1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/IR/ValueHandle.h" 39 #include "llvm/IR/ValueMap.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Target/TargetLowering.h" 45 #include "llvm/Target/TargetSubtargetInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/BuildLibCalls.h" 48 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 using namespace llvm; 52 using namespace llvm::PatternMatch; 53 54 #define DEBUG_TYPE "codegenprepare" 55 56 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 57 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 58 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 59 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 60 "sunken Cmps"); 61 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 62 "of sunken Casts"); 63 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 64 "computations were sunk"); 65 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 66 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 67 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 68 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 69 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 70 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 71 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 72 73 static cl::opt<bool> DisableBranchOpts( 74 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 75 cl::desc("Disable branch optimizations in CodeGenPrepare")); 76 77 static cl::opt<bool> 78 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 79 cl::desc("Disable GC optimizations in CodeGenPrepare")); 80 81 static cl::opt<bool> DisableSelectToBranch( 82 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 83 cl::desc("Disable select to branch conversion.")); 84 85 static cl::opt<bool> AddrSinkUsingGEPs( 86 "addr-sink-using-gep", cl::Hidden, cl::init(false), 87 cl::desc("Address sinking in CGP using GEPs.")); 88 89 static cl::opt<bool> EnableAndCmpSinking( 90 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 91 cl::desc("Enable sinkinig and/cmp into branches.")); 92 93 static cl::opt<bool> DisableStoreExtract( 94 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 95 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 96 97 static cl::opt<bool> StressStoreExtract( 98 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 99 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 100 101 static cl::opt<bool> DisableExtLdPromotion( 102 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 103 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 104 "CodeGenPrepare")); 105 106 static cl::opt<bool> StressExtLdPromotion( 107 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 108 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 109 "optimization in CodeGenPrepare")); 110 111 namespace { 112 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 113 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 114 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 115 class TypePromotionTransaction; 116 117 class CodeGenPrepare : public FunctionPass { 118 const TargetMachine *TM; 119 const TargetLowering *TLI; 120 const TargetTransformInfo *TTI; 121 const TargetLibraryInfo *TLInfo; 122 123 /// As we scan instructions optimizing them, this is the next instruction 124 /// to optimize. Transforms that can invalidate this should update it. 125 BasicBlock::iterator CurInstIterator; 126 127 /// Keeps track of non-local addresses that have been sunk into a block. 128 /// This allows us to avoid inserting duplicate code for blocks with 129 /// multiple load/stores of the same address. 130 ValueMap<Value*, Value*> SunkAddrs; 131 132 /// Keeps track of all instructions inserted for the current function. 133 SetOfInstrs InsertedInsts; 134 /// Keeps track of the type of the related instruction before their 135 /// promotion for the current function. 136 InstrToOrigTy PromotedInsts; 137 138 /// True if CFG is modified in any way. 139 bool ModifiedDT; 140 141 /// True if optimizing for size. 142 bool OptSize; 143 144 /// DataLayout for the Function being processed. 145 const DataLayout *DL; 146 147 public: 148 static char ID; // Pass identification, replacement for typeid 149 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 150 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 151 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 152 } 153 bool runOnFunction(Function &F) override; 154 155 const char *getPassName() const override { return "CodeGen Prepare"; } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.addPreserved<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetLibraryInfoWrapperPass>(); 160 AU.addRequired<TargetTransformInfoWrapperPass>(); 161 } 162 163 private: 164 bool eliminateFallThrough(Function &F); 165 bool eliminateMostlyEmptyBlocks(Function &F); 166 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 167 void eliminateMostlyEmptyBlock(BasicBlock *BB); 168 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 169 bool optimizeInst(Instruction *I, bool& ModifiedDT); 170 bool optimizeMemoryInst(Instruction *I, Value *Addr, 171 Type *AccessTy, unsigned AS); 172 bool optimizeInlineAsmInst(CallInst *CS); 173 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 174 bool moveExtToFormExtLoad(Instruction *&I); 175 bool optimizeExtUses(Instruction *I); 176 bool optimizeSelectInst(SelectInst *SI); 177 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 178 bool optimizeExtractElementInst(Instruction *Inst); 179 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 180 bool placeDbgValues(Function &F); 181 bool sinkAndCmp(Function &F); 182 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 183 Instruction *&Inst, 184 const SmallVectorImpl<Instruction *> &Exts, 185 unsigned CreatedInstCost); 186 bool splitBranchCondition(Function &F); 187 bool simplifyOffsetableRelocate(Instruction &I); 188 void stripInvariantGroupMetadata(Instruction &I); 189 }; 190 } 191 192 char CodeGenPrepare::ID = 0; 193 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 194 "Optimize for code generation", false, false) 195 196 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 197 return new CodeGenPrepare(TM); 198 } 199 200 bool CodeGenPrepare::runOnFunction(Function &F) { 201 if (skipOptnoneFunction(F)) 202 return false; 203 204 DL = &F.getParent()->getDataLayout(); 205 206 bool EverMadeChange = false; 207 // Clear per function information. 208 InsertedInsts.clear(); 209 PromotedInsts.clear(); 210 211 ModifiedDT = false; 212 if (TM) 213 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 214 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 215 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 216 OptSize = F.optForSize(); 217 218 /// This optimization identifies DIV instructions that can be 219 /// profitably bypassed and carried out with a shorter, faster divide. 220 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 221 const DenseMap<unsigned int, unsigned int> &BypassWidths = 222 TLI->getBypassSlowDivWidths(); 223 for (Function::iterator I = F.begin(); I != F.end(); I++) 224 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 225 } 226 227 // Eliminate blocks that contain only PHI nodes and an 228 // unconditional branch. 229 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 230 231 // llvm.dbg.value is far away from the value then iSel may not be able 232 // handle it properly. iSel will drop llvm.dbg.value if it can not 233 // find a node corresponding to the value. 234 EverMadeChange |= placeDbgValues(F); 235 236 // If there is a mask, compare against zero, and branch that can be combined 237 // into a single target instruction, push the mask and compare into branch 238 // users. Do this before OptimizeBlock -> OptimizeInst -> 239 // OptimizeCmpExpression, which perturbs the pattern being searched for. 240 if (!DisableBranchOpts) { 241 EverMadeChange |= sinkAndCmp(F); 242 EverMadeChange |= splitBranchCondition(F); 243 } 244 245 bool MadeChange = true; 246 while (MadeChange) { 247 MadeChange = false; 248 for (Function::iterator I = F.begin(); I != F.end(); ) { 249 BasicBlock *BB = &*I++; 250 bool ModifiedDTOnIteration = false; 251 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 252 253 // Restart BB iteration if the dominator tree of the Function was changed 254 if (ModifiedDTOnIteration) 255 break; 256 } 257 EverMadeChange |= MadeChange; 258 } 259 260 SunkAddrs.clear(); 261 262 if (!DisableBranchOpts) { 263 MadeChange = false; 264 SmallPtrSet<BasicBlock*, 8> WorkList; 265 for (BasicBlock &BB : F) { 266 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 267 MadeChange |= ConstantFoldTerminator(&BB, true); 268 if (!MadeChange) continue; 269 270 for (SmallVectorImpl<BasicBlock*>::iterator 271 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 272 if (pred_begin(*II) == pred_end(*II)) 273 WorkList.insert(*II); 274 } 275 276 // Delete the dead blocks and any of their dead successors. 277 MadeChange |= !WorkList.empty(); 278 while (!WorkList.empty()) { 279 BasicBlock *BB = *WorkList.begin(); 280 WorkList.erase(BB); 281 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 282 283 DeleteDeadBlock(BB); 284 285 for (SmallVectorImpl<BasicBlock*>::iterator 286 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 287 if (pred_begin(*II) == pred_end(*II)) 288 WorkList.insert(*II); 289 } 290 291 // Merge pairs of basic blocks with unconditional branches, connected by 292 // a single edge. 293 if (EverMadeChange || MadeChange) 294 MadeChange |= eliminateFallThrough(F); 295 296 EverMadeChange |= MadeChange; 297 } 298 299 if (!DisableGCOpts) { 300 SmallVector<Instruction *, 2> Statepoints; 301 for (BasicBlock &BB : F) 302 for (Instruction &I : BB) 303 if (isStatepoint(I)) 304 Statepoints.push_back(&I); 305 for (auto &I : Statepoints) 306 EverMadeChange |= simplifyOffsetableRelocate(*I); 307 } 308 309 return EverMadeChange; 310 } 311 312 /// Merge basic blocks which are connected by a single edge, where one of the 313 /// basic blocks has a single successor pointing to the other basic block, 314 /// which has a single predecessor. 315 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 316 bool Changed = false; 317 // Scan all of the blocks in the function, except for the entry block. 318 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 319 BasicBlock *BB = &*I++; 320 // If the destination block has a single pred, then this is a trivial 321 // edge, just collapse it. 322 BasicBlock *SinglePred = BB->getSinglePredecessor(); 323 324 // Don't merge if BB's address is taken. 325 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 326 327 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 328 if (Term && !Term->isConditional()) { 329 Changed = true; 330 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 331 // Remember if SinglePred was the entry block of the function. 332 // If so, we will need to move BB back to the entry position. 333 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 334 MergeBasicBlockIntoOnlyPred(BB, nullptr); 335 336 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 337 BB->moveBefore(&BB->getParent()->getEntryBlock()); 338 339 // We have erased a block. Update the iterator. 340 I = BB->getIterator(); 341 } 342 } 343 return Changed; 344 } 345 346 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 347 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 348 /// edges in ways that are non-optimal for isel. Start by eliminating these 349 /// blocks so we can split them the way we want them. 350 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 351 bool MadeChange = false; 352 // Note that this intentionally skips the entry block. 353 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 354 BasicBlock *BB = &*I++; 355 356 // If this block doesn't end with an uncond branch, ignore it. 357 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 358 if (!BI || !BI->isUnconditional()) 359 continue; 360 361 // If the instruction before the branch (skipping debug info) isn't a phi 362 // node, then other stuff is happening here. 363 BasicBlock::iterator BBI = BI->getIterator(); 364 if (BBI != BB->begin()) { 365 --BBI; 366 while (isa<DbgInfoIntrinsic>(BBI)) { 367 if (BBI == BB->begin()) 368 break; 369 --BBI; 370 } 371 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 372 continue; 373 } 374 375 // Do not break infinite loops. 376 BasicBlock *DestBB = BI->getSuccessor(0); 377 if (DestBB == BB) 378 continue; 379 380 if (!canMergeBlocks(BB, DestBB)) 381 continue; 382 383 eliminateMostlyEmptyBlock(BB); 384 MadeChange = true; 385 } 386 return MadeChange; 387 } 388 389 /// Return true if we can merge BB into DestBB if there is a single 390 /// unconditional branch between them, and BB contains no other non-phi 391 /// instructions. 392 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 393 const BasicBlock *DestBB) const { 394 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 395 // the successor. If there are more complex condition (e.g. preheaders), 396 // don't mess around with them. 397 BasicBlock::const_iterator BBI = BB->begin(); 398 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 399 for (const User *U : PN->users()) { 400 const Instruction *UI = cast<Instruction>(U); 401 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 402 return false; 403 // If User is inside DestBB block and it is a PHINode then check 404 // incoming value. If incoming value is not from BB then this is 405 // a complex condition (e.g. preheaders) we want to avoid here. 406 if (UI->getParent() == DestBB) { 407 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 408 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 409 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 410 if (Insn && Insn->getParent() == BB && 411 Insn->getParent() != UPN->getIncomingBlock(I)) 412 return false; 413 } 414 } 415 } 416 } 417 418 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 419 // and DestBB may have conflicting incoming values for the block. If so, we 420 // can't merge the block. 421 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 422 if (!DestBBPN) return true; // no conflict. 423 424 // Collect the preds of BB. 425 SmallPtrSet<const BasicBlock*, 16> BBPreds; 426 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 427 // It is faster to get preds from a PHI than with pred_iterator. 428 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 429 BBPreds.insert(BBPN->getIncomingBlock(i)); 430 } else { 431 BBPreds.insert(pred_begin(BB), pred_end(BB)); 432 } 433 434 // Walk the preds of DestBB. 435 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 436 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 437 if (BBPreds.count(Pred)) { // Common predecessor? 438 BBI = DestBB->begin(); 439 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 440 const Value *V1 = PN->getIncomingValueForBlock(Pred); 441 const Value *V2 = PN->getIncomingValueForBlock(BB); 442 443 // If V2 is a phi node in BB, look up what the mapped value will be. 444 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 445 if (V2PN->getParent() == BB) 446 V2 = V2PN->getIncomingValueForBlock(Pred); 447 448 // If there is a conflict, bail out. 449 if (V1 != V2) return false; 450 } 451 } 452 } 453 454 return true; 455 } 456 457 458 /// Eliminate a basic block that has only phi's and an unconditional branch in 459 /// it. 460 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 461 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 462 BasicBlock *DestBB = BI->getSuccessor(0); 463 464 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 465 466 // If the destination block has a single pred, then this is a trivial edge, 467 // just collapse it. 468 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 469 if (SinglePred != DestBB) { 470 // Remember if SinglePred was the entry block of the function. If so, we 471 // will need to move BB back to the entry position. 472 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 473 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 474 475 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 476 BB->moveBefore(&BB->getParent()->getEntryBlock()); 477 478 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 479 return; 480 } 481 } 482 483 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 484 // to handle the new incoming edges it is about to have. 485 PHINode *PN; 486 for (BasicBlock::iterator BBI = DestBB->begin(); 487 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 488 // Remove the incoming value for BB, and remember it. 489 Value *InVal = PN->removeIncomingValue(BB, false); 490 491 // Two options: either the InVal is a phi node defined in BB or it is some 492 // value that dominates BB. 493 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 494 if (InValPhi && InValPhi->getParent() == BB) { 495 // Add all of the input values of the input PHI as inputs of this phi. 496 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 497 PN->addIncoming(InValPhi->getIncomingValue(i), 498 InValPhi->getIncomingBlock(i)); 499 } else { 500 // Otherwise, add one instance of the dominating value for each edge that 501 // we will be adding. 502 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 503 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 504 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 505 } else { 506 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 507 PN->addIncoming(InVal, *PI); 508 } 509 } 510 } 511 512 // The PHIs are now updated, change everything that refers to BB to use 513 // DestBB and remove BB. 514 BB->replaceAllUsesWith(DestBB); 515 BB->eraseFromParent(); 516 ++NumBlocksElim; 517 518 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 519 } 520 521 // Computes a map of base pointer relocation instructions to corresponding 522 // derived pointer relocation instructions given a vector of all relocate calls 523 static void computeBaseDerivedRelocateMap( 524 const SmallVectorImpl<User *> &AllRelocateCalls, 525 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 526 RelocateInstMap) { 527 // Collect information in two maps: one primarily for locating the base object 528 // while filling the second map; the second map is the final structure holding 529 // a mapping between Base and corresponding Derived relocate calls 530 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 531 for (auto &U : AllRelocateCalls) { 532 GCRelocateOperands ThisRelocate(U); 533 IntrinsicInst *I = cast<IntrinsicInst>(U); 534 auto K = std::make_pair(ThisRelocate.getBasePtrIndex(), 535 ThisRelocate.getDerivedPtrIndex()); 536 RelocateIdxMap.insert(std::make_pair(K, I)); 537 } 538 for (auto &Item : RelocateIdxMap) { 539 std::pair<unsigned, unsigned> Key = Item.first; 540 if (Key.first == Key.second) 541 // Base relocation: nothing to insert 542 continue; 543 544 IntrinsicInst *I = Item.second; 545 auto BaseKey = std::make_pair(Key.first, Key.first); 546 547 // We're iterating over RelocateIdxMap so we cannot modify it. 548 auto MaybeBase = RelocateIdxMap.find(BaseKey); 549 if (MaybeBase == RelocateIdxMap.end()) 550 // TODO: We might want to insert a new base object relocate and gep off 551 // that, if there are enough derived object relocates. 552 continue; 553 554 RelocateInstMap[MaybeBase->second].push_back(I); 555 } 556 } 557 558 // Accepts a GEP and extracts the operands into a vector provided they're all 559 // small integer constants 560 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 561 SmallVectorImpl<Value *> &OffsetV) { 562 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 563 // Only accept small constant integer operands 564 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 565 if (!Op || Op->getZExtValue() > 20) 566 return false; 567 } 568 569 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 570 OffsetV.push_back(GEP->getOperand(i)); 571 return true; 572 } 573 574 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 575 // replace, computes a replacement, and affects it. 576 static bool 577 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 578 const SmallVectorImpl<IntrinsicInst *> &Targets) { 579 bool MadeChange = false; 580 for (auto &ToReplace : Targets) { 581 GCRelocateOperands MasterRelocate(RelocatedBase); 582 GCRelocateOperands ThisRelocate(ToReplace); 583 584 assert(ThisRelocate.getBasePtrIndex() == MasterRelocate.getBasePtrIndex() && 585 "Not relocating a derived object of the original base object"); 586 if (ThisRelocate.getBasePtrIndex() == ThisRelocate.getDerivedPtrIndex()) { 587 // A duplicate relocate call. TODO: coalesce duplicates. 588 continue; 589 } 590 591 Value *Base = ThisRelocate.getBasePtr(); 592 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.getDerivedPtr()); 593 if (!Derived || Derived->getPointerOperand() != Base) 594 continue; 595 596 SmallVector<Value *, 2> OffsetV; 597 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 598 continue; 599 600 // Create a Builder and replace the target callsite with a gep 601 assert(RelocatedBase->getNextNode() && "Should always have one since it's not a terminator"); 602 603 // Insert after RelocatedBase 604 IRBuilder<> Builder(RelocatedBase->getNextNode()); 605 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 606 607 // If gc_relocate does not match the actual type, cast it to the right type. 608 // In theory, there must be a bitcast after gc_relocate if the type does not 609 // match, and we should reuse it to get the derived pointer. But it could be 610 // cases like this: 611 // bb1: 612 // ... 613 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 614 // br label %merge 615 // 616 // bb2: 617 // ... 618 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 619 // br label %merge 620 // 621 // merge: 622 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 623 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 624 // 625 // In this case, we can not find the bitcast any more. So we insert a new bitcast 626 // no matter there is already one or not. In this way, we can handle all cases, and 627 // the extra bitcast should be optimized away in later passes. 628 Instruction *ActualRelocatedBase = RelocatedBase; 629 if (RelocatedBase->getType() != Base->getType()) { 630 ActualRelocatedBase = 631 cast<Instruction>(Builder.CreateBitCast(RelocatedBase, Base->getType())); 632 } 633 Value *Replacement = Builder.CreateGEP( 634 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 635 Instruction *ReplacementInst = cast<Instruction>(Replacement); 636 Replacement->takeName(ToReplace); 637 // If the newly generated derived pointer's type does not match the original derived 638 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 639 Instruction *ActualReplacement = ReplacementInst; 640 if (ReplacementInst->getType() != ToReplace->getType()) { 641 ActualReplacement = 642 cast<Instruction>(Builder.CreateBitCast(ReplacementInst, ToReplace->getType())); 643 } 644 ToReplace->replaceAllUsesWith(ActualReplacement); 645 ToReplace->eraseFromParent(); 646 647 MadeChange = true; 648 } 649 return MadeChange; 650 } 651 652 // Turns this: 653 // 654 // %base = ... 