1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 // The hot attribute overwrites profile count based hotness while profile 476 // counts based hotness overwrite the cold attribute. 477 // This is a conservative behabvior. 478 if (F.hasFnAttribute(Attribute::Hot) || 479 PSI->isFunctionHotInCallGraph(&F, *BFI)) 480 F.setSectionPrefix("hot"); 481 // If PSI shows this function is not hot, we will placed the function 482 // into unlikely section if (1) PSI shows this is a cold function, or 483 // (2) the function has a attribute of cold. 484 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 485 F.hasFnAttribute(Attribute::Cold)) 486 F.setSectionPrefix("unlikely"); 487 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 488 PSI->isFunctionHotnessUnknown(F)) 489 F.setSectionPrefix("unknown"); 490 } 491 492 /// This optimization identifies DIV instructions that can be 493 /// profitably bypassed and carried out with a shorter, faster divide. 494 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 495 const DenseMap<unsigned int, unsigned int> &BypassWidths = 496 TLI->getBypassSlowDivWidths(); 497 BasicBlock* BB = &*F.begin(); 498 while (BB != nullptr) { 499 // bypassSlowDivision may create new BBs, but we don't want to reapply the 500 // optimization to those blocks. 501 BasicBlock* Next = BB->getNextNode(); 502 // F.hasOptSize is already checked in the outer if statement. 503 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 504 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 505 BB = Next; 506 } 507 } 508 509 // Eliminate blocks that contain only PHI nodes and an 510 // unconditional branch. 511 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 512 513 bool ModifiedDT = false; 514 if (!DisableBranchOpts) 515 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 516 517 // Split some critical edges where one of the sources is an indirect branch, 518 // to help generate sane code for PHIs involving such edges. 519 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 520 521 bool MadeChange = true; 522 while (MadeChange) { 523 MadeChange = false; 524 DT.reset(); 525 for (Function::iterator I = F.begin(); I != F.end(); ) { 526 BasicBlock *BB = &*I++; 527 bool ModifiedDTOnIteration = false; 528 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 529 530 // Restart BB iteration if the dominator tree of the Function was changed 531 if (ModifiedDTOnIteration) 532 break; 533 } 534 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 535 MadeChange |= mergeSExts(F); 536 if (!LargeOffsetGEPMap.empty()) 537 MadeChange |= splitLargeGEPOffsets(); 538 MadeChange |= optimizePhiTypes(F); 539 540 if (MadeChange) 541 eliminateFallThrough(F); 542 543 // Really free removed instructions during promotion. 544 for (Instruction *I : RemovedInsts) 545 I->deleteValue(); 546 547 EverMadeChange |= MadeChange; 548 SeenChainsForSExt.clear(); 549 ValToSExtendedUses.clear(); 550 RemovedInsts.clear(); 551 LargeOffsetGEPMap.clear(); 552 LargeOffsetGEPID.clear(); 553 } 554 555 NewGEPBases.clear(); 556 SunkAddrs.clear(); 557 558 if (!DisableBranchOpts) { 559 MadeChange = false; 560 // Use a set vector to get deterministic iteration order. The order the 561 // blocks are removed may affect whether or not PHI nodes in successors 562 // are removed. 563 SmallSetVector<BasicBlock*, 8> WorkList; 564 for (BasicBlock &BB : F) { 565 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 566 MadeChange |= ConstantFoldTerminator(&BB, true); 567 if (!MadeChange) continue; 568 569 for (SmallVectorImpl<BasicBlock*>::iterator 570 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 571 if (pred_empty(*II)) 572 WorkList.insert(*II); 573 } 574 575 // Delete the dead blocks and any of their dead successors. 576 MadeChange |= !WorkList.empty(); 577 while (!WorkList.empty()) { 578 BasicBlock *BB = WorkList.pop_back_val(); 579 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 580 581 DeleteDeadBlock(BB); 582 583 for (SmallVectorImpl<BasicBlock*>::iterator 584 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 585 if (pred_empty(*II)) 586 WorkList.insert(*II); 587 } 588 589 // Merge pairs of basic blocks with unconditional branches, connected by 590 // a single edge. 591 if (EverMadeChange || MadeChange) 592 MadeChange |= eliminateFallThrough(F); 593 594 EverMadeChange |= MadeChange; 595 } 596 597 if (!DisableGCOpts) { 598 SmallVector<GCStatepointInst *, 2> Statepoints; 599 for (BasicBlock &BB : F) 600 for (Instruction &I : BB) 601 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 602 Statepoints.push_back(SP); 603 for (auto &I : Statepoints) 604 EverMadeChange |= simplifyOffsetableRelocate(*I); 605 } 606 607 // Do this last to clean up use-before-def scenarios introduced by other 608 // preparatory transforms. 609 EverMadeChange |= placeDbgValues(F); 610 611 #ifndef NDEBUG 612 if (VerifyBFIUpdates) 613 verifyBFIUpdates(F); 614 #endif 615 616 return EverMadeChange; 617 } 618 619 /// An instruction is about to be deleted, so remove all references to it in our 620 /// GEP-tracking data strcutures. 621 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 622 LargeOffsetGEPMap.erase(V); 623 NewGEPBases.erase(V); 624 625 auto GEP = dyn_cast<GetElementPtrInst>(V); 626 if (!GEP) 627 return; 628 629 LargeOffsetGEPID.erase(GEP); 630 631 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 632 if (VecI == LargeOffsetGEPMap.end()) 633 return; 634 635 auto &GEPVector = VecI->second; 636 const auto &I = 637 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 638 if (I == GEPVector.end()) 639 return; 640 641 GEPVector.erase(I); 642 if (GEPVector.empty()) 643 LargeOffsetGEPMap.erase(VecI); 644 } 645 646 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 647 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 648 DominatorTree NewDT(F); 649 LoopInfo NewLI(NewDT); 650 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 651 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 652 NewBFI.verifyMatch(*BFI); 653 } 654 655 /// Merge basic blocks which are connected by a single edge, where one of the 656 /// basic blocks has a single successor pointing to the other basic block, 657 /// which has a single predecessor. 658 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 659 bool Changed = false; 660 // Scan all of the blocks in the function, except for the entry block. 661 // Use a temporary array to avoid iterator being invalidated when 662 // deleting blocks. 663 SmallVector<WeakTrackingVH, 16> Blocks; 664 for (auto &Block : llvm::drop_begin(F)) 665 Blocks.push_back(&Block); 666 667 SmallSet<WeakTrackingVH, 16> Preds; 668 for (auto &Block : Blocks) { 669 auto *BB = cast_or_null<BasicBlock>(Block); 670 if (!BB) 671 continue; 672 // If the destination block has a single pred, then this is a trivial 673 // edge, just collapse it. 674 BasicBlock *SinglePred = BB->getSinglePredecessor(); 675 676 // Don't merge if BB's address is taken. 677 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 678 679 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 680 if (Term && !Term->isConditional()) { 681 Changed = true; 682 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 683 684 // Merge BB into SinglePred and delete it. 685 MergeBlockIntoPredecessor(BB); 686 Preds.insert(SinglePred); 687 } 688 } 689 690 // (Repeatedly) merging blocks into their predecessors can create redundant 691 // debug intrinsics. 692 for (auto &Pred : Preds) 693 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 694 RemoveRedundantDbgInstrs(BB); 695 696 return Changed; 697 } 698 699 /// Find a destination block from BB if BB is mergeable empty block. 700 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 701 // If this block doesn't end with an uncond branch, ignore it. 702 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 703 if (!BI || !BI->isUnconditional()) 704 return nullptr; 705 706 // If the instruction before the branch (skipping debug info) isn't a phi 707 // node, then other stuff is happening here. 708 BasicBlock::iterator BBI = BI->getIterator(); 709 if (BBI != BB->begin()) { 710 --BBI; 711 while (isa<DbgInfoIntrinsic>(BBI)) { 712 if (BBI == BB->begin()) 713 break; 714 --BBI; 715 } 716 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 717 return nullptr; 718 } 719 720 // Do not break infinite loops. 721 BasicBlock *DestBB = BI->getSuccessor(0); 722 if (DestBB == BB) 723 return nullptr; 724 725 if (!canMergeBlocks(BB, DestBB)) 726 DestBB = nullptr; 727 728 return DestBB; 729 } 730 731 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 732 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 733 /// edges in ways that are non-optimal for isel. Start by eliminating these 734 /// blocks so we can split them the way we want them. 735 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 736 SmallPtrSet<BasicBlock *, 16> Preheaders; 737 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 738 while (!LoopList.empty()) { 739 Loop *L = LoopList.pop_back_val(); 740 llvm::append_range(LoopList, *L); 741 if (BasicBlock *Preheader = L->getLoopPreheader()) 742 Preheaders.insert(Preheader); 743 } 744 745 bool MadeChange = false; 746 // Copy blocks into a temporary array to avoid iterator invalidation issues 747 // as we remove them. 748 // Note that this intentionally skips the entry block. 749 SmallVector<WeakTrackingVH, 16> Blocks; 750 for (auto &Block : llvm::drop_begin(F)) 751 Blocks.push_back(&Block); 752 753 for (auto &Block : Blocks) { 754 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 755 if (!BB) 756 continue; 757 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 758 if (!DestBB || 759 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 760 continue; 761 762 eliminateMostlyEmptyBlock(BB); 763 MadeChange = true; 764 } 765 return MadeChange; 766 } 767 768 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 769 BasicBlock *DestBB, 770 bool isPreheader) { 771 // Do not delete loop preheaders if doing so would create a critical edge. 772 // Loop preheaders can be good locations to spill registers. If the 773 // preheader is deleted and we create a critical edge, registers may be 774 // spilled in the loop body instead. 775 if (!DisablePreheaderProtect && isPreheader && 776 !(BB->getSinglePredecessor() && 777 BB->getSinglePredecessor()->getSingleSuccessor())) 778 return false; 779 780 // Skip merging if the block's successor is also a successor to any callbr 781 // that leads to this block. 782 // FIXME: Is this really needed? Is this a correctness issue? 783 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 784 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 785 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 786 if (DestBB == CBI->getSuccessor(i)) 787 return false; 788 } 789 790 // Try to skip merging if the unique predecessor of BB is terminated by a 791 // switch or indirect branch instruction, and BB is used as an incoming block 792 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 793 // add COPY instructions in the predecessor of BB instead of BB (if it is not 794 // merged). Note that the critical edge created by merging such blocks wont be 795 // split in MachineSink because the jump table is not analyzable. By keeping 796 // such empty block (BB), ISel will place COPY instructions in BB, not in the 797 // predecessor of BB. 798 BasicBlock *Pred = BB->getUniquePredecessor(); 799 if (!Pred || 800 !(isa<SwitchInst>(Pred->getTerminator()) || 801 isa<IndirectBrInst>(Pred->getTerminator()))) 802 return true; 803 804 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 805 return true; 806 807 // We use a simple cost heuristic which determine skipping merging is 808 // profitable if the cost of skipping merging is less than the cost of 809 // merging : Cost(skipping merging) < Cost(merging BB), where the 810 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 811 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 812 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 813 // Freq(Pred) / Freq(BB) > 2. 814 // Note that if there are multiple empty blocks sharing the same incoming 815 // value for the PHIs in the DestBB, we consider them together. In such 816 // case, Cost(merging BB) will be the sum of their frequencies. 817 818 if (!isa<PHINode>(DestBB->begin())) 819 return true; 820 821 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 822 823 // Find all other incoming blocks from which incoming values of all PHIs in 824 // DestBB are the same as the ones from BB. 825 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 826 ++PI) { 827 BasicBlock *DestBBPred = *PI; 828 if (DestBBPred == BB) 829 continue; 830 831 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 832 return DestPN.getIncomingValueForBlock(BB) == 833 DestPN.getIncomingValueForBlock(DestBBPred); 834 })) 835 SameIncomingValueBBs.insert(DestBBPred); 836 } 837 838 // See if all BB's incoming values are same as the value from Pred. In this 839 // case, no reason to skip merging because COPYs are expected to be place in 840 // Pred already. 841 if (SameIncomingValueBBs.count(Pred)) 842 return true; 843 844 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 845 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 846 847 for (auto *SameValueBB : SameIncomingValueBBs) 848 if (SameValueBB->getUniquePredecessor() == Pred && 849 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 850 BBFreq += BFI->getBlockFreq(SameValueBB); 851 852 return PredFreq.getFrequency() <= 853 BBFreq.getFrequency() * FreqRatioToSkipMerge; 854 } 855 856 /// Return true if we can merge BB into DestBB if there is a single 857 /// unconditional branch between them, and BB contains no other non-phi 858 /// instructions. 859 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 860 const BasicBlock *DestBB) const { 861 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 862 // the successor. If there are more complex condition (e.g. preheaders), 863 // don't mess around with them. 864 for (const PHINode &PN : BB->phis()) { 865 for (const User *U : PN.users()) { 866 const Instruction *UI = cast<Instruction>(U); 867 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 868 return false; 869 // If User is inside DestBB block and it is a PHINode then check 870 // incoming value. If incoming value is not from BB then this is 871 // a complex condition (e.g. preheaders) we want to avoid here. 872 if (UI->getParent() == DestBB) { 873 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 874 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 875 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 876 if (Insn && Insn->getParent() == BB && 877 Insn->getParent() != UPN->getIncomingBlock(I)) 878 return false; 879 } 880 } 881 } 882 } 883 884 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 885 // and DestBB may have conflicting incoming values for the block. If so, we 886 // can't merge the block. 887 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 888 if (!DestBBPN) return true; // no conflict. 889 890 // Collect the preds of BB. 891 SmallPtrSet<const BasicBlock*, 16> BBPreds; 892 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 893 // It is faster to get preds from a PHI than with pred_iterator. 894 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 895 BBPreds.insert(BBPN->getIncomingBlock(i)); 896 } else { 897 BBPreds.insert(pred_begin(BB), pred_end(BB)); 898 } 899 900 // Walk the preds of DestBB. 901 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 902 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 903 if (BBPreds.count(Pred)) { // Common predecessor? 904 for (const PHINode &PN : DestBB->phis()) { 905 const Value *V1 = PN.getIncomingValueForBlock(Pred); 906 const Value *V2 = PN.getIncomingValueForBlock(BB); 907 908 // If V2 is a phi node in BB, look up what the mapped value will be. 909 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 910 if (V2PN->getParent() == BB) 911 V2 = V2PN->getIncomingValueForBlock(Pred); 912 913 // If there is a conflict, bail out. 914 if (V1 != V2) return false; 915 } 916 } 917 } 918 919 return true; 920 } 921 922 /// Eliminate a basic block that has only phi's and an unconditional branch in 923 /// it. 924 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 925 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 926 BasicBlock *DestBB = BI->getSuccessor(0); 927 928 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 929 << *BB << *DestBB); 930 931 // If the destination block has a single pred, then this is a trivial edge, 932 // just collapse it. 933 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 934 if (SinglePred != DestBB) { 935 assert(SinglePred == BB && 936 "Single predecessor not the same as predecessor"); 937 // Merge DestBB into SinglePred/BB and delete it. 938 MergeBlockIntoPredecessor(DestBB); 939 // Note: BB(=SinglePred) will not be deleted on this path. 940 // DestBB(=its single successor) is the one that was deleted. 941 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 942 return; 943 } 944 } 945 946 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 947 // to handle the new incoming edges it is about to have. 948 for (PHINode &PN : DestBB->phis()) { 949 // Remove the incoming value for BB, and remember it. 950 Value *InVal = PN.removeIncomingValue(BB, false); 951 952 // Two options: either the InVal is a phi node defined in BB or it is some 953 // value that dominates BB. 954 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 955 if (InValPhi && InValPhi->getParent() == BB) { 956 // Add all of the input values of the input PHI as inputs of this phi. 957 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 958 PN.addIncoming(InValPhi->getIncomingValue(i), 959 InValPhi->getIncomingBlock(i)); 960 } else { 961 // Otherwise, add one instance of the dominating value for each edge that 962 // we will be adding. 963 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 964 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 965 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 966 } else { 967 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 968 PN.addIncoming(InVal, *PI); 969 } 970 } 971 } 972 973 // The PHIs are now updated, change everything that refers to BB to use 974 // DestBB and remove BB. 975 BB->replaceAllUsesWith(DestBB); 976 BB->eraseFromParent(); 977 ++NumBlocksElim; 978 979 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 980 } 981 982 // Computes a map of base pointer relocation instructions to corresponding 983 // derived pointer relocation instructions given a vector of all relocate calls 984 static void computeBaseDerivedRelocateMap( 985 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 986 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 987 &RelocateInstMap) { 988 // Collect information in two maps: one primarily for locating the base object 989 // while filling the second map; the second map is the final structure holding 990 // a mapping between Base and corresponding Derived relocate calls 991 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 992 for (auto *ThisRelocate : AllRelocateCalls) { 993 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 994 ThisRelocate->getDerivedPtrIndex()); 995 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 996 } 997 for (auto &Item : RelocateIdxMap) { 998 std::pair<unsigned, unsigned> Key = Item.first; 999 if (Key.first == Key.second) 1000 // Base relocation: nothing to insert 1001 continue; 1002 1003 GCRelocateInst *I = Item.second; 1004 auto BaseKey = std::make_pair(Key.first, Key.first); 1005 1006 // We're iterating over RelocateIdxMap so we cannot modify it. 1007 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1008 if (MaybeBase == RelocateIdxMap.end()) 1009 // TODO: We might want to insert a new base object relocate and gep off 1010 // that, if there are enough derived object relocates. 1011 continue; 1012 1013 RelocateInstMap[MaybeBase->second].push_back(I); 1014 } 1015 } 1016 1017 // Accepts a GEP and extracts the operands into a vector provided they're all 1018 // small integer constants 1019 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1020 SmallVectorImpl<Value *> &OffsetV) { 1021 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1022 // Only accept small constant integer operands 1023 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1024 if (!Op || Op->getZExtValue() > 20) 1025 return false; 1026 } 1027 1028 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1029 OffsetV.push_back(GEP->getOperand(i)); 1030 return true; 1031 } 1032 1033 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1034 // replace, computes a replacement, and affects it. 1035 static bool 1036 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1037 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1038 bool MadeChange = false; 1039 // We must ensure the relocation of derived pointer is defined after 1040 // relocation of base pointer. If we find a relocation corresponding to base 1041 // defined earlier than relocation of base then we move relocation of base 1042 // right before found relocation. We consider only relocation in the same 1043 // basic block as relocation of base. Relocations from other basic block will 1044 // be skipped by optimization and we do not care about them. 1045 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1046 &*R != RelocatedBase; ++R) 1047 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1048 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1049 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1050 RelocatedBase->moveBefore(RI); 1051 break; 1052 } 1053 1054 for (GCRelocateInst *ToReplace : Targets) { 1055 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1056 "Not relocating a derived object of the original base object"); 1057 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1058 // A duplicate relocate call. TODO: coalesce duplicates. 1059 continue; 1060 } 1061 1062 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1063 // Base and derived relocates are in different basic blocks. 1064 // In this case transform is only valid when base dominates derived 1065 // relocate. However it would be too expensive to check dominance 1066 // for each such relocate, so we skip the whole transformation. 1067 continue; 1068 } 1069 1070 Value *Base = ToReplace->getBasePtr(); 1071 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1072 if (!Derived || Derived->getPointerOperand() != Base) 1073 continue; 1074 1075 SmallVector<Value *, 2> OffsetV; 1076 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1077 continue; 1078 1079 // Create a Builder and replace the target callsite with a gep 1080 assert(RelocatedBase->getNextNode() && 1081 "Should always have one since it's not a terminator"); 1082 1083 // Insert after RelocatedBase 1084 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1085 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1086 1087 // If gc_relocate does not match the actual type, cast it to the right type. 1088 // In theory, there must be a bitcast after gc_relocate if the type does not 1089 // match, and we should reuse it to get the derived pointer. But it could be 1090 // cases like this: 1091 // bb1: 1092 // ... 1093 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1094 // br label %merge 1095 // 1096 // bb2: 1097 // ... 1098 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1099 // br label %merge 1100 // 1101 // merge: 1102 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1103 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1104 // 1105 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1106 // no matter there is already one or not. In this way, we can handle all cases, and 1107 // the extra bitcast should be optimized away in later passes. 1108 Value *ActualRelocatedBase = RelocatedBase; 1109 if (RelocatedBase->getType() != Base->getType()) { 1110 ActualRelocatedBase = 1111 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1112 } 1113 Value *Replacement = Builder.CreateGEP( 1114 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1115 Replacement->takeName(ToReplace); 1116 // If the newly generated derived pointer's type does not match the original derived 1117 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1118 Value *ActualReplacement = Replacement; 1119 if (Replacement->getType() != ToReplace->getType()) { 1120 ActualReplacement = 1121 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1122 } 1123 ToReplace->replaceAllUsesWith(ActualReplacement); 1124 ToReplace->eraseFromParent(); 1125 1126 MadeChange = true; 1127 } 1128 return MadeChange; 1129 } 1130 1131 // Turns this: 1132 // 1133 // %base = ... 1134 // %ptr = gep %base + 15 1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1136 // %base' = relocate(%tok, i32 4, i32 4) 1137 // %ptr' = relocate(%tok, i32 4, i32 5) 1138 // %val = load %ptr' 1139 // 1140 // into this: 1141 // 1142 // %base = ... 1143 // %ptr = gep %base + 15 1144 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1145 // %base' = gc.relocate(%tok, i32 4, i32 4) 1146 // %ptr' = gep %base' + 15 1147 // %val = load %ptr' 1148 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1149 bool MadeChange = false; 1150 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1151 for (auto *U : I.users()) 1152 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1153 // Collect all the relocate calls associated with a statepoint 1154 AllRelocateCalls.push_back(Relocate); 1155 1156 // We need at least one base pointer relocation + one derived pointer 1157 // relocation to mangle 1158 if (AllRelocateCalls.size() < 2) 1159 return false; 1160 1161 // RelocateInstMap is a mapping from the base relocate instruction to the 1162 // corresponding derived relocate instructions 1163 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1164 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1165 if (RelocateInstMap.empty()) 1166 return false; 1167 1168 for (auto &Item : RelocateInstMap) 1169 // Item.first is the RelocatedBase to offset against 1170 // Item.second is the vector of Targets to replace 1171 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1172 return MadeChange; 1173 } 1174 1175 /// Sink the specified cast instruction into its user blocks. 1176 static bool SinkCast(CastInst *CI) { 1177 BasicBlock *DefBB = CI->getParent(); 1178 1179 /// InsertedCasts - Only insert a cast in each block once. 1180 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1181 1182 bool MadeChange = false; 1183 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1184 UI != E; ) { 1185 Use &TheUse = UI.getUse(); 1186 Instruction *User = cast<Instruction>(*UI); 1187 1188 // Figure out which BB this cast is used in. For PHI's this is the 1189 // appropriate predecessor block. 1190 BasicBlock *UserBB = User->getParent(); 1191 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1192 UserBB = PN->getIncomingBlock(TheUse); 1193 } 1194 1195 // Preincrement use iterator so we don't invalidate it. 1196 ++UI; 1197 1198 // The first insertion point of a block containing an EH pad is after the 1199 // pad. If the pad is the user, we cannot sink the cast past the pad. 1200 if (User->isEHPad()) 1201 continue; 1202 1203 // If the block selected to receive the cast is an EH pad that does not 1204 // allow non-PHI instructions before the terminator, we can't sink the 1205 // cast. 1206 if (UserBB->getTerminator()->isEHPad()) 1207 continue; 1208 1209 // If this user is in the same block as the cast, don't change the cast. 1210 if (UserBB == DefBB) continue; 1211 1212 // If we have already inserted a cast into this block, use it. 1213 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1214 1215 if (!InsertedCast) { 1216 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1217 assert(InsertPt != UserBB->end()); 1218 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1219 CI->getType(), "", &*InsertPt); 1220 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1221 } 1222 1223 // Replace a use of the cast with a use of the new cast. 1224 TheUse = InsertedCast; 1225 MadeChange = true; 1226 ++NumCastUses; 1227 } 1228 1229 // If we removed all uses, nuke the cast. 1230 if (CI->use_empty()) { 1231 salvageDebugInfo(*CI); 1232 CI->eraseFromParent(); 1233 MadeChange = true; 1234 } 1235 1236 return MadeChange; 1237 } 1238 1239 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1240 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1241 /// reduce the number of virtual registers that must be created and coalesced. 1242 /// 1243 /// Return true if any changes are made. 1244 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1245 const DataLayout &DL) { 1246 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1247 // than sinking only nop casts, but is helpful on some platforms. 1248 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1249 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1250 ASC->getDestAddressSpace())) 1251 return false; 1252 } 1253 1254 // If this is a noop copy, 1255 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1256 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1257 1258 // This is an fp<->int conversion? 1259 if (SrcVT.isInteger() != DstVT.isInteger()) 1260 return false; 1261 1262 // If this is an extension, it will be a zero or sign extension, which 1263 // isn't a noop. 1264 if (SrcVT.bitsLT(DstVT)) return false; 1265 1266 // If these values will be promoted, find out what they will be promoted 1267 // to. This helps us consider truncates on PPC as noop copies when they 1268 // are. 1269 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1270 TargetLowering::TypePromoteInteger) 1271 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1272 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1273 TargetLowering::TypePromoteInteger) 1274 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1275 1276 // If, after promotion, these are the same types, this is a noop copy. 1277 if (SrcVT != DstVT) 1278 return false; 1279 1280 return SinkCast(CI); 1281 } 1282 1283 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1284 Value *Arg0, Value *Arg1, 1285 CmpInst *Cmp, 1286 Intrinsic::ID IID) { 1287 auto isIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1288 auto *PN = dyn_cast<PHINode>(BO->getOperand(0)); 1289 if (!PN) 1290 return false; 1291 const Loop *L = LI->getLoopFor(BO->getParent()); 1292 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1293 return false; 1294 const BasicBlock *Latch = L->getLoopLatch(); 1295 if (PN->getIncomingValueForBlock(Latch) != BO) 1296 return false; 1297 if (auto *Step = dyn_cast<Instruction>(BO->getOperand(1))) 1298 if (L->contains(Step->getParent())) 1299 return false; 1300 // IV increment may have other users than the IV. We do not want to make 1301 // dominance queries to analyze the legality of moving it towards the cmp, 1302 // so just check that there is no other users. 1303 if (!BO->hasOneUse()) 1304 return false; 1305 // Do not risk on moving increment into a child loop. 1306 if (LI->getLoopFor(Cmp->getParent()) != L) 1307 return false; 1308 // Ultimately, the insertion point must dominate latch. This should be a 1309 // cheap check because no CFG changes & dom tree recomputation happens 1310 // during the transform. 1311 Function *F = BO->getParent()->getParent(); 1312 return getDT(*F).dominates(Cmp->getParent(), Latch); 1313 }; 1314 if (BO->getParent() != Cmp->getParent() && !isIVIncrement(BO)) { 1315 // We used to use a dominator tree here to allow multi-block optimization. 1316 // But that was problematic because: 1317 // 1. It could cause a perf regression by hoisting the math op into the 1318 // critical path. 1319 // 2. It could cause a perf regression by creating a value that was live 1320 // across multiple blocks and increasing register pressure. 1321 // 3. Use of a dominator tree could cause large compile-time regression. 1322 // This is because we recompute the DT on every change in the main CGP 1323 // run-loop. The recomputing is probably unnecessary in many cases, so if 1324 // that was fixed, using a DT here would be ok. 1325 // 1326 // There is one important particular case we still want to handle: if BO is 1327 // the IV increment. Important properties that make it profitable: 1328 // - We can speculate IV increment anywhere in the loop (as long as the 1329 // indvar Phi is its only user); 1330 // - Upon computing Cmp, we effectively compute something equivalent to the 1331 // IV increment (despite it loops differently in the IR). So moving it up 1332 // to the cmp point does not really increase register pressure. 1333 return false; 1334 } 1335 1336 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1337 if (BO->getOpcode() == Instruction::Add && 1338 IID == Intrinsic::usub_with_overflow) { 1339 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1340 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1341 } 1342 1343 // Insert at the first instruction of the pair. 1344 Instruction *InsertPt = nullptr; 1345 for (Instruction &Iter : *Cmp->getParent()) { 1346 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1347 // the overflow intrinsic are defined. 1348 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1349 InsertPt = &Iter; 1350 break; 1351 } 1352 } 1353 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1354 1355 IRBuilder<> Builder(InsertPt); 1356 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1357 if (BO->getOpcode() != Instruction::Xor) { 1358 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1359 BO->replaceAllUsesWith(Math); 1360 } else 1361 assert(BO->hasOneUse() && 1362 "Patterns with XOr should use the BO only in the compare"); 1363 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1364 Cmp->replaceAllUsesWith(OV); 1365 Cmp->eraseFromParent(); 1366 BO->eraseFromParent(); 1367 return true; 1368 } 1369 1370 /// Match special-case patterns that check for unsigned add overflow. 1371 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1372 BinaryOperator *&Add) { 1373 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1374 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1375 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1376 1377 // We are not expecting non-canonical/degenerate code. Just bail out. 1378 if (isa<Constant>(A)) 1379 return false; 1380 1381 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1382 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1383 B = ConstantInt::get(B->getType(), 1); 1384 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1385 B = ConstantInt::get(B->getType(), -1); 1386 else 1387 return false; 1388 1389 // Check the users of the variable operand of the compare looking for an add 1390 // with the adjusted constant. 