1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 static cl::opt<bool> 220 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 221 cl::init(true), 222 cl::desc("Enable splitting large offset of GEP.")); 223 224 namespace { 225 226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 229 using SExts = SmallVector<Instruction *, 16>; 230 using ValueToSExts = DenseMap<Value *, SExts>; 231 232 class TypePromotionTransaction; 233 234 class CodeGenPrepare : public FunctionPass { 235 const TargetMachine *TM = nullptr; 236 const TargetSubtargetInfo *SubtargetInfo; 237 const TargetLowering *TLI = nullptr; 238 const TargetRegisterInfo *TRI; 239 const TargetTransformInfo *TTI = nullptr; 240 const TargetLibraryInfo *TLInfo; 241 const LoopInfo *LI; 242 std::unique_ptr<BlockFrequencyInfo> BFI; 243 std::unique_ptr<BranchProbabilityInfo> BPI; 244 245 /// As we scan instructions optimizing them, this is the next instruction 246 /// to optimize. Transforms that can invalidate this should update it. 247 BasicBlock::iterator CurInstIterator; 248 249 /// Keeps track of non-local addresses that have been sunk into a block. 250 /// This allows us to avoid inserting duplicate code for blocks with 251 /// multiple load/stores of the same address. The usage of WeakTrackingVH 252 /// enables SunkAddrs to be treated as a cache whose entries can be 253 /// invalidated if a sunken address computation has been erased. 254 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 255 256 /// Keeps track of all instructions inserted for the current function. 257 SetOfInstrs InsertedInsts; 258 259 /// Keeps track of the type of the related instruction before their 260 /// promotion for the current function. 261 InstrToOrigTy PromotedInsts; 262 263 /// Keep track of instructions removed during promotion. 264 SetOfInstrs RemovedInsts; 265 266 /// Keep track of sext chains based on their initial value. 267 DenseMap<Value *, Instruction *> SeenChainsForSExt; 268 269 /// Keep track of GEPs accessing the same data structures such as structs or 270 /// arrays that are candidates to be split later because of their large 271 /// size. 272 DenseMap< 273 AssertingVH<Value>, 274 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 275 LargeOffsetGEPMap; 276 277 /// Keep track of new GEP base after splitting the GEPs having large offset. 278 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 279 280 /// Map serial numbers to Large offset GEPs. 281 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 282 283 /// Keep track of SExt promoted. 284 ValueToSExts ValToSExtendedUses; 285 286 /// True if CFG is modified in any way. 287 bool ModifiedDT; 288 289 /// True if optimizing for size. 290 bool OptSize; 291 292 /// DataLayout for the Function being processed. 293 const DataLayout *DL = nullptr; 294 295 public: 296 static char ID; // Pass identification, replacement for typeid 297 298 CodeGenPrepare() : FunctionPass(ID) { 299 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 300 } 301 302 bool runOnFunction(Function &F) override; 303 304 StringRef getPassName() const override { return "CodeGen Prepare"; } 305 306 void getAnalysisUsage(AnalysisUsage &AU) const override { 307 // FIXME: When we can selectively preserve passes, preserve the domtree. 308 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 309 AU.addRequired<TargetLibraryInfoWrapperPass>(); 310 AU.addRequired<TargetTransformInfoWrapperPass>(); 311 AU.addRequired<LoopInfoWrapperPass>(); 312 } 313 314 private: 315 bool eliminateFallThrough(Function &F); 316 bool eliminateMostlyEmptyBlocks(Function &F); 317 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 318 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 319 void eliminateMostlyEmptyBlock(BasicBlock *BB); 320 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 321 bool isPreheader); 322 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 323 bool optimizeInst(Instruction *I, bool &ModifiedDT); 324 bool optimizeMemoryInst(Instruction *I, Value *Addr, 325 Type *AccessTy, unsigned AS); 326 bool optimizeInlineAsmInst(CallInst *CS); 327 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 328 bool optimizeExt(Instruction *&I); 329 bool optimizeExtUses(Instruction *I); 330 bool optimizeLoadExt(LoadInst *I); 331 bool optimizeSelectInst(SelectInst *SI); 332 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 333 bool optimizeSwitchInst(SwitchInst *CI); 334 bool optimizeExtractElementInst(Instruction *Inst); 335 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 336 bool placeDbgValues(Function &F); 337 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 338 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 339 bool tryToPromoteExts(TypePromotionTransaction &TPT, 340 const SmallVectorImpl<Instruction *> &Exts, 341 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 342 unsigned CreatedInstsCost = 0); 343 bool mergeSExts(Function &F); 344 bool splitLargeGEPOffsets(); 345 bool performAddressTypePromotion( 346 Instruction *&Inst, 347 bool AllowPromotionWithoutCommonHeader, 348 bool HasPromoted, TypePromotionTransaction &TPT, 349 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 350 bool splitBranchCondition(Function &F); 351 bool simplifyOffsetableRelocate(Instruction &I); 352 }; 353 354 } // end anonymous namespace 355 356 char CodeGenPrepare::ID = 0; 357 358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 359 "Optimize for code generation", false, false) 360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 362 "Optimize for code generation", false, false) 363 364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 365 366 bool CodeGenPrepare::runOnFunction(Function &F) { 367 if (skipFunction(F)) 368 return false; 369 370 DL = &F.getParent()->getDataLayout(); 371 372 bool EverMadeChange = false; 373 // Clear per function information. 374 InsertedInsts.clear(); 375 PromotedInsts.clear(); 376 377 ModifiedDT = false; 378 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 379 TM = &TPC->getTM<TargetMachine>(); 380 SubtargetInfo = TM->getSubtargetImpl(F); 381 TLI = SubtargetInfo->getTargetLowering(); 382 TRI = SubtargetInfo->getRegisterInfo(); 383 } 384 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 385 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 386 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 387 BPI.reset(new BranchProbabilityInfo(F, *LI)); 388 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 389 OptSize = F.optForSize(); 390 391 ProfileSummaryInfo *PSI = 392 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 393 if (ProfileGuidedSectionPrefix) { 394 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 395 F.setSectionPrefix(".hot"); 396 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 397 F.setSectionPrefix(".unlikely"); 398 } 399 400 /// This optimization identifies DIV instructions that can be 401 /// profitably bypassed and carried out with a shorter, faster divide. 402 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 403 TLI->isSlowDivBypassed()) { 404 const DenseMap<unsigned int, unsigned int> &BypassWidths = 405 TLI->getBypassSlowDivWidths(); 406 BasicBlock* BB = &*F.begin(); 407 while (BB != nullptr) { 408 // bypassSlowDivision may create new BBs, but we don't want to reapply the 409 // optimization to those blocks. 410 BasicBlock* Next = BB->getNextNode(); 411 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 412 BB = Next; 413 } 414 } 415 416 // Eliminate blocks that contain only PHI nodes and an 417 // unconditional branch. 418 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 419 420 // llvm.dbg.value is far away from the value then iSel may not be able 421 // handle it properly. iSel will drop llvm.dbg.value if it can not 422 // find a node corresponding to the value. 423 EverMadeChange |= placeDbgValues(F); 424 425 if (!DisableBranchOpts) 426 EverMadeChange |= splitBranchCondition(F); 427 428 // Split some critical edges where one of the sources is an indirect branch, 429 // to help generate sane code for PHIs involving such edges. 430 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 431 432 bool MadeChange = true; 433 while (MadeChange) { 434 MadeChange = false; 435 SeenChainsForSExt.clear(); 436 ValToSExtendedUses.clear(); 437 RemovedInsts.clear(); 438 LargeOffsetGEPMap.clear(); 439 LargeOffsetGEPID.clear(); 440 for (Function::iterator I = F.begin(); I != F.end(); ) { 441 BasicBlock *BB = &*I++; 442 bool ModifiedDTOnIteration = false; 443 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 444 445 // Restart BB iteration if the dominator tree of the Function was changed 446 if (ModifiedDTOnIteration) 447 break; 448 } 449 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 450 MadeChange |= mergeSExts(F); 451 if (!LargeOffsetGEPMap.empty()) 452 MadeChange |= splitLargeGEPOffsets(); 453 454 // Really free removed instructions during promotion. 455 for (Instruction *I : RemovedInsts) 456 I->deleteValue(); 457 458 EverMadeChange |= MadeChange; 459 } 460 461 SunkAddrs.clear(); 462 463 if (!DisableBranchOpts) { 464 MadeChange = false; 465 SmallPtrSet<BasicBlock*, 8> WorkList; 466 for (BasicBlock &BB : F) { 467 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 468 MadeChange |= ConstantFoldTerminator(&BB, true); 469 if (!MadeChange) continue; 470 471 for (SmallVectorImpl<BasicBlock*>::iterator 472 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 473 if (pred_begin(*II) == pred_end(*II)) 474 WorkList.insert(*II); 475 } 476 477 // Delete the dead blocks and any of their dead successors. 478 MadeChange |= !WorkList.empty(); 479 while (!WorkList.empty()) { 480 BasicBlock *BB = *WorkList.begin(); 481 WorkList.erase(BB); 482 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 483 484 DeleteDeadBlock(BB); 485 486 for (SmallVectorImpl<BasicBlock*>::iterator 487 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 488 if (pred_begin(*II) == pred_end(*II)) 489 WorkList.insert(*II); 490 } 491 492 // Merge pairs of basic blocks with unconditional branches, connected by 493 // a single edge. 494 if (EverMadeChange || MadeChange) 495 MadeChange |= eliminateFallThrough(F); 496 497 EverMadeChange |= MadeChange; 498 } 499 500 if (!DisableGCOpts) { 501 SmallVector<Instruction *, 2> Statepoints; 502 for (BasicBlock &BB : F) 503 for (Instruction &I : BB) 504 if (isStatepoint(I)) 505 Statepoints.push_back(&I); 506 for (auto &I : Statepoints) 507 EverMadeChange |= simplifyOffsetableRelocate(*I); 508 } 509 510 return EverMadeChange; 511 } 512 513 /// Merge basic blocks which are connected by a single edge, where one of the 514 /// basic blocks has a single successor pointing to the other basic block, 515 /// which has a single predecessor. 516 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 517 bool Changed = false; 518 // Scan all of the blocks in the function, except for the entry block. 519 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 520 BasicBlock *BB = &*I++; 521 // If the destination block has a single pred, then this is a trivial 522 // edge, just collapse it. 523 BasicBlock *SinglePred = BB->getSinglePredecessor(); 524 525 // Don't merge if BB's address is taken. 526 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 527 528 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 529 if (Term && !Term->isConditional()) { 530 Changed = true; 531 LLVM_DEBUG(dbgs() << "To merge:\n" << *SinglePred << "\n\n\n"); 532 // Remember if SinglePred was the entry block of the function. 533 // If so, we will need to move BB back to the entry position. 534 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 535 MergeBasicBlockIntoOnlyPred(BB, nullptr); 536 537 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 538 BB->moveBefore(&BB->getParent()->getEntryBlock()); 539 540 // We have erased a block. Update the iterator. 541 I = BB->getIterator(); 542 } 543 } 544 return Changed; 545 } 546 547 /// Find a destination block from BB if BB is mergeable empty block. 548 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 549 // If this block doesn't end with an uncond branch, ignore it. 550 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 551 if (!BI || !BI->isUnconditional()) 552 return nullptr; 553 554 // If the instruction before the branch (skipping debug info) isn't a phi 555 // node, then other stuff is happening here. 556 BasicBlock::iterator BBI = BI->getIterator(); 557 if (BBI != BB->begin()) { 558 --BBI; 559 while (isa<DbgInfoIntrinsic>(BBI)) { 560 if (BBI == BB->begin()) 561 break; 562 --BBI; 563 } 564 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 565 return nullptr; 566 } 567 568 // Do not break infinite loops. 569 BasicBlock *DestBB = BI->getSuccessor(0); 570 if (DestBB == BB) 571 return nullptr; 572 573 if (!canMergeBlocks(BB, DestBB)) 574 DestBB = nullptr; 575 576 return DestBB; 577 } 578 579 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 580 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 581 /// edges in ways that are non-optimal for isel. Start by eliminating these 582 /// blocks so we can split them the way we want them. 583 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 584 SmallPtrSet<BasicBlock *, 16> Preheaders; 585 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 586 while (!LoopList.empty()) { 587 Loop *L = LoopList.pop_back_val(); 588 LoopList.insert(LoopList.end(), L->begin(), L->end()); 589 if (BasicBlock *Preheader = L->getLoopPreheader()) 590 Preheaders.insert(Preheader); 591 } 592 593 bool MadeChange = false; 594 // Note that this intentionally skips the entry block. 595 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 596 BasicBlock *BB = &*I++; 597 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 598 if (!DestBB || 599 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 600 continue; 601 602 eliminateMostlyEmptyBlock(BB); 603 MadeChange = true; 604 } 605 return MadeChange; 606 } 607 608 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 609 BasicBlock *DestBB, 610 bool isPreheader) { 611 // Do not delete loop preheaders if doing so would create a critical edge. 612 // Loop preheaders can be good locations to spill registers. If the 613 // preheader is deleted and we create a critical edge, registers may be 614 // spilled in the loop body instead. 615 if (!DisablePreheaderProtect && isPreheader && 616 !(BB->getSinglePredecessor() && 617 BB->getSinglePredecessor()->getSingleSuccessor())) 618 return false; 619 620 // Try to skip merging if the unique predecessor of BB is terminated by a 621 // switch or indirect branch instruction, and BB is used as an incoming block 622 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 623 // add COPY instructions in the predecessor of BB instead of BB (if it is not 624 // merged). Note that the critical edge created by merging such blocks wont be 625 // split in MachineSink because the jump table is not analyzable. By keeping 626 // such empty block (BB), ISel will place COPY instructions in BB, not in the 627 // predecessor of BB. 628 BasicBlock *Pred = BB->getUniquePredecessor(); 629 if (!Pred || 630 !(isa<SwitchInst>(Pred->getTerminator()) || 631 isa<IndirectBrInst>(Pred->getTerminator()))) 632 return true; 633 634 if (BB->getTerminator() != BB->getFirstNonPHI()) 635 return true; 636 637 // We use a simple cost heuristic which determine skipping merging is 638 // profitable if the cost of skipping merging is less than the cost of 639 // merging : Cost(skipping merging) < Cost(merging BB), where the 640 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 641 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 642 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 643 // Freq(Pred) / Freq(BB) > 2. 644 // Note that if there are multiple empty blocks sharing the same incoming 645 // value for the PHIs in the DestBB, we consider them together. In such 646 // case, Cost(merging BB) will be the sum of their frequencies. 647 648 if (!isa<PHINode>(DestBB->begin())) 649 return true; 650 651 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 652 653 // Find all other incoming blocks from which incoming values of all PHIs in 654 // DestBB are the same as the ones from BB. 655 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 656 ++PI) { 657 BasicBlock *DestBBPred = *PI; 658 if (DestBBPred == BB) 659 continue; 660 661 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 662 return DestPN.getIncomingValueForBlock(BB) == 663 DestPN.getIncomingValueForBlock(DestBBPred); 664 })) 665 SameIncomingValueBBs.insert(DestBBPred); 666 } 667 668 // See if all BB's incoming values are same as the value from Pred. In this 669 // case, no reason to skip merging because COPYs are expected to be place in 670 // Pred already. 671 if (SameIncomingValueBBs.count(Pred)) 672 return true; 673 674 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 675 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 676 677 for (auto SameValueBB : SameIncomingValueBBs) 678 if (SameValueBB->getUniquePredecessor() == Pred && 679 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 680 BBFreq += BFI->getBlockFreq(SameValueBB); 681 682 return PredFreq.getFrequency() <= 683 BBFreq.getFrequency() * FreqRatioToSkipMerge; 684 } 685 686 /// Return true if we can merge BB into DestBB if there is a single 687 /// unconditional branch between them, and BB contains no other non-phi 688 /// instructions. 689 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 690 const BasicBlock *DestBB) const { 691 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 692 // the successor. If there are more complex condition (e.g. preheaders), 693 // don't mess around with them. 694 for (const PHINode &PN : BB->phis()) { 695 for (const User *U : PN.users()) { 696 const Instruction *UI = cast<Instruction>(U); 697 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 698 return false; 699 // If User is inside DestBB block and it is a PHINode then check 700 // incoming value. If incoming value is not from BB then this is 701 // a complex condition (e.g. preheaders) we want to avoid here. 702 if (UI->getParent() == DestBB) { 703 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 704 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 705 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 706 if (Insn && Insn->getParent() == BB && 707 Insn->getParent() != UPN->getIncomingBlock(I)) 708 return false; 709 } 710 } 711 } 712 } 713 714 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 715 // and DestBB may have conflicting incoming values for the block. If so, we 716 // can't merge the block. 717 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 718 if (!DestBBPN) return true; // no conflict. 719 720 // Collect the preds of BB. 721 SmallPtrSet<const BasicBlock*, 16> BBPreds; 722 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 723 // It is faster to get preds from a PHI than with pred_iterator. 724 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 725 BBPreds.insert(BBPN->getIncomingBlock(i)); 726 } else { 727 BBPreds.insert(pred_begin(BB), pred_end(BB)); 728 } 729 730 // Walk the preds of DestBB. 731 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 732 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 733 if (BBPreds.count(Pred)) { // Common predecessor? 734 for (const PHINode &PN : DestBB->phis()) { 735 const Value *V1 = PN.getIncomingValueForBlock(Pred); 736 const Value *V2 = PN.getIncomingValueForBlock(BB); 737 738 // If V2 is a phi node in BB, look up what the mapped value will be. 739 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 740 if (V2PN->getParent() == BB) 741 V2 = V2PN->getIncomingValueForBlock(Pred); 742 743 // If there is a conflict, bail out. 744 if (V1 != V2) return false; 745 } 746 } 747 } 748 749 return true; 750 } 751 752 /// Eliminate a basic block that has only phi's and an unconditional branch in 753 /// it. 754 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 755 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 756 BasicBlock *DestBB = BI->getSuccessor(0); 757 758 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 759 << *BB << *DestBB); 760 761 // If the destination block has a single pred, then this is a trivial edge, 762 // just collapse it. 763 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 764 if (SinglePred != DestBB) { 765 // Remember if SinglePred was the entry block of the function. If so, we 766 // will need to move BB back to the entry position. 767 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 768 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 769 770 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 771 BB->moveBefore(&BB->getParent()->getEntryBlock()); 772 773 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 774 return; 775 } 776 } 777 778 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 779 // to handle the new incoming edges it is about to have. 780 for (PHINode &PN : DestBB->phis()) { 781 // Remove the incoming value for BB, and remember it. 782 Value *InVal = PN.removeIncomingValue(BB, false); 783 784 // Two options: either the InVal is a phi node defined in BB or it is some 785 // value that dominates BB. 786 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 787 if (InValPhi && InValPhi->getParent() == BB) { 788 // Add all of the input values of the input PHI as inputs of this phi. 789 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 790 PN.addIncoming(InValPhi->getIncomingValue(i), 791 InValPhi->getIncomingBlock(i)); 792 } else { 793 // Otherwise, add one instance of the dominating value for each edge that 794 // we will be adding. 795 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 796 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 797 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 798 } else { 799 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 800 PN.addIncoming(InVal, *PI); 801 } 802 } 803 } 804 805 // The PHIs are now updated, change everything that refers to BB to use 806 // DestBB and remove BB. 807 BB->replaceAllUsesWith(DestBB); 808 BB->eraseFromParent(); 809 ++NumBlocksElim; 810 811 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 812 } 813 814 // Computes a map of base pointer relocation instructions to corresponding 815 // derived pointer relocation instructions given a vector of all relocate calls 816 static void computeBaseDerivedRelocateMap( 817 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 818 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 819 &RelocateInstMap) { 820 // Collect information in two maps: one primarily for locating the base object 821 // while filling the second map; the second map is the final structure holding 822 // a mapping between Base and corresponding Derived relocate calls 823 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 824 for (auto *ThisRelocate : AllRelocateCalls) { 825 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 826 ThisRelocate->getDerivedPtrIndex()); 827 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 828 } 829 for (auto &Item : RelocateIdxMap) { 830 std::pair<unsigned, unsigned> Key = Item.first; 831 if (Key.first == Key.second) 832 // Base relocation: nothing to insert 833 continue; 834 835 GCRelocateInst *I = Item.second; 836 auto BaseKey = std::make_pair(Key.first, Key.first); 837 838 // We're iterating over RelocateIdxMap so we cannot modify it. 839 auto MaybeBase = RelocateIdxMap.find(BaseKey); 840 if (MaybeBase == RelocateIdxMap.end()) 841 // TODO: We might want to insert a new base object relocate and gep off 842 // that, if there are enough derived object relocates. 843 continue; 844 845 RelocateInstMap[MaybeBase->second].push_back(I); 846 } 847 } 848 849 // Accepts a GEP and extracts the operands into a vector provided they're all 850 // small integer constants 851 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 852 SmallVectorImpl<Value *> &OffsetV) { 853 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 854 // Only accept small constant integer operands 855 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 856 if (!Op || Op->getZExtValue() > 20) 857 return false; 858 } 859 860 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 861 OffsetV.push_back(GEP->getOperand(i)); 862 return true; 863 } 864 865 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 866 // replace, computes a replacement, and affects it. 867 static bool 868 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 869 const SmallVectorImpl<GCRelocateInst *> &Targets) { 870 bool MadeChange = false; 871 // We must ensure the relocation of derived pointer is defined after 872 // relocation of base pointer. If we find a relocation corresponding to base 873 // defined earlier than relocation of base then we move relocation of base 874 // right before found relocation. We consider only relocation in the same 875 // basic block as relocation of base. Relocations from other basic block will 876 // be skipped by optimization and we do not care about them. 877 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 878 &*R != RelocatedBase; ++R) 879 if (auto RI = dyn_cast<GCRelocateInst>(R)) 880 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 881 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 882 RelocatedBase->moveBefore(RI); 883 break; 884 } 885 886 for (GCRelocateInst *ToReplace : Targets) { 887 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 888 "Not relocating a derived object of the original base object"); 889 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 890 // A duplicate relocate call. TODO: coalesce duplicates. 891 continue; 892 } 893 894 if (RelocatedBase->getParent() != ToReplace->getParent()) { 895 // Base and derived relocates are in different basic blocks. 896 // In this case transform is only valid when base dominates derived 897 // relocate. However it would be too expensive to check dominance 898 // for each such relocate, so we skip the whole transformation. 899 continue; 900 } 901 902 Value *Base = ToReplace->getBasePtr(); 903 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 904 if (!Derived || Derived->getPointerOperand() != Base) 905 continue; 906 907 SmallVector<Value *, 2> OffsetV; 908 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 909 continue; 910 911 // Create a Builder and replace the target callsite with a gep 912 assert(RelocatedBase->getNextNode() && 913 "Should always have one since it's not a terminator"); 914 915 // Insert after RelocatedBase 916 IRBuilder<> Builder(RelocatedBase->getNextNode()); 917 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 918 919 // If gc_relocate does not match the actual type, cast it to the right type. 920 // In theory, there must be a bitcast after gc_relocate if the type does not 921 // match, and we should reuse it to get the derived pointer. But it could be 922 // cases like this: 923 // bb1: 924 // ... 925 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 926 // br label %merge 927 // 928 // bb2: 929 // ... 930 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 931 // br label %merge 932 // 933 // merge: 934 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 935 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 936 // 937 // In this case, we can not find the bitcast any more. So we insert a new bitcast 938 // no matter there is already one or not. In this way, we can handle all cases, and 939 // the extra bitcast should be optimized away in later passes. 940 Value *ActualRelocatedBase = RelocatedBase; 941 if (RelocatedBase->getType() != Base->getType()) { 942 ActualRelocatedBase = 943 Builder.CreateBitCast(RelocatedBase, Base->getType()); 944 } 945 Value *Replacement = Builder.CreateGEP( 946 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 947 Replacement->takeName(ToReplace); 948 // If the newly generated derived pointer's type does not match the original derived 949 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 950 Value *ActualReplacement = Replacement; 951 if (Replacement->getType() != ToReplace->getType()) { 952 ActualReplacement = 953 Builder.CreateBitCast(Replacement, ToReplace->getType()); 954 } 955 ToReplace->replaceAllUsesWith(ActualReplacement); 956 ToReplace->eraseFromParent(); 957 958 MadeChange = true; 959 } 960 return MadeChange; 961 } 962 963 // Turns this: 964 // 965 // %base = ... 966 // %ptr = gep %base + 15 967 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 968 // %base' = relocate(%tok, i32 4, i32 4) 969 // %ptr' = relocate(%tok, i32 4, i32 5) 970 // %val = load %ptr' 971 // 972 // into this: 973 // 974 // %base = ... 975 // %ptr = gep %base + 15 976 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 977 // %base' = gc.relocate(%tok, i32 4, i32 4) 978 // %ptr' = gep %base' + 15 979 // %val = load %ptr' 980 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 981 bool MadeChange = false; 982 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 983 984 for (auto *U : I.users()) 985 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 986 // Collect all the relocate calls associated with a statepoint 987 AllRelocateCalls.push_back(Relocate); 988 989 // We need atleast one base pointer relocation + one derived pointer 990 // relocation to mangle 991 if (AllRelocateCalls.size() < 2) 992 return false; 993 994 // RelocateInstMap is a mapping from the base relocate instruction to the 995 // corresponding derived relocate instructions 996 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 997 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 998 if (RelocateInstMap.empty()) 999 return false; 1000 1001 for (auto &Item : RelocateInstMap) 1002 // Item.first is the RelocatedBase to offset against 1003 // Item.second is the vector of Targets to replace 1004 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1005 return MadeChange; 1006 } 1007 1008 /// SinkCast - Sink the specified cast instruction into its user blocks 1009 static bool SinkCast(CastInst *CI) { 1010 BasicBlock *DefBB = CI->getParent(); 1011 1012 /// InsertedCasts - Only insert a cast in each block once. 1013 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1014 1015 bool MadeChange = false; 1016 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1017 UI != E; ) { 1018 Use &TheUse = UI.getUse(); 1019 Instruction *User = cast<Instruction>(*UI); 1020 1021 // Figure out which BB this cast is used in. For PHI's this is the 1022 // appropriate predecessor block. 