655 // %ptr = gep %base + 15 656 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 657 // %base' = relocate(%tok, i32 4, i32 4) 658 // %ptr' = relocate(%tok, i32 4, i32 5) 659 // %val = load %ptr' 660 // 661 // into this: 662 // 663 // %base = ... 664 // %ptr = gep %base + 15 665 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 666 // %base' = gc.relocate(%tok, i32 4, i32 4) 667 // %ptr' = gep %base' + 15 668 // %val = load %ptr' 669 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 670 bool MadeChange = false; 671 SmallVector<User *, 2> AllRelocateCalls; 672 673 for (auto *U : I.users()) 674 if (isGCRelocate(dyn_cast<Instruction>(U))) 675 // Collect all the relocate calls associated with a statepoint 676 AllRelocateCalls.push_back(U); 677 678 // We need atleast one base pointer relocation + one derived pointer 679 // relocation to mangle 680 if (AllRelocateCalls.size() < 2) 681 return false; 682 683 // RelocateInstMap is a mapping from the base relocate instruction to the 684 // corresponding derived relocate instructions 685 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 686 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 687 if (RelocateInstMap.empty()) 688 return false; 689 690 for (auto &Item : RelocateInstMap) 691 // Item.first is the RelocatedBase to offset against 692 // Item.second is the vector of Targets to replace 693 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 694 return MadeChange; 695 } 696 697 /// SinkCast - Sink the specified cast instruction into its user blocks 698 static bool SinkCast(CastInst *CI) { 699 BasicBlock *DefBB = CI->getParent(); 700 701 /// InsertedCasts - Only insert a cast in each block once. 702 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 703 704 bool MadeChange = false; 705 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 706 UI != E; ) { 707 Use &TheUse = UI.getUse(); 708 Instruction *User = cast<Instruction>(*UI); 709 710 // Figure out which BB this cast is used in. For PHI's this is the 711 // appropriate predecessor block. 712 BasicBlock *UserBB = User->getParent(); 713 if (PHINode *PN = dyn_cast<PHINode>(User)) { 714 UserBB = PN->getIncomingBlock(TheUse); 715 } 716 717 // Preincrement use iterator so we don't invalidate it. 718 ++UI; 719 720 // If this user is in the same block as the cast, don't change the cast. 721 if (UserBB == DefBB) continue; 722 723 // If we have already inserted a cast into this block, use it. 724 CastInst *&InsertedCast = InsertedCasts[UserBB]; 725 726 if (!InsertedCast) { 727 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 728 assert(InsertPt != UserBB->end()); 729 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 730 CI->getType(), "", &*InsertPt); 731 } 732 733 // Replace a use of the cast with a use of the new cast. 734 TheUse = InsertedCast; 735 MadeChange = true; 736 ++NumCastUses; 737 } 738 739 // If we removed all uses, nuke the cast. 740 if (CI->use_empty()) { 741 CI->eraseFromParent(); 742 MadeChange = true; 743 } 744 745 return MadeChange; 746 } 747 748 /// If the specified cast instruction is a noop copy (e.g. it's casting from 749 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 750 /// reduce the number of virtual registers that must be created and coalesced. 751 /// 752 /// Return true if any changes are made. 753 /// 754 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 755 const DataLayout &DL) { 756 // If this is a noop copy, 757 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 758 EVT DstVT = TLI.getValueType(DL, CI->getType()); 759 760 // This is an fp<->int conversion? 761 if (SrcVT.isInteger() != DstVT.isInteger()) 762 return false; 763 764 // If this is an extension, it will be a zero or sign extension, which 765 // isn't a noop. 766 if (SrcVT.bitsLT(DstVT)) return false; 767 768 // If these values will be promoted, find out what they will be promoted 769 // to. This helps us consider truncates on PPC as noop copies when they 770 // are. 771 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 772 TargetLowering::TypePromoteInteger) 773 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 774 if (TLI.getTypeAction(CI->getContext(), DstVT) == 775 TargetLowering::TypePromoteInteger) 776 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 777 778 // If, after promotion, these are the same types, this is a noop copy. 779 if (SrcVT != DstVT) 780 return false; 781 782 return SinkCast(CI); 783 } 784 785 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 786 /// possible. 787 /// 788 /// Return true if any changes were made. 789 static bool CombineUAddWithOverflow(CmpInst *CI) { 790 Value *A, *B; 791 Instruction *AddI; 792 if (!match(CI, 793 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 794 return false; 795 796 Type *Ty = AddI->getType(); 797 if (!isa<IntegerType>(Ty)) 798 return false; 799 800 // We don't want to move around uses of condition values this late, so we we 801 // check if it is legal to create the call to the intrinsic in the basic 802 // block containing the icmp: 803 804 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 805 return false; 806 807 #ifndef NDEBUG 808 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 809 // for now: 810 if (AddI->hasOneUse()) 811 assert(*AddI->user_begin() == CI && "expected!"); 812 #endif 813 814 Module *M = CI->getParent()->getParent()->getParent(); 815 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 816 817 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 818 819 auto *UAddWithOverflow = 820 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 821 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 822 auto *Overflow = 823 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 824 825 CI->replaceAllUsesWith(Overflow); 826 AddI->replaceAllUsesWith(UAdd); 827 CI->eraseFromParent(); 828 AddI->eraseFromParent(); 829 return true; 830 } 831 832 /// Sink the given CmpInst into user blocks to reduce the number of virtual 833 /// registers that must be created and coalesced. This is a clear win except on 834 /// targets with multiple condition code registers (PowerPC), where it might 835 /// lose; some adjustment may be wanted there. 836 /// 837 /// Return true if any changes are made. 838 static bool SinkCmpExpression(CmpInst *CI) { 839 BasicBlock *DefBB = CI->getParent(); 840 841 /// Only insert a cmp in each block once. 842 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 843 844 bool MadeChange = false; 845 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 846 UI != E; ) { 847 Use &TheUse = UI.getUse(); 848 Instruction *User = cast<Instruction>(*UI); 849 850 // Preincrement use iterator so we don't invalidate it. 851 ++UI; 852 853 // Don't bother for PHI nodes. 854 if (isa<PHINode>(User)) 855 continue; 856 857 // Figure out which BB this cmp is used in. 858 BasicBlock *UserBB = User->getParent(); 859 860 // If this user is in the same block as the cmp, don't change the cmp. 861 if (UserBB == DefBB) continue; 862 863 // If we have already inserted a cmp into this block, use it. 864 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 865 866 if (!InsertedCmp) { 867 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 868 assert(InsertPt != UserBB->end()); 869 InsertedCmp = 870 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 871 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 872 } 873 874 // Replace a use of the cmp with a use of the new cmp. 875 TheUse = InsertedCmp; 876 MadeChange = true; 877 ++NumCmpUses; 878 } 879 880 // If we removed all uses, nuke the cmp. 881 if (CI->use_empty()) { 882 CI->eraseFromParent(); 883 MadeChange = true; 884 } 885 886 return MadeChange; 887 } 888 889 static bool OptimizeCmpExpression(CmpInst *CI) { 890 if (SinkCmpExpression(CI)) 891 return true; 892 893 if (CombineUAddWithOverflow(CI)) 894 return true; 895 896 return false; 897 } 898 899 /// Check if the candidates could be combined with a shift instruction, which 900 /// includes: 901 /// 1. Truncate instruction 902 /// 2. And instruction and the imm is a mask of the low bits: 903 /// imm & (imm+1) == 0 904 static bool isExtractBitsCandidateUse(Instruction *User) { 905 if (!isa<TruncInst>(User)) { 906 if (User->getOpcode() != Instruction::And || 907 !isa<ConstantInt>(User->getOperand(1))) 908 return false; 909 910 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 911 912 if ((Cimm & (Cimm + 1)).getBoolValue()) 913 return false; 914 } 915 return true; 916 } 917 918 /// Sink both shift and truncate instruction to the use of truncate's BB. 919 static bool 920 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 921 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 922 const TargetLowering &TLI, const DataLayout &DL) { 923 BasicBlock *UserBB = User->getParent(); 924 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 925 TruncInst *TruncI = dyn_cast<TruncInst>(User); 926 bool MadeChange = false; 927 928 for (Value::user_iterator TruncUI = TruncI->user_begin(), 929 TruncE = TruncI->user_end(); 930 TruncUI != TruncE;) { 931 932 Use &TruncTheUse = TruncUI.getUse(); 933 Instruction *TruncUser = cast<Instruction>(*TruncUI); 934 // Preincrement use iterator so we don't invalidate it. 935 936 ++TruncUI; 937 938 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 939 if (!ISDOpcode) 940 continue; 941 942 // If the use is actually a legal node, there will not be an 943 // implicit truncate. 944 // FIXME: always querying the result type is just an 945 // approximation; some nodes' legality is determined by the 946 // operand or other means. There's no good way to find out though. 947 if (TLI.isOperationLegalOrCustom( 948 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 949 continue; 950 951 // Don't bother for PHI nodes. 952 if (isa<PHINode>(TruncUser)) 953 continue; 954 955 BasicBlock *TruncUserBB = TruncUser->getParent(); 956 957 if (UserBB == TruncUserBB) 958 continue; 959 960 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 961 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 962 963 if (!InsertedShift && !InsertedTrunc) { 964 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 965 assert(InsertPt != TruncUserBB->end()); 966 // Sink the shift 967 if (ShiftI->getOpcode() == Instruction::AShr) 968 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 969 "", &*InsertPt); 970 else 971 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 972 "", &*InsertPt); 973 974 // Sink the trunc 975 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 976 TruncInsertPt++; 977 assert(TruncInsertPt != TruncUserBB->end()); 978 979 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 980 TruncI->getType(), "", &*TruncInsertPt); 981 982 MadeChange = true; 983 984 TruncTheUse = InsertedTrunc; 985 } 986 } 987 return MadeChange; 988 } 989 990 /// Sink the shift *right* instruction into user blocks if the uses could 991 /// potentially be combined with this shift instruction and generate BitExtract 992 /// instruction. It will only be applied if the architecture supports BitExtract 993 /// instruction. Here is an example: 994 /// BB1: 995 /// %x.extract.shift = lshr i64 %arg1, 32 996 /// BB2: 997 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 998 /// ==> 999 /// 1000 /// BB2: 1001 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1002 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1003 /// 1004 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1005 /// instruction. 1006 /// Return true if any changes are made. 1007 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1008 const TargetLowering &TLI, 1009 const DataLayout &DL) { 1010 BasicBlock *DefBB = ShiftI->getParent(); 1011 1012 /// Only insert instructions in each block once. 1013 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1014 1015 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1016 1017 bool MadeChange = false; 1018 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1019 UI != E;) { 1020 Use &TheUse = UI.getUse(); 1021 Instruction *User = cast<Instruction>(*UI); 1022 // Preincrement use iterator so we don't invalidate it. 1023 ++UI; 1024 1025 // Don't bother for PHI nodes. 1026 if (isa<PHINode>(User)) 1027 continue; 1028 1029 if (!isExtractBitsCandidateUse(User)) 1030 continue; 1031 1032 BasicBlock *UserBB = User->getParent(); 1033 1034 if (UserBB == DefBB) { 1035 // If the shift and truncate instruction are in the same BB. The use of 1036 // the truncate(TruncUse) may still introduce another truncate if not 1037 // legal. In this case, we would like to sink both shift and truncate 1038 // instruction to the BB of TruncUse. 1039 // for example: 1040 // BB1: 1041 // i64 shift.result = lshr i64 opnd, imm 1042 // trunc.result = trunc shift.result to i16 1043 // 1044 // BB2: 1045 // ----> We will have an implicit truncate here if the architecture does 1046 // not have i16 compare. 1047 // cmp i16 trunc.result, opnd2 1048 // 1049 if (isa<TruncInst>(User) && shiftIsLegal 1050 // If the type of the truncate is legal, no trucate will be 1051 // introduced in other basic blocks. 1052 && 1053 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1054 MadeChange = 1055 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1056 1057 continue; 1058 } 1059 // If we have already inserted a shift into this block, use it. 1060 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1061 1062 if (!InsertedShift) { 1063 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1064 assert(InsertPt != UserBB->end()); 1065 1066 if (ShiftI->getOpcode() == Instruction::AShr) 1067 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1068 "", &*InsertPt); 1069 else 1070 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1071 "", &*InsertPt); 1072 1073 MadeChange = true; 1074 } 1075 1076 // Replace a use of the shift with a use of the new shift. 1077 TheUse = InsertedShift; 1078 } 1079 1080 // If we removed all uses, nuke the shift. 1081 if (ShiftI->use_empty()) 1082 ShiftI->eraseFromParent(); 1083 1084 return MadeChange; 1085 } 1086 1087 // Translate a masked load intrinsic like 1088 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1089 // <16 x i1> %mask, <16 x i32> %passthru) 1090 // to a chain of basic blocks, with loading element one-by-one if 1091 // the appropriate mask bit is set 1092 // 1093 // %1 = bitcast i8* %addr to i32* 1094 // %2 = extractelement <16 x i1> %mask, i32 0 1095 // %3 = icmp eq i1 %2, true 1096 // br i1 %3, label %cond.load, label %else 1097 // 1098 //cond.load: ; preds = %0 1099 // %4 = getelementptr i32* %1, i32 0 1100 // %5 = load i32* %4 1101 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1102 // br label %else 1103 // 1104 //else: ; preds = %0, %cond.load 1105 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1106 // %7 = extractelement <16 x i1> %mask, i32 1 1107 // %8 = icmp eq i1 %7, true 1108 // br i1 %8, label %cond.load1, label %else2 1109 // 1110 //cond.load1: ; preds = %else 1111 // %9 = getelementptr i32* %1, i32 1 1112 // %10 = load i32* %9 1113 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1114 // br label %else2 1115 // 1116 //else2: ; preds = %else, %cond.load1 1117 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1118 // %12 = extractelement <16 x i1> %mask, i32 2 1119 // %13 = icmp eq i1 %12, true 1120 // br i1 %13, label %cond.load4, label %else5 1121 // 1122 static void ScalarizeMaskedLoad(CallInst *CI) { 1123 Value *Ptr = CI->getArgOperand(0); 1124 Value *Alignment = CI->getArgOperand(1); 1125 Value *Mask = CI->getArgOperand(2); 1126 Value *Src0 = CI->getArgOperand(3); 1127 1128 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1129 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1130 assert(VecType && "Unexpected return type of masked load intrinsic"); 1131 1132 Type *EltTy = CI->getType()->getVectorElementType(); 1133 1134 IRBuilder<> Builder(CI->getContext()); 1135 Instruction *InsertPt = CI; 1136 BasicBlock *IfBlock = CI->getParent(); 1137 BasicBlock *CondBlock = nullptr; 1138 BasicBlock *PrevIfBlock = CI->getParent(); 1139 1140 Builder.SetInsertPoint(InsertPt); 1141 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1142 1143 // Short-cut if the mask is all-true. 1144 bool IsAllOnesMask = isa<Constant>(Mask) && 1145 cast<Constant>(Mask)->isAllOnesValue(); 1146 1147 if (IsAllOnesMask) { 1148 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1149 CI->replaceAllUsesWith(NewI); 1150 CI->eraseFromParent(); 1151 return; 1152 } 1153 1154 // Adjust alignment for the scalar instruction. 1155 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1156 // Bitcast %addr fron i8* to EltTy* 1157 Type *NewPtrType = 1158 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1159 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1160 unsigned VectorWidth = VecType->getNumElements(); 1161 1162 Value *UndefVal = UndefValue::get(VecType); 1163 1164 // The result vector 1165 Value *VResult = UndefVal; 1166 1167 if (isa<ConstantVector>(Mask)) { 1168 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1169 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1170 continue; 1171 Value *Gep = 1172 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1173 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1174 VResult = Builder.CreateInsertElement(VResult, Load, 1175 Builder.getInt32(Idx)); 1176 } 1177 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1178 CI->replaceAllUsesWith(NewI); 1179 CI->eraseFromParent(); 1180 return; 1181 } 1182 1183 PHINode *Phi = nullptr; 1184 Value *PrevPhi = UndefVal; 1185 1186 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1187 1188 // Fill the "else" block, created in the previous iteration 1189 // 1190 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1191 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1192 // %to_load = icmp eq i1 %mask_1, true 1193 // br i1 %to_load, label %cond.load, label %else 1194 // 1195 if (Idx > 0) { 1196 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1197 Phi->addIncoming(VResult, CondBlock); 1198 Phi->addIncoming(PrevPhi, PrevIfBlock); 1199 PrevPhi = Phi; 1200 VResult = Phi; 1201 } 1202 1203 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1204 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1205 ConstantInt::get(Predicate->getType(), 1)); 1206 1207 // Create "cond" block 1208 // 1209 // %EltAddr = getelementptr i32* %1, i32 0 1210 // %Elt = load i32* %EltAddr 1211 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1212 // 1213 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1214 Builder.SetInsertPoint(InsertPt); 1215 1216 Value *Gep = 1217 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1218 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1219 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1220 1221 // Create "else" block, fill it in the next iteration 1222 BasicBlock *NewIfBlock = 1223 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1224 Builder.SetInsertPoint(InsertPt); 1225 Instruction *OldBr = IfBlock->getTerminator(); 1226 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1227 OldBr->eraseFromParent(); 1228 PrevIfBlock = IfBlock; 1229 IfBlock = NewIfBlock; 1230 } 1231 1232 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1233 Phi->addIncoming(VResult, CondBlock); 1234 Phi->addIncoming(PrevPhi, PrevIfBlock); 1235 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1236 CI->replaceAllUsesWith(NewI); 1237 CI->eraseFromParent(); 1238 } 1239 1240 // Translate a masked store intrinsic, like 1241 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1242 // <16 x i1> %mask) 1243 // to a chain of basic blocks, that stores element one-by-one if 1244 // the appropriate mask bit is set 1245 // 1246 // %1 = bitcast i8* %addr to i32* 1247 // %2 = extractelement <16 x i1> %mask, i32 0 1248 // %3 = icmp eq i1 %2, true 1249 // br i1 %3, label %cond.store, label %else 1250 // 1251 // cond.store: ; preds = %0 1252 // %4 = extractelement <16 x i32> %val, i32 0 1253 // %5 = getelementptr i32* %1, i32 0 1254 // store i32 %4, i32* %5 1255 // br label %else 1256 // 1257 // else: ; preds = %0, %cond.store 1258 // %6 = extractelement <16 x i1> %mask, i32 1 1259 // %7 = icmp eq i1 %6, true 1260 // br i1 %7, label %cond.store1, label %else2 1261 // 1262 // cond.store1: ; preds = %else 1263 // %8 = extractelement <16 x i32> %val, i32 1 1264 // %9 = getelementptr i32* %1, i32 1 1265 // store i32 %8, i32* %9 1266 // br label %else2 1267 // . . . 1268 static void ScalarizeMaskedStore(CallInst *CI) { 1269 Value *Src = CI->getArgOperand(0); 1270 Value *Ptr = CI->getArgOperand(1); 1271 Value *Alignment = CI->getArgOperand(2); 1272 Value *Mask = CI->getArgOperand(3); 1273 1274 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1275 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1276 assert(VecType && "Unexpected data type in masked store intrinsic"); 1277 1278 Type *EltTy = VecType->getElementType(); 1279 1280 IRBuilder<> Builder(CI->getContext()); 1281 Instruction *InsertPt = CI; 1282 BasicBlock *IfBlock = CI->getParent(); 1283 Builder.SetInsertPoint(InsertPt); 1284 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1285 1286 // Short-cut if the mask is all-true. 1287 bool IsAllOnesMask = isa<Constant>(Mask) && 1288 cast<Constant>(Mask)->isAllOnesValue(); 1289 1290 if (IsAllOnesMask) { 1291 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1292 CI->eraseFromParent(); 1293 return; 1294 } 1295 1296 // Adjust alignment for the scalar instruction. 