1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/BlockFrequency.h"
77 #include "llvm/Support/BranchProbability.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/MachineValueType.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetOptions.h"
88 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
89 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
91 #include <algorithm>
92 #include <cassert>
93 #include <cstdint>
94 #include <iterator>
95 #include <limits>
96 #include <memory>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 
103 #define DEBUG_TYPE "codegenprepare"
104 
105 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
106 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
107 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
109                       "sunken Cmps");
110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
111                        "of sunken Casts");
112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
113                           "computations were sunk");
114 STATISTIC(NumMemoryInstsPhiCreated,
115           "Number of phis created when address "
116           "computations were sunk to memory instructions");
117 STATISTIC(NumMemoryInstsSelectCreated,
118           "Number of select created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
121 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
122 STATISTIC(NumAndsAdded,
123           "Number of and mask instructions added to form ext loads");
124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
125 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
129 
130 static cl::opt<bool> DisableBranchOpts(
131   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
132   cl::desc("Disable branch optimizations in CodeGenPrepare"));
133 
134 static cl::opt<bool>
135     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
136                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool> DisableSelectToBranch(
139   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
140   cl::desc("Disable select to branch conversion."));
141 
142 static cl::opt<bool> AddrSinkUsingGEPs(
143   "addr-sink-using-gep", cl::Hidden, cl::init(true),
144   cl::desc("Address sinking in CGP using GEPs."));
145 
146 static cl::opt<bool> EnableAndCmpSinking(
147    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
148    cl::desc("Enable sinkinig and/cmp into branches."));
149 
150 static cl::opt<bool> DisableStoreExtract(
151     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
152     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
153 
154 static cl::opt<bool> StressStoreExtract(
155     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> DisableExtLdPromotion(
159     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
160     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
161              "CodeGenPrepare"));
162 
163 static cl::opt<bool> StressExtLdPromotion(
164     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
165     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
166              "optimization in CodeGenPrepare"));
167 
168 static cl::opt<bool> DisablePreheaderProtect(
169     "disable-preheader-prot", cl::Hidden, cl::init(false),
170     cl::desc("Disable protection against removing loop preheaders"));
171 
172 static cl::opt<bool> ProfileGuidedSectionPrefix(
173     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
174     cl::desc("Use profile info to add section prefix for hot/cold functions"));
175 
176 static cl::opt<unsigned> FreqRatioToSkipMerge(
177     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
178     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
179              "(frequency of destination block) is greater than this ratio"));
180 
181 static cl::opt<bool> ForceSplitStore(
182     "force-split-store", cl::Hidden, cl::init(false),
183     cl::desc("Force store splitting no matter what the target query says."));
184 
185 static cl::opt<bool>
186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
187     cl::desc("Enable merging of redundant sexts when one is dominating"
188     " the other."), cl::init(true));
189 
190 static cl::opt<bool> DisableComplexAddrModes(
191     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
192     cl::desc("Disables combining addressing modes with different parts "
193              "in optimizeMemoryInst."));
194 
195 static cl::opt<bool>
196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
197                 cl::desc("Allow creation of Phis in Address sinking."));
198 
199 static cl::opt<bool>
200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
201                    cl::desc("Allow creation of selects in Address sinking."));
202 
203 static cl::opt<bool> AddrSinkCombineBaseReg(
204     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
205     cl::desc("Allow combining of BaseReg field in Address sinking."));
206 
207 static cl::opt<bool> AddrSinkCombineBaseGV(
208     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
209     cl::desc("Allow combining of BaseGV field in Address sinking."));
210 
211 static cl::opt<bool> AddrSinkCombineBaseOffs(
212     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
213     cl::desc("Allow combining of BaseOffs field in Address sinking."));
214 
215 static cl::opt<bool> AddrSinkCombineScaledReg(
216     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
217     cl::desc("Allow combining of ScaledReg field in Address sinking."));
218 
219 static cl::opt<bool>
220     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
221                          cl::init(true),
222                          cl::desc("Enable splitting large offset of GEP."));
223 
224 namespace {
225 
226 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
227 using TypeIsSExt = PointerIntPair<Type *, 1, bool>;
228 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
229 using SExts = SmallVector<Instruction *, 16>;
230 using ValueToSExts = DenseMap<Value *, SExts>;
231 
232 class TypePromotionTransaction;
233 
234   class CodeGenPrepare : public FunctionPass {
235     const TargetMachine *TM = nullptr;
236     const TargetSubtargetInfo *SubtargetInfo;
237     const TargetLowering *TLI = nullptr;
238     const TargetRegisterInfo *TRI;
239     const TargetTransformInfo *TTI = nullptr;
240     const TargetLibraryInfo *TLInfo;
241     const LoopInfo *LI;
242     std::unique_ptr<BlockFrequencyInfo> BFI;
243     std::unique_ptr<BranchProbabilityInfo> BPI;
244 
245     /// As we scan instructions optimizing them, this is the next instruction
246     /// to optimize. Transforms that can invalidate this should update it.
247     BasicBlock::iterator CurInstIterator;
248 
249     /// Keeps track of non-local addresses that have been sunk into a block.
250     /// This allows us to avoid inserting duplicate code for blocks with
251     /// multiple load/stores of the same address. The usage of WeakTrackingVH
252     /// enables SunkAddrs to be treated as a cache whose entries can be
253     /// invalidated if a sunken address computation has been erased.
254     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
255 
256     /// Keeps track of all instructions inserted for the current function.
257     SetOfInstrs InsertedInsts;
258 
259     /// Keeps track of the type of the related instruction before their
260     /// promotion for the current function.
261     InstrToOrigTy PromotedInsts;
262 
263     /// Keep track of instructions removed during promotion.
264     SetOfInstrs RemovedInsts;
265 
266     /// Keep track of sext chains based on their initial value.
267     DenseMap<Value *, Instruction *> SeenChainsForSExt;
268 
269     /// Keep track of GEPs accessing the same data structures such as structs or
270     /// arrays that are candidates to be split later because of their large
271     /// size.
272     DenseMap<
273         AssertingVH<Value>,
274         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
275         LargeOffsetGEPMap;
276 
277     /// Keep track of new GEP base after splitting the GEPs having large offset.
278     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
279 
280     /// Map serial numbers to Large offset GEPs.
281     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
282 
283     /// Keep track of SExt promoted.
284     ValueToSExts ValToSExtendedUses;
285 
286     /// True if CFG is modified in any way.
287     bool ModifiedDT;
288 
289     /// True if optimizing for size.
290     bool OptSize;
291 
292     /// DataLayout for the Function being processed.
293     const DataLayout *DL = nullptr;
294 
295   public:
296     static char ID; // Pass identification, replacement for typeid
297 
298     CodeGenPrepare() : FunctionPass(ID) {
299       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
300     }
301 
302     bool runOnFunction(Function &F) override;
303 
304     StringRef getPassName() const override { return "CodeGen Prepare"; }
305 
306     void getAnalysisUsage(AnalysisUsage &AU) const override {
307       // FIXME: When we can selectively preserve passes, preserve the domtree.
308       AU.addRequired<ProfileSummaryInfoWrapperPass>();
309       AU.addRequired<TargetLibraryInfoWrapperPass>();
310       AU.addRequired<TargetTransformInfoWrapperPass>();
311       AU.addRequired<LoopInfoWrapperPass>();
312     }
313 
314   private:
315     bool eliminateFallThrough(Function &F);
316     bool eliminateMostlyEmptyBlocks(Function &F);
317     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
318     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
319     void eliminateMostlyEmptyBlock(BasicBlock *BB);
320     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
321                                        bool isPreheader);
322     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
323     bool optimizeInst(Instruction *I, bool &ModifiedDT);
324     bool optimizeMemoryInst(Instruction *I, Value *Addr,
325                             Type *AccessTy, unsigned AS);
326     bool optimizeInlineAsmInst(CallInst *CS);
327     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
328     bool optimizeExt(Instruction *&I);
329     bool optimizeExtUses(Instruction *I);
330     bool optimizeLoadExt(LoadInst *I);
331     bool optimizeSelectInst(SelectInst *SI);
332     bool optimizeShuffleVectorInst(ShuffleVectorInst *SI);
333     bool optimizeSwitchInst(SwitchInst *CI);
334     bool optimizeExtractElementInst(Instruction *Inst);
335     bool dupRetToEnableTailCallOpts(BasicBlock *BB);
336     bool placeDbgValues(Function &F);
337     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
338                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
339     bool tryToPromoteExts(TypePromotionTransaction &TPT,
340                           const SmallVectorImpl<Instruction *> &Exts,
341                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
342                           unsigned CreatedInstsCost = 0);
343     bool mergeSExts(Function &F);
344     bool splitLargeGEPOffsets();
345     bool performAddressTypePromotion(
346         Instruction *&Inst,
347         bool AllowPromotionWithoutCommonHeader,
348         bool HasPromoted, TypePromotionTransaction &TPT,
349         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
350     bool splitBranchCondition(Function &F);
351     bool simplifyOffsetableRelocate(Instruction &I);
352   };
353 
354 } // end anonymous namespace
355 
356 char CodeGenPrepare::ID = 0;
357 
358 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
359                       "Optimize for code generation", false, false)
360 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
361 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
362                     "Optimize for code generation", false, false)
363 
364 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
365 
366 bool CodeGenPrepare::runOnFunction(Function &F) {
367   if (skipFunction(F))
368     return false;
369 
370   DL = &F.getParent()->getDataLayout();
371 
372   bool EverMadeChange = false;
373   // Clear per function information.
374   InsertedInsts.clear();
375   PromotedInsts.clear();
376 
377   ModifiedDT = false;
378   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
379     TM = &TPC->getTM<TargetMachine>();
380     SubtargetInfo = TM->getSubtargetImpl(F);
381     TLI = SubtargetInfo->getTargetLowering();
382     TRI = SubtargetInfo->getRegisterInfo();
383   }
384   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
385   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
386   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
387   BPI.reset(new BranchProbabilityInfo(F, *LI));
388   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
389   OptSize = F.optForSize();
390 
391   ProfileSummaryInfo *PSI =
392       getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
393   if (ProfileGuidedSectionPrefix) {
394     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
395       F.setSectionPrefix(".hot");
396     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
397       F.setSectionPrefix(".unlikely");
398   }
399 
400   /// This optimization identifies DIV instructions that can be
401   /// profitably bypassed and carried out with a shorter, faster divide.
402   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
403       TLI->isSlowDivBypassed()) {
404     const DenseMap<unsigned int, unsigned int> &BypassWidths =
405        TLI->getBypassSlowDivWidths();
406     BasicBlock* BB = &*F.begin();
407     while (BB != nullptr) {
408       // bypassSlowDivision may create new BBs, but we don't want to reapply the
409       // optimization to those blocks.
410       BasicBlock* Next = BB->getNextNode();
411       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
412       BB = Next;
413     }
414   }
415 
416   // Eliminate blocks that contain only PHI nodes and an
417   // unconditional branch.
418   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
419 
420   // llvm.dbg.value is far away from the value then iSel may not be able
421   // handle it properly. iSel will drop llvm.dbg.value if it can not
422   // find a node corresponding to the value.
423   EverMadeChange |= placeDbgValues(F);
424 
425   if (!DisableBranchOpts)
426     EverMadeChange |= splitBranchCondition(F);
427 
428   // Split some critical edges where one of the sources is an indirect branch,
429   // to help generate sane code for PHIs involving such edges.
430   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
431 
432   bool MadeChange = true;
433   while (MadeChange) {
434     MadeChange = false;
435     SeenChainsForSExt.clear();
436     ValToSExtendedUses.clear();
437     RemovedInsts.clear();
438     LargeOffsetGEPMap.clear();
439     LargeOffsetGEPID.clear();
440     for (Function::iterator I = F.begin(); I != F.end(); ) {
441       BasicBlock *BB = &*I++;
442       bool ModifiedDTOnIteration = false;
443       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
444 
445       // Restart BB iteration if the dominator tree of the Function was changed
446       if (ModifiedDTOnIteration)
447         break;
448     }
449     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
450       MadeChange |= mergeSExts(F);
451     if (!LargeOffsetGEPMap.empty())
452       MadeChange |= splitLargeGEPOffsets();
453 
454     // Really free removed instructions during promotion.
455     for (Instruction *I : RemovedInsts)
456       I->deleteValue();
457 
458     EverMadeChange |= MadeChange;
459   }
460 
461   SunkAddrs.clear();
462 
463   if (!DisableBranchOpts) {
464     MadeChange = false;
465     SmallPtrSet<BasicBlock*, 8> WorkList;
466     for (BasicBlock &BB : F) {
467       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
468       MadeChange |= ConstantFoldTerminator(&BB, true);
469       if (!MadeChange) continue;
470 
471       for (SmallVectorImpl<BasicBlock*>::iterator
472              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
473         if (pred_begin(*II) == pred_end(*II))
474           WorkList.insert(*II);
475     }
476 
477     // Delete the dead blocks and any of their dead successors.
478     MadeChange |= !WorkList.empty();
479     while (!WorkList.empty()) {
480       BasicBlock *BB = *WorkList.begin();
481       WorkList.erase(BB);
482       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
483 
484       DeleteDeadBlock(BB);
485 
486       for (SmallVectorImpl<BasicBlock*>::iterator
487              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
488         if (pred_begin(*II) == pred_end(*II))
489           WorkList.insert(*II);
490     }
491 
492     // Merge pairs of basic blocks with unconditional branches, connected by
493     // a single edge.
494     if (EverMadeChange || MadeChange)
495       MadeChange |= eliminateFallThrough(F);
496 
497     EverMadeChange |= MadeChange;
498   }
499 
500   if (!DisableGCOpts) {
501     SmallVector<Instruction *, 2> Statepoints;
502     for (BasicBlock &BB : F)
503       for (Instruction &I : BB)
504         if (isStatepoint(I))
505           Statepoints.push_back(&I);
506     for (auto &I : Statepoints)
507       EverMadeChange |= simplifyOffsetableRelocate(*I);
508   }
509 
510   return EverMadeChange;
511 }
512 
513 /// Merge basic blocks which are connected by a single edge, where one of the
514 /// basic blocks has a single successor pointing to the other basic block,
515 /// which has a single predecessor.
516 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
517   bool Changed = false;
518   // Scan all of the blocks in the function, except for the entry block.
519   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
520     BasicBlock *BB = &*I++;
521     // If the destination block has a single pred, then this is a trivial
522     // edge, just collapse it.
523     BasicBlock *SinglePred = BB->getSinglePredecessor();
524 
525     // Don't merge if BB's address is taken.
526     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
527 
528     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
529     if (Term && !Term->isConditional()) {
530       Changed = true;
531       LLVM_DEBUG(dbgs() << "To merge:\n" << *SinglePred << "\n\n\n");
532       // Remember if SinglePred was the entry block of the function.
533       // If so, we will need to move BB back to the entry position.
534       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
535       MergeBasicBlockIntoOnlyPred(BB, nullptr);
536 
537       if (isEntry && BB != &BB->getParent()->getEntryBlock())
538         BB->moveBefore(&BB->getParent()->getEntryBlock());
539 
540       // We have erased a block. Update the iterator.
541       I = BB->getIterator();
542     }
543   }
544   return Changed;
545 }
546 
547 /// Find a destination block from BB if BB is mergeable empty block.
548 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
549   // If this block doesn't end with an uncond branch, ignore it.