1023 BasicBlock *UserBB = User->getParent(); 1024 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1025 UserBB = PN->getIncomingBlock(TheUse); 1026 } 1027 1028 // Preincrement use iterator so we don't invalidate it. 1029 ++UI; 1030 1031 // The first insertion point of a block containing an EH pad is after the 1032 // pad. If the pad is the user, we cannot sink the cast past the pad. 1033 if (User->isEHPad()) 1034 continue; 1035 1036 // If the block selected to receive the cast is an EH pad that does not 1037 // allow non-PHI instructions before the terminator, we can't sink the 1038 // cast. 1039 if (UserBB->getTerminator()->isEHPad()) 1040 continue; 1041 1042 // If this user is in the same block as the cast, don't change the cast. 1043 if (UserBB == DefBB) continue; 1044 1045 // If we have already inserted a cast into this block, use it. 1046 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1047 1048 if (!InsertedCast) { 1049 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1050 assert(InsertPt != UserBB->end()); 1051 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1052 CI->getType(), "", &*InsertPt); 1053 } 1054 1055 // Replace a use of the cast with a use of the new cast. 1056 TheUse = InsertedCast; 1057 MadeChange = true; 1058 ++NumCastUses; 1059 } 1060 1061 // If we removed all uses, nuke the cast. 1062 if (CI->use_empty()) { 1063 salvageDebugInfo(*CI); 1064 CI->eraseFromParent(); 1065 MadeChange = true; 1066 } 1067 1068 return MadeChange; 1069 } 1070 1071 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1072 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1073 /// reduce the number of virtual registers that must be created and coalesced. 1074 /// 1075 /// Return true if any changes are made. 1076 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1077 const DataLayout &DL) { 1078 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1079 // than sinking only nop casts, but is helpful on some platforms. 1080 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1081 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1082 ASC->getDestAddressSpace())) 1083 return false; 1084 } 1085 1086 // If this is a noop copy, 1087 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1088 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1089 1090 // This is an fp<->int conversion? 1091 if (SrcVT.isInteger() != DstVT.isInteger()) 1092 return false; 1093 1094 // If this is an extension, it will be a zero or sign extension, which 1095 // isn't a noop. 1096 if (SrcVT.bitsLT(DstVT)) return false; 1097 1098 // If these values will be promoted, find out what they will be promoted 1099 // to. This helps us consider truncates on PPC as noop copies when they 1100 // are. 1101 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1102 TargetLowering::TypePromoteInteger) 1103 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1104 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1105 TargetLowering::TypePromoteInteger) 1106 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1107 1108 // If, after promotion, these are the same types, this is a noop copy. 1109 if (SrcVT != DstVT) 1110 return false; 1111 1112 return SinkCast(CI); 1113 } 1114 1115 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1116 /// possible. 1117 /// 1118 /// Return true if any changes were made. 1119 static bool CombineUAddWithOverflow(CmpInst *CI) { 1120 Value *A, *B; 1121 Instruction *AddI; 1122 if (!match(CI, 1123 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1124 return false; 1125 1126 Type *Ty = AddI->getType(); 1127 if (!isa<IntegerType>(Ty)) 1128 return false; 1129 1130 // We don't want to move around uses of condition values this late, so we we 1131 // check if it is legal to create the call to the intrinsic in the basic 1132 // block containing the icmp: 1133 1134 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1135 return false; 1136 1137 #ifndef NDEBUG 1138 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1139 // for now: 1140 if (AddI->hasOneUse()) 1141 assert(*AddI->user_begin() == CI && "expected!"); 1142 #endif 1143 1144 Module *M = CI->getModule(); 1145 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1146 1147 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1148 1149 auto *UAddWithOverflow = 1150 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1151 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1152 auto *Overflow = 1153 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1154 1155 CI->replaceAllUsesWith(Overflow); 1156 AddI->replaceAllUsesWith(UAdd); 1157 CI->eraseFromParent(); 1158 AddI->eraseFromParent(); 1159 return true; 1160 } 1161 1162 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1163 /// registers that must be created and coalesced. This is a clear win except on 1164 /// targets with multiple condition code registers (PowerPC), where it might 1165 /// lose; some adjustment may be wanted there. 1166 /// 1167 /// Return true if any changes are made. 1168 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1169 BasicBlock *DefBB = CI->getParent(); 1170 1171 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1172 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1173 return false; 1174 1175 // Only insert a cmp in each block once. 1176 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1177 1178 bool MadeChange = false; 1179 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1180 UI != E; ) { 1181 Use &TheUse = UI.getUse(); 1182 Instruction *User = cast<Instruction>(*UI); 1183 1184 // Preincrement use iterator so we don't invalidate it. 1185 ++UI; 1186 1187 // Don't bother for PHI nodes. 1188 if (isa<PHINode>(User)) 1189 continue; 1190 1191 // Figure out which BB this cmp is used in. 1192 BasicBlock *UserBB = User->getParent(); 1193 1194 // If this user is in the same block as the cmp, don't change the cmp. 1195 if (UserBB == DefBB) continue; 1196 1197 // If we have already inserted a cmp into this block, use it. 1198 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1199 1200 if (!InsertedCmp) { 1201 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1202 assert(InsertPt != UserBB->end()); 1203 InsertedCmp = 1204 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1205 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1206 // Propagate the debug info. 1207 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1208 } 1209 1210 // Replace a use of the cmp with a use of the new cmp. 1211 TheUse = InsertedCmp; 1212 MadeChange = true; 1213 ++NumCmpUses; 1214 } 1215 1216 // If we removed all uses, nuke the cmp. 1217 if (CI->use_empty()) { 1218 CI->eraseFromParent(); 1219 MadeChange = true; 1220 } 1221 1222 return MadeChange; 1223 } 1224 1225 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1226 if (SinkCmpExpression(CI, TLI)) 1227 return true; 1228 1229 if (CombineUAddWithOverflow(CI)) 1230 return true; 1231 1232 return false; 1233 } 1234 1235 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1236 /// used in a compare to allow isel to generate better code for targets where 1237 /// this operation can be combined. 1238 /// 1239 /// Return true if any changes are made. 1240 static bool sinkAndCmp0Expression(Instruction *AndI, 1241 const TargetLowering &TLI, 1242 SetOfInstrs &InsertedInsts) { 1243 // Double-check that we're not trying to optimize an instruction that was 1244 // already optimized by some other part of this pass. 1245 assert(!InsertedInsts.count(AndI) && 1246 "Attempting to optimize already optimized and instruction"); 1247 (void) InsertedInsts; 1248 1249 // Nothing to do for single use in same basic block. 1250 if (AndI->hasOneUse() && 1251 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1252 return false; 1253 1254 // Try to avoid cases where sinking/duplicating is likely to increase register 1255 // pressure. 1256 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1257 !isa<ConstantInt>(AndI->getOperand(1)) && 1258 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1259 return false; 1260 1261 for (auto *U : AndI->users()) { 1262 Instruction *User = cast<Instruction>(U); 1263 1264 // Only sink for and mask feeding icmp with 0. 1265 if (!isa<ICmpInst>(User)) 1266 return false; 1267 1268 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1269 if (!CmpC || !CmpC->isZero()) 1270 return false; 1271 } 1272 1273 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1274 return false; 1275 1276 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1277 LLVM_DEBUG(AndI->getParent()->dump()); 1278 1279 // Push the 'and' into the same block as the icmp 0. There should only be 1280 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1281 // others, so we don't need to keep track of which BBs we insert into. 1282 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1283 UI != E; ) { 1284 Use &TheUse = UI.getUse(); 1285 Instruction *User = cast<Instruction>(*UI); 1286 1287 // Preincrement use iterator so we don't invalidate it. 1288 ++UI; 1289 1290 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1291 1292 // Keep the 'and' in the same place if the use is already in the same block. 1293 Instruction *InsertPt = 1294 User->getParent() == AndI->getParent() ? AndI : User; 1295 Instruction *InsertedAnd = 1296 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1297 AndI->getOperand(1), "", InsertPt); 1298 // Propagate the debug info. 1299 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1300 1301 // Replace a use of the 'and' with a use of the new 'and'. 1302 TheUse = InsertedAnd; 1303 ++NumAndUses; 1304 LLVM_DEBUG(User->getParent()->dump()); 1305 } 1306 1307 // We removed all uses, nuke the and. 1308 AndI->eraseFromParent(); 1309 return true; 1310 } 1311 1312 /// Check if the candidates could be combined with a shift instruction, which 1313 /// includes: 1314 /// 1. Truncate instruction 1315 /// 2. And instruction and the imm is a mask of the low bits: 1316 /// imm & (imm+1) == 0 1317 static bool isExtractBitsCandidateUse(Instruction *User) { 1318 if (!isa<TruncInst>(User)) { 1319 if (User->getOpcode() != Instruction::And || 1320 !isa<ConstantInt>(User->getOperand(1))) 1321 return false; 1322 1323 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1324 1325 if ((Cimm & (Cimm + 1)).getBoolValue()) 1326 return false; 1327 } 1328 return true; 1329 } 1330 1331 /// Sink both shift and truncate instruction to the use of truncate's BB. 1332 static bool 1333 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1334 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1335 const TargetLowering &TLI, const DataLayout &DL) { 1336 BasicBlock *UserBB = User->getParent(); 1337 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1338 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1339 bool MadeChange = false; 1340 1341 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1342 TruncE = TruncI->user_end(); 1343 TruncUI != TruncE;) { 1344 1345 Use &TruncTheUse = TruncUI.getUse(); 1346 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1347 // Preincrement use iterator so we don't invalidate it. 1348 1349 ++TruncUI; 1350 1351 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1352 if (!ISDOpcode) 1353 continue; 1354 1355 // If the use is actually a legal node, there will not be an 1356 // implicit truncate. 1357 // FIXME: always querying the result type is just an 1358 // approximation; some nodes' legality is determined by the 1359 // operand or other means. There's no good way to find out though. 1360 if (TLI.isOperationLegalOrCustom( 1361 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1362 continue; 1363 1364 // Don't bother for PHI nodes. 1365 if (isa<PHINode>(TruncUser)) 1366 continue; 1367 1368 BasicBlock *TruncUserBB = TruncUser->getParent(); 1369 1370 if (UserBB == TruncUserBB) 1371 continue; 1372 1373 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1374 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1375 1376 if (!InsertedShift && !InsertedTrunc) { 1377 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1378 assert(InsertPt != TruncUserBB->end()); 1379 // Sink the shift 1380 if (ShiftI->getOpcode() == Instruction::AShr) 1381 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1382 "", &*InsertPt); 1383 else 1384 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1385 "", &*InsertPt); 1386 1387 // Sink the trunc 1388 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1389 TruncInsertPt++; 1390 assert(TruncInsertPt != TruncUserBB->end()); 1391 1392 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1393 TruncI->getType(), "", &*TruncInsertPt); 1394 1395 MadeChange = true; 1396 1397 TruncTheUse = InsertedTrunc; 1398 } 1399 } 1400 return MadeChange; 1401 } 1402 1403 /// Sink the shift *right* instruction into user blocks if the uses could 1404 /// potentially be combined with this shift instruction and generate BitExtract 1405 /// instruction. It will only be applied if the architecture supports BitExtract 1406 /// instruction. Here is an example: 1407 /// BB1: 1408 /// %x.extract.shift = lshr i64 %arg1, 32 1409 /// BB2: 1410 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1411 /// ==> 1412 /// 1413 /// BB2: 1414 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1415 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1416 /// 1417 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1418 /// instruction. 1419 /// Return true if any changes are made. 1420 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1421 const TargetLowering &TLI, 1422 const DataLayout &DL) { 1423 BasicBlock *DefBB = ShiftI->getParent(); 1424 1425 /// Only insert instructions in each block once. 1426 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1427 1428 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1429 1430 bool MadeChange = false; 1431 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1432 UI != E;) { 1433 Use &TheUse = UI.getUse(); 1434 Instruction *User = cast<Instruction>(*UI); 1435 // Preincrement use iterator so we don't invalidate it. 1436 ++UI; 1437 1438 // Don't bother for PHI nodes. 1439 if (isa<PHINode>(User)) 1440 continue; 1441 1442 if (!isExtractBitsCandidateUse(User)) 1443 continue; 1444 1445 BasicBlock *UserBB = User->getParent(); 1446 1447 if (UserBB == DefBB) { 1448 // If the shift and truncate instruction are in the same BB. The use of 1449 // the truncate(TruncUse) may still introduce another truncate if not 1450 // legal. In this case, we would like to sink both shift and truncate 1451 // instruction to the BB of TruncUse. 1452 // for example: 1453 // BB1: 1454 // i64 shift.result = lshr i64 opnd, imm 1455 // trunc.result = trunc shift.result to i16 1456 // 1457 // BB2: 1458 // ----> We will have an implicit truncate here if the architecture does 1459 // not have i16 compare. 1460 // cmp i16 trunc.result, opnd2 1461 // 1462 if (isa<TruncInst>(User) && shiftIsLegal 1463 // If the type of the truncate is legal, no trucate will be 1464 // introduced in other basic blocks. 1465 && 1466 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1467 MadeChange = 1468 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1469 1470 continue; 1471 } 1472 // If we have already inserted a shift into this block, use it. 1473 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1474 1475 if (!InsertedShift) { 1476 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1477 assert(InsertPt != UserBB->end()); 1478 1479 if (ShiftI->getOpcode() == Instruction::AShr) 1480 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1481 "", &*InsertPt); 1482 else 1483 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1484 "", &*InsertPt); 1485 1486 MadeChange = true; 1487 } 1488 1489 // Replace a use of the shift with a use of the new shift. 1490 TheUse = InsertedShift; 1491 } 1492 1493 // If we removed all uses, nuke the shift. 1494 if (ShiftI->use_empty()) 1495 ShiftI->eraseFromParent(); 1496 1497 return MadeChange; 1498 } 1499 1500 /// If counting leading or trailing zeros is an expensive operation and a zero 1501 /// input is defined, add a check for zero to avoid calling the intrinsic. 1502 /// 1503 /// We want to transform: 1504 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1505 /// 1506 /// into: 1507 /// entry: 1508 /// %cmpz = icmp eq i64 %A, 0 1509 /// br i1 %cmpz, label %cond.end, label %cond.false 1510 /// cond.false: 1511 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1512 /// br label %cond.end 1513 /// cond.end: 1514 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1515 /// 1516 /// If the transform is performed, return true and set ModifiedDT to true. 1517 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1518 const TargetLowering *TLI, 1519 const DataLayout *DL, 1520 bool &ModifiedDT) { 1521 if (!TLI || !DL) 1522 return false; 1523 1524 // If a zero input is undefined, it doesn't make sense to despeculate that. 1525 if (match(CountZeros->getOperand(1), m_One())) 1526 return false; 1527 1528 // If it's cheap to speculate, there's nothing to do. 1529 auto IntrinsicID = CountZeros->getIntrinsicID(); 1530 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1531 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1532 return false; 1533 1534 // Only handle legal scalar cases. Anything else requires too much work. 1535 Type *Ty = CountZeros->getType(); 1536 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1537 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1538 return false; 1539 1540 // The intrinsic will be sunk behind a compare against zero and branch. 1541 BasicBlock *StartBlock = CountZeros->getParent(); 1542 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1543 1544 // Create another block after the count zero intrinsic. A PHI will be added 1545 // in this block to select the result of the intrinsic or the bit-width 1546 // constant if the input to the intrinsic is zero. 1547 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1548 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1549 1550 // Set up a builder to create a compare, conditional branch, and PHI. 1551 IRBuilder<> Builder(CountZeros->getContext()); 1552 Builder.SetInsertPoint(StartBlock->getTerminator()); 1553 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1554 1555 // Replace the unconditional branch that was created by the first split with 1556 // a compare against zero and a conditional branch. 1557 Value *Zero = Constant::getNullValue(Ty); 1558 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1559 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1560 StartBlock->getTerminator()->eraseFromParent(); 1561 1562 // Create a PHI in the end block to select either the output of the intrinsic 1563 // or the bit width of the operand. 1564 Builder.SetInsertPoint(&EndBlock->front()); 1565 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1566 CountZeros->replaceAllUsesWith(PN); 1567 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1568 PN->addIncoming(BitWidth, StartBlock); 1569 PN->addIncoming(CountZeros, CallBlock); 1570 1571 // We are explicitly handling the zero case, so we can set the intrinsic's 1572 // undefined zero argument to 'true'. This will also prevent reprocessing the 1573 // intrinsic; we only despeculate when a zero input is defined. 1574 CountZeros->setArgOperand(1, Builder.getTrue()); 1575 ModifiedDT = true; 1576 return true; 1577 } 1578 1579 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1580 BasicBlock *BB = CI->getParent(); 1581 1582 // Lower inline assembly if we can. 1583 // If we found an inline asm expession, and if the target knows how to 1584 // lower it to normal LLVM code, do so now. 1585 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1586 if (TLI->ExpandInlineAsm(CI)) { 1587 // Avoid invalidating the iterator. 1588 CurInstIterator = BB->begin(); 1589 // Avoid processing instructions out of order, which could cause 1590 // reuse before a value is defined. 1591 SunkAddrs.clear(); 1592 return true; 1593 } 1594 // Sink address computing for memory operands into the block. 1595 if (optimizeInlineAsmInst(CI)) 1596 return true; 1597 } 1598 1599 // Align the pointer arguments to this call if the target thinks it's a good 1600 // idea 1601 unsigned MinSize, PrefAlign; 1602 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1603 for (auto &Arg : CI->arg_operands()) { 1604 // We want to align both objects whose address is used directly and 1605 // objects whose address is used in casts and GEPs, though it only makes 1606 // sense for GEPs if the offset is a multiple of the desired alignment and 1607 // if size - offset meets the size threshold. 1608 if (!Arg->getType()->isPointerTy()) 1609 continue; 1610 APInt Offset(DL->getIndexSizeInBits( 1611 cast<PointerType>(Arg->getType())->getAddressSpace()), 1612 0); 1613 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1614 uint64_t Offset2 = Offset.getLimitedValue(); 1615 if ((Offset2 & (PrefAlign-1)) != 0) 1616 continue; 1617 AllocaInst *AI; 1618 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1619 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1620 AI->setAlignment(PrefAlign); 1621 // Global variables can only be aligned if they are defined in this 1622 // object (i.e. they are uniquely initialized in this object), and 1623 // over-aligning global variables that have an explicit section is 1624 // forbidden. 1625 GlobalVariable *GV; 1626 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1627 GV->getPointerAlignment(*DL) < PrefAlign && 1628 DL->getTypeAllocSize(GV->getValueType()) >= 1629 MinSize + Offset2) 1630 GV->setAlignment(PrefAlign); 1631 } 1632 // If this is a memcpy (or similar) then we may be able to improve the 1633 // alignment 1634 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1635 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1636 if (DestAlign > MI->getDestAlignment()) 1637 MI->setDestAlignment(DestAlign); 1638 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1639 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1640 if (SrcAlign > MTI->getSourceAlignment()) 1641 MTI->setSourceAlignment(SrcAlign); 1642 } 1643 } 1644 } 1645 1646 // If we have a cold call site, try to sink addressing computation into the 1647 // cold block. This interacts with our handling for loads and stores to 1648 // ensure that we can fold all uses of a potential addressing computation 1649 // into their uses. TODO: generalize this to work over profiling data 1650 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1651 for (auto &Arg : CI->arg_operands()) { 1652 if (!Arg->getType()->isPointerTy()) 1653 continue; 1654 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1655 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1656 } 1657 1658 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1659 if (II) { 1660 switch (II->getIntrinsicID()) { 1661 default: break; 1662 case Intrinsic::objectsize: { 1663 // Lower all uses of llvm.objectsize.* 1664 ConstantInt *RetVal = 1665 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1666 // Substituting this can cause recursive simplifications, which can 1667 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1668 // this 1669 // happens. 1670 Value *CurValue = &*CurInstIterator; 1671 WeakTrackingVH IterHandle(CurValue); 1672 1673 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1674 1675 // If the iterator instruction was recursively deleted, start over at the 1676 // start of the block. 1677 if (IterHandle != CurValue) { 1678 CurInstIterator = BB->begin(); 1679 SunkAddrs.clear(); 1680 } 1681 return true; 1682 } 1683 case Intrinsic::aarch64_stlxr: 1684 case Intrinsic::aarch64_stxr: { 1685 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1686 if (!ExtVal || !ExtVal->hasOneUse() || 1687 ExtVal->getParent() == CI->getParent()) 1688 return false; 1689 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1690 ExtVal->moveBefore(CI); 1691 // Mark this instruction as "inserted by CGP", so that other 1692 // optimizations don't touch it. 1693 InsertedInsts.insert(ExtVal); 1694 return true; 1695 } 1696 case Intrinsic::launder_invariant_group: 1697 II->replaceAllUsesWith(II->getArgOperand(0)); 1698 II->eraseFromParent(); 1699 return true; 1700 1701 case Intrinsic::cttz: 1702 case Intrinsic::ctlz: 1703 // If counting zeros is expensive, try to avoid it. 1704 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1705 } 1706 1707 if (TLI) { 1708 SmallVector<Value*, 2> PtrOps; 1709 Type *AccessTy; 1710 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1711 while (!PtrOps.empty()) { 1712 Value *PtrVal = PtrOps.pop_back_val(); 1713 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1714 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1715 return true; 1716 } 1717 } 1718 } 1719 1720 // From here on out we're working with named functions. 1721 if (!CI->getCalledFunction()) return false; 1722 1723 // Lower all default uses of _chk calls. This is very similar 1724 // to what InstCombineCalls does, but here we are only lowering calls 1725 // to fortified library functions (e.g. __memcpy_chk) that have the default 1726 // "don't know" as the objectsize. Anything else should be left alone. 1727 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1728 if (Value *V = Simplifier.optimizeCall(CI)) { 1729 CI->replaceAllUsesWith(V); 1730 CI->eraseFromParent(); 1731 return true; 1732 } 1733 1734 return false; 1735 } 1736 1737 /// Look for opportunities to duplicate return instructions to the predecessor 1738 /// to enable tail call optimizations. The case it is currently looking for is: 1739 /// @code 1740 /// bb0: 1741 /// %tmp0 = tail call i32 @f0() 1742 /// br label %return 1743 /// bb1: 1744 /// %tmp1 = tail call i32 @f1() 1745 /// br label %return 1746 /// bb2: 1747 /// %tmp2 = tail call i32 @f2() 1748 /// br label %return 1749 /// return: 1750 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1751 /// ret i32 %retval 1752 /// @endcode 1753 /// 1754 /// => 1755 /// 1756 /// @code 1757 /// bb0: 1758 /// %tmp0 = tail call i32 @f0() 1759 /// ret i32 %tmp0 1760 /// bb1: 1761 /// %tmp1 = tail call i32 @f1() 1762 /// ret i32 %tmp1 1763 /// bb2: 1764 /// %tmp2 = tail call i32 @f2() 1765 /// ret i32 %tmp2 1766 /// @endcode 1767 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1768 if (!TLI) 1769 return false; 1770 1771 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1772 if (!RetI) 1773 return false; 1774 1775 PHINode *PN = nullptr; 1776 BitCastInst *BCI = nullptr; 1777 Value *V = RetI->getReturnValue(); 1778 if (V) { 1779 BCI = dyn_cast<BitCastInst>(V); 1780 if (BCI) 1781 V = BCI->getOperand(0); 1782 1783 PN = dyn_cast<PHINode>(V); 1784 if (!PN) 1785 return false; 1786 } 1787 1788 if (PN && PN->getParent() != BB) 1789 return false; 1790 1791 // Make sure there are no instructions between the PHI and return, or that the 1792 // return is the first instruction in the block. 1793 if (PN) { 1794 BasicBlock::iterator BI = BB->begin(); 1795 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1796 if (&*BI == BCI) 1797 // Also skip over the bitcast. 1798 ++BI; 1799 if (&*BI != RetI) 1800 return false; 1801 } else { 1802 BasicBlock::iterator BI = BB->begin(); 1803 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1804 if (&*BI != RetI) 1805 return false; 1806 } 1807 1808 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1809 /// call. 1810 const Function *F = BB->getParent(); 1811 SmallVector<CallInst*, 4> TailCalls; 1812 if (PN) { 1813 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1814 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1815 // Make sure the phi value is indeed produced by the tail call. 1816 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1817 TLI->mayBeEmittedAsTailCall(CI) && 1818 attributesPermitTailCall(F, CI, RetI, *TLI)) 1819 TailCalls.push_back(CI); 1820 } 1821 } else { 1822 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1823 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1824 if (!VisitedBBs.insert(*PI).second) 1825 continue; 1826 1827 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1828 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1829 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1830 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1831 if (RI == RE) 1832 continue; 1833 1834 CallInst *CI = dyn_cast<CallInst>(&*RI); 1835 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1836 attributesPermitTailCall(F, CI, RetI, *TLI)) 1837 TailCalls.push_back(CI); 1838 } 1839 } 1840 1841 bool Changed = false; 1842 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1843 CallInst *CI = TailCalls[i]; 1844 CallSite CS(CI); 1845 1846 // Conservatively require the attributes of the call to match those of the 1847 // return. Ignore noalias because it doesn't affect the call sequence. 1848 AttributeList CalleeAttrs = CS.getAttributes(); 1849 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1850 .removeAttribute(Attribute::NoAlias) != 1851 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1852 .removeAttribute(Attribute::NoAlias)) 1853 continue; 1854 1855 // Make sure the call instruction is followed by an unconditional branch to 1856 // the return block. 1857 BasicBlock *CallBB = CI->getParent(); 1858 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1859 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1860 continue; 1861 1862 // Duplicate the return into CallBB. 1863 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1864 ModifiedDT = Changed = true; 1865 ++NumRetsDup; 1866 } 1867 1868 // If we eliminated all predecessors of the block, delete the block now. 1869 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1870 BB->eraseFromParent(); 1871 1872 return Changed; 1873 } 1874 1875 //===----------------------------------------------------------------------===// 1876 // Memory Optimization 1877 //===----------------------------------------------------------------------===// 1878 1879 namespace { 1880 1881 /// This is an extended version of TargetLowering::AddrMode 1882 /// which holds actual Value*'s for register values. 1883 struct ExtAddrMode : public TargetLowering::AddrMode { 1884 Value *BaseReg = nullptr; 1885 Value *ScaledReg = nullptr; 1886 Value *OriginalValue = nullptr; 1887 1888 enum FieldName { 1889 NoField = 0x00, 1890 BaseRegField = 0x01, 1891 BaseGVField = 0x02, 1892 BaseOffsField = 0x04, 1893 ScaledRegField = 0x08, 1894 ScaleField = 0x10, 1895 MultipleFields = 0xff 1896 }; 1897 1898 ExtAddrMode() = default; 1899 1900 void print(raw_ostream &OS) const; 1901 void dump() const; 1902 1903 FieldName compare(const ExtAddrMode &other) { 1904 // First check that the types are the same on each field, as differing types 1905 // is something we can't cope with later on. 1906 if (BaseReg && other.BaseReg && 1907 BaseReg->getType() != other.BaseReg->getType()) 1908 return MultipleFields; 1909 if (BaseGV && other.BaseGV && 1910 BaseGV->getType() != other.BaseGV->getType()) 1911 return MultipleFields; 1912 if (ScaledReg && other.ScaledReg && 1913 ScaledReg->getType() != other.ScaledReg->getType()) 1914 return MultipleFields; 1915 1916 // Check each field to see if it differs. 