1297 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1298 // Bitcast %addr fron i8* to EltTy* 1299 Type *NewPtrType = 1300 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1301 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1302 unsigned VectorWidth = VecType->getNumElements(); 1303 1304 if (isa<ConstantVector>(Mask)) { 1305 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1306 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1307 continue; 1308 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1309 Value *Gep = 1310 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1311 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1312 } 1313 CI->eraseFromParent(); 1314 return; 1315 } 1316 1317 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1318 1319 // Fill the "else" block, created in the previous iteration 1320 // 1321 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1322 // %to_store = icmp eq i1 %mask_1, true 1323 // br i1 %to_store, label %cond.store, label %else 1324 // 1325 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1326 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1327 ConstantInt::get(Predicate->getType(), 1)); 1328 1329 // Create "cond" block 1330 // 1331 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1332 // %EltAddr = getelementptr i32* %1, i32 0 1333 // %store i32 %OneElt, i32* %EltAddr 1334 // 1335 BasicBlock *CondBlock = 1336 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1337 Builder.SetInsertPoint(InsertPt); 1338 1339 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1340 Value *Gep = 1341 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1342 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1343 1344 // Create "else" block, fill it in the next iteration 1345 BasicBlock *NewIfBlock = 1346 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1347 Builder.SetInsertPoint(InsertPt); 1348 Instruction *OldBr = IfBlock->getTerminator(); 1349 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1350 OldBr->eraseFromParent(); 1351 IfBlock = NewIfBlock; 1352 } 1353 CI->eraseFromParent(); 1354 } 1355 1356 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1357 BasicBlock *BB = CI->getParent(); 1358 1359 // Lower inline assembly if we can. 1360 // If we found an inline asm expession, and if the target knows how to 1361 // lower it to normal LLVM code, do so now. 1362 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1363 if (TLI->ExpandInlineAsm(CI)) { 1364 // Avoid invalidating the iterator. 1365 CurInstIterator = BB->begin(); 1366 // Avoid processing instructions out of order, which could cause 1367 // reuse before a value is defined. 1368 SunkAddrs.clear(); 1369 return true; 1370 } 1371 // Sink address computing for memory operands into the block. 1372 if (optimizeInlineAsmInst(CI)) 1373 return true; 1374 } 1375 1376 // Align the pointer arguments to this call if the target thinks it's a good 1377 // idea 1378 unsigned MinSize, PrefAlign; 1379 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1380 for (auto &Arg : CI->arg_operands()) { 1381 // We want to align both objects whose address is used directly and 1382 // objects whose address is used in casts and GEPs, though it only makes 1383 // sense for GEPs if the offset is a multiple of the desired alignment and 1384 // if size - offset meets the size threshold. 1385 if (!Arg->getType()->isPointerTy()) 1386 continue; 1387 APInt Offset(DL->getPointerSizeInBits( 1388 cast<PointerType>(Arg->getType())->getAddressSpace()), 1389 0); 1390 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1391 uint64_t Offset2 = Offset.getLimitedValue(); 1392 if ((Offset2 & (PrefAlign-1)) != 0) 1393 continue; 1394 AllocaInst *AI; 1395 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1396 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1397 AI->setAlignment(PrefAlign); 1398 // Global variables can only be aligned if they are defined in this 1399 // object (i.e. they are uniquely initialized in this object), and 1400 // over-aligning global variables that have an explicit section is 1401 // forbidden. 1402 GlobalVariable *GV; 1403 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->hasUniqueInitializer() && 1404 !GV->hasSection() && GV->getAlignment() < PrefAlign && 1405 DL->getTypeAllocSize(GV->getType()->getElementType()) >= 1406 MinSize + Offset2) 1407 GV->setAlignment(PrefAlign); 1408 } 1409 // If this is a memcpy (or similar) then we may be able to improve the 1410 // alignment 1411 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1412 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1413 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1414 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1415 if (Align > MI->getAlignment()) 1416 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1417 } 1418 } 1419 1420 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1421 if (II) { 1422 switch (II->getIntrinsicID()) { 1423 default: break; 1424 case Intrinsic::objectsize: { 1425 // Lower all uses of llvm.objectsize.* 1426 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1427 Type *ReturnTy = CI->getType(); 1428 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1429 1430 // Substituting this can cause recursive simplifications, which can 1431 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1432 // happens. 1433 WeakVH IterHandle(&*CurInstIterator); 1434 1435 replaceAndRecursivelySimplify(CI, RetVal, 1436 TLInfo, nullptr); 1437 1438 // If the iterator instruction was recursively deleted, start over at the 1439 // start of the block. 1440 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 1441 CurInstIterator = BB->begin(); 1442 SunkAddrs.clear(); 1443 } 1444 return true; 1445 } 1446 case Intrinsic::masked_load: { 1447 // Scalarize unsupported vector masked load 1448 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1449 ScalarizeMaskedLoad(CI); 1450 ModifiedDT = true; 1451 return true; 1452 } 1453 return false; 1454 } 1455 case Intrinsic::masked_store: { 1456 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1457 ScalarizeMaskedStore(CI); 1458 ModifiedDT = true; 1459 return true; 1460 } 1461 return false; 1462 } 1463 case Intrinsic::aarch64_stlxr: 1464 case Intrinsic::aarch64_stxr: { 1465 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1466 if (!ExtVal || !ExtVal->hasOneUse() || 1467 ExtVal->getParent() == CI->getParent()) 1468 return false; 1469 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1470 ExtVal->moveBefore(CI); 1471 // Mark this instruction as "inserted by CGP", so that other 1472 // optimizations don't touch it. 1473 InsertedInsts.insert(ExtVal); 1474 return true; 1475 } 1476 case Intrinsic::invariant_group_barrier: 1477 II->replaceAllUsesWith(II->getArgOperand(0)); 1478 II->eraseFromParent(); 1479 return true; 1480 } 1481 1482 if (TLI) { 1483 // Unknown address space. 1484 // TODO: Target hook to pick which address space the intrinsic cares 1485 // about? 1486 unsigned AddrSpace = ~0u; 1487 SmallVector<Value*, 2> PtrOps; 1488 Type *AccessTy; 1489 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy, AddrSpace)) 1490 while (!PtrOps.empty()) 1491 if (optimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy, AddrSpace)) 1492 return true; 1493 } 1494 } 1495 1496 // From here on out we're working with named functions. 1497 if (!CI->getCalledFunction()) return false; 1498 1499 // Lower all default uses of _chk calls. This is very similar 1500 // to what InstCombineCalls does, but here we are only lowering calls 1501 // to fortified library functions (e.g. __memcpy_chk) that have the default 1502 // "don't know" as the objectsize. Anything else should be left alone. 1503 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1504 if (Value *V = Simplifier.optimizeCall(CI)) { 1505 CI->replaceAllUsesWith(V); 1506 CI->eraseFromParent(); 1507 return true; 1508 } 1509 return false; 1510 } 1511 1512 /// Look for opportunities to duplicate return instructions to the predecessor 1513 /// to enable tail call optimizations. The case it is currently looking for is: 1514 /// @code 1515 /// bb0: 1516 /// %tmp0 = tail call i32 @f0() 1517 /// br label %return 1518 /// bb1: 1519 /// %tmp1 = tail call i32 @f1() 1520 /// br label %return 1521 /// bb2: 1522 /// %tmp2 = tail call i32 @f2() 1523 /// br label %return 1524 /// return: 1525 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1526 /// ret i32 %retval 1527 /// @endcode 1528 /// 1529 /// => 1530 /// 1531 /// @code 1532 /// bb0: 1533 /// %tmp0 = tail call i32 @f0() 1534 /// ret i32 %tmp0 1535 /// bb1: 1536 /// %tmp1 = tail call i32 @f1() 1537 /// ret i32 %tmp1 1538 /// bb2: 1539 /// %tmp2 = tail call i32 @f2() 1540 /// ret i32 %tmp2 1541 /// @endcode 1542 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1543 if (!TLI) 1544 return false; 1545 1546 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1547 if (!RI) 1548 return false; 1549 1550 PHINode *PN = nullptr; 1551 BitCastInst *BCI = nullptr; 1552 Value *V = RI->getReturnValue(); 1553 if (V) { 1554 BCI = dyn_cast<BitCastInst>(V); 1555 if (BCI) 1556 V = BCI->getOperand(0); 1557 1558 PN = dyn_cast<PHINode>(V); 1559 if (!PN) 1560 return false; 1561 } 1562 1563 if (PN && PN->getParent() != BB) 1564 return false; 1565 1566 // It's not safe to eliminate the sign / zero extension of the return value. 1567 // See llvm::isInTailCallPosition(). 1568 const Function *F = BB->getParent(); 1569 AttributeSet CallerAttrs = F->getAttributes(); 1570 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1571 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1572 return false; 1573 1574 // Make sure there are no instructions between the PHI and return, or that the 1575 // return is the first instruction in the block. 1576 if (PN) { 1577 BasicBlock::iterator BI = BB->begin(); 1578 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1579 if (&*BI == BCI) 1580 // Also skip over the bitcast. 1581 ++BI; 1582 if (&*BI != RI) 1583 return false; 1584 } else { 1585 BasicBlock::iterator BI = BB->begin(); 1586 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1587 if (&*BI != RI) 1588 return false; 1589 } 1590 1591 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1592 /// call. 1593 SmallVector<CallInst*, 4> TailCalls; 1594 if (PN) { 1595 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1596 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1597 // Make sure the phi value is indeed produced by the tail call. 1598 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1599 TLI->mayBeEmittedAsTailCall(CI)) 1600 TailCalls.push_back(CI); 1601 } 1602 } else { 1603 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1604 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1605 if (!VisitedBBs.insert(*PI).second) 1606 continue; 1607 1608 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1609 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1610 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1611 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1612 if (RI == RE) 1613 continue; 1614 1615 CallInst *CI = dyn_cast<CallInst>(&*RI); 1616 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1617 TailCalls.push_back(CI); 1618 } 1619 } 1620 1621 bool Changed = false; 1622 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1623 CallInst *CI = TailCalls[i]; 1624 CallSite CS(CI); 1625 1626 // Conservatively require the attributes of the call to match those of the 1627 // return. Ignore noalias because it doesn't affect the call sequence. 1628 AttributeSet CalleeAttrs = CS.getAttributes(); 1629 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1630 removeAttribute(Attribute::NoAlias) != 1631 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1632 removeAttribute(Attribute::NoAlias)) 1633 continue; 1634 1635 // Make sure the call instruction is followed by an unconditional branch to 1636 // the return block. 1637 BasicBlock *CallBB = CI->getParent(); 1638 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1639 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1640 continue; 1641 1642 // Duplicate the return into CallBB. 1643 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1644 ModifiedDT = Changed = true; 1645 ++NumRetsDup; 1646 } 1647 1648 // If we eliminated all predecessors of the block, delete the block now. 1649 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1650 BB->eraseFromParent(); 1651 1652 return Changed; 1653 } 1654 1655 //===----------------------------------------------------------------------===// 1656 // Memory Optimization 1657 //===----------------------------------------------------------------------===// 1658 1659 namespace { 1660 1661 /// This is an extended version of TargetLowering::AddrMode 1662 /// which holds actual Value*'s for register values. 1663 struct ExtAddrMode : public TargetLowering::AddrMode { 1664 Value *BaseReg; 1665 Value *ScaledReg; 1666 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1667 void print(raw_ostream &OS) const; 1668 void dump() const; 1669 1670 bool operator==(const ExtAddrMode& O) const { 1671 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1672 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1673 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1674 } 1675 }; 1676 1677 #ifndef NDEBUG 1678 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1679 AM.print(OS); 1680 return OS; 1681 } 1682 #endif 1683 1684 void ExtAddrMode::print(raw_ostream &OS) const { 1685 bool NeedPlus = false; 1686 OS << "["; 1687 if (BaseGV) { 1688 OS << (NeedPlus ? " + " : "") 1689 << "GV:"; 1690 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1691 NeedPlus = true; 1692 } 1693 1694 if (BaseOffs) { 1695 OS << (NeedPlus ? " + " : "") 1696 << BaseOffs; 1697 NeedPlus = true; 1698 } 1699 1700 if (BaseReg) { 1701 OS << (NeedPlus ? " + " : "") 1702 << "Base:"; 1703 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1704 NeedPlus = true; 1705 } 1706 if (Scale) { 1707 OS << (NeedPlus ? " + " : "") 1708 << Scale << "*"; 1709 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1710 } 1711 1712 OS << ']'; 1713 } 1714 1715 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1716 void ExtAddrMode::dump() const { 1717 print(dbgs()); 1718 dbgs() << '\n'; 1719 } 1720 #endif 1721 1722 /// \brief This class provides transaction based operation on the IR. 1723 /// Every change made through this class is recorded in the internal state and 1724 /// can be undone (rollback) until commit is called. 1725 class TypePromotionTransaction { 1726 1727 /// \brief This represents the common interface of the individual transaction. 1728 /// Each class implements the logic for doing one specific modification on 1729 /// the IR via the TypePromotionTransaction. 1730 class TypePromotionAction { 1731 protected: 1732 /// The Instruction modified. 1733 Instruction *Inst; 1734 1735 public: 1736 /// \brief Constructor of the action. 1737 /// The constructor performs the related action on the IR. 1738 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1739 1740 virtual ~TypePromotionAction() {} 1741 1742 /// \brief Undo the modification done by this action. 1743 /// When this method is called, the IR must be in the same state as it was 1744 /// before this action was applied. 1745 /// \pre Undoing the action works if and only if the IR is in the exact same 1746 /// state as it was directly after this action was applied. 1747 virtual void undo() = 0; 1748 1749 /// \brief Advocate every change made by this action. 1750 /// When the results on the IR of the action are to be kept, it is important 1751 /// to call this function, otherwise hidden information may be kept forever. 1752 virtual void commit() { 1753 // Nothing to be done, this action is not doing anything. 1754 } 1755 }; 1756 1757 /// \brief Utility to remember the position of an instruction. 1758 class InsertionHandler { 1759 /// Position of an instruction. 1760 /// Either an instruction: 1761 /// - Is the first in a basic block: BB is used. 1762 /// - Has a previous instructon: PrevInst is used. 1763 union { 1764 Instruction *PrevInst; 1765 BasicBlock *BB; 1766 } Point; 1767 /// Remember whether or not the instruction had a previous instruction. 1768 bool HasPrevInstruction; 1769 1770 public: 1771 /// \brief Record the position of \p Inst. 1772 InsertionHandler(Instruction *Inst) { 1773 BasicBlock::iterator It = Inst->getIterator(); 1774 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1775 if (HasPrevInstruction) 1776 Point.PrevInst = &*--It; 1777 else 1778 Point.BB = Inst->getParent(); 1779 } 1780 1781 /// \brief Insert \p Inst at the recorded position. 1782 void insert(Instruction *Inst) { 1783 if (HasPrevInstruction) { 1784 if (Inst->getParent()) 1785 Inst->removeFromParent(); 1786 Inst->insertAfter(Point.PrevInst); 1787 } else { 1788 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 1789 if (Inst->getParent()) 1790 Inst->moveBefore(Position); 1791 else 1792 Inst->insertBefore(Position); 1793 } 1794 } 1795 }; 1796 1797 /// \brief Move an instruction before another. 1798 class InstructionMoveBefore : public TypePromotionAction { 1799 /// Original position of the instruction. 1800 InsertionHandler Position; 1801 1802 public: 1803 /// \brief Move \p Inst before \p Before. 1804 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1805 : TypePromotionAction(Inst), Position(Inst) { 1806 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1807 Inst->moveBefore(Before); 1808 } 1809 1810 /// \brief Move the instruction back to its original position. 1811 void undo() override { 1812 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1813 Position.insert(Inst); 1814 } 1815 }; 1816 1817 /// \brief Set the operand of an instruction with a new value. 1818 class OperandSetter : public TypePromotionAction { 1819 /// Original operand of the instruction. 1820 Value *Origin; 1821 /// Index of the modified instruction. 1822 unsigned Idx; 1823 1824 public: 1825 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1826 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1827 : TypePromotionAction(Inst), Idx(Idx) { 1828 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1829 << "for:" << *Inst << "\n" 1830 << "with:" << *NewVal << "\n"); 1831 Origin = Inst->getOperand(Idx); 1832 Inst->setOperand(Idx, NewVal); 1833 } 1834 1835 /// \brief Restore the original value of the instruction. 1836 void undo() override { 1837 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1838 << "for: " << *Inst << "\n" 1839 << "with: " << *Origin << "\n"); 1840 Inst->setOperand(Idx, Origin); 1841 } 1842 }; 1843 1844 /// \brief Hide the operands of an instruction. 1845 /// Do as if this instruction was not using any of its operands. 1846 class OperandsHider : public TypePromotionAction { 1847 /// The list of original operands. 1848 SmallVector<Value *, 4> OriginalValues; 1849 1850 public: 1851 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1852 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1853 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1854 unsigned NumOpnds = Inst->getNumOperands(); 1855 OriginalValues.reserve(NumOpnds); 1856 for (unsigned It = 0; It < NumOpnds; ++It) { 1857 // Save the current operand. 1858 Value *Val = Inst->getOperand(It); 1859 OriginalValues.push_back(Val); 1860 // Set a dummy one. 1861 // We could use OperandSetter here, but that would imply an overhead 1862 // that we are not willing to pay. 1863 Inst->setOperand(It, UndefValue::get(Val->getType())); 1864 } 1865 } 1866 1867 /// \brief Restore the original list of uses. 1868 void undo() override { 1869 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1870 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1871 Inst->setOperand(It, OriginalValues[It]); 1872 } 1873 }; 1874 1875 /// \brief Build a truncate instruction. 1876 class TruncBuilder : public TypePromotionAction { 1877 Value *Val; 1878 public: 1879 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1880 /// result. 1881 /// trunc Opnd to Ty. 1882 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1883 IRBuilder<> Builder(Opnd); 1884 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1885 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1886 } 1887 1888 /// \brief Get the built value. 1889 Value *getBuiltValue() { return Val; } 1890 1891 /// \brief Remove the built instruction. 1892 void undo() override { 1893 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1894 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1895 IVal->eraseFromParent(); 1896 } 1897 }; 1898 1899 /// \brief Build a sign extension instruction. 1900 class SExtBuilder : public TypePromotionAction { 1901 Value *Val; 1902 public: 1903 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1904 /// result. 1905 /// sext Opnd to Ty. 1906 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1907 : TypePromotionAction(InsertPt) { 1908 IRBuilder<> Builder(InsertPt); 1909 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1910 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1911 } 1912 1913 /// \brief Get the built value. 1914 Value *getBuiltValue() { return Val; } 1915 1916 /// \brief Remove the built instruction. 1917 void undo() override { 1918 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1919 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1920 IVal->eraseFromParent(); 1921 } 1922 }; 1923 1924 /// \brief Build a zero extension instruction. 1925 class ZExtBuilder : public TypePromotionAction { 1926 Value *Val; 1927 public: 1928 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1929 /// result. 1930 /// zext Opnd to Ty. 1931 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1932 : TypePromotionAction(InsertPt) { 1933 IRBuilder<> Builder(InsertPt); 1934 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1935 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1936 } 1937 1938 /// \brief Get the built value. 1939 Value *getBuiltValue() { return Val; } 1940 1941 /// \brief Remove the built instruction. 1942 void undo() override { 1943 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1944 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1945 IVal->eraseFromParent(); 1946 } 1947 }; 1948 1949 /// \brief Mutate an instruction to another type. 1950 class TypeMutator : public TypePromotionAction { 1951 /// Record the original type. 1952 Type *OrigTy; 1953 1954 public: 1955 /// \brief Mutate the type of \p Inst into \p NewTy. 1956 TypeMutator(Instruction *Inst, Type *NewTy) 1957 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1958 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1959 << "\n"); 1960 Inst->mutateType(NewTy); 1961 } 1962 1963 /// \brief Mutate the instruction back to its original type. 1964 void undo() override { 1965 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1966 << "\n"); 1967 Inst->mutateType(OrigTy); 1968 } 1969 }; 1970 1971 /// \brief Replace the uses of an instruction by another instruction. 1972 class UsesReplacer : public TypePromotionAction { 1973 /// Helper structure to keep track of the replaced uses. 1974 struct InstructionAndIdx { 1975 /// The instruction using the instruction. 1976 Instruction *Inst; 1977 /// The index where this instruction is used for Inst. 1978 unsigned Idx; 1979 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1980 : Inst(Inst), Idx(Idx) {} 1981 }; 1982 1983 /// Keep track of the original uses (pair Instruction, Index). 