550   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
551   if (!BI || !BI->isUnconditional())
552     return nullptr;
553 
554   // If the instruction before the branch (skipping debug info) isn't a phi
555   // node, then other stuff is happening here.
556   BasicBlock::iterator BBI = BI->getIterator();
557   if (BBI != BB->begin()) {
558     --BBI;
559     while (isa<DbgInfoIntrinsic>(BBI)) {
560       if (BBI == BB->begin())
561         break;
562       --BBI;
563     }
564     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
565       return nullptr;
566   }
567 
568   // Do not break infinite loops.
569   BasicBlock *DestBB = BI->getSuccessor(0);
570   if (DestBB == BB)
571     return nullptr;
572 
573   if (!canMergeBlocks(BB, DestBB))
574     DestBB = nullptr;
575 
576   return DestBB;
577 }
578 
579 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
580 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
581 /// edges in ways that are non-optimal for isel. Start by eliminating these
582 /// blocks so we can split them the way we want them.
583 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
584   SmallPtrSet<BasicBlock *, 16> Preheaders;
585   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
586   while (!LoopList.empty()) {
587     Loop *L = LoopList.pop_back_val();
588     LoopList.insert(LoopList.end(), L->begin(), L->end());
589     if (BasicBlock *Preheader = L->getLoopPreheader())
590       Preheaders.insert(Preheader);
591   }
592 
593   bool MadeChange = false;
594   // Note that this intentionally skips the entry block.
595   for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
596     BasicBlock *BB = &*I++;
597     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
598     if (!DestBB ||
599         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
600       continue;
601 
602     eliminateMostlyEmptyBlock(BB);
603     MadeChange = true;
604   }
605   return MadeChange;
606 }
607 
608 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
609                                                    BasicBlock *DestBB,
610                                                    bool isPreheader) {
611   // Do not delete loop preheaders if doing so would create a critical edge.
612   // Loop preheaders can be good locations to spill registers. If the
613   // preheader is deleted and we create a critical edge, registers may be
614   // spilled in the loop body instead.
615   if (!DisablePreheaderProtect && isPreheader &&
616       !(BB->getSinglePredecessor() &&
617         BB->getSinglePredecessor()->getSingleSuccessor()))
618     return false;
619 
620   // Try to skip merging if the unique predecessor of BB is terminated by a
621   // switch or indirect branch instruction, and BB is used as an incoming block
622   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
623   // add COPY instructions in the predecessor of BB instead of BB (if it is not
624   // merged). Note that the critical edge created by merging such blocks wont be
625   // split in MachineSink because the jump table is not analyzable. By keeping
626   // such empty block (BB), ISel will place COPY instructions in BB, not in the
627   // predecessor of BB.
628   BasicBlock *Pred = BB->getUniquePredecessor();
629   if (!Pred ||
630       !(isa<SwitchInst>(Pred->getTerminator()) ||
631         isa<IndirectBrInst>(Pred->getTerminator())))
632     return true;
633 
634   if (BB->getTerminator() != BB->getFirstNonPHI())
635     return true;
636 
637   // We use a simple cost heuristic which determine skipping merging is
638   // profitable if the cost of skipping merging is less than the cost of
639   // merging : Cost(skipping merging) < Cost(merging BB), where the
640   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
641   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
642   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
643   //   Freq(Pred) / Freq(BB) > 2.
644   // Note that if there are multiple empty blocks sharing the same incoming
645   // value for the PHIs in the DestBB, we consider them together. In such
646   // case, Cost(merging BB) will be the sum of their frequencies.
647 
648   if (!isa<PHINode>(DestBB->begin()))
649     return true;
650 
651   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
652 
653   // Find all other incoming blocks from which incoming values of all PHIs in
654   // DestBB are the same as the ones from BB.
655   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
656        ++PI) {
657     BasicBlock *DestBBPred = *PI;
658     if (DestBBPred == BB)
659       continue;
660 
661     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
662           return DestPN.getIncomingValueForBlock(BB) ==
663                  DestPN.getIncomingValueForBlock(DestBBPred);
664         }))
665       SameIncomingValueBBs.insert(DestBBPred);
666   }
667 
668   // See if all BB's incoming values are same as the value from Pred. In this
669   // case, no reason to skip merging because COPYs are expected to be place in
670   // Pred already.
671   if (SameIncomingValueBBs.count(Pred))
672     return true;
673 
674   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
675   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
676 
677   for (auto SameValueBB : SameIncomingValueBBs)
678     if (SameValueBB->getUniquePredecessor() == Pred &&
679         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
680       BBFreq += BFI->getBlockFreq(SameValueBB);
681 
682   return PredFreq.getFrequency() <=
683          BBFreq.getFrequency() * FreqRatioToSkipMerge;
684 }
685 
686 /// Return true if we can merge BB into DestBB if there is a single
687 /// unconditional branch between them, and BB contains no other non-phi
688 /// instructions.
689 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
690                                     const BasicBlock *DestBB) const {
691   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
692   // the successor.  If there are more complex condition (e.g. preheaders),
693   // don't mess around with them.
694   for (const PHINode &PN : BB->phis()) {
695     for (const User *U : PN.users()) {
696       const Instruction *UI = cast<Instruction>(U);
697       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
698         return false;
699       // If User is inside DestBB block and it is a PHINode then check
700       // incoming value. If incoming value is not from BB then this is
701       // a complex condition (e.g. preheaders) we want to avoid here.
702       if (UI->getParent() == DestBB) {
703         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
704           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
705             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
706             if (Insn && Insn->getParent() == BB &&
707                 Insn->getParent() != UPN->getIncomingBlock(I))
708               return false;
709           }
710       }
711     }
712   }
713 
714   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
715   // and DestBB may have conflicting incoming values for the block.  If so, we
716   // can't merge the block.
717   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
718   if (!DestBBPN) return true;  // no conflict.
719 
720   // Collect the preds of BB.
721   SmallPtrSet<const BasicBlock*, 16> BBPreds;
722   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
723     // It is faster to get preds from a PHI than with pred_iterator.
724     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
725       BBPreds.insert(BBPN->getIncomingBlock(i));
726   } else {
727     BBPreds.insert(pred_begin(BB), pred_end(BB));
728   }
729 
730   // Walk the preds of DestBB.
731   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
732     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
733     if (BBPreds.count(Pred)) {   // Common predecessor?
734       for (const PHINode &PN : DestBB->phis()) {
735         const Value *V1 = PN.getIncomingValueForBlock(Pred);
736         const Value *V2 = PN.getIncomingValueForBlock(BB);
737 
738         // If V2 is a phi node in BB, look up what the mapped value will be.
739         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
740           if (V2PN->getParent() == BB)
741             V2 = V2PN->getIncomingValueForBlock(Pred);
742 
743         // If there is a conflict, bail out.
744         if (V1 != V2) return false;
745       }
746     }
747   }
748 
749   return true;
750 }
751 
752 /// Eliminate a basic block that has only phi's and an unconditional branch in
753 /// it.
754 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
755   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
756   BasicBlock *DestBB = BI->getSuccessor(0);
757 
758   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
759                     << *BB << *DestBB);
760 
761   // If the destination block has a single pred, then this is a trivial edge,
762   // just collapse it.
763   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
764     if (SinglePred != DestBB) {
765       // Remember if SinglePred was the entry block of the function.  If so, we
766       // will need to move BB back to the entry position.
767       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
768       MergeBasicBlockIntoOnlyPred(DestBB, nullptr);
769 
770       if (isEntry && BB != &BB->getParent()->getEntryBlock())
771         BB->moveBefore(&BB->getParent()->getEntryBlock());
772 
773       LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
774       return;
775     }
776   }
777 
778   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
779   // to handle the new incoming edges it is about to have.
780   for (PHINode &PN : DestBB->phis()) {
781     // Remove the incoming value for BB, and remember it.
782     Value *InVal = PN.removeIncomingValue(BB, false);
783 
784     // Two options: either the InVal is a phi node defined in BB or it is some
785     // value that dominates BB.
786     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
787     if (InValPhi && InValPhi->getParent() == BB) {
788       // Add all of the input values of the input PHI as inputs of this phi.
789       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
790         PN.addIncoming(InValPhi->getIncomingValue(i),
791                        InValPhi->getIncomingBlock(i));
792     } else {
793       // Otherwise, add one instance of the dominating value for each edge that
794       // we will be adding.
795       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
796         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
797           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
798       } else {
799         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
800           PN.addIncoming(InVal, *PI);
801       }
802     }
803   }
804 
805   // The PHIs are now updated, change everything that refers to BB to use
806   // DestBB and remove BB.
807   BB->replaceAllUsesWith(DestBB);
808   BB->eraseFromParent();
809   ++NumBlocksElim;
810 
811   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
812 }
813 
814 // Computes a map of base pointer relocation instructions to corresponding
815 // derived pointer relocation instructions given a vector of all relocate calls
816 static void computeBaseDerivedRelocateMap(
817     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
818     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
819         &RelocateInstMap) {
820   // Collect information in two maps: one primarily for locating the base object
821   // while filling the second map; the second map is the final structure holding
822   // a mapping between Base and corresponding Derived relocate calls
823   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
824   for (auto *ThisRelocate : AllRelocateCalls) {
825     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
826                             ThisRelocate->getDerivedPtrIndex());
827     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
828   }
829   for (auto &Item : RelocateIdxMap) {
830     std::pair<unsigned, unsigned> Key = Item.first;
831     if (Key.first == Key.second)
832       // Base relocation: nothing to insert
833       continue;
834 
835     GCRelocateInst *I = Item.second;
836     auto BaseKey = std::make_pair(Key.first, Key.first);
837 
838     // We're iterating over RelocateIdxMap so we cannot modify it.
839     auto MaybeBase = RelocateIdxMap.find(BaseKey);
840     if (MaybeBase == RelocateIdxMap.end())
841       // TODO: We might want to insert a new base object relocate and gep off
842       // that, if there are enough derived object relocates.
843       continue;
844 
845     RelocateInstMap[MaybeBase->second].push_back(I);
846   }
847 }
848 
849 // Accepts a GEP and extracts the operands into a vector provided they're all
850 // small integer constants
851 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
852                                           SmallVectorImpl<Value *> &OffsetV) {
853   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
854     // Only accept small constant integer operands
855     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
856     if (!Op || Op->getZExtValue() > 20)
857       return false;
858   }
859 
860   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
861     OffsetV.push_back(GEP->getOperand(i));
862   return true;
863 }
864 
865 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
866 // replace, computes a replacement, and affects it.
867 static bool
868 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
869                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
870   bool MadeChange = false;
871   // We must ensure the relocation of derived pointer is defined after
872   // relocation of base pointer. If we find a relocation corresponding to base
873   // defined earlier than relocation of base then we move relocation of base
874   // right before found relocation. We consider only relocation in the same
875   // basic block as relocation of base. Relocations from other basic block will
876   // be skipped by optimization and we do not care about them.
877   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
878        &*R != RelocatedBase; ++R)
879     if (auto RI = dyn_cast<GCRelocateInst>(R))
880       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
881         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
882           RelocatedBase->moveBefore(RI);
883           break;
884         }
885 
886   for (GCRelocateInst *ToReplace : Targets) {
887     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
888            "Not relocating a derived object of the original base object");
889     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
890       // A duplicate relocate call. TODO: coalesce duplicates.
891       continue;
892     }
893 
894     if (RelocatedBase->getParent() != ToReplace->getParent()) {
895       // Base and derived relocates are in different basic blocks.
896       // In this case transform is only valid when base dominates derived
897       // relocate. However it would be too expensive to check dominance
898       // for each such relocate, so we skip the whole transformation.
899       continue;
900     }
901 
902     Value *Base = ToReplace->getBasePtr();
903     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
904     if (!Derived || Derived->getPointerOperand() != Base)
905       continue;
906 
907     SmallVector<Value *, 2> OffsetV;
908     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
909       continue;
910 
911     // Create a Builder and replace the target callsite with a gep
912     assert(RelocatedBase->getNextNode() &&
913            "Should always have one since it's not a terminator");
914 
915     // Insert after RelocatedBase
916     IRBuilder<> Builder(RelocatedBase->getNextNode());
917     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
918 
919     // If gc_relocate does not match the actual type, cast it to the right type.
920     // In theory, there must be a bitcast after gc_relocate if the type does not
921     // match, and we should reuse it to get the derived pointer. But it could be
922     // cases like this:
923     // bb1:
924     //  ...
925     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
926     //  br label %merge
927     //
928     // bb2:
929     //  ...
930     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
931     //  br label %merge
932     //
933     // merge:
934     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
935     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
936     //
937     // In this case, we can not find the bitcast any more. So we insert a new bitcast
938     // no matter there is already one or not. In this way, we can handle all cases, and
939     // the extra bitcast should be optimized away in later passes.
940     Value *ActualRelocatedBase = RelocatedBase;
941     if (RelocatedBase->getType() != Base->getType()) {
942       ActualRelocatedBase =
943           Builder.CreateBitCast(RelocatedBase, Base->getType());
944     }
945     Value *Replacement = Builder.CreateGEP(
946         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
947     Replacement->takeName(ToReplace);
948     // If the newly generated derived pointer's type does not match the original derived
949     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
950     Value *ActualReplacement = Replacement;
951     if (Replacement->getType() != ToReplace->getType()) {
952       ActualReplacement =
953           Builder.CreateBitCast(Replacement, ToReplace->getType());
954     }
955     ToReplace->replaceAllUsesWith(ActualReplacement);
956     ToReplace->eraseFromParent();
957 
958     MadeChange = true;
959   }
960   return MadeChange;
961 }
962 
963 // Turns this:
964 //
965 // %base = ...
966 // %ptr = gep %base + 15
967 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
968 // %base' = relocate(%tok, i32 4, i32 4)
969 // %ptr' = relocate(%tok, i32 4, i32 5)
970 // %val = load %ptr'
971 //
972 // into this:
973 //
974 // %base = ...
975 // %ptr = gep %base + 15
976 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
977 // %base' = gc.relocate(%tok, i32 4, i32 4)
978 // %ptr' = gep %base' + 15
979 // %val = load %ptr'
980 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
981   bool MadeChange = false;
982   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
983 
984   for (auto *U : I.users())
985     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
986       // Collect all the relocate calls associated with a statepoint
987       AllRelocateCalls.push_back(Relocate);
988 
989   // We need atleast one base pointer relocation + one derived pointer
990   // relocation to mangle
991   if (AllRelocateCalls.size() < 2)
992     return false;
993 
994   // RelocateInstMap is a mapping from the base relocate instruction to the
995   // corresponding derived relocate instructions
996   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
997   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
998   if (RelocateInstMap.empty())
999     return false;
1000 
1001   for (auto &Item : RelocateInstMap)
1002     // Item.first is the RelocatedBase to offset against
1003     // Item.second is the vector of Targets to replace
1004     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1005   return MadeChange;
1006 }
1007 
1008 /// SinkCast - Sink the specified cast instruction into its user blocks
1009 static bool SinkCast(CastInst *CI) {
1010   BasicBlock *DefBB = CI->getParent();
1011 
1012   /// InsertedCasts - Only insert a cast in each block once.
1013   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1014 
1015   bool MadeChange = false;
1016   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1017        UI != E; ) {
1018     Use &TheUse = UI.getUse();
1019     Instruction *User = cast<Instruction>(*UI);
1020 
1021     // Figure out which BB this cast is used in.  For PHI's this is the
1022     // appropriate predecessor block.