1917 unsigned Result = NoField; 1918 if (BaseReg != other.BaseReg) 1919 Result |= BaseRegField; 1920 if (BaseGV != other.BaseGV) 1921 Result |= BaseGVField; 1922 if (BaseOffs != other.BaseOffs) 1923 Result |= BaseOffsField; 1924 if (ScaledReg != other.ScaledReg) 1925 Result |= ScaledRegField; 1926 // Don't count 0 as being a different scale, because that actually means 1927 // unscaled (which will already be counted by having no ScaledReg). 1928 if (Scale && other.Scale && Scale != other.Scale) 1929 Result |= ScaleField; 1930 1931 if (countPopulation(Result) > 1) 1932 return MultipleFields; 1933 else 1934 return static_cast<FieldName>(Result); 1935 } 1936 1937 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1938 // with no offset. 1939 bool isTrivial() { 1940 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1941 // trivial if at most one of these terms is nonzero, except that BaseGV and 1942 // BaseReg both being zero actually means a null pointer value, which we 1943 // consider to be 'non-zero' here. 1944 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1945 } 1946 1947 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1948 switch (Field) { 1949 default: 1950 return nullptr; 1951 case BaseRegField: 1952 return BaseReg; 1953 case BaseGVField: 1954 return BaseGV; 1955 case ScaledRegField: 1956 return ScaledReg; 1957 case BaseOffsField: 1958 return ConstantInt::get(IntPtrTy, BaseOffs); 1959 } 1960 } 1961 1962 void SetCombinedField(FieldName Field, Value *V, 1963 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1964 switch (Field) { 1965 default: 1966 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1967 break; 1968 case ExtAddrMode::BaseRegField: 1969 BaseReg = V; 1970 break; 1971 case ExtAddrMode::BaseGVField: 1972 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1973 // in the BaseReg field. 1974 assert(BaseReg == nullptr); 1975 BaseReg = V; 1976 BaseGV = nullptr; 1977 break; 1978 case ExtAddrMode::ScaledRegField: 1979 ScaledReg = V; 1980 // If we have a mix of scaled and unscaled addrmodes then we want scale 1981 // to be the scale and not zero. 1982 if (!Scale) 1983 for (const ExtAddrMode &AM : AddrModes) 1984 if (AM.Scale) { 1985 Scale = AM.Scale; 1986 break; 1987 } 1988 break; 1989 case ExtAddrMode::BaseOffsField: 1990 // The offset is no longer a constant, so it goes in ScaledReg with a 1991 // scale of 1. 1992 assert(ScaledReg == nullptr); 1993 ScaledReg = V; 1994 Scale = 1; 1995 BaseOffs = 0; 1996 break; 1997 } 1998 } 1999 }; 2000 2001 } // end anonymous namespace 2002 2003 #ifndef NDEBUG 2004 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2005 AM.print(OS); 2006 return OS; 2007 } 2008 #endif 2009 2010 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2011 void ExtAddrMode::print(raw_ostream &OS) const { 2012 bool NeedPlus = false; 2013 OS << "["; 2014 if (BaseGV) { 2015 OS << (NeedPlus ? " + " : "") 2016 << "GV:"; 2017 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2018 NeedPlus = true; 2019 } 2020 2021 if (BaseOffs) { 2022 OS << (NeedPlus ? " + " : "") 2023 << BaseOffs; 2024 NeedPlus = true; 2025 } 2026 2027 if (BaseReg) { 2028 OS << (NeedPlus ? " + " : "") 2029 << "Base:"; 2030 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2031 NeedPlus = true; 2032 } 2033 if (Scale) { 2034 OS << (NeedPlus ? " + " : "") 2035 << Scale << "*"; 2036 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2037 } 2038 2039 OS << ']'; 2040 } 2041 2042 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2043 print(dbgs()); 2044 dbgs() << '\n'; 2045 } 2046 #endif 2047 2048 namespace { 2049 2050 /// This class provides transaction based operation on the IR. 2051 /// Every change made through this class is recorded in the internal state and 2052 /// can be undone (rollback) until commit is called. 2053 class TypePromotionTransaction { 2054 /// This represents the common interface of the individual transaction. 2055 /// Each class implements the logic for doing one specific modification on 2056 /// the IR via the TypePromotionTransaction. 2057 class TypePromotionAction { 2058 protected: 2059 /// The Instruction modified. 2060 Instruction *Inst; 2061 2062 public: 2063 /// Constructor of the action. 2064 /// The constructor performs the related action on the IR. 2065 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2066 2067 virtual ~TypePromotionAction() = default; 2068 2069 /// Undo the modification done by this action. 2070 /// When this method is called, the IR must be in the same state as it was 2071 /// before this action was applied. 2072 /// \pre Undoing the action works if and only if the IR is in the exact same 2073 /// state as it was directly after this action was applied. 2074 virtual void undo() = 0; 2075 2076 /// Advocate every change made by this action. 2077 /// When the results on the IR of the action are to be kept, it is important 2078 /// to call this function, otherwise hidden information may be kept forever. 2079 virtual void commit() { 2080 // Nothing to be done, this action is not doing anything. 2081 } 2082 }; 2083 2084 /// Utility to remember the position of an instruction. 2085 class InsertionHandler { 2086 /// Position of an instruction. 2087 /// Either an instruction: 2088 /// - Is the first in a basic block: BB is used. 2089 /// - Has a previous instructon: PrevInst is used. 2090 union { 2091 Instruction *PrevInst; 2092 BasicBlock *BB; 2093 } Point; 2094 2095 /// Remember whether or not the instruction had a previous instruction. 2096 bool HasPrevInstruction; 2097 2098 public: 2099 /// Record the position of \p Inst. 2100 InsertionHandler(Instruction *Inst) { 2101 BasicBlock::iterator It = Inst->getIterator(); 2102 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2103 if (HasPrevInstruction) 2104 Point.PrevInst = &*--It; 2105 else 2106 Point.BB = Inst->getParent(); 2107 } 2108 2109 /// Insert \p Inst at the recorded position. 2110 void insert(Instruction *Inst) { 2111 if (HasPrevInstruction) { 2112 if (Inst->getParent()) 2113 Inst->removeFromParent(); 2114 Inst->insertAfter(Point.PrevInst); 2115 } else { 2116 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2117 if (Inst->getParent()) 2118 Inst->moveBefore(Position); 2119 else 2120 Inst->insertBefore(Position); 2121 } 2122 } 2123 }; 2124 2125 /// Move an instruction before another. 2126 class InstructionMoveBefore : public TypePromotionAction { 2127 /// Original position of the instruction. 2128 InsertionHandler Position; 2129 2130 public: 2131 /// Move \p Inst before \p Before. 2132 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2133 : TypePromotionAction(Inst), Position(Inst) { 2134 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2135 << "\n"); 2136 Inst->moveBefore(Before); 2137 } 2138 2139 /// Move the instruction back to its original position. 2140 void undo() override { 2141 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2142 Position.insert(Inst); 2143 } 2144 }; 2145 2146 /// Set the operand of an instruction with a new value. 2147 class OperandSetter : public TypePromotionAction { 2148 /// Original operand of the instruction. 2149 Value *Origin; 2150 2151 /// Index of the modified instruction. 2152 unsigned Idx; 2153 2154 public: 2155 /// Set \p Idx operand of \p Inst with \p NewVal. 2156 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2157 : TypePromotionAction(Inst), Idx(Idx) { 2158 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2159 << "for:" << *Inst << "\n" 2160 << "with:" << *NewVal << "\n"); 2161 Origin = Inst->getOperand(Idx); 2162 Inst->setOperand(Idx, NewVal); 2163 } 2164 2165 /// Restore the original value of the instruction. 2166 void undo() override { 2167 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2168 << "for: " << *Inst << "\n" 2169 << "with: " << *Origin << "\n"); 2170 Inst->setOperand(Idx, Origin); 2171 } 2172 }; 2173 2174 /// Hide the operands of an instruction. 2175 /// Do as if this instruction was not using any of its operands. 2176 class OperandsHider : public TypePromotionAction { 2177 /// The list of original operands. 2178 SmallVector<Value *, 4> OriginalValues; 2179 2180 public: 2181 /// Remove \p Inst from the uses of the operands of \p Inst. 2182 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2183 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2184 unsigned NumOpnds = Inst->getNumOperands(); 2185 OriginalValues.reserve(NumOpnds); 2186 for (unsigned It = 0; It < NumOpnds; ++It) { 2187 // Save the current operand. 2188 Value *Val = Inst->getOperand(It); 2189 OriginalValues.push_back(Val); 2190 // Set a dummy one. 2191 // We could use OperandSetter here, but that would imply an overhead 2192 // that we are not willing to pay. 2193 Inst->setOperand(It, UndefValue::get(Val->getType())); 2194 } 2195 } 2196 2197 /// Restore the original list of uses. 2198 void undo() override { 2199 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2200 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2201 Inst->setOperand(It, OriginalValues[It]); 2202 } 2203 }; 2204 2205 /// Build a truncate instruction. 2206 class TruncBuilder : public TypePromotionAction { 2207 Value *Val; 2208 2209 public: 2210 /// Build a truncate instruction of \p Opnd producing a \p Ty 2211 /// result. 2212 /// trunc Opnd to Ty. 2213 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2214 IRBuilder<> Builder(Opnd); 2215 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2216 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2217 } 2218 2219 /// Get the built value. 2220 Value *getBuiltValue() { return Val; } 2221 2222 /// Remove the built instruction. 2223 void undo() override { 2224 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2225 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2226 IVal->eraseFromParent(); 2227 } 2228 }; 2229 2230 /// Build a sign extension instruction. 2231 class SExtBuilder : public TypePromotionAction { 2232 Value *Val; 2233 2234 public: 2235 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2236 /// result. 2237 /// sext Opnd to Ty. 2238 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2239 : TypePromotionAction(InsertPt) { 2240 IRBuilder<> Builder(InsertPt); 2241 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2242 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2243 } 2244 2245 /// Get the built value. 2246 Value *getBuiltValue() { return Val; } 2247 2248 /// Remove the built instruction. 2249 void undo() override { 2250 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2251 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2252 IVal->eraseFromParent(); 2253 } 2254 }; 2255 2256 /// Build a zero extension instruction. 2257 class ZExtBuilder : public TypePromotionAction { 2258 Value *Val; 2259 2260 public: 2261 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2262 /// result. 2263 /// zext Opnd to Ty. 2264 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2265 : TypePromotionAction(InsertPt) { 2266 IRBuilder<> Builder(InsertPt); 2267 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2268 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2269 } 2270 2271 /// Get the built value. 2272 Value *getBuiltValue() { return Val; } 2273 2274 /// Remove the built instruction. 2275 void undo() override { 2276 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2277 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2278 IVal->eraseFromParent(); 2279 } 2280 }; 2281 2282 /// Mutate an instruction to another type. 2283 class TypeMutator : public TypePromotionAction { 2284 /// Record the original type. 2285 Type *OrigTy; 2286 2287 public: 2288 /// Mutate the type of \p Inst into \p NewTy. 2289 TypeMutator(Instruction *Inst, Type *NewTy) 2290 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2291 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2292 << "\n"); 2293 Inst->mutateType(NewTy); 2294 } 2295 2296 /// Mutate the instruction back to its original type. 2297 void undo() override { 2298 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2299 << "\n"); 2300 Inst->mutateType(OrigTy); 2301 } 2302 }; 2303 2304 /// Replace the uses of an instruction by another instruction. 2305 class UsesReplacer : public TypePromotionAction { 2306 /// Helper structure to keep track of the replaced uses. 2307 struct InstructionAndIdx { 2308 /// The instruction using the instruction. 2309 Instruction *Inst; 2310 2311 /// The index where this instruction is used for Inst. 2312 unsigned Idx; 2313 2314 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2315 : Inst(Inst), Idx(Idx) {} 2316 }; 2317 2318 /// Keep track of the original uses (pair Instruction, Index). 2319 SmallVector<InstructionAndIdx, 4> OriginalUses; 2320 2321 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2322 2323 public: 2324 /// Replace all the use of \p Inst by \p New. 2325 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2326 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2327 << "\n"); 2328 // Record the original uses. 2329 for (Use &U : Inst->uses()) { 2330 Instruction *UserI = cast<Instruction>(U.getUser()); 2331 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2332 } 2333 // Now, we can replace the uses. 2334 Inst->replaceAllUsesWith(New); 2335 } 2336 2337 /// Reassign the original uses of Inst to Inst. 2338 void undo() override { 2339 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2340 for (use_iterator UseIt = OriginalUses.begin(), 2341 EndIt = OriginalUses.end(); 2342 UseIt != EndIt; ++UseIt) { 2343 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2344 } 2345 } 2346 }; 2347 2348 /// Remove an instruction from the IR. 2349 class InstructionRemover : public TypePromotionAction { 2350 /// Original position of the instruction. 2351 InsertionHandler Inserter; 2352 2353 /// Helper structure to hide all the link to the instruction. In other 2354 /// words, this helps to do as if the instruction was removed. 2355 OperandsHider Hider; 2356 2357 /// Keep track of the uses replaced, if any. 2358 UsesReplacer *Replacer = nullptr; 2359 2360 /// Keep track of instructions removed. 2361 SetOfInstrs &RemovedInsts; 2362 2363 public: 2364 /// Remove all reference of \p Inst and optinally replace all its 2365 /// uses with New. 2366 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2367 /// \pre If !Inst->use_empty(), then New != nullptr 2368 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2369 Value *New = nullptr) 2370 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2371 RemovedInsts(RemovedInsts) { 2372 if (New) 2373 Replacer = new UsesReplacer(Inst, New); 2374 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2375 RemovedInsts.insert(Inst); 2376 /// The instructions removed here will be freed after completing 2377 /// optimizeBlock() for all blocks as we need to keep track of the 2378 /// removed instructions during promotion. 2379 Inst->removeFromParent(); 2380 } 2381 2382 ~InstructionRemover() override { delete Replacer; } 2383 2384 /// Resurrect the instruction and reassign it to the proper uses if 2385 /// new value was provided when build this action. 2386 void undo() override { 2387 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2388 Inserter.insert(Inst); 2389 if (Replacer) 2390 Replacer->undo(); 2391 Hider.undo(); 2392 RemovedInsts.erase(Inst); 2393 } 2394 }; 2395 2396 public: 2397 /// Restoration point. 2398 /// The restoration point is a pointer to an action instead of an iterator 2399 /// because the iterator may be invalidated but not the pointer. 2400 using ConstRestorationPt = const TypePromotionAction *; 2401 2402 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2403 : RemovedInsts(RemovedInsts) {} 2404 2405 /// Advocate every changes made in that transaction. 2406 void commit(); 2407 2408 /// Undo all the changes made after the given point. 2409 void rollback(ConstRestorationPt Point); 2410 2411 /// Get the current restoration point. 2412 ConstRestorationPt getRestorationPoint() const; 2413 2414 /// \name API for IR modification with state keeping to support rollback. 2415 /// @{ 2416 /// Same as Instruction::setOperand. 2417 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2418 2419 /// Same as Instruction::eraseFromParent. 2420 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2421 2422 /// Same as Value::replaceAllUsesWith. 2423 void replaceAllUsesWith(Instruction *Inst, Value *New); 2424 2425 /// Same as Value::mutateType. 2426 void mutateType(Instruction *Inst, Type *NewTy); 2427 2428 /// Same as IRBuilder::createTrunc. 2429 Value *createTrunc(Instruction *Opnd, Type *Ty); 2430 2431 /// Same as IRBuilder::createSExt. 2432 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2433 2434 /// Same as IRBuilder::createZExt. 2435 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2436 2437 /// Same as Instruction::moveBefore. 2438 void moveBefore(Instruction *Inst, Instruction *Before); 2439 /// @} 2440 2441 private: 2442 /// The ordered list of actions made so far. 2443 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2444 2445 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2446 2447 SetOfInstrs &RemovedInsts; 2448 }; 2449 2450 } // end anonymous namespace 2451 2452 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2453 Value *NewVal) { 2454 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2455 Inst, Idx, NewVal)); 2456 } 2457 2458 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2459 Value *NewVal) { 2460 Actions.push_back( 2461 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2462 Inst, RemovedInsts, NewVal)); 2463 } 2464 2465 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2466 Value *New) { 2467 Actions.push_back( 2468 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2469 } 2470 2471 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2472 Actions.push_back( 2473 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2474 } 2475 2476 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2477 Type *Ty) { 2478 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2479 Value *Val = Ptr->getBuiltValue(); 2480 Actions.push_back(std::move(Ptr)); 2481 return Val; 2482 } 2483 2484 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2485 Value *Opnd, Type *Ty) { 2486 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2487 Value *Val = Ptr->getBuiltValue(); 2488 Actions.push_back(std::move(Ptr)); 2489 return Val; 2490 } 2491 2492 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2493 Value *Opnd, Type *Ty) { 2494 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2495 Value *Val = Ptr->getBuiltValue(); 2496 Actions.push_back(std::move(Ptr)); 2497 return Val; 2498 } 2499 2500 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2501 Instruction *Before) { 2502 Actions.push_back( 2503 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2504 Inst, Before)); 2505 } 2506 2507 TypePromotionTransaction::ConstRestorationPt 2508 TypePromotionTransaction::getRestorationPoint() const { 2509 return !Actions.empty() ? Actions.back().get() : nullptr; 2510 } 2511 2512 void TypePromotionTransaction::commit() { 2513 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2514 ++It) 2515 (*It)->commit(); 2516 Actions.clear(); 2517 } 2518 2519 void TypePromotionTransaction::rollback( 2520 TypePromotionTransaction::ConstRestorationPt Point) { 2521 while (!Actions.empty() && Point != Actions.back().get()) { 2522 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2523 Curr->undo(); 2524 } 2525 } 2526 2527 namespace { 2528 2529 /// A helper class for matching addressing modes. 2530 /// 2531 /// This encapsulates the logic for matching the target-legal addressing modes. 2532 class AddressingModeMatcher { 2533 SmallVectorImpl<Instruction*> &AddrModeInsts; 2534 const TargetLowering &TLI; 2535 const TargetRegisterInfo &TRI; 2536 const DataLayout &DL; 2537 2538 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2539 /// the memory instruction that we're computing this address for. 2540 Type *AccessTy; 2541 unsigned AddrSpace; 2542 Instruction *MemoryInst; 2543 2544 /// This is the addressing mode that we're building up. This is 2545 /// part of the return value of this addressing mode matching stuff. 2546 ExtAddrMode &AddrMode; 2547 2548 /// The instructions inserted by other CodeGenPrepare optimizations. 2549 const SetOfInstrs &InsertedInsts; 2550 2551 /// A map from the instructions to their type before promotion. 2552 InstrToOrigTy &PromotedInsts; 2553 2554 /// The ongoing transaction where every action should be registered. 2555 TypePromotionTransaction &TPT; 2556 2557 // A GEP which has too large offset to be folded into the addressing mode. 2558 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2559 2560 /// This is set to true when we should not do profitability checks. 2561 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2562 bool IgnoreProfitability; 2563 2564 AddressingModeMatcher( 2565 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2566 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2567 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2568 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2569 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2570 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2571 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2572 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2573 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2574 IgnoreProfitability = false; 2575 } 2576 2577 public: 2578 /// Find the maximal addressing mode that a load/store of V can fold, 2579 /// give an access type of AccessTy. This returns a list of involved 2580 /// instructions in AddrModeInsts. 2581 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2582 /// optimizations. 2583 /// \p PromotedInsts maps the instructions to their type before promotion. 2584 /// \p The ongoing transaction where every action should be registered. 2585 static ExtAddrMode 2586 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2587 SmallVectorImpl<Instruction *> &AddrModeInsts, 2588 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2589 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2590 TypePromotionTransaction &TPT, 2591 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2592 ExtAddrMode Result; 2593 2594 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2595 MemoryInst, Result, InsertedInsts, 2596 PromotedInsts, TPT, LargeOffsetGEP) 2597 .matchAddr(V, 0); 2598 (void)Success; assert(Success && "Couldn't select *anything*?"); 2599 return Result; 2600 } 2601 2602 private: 2603 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2604 bool matchAddr(Value *V, unsigned Depth); 2605 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2606 bool *MovedAway = nullptr); 2607 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2608 ExtAddrMode &AMBefore, 2609 ExtAddrMode &AMAfter); 2610 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2611 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2612 Value *PromotedOperand) const; 2613 }; 2614 2615 /// Keep track of simplification of Phi nodes. 2616 /// Accept the set of all phi nodes and erase phi node from this set 2617 /// if it is simplified. 2618 class SimplificationTracker { 2619 DenseMap<Value *, Value *> Storage; 2620 const SimplifyQuery &SQ; 2621 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2622 // order when iterating over the set in MatchPhiSet. 2623 SmallSetVector<PHINode *, 32> AllPhiNodes; 2624 // Tracks newly created Select nodes. 2625 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2626 2627 public: 2628 SimplificationTracker(const SimplifyQuery &sq) 2629 : SQ(sq) {} 2630 2631 Value *Get(Value *V) { 2632 do { 2633 auto SV = Storage.find(V); 2634 if (SV == Storage.end()) 2635 return V; 2636 V = SV->second; 2637 } while (true); 2638 } 2639 2640 Value *Simplify(Value *Val) { 2641 SmallVector<Value *, 32> WorkList; 2642 SmallPtrSet<Value *, 32> Visited; 2643 WorkList.push_back(Val); 2644 while (!WorkList.empty()) { 2645 auto P = WorkList.pop_back_val(); 2646 if (!Visited.insert(P).second) 2647 continue; 2648 if (auto *PI = dyn_cast<Instruction>(P)) 2649 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2650 for (auto *U : PI->users()) 2651 WorkList.push_back(cast<Value>(U)); 2652 Put(PI, V); 2653 PI->replaceAllUsesWith(V); 2654 if (auto *PHI = dyn_cast<PHINode>(PI)) 2655 AllPhiNodes.remove(PHI); 2656 if (auto *Select = dyn_cast<SelectInst>(PI)) 2657 AllSelectNodes.erase(Select); 2658 PI->eraseFromParent(); 2659 } 2660 } 2661 return Get(Val); 2662 } 2663 2664 void Put(Value *From, Value *To) { 2665 Storage.insert({ From, To }); 2666 } 2667 2668 void ReplacePhi(PHINode *From, PHINode *To) { 2669 Value* OldReplacement = Get(From); 2670 while (OldReplacement != From) { 2671 From = To; 2672 To = dyn_cast<PHINode>(OldReplacement); 2673 OldReplacement = Get(From); 2674 } 2675 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2676 Put(From, To); 2677 From->replaceAllUsesWith(To); 2678 AllPhiNodes.remove(From); 2679 From->eraseFromParent(); 2680 } 2681 2682 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2683 2684 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2685 2686 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2687 2688 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2689 2690 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2691 2692 void destroyNewNodes(Type *CommonType) { 2693 // For safe erasing, replace the uses with dummy value first. 2694 auto Dummy = UndefValue::get(CommonType); 2695 for (auto I : AllPhiNodes) { 2696 I->replaceAllUsesWith(Dummy); 2697 I->eraseFromParent(); 2698 } 2699 AllPhiNodes.clear(); 2700 for (auto I : AllSelectNodes) { 2701 I->replaceAllUsesWith(Dummy); 2702 I->eraseFromParent(); 2703 } 2704 AllSelectNodes.clear(); 2705 } 2706 }; 2707 2708 /// A helper class for combining addressing modes. 2709 class AddressingModeCombiner { 2710 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2711 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2712 typedef std::pair<PHINode *, PHINode *> PHIPair; 2713 2714 private: 2715 /// The addressing modes we've collected. 2716 SmallVector<ExtAddrMode, 16> AddrModes; 2717 2718 /// The field in which the AddrModes differ, when we have more than one. 2719 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2720 2721 /// Are the AddrModes that we have all just equal to their original values? 2722 bool AllAddrModesTrivial = true; 2723 2724 /// Common Type for all different fields in addressing modes. 2725 Type *CommonType; 2726 2727 /// SimplifyQuery for simplifyInstruction utility. 2728 const SimplifyQuery &SQ; 2729 2730 /// Original Address. 2731 ValueInBB Original; 2732 2733 public: 2734 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2735 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2736 2737 /// Get the combined AddrMode 2738 const ExtAddrMode &getAddrMode() const { 2739 return AddrModes[0]; 2740 } 2741 2742 /// Add a new AddrMode if it's compatible with the AddrModes we already 2743 /// have. 2744 /// \return True iff we succeeded in doing so. 2745 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2746 // Take note of if we have any non-trivial AddrModes, as we need to detect 2747 // when all AddrModes are trivial as then we would introduce a phi or select 2748 // which just duplicates what's already there. 2749 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2750 2751 // If this is the first addrmode then everything is fine. 2752 if (AddrModes.empty()) { 2753 AddrModes.emplace_back(NewAddrMode); 2754 return true; 2755 } 2756 2757 // Figure out how different this is from the other address modes, which we 2758 // can do just by comparing against the first one given that we only care 2759 // about the cumulative difference. 2760 ExtAddrMode::FieldName ThisDifferentField = 2761 AddrModes[0].compare(NewAddrMode); 2762 if (DifferentField == ExtAddrMode::NoField) 2763 DifferentField = ThisDifferentField; 2764 else if (DifferentField != ThisDifferentField) 2765 DifferentField = ExtAddrMode::MultipleFields; 2766 2767 // If NewAddrMode differs in more than one dimension we cannot handle it. 2768 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2769 2770 // If Scale Field is different then we reject. 2771 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2772 2773 // We also must reject the case when base offset is different and 2774 // scale reg is not null, we cannot handle this case due to merge of 2775 // different offsets will be used as ScaleReg. 2776 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2777 !NewAddrMode.ScaledReg); 2778 2779 // We also must reject the case when GV is different and BaseReg installed 2780 // due to we want to use base reg as a merge of GV values. 2781 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2782 !NewAddrMode.HasBaseReg); 2783 2784 // Even if NewAddMode is the same we still need to collect it due to 2785 // original value is different. And later we will need all original values 2786 // as anchors during finding the common Phi node. 2787 if (CanHandle) 2788 AddrModes.emplace_back(NewAddrMode); 2789 else 2790 AddrModes.clear(); 2791 2792 return CanHandle; 2793 } 2794 2795 /// Combine the addressing modes we've collected into a single 2796 /// addressing mode. 2797 /// \return True iff we successfully combined them or we only had one so 2798 /// didn't need to combine them anyway. 2799 bool combineAddrModes() { 2800 // If we have no AddrModes then they can't be combined. 2801 if (AddrModes.size() == 0) 2802 return false; 2803 2804 // A single AddrMode can trivially be combined. 2805 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2806 return true; 2807 2808 // If the AddrModes we collected are all just equal to the value they are 2809 // derived from then combining them wouldn't do anything useful. 2810 if (AllAddrModesTrivial) 2811 return false; 2812 2813 if (!addrModeCombiningAllowed()) 2814 return false; 2815 2816 // Build a map between <original value, basic block where we saw it> to 2817 // value of base register. 2818 // Bail out if there is no common type. 2819 FoldAddrToValueMapping Map; 2820 if (!initializeMap(Map)) 2821 return false; 2822 2823 Value *CommonValue = findCommon(Map); 2824 if (CommonValue) 2825 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2826 return CommonValue != nullptr; 2827 } 2828 2829 private: 2830 /// Initialize Map with anchor values. For address seen in some BB 2831 /// we set the value of different field saw in this address. 2832 /// If address is not an instruction than basic block is set to null. 2833 /// At the same time we find a common type for different field we will 2834 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2835 /// Return false if there is no common type found. 