1984 SmallVector<InstructionAndIdx, 4> OriginalUses; 1985 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1986 1987 public: 1988 /// \brief Replace all the use of \p Inst by \p New. 1989 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1990 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1991 << "\n"); 1992 // Record the original uses. 1993 for (Use &U : Inst->uses()) { 1994 Instruction *UserI = cast<Instruction>(U.getUser()); 1995 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1996 } 1997 // Now, we can replace the uses. 1998 Inst->replaceAllUsesWith(New); 1999 } 2000 2001 /// \brief Reassign the original uses of Inst to Inst. 2002 void undo() override { 2003 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2004 for (use_iterator UseIt = OriginalUses.begin(), 2005 EndIt = OriginalUses.end(); 2006 UseIt != EndIt; ++UseIt) { 2007 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2008 } 2009 } 2010 }; 2011 2012 /// \brief Remove an instruction from the IR. 2013 class InstructionRemover : public TypePromotionAction { 2014 /// Original position of the instruction. 2015 InsertionHandler Inserter; 2016 /// Helper structure to hide all the link to the instruction. In other 2017 /// words, this helps to do as if the instruction was removed. 2018 OperandsHider Hider; 2019 /// Keep track of the uses replaced, if any. 2020 UsesReplacer *Replacer; 2021 2022 public: 2023 /// \brief Remove all reference of \p Inst and optinally replace all its 2024 /// uses with New. 2025 /// \pre If !Inst->use_empty(), then New != nullptr 2026 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2027 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2028 Replacer(nullptr) { 2029 if (New) 2030 Replacer = new UsesReplacer(Inst, New); 2031 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2032 Inst->removeFromParent(); 2033 } 2034 2035 ~InstructionRemover() override { delete Replacer; } 2036 2037 /// \brief Really remove the instruction. 2038 void commit() override { delete Inst; } 2039 2040 /// \brief Resurrect the instruction and reassign it to the proper uses if 2041 /// new value was provided when build this action. 2042 void undo() override { 2043 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2044 Inserter.insert(Inst); 2045 if (Replacer) 2046 Replacer->undo(); 2047 Hider.undo(); 2048 } 2049 }; 2050 2051 public: 2052 /// Restoration point. 2053 /// The restoration point is a pointer to an action instead of an iterator 2054 /// because the iterator may be invalidated but not the pointer. 2055 typedef const TypePromotionAction *ConstRestorationPt; 2056 /// Advocate every changes made in that transaction. 2057 void commit(); 2058 /// Undo all the changes made after the given point. 2059 void rollback(ConstRestorationPt Point); 2060 /// Get the current restoration point. 2061 ConstRestorationPt getRestorationPoint() const; 2062 2063 /// \name API for IR modification with state keeping to support rollback. 2064 /// @{ 2065 /// Same as Instruction::setOperand. 2066 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2067 /// Same as Instruction::eraseFromParent. 2068 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2069 /// Same as Value::replaceAllUsesWith. 2070 void replaceAllUsesWith(Instruction *Inst, Value *New); 2071 /// Same as Value::mutateType. 2072 void mutateType(Instruction *Inst, Type *NewTy); 2073 /// Same as IRBuilder::createTrunc. 2074 Value *createTrunc(Instruction *Opnd, Type *Ty); 2075 /// Same as IRBuilder::createSExt. 2076 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2077 /// Same as IRBuilder::createZExt. 2078 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2079 /// Same as Instruction::moveBefore. 2080 void moveBefore(Instruction *Inst, Instruction *Before); 2081 /// @} 2082 2083 private: 2084 /// The ordered list of actions made so far. 2085 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2086 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2087 }; 2088 2089 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2090 Value *NewVal) { 2091 Actions.push_back( 2092 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2093 } 2094 2095 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2096 Value *NewVal) { 2097 Actions.push_back( 2098 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2099 } 2100 2101 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2102 Value *New) { 2103 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2104 } 2105 2106 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2107 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2108 } 2109 2110 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2111 Type *Ty) { 2112 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2113 Value *Val = Ptr->getBuiltValue(); 2114 Actions.push_back(std::move(Ptr)); 2115 return Val; 2116 } 2117 2118 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2119 Value *Opnd, Type *Ty) { 2120 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2121 Value *Val = Ptr->getBuiltValue(); 2122 Actions.push_back(std::move(Ptr)); 2123 return Val; 2124 } 2125 2126 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2127 Value *Opnd, Type *Ty) { 2128 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2129 Value *Val = Ptr->getBuiltValue(); 2130 Actions.push_back(std::move(Ptr)); 2131 return Val; 2132 } 2133 2134 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2135 Instruction *Before) { 2136 Actions.push_back( 2137 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2138 } 2139 2140 TypePromotionTransaction::ConstRestorationPt 2141 TypePromotionTransaction::getRestorationPoint() const { 2142 return !Actions.empty() ? Actions.back().get() : nullptr; 2143 } 2144 2145 void TypePromotionTransaction::commit() { 2146 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2147 ++It) 2148 (*It)->commit(); 2149 Actions.clear(); 2150 } 2151 2152 void TypePromotionTransaction::rollback( 2153 TypePromotionTransaction::ConstRestorationPt Point) { 2154 while (!Actions.empty() && Point != Actions.back().get()) { 2155 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2156 Curr->undo(); 2157 } 2158 } 2159 2160 /// \brief A helper class for matching addressing modes. 2161 /// 2162 /// This encapsulates the logic for matching the target-legal addressing modes. 2163 class AddressingModeMatcher { 2164 SmallVectorImpl<Instruction*> &AddrModeInsts; 2165 const TargetMachine &TM; 2166 const TargetLowering &TLI; 2167 const DataLayout &DL; 2168 2169 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2170 /// the memory instruction that we're computing this address for. 2171 Type *AccessTy; 2172 unsigned AddrSpace; 2173 Instruction *MemoryInst; 2174 2175 /// This is the addressing mode that we're building up. This is 2176 /// part of the return value of this addressing mode matching stuff. 2177 ExtAddrMode &AddrMode; 2178 2179 /// The instructions inserted by other CodeGenPrepare optimizations. 2180 const SetOfInstrs &InsertedInsts; 2181 /// A map from the instructions to their type before promotion. 2182 InstrToOrigTy &PromotedInsts; 2183 /// The ongoing transaction where every action should be registered. 2184 TypePromotionTransaction &TPT; 2185 2186 /// This is set to true when we should not do profitability checks. 2187 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2188 bool IgnoreProfitability; 2189 2190 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2191 const TargetMachine &TM, Type *AT, unsigned AS, 2192 Instruction *MI, ExtAddrMode &AM, 2193 const SetOfInstrs &InsertedInsts, 2194 InstrToOrigTy &PromotedInsts, 2195 TypePromotionTransaction &TPT) 2196 : AddrModeInsts(AMI), TM(TM), 2197 TLI(*TM.getSubtargetImpl(*MI->getParent()->getParent()) 2198 ->getTargetLowering()), 2199 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2200 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2201 PromotedInsts(PromotedInsts), TPT(TPT) { 2202 IgnoreProfitability = false; 2203 } 2204 public: 2205 2206 /// Find the maximal addressing mode that a load/store of V can fold, 2207 /// give an access type of AccessTy. This returns a list of involved 2208 /// instructions in AddrModeInsts. 2209 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2210 /// optimizations. 2211 /// \p PromotedInsts maps the instructions to their type before promotion. 2212 /// \p The ongoing transaction where every action should be registered. 2213 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2214 Instruction *MemoryInst, 2215 SmallVectorImpl<Instruction*> &AddrModeInsts, 2216 const TargetMachine &TM, 2217 const SetOfInstrs &InsertedInsts, 2218 InstrToOrigTy &PromotedInsts, 2219 TypePromotionTransaction &TPT) { 2220 ExtAddrMode Result; 2221 2222 bool Success = AddressingModeMatcher(AddrModeInsts, TM, AccessTy, AS, 2223 MemoryInst, Result, InsertedInsts, 2224 PromotedInsts, TPT).matchAddr(V, 0); 2225 (void)Success; assert(Success && "Couldn't select *anything*?"); 2226 return Result; 2227 } 2228 private: 2229 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2230 bool matchAddr(Value *V, unsigned Depth); 2231 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2232 bool *MovedAway = nullptr); 2233 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2234 ExtAddrMode &AMBefore, 2235 ExtAddrMode &AMAfter); 2236 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2237 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2238 Value *PromotedOperand) const; 2239 }; 2240 2241 /// Try adding ScaleReg*Scale to the current addressing mode. 2242 /// Return true and update AddrMode if this addr mode is legal for the target, 2243 /// false if not. 2244 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2245 unsigned Depth) { 2246 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2247 // mode. Just process that directly. 2248 if (Scale == 1) 2249 return matchAddr(ScaleReg, Depth); 2250 2251 // If the scale is 0, it takes nothing to add this. 2252 if (Scale == 0) 2253 return true; 2254 2255 // If we already have a scale of this value, we can add to it, otherwise, we 2256 // need an available scale field. 2257 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2258 return false; 2259 2260 ExtAddrMode TestAddrMode = AddrMode; 2261 2262 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2263 // [A+B + A*7] -> [B+A*8]. 2264 TestAddrMode.Scale += Scale; 2265 TestAddrMode.ScaledReg = ScaleReg; 2266 2267 // If the new address isn't legal, bail out. 2268 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2269 return false; 2270 2271 // It was legal, so commit it. 2272 AddrMode = TestAddrMode; 2273 2274 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2275 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2276 // X*Scale + C*Scale to addr mode. 2277 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2278 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2279 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2280 TestAddrMode.ScaledReg = AddLHS; 2281 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2282 2283 // If this addressing mode is legal, commit it and remember that we folded 2284 // this instruction. 2285 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2286 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2287 AddrMode = TestAddrMode; 2288 return true; 2289 } 2290 } 2291 2292 // Otherwise, not (x+c)*scale, just return what we have. 2293 return true; 2294 } 2295 2296 /// This is a little filter, which returns true if an addressing computation 2297 /// involving I might be folded into a load/store accessing it. 2298 /// This doesn't need to be perfect, but needs to accept at least 2299 /// the set of instructions that MatchOperationAddr can. 2300 static bool MightBeFoldableInst(Instruction *I) { 2301 switch (I->getOpcode()) { 2302 case Instruction::BitCast: 2303 case Instruction::AddrSpaceCast: 2304 // Don't touch identity bitcasts. 2305 if (I->getType() == I->getOperand(0)->getType()) 2306 return false; 2307 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2308 case Instruction::PtrToInt: 2309 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2310 return true; 2311 case Instruction::IntToPtr: 2312 // We know the input is intptr_t, so this is foldable. 2313 return true; 2314 case Instruction::Add: 2315 return true; 2316 case Instruction::Mul: 2317 case Instruction::Shl: 2318 // Can only handle X*C and X << C. 2319 return isa<ConstantInt>(I->getOperand(1)); 2320 case Instruction::GetElementPtr: 2321 return true; 2322 default: 2323 return false; 2324 } 2325 } 2326 2327 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2328 /// \note \p Val is assumed to be the product of some type promotion. 2329 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2330 /// to be legal, as the non-promoted value would have had the same state. 2331 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2332 const DataLayout &DL, Value *Val) { 2333 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2334 if (!PromotedInst) 2335 return false; 2336 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2337 // If the ISDOpcode is undefined, it was undefined before the promotion. 2338 if (!ISDOpcode) 2339 return true; 2340 // Otherwise, check if the promoted instruction is legal or not. 2341 return TLI.isOperationLegalOrCustom( 2342 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2343 } 2344 2345 /// \brief Hepler class to perform type promotion. 2346 class TypePromotionHelper { 2347 /// \brief Utility function to check whether or not a sign or zero extension 2348 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2349 /// either using the operands of \p Inst or promoting \p Inst. 2350 /// The type of the extension is defined by \p IsSExt. 2351 /// In other words, check if: 2352 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2353 /// #1 Promotion applies: 2354 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2355 /// #2 Operand reuses: 2356 /// ext opnd1 to ConsideredExtType. 2357 /// \p PromotedInsts maps the instructions to their type before promotion. 2358 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2359 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2360 2361 /// \brief Utility function to determine if \p OpIdx should be promoted when 2362 /// promoting \p Inst. 2363 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2364 if (isa<SelectInst>(Inst) && OpIdx == 0) 2365 return false; 2366 return true; 2367 } 2368 2369 /// \brief Utility function to promote the operand of \p Ext when this 2370 /// operand is a promotable trunc or sext or zext. 2371 /// \p PromotedInsts maps the instructions to their type before promotion. 2372 /// \p CreatedInstsCost[out] contains the cost of all instructions 2373 /// created to promote the operand of Ext. 2374 /// Newly added extensions are inserted in \p Exts. 2375 /// Newly added truncates are inserted in \p Truncs. 2376 /// Should never be called directly. 2377 /// \return The promoted value which is used instead of Ext. 2378 static Value *promoteOperandForTruncAndAnyExt( 2379 Instruction *Ext, TypePromotionTransaction &TPT, 2380 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2381 SmallVectorImpl<Instruction *> *Exts, 2382 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2383 2384 /// \brief Utility function to promote the operand of \p Ext when this 2385 /// operand is promotable and is not a supported trunc or sext. 2386 /// \p PromotedInsts maps the instructions to their type before promotion. 2387 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2388 /// created to promote the operand of Ext. 2389 /// Newly added extensions are inserted in \p Exts. 2390 /// Newly added truncates are inserted in \p Truncs. 2391 /// Should never be called directly. 2392 /// \return The promoted value which is used instead of Ext. 2393 static Value *promoteOperandForOther(Instruction *Ext, 2394 TypePromotionTransaction &TPT, 2395 InstrToOrigTy &PromotedInsts, 2396 unsigned &CreatedInstsCost, 2397 SmallVectorImpl<Instruction *> *Exts, 2398 SmallVectorImpl<Instruction *> *Truncs, 2399 const TargetLowering &TLI, bool IsSExt); 2400 2401 /// \see promoteOperandForOther. 2402 static Value *signExtendOperandForOther( 2403 Instruction *Ext, TypePromotionTransaction &TPT, 2404 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2405 SmallVectorImpl<Instruction *> *Exts, 2406 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2407 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2408 Exts, Truncs, TLI, true); 2409 } 2410 2411 /// \see promoteOperandForOther. 2412 static Value *zeroExtendOperandForOther( 2413 Instruction *Ext, TypePromotionTransaction &TPT, 2414 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2415 SmallVectorImpl<Instruction *> *Exts, 2416 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2417 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2418 Exts, Truncs, TLI, false); 2419 } 2420 2421 public: 2422 /// Type for the utility function that promotes the operand of Ext. 2423 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2424 InstrToOrigTy &PromotedInsts, 2425 unsigned &CreatedInstsCost, 2426 SmallVectorImpl<Instruction *> *Exts, 2427 SmallVectorImpl<Instruction *> *Truncs, 2428 const TargetLowering &TLI); 2429 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2430 /// action to promote the operand of \p Ext instead of using Ext. 2431 /// \return NULL if no promotable action is possible with the current 2432 /// sign extension. 2433 /// \p InsertedInsts keeps track of all the instructions inserted by the 2434 /// other CodeGenPrepare optimizations. This information is important 2435 /// because we do not want to promote these instructions as CodeGenPrepare 2436 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2437 /// \p PromotedInsts maps the instructions to their type before promotion. 2438 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2439 const TargetLowering &TLI, 2440 const InstrToOrigTy &PromotedInsts); 2441 }; 2442 2443 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2444 Type *ConsideredExtType, 2445 const InstrToOrigTy &PromotedInsts, 2446 bool IsSExt) { 2447 // The promotion helper does not know how to deal with vector types yet. 2448 // To be able to fix that, we would need to fix the places where we 2449 // statically extend, e.g., constants and such. 2450 if (Inst->getType()->isVectorTy()) 2451 return false; 2452 2453 // We can always get through zext. 2454 if (isa<ZExtInst>(Inst)) 2455 return true; 2456 2457 // sext(sext) is ok too. 2458 if (IsSExt && isa<SExtInst>(Inst)) 2459 return true; 2460 2461 // We can get through binary operator, if it is legal. In other words, the 2462 // binary operator must have a nuw or nsw flag. 2463 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2464 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2465 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2466 (IsSExt && BinOp->hasNoSignedWrap()))) 2467 return true; 2468 2469 // Check if we can do the following simplification. 2470 // ext(trunc(opnd)) --> ext(opnd) 2471 if (!isa<TruncInst>(Inst)) 2472 return false; 2473 2474 Value *OpndVal = Inst->getOperand(0); 2475 // Check if we can use this operand in the extension. 2476 // If the type is larger than the result type of the extension, we cannot. 2477 if (!OpndVal->getType()->isIntegerTy() || 2478 OpndVal->getType()->getIntegerBitWidth() > 2479 ConsideredExtType->getIntegerBitWidth()) 2480 return false; 2481 2482 // If the operand of the truncate is not an instruction, we will not have 2483 // any information on the dropped bits. 2484 // (Actually we could for constant but it is not worth the extra logic). 2485 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2486 if (!Opnd) 2487 return false; 2488 2489 // Check if the source of the type is narrow enough. 2490 // I.e., check that trunc just drops extended bits of the same kind of 2491 // the extension. 2492 // #1 get the type of the operand and check the kind of the extended bits. 2493 const Type *OpndType; 2494 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2495 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 2496 OpndType = It->second.getPointer(); 2497 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2498 OpndType = Opnd->getOperand(0)->getType(); 2499 else 2500 return false; 2501 2502 // #2 check that the truncate just drops extended bits. 2503 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2504 return true; 2505 2506 return false; 2507 } 2508 2509 TypePromotionHelper::Action TypePromotionHelper::getAction( 2510 Instruction *Ext, const SetOfInstrs &InsertedInsts, 2511 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2512 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2513 "Unexpected instruction type"); 2514 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2515 Type *ExtTy = Ext->getType(); 2516 bool IsSExt = isa<SExtInst>(Ext); 2517 // If the operand of the extension is not an instruction, we cannot 2518 // get through. 2519 // If it, check we can get through. 2520 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2521 return nullptr; 2522 2523 // Do not promote if the operand has been added by codegenprepare. 2524 // Otherwise, it means we are undoing an optimization that is likely to be 2525 // redone, thus causing potential infinite loop. 2526 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 2527 return nullptr; 2528 2529 // SExt or Trunc instructions. 2530 // Return the related handler. 2531 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2532 isa<ZExtInst>(ExtOpnd)) 2533 return promoteOperandForTruncAndAnyExt; 2534 2535 // Regular instruction. 2536 // Abort early if we will have to insert non-free instructions. 2537 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2538 return nullptr; 2539 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2540 } 2541 2542 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2543 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2544 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2545 SmallVectorImpl<Instruction *> *Exts, 2546 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2547 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2548 // get through it and this method should not be called. 2549 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2550 Value *ExtVal = SExt; 2551 bool HasMergedNonFreeExt = false; 2552 if (isa<ZExtInst>(SExtOpnd)) { 2553 // Replace s|zext(zext(opnd)) 2554 // => zext(opnd). 2555 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 2556 Value *ZExt = 2557 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2558 TPT.replaceAllUsesWith(SExt, ZExt); 2559 TPT.eraseInstruction(SExt); 2560 ExtVal = ZExt; 2561 } else { 2562 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2563 // => z|sext(opnd). 