1023     BasicBlock *UserBB = User->getParent();
1024     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1025       UserBB = PN->getIncomingBlock(TheUse);
1026     }
1027 
1028     // Preincrement use iterator so we don't invalidate it.
1029     ++UI;
1030 
1031     // The first insertion point of a block containing an EH pad is after the
1032     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1033     if (User->isEHPad())
1034       continue;
1035 
1036     // If the block selected to receive the cast is an EH pad that does not
1037     // allow non-PHI instructions before the terminator, we can't sink the
1038     // cast.
1039     if (UserBB->getTerminator()->isEHPad())
1040       continue;
1041 
1042     // If this user is in the same block as the cast, don't change the cast.
1043     if (UserBB == DefBB) continue;
1044 
1045     // If we have already inserted a cast into this block, use it.
1046     CastInst *&InsertedCast = InsertedCasts[UserBB];
1047 
1048     if (!InsertedCast) {
1049       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1050       assert(InsertPt != UserBB->end());
1051       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1052                                       CI->getType(), "", &*InsertPt);
1053       InsertedCast->setDebugLoc(CI->getDebugLoc());
1054     }
1055 
1056     // Replace a use of the cast with a use of the new cast.
1057     TheUse = InsertedCast;
1058     MadeChange = true;
1059     ++NumCastUses;
1060   }
1061 
1062   // If we removed all uses, nuke the cast.
1063   if (CI->use_empty()) {
1064     salvageDebugInfo(*CI);
1065     CI->eraseFromParent();
1066     MadeChange = true;
1067   }
1068 
1069   return MadeChange;
1070 }
1071 
1072 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1073 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1074 /// reduce the number of virtual registers that must be created and coalesced.
1075 ///
1076 /// Return true if any changes are made.
1077 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1078                                        const DataLayout &DL) {
1079   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1080   // than sinking only nop casts, but is helpful on some platforms.
1081   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1082     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1083                                   ASC->getDestAddressSpace()))
1084       return false;
1085   }
1086 
1087   // If this is a noop copy,
1088   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1089   EVT DstVT = TLI.getValueType(DL, CI->getType());
1090 
1091   // This is an fp<->int conversion?
1092   if (SrcVT.isInteger() != DstVT.isInteger())
1093     return false;
1094 
1095   // If this is an extension, it will be a zero or sign extension, which
1096   // isn't a noop.
1097   if (SrcVT.bitsLT(DstVT)) return false;
1098 
1099   // If these values will be promoted, find out what they will be promoted
1100   // to.  This helps us consider truncates on PPC as noop copies when they
1101   // are.
1102   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1103       TargetLowering::TypePromoteInteger)
1104     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1105   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1106       TargetLowering::TypePromoteInteger)
1107     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1108 
1109   // If, after promotion, these are the same types, this is a noop copy.
1110   if (SrcVT != DstVT)
1111     return false;
1112 
1113   return SinkCast(CI);
1114 }
1115 
1116 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if
1117 /// possible.
1118 ///
1119 /// Return true if any changes were made.
1120 static bool CombineUAddWithOverflow(CmpInst *CI) {
1121   Value *A, *B;
1122   Instruction *AddI;
1123   if (!match(CI,
1124              m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI))))
1125     return false;
1126 
1127   Type *Ty = AddI->getType();
1128   if (!isa<IntegerType>(Ty))
1129     return false;
1130 
1131   // We don't want to move around uses of condition values this late, so we we
1132   // check if it is legal to create the call to the intrinsic in the basic
1133   // block containing the icmp:
1134 
1135   if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse())
1136     return false;
1137 
1138 #ifndef NDEBUG
1139   // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption
1140   // for now:
1141   if (AddI->hasOneUse())
1142     assert(*AddI->user_begin() == CI && "expected!");
1143 #endif
1144 
1145   Module *M = CI->getModule();
1146   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1147 
1148   auto *InsertPt = AddI->hasOneUse() ? CI : AddI;
1149 
1150   auto *UAddWithOverflow =
1151       CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt);
1152   auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt);
1153   auto *Overflow =
1154       ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt);
1155 
1156   CI->replaceAllUsesWith(Overflow);
1157   AddI->replaceAllUsesWith(UAdd);
1158   CI->eraseFromParent();
1159   AddI->eraseFromParent();
1160   return true;
1161 }
1162 
1163 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1164 /// registers that must be created and coalesced. This is a clear win except on
1165 /// targets with multiple condition code registers (PowerPC), where it might
1166 /// lose; some adjustment may be wanted there.
1167 ///
1168 /// Return true if any changes are made.
1169 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1170   BasicBlock *DefBB = CI->getParent();
1171 
1172   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1173   if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI))
1174     return false;
1175 
1176   // Only insert a cmp in each block once.
1177   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1178 
1179   bool MadeChange = false;
1180   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1181        UI != E; ) {
1182     Use &TheUse = UI.getUse();
1183     Instruction *User = cast<Instruction>(*UI);
1184 
1185     // Preincrement use iterator so we don't invalidate it.
1186     ++UI;
1187 
1188     // Don't bother for PHI nodes.
1189     if (isa<PHINode>(User))
1190       continue;
1191 
1192     // Figure out which BB this cmp is used in.
1193     BasicBlock *UserBB = User->getParent();
1194 
1195     // If this user is in the same block as the cmp, don't change the cmp.
1196     if (UserBB == DefBB) continue;
1197 
1198     // If we have already inserted a cmp into this block, use it.
1199     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1200 
1201     if (!InsertedCmp) {
1202       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1203       assert(InsertPt != UserBB->end());
1204       InsertedCmp =
1205           CmpInst::Create(CI->getOpcode(), CI->getPredicate(),
1206                           CI->getOperand(0), CI->getOperand(1), "", &*InsertPt);
1207       // Propagate the debug info.
1208       InsertedCmp->setDebugLoc(CI->getDebugLoc());
1209     }
1210 
1211     // Replace a use of the cmp with a use of the new cmp.
1212     TheUse = InsertedCmp;
1213     MadeChange = true;
1214     ++NumCmpUses;
1215   }
1216 
1217   // If we removed all uses, nuke the cmp.
1218   if (CI->use_empty()) {
1219     CI->eraseFromParent();
1220     MadeChange = true;
1221   }
1222 
1223   return MadeChange;
1224 }
1225 
1226 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) {
1227   if (SinkCmpExpression(CI, TLI))
1228     return true;
1229 
1230   if (CombineUAddWithOverflow(CI))
1231     return true;
1232 
1233   return false;
1234 }
1235 
1236 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1237 /// used in a compare to allow isel to generate better code for targets where
1238 /// this operation can be combined.
1239 ///
1240 /// Return true if any changes are made.
1241 static bool sinkAndCmp0Expression(Instruction *AndI,
1242                                   const TargetLowering &TLI,
1243                                   SetOfInstrs &InsertedInsts) {
1244   // Double-check that we're not trying to optimize an instruction that was
1245   // already optimized by some other part of this pass.
1246   assert(!InsertedInsts.count(AndI) &&
1247          "Attempting to optimize already optimized and instruction");
1248   (void) InsertedInsts;
1249 
1250   // Nothing to do for single use in same basic block.
1251   if (AndI->hasOneUse() &&
1252       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1253     return false;
1254 
1255   // Try to avoid cases where sinking/duplicating is likely to increase register
1256   // pressure.
1257   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1258       !isa<ConstantInt>(AndI->getOperand(1)) &&
1259       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1260     return false;
1261 
1262   for (auto *U : AndI->users()) {
1263     Instruction *User = cast<Instruction>(U);
1264 
1265     // Only sink for and mask feeding icmp with 0.
1266     if (!isa<ICmpInst>(User))
1267       return false;
1268 
1269     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1270     if (!CmpC || !CmpC->isZero())
1271       return false;
1272   }
1273 
1274   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1275     return false;
1276 
1277   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1278   LLVM_DEBUG(AndI->getParent()->dump());
1279 
1280   // Push the 'and' into the same block as the icmp 0.  There should only be
1281   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1282   // others, so we don't need to keep track of which BBs we insert into.
1283   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1284        UI != E; ) {
1285     Use &TheUse = UI.getUse();
1286     Instruction *User = cast<Instruction>(*UI);
1287 
1288     // Preincrement use iterator so we don't invalidate it.
1289     ++UI;
1290 
1291     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1292 
1293     // Keep the 'and' in the same place if the use is already in the same block.
1294     Instruction *InsertPt =
1295         User->getParent() == AndI->getParent() ? AndI : User;
1296     Instruction *InsertedAnd =
1297         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1298                                AndI->getOperand(1), "", InsertPt);
1299     // Propagate the debug info.
1300     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1301 
1302     // Replace a use of the 'and' with a use of the new 'and'.
1303     TheUse = InsertedAnd;
1304     ++NumAndUses;
1305     LLVM_DEBUG(User->getParent()->dump());
1306   }
1307 
1308   // We removed all uses, nuke the and.
1309   AndI->eraseFromParent();
1310   return true;
1311 }
1312 
1313 /// Check if the candidates could be combined with a shift instruction, which
1314 /// includes:
1315 /// 1. Truncate instruction
1316 /// 2. And instruction and the imm is a mask of the low bits:
1317 /// imm & (imm+1) == 0
1318 static bool isExtractBitsCandidateUse(Instruction *User) {
1319   if (!isa<TruncInst>(User)) {
1320     if (User->getOpcode() != Instruction::And ||
1321         !isa<ConstantInt>(User->getOperand(1)))
1322       return false;
1323 
1324     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1325 
1326     if ((Cimm & (Cimm + 1)).getBoolValue())
1327       return false;
1328   }
1329   return true;
1330 }
1331 
1332 /// Sink both shift and truncate instruction to the use of truncate's BB.
1333 static bool
1334 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1335                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1336                      const TargetLowering &TLI, const DataLayout &DL) {
1337   BasicBlock *UserBB = User->getParent();
1338   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1339   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1340   bool MadeChange = false;
1341 
1342   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1343                             TruncE = TruncI->user_end();
1344        TruncUI != TruncE;) {
1345 
1346     Use &TruncTheUse = TruncUI.getUse();
1347     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1348     // Preincrement use iterator so we don't invalidate it.
1349 
1350     ++TruncUI;
1351 
1352     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1353     if (!ISDOpcode)
1354       continue;
1355 
1356     // If the use is actually a legal node, there will not be an
1357     // implicit truncate.
1358     // FIXME: always querying the result type is just an
1359     // approximation; some nodes' legality is determined by the
1360     // operand or other means. There's no good way to find out though.
1361     if (TLI.isOperationLegalOrCustom(
1362             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1363       continue;
1364 
1365     // Don't bother for PHI nodes.
1366     if (isa<PHINode>(TruncUser))
1367       continue;
1368 
1369     BasicBlock *TruncUserBB = TruncUser->getParent();
1370 
1371     if (UserBB == TruncUserBB)
1372       continue;
1373 
1374     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1375     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1376 
1377     if (!InsertedShift && !InsertedTrunc) {
1378       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1379       assert(InsertPt != TruncUserBB->end());
1380       // Sink the shift
1381       if (ShiftI->getOpcode() == Instruction::AShr)
1382         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1383                                                    "", &*InsertPt);
1384       else
1385         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1386                                                    "", &*InsertPt);
1387 
1388       // Sink the trunc
1389       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1390       TruncInsertPt++;
1391       assert(TruncInsertPt != TruncUserBB->end());
1392 
1393       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1394                                        TruncI->getType(), "", &*TruncInsertPt);
1395 
1396       MadeChange = true;
1397 
1398       TruncTheUse = InsertedTrunc;
1399     }
1400   }
1401   return MadeChange;
1402 }
1403 
1404 /// Sink the shift *right* instruction into user blocks if the uses could
1405 /// potentially be combined with this shift instruction and generate BitExtract
1406 /// instruction. It will only be applied if the architecture supports BitExtract
1407 /// instruction. Here is an example:
1408 /// BB1:
1409 ///   %x.extract.shift = lshr i64 %arg1, 32
1410 /// BB2:
1411 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1412 /// ==>
1413 ///
1414 /// BB2:
1415 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1416 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1417 ///
1418 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract
1419 /// instruction.
1420 /// Return true if any changes are made.
1421 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1422                                 const TargetLowering &TLI,
1423                                 const DataLayout &DL) {
1424   BasicBlock *DefBB = ShiftI->getParent();
1425 
1426   /// Only insert instructions in each block once.
1427   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1428 
1429   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1430 
1431   bool MadeChange = false;
1432   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1433        UI != E;) {
1434     Use &TheUse = UI.getUse();
1435     Instruction *User = cast<Instruction>(*UI);
1436     // Preincrement use iterator so we don't invalidate it.
1437     ++UI;
1438 
1439     // Don't bother for PHI nodes.
1440     if (isa<PHINode>(User))
1441       continue;
1442 
1443     if (!isExtractBitsCandidateUse(User))
1444       continue;
1445 
1446     BasicBlock *UserBB = User->getParent();
1447 
1448     if (UserBB == DefBB) {
1449       // If the shift and truncate instruction are in the same BB. The use of
1450       // the truncate(TruncUse) may still introduce another truncate if not
1451       // legal. In this case, we would like to sink both shift and truncate
1452       // instruction to the BB of TruncUse.
1453       // for example:
1454       // BB1:
1455       // i64 shift.result = lshr i64 opnd, imm
1456       // trunc.result = trunc shift.result to i16
1457       //
1458       // BB2:
1459       //   ----> We will have an implicit truncate here if the architecture does
1460       //   not have i16 compare.
1461       // cmp i16 trunc.result, opnd2
1462       //
1463       if (isa<TruncInst>(User) && shiftIsLegal
1464           // If the type of the truncate is legal, no trucate will be
1465           // introduced in other basic blocks.
1466           &&
1467           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1468         MadeChange =
1469             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1470 
1471       continue;
1472     }
1473     // If we have already inserted a shift into this block, use it.
1474     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1475 
1476     if (!InsertedShift) {
1477       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1478       assert(InsertPt != UserBB->end());
1479 
1480       if (ShiftI->getOpcode() == Instruction::AShr)
1481         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1482                                                    "", &*InsertPt);
1483       else
1484         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1485                                                    "", &*InsertPt);
1486 
1487       MadeChange = true;
1488     }
1489 
1490     // Replace a use of the shift with a use of the new shift.
1491     TheUse = InsertedShift;
1492   }
1493 
1494   // If we removed all uses, nuke the shift.
1495   if (ShiftI->use_empty())
1496     ShiftI->eraseFromParent();
1497 
1498   return MadeChange;
1499 }
1500 
1501 /// If counting leading or trailing zeros is an expensive operation and a zero
1502 /// input is defined, add a check for zero to avoid calling the intrinsic.
1503 ///
1504 /// We want to transform:
1505 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1506 ///
1507 /// into:
1508 ///   entry:
1509 ///     %cmpz = icmp eq i64 %A, 0
1510 ///     br i1 %cmpz, label %cond.end, label %cond.false
1511 ///   cond.false:
1512 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1513 ///     br label %cond.end
1514 ///   cond.end:
1515 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1516 ///
1517 /// If the transform is performed, return true and set ModifiedDT to true.
1518 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1519                                   const TargetLowering *TLI,
1520                                   const DataLayout *DL,
1521                                   bool &ModifiedDT) {
1522   if (!TLI || !DL)
1523     return false;
1524 
1525   // If a zero input is undefined, it doesn't make sense to despeculate that.
1526   if (match(CountZeros->getOperand(1), m_One()))
1527     return false;
1528 
1529   // If it's cheap to speculate, there's nothing to do.