2836 bool initializeMap(FoldAddrToValueMapping &Map) { 2837 // Keep track of keys where the value is null. We will need to replace it 2838 // with constant null when we know the common type. 2839 SmallVector<ValueInBB, 2> NullValue; 2840 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2841 for (auto &AM : AddrModes) { 2842 BasicBlock *BB = nullptr; 2843 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2844 BB = I->getParent(); 2845 2846 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2847 if (DV) { 2848 auto *Type = DV->getType(); 2849 if (CommonType && CommonType != Type) 2850 return false; 2851 CommonType = Type; 2852 Map[{ AM.OriginalValue, BB }] = DV; 2853 } else { 2854 NullValue.push_back({ AM.OriginalValue, BB }); 2855 } 2856 } 2857 assert(CommonType && "At least one non-null value must be!"); 2858 for (auto VIBB : NullValue) 2859 Map[VIBB] = Constant::getNullValue(CommonType); 2860 return true; 2861 } 2862 2863 /// We have mapping between value A and basic block where value A 2864 /// seen to other value B where B was a field in addressing mode represented 2865 /// by A. Also we have an original value C representin an address in some 2866 /// basic block. Traversing from C through phi and selects we ended up with 2867 /// A's in a map. This utility function tries to find a value V which is a 2868 /// field in addressing mode C and traversing through phi nodes and selects 2869 /// we will end up in corresponded values B in a map. 2870 /// The utility will create a new Phi/Selects if needed. 2871 // The simple example looks as follows: 2872 // BB1: 2873 // p1 = b1 + 40 2874 // br cond BB2, BB3 2875 // BB2: 2876 // p2 = b2 + 40 2877 // br BB3 2878 // BB3: 2879 // p = phi [p1, BB1], [p2, BB2] 2880 // v = load p 2881 // Map is 2882 // <p1, BB1> -> b1 2883 // <p2, BB2> -> b2 2884 // Request is 2885 // <p, BB3> -> ? 2886 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2887 Value *findCommon(FoldAddrToValueMapping &Map) { 2888 // Tracks the simplification of newly created phi nodes. The reason we use 2889 // this mapping is because we will add new created Phi nodes in AddrToBase. 2890 // Simplification of Phi nodes is recursive, so some Phi node may 2891 // be simplified after we added it to AddrToBase. 2892 // Using this mapping we can find the current value in AddrToBase. 2893 SimplificationTracker ST(SQ); 2894 2895 // First step, DFS to create PHI nodes for all intermediate blocks. 2896 // Also fill traverse order for the second step. 2897 SmallVector<ValueInBB, 32> TraverseOrder; 2898 InsertPlaceholders(Map, TraverseOrder, ST); 2899 2900 // Second Step, fill new nodes by merged values and simplify if possible. 2901 FillPlaceholders(Map, TraverseOrder, ST); 2902 2903 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2904 ST.destroyNewNodes(CommonType); 2905 return nullptr; 2906 } 2907 2908 // Now we'd like to match New Phi nodes to existed ones. 2909 unsigned PhiNotMatchedCount = 0; 2910 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2911 ST.destroyNewNodes(CommonType); 2912 return nullptr; 2913 } 2914 2915 auto *Result = ST.Get(Map.find(Original)->second); 2916 if (Result) { 2917 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2918 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2919 } 2920 return Result; 2921 } 2922 2923 /// Try to match PHI node to Candidate. 2924 /// Matcher tracks the matched Phi nodes. 2925 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2926 SmallSetVector<PHIPair, 8> &Matcher, 2927 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2928 SmallVector<PHIPair, 8> WorkList; 2929 Matcher.insert({ PHI, Candidate }); 2930 WorkList.push_back({ PHI, Candidate }); 2931 SmallSet<PHIPair, 8> Visited; 2932 while (!WorkList.empty()) { 2933 auto Item = WorkList.pop_back_val(); 2934 if (!Visited.insert(Item).second) 2935 continue; 2936 // We iterate over all incoming values to Phi to compare them. 2937 // If values are different and both of them Phi and the first one is a 2938 // Phi we added (subject to match) and both of them is in the same basic 2939 // block then we can match our pair if values match. So we state that 2940 // these values match and add it to work list to verify that. 2941 for (auto B : Item.first->blocks()) { 2942 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2943 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2944 if (FirstValue == SecondValue) 2945 continue; 2946 2947 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2948 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2949 2950 // One of them is not Phi or 2951 // The first one is not Phi node from the set we'd like to match or 2952 // Phi nodes from different basic blocks then 2953 // we will not be able to match. 2954 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2955 FirstPhi->getParent() != SecondPhi->getParent()) 2956 return false; 2957 2958 // If we already matched them then continue. 2959 if (Matcher.count({ FirstPhi, SecondPhi })) 2960 continue; 2961 // So the values are different and does not match. So we need them to 2962 // match. 2963 Matcher.insert({ FirstPhi, SecondPhi }); 2964 // But me must check it. 2965 WorkList.push_back({ FirstPhi, SecondPhi }); 2966 } 2967 } 2968 return true; 2969 } 2970 2971 /// For the given set of PHI nodes (in the SimplificationTracker) try 2972 /// to find their equivalents. 2973 /// Returns false if this matching fails and creation of new Phi is disabled. 2974 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2975 unsigned &PhiNotMatchedCount) { 2976 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2977 // in a deterministic order below. 2978 SmallSetVector<PHIPair, 8> Matched; 2979 SmallPtrSet<PHINode *, 8> WillNotMatch; 2980 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2981 while (PhiNodesToMatch.size()) { 2982 PHINode *PHI = *PhiNodesToMatch.begin(); 2983 2984 // Add us, if no Phi nodes in the basic block we do not match. 2985 WillNotMatch.clear(); 2986 WillNotMatch.insert(PHI); 2987 2988 // Traverse all Phis until we found equivalent or fail to do that. 2989 bool IsMatched = false; 2990 for (auto &P : PHI->getParent()->phis()) { 2991 if (&P == PHI) 2992 continue; 2993 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2994 break; 2995 // If it does not match, collect all Phi nodes from matcher. 2996 // if we end up with no match, them all these Phi nodes will not match 2997 // later. 2998 for (auto M : Matched) 2999 WillNotMatch.insert(M.first); 3000 Matched.clear(); 3001 } 3002 if (IsMatched) { 3003 // Replace all matched values and erase them. 3004 for (auto MV : Matched) 3005 ST.ReplacePhi(MV.first, MV.second); 3006 Matched.clear(); 3007 continue; 3008 } 3009 // If we are not allowed to create new nodes then bail out. 3010 if (!AllowNewPhiNodes) 3011 return false; 3012 // Just remove all seen values in matcher. They will not match anything. 3013 PhiNotMatchedCount += WillNotMatch.size(); 3014 for (auto *P : WillNotMatch) 3015 PhiNodesToMatch.remove(P); 3016 } 3017 return true; 3018 } 3019 /// Fill the placeholder with values from predecessors and simplify it. 3020 void FillPlaceholders(FoldAddrToValueMapping &Map, 3021 SmallVectorImpl<ValueInBB> &TraverseOrder, 3022 SimplificationTracker &ST) { 3023 while (!TraverseOrder.empty()) { 3024 auto Current = TraverseOrder.pop_back_val(); 3025 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3026 Value *CurrentValue = Current.first; 3027 BasicBlock *CurrentBlock = Current.second; 3028 Value *V = Map[Current]; 3029 3030 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3031 // CurrentValue also must be Select. 3032 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3033 auto *TrueValue = CurrentSelect->getTrueValue(); 3034 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3035 ? CurrentBlock 3036 : nullptr }; 3037 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3038 Select->setTrueValue(ST.Get(Map[TrueItem])); 3039 auto *FalseValue = CurrentSelect->getFalseValue(); 3040 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3041 ? CurrentBlock 3042 : nullptr }; 3043 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3044 Select->setFalseValue(ST.Get(Map[FalseItem])); 3045 } else { 3046 // Must be a Phi node then. 3047 PHINode *PHI = cast<PHINode>(V); 3048 // Fill the Phi node with values from predecessors. 3049 bool IsDefinedInThisBB = 3050 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3051 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3052 for (auto B : predecessors(CurrentBlock)) { 3053 Value *PV = IsDefinedInThisBB 3054 ? CurrentPhi->getIncomingValueForBlock(B) 3055 : CurrentValue; 3056 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3057 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3058 PHI->addIncoming(ST.Get(Map[item]), B); 3059 } 3060 } 3061 // Simplify if possible. 3062 Map[Current] = ST.Simplify(V); 3063 } 3064 } 3065 3066 /// Starting from value recursively iterates over predecessors up to known 3067 /// ending values represented in a map. For each traversed block inserts 3068 /// a placeholder Phi or Select. 3069 /// Reports all new created Phi/Select nodes by adding them to set. 3070 /// Also reports and order in what basic blocks have been traversed. 3071 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3072 SmallVectorImpl<ValueInBB> &TraverseOrder, 3073 SimplificationTracker &ST) { 3074 SmallVector<ValueInBB, 32> Worklist; 3075 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3076 "Address must be a Phi or Select node"); 3077 auto *Dummy = UndefValue::get(CommonType); 3078 Worklist.push_back(Original); 3079 while (!Worklist.empty()) { 3080 auto Current = Worklist.pop_back_val(); 3081 // If value is not an instruction it is something global, constant, 3082 // parameter and we can say that this value is observable in any block. 3083 // Set block to null to denote it. 3084 // Also please take into account that it is how we build anchors. 3085 if (!isa<Instruction>(Current.first)) 3086 Current.second = nullptr; 3087 // if it is already visited or it is an ending value then skip it. 3088 if (Map.find(Current) != Map.end()) 3089 continue; 3090 TraverseOrder.push_back(Current); 3091 3092 Value *CurrentValue = Current.first; 3093 BasicBlock *CurrentBlock = Current.second; 3094 // CurrentValue must be a Phi node or select. All others must be covered 3095 // by anchors. 3096 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3097 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3098 3099 unsigned PredCount = pred_size(CurrentBlock); 3100 // if Current Value is not defined in this basic block we are interested 3101 // in values in predecessors. 3102 if (!IsDefinedInThisBB) { 3103 assert(PredCount && "Unreachable block?!"); 3104 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3105 &CurrentBlock->front()); 3106 Map[Current] = PHI; 3107 ST.insertNewPhi(PHI); 3108 // Add all predecessors in work list. 3109 for (auto B : predecessors(CurrentBlock)) 3110 Worklist.push_back({ CurrentValue, B }); 3111 continue; 3112 } 3113 // Value is defined in this basic block. 3114 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3115 // Is it OK to get metadata from OrigSelect?! 3116 // Create a Select placeholder with dummy value. 3117 SelectInst *Select = 3118 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3119 OrigSelect->getName(), OrigSelect, OrigSelect); 3120 Map[Current] = Select; 3121 ST.insertNewSelect(Select); 3122 // We are interested in True and False value in this basic block. 3123 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3124 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3125 } else { 3126 // It must be a Phi node then. 3127 auto *CurrentPhi = cast<PHINode>(CurrentI); 3128 // Create new Phi node for merge of bases. 3129 assert(PredCount && "Unreachable block?!"); 3130 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3131 &CurrentBlock->front()); 3132 Map[Current] = PHI; 3133 ST.insertNewPhi(PHI); 3134 3135 // Add all predecessors in work list. 3136 for (auto B : predecessors(CurrentBlock)) 3137 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3138 } 3139 } 3140 } 3141 3142 bool addrModeCombiningAllowed() { 3143 if (DisableComplexAddrModes) 3144 return false; 3145 switch (DifferentField) { 3146 default: 3147 return false; 3148 case ExtAddrMode::BaseRegField: 3149 return AddrSinkCombineBaseReg; 3150 case ExtAddrMode::BaseGVField: 3151 return AddrSinkCombineBaseGV; 3152 case ExtAddrMode::BaseOffsField: 3153 return AddrSinkCombineBaseOffs; 3154 case ExtAddrMode::ScaledRegField: 3155 return AddrSinkCombineScaledReg; 3156 } 3157 } 3158 }; 3159 } // end anonymous namespace 3160 3161 /// Try adding ScaleReg*Scale to the current addressing mode. 3162 /// Return true and update AddrMode if this addr mode is legal for the target, 3163 /// false if not. 3164 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3165 unsigned Depth) { 3166 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3167 // mode. Just process that directly. 3168 if (Scale == 1) 3169 return matchAddr(ScaleReg, Depth); 3170 3171 // If the scale is 0, it takes nothing to add this. 3172 if (Scale == 0) 3173 return true; 3174 3175 // If we already have a scale of this value, we can add to it, otherwise, we 3176 // need an available scale field. 3177 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3178 return false; 3179 3180 ExtAddrMode TestAddrMode = AddrMode; 3181 3182 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3183 // [A+B + A*7] -> [B+A*8]. 3184 TestAddrMode.Scale += Scale; 3185 TestAddrMode.ScaledReg = ScaleReg; 3186 3187 // If the new address isn't legal, bail out. 3188 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3189 return false; 3190 3191 // It was legal, so commit it. 3192 AddrMode = TestAddrMode; 3193 3194 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3195 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3196 // X*Scale + C*Scale to addr mode. 3197 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3198 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3199 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3200 TestAddrMode.ScaledReg = AddLHS; 3201 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3202 3203 // If this addressing mode is legal, commit it and remember that we folded 3204 // this instruction. 3205 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3206 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3207 AddrMode = TestAddrMode; 3208 return true; 3209 } 3210 } 3211 3212 // Otherwise, not (x+c)*scale, just return what we have. 3213 return true; 3214 } 3215 3216 /// This is a little filter, which returns true if an addressing computation 3217 /// involving I might be folded into a load/store accessing it. 3218 /// This doesn't need to be perfect, but needs to accept at least 3219 /// the set of instructions that MatchOperationAddr can. 3220 static bool MightBeFoldableInst(Instruction *I) { 3221 switch (I->getOpcode()) { 3222 case Instruction::BitCast: 3223 case Instruction::AddrSpaceCast: 3224 // Don't touch identity bitcasts. 3225 if (I->getType() == I->getOperand(0)->getType()) 3226 return false; 3227 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3228 case Instruction::PtrToInt: 3229 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3230 return true; 3231 case Instruction::IntToPtr: 3232 // We know the input is intptr_t, so this is foldable. 3233 return true; 3234 case Instruction::Add: 3235 return true; 3236 case Instruction::Mul: 3237 case Instruction::Shl: 3238 // Can only handle X*C and X << C. 3239 return isa<ConstantInt>(I->getOperand(1)); 3240 case Instruction::GetElementPtr: 3241 return true; 3242 default: 3243 return false; 3244 } 3245 } 3246 3247 /// Check whether or not \p Val is a legal instruction for \p TLI. 3248 /// \note \p Val is assumed to be the product of some type promotion. 3249 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3250 /// to be legal, as the non-promoted value would have had the same state. 3251 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3252 const DataLayout &DL, Value *Val) { 3253 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3254 if (!PromotedInst) 3255 return false; 3256 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3257 // If the ISDOpcode is undefined, it was undefined before the promotion. 3258 if (!ISDOpcode) 3259 return true; 3260 // Otherwise, check if the promoted instruction is legal or not. 3261 return TLI.isOperationLegalOrCustom( 3262 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3263 } 3264 3265 namespace { 3266 3267 /// Hepler class to perform type promotion. 3268 class TypePromotionHelper { 3269 /// Utility function to check whether or not a sign or zero extension 3270 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3271 /// either using the operands of \p Inst or promoting \p Inst. 3272 /// The type of the extension is defined by \p IsSExt. 3273 /// In other words, check if: 3274 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3275 /// #1 Promotion applies: 3276 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3277 /// #2 Operand reuses: 3278 /// ext opnd1 to ConsideredExtType. 3279 /// \p PromotedInsts maps the instructions to their type before promotion. 3280 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3281 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3282 3283 /// Utility function to determine if \p OpIdx should be promoted when 3284 /// promoting \p Inst. 3285 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3286 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3287 } 3288 3289 /// Utility function to promote the operand of \p Ext when this 3290 /// operand is a promotable trunc or sext or zext. 3291 /// \p PromotedInsts maps the instructions to their type before promotion. 3292 /// \p CreatedInstsCost[out] contains the cost of all instructions 3293 /// created to promote the operand of Ext. 3294 /// Newly added extensions are inserted in \p Exts. 3295 /// Newly added truncates are inserted in \p Truncs. 3296 /// Should never be called directly. 3297 /// \return The promoted value which is used instead of Ext. 3298 static Value *promoteOperandForTruncAndAnyExt( 3299 Instruction *Ext, TypePromotionTransaction &TPT, 3300 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3301 SmallVectorImpl<Instruction *> *Exts, 3302 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3303 3304 /// Utility function to promote the operand of \p Ext when this 3305 /// operand is promotable and is not a supported trunc or sext. 3306 /// \p PromotedInsts maps the instructions to their type before promotion. 3307 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3308 /// created to promote the operand of Ext. 3309 /// Newly added extensions are inserted in \p Exts. 3310 /// Newly added truncates are inserted in \p Truncs. 3311 /// Should never be called directly. 3312 /// \return The promoted value which is used instead of Ext. 3313 static Value *promoteOperandForOther(Instruction *Ext, 3314 TypePromotionTransaction &TPT, 3315 InstrToOrigTy &PromotedInsts, 3316 unsigned &CreatedInstsCost, 3317 SmallVectorImpl<Instruction *> *Exts, 3318 SmallVectorImpl<Instruction *> *Truncs, 3319 const TargetLowering &TLI, bool IsSExt); 3320 3321 /// \see promoteOperandForOther. 3322 static Value *signExtendOperandForOther( 3323 Instruction *Ext, TypePromotionTransaction &TPT, 3324 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3325 SmallVectorImpl<Instruction *> *Exts, 3326 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3327 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3328 Exts, Truncs, TLI, true); 3329 } 3330 3331 /// \see promoteOperandForOther. 3332 static Value *zeroExtendOperandForOther( 3333 Instruction *Ext, TypePromotionTransaction &TPT, 3334 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3335 SmallVectorImpl<Instruction *> *Exts, 3336 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3337 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3338 Exts, Truncs, TLI, false); 3339 } 3340 3341 public: 3342 /// Type for the utility function that promotes the operand of Ext. 3343 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3344 InstrToOrigTy &PromotedInsts, 3345 unsigned &CreatedInstsCost, 3346 SmallVectorImpl<Instruction *> *Exts, 3347 SmallVectorImpl<Instruction *> *Truncs, 3348 const TargetLowering &TLI); 3349 3350 /// Given a sign/zero extend instruction \p Ext, return the approriate 3351 /// action to promote the operand of \p Ext instead of using Ext. 3352 /// \return NULL if no promotable action is possible with the current 3353 /// sign extension. 3354 /// \p InsertedInsts keeps track of all the instructions inserted by the 3355 /// other CodeGenPrepare optimizations. This information is important 3356 /// because we do not want to promote these instructions as CodeGenPrepare 3357 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3358 /// \p PromotedInsts maps the instructions to their type before promotion. 3359 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3360 const TargetLowering &TLI, 3361 const InstrToOrigTy &PromotedInsts); 3362 }; 3363 3364 } // end anonymous namespace 3365 3366 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3367 Type *ConsideredExtType, 3368 const InstrToOrigTy &PromotedInsts, 3369 bool IsSExt) { 3370 // The promotion helper does not know how to deal with vector types yet. 3371 // To be able to fix that, we would need to fix the places where we 3372 // statically extend, e.g., constants and such. 3373 if (Inst->getType()->isVectorTy()) 3374 return false; 3375 3376 // We can always get through zext. 3377 if (isa<ZExtInst>(Inst)) 3378 return true; 3379 3380 // sext(sext) is ok too. 3381 if (IsSExt && isa<SExtInst>(Inst)) 3382 return true; 3383 3384 // We can get through binary operator, if it is legal. In other words, the 3385 // binary operator must have a nuw or nsw flag. 3386 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3387 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3388 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3389 (IsSExt && BinOp->hasNoSignedWrap()))) 3390 return true; 3391 3392 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3393 if ((Inst->getOpcode() == Instruction::And || 3394 Inst->getOpcode() == Instruction::Or)) 3395 return true; 3396 3397 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3398 if (Inst->getOpcode() == Instruction::Xor) { 3399 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3400 // Make sure it is not a NOT. 3401 if (Cst && !Cst->getValue().isAllOnesValue()) 3402 return true; 3403 } 3404 3405 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3406 // It may change a poisoned value into a regular value, like 3407 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3408 // poisoned value regular value 3409 // It should be OK since undef covers valid value. 3410 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3411 return true; 3412 3413 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3414 // It may change a poisoned value into a regular value, like 3415 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3416 // poisoned value regular value 3417 // It should be OK since undef covers valid value. 3418 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3419 const Instruction *ExtInst = 3420 dyn_cast<const Instruction>(*Inst->user_begin()); 3421 if (ExtInst->hasOneUse()) { 3422 const Instruction *AndInst = 3423 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3424 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3425 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3426 if (Cst && 3427 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3428 return true; 3429 } 3430 } 3431 } 3432 3433 // Check if we can do the following simplification. 3434 // ext(trunc(opnd)) --> ext(opnd) 3435 if (!isa<TruncInst>(Inst)) 3436 return false; 3437 3438 Value *OpndVal = Inst->getOperand(0); 3439 // Check if we can use this operand in the extension. 3440 // If the type is larger than the result type of the extension, we cannot. 3441 if (!OpndVal->getType()->isIntegerTy() || 3442 OpndVal->getType()->getIntegerBitWidth() > 3443 ConsideredExtType->getIntegerBitWidth()) 3444 return false; 3445 3446 // If the operand of the truncate is not an instruction, we will not have 3447 // any information on the dropped bits. 3448 // (Actually we could for constant but it is not worth the extra logic). 3449 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3450 if (!Opnd) 3451 return false; 3452 3453 // Check if the source of the type is narrow enough. 3454 // I.e., check that trunc just drops extended bits of the same kind of 3455 // the extension. 3456 // #1 get the type of the operand and check the kind of the extended bits. 3457 const Type *OpndType; 3458 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3459 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3460 OpndType = It->second.getPointer(); 3461 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3462 OpndType = Opnd->getOperand(0)->getType(); 3463 else 3464 return false; 3465 3466 // #2 check that the truncate just drops extended bits. 3467 return Inst->getType()->getIntegerBitWidth() >= 3468 OpndType->getIntegerBitWidth(); 3469 } 3470 3471 TypePromotionHelper::Action TypePromotionHelper::getAction( 3472 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3473 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3474 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3475 "Unexpected instruction type"); 3476 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3477 Type *ExtTy = Ext->getType(); 3478 bool IsSExt = isa<SExtInst>(Ext); 3479 // If the operand of the extension is not an instruction, we cannot 3480 // get through. 3481 // If it, check we can get through. 3482 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3483 return nullptr; 3484 3485 // Do not promote if the operand has been added by codegenprepare. 3486 // Otherwise, it means we are undoing an optimization that is likely to be 3487 // redone, thus causing potential infinite loop. 3488 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3489 return nullptr; 3490 3491 // SExt or Trunc instructions. 3492 // Return the related handler. 3493 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3494 isa<ZExtInst>(ExtOpnd)) 3495 return promoteOperandForTruncAndAnyExt; 3496 3497 // Regular instruction. 3498 // Abort early if we will have to insert non-free instructions. 3499 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3500 return nullptr; 3501 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3502 } 3503 3504 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3505 Instruction *SExt, TypePromotionTransaction &TPT, 3506 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3507 SmallVectorImpl<Instruction *> *Exts, 3508 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3509 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3510 // get through it and this method should not be called. 3511 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3512 Value *ExtVal = SExt; 3513 bool HasMergedNonFreeExt = false; 3514 if (isa<ZExtInst>(SExtOpnd)) { 3515 // Replace s|zext(zext(opnd)) 3516 // => zext(opnd). 3517 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3518 Value *ZExt = 3519 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3520 TPT.replaceAllUsesWith(SExt, ZExt); 3521 TPT.eraseInstruction(SExt); 3522 ExtVal = ZExt; 3523 } else { 3524 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3525 // => z|sext(opnd). 3526 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3527 } 3528 CreatedInstsCost = 0; 3529 3530 // Remove dead code. 3531 if (SExtOpnd->use_empty()) 3532 TPT.eraseInstruction(SExtOpnd); 3533 3534 // Check if the extension is still needed. 3535 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3536 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3537 if (ExtInst) { 3538 if (Exts) 3539 Exts->push_back(ExtInst); 3540 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3541 } 3542 return ExtVal; 3543 } 3544 3545 // At this point we have: ext ty opnd to ty. 3546 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3547 Value *NextVal = ExtInst->getOperand(0); 3548 TPT.eraseInstruction(ExtInst, NextVal); 3549 return NextVal; 3550 } 3551 3552 Value *TypePromotionHelper::promoteOperandForOther( 3553 Instruction *Ext, TypePromotionTransaction &TPT, 3554 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3555 SmallVectorImpl<Instruction *> *Exts, 3556 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3557 bool IsSExt) { 3558 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3559 // get through it and this method should not be called. 3560 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3561 CreatedInstsCost = 0; 3562 if (!ExtOpnd->hasOneUse()) { 3563 // ExtOpnd will be promoted. 3564 // All its uses, but Ext, will need to use a truncated value of the 3565 // promoted version. 3566 // Create the truncate now. 3567 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3568 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3569 // Insert it just after the definition. 3570 ITrunc->moveAfter(ExtOpnd); 3571 if (Truncs) 3572 Truncs->push_back(ITrunc); 3573 } 3574 3575 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3576 // Restore the operand of Ext (which has been replaced by the previous call 3577 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3578 TPT.setOperand(Ext, 0, ExtOpnd); 3579 } 3580 3581 // Get through the Instruction: 3582 // 1. Update its type. 3583 // 2. Replace the uses of Ext by Inst. 3584 // 3. Extend each operand that needs to be extended. 3585 3586 // Remember the original type of the instruction before promotion. 3587 // This is useful to know that the high bits are sign extended bits. 3588 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3589 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3590 // Step #1. 3591 TPT.mutateType(ExtOpnd, Ext->getType()); 3592 // Step #2. 3593 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3594 // Step #3. 3595 Instruction *ExtForOpnd = Ext; 3596 3597 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3598 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3599 ++OpIdx) { 3600 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3601 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3602 !shouldExtOperand(ExtOpnd, OpIdx)) { 3603 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3604 continue; 3605 } 3606 // Check if we can statically extend the operand. 