1391 for (User *U : A->users()) { 1392 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1393 Add = cast<BinaryOperator>(U); 1394 return true; 1395 } 1396 } 1397 return false; 1398 } 1399 1400 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1401 /// intrinsic. Return true if any changes were made. 1402 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1403 bool &ModifiedDT) { 1404 Value *A, *B; 1405 BinaryOperator *Add; 1406 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1407 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1408 return false; 1409 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1410 A = Add->getOperand(0); 1411 B = Add->getOperand(1); 1412 } 1413 1414 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1415 TLI->getValueType(*DL, Add->getType()), 1416 Add->hasNUsesOrMore(2))) 1417 return false; 1418 1419 // We don't want to move around uses of condition values this late, so we 1420 // check if it is legal to create the call to the intrinsic in the basic 1421 // block containing the icmp. 1422 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1423 return false; 1424 1425 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1426 Intrinsic::uadd_with_overflow)) 1427 return false; 1428 1429 // Reset callers - do not crash by iterating over a dead instruction. 1430 ModifiedDT = true; 1431 return true; 1432 } 1433 1434 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1435 bool &ModifiedDT) { 1436 // We are not expecting non-canonical/degenerate code. Just bail out. 1437 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1438 if (isa<Constant>(A) && isa<Constant>(B)) 1439 return false; 1440 1441 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1442 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1443 if (Pred == ICmpInst::ICMP_UGT) { 1444 std::swap(A, B); 1445 Pred = ICmpInst::ICMP_ULT; 1446 } 1447 // Convert special-case: (A == 0) is the same as (A u< 1). 1448 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1449 B = ConstantInt::get(B->getType(), 1); 1450 Pred = ICmpInst::ICMP_ULT; 1451 } 1452 // Convert special-case: (A != 0) is the same as (0 u< A). 1453 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1454 std::swap(A, B); 1455 Pred = ICmpInst::ICMP_ULT; 1456 } 1457 if (Pred != ICmpInst::ICMP_ULT) 1458 return false; 1459 1460 // Walk the users of a variable operand of a compare looking for a subtract or 1461 // add with that same operand. Also match the 2nd operand of the compare to 1462 // the add/sub, but that may be a negated constant operand of an add. 1463 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1464 BinaryOperator *Sub = nullptr; 1465 for (User *U : CmpVariableOperand->users()) { 1466 // A - B, A u< B --> usubo(A, B) 1467 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1468 Sub = cast<BinaryOperator>(U); 1469 break; 1470 } 1471 1472 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1473 const APInt *CmpC, *AddC; 1474 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1475 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1476 Sub = cast<BinaryOperator>(U); 1477 break; 1478 } 1479 } 1480 if (!Sub) 1481 return false; 1482 1483 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1484 TLI->getValueType(*DL, Sub->getType()), 1485 Sub->hasNUsesOrMore(2))) 1486 return false; 1487 1488 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1489 Cmp, Intrinsic::usub_with_overflow)) 1490 return false; 1491 1492 // Reset callers - do not crash by iterating over a dead instruction. 1493 ModifiedDT = true; 1494 return true; 1495 } 1496 1497 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1498 /// registers that must be created and coalesced. This is a clear win except on 1499 /// targets with multiple condition code registers (PowerPC), where it might 1500 /// lose; some adjustment may be wanted there. 1501 /// 1502 /// Return true if any changes are made. 1503 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1504 if (TLI.hasMultipleConditionRegisters()) 1505 return false; 1506 1507 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1508 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1509 return false; 1510 1511 // Only insert a cmp in each block once. 1512 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1513 1514 bool MadeChange = false; 1515 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1516 UI != E; ) { 1517 Use &TheUse = UI.getUse(); 1518 Instruction *User = cast<Instruction>(*UI); 1519 1520 // Preincrement use iterator so we don't invalidate it. 1521 ++UI; 1522 1523 // Don't bother for PHI nodes. 1524 if (isa<PHINode>(User)) 1525 continue; 1526 1527 // Figure out which BB this cmp is used in. 1528 BasicBlock *UserBB = User->getParent(); 1529 BasicBlock *DefBB = Cmp->getParent(); 1530 1531 // If this user is in the same block as the cmp, don't change the cmp. 1532 if (UserBB == DefBB) continue; 1533 1534 // If we have already inserted a cmp into this block, use it. 1535 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1536 1537 if (!InsertedCmp) { 1538 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1539 assert(InsertPt != UserBB->end()); 1540 InsertedCmp = 1541 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1542 Cmp->getOperand(0), Cmp->getOperand(1), "", 1543 &*InsertPt); 1544 // Propagate the debug info. 1545 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1546 } 1547 1548 // Replace a use of the cmp with a use of the new cmp. 1549 TheUse = InsertedCmp; 1550 MadeChange = true; 1551 ++NumCmpUses; 1552 } 1553 1554 // If we removed all uses, nuke the cmp. 1555 if (Cmp->use_empty()) { 1556 Cmp->eraseFromParent(); 1557 MadeChange = true; 1558 } 1559 1560 return MadeChange; 1561 } 1562 1563 /// For pattern like: 1564 /// 1565 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1566 /// ... 1567 /// DomBB: 1568 /// ... 1569 /// br DomCond, TrueBB, CmpBB 1570 /// CmpBB: (with DomBB being the single predecessor) 1571 /// ... 1572 /// Cmp = icmp eq CmpOp0, CmpOp1 1573 /// ... 1574 /// 1575 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1576 /// different from lowering of icmp eq (PowerPC). This function try to convert 1577 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1578 /// After that, DomCond and Cmp can use the same comparison so reduce one 1579 /// comparison. 1580 /// 1581 /// Return true if any changes are made. 1582 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1583 const TargetLowering &TLI) { 1584 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1585 return false; 1586 1587 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1588 if (Pred != ICmpInst::ICMP_EQ) 1589 return false; 1590 1591 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1592 // icmp slt/sgt would introduce more redundant LLVM IR. 1593 for (User *U : Cmp->users()) { 1594 if (isa<BranchInst>(U)) 1595 continue; 1596 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1597 continue; 1598 return false; 1599 } 1600 1601 // This is a cheap/incomplete check for dominance - just match a single 1602 // predecessor with a conditional branch. 1603 BasicBlock *CmpBB = Cmp->getParent(); 1604 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1605 if (!DomBB) 1606 return false; 1607 1608 // We want to ensure that the only way control gets to the comparison of 1609 // interest is that a less/greater than comparison on the same operands is 1610 // false. 1611 Value *DomCond; 1612 BasicBlock *TrueBB, *FalseBB; 1613 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1614 return false; 1615 if (CmpBB != FalseBB) 1616 return false; 1617 1618 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1619 ICmpInst::Predicate DomPred; 1620 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1621 return false; 1622 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1623 return false; 1624 1625 // Convert the equality comparison to the opposite of the dominating 1626 // comparison and swap the direction for all branch/select users. 1627 // We have conceptually converted: 1628 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1629 // to 1630 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1631 // And similarly for branches. 1632 for (User *U : Cmp->users()) { 1633 if (auto *BI = dyn_cast<BranchInst>(U)) { 1634 assert(BI->isConditional() && "Must be conditional"); 1635 BI->swapSuccessors(); 1636 continue; 1637 } 1638 if (auto *SI = dyn_cast<SelectInst>(U)) { 1639 // Swap operands 1640 SI->swapValues(); 1641 SI->swapProfMetadata(); 1642 continue; 1643 } 1644 llvm_unreachable("Must be a branch or a select"); 1645 } 1646 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1647 return true; 1648 } 1649 1650 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1651 if (sinkCmpExpression(Cmp, *TLI)) 1652 return true; 1653 1654 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1655 return true; 1656 1657 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1658 return true; 1659 1660 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1661 return true; 1662 1663 return false; 1664 } 1665 1666 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1667 /// used in a compare to allow isel to generate better code for targets where 1668 /// this operation can be combined. 1669 /// 1670 /// Return true if any changes are made. 1671 static bool sinkAndCmp0Expression(Instruction *AndI, 1672 const TargetLowering &TLI, 1673 SetOfInstrs &InsertedInsts) { 1674 // Double-check that we're not trying to optimize an instruction that was 1675 // already optimized by some other part of this pass. 1676 assert(!InsertedInsts.count(AndI) && 1677 "Attempting to optimize already optimized and instruction"); 1678 (void) InsertedInsts; 1679 1680 // Nothing to do for single use in same basic block. 1681 if (AndI->hasOneUse() && 1682 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1683 return false; 1684 1685 // Try to avoid cases where sinking/duplicating is likely to increase register 1686 // pressure. 1687 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1688 !isa<ConstantInt>(AndI->getOperand(1)) && 1689 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1690 return false; 1691 1692 for (auto *U : AndI->users()) { 1693 Instruction *User = cast<Instruction>(U); 1694 1695 // Only sink 'and' feeding icmp with 0. 1696 if (!isa<ICmpInst>(User)) 1697 return false; 1698 1699 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1700 if (!CmpC || !CmpC->isZero()) 1701 return false; 1702 } 1703 1704 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1705 return false; 1706 1707 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1708 LLVM_DEBUG(AndI->getParent()->dump()); 1709 1710 // Push the 'and' into the same block as the icmp 0. There should only be 1711 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1712 // others, so we don't need to keep track of which BBs we insert into. 1713 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1714 UI != E; ) { 1715 Use &TheUse = UI.getUse(); 1716 Instruction *User = cast<Instruction>(*UI); 1717 1718 // Preincrement use iterator so we don't invalidate it. 1719 ++UI; 1720 1721 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1722 1723 // Keep the 'and' in the same place if the use is already in the same block. 1724 Instruction *InsertPt = 1725 User->getParent() == AndI->getParent() ? AndI : User; 1726 Instruction *InsertedAnd = 1727 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1728 AndI->getOperand(1), "", InsertPt); 1729 // Propagate the debug info. 1730 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1731 1732 // Replace a use of the 'and' with a use of the new 'and'. 1733 TheUse = InsertedAnd; 1734 ++NumAndUses; 1735 LLVM_DEBUG(User->getParent()->dump()); 1736 } 1737 1738 // We removed all uses, nuke the and. 1739 AndI->eraseFromParent(); 1740 return true; 1741 } 1742 1743 /// Check if the candidates could be combined with a shift instruction, which 1744 /// includes: 1745 /// 1. Truncate instruction 1746 /// 2. And instruction and the imm is a mask of the low bits: 1747 /// imm & (imm+1) == 0 1748 static bool isExtractBitsCandidateUse(Instruction *User) { 1749 if (!isa<TruncInst>(User)) { 1750 if (User->getOpcode() != Instruction::And || 1751 !isa<ConstantInt>(User->getOperand(1))) 1752 return false; 1753 1754 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1755 1756 if ((Cimm & (Cimm + 1)).getBoolValue()) 1757 return false; 1758 } 1759 return true; 1760 } 1761 1762 /// Sink both shift and truncate instruction to the use of truncate's BB. 1763 static bool 1764 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1765 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1766 const TargetLowering &TLI, const DataLayout &DL) { 1767 BasicBlock *UserBB = User->getParent(); 1768 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1769 auto *TruncI = cast<TruncInst>(User); 1770 bool MadeChange = false; 1771 1772 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1773 TruncE = TruncI->user_end(); 1774 TruncUI != TruncE;) { 1775 1776 Use &TruncTheUse = TruncUI.getUse(); 1777 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1778 // Preincrement use iterator so we don't invalidate it. 1779 1780 ++TruncUI; 1781 1782 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1783 if (!ISDOpcode) 1784 continue; 1785 1786 // If the use is actually a legal node, there will not be an 1787 // implicit truncate. 1788 // FIXME: always querying the result type is just an 1789 // approximation; some nodes' legality is determined by the 1790 // operand or other means. There's no good way to find out though. 1791 if (TLI.isOperationLegalOrCustom( 1792 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1793 continue; 1794 1795 // Don't bother for PHI nodes. 1796 if (isa<PHINode>(TruncUser)) 1797 continue; 1798 1799 BasicBlock *TruncUserBB = TruncUser->getParent(); 1800 1801 if (UserBB == TruncUserBB) 1802 continue; 1803 1804 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1805 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1806 1807 if (!InsertedShift && !InsertedTrunc) { 1808 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1809 assert(InsertPt != TruncUserBB->end()); 1810 // Sink the shift 1811 if (ShiftI->getOpcode() == Instruction::AShr) 1812 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1813 "", &*InsertPt); 1814 else 1815 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1816 "", &*InsertPt); 1817 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1818 1819 // Sink the trunc 1820 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1821 TruncInsertPt++; 1822 assert(TruncInsertPt != TruncUserBB->end()); 1823 1824 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1825 TruncI->getType(), "", &*TruncInsertPt); 1826 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1827 1828 MadeChange = true; 1829 1830 TruncTheUse = InsertedTrunc; 1831 } 1832 } 1833 return MadeChange; 1834 } 1835 1836 /// Sink the shift *right* instruction into user blocks if the uses could 1837 /// potentially be combined with this shift instruction and generate BitExtract 1838 /// instruction. It will only be applied if the architecture supports BitExtract 1839 /// instruction. Here is an example: 1840 /// BB1: 1841 /// %x.extract.shift = lshr i64 %arg1, 32 1842 /// BB2: 1843 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1844 /// ==> 1845 /// 1846 /// BB2: 1847 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1848 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1849 /// 1850 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1851 /// instruction. 1852 /// Return true if any changes are made. 1853 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1854 const TargetLowering &TLI, 1855 const DataLayout &DL) { 1856 BasicBlock *DefBB = ShiftI->getParent(); 1857 1858 /// Only insert instructions in each block once. 1859 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1860 1861 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1862 1863 bool MadeChange = false; 1864 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1865 UI != E;) { 1866 Use &TheUse = UI.getUse(); 1867 Instruction *User = cast<Instruction>(*UI); 1868 // Preincrement use iterator so we don't invalidate it. 1869 ++UI; 1870 1871 // Don't bother for PHI nodes. 1872 if (isa<PHINode>(User)) 1873 continue; 1874 1875 if (!isExtractBitsCandidateUse(User)) 1876 continue; 1877 1878 BasicBlock *UserBB = User->getParent(); 1879 1880 if (UserBB == DefBB) { 1881 // If the shift and truncate instruction are in the same BB. The use of 1882 // the truncate(TruncUse) may still introduce another truncate if not 1883 // legal. In this case, we would like to sink both shift and truncate 1884 // instruction to the BB of TruncUse. 1885 // for example: 1886 // BB1: 1887 // i64 shift.result = lshr i64 opnd, imm 1888 // trunc.result = trunc shift.result to i16 1889 // 1890 // BB2: 1891 // ----> We will have an implicit truncate here if the architecture does 1892 // not have i16 compare. 1893 // cmp i16 trunc.result, opnd2 1894 // 1895 if (isa<TruncInst>(User) && shiftIsLegal 1896 // If the type of the truncate is legal, no truncate will be 1897 // introduced in other basic blocks. 1898 && 1899 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1900 MadeChange = 1901 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1902 1903 continue; 1904 } 1905 // If we have already inserted a shift into this block, use it. 1906 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1907 1908 if (!InsertedShift) { 1909 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1910 assert(InsertPt != UserBB->end()); 1911 1912 if (ShiftI->getOpcode() == Instruction::AShr) 1913 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1914 "", &*InsertPt); 1915 else 1916 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1917 "", &*InsertPt); 1918 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1919 1920 MadeChange = true; 1921 } 1922 1923 // Replace a use of the shift with a use of the new shift. 1924 TheUse = InsertedShift; 1925 } 1926 1927 // If we removed all uses, or there are none, nuke the shift. 1928 if (ShiftI->use_empty()) { 1929 salvageDebugInfo(*ShiftI); 1930 ShiftI->eraseFromParent(); 1931 MadeChange = true; 1932 } 1933 1934 return MadeChange; 1935 } 1936 1937 /// If counting leading or trailing zeros is an expensive operation and a zero 1938 /// input is defined, add a check for zero to avoid calling the intrinsic. 1939 /// 1940 /// We want to transform: 1941 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1942 /// 1943 /// into: 1944 /// entry: 1945 /// %cmpz = icmp eq i64 %A, 0 1946 /// br i1 %cmpz, label %cond.end, label %cond.false 1947 /// cond.false: 1948 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1949 /// br label %cond.end 1950 /// cond.end: 1951 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1952 /// 1953 /// If the transform is performed, return true and set ModifiedDT to true. 1954 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1955 const TargetLowering *TLI, 1956 const DataLayout *DL, 1957 bool &ModifiedDT) { 1958 // If a zero input is undefined, it doesn't make sense to despeculate that. 1959 if (match(CountZeros->getOperand(1), m_One())) 1960 return false; 1961 1962 // If it's cheap to speculate, there's nothing to do. 1963 auto IntrinsicID = CountZeros->getIntrinsicID(); 1964 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1965 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1966 return false; 1967 1968 // Only handle legal scalar cases. Anything else requires too much work. 1969 Type *Ty = CountZeros->getType(); 1970 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1971 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1972 return false; 1973 1974 // The intrinsic will be sunk behind a compare against zero and branch. 1975 BasicBlock *StartBlock = CountZeros->getParent(); 1976 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1977 1978 // Create another block after the count zero intrinsic. A PHI will be added 1979 // in this block to select the result of the intrinsic or the bit-width 1980 // constant if the input to the intrinsic is zero. 1981 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1982 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1983 1984 // Set up a builder to create a compare, conditional branch, and PHI. 1985 IRBuilder<> Builder(CountZeros->getContext()); 1986 Builder.SetInsertPoint(StartBlock->getTerminator()); 1987 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1988 1989 // Replace the unconditional branch that was created by the first split with 1990 // a compare against zero and a conditional branch. 1991 Value *Zero = Constant::getNullValue(Ty); 1992 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1993 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1994 StartBlock->getTerminator()->eraseFromParent(); 1995 1996 // Create a PHI in the end block to select either the output of the intrinsic 1997 // or the bit width of the operand. 1998 Builder.SetInsertPoint(&EndBlock->front()); 1999 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2000 CountZeros->replaceAllUsesWith(PN); 2001 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2002 PN->addIncoming(BitWidth, StartBlock); 2003 PN->addIncoming(CountZeros, CallBlock); 2004 2005 // We are explicitly handling the zero case, so we can set the intrinsic's 2006 // undefined zero argument to 'true'. This will also prevent reprocessing the 2007 // intrinsic; we only despeculate when a zero input is defined. 2008 CountZeros->setArgOperand(1, Builder.getTrue()); 2009 ModifiedDT = true; 2010 return true; 2011 } 2012 2013 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2014 BasicBlock *BB = CI->getParent(); 2015 2016 // Lower inline assembly if we can. 2017 // If we found an inline asm expession, and if the target knows how to 2018 // lower it to normal LLVM code, do so now. 2019 if (CI->isInlineAsm()) { 2020 if (TLI->ExpandInlineAsm(CI)) { 2021 // Avoid invalidating the iterator. 2022 CurInstIterator = BB->begin(); 2023 // Avoid processing instructions out of order, which could cause 2024 // reuse before a value is defined. 2025 SunkAddrs.clear(); 2026 return true; 2027 } 2028 // Sink address computing for memory operands into the block. 2029 if (optimizeInlineAsmInst(CI)) 2030 return true; 2031 } 2032 2033 // Align the pointer arguments to this call if the target thinks it's a good 2034 // idea 2035 unsigned MinSize, PrefAlign; 2036 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2037 for (auto &Arg : CI->arg_operands()) { 2038 // We want to align both objects whose address is used directly and 2039 // objects whose address is used in casts and GEPs, though it only makes 2040 // sense for GEPs if the offset is a multiple of the desired alignment and 2041 // if size - offset meets the size threshold. 2042 if (!Arg->getType()->isPointerTy()) 2043 continue; 2044 APInt Offset(DL->getIndexSizeInBits( 2045 cast<PointerType>(Arg->getType())->getAddressSpace()), 2046 0); 2047 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2048 uint64_t Offset2 = Offset.getLimitedValue(); 2049 if ((Offset2 & (PrefAlign-1)) != 0) 2050 continue; 2051 AllocaInst *AI; 2052 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2053 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2054 AI->setAlignment(Align(PrefAlign)); 2055 // Global variables can only be aligned if they are defined in this 2056 // object (i.e. they are uniquely initialized in this object), and 2057 // over-aligning global variables that have an explicit section is 2058 // forbidden. 2059 GlobalVariable *GV; 2060 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2061 GV->getPointerAlignment(*DL) < PrefAlign && 2062 DL->getTypeAllocSize(GV->getValueType()) >= 2063 MinSize + Offset2) 2064 GV->setAlignment(MaybeAlign(PrefAlign)); 2065 } 2066 // If this is a memcpy (or similar) then we may be able to improve the 2067 // alignment 2068 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2069 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2070 MaybeAlign MIDestAlign = MI->getDestAlign(); 2071 if (!MIDestAlign || DestAlign > *MIDestAlign) 2072 MI->setDestAlignment(DestAlign); 2073 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2074 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2075 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2076 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2077 MTI->setSourceAlignment(SrcAlign); 2078 } 2079 } 2080 } 2081 2082 // If we have a cold call site, try to sink addressing computation into the 2083 // cold block. This interacts with our handling for loads and stores to 2084 // ensure that we can fold all uses of a potential addressing computation 2085 // into their uses. TODO: generalize this to work over profiling data 2086 if (CI->hasFnAttr(Attribute::Cold) && 2087 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2088 for (auto &Arg : CI->arg_operands()) { 2089 if (!Arg->getType()->isPointerTy()) 2090 continue; 2091 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2092 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2093 } 2094 2095 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2096 if (II) { 2097 switch (II->getIntrinsicID()) { 2098 default: break; 2099 case Intrinsic::assume: { 2100 Value *Operand = II->getOperand(0); 2101 II->eraseFromParent(); 2102 // Prune the operand, it's most likely dead. 2103 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2104 RecursivelyDeleteTriviallyDeadInstructions( 2105 Operand, TLInfo, nullptr, 2106 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2107 }); 2108 return true; 2109 } 2110 2111 case Intrinsic::experimental_widenable_condition: { 2112 // Give up on future widening oppurtunties so that we can fold away dead 2113 // paths and merge blocks before going into block-local instruction 2114 // selection. 2115 if (II->use_empty()) { 2116 II->eraseFromParent(); 2117 return true; 2118 } 2119 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2120 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2121 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2122 }); 2123 return true; 2124 } 2125 case Intrinsic::objectsize: 2126 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2127 case Intrinsic::is_constant: 2128 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2129 case Intrinsic::aarch64_stlxr: 2130 case Intrinsic::aarch64_stxr: { 2131 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2132 if (!ExtVal || !ExtVal->hasOneUse() || 2133 ExtVal->getParent() == CI->getParent()) 2134 return false; 2135 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2136 ExtVal->moveBefore(CI); 2137 // Mark this instruction as "inserted by CGP", so that other 2138 // optimizations don't touch it. 2139 InsertedInsts.insert(ExtVal); 2140 return true; 2141 } 2142 2143 case Intrinsic::launder_invariant_group: 2144 case Intrinsic::strip_invariant_group: { 2145 Value *ArgVal = II->getArgOperand(0); 2146 auto it = LargeOffsetGEPMap.find(II); 2147 if (it != LargeOffsetGEPMap.end()) { 2148 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2149 // Make sure not to have to deal with iterator invalidation 2150 // after possibly adding ArgVal to LargeOffsetGEPMap. 2151 auto GEPs = std::move(it->second); 2152 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2153 LargeOffsetGEPMap.erase(II); 2154 } 2155 2156 II->replaceAllUsesWith(ArgVal); 2157 II->eraseFromParent(); 2158 return true; 2159 } 2160 case Intrinsic::cttz: 2161 case Intrinsic::ctlz: 2162 // If counting zeros is expensive, try to avoid it. 2163 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2164 case Intrinsic::fshl: 2165 case Intrinsic::fshr: 2166 return optimizeFunnelShift(II); 2167 case Intrinsic::dbg_value: 2168 return fixupDbgValue(II); 2169 case Intrinsic::vscale: { 2170 // If datalayout has no special restrictions on vector data layout, 2171 // replace `llvm.vscale` by an equivalent constant expression 2172 // to benefit from cheap constant propagation. 2173 Type *ScalableVectorTy = 2174 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2175 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2176 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2177 auto *One = ConstantInt::getSigned(II->getType(), 1); 2178 auto *CGep = 2179 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2180 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2181 II->eraseFromParent(); 2182 return true; 2183 } 2184 break; 2185 } 2186 case Intrinsic::masked_gather: 2187 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2188 case Intrinsic::masked_scatter: 2189 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2190 } 2191 2192 SmallVector<Value *, 2> PtrOps; 2193 Type *AccessTy; 2194 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2195 while (!PtrOps.empty()) { 2196 Value *PtrVal = PtrOps.pop_back_val(); 2197 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2198 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2199 return true; 2200 } 2201 } 2202 2203 // From here on out we're working with named functions. 2204 if (!CI->getCalledFunction()) return false; 2205 2206 // Lower all default uses of _chk calls. This is very similar 2207 // to what InstCombineCalls does, but here we are only lowering calls 2208 // to fortified library functions (e.g. __memcpy_chk) that have the default 2209 // "don't know" as the objectsize. Anything else should be left alone. 2210 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2211 IRBuilder<> Builder(CI); 2212 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2213 CI->replaceAllUsesWith(V); 2214 CI->eraseFromParent(); 2215 return true; 2216 } 2217 2218 return false; 2219 } 2220 2221 /// Look for opportunities to duplicate return instructions to the predecessor 2222 /// to enable tail call optimizations. The case it is currently looking for is: 2223 /// @code 2224 /// bb0: 2225 /// %tmp0 = tail call i32 @f0() 2226 /// br label %return 2227 /// bb1: 2228 /// %tmp1 = tail call i32 @f1() 2229 /// br label %return 2230 /// bb2: 2231 /// %tmp2 = tail call i32 @f2() 2232 /// br label %return 2233 /// return: 2234 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2235 /// ret i32 %retval 2236 /// @endcode 2237 /// 2238 /// => 2239 /// 2240 /// @code 2241 /// bb0: 2242 /// %tmp0 = tail call i32 @f0() 2243 /// ret i32 %tmp0 2244 /// bb1: 2245 /// %tmp1 = tail call i32 @f1() 2246 /// ret i32 %tmp1 2247 /// bb2: 2248 /// %tmp2 = tail call i32 @f2() 2249 /// ret i32 %tmp2 2250 /// @endcode 2251 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2252 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2253 if (!RetI) 2254 return false; 2255 2256 PHINode *PN = nullptr; 2257 ExtractValueInst *EVI = nullptr; 2258 BitCastInst *BCI = nullptr; 2259 Value *V = RetI->getReturnValue(); 2260 if (V) { 2261 BCI = dyn_cast<BitCastInst>(V); 2262 if (BCI) 2263 V = BCI->getOperand(0); 2264 2265 EVI = dyn_cast<ExtractValueInst>(V); 2266 if (EVI) { 2267 V = EVI->getOperand(0); 2268 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2269 return false; 2270 } 2271 2272 PN = dyn_cast<PHINode>(V); 2273 if (!PN) 2274 return false; 2275 } 2276 2277 if (PN && PN->getParent() != BB) 2278 return false; 2279 2280 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2281 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2282 if (BC && BC->hasOneUse()) 2283 Inst = BC->user_back(); 2284 2285 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2286 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2287 return false; 2288 }; 2289 2290 // Make sure there are no instructions between the first instruction 2291 // and return. 2292 const Instruction *BI = BB->getFirstNonPHI(); 2293 // Skip over debug and the bitcast. 2294 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2295 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2296 BI = BI->getNextNode(); 2297 if (BI != RetI) 2298 return false; 2299 2300 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2301 /// call. 2302 const Function *F = BB->getParent(); 2303 SmallVector<BasicBlock*, 4> TailCallBBs; 2304 if (PN) { 2305 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2306 // Look through bitcasts. 2307 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2308 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2309 BasicBlock *PredBB = PN->getIncomingBlock(I); 2310 // Make sure the phi value is indeed produced by the tail call. 2311 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2312 TLI->mayBeEmittedAsTailCall(CI) && 2313 attributesPermitTailCall(F, CI, RetI, *TLI)) 2314 TailCallBBs.push_back(PredBB); 2315 } 2316 } else { 2317 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2318 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2319 if (!VisitedBBs.insert(*PI).second) 2320 continue; 2321 if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) { 2322 CallInst *CI = dyn_cast<CallInst>(I); 2323 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2324 attributesPermitTailCall(F, CI, RetI, *TLI)) 2325 TailCallBBs.push_back(*PI); 2326 } 2327 } 2328 } 2329 2330 bool Changed = false; 2331 for (auto const &TailCallBB : TailCallBBs) { 2332 // Make sure the call instruction is followed by an unconditional branch to 2333 // the return block. 2334 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2335 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2336 continue; 2337 2338 // Duplicate the return into TailCallBB. 2339 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2340 assert(!VerifyBFIUpdates || 2341 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2342 BFI->setBlockFreq( 2343 BB, 2344 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2345 ModifiedDT = Changed = true; 2346 ++NumRetsDup; 2347 } 2348 2349 // If we eliminated all predecessors of the block, delete the block now. 2350 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2351 BB->eraseFromParent(); 2352 2353 return Changed; 2354 } 2355 2356 //===----------------------------------------------------------------------===// 2357 // Memory Optimization 2358 //===----------------------------------------------------------------------===// 2359 2360 namespace { 2361 2362 /// This is an extended version of TargetLowering::AddrMode 2363 /// which holds actual Value*'s for register values. 2364 struct ExtAddrMode : public TargetLowering::AddrMode { 2365 Value *BaseReg = nullptr; 2366 Value *ScaledReg = nullptr; 2367 Value *OriginalValue = nullptr; 2368 bool InBounds = true; 2369 2370 enum FieldName { 2371 NoField = 0x00, 2372 BaseRegField = 0x01, 2373 BaseGVField = 0x02, 2374 BaseOffsField = 0x04, 2375 ScaledRegField = 0x08, 2376 ScaleField = 0x10, 2377 MultipleFields = 0xff 2378 }; 2379 2380 2381 ExtAddrMode() = default; 2382 2383 void print(raw_ostream &OS) const; 2384 void dump() const; 2385 2386 FieldName compare(const ExtAddrMode &other) { 2387 // First check that the types are the same on each field, as differing types 2388 // is something we can't cope with later on. 2389 if (BaseReg && other.BaseReg && 2390 BaseReg->getType() != other.BaseReg->getType()) 2391 return MultipleFields; 2392 if (BaseGV && other.BaseGV && 2393 BaseGV->getType() != other.BaseGV->getType()) 2394 return MultipleFields; 2395 if (ScaledReg && other.ScaledReg && 2396 ScaledReg->getType() != other.ScaledReg->getType()) 2397 return MultipleFields; 2398 2399 // Conservatively reject 'inbounds' mismatches. 