1530   auto IntrinsicID = CountZeros->getIntrinsicID();
1531   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1532       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1533     return false;
1534 
1535   // Only handle legal scalar cases. Anything else requires too much work.
1536   Type *Ty = CountZeros->getType();
1537   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1538   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1539     return false;
1540 
1541   // The intrinsic will be sunk behind a compare against zero and branch.
1542   BasicBlock *StartBlock = CountZeros->getParent();
1543   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1544 
1545   // Create another block after the count zero intrinsic. A PHI will be added
1546   // in this block to select the result of the intrinsic or the bit-width
1547   // constant if the input to the intrinsic is zero.
1548   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1549   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1550 
1551   // Set up a builder to create a compare, conditional branch, and PHI.
1552   IRBuilder<> Builder(CountZeros->getContext());
1553   Builder.SetInsertPoint(StartBlock->getTerminator());
1554   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1555 
1556   // Replace the unconditional branch that was created by the first split with
1557   // a compare against zero and a conditional branch.
1558   Value *Zero = Constant::getNullValue(Ty);
1559   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1560   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1561   StartBlock->getTerminator()->eraseFromParent();
1562 
1563   // Create a PHI in the end block to select either the output of the intrinsic
1564   // or the bit width of the operand.
1565   Builder.SetInsertPoint(&EndBlock->front());
1566   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1567   CountZeros->replaceAllUsesWith(PN);
1568   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1569   PN->addIncoming(BitWidth, StartBlock);
1570   PN->addIncoming(CountZeros, CallBlock);
1571 
1572   // We are explicitly handling the zero case, so we can set the intrinsic's
1573   // undefined zero argument to 'true'. This will also prevent reprocessing the
1574   // intrinsic; we only despeculate when a zero input is defined.
1575   CountZeros->setArgOperand(1, Builder.getTrue());
1576   ModifiedDT = true;
1577   return true;
1578 }
1579 
1580 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1581   BasicBlock *BB = CI->getParent();
1582 
1583   // Lower inline assembly if we can.
1584   // If we found an inline asm expession, and if the target knows how to
1585   // lower it to normal LLVM code, do so now.
1586   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1587     if (TLI->ExpandInlineAsm(CI)) {
1588       // Avoid invalidating the iterator.
1589       CurInstIterator = BB->begin();
1590       // Avoid processing instructions out of order, which could cause
1591       // reuse before a value is defined.
1592       SunkAddrs.clear();
1593       return true;
1594     }
1595     // Sink address computing for memory operands into the block.
1596     if (optimizeInlineAsmInst(CI))
1597       return true;
1598   }
1599 
1600   // Align the pointer arguments to this call if the target thinks it's a good
1601   // idea
1602   unsigned MinSize, PrefAlign;
1603   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1604     for (auto &Arg : CI->arg_operands()) {
1605       // We want to align both objects whose address is used directly and
1606       // objects whose address is used in casts and GEPs, though it only makes
1607       // sense for GEPs if the offset is a multiple of the desired alignment and
1608       // if size - offset meets the size threshold.
1609       if (!Arg->getType()->isPointerTy())
1610         continue;
1611       APInt Offset(DL->getIndexSizeInBits(
1612                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1613                    0);
1614       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1615       uint64_t Offset2 = Offset.getLimitedValue();
1616       if ((Offset2 & (PrefAlign-1)) != 0)
1617         continue;
1618       AllocaInst *AI;
1619       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1620           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1621         AI->setAlignment(PrefAlign);
1622       // Global variables can only be aligned if they are defined in this
1623       // object (i.e. they are uniquely initialized in this object), and
1624       // over-aligning global variables that have an explicit section is
1625       // forbidden.
1626       GlobalVariable *GV;
1627       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1628           GV->getPointerAlignment(*DL) < PrefAlign &&
1629           DL->getTypeAllocSize(GV->getValueType()) >=
1630               MinSize + Offset2)
1631         GV->setAlignment(PrefAlign);
1632     }
1633     // If this is a memcpy (or similar) then we may be able to improve the
1634     // alignment
1635     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1636       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1637       if (DestAlign > MI->getDestAlignment())
1638         MI->setDestAlignment(DestAlign);
1639       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1640         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1641         if (SrcAlign > MTI->getSourceAlignment())
1642           MTI->setSourceAlignment(SrcAlign);
1643       }
1644     }
1645   }
1646 
1647   // If we have a cold call site, try to sink addressing computation into the
1648   // cold block.  This interacts with our handling for loads and stores to
1649   // ensure that we can fold all uses of a potential addressing computation
1650   // into their uses.  TODO: generalize this to work over profiling data
1651   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1652     for (auto &Arg : CI->arg_operands()) {
1653       if (!Arg->getType()->isPointerTy())
1654         continue;
1655       unsigned AS = Arg->getType()->getPointerAddressSpace();
1656       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1657     }
1658 
1659   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1660   if (II) {
1661     switch (II->getIntrinsicID()) {
1662     default: break;
1663     case Intrinsic::objectsize: {
1664       // Lower all uses of llvm.objectsize.*
1665       ConstantInt *RetVal =
1666           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1667       // Substituting this can cause recursive simplifications, which can
1668       // invalidate our iterator.  Use a WeakTrackingVH to hold onto it in case
1669       // this
1670       // happens.
1671       Value *CurValue = &*CurInstIterator;
1672       WeakTrackingVH IterHandle(CurValue);
1673 
1674       replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1675 
1676       // If the iterator instruction was recursively deleted, start over at the
1677       // start of the block.
1678       if (IterHandle != CurValue) {
1679         CurInstIterator = BB->begin();
1680         SunkAddrs.clear();
1681       }
1682       return true;
1683     }
1684     case Intrinsic::aarch64_stlxr:
1685     case Intrinsic::aarch64_stxr: {
1686       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1687       if (!ExtVal || !ExtVal->hasOneUse() ||
1688           ExtVal->getParent() == CI->getParent())
1689         return false;
1690       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1691       ExtVal->moveBefore(CI);
1692       // Mark this instruction as "inserted by CGP", so that other
1693       // optimizations don't touch it.
1694       InsertedInsts.insert(ExtVal);
1695       return true;
1696     }
1697     case Intrinsic::launder_invariant_group:
1698       II->replaceAllUsesWith(II->getArgOperand(0));
1699       II->eraseFromParent();
1700       return true;
1701 
1702     case Intrinsic::cttz:
1703     case Intrinsic::ctlz:
1704       // If counting zeros is expensive, try to avoid it.
1705       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1706     }
1707 
1708     if (TLI) {
1709       SmallVector<Value*, 2> PtrOps;
1710       Type *AccessTy;
1711       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1712         while (!PtrOps.empty()) {
1713           Value *PtrVal = PtrOps.pop_back_val();
1714           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1715           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1716             return true;
1717         }
1718     }
1719   }
1720 
1721   // From here on out we're working with named functions.
1722   if (!CI->getCalledFunction()) return false;
1723 
1724   // Lower all default uses of _chk calls.  This is very similar
1725   // to what InstCombineCalls does, but here we are only lowering calls
1726   // to fortified library functions (e.g. __memcpy_chk) that have the default
1727   // "don't know" as the objectsize.  Anything else should be left alone.
1728   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1729   if (Value *V = Simplifier.optimizeCall(CI)) {
1730     CI->replaceAllUsesWith(V);
1731     CI->eraseFromParent();
1732     return true;
1733   }
1734 
1735   return false;
1736 }
1737 
1738 /// Look for opportunities to duplicate return instructions to the predecessor
1739 /// to enable tail call optimizations. The case it is currently looking for is:
1740 /// @code
1741 /// bb0:
1742 ///   %tmp0 = tail call i32 @f0()
1743 ///   br label %return
1744 /// bb1:
1745 ///   %tmp1 = tail call i32 @f1()
1746 ///   br label %return
1747 /// bb2:
1748 ///   %tmp2 = tail call i32 @f2()
1749 ///   br label %return
1750 /// return:
1751 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1752 ///   ret i32 %retval
1753 /// @endcode
1754 ///
1755 /// =>
1756 ///
1757 /// @code
1758 /// bb0:
1759 ///   %tmp0 = tail call i32 @f0()
1760 ///   ret i32 %tmp0
1761 /// bb1:
1762 ///   %tmp1 = tail call i32 @f1()
1763 ///   ret i32 %tmp1
1764 /// bb2:
1765 ///   %tmp2 = tail call i32 @f2()
1766 ///   ret i32 %tmp2
1767 /// @endcode
1768 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) {
1769   if (!TLI)
1770     return false;
1771 
1772   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1773   if (!RetI)
1774     return false;
1775 
1776   PHINode *PN = nullptr;
1777   BitCastInst *BCI = nullptr;
1778   Value *V = RetI->getReturnValue();
1779   if (V) {
1780     BCI = dyn_cast<BitCastInst>(V);
1781     if (BCI)
1782       V = BCI->getOperand(0);
1783 
1784     PN = dyn_cast<PHINode>(V);
1785     if (!PN)
1786       return false;
1787   }
1788 
1789   if (PN && PN->getParent() != BB)
1790     return false;
1791 
1792   // Make sure there are no instructions between the PHI and return, or that the
1793   // return is the first instruction in the block.
1794   if (PN) {
1795     BasicBlock::iterator BI = BB->begin();
1796     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
1797     if (&*BI == BCI)
1798       // Also skip over the bitcast.
1799       ++BI;
1800     if (&*BI != RetI)
1801       return false;
1802   } else {
1803     BasicBlock::iterator BI = BB->begin();
1804     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
1805     if (&*BI != RetI)
1806       return false;
1807   }
1808 
1809   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
1810   /// call.
1811   const Function *F = BB->getParent();
1812   SmallVector<CallInst*, 4> TailCalls;
1813   if (PN) {
1814     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
1815       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
1816       // Make sure the phi value is indeed produced by the tail call.
1817       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
1818           TLI->mayBeEmittedAsTailCall(CI) &&
1819           attributesPermitTailCall(F, CI, RetI, *TLI))
1820         TailCalls.push_back(CI);
1821     }
1822   } else {
1823     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
1824     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
1825       if (!VisitedBBs.insert(*PI).second)
1826         continue;
1827 
1828       BasicBlock::InstListType &InstList = (*PI)->getInstList();
1829       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
1830       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
1831       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
1832       if (RI == RE)
1833         continue;
1834 
1835       CallInst *CI = dyn_cast<CallInst>(&*RI);
1836       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
1837           attributesPermitTailCall(F, CI, RetI, *TLI))
1838         TailCalls.push_back(CI);
1839     }
1840   }
1841 
1842   bool Changed = false;
1843   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1844     CallInst *CI = TailCalls[i];
1845     CallSite CS(CI);
1846 
1847     // Conservatively require the attributes of the call to match those of the
1848     // return. Ignore noalias because it doesn't affect the call sequence.
1849     AttributeList CalleeAttrs = CS.getAttributes();
1850     if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1851             .removeAttribute(Attribute::NoAlias) !=
1852         AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex)
1853             .removeAttribute(Attribute::NoAlias))
1854       continue;
1855 
1856     // Make sure the call instruction is followed by an unconditional branch to
1857     // the return block.
1858     BasicBlock *CallBB = CI->getParent();
1859     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1860     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1861       continue;
1862 
1863     // Duplicate the return into CallBB.
1864     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
1865     ModifiedDT = Changed = true;
1866     ++NumRetsDup;
1867   }
1868 
1869   // If we eliminated all predecessors of the block, delete the block now.
1870   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1871     BB->eraseFromParent();
1872 
1873   return Changed;
1874 }
1875 
1876 //===----------------------------------------------------------------------===//
1877 // Memory Optimization
1878 //===----------------------------------------------------------------------===//
1879 
1880 namespace {
1881 
1882 /// This is an extended version of TargetLowering::AddrMode
1883 /// which holds actual Value*'s for register values.
1884 struct ExtAddrMode : public TargetLowering::AddrMode {
1885   Value *BaseReg = nullptr;
1886   Value *ScaledReg = nullptr;
1887   Value *OriginalValue = nullptr;
1888 
1889   enum FieldName {
1890     NoField        = 0x00,
1891     BaseRegField   = 0x01,
1892     BaseGVField    = 0x02,
1893     BaseOffsField  = 0x04,
1894     ScaledRegField = 0x08,
1895     ScaleField     = 0x10,
1896     MultipleFields = 0xff
1897   };
1898 
1899   ExtAddrMode() = default;
1900 
1901   void print(raw_ostream &OS) const;
1902   void dump() const;
1903 
1904   FieldName compare(const ExtAddrMode &other) {
1905     // First check that the types are the same on each field, as differing types
1906     // is something we can't cope with later on.
1907     if (BaseReg && other.BaseReg &&
1908         BaseReg->getType() != other.BaseReg->getType())
1909       return MultipleFields;
1910     if (BaseGV && other.BaseGV &&
1911         BaseGV->getType() != other.BaseGV->getType())
1912       return MultipleFields;
1913     if (ScaledReg && other.ScaledReg &&
1914         ScaledReg->getType() != other.ScaledReg->getType())
1915       return MultipleFields;
1916 
1917     // Check each field to see if it differs.
1918     unsigned Result = NoField;
1919     if (BaseReg != other.BaseReg)
1920       Result |= BaseRegField;
1921     if (BaseGV != other.BaseGV)
1922       Result |= BaseGVField;
1923     if (BaseOffs != other.BaseOffs)
1924       Result |= BaseOffsField;
1925     if (ScaledReg != other.ScaledReg)
1926       Result |= ScaledRegField;
1927     // Don't count 0 as being a different scale, because that actually means
1928     // unscaled (which will already be counted by having no ScaledReg).
1929     if (Scale && other.Scale && Scale != other.Scale)
1930       Result |= ScaleField;
1931 
1932     if (countPopulation(Result) > 1)
1933       return MultipleFields;
1934     else
1935       return static_cast<FieldName>(Result);
1936   }
1937 
1938   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
1939   // with no offset.
1940   bool isTrivial() {
1941     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
1942     // trivial if at most one of these terms is nonzero, except that BaseGV and
1943     // BaseReg both being zero actually means a null pointer value, which we
1944     // consider to be 'non-zero' here.
1945     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
1946   }
1947 
1948   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
1949     switch (Field) {
1950     default:
1951       return nullptr;
1952     case BaseRegField:
1953       return BaseReg;
1954     case BaseGVField:
1955       return BaseGV;
1956     case ScaledRegField:
1957       return ScaledReg;
1958     case BaseOffsField:
1959       return ConstantInt::get(IntPtrTy, BaseOffs);
1960     }
1961   }
1962 
1963   void SetCombinedField(FieldName Field, Value *V,
1964                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
1965     switch (Field) {
1966     default:
1967       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
1968       break;
1969     case ExtAddrMode::BaseRegField:
1970       BaseReg = V;
1971       break;
1972     case ExtAddrMode::BaseGVField:
1973       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
1974       // in the BaseReg field.
1975       assert(BaseReg == nullptr);
1976       BaseReg = V;
1977       BaseGV = nullptr;
1978       break;
1979     case ExtAddrMode::ScaledRegField:
1980       ScaledReg = V;
1981       // If we have a mix of scaled and unscaled addrmodes then we want scale
1982       // to be the scale and not zero.
1983       if (!Scale)
1984         for (const ExtAddrMode &AM : AddrModes)
1985           if (AM.Scale) {
1986             Scale = AM.Scale;
1987             break;
1988           }
1989       break;
1990     case ExtAddrMode::BaseOffsField:
1991       // The offset is no longer a constant, so it goes in ScaledReg with a
1992       // scale of 1.