3607 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3608 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3609 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3610 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3611 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3612 : Cst->getValue().zext(BitWidth); 3613 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3614 continue; 3615 } 3616 // UndefValue are typed, so we have to statically sign extend them. 3617 if (isa<UndefValue>(Opnd)) { 3618 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3619 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3620 continue; 3621 } 3622 3623 // Otherwise we have to explicity sign extend the operand. 3624 // Check if Ext was reused to extend an operand. 3625 if (!ExtForOpnd) { 3626 // If yes, create a new one. 3627 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3628 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3629 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3630 if (!isa<Instruction>(ValForExtOpnd)) { 3631 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3632 continue; 3633 } 3634 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3635 } 3636 if (Exts) 3637 Exts->push_back(ExtForOpnd); 3638 TPT.setOperand(ExtForOpnd, 0, Opnd); 3639 3640 // Move the sign extension before the insertion point. 3641 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3642 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3643 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3644 // If more sext are required, new instructions will have to be created. 3645 ExtForOpnd = nullptr; 3646 } 3647 if (ExtForOpnd == Ext) { 3648 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3649 TPT.eraseInstruction(Ext); 3650 } 3651 return ExtOpnd; 3652 } 3653 3654 /// Check whether or not promoting an instruction to a wider type is profitable. 3655 /// \p NewCost gives the cost of extension instructions created by the 3656 /// promotion. 3657 /// \p OldCost gives the cost of extension instructions before the promotion 3658 /// plus the number of instructions that have been 3659 /// matched in the addressing mode the promotion. 3660 /// \p PromotedOperand is the value that has been promoted. 3661 /// \return True if the promotion is profitable, false otherwise. 3662 bool AddressingModeMatcher::isPromotionProfitable( 3663 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3664 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3665 << '\n'); 3666 // The cost of the new extensions is greater than the cost of the 3667 // old extension plus what we folded. 3668 // This is not profitable. 3669 if (NewCost > OldCost) 3670 return false; 3671 if (NewCost < OldCost) 3672 return true; 3673 // The promotion is neutral but it may help folding the sign extension in 3674 // loads for instance. 3675 // Check that we did not create an illegal instruction. 3676 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3677 } 3678 3679 /// Given an instruction or constant expr, see if we can fold the operation 3680 /// into the addressing mode. If so, update the addressing mode and return 3681 /// true, otherwise return false without modifying AddrMode. 3682 /// If \p MovedAway is not NULL, it contains the information of whether or 3683 /// not AddrInst has to be folded into the addressing mode on success. 3684 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3685 /// because it has been moved away. 3686 /// Thus AddrInst must not be added in the matched instructions. 3687 /// This state can happen when AddrInst is a sext, since it may be moved away. 3688 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3689 /// not be referenced anymore. 3690 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3691 unsigned Depth, 3692 bool *MovedAway) { 3693 // Avoid exponential behavior on extremely deep expression trees. 3694 if (Depth >= 5) return false; 3695 3696 // By default, all matched instructions stay in place. 3697 if (MovedAway) 3698 *MovedAway = false; 3699 3700 switch (Opcode) { 3701 case Instruction::PtrToInt: 3702 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3703 return matchAddr(AddrInst->getOperand(0), Depth); 3704 case Instruction::IntToPtr: { 3705 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3706 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3707 // This inttoptr is a no-op if the integer type is pointer sized. 3708 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3709 return matchAddr(AddrInst->getOperand(0), Depth); 3710 return false; 3711 } 3712 case Instruction::BitCast: 3713 // BitCast is always a noop, and we can handle it as long as it is 3714 // int->int or pointer->pointer (we don't want int<->fp or something). 3715 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3716 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3717 // Don't touch identity bitcasts. These were probably put here by LSR, 3718 // and we don't want to mess around with them. Assume it knows what it 3719 // is doing. 3720 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3721 return matchAddr(AddrInst->getOperand(0), Depth); 3722 return false; 3723 case Instruction::AddrSpaceCast: { 3724 unsigned SrcAS 3725 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3726 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3727 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3728 return matchAddr(AddrInst->getOperand(0), Depth); 3729 return false; 3730 } 3731 case Instruction::Add: { 3732 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3733 ExtAddrMode BackupAddrMode = AddrMode; 3734 unsigned OldSize = AddrModeInsts.size(); 3735 // Start a transaction at this point. 3736 // The LHS may match but not the RHS. 3737 // Therefore, we need a higher level restoration point to undo partially 3738 // matched operation. 3739 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3740 TPT.getRestorationPoint(); 3741 3742 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3743 matchAddr(AddrInst->getOperand(0), Depth+1)) 3744 return true; 3745 3746 // Restore the old addr mode info. 3747 AddrMode = BackupAddrMode; 3748 AddrModeInsts.resize(OldSize); 3749 TPT.rollback(LastKnownGood); 3750 3751 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3752 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3753 matchAddr(AddrInst->getOperand(1), Depth+1)) 3754 return true; 3755 3756 // Otherwise we definitely can't merge the ADD in. 3757 AddrMode = BackupAddrMode; 3758 AddrModeInsts.resize(OldSize); 3759 TPT.rollback(LastKnownGood); 3760 break; 3761 } 3762 //case Instruction::Or: 3763 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3764 //break; 3765 case Instruction::Mul: 3766 case Instruction::Shl: { 3767 // Can only handle X*C and X << C. 3768 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3769 if (!RHS || RHS->getBitWidth() > 64) 3770 return false; 3771 int64_t Scale = RHS->getSExtValue(); 3772 if (Opcode == Instruction::Shl) 3773 Scale = 1LL << Scale; 3774 3775 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3776 } 3777 case Instruction::GetElementPtr: { 3778 // Scan the GEP. We check it if it contains constant offsets and at most 3779 // one variable offset. 3780 int VariableOperand = -1; 3781 unsigned VariableScale = 0; 3782 3783 int64_t ConstantOffset = 0; 3784 gep_type_iterator GTI = gep_type_begin(AddrInst); 3785 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3786 if (StructType *STy = GTI.getStructTypeOrNull()) { 3787 const StructLayout *SL = DL.getStructLayout(STy); 3788 unsigned Idx = 3789 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3790 ConstantOffset += SL->getElementOffset(Idx); 3791 } else { 3792 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3793 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3794 ConstantOffset += CI->getSExtValue() * TypeSize; 3795 } else if (TypeSize) { // Scales of zero don't do anything. 3796 // We only allow one variable index at the moment. 3797 if (VariableOperand != -1) 3798 return false; 3799 3800 // Remember the variable index. 3801 VariableOperand = i; 3802 VariableScale = TypeSize; 3803 } 3804 } 3805 } 3806 3807 // A common case is for the GEP to only do a constant offset. In this case, 3808 // just add it to the disp field and check validity. 3809 if (VariableOperand == -1) { 3810 AddrMode.BaseOffs += ConstantOffset; 3811 if (ConstantOffset == 0 || 3812 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3813 // Check to see if we can fold the base pointer in too. 3814 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3815 return true; 3816 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 3817 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 3818 ConstantOffset > 0) { 3819 // Record GEPs with non-zero offsets as candidates for splitting in the 3820 // event that the offset cannot fit into the r+i addressing mode. 3821 // Simple and common case that only one GEP is used in calculating the 3822 // address for the memory access. 3823 Value *Base = AddrInst->getOperand(0); 3824 auto *BaseI = dyn_cast<Instruction>(Base); 3825 auto *GEP = cast<GetElementPtrInst>(AddrInst); 3826 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 3827 (BaseI && !isa<CastInst>(BaseI) && 3828 !isa<GetElementPtrInst>(BaseI))) { 3829 // If the base is an instruction, make sure the GEP is not in the same 3830 // basic block as the base. If the base is an argument or global 3831 // value, make sure the GEP is not in the entry block. Otherwise, 3832 // instruction selection can undo the split. Also make sure the 3833 // parent block allows inserting non-PHI instructions before the 3834 // terminator. 3835 BasicBlock *Parent = 3836 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 3837 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 3838 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 3839 } 3840 } 3841 AddrMode.BaseOffs -= ConstantOffset; 3842 return false; 3843 } 3844 3845 // Save the valid addressing mode in case we can't match. 3846 ExtAddrMode BackupAddrMode = AddrMode; 3847 unsigned OldSize = AddrModeInsts.size(); 3848 3849 // See if the scale and offset amount is valid for this target. 3850 AddrMode.BaseOffs += ConstantOffset; 3851 3852 // Match the base operand of the GEP. 3853 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3854 // If it couldn't be matched, just stuff the value in a register. 3855 if (AddrMode.HasBaseReg) { 3856 AddrMode = BackupAddrMode; 3857 AddrModeInsts.resize(OldSize); 3858 return false; 3859 } 3860 AddrMode.HasBaseReg = true; 3861 AddrMode.BaseReg = AddrInst->getOperand(0); 3862 } 3863 3864 // Match the remaining variable portion of the GEP. 3865 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3866 Depth)) { 3867 // If it couldn't be matched, try stuffing the base into a register 3868 // instead of matching it, and retrying the match of the scale. 3869 AddrMode = BackupAddrMode; 3870 AddrModeInsts.resize(OldSize); 3871 if (AddrMode.HasBaseReg) 3872 return false; 3873 AddrMode.HasBaseReg = true; 3874 AddrMode.BaseReg = AddrInst->getOperand(0); 3875 AddrMode.BaseOffs += ConstantOffset; 3876 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3877 VariableScale, Depth)) { 3878 // If even that didn't work, bail. 3879 AddrMode = BackupAddrMode; 3880 AddrModeInsts.resize(OldSize); 3881 return false; 3882 } 3883 } 3884 3885 return true; 3886 } 3887 case Instruction::SExt: 3888 case Instruction::ZExt: { 3889 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3890 if (!Ext) 3891 return false; 3892 3893 // Try to move this ext out of the way of the addressing mode. 3894 // Ask for a method for doing so. 3895 TypePromotionHelper::Action TPH = 3896 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3897 if (!TPH) 3898 return false; 3899 3900 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3901 TPT.getRestorationPoint(); 3902 unsigned CreatedInstsCost = 0; 3903 unsigned ExtCost = !TLI.isExtFree(Ext); 3904 Value *PromotedOperand = 3905 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3906 // SExt has been moved away. 3907 // Thus either it will be rematched later in the recursive calls or it is 3908 // gone. Anyway, we must not fold it into the addressing mode at this point. 3909 // E.g., 3910 // op = add opnd, 1 3911 // idx = ext op 3912 // addr = gep base, idx 3913 // is now: 3914 // promotedOpnd = ext opnd <- no match here 3915 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3916 // addr = gep base, op <- match 3917 if (MovedAway) 3918 *MovedAway = true; 3919 3920 assert(PromotedOperand && 3921 "TypePromotionHelper should have filtered out those cases"); 3922 3923 ExtAddrMode BackupAddrMode = AddrMode; 3924 unsigned OldSize = AddrModeInsts.size(); 3925 3926 if (!matchAddr(PromotedOperand, Depth) || 3927 // The total of the new cost is equal to the cost of the created 3928 // instructions. 3929 // The total of the old cost is equal to the cost of the extension plus 3930 // what we have saved in the addressing mode. 3931 !isPromotionProfitable(CreatedInstsCost, 3932 ExtCost + (AddrModeInsts.size() - OldSize), 3933 PromotedOperand)) { 3934 AddrMode = BackupAddrMode; 3935 AddrModeInsts.resize(OldSize); 3936 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3937 TPT.rollback(LastKnownGood); 3938 return false; 3939 } 3940 return true; 3941 } 3942 } 3943 return false; 3944 } 3945 3946 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3947 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3948 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3949 /// for the target. 3950 /// 3951 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3952 // Start a transaction at this point that we will rollback if the matching 3953 // fails. 3954 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3955 TPT.getRestorationPoint(); 3956 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3957 // Fold in immediates if legal for the target. 3958 AddrMode.BaseOffs += CI->getSExtValue(); 3959 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3960 return true; 3961 AddrMode.BaseOffs -= CI->getSExtValue(); 3962 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3963 // If this is a global variable, try to fold it into the addressing mode. 3964 if (!AddrMode.BaseGV) { 3965 AddrMode.BaseGV = GV; 3966 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3967 return true; 3968 AddrMode.BaseGV = nullptr; 3969 } 3970 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3971 ExtAddrMode BackupAddrMode = AddrMode; 3972 unsigned OldSize = AddrModeInsts.size(); 3973 3974 // Check to see if it is possible to fold this operation. 3975 bool MovedAway = false; 3976 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3977 // This instruction may have been moved away. If so, there is nothing 3978 // to check here. 3979 if (MovedAway) 3980 return true; 3981 // Okay, it's possible to fold this. Check to see if it is actually 3982 // *profitable* to do so. We use a simple cost model to avoid increasing 3983 // register pressure too much. 3984 if (I->hasOneUse() || 3985 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3986 AddrModeInsts.push_back(I); 3987 return true; 3988 } 3989 3990 // It isn't profitable to do this, roll back. 3991 //cerr << "NOT FOLDING: " << *I; 3992 AddrMode = BackupAddrMode; 3993 AddrModeInsts.resize(OldSize); 3994 TPT.rollback(LastKnownGood); 3995 } 3996 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3997 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3998 return true; 3999 TPT.rollback(LastKnownGood); 4000 } else if (isa<ConstantPointerNull>(Addr)) { 4001 // Null pointer gets folded without affecting the addressing mode. 4002 return true; 4003 } 4004 4005 // Worse case, the target should support [reg] addressing modes. :) 4006 if (!AddrMode.HasBaseReg) { 4007 AddrMode.HasBaseReg = true; 4008 AddrMode.BaseReg = Addr; 4009 // Still check for legality in case the target supports [imm] but not [i+r]. 4010 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4011 return true; 4012 AddrMode.HasBaseReg = false; 4013 AddrMode.BaseReg = nullptr; 4014 } 4015 4016 // If the base register is already taken, see if we can do [r+r]. 4017 if (AddrMode.Scale == 0) { 4018 AddrMode.Scale = 1; 4019 AddrMode.ScaledReg = Addr; 4020 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4021 return true; 4022 AddrMode.Scale = 0; 4023 AddrMode.ScaledReg = nullptr; 4024 } 4025 // Couldn't match. 4026 TPT.rollback(LastKnownGood); 4027 return false; 4028 } 4029 4030 /// Check to see if all uses of OpVal by the specified inline asm call are due 4031 /// to memory operands. If so, return true, otherwise return false. 4032 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4033 const TargetLowering &TLI, 4034 const TargetRegisterInfo &TRI) { 4035 const Function *F = CI->getFunction(); 4036 TargetLowering::AsmOperandInfoVector TargetConstraints = 4037 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4038 ImmutableCallSite(CI)); 4039 4040 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4041 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4042 4043 // Compute the constraint code and ConstraintType to use. 4044 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4045 4046 // If this asm operand is our Value*, and if it isn't an indirect memory 4047 // operand, we can't fold it! 4048 if (OpInfo.CallOperandVal == OpVal && 4049 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4050 !OpInfo.isIndirect)) 4051 return false; 4052 } 4053 4054 return true; 4055 } 4056 4057 // Max number of memory uses to look at before aborting the search to conserve 4058 // compile time. 4059 static constexpr int MaxMemoryUsesToScan = 20; 4060 4061 /// Recursively walk all the uses of I until we find a memory use. 4062 /// If we find an obviously non-foldable instruction, return true. 4063 /// Add the ultimately found memory instructions to MemoryUses. 4064 static bool FindAllMemoryUses( 4065 Instruction *I, 4066 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4067 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4068 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4069 // If we already considered this instruction, we're done. 4070 if (!ConsideredInsts.insert(I).second) 4071 return false; 4072 4073 // If this is an obviously unfoldable instruction, bail out. 4074 if (!MightBeFoldableInst(I)) 4075 return true; 4076 4077 const bool OptSize = I->getFunction()->optForSize(); 4078 4079 // Loop over all the uses, recursively processing them. 4080 for (Use &U : I->uses()) { 4081 // Conservatively return true if we're seeing a large number or a deep chain 4082 // of users. This avoids excessive compilation times in pathological cases. 4083 if (SeenInsts++ >= MaxMemoryUsesToScan) 4084 return true; 4085 4086 Instruction *UserI = cast<Instruction>(U.getUser()); 4087 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4088 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4089 continue; 4090 } 4091 4092 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4093 unsigned opNo = U.getOperandNo(); 4094 if (opNo != StoreInst::getPointerOperandIndex()) 4095 return true; // Storing addr, not into addr. 4096 MemoryUses.push_back(std::make_pair(SI, opNo)); 4097 continue; 4098 } 4099 4100 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4101 unsigned opNo = U.getOperandNo(); 4102 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4103 return true; // Storing addr, not into addr. 4104 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4105 continue; 4106 } 4107 4108 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4109 unsigned opNo = U.getOperandNo(); 4110 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4111 return true; // Storing addr, not into addr. 4112 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4113 continue; 4114 } 4115 4116 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4117 // If this is a cold call, we can sink the addressing calculation into 4118 // the cold path. See optimizeCallInst 4119 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4120 continue; 4121 4122 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4123 if (!IA) return true; 4124 4125 // If this is a memory operand, we're cool, otherwise bail out. 4126 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4127 return true; 4128 continue; 4129 } 4130 4131 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4132 SeenInsts)) 4133 return true; 4134 } 4135 4136 return false; 4137 } 4138 4139 /// Return true if Val is already known to be live at the use site that we're 4140 /// folding it into. If so, there is no cost to include it in the addressing 4141 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4142 /// instruction already. 4143 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4144 Value *KnownLive2) { 4145 // If Val is either of the known-live values, we know it is live! 4146 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4147 return true; 4148 4149 // All values other than instructions and arguments (e.g. constants) are live. 4150 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4151 4152 // If Val is a constant sized alloca in the entry block, it is live, this is 4153 // true because it is just a reference to the stack/frame pointer, which is 4154 // live for the whole function. 4155 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4156 if (AI->isStaticAlloca()) 4157 return true; 4158 4159 // Check to see if this value is already used in the memory instruction's 4160 // block. If so, it's already live into the block at the very least, so we 4161 // can reasonably fold it. 4162 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4163 } 4164 4165 /// It is possible for the addressing mode of the machine to fold the specified 4166 /// instruction into a load or store that ultimately uses it. 4167 /// However, the specified instruction has multiple uses. 4168 /// Given this, it may actually increase register pressure to fold it 4169 /// into the load. For example, consider this code: 4170 /// 4171 /// X = ... 4172 /// Y = X+1 4173 /// use(Y) -> nonload/store 4174 /// Z = Y+1 4175 /// load Z 4176 /// 4177 /// In this case, Y has multiple uses, and can be folded into the load of Z 4178 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4179 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4180 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4181 /// number of computations either. 4182 /// 4183 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4184 /// X was live across 'load Z' for other reasons, we actually *would* want to 4185 /// fold the addressing mode in the Z case. This would make Y die earlier. 4186 bool AddressingModeMatcher:: 4187 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4188 ExtAddrMode &AMAfter) { 4189 if (IgnoreProfitability) return true; 4190 4191 // AMBefore is the addressing mode before this instruction was folded into it, 4192 // and AMAfter is the addressing mode after the instruction was folded. Get 4193 // the set of registers referenced by AMAfter and subtract out those 4194 // referenced by AMBefore: this is the set of values which folding in this 4195 // address extends the lifetime of. 4196 // 4197 // Note that there are only two potential values being referenced here, 4198 // BaseReg and ScaleReg (global addresses are always available, as are any 4199 // folded immediates). 4200 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4201 4202 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4203 // lifetime wasn't extended by adding this instruction. 4204 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4205 BaseReg = nullptr; 4206 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4207 ScaledReg = nullptr; 4208 4209 // If folding this instruction (and it's subexprs) didn't extend any live 4210 // ranges, we're ok with it. 4211 if (!BaseReg && !ScaledReg) 4212 return true; 4213 4214 // If all uses of this instruction can have the address mode sunk into them, 4215 // we can remove the addressing mode and effectively trade one live register 4216 // for another (at worst.) In this context, folding an addressing mode into 4217 // the use is just a particularly nice way of sinking it. 4218 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4219 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4220 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4221 return false; // Has a non-memory, non-foldable use! 4222 4223 // Now that we know that all uses of this instruction are part of a chain of 4224 // computation involving only operations that could theoretically be folded 4225 // into a memory use, loop over each of these memory operation uses and see 4226 // if they could *actually* fold the instruction. The assumption is that 4227 // addressing modes are cheap and that duplicating the computation involved 4228 // many times is worthwhile, even on a fastpath. For sinking candidates 4229 // (i.e. cold call sites), this serves as a way to prevent excessive code 4230 // growth since most architectures have some reasonable small and fast way to 4231 // compute an effective address. (i.e LEA on x86) 4232 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4233 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4234 Instruction *User = MemoryUses[i].first; 4235 unsigned OpNo = MemoryUses[i].second; 4236 4237 // Get the access type of this use. If the use isn't a pointer, we don't 4238 // know what it accesses. 4239 Value *Address = User->getOperand(OpNo); 4240 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4241 if (!AddrTy) 4242 return false; 4243 Type *AddressAccessTy = AddrTy->getElementType(); 4244 unsigned AS = AddrTy->getAddressSpace(); 4245 4246 // Do a match against the root of this address, ignoring profitability. This 4247 // will tell us if the addressing mode for the memory operation will 4248 // *actually* cover the shared instruction. 4249 ExtAddrMode Result; 4250 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4251 0); 4252 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4253 TPT.getRestorationPoint(); 4254 AddressingModeMatcher Matcher( 4255 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4256 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4257 Matcher.IgnoreProfitability = true; 4258 bool Success = Matcher.matchAddr(Address, 0); 4259 (void)Success; assert(Success && "Couldn't select *anything*?"); 4260 4261 // The match was to check the profitability, the changes made are not 4262 // part of the original matcher. Therefore, they should be dropped 4263 // otherwise the original matcher will not present the right state. 4264 TPT.rollback(LastKnownGood); 4265 4266 // If the match didn't cover I, then it won't be shared by it. 4267 if (!is_contained(MatchedAddrModeInsts, I)) 4268 return false; 4269 4270 MatchedAddrModeInsts.clear(); 4271 } 4272 4273 return true; 4274 } 4275 4276 /// Return true if the specified values are defined in a 4277 /// different basic block than BB. 4278 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4279 if (Instruction *I = dyn_cast<Instruction>(V)) 4280 return I->getParent() != BB; 4281 return false; 4282 } 4283 4284 /// Sink addressing mode computation immediate before MemoryInst if doing so 4285 /// can be done without increasing register pressure. The need for the 4286 /// register pressure constraint means this can end up being an all or nothing 4287 /// decision for all uses of the same addressing computation. 4288 /// 4289 /// Load and Store Instructions often have addressing modes that can do 4290 /// significant amounts of computation. As such, instruction selection will try 4291 /// to get the load or store to do as much computation as possible for the 4292 /// program. The problem is that isel can only see within a single block. As 4293 /// such, we sink as much legal addressing mode work into the block as possible. 4294 /// 4295 /// This method is used to optimize both load/store and inline asms with memory 4296 /// operands. It's also used to sink addressing computations feeding into cold 4297 /// call sites into their (cold) basic block. 4298 /// 4299 /// The motivation for handling sinking into cold blocks is that doing so can 4300 /// both enable other address mode sinking (by satisfying the register pressure 4301 /// constraint above), and reduce register pressure globally (by removing the 4302 /// addressing mode computation from the fast path entirely.). 4303 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4304 Type *AccessTy, unsigned AddrSpace) { 4305 Value *Repl = Addr; 4306 4307 // Try to collapse single-value PHI nodes. This is necessary to undo 4308 // unprofitable PRE transformations. 4309 SmallVector<Value*, 8> worklist; 4310 SmallPtrSet<Value*, 16> Visited; 4311 worklist.push_back(Addr); 4312 4313 // Use a worklist to iteratively look through PHI and select nodes, and 4314 // ensure that the addressing mode obtained from the non-PHI/select roots of 4315 // the graph are compatible. 4316 bool PhiOrSelectSeen = false; 4317 SmallVector<Instruction*, 16> AddrModeInsts; 4318 const SimplifyQuery SQ(*DL, TLInfo); 4319 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4320 TypePromotionTransaction TPT(RemovedInsts); 4321 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4322 TPT.getRestorationPoint(); 4323 while (!worklist.empty()) { 4324 Value *V = worklist.back(); 4325 worklist.pop_back(); 4326 4327 // We allow traversing cyclic Phi nodes. 4328 // In case of success after this loop we ensure that traversing through 4329 // Phi nodes ends up with all cases to compute address of the form 4330 // BaseGV + Base + Scale * Index + Offset 4331 // where Scale and Offset are constans and BaseGV, Base and Index 4332 // are exactly the same Values in all cases. 4333 // It means that BaseGV, Scale and Offset dominate our memory instruction 4334 // and have the same value as they had in address computation represented 4335 // as Phi. So we can safely sink address computation to memory instruction. 4336 if (!Visited.insert(V).second) 4337 continue; 4338 4339 // For a PHI node, push all of its incoming values. 4340 if (PHINode *P = dyn_cast<PHINode>(V)) { 4341 for (Value *IncValue : P->incoming_values()) 4342 worklist.push_back(IncValue); 4343 PhiOrSelectSeen = true; 4344 continue; 4345 } 4346 // Similar for select. 4347 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4348 worklist.push_back(SI->getFalseValue()); 4349 worklist.push_back(SI->getTrueValue()); 4350 PhiOrSelectSeen = true; 4351 continue; 4352 } 4353 4354 // For non-PHIs, determine the addressing mode being computed. Note that 4355 // the result may differ depending on what other uses our candidate 4356 // addressing instructions might have. 4357 AddrModeInsts.clear(); 4358 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4359 0); 4360 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4361 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4362 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4363 4364 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4365 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4366 !NewGEPBases.count(GEP)) { 4367 // If splitting the underlying data structure can reduce the offset of a 4368 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4369 // previously split data structures. 