2400 if (InBounds != other.InBounds) 2401 return MultipleFields; 2402 2403 // Check each field to see if it differs. 2404 unsigned Result = NoField; 2405 if (BaseReg != other.BaseReg) 2406 Result |= BaseRegField; 2407 if (BaseGV != other.BaseGV) 2408 Result |= BaseGVField; 2409 if (BaseOffs != other.BaseOffs) 2410 Result |= BaseOffsField; 2411 if (ScaledReg != other.ScaledReg) 2412 Result |= ScaledRegField; 2413 // Don't count 0 as being a different scale, because that actually means 2414 // unscaled (which will already be counted by having no ScaledReg). 2415 if (Scale && other.Scale && Scale != other.Scale) 2416 Result |= ScaleField; 2417 2418 if (countPopulation(Result) > 1) 2419 return MultipleFields; 2420 else 2421 return static_cast<FieldName>(Result); 2422 } 2423 2424 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2425 // with no offset. 2426 bool isTrivial() { 2427 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2428 // trivial if at most one of these terms is nonzero, except that BaseGV and 2429 // BaseReg both being zero actually means a null pointer value, which we 2430 // consider to be 'non-zero' here. 2431 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2432 } 2433 2434 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2435 switch (Field) { 2436 default: 2437 return nullptr; 2438 case BaseRegField: 2439 return BaseReg; 2440 case BaseGVField: 2441 return BaseGV; 2442 case ScaledRegField: 2443 return ScaledReg; 2444 case BaseOffsField: 2445 return ConstantInt::get(IntPtrTy, BaseOffs); 2446 } 2447 } 2448 2449 void SetCombinedField(FieldName Field, Value *V, 2450 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2451 switch (Field) { 2452 default: 2453 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2454 break; 2455 case ExtAddrMode::BaseRegField: 2456 BaseReg = V; 2457 break; 2458 case ExtAddrMode::BaseGVField: 2459 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2460 // in the BaseReg field. 2461 assert(BaseReg == nullptr); 2462 BaseReg = V; 2463 BaseGV = nullptr; 2464 break; 2465 case ExtAddrMode::ScaledRegField: 2466 ScaledReg = V; 2467 // If we have a mix of scaled and unscaled addrmodes then we want scale 2468 // to be the scale and not zero. 2469 if (!Scale) 2470 for (const ExtAddrMode &AM : AddrModes) 2471 if (AM.Scale) { 2472 Scale = AM.Scale; 2473 break; 2474 } 2475 break; 2476 case ExtAddrMode::BaseOffsField: 2477 // The offset is no longer a constant, so it goes in ScaledReg with a 2478 // scale of 1. 2479 assert(ScaledReg == nullptr); 2480 ScaledReg = V; 2481 Scale = 1; 2482 BaseOffs = 0; 2483 break; 2484 } 2485 } 2486 }; 2487 2488 } // end anonymous namespace 2489 2490 #ifndef NDEBUG 2491 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2492 AM.print(OS); 2493 return OS; 2494 } 2495 #endif 2496 2497 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2498 void ExtAddrMode::print(raw_ostream &OS) const { 2499 bool NeedPlus = false; 2500 OS << "["; 2501 if (InBounds) 2502 OS << "inbounds "; 2503 if (BaseGV) { 2504 OS << (NeedPlus ? " + " : "") 2505 << "GV:"; 2506 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2507 NeedPlus = true; 2508 } 2509 2510 if (BaseOffs) { 2511 OS << (NeedPlus ? " + " : "") 2512 << BaseOffs; 2513 NeedPlus = true; 2514 } 2515 2516 if (BaseReg) { 2517 OS << (NeedPlus ? " + " : "") 2518 << "Base:"; 2519 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2520 NeedPlus = true; 2521 } 2522 if (Scale) { 2523 OS << (NeedPlus ? " + " : "") 2524 << Scale << "*"; 2525 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2526 } 2527 2528 OS << ']'; 2529 } 2530 2531 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2532 print(dbgs()); 2533 dbgs() << '\n'; 2534 } 2535 #endif 2536 2537 namespace { 2538 2539 /// This class provides transaction based operation on the IR. 2540 /// Every change made through this class is recorded in the internal state and 2541 /// can be undone (rollback) until commit is called. 2542 /// CGP does not check if instructions could be speculatively executed when 2543 /// moved. Preserving the original location would pessimize the debugging 2544 /// experience, as well as negatively impact the quality of sample PGO. 2545 class TypePromotionTransaction { 2546 /// This represents the common interface of the individual transaction. 2547 /// Each class implements the logic for doing one specific modification on 2548 /// the IR via the TypePromotionTransaction. 2549 class TypePromotionAction { 2550 protected: 2551 /// The Instruction modified. 2552 Instruction *Inst; 2553 2554 public: 2555 /// Constructor of the action. 2556 /// The constructor performs the related action on the IR. 2557 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2558 2559 virtual ~TypePromotionAction() = default; 2560 2561 /// Undo the modification done by this action. 2562 /// When this method is called, the IR must be in the same state as it was 2563 /// before this action was applied. 2564 /// \pre Undoing the action works if and only if the IR is in the exact same 2565 /// state as it was directly after this action was applied. 2566 virtual void undo() = 0; 2567 2568 /// Advocate every change made by this action. 2569 /// When the results on the IR of the action are to be kept, it is important 2570 /// to call this function, otherwise hidden information may be kept forever. 2571 virtual void commit() { 2572 // Nothing to be done, this action is not doing anything. 2573 } 2574 }; 2575 2576 /// Utility to remember the position of an instruction. 2577 class InsertionHandler { 2578 /// Position of an instruction. 2579 /// Either an instruction: 2580 /// - Is the first in a basic block: BB is used. 2581 /// - Has a previous instruction: PrevInst is used. 2582 union { 2583 Instruction *PrevInst; 2584 BasicBlock *BB; 2585 } Point; 2586 2587 /// Remember whether or not the instruction had a previous instruction. 2588 bool HasPrevInstruction; 2589 2590 public: 2591 /// Record the position of \p Inst. 2592 InsertionHandler(Instruction *Inst) { 2593 BasicBlock::iterator It = Inst->getIterator(); 2594 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2595 if (HasPrevInstruction) 2596 Point.PrevInst = &*--It; 2597 else 2598 Point.BB = Inst->getParent(); 2599 } 2600 2601 /// Insert \p Inst at the recorded position. 2602 void insert(Instruction *Inst) { 2603 if (HasPrevInstruction) { 2604 if (Inst->getParent()) 2605 Inst->removeFromParent(); 2606 Inst->insertAfter(Point.PrevInst); 2607 } else { 2608 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2609 if (Inst->getParent()) 2610 Inst->moveBefore(Position); 2611 else 2612 Inst->insertBefore(Position); 2613 } 2614 } 2615 }; 2616 2617 /// Move an instruction before another. 2618 class InstructionMoveBefore : public TypePromotionAction { 2619 /// Original position of the instruction. 2620 InsertionHandler Position; 2621 2622 public: 2623 /// Move \p Inst before \p Before. 2624 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2625 : TypePromotionAction(Inst), Position(Inst) { 2626 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2627 << "\n"); 2628 Inst->moveBefore(Before); 2629 } 2630 2631 /// Move the instruction back to its original position. 2632 void undo() override { 2633 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2634 Position.insert(Inst); 2635 } 2636 }; 2637 2638 /// Set the operand of an instruction with a new value. 2639 class OperandSetter : public TypePromotionAction { 2640 /// Original operand of the instruction. 2641 Value *Origin; 2642 2643 /// Index of the modified instruction. 2644 unsigned Idx; 2645 2646 public: 2647 /// Set \p Idx operand of \p Inst with \p NewVal. 2648 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2649 : TypePromotionAction(Inst), Idx(Idx) { 2650 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2651 << "for:" << *Inst << "\n" 2652 << "with:" << *NewVal << "\n"); 2653 Origin = Inst->getOperand(Idx); 2654 Inst->setOperand(Idx, NewVal); 2655 } 2656 2657 /// Restore the original value of the instruction. 2658 void undo() override { 2659 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2660 << "for: " << *Inst << "\n" 2661 << "with: " << *Origin << "\n"); 2662 Inst->setOperand(Idx, Origin); 2663 } 2664 }; 2665 2666 /// Hide the operands of an instruction. 2667 /// Do as if this instruction was not using any of its operands. 2668 class OperandsHider : public TypePromotionAction { 2669 /// The list of original operands. 2670 SmallVector<Value *, 4> OriginalValues; 2671 2672 public: 2673 /// Remove \p Inst from the uses of the operands of \p Inst. 2674 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2675 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2676 unsigned NumOpnds = Inst->getNumOperands(); 2677 OriginalValues.reserve(NumOpnds); 2678 for (unsigned It = 0; It < NumOpnds; ++It) { 2679 // Save the current operand. 2680 Value *Val = Inst->getOperand(It); 2681 OriginalValues.push_back(Val); 2682 // Set a dummy one. 2683 // We could use OperandSetter here, but that would imply an overhead 2684 // that we are not willing to pay. 2685 Inst->setOperand(It, UndefValue::get(Val->getType())); 2686 } 2687 } 2688 2689 /// Restore the original list of uses. 2690 void undo() override { 2691 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2692 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2693 Inst->setOperand(It, OriginalValues[It]); 2694 } 2695 }; 2696 2697 /// Build a truncate instruction. 2698 class TruncBuilder : public TypePromotionAction { 2699 Value *Val; 2700 2701 public: 2702 /// Build a truncate instruction of \p Opnd producing a \p Ty 2703 /// result. 2704 /// trunc Opnd to Ty. 2705 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2706 IRBuilder<> Builder(Opnd); 2707 Builder.SetCurrentDebugLocation(DebugLoc()); 2708 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2709 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2710 } 2711 2712 /// Get the built value. 2713 Value *getBuiltValue() { return Val; } 2714 2715 /// Remove the built instruction. 2716 void undo() override { 2717 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2718 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2719 IVal->eraseFromParent(); 2720 } 2721 }; 2722 2723 /// Build a sign extension instruction. 2724 class SExtBuilder : public TypePromotionAction { 2725 Value *Val; 2726 2727 public: 2728 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2729 /// result. 2730 /// sext Opnd to Ty. 2731 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2732 : TypePromotionAction(InsertPt) { 2733 IRBuilder<> Builder(InsertPt); 2734 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2735 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2736 } 2737 2738 /// Get the built value. 2739 Value *getBuiltValue() { return Val; } 2740 2741 /// Remove the built instruction. 2742 void undo() override { 2743 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2744 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2745 IVal->eraseFromParent(); 2746 } 2747 }; 2748 2749 /// Build a zero extension instruction. 2750 class ZExtBuilder : public TypePromotionAction { 2751 Value *Val; 2752 2753 public: 2754 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2755 /// result. 2756 /// zext Opnd to Ty. 2757 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2758 : TypePromotionAction(InsertPt) { 2759 IRBuilder<> Builder(InsertPt); 2760 Builder.SetCurrentDebugLocation(DebugLoc()); 2761 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2762 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2763 } 2764 2765 /// Get the built value. 2766 Value *getBuiltValue() { return Val; } 2767 2768 /// Remove the built instruction. 2769 void undo() override { 2770 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2771 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2772 IVal->eraseFromParent(); 2773 } 2774 }; 2775 2776 /// Mutate an instruction to another type. 2777 class TypeMutator : public TypePromotionAction { 2778 /// Record the original type. 2779 Type *OrigTy; 2780 2781 public: 2782 /// Mutate the type of \p Inst into \p NewTy. 2783 TypeMutator(Instruction *Inst, Type *NewTy) 2784 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2785 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2786 << "\n"); 2787 Inst->mutateType(NewTy); 2788 } 2789 2790 /// Mutate the instruction back to its original type. 2791 void undo() override { 2792 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2793 << "\n"); 2794 Inst->mutateType(OrigTy); 2795 } 2796 }; 2797 2798 /// Replace the uses of an instruction by another instruction. 2799 class UsesReplacer : public TypePromotionAction { 2800 /// Helper structure to keep track of the replaced uses. 2801 struct InstructionAndIdx { 2802 /// The instruction using the instruction. 2803 Instruction *Inst; 2804 2805 /// The index where this instruction is used for Inst. 2806 unsigned Idx; 2807 2808 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2809 : Inst(Inst), Idx(Idx) {} 2810 }; 2811 2812 /// Keep track of the original uses (pair Instruction, Index). 2813 SmallVector<InstructionAndIdx, 4> OriginalUses; 2814 /// Keep track of the debug users. 2815 SmallVector<DbgValueInst *, 1> DbgValues; 2816 2817 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2818 2819 public: 2820 /// Replace all the use of \p Inst by \p New. 2821 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2822 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2823 << "\n"); 2824 // Record the original uses. 2825 for (Use &U : Inst->uses()) { 2826 Instruction *UserI = cast<Instruction>(U.getUser()); 2827 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2828 } 2829 // Record the debug uses separately. They are not in the instruction's 2830 // use list, but they are replaced by RAUW. 2831 findDbgValues(DbgValues, Inst); 2832 2833 // Now, we can replace the uses. 2834 Inst->replaceAllUsesWith(New); 2835 } 2836 2837 /// Reassign the original uses of Inst to Inst. 2838 void undo() override { 2839 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2840 for (use_iterator UseIt = OriginalUses.begin(), 2841 EndIt = OriginalUses.end(); 2842 UseIt != EndIt; ++UseIt) { 2843 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2844 } 2845 // RAUW has replaced all original uses with references to the new value, 2846 // including the debug uses. Since we are undoing the replacements, 2847 // the original debug uses must also be reinstated to maintain the 2848 // correctness and utility of debug value instructions. 2849 for (auto *DVI: DbgValues) { 2850 LLVMContext &Ctx = Inst->getType()->getContext(); 2851 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2852 DVI->setOperand(0, MV); 2853 } 2854 } 2855 }; 2856 2857 /// Remove an instruction from the IR. 2858 class InstructionRemover : public TypePromotionAction { 2859 /// Original position of the instruction. 2860 InsertionHandler Inserter; 2861 2862 /// Helper structure to hide all the link to the instruction. In other 2863 /// words, this helps to do as if the instruction was removed. 2864 OperandsHider Hider; 2865 2866 /// Keep track of the uses replaced, if any. 2867 UsesReplacer *Replacer = nullptr; 2868 2869 /// Keep track of instructions removed. 2870 SetOfInstrs &RemovedInsts; 2871 2872 public: 2873 /// Remove all reference of \p Inst and optionally replace all its 2874 /// uses with New. 2875 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2876 /// \pre If !Inst->use_empty(), then New != nullptr 2877 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2878 Value *New = nullptr) 2879 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2880 RemovedInsts(RemovedInsts) { 2881 if (New) 2882 Replacer = new UsesReplacer(Inst, New); 2883 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2884 RemovedInsts.insert(Inst); 2885 /// The instructions removed here will be freed after completing 2886 /// optimizeBlock() for all blocks as we need to keep track of the 2887 /// removed instructions during promotion. 2888 Inst->removeFromParent(); 2889 } 2890 2891 ~InstructionRemover() override { delete Replacer; } 2892 2893 /// Resurrect the instruction and reassign it to the proper uses if 2894 /// new value was provided when build this action. 2895 void undo() override { 2896 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2897 Inserter.insert(Inst); 2898 if (Replacer) 2899 Replacer->undo(); 2900 Hider.undo(); 2901 RemovedInsts.erase(Inst); 2902 } 2903 }; 2904 2905 public: 2906 /// Restoration point. 2907 /// The restoration point is a pointer to an action instead of an iterator 2908 /// because the iterator may be invalidated but not the pointer. 2909 using ConstRestorationPt = const TypePromotionAction *; 2910 2911 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2912 : RemovedInsts(RemovedInsts) {} 2913 2914 /// Advocate every changes made in that transaction. Return true if any change 2915 /// happen. 2916 bool commit(); 2917 2918 /// Undo all the changes made after the given point. 2919 void rollback(ConstRestorationPt Point); 2920 2921 /// Get the current restoration point. 2922 ConstRestorationPt getRestorationPoint() const; 2923 2924 /// \name API for IR modification with state keeping to support rollback. 2925 /// @{ 2926 /// Same as Instruction::setOperand. 2927 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2928 2929 /// Same as Instruction::eraseFromParent. 2930 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2931 2932 /// Same as Value::replaceAllUsesWith. 2933 void replaceAllUsesWith(Instruction *Inst, Value *New); 2934 2935 /// Same as Value::mutateType. 2936 void mutateType(Instruction *Inst, Type *NewTy); 2937 2938 /// Same as IRBuilder::createTrunc. 2939 Value *createTrunc(Instruction *Opnd, Type *Ty); 2940 2941 /// Same as IRBuilder::createSExt. 2942 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2943 2944 /// Same as IRBuilder::createZExt. 2945 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2946 2947 /// Same as Instruction::moveBefore. 2948 void moveBefore(Instruction *Inst, Instruction *Before); 2949 /// @} 2950 2951 private: 2952 /// The ordered list of actions made so far. 2953 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2954 2955 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2956 2957 SetOfInstrs &RemovedInsts; 2958 }; 2959 2960 } // end anonymous namespace 2961 2962 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2963 Value *NewVal) { 2964 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2965 Inst, Idx, NewVal)); 2966 } 2967 2968 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2969 Value *NewVal) { 2970 Actions.push_back( 2971 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2972 Inst, RemovedInsts, NewVal)); 2973 } 2974 2975 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2976 Value *New) { 2977 Actions.push_back( 2978 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2979 } 2980 2981 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2982 Actions.push_back( 2983 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2984 } 2985 2986 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2987 Type *Ty) { 2988 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2989 Value *Val = Ptr->getBuiltValue(); 2990 Actions.push_back(std::move(Ptr)); 2991 return Val; 2992 } 2993 2994 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2995 Value *Opnd, Type *Ty) { 2996 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2997 Value *Val = Ptr->getBuiltValue(); 2998 Actions.push_back(std::move(Ptr)); 2999 return Val; 3000 } 3001 3002 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 3003 Value *Opnd, Type *Ty) { 3004 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 3005 Value *Val = Ptr->getBuiltValue(); 3006 Actions.push_back(std::move(Ptr)); 3007 return Val; 3008 } 3009 3010 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3011 Instruction *Before) { 3012 Actions.push_back( 3013 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3014 Inst, Before)); 3015 } 3016 3017 TypePromotionTransaction::ConstRestorationPt 3018 TypePromotionTransaction::getRestorationPoint() const { 3019 return !Actions.empty() ? Actions.back().get() : nullptr; 3020 } 3021 3022 bool TypePromotionTransaction::commit() { 3023 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 3024 ++It) 3025 (*It)->commit(); 3026 bool Modified = !Actions.empty(); 3027 Actions.clear(); 3028 return Modified; 3029 } 3030 3031 void TypePromotionTransaction::rollback( 3032 TypePromotionTransaction::ConstRestorationPt Point) { 3033 while (!Actions.empty() && Point != Actions.back().get()) { 3034 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3035 Curr->undo(); 3036 } 3037 } 3038 3039 namespace { 3040 3041 /// A helper class for matching addressing modes. 3042 /// 3043 /// This encapsulates the logic for matching the target-legal addressing modes. 3044 class AddressingModeMatcher { 3045 SmallVectorImpl<Instruction*> &AddrModeInsts; 3046 const TargetLowering &TLI; 3047 const TargetRegisterInfo &TRI; 3048 const DataLayout &DL; 3049 3050 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3051 /// the memory instruction that we're computing this address for. 3052 Type *AccessTy; 3053 unsigned AddrSpace; 3054 Instruction *MemoryInst; 3055 3056 /// This is the addressing mode that we're building up. This is 3057 /// part of the return value of this addressing mode matching stuff. 3058 ExtAddrMode &AddrMode; 3059 3060 /// The instructions inserted by other CodeGenPrepare optimizations. 3061 const SetOfInstrs &InsertedInsts; 3062 3063 /// A map from the instructions to their type before promotion. 3064 InstrToOrigTy &PromotedInsts; 3065 3066 /// The ongoing transaction where every action should be registered. 3067 TypePromotionTransaction &TPT; 3068 3069 // A GEP which has too large offset to be folded into the addressing mode. 3070 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3071 3072 /// This is set to true when we should not do profitability checks. 3073 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3074 bool IgnoreProfitability; 3075 3076 /// True if we are optimizing for size. 3077 bool OptSize; 3078 3079 ProfileSummaryInfo *PSI; 3080 BlockFrequencyInfo *BFI; 3081 3082 AddressingModeMatcher( 3083 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3084 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3085 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3086 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3087 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3088 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3089 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3090 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3091 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3092 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3093 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3094 IgnoreProfitability = false; 3095 } 3096 3097 public: 3098 /// Find the maximal addressing mode that a load/store of V can fold, 3099 /// give an access type of AccessTy. This returns a list of involved 3100 /// instructions in AddrModeInsts. 3101 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3102 /// optimizations. 3103 /// \p PromotedInsts maps the instructions to their type before promotion. 3104 /// \p The ongoing transaction where every action should be registered. 3105 static ExtAddrMode 3106 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3107 SmallVectorImpl<Instruction *> &AddrModeInsts, 3108 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3109 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3110 TypePromotionTransaction &TPT, 3111 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3112 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3113 ExtAddrMode Result; 3114 3115 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3116 MemoryInst, Result, InsertedInsts, 3117 PromotedInsts, TPT, LargeOffsetGEP, 3118 OptSize, PSI, BFI) 3119 .matchAddr(V, 0); 3120 (void)Success; assert(Success && "Couldn't select *anything*?"); 3121 return Result; 3122 } 3123 3124 private: 3125 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3126 bool matchAddr(Value *Addr, unsigned Depth); 3127 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3128 bool *MovedAway = nullptr); 3129 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3130 ExtAddrMode &AMBefore, 3131 ExtAddrMode &AMAfter); 3132 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3133 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3134 Value *PromotedOperand) const; 3135 }; 3136 3137 class PhiNodeSet; 3138 3139 /// An iterator for PhiNodeSet. 3140 class PhiNodeSetIterator { 3141 PhiNodeSet * const Set; 3142 size_t CurrentIndex = 0; 3143 3144 public: 3145 /// The constructor. Start should point to either a valid element, or be equal 3146 /// to the size of the underlying SmallVector of the PhiNodeSet. 3147 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3148 PHINode * operator*() const; 3149 PhiNodeSetIterator& operator++(); 3150 bool operator==(const PhiNodeSetIterator &RHS) const; 3151 bool operator!=(const PhiNodeSetIterator &RHS) const; 3152 }; 3153 3154 /// Keeps a set of PHINodes. 3155 /// 3156 /// This is a minimal set implementation for a specific use case: 3157 /// It is very fast when there are very few elements, but also provides good 3158 /// performance when there are many. It is similar to SmallPtrSet, but also 3159 /// provides iteration by insertion order, which is deterministic and stable 3160 /// across runs. It is also similar to SmallSetVector, but provides removing 3161 /// elements in O(1) time. This is achieved by not actually removing the element 3162 /// from the underlying vector, so comes at the cost of using more memory, but 3163 /// that is fine, since PhiNodeSets are used as short lived objects. 3164 class PhiNodeSet { 3165 friend class PhiNodeSetIterator; 3166 3167 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3168 using iterator = PhiNodeSetIterator; 3169 3170 /// Keeps the elements in the order of their insertion in the underlying 3171 /// vector. To achieve constant time removal, it never deletes any element. 3172 SmallVector<PHINode *, 32> NodeList; 3173 3174 /// Keeps the elements in the underlying set implementation. This (and not the 3175 /// NodeList defined above) is the source of truth on whether an element 3176 /// is actually in the collection. 3177 MapType NodeMap; 3178 3179 /// Points to the first valid (not deleted) element when the set is not empty 3180 /// and the value is not zero. Equals to the size of the underlying vector 3181 /// when the set is empty. When the value is 0, as in the beginning, the 3182 /// first element may or may not be valid. 3183 size_t FirstValidElement = 0; 3184 3185 public: 3186 /// Inserts a new element to the collection. 3187 /// \returns true if the element is actually added, i.e. was not in the 3188 /// collection before the operation. 3189 bool insert(PHINode *Ptr) { 3190 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3191 NodeList.push_back(Ptr); 3192 return true; 3193 } 3194 return false; 3195 } 3196 3197 /// Removes the element from the collection. 3198 /// \returns whether the element is actually removed, i.e. was in the 3199 /// collection before the operation. 3200 bool erase(PHINode *Ptr) { 3201 if (NodeMap.erase(Ptr)) { 3202 SkipRemovedElements(FirstValidElement); 3203 return true; 3204 } 3205 return false; 3206 } 3207 3208 /// Removes all elements and clears the collection. 3209 void clear() { 3210 NodeMap.clear(); 3211 NodeList.clear(); 3212 FirstValidElement = 0; 3213 } 3214 3215 /// \returns an iterator that will iterate the elements in the order of 3216 /// insertion. 3217 iterator begin() { 3218 if (FirstValidElement == 0) 3219 SkipRemovedElements(FirstValidElement); 3220 return PhiNodeSetIterator(this, FirstValidElement); 3221 } 3222 3223 /// \returns an iterator that points to the end of the collection. 3224 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3225 3226 /// Returns the number of elements in the collection. 3227 size_t size() const { 3228 return NodeMap.size(); 3229 } 3230 3231 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3232 size_t count(PHINode *Ptr) const { 3233 return NodeMap.count(Ptr); 3234 } 3235 3236 private: 3237 /// Updates the CurrentIndex so that it will point to a valid element. 3238 /// 3239 /// If the element of NodeList at CurrentIndex is valid, it does not 3240 /// change it. If there are no more valid elements, it updates CurrentIndex 3241 /// to point to the end of the NodeList. 3242 void SkipRemovedElements(size_t &CurrentIndex) { 3243 while (CurrentIndex < NodeList.size()) { 3244 auto it = NodeMap.find(NodeList[CurrentIndex]); 3245 // If the element has been deleted and added again later, NodeMap will 3246 // point to a different index, so CurrentIndex will still be invalid. 3247 if (it != NodeMap.end() && it->second == CurrentIndex) 3248 break; 3249 ++CurrentIndex; 3250 } 3251 } 3252 }; 3253 3254 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3255 : Set(Set), CurrentIndex(Start) {} 3256 3257 PHINode * PhiNodeSetIterator::operator*() const { 3258 assert(CurrentIndex < Set->NodeList.size() && 3259 "PhiNodeSet access out of range"); 3260 return Set->NodeList[CurrentIndex]; 3261 } 3262 3263 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3264 assert(CurrentIndex < Set->NodeList.size() && 3265 "PhiNodeSet access out of range"); 3266 ++CurrentIndex; 3267 Set->SkipRemovedElements(CurrentIndex); 3268 return *this; 3269 } 3270 3271 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3272 return CurrentIndex == RHS.CurrentIndex; 3273 } 3274 3275 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3276 return !((*this) == RHS); 3277 } 3278 3279 /// Keep track of simplification of Phi nodes. 3280 /// Accept the set of all phi nodes and erase phi node from this set 3281 /// if it is simplified. 3282 class SimplificationTracker { 3283 DenseMap<Value *, Value *> Storage; 3284 const SimplifyQuery &SQ; 3285 // Tracks newly created Phi nodes. The elements are iterated by insertion 3286 // order. 3287 PhiNodeSet AllPhiNodes; 3288 // Tracks newly created Select nodes. 3289 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3290 3291 public: 3292 SimplificationTracker(const SimplifyQuery &sq) 3293 : SQ(sq) {} 3294 3295 Value *Get(Value *V) { 3296 do { 3297 auto SV = Storage.find(V); 3298 if (SV == Storage.end()) 3299 return V; 3300 V = SV->second; 3301 } while (true); 3302 } 3303 3304 Value *Simplify(Value *Val) { 3305 SmallVector<Value *, 32> WorkList; 3306 SmallPtrSet<Value *, 32> Visited; 3307 WorkList.push_back(Val); 3308 while (!WorkList.empty()) { 3309 auto *P = WorkList.pop_back_val(); 3310 if (!Visited.insert(P).second) 3311 continue; 3312 if (auto *PI = dyn_cast<Instruction>(P)) 3313 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3314 for (auto *U : PI->users()) 3315 WorkList.push_back(cast<Value>(U)); 3316 Put(PI, V); 3317 PI->replaceAllUsesWith(V); 3318 if (auto *PHI = dyn_cast<PHINode>(PI)) 3319 AllPhiNodes.erase(PHI); 3320 if (auto *Select = dyn_cast<SelectInst>(PI)) 3321 AllSelectNodes.erase(Select); 3322 PI->eraseFromParent(); 3323 } 3324 } 3325 return Get(Val); 3326 } 3327 3328 void Put(Value *From, Value *To) { 3329 Storage.insert({ From, To }); 3330 } 3331 3332 void ReplacePhi(PHINode *From, PHINode *To) { 3333 Value* OldReplacement = Get(From); 3334 while (OldReplacement != From) { 3335 From = To; 3336 To = dyn_cast<PHINode>(OldReplacement); 3337 OldReplacement = Get(From); 3338 } 3339 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3340 Put(From, To); 3341 From->replaceAllUsesWith(To); 3342 AllPhiNodes.erase(From); 3343 From->eraseFromParent(); 3344 } 3345 3346 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3347 3348 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3349 3350 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3351 3352 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3353 3354 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3355 3356 void destroyNewNodes(Type *CommonType) { 3357 // For safe erasing, replace the uses with dummy value first. 3358 auto *Dummy = UndefValue::get(CommonType); 3359 for (auto *I : AllPhiNodes) { 3360 I->replaceAllUsesWith(Dummy); 3361 I->eraseFromParent(); 3362 } 3363 AllPhiNodes.clear(); 3364 for (auto *I : AllSelectNodes) { 3365 I->replaceAllUsesWith(Dummy); 3366 I->eraseFromParent(); 3367 } 3368 AllSelectNodes.clear(); 3369 } 3370 }; 3371 3372 /// A helper class for combining addressing modes. 3373 class AddressingModeCombiner { 3374 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3375 typedef std::pair<PHINode *, PHINode *> PHIPair; 3376 3377 private: 3378 /// The addressing modes we've collected. 3379 SmallVector<ExtAddrMode, 16> AddrModes; 3380 3381 /// The field in which the AddrModes differ, when we have more than one. 3382 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3383 3384 /// Are the AddrModes that we have all just equal to their original values? 3385 bool AllAddrModesTrivial = true; 3386 3387 /// Common Type for all different fields in addressing modes. 3388 Type *CommonType; 3389 3390 /// SimplifyQuery for simplifyInstruction utility. 3391 const SimplifyQuery &SQ; 3392 3393 /// Original Address. 3394 Value *Original; 3395 3396 public: 3397 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3398 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3399 3400 /// Get the combined AddrMode 3401 const ExtAddrMode &getAddrMode() const { 3402 return AddrModes[0]; 3403 } 3404 3405 /// Add a new AddrMode if it's compatible with the AddrModes we already 3406 /// have. 3407 /// \return True iff we succeeded in doing so. 3408 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3409 // Take note of if we have any non-trivial AddrModes, as we need to detect 3410 // when all AddrModes are trivial as then we would introduce a phi or select 3411 // which just duplicates what's already there. 3412 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3413 3414 // If this is the first addrmode then everything is fine. 3415 if (AddrModes.empty()) { 3416 AddrModes.emplace_back(NewAddrMode); 3417 return true; 3418 } 3419 3420 // Figure out how different this is from the other address modes, which we 3421 // can do just by comparing against the first one given that we only care 3422 // about the cumulative difference. 