1993       assert(ScaledReg == nullptr);
1994       ScaledReg = V;
1995       Scale = 1;
1996       BaseOffs = 0;
1997       break;
1998     }
1999   }
2000 };
2001 
2002 } // end anonymous namespace
2003 
2004 #ifndef NDEBUG
2005 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2006   AM.print(OS);
2007   return OS;
2008 }
2009 #endif
2010 
2011 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2012 void ExtAddrMode::print(raw_ostream &OS) const {
2013   bool NeedPlus = false;
2014   OS << "[";
2015   if (BaseGV) {
2016     OS << (NeedPlus ? " + " : "")
2017        << "GV:";
2018     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2019     NeedPlus = true;
2020   }
2021 
2022   if (BaseOffs) {
2023     OS << (NeedPlus ? " + " : "")
2024        << BaseOffs;
2025     NeedPlus = true;
2026   }
2027 
2028   if (BaseReg) {
2029     OS << (NeedPlus ? " + " : "")
2030        << "Base:";
2031     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2032     NeedPlus = true;
2033   }
2034   if (Scale) {
2035     OS << (NeedPlus ? " + " : "")
2036        << Scale << "*";
2037     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2038   }
2039 
2040   OS << ']';
2041 }
2042 
2043 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2044   print(dbgs());
2045   dbgs() << '\n';
2046 }
2047 #endif
2048 
2049 namespace {
2050 
2051 /// This class provides transaction based operation on the IR.
2052 /// Every change made through this class is recorded in the internal state and
2053 /// can be undone (rollback) until commit is called.
2054 class TypePromotionTransaction {
2055   /// This represents the common interface of the individual transaction.
2056   /// Each class implements the logic for doing one specific modification on
2057   /// the IR via the TypePromotionTransaction.
2058   class TypePromotionAction {
2059   protected:
2060     /// The Instruction modified.
2061     Instruction *Inst;
2062 
2063   public:
2064     /// Constructor of the action.
2065     /// The constructor performs the related action on the IR.
2066     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2067 
2068     virtual ~TypePromotionAction() = default;
2069 
2070     /// Undo the modification done by this action.
2071     /// When this method is called, the IR must be in the same state as it was
2072     /// before this action was applied.
2073     /// \pre Undoing the action works if and only if the IR is in the exact same
2074     /// state as it was directly after this action was applied.
2075     virtual void undo() = 0;
2076 
2077     /// Advocate every change made by this action.
2078     /// When the results on the IR of the action are to be kept, it is important
2079     /// to call this function, otherwise hidden information may be kept forever.
2080     virtual void commit() {
2081       // Nothing to be done, this action is not doing anything.
2082     }
2083   };
2084 
2085   /// Utility to remember the position of an instruction.
2086   class InsertionHandler {
2087     /// Position of an instruction.
2088     /// Either an instruction:
2089     /// - Is the first in a basic block: BB is used.
2090     /// - Has a previous instructon: PrevInst is used.
2091     union {
2092       Instruction *PrevInst;
2093       BasicBlock *BB;
2094     } Point;
2095 
2096     /// Remember whether or not the instruction had a previous instruction.
2097     bool HasPrevInstruction;
2098 
2099   public:
2100     /// Record the position of \p Inst.
2101     InsertionHandler(Instruction *Inst) {
2102       BasicBlock::iterator It = Inst->getIterator();
2103       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2104       if (HasPrevInstruction)
2105         Point.PrevInst = &*--It;
2106       else
2107         Point.BB = Inst->getParent();
2108     }
2109 
2110     /// Insert \p Inst at the recorded position.
2111     void insert(Instruction *Inst) {
2112       if (HasPrevInstruction) {
2113         if (Inst->getParent())
2114           Inst->removeFromParent();
2115         Inst->insertAfter(Point.PrevInst);
2116       } else {
2117         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2118         if (Inst->getParent())
2119           Inst->moveBefore(Position);
2120         else
2121           Inst->insertBefore(Position);
2122       }
2123     }
2124   };
2125 
2126   /// Move an instruction before another.
2127   class InstructionMoveBefore : public TypePromotionAction {
2128     /// Original position of the instruction.
2129     InsertionHandler Position;
2130 
2131   public:
2132     /// Move \p Inst before \p Before.
2133     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2134         : TypePromotionAction(Inst), Position(Inst) {
2135       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2136                         << "\n");
2137       Inst->moveBefore(Before);
2138     }
2139 
2140     /// Move the instruction back to its original position.
2141     void undo() override {
2142       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2143       Position.insert(Inst);
2144     }
2145   };
2146 
2147   /// Set the operand of an instruction with a new value.
2148   class OperandSetter : public TypePromotionAction {
2149     /// Original operand of the instruction.
2150     Value *Origin;
2151 
2152     /// Index of the modified instruction.
2153     unsigned Idx;
2154 
2155   public:
2156     /// Set \p Idx operand of \p Inst with \p NewVal.
2157     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2158         : TypePromotionAction(Inst), Idx(Idx) {
2159       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2160                         << "for:" << *Inst << "\n"
2161                         << "with:" << *NewVal << "\n");
2162       Origin = Inst->getOperand(Idx);
2163       Inst->setOperand(Idx, NewVal);
2164     }
2165 
2166     /// Restore the original value of the instruction.
2167     void undo() override {
2168       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2169                         << "for: " << *Inst << "\n"
2170                         << "with: " << *Origin << "\n");
2171       Inst->setOperand(Idx, Origin);
2172     }
2173   };
2174 
2175   /// Hide the operands of an instruction.
2176   /// Do as if this instruction was not using any of its operands.
2177   class OperandsHider : public TypePromotionAction {
2178     /// The list of original operands.
2179     SmallVector<Value *, 4> OriginalValues;
2180 
2181   public:
2182     /// Remove \p Inst from the uses of the operands of \p Inst.
2183     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2184       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2185       unsigned NumOpnds = Inst->getNumOperands();
2186       OriginalValues.reserve(NumOpnds);
2187       for (unsigned It = 0; It < NumOpnds; ++It) {
2188         // Save the current operand.
2189         Value *Val = Inst->getOperand(It);
2190         OriginalValues.push_back(Val);
2191         // Set a dummy one.
2192         // We could use OperandSetter here, but that would imply an overhead
2193         // that we are not willing to pay.
2194         Inst->setOperand(It, UndefValue::get(Val->getType()));
2195       }
2196     }
2197 
2198     /// Restore the original list of uses.
2199     void undo() override {
2200       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2201       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2202         Inst->setOperand(It, OriginalValues[It]);
2203     }
2204   };
2205 
2206   /// Build a truncate instruction.
2207   class TruncBuilder : public TypePromotionAction {
2208     Value *Val;
2209 
2210   public:
2211     /// Build a truncate instruction of \p Opnd producing a \p Ty
2212     /// result.
2213     /// trunc Opnd to Ty.
2214     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2215       IRBuilder<> Builder(Opnd);
2216       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2217       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2218     }
2219 
2220     /// Get the built value.
2221     Value *getBuiltValue() { return Val; }
2222 
2223     /// Remove the built instruction.
2224     void undo() override {
2225       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2226       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2227         IVal->eraseFromParent();
2228     }
2229   };
2230 
2231   /// Build a sign extension instruction.
2232   class SExtBuilder : public TypePromotionAction {
2233     Value *Val;
2234 
2235   public:
2236     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2237     /// result.
2238     /// sext Opnd to Ty.
2239     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2240         : TypePromotionAction(InsertPt) {
2241       IRBuilder<> Builder(InsertPt);
2242       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2243       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2244     }
2245 
2246     /// Get the built value.
2247     Value *getBuiltValue() { return Val; }
2248 
2249     /// Remove the built instruction.
2250     void undo() override {
2251       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2252       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2253         IVal->eraseFromParent();
2254     }
2255   };
2256 
2257   /// Build a zero extension instruction.
2258   class ZExtBuilder : public TypePromotionAction {
2259     Value *Val;
2260 
2261   public:
2262     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2263     /// result.
2264     /// zext Opnd to Ty.
2265     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2266         : TypePromotionAction(InsertPt) {
2267       IRBuilder<> Builder(InsertPt);
2268       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2269       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2270     }
2271 
2272     /// Get the built value.
2273     Value *getBuiltValue() { return Val; }
2274 
2275     /// Remove the built instruction.
2276     void undo() override {
2277       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2278       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2279         IVal->eraseFromParent();
2280     }
2281   };
2282 
2283   /// Mutate an instruction to another type.
2284   class TypeMutator : public TypePromotionAction {
2285     /// Record the original type.
2286     Type *OrigTy;
2287 
2288   public:
2289     /// Mutate the type of \p Inst into \p NewTy.
2290     TypeMutator(Instruction *Inst, Type *NewTy)
2291         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2292       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2293                         << "\n");
2294       Inst->mutateType(NewTy);
2295     }
2296 
2297     /// Mutate the instruction back to its original type.
2298     void undo() override {
2299       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2300                         << "\n");
2301       Inst->mutateType(OrigTy);
2302     }
2303   };
2304 
2305   /// Replace the uses of an instruction by another instruction.
2306   class UsesReplacer : public TypePromotionAction {
2307     /// Helper structure to keep track of the replaced uses.
2308     struct InstructionAndIdx {
2309       /// The instruction using the instruction.
2310       Instruction *Inst;
2311 
2312       /// The index where this instruction is used for Inst.
2313       unsigned Idx;
2314 
2315       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2316           : Inst(Inst), Idx(Idx) {}
2317     };
2318 
2319     /// Keep track of the original uses (pair Instruction, Index).
2320     SmallVector<InstructionAndIdx, 4> OriginalUses;
2321 
2322     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2323 
2324   public:
2325     /// Replace all the use of \p Inst by \p New.
2326     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2327       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2328                         << "\n");
2329       // Record the original uses.
2330       for (Use &U : Inst->uses()) {
2331         Instruction *UserI = cast<Instruction>(U.getUser());
2332         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2333       }
2334       // Now, we can replace the uses.
2335       Inst->replaceAllUsesWith(New);
2336     }
2337 
2338     /// Reassign the original uses of Inst to Inst.
2339     void undo() override {
2340       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2341       for (use_iterator UseIt = OriginalUses.begin(),
2342                         EndIt = OriginalUses.end();
2343            UseIt != EndIt; ++UseIt) {
2344         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2345       }
2346     }
2347   };
2348 
2349   /// Remove an instruction from the IR.
2350   class InstructionRemover : public TypePromotionAction {
2351     /// Original position of the instruction.
2352     InsertionHandler Inserter;
2353 
2354     /// Helper structure to hide all the link to the instruction. In other
2355     /// words, this helps to do as if the instruction was removed.
2356     OperandsHider Hider;
2357 
2358     /// Keep track of the uses replaced, if any.
2359     UsesReplacer *Replacer = nullptr;
2360 
2361     /// Keep track of instructions removed.
2362     SetOfInstrs &RemovedInsts;
2363 
2364   public:
2365     /// Remove all reference of \p Inst and optinally replace all its
2366     /// uses with New.
2367     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2368     /// \pre If !Inst->use_empty(), then New != nullptr
2369     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2370                        Value *New = nullptr)
2371         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2372           RemovedInsts(RemovedInsts) {
2373       if (New)
2374         Replacer = new UsesReplacer(Inst, New);
2375       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2376       RemovedInsts.insert(Inst);
2377       /// The instructions removed here will be freed after completing
2378       /// optimizeBlock() for all blocks as we need to keep track of the
2379       /// removed instructions during promotion.
2380       Inst->removeFromParent();
2381     }
2382 
2383     ~InstructionRemover() override { delete Replacer; }
2384 
2385     /// Resurrect the instruction and reassign it to the proper uses if
2386     /// new value was provided when build this action.
2387     void undo() override {
2388       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2389       Inserter.insert(Inst);
2390       if (Replacer)
2391         Replacer->undo();
2392       Hider.undo();
2393       RemovedInsts.erase(Inst);
2394     }
2395   };
2396 
2397 public:
2398   /// Restoration point.
2399   /// The restoration point is a pointer to an action instead of an iterator
2400   /// because the iterator may be invalidated but not the pointer.
2401   using ConstRestorationPt = const TypePromotionAction *;
2402 
2403   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2404       : RemovedInsts(RemovedInsts) {}
2405 
2406   /// Advocate every changes made in that transaction.
2407   void commit();
2408 
2409   /// Undo all the changes made after the given point.
2410   void rollback(ConstRestorationPt Point);
2411 
2412   /// Get the current restoration point.
2413   ConstRestorationPt getRestorationPoint() const;
2414 
2415   /// \name API for IR modification with state keeping to support rollback.
2416   /// @{
2417   /// Same as Instruction::setOperand.
2418   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2419 
2420   /// Same as Instruction::eraseFromParent.
2421   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2422 
2423   /// Same as Value::replaceAllUsesWith.
2424   void replaceAllUsesWith(Instruction *Inst, Value *New);
2425 
2426   /// Same as Value::mutateType.
2427   void mutateType(Instruction *Inst, Type *NewTy);
2428 
2429   /// Same as IRBuilder::createTrunc.
2430   Value *createTrunc(Instruction *Opnd, Type *Ty);
2431 
2432   /// Same as IRBuilder::createSExt.
2433   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2434 
2435   /// Same as IRBuilder::createZExt.
2436   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2437 
2438   /// Same as Instruction::moveBefore.
2439   void moveBefore(Instruction *Inst, Instruction *Before);
2440   /// @}
2441 
2442 private:
2443   /// The ordered list of actions made so far.
2444   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2445 
2446   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2447 
2448   SetOfInstrs &RemovedInsts;
2449 };
2450 
2451 } // end anonymous namespace
2452 
2453 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2454                                           Value *NewVal) {
2455   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2456       Inst, Idx, NewVal));
2457 }
2458 
2459 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2460                                                 Value *NewVal) {
2461   Actions.push_back(
2462       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2463           Inst, RemovedInsts, NewVal));
2464 }
2465 
2466 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2467                                                   Value *New) {
2468   Actions.push_back(
2469       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2470 }
2471 
2472 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2473   Actions.push_back(
2474       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2475 }
2476 
2477 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2478                                              Type *Ty) {
2479   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2480   Value *Val = Ptr->getBuiltValue();
2481   Actions.push_back(std::move(Ptr));
2482   return Val;
2483 }
2484 
2485 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2486                                             Value *Opnd, Type *Ty) {
2487   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2488   Value *Val = Ptr->getBuiltValue();
2489   Actions.push_back(std::move(Ptr));
2490   return Val;
2491 }
2492 
2493 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2494                                             Value *Opnd, Type *Ty) {
2495   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2496   Value *Val = Ptr->getBuiltValue();
2497   Actions.push_back(std::move(Ptr));
2498   return Val;
2499 }
2500 
2501 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2502                                           Instruction *Before) {
2503   Actions.push_back(
2504       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2505           Inst, Before));
2506 }
2507 
2508 TypePromotionTransaction::ConstRestorationPt
2509 TypePromotionTransaction::getRestorationPoint() const {
2510   return !Actions.empty() ? Actions.back().get() : nullptr;
2511 }
2512 
2513 void TypePromotionTransaction::commit() {
2514   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2515        ++It)
2516     (*It)->commit();
2517   Actions.clear();
2518 }
2519 
2520 void TypePromotionTransaction::rollback(
2521     TypePromotionTransaction::ConstRestorationPt Point) {
2522   while (!Actions.empty() && Point != Actions.back().get()) {
2523     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2524     Curr->undo();
2525   }
2526 }
2527 
2528 namespace {
2529 
2530 /// A helper class for matching addressing modes.