2564 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2565 } 2566 CreatedInstsCost = 0; 2567 2568 // Remove dead code. 2569 if (SExtOpnd->use_empty()) 2570 TPT.eraseInstruction(SExtOpnd); 2571 2572 // Check if the extension is still needed. 2573 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2574 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2575 if (ExtInst) { 2576 if (Exts) 2577 Exts->push_back(ExtInst); 2578 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 2579 } 2580 return ExtVal; 2581 } 2582 2583 // At this point we have: ext ty opnd to ty. 2584 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2585 Value *NextVal = ExtInst->getOperand(0); 2586 TPT.eraseInstruction(ExtInst, NextVal); 2587 return NextVal; 2588 } 2589 2590 Value *TypePromotionHelper::promoteOperandForOther( 2591 Instruction *Ext, TypePromotionTransaction &TPT, 2592 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2593 SmallVectorImpl<Instruction *> *Exts, 2594 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 2595 bool IsSExt) { 2596 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2597 // get through it and this method should not be called. 2598 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2599 CreatedInstsCost = 0; 2600 if (!ExtOpnd->hasOneUse()) { 2601 // ExtOpnd will be promoted. 2602 // All its uses, but Ext, will need to use a truncated value of the 2603 // promoted version. 2604 // Create the truncate now. 2605 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2606 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2607 ITrunc->removeFromParent(); 2608 // Insert it just after the definition. 2609 ITrunc->insertAfter(ExtOpnd); 2610 if (Truncs) 2611 Truncs->push_back(ITrunc); 2612 } 2613 2614 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2615 // Restore the operand of Ext (which has been replaced by the previous call 2616 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2617 TPT.setOperand(Ext, 0, ExtOpnd); 2618 } 2619 2620 // Get through the Instruction: 2621 // 1. Update its type. 2622 // 2. Replace the uses of Ext by Inst. 2623 // 3. Extend each operand that needs to be extended. 2624 2625 // Remember the original type of the instruction before promotion. 2626 // This is useful to know that the high bits are sign extended bits. 2627 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2628 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2629 // Step #1. 2630 TPT.mutateType(ExtOpnd, Ext->getType()); 2631 // Step #2. 2632 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2633 // Step #3. 2634 Instruction *ExtForOpnd = Ext; 2635 2636 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2637 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2638 ++OpIdx) { 2639 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2640 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2641 !shouldExtOperand(ExtOpnd, OpIdx)) { 2642 DEBUG(dbgs() << "No need to propagate\n"); 2643 continue; 2644 } 2645 // Check if we can statically extend the operand. 2646 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2647 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2648 DEBUG(dbgs() << "Statically extend\n"); 2649 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2650 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2651 : Cst->getValue().zext(BitWidth); 2652 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2653 continue; 2654 } 2655 // UndefValue are typed, so we have to statically sign extend them. 2656 if (isa<UndefValue>(Opnd)) { 2657 DEBUG(dbgs() << "Statically extend\n"); 2658 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2659 continue; 2660 } 2661 2662 // Otherwise we have to explicity sign extend the operand. 2663 // Check if Ext was reused to extend an operand. 2664 if (!ExtForOpnd) { 2665 // If yes, create a new one. 2666 DEBUG(dbgs() << "More operands to ext\n"); 2667 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2668 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2669 if (!isa<Instruction>(ValForExtOpnd)) { 2670 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2671 continue; 2672 } 2673 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2674 } 2675 if (Exts) 2676 Exts->push_back(ExtForOpnd); 2677 TPT.setOperand(ExtForOpnd, 0, Opnd); 2678 2679 // Move the sign extension before the insertion point. 2680 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2681 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2682 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 2683 // If more sext are required, new instructions will have to be created. 2684 ExtForOpnd = nullptr; 2685 } 2686 if (ExtForOpnd == Ext) { 2687 DEBUG(dbgs() << "Extension is useless now\n"); 2688 TPT.eraseInstruction(Ext); 2689 } 2690 return ExtOpnd; 2691 } 2692 2693 /// Check whether or not promoting an instruction to a wider type is profitable. 2694 /// \p NewCost gives the cost of extension instructions created by the 2695 /// promotion. 2696 /// \p OldCost gives the cost of extension instructions before the promotion 2697 /// plus the number of instructions that have been 2698 /// matched in the addressing mode the promotion. 2699 /// \p PromotedOperand is the value that has been promoted. 2700 /// \return True if the promotion is profitable, false otherwise. 2701 bool AddressingModeMatcher::isPromotionProfitable( 2702 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 2703 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 2704 // The cost of the new extensions is greater than the cost of the 2705 // old extension plus what we folded. 2706 // This is not profitable. 2707 if (NewCost > OldCost) 2708 return false; 2709 if (NewCost < OldCost) 2710 return true; 2711 // The promotion is neutral but it may help folding the sign extension in 2712 // loads for instance. 2713 // Check that we did not create an illegal instruction. 2714 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 2715 } 2716 2717 /// Given an instruction or constant expr, see if we can fold the operation 2718 /// into the addressing mode. If so, update the addressing mode and return 2719 /// true, otherwise return false without modifying AddrMode. 2720 /// If \p MovedAway is not NULL, it contains the information of whether or 2721 /// not AddrInst has to be folded into the addressing mode on success. 2722 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2723 /// because it has been moved away. 2724 /// Thus AddrInst must not be added in the matched instructions. 2725 /// This state can happen when AddrInst is a sext, since it may be moved away. 2726 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2727 /// not be referenced anymore. 2728 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 2729 unsigned Depth, 2730 bool *MovedAway) { 2731 // Avoid exponential behavior on extremely deep expression trees. 2732 if (Depth >= 5) return false; 2733 2734 // By default, all matched instructions stay in place. 2735 if (MovedAway) 2736 *MovedAway = false; 2737 2738 switch (Opcode) { 2739 case Instruction::PtrToInt: 2740 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2741 return matchAddr(AddrInst->getOperand(0), Depth); 2742 case Instruction::IntToPtr: { 2743 auto AS = AddrInst->getType()->getPointerAddressSpace(); 2744 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 2745 // This inttoptr is a no-op if the integer type is pointer sized. 2746 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 2747 return matchAddr(AddrInst->getOperand(0), Depth); 2748 return false; 2749 } 2750 case Instruction::BitCast: 2751 // BitCast is always a noop, and we can handle it as long as it is 2752 // int->int or pointer->pointer (we don't want int<->fp or something). 2753 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2754 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2755 // Don't touch identity bitcasts. These were probably put here by LSR, 2756 // and we don't want to mess around with them. Assume it knows what it 2757 // is doing. 2758 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2759 return matchAddr(AddrInst->getOperand(0), Depth); 2760 return false; 2761 case Instruction::AddrSpaceCast: { 2762 unsigned SrcAS 2763 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 2764 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 2765 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2766 return matchAddr(AddrInst->getOperand(0), Depth); 2767 return false; 2768 } 2769 case Instruction::Add: { 2770 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2771 ExtAddrMode BackupAddrMode = AddrMode; 2772 unsigned OldSize = AddrModeInsts.size(); 2773 // Start a transaction at this point. 2774 // The LHS may match but not the RHS. 2775 // Therefore, we need a higher level restoration point to undo partially 2776 // matched operation. 2777 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2778 TPT.getRestorationPoint(); 2779 2780 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 2781 matchAddr(AddrInst->getOperand(0), Depth+1)) 2782 return true; 2783 2784 // Restore the old addr mode info. 2785 AddrMode = BackupAddrMode; 2786 AddrModeInsts.resize(OldSize); 2787 TPT.rollback(LastKnownGood); 2788 2789 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2790 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 2791 matchAddr(AddrInst->getOperand(1), Depth+1)) 2792 return true; 2793 2794 // Otherwise we definitely can't merge the ADD in. 2795 AddrMode = BackupAddrMode; 2796 AddrModeInsts.resize(OldSize); 2797 TPT.rollback(LastKnownGood); 2798 break; 2799 } 2800 //case Instruction::Or: 2801 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2802 //break; 2803 case Instruction::Mul: 2804 case Instruction::Shl: { 2805 // Can only handle X*C and X << C. 2806 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2807 if (!RHS) 2808 return false; 2809 int64_t Scale = RHS->getSExtValue(); 2810 if (Opcode == Instruction::Shl) 2811 Scale = 1LL << Scale; 2812 2813 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2814 } 2815 case Instruction::GetElementPtr: { 2816 // Scan the GEP. We check it if it contains constant offsets and at most 2817 // one variable offset. 2818 int VariableOperand = -1; 2819 unsigned VariableScale = 0; 2820 2821 int64_t ConstantOffset = 0; 2822 gep_type_iterator GTI = gep_type_begin(AddrInst); 2823 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2824 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2825 const StructLayout *SL = DL.getStructLayout(STy); 2826 unsigned Idx = 2827 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2828 ConstantOffset += SL->getElementOffset(Idx); 2829 } else { 2830 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 2831 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2832 ConstantOffset += CI->getSExtValue()*TypeSize; 2833 } else if (TypeSize) { // Scales of zero don't do anything. 2834 // We only allow one variable index at the moment. 2835 if (VariableOperand != -1) 2836 return false; 2837 2838 // Remember the variable index. 2839 VariableOperand = i; 2840 VariableScale = TypeSize; 2841 } 2842 } 2843 } 2844 2845 // A common case is for the GEP to only do a constant offset. In this case, 2846 // just add it to the disp field and check validity. 2847 if (VariableOperand == -1) { 2848 AddrMode.BaseOffs += ConstantOffset; 2849 if (ConstantOffset == 0 || 2850 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 2851 // Check to see if we can fold the base pointer in too. 2852 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 2853 return true; 2854 } 2855 AddrMode.BaseOffs -= ConstantOffset; 2856 return false; 2857 } 2858 2859 // Save the valid addressing mode in case we can't match. 2860 ExtAddrMode BackupAddrMode = AddrMode; 2861 unsigned OldSize = AddrModeInsts.size(); 2862 2863 // See if the scale and offset amount is valid for this target. 2864 AddrMode.BaseOffs += ConstantOffset; 2865 2866 // Match the base operand of the GEP. 2867 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 2868 // If it couldn't be matched, just stuff the value in a register. 2869 if (AddrMode.HasBaseReg) { 2870 AddrMode = BackupAddrMode; 2871 AddrModeInsts.resize(OldSize); 2872 return false; 2873 } 2874 AddrMode.HasBaseReg = true; 2875 AddrMode.BaseReg = AddrInst->getOperand(0); 2876 } 2877 2878 // Match the remaining variable portion of the GEP. 2879 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2880 Depth)) { 2881 // If it couldn't be matched, try stuffing the base into a register 2882 // instead of matching it, and retrying the match of the scale. 2883 AddrMode = BackupAddrMode; 2884 AddrModeInsts.resize(OldSize); 2885 if (AddrMode.HasBaseReg) 2886 return false; 2887 AddrMode.HasBaseReg = true; 2888 AddrMode.BaseReg = AddrInst->getOperand(0); 2889 AddrMode.BaseOffs += ConstantOffset; 2890 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 2891 VariableScale, Depth)) { 2892 // If even that didn't work, bail. 2893 AddrMode = BackupAddrMode; 2894 AddrModeInsts.resize(OldSize); 2895 return false; 2896 } 2897 } 2898 2899 return true; 2900 } 2901 case Instruction::SExt: 2902 case Instruction::ZExt: { 2903 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2904 if (!Ext) 2905 return false; 2906 2907 // Try to move this ext out of the way of the addressing mode. 2908 // Ask for a method for doing so. 2909 TypePromotionHelper::Action TPH = 2910 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 2911 if (!TPH) 2912 return false; 2913 2914 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2915 TPT.getRestorationPoint(); 2916 unsigned CreatedInstsCost = 0; 2917 unsigned ExtCost = !TLI.isExtFree(Ext); 2918 Value *PromotedOperand = 2919 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 2920 // SExt has been moved away. 2921 // Thus either it will be rematched later in the recursive calls or it is 2922 // gone. Anyway, we must not fold it into the addressing mode at this point. 2923 // E.g., 2924 // op = add opnd, 1 2925 // idx = ext op 2926 // addr = gep base, idx 2927 // is now: 2928 // promotedOpnd = ext opnd <- no match here 2929 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2930 // addr = gep base, op <- match 2931 if (MovedAway) 2932 *MovedAway = true; 2933 2934 assert(PromotedOperand && 2935 "TypePromotionHelper should have filtered out those cases"); 2936 2937 ExtAddrMode BackupAddrMode = AddrMode; 2938 unsigned OldSize = AddrModeInsts.size(); 2939 2940 if (!matchAddr(PromotedOperand, Depth) || 2941 // The total of the new cost is equal to the cost of the created 2942 // instructions. 2943 // The total of the old cost is equal to the cost of the extension plus 2944 // what we have saved in the addressing mode. 2945 !isPromotionProfitable(CreatedInstsCost, 2946 ExtCost + (AddrModeInsts.size() - OldSize), 2947 PromotedOperand)) { 2948 AddrMode = BackupAddrMode; 2949 AddrModeInsts.resize(OldSize); 2950 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2951 TPT.rollback(LastKnownGood); 2952 return false; 2953 } 2954 return true; 2955 } 2956 } 2957 return false; 2958 } 2959 2960 /// If we can, try to add the value of 'Addr' into the current addressing mode. 2961 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 2962 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 2963 /// for the target. 2964 /// 2965 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 2966 // Start a transaction at this point that we will rollback if the matching 2967 // fails. 2968 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2969 TPT.getRestorationPoint(); 2970 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2971 // Fold in immediates if legal for the target. 2972 AddrMode.BaseOffs += CI->getSExtValue(); 2973 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2974 return true; 2975 AddrMode.BaseOffs -= CI->getSExtValue(); 2976 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2977 // If this is a global variable, try to fold it into the addressing mode. 2978 if (!AddrMode.BaseGV) { 2979 AddrMode.BaseGV = GV; 2980 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 2981 return true; 2982 AddrMode.BaseGV = nullptr; 2983 } 2984 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2985 ExtAddrMode BackupAddrMode = AddrMode; 2986 unsigned OldSize = AddrModeInsts.size(); 2987 2988 // Check to see if it is possible to fold this operation. 2989 bool MovedAway = false; 2990 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2991 // This instruction may have been moved away. If so, there is nothing 2992 // to check here. 2993 if (MovedAway) 2994 return true; 2995 // Okay, it's possible to fold this. Check to see if it is actually 2996 // *profitable* to do so. We use a simple cost model to avoid increasing 2997 // register pressure too much. 2998 if (I->hasOneUse() || 2999 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3000 AddrModeInsts.push_back(I); 3001 return true; 3002 } 3003 3004 // It isn't profitable to do this, roll back. 3005 //cerr << "NOT FOLDING: " << *I; 3006 AddrMode = BackupAddrMode; 3007 AddrModeInsts.resize(OldSize); 3008 TPT.rollback(LastKnownGood); 3009 } 3010 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3011 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3012 return true; 3013 TPT.rollback(LastKnownGood); 3014 } else if (isa<ConstantPointerNull>(Addr)) { 3015 // Null pointer gets folded without affecting the addressing mode. 3016 return true; 3017 } 3018 3019 // Worse case, the target should support [reg] addressing modes. :) 3020 if (!AddrMode.HasBaseReg) { 3021 AddrMode.HasBaseReg = true; 3022 AddrMode.BaseReg = Addr; 3023 // Still check for legality in case the target supports [imm] but not [i+r]. 3024 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3025 return true; 3026 AddrMode.HasBaseReg = false; 3027 AddrMode.BaseReg = nullptr; 3028 } 3029 3030 // If the base register is already taken, see if we can do [r+r]. 3031 if (AddrMode.Scale == 0) { 3032 AddrMode.Scale = 1; 3033 AddrMode.ScaledReg = Addr; 3034 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3035 return true; 3036 AddrMode.Scale = 0; 3037 AddrMode.ScaledReg = nullptr; 3038 } 3039 // Couldn't match. 3040 TPT.rollback(LastKnownGood); 3041 return false; 3042 } 3043 3044 /// Check to see if all uses of OpVal by the specified inline asm call are due 3045 /// to memory operands. If so, return true, otherwise return false. 3046 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3047 const TargetMachine &TM) { 3048 const Function *F = CI->getParent()->getParent(); 3049 const TargetLowering *TLI = TM.getSubtargetImpl(*F)->getTargetLowering(); 3050 const TargetRegisterInfo *TRI = TM.getSubtargetImpl(*F)->getRegisterInfo(); 3051 TargetLowering::AsmOperandInfoVector TargetConstraints = 3052 TLI->ParseConstraints(F->getParent()->getDataLayout(), TRI, 3053 ImmutableCallSite(CI)); 3054 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3055 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3056 3057 // Compute the constraint code and ConstraintType to use. 3058 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3059 3060 // If this asm operand is our Value*, and if it isn't an indirect memory 3061 // operand, we can't fold it! 3062 if (OpInfo.CallOperandVal == OpVal && 3063 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3064 !OpInfo.isIndirect)) 3065 return false; 3066 } 3067 3068 return true; 3069 } 3070 3071 /// Recursively walk all the uses of I until we find a memory use. 3072 /// If we find an obviously non-foldable instruction, return true. 3073 /// Add the ultimately found memory instructions to MemoryUses. 3074 static bool FindAllMemoryUses( 3075 Instruction *I, 3076 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3077 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetMachine &TM) { 3078 // If we already considered this instruction, we're done. 3079 if (!ConsideredInsts.insert(I).second) 3080 return false; 3081 3082 // If this is an obviously unfoldable instruction, bail out. 3083 if (!MightBeFoldableInst(I)) 3084 return true; 3085 3086 // Loop over all the uses, recursively processing them. 3087 for (Use &U : I->uses()) { 3088 Instruction *UserI = cast<Instruction>(U.getUser()); 3089 3090 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3091 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3092 continue; 3093 } 3094 3095 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3096 unsigned opNo = U.getOperandNo(); 3097 if (opNo == 0) return true; // Storing addr, not into addr. 3098 MemoryUses.push_back(std::make_pair(SI, opNo)); 3099 continue; 3100 } 3101 3102 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3103 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3104 if (!IA) return true; 3105 3106 // If this is a memory operand, we're cool, otherwise bail out. 3107 if (!IsOperandAMemoryOperand(CI, IA, I, TM)) 3108 return true; 3109 continue; 3110 } 3111 3112 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TM)) 3113 return true; 3114 } 3115 3116 return false; 3117 } 3118 3119 /// Return true if Val is already known to be live at the use site that we're 3120 /// folding it into. If so, there is no cost to include it in the addressing 3121 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3122 /// instruction already. 3123 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3124 Value *KnownLive2) { 3125 // If Val is either of the known-live values, we know it is live! 3126 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3127 return true; 3128 3129 // All values other than instructions and arguments (e.g. constants) are live. 3130 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3131 3132 // If Val is a constant sized alloca in the entry block, it is live, this is 3133 // true because it is just a reference to the stack/frame pointer, which is 3134 // live for the whole function. 3135 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3136 if (AI->isStaticAlloca()) 3137 return true; 3138 3139 // Check to see if this value is already used in the memory instruction's 3140 // block. If so, it's already live into the block at the very least, so we 3141 // can reasonably fold it. 3142 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3143 } 3144 3145 /// It is possible for the addressing mode of the machine to fold the specified 3146 /// instruction into a load or store that ultimately uses it. 3147 /// However, the specified instruction has multiple uses. 3148 /// Given this, it may actually increase register pressure to fold it 3149 /// into the load. For example, consider this code: 3150 /// 3151 /// X = ... 