3423 ExtAddrMode::FieldName ThisDifferentField = 3424 AddrModes[0].compare(NewAddrMode); 3425 if (DifferentField == ExtAddrMode::NoField) 3426 DifferentField = ThisDifferentField; 3427 else if (DifferentField != ThisDifferentField) 3428 DifferentField = ExtAddrMode::MultipleFields; 3429 3430 // If NewAddrMode differs in more than one dimension we cannot handle it. 3431 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3432 3433 // If Scale Field is different then we reject. 3434 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3435 3436 // We also must reject the case when base offset is different and 3437 // scale reg is not null, we cannot handle this case due to merge of 3438 // different offsets will be used as ScaleReg. 3439 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3440 !NewAddrMode.ScaledReg); 3441 3442 // We also must reject the case when GV is different and BaseReg installed 3443 // due to we want to use base reg as a merge of GV values. 3444 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3445 !NewAddrMode.HasBaseReg); 3446 3447 // Even if NewAddMode is the same we still need to collect it due to 3448 // original value is different. And later we will need all original values 3449 // as anchors during finding the common Phi node. 3450 if (CanHandle) 3451 AddrModes.emplace_back(NewAddrMode); 3452 else 3453 AddrModes.clear(); 3454 3455 return CanHandle; 3456 } 3457 3458 /// Combine the addressing modes we've collected into a single 3459 /// addressing mode. 3460 /// \return True iff we successfully combined them or we only had one so 3461 /// didn't need to combine them anyway. 3462 bool combineAddrModes() { 3463 // If we have no AddrModes then they can't be combined. 3464 if (AddrModes.size() == 0) 3465 return false; 3466 3467 // A single AddrMode can trivially be combined. 3468 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3469 return true; 3470 3471 // If the AddrModes we collected are all just equal to the value they are 3472 // derived from then combining them wouldn't do anything useful. 3473 if (AllAddrModesTrivial) 3474 return false; 3475 3476 if (!addrModeCombiningAllowed()) 3477 return false; 3478 3479 // Build a map between <original value, basic block where we saw it> to 3480 // value of base register. 3481 // Bail out if there is no common type. 3482 FoldAddrToValueMapping Map; 3483 if (!initializeMap(Map)) 3484 return false; 3485 3486 Value *CommonValue = findCommon(Map); 3487 if (CommonValue) 3488 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3489 return CommonValue != nullptr; 3490 } 3491 3492 private: 3493 /// Initialize Map with anchor values. For address seen 3494 /// we set the value of different field saw in this address. 3495 /// At the same time we find a common type for different field we will 3496 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3497 /// Return false if there is no common type found. 3498 bool initializeMap(FoldAddrToValueMapping &Map) { 3499 // Keep track of keys where the value is null. We will need to replace it 3500 // with constant null when we know the common type. 3501 SmallVector<Value *, 2> NullValue; 3502 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3503 for (auto &AM : AddrModes) { 3504 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3505 if (DV) { 3506 auto *Type = DV->getType(); 3507 if (CommonType && CommonType != Type) 3508 return false; 3509 CommonType = Type; 3510 Map[AM.OriginalValue] = DV; 3511 } else { 3512 NullValue.push_back(AM.OriginalValue); 3513 } 3514 } 3515 assert(CommonType && "At least one non-null value must be!"); 3516 for (auto *V : NullValue) 3517 Map[V] = Constant::getNullValue(CommonType); 3518 return true; 3519 } 3520 3521 /// We have mapping between value A and other value B where B was a field in 3522 /// addressing mode represented by A. Also we have an original value C 3523 /// representing an address we start with. Traversing from C through phi and 3524 /// selects we ended up with A's in a map. This utility function tries to find 3525 /// a value V which is a field in addressing mode C and traversing through phi 3526 /// nodes and selects we will end up in corresponded values B in a map. 3527 /// The utility will create a new Phi/Selects if needed. 3528 // The simple example looks as follows: 3529 // BB1: 3530 // p1 = b1 + 40 3531 // br cond BB2, BB3 3532 // BB2: 3533 // p2 = b2 + 40 3534 // br BB3 3535 // BB3: 3536 // p = phi [p1, BB1], [p2, BB2] 3537 // v = load p 3538 // Map is 3539 // p1 -> b1 3540 // p2 -> b2 3541 // Request is 3542 // p -> ? 3543 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3544 Value *findCommon(FoldAddrToValueMapping &Map) { 3545 // Tracks the simplification of newly created phi nodes. The reason we use 3546 // this mapping is because we will add new created Phi nodes in AddrToBase. 3547 // Simplification of Phi nodes is recursive, so some Phi node may 3548 // be simplified after we added it to AddrToBase. In reality this 3549 // simplification is possible only if original phi/selects were not 3550 // simplified yet. 3551 // Using this mapping we can find the current value in AddrToBase. 3552 SimplificationTracker ST(SQ); 3553 3554 // First step, DFS to create PHI nodes for all intermediate blocks. 3555 // Also fill traverse order for the second step. 3556 SmallVector<Value *, 32> TraverseOrder; 3557 InsertPlaceholders(Map, TraverseOrder, ST); 3558 3559 // Second Step, fill new nodes by merged values and simplify if possible. 3560 FillPlaceholders(Map, TraverseOrder, ST); 3561 3562 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3563 ST.destroyNewNodes(CommonType); 3564 return nullptr; 3565 } 3566 3567 // Now we'd like to match New Phi nodes to existed ones. 3568 unsigned PhiNotMatchedCount = 0; 3569 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3570 ST.destroyNewNodes(CommonType); 3571 return nullptr; 3572 } 3573 3574 auto *Result = ST.Get(Map.find(Original)->second); 3575 if (Result) { 3576 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3577 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3578 } 3579 return Result; 3580 } 3581 3582 /// Try to match PHI node to Candidate. 3583 /// Matcher tracks the matched Phi nodes. 3584 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3585 SmallSetVector<PHIPair, 8> &Matcher, 3586 PhiNodeSet &PhiNodesToMatch) { 3587 SmallVector<PHIPair, 8> WorkList; 3588 Matcher.insert({ PHI, Candidate }); 3589 SmallSet<PHINode *, 8> MatchedPHIs; 3590 MatchedPHIs.insert(PHI); 3591 WorkList.push_back({ PHI, Candidate }); 3592 SmallSet<PHIPair, 8> Visited; 3593 while (!WorkList.empty()) { 3594 auto Item = WorkList.pop_back_val(); 3595 if (!Visited.insert(Item).second) 3596 continue; 3597 // We iterate over all incoming values to Phi to compare them. 3598 // If values are different and both of them Phi and the first one is a 3599 // Phi we added (subject to match) and both of them is in the same basic 3600 // block then we can match our pair if values match. So we state that 3601 // these values match and add it to work list to verify that. 3602 for (auto B : Item.first->blocks()) { 3603 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3604 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3605 if (FirstValue == SecondValue) 3606 continue; 3607 3608 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3609 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3610 3611 // One of them is not Phi or 3612 // The first one is not Phi node from the set we'd like to match or 3613 // Phi nodes from different basic blocks then 3614 // we will not be able to match. 3615 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3616 FirstPhi->getParent() != SecondPhi->getParent()) 3617 return false; 3618 3619 // If we already matched them then continue. 3620 if (Matcher.count({ FirstPhi, SecondPhi })) 3621 continue; 3622 // So the values are different and does not match. So we need them to 3623 // match. (But we register no more than one match per PHI node, so that 3624 // we won't later try to replace them twice.) 3625 if (MatchedPHIs.insert(FirstPhi).second) 3626 Matcher.insert({ FirstPhi, SecondPhi }); 3627 // But me must check it. 3628 WorkList.push_back({ FirstPhi, SecondPhi }); 3629 } 3630 } 3631 return true; 3632 } 3633 3634 /// For the given set of PHI nodes (in the SimplificationTracker) try 3635 /// to find their equivalents. 3636 /// Returns false if this matching fails and creation of new Phi is disabled. 3637 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3638 unsigned &PhiNotMatchedCount) { 3639 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3640 // order, so the replacements (ReplacePhi) are also done in a deterministic 3641 // order. 3642 SmallSetVector<PHIPair, 8> Matched; 3643 SmallPtrSet<PHINode *, 8> WillNotMatch; 3644 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3645 while (PhiNodesToMatch.size()) { 3646 PHINode *PHI = *PhiNodesToMatch.begin(); 3647 3648 // Add us, if no Phi nodes in the basic block we do not match. 3649 WillNotMatch.clear(); 3650 WillNotMatch.insert(PHI); 3651 3652 // Traverse all Phis until we found equivalent or fail to do that. 3653 bool IsMatched = false; 3654 for (auto &P : PHI->getParent()->phis()) { 3655 if (&P == PHI) 3656 continue; 3657 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3658 break; 3659 // If it does not match, collect all Phi nodes from matcher. 3660 // if we end up with no match, them all these Phi nodes will not match 3661 // later. 3662 for (auto M : Matched) 3663 WillNotMatch.insert(M.first); 3664 Matched.clear(); 3665 } 3666 if (IsMatched) { 3667 // Replace all matched values and erase them. 3668 for (auto MV : Matched) 3669 ST.ReplacePhi(MV.first, MV.second); 3670 Matched.clear(); 3671 continue; 3672 } 3673 // If we are not allowed to create new nodes then bail out. 3674 if (!AllowNewPhiNodes) 3675 return false; 3676 // Just remove all seen values in matcher. They will not match anything. 3677 PhiNotMatchedCount += WillNotMatch.size(); 3678 for (auto *P : WillNotMatch) 3679 PhiNodesToMatch.erase(P); 3680 } 3681 return true; 3682 } 3683 /// Fill the placeholders with values from predecessors and simplify them. 3684 void FillPlaceholders(FoldAddrToValueMapping &Map, 3685 SmallVectorImpl<Value *> &TraverseOrder, 3686 SimplificationTracker &ST) { 3687 while (!TraverseOrder.empty()) { 3688 Value *Current = TraverseOrder.pop_back_val(); 3689 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3690 Value *V = Map[Current]; 3691 3692 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3693 // CurrentValue also must be Select. 3694 auto *CurrentSelect = cast<SelectInst>(Current); 3695 auto *TrueValue = CurrentSelect->getTrueValue(); 3696 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3697 Select->setTrueValue(ST.Get(Map[TrueValue])); 3698 auto *FalseValue = CurrentSelect->getFalseValue(); 3699 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3700 Select->setFalseValue(ST.Get(Map[FalseValue])); 3701 } else { 3702 // Must be a Phi node then. 3703 auto *PHI = cast<PHINode>(V); 3704 // Fill the Phi node with values from predecessors. 3705 for (auto *B : predecessors(PHI->getParent())) { 3706 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3707 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3708 PHI->addIncoming(ST.Get(Map[PV]), B); 3709 } 3710 } 3711 Map[Current] = ST.Simplify(V); 3712 } 3713 } 3714 3715 /// Starting from original value recursively iterates over def-use chain up to 3716 /// known ending values represented in a map. For each traversed phi/select 3717 /// inserts a placeholder Phi or Select. 3718 /// Reports all new created Phi/Select nodes by adding them to set. 3719 /// Also reports and order in what values have been traversed. 3720 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3721 SmallVectorImpl<Value *> &TraverseOrder, 3722 SimplificationTracker &ST) { 3723 SmallVector<Value *, 32> Worklist; 3724 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3725 "Address must be a Phi or Select node"); 3726 auto *Dummy = UndefValue::get(CommonType); 3727 Worklist.push_back(Original); 3728 while (!Worklist.empty()) { 3729 Value *Current = Worklist.pop_back_val(); 3730 // if it is already visited or it is an ending value then skip it. 3731 if (Map.find(Current) != Map.end()) 3732 continue; 3733 TraverseOrder.push_back(Current); 3734 3735 // CurrentValue must be a Phi node or select. All others must be covered 3736 // by anchors. 3737 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3738 // Is it OK to get metadata from OrigSelect?! 3739 // Create a Select placeholder with dummy value. 3740 SelectInst *Select = SelectInst::Create( 3741 CurrentSelect->getCondition(), Dummy, Dummy, 3742 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3743 Map[Current] = Select; 3744 ST.insertNewSelect(Select); 3745 // We are interested in True and False values. 3746 Worklist.push_back(CurrentSelect->getTrueValue()); 3747 Worklist.push_back(CurrentSelect->getFalseValue()); 3748 } else { 3749 // It must be a Phi node then. 3750 PHINode *CurrentPhi = cast<PHINode>(Current); 3751 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3752 PHINode *PHI = 3753 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3754 Map[Current] = PHI; 3755 ST.insertNewPhi(PHI); 3756 append_range(Worklist, CurrentPhi->incoming_values()); 3757 } 3758 } 3759 } 3760 3761 bool addrModeCombiningAllowed() { 3762 if (DisableComplexAddrModes) 3763 return false; 3764 switch (DifferentField) { 3765 default: 3766 return false; 3767 case ExtAddrMode::BaseRegField: 3768 return AddrSinkCombineBaseReg; 3769 case ExtAddrMode::BaseGVField: 3770 return AddrSinkCombineBaseGV; 3771 case ExtAddrMode::BaseOffsField: 3772 return AddrSinkCombineBaseOffs; 3773 case ExtAddrMode::ScaledRegField: 3774 return AddrSinkCombineScaledReg; 3775 } 3776 } 3777 }; 3778 } // end anonymous namespace 3779 3780 /// Try adding ScaleReg*Scale to the current addressing mode. 3781 /// Return true and update AddrMode if this addr mode is legal for the target, 3782 /// false if not. 3783 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3784 unsigned Depth) { 3785 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3786 // mode. Just process that directly. 3787 if (Scale == 1) 3788 return matchAddr(ScaleReg, Depth); 3789 3790 // If the scale is 0, it takes nothing to add this. 3791 if (Scale == 0) 3792 return true; 3793 3794 // If we already have a scale of this value, we can add to it, otherwise, we 3795 // need an available scale field. 3796 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3797 return false; 3798 3799 ExtAddrMode TestAddrMode = AddrMode; 3800 3801 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3802 // [A+B + A*7] -> [B+A*8]. 3803 TestAddrMode.Scale += Scale; 3804 TestAddrMode.ScaledReg = ScaleReg; 3805 3806 // If the new address isn't legal, bail out. 3807 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3808 return false; 3809 3810 // It was legal, so commit it. 3811 AddrMode = TestAddrMode; 3812 3813 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3814 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3815 // X*Scale + C*Scale to addr mode. 3816 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3817 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3818 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3819 CI->getValue().isSignedIntN(64)) { 3820 TestAddrMode.InBounds = false; 3821 TestAddrMode.ScaledReg = AddLHS; 3822 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3823 3824 // If this addressing mode is legal, commit it and remember that we folded 3825 // this instruction. 3826 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3827 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3828 AddrMode = TestAddrMode; 3829 return true; 3830 } 3831 } 3832 3833 // Otherwise, not (x+c)*scale, just return what we have. 3834 return true; 3835 } 3836 3837 /// This is a little filter, which returns true if an addressing computation 3838 /// involving I might be folded into a load/store accessing it. 3839 /// This doesn't need to be perfect, but needs to accept at least 3840 /// the set of instructions that MatchOperationAddr can. 3841 static bool MightBeFoldableInst(Instruction *I) { 3842 switch (I->getOpcode()) { 3843 case Instruction::BitCast: 3844 case Instruction::AddrSpaceCast: 3845 // Don't touch identity bitcasts. 3846 if (I->getType() == I->getOperand(0)->getType()) 3847 return false; 3848 return I->getType()->isIntOrPtrTy(); 3849 case Instruction::PtrToInt: 3850 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3851 return true; 3852 case Instruction::IntToPtr: 3853 // We know the input is intptr_t, so this is foldable. 3854 return true; 3855 case Instruction::Add: 3856 return true; 3857 case Instruction::Mul: 3858 case Instruction::Shl: 3859 // Can only handle X*C and X << C. 3860 return isa<ConstantInt>(I->getOperand(1)); 3861 case Instruction::GetElementPtr: 3862 return true; 3863 default: 3864 return false; 3865 } 3866 } 3867 3868 /// Check whether or not \p Val is a legal instruction for \p TLI. 3869 /// \note \p Val is assumed to be the product of some type promotion. 3870 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3871 /// to be legal, as the non-promoted value would have had the same state. 3872 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3873 const DataLayout &DL, Value *Val) { 3874 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3875 if (!PromotedInst) 3876 return false; 3877 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3878 // If the ISDOpcode is undefined, it was undefined before the promotion. 3879 if (!ISDOpcode) 3880 return true; 3881 // Otherwise, check if the promoted instruction is legal or not. 3882 return TLI.isOperationLegalOrCustom( 3883 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3884 } 3885 3886 namespace { 3887 3888 /// Hepler class to perform type promotion. 3889 class TypePromotionHelper { 3890 /// Utility function to add a promoted instruction \p ExtOpnd to 3891 /// \p PromotedInsts and record the type of extension we have seen. 3892 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3893 Instruction *ExtOpnd, 3894 bool IsSExt) { 3895 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3896 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3897 if (It != PromotedInsts.end()) { 3898 // If the new extension is same as original, the information in 3899 // PromotedInsts[ExtOpnd] is still correct. 3900 if (It->second.getInt() == ExtTy) 3901 return; 3902 3903 // Now the new extension is different from old extension, we make 3904 // the type information invalid by setting extension type to 3905 // BothExtension. 3906 ExtTy = BothExtension; 3907 } 3908 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3909 } 3910 3911 /// Utility function to query the original type of instruction \p Opnd 3912 /// with a matched extension type. If the extension doesn't match, we 3913 /// cannot use the information we had on the original type. 3914 /// BothExtension doesn't match any extension type. 3915 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3916 Instruction *Opnd, 3917 bool IsSExt) { 3918 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3919 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3920 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3921 return It->second.getPointer(); 3922 return nullptr; 3923 } 3924 3925 /// Utility function to check whether or not a sign or zero extension 3926 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3927 /// either using the operands of \p Inst or promoting \p Inst. 3928 /// The type of the extension is defined by \p IsSExt. 3929 /// In other words, check if: 3930 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3931 /// #1 Promotion applies: 3932 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3933 /// #2 Operand reuses: 3934 /// ext opnd1 to ConsideredExtType. 3935 /// \p PromotedInsts maps the instructions to their type before promotion. 3936 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3937 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3938 3939 /// Utility function to determine if \p OpIdx should be promoted when 3940 /// promoting \p Inst. 3941 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3942 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3943 } 3944 3945 /// Utility function to promote the operand of \p Ext when this 3946 /// operand is a promotable trunc or sext or zext. 3947 /// \p PromotedInsts maps the instructions to their type before promotion. 3948 /// \p CreatedInstsCost[out] contains the cost of all instructions 3949 /// created to promote the operand of Ext. 3950 /// Newly added extensions are inserted in \p Exts. 3951 /// Newly added truncates are inserted in \p Truncs. 3952 /// Should never be called directly. 3953 /// \return The promoted value which is used instead of Ext. 3954 static Value *promoteOperandForTruncAndAnyExt( 3955 Instruction *Ext, TypePromotionTransaction &TPT, 3956 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3957 SmallVectorImpl<Instruction *> *Exts, 3958 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3959 3960 /// Utility function to promote the operand of \p Ext when this 3961 /// operand is promotable and is not a supported trunc or sext. 3962 /// \p PromotedInsts maps the instructions to their type before promotion. 3963 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3964 /// created to promote the operand of Ext. 3965 /// Newly added extensions are inserted in \p Exts. 3966 /// Newly added truncates are inserted in \p Truncs. 3967 /// Should never be called directly. 3968 /// \return The promoted value which is used instead of Ext. 3969 static Value *promoteOperandForOther(Instruction *Ext, 3970 TypePromotionTransaction &TPT, 3971 InstrToOrigTy &PromotedInsts, 3972 unsigned &CreatedInstsCost, 3973 SmallVectorImpl<Instruction *> *Exts, 3974 SmallVectorImpl<Instruction *> *Truncs, 3975 const TargetLowering &TLI, bool IsSExt); 3976 3977 /// \see promoteOperandForOther. 3978 static Value *signExtendOperandForOther( 3979 Instruction *Ext, TypePromotionTransaction &TPT, 3980 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3981 SmallVectorImpl<Instruction *> *Exts, 3982 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3983 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3984 Exts, Truncs, TLI, true); 3985 } 3986 3987 /// \see promoteOperandForOther. 3988 static Value *zeroExtendOperandForOther( 3989 Instruction *Ext, TypePromotionTransaction &TPT, 3990 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3991 SmallVectorImpl<Instruction *> *Exts, 3992 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3993 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3994 Exts, Truncs, TLI, false); 3995 } 3996 3997 public: 3998 /// Type for the utility function that promotes the operand of Ext. 3999 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 4000 InstrToOrigTy &PromotedInsts, 4001 unsigned &CreatedInstsCost, 4002 SmallVectorImpl<Instruction *> *Exts, 4003 SmallVectorImpl<Instruction *> *Truncs, 4004 const TargetLowering &TLI); 4005 4006 /// Given a sign/zero extend instruction \p Ext, return the appropriate 4007 /// action to promote the operand of \p Ext instead of using Ext. 4008 /// \return NULL if no promotable action is possible with the current 4009 /// sign extension. 4010 /// \p InsertedInsts keeps track of all the instructions inserted by the 4011 /// other CodeGenPrepare optimizations. This information is important 4012 /// because we do not want to promote these instructions as CodeGenPrepare 4013 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4014 /// \p PromotedInsts maps the instructions to their type before promotion. 4015 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4016 const TargetLowering &TLI, 4017 const InstrToOrigTy &PromotedInsts); 4018 }; 4019 4020 } // end anonymous namespace 4021 4022 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4023 Type *ConsideredExtType, 4024 const InstrToOrigTy &PromotedInsts, 4025 bool IsSExt) { 4026 // The promotion helper does not know how to deal with vector types yet. 4027 // To be able to fix that, we would need to fix the places where we 4028 // statically extend, e.g., constants and such. 4029 if (Inst->getType()->isVectorTy()) 4030 return false; 4031 4032 // We can always get through zext. 4033 if (isa<ZExtInst>(Inst)) 4034 return true; 4035 4036 // sext(sext) is ok too. 4037 if (IsSExt && isa<SExtInst>(Inst)) 4038 return true; 4039 4040 // We can get through binary operator, if it is legal. In other words, the 4041 // binary operator must have a nuw or nsw flag. 4042 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4043 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4044 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4045 (IsSExt && BinOp->hasNoSignedWrap()))) 4046 return true; 4047 4048 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4049 if ((Inst->getOpcode() == Instruction::And || 4050 Inst->getOpcode() == Instruction::Or)) 4051 return true; 4052 4053 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4054 if (Inst->getOpcode() == Instruction::Xor) { 4055 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4056 // Make sure it is not a NOT. 4057 if (Cst && !Cst->getValue().isAllOnesValue()) 4058 return true; 4059 } 4060 4061 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4062 // It may change a poisoned value into a regular value, like 4063 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4064 // poisoned value regular value 4065 // It should be OK since undef covers valid value. 4066 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4067 return true; 4068 4069 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4070 // It may change a poisoned value into a regular value, like 4071 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4072 // poisoned value regular value 4073 // It should be OK since undef covers valid value. 4074 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4075 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4076 if (ExtInst->hasOneUse()) { 4077 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4078 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4079 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4080 if (Cst && 4081 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4082 return true; 4083 } 4084 } 4085 } 4086 4087 // Check if we can do the following simplification. 4088 // ext(trunc(opnd)) --> ext(opnd) 4089 if (!isa<TruncInst>(Inst)) 4090 return false; 4091 4092 Value *OpndVal = Inst->getOperand(0); 4093 // Check if we can use this operand in the extension. 4094 // If the type is larger than the result type of the extension, we cannot. 4095 if (!OpndVal->getType()->isIntegerTy() || 4096 OpndVal->getType()->getIntegerBitWidth() > 4097 ConsideredExtType->getIntegerBitWidth()) 4098 return false; 4099 4100 // If the operand of the truncate is not an instruction, we will not have 4101 // any information on the dropped bits. 4102 // (Actually we could for constant but it is not worth the extra logic). 4103 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4104 if (!Opnd) 4105 return false; 4106 4107 // Check if the source of the type is narrow enough. 4108 // I.e., check that trunc just drops extended bits of the same kind of 4109 // the extension. 4110 // #1 get the type of the operand and check the kind of the extended bits. 4111 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4112 if (OpndType) 4113 ; 4114 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4115 OpndType = Opnd->getOperand(0)->getType(); 4116 else 4117 return false; 4118 4119 // #2 check that the truncate just drops extended bits. 4120 return Inst->getType()->getIntegerBitWidth() >= 4121 OpndType->getIntegerBitWidth(); 4122 } 4123 4124 TypePromotionHelper::Action TypePromotionHelper::getAction( 4125 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4126 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4127 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4128 "Unexpected instruction type"); 4129 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4130 Type *ExtTy = Ext->getType(); 4131 bool IsSExt = isa<SExtInst>(Ext); 4132 // If the operand of the extension is not an instruction, we cannot 4133 // get through. 4134 // If it, check we can get through. 4135 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4136 return nullptr; 4137 4138 // Do not promote if the operand has been added by codegenprepare. 4139 // Otherwise, it means we are undoing an optimization that is likely to be 4140 // redone, thus causing potential infinite loop. 4141 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4142 return nullptr; 4143 4144 // SExt or Trunc instructions. 4145 // Return the related handler. 4146 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4147 isa<ZExtInst>(ExtOpnd)) 4148 return promoteOperandForTruncAndAnyExt; 4149 4150 // Regular instruction. 4151 // Abort early if we will have to insert non-free instructions. 4152 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4153 return nullptr; 4154 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4155 } 4156 4157 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4158 Instruction *SExt, TypePromotionTransaction &TPT, 4159 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4160 SmallVectorImpl<Instruction *> *Exts, 4161 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4162 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4163 // get through it and this method should not be called. 4164 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4165 Value *ExtVal = SExt; 4166 bool HasMergedNonFreeExt = false; 4167 if (isa<ZExtInst>(SExtOpnd)) { 4168 // Replace s|zext(zext(opnd)) 4169 // => zext(opnd). 4170 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4171 Value *ZExt = 4172 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4173 TPT.replaceAllUsesWith(SExt, ZExt); 4174 TPT.eraseInstruction(SExt); 4175 ExtVal = ZExt; 4176 } else { 4177 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4178 // => z|sext(opnd). 4179 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4180 } 4181 CreatedInstsCost = 0; 4182 4183 // Remove dead code. 4184 if (SExtOpnd->use_empty()) 4185 TPT.eraseInstruction(SExtOpnd); 4186 4187 // Check if the extension is still needed. 4188 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4189 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4190 if (ExtInst) { 4191 if (Exts) 4192 Exts->push_back(ExtInst); 4193 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4194 } 4195 return ExtVal; 4196 } 4197 4198 // At this point we have: ext ty opnd to ty. 4199 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4200 Value *NextVal = ExtInst->getOperand(0); 4201 TPT.eraseInstruction(ExtInst, NextVal); 4202 return NextVal; 4203 } 4204 4205 Value *TypePromotionHelper::promoteOperandForOther( 4206 Instruction *Ext, TypePromotionTransaction &TPT, 4207 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4208 SmallVectorImpl<Instruction *> *Exts, 4209 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4210 bool IsSExt) { 4211 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4212 // get through it and this method should not be called. 4213 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4214 CreatedInstsCost = 0; 4215 if (!ExtOpnd->hasOneUse()) { 4216 // ExtOpnd will be promoted. 4217 // All its uses, but Ext, will need to use a truncated value of the 4218 // promoted version. 4219 // Create the truncate now. 4220 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4221 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4222 // Insert it just after the definition. 4223 ITrunc->moveAfter(ExtOpnd); 4224 if (Truncs) 4225 Truncs->push_back(ITrunc); 4226 } 4227 4228 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4229 // Restore the operand of Ext (which has been replaced by the previous call 4230 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4231 TPT.setOperand(Ext, 0, ExtOpnd); 4232 } 4233 4234 // Get through the Instruction: 4235 // 1. Update its type. 4236 // 2. Replace the uses of Ext by Inst. 4237 // 3. Extend each operand that needs to be extended. 4238 4239 // Remember the original type of the instruction before promotion. 4240 // This is useful to know that the high bits are sign extended bits. 4241 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4242 // Step #1. 4243 TPT.mutateType(ExtOpnd, Ext->getType()); 4244 // Step #2. 4245 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4246 // Step #3. 4247 Instruction *ExtForOpnd = Ext; 4248 4249 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4250 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4251 ++OpIdx) { 4252 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4253 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4254 !shouldExtOperand(ExtOpnd, OpIdx)) { 4255 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4256 continue; 4257 } 4258 // Check if we can statically extend the operand. 4259 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4260 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4261 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4262 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4263 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4264 : Cst->getValue().zext(BitWidth); 4265 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4266 continue; 4267 } 4268 // UndefValue are typed, so we have to statically sign extend them. 4269 if (isa<UndefValue>(Opnd)) { 4270 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4271 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4272 continue; 4273 } 4274 4275 // Otherwise we have to explicitly sign extend the operand. 4276 // Check if Ext was reused to extend an operand. 4277 if (!ExtForOpnd) { 4278 // If yes, create a new one. 4279 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4280 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4281 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4282 if (!isa<Instruction>(ValForExtOpnd)) { 4283 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4284 continue; 4285 } 4286 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4287 } 4288 if (Exts) 4289 Exts->push_back(ExtForOpnd); 4290 TPT.setOperand(ExtForOpnd, 0, Opnd); 4291 4292 // Move the sign extension before the insertion point. 4293 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4294 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4295 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4296 // If more sext are required, new instructions will have to be created. 4297 ExtForOpnd = nullptr; 4298 } 4299 if (ExtForOpnd == Ext) { 4300 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4301 TPT.eraseInstruction(Ext); 4302 } 4303 return ExtOpnd; 4304 } 4305 4306 /// Check whether or not promoting an instruction to a wider type is profitable. 