674 // after it. 6675 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6676 continue; 6677 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6678 << *DVI << ' ' << *VI); 6679 DVI->removeFromParent(); 6680 if (isa<PHINode>(VI)) 6681 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6682 else 6683 DVI->insertAfter(VI); 6684 MadeChange = true; 6685 ++NumDbgValueMoved; 6686 } 6687 } 6688 } 6689 return MadeChange; 6690 } 6691 6692 /// Scale down both weights to fit into uint32_t. 6693 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6694 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6695 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6696 NewTrue = NewTrue / Scale; 6697 NewFalse = NewFalse / Scale; 6698 } 6699 6700 /// Some targets prefer to split a conditional branch like: 6701 /// \code 6702 /// %0 = icmp ne i32 %a, 0 6703 /// %1 = icmp ne i32 %b, 0 6704 /// %or.cond = or i1 %0, %1 6705 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6706 /// \endcode 6707 /// into multiple branch instructions like: 6708 /// \code 6709 /// bb1: 6710 /// %0 = icmp ne i32 %a, 0 6711 /// br i1 %0, label %TrueBB, label %bb2 6712 /// bb2: 6713 /// %1 = icmp ne i32 %b, 0 6714 /// br i1 %1, label %TrueBB, label %FalseBB 6715 /// \endcode 6716 /// This usually allows instruction selection to do even further optimizations 6717 /// and combine the compare with the branch instruction. Currently this is 6718 /// applied for targets which have "cheap" jump instructions. 6719 /// 6720 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6721 /// 6722 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6723 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6724 return false; 6725 6726 bool MadeChange = false; 6727 for (auto &BB : F) { 6728 // Does this BB end with the following? 6729 // %cond1 = icmp|fcmp|binary instruction ... 6730 // %cond2 = icmp|fcmp|binary instruction ... 6731 // %cond.or = or|and i1 %cond1, cond2 6732 // br i1 %cond.or label %dest1, label %dest2" 6733 BinaryOperator *LogicOp; 6734 BasicBlock *TBB, *FBB; 6735 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6736 continue; 6737 6738 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6739 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6740 continue; 6741 6742 unsigned Opc; 6743 Value *Cond1, *Cond2; 6744 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6745 m_OneUse(m_Value(Cond2))))) 6746 Opc = Instruction::And; 6747 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6748 m_OneUse(m_Value(Cond2))))) 6749 Opc = Instruction::Or; 6750 else 6751 continue; 6752 6753 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6754 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6755 continue; 6756 6757 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6758 6759 // Create a new BB. 6760 auto TmpBB = 6761 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6762 BB.getParent(), BB.getNextNode()); 6763 6764 // Update original basic block by using the first condition directly by the 6765 // branch instruction and removing the no longer needed and/or instruction. 6766 Br1->setCondition(Cond1); 6767 LogicOp->eraseFromParent(); 6768 6769 // Depending on the condition we have to either replace the true or the 6770 // false successor of the original branch instruction. 6771 if (Opc == Instruction::And) 6772 Br1->setSuccessor(0, TmpBB); 6773 else 6774 Br1->setSuccessor(1, TmpBB); 6775 6776 // Fill in the new basic block. 6777 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6778 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6779 I->removeFromParent(); 6780 I->insertBefore(Br2); 6781 } 6782 6783 // Update PHI nodes in both successors. The original BB needs to be 6784 // replaced in one successor's PHI nodes, because the branch comes now from 6785 // the newly generated BB (NewBB). In the other successor we need to add one 6786 // incoming edge to the PHI nodes, because both branch instructions target 6787 // now the same successor. Depending on the original branch condition 6788 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6789 // we perform the correct update for the PHI nodes. 6790 // This doesn't change the successor order of the just created branch 6791 // instruction (or any other instruction). 6792 if (Opc == Instruction::Or) 6793 std::swap(TBB, FBB); 6794 6795 // Replace the old BB with the new BB. 6796 for (PHINode &PN : TBB->phis()) { 6797 int i; 6798 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6799 PN.setIncomingBlock(i, TmpBB); 6800 } 6801 6802 // Add another incoming edge form the new BB. 6803 for (PHINode &PN : FBB->phis()) { 6804 auto *Val = PN.getIncomingValueForBlock(&BB); 6805 PN.addIncoming(Val, TmpBB); 6806 } 6807 6808 // Update the branch weights (from SelectionDAGBuilder:: 6809 // FindMergedConditions). 6810 if (Opc == Instruction::Or) { 6811 // Codegen X | Y as: 6812 // BB1: 6813 // jmp_if_X TBB 6814 // jmp TmpBB 6815 // TmpBB: 6816 // jmp_if_Y TBB 6817 // jmp FBB 6818 // 6819 6820 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6821 // The requirement is that 6822 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6823 // = TrueProb for original BB. 6824 // Assuming the original weights are A and B, one choice is to set BB1's 6825 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6826 // assumes that 6827 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6828 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6829 // TmpBB, but the math is more complicated. 6830 uint64_t TrueWeight, FalseWeight; 6831 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6832 uint64_t NewTrueWeight = TrueWeight; 6833 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6834 scaleWeights(NewTrueWeight, NewFalseWeight); 6835 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6836 .createBranchWeights(TrueWeight, FalseWeight)); 6837 6838 NewTrueWeight = TrueWeight; 6839 NewFalseWeight = 2 * FalseWeight; 6840 scaleWeights(NewTrueWeight, NewFalseWeight); 6841 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6842 .createBranchWeights(TrueWeight, FalseWeight)); 6843 } 6844 } else { 6845 // Codegen X & Y as: 6846 // BB1: 6847 // jmp_if_X TmpBB 6848 // jmp FBB 6849 // TmpBB: 6850 // jmp_if_Y TBB 6851 // jmp FBB 6852 // 6853 // This requires creation of TmpBB after CurBB. 6854 6855 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6856 // The requirement is that 6857 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6858 // = FalseProb for original BB. 6859 // Assuming the original weights are A and B, one choice is to set BB1's 6860 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6861 // assumes that 6862 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6863 uint64_t TrueWeight, FalseWeight; 6864 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6865 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6866 uint64_t NewFalseWeight = FalseWeight; 6867 scaleWeights(NewTrueWeight, NewFalseWeight); 6868 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6869 .createBranchWeights(TrueWeight, FalseWeight)); 6870 6871 NewTrueWeight = 2 * TrueWeight; 6872 NewFalseWeight = FalseWeight; 6873 scaleWeights(NewTrueWeight, NewFalseWeight); 6874 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6875 .createBranchWeights(TrueWeight, FalseWeight)); 6876 } 6877 } 6878 6879 // Note: No point in getting fancy here, since the DT info is never 6880 // available to CodeGenPrepare. 6881 ModifiedDT = true; 6882 6883 MadeChange = true; 6884 6885 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6886 TmpBB->dump()); 6887 } 6888 return MadeChange; 6889 } 6890