3152 /// Y = X+1 3153 /// use(Y) -> nonload/store 3154 /// Z = Y+1 3155 /// load Z 3156 /// 3157 /// In this case, Y has multiple uses, and can be folded into the load of Z 3158 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3159 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3160 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3161 /// number of computations either. 3162 /// 3163 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3164 /// X was live across 'load Z' for other reasons, we actually *would* want to 3165 /// fold the addressing mode in the Z case. This would make Y die earlier. 3166 bool AddressingModeMatcher:: 3167 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3168 ExtAddrMode &AMAfter) { 3169 if (IgnoreProfitability) return true; 3170 3171 // AMBefore is the addressing mode before this instruction was folded into it, 3172 // and AMAfter is the addressing mode after the instruction was folded. Get 3173 // the set of registers referenced by AMAfter and subtract out those 3174 // referenced by AMBefore: this is the set of values which folding in this 3175 // address extends the lifetime of. 3176 // 3177 // Note that there are only two potential values being referenced here, 3178 // BaseReg and ScaleReg (global addresses are always available, as are any 3179 // folded immediates). 3180 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3181 3182 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3183 // lifetime wasn't extended by adding this instruction. 3184 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3185 BaseReg = nullptr; 3186 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3187 ScaledReg = nullptr; 3188 3189 // If folding this instruction (and it's subexprs) didn't extend any live 3190 // ranges, we're ok with it. 3191 if (!BaseReg && !ScaledReg) 3192 return true; 3193 3194 // If all uses of this instruction are ultimately load/store/inlineasm's, 3195 // check to see if their addressing modes will include this instruction. If 3196 // so, we can fold it into all uses, so it doesn't matter if it has multiple 3197 // uses. 3198 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3199 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3200 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TM)) 3201 return false; // Has a non-memory, non-foldable use! 3202 3203 // Now that we know that all uses of this instruction are part of a chain of 3204 // computation involving only operations that could theoretically be folded 3205 // into a memory use, loop over each of these uses and see if they could 3206 // *actually* fold the instruction. 3207 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3208 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3209 Instruction *User = MemoryUses[i].first; 3210 unsigned OpNo = MemoryUses[i].second; 3211 3212 // Get the access type of this use. If the use isn't a pointer, we don't 3213 // know what it accesses. 3214 Value *Address = User->getOperand(OpNo); 3215 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3216 if (!AddrTy) 3217 return false; 3218 Type *AddressAccessTy = AddrTy->getElementType(); 3219 unsigned AS = AddrTy->getAddressSpace(); 3220 3221 // Do a match against the root of this address, ignoring profitability. This 3222 // will tell us if the addressing mode for the memory operation will 3223 // *actually* cover the shared instruction. 3224 ExtAddrMode Result; 3225 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3226 TPT.getRestorationPoint(); 3227 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TM, AddressAccessTy, AS, 3228 MemoryInst, Result, InsertedInsts, 3229 PromotedInsts, TPT); 3230 Matcher.IgnoreProfitability = true; 3231 bool Success = Matcher.matchAddr(Address, 0); 3232 (void)Success; assert(Success && "Couldn't select *anything*?"); 3233 3234 // The match was to check the profitability, the changes made are not 3235 // part of the original matcher. Therefore, they should be dropped 3236 // otherwise the original matcher will not present the right state. 3237 TPT.rollback(LastKnownGood); 3238 3239 // If the match didn't cover I, then it won't be shared by it. 3240 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3241 I) == MatchedAddrModeInsts.end()) 3242 return false; 3243 3244 MatchedAddrModeInsts.clear(); 3245 } 3246 3247 return true; 3248 } 3249 3250 } // end anonymous namespace 3251 3252 /// Return true if the specified values are defined in a 3253 /// different basic block than BB. 3254 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3255 if (Instruction *I = dyn_cast<Instruction>(V)) 3256 return I->getParent() != BB; 3257 return false; 3258 } 3259 3260 /// Load and Store Instructions often have addressing modes that can do 3261 /// significant amounts of computation. As such, instruction selection will try 3262 /// to get the load or store to do as much computation as possible for the 3263 /// program. The problem is that isel can only see within a single block. As 3264 /// such, we sink as much legal addressing mode work into the block as possible. 3265 /// 3266 /// This method is used to optimize both load/store and inline asms with memory 3267 /// operands. 3268 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3269 Type *AccessTy, unsigned AddrSpace) { 3270 Value *Repl = Addr; 3271 3272 // Try to collapse single-value PHI nodes. This is necessary to undo 3273 // unprofitable PRE transformations. 3274 SmallVector<Value*, 8> worklist; 3275 SmallPtrSet<Value*, 16> Visited; 3276 worklist.push_back(Addr); 3277 3278 // Use a worklist to iteratively look through PHI nodes, and ensure that 3279 // the addressing mode obtained from the non-PHI roots of the graph 3280 // are equivalent. 3281 Value *Consensus = nullptr; 3282 unsigned NumUsesConsensus = 0; 3283 bool IsNumUsesConsensusValid = false; 3284 SmallVector<Instruction*, 16> AddrModeInsts; 3285 ExtAddrMode AddrMode; 3286 TypePromotionTransaction TPT; 3287 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3288 TPT.getRestorationPoint(); 3289 while (!worklist.empty()) { 3290 Value *V = worklist.back(); 3291 worklist.pop_back(); 3292 3293 // Break use-def graph loops. 3294 if (!Visited.insert(V).second) { 3295 Consensus = nullptr; 3296 break; 3297 } 3298 3299 // For a PHI node, push all of its incoming values. 3300 if (PHINode *P = dyn_cast<PHINode>(V)) { 3301 for (Value *IncValue : P->incoming_values()) 3302 worklist.push_back(IncValue); 3303 continue; 3304 } 3305 3306 // For non-PHIs, determine the addressing mode being computed. 3307 SmallVector<Instruction*, 16> NewAddrModeInsts; 3308 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3309 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TM, 3310 InsertedInsts, PromotedInsts, TPT); 3311 3312 // This check is broken into two cases with very similar code to avoid using 3313 // getNumUses() as much as possible. Some values have a lot of uses, so 3314 // calling getNumUses() unconditionally caused a significant compile-time 3315 // regression. 3316 if (!Consensus) { 3317 Consensus = V; 3318 AddrMode = NewAddrMode; 3319 AddrModeInsts = NewAddrModeInsts; 3320 continue; 3321 } else if (NewAddrMode == AddrMode) { 3322 if (!IsNumUsesConsensusValid) { 3323 NumUsesConsensus = Consensus->getNumUses(); 3324 IsNumUsesConsensusValid = true; 3325 } 3326 3327 // Ensure that the obtained addressing mode is equivalent to that obtained 3328 // for all other roots of the PHI traversal. Also, when choosing one 3329 // such root as representative, select the one with the most uses in order 3330 // to keep the cost modeling heuristics in AddressingModeMatcher 3331 // applicable. 3332 unsigned NumUses = V->getNumUses(); 3333 if (NumUses > NumUsesConsensus) { 3334 Consensus = V; 3335 NumUsesConsensus = NumUses; 3336 AddrModeInsts = NewAddrModeInsts; 3337 } 3338 continue; 3339 } 3340 3341 Consensus = nullptr; 3342 break; 3343 } 3344 3345 // If the addressing mode couldn't be determined, or if multiple different 3346 // ones were determined, bail out now. 3347 if (!Consensus) { 3348 TPT.rollback(LastKnownGood); 3349 return false; 3350 } 3351 TPT.commit(); 3352 3353 // Check to see if any of the instructions supersumed by this addr mode are 3354 // non-local to I's BB. 3355 bool AnyNonLocal = false; 3356 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3357 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3358 AnyNonLocal = true; 3359 break; 3360 } 3361 } 3362 3363 // If all the instructions matched are already in this BB, don't do anything. 3364 if (!AnyNonLocal) { 3365 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3366 return false; 3367 } 3368 3369 // Insert this computation right after this user. Since our caller is 3370 // scanning from the top of the BB to the bottom, reuse of the expr are 3371 // guaranteed to happen later. 3372 IRBuilder<> Builder(MemoryInst); 3373 3374 // Now that we determined the addressing expression we want to use and know 3375 // that we have to sink it into this block. Check to see if we have already 3376 // done this for some other load/store instr in this block. If so, reuse the 3377 // computation. 3378 Value *&SunkAddr = SunkAddrs[Addr]; 3379 if (SunkAddr) { 3380 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3381 << *MemoryInst << "\n"); 3382 if (SunkAddr->getType() != Addr->getType()) 3383 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3384 } else if (AddrSinkUsingGEPs || 3385 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3386 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3387 ->useAA())) { 3388 // By default, we use the GEP-based method when AA is used later. This 3389 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3390 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3391 << *MemoryInst << "\n"); 3392 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3393 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3394 3395 // First, find the pointer. 3396 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3397 ResultPtr = AddrMode.BaseReg; 3398 AddrMode.BaseReg = nullptr; 3399 } 3400 3401 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3402 // We can't add more than one pointer together, nor can we scale a 3403 // pointer (both of which seem meaningless). 3404 if (ResultPtr || AddrMode.Scale != 1) 3405 return false; 3406 3407 ResultPtr = AddrMode.ScaledReg; 3408 AddrMode.Scale = 0; 3409 } 3410 3411 if (AddrMode.BaseGV) { 3412 if (ResultPtr) 3413 return false; 3414 3415 ResultPtr = AddrMode.BaseGV; 3416 } 3417 3418 // If the real base value actually came from an inttoptr, then the matcher 3419 // will look through it and provide only the integer value. In that case, 3420 // use it here. 3421 if (!ResultPtr && AddrMode.BaseReg) { 3422 ResultPtr = 3423 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3424 AddrMode.BaseReg = nullptr; 3425 } else if (!ResultPtr && AddrMode.Scale == 1) { 3426 ResultPtr = 3427 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3428 AddrMode.Scale = 0; 3429 } 3430 3431 if (!ResultPtr && 3432 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3433 SunkAddr = Constant::getNullValue(Addr->getType()); 3434 } else if (!ResultPtr) { 3435 return false; 3436 } else { 3437 Type *I8PtrTy = 3438 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3439 Type *I8Ty = Builder.getInt8Ty(); 3440 3441 // Start with the base register. Do this first so that subsequent address 3442 // matching finds it last, which will prevent it from trying to match it 3443 // as the scaled value in case it happens to be a mul. That would be 3444 // problematic if we've sunk a different mul for the scale, because then 3445 // we'd end up sinking both muls. 3446 if (AddrMode.BaseReg) { 3447 Value *V = AddrMode.BaseReg; 3448 if (V->getType() != IntPtrTy) 3449 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3450 3451 ResultIndex = V; 3452 } 3453 3454 // Add the scale value. 3455 if (AddrMode.Scale) { 3456 Value *V = AddrMode.ScaledReg; 3457 if (V->getType() == IntPtrTy) { 3458 // done. 3459 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3460 cast<IntegerType>(V->getType())->getBitWidth()) { 3461 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3462 } else { 3463 // It is only safe to sign extend the BaseReg if we know that the math 3464 // required to create it did not overflow before we extend it. Since 3465 // the original IR value was tossed in favor of a constant back when 3466 // the AddrMode was created we need to bail out gracefully if widths 3467 // do not match instead of extending it. 3468 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3469 if (I && (ResultIndex != AddrMode.BaseReg)) 3470 I->eraseFromParent(); 3471 return false; 3472 } 3473 3474 if (AddrMode.Scale != 1) 3475 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3476 "sunkaddr"); 3477 if (ResultIndex) 3478 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3479 else 3480 ResultIndex = V; 3481 } 3482 3483 // Add in the Base Offset if present. 3484 if (AddrMode.BaseOffs) { 3485 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3486 if (ResultIndex) { 3487 // We need to add this separately from the scale above to help with 3488 // SDAG consecutive load/store merging. 3489 if (ResultPtr->getType() != I8PtrTy) 3490 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3491 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3492 } 3493 3494 ResultIndex = V; 3495 } 3496 3497 if (!ResultIndex) { 3498 SunkAddr = ResultPtr; 3499 } else { 3500 if (ResultPtr->getType() != I8PtrTy) 3501 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3502 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 3503 } 3504 3505 if (SunkAddr->getType() != Addr->getType()) 3506 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3507 } 3508 } else { 3509 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3510 << *MemoryInst << "\n"); 3511 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3512 Value *Result = nullptr; 3513 3514 // Start with the base register. Do this first so that subsequent address 3515 // matching finds it last, which will prevent it from trying to match it 3516 // as the scaled value in case it happens to be a mul. That would be 3517 // problematic if we've sunk a different mul for the scale, because then 3518 // we'd end up sinking both muls. 3519 if (AddrMode.BaseReg) { 3520 Value *V = AddrMode.BaseReg; 3521 if (V->getType()->isPointerTy()) 3522 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3523 if (V->getType() != IntPtrTy) 3524 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3525 Result = V; 3526 } 3527 3528 // Add the scale value. 3529 if (AddrMode.Scale) { 3530 Value *V = AddrMode.ScaledReg; 3531 if (V->getType() == IntPtrTy) { 3532 // done. 3533 } else if (V->getType()->isPointerTy()) { 3534 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3535 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3536 cast<IntegerType>(V->getType())->getBitWidth()) { 3537 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3538 } else { 3539 // It is only safe to sign extend the BaseReg if we know that the math 3540 // required to create it did not overflow before we extend it. Since 3541 // the original IR value was tossed in favor of a constant back when 3542 // the AddrMode was created we need to bail out gracefully if widths 3543 // do not match instead of extending it. 3544 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3545 if (I && (Result != AddrMode.BaseReg)) 3546 I->eraseFromParent(); 3547 return false; 3548 } 3549 if (AddrMode.Scale != 1) 3550 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3551 "sunkaddr"); 3552 if (Result) 3553 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3554 else 3555 Result = V; 3556 } 3557 3558 // Add in the BaseGV if present. 3559 if (AddrMode.BaseGV) { 3560 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3561 if (Result) 3562 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3563 else 3564 Result = V; 3565 } 3566 3567 // Add in the Base Offset if present. 3568 if (AddrMode.BaseOffs) { 3569 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3570 if (Result) 3571 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3572 else 3573 Result = V; 3574 } 3575 3576 if (!Result) 3577 SunkAddr = Constant::getNullValue(Addr->getType()); 3578 else 3579 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3580 } 3581 3582 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3583 3584 // If we have no uses, recursively delete the value and all dead instructions 3585 // using it. 3586 if (Repl->use_empty()) { 3587 // This can cause recursive deletion, which can invalidate our iterator. 3588 // Use a WeakVH to hold onto it in case this happens. 3589 WeakVH IterHandle(&*CurInstIterator); 3590 BasicBlock *BB = CurInstIterator->getParent(); 3591 3592 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3593 3594 if (IterHandle != CurInstIterator.getNodePtrUnchecked()) { 3595 // If the iterator instruction was recursively deleted, start over at the 3596 // start of the block. 3597 CurInstIterator = BB->begin(); 3598 SunkAddrs.clear(); 3599 } 3600 } 3601 ++NumMemoryInsts; 3602 return true; 3603 } 3604 3605 /// If there are any memory operands, use OptimizeMemoryInst to sink their 3606 /// address computing into the block when possible / profitable. 3607 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 3608 bool MadeChange = false; 3609 3610 const TargetRegisterInfo *TRI = 3611 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 3612 TargetLowering::AsmOperandInfoVector TargetConstraints = 3613 TLI->ParseConstraints(*DL, TRI, CS); 3614 unsigned ArgNo = 0; 3615 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3616 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3617 3618 // Compute the constraint code and ConstraintType to use. 3619 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3620 3621 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3622 OpInfo.isIndirect) { 3623 Value *OpVal = CS->getArgOperand(ArgNo++); 3624 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 3625 } else if (OpInfo.Type == InlineAsm::isInput) 3626 ArgNo++; 3627 } 3628 3629 return MadeChange; 3630 } 3631 3632 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3633 /// sign extensions. 3634 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3635 assert(!Inst->use_empty() && "Input must have at least one use"); 3636 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3637 bool IsSExt = isa<SExtInst>(FirstUser); 3638 Type *ExtTy = FirstUser->getType(); 3639 for (const User *U : Inst->users()) { 3640 const Instruction *UI = cast<Instruction>(U); 3641 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3642 return false; 3643 Type *CurTy = UI->getType(); 3644 // Same input and output types: Same instruction after CSE. 3645 if (CurTy == ExtTy) 3646 continue; 3647 3648 // If IsSExt is true, we are in this situation: 3649 // a = Inst 3650 // b = sext ty1 a to ty2 3651 // c = sext ty1 a to ty3 3652 // Assuming ty2 is shorter than ty3, this could be turned into: 3653 // a = Inst 3654 // b = sext ty1 a to ty2 3655 // c = sext ty2 b to ty3 3656 // However, the last sext is not free. 3657 if (IsSExt) 3658 return false; 3659 3660 // This is a ZExt, maybe this is free to extend from one type to another. 3661 // In that case, we would not account for a different use. 3662 Type *NarrowTy; 3663 Type *LargeTy; 3664 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3665 CurTy->getScalarType()->getIntegerBitWidth()) { 3666 NarrowTy = CurTy; 3667 LargeTy = ExtTy; 3668 } else { 3669 NarrowTy = ExtTy; 3670 LargeTy = CurTy; 3671 } 3672 3673 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3674 return false; 3675 } 3676 // All uses are the same or can be derived from one another for free. 3677 return true; 3678 } 3679 3680 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3681 /// load instruction. 3682 /// If an ext(load) can be formed, it is returned via \p LI for the load 3683 /// and \p Inst for the extension. 3684 /// Otherwise LI == nullptr and Inst == nullptr. 3685 /// When some promotion happened, \p TPT contains the proper state to 3686 /// revert them. 3687 /// 3688 /// \return true when promoting was necessary to expose the ext(load) 3689 /// opportunity, false otherwise. 3690 /// 3691 /// Example: 3692 /// \code 3693 /// %ld = load i32* %addr 3694 /// %add = add nuw i32 %ld, 4 3695 /// %zext = zext i32 %add to i64 3696 /// \endcode 3697 /// => 3698 /// \code 3699 /// %ld = load i32* %addr 3700 /// %zext = zext i32 %ld to i64 3701 /// %add = add nuw i64 %zext, 4 3702 /// \encode 3703 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3704 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 3705 LoadInst *&LI, Instruction *&Inst, 3706 const SmallVectorImpl<Instruction *> &Exts, 3707 unsigned CreatedInstsCost = 0) { 3708 // Iterate over all the extensions to see if one form an ext(load). 3709 for (auto I : Exts) { 3710 // Check if we directly have ext(load). 3711 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3712 Inst = I; 3713 // No promotion happened here. 3714 return false; 3715 } 3716 // Check whether or not we want to do any promotion. 3717 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3718 continue; 3719 // Get the action to perform the promotion. 3720 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3721 I, InsertedInsts, *TLI, PromotedInsts); 3722 // Check if we can promote. 3723 if (!TPH) 3724 continue; 3725 // Save the current state. 3726 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3727 TPT.getRestorationPoint(); 3728 SmallVector<Instruction *, 4> NewExts; 3729 unsigned NewCreatedInstsCost = 0; 3730 unsigned ExtCost = !TLI->isExtFree(I); 3731 // Promote. 3732 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 3733 &NewExts, nullptr, *TLI); 3734 assert(PromotedVal && 3735 "TypePromotionHelper should have filtered out those cases"); 3736 3737 // We would be able to merge only one extension in a load. 3738 // Therefore, if we have more than 1 new extension we heuristically 3739 // cut this search path, because it means we degrade the code quality. 3740 // With exactly 2, the transformation is neutral, because we will merge 3741 // one extension but leave one. However, we optimistically keep going, 3742 // because the new extension may be removed too. 3743 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 3744 TotalCreatedInstsCost -= ExtCost; 3745 if (!StressExtLdPromotion && 3746 (TotalCreatedInstsCost > 1 || 3747 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 3748 // The promotion is not profitable, rollback to the previous state. 3749 TPT.rollback(LastKnownGood); 3750 continue; 3751 } 3752 // The promotion is profitable. 3753 // Check if it exposes an ext(load). 