4307 /// \p NewCost gives the cost of extension instructions created by the 4308 /// promotion. 4309 /// \p OldCost gives the cost of extension instructions before the promotion 4310 /// plus the number of instructions that have been 4311 /// matched in the addressing mode the promotion. 4312 /// \p PromotedOperand is the value that has been promoted. 4313 /// \return True if the promotion is profitable, false otherwise. 4314 bool AddressingModeMatcher::isPromotionProfitable( 4315 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4316 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4317 << '\n'); 4318 // The cost of the new extensions is greater than the cost of the 4319 // old extension plus what we folded. 4320 // This is not profitable. 4321 if (NewCost > OldCost) 4322 return false; 4323 if (NewCost < OldCost) 4324 return true; 4325 // The promotion is neutral but it may help folding the sign extension in 4326 // loads for instance. 4327 // Check that we did not create an illegal instruction. 4328 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4329 } 4330 4331 /// Given an instruction or constant expr, see if we can fold the operation 4332 /// into the addressing mode. If so, update the addressing mode and return 4333 /// true, otherwise return false without modifying AddrMode. 4334 /// If \p MovedAway is not NULL, it contains the information of whether or 4335 /// not AddrInst has to be folded into the addressing mode on success. 4336 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4337 /// because it has been moved away. 4338 /// Thus AddrInst must not be added in the matched instructions. 4339 /// This state can happen when AddrInst is a sext, since it may be moved away. 4340 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4341 /// not be referenced anymore. 4342 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4343 unsigned Depth, 4344 bool *MovedAway) { 4345 // Avoid exponential behavior on extremely deep expression trees. 4346 if (Depth >= 5) return false; 4347 4348 // By default, all matched instructions stay in place. 4349 if (MovedAway) 4350 *MovedAway = false; 4351 4352 switch (Opcode) { 4353 case Instruction::PtrToInt: 4354 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4355 return matchAddr(AddrInst->getOperand(0), Depth); 4356 case Instruction::IntToPtr: { 4357 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4358 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4359 // This inttoptr is a no-op if the integer type is pointer sized. 4360 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4361 return matchAddr(AddrInst->getOperand(0), Depth); 4362 return false; 4363 } 4364 case Instruction::BitCast: 4365 // BitCast is always a noop, and we can handle it as long as it is 4366 // int->int or pointer->pointer (we don't want int<->fp or something). 4367 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4368 // Don't touch identity bitcasts. These were probably put here by LSR, 4369 // and we don't want to mess around with them. Assume it knows what it 4370 // is doing. 4371 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4372 return matchAddr(AddrInst->getOperand(0), Depth); 4373 return false; 4374 case Instruction::AddrSpaceCast: { 4375 unsigned SrcAS 4376 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4377 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4378 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4379 return matchAddr(AddrInst->getOperand(0), Depth); 4380 return false; 4381 } 4382 case Instruction::Add: { 4383 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4384 ExtAddrMode BackupAddrMode = AddrMode; 4385 unsigned OldSize = AddrModeInsts.size(); 4386 // Start a transaction at this point. 4387 // The LHS may match but not the RHS. 4388 // Therefore, we need a higher level restoration point to undo partially 4389 // matched operation. 4390 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4391 TPT.getRestorationPoint(); 4392 4393 AddrMode.InBounds = false; 4394 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4395 matchAddr(AddrInst->getOperand(0), Depth+1)) 4396 return true; 4397 4398 // Restore the old addr mode info. 4399 AddrMode = BackupAddrMode; 4400 AddrModeInsts.resize(OldSize); 4401 TPT.rollback(LastKnownGood); 4402 4403 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4404 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4405 matchAddr(AddrInst->getOperand(1), Depth+1)) 4406 return true; 4407 4408 // Otherwise we definitely can't merge the ADD in. 4409 AddrMode = BackupAddrMode; 4410 AddrModeInsts.resize(OldSize); 4411 TPT.rollback(LastKnownGood); 4412 break; 4413 } 4414 //case Instruction::Or: 4415 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4416 //break; 4417 case Instruction::Mul: 4418 case Instruction::Shl: { 4419 // Can only handle X*C and X << C. 4420 AddrMode.InBounds = false; 4421 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4422 if (!RHS || RHS->getBitWidth() > 64) 4423 return false; 4424 int64_t Scale = RHS->getSExtValue(); 4425 if (Opcode == Instruction::Shl) 4426 Scale = 1LL << Scale; 4427 4428 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4429 } 4430 case Instruction::GetElementPtr: { 4431 // Scan the GEP. We check it if it contains constant offsets and at most 4432 // one variable offset. 4433 int VariableOperand = -1; 4434 unsigned VariableScale = 0; 4435 4436 int64_t ConstantOffset = 0; 4437 gep_type_iterator GTI = gep_type_begin(AddrInst); 4438 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4439 if (StructType *STy = GTI.getStructTypeOrNull()) { 4440 const StructLayout *SL = DL.getStructLayout(STy); 4441 unsigned Idx = 4442 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4443 ConstantOffset += SL->getElementOffset(Idx); 4444 } else { 4445 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4446 if (TS.isNonZero()) { 4447 // The optimisations below currently only work for fixed offsets. 4448 if (TS.isScalable()) 4449 return false; 4450 int64_t TypeSize = TS.getFixedSize(); 4451 if (ConstantInt *CI = 4452 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4453 const APInt &CVal = CI->getValue(); 4454 if (CVal.getMinSignedBits() <= 64) { 4455 ConstantOffset += CVal.getSExtValue() * TypeSize; 4456 continue; 4457 } 4458 } 4459 // We only allow one variable index at the moment. 4460 if (VariableOperand != -1) 4461 return false; 4462 4463 // Remember the variable index. 4464 VariableOperand = i; 4465 VariableScale = TypeSize; 4466 } 4467 } 4468 } 4469 4470 // A common case is for the GEP to only do a constant offset. In this case, 4471 // just add it to the disp field and check validity. 4472 if (VariableOperand == -1) { 4473 AddrMode.BaseOffs += ConstantOffset; 4474 if (ConstantOffset == 0 || 4475 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4476 // Check to see if we can fold the base pointer in too. 4477 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4478 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4479 AddrMode.InBounds = false; 4480 return true; 4481 } 4482 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4483 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4484 ConstantOffset > 0) { 4485 // Record GEPs with non-zero offsets as candidates for splitting in the 4486 // event that the offset cannot fit into the r+i addressing mode. 4487 // Simple and common case that only one GEP is used in calculating the 4488 // address for the memory access. 4489 Value *Base = AddrInst->getOperand(0); 4490 auto *BaseI = dyn_cast<Instruction>(Base); 4491 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4492 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4493 (BaseI && !isa<CastInst>(BaseI) && 4494 !isa<GetElementPtrInst>(BaseI))) { 4495 // Make sure the parent block allows inserting non-PHI instructions 4496 // before the terminator. 4497 BasicBlock *Parent = 4498 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4499 if (!Parent->getTerminator()->isEHPad()) 4500 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4501 } 4502 } 4503 AddrMode.BaseOffs -= ConstantOffset; 4504 return false; 4505 } 4506 4507 // Save the valid addressing mode in case we can't match. 4508 ExtAddrMode BackupAddrMode = AddrMode; 4509 unsigned OldSize = AddrModeInsts.size(); 4510 4511 // See if the scale and offset amount is valid for this target. 4512 AddrMode.BaseOffs += ConstantOffset; 4513 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4514 AddrMode.InBounds = false; 4515 4516 // Match the base operand of the GEP. 4517 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4518 // If it couldn't be matched, just stuff the value in a register. 4519 if (AddrMode.HasBaseReg) { 4520 AddrMode = BackupAddrMode; 4521 AddrModeInsts.resize(OldSize); 4522 return false; 4523 } 4524 AddrMode.HasBaseReg = true; 4525 AddrMode.BaseReg = AddrInst->getOperand(0); 4526 } 4527 4528 // Match the remaining variable portion of the GEP. 4529 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4530 Depth)) { 4531 // If it couldn't be matched, try stuffing the base into a register 4532 // instead of matching it, and retrying the match of the scale. 4533 AddrMode = BackupAddrMode; 4534 AddrModeInsts.resize(OldSize); 4535 if (AddrMode.HasBaseReg) 4536 return false; 4537 AddrMode.HasBaseReg = true; 4538 AddrMode.BaseReg = AddrInst->getOperand(0); 4539 AddrMode.BaseOffs += ConstantOffset; 4540 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4541 VariableScale, Depth)) { 4542 // If even that didn't work, bail. 4543 AddrMode = BackupAddrMode; 4544 AddrModeInsts.resize(OldSize); 4545 return false; 4546 } 4547 } 4548 4549 return true; 4550 } 4551 case Instruction::SExt: 4552 case Instruction::ZExt: { 4553 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4554 if (!Ext) 4555 return false; 4556 4557 // Try to move this ext out of the way of the addressing mode. 4558 // Ask for a method for doing so. 4559 TypePromotionHelper::Action TPH = 4560 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4561 if (!TPH) 4562 return false; 4563 4564 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4565 TPT.getRestorationPoint(); 4566 unsigned CreatedInstsCost = 0; 4567 unsigned ExtCost = !TLI.isExtFree(Ext); 4568 Value *PromotedOperand = 4569 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4570 // SExt has been moved away. 4571 // Thus either it will be rematched later in the recursive calls or it is 4572 // gone. Anyway, we must not fold it into the addressing mode at this point. 4573 // E.g., 4574 // op = add opnd, 1 4575 // idx = ext op 4576 // addr = gep base, idx 4577 // is now: 4578 // promotedOpnd = ext opnd <- no match here 4579 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4580 // addr = gep base, op <- match 4581 if (MovedAway) 4582 *MovedAway = true; 4583 4584 assert(PromotedOperand && 4585 "TypePromotionHelper should have filtered out those cases"); 4586 4587 ExtAddrMode BackupAddrMode = AddrMode; 4588 unsigned OldSize = AddrModeInsts.size(); 4589 4590 if (!matchAddr(PromotedOperand, Depth) || 4591 // The total of the new cost is equal to the cost of the created 4592 // instructions. 4593 // The total of the old cost is equal to the cost of the extension plus 4594 // what we have saved in the addressing mode. 4595 !isPromotionProfitable(CreatedInstsCost, 4596 ExtCost + (AddrModeInsts.size() - OldSize), 4597 PromotedOperand)) { 4598 AddrMode = BackupAddrMode; 4599 AddrModeInsts.resize(OldSize); 4600 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4601 TPT.rollback(LastKnownGood); 4602 return false; 4603 } 4604 return true; 4605 } 4606 } 4607 return false; 4608 } 4609 4610 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4611 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4612 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4613 /// for the target. 4614 /// 4615 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4616 // Start a transaction at this point that we will rollback if the matching 4617 // fails. 4618 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4619 TPT.getRestorationPoint(); 4620 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4621 if (CI->getValue().isSignedIntN(64)) { 4622 // Fold in immediates if legal for the target. 4623 AddrMode.BaseOffs += CI->getSExtValue(); 4624 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4625 return true; 4626 AddrMode.BaseOffs -= CI->getSExtValue(); 4627 } 4628 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4629 // If this is a global variable, try to fold it into the addressing mode. 4630 if (!AddrMode.BaseGV) { 4631 AddrMode.BaseGV = GV; 4632 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4633 return true; 4634 AddrMode.BaseGV = nullptr; 4635 } 4636 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4637 ExtAddrMode BackupAddrMode = AddrMode; 4638 unsigned OldSize = AddrModeInsts.size(); 4639 4640 // Check to see if it is possible to fold this operation. 4641 bool MovedAway = false; 4642 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4643 // This instruction may have been moved away. If so, there is nothing 4644 // to check here. 4645 if (MovedAway) 4646 return true; 4647 // Okay, it's possible to fold this. Check to see if it is actually 4648 // *profitable* to do so. We use a simple cost model to avoid increasing 4649 // register pressure too much. 4650 if (I->hasOneUse() || 4651 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4652 AddrModeInsts.push_back(I); 4653 return true; 4654 } 4655 4656 // It isn't profitable to do this, roll back. 4657 //cerr << "NOT FOLDING: " << *I; 4658 AddrMode = BackupAddrMode; 4659 AddrModeInsts.resize(OldSize); 4660 TPT.rollback(LastKnownGood); 4661 } 4662 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4663 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4664 return true; 4665 TPT.rollback(LastKnownGood); 4666 } else if (isa<ConstantPointerNull>(Addr)) { 4667 // Null pointer gets folded without affecting the addressing mode. 4668 return true; 4669 } 4670 4671 // Worse case, the target should support [reg] addressing modes. :) 4672 if (!AddrMode.HasBaseReg) { 4673 AddrMode.HasBaseReg = true; 4674 AddrMode.BaseReg = Addr; 4675 // Still check for legality in case the target supports [imm] but not [i+r]. 4676 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4677 return true; 4678 AddrMode.HasBaseReg = false; 4679 AddrMode.BaseReg = nullptr; 4680 } 4681 4682 // If the base register is already taken, see if we can do [r+r]. 4683 if (AddrMode.Scale == 0) { 4684 AddrMode.Scale = 1; 4685 AddrMode.ScaledReg = Addr; 4686 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4687 return true; 4688 AddrMode.Scale = 0; 4689 AddrMode.ScaledReg = nullptr; 4690 } 4691 // Couldn't match. 4692 TPT.rollback(LastKnownGood); 4693 return false; 4694 } 4695 4696 /// Check to see if all uses of OpVal by the specified inline asm call are due 4697 /// to memory operands. If so, return true, otherwise return false. 4698 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4699 const TargetLowering &TLI, 4700 const TargetRegisterInfo &TRI) { 4701 const Function *F = CI->getFunction(); 4702 TargetLowering::AsmOperandInfoVector TargetConstraints = 4703 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4704 4705 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4706 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4707 4708 // Compute the constraint code and ConstraintType to use. 4709 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4710 4711 // If this asm operand is our Value*, and if it isn't an indirect memory 4712 // operand, we can't fold it! 4713 if (OpInfo.CallOperandVal == OpVal && 4714 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4715 !OpInfo.isIndirect)) 4716 return false; 4717 } 4718 4719 return true; 4720 } 4721 4722 // Max number of memory uses to look at before aborting the search to conserve 4723 // compile time. 4724 static constexpr int MaxMemoryUsesToScan = 20; 4725 4726 /// Recursively walk all the uses of I until we find a memory use. 4727 /// If we find an obviously non-foldable instruction, return true. 4728 /// Add the ultimately found memory instructions to MemoryUses. 4729 static bool FindAllMemoryUses( 4730 Instruction *I, 4731 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4732 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4733 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4734 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4735 // If we already considered this instruction, we're done. 4736 if (!ConsideredInsts.insert(I).second) 4737 return false; 4738 4739 // If this is an obviously unfoldable instruction, bail out. 4740 if (!MightBeFoldableInst(I)) 4741 return true; 4742 4743 // Loop over all the uses, recursively processing them. 4744 for (Use &U : I->uses()) { 4745 // Conservatively return true if we're seeing a large number or a deep chain 4746 // of users. This avoids excessive compilation times in pathological cases. 4747 if (SeenInsts++ >= MaxMemoryUsesToScan) 4748 return true; 4749 4750 Instruction *UserI = cast<Instruction>(U.getUser()); 4751 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4752 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4753 continue; 4754 } 4755 4756 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4757 unsigned opNo = U.getOperandNo(); 4758 if (opNo != StoreInst::getPointerOperandIndex()) 4759 return true; // Storing addr, not into addr. 4760 MemoryUses.push_back(std::make_pair(SI, opNo)); 4761 continue; 4762 } 4763 4764 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4765 unsigned opNo = U.getOperandNo(); 4766 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4767 return true; // Storing addr, not into addr. 4768 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4769 continue; 4770 } 4771 4772 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4773 unsigned opNo = U.getOperandNo(); 4774 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4775 return true; // Storing addr, not into addr. 4776 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4777 continue; 4778 } 4779 4780 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4781 if (CI->hasFnAttr(Attribute::Cold)) { 4782 // If this is a cold call, we can sink the addressing calculation into 4783 // the cold path. See optimizeCallInst 4784 bool OptForSize = OptSize || 4785 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4786 if (!OptForSize) 4787 continue; 4788 } 4789 4790 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4791 if (!IA) return true; 4792 4793 // If this is a memory operand, we're cool, otherwise bail out. 4794 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4795 return true; 4796 continue; 4797 } 4798 4799 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4800 PSI, BFI, SeenInsts)) 4801 return true; 4802 } 4803 4804 return false; 4805 } 4806 4807 /// Return true if Val is already known to be live at the use site that we're 4808 /// folding it into. If so, there is no cost to include it in the addressing 4809 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4810 /// instruction already. 4811 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4812 Value *KnownLive2) { 4813 // If Val is either of the known-live values, we know it is live! 4814 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4815 return true; 4816 4817 // All values other than instructions and arguments (e.g. constants) are live. 4818 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4819 4820 // If Val is a constant sized alloca in the entry block, it is live, this is 4821 // true because it is just a reference to the stack/frame pointer, which is 4822 // live for the whole function. 4823 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4824 if (AI->isStaticAlloca()) 4825 return true; 4826 4827 // Check to see if this value is already used in the memory instruction's 4828 // block. If so, it's already live into the block at the very least, so we 4829 // can reasonably fold it. 4830 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4831 } 4832 4833 /// It is possible for the addressing mode of the machine to fold the specified 4834 /// instruction into a load or store that ultimately uses it. 4835 /// However, the specified instruction has multiple uses. 4836 /// Given this, it may actually increase register pressure to fold it 4837 /// into the load. For example, consider this code: 4838 /// 4839 /// X = ... 4840 /// Y = X+1 4841 /// use(Y) -> nonload/store 4842 /// Z = Y+1 4843 /// load Z 4844 /// 4845 /// In this case, Y has multiple uses, and can be folded into the load of Z 4846 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4847 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4848 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4849 /// number of computations either. 4850 /// 4851 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4852 /// X was live across 'load Z' for other reasons, we actually *would* want to 4853 /// fold the addressing mode in the Z case. This would make Y die earlier. 4854 bool AddressingModeMatcher:: 4855 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4856 ExtAddrMode &AMAfter) { 4857 if (IgnoreProfitability) return true; 4858 4859 // AMBefore is the addressing mode before this instruction was folded into it, 4860 // and AMAfter is the addressing mode after the instruction was folded. Get 4861 // the set of registers referenced by AMAfter and subtract out those 4862 // referenced by AMBefore: this is the set of values which folding in this 4863 // address extends the lifetime of. 4864 // 4865 // Note that there are only two potential values being referenced here, 4866 // BaseReg and ScaleReg (global addresses are always available, as are any 4867 // folded immediates). 4868 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4869 4870 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4871 // lifetime wasn't extended by adding this instruction. 4872 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4873 BaseReg = nullptr; 4874 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4875 ScaledReg = nullptr; 4876 4877 // If folding this instruction (and it's subexprs) didn't extend any live 4878 // ranges, we're ok with it. 4879 if (!BaseReg && !ScaledReg) 4880 return true; 4881 4882 // If all uses of this instruction can have the address mode sunk into them, 4883 // we can remove the addressing mode and effectively trade one live register 4884 // for another (at worst.) In this context, folding an addressing mode into 4885 // the use is just a particularly nice way of sinking it. 4886 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4887 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4888 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4889 PSI, BFI)) 4890 return false; // Has a non-memory, non-foldable use! 4891 4892 // Now that we know that all uses of this instruction are part of a chain of 4893 // computation involving only operations that could theoretically be folded 4894 // into a memory use, loop over each of these memory operation uses and see 4895 // if they could *actually* fold the instruction. The assumption is that 4896 // addressing modes are cheap and that duplicating the computation involved 4897 // many times is worthwhile, even on a fastpath. For sinking candidates 4898 // (i.e. cold call sites), this serves as a way to prevent excessive code 4899 // growth since most architectures have some reasonable small and fast way to 4900 // compute an effective address. (i.e LEA on x86) 4901 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4902 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4903 Instruction *User = MemoryUses[i].first; 4904 unsigned OpNo = MemoryUses[i].second; 4905 4906 // Get the access type of this use. If the use isn't a pointer, we don't 4907 // know what it accesses. 4908 Value *Address = User->getOperand(OpNo); 4909 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4910 if (!AddrTy) 4911 return false; 4912 Type *AddressAccessTy = AddrTy->getElementType(); 4913 unsigned AS = AddrTy->getAddressSpace(); 4914 4915 // Do a match against the root of this address, ignoring profitability. This 4916 // will tell us if the addressing mode for the memory operation will 4917 // *actually* cover the shared instruction. 4918 ExtAddrMode Result; 4919 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4920 0); 4921 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4922 TPT.getRestorationPoint(); 4923 AddressingModeMatcher Matcher( 4924 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4925 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4926 Matcher.IgnoreProfitability = true; 4927 bool Success = Matcher.matchAddr(Address, 0); 4928 (void)Success; assert(Success && "Couldn't select *anything*?"); 4929 4930 // The match was to check the profitability, the changes made are not 4931 // part of the original matcher. Therefore, they should be dropped 4932 // otherwise the original matcher will not present the right state. 4933 TPT.rollback(LastKnownGood); 4934 4935 // If the match didn't cover I, then it won't be shared by it. 4936 if (!is_contained(MatchedAddrModeInsts, I)) 4937 return false; 4938 4939 MatchedAddrModeInsts.clear(); 4940 } 4941 4942 return true; 4943 } 4944 4945 /// Return true if the specified values are defined in a 4946 /// different basic block than BB. 4947 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4948 if (Instruction *I = dyn_cast<Instruction>(V)) 4949 return I->getParent() != BB; 4950 return false; 4951 } 4952 4953 /// Sink addressing mode computation immediate before MemoryInst if doing so 4954 /// can be done without increasing register pressure. The need for the 4955 /// register pressure constraint means this can end up being an all or nothing 4956 /// decision for all uses of the same addressing computation. 4957 /// 4958 /// Load and Store Instructions often have addressing modes that can do 4959 /// significant amounts of computation. As such, instruction selection will try 4960 /// to get the load or store to do as much computation as possible for the 4961 /// program. The problem is that isel can only see within a single block. As 4962 /// such, we sink as much legal addressing mode work into the block as possible. 4963 /// 4964 /// This method is used to optimize both load/store and inline asms with memory 4965 /// operands. It's also used to sink addressing computations feeding into cold 4966 /// call sites into their (cold) basic block. 4967 /// 4968 /// The motivation for handling sinking into cold blocks is that doing so can 4969 /// both enable other address mode sinking (by satisfying the register pressure 4970 /// constraint above), and reduce register pressure globally (by removing the 4971 /// addressing mode computation from the fast path entirely.). 4972 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4973 Type *AccessTy, unsigned AddrSpace) { 4974 Value *Repl = Addr; 4975 4976 // Try to collapse single-value PHI nodes. This is necessary to undo 4977 // unprofitable PRE transformations. 4978 SmallVector<Value*, 8> worklist; 4979 SmallPtrSet<Value*, 16> Visited; 4980 worklist.push_back(Addr); 4981 4982 // Use a worklist to iteratively look through PHI and select nodes, and 4983 // ensure that the addressing mode obtained from the non-PHI/select roots of 4984 // the graph are compatible. 4985 bool PhiOrSelectSeen = false; 4986 SmallVector<Instruction*, 16> AddrModeInsts; 4987 const SimplifyQuery SQ(*DL, TLInfo); 4988 AddressingModeCombiner AddrModes(SQ, Addr); 4989 TypePromotionTransaction TPT(RemovedInsts); 4990 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4991 TPT.getRestorationPoint(); 4992 while (!worklist.empty()) { 4993 Value *V = worklist.back(); 4994 worklist.pop_back(); 4995 4996 // We allow traversing cyclic Phi nodes. 4997 // In case of success after this loop we ensure that traversing through 4998 // Phi nodes ends up with all cases to compute address of the form 4999 // BaseGV + Base + Scale * Index + Offset 5000 // where Scale and Offset are constans and BaseGV, Base and Index 5001 // are exactly the same Values in all cases. 5002 // It means that BaseGV, Scale and Offset dominate our memory instruction 5003 // and have the same value as they had in address computation represented 5004 // as Phi. So we can safely sink address computation to memory instruction. 5005 if (!Visited.insert(V).second) 5006 continue; 5007 5008 // For a PHI node, push all of its incoming values. 5009 if (PHINode *P = dyn_cast<PHINode>(V)) { 5010 append_range(worklist, P->incoming_values()); 5011 PhiOrSelectSeen = true; 5012 continue; 5013 } 5014 // Similar for select. 5015 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5016 worklist.push_back(SI->getFalseValue()); 5017 worklist.push_back(SI->getTrueValue()); 5018 PhiOrSelectSeen = true; 5019 continue; 5020 } 5021 5022 // For non-PHIs, determine the addressing mode being computed. Note that 5023 // the result may differ depending on what other uses our candidate 5024 // addressing instructions might have. 5025 AddrModeInsts.clear(); 5026 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5027 0); 5028 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5029 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 5030 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5031 BFI.get()); 5032 5033 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5034 if (GEP && !NewGEPBases.count(GEP)) { 5035 // If splitting the underlying data structure can reduce the offset of a 5036 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5037 // previously split data structures. 5038 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5039 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5040 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5041 } 5042 5043 NewAddrMode.OriginalValue = V; 5044 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5045 break; 5046 } 5047 5048 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5049 // or we have multiple but either couldn't combine them or combining them 5050 // wouldn't do anything useful, bail out now. 5051 if (!AddrModes.combineAddrModes()) { 5052 TPT.rollback(LastKnownGood); 5053 return false; 5054 } 5055 bool Modified = TPT.commit(); 5056 5057 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5058 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5059 5060 // If all the instructions matched are already in this BB, don't do anything. 5061 // If we saw a Phi node then it is not local definitely, and if we saw a select 5062 // then we want to push the address calculation past it even if it's already 5063 // in this BB. 5064 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5065 return IsNonLocalValue(V, MemoryInst->getParent()); 5066 })) { 5067 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5068 << "\n"); 5069 return Modified; 5070 } 5071 5072 // Insert this computation right after this user. Since our caller is 5073 // scanning from the top of the BB to the bottom, reuse of the expr are 5074 // guaranteed to happen later. 5075 IRBuilder<> Builder(MemoryInst); 5076 5077 // Now that we determined the addressing expression we want to use and know 5078 // that we have to sink it into this block. Check to see if we have already 5079 // done this for some other load/store instr in this block. If so, reuse 5080 // the computation. Before attempting reuse, check if the address is valid 5081 // as it may have been erased. 5082 5083 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5084 5085 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5086 if (SunkAddr) { 5087 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5088 << " for " << *MemoryInst << "\n"); 5089 if (SunkAddr->getType() != Addr->getType()) 5090 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5091 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5092 SubtargetInfo->addrSinkUsingGEPs())) { 5093 // By default, we use the GEP-based method when AA is used later. This 5094 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5095 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5096 << " for " << *MemoryInst << "\n"); 5097 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5098 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5099 5100 // First, find the pointer. 5101 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5102 ResultPtr = AddrMode.BaseReg; 5103 AddrMode.BaseReg = nullptr; 5104 } 5105 5106 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5107 // We can't add more than one pointer together, nor can we scale a 5108 // pointer (both of which seem meaningless). 5109 if (ResultPtr || AddrMode.Scale != 1) 5110 return Modified; 5111 5112 ResultPtr = AddrMode.ScaledReg; 5113 AddrMode.Scale = 0; 5114 } 5115 5116 // It is only safe to sign extend the BaseReg if we know that the math 5117 // required to create it did not overflow before we extend it. Since 5118 // the original IR value was tossed in favor of a constant back when 5119 // the AddrMode was created we need to bail out gracefully if widths 5120 // do not match instead of extending it. 5121 // 5122 // (See below for code to add the scale.) 5123 if (AddrMode.Scale) { 5124 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5125 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5126 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5127 return Modified; 5128 } 5129 5130 if (AddrMode.BaseGV) { 5131 if (ResultPtr) 5132 return Modified; 5133 5134 ResultPtr = AddrMode.BaseGV; 5135 } 5136 5137 // If the real base value actually came from an inttoptr, then the matcher 5138 // will look through it and provide only the integer value. In that case, 5139 // use it here. 5140 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5141 if (!ResultPtr && AddrMode.BaseReg) { 5142 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5143 "sunkaddr"); 5144 AddrMode.BaseReg = nullptr; 5145 } else if (!ResultPtr && AddrMode.Scale == 1) { 5146 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5147 "sunkaddr"); 5148 AddrMode.Scale = 0; 5149 } 5150 } 5151 5152 if (!ResultPtr && 5153 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5154 SunkAddr = Constant::getNullValue(Addr->getType()); 5155 } else if (!ResultPtr) { 5156 return Modified; 5157 } else { 5158 Type *I8PtrTy = 5159 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5160 Type *I8Ty = Builder.getInt8Ty(); 5161 5162 // Start with the base register. Do this first so that subsequent address 5163 // matching finds it last, which will prevent it from trying to match it 5164 // as the scaled value in case it happens to be a mul. That would be 5165 // problematic if we've sunk a different mul for the scale, because then 5166 // we'd end up sinking both muls. 5167 if (AddrMode.BaseReg) { 5168 Value *V = AddrMode.BaseReg; 5169 if (V->getType() != IntPtrTy) 5170 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5171 5172 ResultIndex = V; 5173 } 5174 5175 // Add the scale value. 