4370 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4371 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4372 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4373 } 4374 4375 NewAddrMode.OriginalValue = V; 4376 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4377 break; 4378 } 4379 4380 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4381 // or we have multiple but either couldn't combine them or combining them 4382 // wouldn't do anything useful, bail out now. 4383 if (!AddrModes.combineAddrModes()) { 4384 TPT.rollback(LastKnownGood); 4385 return false; 4386 } 4387 TPT.commit(); 4388 4389 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4390 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4391 4392 // If all the instructions matched are already in this BB, don't do anything. 4393 // If we saw a Phi node then it is not local definitely, and if we saw a select 4394 // then we want to push the address calculation past it even if it's already 4395 // in this BB. 4396 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4397 return IsNonLocalValue(V, MemoryInst->getParent()); 4398 })) { 4399 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4400 << "\n"); 4401 return false; 4402 } 4403 4404 // Insert this computation right after this user. Since our caller is 4405 // scanning from the top of the BB to the bottom, reuse of the expr are 4406 // guaranteed to happen later. 4407 IRBuilder<> Builder(MemoryInst); 4408 4409 // Now that we determined the addressing expression we want to use and know 4410 // that we have to sink it into this block. Check to see if we have already 4411 // done this for some other load/store instr in this block. If so, reuse 4412 // the computation. Before attempting reuse, check if the address is valid 4413 // as it may have been erased. 4414 4415 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4416 4417 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4418 if (SunkAddr) { 4419 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4420 << " for " << *MemoryInst << "\n"); 4421 if (SunkAddr->getType() != Addr->getType()) 4422 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4423 } else if (AddrSinkUsingGEPs || 4424 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4425 // By default, we use the GEP-based method when AA is used later. This 4426 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4427 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4428 << " for " << *MemoryInst << "\n"); 4429 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4430 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4431 4432 // First, find the pointer. 4433 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4434 ResultPtr = AddrMode.BaseReg; 4435 AddrMode.BaseReg = nullptr; 4436 } 4437 4438 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4439 // We can't add more than one pointer together, nor can we scale a 4440 // pointer (both of which seem meaningless). 4441 if (ResultPtr || AddrMode.Scale != 1) 4442 return false; 4443 4444 ResultPtr = AddrMode.ScaledReg; 4445 AddrMode.Scale = 0; 4446 } 4447 4448 // It is only safe to sign extend the BaseReg if we know that the math 4449 // required to create it did not overflow before we extend it. Since 4450 // the original IR value was tossed in favor of a constant back when 4451 // the AddrMode was created we need to bail out gracefully if widths 4452 // do not match instead of extending it. 4453 // 4454 // (See below for code to add the scale.) 4455 if (AddrMode.Scale) { 4456 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4457 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4458 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4459 return false; 4460 } 4461 4462 if (AddrMode.BaseGV) { 4463 if (ResultPtr) 4464 return false; 4465 4466 ResultPtr = AddrMode.BaseGV; 4467 } 4468 4469 // If the real base value actually came from an inttoptr, then the matcher 4470 // will look through it and provide only the integer value. In that case, 4471 // use it here. 4472 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4473 if (!ResultPtr && AddrMode.BaseReg) { 4474 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4475 "sunkaddr"); 4476 AddrMode.BaseReg = nullptr; 4477 } else if (!ResultPtr && AddrMode.Scale == 1) { 4478 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4479 "sunkaddr"); 4480 AddrMode.Scale = 0; 4481 } 4482 } 4483 4484 if (!ResultPtr && 4485 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4486 SunkAddr = Constant::getNullValue(Addr->getType()); 4487 } else if (!ResultPtr) { 4488 return false; 4489 } else { 4490 Type *I8PtrTy = 4491 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4492 Type *I8Ty = Builder.getInt8Ty(); 4493 4494 // Start with the base register. Do this first so that subsequent address 4495 // matching finds it last, which will prevent it from trying to match it 4496 // as the scaled value in case it happens to be a mul. That would be 4497 // problematic if we've sunk a different mul for the scale, because then 4498 // we'd end up sinking both muls. 4499 if (AddrMode.BaseReg) { 4500 Value *V = AddrMode.BaseReg; 4501 if (V->getType() != IntPtrTy) 4502 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4503 4504 ResultIndex = V; 4505 } 4506 4507 // Add the scale value. 4508 if (AddrMode.Scale) { 4509 Value *V = AddrMode.ScaledReg; 4510 if (V->getType() == IntPtrTy) { 4511 // done. 4512 } else { 4513 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4514 cast<IntegerType>(V->getType())->getBitWidth() && 4515 "We can't transform if ScaledReg is too narrow"); 4516 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4517 } 4518 4519 if (AddrMode.Scale != 1) 4520 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4521 "sunkaddr"); 4522 if (ResultIndex) 4523 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4524 else 4525 ResultIndex = V; 4526 } 4527 4528 // Add in the Base Offset if present. 4529 if (AddrMode.BaseOffs) { 4530 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4531 if (ResultIndex) { 4532 // We need to add this separately from the scale above to help with 4533 // SDAG consecutive load/store merging. 4534 if (ResultPtr->getType() != I8PtrTy) 4535 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4536 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4537 } 4538 4539 ResultIndex = V; 4540 } 4541 4542 if (!ResultIndex) { 4543 SunkAddr = ResultPtr; 4544 } else { 4545 if (ResultPtr->getType() != I8PtrTy) 4546 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4547 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4548 } 4549 4550 if (SunkAddr->getType() != Addr->getType()) 4551 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4552 } 4553 } else { 4554 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4555 // non-integral pointers, so in that case bail out now. 4556 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4557 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4558 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4559 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4560 if (DL->isNonIntegralPointerType(Addr->getType()) || 4561 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4562 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4563 (AddrMode.BaseGV && 4564 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4565 return false; 4566 4567 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4568 << " for " << *MemoryInst << "\n"); 4569 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4570 Value *Result = nullptr; 4571 4572 // Start with the base register. Do this first so that subsequent address 4573 // matching finds it last, which will prevent it from trying to match it 4574 // as the scaled value in case it happens to be a mul. That would be 4575 // problematic if we've sunk a different mul for the scale, because then 4576 // we'd end up sinking both muls. 4577 if (AddrMode.BaseReg) { 4578 Value *V = AddrMode.BaseReg; 4579 if (V->getType()->isPointerTy()) 4580 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4581 if (V->getType() != IntPtrTy) 4582 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4583 Result = V; 4584 } 4585 4586 // Add the scale value. 4587 if (AddrMode.Scale) { 4588 Value *V = AddrMode.ScaledReg; 4589 if (V->getType() == IntPtrTy) { 4590 // done. 4591 } else if (V->getType()->isPointerTy()) { 4592 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4593 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4594 cast<IntegerType>(V->getType())->getBitWidth()) { 4595 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4596 } else { 4597 // It is only safe to sign extend the BaseReg if we know that the math 4598 // required to create it did not overflow before we extend it. Since 4599 // the original IR value was tossed in favor of a constant back when 4600 // the AddrMode was created we need to bail out gracefully if widths 4601 // do not match instead of extending it. 4602 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4603 if (I && (Result != AddrMode.BaseReg)) 4604 I->eraseFromParent(); 4605 return false; 4606 } 4607 if (AddrMode.Scale != 1) 4608 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4609 "sunkaddr"); 4610 if (Result) 4611 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4612 else 4613 Result = V; 4614 } 4615 4616 // Add in the BaseGV if present. 4617 if (AddrMode.BaseGV) { 4618 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4619 if (Result) 4620 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4621 else 4622 Result = V; 4623 } 4624 4625 // Add in the Base Offset if present. 4626 if (AddrMode.BaseOffs) { 4627 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4628 if (Result) 4629 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4630 else 4631 Result = V; 4632 } 4633 4634 if (!Result) 4635 SunkAddr = Constant::getNullValue(Addr->getType()); 4636 else 4637 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4638 } 4639 4640 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4641 // Store the newly computed address into the cache. In the case we reused a 4642 // value, this should be idempotent. 4643 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4644 4645 // If we have no uses, recursively delete the value and all dead instructions 4646 // using it. 4647 if (Repl->use_empty()) { 4648 // This can cause recursive deletion, which can invalidate our iterator. 4649 // Use a WeakTrackingVH to hold onto it in case this happens. 4650 Value *CurValue = &*CurInstIterator; 4651 WeakTrackingVH IterHandle(CurValue); 4652 BasicBlock *BB = CurInstIterator->getParent(); 4653 4654 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4655 4656 if (IterHandle != CurValue) { 4657 // If the iterator instruction was recursively deleted, start over at the 4658 // start of the block. 4659 CurInstIterator = BB->begin(); 4660 SunkAddrs.clear(); 4661 } 4662 } 4663 ++NumMemoryInsts; 4664 return true; 4665 } 4666 4667 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4668 /// address computing into the block when possible / profitable. 4669 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4670 bool MadeChange = false; 4671 4672 const TargetRegisterInfo *TRI = 4673 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4674 TargetLowering::AsmOperandInfoVector TargetConstraints = 4675 TLI->ParseConstraints(*DL, TRI, CS); 4676 unsigned ArgNo = 0; 4677 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4678 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4679 4680 // Compute the constraint code and ConstraintType to use. 4681 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4682 4683 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4684 OpInfo.isIndirect) { 4685 Value *OpVal = CS->getArgOperand(ArgNo++); 4686 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4687 } else if (OpInfo.Type == InlineAsm::isInput) 4688 ArgNo++; 4689 } 4690 4691 return MadeChange; 4692 } 4693 4694 /// Check if all the uses of \p Val are equivalent (or free) zero or 4695 /// sign extensions. 4696 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4697 assert(!Val->use_empty() && "Input must have at least one use"); 4698 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4699 bool IsSExt = isa<SExtInst>(FirstUser); 4700 Type *ExtTy = FirstUser->getType(); 4701 for (const User *U : Val->users()) { 4702 const Instruction *UI = cast<Instruction>(U); 4703 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4704 return false; 4705 Type *CurTy = UI->getType(); 4706 // Same input and output types: Same instruction after CSE. 4707 if (CurTy == ExtTy) 4708 continue; 4709 4710 // If IsSExt is true, we are in this situation: 4711 // a = Val 4712 // b = sext ty1 a to ty2 4713 // c = sext ty1 a to ty3 4714 // Assuming ty2 is shorter than ty3, this could be turned into: 4715 // a = Val 4716 // b = sext ty1 a to ty2 4717 // c = sext ty2 b to ty3 4718 // However, the last sext is not free. 4719 if (IsSExt) 4720 return false; 4721 4722 // This is a ZExt, maybe this is free to extend from one type to another. 4723 // In that case, we would not account for a different use. 4724 Type *NarrowTy; 4725 Type *LargeTy; 4726 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4727 CurTy->getScalarType()->getIntegerBitWidth()) { 4728 NarrowTy = CurTy; 4729 LargeTy = ExtTy; 4730 } else { 4731 NarrowTy = ExtTy; 4732 LargeTy = CurTy; 4733 } 4734 4735 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4736 return false; 4737 } 4738 // All uses are the same or can be derived from one another for free. 4739 return true; 4740 } 4741 4742 /// Try to speculatively promote extensions in \p Exts and continue 4743 /// promoting through newly promoted operands recursively as far as doing so is 4744 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4745 /// When some promotion happened, \p TPT contains the proper state to revert 4746 /// them. 4747 /// 4748 /// \return true if some promotion happened, false otherwise. 4749 bool CodeGenPrepare::tryToPromoteExts( 4750 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4751 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4752 unsigned CreatedInstsCost) { 4753 bool Promoted = false; 4754 4755 // Iterate over all the extensions to try to promote them. 4756 for (auto I : Exts) { 4757 // Early check if we directly have ext(load). 4758 if (isa<LoadInst>(I->getOperand(0))) { 4759 ProfitablyMovedExts.push_back(I); 4760 continue; 4761 } 4762 4763 // Check whether or not we want to do any promotion. The reason we have 4764 // this check inside the for loop is to catch the case where an extension 4765 // is directly fed by a load because in such case the extension can be moved 4766 // up without any promotion on its operands. 4767 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4768 return false; 4769 4770 // Get the action to perform the promotion. 4771 TypePromotionHelper::Action TPH = 4772 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4773 // Check if we can promote. 4774 if (!TPH) { 4775 // Save the current extension as we cannot move up through its operand. 4776 ProfitablyMovedExts.push_back(I); 4777 continue; 4778 } 4779 4780 // Save the current state. 4781 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4782 TPT.getRestorationPoint(); 4783 SmallVector<Instruction *, 4> NewExts; 4784 unsigned NewCreatedInstsCost = 0; 4785 unsigned ExtCost = !TLI->isExtFree(I); 4786 // Promote. 4787 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4788 &NewExts, nullptr, *TLI); 4789 assert(PromotedVal && 4790 "TypePromotionHelper should have filtered out those cases"); 4791 4792 // We would be able to merge only one extension in a load. 4793 // Therefore, if we have more than 1 new extension we heuristically 4794 // cut this search path, because it means we degrade the code quality. 4795 // With exactly 2, the transformation is neutral, because we will merge 4796 // one extension but leave one. However, we optimistically keep going, 4797 // because the new extension may be removed too. 4798 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4799 // FIXME: It would be possible to propagate a negative value instead of 4800 // conservatively ceiling it to 0. 4801 TotalCreatedInstsCost = 4802 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4803 if (!StressExtLdPromotion && 4804 (TotalCreatedInstsCost > 1 || 4805 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4806 // This promotion is not profitable, rollback to the previous state, and 4807 // save the current extension in ProfitablyMovedExts as the latest 4808 // speculative promotion turned out to be unprofitable. 4809 TPT.rollback(LastKnownGood); 4810 ProfitablyMovedExts.push_back(I); 4811 continue; 4812 } 4813 // Continue promoting NewExts as far as doing so is profitable. 4814 SmallVector<Instruction *, 2> NewlyMovedExts; 4815 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4816 bool NewPromoted = false; 4817 for (auto ExtInst : NewlyMovedExts) { 4818 Instruction *MovedExt = cast<Instruction>(ExtInst); 4819 Value *ExtOperand = MovedExt->getOperand(0); 4820 // If we have reached to a load, we need this extra profitability check 4821 // as it could potentially be merged into an ext(load). 4822 if (isa<LoadInst>(ExtOperand) && 4823 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4824 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4825 continue; 4826 4827 ProfitablyMovedExts.push_back(MovedExt); 4828 NewPromoted = true; 4829 } 4830 4831 // If none of speculative promotions for NewExts is profitable, rollback 4832 // and save the current extension (I) as the last profitable extension. 4833 if (!NewPromoted) { 4834 TPT.rollback(LastKnownGood); 4835 ProfitablyMovedExts.push_back(I); 4836 continue; 4837 } 4838 // The promotion is profitable. 4839 Promoted = true; 4840 } 4841 return Promoted; 4842 } 4843 4844 /// Merging redundant sexts when one is dominating the other. 4845 bool CodeGenPrepare::mergeSExts(Function &F) { 4846 DominatorTree DT(F); 4847 bool Changed = false; 4848 for (auto &Entry : ValToSExtendedUses) { 4849 SExts &Insts = Entry.second; 4850 SExts CurPts; 4851 for (Instruction *Inst : Insts) { 4852 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4853 Inst->getOperand(0) != Entry.first) 4854 continue; 4855 bool inserted = false; 4856 for (auto &Pt : CurPts) { 4857 if (DT.dominates(Inst, Pt)) { 4858 Pt->replaceAllUsesWith(Inst); 4859 RemovedInsts.insert(Pt); 4860 Pt->removeFromParent(); 4861 Pt = Inst; 4862 inserted = true; 4863 Changed = true; 4864 break; 4865 } 4866 if (!DT.dominates(Pt, Inst)) 4867 // Give up if we need to merge in a common dominator as the 4868 // expermients show it is not profitable. 4869 continue; 4870 Inst->replaceAllUsesWith(Pt); 4871 RemovedInsts.insert(Inst); 4872 Inst->removeFromParent(); 4873 inserted = true; 4874 Changed = true; 4875 break; 4876 } 4877 if (!inserted) 4878 CurPts.push_back(Inst); 4879 } 4880 } 4881 return Changed; 4882 } 4883 4884 // Spliting large data structures so that the GEPs accessing them can have 4885 // smaller offsets so that they can be sunk to the same blocks as their users. 4886 // For example, a large struct starting from %base is splitted into two parts 4887 // where the second part starts from %new_base. 4888 // 4889 // Before: 4890 // BB0: 4891 // %base = 4892 // 4893 // BB1: 4894 // %gep0 = gep %base, off0 4895 // %gep1 = gep %base, off1 4896 // %gep2 = gep %base, off2 4897 // 4898 // BB2: 4899 // %load1 = load %gep0 4900 // %load2 = load %gep1 4901 // %load3 = load %gep2 4902 // 4903 // After: 4904 // BB0: 4905 // %base = 4906 // %new_base = gep %base, off0 4907 // 4908 // BB1: 4909 // %new_gep0 = %new_base 4910 // %new_gep1 = gep %new_base, off1 - off0 4911 // %new_gep2 = gep %new_base, off2 - off0 4912 // 4913 // BB2: 4914 // %load1 = load i32, i32* %new_gep0 4915 // %load2 = load i32, i32* %new_gep1 4916 // %load3 = load i32, i32* %new_gep2 4917 // 4918 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 4919 // their offsets are smaller enough to fit into the addressing mode. 4920 bool CodeGenPrepare::splitLargeGEPOffsets() { 4921 bool Changed = false; 4922 for (auto &Entry : LargeOffsetGEPMap) { 4923 Value *OldBase = Entry.first; 4924 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 4925 &LargeOffsetGEPs = Entry.second; 4926 auto compareGEPOffset = 4927 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 4928 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 4929 if (LHS.first == RHS.first) 4930 return false; 4931 if (LHS.second != RHS.second) 4932 return LHS.second < RHS.second; 4933 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 4934 }; 4935 // Sorting all the GEPs of the same data structures based on the offsets. 4936 llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(), 4937 compareGEPOffset); 4938 LargeOffsetGEPs.erase( 4939 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 4940 LargeOffsetGEPs.end()); 4941 // Skip if all the GEPs have the same offsets. 4942 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 4943 continue; 4944 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 4945 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 4946 Value *NewBaseGEP = nullptr; 4947 4948 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 4949 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 4950 GetElementPtrInst *GEP = LargeOffsetGEP->first; 4951 int64_t Offset = LargeOffsetGEP->second; 4952 if (Offset != BaseOffset) { 4953 TargetLowering::AddrMode AddrMode; 4954 AddrMode.BaseOffs = Offset - BaseOffset; 4955 // The result type of the GEP might not be the type of the memory 4956 // access. 4957 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 4958 GEP->getResultElementType(), 4959 GEP->getAddressSpace())) { 4960 // We need to create a new base if the offset to the current base is 4961 // too large to fit into the addressing mode. So, a very large struct 4962 // may be splitted into several parts. 4963 BaseGEP = GEP; 4964 BaseOffset = Offset; 4965 NewBaseGEP = nullptr; 4966 } 4967 } 4968 4969 // Generate a new GEP to replace the current one. 4970 IRBuilder<> Builder(GEP); 4971 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 4972 Type *I8PtrTy = 4973 Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace()); 4974 Type *I8Ty = Builder.getInt8Ty(); 4975 4976 if (!NewBaseGEP) { 4977 // Create a new base if we don't have one yet. Find the insertion 4978 // pointer for the new base first. 4979 BasicBlock::iterator NewBaseInsertPt; 4980 BasicBlock *NewBaseInsertBB; 4981 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 4982 // If the base of the struct is an instruction, the new base will be 4983 // inserted close to it. 4984 NewBaseInsertBB = BaseI->getParent(); 4985 if (isa<PHINode>(BaseI)) 4986 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4987 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 4988 NewBaseInsertBB = 4989 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 4990 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4991 } else 4992 NewBaseInsertPt = std::next(BaseI->getIterator()); 4993 } else { 4994 // If the current base is an argument or global value, the new base 4995 // will be inserted to the entry block. 4996 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 4997 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 4998 } 4999 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5000 // Create a new base. 5001 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5002 NewBaseGEP = OldBase; 5003 if (NewBaseGEP->getType() != I8PtrTy) 5004 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5005 NewBaseGEP = 5006 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5007 NewGEPBases.insert(NewBaseGEP); 5008 } 5009 5010 Value *NewGEP = NewBaseGEP; 5011 if (Offset == BaseOffset) { 5012 if (GEP->getType() != I8PtrTy) 5013 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5014 } else { 5015 // Calculate the new offset for the new GEP. 5016 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5017 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5018 5019 if (GEP->getType() != I8PtrTy) 5020 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5021 } 5022 GEP->replaceAllUsesWith(NewGEP); 5023 LargeOffsetGEPID.erase(GEP); 5024 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5025 GEP->eraseFromParent(); 5026 Changed = true; 5027 } 5028 } 5029 return Changed; 5030 } 5031 5032 /// Return true, if an ext(load) can be formed from an extension in 5033 /// \p MovedExts. 5034 bool CodeGenPrepare::canFormExtLd( 5035 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5036 Instruction *&Inst, bool HasPromoted) { 5037 for (auto *MovedExtInst : MovedExts) { 5038 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5039 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5040 Inst = MovedExtInst; 5041 break; 5042 } 5043 } 5044 if (!LI) 5045 return false; 5046 5047 // If they're already in the same block, there's nothing to do. 5048 // Make the cheap checks first if we did not promote. 5049 // If we promoted, we need to check if it is indeed profitable. 5050 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5051 return false; 5052 5053 return TLI->isExtLoad(LI, Inst, *DL); 5054 } 5055 5056 /// Move a zext or sext fed by a load into the same basic block as the load, 5057 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5058 /// extend into the load. 5059 /// 5060 /// E.g., 5061 /// \code 5062 /// %ld = load i32* %addr 5063 /// %add = add nuw i32 %ld, 4 5064 /// %zext = zext i32 %add to i64 5065 // \endcode 5066 /// => 5067 /// \code 5068 /// %ld = load i32* %addr 5069 /// %zext = zext i32 %ld to i64 5070 /// %add = add nuw i64 %zext, 4 5071 /// \encode 5072 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5073 /// allow us to match zext(load i32*) to i64. 5074 /// 5075 /// Also, try to promote the computations used to obtain a sign extended 5076 /// value used into memory accesses. 5077 /// E.g., 5078 /// \code 5079 /// a = add nsw i32 b, 3 5080 /// d = sext i32 a to i64 5081 /// e = getelementptr ..., i64 d 5082 /// \endcode 5083 /// => 5084 /// \code 5085 /// f = sext i32 b to i64 5086 /// a = add nsw i64 f, 3 5087 /// e = getelementptr ..., i64 a 5088 /// \endcode 5089 /// 5090 /// \p Inst[in/out] the extension may be modified during the process if some 5091 /// promotions apply. 5092 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5093 // ExtLoad formation and address type promotion infrastructure requires TLI to 5094 // be effective. 5095 if (!TLI) 5096 return false; 5097 5098 bool AllowPromotionWithoutCommonHeader = false; 5099 /// See if it is an interesting sext operations for the address type 5100 /// promotion before trying to promote it, e.g., the ones with the right 5101 /// type and used in memory accesses. 5102 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5103 *Inst, AllowPromotionWithoutCommonHeader); 5104 TypePromotionTransaction TPT(RemovedInsts); 5105 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5106 TPT.getRestorationPoint(); 5107 SmallVector<Instruction *, 1> Exts; 5108 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5109 Exts.push_back(Inst); 5110 5111 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5112 5113 // Look for a load being extended. 5114 LoadInst *LI = nullptr; 5115 Instruction *ExtFedByLoad; 5116 5117 // Try to promote a chain of computation if it allows to form an extended 5118 // load. 5119 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5120 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5121 TPT.commit(); 5122 // Move the extend into the same block as the load 5123 ExtFedByLoad->moveAfter(LI); 5124 // CGP does not check if the zext would be speculatively executed when moved 5125 // to the same basic block as the load. Preserving its original location 5126 // would pessimize the debugging experience, as well as negatively impact 5127 // the quality of sample pgo. We don't want to use "line 0" as that has a 5128 // size cost in the line-table section and logically the zext can be seen as 5129 // part of the load. Therefore we conservatively reuse the same debug 5130 // location for the load and the zext. 5131 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5132 ++NumExtsMoved; 5133 Inst = ExtFedByLoad; 5134 return true; 5135 } 5136 5137 // Continue promoting SExts if known as considerable depending on targets. 5138 if (ATPConsiderable && 5139 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5140 HasPromoted, TPT, SpeculativelyMovedExts)) 5141 return true; 5142 5143 TPT.rollback(LastKnownGood); 5144 return false; 5145 } 5146 5147 // Perform address type promotion if doing so is profitable. 5148 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5149 // instructions that sign extended the same initial value. However, if 5150 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5151 // extension is just profitable. 5152 bool CodeGenPrepare::performAddressTypePromotion( 5153 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5154 bool HasPromoted, TypePromotionTransaction &TPT, 5155 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5156 bool Promoted = false; 5157 SmallPtrSet<Instruction *, 1> UnhandledExts; 5158 bool AllSeenFirst = true; 5159 for (auto I : SpeculativelyMovedExts) { 5160 Value *HeadOfChain = I->getOperand(0); 5161 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5162 SeenChainsForSExt.find(HeadOfChain); 5163 // If there is an unhandled SExt which has the same header, try to promote 5164 // it as well. 5165 if (AlreadySeen != SeenChainsForSExt.end()) { 5166 if (AlreadySeen->second != nullptr) 5167 UnhandledExts.insert(AlreadySeen->second); 5168 AllSeenFirst = false; 5169 } 5170 } 5171 5172 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5173 SpeculativelyMovedExts.size() == 1)) { 5174 TPT.commit(); 5175 if (HasPromoted) 5176 Promoted = true; 5177 for (auto I : SpeculativelyMovedExts) { 5178 Value *HeadOfChain = I->getOperand(0); 5179 SeenChainsForSExt[HeadOfChain] = nullptr; 5180 ValToSExtendedUses[HeadOfChain].push_back(I); 5181 } 5182 // Update Inst as promotion happen. 5183 Inst = SpeculativelyMovedExts.pop_back_val(); 5184 } else { 5185 // This is the first chain visited from the header, keep the current chain 5186 // as unhandled. Defer to promote this until we encounter another SExt 5187 // chain derived from the same header. 