3754 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 3755 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 3756 // If we have created a new extension, i.e., now we have two 3757 // extensions. We must make sure one of them is merged with 3758 // the load, otherwise we may degrade the code quality. 3759 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3760 // Promotion happened. 3761 return true; 3762 // If this does not help to expose an ext(load) then, rollback. 3763 TPT.rollback(LastKnownGood); 3764 } 3765 // None of the extension can form an ext(load). 3766 LI = nullptr; 3767 Inst = nullptr; 3768 return false; 3769 } 3770 3771 /// Move a zext or sext fed by a load into the same basic block as the load, 3772 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 3773 /// extend into the load. 3774 /// \p I[in/out] the extension may be modified during the process if some 3775 /// promotions apply. 3776 /// 3777 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 3778 // Try to promote a chain of computation if it allows to form 3779 // an extended load. 3780 TypePromotionTransaction TPT; 3781 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3782 TPT.getRestorationPoint(); 3783 SmallVector<Instruction *, 1> Exts; 3784 Exts.push_back(I); 3785 // Look for a load being extended. 3786 LoadInst *LI = nullptr; 3787 Instruction *OldExt = I; 3788 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 3789 if (!LI || !I) { 3790 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3791 "the code must remain the same"); 3792 I = OldExt; 3793 return false; 3794 } 3795 3796 // If they're already in the same block, there's nothing to do. 3797 // Make the cheap checks first if we did not promote. 3798 // If we promoted, we need to check if it is indeed profitable. 3799 if (!HasPromoted && LI->getParent() == I->getParent()) 3800 return false; 3801 3802 EVT VT = TLI->getValueType(*DL, I->getType()); 3803 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 3804 3805 // If the load has other users and the truncate is not free, this probably 3806 // isn't worthwhile. 3807 if (!LI->hasOneUse() && TLI && 3808 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3809 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3810 I = OldExt; 3811 TPT.rollback(LastKnownGood); 3812 return false; 3813 } 3814 3815 // Check whether the target supports casts folded into loads. 3816 unsigned LType; 3817 if (isa<ZExtInst>(I)) 3818 LType = ISD::ZEXTLOAD; 3819 else { 3820 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3821 LType = ISD::SEXTLOAD; 3822 } 3823 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3824 I = OldExt; 3825 TPT.rollback(LastKnownGood); 3826 return false; 3827 } 3828 3829 // Move the extend into the same block as the load, so that SelectionDAG 3830 // can fold it. 3831 TPT.commit(); 3832 I->removeFromParent(); 3833 I->insertAfter(LI); 3834 ++NumExtsMoved; 3835 return true; 3836 } 3837 3838 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 3839 BasicBlock *DefBB = I->getParent(); 3840 3841 // If the result of a {s|z}ext and its source are both live out, rewrite all 3842 // other uses of the source with result of extension. 3843 Value *Src = I->getOperand(0); 3844 if (Src->hasOneUse()) 3845 return false; 3846 3847 // Only do this xform if truncating is free. 3848 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3849 return false; 3850 3851 // Only safe to perform the optimization if the source is also defined in 3852 // this block. 3853 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3854 return false; 3855 3856 bool DefIsLiveOut = false; 3857 for (User *U : I->users()) { 3858 Instruction *UI = cast<Instruction>(U); 3859 3860 // Figure out which BB this ext is used in. 3861 BasicBlock *UserBB = UI->getParent(); 3862 if (UserBB == DefBB) continue; 3863 DefIsLiveOut = true; 3864 break; 3865 } 3866 if (!DefIsLiveOut) 3867 return false; 3868 3869 // Make sure none of the uses are PHI nodes. 3870 for (User *U : Src->users()) { 3871 Instruction *UI = cast<Instruction>(U); 3872 BasicBlock *UserBB = UI->getParent(); 3873 if (UserBB == DefBB) continue; 3874 // Be conservative. We don't want this xform to end up introducing 3875 // reloads just before load / store instructions. 3876 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3877 return false; 3878 } 3879 3880 // InsertedTruncs - Only insert one trunc in each block once. 3881 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3882 3883 bool MadeChange = false; 3884 for (Use &U : Src->uses()) { 3885 Instruction *User = cast<Instruction>(U.getUser()); 3886 3887 // Figure out which BB this ext is used in. 3888 BasicBlock *UserBB = User->getParent(); 3889 if (UserBB == DefBB) continue; 3890 3891 // Both src and def are live in this block. Rewrite the use. 3892 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3893 3894 if (!InsertedTrunc) { 3895 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3896 assert(InsertPt != UserBB->end()); 3897 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 3898 InsertedInsts.insert(InsertedTrunc); 3899 } 3900 3901 // Replace a use of the {s|z}ext source with a use of the result. 3902 U = InsertedTrunc; 3903 ++NumExtUses; 3904 MadeChange = true; 3905 } 3906 3907 return MadeChange; 3908 } 3909 3910 /// Check if V (an operand of a select instruction) is an expensive instruction 3911 /// that is only used once. 3912 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 3913 auto *I = dyn_cast<Instruction>(V); 3914 // If it's safe to speculatively execute, then it should not have side 3915 // effects; therefore, it's safe to sink and possibly *not* execute. 3916 if (I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 3917 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive) 3918 return true; 3919 3920 return false; 3921 } 3922 3923 /// Returns true if a SelectInst should be turned into an explicit branch. 3924 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 3925 SelectInst *SI) { 3926 // FIXME: This should use the same heuristics as IfConversion to determine 3927 // whether a select is better represented as a branch. This requires that 3928 // branch probability metadata is preserved for the select, which is not the 3929 // case currently. 3930 3931 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3932 3933 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 3934 // comparison condition. If the compare has more than one use, there's 3935 // probably another cmov or setcc around, so it's not worth emitting a branch. 3936 if (!Cmp || !Cmp->hasOneUse()) 3937 return false; 3938 3939 Value *CmpOp0 = Cmp->getOperand(0); 3940 Value *CmpOp1 = Cmp->getOperand(1); 3941 3942 // Emit "cmov on compare with a memory operand" as a branch to avoid stalls 3943 // on a load from memory. But if the load is used more than once, do not 3944 // change the select to a branch because the load is probably needed 3945 // regardless of whether the branch is taken or not. 3946 if ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3947 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())) 3948 return true; 3949 3950 // If either operand of the select is expensive and only needed on one side 3951 // of the select, we should form a branch. 3952 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 3953 sinkSelectOperand(TTI, SI->getFalseValue())) 3954 return true; 3955 3956 return false; 3957 } 3958 3959 3960 /// If we have a SelectInst that will likely profit from branch prediction, 3961 /// turn it into a branch. 3962 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 3963 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3964 3965 // Can we convert the 'select' to CF ? 3966 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3967 return false; 3968 3969 TargetLowering::SelectSupportKind SelectKind; 3970 if (VectorCond) 3971 SelectKind = TargetLowering::VectorMaskSelect; 3972 else if (SI->getType()->isVectorTy()) 3973 SelectKind = TargetLowering::ScalarCondVectorVal; 3974 else 3975 SelectKind = TargetLowering::ScalarValSelect; 3976 3977 // Do we have efficient codegen support for this kind of 'selects' ? 3978 if (TLI->isSelectSupported(SelectKind)) { 3979 // We have efficient codegen support for the select instruction. 3980 // Check if it is profitable to keep this 'select'. 3981 if (!TLI->isPredictableSelectExpensive() || 3982 !isFormingBranchFromSelectProfitable(TTI, SI)) 3983 return false; 3984 } 3985 3986 ModifiedDT = true; 3987 3988 // Transform a sequence like this: 3989 // start: 3990 // %cmp = cmp uge i32 %a, %b 3991 // %sel = select i1 %cmp, i32 %c, i32 %d 3992 // 3993 // Into: 3994 // start: 3995 // %cmp = cmp uge i32 %a, %b 3996 // br i1 %cmp, label %select.true, label %select.false 3997 // select.true: 3998 // br label %select.end 3999 // select.false: 4000 // br label %select.end 4001 // select.end: 4002 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4003 // 4004 // In addition, we may sink instructions that produce %c or %d from 4005 // the entry block into the destination(s) of the new branch. 4006 // If the true or false blocks do not contain a sunken instruction, that 4007 // block and its branch may be optimized away. In that case, one side of the 4008 // first branch will point directly to select.end, and the corresponding PHI 4009 // predecessor block will be the start block. 4010 4011 // First, we split the block containing the select into 2 blocks. 4012 BasicBlock *StartBlock = SI->getParent(); 4013 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 4014 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4015 4016 // Delete the unconditional branch that was just created by the split. 4017 StartBlock->getTerminator()->eraseFromParent(); 4018 4019 // These are the new basic blocks for the conditional branch. 4020 // At least one will become an actual new basic block. 4021 BasicBlock *TrueBlock = nullptr; 4022 BasicBlock *FalseBlock = nullptr; 4023 4024 // Sink expensive instructions into the conditional blocks to avoid executing 4025 // them speculatively. 4026 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4027 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4028 EndBlock->getParent(), EndBlock); 4029 auto *TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4030 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4031 TrueInst->moveBefore(TrueBranch); 4032 } 4033 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4034 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4035 EndBlock->getParent(), EndBlock); 4036 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4037 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4038 FalseInst->moveBefore(FalseBranch); 4039 } 4040 4041 // If there was nothing to sink, then arbitrarily choose the 'false' side 4042 // for a new input value to the PHI. 4043 if (TrueBlock == FalseBlock) { 4044 assert(TrueBlock == nullptr && 4045 "Unexpected basic block transform while optimizing select"); 4046 4047 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4048 EndBlock->getParent(), EndBlock); 4049 BranchInst::Create(EndBlock, FalseBlock); 4050 } 4051 4052 // Insert the real conditional branch based on the original condition. 4053 // If we did not create a new block for one of the 'true' or 'false' paths 4054 // of the condition, it means that side of the branch goes to the end block 4055 // directly and the path originates from the start block from the point of 4056 // view of the new PHI. 4057 if (TrueBlock == nullptr) { 4058 BranchInst::Create(EndBlock, FalseBlock, SI->getCondition(), SI); 4059 TrueBlock = StartBlock; 4060 } else if (FalseBlock == nullptr) { 4061 BranchInst::Create(TrueBlock, EndBlock, SI->getCondition(), SI); 4062 FalseBlock = StartBlock; 4063 } else { 4064 BranchInst::Create(TrueBlock, FalseBlock, SI->getCondition(), SI); 4065 } 4066 4067 // The select itself is replaced with a PHI Node. 4068 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4069 PN->takeName(SI); 4070 PN->addIncoming(SI->getTrueValue(), TrueBlock); 4071 PN->addIncoming(SI->getFalseValue(), FalseBlock); 4072 4073 SI->replaceAllUsesWith(PN); 4074 SI->eraseFromParent(); 4075 4076 // Instruct OptimizeBlock to skip to the next block. 4077 CurInstIterator = StartBlock->end(); 4078 ++NumSelectsExpanded; 4079 return true; 4080 } 4081 4082 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4083 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4084 int SplatElem = -1; 4085 for (unsigned i = 0; i < Mask.size(); ++i) { 4086 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4087 return false; 4088 SplatElem = Mask[i]; 4089 } 4090 4091 return true; 4092 } 4093 4094 /// Some targets have expensive vector shifts if the lanes aren't all the same 4095 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4096 /// it's often worth sinking a shufflevector splat down to its use so that 4097 /// codegen can spot all lanes are identical. 4098 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4099 BasicBlock *DefBB = SVI->getParent(); 4100 4101 // Only do this xform if variable vector shifts are particularly expensive. 4102 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4103 return false; 4104 4105 // We only expect better codegen by sinking a shuffle if we can recognise a 4106 // constant splat. 4107 if (!isBroadcastShuffle(SVI)) 4108 return false; 4109 4110 // InsertedShuffles - Only insert a shuffle in each block once. 4111 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4112 4113 bool MadeChange = false; 4114 for (User *U : SVI->users()) { 4115 Instruction *UI = cast<Instruction>(U); 4116 4117 // Figure out which BB this ext is used in. 4118 BasicBlock *UserBB = UI->getParent(); 4119 if (UserBB == DefBB) continue; 4120 4121 // For now only apply this when the splat is used by a shift instruction. 4122 if (!UI->isShift()) continue; 4123 4124 // Everything checks out, sink the shuffle if the user's block doesn't 4125 // already have a copy. 4126 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4127 4128 if (!InsertedShuffle) { 4129 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4130 assert(InsertPt != UserBB->end()); 4131 InsertedShuffle = 4132 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4133 SVI->getOperand(2), "", &*InsertPt); 4134 } 4135 4136 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4137 MadeChange = true; 4138 } 4139 4140 // If we removed all uses, nuke the shuffle. 4141 if (SVI->use_empty()) { 4142 SVI->eraseFromParent(); 4143 MadeChange = true; 4144 } 4145 4146 return MadeChange; 4147 } 4148 4149 namespace { 4150 /// \brief Helper class to promote a scalar operation to a vector one. 4151 /// This class is used to move downward extractelement transition. 4152 /// E.g., 4153 /// a = vector_op <2 x i32> 4154 /// b = extractelement <2 x i32> a, i32 0 4155 /// c = scalar_op b 4156 /// store c 4157 /// 4158 /// => 4159 /// a = vector_op <2 x i32> 4160 /// c = vector_op a (equivalent to scalar_op on the related lane) 4161 /// * d = extractelement <2 x i32> c, i32 0 4162 /// * store d 4163 /// Assuming both extractelement and store can be combine, we get rid of the 4164 /// transition. 4165 class VectorPromoteHelper { 4166 /// DataLayout associated with the current module. 4167 const DataLayout &DL; 4168 4169 /// Used to perform some checks on the legality of vector operations. 4170 const TargetLowering &TLI; 4171 4172 /// Used to estimated the cost of the promoted chain. 4173 const TargetTransformInfo &TTI; 4174 4175 /// The transition being moved downwards. 4176 Instruction *Transition; 4177 /// The sequence of instructions to be promoted. 4178 SmallVector<Instruction *, 4> InstsToBePromoted; 4179 /// Cost of combining a store and an extract. 4180 unsigned StoreExtractCombineCost; 4181 /// Instruction that will be combined with the transition. 4182 Instruction *CombineInst; 4183 4184 /// \brief The instruction that represents the current end of the transition. 4185 /// Since we are faking the promotion until we reach the end of the chain 4186 /// of computation, we need a way to get the current end of the transition. 4187 Instruction *getEndOfTransition() const { 4188 if (InstsToBePromoted.empty()) 4189 return Transition; 4190 return InstsToBePromoted.back(); 4191 } 4192 4193 /// \brief Return the index of the original value in the transition. 4194 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 4195 /// c, is at index 0. 4196 unsigned getTransitionOriginalValueIdx() const { 4197 assert(isa<ExtractElementInst>(Transition) && 4198 "Other kind of transitions are not supported yet"); 4199 return 0; 4200 } 4201 4202 /// \brief Return the index of the index in the transition. 4203 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 4204 /// is at index 1. 4205 unsigned getTransitionIdx() const { 4206 assert(isa<ExtractElementInst>(Transition) && 4207 "Other kind of transitions are not supported yet"); 4208 return 1; 4209 } 4210 4211 /// \brief Get the type of the transition. 4212 /// This is the type of the original value. 4213 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 4214 /// transition is <2 x i32>. 4215 Type *getTransitionType() const { 4216 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 4217 } 4218 4219 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 4220 /// I.e., we have the following sequence: 4221 /// Def = Transition <ty1> a to <ty2> 4222 /// b = ToBePromoted <ty2> Def, ... 4223 /// => 4224 /// b = ToBePromoted <ty1> a, ... 4225 /// Def = Transition <ty1> ToBePromoted to <ty2> 4226 void promoteImpl(Instruction *ToBePromoted); 4227 4228 /// \brief Check whether or not it is profitable to promote all the 4229 /// instructions enqueued to be promoted. 4230 bool isProfitableToPromote() { 4231 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 4232 unsigned Index = isa<ConstantInt>(ValIdx) 4233 ? cast<ConstantInt>(ValIdx)->getZExtValue() 4234 : -1; 4235 Type *PromotedType = getTransitionType(); 4236 4237 StoreInst *ST = cast<StoreInst>(CombineInst); 4238 unsigned AS = ST->getPointerAddressSpace(); 4239 unsigned Align = ST->getAlignment(); 4240 // Check if this store is supported. 4241 if (!TLI.allowsMisalignedMemoryAccesses( 4242 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 4243 Align)) { 4244 // If this is not supported, there is no way we can combine 4245 // the extract with the store. 4246 return false; 4247 } 4248 4249 // The scalar chain of computation has to pay for the transition 4250 // scalar to vector. 4251 // The vector chain has to account for the combining cost. 4252 uint64_t ScalarCost = 4253 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 4254 uint64_t VectorCost = StoreExtractCombineCost; 4255 for (const auto &Inst : InstsToBePromoted) { 4256 // Compute the cost. 4257 // By construction, all instructions being promoted are arithmetic ones. 4258 // Moreover, one argument is a constant that can be viewed as a splat 4259 // constant. 4260 Value *Arg0 = Inst->getOperand(0); 4261 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 4262 isa<ConstantFP>(Arg0); 4263 TargetTransformInfo::OperandValueKind Arg0OVK = 4264 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4265 : TargetTransformInfo::OK_AnyValue; 4266 TargetTransformInfo::OperandValueKind Arg1OVK = 4267 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 4268 : TargetTransformInfo::OK_AnyValue; 4269 ScalarCost += TTI.getArithmeticInstrCost( 4270 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 4271 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 4272 Arg0OVK, Arg1OVK); 4273 } 4274 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 4275 << ScalarCost << "\nVector: " << VectorCost << '\n'); 4276 return ScalarCost > VectorCost; 4277 } 4278 4279 /// \brief Generate a constant vector with \p Val with the same 4280 /// number of elements as the transition. 4281 /// \p UseSplat defines whether or not \p Val should be replicated 4282 /// across the whole vector. 4283 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 4284 /// otherwise we generate a vector with as many undef as possible: 4285 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 4286 /// used at the index of the extract. 4287 Value *getConstantVector(Constant *Val, bool UseSplat) const { 4288 unsigned ExtractIdx = UINT_MAX; 4289 if (!UseSplat) { 4290 // If we cannot determine where the constant must be, we have to 4291 // use a splat constant. 4292 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 4293 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 4294 ExtractIdx = CstVal->getSExtValue(); 4295 else 4296 UseSplat = true; 4297 } 4298 4299 unsigned End = getTransitionType()->getVectorNumElements(); 4300 if (UseSplat) 4301 return ConstantVector::getSplat(End, Val); 4302 4303 SmallVector<Constant *, 4> ConstVec; 4304 UndefValue *UndefVal = UndefValue::get(Val->getType()); 4305 for (unsigned Idx = 0; Idx != End; ++Idx) { 4306 if (Idx == ExtractIdx) 4307 ConstVec.push_back(Val); 4308 else 4309 ConstVec.push_back(UndefVal); 4310 } 4311 return ConstantVector::get(ConstVec); 4312 } 4313 4314 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 4315 /// in \p Use can trigger undefined behavior. 4316 static bool canCauseUndefinedBehavior(const Instruction *Use, 4317 unsigned OperandIdx) { 4318 // This is not safe to introduce undef when the operand is on 4319 // the right hand side of a division-like instruction. 4320 if (OperandIdx != 1) 4321 return false; 4322 switch (Use->getOpcode()) { 4323 default: 4324 return false; 4325 case Instruction::SDiv: 4326 case Instruction::UDiv: 4327 case Instruction::SRem: 4328 case Instruction::URem: 4329 return true; 4330 case Instruction::FDiv: 4331 case Instruction::FRem: 4332 return !Use->hasNoNaNs(); 4333 } 4334 llvm_unreachable(nullptr); 4335 } 4336 4337 public: 4338 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 4339 const TargetTransformInfo &TTI, Instruction *Transition, 4340 unsigned CombineCost) 4341 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 4342 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4343 assert(Transition && "Do not know how to promote null"); 4344 } 4345 4346 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4347 bool canPromote(const Instruction *ToBePromoted) const { 4348 // We could support CastInst too. 4349 return isa<BinaryOperator>(ToBePromoted); 4350 } 4351 4352 /// \brief Check if it is profitable to promote \p ToBePromoted 4353 /// by moving downward the transition through. 4354 bool shouldPromote(const Instruction *ToBePromoted) const { 4355 // Promote only if all the operands can be statically expanded. 4356 // Indeed, we do not want to introduce any new kind of transitions. 