5176 if (AddrMode.Scale) { 5177 Value *V = AddrMode.ScaledReg; 5178 if (V->getType() == IntPtrTy) { 5179 // done. 5180 } else { 5181 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5182 cast<IntegerType>(V->getType())->getBitWidth() && 5183 "We can't transform if ScaledReg is too narrow"); 5184 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5185 } 5186 5187 if (AddrMode.Scale != 1) 5188 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5189 "sunkaddr"); 5190 if (ResultIndex) 5191 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5192 else 5193 ResultIndex = V; 5194 } 5195 5196 // Add in the Base Offset if present. 5197 if (AddrMode.BaseOffs) { 5198 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5199 if (ResultIndex) { 5200 // We need to add this separately from the scale above to help with 5201 // SDAG consecutive load/store merging. 5202 if (ResultPtr->getType() != I8PtrTy) 5203 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5204 ResultPtr = 5205 AddrMode.InBounds 5206 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5207 "sunkaddr") 5208 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5209 } 5210 5211 ResultIndex = V; 5212 } 5213 5214 if (!ResultIndex) { 5215 SunkAddr = ResultPtr; 5216 } else { 5217 if (ResultPtr->getType() != I8PtrTy) 5218 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5219 SunkAddr = 5220 AddrMode.InBounds 5221 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5222 "sunkaddr") 5223 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5224 } 5225 5226 if (SunkAddr->getType() != Addr->getType()) 5227 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5228 } 5229 } else { 5230 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5231 // non-integral pointers, so in that case bail out now. 5232 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5233 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5234 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5235 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5236 if (DL->isNonIntegralPointerType(Addr->getType()) || 5237 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5238 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5239 (AddrMode.BaseGV && 5240 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5241 return Modified; 5242 5243 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5244 << " for " << *MemoryInst << "\n"); 5245 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5246 Value *Result = nullptr; 5247 5248 // Start with the base register. Do this first so that subsequent address 5249 // matching finds it last, which will prevent it from trying to match it 5250 // as the scaled value in case it happens to be a mul. That would be 5251 // problematic if we've sunk a different mul for the scale, because then 5252 // we'd end up sinking both muls. 5253 if (AddrMode.BaseReg) { 5254 Value *V = AddrMode.BaseReg; 5255 if (V->getType()->isPointerTy()) 5256 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5257 if (V->getType() != IntPtrTy) 5258 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5259 Result = V; 5260 } 5261 5262 // Add the scale value. 5263 if (AddrMode.Scale) { 5264 Value *V = AddrMode.ScaledReg; 5265 if (V->getType() == IntPtrTy) { 5266 // done. 5267 } else if (V->getType()->isPointerTy()) { 5268 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5269 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5270 cast<IntegerType>(V->getType())->getBitWidth()) { 5271 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5272 } else { 5273 // It is only safe to sign extend the BaseReg if we know that the math 5274 // required to create it did not overflow before we extend it. Since 5275 // the original IR value was tossed in favor of a constant back when 5276 // the AddrMode was created we need to bail out gracefully if widths 5277 // do not match instead of extending it. 5278 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5279 if (I && (Result != AddrMode.BaseReg)) 5280 I->eraseFromParent(); 5281 return Modified; 5282 } 5283 if (AddrMode.Scale != 1) 5284 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5285 "sunkaddr"); 5286 if (Result) 5287 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5288 else 5289 Result = V; 5290 } 5291 5292 // Add in the BaseGV if present. 5293 if (AddrMode.BaseGV) { 5294 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5295 if (Result) 5296 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5297 else 5298 Result = V; 5299 } 5300 5301 // Add in the Base Offset if present. 5302 if (AddrMode.BaseOffs) { 5303 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5304 if (Result) 5305 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5306 else 5307 Result = V; 5308 } 5309 5310 if (!Result) 5311 SunkAddr = Constant::getNullValue(Addr->getType()); 5312 else 5313 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5314 } 5315 5316 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5317 // Store the newly computed address into the cache. In the case we reused a 5318 // value, this should be idempotent. 5319 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5320 5321 // If we have no uses, recursively delete the value and all dead instructions 5322 // using it. 5323 if (Repl->use_empty()) { 5324 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5325 RecursivelyDeleteTriviallyDeadInstructions( 5326 Repl, TLInfo, nullptr, 5327 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5328 }); 5329 } 5330 ++NumMemoryInsts; 5331 return true; 5332 } 5333 5334 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5335 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5336 /// only handle a 2 operand GEP in the same basic block or a splat constant 5337 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5338 /// index. 5339 /// 5340 /// If the existing GEP has a vector base pointer that is splat, we can look 5341 /// through the splat to find the scalar pointer. If we can't find a scalar 5342 /// pointer there's nothing we can do. 5343 /// 5344 /// If we have a GEP with more than 2 indices where the middle indices are all 5345 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5346 /// 5347 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5348 /// followed by a GEP with an all zeroes vector index. This will enable 5349 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5350 /// zero index. 5351 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5352 Value *Ptr) { 5353 Value *NewAddr; 5354 5355 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5356 // Don't optimize GEPs that don't have indices. 5357 if (!GEP->hasIndices()) 5358 return false; 5359 5360 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5361 // FIXME: We should support this by sinking the GEP. 5362 if (MemoryInst->getParent() != GEP->getParent()) 5363 return false; 5364 5365 SmallVector<Value *, 2> Ops(GEP->operands()); 5366 5367 bool RewriteGEP = false; 5368 5369 if (Ops[0]->getType()->isVectorTy()) { 5370 Ops[0] = getSplatValue(Ops[0]); 5371 if (!Ops[0]) 5372 return false; 5373 RewriteGEP = true; 5374 } 5375 5376 unsigned FinalIndex = Ops.size() - 1; 5377 5378 // Ensure all but the last index is 0. 5379 // FIXME: This isn't strictly required. All that's required is that they are 5380 // all scalars or splats. 5381 for (unsigned i = 1; i < FinalIndex; ++i) { 5382 auto *C = dyn_cast<Constant>(Ops[i]); 5383 if (!C) 5384 return false; 5385 if (isa<VectorType>(C->getType())) 5386 C = C->getSplatValue(); 5387 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5388 if (!CI || !CI->isZero()) 5389 return false; 5390 // Scalarize the index if needed. 5391 Ops[i] = CI; 5392 } 5393 5394 // Try to scalarize the final index. 5395 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5396 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5397 auto *C = dyn_cast<ConstantInt>(V); 5398 // Don't scalarize all zeros vector. 5399 if (!C || !C->isZero()) { 5400 Ops[FinalIndex] = V; 5401 RewriteGEP = true; 5402 } 5403 } 5404 } 5405 5406 // If we made any changes or the we have extra operands, we need to generate 5407 // new instructions. 5408 if (!RewriteGEP && Ops.size() == 2) 5409 return false; 5410 5411 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5412 5413 IRBuilder<> Builder(MemoryInst); 5414 5415 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5416 5417 // If the final index isn't a vector, emit a scalar GEP containing all ops 5418 // and a vector GEP with all zeroes final index. 5419 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5420 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5421 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5422 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5423 } else { 5424 Value *Base = Ops[0]; 5425 Value *Index = Ops[FinalIndex]; 5426 5427 // Create a scalar GEP if there are more than 2 operands. 5428 if (Ops.size() != 2) { 5429 // Replace the last index with 0. 5430 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5431 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5432 } 5433 5434 // Now create the GEP with scalar pointer and vector index. 5435 NewAddr = Builder.CreateGEP(Base, Index); 5436 } 5437 } else if (!isa<Constant>(Ptr)) { 5438 // Not a GEP, maybe its a splat and we can create a GEP to enable 5439 // SelectionDAGBuilder to use it as a uniform base. 5440 Value *V = getSplatValue(Ptr); 5441 if (!V) 5442 return false; 5443 5444 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5445 5446 IRBuilder<> Builder(MemoryInst); 5447 5448 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5449 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5450 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5451 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5452 } else { 5453 // Constant, SelectionDAGBuilder knows to check if its a splat. 5454 return false; 5455 } 5456 5457 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5458 5459 // If we have no uses, recursively delete the value and all dead instructions 5460 // using it. 5461 if (Ptr->use_empty()) 5462 RecursivelyDeleteTriviallyDeadInstructions( 5463 Ptr, TLInfo, nullptr, 5464 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5465 5466 return true; 5467 } 5468 5469 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5470 /// address computing into the block when possible / profitable. 5471 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5472 bool MadeChange = false; 5473 5474 const TargetRegisterInfo *TRI = 5475 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5476 TargetLowering::AsmOperandInfoVector TargetConstraints = 5477 TLI->ParseConstraints(*DL, TRI, *CS); 5478 unsigned ArgNo = 0; 5479 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5480 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5481 5482 // Compute the constraint code and ConstraintType to use. 5483 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5484 5485 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5486 OpInfo.isIndirect) { 5487 Value *OpVal = CS->getArgOperand(ArgNo++); 5488 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5489 } else if (OpInfo.Type == InlineAsm::isInput) 5490 ArgNo++; 5491 } 5492 5493 return MadeChange; 5494 } 5495 5496 /// Check if all the uses of \p Val are equivalent (or free) zero or 5497 /// sign extensions. 5498 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5499 assert(!Val->use_empty() && "Input must have at least one use"); 5500 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5501 bool IsSExt = isa<SExtInst>(FirstUser); 5502 Type *ExtTy = FirstUser->getType(); 5503 for (const User *U : Val->users()) { 5504 const Instruction *UI = cast<Instruction>(U); 5505 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5506 return false; 5507 Type *CurTy = UI->getType(); 5508 // Same input and output types: Same instruction after CSE. 5509 if (CurTy == ExtTy) 5510 continue; 5511 5512 // If IsSExt is true, we are in this situation: 5513 // a = Val 5514 // b = sext ty1 a to ty2 5515 // c = sext ty1 a to ty3 5516 // Assuming ty2 is shorter than ty3, this could be turned into: 5517 // a = Val 5518 // b = sext ty1 a to ty2 5519 // c = sext ty2 b to ty3 5520 // However, the last sext is not free. 5521 if (IsSExt) 5522 return false; 5523 5524 // This is a ZExt, maybe this is free to extend from one type to another. 5525 // In that case, we would not account for a different use. 5526 Type *NarrowTy; 5527 Type *LargeTy; 5528 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5529 CurTy->getScalarType()->getIntegerBitWidth()) { 5530 NarrowTy = CurTy; 5531 LargeTy = ExtTy; 5532 } else { 5533 NarrowTy = ExtTy; 5534 LargeTy = CurTy; 5535 } 5536 5537 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5538 return false; 5539 } 5540 // All uses are the same or can be derived from one another for free. 5541 return true; 5542 } 5543 5544 /// Try to speculatively promote extensions in \p Exts and continue 5545 /// promoting through newly promoted operands recursively as far as doing so is 5546 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5547 /// When some promotion happened, \p TPT contains the proper state to revert 5548 /// them. 5549 /// 5550 /// \return true if some promotion happened, false otherwise. 5551 bool CodeGenPrepare::tryToPromoteExts( 5552 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5553 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5554 unsigned CreatedInstsCost) { 5555 bool Promoted = false; 5556 5557 // Iterate over all the extensions to try to promote them. 5558 for (auto *I : Exts) { 5559 // Early check if we directly have ext(load). 5560 if (isa<LoadInst>(I->getOperand(0))) { 5561 ProfitablyMovedExts.push_back(I); 5562 continue; 5563 } 5564 5565 // Check whether or not we want to do any promotion. The reason we have 5566 // this check inside the for loop is to catch the case where an extension 5567 // is directly fed by a load because in such case the extension can be moved 5568 // up without any promotion on its operands. 5569 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5570 return false; 5571 5572 // Get the action to perform the promotion. 5573 TypePromotionHelper::Action TPH = 5574 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5575 // Check if we can promote. 5576 if (!TPH) { 5577 // Save the current extension as we cannot move up through its operand. 5578 ProfitablyMovedExts.push_back(I); 5579 continue; 5580 } 5581 5582 // Save the current state. 5583 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5584 TPT.getRestorationPoint(); 5585 SmallVector<Instruction *, 4> NewExts; 5586 unsigned NewCreatedInstsCost = 0; 5587 unsigned ExtCost = !TLI->isExtFree(I); 5588 // Promote. 5589 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5590 &NewExts, nullptr, *TLI); 5591 assert(PromotedVal && 5592 "TypePromotionHelper should have filtered out those cases"); 5593 5594 // We would be able to merge only one extension in a load. 5595 // Therefore, if we have more than 1 new extension we heuristically 5596 // cut this search path, because it means we degrade the code quality. 5597 // With exactly 2, the transformation is neutral, because we will merge 5598 // one extension but leave one. However, we optimistically keep going, 5599 // because the new extension may be removed too. 5600 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5601 // FIXME: It would be possible to propagate a negative value instead of 5602 // conservatively ceiling it to 0. 5603 TotalCreatedInstsCost = 5604 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5605 if (!StressExtLdPromotion && 5606 (TotalCreatedInstsCost > 1 || 5607 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5608 // This promotion is not profitable, rollback to the previous state, and 5609 // save the current extension in ProfitablyMovedExts as the latest 5610 // speculative promotion turned out to be unprofitable. 5611 TPT.rollback(LastKnownGood); 5612 ProfitablyMovedExts.push_back(I); 5613 continue; 5614 } 5615 // Continue promoting NewExts as far as doing so is profitable. 5616 SmallVector<Instruction *, 2> NewlyMovedExts; 5617 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5618 bool NewPromoted = false; 5619 for (auto *ExtInst : NewlyMovedExts) { 5620 Instruction *MovedExt = cast<Instruction>(ExtInst); 5621 Value *ExtOperand = MovedExt->getOperand(0); 5622 // If we have reached to a load, we need this extra profitability check 5623 // as it could potentially be merged into an ext(load). 5624 if (isa<LoadInst>(ExtOperand) && 5625 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5626 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5627 continue; 5628 5629 ProfitablyMovedExts.push_back(MovedExt); 5630 NewPromoted = true; 5631 } 5632 5633 // If none of speculative promotions for NewExts is profitable, rollback 5634 // and save the current extension (I) as the last profitable extension. 5635 if (!NewPromoted) { 5636 TPT.rollback(LastKnownGood); 5637 ProfitablyMovedExts.push_back(I); 5638 continue; 5639 } 5640 // The promotion is profitable. 5641 Promoted = true; 5642 } 5643 return Promoted; 5644 } 5645 5646 /// Merging redundant sexts when one is dominating the other. 5647 bool CodeGenPrepare::mergeSExts(Function &F) { 5648 bool Changed = false; 5649 for (auto &Entry : ValToSExtendedUses) { 5650 SExts &Insts = Entry.second; 5651 SExts CurPts; 5652 for (Instruction *Inst : Insts) { 5653 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5654 Inst->getOperand(0) != Entry.first) 5655 continue; 5656 bool inserted = false; 5657 for (auto &Pt : CurPts) { 5658 if (getDT(F).dominates(Inst, Pt)) { 5659 Pt->replaceAllUsesWith(Inst); 5660 RemovedInsts.insert(Pt); 5661 Pt->removeFromParent(); 5662 Pt = Inst; 5663 inserted = true; 5664 Changed = true; 5665 break; 5666 } 5667 if (!getDT(F).dominates(Pt, Inst)) 5668 // Give up if we need to merge in a common dominator as the 5669 // experiments show it is not profitable. 5670 continue; 5671 Inst->replaceAllUsesWith(Pt); 5672 RemovedInsts.insert(Inst); 5673 Inst->removeFromParent(); 5674 inserted = true; 5675 Changed = true; 5676 break; 5677 } 5678 if (!inserted) 5679 CurPts.push_back(Inst); 5680 } 5681 } 5682 return Changed; 5683 } 5684 5685 // Splitting large data structures so that the GEPs accessing them can have 5686 // smaller offsets so that they can be sunk to the same blocks as their users. 5687 // For example, a large struct starting from %base is split into two parts 5688 // where the second part starts from %new_base. 5689 // 5690 // Before: 5691 // BB0: 5692 // %base = 5693 // 5694 // BB1: 5695 // %gep0 = gep %base, off0 5696 // %gep1 = gep %base, off1 5697 // %gep2 = gep %base, off2 5698 // 5699 // BB2: 5700 // %load1 = load %gep0 5701 // %load2 = load %gep1 5702 // %load3 = load %gep2 5703 // 5704 // After: 5705 // BB0: 5706 // %base = 5707 // %new_base = gep %base, off0 5708 // 5709 // BB1: 5710 // %new_gep0 = %new_base 5711 // %new_gep1 = gep %new_base, off1 - off0 5712 // %new_gep2 = gep %new_base, off2 - off0 5713 // 5714 // BB2: 5715 // %load1 = load i32, i32* %new_gep0 5716 // %load2 = load i32, i32* %new_gep1 5717 // %load3 = load i32, i32* %new_gep2 5718 // 5719 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5720 // their offsets are smaller enough to fit into the addressing mode. 5721 bool CodeGenPrepare::splitLargeGEPOffsets() { 5722 bool Changed = false; 5723 for (auto &Entry : LargeOffsetGEPMap) { 5724 Value *OldBase = Entry.first; 5725 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5726 &LargeOffsetGEPs = Entry.second; 5727 auto compareGEPOffset = 5728 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5729 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5730 if (LHS.first == RHS.first) 5731 return false; 5732 if (LHS.second != RHS.second) 5733 return LHS.second < RHS.second; 5734 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5735 }; 5736 // Sorting all the GEPs of the same data structures based on the offsets. 5737 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5738 LargeOffsetGEPs.erase( 5739 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5740 LargeOffsetGEPs.end()); 5741 // Skip if all the GEPs have the same offsets. 5742 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5743 continue; 5744 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5745 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5746 Value *NewBaseGEP = nullptr; 5747 5748 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5749 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5750 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5751 int64_t Offset = LargeOffsetGEP->second; 5752 if (Offset != BaseOffset) { 5753 TargetLowering::AddrMode AddrMode; 5754 AddrMode.BaseOffs = Offset - BaseOffset; 5755 // The result type of the GEP might not be the type of the memory 5756 // access. 5757 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5758 GEP->getResultElementType(), 5759 GEP->getAddressSpace())) { 5760 // We need to create a new base if the offset to the current base is 5761 // too large to fit into the addressing mode. So, a very large struct 5762 // may be split into several parts. 5763 BaseGEP = GEP; 5764 BaseOffset = Offset; 5765 NewBaseGEP = nullptr; 5766 } 5767 } 5768 5769 // Generate a new GEP to replace the current one. 5770 LLVMContext &Ctx = GEP->getContext(); 5771 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5772 Type *I8PtrTy = 5773 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5774 Type *I8Ty = Type::getInt8Ty(Ctx); 5775 5776 if (!NewBaseGEP) { 5777 // Create a new base if we don't have one yet. Find the insertion 5778 // pointer for the new base first. 5779 BasicBlock::iterator NewBaseInsertPt; 5780 BasicBlock *NewBaseInsertBB; 5781 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5782 // If the base of the struct is an instruction, the new base will be 5783 // inserted close to it. 5784 NewBaseInsertBB = BaseI->getParent(); 5785 if (isa<PHINode>(BaseI)) 5786 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5787 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5788 NewBaseInsertBB = 5789 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5790 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5791 } else 5792 NewBaseInsertPt = std::next(BaseI->getIterator()); 5793 } else { 5794 // If the current base is an argument or global value, the new base 5795 // will be inserted to the entry block. 5796 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5797 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5798 } 5799 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5800 // Create a new base. 5801 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5802 NewBaseGEP = OldBase; 5803 if (NewBaseGEP->getType() != I8PtrTy) 5804 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5805 NewBaseGEP = 5806 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5807 NewGEPBases.insert(NewBaseGEP); 5808 } 5809 5810 IRBuilder<> Builder(GEP); 5811 Value *NewGEP = NewBaseGEP; 5812 if (Offset == BaseOffset) { 5813 if (GEP->getType() != I8PtrTy) 5814 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5815 } else { 5816 // Calculate the new offset for the new GEP. 5817 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5818 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5819 5820 if (GEP->getType() != I8PtrTy) 5821 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5822 } 5823 GEP->replaceAllUsesWith(NewGEP); 5824 LargeOffsetGEPID.erase(GEP); 5825 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5826 GEP->eraseFromParent(); 5827 Changed = true; 5828 } 5829 } 5830 return Changed; 5831 } 5832 5833 bool CodeGenPrepare::optimizePhiType( 5834 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5835 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5836 // We are looking for a collection on interconnected phi nodes that together 5837 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5838 // are of the same type. Convert the whole set of nodes to the type of the 5839 // bitcast. 5840 Type *PhiTy = I->getType(); 5841 Type *ConvertTy = nullptr; 5842 if (Visited.count(I) || 5843 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5844 return false; 5845 5846 SmallVector<Instruction *, 4> Worklist; 5847 Worklist.push_back(cast<Instruction>(I)); 5848 SmallPtrSet<PHINode *, 4> PhiNodes; 5849 PhiNodes.insert(I); 5850 Visited.insert(I); 5851 SmallPtrSet<Instruction *, 4> Defs; 5852 SmallPtrSet<Instruction *, 4> Uses; 5853 // This works by adding extra bitcasts between load/stores and removing 5854 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5855 // we can get in the situation where we remove a bitcast in one iteration 5856 // just to add it again in the next. We need to ensure that at least one 5857 // bitcast we remove are anchored to something that will not change back. 5858 bool AnyAnchored = false; 5859 5860 while (!Worklist.empty()) { 5861 Instruction *II = Worklist.pop_back_val(); 5862 5863 if (auto *Phi = dyn_cast<PHINode>(II)) { 5864 // Handle Defs, which might also be PHI's 5865 for (Value *V : Phi->incoming_values()) { 5866 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5867 if (!PhiNodes.count(OpPhi)) { 5868 if (Visited.count(OpPhi)) 5869 return false; 5870 PhiNodes.insert(OpPhi); 5871 Visited.insert(OpPhi); 5872 Worklist.push_back(OpPhi); 5873 } 5874 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5875 if (!OpLoad->isSimple()) 5876 return false; 5877 if (!Defs.count(OpLoad)) { 5878 Defs.insert(OpLoad); 5879 Worklist.push_back(OpLoad); 5880 } 5881 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5882 if (!Defs.count(OpEx)) { 5883 Defs.insert(OpEx); 5884 Worklist.push_back(OpEx); 5885 } 5886 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5887 if (!ConvertTy) 5888 ConvertTy = OpBC->getOperand(0)->getType(); 5889 if (OpBC->getOperand(0)->getType() != ConvertTy) 5890 return false; 5891 if (!Defs.count(OpBC)) { 5892 Defs.insert(OpBC); 5893 Worklist.push_back(OpBC); 5894 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5895 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5896 } 5897 } else if (!isa<UndefValue>(V)) { 5898 return false; 5899 } 5900 } 5901 } 5902 5903 // Handle uses which might also be phi's 5904 for (User *V : II->users()) { 5905 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5906 if (!PhiNodes.count(OpPhi)) { 5907 if (Visited.count(OpPhi)) 5908 return false; 5909 PhiNodes.insert(OpPhi); 5910 Visited.insert(OpPhi); 5911 Worklist.push_back(OpPhi); 5912 } 5913 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5914 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5915 return false; 5916 Uses.insert(OpStore); 5917 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5918 if (!ConvertTy) 5919 ConvertTy = OpBC->getType(); 5920 if (OpBC->getType() != ConvertTy) 5921 return false; 5922 Uses.insert(OpBC); 5923 AnyAnchored |= 5924 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5925 } else { 5926 return false; 5927 } 5928 } 5929 } 5930 5931 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5932 return false; 5933 5934 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5935 << *ConvertTy << "\n"); 5936 5937 // Create all the new phi nodes of the new type, and bitcast any loads to the 5938 // correct type. 5939 ValueToValueMap ValMap; 5940 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5941 for (Instruction *D : Defs) { 5942 if (isa<BitCastInst>(D)) { 5943 ValMap[D] = D->getOperand(0); 5944 DeletedInstrs.insert(D); 5945 } else { 5946 ValMap[D] = 5947 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5948 } 5949 } 5950 for (PHINode *Phi : PhiNodes) 5951 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5952 Phi->getName() + ".tc", Phi); 5953 // Pipe together all the PhiNodes. 5954 for (PHINode *Phi : PhiNodes) { 5955 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5956 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5957 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5958 Phi->getIncomingBlock(i)); 5959 Visited.insert(NewPhi); 5960 } 5961 // And finally pipe up the stores and bitcasts 5962 for (Instruction *U : Uses) { 5963 if (isa<BitCastInst>(U)) { 5964 DeletedInstrs.insert(U); 5965 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5966 } else { 5967 U->setOperand(0, 5968 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5969 } 5970 } 5971 5972 // Save the removed phis to be deleted later. 5973 for (PHINode *Phi : PhiNodes) 5974 DeletedInstrs.insert(Phi); 5975 return true; 5976 } 5977 5978 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5979 if (!OptimizePhiTypes) 5980 return false; 5981 5982 bool Changed = false; 5983 SmallPtrSet<PHINode *, 4> Visited; 5984 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5985 5986 // Attempt to optimize all the phis in the functions to the correct type. 5987 for (auto &BB : F) 5988 for (auto &Phi : BB.phis()) 5989 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5990 5991 // Remove any old phi's that have been converted. 5992 for (auto *I : DeletedInstrs) { 5993 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5994 I->eraseFromParent(); 5995 } 5996 5997 return Changed; 5998 } 5999 6000 /// Return true, if an ext(load) can be formed from an extension in 6001 /// \p MovedExts. 6002 bool CodeGenPrepare::canFormExtLd( 6003 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 6004 Instruction *&Inst, bool HasPromoted) { 6005 for (auto *MovedExtInst : MovedExts) { 6006 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 6007 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6008 Inst = MovedExtInst; 6009 break; 6010 } 6011 } 6012 if (!LI) 6013 return false; 6014 6015 // If they're already in the same block, there's nothing to do. 6016 // Make the cheap checks first if we did not promote. 6017 // If we promoted, we need to check if it is indeed profitable. 6018 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6019 return false; 6020 6021 return TLI->isExtLoad(LI, Inst, *DL); 6022 } 6023 6024 /// Move a zext or sext fed by a load into the same basic block as the load, 6025 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6026 /// extend into the load. 6027 /// 6028 /// E.g., 6029 /// \code 6030 /// %ld = load i32* %addr 6031 /// %add = add nuw i32 %ld, 4 6032 /// %zext = zext i32 %add to i64 6033 // \endcode 6034 /// => 6035 /// \code 6036 /// %ld = load i32* %addr 6037 /// %zext = zext i32 %ld to i64 6038 /// %add = add nuw i64 %zext, 4 6039 /// \encode 6040 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6041 /// allow us to match zext(load i32*) to i64. 6042 /// 6043 /// Also, try to promote the computations used to obtain a sign extended 6044 /// value used into memory accesses. 6045 /// E.g., 6046 /// \code 6047 /// a = add nsw i32 b, 3 6048 /// d = sext i32 a to i64 6049 /// e = getelementptr ..., i64 d 6050 /// \endcode 6051 /// => 6052 /// \code 6053 /// f = sext i32 b to i64 6054 /// a = add nsw i64 f, 3 6055 /// e = getelementptr ..., i64 a 6056 /// \endcode 6057 /// 6058 /// \p Inst[in/out] the extension may be modified during the process if some 6059 /// promotions apply. 6060 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6061 bool AllowPromotionWithoutCommonHeader = false; 6062 /// See if it is an interesting sext operations for the address type 6063 /// promotion before trying to promote it, e.g., the ones with the right 6064 /// type and used in memory accesses. 6065 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6066 *Inst, AllowPromotionWithoutCommonHeader); 6067 TypePromotionTransaction TPT(RemovedInsts); 6068 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6069 TPT.getRestorationPoint(); 6070 SmallVector<Instruction *, 1> Exts; 6071 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6072 Exts.push_back(Inst); 6073 6074 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6075 6076 // Look for a load being extended. 6077 LoadInst *LI = nullptr; 6078 Instruction *ExtFedByLoad; 6079 6080 // Try to promote a chain of computation if it allows to form an extended 6081 // load. 6082 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6083 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6084 TPT.commit(); 6085 // Move the extend into the same block as the load. 6086 ExtFedByLoad->moveAfter(LI); 6087 ++NumExtsMoved; 6088 Inst = ExtFedByLoad; 6089 return true; 6090 } 6091 6092 // Continue promoting SExts if known as considerable depending on targets. 6093 if (ATPConsiderable && 6094 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6095 HasPromoted, TPT, SpeculativelyMovedExts)) 6096 return true; 6097 6098 TPT.rollback(LastKnownGood); 6099 return false; 6100 } 6101 6102 // Perform address type promotion if doing so is profitable. 6103 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6104 // instructions that sign extended the same initial value. However, if 6105 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6106 // extension is just profitable. 6107 bool CodeGenPrepare::performAddressTypePromotion( 6108 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6109 bool HasPromoted, TypePromotionTransaction &TPT, 6110 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6111 bool Promoted = false; 6112 SmallPtrSet<Instruction *, 1> UnhandledExts; 6113 bool AllSeenFirst = true; 6114 for (auto *I : SpeculativelyMovedExts) { 6115 Value *HeadOfChain = I->getOperand(0); 6116 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6117 SeenChainsForSExt.find(HeadOfChain); 6118 // If there is an unhandled SExt which has the same header, try to promote 6119 // it as well. 6120 if (AlreadySeen != SeenChainsForSExt.end()) { 6121 if (AlreadySeen->second != nullptr) 6122 UnhandledExts.insert(AlreadySeen->second); 6123 AllSeenFirst = false; 6124 } 6125 } 6126 6127 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6128 SpeculativelyMovedExts.size() == 1)) { 6129 TPT.commit(); 6130 if (HasPromoted) 6131 Promoted = true; 6132 for (auto *I : SpeculativelyMovedExts) { 6133 Value *HeadOfChain = I->getOperand(0); 6134 SeenChainsForSExt[HeadOfChain] = nullptr; 6135 ValToSExtendedUses[HeadOfChain].push_back(I); 6136 } 6137 // Update Inst as promotion happen. 6138 Inst = SpeculativelyMovedExts.pop_back_val(); 6139 } else { 6140 // This is the first chain visited from the header, keep the current chain 6141 // as unhandled. Defer to promote this until we encounter another SExt 6142 // chain derived from the same header. 