5188 for (auto I : SpeculativelyMovedExts) { 5189 Value *HeadOfChain = I->getOperand(0); 5190 SeenChainsForSExt[HeadOfChain] = Inst; 5191 } 5192 return false; 5193 } 5194 5195 if (!AllSeenFirst && !UnhandledExts.empty()) 5196 for (auto VisitedSExt : UnhandledExts) { 5197 if (RemovedInsts.count(VisitedSExt)) 5198 continue; 5199 TypePromotionTransaction TPT(RemovedInsts); 5200 SmallVector<Instruction *, 1> Exts; 5201 SmallVector<Instruction *, 2> Chains; 5202 Exts.push_back(VisitedSExt); 5203 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5204 TPT.commit(); 5205 if (HasPromoted) 5206 Promoted = true; 5207 for (auto I : Chains) { 5208 Value *HeadOfChain = I->getOperand(0); 5209 // Mark this as handled. 5210 SeenChainsForSExt[HeadOfChain] = nullptr; 5211 ValToSExtendedUses[HeadOfChain].push_back(I); 5212 } 5213 } 5214 return Promoted; 5215 } 5216 5217 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5218 BasicBlock *DefBB = I->getParent(); 5219 5220 // If the result of a {s|z}ext and its source are both live out, rewrite all 5221 // other uses of the source with result of extension. 5222 Value *Src = I->getOperand(0); 5223 if (Src->hasOneUse()) 5224 return false; 5225 5226 // Only do this xform if truncating is free. 5227 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5228 return false; 5229 5230 // Only safe to perform the optimization if the source is also defined in 5231 // this block. 5232 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5233 return false; 5234 5235 bool DefIsLiveOut = false; 5236 for (User *U : I->users()) { 5237 Instruction *UI = cast<Instruction>(U); 5238 5239 // Figure out which BB this ext is used in. 5240 BasicBlock *UserBB = UI->getParent(); 5241 if (UserBB == DefBB) continue; 5242 DefIsLiveOut = true; 5243 break; 5244 } 5245 if (!DefIsLiveOut) 5246 return false; 5247 5248 // Make sure none of the uses are PHI nodes. 5249 for (User *U : Src->users()) { 5250 Instruction *UI = cast<Instruction>(U); 5251 BasicBlock *UserBB = UI->getParent(); 5252 if (UserBB == DefBB) continue; 5253 // Be conservative. We don't want this xform to end up introducing 5254 // reloads just before load / store instructions. 5255 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5256 return false; 5257 } 5258 5259 // InsertedTruncs - Only insert one trunc in each block once. 5260 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5261 5262 bool MadeChange = false; 5263 for (Use &U : Src->uses()) { 5264 Instruction *User = cast<Instruction>(U.getUser()); 5265 5266 // Figure out which BB this ext is used in. 5267 BasicBlock *UserBB = User->getParent(); 5268 if (UserBB == DefBB) continue; 5269 5270 // Both src and def are live in this block. Rewrite the use. 5271 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5272 5273 if (!InsertedTrunc) { 5274 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5275 assert(InsertPt != UserBB->end()); 5276 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5277 InsertedInsts.insert(InsertedTrunc); 5278 } 5279 5280 // Replace a use of the {s|z}ext source with a use of the result. 5281 U = InsertedTrunc; 5282 ++NumExtUses; 5283 MadeChange = true; 5284 } 5285 5286 return MadeChange; 5287 } 5288 5289 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5290 // just after the load if the target can fold this into one extload instruction, 5291 // with the hope of eliminating some of the other later "and" instructions using 5292 // the loaded value. "and"s that are made trivially redundant by the insertion 5293 // of the new "and" are removed by this function, while others (e.g. those whose 5294 // path from the load goes through a phi) are left for isel to potentially 5295 // remove. 5296 // 5297 // For example: 5298 // 5299 // b0: 5300 // x = load i32 5301 // ... 5302 // b1: 5303 // y = and x, 0xff 5304 // z = use y 5305 // 5306 // becomes: 5307 // 5308 // b0: 5309 // x = load i32 5310 // x' = and x, 0xff 5311 // ... 5312 // b1: 5313 // z = use x' 5314 // 5315 // whereas: 5316 // 5317 // b0: 5318 // x1 = load i32 5319 // ... 5320 // b1: 5321 // x2 = load i32 5322 // ... 5323 // b2: 5324 // x = phi x1, x2 5325 // y = and x, 0xff 5326 // 5327 // becomes (after a call to optimizeLoadExt for each load): 5328 // 5329 // b0: 5330 // x1 = load i32 5331 // x1' = and x1, 0xff 5332 // ... 5333 // b1: 5334 // x2 = load i32 5335 // x2' = and x2, 0xff 5336 // ... 5337 // b2: 5338 // x = phi x1', x2' 5339 // y = and x, 0xff 5340 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5341 if (!Load->isSimple() || 5342 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5343 return false; 5344 5345 // Skip loads we've already transformed. 5346 if (Load->hasOneUse() && 5347 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5348 return false; 5349 5350 // Look at all uses of Load, looking through phis, to determine how many bits 5351 // of the loaded value are needed. 5352 SmallVector<Instruction *, 8> WorkList; 5353 SmallPtrSet<Instruction *, 16> Visited; 5354 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5355 for (auto *U : Load->users()) 5356 WorkList.push_back(cast<Instruction>(U)); 5357 5358 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5359 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5360 APInt DemandBits(BitWidth, 0); 5361 APInt WidestAndBits(BitWidth, 0); 5362 5363 while (!WorkList.empty()) { 5364 Instruction *I = WorkList.back(); 5365 WorkList.pop_back(); 5366 5367 // Break use-def graph loops. 5368 if (!Visited.insert(I).second) 5369 continue; 5370 5371 // For a PHI node, push all of its users. 5372 if (auto *Phi = dyn_cast<PHINode>(I)) { 5373 for (auto *U : Phi->users()) 5374 WorkList.push_back(cast<Instruction>(U)); 5375 continue; 5376 } 5377 5378 switch (I->getOpcode()) { 5379 case Instruction::And: { 5380 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5381 if (!AndC) 5382 return false; 5383 APInt AndBits = AndC->getValue(); 5384 DemandBits |= AndBits; 5385 // Keep track of the widest and mask we see. 5386 if (AndBits.ugt(WidestAndBits)) 5387 WidestAndBits = AndBits; 5388 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5389 AndsToMaybeRemove.push_back(I); 5390 break; 5391 } 5392 5393 case Instruction::Shl: { 5394 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5395 if (!ShlC) 5396 return false; 5397 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5398 DemandBits.setLowBits(BitWidth - ShiftAmt); 5399 break; 5400 } 5401 5402 case Instruction::Trunc: { 5403 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5404 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5405 DemandBits.setLowBits(TruncBitWidth); 5406 break; 5407 } 5408 5409 default: 5410 return false; 5411 } 5412 } 5413 5414 uint32_t ActiveBits = DemandBits.getActiveBits(); 5415 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5416 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5417 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5418 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5419 // followed by an AND. 5420 // TODO: Look into removing this restriction by fixing backends to either 5421 // return false for isLoadExtLegal for i1 or have them select this pattern to 5422 // a single instruction. 5423 // 5424 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5425 // mask, since these are the only ands that will be removed by isel. 5426 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5427 WidestAndBits != DemandBits) 5428 return false; 5429 5430 LLVMContext &Ctx = Load->getType()->getContext(); 5431 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5432 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5433 5434 // Reject cases that won't be matched as extloads. 5435 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5436 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5437 return false; 5438 5439 IRBuilder<> Builder(Load->getNextNode()); 5440 auto *NewAnd = dyn_cast<Instruction>( 5441 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5442 // Mark this instruction as "inserted by CGP", so that other 5443 // optimizations don't touch it. 5444 InsertedInsts.insert(NewAnd); 5445 5446 // Replace all uses of load with new and (except for the use of load in the 5447 // new and itself). 5448 Load->replaceAllUsesWith(NewAnd); 5449 NewAnd->setOperand(0, Load); 5450 5451 // Remove any and instructions that are now redundant. 5452 for (auto *And : AndsToMaybeRemove) 5453 // Check that the and mask is the same as the one we decided to put on the 5454 // new and. 5455 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5456 And->replaceAllUsesWith(NewAnd); 5457 if (&*CurInstIterator == And) 5458 CurInstIterator = std::next(And->getIterator()); 5459 And->eraseFromParent(); 5460 ++NumAndUses; 5461 } 5462 5463 ++NumAndsAdded; 5464 return true; 5465 } 5466 5467 /// Check if V (an operand of a select instruction) is an expensive instruction 5468 /// that is only used once. 5469 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5470 auto *I = dyn_cast<Instruction>(V); 5471 // If it's safe to speculatively execute, then it should not have side 5472 // effects; therefore, it's safe to sink and possibly *not* execute. 5473 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5474 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5475 } 5476 5477 /// Returns true if a SelectInst should be turned into an explicit branch. 5478 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5479 const TargetLowering *TLI, 5480 SelectInst *SI) { 5481 // If even a predictable select is cheap, then a branch can't be cheaper. 5482 if (!TLI->isPredictableSelectExpensive()) 5483 return false; 5484 5485 // FIXME: This should use the same heuristics as IfConversion to determine 5486 // whether a select is better represented as a branch. 5487 5488 // If metadata tells us that the select condition is obviously predictable, 5489 // then we want to replace the select with a branch. 5490 uint64_t TrueWeight, FalseWeight; 5491 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5492 uint64_t Max = std::max(TrueWeight, FalseWeight); 5493 uint64_t Sum = TrueWeight + FalseWeight; 5494 if (Sum != 0) { 5495 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5496 if (Probability > TLI->getPredictableBranchThreshold()) 5497 return true; 5498 } 5499 } 5500 5501 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5502 5503 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5504 // comparison condition. If the compare has more than one use, there's 5505 // probably another cmov or setcc around, so it's not worth emitting a branch. 5506 if (!Cmp || !Cmp->hasOneUse()) 5507 return false; 5508 5509 // If either operand of the select is expensive and only needed on one side 5510 // of the select, we should form a branch. 5511 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5512 sinkSelectOperand(TTI, SI->getFalseValue())) 5513 return true; 5514 5515 return false; 5516 } 5517 5518 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5519 /// false value of \p SI. If the true/false value of \p SI is defined by any 5520 /// select instructions in \p Selects, look through the defining select 5521 /// instruction until the true/false value is not defined in \p Selects. 5522 static Value *getTrueOrFalseValue( 5523 SelectInst *SI, bool isTrue, 5524 const SmallPtrSet<const Instruction *, 2> &Selects) { 5525 Value *V; 5526 5527 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5528 DefSI = dyn_cast<SelectInst>(V)) { 5529 assert(DefSI->getCondition() == SI->getCondition() && 5530 "The condition of DefSI does not match with SI"); 5531 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5532 } 5533 return V; 5534 } 5535 5536 /// If we have a SelectInst that will likely profit from branch prediction, 5537 /// turn it into a branch. 5538 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5539 // Find all consecutive select instructions that share the same condition. 5540 SmallVector<SelectInst *, 2> ASI; 5541 ASI.push_back(SI); 5542 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5543 It != SI->getParent()->end(); ++It) { 5544 SelectInst *I = dyn_cast<SelectInst>(&*It); 5545 if (I && SI->getCondition() == I->getCondition()) { 5546 ASI.push_back(I); 5547 } else { 5548 break; 5549 } 5550 } 5551 5552 SelectInst *LastSI = ASI.back(); 5553 // Increment the current iterator to skip all the rest of select instructions 5554 // because they will be either "not lowered" or "all lowered" to branch. 5555 CurInstIterator = std::next(LastSI->getIterator()); 5556 5557 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5558 5559 // Can we convert the 'select' to CF ? 5560 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5561 SI->getMetadata(LLVMContext::MD_unpredictable)) 5562 return false; 5563 5564 TargetLowering::SelectSupportKind SelectKind; 5565 if (VectorCond) 5566 SelectKind = TargetLowering::VectorMaskSelect; 5567 else if (SI->getType()->isVectorTy()) 5568 SelectKind = TargetLowering::ScalarCondVectorVal; 5569 else 5570 SelectKind = TargetLowering::ScalarValSelect; 5571 5572 if (TLI->isSelectSupported(SelectKind) && 5573 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5574 return false; 5575 5576 ModifiedDT = true; 5577 5578 // Transform a sequence like this: 5579 // start: 5580 // %cmp = cmp uge i32 %a, %b 5581 // %sel = select i1 %cmp, i32 %c, i32 %d 5582 // 5583 // Into: 5584 // start: 5585 // %cmp = cmp uge i32 %a, %b 5586 // br i1 %cmp, label %select.true, label %select.false 5587 // select.true: 5588 // br label %select.end 5589 // select.false: 5590 // br label %select.end 5591 // select.end: 5592 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5593 // 5594 // In addition, we may sink instructions that produce %c or %d from 5595 // the entry block into the destination(s) of the new branch. 5596 // If the true or false blocks do not contain a sunken instruction, that 5597 // block and its branch may be optimized away. In that case, one side of the 5598 // first branch will point directly to select.end, and the corresponding PHI 5599 // predecessor block will be the start block. 5600 5601 // First, we split the block containing the select into 2 blocks. 5602 BasicBlock *StartBlock = SI->getParent(); 5603 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5604 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5605 5606 // Delete the unconditional branch that was just created by the split. 5607 StartBlock->getTerminator()->eraseFromParent(); 5608 5609 // These are the new basic blocks for the conditional branch. 5610 // At least one will become an actual new basic block. 5611 BasicBlock *TrueBlock = nullptr; 5612 BasicBlock *FalseBlock = nullptr; 5613 BranchInst *TrueBranch = nullptr; 5614 BranchInst *FalseBranch = nullptr; 5615 5616 // Sink expensive instructions into the conditional blocks to avoid executing 5617 // them speculatively. 5618 for (SelectInst *SI : ASI) { 5619 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5620 if (TrueBlock == nullptr) { 5621 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5622 EndBlock->getParent(), EndBlock); 5623 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5624 } 5625 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5626 TrueInst->moveBefore(TrueBranch); 5627 } 5628 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5629 if (FalseBlock == nullptr) { 5630 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5631 EndBlock->getParent(), EndBlock); 5632 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5633 } 5634 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5635 FalseInst->moveBefore(FalseBranch); 5636 } 5637 } 5638 5639 // If there was nothing to sink, then arbitrarily choose the 'false' side 5640 // for a new input value to the PHI. 5641 if (TrueBlock == FalseBlock) { 5642 assert(TrueBlock == nullptr && 5643 "Unexpected basic block transform while optimizing select"); 5644 5645 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5646 EndBlock->getParent(), EndBlock); 5647 BranchInst::Create(EndBlock, FalseBlock); 5648 } 5649 5650 // Insert the real conditional branch based on the original condition. 5651 // If we did not create a new block for one of the 'true' or 'false' paths 5652 // of the condition, it means that side of the branch goes to the end block 5653 // directly and the path originates from the start block from the point of 5654 // view of the new PHI. 5655 BasicBlock *TT, *FT; 5656 if (TrueBlock == nullptr) { 5657 TT = EndBlock; 5658 FT = FalseBlock; 5659 TrueBlock = StartBlock; 5660 } else if (FalseBlock == nullptr) { 5661 TT = TrueBlock; 5662 FT = EndBlock; 5663 FalseBlock = StartBlock; 5664 } else { 5665 TT = TrueBlock; 5666 FT = FalseBlock; 5667 } 5668 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5669 5670 SmallPtrSet<const Instruction *, 2> INS; 5671 INS.insert(ASI.begin(), ASI.end()); 5672 // Use reverse iterator because later select may use the value of the 5673 // earlier select, and we need to propagate value through earlier select 5674 // to get the PHI operand. 5675 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5676 SelectInst *SI = *It; 5677 // The select itself is replaced with a PHI Node. 5678 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5679 PN->takeName(SI); 5680 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5681 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5682 5683 SI->replaceAllUsesWith(PN); 5684 SI->eraseFromParent(); 5685 INS.erase(SI); 5686 ++NumSelectsExpanded; 5687 } 5688 5689 // Instruct OptimizeBlock to skip to the next block. 5690 CurInstIterator = StartBlock->end(); 5691 return true; 5692 } 5693 5694 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5695 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5696 int SplatElem = -1; 5697 for (unsigned i = 0; i < Mask.size(); ++i) { 5698 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5699 return false; 5700 SplatElem = Mask[i]; 5701 } 5702 5703 return true; 5704 } 5705 5706 /// Some targets have expensive vector shifts if the lanes aren't all the same 5707 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5708 /// it's often worth sinking a shufflevector splat down to its use so that 5709 /// codegen can spot all lanes are identical. 5710 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5711 BasicBlock *DefBB = SVI->getParent(); 5712 5713 // Only do this xform if variable vector shifts are particularly expensive. 5714 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5715 return false; 5716 5717 // We only expect better codegen by sinking a shuffle if we can recognise a 5718 // constant splat. 5719 if (!isBroadcastShuffle(SVI)) 5720 return false; 5721 5722 // InsertedShuffles - Only insert a shuffle in each block once. 5723 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5724 5725 bool MadeChange = false; 5726 for (User *U : SVI->users()) { 5727 Instruction *UI = cast<Instruction>(U); 5728 5729 // Figure out which BB this ext is used in. 5730 BasicBlock *UserBB = UI->getParent(); 5731 if (UserBB == DefBB) continue; 5732 5733 // For now only apply this when the splat is used by a shift instruction. 5734 if (!UI->isShift()) continue; 5735 5736 // Everything checks out, sink the shuffle if the user's block doesn't 5737 // already have a copy. 5738 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5739 5740 if (!InsertedShuffle) { 5741 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5742 assert(InsertPt != UserBB->end()); 5743 InsertedShuffle = 5744 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5745 SVI->getOperand(2), "", &*InsertPt); 5746 } 5747 5748 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5749 MadeChange = true; 5750 } 5751 5752 // If we removed all uses, nuke the shuffle. 5753 if (SVI->use_empty()) { 5754 SVI->eraseFromParent(); 5755 MadeChange = true; 5756 } 5757 5758 return MadeChange; 5759 } 5760 5761 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5762 if (!TLI || !DL) 5763 return false; 5764 5765 Value *Cond = SI->getCondition(); 5766 Type *OldType = Cond->getType(); 5767 LLVMContext &Context = Cond->getContext(); 5768 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5769 unsigned RegWidth = RegType.getSizeInBits(); 5770 5771 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5772 return false; 5773 5774 // If the register width is greater than the type width, expand the condition 5775 // of the switch instruction and each case constant to the width of the 5776 // register. By widening the type of the switch condition, subsequent 5777 // comparisons (for case comparisons) will not need to be extended to the 5778 // preferred register width, so we will potentially eliminate N-1 extends, 5779 // where N is the number of cases in the switch. 5780 auto *NewType = Type::getIntNTy(Context, RegWidth); 5781 5782 // Zero-extend the switch condition and case constants unless the switch 5783 // condition is a function argument that is already being sign-extended. 5784 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5785 // everything instead. 5786 Instruction::CastOps ExtType = Instruction::ZExt; 5787 if (auto *Arg = dyn_cast<Argument>(Cond)) 5788 if (Arg->hasSExtAttr()) 5789 ExtType = Instruction::SExt; 5790 5791 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5792 ExtInst->insertBefore(SI); 5793 SI->setCondition(ExtInst); 5794 for (auto Case : SI->cases()) { 5795 APInt NarrowConst = Case.getCaseValue()->getValue(); 5796 APInt WideConst = (ExtType == Instruction::ZExt) ? 5797 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5798 Case.setValue(ConstantInt::get(Context, WideConst)); 5799 } 5800 5801 return true; 5802 } 5803 5804 5805 namespace { 5806 5807 /// Helper class to promote a scalar operation to a vector one. 5808 /// This class is used to move downward extractelement transition. 5809 /// E.g., 5810 /// a = vector_op <2 x i32> 5811 /// b = extractelement <2 x i32> a, i32 0 5812 /// c = scalar_op b 5813 /// store c 5814 /// 5815 /// => 5816 /// a = vector_op <2 x i32> 5817 /// c = vector_op a (equivalent to scalar_op on the related lane) 5818 /// * d = extractelement <2 x i32> c, i32 0 5819 /// * store d 5820 /// Assuming both extractelement and store can be combine, we get rid of the 5821 /// transition. 5822 class VectorPromoteHelper { 5823 /// DataLayout associated with the current module. 5824 const DataLayout &DL; 5825 5826 /// Used to perform some checks on the legality of vector operations. 5827 const TargetLowering &TLI; 5828 5829 /// Used to estimated the cost of the promoted chain. 5830 const TargetTransformInfo &TTI; 5831 5832 /// The transition being moved downwards. 5833 Instruction *Transition; 5834 5835 /// The sequence of instructions to be promoted. 5836 SmallVector<Instruction *, 4> InstsToBePromoted; 5837 5838 /// Cost of combining a store and an extract. 5839 unsigned StoreExtractCombineCost; 5840 5841 /// Instruction that will be combined with the transition. 5842 Instruction *CombineInst = nullptr; 5843 5844 /// The instruction that represents the current end of the transition. 5845 /// Since we are faking the promotion until we reach the end of the chain 5846 /// of computation, we need a way to get the current end of the transition. 5847 Instruction *getEndOfTransition() const { 5848 if (InstsToBePromoted.empty()) 5849 return Transition; 5850 return InstsToBePromoted.back(); 5851 } 5852 5853 /// Return the index of the original value in the transition. 5854 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5855 /// c, is at index 0. 5856 unsigned getTransitionOriginalValueIdx() const { 5857 assert(isa<ExtractElementInst>(Transition) && 5858 "Other kind of transitions are not supported yet"); 5859 return 0; 5860 } 5861 5862 /// Return the index of the index in the transition. 5863 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5864 /// is at index 1. 5865 unsigned getTransitionIdx() const { 5866 assert(isa<ExtractElementInst>(Transition) && 5867 "Other kind of transitions are not supported yet"); 5868 return 1; 5869 } 5870 5871 /// Get the type of the transition. 5872 /// This is the type of the original value. 5873 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5874 /// transition is <2 x i32>. 5875 Type *getTransitionType() const { 5876 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5877 } 5878 5879 /// Promote \p ToBePromoted by moving \p Def downward through. 5880 /// I.e., we have the following sequence: 5881 /// Def = Transition <ty1> a to <ty2> 5882 /// b = ToBePromoted <ty2> Def, ... 5883 /// => 5884 /// b = ToBePromoted <ty1> a, ... 5885 /// Def = Transition <ty1> ToBePromoted to <ty2> 5886 void promoteImpl(Instruction *ToBePromoted); 5887 5888 /// Check whether or not it is profitable to promote all the 5889 /// instructions enqueued to be promoted. 5890 bool isProfitableToPromote() { 5891 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5892 unsigned Index = isa<ConstantInt>(ValIdx) 5893 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5894 : -1; 5895 Type *PromotedType = getTransitionType(); 5896 5897 StoreInst *ST = cast<StoreInst>(CombineInst); 5898 unsigned AS = ST->getPointerAddressSpace(); 5899 unsigned Align = ST->getAlignment(); 5900 // Check if this store is supported. 5901 if (!TLI.allowsMisalignedMemoryAccesses( 5902 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5903 Align)) { 5904 // If this is not supported, there is no way we can combine 5905 // the extract with the store. 5906 return false; 5907 } 5908 5909 // The scalar chain of computation has to pay for the transition 5910 // scalar to vector. 5911 // The vector chain has to account for the combining cost. 5912 uint64_t ScalarCost = 5913 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5914 uint64_t VectorCost = StoreExtractCombineCost; 5915 for (const auto &Inst : InstsToBePromoted) { 5916 // Compute the cost. 5917 // By construction, all instructions being promoted are arithmetic ones. 5918 // Moreover, one argument is a constant that can be viewed as a splat 5919 // constant. 5920 Value *Arg0 = Inst->getOperand(0); 5921 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5922 isa<ConstantFP>(Arg0); 5923 TargetTransformInfo::OperandValueKind Arg0OVK = 5924 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5925 : TargetTransformInfo::OK_AnyValue; 5926 TargetTransformInfo::OperandValueKind Arg1OVK = 5927 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5928 : TargetTransformInfo::OK_AnyValue; 5929 ScalarCost += TTI.getArithmeticInstrCost( 5930 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5931 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5932 Arg0OVK, Arg1OVK); 5933 } 5934 LLVM_DEBUG( 5935 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5936 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5937 return ScalarCost > VectorCost; 5938 } 5939 5940 /// Generate a constant vector with \p Val with the same 5941 /// number of elements as the transition. 5942 /// \p UseSplat defines whether or not \p Val should be replicated 5943 /// across the whole vector. 5944 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5945 /// otherwise we generate a vector with as many undef as possible: 5946 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5947 /// used at the index of the extract. 5948 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5949 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5950 if (!UseSplat) { 5951 // If we cannot determine where the constant must be, we have to 5952 // use a splat constant. 5953 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5954 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5955 ExtractIdx = CstVal->getSExtValue(); 5956 else 5957 UseSplat = true; 5958 } 5959 5960 unsigned End = getTransitionType()->getVectorNumElements(); 5961 if (UseSplat) 5962 return ConstantVector::getSplat(End, Val); 5963 5964 SmallVector<Constant *, 4> ConstVec; 5965 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5966 for (unsigned Idx = 0; Idx != End; ++Idx) { 5967 if (Idx == ExtractIdx) 5968 ConstVec.push_back(Val); 5969 else 5970 ConstVec.push_back(UndefVal); 5971 } 5972 return ConstantVector::get(ConstVec); 5973 } 5974 5975 /// Check if promoting to a vector type an operand at \p OperandIdx 5976 /// in \p Use can trigger undefined behavior. 5977 static bool canCauseUndefinedBehavior(const Instruction *Use, 5978 unsigned OperandIdx) { 5979 // This is not safe to introduce undef when the operand is on 5980 // the right hand side of a division-like instruction. 5981 if (OperandIdx != 1) 5982 return false; 5983 switch (Use->getOpcode()) { 5984 default: 5985 return false; 5986 case Instruction::SDiv: 5987 case Instruction::UDiv: 5988 case Instruction::SRem: 5989 case Instruction::URem: 5990 return true; 5991 case Instruction::FDiv: 5992 case Instruction::FRem: 5993 return !Use->hasNoNaNs(); 5994 } 5995 llvm_unreachable(nullptr); 5996 } 5997 5998 public: 5999 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6000 const TargetTransformInfo &TTI, Instruction *Transition, 6001 unsigned CombineCost) 6002 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6003 StoreExtractCombineCost(CombineCost) { 6004 assert(Transition && "Do not know how to promote null"); 6005 } 6006 6007 /// Check if we can promote \p ToBePromoted to \p Type. 6008 bool canPromote(const Instruction *ToBePromoted) const { 6009 // We could support CastInst too. 6010 return isa<BinaryOperator>(ToBePromoted); 6011 } 6012 6013 /// Check if it is profitable to promote \p ToBePromoted 6014 /// by moving downward the transition through. 6015 bool shouldPromote(const Instruction *ToBePromoted) const { 6016 // Promote only if all the operands can be statically expanded. 6017 // Indeed, we do not want to introduce any new kind of transitions. 6018 for (const Use &U : ToBePromoted->operands()) { 6019 const Value *Val = U.get(); 6020 if (Val == getEndOfTransition()) { 6021 // If the use is a division and the transition is on the rhs, 6022 // we cannot promote the operation, otherwise we may create a 6023 // division by zero. 6024 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6025 return false; 6026 continue; 6027 } 6028 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6029 !isa<ConstantFP>(Val)) 6030 return false; 6031 } 6032 // Check that the resulting operation is legal. 6033 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6034 if (!ISDOpcode) 6035 return false; 6036 return StressStoreExtract || 6037 TLI.isOperationLegalOrCustom( 6038 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6039 } 6040 6041 /// Check whether or not \p Use can be combined 6042 /// with the transition. 