2531 ///
2532 /// This encapsulates the logic for matching the target-legal addressing modes.
2533 class AddressingModeMatcher {
2534   SmallVectorImpl<Instruction*> &AddrModeInsts;
2535   const TargetLowering &TLI;
2536   const TargetRegisterInfo &TRI;
2537   const DataLayout &DL;
2538 
2539   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2540   /// the memory instruction that we're computing this address for.
2541   Type *AccessTy;
2542   unsigned AddrSpace;
2543   Instruction *MemoryInst;
2544 
2545   /// This is the addressing mode that we're building up. This is
2546   /// part of the return value of this addressing mode matching stuff.
2547   ExtAddrMode &AddrMode;
2548 
2549   /// The instructions inserted by other CodeGenPrepare optimizations.
2550   const SetOfInstrs &InsertedInsts;
2551 
2552   /// A map from the instructions to their type before promotion.
2553   InstrToOrigTy &PromotedInsts;
2554 
2555   /// The ongoing transaction where every action should be registered.
2556   TypePromotionTransaction &TPT;
2557 
2558   // A GEP which has too large offset to be folded into the addressing mode.
2559   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2560 
2561   /// This is set to true when we should not do profitability checks.
2562   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2563   bool IgnoreProfitability;
2564 
2565   AddressingModeMatcher(
2566       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2567       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2568       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2569       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2570       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2571       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2572         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2573         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2574         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2575     IgnoreProfitability = false;
2576   }
2577 
2578 public:
2579   /// Find the maximal addressing mode that a load/store of V can fold,
2580   /// give an access type of AccessTy.  This returns a list of involved
2581   /// instructions in AddrModeInsts.
2582   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2583   /// optimizations.
2584   /// \p PromotedInsts maps the instructions to their type before promotion.
2585   /// \p The ongoing transaction where every action should be registered.
2586   static ExtAddrMode
2587   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2588         SmallVectorImpl<Instruction *> &AddrModeInsts,
2589         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2590         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2591         TypePromotionTransaction &TPT,
2592         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2593     ExtAddrMode Result;
2594 
2595     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2596                                          MemoryInst, Result, InsertedInsts,
2597                                          PromotedInsts, TPT, LargeOffsetGEP)
2598                        .matchAddr(V, 0);
2599     (void)Success; assert(Success && "Couldn't select *anything*?");
2600     return Result;
2601   }
2602 
2603 private:
2604   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2605   bool matchAddr(Value *V, unsigned Depth);
2606   bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
2607                           bool *MovedAway = nullptr);
2608   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2609                                             ExtAddrMode &AMBefore,
2610                                             ExtAddrMode &AMAfter);
2611   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2612   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2613                              Value *PromotedOperand) const;
2614 };
2615 
2616 /// Keep track of simplification of Phi nodes.
2617 /// Accept the set of all phi nodes and erase phi node from this set
2618 /// if it is simplified.
2619 class SimplificationTracker {
2620   DenseMap<Value *, Value *> Storage;
2621   const SimplifyQuery &SQ;
2622   // Tracks newly created Phi nodes. We use a SetVector to get deterministic
2623   // order when iterating over the set in MatchPhiSet.
2624   SmallSetVector<PHINode *, 32> AllPhiNodes;
2625   // Tracks newly created Select nodes.
2626   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2627 
2628 public:
2629   SimplificationTracker(const SimplifyQuery &sq)
2630       : SQ(sq) {}
2631 
2632   Value *Get(Value *V) {
2633     do {
2634       auto SV = Storage.find(V);
2635       if (SV == Storage.end())
2636         return V;
2637       V = SV->second;
2638     } while (true);
2639   }
2640 
2641   Value *Simplify(Value *Val) {
2642     SmallVector<Value *, 32> WorkList;
2643     SmallPtrSet<Value *, 32> Visited;
2644     WorkList.push_back(Val);
2645     while (!WorkList.empty()) {
2646       auto P = WorkList.pop_back_val();
2647       if (!Visited.insert(P).second)
2648         continue;
2649       if (auto *PI = dyn_cast<Instruction>(P))
2650         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
2651           for (auto *U : PI->users())
2652             WorkList.push_back(cast<Value>(U));
2653           Put(PI, V);
2654           PI->replaceAllUsesWith(V);
2655           if (auto *PHI = dyn_cast<PHINode>(PI))
2656             AllPhiNodes.remove(PHI);
2657           if (auto *Select = dyn_cast<SelectInst>(PI))
2658             AllSelectNodes.erase(Select);
2659           PI->eraseFromParent();
2660         }
2661     }
2662     return Get(Val);
2663   }
2664 
2665   void Put(Value *From, Value *To) {
2666     Storage.insert({ From, To });
2667   }
2668 
2669   void ReplacePhi(PHINode *From, PHINode *To) {
2670     Value* OldReplacement = Get(From);
2671     while (OldReplacement != From) {
2672       From = To;
2673       To = dyn_cast<PHINode>(OldReplacement);
2674       OldReplacement = Get(From);
2675     }
2676     assert(Get(To) == To && "Replacement PHI node is already replaced.");
2677     Put(From, To);
2678     From->replaceAllUsesWith(To);
2679     AllPhiNodes.remove(From);
2680     From->eraseFromParent();
2681   }
2682 
2683   SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; }
2684 
2685   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
2686 
2687   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
2688 
2689   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
2690 
2691   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
2692 
2693   void destroyNewNodes(Type *CommonType) {
2694     // For safe erasing, replace the uses with dummy value first.
2695     auto Dummy = UndefValue::get(CommonType);
2696     for (auto I : AllPhiNodes) {
2697       I->replaceAllUsesWith(Dummy);
2698       I->eraseFromParent();
2699     }
2700     AllPhiNodes.clear();
2701     for (auto I : AllSelectNodes) {
2702       I->replaceAllUsesWith(Dummy);
2703       I->eraseFromParent();
2704     }
2705     AllSelectNodes.clear();
2706   }
2707 };
2708 
2709 /// A helper class for combining addressing modes.
2710 class AddressingModeCombiner {
2711   typedef std::pair<Value *, BasicBlock *> ValueInBB;
2712   typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping;
2713   typedef std::pair<PHINode *, PHINode *> PHIPair;
2714 
2715 private:
2716   /// The addressing modes we've collected.
2717   SmallVector<ExtAddrMode, 16> AddrModes;
2718 
2719   /// The field in which the AddrModes differ, when we have more than one.
2720   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
2721 
2722   /// Are the AddrModes that we have all just equal to their original values?
2723   bool AllAddrModesTrivial = true;
2724 
2725   /// Common Type for all different fields in addressing modes.
2726   Type *CommonType;
2727 
2728   /// SimplifyQuery for simplifyInstruction utility.
2729   const SimplifyQuery &SQ;
2730 
2731   /// Original Address.
2732   ValueInBB Original;
2733 
2734 public:
2735   AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue)
2736       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
2737 
2738   /// Get the combined AddrMode
2739   const ExtAddrMode &getAddrMode() const {
2740     return AddrModes[0];
2741   }
2742 
2743   /// Add a new AddrMode if it's compatible with the AddrModes we already
2744   /// have.
2745   /// \return True iff we succeeded in doing so.
2746   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
2747     // Take note of if we have any non-trivial AddrModes, as we need to detect
2748     // when all AddrModes are trivial as then we would introduce a phi or select
2749     // which just duplicates what's already there.
2750     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
2751 
2752     // If this is the first addrmode then everything is fine.
2753     if (AddrModes.empty()) {
2754       AddrModes.emplace_back(NewAddrMode);
2755       return true;
2756     }
2757 
2758     // Figure out how different this is from the other address modes, which we
2759     // can do just by comparing against the first one given that we only care
2760     // about the cumulative difference.
2761     ExtAddrMode::FieldName ThisDifferentField =
2762       AddrModes[0].compare(NewAddrMode);
2763     if (DifferentField == ExtAddrMode::NoField)
2764       DifferentField = ThisDifferentField;
2765     else if (DifferentField != ThisDifferentField)
2766       DifferentField = ExtAddrMode::MultipleFields;
2767 
2768     // If NewAddrMode differs in more than one dimension we cannot handle it.
2769     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
2770 
2771     // If Scale Field is different then we reject.
2772     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
2773 
2774     // We also must reject the case when base offset is different and
2775     // scale reg is not null, we cannot handle this case due to merge of
2776     // different offsets will be used as ScaleReg.
2777     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
2778                               !NewAddrMode.ScaledReg);
2779 
2780     // We also must reject the case when GV is different and BaseReg installed
2781     // due to we want to use base reg as a merge of GV values.
2782     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
2783                               !NewAddrMode.HasBaseReg);
2784 
2785     // Even if NewAddMode is the same we still need to collect it due to
2786     // original value is different. And later we will need all original values
2787     // as anchors during finding the common Phi node.
2788     if (CanHandle)
2789       AddrModes.emplace_back(NewAddrMode);
2790     else
2791       AddrModes.clear();
2792 
2793     return CanHandle;
2794   }
2795 
2796   /// Combine the addressing modes we've collected into a single
2797   /// addressing mode.
2798   /// \return True iff we successfully combined them or we only had one so
2799   /// didn't need to combine them anyway.
2800   bool combineAddrModes() {
2801     // If we have no AddrModes then they can't be combined.
2802     if (AddrModes.size() == 0)
2803       return false;
2804 
2805     // A single AddrMode can trivially be combined.
2806     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
2807       return true;
2808 
2809     // If the AddrModes we collected are all just equal to the value they are
2810     // derived from then combining them wouldn't do anything useful.
2811     if (AllAddrModesTrivial)
2812       return false;
2813 
2814     if (!addrModeCombiningAllowed())
2815       return false;
2816 
2817     // Build a map between <original value, basic block where we saw it> to
2818     // value of base register.
2819     // Bail out if there is no common type.
2820     FoldAddrToValueMapping Map;
2821     if (!initializeMap(Map))
2822       return false;
2823 
2824     Value *CommonValue = findCommon(Map);
2825     if (CommonValue)
2826       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
2827     return CommonValue != nullptr;
2828   }
2829 
2830 private:
2831   /// Initialize Map with anchor values. For address seen in some BB
2832   /// we set the value of different field saw in this address.
2833   /// If address is not an instruction than basic block is set to null.
2834   /// At the same time we find a common type for different field we will
2835   /// use to create new Phi/Select nodes. Keep it in CommonType field.
2836   /// Return false if there is no common type found.
2837   bool initializeMap(FoldAddrToValueMapping &Map) {
2838     // Keep track of keys where the value is null. We will need to replace it
2839     // with constant null when we know the common type.
2840     SmallVector<ValueInBB, 2> NullValue;
2841     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
2842     for (auto &AM : AddrModes) {
2843       BasicBlock *BB = nullptr;
2844       if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue))
2845         BB = I->getParent();
2846 
2847       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
2848       if (DV) {
2849         auto *Type = DV->getType();
2850         if (CommonType && CommonType != Type)
2851           return false;
2852         CommonType = Type;
2853         Map[{ AM.OriginalValue, BB }] = DV;
2854       } else {
2855         NullValue.push_back({ AM.OriginalValue, BB });
2856       }
2857     }
2858     assert(CommonType && "At least one non-null value must be!");
2859     for (auto VIBB : NullValue)
2860       Map[VIBB] = Constant::getNullValue(CommonType);
2861     return true;
2862   }
2863 
2864   /// We have mapping between value A and basic block where value A
2865   /// seen to other value B where B was a field in addressing mode represented
2866   /// by A. Also we have an original value C representin an address in some
2867   /// basic block. Traversing from C through phi and selects we ended up with
2868   /// A's in a map. This utility function tries to find a value V which is a
2869   /// field in addressing mode C and traversing through phi nodes and selects
2870   /// we will end up in corresponded values B in a map.
2871   /// The utility will create a new Phi/Selects if needed.
2872   // The simple example looks as follows:
2873   // BB1:
2874   //   p1 = b1 + 40
2875   //   br cond BB2, BB3
2876   // BB2:
2877   //   p2 = b2 + 40
2878   //   br BB3
2879   // BB3:
2880   //   p = phi [p1, BB1], [p2, BB2]
2881   //   v = load p
2882   // Map is
2883   //   <p1, BB1> -> b1
2884   //   <p2, BB2> -> b2
2885   // Request is
2886   //   <p, BB3> -> ?
2887   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3
2888   Value *findCommon(FoldAddrToValueMapping &Map) {
2889     // Tracks the simplification of newly created phi nodes. The reason we use
2890     // this mapping is because we will add new created Phi nodes in AddrToBase.
2891     // Simplification of Phi nodes is recursive, so some Phi node may
2892     // be simplified after we added it to AddrToBase.
2893     // Using this mapping we can find the current value in AddrToBase.
2894     SimplificationTracker ST(SQ);
2895 
2896     // First step, DFS to create PHI nodes for all intermediate blocks.
2897     // Also fill traverse order for the second step.
2898     SmallVector<ValueInBB, 32> TraverseOrder;
2899     InsertPlaceholders(Map, TraverseOrder, ST);
2900 
2901     // Second Step, fill new nodes by merged values and simplify if possible.
2902     FillPlaceholders(Map, TraverseOrder, ST);
2903 
2904     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
2905       ST.destroyNewNodes(CommonType);
2906       return nullptr;
2907     }
2908 
2909     // Now we'd like to match New Phi nodes to existed ones.
2910     unsigned PhiNotMatchedCount = 0;
2911     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
2912       ST.destroyNewNodes(CommonType);
2913       return nullptr;
2914     }
2915 
2916     auto *Result = ST.Get(Map.find(Original)->second);
2917     if (Result) {
2918       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
2919       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
2920     }
2921     return Result;
2922   }
2923 
2924   /// Try to match PHI node to Candidate.
2925   /// Matcher tracks the matched Phi nodes.
2926   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
2927                     SmallSetVector<PHIPair, 8> &Matcher,
2928                     SmallSetVector<PHINode *, 32> &PhiNodesToMatch) {
2929     SmallVector<PHIPair, 8> WorkList;
2930     Matcher.insert({ PHI, Candidate });
2931     WorkList.push_back({ PHI, Candidate });
2932     SmallSet<PHIPair, 8> Visited;
2933     while (!WorkList.empty()) {
2934       auto Item = WorkList.pop_back_val();
2935       if (!Visited.insert(Item).second)
2936         continue;
2937       // We iterate over all incoming values to Phi to compare them.
2938       // If values are different and both of them Phi and the first one is a
2939       // Phi we added (subject to match) and both of them is in the same basic
2940       // block then we can match our pair if values match. So we state that
2941       // these values match and add it to work list to verify that.
2942       for (auto B : Item.first->blocks()) {
2943         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
2944         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
2945         if (FirstValue == SecondValue)
2946           continue;
2947 
2948         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
2949         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
2950 
2951         // One of them is not Phi or
2952         // The first one is not Phi node from the set we'd like to match or
2953         // Phi nodes from different basic blocks then
2954         // we will not be able to match.
2955         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
2956             FirstPhi->getParent() != SecondPhi->getParent())
2957           return false;
2958 
2959         // If we already matched them then continue.