6143 for (auto *I : SpeculativelyMovedExts) { 6144 Value *HeadOfChain = I->getOperand(0); 6145 SeenChainsForSExt[HeadOfChain] = Inst; 6146 } 6147 return false; 6148 } 6149 6150 if (!AllSeenFirst && !UnhandledExts.empty()) 6151 for (auto *VisitedSExt : UnhandledExts) { 6152 if (RemovedInsts.count(VisitedSExt)) 6153 continue; 6154 TypePromotionTransaction TPT(RemovedInsts); 6155 SmallVector<Instruction *, 1> Exts; 6156 SmallVector<Instruction *, 2> Chains; 6157 Exts.push_back(VisitedSExt); 6158 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6159 TPT.commit(); 6160 if (HasPromoted) 6161 Promoted = true; 6162 for (auto *I : Chains) { 6163 Value *HeadOfChain = I->getOperand(0); 6164 // Mark this as handled. 6165 SeenChainsForSExt[HeadOfChain] = nullptr; 6166 ValToSExtendedUses[HeadOfChain].push_back(I); 6167 } 6168 } 6169 return Promoted; 6170 } 6171 6172 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6173 BasicBlock *DefBB = I->getParent(); 6174 6175 // If the result of a {s|z}ext and its source are both live out, rewrite all 6176 // other uses of the source with result of extension. 6177 Value *Src = I->getOperand(0); 6178 if (Src->hasOneUse()) 6179 return false; 6180 6181 // Only do this xform if truncating is free. 6182 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6183 return false; 6184 6185 // Only safe to perform the optimization if the source is also defined in 6186 // this block. 6187 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6188 return false; 6189 6190 bool DefIsLiveOut = false; 6191 for (User *U : I->users()) { 6192 Instruction *UI = cast<Instruction>(U); 6193 6194 // Figure out which BB this ext is used in. 6195 BasicBlock *UserBB = UI->getParent(); 6196 if (UserBB == DefBB) continue; 6197 DefIsLiveOut = true; 6198 break; 6199 } 6200 if (!DefIsLiveOut) 6201 return false; 6202 6203 // Make sure none of the uses are PHI nodes. 6204 for (User *U : Src->users()) { 6205 Instruction *UI = cast<Instruction>(U); 6206 BasicBlock *UserBB = UI->getParent(); 6207 if (UserBB == DefBB) continue; 6208 // Be conservative. We don't want this xform to end up introducing 6209 // reloads just before load / store instructions. 6210 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6211 return false; 6212 } 6213 6214 // InsertedTruncs - Only insert one trunc in each block once. 6215 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6216 6217 bool MadeChange = false; 6218 for (Use &U : Src->uses()) { 6219 Instruction *User = cast<Instruction>(U.getUser()); 6220 6221 // Figure out which BB this ext is used in. 6222 BasicBlock *UserBB = User->getParent(); 6223 if (UserBB == DefBB) continue; 6224 6225 // Both src and def are live in this block. Rewrite the use. 6226 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6227 6228 if (!InsertedTrunc) { 6229 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6230 assert(InsertPt != UserBB->end()); 6231 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6232 InsertedInsts.insert(InsertedTrunc); 6233 } 6234 6235 // Replace a use of the {s|z}ext source with a use of the result. 6236 U = InsertedTrunc; 6237 ++NumExtUses; 6238 MadeChange = true; 6239 } 6240 6241 return MadeChange; 6242 } 6243 6244 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6245 // just after the load if the target can fold this into one extload instruction, 6246 // with the hope of eliminating some of the other later "and" instructions using 6247 // the loaded value. "and"s that are made trivially redundant by the insertion 6248 // of the new "and" are removed by this function, while others (e.g. those whose 6249 // path from the load goes through a phi) are left for isel to potentially 6250 // remove. 6251 // 6252 // For example: 6253 // 6254 // b0: 6255 // x = load i32 6256 // ... 6257 // b1: 6258 // y = and x, 0xff 6259 // z = use y 6260 // 6261 // becomes: 6262 // 6263 // b0: 6264 // x = load i32 6265 // x' = and x, 0xff 6266 // ... 6267 // b1: 6268 // z = use x' 6269 // 6270 // whereas: 6271 // 6272 // b0: 6273 // x1 = load i32 6274 // ... 6275 // b1: 6276 // x2 = load i32 6277 // ... 6278 // b2: 6279 // x = phi x1, x2 6280 // y = and x, 0xff 6281 // 6282 // becomes (after a call to optimizeLoadExt for each load): 6283 // 6284 // b0: 6285 // x1 = load i32 6286 // x1' = and x1, 0xff 6287 // ... 6288 // b1: 6289 // x2 = load i32 6290 // x2' = and x2, 0xff 6291 // ... 6292 // b2: 6293 // x = phi x1', x2' 6294 // y = and x, 0xff 6295 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6296 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6297 return false; 6298 6299 // Skip loads we've already transformed. 6300 if (Load->hasOneUse() && 6301 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6302 return false; 6303 6304 // Look at all uses of Load, looking through phis, to determine how many bits 6305 // of the loaded value are needed. 6306 SmallVector<Instruction *, 8> WorkList; 6307 SmallPtrSet<Instruction *, 16> Visited; 6308 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6309 for (auto *U : Load->users()) 6310 WorkList.push_back(cast<Instruction>(U)); 6311 6312 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6313 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6314 APInt DemandBits(BitWidth, 0); 6315 APInt WidestAndBits(BitWidth, 0); 6316 6317 while (!WorkList.empty()) { 6318 Instruction *I = WorkList.back(); 6319 WorkList.pop_back(); 6320 6321 // Break use-def graph loops. 6322 if (!Visited.insert(I).second) 6323 continue; 6324 6325 // For a PHI node, push all of its users. 6326 if (auto *Phi = dyn_cast<PHINode>(I)) { 6327 for (auto *U : Phi->users()) 6328 WorkList.push_back(cast<Instruction>(U)); 6329 continue; 6330 } 6331 6332 switch (I->getOpcode()) { 6333 case Instruction::And: { 6334 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6335 if (!AndC) 6336 return false; 6337 APInt AndBits = AndC->getValue(); 6338 DemandBits |= AndBits; 6339 // Keep track of the widest and mask we see. 6340 if (AndBits.ugt(WidestAndBits)) 6341 WidestAndBits = AndBits; 6342 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6343 AndsToMaybeRemove.push_back(I); 6344 break; 6345 } 6346 6347 case Instruction::Shl: { 6348 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6349 if (!ShlC) 6350 return false; 6351 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6352 DemandBits.setLowBits(BitWidth - ShiftAmt); 6353 break; 6354 } 6355 6356 case Instruction::Trunc: { 6357 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6358 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6359 DemandBits.setLowBits(TruncBitWidth); 6360 break; 6361 } 6362 6363 default: 6364 return false; 6365 } 6366 } 6367 6368 uint32_t ActiveBits = DemandBits.getActiveBits(); 6369 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6370 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6371 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6372 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6373 // followed by an AND. 6374 // TODO: Look into removing this restriction by fixing backends to either 6375 // return false for isLoadExtLegal for i1 or have them select this pattern to 6376 // a single instruction. 6377 // 6378 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6379 // mask, since these are the only ands that will be removed by isel. 6380 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6381 WidestAndBits != DemandBits) 6382 return false; 6383 6384 LLVMContext &Ctx = Load->getType()->getContext(); 6385 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6386 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6387 6388 // Reject cases that won't be matched as extloads. 6389 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6390 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6391 return false; 6392 6393 IRBuilder<> Builder(Load->getNextNode()); 6394 auto *NewAnd = cast<Instruction>( 6395 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6396 // Mark this instruction as "inserted by CGP", so that other 6397 // optimizations don't touch it. 6398 InsertedInsts.insert(NewAnd); 6399 6400 // Replace all uses of load with new and (except for the use of load in the 6401 // new and itself). 6402 Load->replaceAllUsesWith(NewAnd); 6403 NewAnd->setOperand(0, Load); 6404 6405 // Remove any and instructions that are now redundant. 6406 for (auto *And : AndsToMaybeRemove) 6407 // Check that the and mask is the same as the one we decided to put on the 6408 // new and. 6409 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6410 And->replaceAllUsesWith(NewAnd); 6411 if (&*CurInstIterator == And) 6412 CurInstIterator = std::next(And->getIterator()); 6413 And->eraseFromParent(); 6414 ++NumAndUses; 6415 } 6416 6417 ++NumAndsAdded; 6418 return true; 6419 } 6420 6421 /// Check if V (an operand of a select instruction) is an expensive instruction 6422 /// that is only used once. 6423 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6424 auto *I = dyn_cast<Instruction>(V); 6425 // If it's safe to speculatively execute, then it should not have side 6426 // effects; therefore, it's safe to sink and possibly *not* execute. 6427 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6428 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6429 TargetTransformInfo::TCC_Expensive; 6430 } 6431 6432 /// Returns true if a SelectInst should be turned into an explicit branch. 6433 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6434 const TargetLowering *TLI, 6435 SelectInst *SI) { 6436 // If even a predictable select is cheap, then a branch can't be cheaper. 6437 if (!TLI->isPredictableSelectExpensive()) 6438 return false; 6439 6440 // FIXME: This should use the same heuristics as IfConversion to determine 6441 // whether a select is better represented as a branch. 6442 6443 // If metadata tells us that the select condition is obviously predictable, 6444 // then we want to replace the select with a branch. 6445 uint64_t TrueWeight, FalseWeight; 6446 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6447 uint64_t Max = std::max(TrueWeight, FalseWeight); 6448 uint64_t Sum = TrueWeight + FalseWeight; 6449 if (Sum != 0) { 6450 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6451 if (Probability > TLI->getPredictableBranchThreshold()) 6452 return true; 6453 } 6454 } 6455 6456 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6457 6458 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6459 // comparison condition. If the compare has more than one use, there's 6460 // probably another cmov or setcc around, so it's not worth emitting a branch. 6461 if (!Cmp || !Cmp->hasOneUse()) 6462 return false; 6463 6464 // If either operand of the select is expensive and only needed on one side 6465 // of the select, we should form a branch. 6466 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6467 sinkSelectOperand(TTI, SI->getFalseValue())) 6468 return true; 6469 6470 return false; 6471 } 6472 6473 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6474 /// false value of \p SI. If the true/false value of \p SI is defined by any 6475 /// select instructions in \p Selects, look through the defining select 6476 /// instruction until the true/false value is not defined in \p Selects. 6477 static Value *getTrueOrFalseValue( 6478 SelectInst *SI, bool isTrue, 6479 const SmallPtrSet<const Instruction *, 2> &Selects) { 6480 Value *V = nullptr; 6481 6482 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6483 DefSI = dyn_cast<SelectInst>(V)) { 6484 assert(DefSI->getCondition() == SI->getCondition() && 6485 "The condition of DefSI does not match with SI"); 6486 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6487 } 6488 6489 assert(V && "Failed to get select true/false value"); 6490 return V; 6491 } 6492 6493 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6494 assert(Shift->isShift() && "Expected a shift"); 6495 6496 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6497 // general vector shifts, and (3) the shift amount is a select-of-splatted 6498 // values, hoist the shifts before the select: 6499 // shift Op0, (select Cond, TVal, FVal) --> 6500 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6501 // 6502 // This is inverting a generic IR transform when we know that the cost of a 6503 // general vector shift is more than the cost of 2 shift-by-scalars. 6504 // We can't do this effectively in SDAG because we may not be able to 6505 // determine if the select operands are splats from within a basic block. 6506 Type *Ty = Shift->getType(); 6507 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6508 return false; 6509 Value *Cond, *TVal, *FVal; 6510 if (!match(Shift->getOperand(1), 6511 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6512 return false; 6513 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6514 return false; 6515 6516 IRBuilder<> Builder(Shift); 6517 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6518 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6519 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6520 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6521 Shift->replaceAllUsesWith(NewSel); 6522 Shift->eraseFromParent(); 6523 return true; 6524 } 6525 6526 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6527 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6528 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6529 "Expected a funnel shift"); 6530 6531 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6532 // than general vector shifts, and (3) the shift amount is select-of-splatted 6533 // values, hoist the funnel shifts before the select: 6534 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6535 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6536 // 6537 // This is inverting a generic IR transform when we know that the cost of a 6538 // general vector shift is more than the cost of 2 shift-by-scalars. 6539 // We can't do this effectively in SDAG because we may not be able to 6540 // determine if the select operands are splats from within a basic block. 6541 Type *Ty = Fsh->getType(); 6542 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6543 return false; 6544 Value *Cond, *TVal, *FVal; 6545 if (!match(Fsh->getOperand(2), 6546 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6547 return false; 6548 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6549 return false; 6550 6551 IRBuilder<> Builder(Fsh); 6552 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6553 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6554 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6555 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6556 Fsh->replaceAllUsesWith(NewSel); 6557 Fsh->eraseFromParent(); 6558 return true; 6559 } 6560 6561 /// If we have a SelectInst that will likely profit from branch prediction, 6562 /// turn it into a branch. 6563 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6564 if (DisableSelectToBranch) 6565 return false; 6566 6567 // Find all consecutive select instructions that share the same condition. 6568 SmallVector<SelectInst *, 2> ASI; 6569 ASI.push_back(SI); 6570 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6571 It != SI->getParent()->end(); ++It) { 6572 SelectInst *I = dyn_cast<SelectInst>(&*It); 6573 if (I && SI->getCondition() == I->getCondition()) { 6574 ASI.push_back(I); 6575 } else { 6576 break; 6577 } 6578 } 6579 6580 SelectInst *LastSI = ASI.back(); 6581 // Increment the current iterator to skip all the rest of select instructions 6582 // because they will be either "not lowered" or "all lowered" to branch. 6583 CurInstIterator = std::next(LastSI->getIterator()); 6584 6585 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6586 6587 // Can we convert the 'select' to CF ? 6588 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6589 return false; 6590 6591 TargetLowering::SelectSupportKind SelectKind; 6592 if (VectorCond) 6593 SelectKind = TargetLowering::VectorMaskSelect; 6594 else if (SI->getType()->isVectorTy()) 6595 SelectKind = TargetLowering::ScalarCondVectorVal; 6596 else 6597 SelectKind = TargetLowering::ScalarValSelect; 6598 6599 if (TLI->isSelectSupported(SelectKind) && 6600 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6601 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6602 return false; 6603 6604 // The DominatorTree needs to be rebuilt by any consumers after this 6605 // transformation. We simply reset here rather than setting the ModifiedDT 6606 // flag to avoid restarting the function walk in runOnFunction for each 6607 // select optimized. 6608 DT.reset(); 6609 6610 // Transform a sequence like this: 6611 // start: 6612 // %cmp = cmp uge i32 %a, %b 6613 // %sel = select i1 %cmp, i32 %c, i32 %d 6614 // 6615 // Into: 6616 // start: 6617 // %cmp = cmp uge i32 %a, %b 6618 // %cmp.frozen = freeze %cmp 6619 // br i1 %cmp.frozen, label %select.true, label %select.false 6620 // select.true: 6621 // br label %select.end 6622 // select.false: 6623 // br label %select.end 6624 // select.end: 6625 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6626 // 6627 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6628 // In addition, we may sink instructions that produce %c or %d from 6629 // the entry block into the destination(s) of the new branch. 6630 // If the true or false blocks do not contain a sunken instruction, that 6631 // block and its branch may be optimized away. In that case, one side of the 6632 // first branch will point directly to select.end, and the corresponding PHI 6633 // predecessor block will be the start block. 6634 6635 // First, we split the block containing the select into 2 blocks. 6636 BasicBlock *StartBlock = SI->getParent(); 6637 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6638 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6639 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6640 6641 // Delete the unconditional branch that was just created by the split. 6642 StartBlock->getTerminator()->eraseFromParent(); 6643 6644 // These are the new basic blocks for the conditional branch. 6645 // At least one will become an actual new basic block. 6646 BasicBlock *TrueBlock = nullptr; 6647 BasicBlock *FalseBlock = nullptr; 6648 BranchInst *TrueBranch = nullptr; 6649 BranchInst *FalseBranch = nullptr; 6650 6651 // Sink expensive instructions into the conditional blocks to avoid executing 6652 // them speculatively. 6653 for (SelectInst *SI : ASI) { 6654 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6655 if (TrueBlock == nullptr) { 6656 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6657 EndBlock->getParent(), EndBlock); 6658 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6659 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6660 } 6661 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6662 TrueInst->moveBefore(TrueBranch); 6663 } 6664 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6665 if (FalseBlock == nullptr) { 6666 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6667 EndBlock->getParent(), EndBlock); 6668 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6669 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6670 } 6671 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6672 FalseInst->moveBefore(FalseBranch); 6673 } 6674 } 6675 6676 // If there was nothing to sink, then arbitrarily choose the 'false' side 6677 // for a new input value to the PHI. 6678 if (TrueBlock == FalseBlock) { 6679 assert(TrueBlock == nullptr && 6680 "Unexpected basic block transform while optimizing select"); 6681 6682 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6683 EndBlock->getParent(), EndBlock); 6684 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6685 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6686 } 6687 6688 // Insert the real conditional branch based on the original condition. 6689 // If we did not create a new block for one of the 'true' or 'false' paths 6690 // of the condition, it means that side of the branch goes to the end block 6691 // directly and the path originates from the start block from the point of 6692 // view of the new PHI. 6693 BasicBlock *TT, *FT; 6694 if (TrueBlock == nullptr) { 6695 TT = EndBlock; 6696 FT = FalseBlock; 6697 TrueBlock = StartBlock; 6698 } else if (FalseBlock == nullptr) { 6699 TT = TrueBlock; 6700 FT = EndBlock; 6701 FalseBlock = StartBlock; 6702 } else { 6703 TT = TrueBlock; 6704 FT = FalseBlock; 6705 } 6706 IRBuilder<> IB(SI); 6707 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6708 IB.CreateCondBr(CondFr, TT, FT, SI); 6709 6710 SmallPtrSet<const Instruction *, 2> INS; 6711 INS.insert(ASI.begin(), ASI.end()); 6712 // Use reverse iterator because later select may use the value of the 6713 // earlier select, and we need to propagate value through earlier select 6714 // to get the PHI operand. 6715 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6716 SelectInst *SI = *It; 6717 // The select itself is replaced with a PHI Node. 6718 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6719 PN->takeName(SI); 6720 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6721 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6722 PN->setDebugLoc(SI->getDebugLoc()); 6723 6724 SI->replaceAllUsesWith(PN); 6725 SI->eraseFromParent(); 6726 INS.erase(SI); 6727 ++NumSelectsExpanded; 6728 } 6729 6730 // Instruct OptimizeBlock to skip to the next block. 6731 CurInstIterator = StartBlock->end(); 6732 return true; 6733 } 6734 6735 /// Some targets only accept certain types for splat inputs. For example a VDUP 6736 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6737 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6738 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6739 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6740 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6741 m_Undef(), m_ZeroMask()))) 6742 return false; 6743 Type *NewType = TLI->shouldConvertSplatType(SVI); 6744 if (!NewType) 6745 return false; 6746 6747 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6748 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6749 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6750 "Expected a type of the same size!"); 6751 auto *NewVecType = 6752 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6753 6754 // Create a bitcast (shuffle (insert (bitcast(..)))) 6755 IRBuilder<> Builder(SVI->getContext()); 6756 Builder.SetInsertPoint(SVI); 6757 Value *BC1 = Builder.CreateBitCast( 6758 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6759 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6760 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6761 6762 SVI->replaceAllUsesWith(BC2); 6763 RecursivelyDeleteTriviallyDeadInstructions( 6764 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6765 6766 // Also hoist the bitcast up to its operand if it they are not in the same 6767 // block. 6768 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6769 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6770 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6771 !Op->isTerminator() && !Op->isEHPad()) 6772 BCI->moveAfter(Op); 6773 6774 return true; 6775 } 6776 6777 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6778 // If the operands of I can be folded into a target instruction together with 6779 // I, duplicate and sink them. 6780 SmallVector<Use *, 4> OpsToSink; 6781 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6782 return false; 6783 6784 // OpsToSink can contain multiple uses in a use chain (e.g. 6785 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6786 // uses must come first, so we process the ops in reverse order so as to not 6787 // create invalid IR. 6788 BasicBlock *TargetBB = I->getParent(); 6789 bool Changed = false; 6790 SmallVector<Use *, 4> ToReplace; 6791 for (Use *U : reverse(OpsToSink)) { 6792 auto *UI = cast<Instruction>(U->get()); 6793 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6794 continue; 6795 ToReplace.push_back(U); 6796 } 6797 6798 SetVector<Instruction *> MaybeDead; 6799 DenseMap<Instruction *, Instruction *> NewInstructions; 6800 Instruction *InsertPoint = I; 6801 for (Use *U : ToReplace) { 6802 auto *UI = cast<Instruction>(U->get()); 6803 Instruction *NI = UI->clone(); 6804 NewInstructions[UI] = NI; 6805 MaybeDead.insert(UI); 6806 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6807 NI->insertBefore(InsertPoint); 6808 InsertPoint = NI; 6809 InsertedInsts.insert(NI); 6810 6811 // Update the use for the new instruction, making sure that we update the 6812 // sunk instruction uses, if it is part of a chain that has already been 6813 // sunk. 6814 Instruction *OldI = cast<Instruction>(U->getUser()); 6815 if (NewInstructions.count(OldI)) 6816 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6817 else 6818 U->set(NI); 6819 Changed = true; 6820 } 6821 6822 // Remove instructions that are dead after sinking. 6823 for (auto *I : MaybeDead) { 6824 if (!I->hasNUsesOrMore(1)) { 6825 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6826 I->eraseFromParent(); 6827 } 6828 } 6829 6830 return Changed; 6831 } 6832 6833 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6834 Value *Cond = SI->getCondition(); 6835 Type *OldType = Cond->getType(); 6836 LLVMContext &Context = Cond->getContext(); 6837 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6838 unsigned RegWidth = RegType.getSizeInBits(); 6839 6840 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6841 return false; 6842 6843 // If the register width is greater than the type width, expand the condition 6844 // of the switch instruction and each case constant to the width of the 6845 // register. By widening the type of the switch condition, subsequent 6846 // comparisons (for case comparisons) will not need to be extended to the 6847 // preferred register width, so we will potentially eliminate N-1 extends, 6848 // where N is the number of cases in the switch. 6849 auto *NewType = Type::getIntNTy(Context, RegWidth); 6850 6851 // Zero-extend the switch condition and case constants unless the switch 6852 // condition is a function argument that is already being sign-extended. 6853 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6854 // everything instead. 6855 Instruction::CastOps ExtType = Instruction::ZExt; 6856 if (auto *Arg = dyn_cast<Argument>(Cond)) 6857 if (Arg->hasSExtAttr()) 6858 ExtType = Instruction::SExt; 6859 6860 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6861 ExtInst->insertBefore(SI); 6862 ExtInst->setDebugLoc(SI->getDebugLoc()); 6863 SI->setCondition(ExtInst); 6864 for (auto Case : SI->cases()) { 6865 APInt NarrowConst = Case.getCaseValue()->getValue(); 6866 APInt WideConst = (ExtType == Instruction::ZExt) ? 6867 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6868 Case.setValue(ConstantInt::get(Context, WideConst)); 6869 } 6870 6871 return true; 6872 } 6873 6874 6875 namespace { 6876 6877 /// Helper class to promote a scalar operation to a vector one. 6878 /// This class is used to move downward extractelement transition. 6879 /// E.g., 6880 /// a = vector_op <2 x i32> 6881 /// b = extractelement <2 x i32> a, i32 0 6882 /// c = scalar_op b 6883 /// store c 6884 /// 6885 /// => 6886 /// a = vector_op <2 x i32> 6887 /// c = vector_op a (equivalent to scalar_op on the related lane) 6888 /// * d = extractelement <2 x i32> c, i32 0 6889 /// * store d 6890 /// Assuming both extractelement and store can be combine, we get rid of the 6891 /// transition. 6892 class VectorPromoteHelper { 6893 /// DataLayout associated with the current module. 6894 const DataLayout &DL; 6895 6896 /// Used to perform some checks on the legality of vector operations. 6897 const TargetLowering &TLI; 6898 6899 /// Used to estimated the cost of the promoted chain. 6900 const TargetTransformInfo &TTI; 6901 6902 /// The transition being moved downwards. 6903 Instruction *Transition; 6904 6905 /// The sequence of instructions to be promoted. 6906 SmallVector<Instruction *, 4> InstsToBePromoted; 6907 6908 /// Cost of combining a store and an extract. 6909 unsigned StoreExtractCombineCost; 6910 6911 /// Instruction that will be combined with the transition. 6912 Instruction *CombineInst = nullptr; 6913 6914 /// The instruction that represents the current end of the transition. 6915 /// Since we are faking the promotion until we reach the end of the chain 6916 /// of computation, we need a way to get the current end of the transition. 6917 Instruction *getEndOfTransition() const { 6918 if (InstsToBePromoted.empty()) 6919 return Transition; 6920 return InstsToBePromoted.back(); 6921 } 6922 6923 /// Return the index of the original value in the transition. 6924 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6925 /// c, is at index 0. 6926 unsigned getTransitionOriginalValueIdx() const { 6927 assert(isa<ExtractElementInst>(Transition) && 6928 "Other kind of transitions are not supported yet"); 6929 return 0; 6930 } 6931 6932 /// Return the index of the index in the transition. 6933 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6934 /// is at index 1. 6935 unsigned getTransitionIdx() const { 6936 assert(isa<ExtractElementInst>(Transition) && 6937 "Other kind of transitions are not supported yet"); 6938 return 1; 6939 } 6940 6941 /// Get the type of the transition. 6942 /// This is the type of the original value. 6943 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6944 /// transition is <2 x i32>. 6945 Type *getTransitionType() const { 6946 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6947 } 6948 6949 /// Promote \p ToBePromoted by moving \p Def downward through. 6950 /// I.e., we have the following sequence: 6951 /// Def = Transition <ty1> a to <ty2> 6952 /// b = ToBePromoted <ty2> Def, ... 6953 /// => 6954 /// b = ToBePromoted <ty1> a, ... 6955 /// Def = Transition <ty1> ToBePromoted to <ty2> 6956 void promoteImpl(Instruction *ToBePromoted); 6957 6958 /// Check whether or not it is profitable to promote all the 6959 /// instructions enqueued to be promoted. 6960 bool isProfitableToPromote() { 6961 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6962 unsigned Index = isa<ConstantInt>(ValIdx) 6963 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6964 : -1; 6965 Type *PromotedType = getTransitionType(); 6966 6967 StoreInst *ST = cast<StoreInst>(CombineInst); 6968 unsigned AS = ST->getPointerAddressSpace(); 6969 // Check if this store is supported. 6970 if (!TLI.allowsMisalignedMemoryAccesses( 6971 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6972 ST->getAlign())) { 6973 // If this is not supported, there is no way we can combine 6974 // the extract with the store. 6975 return false; 6976 } 6977 6978 // The scalar chain of computation has to pay for the transition 6979 // scalar to vector. 6980 // The vector chain has to account for the combining cost. 6981 uint64_t ScalarCost = 6982 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6983 uint64_t VectorCost = StoreExtractCombineCost; 6984 enum TargetTransformInfo::TargetCostKind CostKind = 6985 TargetTransformInfo::TCK_RecipThroughput; 6986 for (const auto &Inst : InstsToBePromoted) { 6987 // Compute the cost. 6988 // By construction, all instructions being promoted are arithmetic ones. 6989 // Moreover, one argument is a constant that can be viewed as a splat 6990 // constant. 6991 Value *Arg0 = Inst->getOperand(0); 6992 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6993 isa<ConstantFP>(Arg0); 6994 TargetTransformInfo::OperandValueKind Arg0OVK = 6995 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6996 : TargetTransformInfo::OK_AnyValue; 6997 TargetTransformInfo::OperandValueKind Arg1OVK = 6998 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6999 : TargetTransformInfo::OK_AnyValue; 7000 ScalarCost += TTI.getArithmeticInstrCost( 7001 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 7002 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 7003 CostKind, 7004 Arg0OVK, Arg1OVK); 7005 } 7006 LLVM_DEBUG( 7007 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7008 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7009 return ScalarCost > VectorCost; 7010 } 7011 7012 /// Generate a constant vector with \p Val with the same 7013 /// number of elements as the transition. 7014 /// \p UseSplat defines whether or not \p Val should be replicated 7015 /// across the whole vector. 7016 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7017 /// otherwise we generate a vector with as many undef as possible: 7018 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7019 /// used at the index of the extract. 7020 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7021 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7022 if (!UseSplat) { 7023 // If we cannot determine where the constant must be, we have to 7024 // use a splat constant. 7025 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7026 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7027 ExtractIdx = CstVal->getSExtValue(); 7028 else 7029 UseSplat = true; 7030 } 7031 7032 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7033 if (UseSplat) 7034 return ConstantVector::getSplat(EC, Val); 7035 7036 if (!EC.isScalable()) { 7037 SmallVector<Constant *, 4> ConstVec; 7038 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7039 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7040 if (Idx == ExtractIdx) 7041 ConstVec.push_back(Val); 7042 else 7043 ConstVec.push_back(UndefVal); 7044 } 7045 return ConstantVector::get(ConstVec); 7046 } else 7047 llvm_unreachable( 7048 "Generate scalable vector for non-splat is unimplemented"); 7049 } 7050 7051 /// Check if promoting to a vector type an operand at \p OperandIdx 7052 /// in \p Use can trigger undefined behavior. 7053 static bool canCauseUndefinedBehavior(const Instruction *Use, 7054 unsigned OperandIdx) { 7055 // This is not safe to introduce undef when the operand is on 7056 // the right hand side of a division-like instruction. 7057 if (OperandIdx != 1) 7058 return false; 7059 switch (Use->getOpcode()) { 7060 default: 7061 return false; 7062 case Instruction::SDiv: 7063 case Instruction::UDiv: 7064 case Instruction::SRem: 7065 case Instruction::URem: 7066 return true; 7067 case Instruction::FDiv: 7068 case Instruction::FRem: 7069 return !Use->hasNoNaNs(); 7070 } 7071 llvm_unreachable(nullptr); 7072 } 7073 7074 public: 7075 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7076 const TargetTransformInfo &TTI, Instruction *Transition, 7077 unsigned CombineCost) 7078 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7079 StoreExtractCombineCost(CombineCost) { 7080 assert(Transition && "Do not know how to promote null"); 7081 } 7082 7083 /// Check if we can promote \p ToBePromoted to \p Type. 7084 bool canPromote(const Instruction *ToBePromoted) const { 7085 // We could support CastInst too. 7086 return isa<BinaryOperator>(ToBePromoted); 7087 } 7088 7089 /// Check if it is profitable to promote \p ToBePromoted 7090 /// by moving downward the transition through. 