4357 for (const Use &U : ToBePromoted->operands()) { 4358 const Value *Val = U.get(); 4359 if (Val == getEndOfTransition()) { 4360 // If the use is a division and the transition is on the rhs, 4361 // we cannot promote the operation, otherwise we may create a 4362 // division by zero. 4363 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4364 return false; 4365 continue; 4366 } 4367 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4368 !isa<ConstantFP>(Val)) 4369 return false; 4370 } 4371 // Check that the resulting operation is legal. 4372 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4373 if (!ISDOpcode) 4374 return false; 4375 return StressStoreExtract || 4376 TLI.isOperationLegalOrCustom( 4377 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 4378 } 4379 4380 /// \brief Check whether or not \p Use can be combined 4381 /// with the transition. 4382 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4383 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4384 4385 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4386 void enqueueForPromotion(Instruction *ToBePromoted) { 4387 InstsToBePromoted.push_back(ToBePromoted); 4388 } 4389 4390 /// \brief Set the instruction that will be combined with the transition. 4391 void recordCombineInstruction(Instruction *ToBeCombined) { 4392 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4393 CombineInst = ToBeCombined; 4394 } 4395 4396 /// \brief Promote all the instructions enqueued for promotion if it is 4397 /// is profitable. 4398 /// \return True if the promotion happened, false otherwise. 4399 bool promote() { 4400 // Check if there is something to promote. 4401 // Right now, if we do not have anything to combine with, 4402 // we assume the promotion is not profitable. 4403 if (InstsToBePromoted.empty() || !CombineInst) 4404 return false; 4405 4406 // Check cost. 4407 if (!StressStoreExtract && !isProfitableToPromote()) 4408 return false; 4409 4410 // Promote. 4411 for (auto &ToBePromoted : InstsToBePromoted) 4412 promoteImpl(ToBePromoted); 4413 InstsToBePromoted.clear(); 4414 return true; 4415 } 4416 }; 4417 } // End of anonymous namespace. 4418 4419 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4420 // At this point, we know that all the operands of ToBePromoted but Def 4421 // can be statically promoted. 4422 // For Def, we need to use its parameter in ToBePromoted: 4423 // b = ToBePromoted ty1 a 4424 // Def = Transition ty1 b to ty2 4425 // Move the transition down. 4426 // 1. Replace all uses of the promoted operation by the transition. 4427 // = ... b => = ... Def. 4428 assert(ToBePromoted->getType() == Transition->getType() && 4429 "The type of the result of the transition does not match " 4430 "the final type"); 4431 ToBePromoted->replaceAllUsesWith(Transition); 4432 // 2. Update the type of the uses. 4433 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4434 Type *TransitionTy = getTransitionType(); 4435 ToBePromoted->mutateType(TransitionTy); 4436 // 3. Update all the operands of the promoted operation with promoted 4437 // operands. 4438 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4439 for (Use &U : ToBePromoted->operands()) { 4440 Value *Val = U.get(); 4441 Value *NewVal = nullptr; 4442 if (Val == Transition) 4443 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4444 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4445 isa<ConstantFP>(Val)) { 4446 // Use a splat constant if it is not safe to use undef. 4447 NewVal = getConstantVector( 4448 cast<Constant>(Val), 4449 isa<UndefValue>(Val) || 4450 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4451 } else 4452 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4453 "this?"); 4454 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4455 } 4456 Transition->removeFromParent(); 4457 Transition->insertAfter(ToBePromoted); 4458 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4459 } 4460 4461 /// Some targets can do store(extractelement) with one instruction. 4462 /// Try to push the extractelement towards the stores when the target 4463 /// has this feature and this is profitable. 4464 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 4465 unsigned CombineCost = UINT_MAX; 4466 if (DisableStoreExtract || !TLI || 4467 (!StressStoreExtract && 4468 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4469 Inst->getOperand(1), CombineCost))) 4470 return false; 4471 4472 // At this point we know that Inst is a vector to scalar transition. 4473 // Try to move it down the def-use chain, until: 4474 // - We can combine the transition with its single use 4475 // => we got rid of the transition. 4476 // - We escape the current basic block 4477 // => we would need to check that we are moving it at a cheaper place and 4478 // we do not do that for now. 4479 BasicBlock *Parent = Inst->getParent(); 4480 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4481 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 4482 // If the transition has more than one use, assume this is not going to be 4483 // beneficial. 4484 while (Inst->hasOneUse()) { 4485 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4486 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4487 4488 if (ToBePromoted->getParent() != Parent) { 4489 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4490 << ToBePromoted->getParent()->getName() 4491 << ") than the transition (" << Parent->getName() << ").\n"); 4492 return false; 4493 } 4494 4495 if (VPH.canCombine(ToBePromoted)) { 4496 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4497 << "will be combined with: " << *ToBePromoted << '\n'); 4498 VPH.recordCombineInstruction(ToBePromoted); 4499 bool Changed = VPH.promote(); 4500 NumStoreExtractExposed += Changed; 4501 return Changed; 4502 } 4503 4504 DEBUG(dbgs() << "Try promoting.\n"); 4505 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4506 return false; 4507 4508 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4509 4510 VPH.enqueueForPromotion(ToBePromoted); 4511 Inst = ToBePromoted; 4512 } 4513 return false; 4514 } 4515 4516 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 4517 // Bail out if we inserted the instruction to prevent optimizations from 4518 // stepping on each other's toes. 4519 if (InsertedInsts.count(I)) 4520 return false; 4521 4522 if (PHINode *P = dyn_cast<PHINode>(I)) { 4523 // It is possible for very late stage optimizations (such as SimplifyCFG) 4524 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4525 // trivial PHI, go ahead and zap it here. 4526 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 4527 P->replaceAllUsesWith(V); 4528 P->eraseFromParent(); 4529 ++NumPHIsElim; 4530 return true; 4531 } 4532 return false; 4533 } 4534 4535 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4536 // If the source of the cast is a constant, then this should have 4537 // already been constant folded. The only reason NOT to constant fold 4538 // it is if something (e.g. LSR) was careful to place the constant 4539 // evaluation in a block other than then one that uses it (e.g. to hoist 4540 // the address of globals out of a loop). If this is the case, we don't 4541 // want to forward-subst the cast. 4542 if (isa<Constant>(CI->getOperand(0))) 4543 return false; 4544 4545 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 4546 return true; 4547 4548 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4549 /// Sink a zext or sext into its user blocks if the target type doesn't 4550 /// fit in one register 4551 if (TLI && 4552 TLI->getTypeAction(CI->getContext(), 4553 TLI->getValueType(*DL, CI->getType())) == 4554 TargetLowering::TypeExpandInteger) { 4555 return SinkCast(CI); 4556 } else { 4557 bool MadeChange = moveExtToFormExtLoad(I); 4558 return MadeChange | optimizeExtUses(I); 4559 } 4560 } 4561 return false; 4562 } 4563 4564 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4565 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4566 return OptimizeCmpExpression(CI); 4567 4568 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4569 stripInvariantGroupMetadata(*LI); 4570 if (TLI) { 4571 unsigned AS = LI->getPointerAddressSpace(); 4572 return optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 4573 } 4574 return false; 4575 } 4576 4577 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4578 stripInvariantGroupMetadata(*SI); 4579 if (TLI) { 4580 unsigned AS = SI->getPointerAddressSpace(); 4581 return optimizeMemoryInst(I, SI->getOperand(1), 4582 SI->getOperand(0)->getType(), AS); 4583 } 4584 return false; 4585 } 4586 4587 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4588 4589 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4590 BinOp->getOpcode() == Instruction::LShr)) { 4591 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4592 if (TLI && CI && TLI->hasExtractBitsInsn()) 4593 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 4594 4595 return false; 4596 } 4597 4598 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4599 if (GEPI->hasAllZeroIndices()) { 4600 /// The GEP operand must be a pointer, so must its result -> BitCast 4601 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4602 GEPI->getName(), GEPI); 4603 GEPI->replaceAllUsesWith(NC); 4604 GEPI->eraseFromParent(); 4605 ++NumGEPsElim; 4606 optimizeInst(NC, ModifiedDT); 4607 return true; 4608 } 4609 return false; 4610 } 4611 4612 if (CallInst *CI = dyn_cast<CallInst>(I)) 4613 return optimizeCallInst(CI, ModifiedDT); 4614 4615 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4616 return optimizeSelectInst(SI); 4617 4618 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4619 return optimizeShuffleVectorInst(SVI); 4620 4621 if (isa<ExtractElementInst>(I)) 4622 return optimizeExtractElementInst(I); 4623 4624 return false; 4625 } 4626 4627 // In this pass we look for GEP and cast instructions that are used 4628 // across basic blocks and rewrite them to improve basic-block-at-a-time 4629 // selection. 4630 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4631 SunkAddrs.clear(); 4632 bool MadeChange = false; 4633 4634 CurInstIterator = BB.begin(); 4635 while (CurInstIterator != BB.end()) { 4636 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 4637 if (ModifiedDT) 4638 return true; 4639 } 4640 MadeChange |= dupRetToEnableTailCallOpts(&BB); 4641 4642 return MadeChange; 4643 } 4644 4645 // llvm.dbg.value is far away from the value then iSel may not be able 4646 // handle it properly. iSel will drop llvm.dbg.value if it can not 4647 // find a node corresponding to the value. 4648 bool CodeGenPrepare::placeDbgValues(Function &F) { 4649 bool MadeChange = false; 4650 for (BasicBlock &BB : F) { 4651 Instruction *PrevNonDbgInst = nullptr; 4652 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4653 Instruction *Insn = &*BI++; 4654 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4655 // Leave dbg.values that refer to an alloca alone. These 4656 // instrinsics describe the address of a variable (= the alloca) 4657 // being taken. They should not be moved next to the alloca 4658 // (and to the beginning of the scope), but rather stay close to 4659 // where said address is used. 4660 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4661 PrevNonDbgInst = Insn; 4662 continue; 4663 } 4664 4665 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4666 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4667 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4668 DVI->removeFromParent(); 4669 if (isa<PHINode>(VI)) 4670 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 4671 else 4672 DVI->insertAfter(VI); 4673 MadeChange = true; 4674 ++NumDbgValueMoved; 4675 } 4676 } 4677 } 4678 return MadeChange; 4679 } 4680 4681 // If there is a sequence that branches based on comparing a single bit 4682 // against zero that can be combined into a single instruction, and the 4683 // target supports folding these into a single instruction, sink the 4684 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4685 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4686 // searched for. 4687 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4688 if (!EnableAndCmpSinking) 4689 return false; 4690 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4691 return false; 4692 bool MadeChange = false; 4693 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4694 BasicBlock *BB = &*I++; 4695 4696 // Does this BB end with the following? 4697 // %andVal = and %val, #single-bit-set 4698 // %icmpVal = icmp %andResult, 0 4699 // br i1 %cmpVal label %dest1, label %dest2" 4700 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4701 if (!Brcc || !Brcc->isConditional()) 4702 continue; 4703 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4704 if (!Cmp || Cmp->getParent() != BB) 4705 continue; 4706 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4707 if (!Zero || !Zero->isZero()) 4708 continue; 4709 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4710 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4711 continue; 4712 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4713 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4714 continue; 4715 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4716 4717 // Push the "and; icmp" for any users that are conditional branches. 4718 // Since there can only be one branch use per BB, we don't need to keep 4719 // track of which BBs we insert into. 4720 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4721 UI != E; ) { 4722 Use &TheUse = *UI; 4723 // Find brcc use. 4724 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4725 ++UI; 4726 if (!BrccUser || !BrccUser->isConditional()) 4727 continue; 4728 BasicBlock *UserBB = BrccUser->getParent(); 4729 if (UserBB == BB) continue; 4730 DEBUG(dbgs() << "found Brcc use\n"); 4731 4732 // Sink the "and; icmp" to use. 4733 MadeChange = true; 4734 BinaryOperator *NewAnd = 4735 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4736 BrccUser); 4737 CmpInst *NewCmp = 4738 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4739 "", BrccUser); 4740 TheUse = NewCmp; 4741 ++NumAndCmpsMoved; 4742 DEBUG(BrccUser->getParent()->dump()); 4743 } 4744 } 4745 return MadeChange; 4746 } 4747 4748 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4749 /// success, or returns false if no or invalid metadata was found. 4750 static bool extractBranchMetadata(BranchInst *BI, 4751 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4752 assert(BI->isConditional() && 4753 "Looking for probabilities on unconditional branch?"); 4754 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4755 if (!ProfileData || ProfileData->getNumOperands() != 3) 4756 return false; 4757 4758 const auto *CITrue = 4759 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4760 const auto *CIFalse = 4761 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4762 if (!CITrue || !CIFalse) 4763 return false; 4764 4765 ProbTrue = CITrue->getValue().getZExtValue(); 4766 ProbFalse = CIFalse->getValue().getZExtValue(); 4767 4768 return true; 4769 } 4770 4771 /// \brief Scale down both weights to fit into uint32_t. 4772 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4773 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4774 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4775 NewTrue = NewTrue / Scale; 4776 NewFalse = NewFalse / Scale; 4777 } 4778 4779 /// \brief Some targets prefer to split a conditional branch like: 4780 /// \code 4781 /// %0 = icmp ne i32 %a, 0 4782 /// %1 = icmp ne i32 %b, 0 4783 /// %or.cond = or i1 %0, %1 4784 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4785 /// \endcode 4786 /// into multiple branch instructions like: 4787 /// \code 4788 /// bb1: 4789 /// %0 = icmp ne i32 %a, 0 4790 /// br i1 %0, label %TrueBB, label %bb2 4791 /// bb2: 4792 /// %1 = icmp ne i32 %b, 0 4793 /// br i1 %1, label %TrueBB, label %FalseBB 4794 /// \endcode 4795 /// This usually allows instruction selection to do even further optimizations 4796 /// and combine the compare with the branch instruction. Currently this is 4797 /// applied for targets which have "cheap" jump instructions. 4798 /// 4799 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4800 /// 4801 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4802 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 4803 return false; 4804 4805 bool MadeChange = false; 4806 for (auto &BB : F) { 4807 // Does this BB end with the following? 4808 // %cond1 = icmp|fcmp|binary instruction ... 4809 // %cond2 = icmp|fcmp|binary instruction ... 4810 // %cond.or = or|and i1 %cond1, cond2 4811 // br i1 %cond.or label %dest1, label %dest2" 4812 BinaryOperator *LogicOp; 4813 BasicBlock *TBB, *FBB; 4814 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4815 continue; 4816 4817 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4818 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 4819 continue; 4820 4821 unsigned Opc; 4822 Value *Cond1, *Cond2; 4823 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4824 m_OneUse(m_Value(Cond2))))) 4825 Opc = Instruction::And; 4826 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4827 m_OneUse(m_Value(Cond2))))) 4828 Opc = Instruction::Or; 4829 else 4830 continue; 4831 4832 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4833 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4834 continue; 4835 4836 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4837 4838 // Create a new BB. 4839 auto *InsertBefore = std::next(Function::iterator(BB)) 4840 .getNodePtrUnchecked(); 4841 auto TmpBB = BasicBlock::Create(BB.getContext(), 4842 BB.getName() + ".cond.split", 4843 BB.getParent(), InsertBefore); 4844 4845 // Update original basic block by using the first condition directly by the 4846 // branch instruction and removing the no longer needed and/or instruction. 4847 Br1->setCondition(Cond1); 4848 LogicOp->eraseFromParent(); 4849 4850 // Depending on the conditon we have to either replace the true or the false 4851 // successor of the original branch instruction. 4852 if (Opc == Instruction::And) 4853 Br1->setSuccessor(0, TmpBB); 4854 else 4855 Br1->setSuccessor(1, TmpBB); 4856 4857 // Fill in the new basic block. 4858 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4859 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4860 I->removeFromParent(); 4861 I->insertBefore(Br2); 4862 } 4863 4864 // Update PHI nodes in both successors. The original BB needs to be 4865 // replaced in one succesor's PHI nodes, because the branch comes now from 4866 // the newly generated BB (NewBB). In the other successor we need to add one 4867 // incoming edge to the PHI nodes, because both branch instructions target 4868 // now the same successor. Depending on the original branch condition 4869 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4870 // we perfrom the correct update for the PHI nodes. 4871 // This doesn't change the successor order of the just created branch 4872 // instruction (or any other instruction). 4873 if (Opc == Instruction::Or) 4874 std::swap(TBB, FBB); 4875 4876 // Replace the old BB with the new BB. 4877 for (auto &I : *TBB) { 4878 PHINode *PN = dyn_cast<PHINode>(&I); 4879 if (!PN) 4880 break; 4881 int i; 4882 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4883 PN->setIncomingBlock(i, TmpBB); 4884 } 4885 4886 // Add another incoming edge form the new BB. 4887 for (auto &I : *FBB) { 4888 PHINode *PN = dyn_cast<PHINode>(&I); 4889 if (!PN) 4890 break; 4891 auto *Val = PN->getIncomingValueForBlock(&BB); 4892 PN->addIncoming(Val, TmpBB); 4893 } 4894 4895 // Update the branch weights (from SelectionDAGBuilder:: 4896 // FindMergedConditions). 4897 if (Opc == Instruction::Or) { 4898 // Codegen X | Y as: 4899 // BB1: 4900 // jmp_if_X TBB 4901 // jmp TmpBB 4902 // TmpBB: 4903 // jmp_if_Y TBB 4904 // jmp FBB 4905 // 4906 4907 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4908 // The requirement is that 4909 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4910 // = TrueProb for orignal BB. 4911 // Assuming the orignal weights are A and B, one choice is to set BB1's 4912 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4913 // assumes that 4914 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4915 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4916 // TmpBB, but the math is more complicated. 4917 uint64_t TrueWeight, FalseWeight; 4918 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4919 uint64_t NewTrueWeight = TrueWeight; 4920 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4921 scaleWeights(NewTrueWeight, NewFalseWeight); 4922 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4923 .createBranchWeights(TrueWeight, FalseWeight)); 4924 4925 NewTrueWeight = TrueWeight; 4926 NewFalseWeight = 2 * FalseWeight; 4927 scaleWeights(NewTrueWeight, NewFalseWeight); 4928 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4929 .createBranchWeights(TrueWeight, FalseWeight)); 4930 } 4931 } else { 4932 // Codegen X & Y as: 4933 // BB1: 4934 // jmp_if_X TmpBB 4935 // jmp FBB 4936 // TmpBB: 4937 // jmp_if_Y TBB 4938 // jmp FBB 4939 // 4940 // This requires creation of TmpBB after CurBB. 4941 4942 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4943 // The requirement is that 4944 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4945 // = FalseProb for orignal BB. 4946 // Assuming the orignal weights are A and B, one choice is to set BB1's 4947 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4948 // assumes that 4949 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4950 uint64_t TrueWeight, FalseWeight; 4951 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4952 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4953 uint64_t NewFalseWeight = FalseWeight; 4954 scaleWeights(NewTrueWeight, NewFalseWeight); 4955 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4956 .createBranchWeights(TrueWeight, FalseWeight)); 4957 4958 NewTrueWeight = 2 * TrueWeight; 4959 NewFalseWeight = FalseWeight; 4960 scaleWeights(NewTrueWeight, NewFalseWeight); 4961 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4962 .createBranchWeights(TrueWeight, FalseWeight)); 4963 } 4964 } 4965 4966 // Note: No point in getting fancy here, since the DT info is never 4967 // available to CodeGenPrepare. 4968 ModifiedDT = true; 4969 4970 MadeChange = true; 4971 4972 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4973 TmpBB->dump()); 4974 } 4975 return MadeChange; 4976 } 4977 4978 void CodeGenPrepare::stripInvariantGroupMetadata(Instruction &I) { 4979 if (auto *InvariantMD = I.getMetadata(LLVMContext::MD_invariant_group)) 4980 I.dropUnknownNonDebugMetadata(InvariantMD->getMetadataID()); 4981 } 4982