2960         if (Matcher.count({ FirstPhi, SecondPhi }))
2961           continue;
2962         // So the values are different and does not match. So we need them to
2963         // match.
2964         Matcher.insert({ FirstPhi, SecondPhi });
2965         // But me must check it.
2966         WorkList.push_back({ FirstPhi, SecondPhi });
2967       }
2968     }
2969     return true;
2970   }
2971 
2972   /// For the given set of PHI nodes (in the SimplificationTracker) try
2973   /// to find their equivalents.
2974   /// Returns false if this matching fails and creation of new Phi is disabled.
2975   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
2976                    unsigned &PhiNotMatchedCount) {
2977     // Use a SetVector for Matched to make sure we do replacements (ReplacePhi)
2978     // in a deterministic order below.
2979     SmallSetVector<PHIPair, 8> Matched;
2980     SmallPtrSet<PHINode *, 8> WillNotMatch;
2981     SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes();
2982     while (PhiNodesToMatch.size()) {
2983       PHINode *PHI = *PhiNodesToMatch.begin();
2984 
2985       // Add us, if no Phi nodes in the basic block we do not match.
2986       WillNotMatch.clear();
2987       WillNotMatch.insert(PHI);
2988 
2989       // Traverse all Phis until we found equivalent or fail to do that.
2990       bool IsMatched = false;
2991       for (auto &P : PHI->getParent()->phis()) {
2992         if (&P == PHI)
2993           continue;
2994         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
2995           break;
2996         // If it does not match, collect all Phi nodes from matcher.
2997         // if we end up with no match, them all these Phi nodes will not match
2998         // later.
2999         for (auto M : Matched)
3000           WillNotMatch.insert(M.first);
3001         Matched.clear();
3002       }
3003       if (IsMatched) {
3004         // Replace all matched values and erase them.
3005         for (auto MV : Matched)
3006           ST.ReplacePhi(MV.first, MV.second);
3007         Matched.clear();
3008         continue;
3009       }
3010       // If we are not allowed to create new nodes then bail out.
3011       if (!AllowNewPhiNodes)
3012         return false;
3013       // Just remove all seen values in matcher. They will not match anything.
3014       PhiNotMatchedCount += WillNotMatch.size();
3015       for (auto *P : WillNotMatch)
3016         PhiNodesToMatch.remove(P);
3017     }
3018     return true;
3019   }
3020   /// Fill the placeholder with values from predecessors and simplify it.
3021   void FillPlaceholders(FoldAddrToValueMapping &Map,
3022                         SmallVectorImpl<ValueInBB> &TraverseOrder,
3023                         SimplificationTracker &ST) {
3024     while (!TraverseOrder.empty()) {
3025       auto Current = TraverseOrder.pop_back_val();
3026       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3027       Value *CurrentValue = Current.first;
3028       BasicBlock *CurrentBlock = Current.second;
3029       Value *V = Map[Current];
3030 
3031       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3032         // CurrentValue also must be Select.
3033         auto *CurrentSelect = cast<SelectInst>(CurrentValue);
3034         auto *TrueValue = CurrentSelect->getTrueValue();
3035         ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue)
3036                                               ? CurrentBlock
3037                                               : nullptr };
3038         assert(Map.find(TrueItem) != Map.end() && "No True Value!");
3039         Select->setTrueValue(ST.Get(Map[TrueItem]));
3040         auto *FalseValue = CurrentSelect->getFalseValue();
3041         ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue)
3042                                                 ? CurrentBlock
3043                                                 : nullptr };
3044         assert(Map.find(FalseItem) != Map.end() && "No False Value!");
3045         Select->setFalseValue(ST.Get(Map[FalseItem]));
3046       } else {
3047         // Must be a Phi node then.
3048         PHINode *PHI = cast<PHINode>(V);
3049         // Fill the Phi node with values from predecessors.
3050         bool IsDefinedInThisBB =
3051             cast<Instruction>(CurrentValue)->getParent() == CurrentBlock;
3052         auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue);
3053         for (auto B : predecessors(CurrentBlock)) {
3054           Value *PV = IsDefinedInThisBB
3055                           ? CurrentPhi->getIncomingValueForBlock(B)
3056                           : CurrentValue;
3057           ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr };
3058           assert(Map.find(item) != Map.end() && "No predecessor Value!");
3059           PHI->addIncoming(ST.Get(Map[item]), B);
3060         }
3061       }
3062       // Simplify if possible.
3063       Map[Current] = ST.Simplify(V);
3064     }
3065   }
3066 
3067   /// Starting from value recursively iterates over predecessors up to known
3068   /// ending values represented in a map. For each traversed block inserts
3069   /// a placeholder Phi or Select.
3070   /// Reports all new created Phi/Select nodes by adding them to set.
3071   /// Also reports and order in what basic blocks have been traversed.
3072   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3073                           SmallVectorImpl<ValueInBB> &TraverseOrder,
3074                           SimplificationTracker &ST) {
3075     SmallVector<ValueInBB, 32> Worklist;
3076     assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) &&
3077            "Address must be a Phi or Select node");
3078     auto *Dummy = UndefValue::get(CommonType);
3079     Worklist.push_back(Original);
3080     while (!Worklist.empty()) {
3081       auto Current = Worklist.pop_back_val();
3082       // If value is not an instruction it is something global, constant,
3083       // parameter and we can say that this value is observable in any block.
3084       // Set block to null to denote it.
3085       // Also please take into account that it is how we build anchors.
3086       if (!isa<Instruction>(Current.first))
3087         Current.second = nullptr;
3088       // if it is already visited or it is an ending value then skip it.
3089       if (Map.find(Current) != Map.end())
3090         continue;
3091       TraverseOrder.push_back(Current);
3092 
3093       Value *CurrentValue = Current.first;
3094       BasicBlock *CurrentBlock = Current.second;
3095       // CurrentValue must be a Phi node or select. All others must be covered
3096       // by anchors.
3097       Instruction *CurrentI = cast<Instruction>(CurrentValue);
3098       bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock;
3099 
3100       unsigned PredCount = pred_size(CurrentBlock);
3101       // if Current Value is not defined in this basic block we are interested
3102       // in values in predecessors.
3103       if (!IsDefinedInThisBB) {
3104         assert(PredCount && "Unreachable block?!");
3105         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3106                                        &CurrentBlock->front());
3107         Map[Current] = PHI;
3108         ST.insertNewPhi(PHI);
3109         // Add all predecessors in work list.
3110         for (auto B : predecessors(CurrentBlock))
3111           Worklist.push_back({ CurrentValue, B });
3112         continue;
3113       }
3114       // Value is defined in this basic block.
3115       if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) {
3116         // Is it OK to get metadata from OrigSelect?!
3117         // Create a Select placeholder with dummy value.
3118         SelectInst *Select =
3119             SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy,
3120                                OrigSelect->getName(), OrigSelect, OrigSelect);
3121         Map[Current] = Select;
3122         ST.insertNewSelect(Select);
3123         // We are interested in True and False value in this basic block.
3124         Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock });
3125         Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock });
3126       } else {
3127         // It must be a Phi node then.
3128         auto *CurrentPhi = cast<PHINode>(CurrentI);
3129         // Create new Phi node for merge of bases.
3130         assert(PredCount && "Unreachable block?!");
3131         PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi",
3132                                        &CurrentBlock->front());
3133         Map[Current] = PHI;
3134         ST.insertNewPhi(PHI);
3135 
3136         // Add all predecessors in work list.
3137         for (auto B : predecessors(CurrentBlock))
3138           Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B });
3139       }
3140     }
3141   }
3142 
3143   bool addrModeCombiningAllowed() {
3144     if (DisableComplexAddrModes)
3145       return false;
3146     switch (DifferentField) {
3147     default:
3148       return false;
3149     case ExtAddrMode::BaseRegField:
3150       return AddrSinkCombineBaseReg;
3151     case ExtAddrMode::BaseGVField:
3152       return AddrSinkCombineBaseGV;
3153     case ExtAddrMode::BaseOffsField:
3154       return AddrSinkCombineBaseOffs;
3155     case ExtAddrMode::ScaledRegField:
3156       return AddrSinkCombineScaledReg;
3157     }
3158   }
3159 };
3160 } // end anonymous namespace
3161 
3162 /// Try adding ScaleReg*Scale to the current addressing mode.
3163 /// Return true and update AddrMode if this addr mode is legal for the target,
3164 /// false if not.
3165 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3166                                              unsigned Depth) {
3167   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3168   // mode.  Just process that directly.
3169   if (Scale == 1)
3170     return matchAddr(ScaleReg, Depth);
3171 
3172   // If the scale is 0, it takes nothing to add this.
3173   if (Scale == 0)
3174     return true;
3175 
3176   // If we already have a scale of this value, we can add to it, otherwise, we
3177   // need an available scale field.
3178   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3179     return false;
3180 
3181   ExtAddrMode TestAddrMode = AddrMode;
3182 
3183   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3184   // [A+B + A*7] -> [B+A*8].
3185   TestAddrMode.Scale += Scale;
3186   TestAddrMode.ScaledReg = ScaleReg;
3187 
3188   // If the new address isn't legal, bail out.
3189   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3190     return false;
3191 
3192   // It was legal, so commit it.
3193   AddrMode = TestAddrMode;
3194 
3195   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3196   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3197   // X*Scale + C*Scale to addr mode.
3198   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3199   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3200       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3201     TestAddrMode.ScaledReg = AddLHS;
3202     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3203 
3204     // If this addressing mode is legal, commit it and remember that we folded
3205     // this instruction.
3206     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3207       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3208       AddrMode = TestAddrMode;
3209       return true;
3210     }
3211   }
3212 
3213   // Otherwise, not (x+c)*scale, just return what we have.
3214   return true;
3215 }
3216 
3217 /// This is a little filter, which returns true if an addressing computation
3218 /// involving I might be folded into a load/store accessing it.
3219 /// This doesn't need to be perfect, but needs to accept at least
3220 /// the set of instructions that MatchOperationAddr can.
3221 static bool MightBeFoldableInst(Instruction *I) {
3222   switch (I->getOpcode()) {
3223   case Instruction::BitCast:
3224   case Instruction::AddrSpaceCast:
3225     // Don't touch identity bitcasts.
3226     if (I->getType() == I->getOperand(0)->getType())
3227       return false;
3228     return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
3229   case Instruction::PtrToInt:
3230     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3231     return true;
3232   case Instruction::IntToPtr:
3233     // We know the input is intptr_t, so this is foldable.
3234     return true;
3235   case Instruction::Add:
3236     return true;
3237   case Instruction::Mul:
3238   case Instruction::Shl:
3239     // Can only handle X*C and X << C.
3240     return isa<ConstantInt>(I->getOperand(1));
3241   case Instruction::GetElementPtr:
3242     return true;
3243   default:
3244     return false;
3245   }
3246 }
3247 
3248 /// Check whether or not \p Val is a legal instruction for \p TLI.
3249 /// \note \p Val is assumed to be the product of some type promotion.
3250 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3251 /// to be legal, as the non-promoted value would have had the same state.
3252 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3253                                        const DataLayout &DL, Value *Val) {
3254   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3255   if (!PromotedInst)
3256     return false;
3257   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3258   // If the ISDOpcode is undefined, it was undefined before the promotion.
3259   if (!ISDOpcode)
3260     return true;
3261   // Otherwise, check if the promoted instruction is legal or not.
3262   return TLI.isOperationLegalOrCustom(
3263       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3264 }
3265 
3266 namespace {
3267 
3268 /// Hepler class to perform type promotion.
3269 class TypePromotionHelper {
3270   /// Utility function to check whether or not a sign or zero extension
3271   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3272   /// either using the operands of \p Inst or promoting \p Inst.
3273   /// The type of the extension is defined by \p IsSExt.
3274   /// In other words, check if:
3275   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3276   /// #1 Promotion applies:
3277   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3278   /// #2 Operand reuses:
3279   /// ext opnd1 to ConsideredExtType.
3280   /// \p PromotedInsts maps the instructions to their type before promotion.
3281   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3282                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3283 
3284   /// Utility function to determine if \p OpIdx should be promoted when
3285   /// promoting \p Inst.
3286   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3287     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3288   }
3289 
3290   /// Utility function to promote the operand of \p Ext when this
3291   /// operand is a promotable trunc or sext or zext.
3292   /// \p PromotedInsts maps the instructions to their type before promotion.
3293   /// \p CreatedInstsCost[out] contains the cost of all instructions
3294   /// created to promote the operand of Ext.
3295   /// Newly added extensions are inserted in \p Exts.
3296   /// Newly added truncates are inserted in \p Truncs.
3297   /// Should never be called directly.
3298   /// \return The promoted value which is used instead of Ext.
3299   static Value *promoteOperandForTruncAndAnyExt(
3300       Instruction *Ext, TypePromotionTransaction &TPT,
3301       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3302       SmallVectorImpl<Instruction *> *Exts,
3303       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3304 
3305   /// Utility function to promote the operand of \p Ext when this
3306   /// operand is promotable and is not a supported trunc or sext.
3307   /// \p PromotedInsts maps the instructions to their type before promotion.
3308   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3309   /// created to promote the operand of Ext.
3310   /// Newly added extensions are inserted in \p Exts.
3311   /// Newly added truncates are inserted in \p Truncs.
3312   /// Should never be called directly.
3313   /// \return The promoted value which is used instead of Ext.
3314   static Value *promoteOperandForOther(Instruction *Ext,
3315                                        TypePromotionTransaction &TPT,
3316                                        InstrToOrigTy &PromotedInsts,
3317                                        unsigned &CreatedInstsCost,
3318                                        SmallVectorImpl<Instruction *> *Exts,
3319                                        SmallVectorImpl<Instruction *> *Truncs,
3320                                        const TargetLowering &TLI, bool IsSExt);
3321 
3322   /// \see promoteOperandForOther.
3323   static Value *signExtendOperandForOther(
3324       Instruction *Ext, TypePromotionTransaction &TPT,
3325       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3326       SmallVectorImpl<Instruction *> *Exts,
3327       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3328     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3329                                   Exts, Truncs, TLI, true);
3330   }
3331 
3332   /// \see promoteOperandForOther.
3333   static Value *zeroExtendOperandForOther(
3334       Instruction *Ext, TypePromotionTransaction &TPT,
3335       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3336       SmallVectorImpl<Instruction *> *Exts,
3337       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3338     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3339                                   Exts, Truncs, TLI, false);
3340   }
3341 
3342 public:
3343   /// Type for the utility function that promotes the operand of Ext.
3344   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3345                             InstrToOrigTy &PromotedInsts,
3346                             unsigned &CreatedInstsCost,
3347                             SmallVectorImpl<Instruction *> *Exts,
3348                             SmallVectorImpl<Instruction *> *Truncs,
3349                             const TargetLowering &TLI);
3350 
3351   /// Given a sign/zero extend instruction \p Ext, return the approriate
3352   /// action to promote the operand of \p Ext instead of using Ext.
3353   /// \return NULL if no promotable action is possible with the current
3354   /// sign extension.
3355   /// \p InsertedInsts keeps track of all the instructions inserted by the
3356   /// other CodeGenPrepare optimizations. This information is important
3357   /// because we do not want to promote these instructions as CodeGenPrepare
3358   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3359   /// \p PromotedInsts maps the instructions to their type before promotion.