7091 bool shouldPromote(const Instruction *ToBePromoted) const { 7092 // Promote only if all the operands can be statically expanded. 7093 // Indeed, we do not want to introduce any new kind of transitions. 7094 for (const Use &U : ToBePromoted->operands()) { 7095 const Value *Val = U.get(); 7096 if (Val == getEndOfTransition()) { 7097 // If the use is a division and the transition is on the rhs, 7098 // we cannot promote the operation, otherwise we may create a 7099 // division by zero. 7100 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7101 return false; 7102 continue; 7103 } 7104 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7105 !isa<ConstantFP>(Val)) 7106 return false; 7107 } 7108 // Check that the resulting operation is legal. 7109 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7110 if (!ISDOpcode) 7111 return false; 7112 return StressStoreExtract || 7113 TLI.isOperationLegalOrCustom( 7114 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7115 } 7116 7117 /// Check whether or not \p Use can be combined 7118 /// with the transition. 7119 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7120 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7121 7122 /// Record \p ToBePromoted as part of the chain to be promoted. 7123 void enqueueForPromotion(Instruction *ToBePromoted) { 7124 InstsToBePromoted.push_back(ToBePromoted); 7125 } 7126 7127 /// Set the instruction that will be combined with the transition. 7128 void recordCombineInstruction(Instruction *ToBeCombined) { 7129 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7130 CombineInst = ToBeCombined; 7131 } 7132 7133 /// Promote all the instructions enqueued for promotion if it is 7134 /// is profitable. 7135 /// \return True if the promotion happened, false otherwise. 7136 bool promote() { 7137 // Check if there is something to promote. 7138 // Right now, if we do not have anything to combine with, 7139 // we assume the promotion is not profitable. 7140 if (InstsToBePromoted.empty() || !CombineInst) 7141 return false; 7142 7143 // Check cost. 7144 if (!StressStoreExtract && !isProfitableToPromote()) 7145 return false; 7146 7147 // Promote. 7148 for (auto &ToBePromoted : InstsToBePromoted) 7149 promoteImpl(ToBePromoted); 7150 InstsToBePromoted.clear(); 7151 return true; 7152 } 7153 }; 7154 7155 } // end anonymous namespace 7156 7157 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7158 // At this point, we know that all the operands of ToBePromoted but Def 7159 // can be statically promoted. 7160 // For Def, we need to use its parameter in ToBePromoted: 7161 // b = ToBePromoted ty1 a 7162 // Def = Transition ty1 b to ty2 7163 // Move the transition down. 7164 // 1. Replace all uses of the promoted operation by the transition. 7165 // = ... b => = ... Def. 7166 assert(ToBePromoted->getType() == Transition->getType() && 7167 "The type of the result of the transition does not match " 7168 "the final type"); 7169 ToBePromoted->replaceAllUsesWith(Transition); 7170 // 2. Update the type of the uses. 7171 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7172 Type *TransitionTy = getTransitionType(); 7173 ToBePromoted->mutateType(TransitionTy); 7174 // 3. Update all the operands of the promoted operation with promoted 7175 // operands. 7176 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7177 for (Use &U : ToBePromoted->operands()) { 7178 Value *Val = U.get(); 7179 Value *NewVal = nullptr; 7180 if (Val == Transition) 7181 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7182 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7183 isa<ConstantFP>(Val)) { 7184 // Use a splat constant if it is not safe to use undef. 7185 NewVal = getConstantVector( 7186 cast<Constant>(Val), 7187 isa<UndefValue>(Val) || 7188 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7189 } else 7190 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7191 "this?"); 7192 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7193 } 7194 Transition->moveAfter(ToBePromoted); 7195 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7196 } 7197 7198 /// Some targets can do store(extractelement) with one instruction. 7199 /// Try to push the extractelement towards the stores when the target 7200 /// has this feature and this is profitable. 7201 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7202 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7203 if (DisableStoreExtract || 7204 (!StressStoreExtract && 7205 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7206 Inst->getOperand(1), CombineCost))) 7207 return false; 7208 7209 // At this point we know that Inst is a vector to scalar transition. 7210 // Try to move it down the def-use chain, until: 7211 // - We can combine the transition with its single use 7212 // => we got rid of the transition. 7213 // - We escape the current basic block 7214 // => we would need to check that we are moving it at a cheaper place and 7215 // we do not do that for now. 7216 BasicBlock *Parent = Inst->getParent(); 7217 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7218 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7219 // If the transition has more than one use, assume this is not going to be 7220 // beneficial. 7221 while (Inst->hasOneUse()) { 7222 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7223 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7224 7225 if (ToBePromoted->getParent() != Parent) { 7226 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7227 << ToBePromoted->getParent()->getName() 7228 << ") than the transition (" << Parent->getName() 7229 << ").\n"); 7230 return false; 7231 } 7232 7233 if (VPH.canCombine(ToBePromoted)) { 7234 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7235 << "will be combined with: " << *ToBePromoted << '\n'); 7236 VPH.recordCombineInstruction(ToBePromoted); 7237 bool Changed = VPH.promote(); 7238 NumStoreExtractExposed += Changed; 7239 return Changed; 7240 } 7241 7242 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7243 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7244 return false; 7245 7246 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7247 7248 VPH.enqueueForPromotion(ToBePromoted); 7249 Inst = ToBePromoted; 7250 } 7251 return false; 7252 } 7253 7254 /// For the instruction sequence of store below, F and I values 7255 /// are bundled together as an i64 value before being stored into memory. 7256 /// Sometimes it is more efficient to generate separate stores for F and I, 7257 /// which can remove the bitwise instructions or sink them to colder places. 7258 /// 7259 /// (store (or (zext (bitcast F to i32) to i64), 7260 /// (shl (zext I to i64), 32)), addr) --> 7261 /// (store F, addr) and (store I, addr+4) 7262 /// 7263 /// Similarly, splitting for other merged store can also be beneficial, like: 7264 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7265 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7266 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7267 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7268 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7269 /// 7270 /// We allow each target to determine specifically which kind of splitting is 7271 /// supported. 7272 /// 7273 /// The store patterns are commonly seen from the simple code snippet below 7274 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7275 /// void goo(const std::pair<int, float> &); 7276 /// hoo() { 7277 /// ... 7278 /// goo(std::make_pair(tmp, ftmp)); 7279 /// ... 7280 /// } 7281 /// 7282 /// Although we already have similar splitting in DAG Combine, we duplicate 7283 /// it in CodeGenPrepare to catch the case in which pattern is across 7284 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7285 /// during code expansion. 7286 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7287 const TargetLowering &TLI) { 7288 // Handle simple but common cases only. 7289 Type *StoreType = SI.getValueOperand()->getType(); 7290 7291 // The code below assumes shifting a value by <number of bits>, 7292 // whereas scalable vectors would have to be shifted by 7293 // <2log(vscale) + number of bits> in order to store the 7294 // low/high parts. Bailing out for now. 7295 if (isa<ScalableVectorType>(StoreType)) 7296 return false; 7297 7298 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7299 DL.getTypeSizeInBits(StoreType) == 0) 7300 return false; 7301 7302 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7303 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7304 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7305 return false; 7306 7307 // Don't split the store if it is volatile. 7308 if (SI.isVolatile()) 7309 return false; 7310 7311 // Match the following patterns: 7312 // (store (or (zext LValue to i64), 7313 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7314 // or 7315 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7316 // (zext LValue to i64), 7317 // Expect both operands of OR and the first operand of SHL have only 7318 // one use. 7319 Value *LValue, *HValue; 7320 if (!match(SI.getValueOperand(), 7321 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7322 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7323 m_SpecificInt(HalfValBitSize)))))) 7324 return false; 7325 7326 // Check LValue and HValue are int with size less or equal than 32. 7327 if (!LValue->getType()->isIntegerTy() || 7328 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7329 !HValue->getType()->isIntegerTy() || 7330 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7331 return false; 7332 7333 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7334 // as the input of target query. 7335 auto *LBC = dyn_cast<BitCastInst>(LValue); 7336 auto *HBC = dyn_cast<BitCastInst>(HValue); 7337 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7338 : EVT::getEVT(LValue->getType()); 7339 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7340 : EVT::getEVT(HValue->getType()); 7341 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7342 return false; 7343 7344 // Start to split store. 7345 IRBuilder<> Builder(SI.getContext()); 7346 Builder.SetInsertPoint(&SI); 7347 7348 // If LValue/HValue is a bitcast in another BB, create a new one in current 7349 // BB so it may be merged with the splitted stores by dag combiner. 7350 if (LBC && LBC->getParent() != SI.getParent()) 7351 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7352 if (HBC && HBC->getParent() != SI.getParent()) 7353 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7354 7355 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7356 auto CreateSplitStore = [&](Value *V, bool Upper) { 7357 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7358 Value *Addr = Builder.CreateBitCast( 7359 SI.getOperand(1), 7360 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7361 Align Alignment = SI.getAlign(); 7362 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7363 if (IsOffsetStore) { 7364 Addr = Builder.CreateGEP( 7365 SplitStoreType, Addr, 7366 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7367 7368 // When splitting the store in half, naturally one half will retain the 7369 // alignment of the original wider store, regardless of whether it was 7370 // over-aligned or not, while the other will require adjustment. 7371 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7372 } 7373 Builder.CreateAlignedStore(V, Addr, Alignment); 7374 }; 7375 7376 CreateSplitStore(LValue, false); 7377 CreateSplitStore(HValue, true); 7378 7379 // Delete the old store. 7380 SI.eraseFromParent(); 7381 return true; 7382 } 7383 7384 // Return true if the GEP has two operands, the first operand is of a sequential 7385 // type, and the second operand is a constant. 7386 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7387 gep_type_iterator I = gep_type_begin(*GEP); 7388 return GEP->getNumOperands() == 2 && 7389 I.isSequential() && 7390 isa<ConstantInt>(GEP->getOperand(1)); 7391 } 7392 7393 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7394 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7395 // reducing liveness interference across those edges benefits global register 7396 // allocation. Currently handles only certain cases. 7397 // 7398 // For example, unmerge %GEPI and %UGEPI as below. 7399 // 7400 // ---------- BEFORE ---------- 7401 // SrcBlock: 7402 // ... 7403 // %GEPIOp = ... 7404 // ... 7405 // %GEPI = gep %GEPIOp, Idx 7406 // ... 7407 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7408 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7409 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7410 // %UGEPI) 7411 // 7412 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7413 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7414 // ... 7415 // 7416 // DstBi: 7417 // ... 7418 // %UGEPI = gep %GEPIOp, UIdx 7419 // ... 7420 // --------------------------- 7421 // 7422 // ---------- AFTER ---------- 7423 // SrcBlock: 7424 // ... (same as above) 7425 // (* %GEPI is still alive on the indirectbr edges) 7426 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7427 // unmerging) 7428 // ... 7429 // 7430 // DstBi: 7431 // ... 7432 // %UGEPI = gep %GEPI, (UIdx-Idx) 7433 // ... 7434 // --------------------------- 7435 // 7436 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7437 // no longer alive on them. 7438 // 7439 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7440 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7441 // not to disable further simplications and optimizations as a result of GEP 7442 // merging. 7443 // 7444 // Note this unmerging may increase the length of the data flow critical path 7445 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7446 // between the register pressure and the length of data-flow critical 7447 // path. Restricting this to the uncommon IndirectBr case would minimize the 7448 // impact of potentially longer critical path, if any, and the impact on compile 7449 // time. 7450 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7451 const TargetTransformInfo *TTI) { 7452 BasicBlock *SrcBlock = GEPI->getParent(); 7453 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7454 // (non-IndirectBr) cases exit early here. 7455 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7456 return false; 7457 // Check that GEPI is a simple gep with a single constant index. 7458 if (!GEPSequentialConstIndexed(GEPI)) 7459 return false; 7460 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7461 // Check that GEPI is a cheap one. 7462 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7463 TargetTransformInfo::TCK_SizeAndLatency) 7464 > TargetTransformInfo::TCC_Basic) 7465 return false; 7466 Value *GEPIOp = GEPI->getOperand(0); 7467 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7468 if (!isa<Instruction>(GEPIOp)) 7469 return false; 7470 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7471 if (GEPIOpI->getParent() != SrcBlock) 7472 return false; 7473 // Check that GEP is used outside the block, meaning it's alive on the 7474 // IndirectBr edge(s). 7475 if (find_if(GEPI->users(), [&](User *Usr) { 7476 if (auto *I = dyn_cast<Instruction>(Usr)) { 7477 if (I->getParent() != SrcBlock) { 7478 return true; 7479 } 7480 } 7481 return false; 7482 }) == GEPI->users().end()) 7483 return false; 7484 // The second elements of the GEP chains to be unmerged. 7485 std::vector<GetElementPtrInst *> UGEPIs; 7486 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7487 // on IndirectBr edges. 7488 for (User *Usr : GEPIOp->users()) { 7489 if (Usr == GEPI) continue; 7490 // Check if Usr is an Instruction. If not, give up. 7491 if (!isa<Instruction>(Usr)) 7492 return false; 7493 auto *UI = cast<Instruction>(Usr); 7494 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7495 if (UI->getParent() == SrcBlock) 7496 continue; 7497 // Check if Usr is a GEP. If not, give up. 7498 if (!isa<GetElementPtrInst>(Usr)) 7499 return false; 7500 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7501 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7502 // the pointer operand to it. If so, record it in the vector. If not, give 7503 // up. 7504 if (!GEPSequentialConstIndexed(UGEPI)) 7505 return false; 7506 if (UGEPI->getOperand(0) != GEPIOp) 7507 return false; 7508 if (GEPIIdx->getType() != 7509 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7510 return false; 7511 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7512 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7513 TargetTransformInfo::TCK_SizeAndLatency) 7514 > TargetTransformInfo::TCC_Basic) 7515 return false; 7516 UGEPIs.push_back(UGEPI); 7517 } 7518 if (UGEPIs.size() == 0) 7519 return false; 7520 // Check the materializing cost of (Uidx-Idx). 7521 for (GetElementPtrInst *UGEPI : UGEPIs) { 7522 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7523 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7524 unsigned ImmCost = 7525 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7526 TargetTransformInfo::TCK_SizeAndLatency); 7527 if (ImmCost > TargetTransformInfo::TCC_Basic) 7528 return false; 7529 } 7530 // Now unmerge between GEPI and UGEPIs. 7531 for (GetElementPtrInst *UGEPI : UGEPIs) { 7532 UGEPI->setOperand(0, GEPI); 7533 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7534 Constant *NewUGEPIIdx = 7535 ConstantInt::get(GEPIIdx->getType(), 7536 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7537 UGEPI->setOperand(1, NewUGEPIIdx); 7538 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7539 // inbounds to avoid UB. 7540 if (!GEPI->isInBounds()) { 7541 UGEPI->setIsInBounds(false); 7542 } 7543 } 7544 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7545 // alive on IndirectBr edges). 7546 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7547 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7548 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7549 return true; 7550 } 7551 7552 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7553 // Bail out if we inserted the instruction to prevent optimizations from 7554 // stepping on each other's toes. 7555 if (InsertedInsts.count(I)) 7556 return false; 7557 7558 // TODO: Move into the switch on opcode below here. 7559 if (PHINode *P = dyn_cast<PHINode>(I)) { 7560 // It is possible for very late stage optimizations (such as SimplifyCFG) 7561 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7562 // trivial PHI, go ahead and zap it here. 7563 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7564 LargeOffsetGEPMap.erase(P); 7565 P->replaceAllUsesWith(V); 7566 P->eraseFromParent(); 7567 ++NumPHIsElim; 7568 return true; 7569 } 7570 return false; 7571 } 7572 7573 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7574 // If the source of the cast is a constant, then this should have 7575 // already been constant folded. The only reason NOT to constant fold 7576 // it is if something (e.g. LSR) was careful to place the constant 7577 // evaluation in a block other than then one that uses it (e.g. to hoist 7578 // the address of globals out of a loop). If this is the case, we don't 7579 // want to forward-subst the cast. 7580 if (isa<Constant>(CI->getOperand(0))) 7581 return false; 7582 7583 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7584 return true; 7585 7586 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7587 /// Sink a zext or sext into its user blocks if the target type doesn't 7588 /// fit in one register 7589 if (TLI->getTypeAction(CI->getContext(), 7590 TLI->getValueType(*DL, CI->getType())) == 7591 TargetLowering::TypeExpandInteger) { 7592 return SinkCast(CI); 7593 } else { 7594 bool MadeChange = optimizeExt(I); 7595 return MadeChange | optimizeExtUses(I); 7596 } 7597 } 7598 return false; 7599 } 7600 7601 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7602 if (optimizeCmp(Cmp, ModifiedDT)) 7603 return true; 7604 7605 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7606 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7607 bool Modified = optimizeLoadExt(LI); 7608 unsigned AS = LI->getPointerAddressSpace(); 7609 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7610 return Modified; 7611 } 7612 7613 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7614 if (splitMergedValStore(*SI, *DL, *TLI)) 7615 return true; 7616 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7617 unsigned AS = SI->getPointerAddressSpace(); 7618 return optimizeMemoryInst(I, SI->getOperand(1), 7619 SI->getOperand(0)->getType(), AS); 7620 } 7621 7622 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7623 unsigned AS = RMW->getPointerAddressSpace(); 7624 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7625 RMW->getType(), AS); 7626 } 7627 7628 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7629 unsigned AS = CmpX->getPointerAddressSpace(); 7630 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7631 CmpX->getCompareOperand()->getType(), AS); 7632 } 7633 7634 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7635 7636 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7637 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7638 7639 // TODO: Move this into the switch on opcode - it handles shifts already. 7640 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7641 BinOp->getOpcode() == Instruction::LShr)) { 7642 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7643 if (CI && TLI->hasExtractBitsInsn()) 7644 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7645 return true; 7646 } 7647 7648 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7649 if (GEPI->hasAllZeroIndices()) { 7650 /// The GEP operand must be a pointer, so must its result -> BitCast 7651 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7652 GEPI->getName(), GEPI); 7653 NC->setDebugLoc(GEPI->getDebugLoc()); 7654 GEPI->replaceAllUsesWith(NC); 7655 GEPI->eraseFromParent(); 7656 ++NumGEPsElim; 7657 optimizeInst(NC, ModifiedDT); 7658 return true; 7659 } 7660 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7661 return true; 7662 } 7663 return false; 7664 } 7665 7666 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7667 // freeze(icmp a, const)) -> icmp (freeze a), const 7668 // This helps generate efficient conditional jumps. 7669 Instruction *CmpI = nullptr; 7670 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7671 CmpI = II; 7672 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7673 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7674 7675 if (CmpI && CmpI->hasOneUse()) { 7676 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7677 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7678 isa<ConstantPointerNull>(Op0); 7679 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7680 isa<ConstantPointerNull>(Op1); 7681 if (Const0 || Const1) { 7682 if (!Const0 || !Const1) { 7683 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7684 F->takeName(FI); 7685 CmpI->setOperand(Const0 ? 1 : 0, F); 7686 } 7687 FI->replaceAllUsesWith(CmpI); 7688 FI->eraseFromParent(); 7689 return true; 7690 } 7691 } 7692 return false; 7693 } 7694 7695 if (tryToSinkFreeOperands(I)) 7696 return true; 7697 7698 switch (I->getOpcode()) { 7699 case Instruction::Shl: 7700 case Instruction::LShr: 7701 case Instruction::AShr: 7702 return optimizeShiftInst(cast<BinaryOperator>(I)); 7703 case Instruction::Call: 7704 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7705 case Instruction::Select: 7706 return optimizeSelectInst(cast<SelectInst>(I)); 7707 case Instruction::ShuffleVector: 7708 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7709 case Instruction::Switch: 7710 return optimizeSwitchInst(cast<SwitchInst>(I)); 7711 case Instruction::ExtractElement: 7712 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7713 } 7714 7715 return false; 7716 } 7717 7718 /// Given an OR instruction, check to see if this is a bitreverse 7719 /// idiom. If so, insert the new intrinsic and return true. 7720 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7721 if (!I.getType()->isIntegerTy() || 7722 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7723 TLI->getValueType(*DL, I.getType(), true))) 7724 return false; 7725 7726 SmallVector<Instruction*, 4> Insts; 7727 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7728 return false; 7729 Instruction *LastInst = Insts.back(); 7730 I.replaceAllUsesWith(LastInst); 7731 RecursivelyDeleteTriviallyDeadInstructions( 7732 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7733 return true; 7734 } 7735 7736 // In this pass we look for GEP and cast instructions that are used 7737 // across basic blocks and rewrite them to improve basic-block-at-a-time 7738 // selection. 7739 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7740 SunkAddrs.clear(); 7741 bool MadeChange = false; 7742 7743 CurInstIterator = BB.begin(); 7744 while (CurInstIterator != BB.end()) { 7745 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7746 if (ModifiedDT) 7747 return true; 7748 } 7749 7750 bool MadeBitReverse = true; 7751 while (MadeBitReverse) { 7752 MadeBitReverse = false; 7753 for (auto &I : reverse(BB)) { 7754 if (makeBitReverse(I)) { 7755 MadeBitReverse = MadeChange = true; 7756 break; 7757 } 7758 } 7759 } 7760 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7761 7762 return MadeChange; 7763 } 7764 7765 // Some CGP optimizations may move or alter what's computed in a block. Check 7766 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7767 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7768 assert(isa<DbgValueInst>(I)); 7769 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7770 7771 // Does this dbg.value refer to a sunk address calculation? 7772 Value *Location = DVI.getVariableLocation(); 7773 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7774 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7775 if (SunkAddr) { 7776 // Point dbg.value at locally computed address, which should give the best 7777 // opportunity to be accurately lowered. This update may change the type of 7778 // pointer being referred to; however this makes no difference to debugging 7779 // information, and we can't generate bitcasts that may affect codegen. 7780 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7781 ValueAsMetadata::get(SunkAddr))); 7782 return true; 7783 } 7784 return false; 7785 } 7786 7787 // A llvm.dbg.value may be using a value before its definition, due to 7788 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7789 // them by moving the dbg.value to immediately after the value definition. 7790 // FIXME: Ideally this should never be necessary, and this has the potential 7791 // to re-order dbg.value intrinsics. 7792 bool CodeGenPrepare::placeDbgValues(Function &F) { 7793 bool MadeChange = false; 7794 DominatorTree DT(F); 7795 7796 for (BasicBlock &BB : F) { 7797 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7798 Instruction *Insn = &*BI++; 7799 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7800 if (!DVI) 7801 continue; 7802 7803 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7804 7805 if (!VI || VI->isTerminator()) 7806 continue; 7807 7808 // If VI is a phi in a block with an EHPad terminator, we can't insert 7809 // after it. 7810 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7811 continue; 7812 7813 // If the defining instruction dominates the dbg.value, we do not need 7814 // to move the dbg.value. 7815 if (DT.dominates(VI, DVI)) 7816 continue; 7817 7818 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7819 << *DVI << ' ' << *VI); 7820 DVI->removeFromParent(); 7821 if (isa<PHINode>(VI)) 7822 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7823 else 7824 DVI->insertAfter(VI); 7825 MadeChange = true; 7826 ++NumDbgValueMoved; 7827 } 7828 } 7829 return MadeChange; 7830 } 7831 7832 /// Scale down both weights to fit into uint32_t. 7833 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7834 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7835 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7836 NewTrue = NewTrue / Scale; 7837 NewFalse = NewFalse / Scale; 7838 } 7839 7840 /// Some targets prefer to split a conditional branch like: 7841 /// \code 7842 /// %0 = icmp ne i32 %a, 0 7843 /// %1 = icmp ne i32 %b, 0 7844 /// %or.cond = or i1 %0, %1 7845 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7846 /// \endcode 7847 /// into multiple branch instructions like: 7848 /// \code 7849 /// bb1: 7850 /// %0 = icmp ne i32 %a, 0 7851 /// br i1 %0, label %TrueBB, label %bb2 7852 /// bb2: 7853 /// %1 = icmp ne i32 %b, 0 7854 /// br i1 %1, label %TrueBB, label %FalseBB 7855 /// \endcode 7856 /// This usually allows instruction selection to do even further optimizations 7857 /// and combine the compare with the branch instruction. Currently this is 7858 /// applied for targets which have "cheap" jump instructions. 7859 /// 7860 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7861 /// 7862 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7863 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7864 return false; 7865 7866 bool MadeChange = false; 7867 for (auto &BB : F) { 7868 // Does this BB end with the following? 7869 // %cond1 = icmp|fcmp|binary instruction ... 7870 // %cond2 = icmp|fcmp|binary instruction ... 7871 // %cond.or = or|and i1 %cond1, cond2 7872 // br i1 %cond.or label %dest1, label %dest2" 7873 Instruction *LogicOp; 7874 BasicBlock *TBB, *FBB; 7875 if (!match(BB.getTerminator(), 7876 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 7877 continue; 7878 7879 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7880 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7881 continue; 7882 7883 // The merging of mostly empty BB can cause a degenerate branch. 7884 if (TBB == FBB) 7885 continue; 7886 7887 unsigned Opc; 7888 Value *Cond1, *Cond2; 7889 if (match(LogicOp, 7890 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 7891 Opc = Instruction::And; 7892 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 7893 m_OneUse(m_Value(Cond2))))) 7894 Opc = Instruction::Or; 7895 else 7896 continue; 7897 7898 auto IsGoodCond = [](Value *Cond) { 7899 return match( 7900 Cond, 7901 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 7902 m_LogicalOr(m_Value(), m_Value())))); 7903 }; 7904 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 7905 continue; 7906 7907 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7908 7909 // Create a new BB. 7910 auto *TmpBB = 7911 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7912 BB.getParent(), BB.getNextNode()); 7913 7914 // Update original basic block by using the first condition directly by the 7915 // branch instruction and removing the no longer needed and/or instruction. 7916 Br1->setCondition(Cond1); 7917 LogicOp->eraseFromParent(); 7918 7919 // Depending on the condition we have to either replace the true or the 7920 // false successor of the original branch instruction. 7921 if (Opc == Instruction::And) 7922 Br1->setSuccessor(0, TmpBB); 7923 else 7924 Br1->setSuccessor(1, TmpBB); 7925 7926 // Fill in the new basic block. 7927 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7928 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7929 I->removeFromParent(); 7930 I->insertBefore(Br2); 7931 } 7932 7933 // Update PHI nodes in both successors. The original BB needs to be 7934 // replaced in one successor's PHI nodes, because the branch comes now from 7935 // the newly generated BB (NewBB). In the other successor we need to add one 7936 // incoming edge to the PHI nodes, because both branch instructions target 7937 // now the same successor. Depending on the original branch condition 7938 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7939 // we perform the correct update for the PHI nodes. 7940 // This doesn't change the successor order of the just created branch 7941 // instruction (or any other instruction). 7942 if (Opc == Instruction::Or) 7943 std::swap(TBB, FBB); 7944 7945 // Replace the old BB with the new BB. 7946 TBB->replacePhiUsesWith(&BB, TmpBB); 7947 7948 // Add another incoming edge form the new BB. 7949 for (PHINode &PN : FBB->phis()) { 7950 auto *Val = PN.getIncomingValueForBlock(&BB); 7951 PN.addIncoming(Val, TmpBB); 7952 } 7953 7954 // Update the branch weights (from SelectionDAGBuilder:: 7955 // FindMergedConditions). 7956 if (Opc == Instruction::Or) { 7957 // Codegen X | Y as: 7958 // BB1: 7959 // jmp_if_X TBB 7960 // jmp TmpBB 7961 // TmpBB: 7962 // jmp_if_Y TBB 7963 // jmp FBB 7964 // 7965 7966 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7967 // The requirement is that 7968 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7969 // = TrueProb for original BB. 7970 // Assuming the original weights are A and B, one choice is to set BB1's 7971 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7972 // assumes that 7973 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7974 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7975 // TmpBB, but the math is more complicated. 7976 uint64_t TrueWeight, FalseWeight; 7977 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7978 uint64_t NewTrueWeight = TrueWeight; 7979 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7980 scaleWeights(NewTrueWeight, NewFalseWeight); 7981 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7982 .createBranchWeights(TrueWeight, FalseWeight)); 7983 7984 NewTrueWeight = TrueWeight; 7985 NewFalseWeight = 2 * FalseWeight; 7986 scaleWeights(NewTrueWeight, NewFalseWeight); 7987 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7988 .createBranchWeights(TrueWeight, FalseWeight)); 7989 } 7990 } else { 7991 // Codegen X & Y as: 7992 // BB1: 7993 // jmp_if_X TmpBB 7994 // jmp FBB 7995 // TmpBB: 7996 // jmp_if_Y TBB 7997 // jmp FBB 7998 // 7999 // This requires creation of TmpBB after CurBB. 8000 8001 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 8002 // The requirement is that 8003 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 8004 // = FalseProb for original BB. 8005 // Assuming the original weights are A and B, one choice is to set BB1's 8006 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 8007 // assumes that 8008 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8009 uint64_t TrueWeight, FalseWeight; 8010 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8011 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8012 uint64_t NewFalseWeight = FalseWeight; 8013 scaleWeights(NewTrueWeight, NewFalseWeight); 8014 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8015 .createBranchWeights(TrueWeight, FalseWeight)); 8016 8017 NewTrueWeight = 2 * TrueWeight; 8018 NewFalseWeight = FalseWeight; 8019 scaleWeights(NewTrueWeight, NewFalseWeight); 8020 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8021 .createBranchWeights(TrueWeight, FalseWeight)); 8022 } 8023 } 8024 8025 ModifiedDT = true; 8026 MadeChange = true; 8027 8028 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8029 TmpBB->dump()); 8030 } 8031 return MadeChange; 8032 } 8033