6043 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6044 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6045 6046 /// Record \p ToBePromoted as part of the chain to be promoted. 6047 void enqueueForPromotion(Instruction *ToBePromoted) { 6048 InstsToBePromoted.push_back(ToBePromoted); 6049 } 6050 6051 /// Set the instruction that will be combined with the transition. 6052 void recordCombineInstruction(Instruction *ToBeCombined) { 6053 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6054 CombineInst = ToBeCombined; 6055 } 6056 6057 /// Promote all the instructions enqueued for promotion if it is 6058 /// is profitable. 6059 /// \return True if the promotion happened, false otherwise. 6060 bool promote() { 6061 // Check if there is something to promote. 6062 // Right now, if we do not have anything to combine with, 6063 // we assume the promotion is not profitable. 6064 if (InstsToBePromoted.empty() || !CombineInst) 6065 return false; 6066 6067 // Check cost. 6068 if (!StressStoreExtract && !isProfitableToPromote()) 6069 return false; 6070 6071 // Promote. 6072 for (auto &ToBePromoted : InstsToBePromoted) 6073 promoteImpl(ToBePromoted); 6074 InstsToBePromoted.clear(); 6075 return true; 6076 } 6077 }; 6078 6079 } // end anonymous namespace 6080 6081 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6082 // At this point, we know that all the operands of ToBePromoted but Def 6083 // can be statically promoted. 6084 // For Def, we need to use its parameter in ToBePromoted: 6085 // b = ToBePromoted ty1 a 6086 // Def = Transition ty1 b to ty2 6087 // Move the transition down. 6088 // 1. Replace all uses of the promoted operation by the transition. 6089 // = ... b => = ... Def. 6090 assert(ToBePromoted->getType() == Transition->getType() && 6091 "The type of the result of the transition does not match " 6092 "the final type"); 6093 ToBePromoted->replaceAllUsesWith(Transition); 6094 // 2. Update the type of the uses. 6095 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6096 Type *TransitionTy = getTransitionType(); 6097 ToBePromoted->mutateType(TransitionTy); 6098 // 3. Update all the operands of the promoted operation with promoted 6099 // operands. 6100 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6101 for (Use &U : ToBePromoted->operands()) { 6102 Value *Val = U.get(); 6103 Value *NewVal = nullptr; 6104 if (Val == Transition) 6105 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6106 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6107 isa<ConstantFP>(Val)) { 6108 // Use a splat constant if it is not safe to use undef. 6109 NewVal = getConstantVector( 6110 cast<Constant>(Val), 6111 isa<UndefValue>(Val) || 6112 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6113 } else 6114 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6115 "this?"); 6116 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6117 } 6118 Transition->moveAfter(ToBePromoted); 6119 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6120 } 6121 6122 /// Some targets can do store(extractelement) with one instruction. 6123 /// Try to push the extractelement towards the stores when the target 6124 /// has this feature and this is profitable. 6125 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6126 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6127 if (DisableStoreExtract || !TLI || 6128 (!StressStoreExtract && 6129 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6130 Inst->getOperand(1), CombineCost))) 6131 return false; 6132 6133 // At this point we know that Inst is a vector to scalar transition. 6134 // Try to move it down the def-use chain, until: 6135 // - We can combine the transition with its single use 6136 // => we got rid of the transition. 6137 // - We escape the current basic block 6138 // => we would need to check that we are moving it at a cheaper place and 6139 // we do not do that for now. 6140 BasicBlock *Parent = Inst->getParent(); 6141 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6142 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6143 // If the transition has more than one use, assume this is not going to be 6144 // beneficial. 6145 while (Inst->hasOneUse()) { 6146 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6147 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6148 6149 if (ToBePromoted->getParent() != Parent) { 6150 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6151 << ToBePromoted->getParent()->getName() 6152 << ") than the transition (" << Parent->getName() 6153 << ").\n"); 6154 return false; 6155 } 6156 6157 if (VPH.canCombine(ToBePromoted)) { 6158 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6159 << "will be combined with: " << *ToBePromoted << '\n'); 6160 VPH.recordCombineInstruction(ToBePromoted); 6161 bool Changed = VPH.promote(); 6162 NumStoreExtractExposed += Changed; 6163 return Changed; 6164 } 6165 6166 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6167 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6168 return false; 6169 6170 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6171 6172 VPH.enqueueForPromotion(ToBePromoted); 6173 Inst = ToBePromoted; 6174 } 6175 return false; 6176 } 6177 6178 /// For the instruction sequence of store below, F and I values 6179 /// are bundled together as an i64 value before being stored into memory. 6180 /// Sometimes it is more efficent to generate separate stores for F and I, 6181 /// which can remove the bitwise instructions or sink them to colder places. 6182 /// 6183 /// (store (or (zext (bitcast F to i32) to i64), 6184 /// (shl (zext I to i64), 32)), addr) --> 6185 /// (store F, addr) and (store I, addr+4) 6186 /// 6187 /// Similarly, splitting for other merged store can also be beneficial, like: 6188 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6189 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6190 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6191 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6192 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6193 /// 6194 /// We allow each target to determine specifically which kind of splitting is 6195 /// supported. 6196 /// 6197 /// The store patterns are commonly seen from the simple code snippet below 6198 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6199 /// void goo(const std::pair<int, float> &); 6200 /// hoo() { 6201 /// ... 6202 /// goo(std::make_pair(tmp, ftmp)); 6203 /// ... 6204 /// } 6205 /// 6206 /// Although we already have similar splitting in DAG Combine, we duplicate 6207 /// it in CodeGenPrepare to catch the case in which pattern is across 6208 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6209 /// during code expansion. 6210 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6211 const TargetLowering &TLI) { 6212 // Handle simple but common cases only. 6213 Type *StoreType = SI.getValueOperand()->getType(); 6214 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6215 DL.getTypeSizeInBits(StoreType) == 0) 6216 return false; 6217 6218 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6219 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6220 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6221 DL.getTypeSizeInBits(SplitStoreType)) 6222 return false; 6223 6224 // Match the following patterns: 6225 // (store (or (zext LValue to i64), 6226 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6227 // or 6228 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6229 // (zext LValue to i64), 6230 // Expect both operands of OR and the first operand of SHL have only 6231 // one use. 6232 Value *LValue, *HValue; 6233 if (!match(SI.getValueOperand(), 6234 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6235 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6236 m_SpecificInt(HalfValBitSize)))))) 6237 return false; 6238 6239 // Check LValue and HValue are int with size less or equal than 32. 6240 if (!LValue->getType()->isIntegerTy() || 6241 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6242 !HValue->getType()->isIntegerTy() || 6243 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6244 return false; 6245 6246 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6247 // as the input of target query. 6248 auto *LBC = dyn_cast<BitCastInst>(LValue); 6249 auto *HBC = dyn_cast<BitCastInst>(HValue); 6250 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6251 : EVT::getEVT(LValue->getType()); 6252 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6253 : EVT::getEVT(HValue->getType()); 6254 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6255 return false; 6256 6257 // Start to split store. 6258 IRBuilder<> Builder(SI.getContext()); 6259 Builder.SetInsertPoint(&SI); 6260 6261 // If LValue/HValue is a bitcast in another BB, create a new one in current 6262 // BB so it may be merged with the splitted stores by dag combiner. 6263 if (LBC && LBC->getParent() != SI.getParent()) 6264 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6265 if (HBC && HBC->getParent() != SI.getParent()) 6266 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6267 6268 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6269 auto CreateSplitStore = [&](Value *V, bool Upper) { 6270 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6271 Value *Addr = Builder.CreateBitCast( 6272 SI.getOperand(1), 6273 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6274 if ((IsLE && Upper) || (!IsLE && !Upper)) 6275 Addr = Builder.CreateGEP( 6276 SplitStoreType, Addr, 6277 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6278 Builder.CreateAlignedStore( 6279 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6280 }; 6281 6282 CreateSplitStore(LValue, false); 6283 CreateSplitStore(HValue, true); 6284 6285 // Delete the old store. 6286 SI.eraseFromParent(); 6287 return true; 6288 } 6289 6290 // Return true if the GEP has two operands, the first operand is of a sequential 6291 // type, and the second operand is a constant. 6292 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6293 gep_type_iterator I = gep_type_begin(*GEP); 6294 return GEP->getNumOperands() == 2 && 6295 I.isSequential() && 6296 isa<ConstantInt>(GEP->getOperand(1)); 6297 } 6298 6299 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6300 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6301 // reducing liveness interference across those edges benefits global register 6302 // allocation. Currently handles only certain cases. 6303 // 6304 // For example, unmerge %GEPI and %UGEPI as below. 6305 // 6306 // ---------- BEFORE ---------- 6307 // SrcBlock: 6308 // ... 6309 // %GEPIOp = ... 6310 // ... 6311 // %GEPI = gep %GEPIOp, Idx 6312 // ... 6313 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6314 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6315 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6316 // %UGEPI) 6317 // 6318 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6319 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6320 // ... 6321 // 6322 // DstBi: 6323 // ... 6324 // %UGEPI = gep %GEPIOp, UIdx 6325 // ... 6326 // --------------------------- 6327 // 6328 // ---------- AFTER ---------- 6329 // SrcBlock: 6330 // ... (same as above) 6331 // (* %GEPI is still alive on the indirectbr edges) 6332 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6333 // unmerging) 6334 // ... 6335 // 6336 // DstBi: 6337 // ... 6338 // %UGEPI = gep %GEPI, (UIdx-Idx) 6339 // ... 6340 // --------------------------- 6341 // 6342 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6343 // no longer alive on them. 6344 // 6345 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6346 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6347 // not to disable further simplications and optimizations as a result of GEP 6348 // merging. 6349 // 6350 // Note this unmerging may increase the length of the data flow critical path 6351 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6352 // between the register pressure and the length of data-flow critical 6353 // path. Restricting this to the uncommon IndirectBr case would minimize the 6354 // impact of potentially longer critical path, if any, and the impact on compile 6355 // time. 6356 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6357 const TargetTransformInfo *TTI) { 6358 BasicBlock *SrcBlock = GEPI->getParent(); 6359 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6360 // (non-IndirectBr) cases exit early here. 6361 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6362 return false; 6363 // Check that GEPI is a simple gep with a single constant index. 6364 if (!GEPSequentialConstIndexed(GEPI)) 6365 return false; 6366 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6367 // Check that GEPI is a cheap one. 6368 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6369 > TargetTransformInfo::TCC_Basic) 6370 return false; 6371 Value *GEPIOp = GEPI->getOperand(0); 6372 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6373 if (!isa<Instruction>(GEPIOp)) 6374 return false; 6375 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6376 if (GEPIOpI->getParent() != SrcBlock) 6377 return false; 6378 // Check that GEP is used outside the block, meaning it's alive on the 6379 // IndirectBr edge(s). 6380 if (find_if(GEPI->users(), [&](User *Usr) { 6381 if (auto *I = dyn_cast<Instruction>(Usr)) { 6382 if (I->getParent() != SrcBlock) { 6383 return true; 6384 } 6385 } 6386 return false; 6387 }) == GEPI->users().end()) 6388 return false; 6389 // The second elements of the GEP chains to be unmerged. 6390 std::vector<GetElementPtrInst *> UGEPIs; 6391 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6392 // on IndirectBr edges. 6393 for (User *Usr : GEPIOp->users()) { 6394 if (Usr == GEPI) continue; 6395 // Check if Usr is an Instruction. If not, give up. 6396 if (!isa<Instruction>(Usr)) 6397 return false; 6398 auto *UI = cast<Instruction>(Usr); 6399 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6400 if (UI->getParent() == SrcBlock) 6401 continue; 6402 // Check if Usr is a GEP. If not, give up. 6403 if (!isa<GetElementPtrInst>(Usr)) 6404 return false; 6405 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6406 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6407 // the pointer operand to it. If so, record it in the vector. If not, give 6408 // up. 6409 if (!GEPSequentialConstIndexed(UGEPI)) 6410 return false; 6411 if (UGEPI->getOperand(0) != GEPIOp) 6412 return false; 6413 if (GEPIIdx->getType() != 6414 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6415 return false; 6416 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6417 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6418 > TargetTransformInfo::TCC_Basic) 6419 return false; 6420 UGEPIs.push_back(UGEPI); 6421 } 6422 if (UGEPIs.size() == 0) 6423 return false; 6424 // Check the materializing cost of (Uidx-Idx). 6425 for (GetElementPtrInst *UGEPI : UGEPIs) { 6426 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6427 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6428 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6429 if (ImmCost > TargetTransformInfo::TCC_Basic) 6430 return false; 6431 } 6432 // Now unmerge between GEPI and UGEPIs. 6433 for (GetElementPtrInst *UGEPI : UGEPIs) { 6434 UGEPI->setOperand(0, GEPI); 6435 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6436 Constant *NewUGEPIIdx = 6437 ConstantInt::get(GEPIIdx->getType(), 6438 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6439 UGEPI->setOperand(1, NewUGEPIIdx); 6440 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6441 // inbounds to avoid UB. 6442 if (!GEPI->isInBounds()) { 6443 UGEPI->setIsInBounds(false); 6444 } 6445 } 6446 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6447 // alive on IndirectBr edges). 6448 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6449 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6450 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6451 return true; 6452 } 6453 6454 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6455 // Bail out if we inserted the instruction to prevent optimizations from 6456 // stepping on each other's toes. 6457 if (InsertedInsts.count(I)) 6458 return false; 6459 6460 if (PHINode *P = dyn_cast<PHINode>(I)) { 6461 // It is possible for very late stage optimizations (such as SimplifyCFG) 6462 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6463 // trivial PHI, go ahead and zap it here. 6464 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6465 P->replaceAllUsesWith(V); 6466 P->eraseFromParent(); 6467 ++NumPHIsElim; 6468 return true; 6469 } 6470 return false; 6471 } 6472 6473 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6474 // If the source of the cast is a constant, then this should have 6475 // already been constant folded. The only reason NOT to constant fold 6476 // it is if something (e.g. LSR) was careful to place the constant 6477 // evaluation in a block other than then one that uses it (e.g. to hoist 6478 // the address of globals out of a loop). If this is the case, we don't 6479 // want to forward-subst the cast. 6480 if (isa<Constant>(CI->getOperand(0))) 6481 return false; 6482 6483 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6484 return true; 6485 6486 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6487 /// Sink a zext or sext into its user blocks if the target type doesn't 6488 /// fit in one register 6489 if (TLI && 6490 TLI->getTypeAction(CI->getContext(), 6491 TLI->getValueType(*DL, CI->getType())) == 6492 TargetLowering::TypeExpandInteger) { 6493 return SinkCast(CI); 6494 } else { 6495 bool MadeChange = optimizeExt(I); 6496 return MadeChange | optimizeExtUses(I); 6497 } 6498 } 6499 return false; 6500 } 6501 6502 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6503 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6504 return OptimizeCmpExpression(CI, TLI); 6505 6506 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6507 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6508 if (TLI) { 6509 bool Modified = optimizeLoadExt(LI); 6510 unsigned AS = LI->getPointerAddressSpace(); 6511 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6512 return Modified; 6513 } 6514 return false; 6515 } 6516 6517 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6518 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6519 return true; 6520 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6521 if (TLI) { 6522 unsigned AS = SI->getPointerAddressSpace(); 6523 return optimizeMemoryInst(I, SI->getOperand(1), 6524 SI->getOperand(0)->getType(), AS); 6525 } 6526 return false; 6527 } 6528 6529 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6530 unsigned AS = RMW->getPointerAddressSpace(); 6531 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6532 RMW->getType(), AS); 6533 } 6534 6535 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6536 unsigned AS = CmpX->getPointerAddressSpace(); 6537 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6538 CmpX->getCompareOperand()->getType(), AS); 6539 } 6540 6541 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6542 6543 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6544 EnableAndCmpSinking && TLI) 6545 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6546 6547 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6548 BinOp->getOpcode() == Instruction::LShr)) { 6549 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6550 if (TLI && CI && TLI->hasExtractBitsInsn()) 6551 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6552 6553 return false; 6554 } 6555 6556 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6557 if (GEPI->hasAllZeroIndices()) { 6558 /// The GEP operand must be a pointer, so must its result -> BitCast 6559 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6560 GEPI->getName(), GEPI); 6561 GEPI->replaceAllUsesWith(NC); 6562 GEPI->eraseFromParent(); 6563 ++NumGEPsElim; 6564 optimizeInst(NC, ModifiedDT); 6565 return true; 6566 } 6567 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6568 return true; 6569 } 6570 return false; 6571 } 6572 6573 if (CallInst *CI = dyn_cast<CallInst>(I)) 6574 return optimizeCallInst(CI, ModifiedDT); 6575 6576 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6577 return optimizeSelectInst(SI); 6578 6579 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6580 return optimizeShuffleVectorInst(SVI); 6581 6582 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6583 return optimizeSwitchInst(Switch); 6584 6585 if (isa<ExtractElementInst>(I)) 6586 return optimizeExtractElementInst(I); 6587 6588 return false; 6589 } 6590 6591 /// Given an OR instruction, check to see if this is a bitreverse 6592 /// idiom. If so, insert the new intrinsic and return true. 6593 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6594 const TargetLowering &TLI) { 6595 if (!I.getType()->isIntegerTy() || 6596 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6597 TLI.getValueType(DL, I.getType(), true))) 6598 return false; 6599 6600 SmallVector<Instruction*, 4> Insts; 6601 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6602 return false; 6603 Instruction *LastInst = Insts.back(); 6604 I.replaceAllUsesWith(LastInst); 6605 RecursivelyDeleteTriviallyDeadInstructions(&I); 6606 return true; 6607 } 6608 6609 // In this pass we look for GEP and cast instructions that are used 6610 // across basic blocks and rewrite them to improve basic-block-at-a-time 6611 // selection. 6612 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6613 SunkAddrs.clear(); 6614 bool MadeChange = false; 6615 6616 CurInstIterator = BB.begin(); 6617 while (CurInstIterator != BB.end()) { 6618 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6619 if (ModifiedDT) 6620 return true; 6621 } 6622 6623 bool MadeBitReverse = true; 6624 while (TLI && MadeBitReverse) { 6625 MadeBitReverse = false; 6626 for (auto &I : reverse(BB)) { 6627 if (makeBitReverse(I, *DL, *TLI)) { 6628 MadeBitReverse = MadeChange = true; 6629 ModifiedDT = true; 6630 break; 6631 } 6632 } 6633 } 6634 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6635 6636 return MadeChange; 6637 } 6638 6639 // llvm.dbg.value is far away from the value then iSel may not be able 6640 // handle it properly. iSel will drop llvm.dbg.value if it can not 6641 // find a node corresponding to the value. 6642 bool CodeGenPrepare::placeDbgValues(Function &F) { 6643 bool MadeChange = false; 6644 for (BasicBlock &BB : F) { 6645 Instruction *PrevNonDbgInst = nullptr; 6646 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6647 Instruction *Insn = &*BI++; 6648 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6649 // Leave dbg.values that refer to an alloca alone. These 6650 // intrinsics describe the address of a variable (= the alloca) 6651 // being taken. They should not be moved next to the alloca 6652 // (and to the beginning of the scope), but rather stay close to 6653 // where said address is used. 6654 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6655 PrevNonDbgInst = Insn; 6656 continue; 6657 } 6658 6659 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6660 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6661 // If VI is a phi in a block with an EHPad terminator, we can't insert 6662 // after it. 6663 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6664 continue; 6665 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6666 << *DVI << ' ' << *VI); 6667 DVI->removeFromParent(); 6668 if (isa<PHINode>(VI)) 6669 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6670 else 6671 DVI->insertAfter(VI); 6672 MadeChange = true; 6673 ++NumDbgValueMoved; 6674 } 6675 } 6676 } 6677 return MadeChange; 6678 } 6679 6680 /// Scale down both weights to fit into uint32_t. 6681 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6682 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6683 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6684 NewTrue = NewTrue / Scale; 6685 NewFalse = NewFalse / Scale; 6686 } 6687 6688 /// Some targets prefer to split a conditional branch like: 6689 /// \code 6690 /// %0 = icmp ne i32 %a, 0 6691 /// %1 = icmp ne i32 %b, 0 6692 /// %or.cond = or i1 %0, %1 6693 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6694 /// \endcode 6695 /// into multiple branch instructions like: 6696 /// \code 6697 /// bb1: 6698 /// %0 = icmp ne i32 %a, 0 6699 /// br i1 %0, label %TrueBB, label %bb2 6700 /// bb2: 6701 /// %1 = icmp ne i32 %b, 0 6702 /// br i1 %1, label %TrueBB, label %FalseBB 6703 /// \endcode 6704 /// This usually allows instruction selection to do even further optimizations 6705 /// and combine the compare with the branch instruction. Currently this is 6706 /// applied for targets which have "cheap" jump instructions. 6707 /// 6708 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6709 /// 6710 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6711 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6712 return false; 6713 6714 bool MadeChange = false; 6715 for (auto &BB : F) { 6716 // Does this BB end with the following? 6717 // %cond1 = icmp|fcmp|binary instruction ... 6718 // %cond2 = icmp|fcmp|binary instruction ... 6719 // %cond.or = or|and i1 %cond1, cond2 6720 // br i1 %cond.or label %dest1, label %dest2" 6721 BinaryOperator *LogicOp; 6722 BasicBlock *TBB, *FBB; 6723 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6724 continue; 6725 6726 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6727 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6728 continue; 6729 6730 unsigned Opc; 6731 Value *Cond1, *Cond2; 6732 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6733 m_OneUse(m_Value(Cond2))))) 6734 Opc = Instruction::And; 6735 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6736 m_OneUse(m_Value(Cond2))))) 6737 Opc = Instruction::Or; 6738 else 6739 continue; 6740 6741 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6742 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6743 continue; 6744 6745 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6746 6747 // Create a new BB. 6748 auto TmpBB = 6749 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6750 BB.getParent(), BB.getNextNode()); 6751 6752 // Update original basic block by using the first condition directly by the 6753 // branch instruction and removing the no longer needed and/or instruction. 6754 Br1->setCondition(Cond1); 6755 LogicOp->eraseFromParent(); 6756 6757 // Depending on the conditon we have to either replace the true or the false 6758 // successor of the original branch instruction. 6759 if (Opc == Instruction::And) 6760 Br1->setSuccessor(0, TmpBB); 6761 else 6762 Br1->setSuccessor(1, TmpBB); 6763 6764 // Fill in the new basic block. 6765 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6766 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6767 I->removeFromParent(); 6768 I->insertBefore(Br2); 6769 } 6770 6771 // Update PHI nodes in both successors. The original BB needs to be 6772 // replaced in one successor's PHI nodes, because the branch comes now from 6773 // the newly generated BB (NewBB). In the other successor we need to add one 6774 // incoming edge to the PHI nodes, because both branch instructions target 6775 // now the same successor. Depending on the original branch condition 6776 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6777 // we perform the correct update for the PHI nodes. 6778 // This doesn't change the successor order of the just created branch 6779 // instruction (or any other instruction). 6780 if (Opc == Instruction::Or) 6781 std::swap(TBB, FBB); 6782 6783 // Replace the old BB with the new BB. 6784 for (PHINode &PN : TBB->phis()) { 6785 int i; 6786 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6787 PN.setIncomingBlock(i, TmpBB); 6788 } 6789 6790 // Add another incoming edge form the new BB. 6791 for (PHINode &PN : FBB->phis()) { 6792 auto *Val = PN.getIncomingValueForBlock(&BB); 6793 PN.addIncoming(Val, TmpBB); 6794 } 6795 6796 // Update the branch weights (from SelectionDAGBuilder:: 6797 // FindMergedConditions). 6798 if (Opc == Instruction::Or) { 6799 // Codegen X | Y as: 6800 // BB1: 6801 // jmp_if_X TBB 6802 // jmp TmpBB 6803 // TmpBB: 6804 // jmp_if_Y TBB 6805 // jmp FBB 6806 // 6807 6808 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6809 // The requirement is that 6810 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6811 // = TrueProb for orignal BB. 6812 // Assuming the orignal weights are A and B, one choice is to set BB1's 6813 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6814 // assumes that 6815 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6816 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6817 // TmpBB, but the math is more complicated. 6818 uint64_t TrueWeight, FalseWeight; 6819 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6820 uint64_t NewTrueWeight = TrueWeight; 6821 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6822 scaleWeights(NewTrueWeight, NewFalseWeight); 6823 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6824 .createBranchWeights(TrueWeight, FalseWeight)); 6825 6826 NewTrueWeight = TrueWeight; 6827 NewFalseWeight = 2 * FalseWeight; 6828 scaleWeights(NewTrueWeight, NewFalseWeight); 6829 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6830 .createBranchWeights(TrueWeight, FalseWeight)); 6831 } 6832 } else { 6833 // Codegen X & Y as: 6834 // BB1: 6835 // jmp_if_X TmpBB 6836 // jmp FBB 6837 // TmpBB: 6838 // jmp_if_Y TBB 6839 // jmp FBB 6840 // 6841 // This requires creation of TmpBB after CurBB. 6842 6843 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6844 // The requirement is that 6845 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6846 // = FalseProb for orignal BB. 6847 // Assuming the orignal weights are A and B, one choice is to set BB1's 6848 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6849 // assumes that 6850 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6851 uint64_t TrueWeight, FalseWeight; 6852 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6853 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6854 uint64_t NewFalseWeight = FalseWeight; 6855 scaleWeights(NewTrueWeight, NewFalseWeight); 6856 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6857 .createBranchWeights(TrueWeight, FalseWeight)); 6858 6859 NewTrueWeight = 2 * TrueWeight; 6860 NewFalseWeight = FalseWeight; 6861 scaleWeights(NewTrueWeight, NewFalseWeight); 6862 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6863 .createBranchWeights(TrueWeight, FalseWeight)); 6864 } 6865 } 6866 6867 // Note: No point in getting fancy here, since the DT info is never 6868 // available to CodeGenPrepare. 6869 ModifiedDT = true; 6870 6871 MadeChange = true; 6872 6873 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6874 TmpBB->dump()); 6875 } 6876 return MadeChange; 6877 } 6878