3360   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3361                           const TargetLowering &TLI,
3362                           const InstrToOrigTy &PromotedInsts);
3363 };
3364 
3365 } // end anonymous namespace
3366 
3367 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3368                                         Type *ConsideredExtType,
3369                                         const InstrToOrigTy &PromotedInsts,
3370                                         bool IsSExt) {
3371   // The promotion helper does not know how to deal with vector types yet.
3372   // To be able to fix that, we would need to fix the places where we
3373   // statically extend, e.g., constants and such.
3374   if (Inst->getType()->isVectorTy())
3375     return false;
3376 
3377   // We can always get through zext.
3378   if (isa<ZExtInst>(Inst))
3379     return true;
3380 
3381   // sext(sext) is ok too.
3382   if (IsSExt && isa<SExtInst>(Inst))
3383     return true;
3384 
3385   // We can get through binary operator, if it is legal. In other words, the
3386   // binary operator must have a nuw or nsw flag.
3387   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3388   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3389       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3390        (IsSExt && BinOp->hasNoSignedWrap())))
3391     return true;
3392 
3393   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3394   if ((Inst->getOpcode() == Instruction::And ||
3395        Inst->getOpcode() == Instruction::Or))
3396     return true;
3397 
3398   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3399   if (Inst->getOpcode() == Instruction::Xor) {
3400     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3401     // Make sure it is not a NOT.
3402     if (Cst && !Cst->getValue().isAllOnesValue())
3403       return true;
3404   }
3405 
3406   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3407   // It may change a poisoned value into a regular value, like
3408   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3409   //          poisoned value                    regular value
3410   // It should be OK since undef covers valid value.
3411   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3412     return true;
3413 
3414   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3415   // It may change a poisoned value into a regular value, like
3416   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3417   //          poisoned value                    regular value
3418   // It should be OK since undef covers valid value.
3419   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3420     const Instruction *ExtInst =
3421         dyn_cast<const Instruction>(*Inst->user_begin());
3422     if (ExtInst->hasOneUse()) {
3423       const Instruction *AndInst =
3424           dyn_cast<const Instruction>(*ExtInst->user_begin());
3425       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3426         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3427         if (Cst &&
3428             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3429           return true;
3430       }
3431     }
3432   }
3433 
3434   // Check if we can do the following simplification.
3435   // ext(trunc(opnd)) --> ext(opnd)
3436   if (!isa<TruncInst>(Inst))
3437     return false;
3438 
3439   Value *OpndVal = Inst->getOperand(0);
3440   // Check if we can use this operand in the extension.
3441   // If the type is larger than the result type of the extension, we cannot.
3442   if (!OpndVal->getType()->isIntegerTy() ||
3443       OpndVal->getType()->getIntegerBitWidth() >
3444           ConsideredExtType->getIntegerBitWidth())
3445     return false;
3446 
3447   // If the operand of the truncate is not an instruction, we will not have
3448   // any information on the dropped bits.
3449   // (Actually we could for constant but it is not worth the extra logic).
3450   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3451   if (!Opnd)
3452     return false;
3453 
3454   // Check if the source of the type is narrow enough.
3455   // I.e., check that trunc just drops extended bits of the same kind of
3456   // the extension.
3457   // #1 get the type of the operand and check the kind of the extended bits.
3458   const Type *OpndType;
3459   InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3460   if (It != PromotedInsts.end() && It->second.getInt() == IsSExt)
3461     OpndType = It->second.getPointer();
3462   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3463     OpndType = Opnd->getOperand(0)->getType();
3464   else
3465     return false;
3466 
3467   // #2 check that the truncate just drops extended bits.
3468   return Inst->getType()->getIntegerBitWidth() >=
3469          OpndType->getIntegerBitWidth();
3470 }
3471 
3472 TypePromotionHelper::Action TypePromotionHelper::getAction(
3473     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3474     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3475   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3476          "Unexpected instruction type");
3477   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3478   Type *ExtTy = Ext->getType();
3479   bool IsSExt = isa<SExtInst>(Ext);
3480   // If the operand of the extension is not an instruction, we cannot
3481   // get through.
3482   // If it, check we can get through.
3483   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3484     return nullptr;
3485 
3486   // Do not promote if the operand has been added by codegenprepare.
3487   // Otherwise, it means we are undoing an optimization that is likely to be
3488   // redone, thus causing potential infinite loop.
3489   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3490     return nullptr;
3491 
3492   // SExt or Trunc instructions.
3493   // Return the related handler.
3494   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3495       isa<ZExtInst>(ExtOpnd))
3496     return promoteOperandForTruncAndAnyExt;
3497 
3498   // Regular instruction.
3499   // Abort early if we will have to insert non-free instructions.
3500   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3501     return nullptr;
3502   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3503 }
3504 
3505 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3506     Instruction *SExt, TypePromotionTransaction &TPT,
3507     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3508     SmallVectorImpl<Instruction *> *Exts,
3509     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3510   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3511   // get through it and this method should not be called.
3512   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3513   Value *ExtVal = SExt;
3514   bool HasMergedNonFreeExt = false;
3515   if (isa<ZExtInst>(SExtOpnd)) {
3516     // Replace s|zext(zext(opnd))
3517     // => zext(opnd).
3518     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3519     Value *ZExt =
3520         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3521     TPT.replaceAllUsesWith(SExt, ZExt);
3522     TPT.eraseInstruction(SExt);
3523     ExtVal = ZExt;
3524   } else {
3525     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3526     // => z|sext(opnd).
3527     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3528   }
3529   CreatedInstsCost = 0;
3530 
3531   // Remove dead code.
3532   if (SExtOpnd->use_empty())
3533     TPT.eraseInstruction(SExtOpnd);
3534 
3535   // Check if the extension is still needed.
3536   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3537   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3538     if (ExtInst) {
3539       if (Exts)
3540         Exts->push_back(ExtInst);
3541       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3542     }
3543     return ExtVal;
3544   }
3545 
3546   // At this point we have: ext ty opnd to ty.
3547   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3548   Value *NextVal = ExtInst->getOperand(0);
3549   TPT.eraseInstruction(ExtInst, NextVal);
3550   return NextVal;
3551 }
3552 
3553 Value *TypePromotionHelper::promoteOperandForOther(
3554     Instruction *Ext, TypePromotionTransaction &TPT,
3555     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3556     SmallVectorImpl<Instruction *> *Exts,
3557     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3558     bool IsSExt) {
3559   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3560   // get through it and this method should not be called.
3561   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3562   CreatedInstsCost = 0;
3563   if (!ExtOpnd->hasOneUse()) {
3564     // ExtOpnd will be promoted.
3565     // All its uses, but Ext, will need to use a truncated value of the
3566     // promoted version.
3567     // Create the truncate now.
3568     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3569     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3570       // Insert it just after the definition.
3571       ITrunc->moveAfter(ExtOpnd);
3572       if (Truncs)
3573         Truncs->push_back(ITrunc);
3574     }
3575 
3576     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3577     // Restore the operand of Ext (which has been replaced by the previous call
3578     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3579     TPT.setOperand(Ext, 0, ExtOpnd);
3580   }
3581 
3582   // Get through the Instruction:
3583   // 1. Update its type.
3584   // 2. Replace the uses of Ext by Inst.
3585   // 3. Extend each operand that needs to be extended.
3586 
3587   // Remember the original type of the instruction before promotion.
3588   // This is useful to know that the high bits are sign extended bits.
3589   PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>(
3590       ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt)));
3591   // Step #1.
3592   TPT.mutateType(ExtOpnd, Ext->getType());
3593   // Step #2.
3594   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3595   // Step #3.
3596   Instruction *ExtForOpnd = Ext;
3597 
3598   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3599   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3600        ++OpIdx) {
3601     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3602     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3603         !shouldExtOperand(ExtOpnd, OpIdx)) {
3604       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3605       continue;
3606     }
3607     // Check if we can statically extend the operand.
3608     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3609     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3610       LLVM_DEBUG(dbgs() << "Statically extend\n");
3611       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3612       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3613                             : Cst->getValue().zext(BitWidth);
3614       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3615       continue;
3616     }
3617     // UndefValue are typed, so we have to statically sign extend them.
3618     if (isa<UndefValue>(Opnd)) {
3619       LLVM_DEBUG(dbgs() << "Statically extend\n");
3620       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3621       continue;
3622     }
3623 
3624     // Otherwise we have to explicity sign extend the operand.
3625     // Check if Ext was reused to extend an operand.
3626     if (!ExtForOpnd) {
3627       // If yes, create a new one.
3628       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3629       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3630         : TPT.createZExt(Ext, Opnd, Ext->getType());
3631       if (!isa<Instruction>(ValForExtOpnd)) {
3632         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3633         continue;
3634       }
3635       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3636     }
3637     if (Exts)
3638       Exts->push_back(ExtForOpnd);
3639     TPT.setOperand(ExtForOpnd, 0, Opnd);
3640 
3641     // Move the sign extension before the insertion point.
3642     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3643     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3644     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
3645     // If more sext are required, new instructions will have to be created.
3646     ExtForOpnd = nullptr;
3647   }
3648   if (ExtForOpnd == Ext) {
3649     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
3650     TPT.eraseInstruction(Ext);
3651   }
3652   return ExtOpnd;
3653 }
3654 
3655 /// Check whether or not promoting an instruction to a wider type is profitable.
3656 /// \p NewCost gives the cost of extension instructions created by the
3657 /// promotion.
3658 /// \p OldCost gives the cost of extension instructions before the promotion
3659 /// plus the number of instructions that have been
3660 /// matched in the addressing mode the promotion.
3661 /// \p PromotedOperand is the value that has been promoted.
3662 /// \return True if the promotion is profitable, false otherwise.
3663 bool AddressingModeMatcher::isPromotionProfitable(
3664     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
3665   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
3666                     << '\n');
3667   // The cost of the new extensions is greater than the cost of the
3668   // old extension plus what we folded.
3669   // This is not profitable.
3670   if (NewCost > OldCost)
3671     return false;
3672   if (NewCost < OldCost)
3673     return true;
3674   // The promotion is neutral but it may help folding the sign extension in
3675   // loads for instance.
3676   // Check that we did not create an illegal instruction.
3677   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
3678 }
3679 
3680 /// Given an instruction or constant expr, see if we can fold the operation
3681 /// into the addressing mode. If so, update the addressing mode and return
3682 /// true, otherwise return false without modifying AddrMode.
3683 /// If \p MovedAway is not NULL, it contains the information of whether or
3684 /// not AddrInst has to be folded into the addressing mode on success.
3685 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
3686 /// because it has been moved away.
3687 /// Thus AddrInst must not be added in the matched instructions.
3688 /// This state can happen when AddrInst is a sext, since it may be moved away.
3689 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
3690 /// not be referenced anymore.
3691 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
3692                                                unsigned Depth,
3693                                                bool *MovedAway) {
3694   // Avoid exponential behavior on extremely deep expression trees.
3695   if (Depth >= 5) return false;
3696 
3697   // By default, all matched instructions stay in place.
3698   if (MovedAway)
3699     *MovedAway = false;
3700 
3701   switch (Opcode) {
3702   case Instruction::PtrToInt:
3703     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3704     return matchAddr(AddrInst->getOperand(0), Depth);
3705   case Instruction::IntToPtr: {
3706     auto AS = AddrInst->getType()->getPointerAddressSpace();
3707     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
3708     // This inttoptr is a no-op if the integer type is pointer sized.
3709     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
3710       return matchAddr(AddrInst->getOperand(0), Depth);
3711     return false;
3712   }
3713   case Instruction::BitCast:
3714     // BitCast is always a noop, and we can handle it as long as it is
3715     // int->int or pointer->pointer (we don't want int<->fp or something).
3716     if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
3717          AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
3718         // Don't touch identity bitcasts.  These were probably put here by LSR,
3719         // and we don't want to mess around with them.  Assume it knows what it
3720         // is doing.
3721         AddrInst->getOperand(0)->getType() != AddrInst->getType())
3722       return matchAddr(AddrInst->getOperand(0), Depth);
3723     return false;
3724   case Instruction::AddrSpaceCast: {
3725     unsigned SrcAS
3726       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
3727     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
3728     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3729       return matchAddr(AddrInst->getOperand(0), Depth);
3730     return false;
3731   }
3732   case Instruction::Add: {
3733     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
3734     ExtAddrMode BackupAddrMode = AddrMode;
3735     unsigned OldSize = AddrModeInsts.size();
3736     // Start a transaction at this point.
3737     // The LHS may match but not the RHS.
3738     // Therefore, we need a higher level restoration point to undo partially
3739     // matched operation.
3740     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3741         TPT.getRestorationPoint();
3742 
3743     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
3744         matchAddr(AddrInst->getOperand(0), Depth+1))
3745       return true;
3746 
3747     // Restore the old addr mode info.
3748     AddrMode = BackupAddrMode;
3749     AddrModeInsts.resize(OldSize);
3750     TPT.rollback(LastKnownGood);
3751 
3752     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
3753     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
3754         matchAddr(AddrInst->getOperand(1), Depth+1))
3755       return true;
3756 
3757     // Otherwise we definitely can't merge the ADD in.
3758     AddrMode = BackupAddrMode;
3759     AddrModeInsts.resize(OldSize);
3760     TPT.rollback(LastKnownGood);
3761     break;
3762   }
3763   //case Instruction::Or:
3764   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
3765   //break;
3766   case Instruction::Mul:
3767   case Instruction::Shl: {
3768     // Can only handle X*C and X << C.
3769     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
3770     if (!RHS || RHS->getBitWidth() > 64)
3771       return false;
3772     int64_t Scale = RHS->getSExtValue();
3773     if (Opcode == Instruction::Shl)
3774       Scale = 1LL << Scale;
3775 
3776     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
3777   }
3778   case Instruction::GetElementPtr: {
3779     // Scan the GEP.  We check it if it contains constant offsets and at most
3780     // one variable offset.
3781     int VariableOperand = -1;
3782     unsigned VariableScale = 0;
3783 
3784     int64_t ConstantOffset = 0;
3785     gep_type_iterator GTI = gep_type_begin(AddrInst);
3786     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
3787       if (StructType *STy = GTI.getStructTypeOrNull()) {
3788         const StructLayout *SL = DL.getStructLayout(STy);
3789         unsigned Idx =
3790           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
3791         ConstantOffset += SL->getElementOffset(Idx);
3792       } else {
3793         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
3794         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
3795           ConstantOffset += CI->getSExtValue() * TypeSize;
3796         } else if (TypeSize) {  // Scales of zero don't do anything.
3797           // We only allow one variable index at the moment.
3798           if (VariableOperand != -1)
3799             return false;
3800 
3801           // Remember the variable index.
3802           VariableOperand = i;
3803           VariableScale = TypeSize;
3804         }
3805       }
3806     }
3807 
3808     // A common case is for the GEP to only do a constant offset.  In this case,
3809     // just add it to the disp field and check validity.
3810     if (VariableOperand == -1) {
3811       AddrMode.BaseOffs += ConstantOffset;
3812       if (ConstantOffset == 0 ||
3813           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
3814         // Check to see if we can fold the base pointer in too.
3815         if (matchAddr(AddrInst->getOperand(0), Depth+1))
3816           return true;
3817       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
3818                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
3819                  ConstantOffset > 0) {
3820         // Record GEPs with non-zero offsets as candidates for splitting in the
3821         // event that the offset cannot fit into the r+i addressing mode.
3822         // Simple and common case that only one GEP is used in calculating the
3823         // address for the memory access.
3824         Value *Base = AddrInst->getOperand(0);
3825         auto *BaseI = dyn_cast<Instruction>(Base);
3826         auto *GEP = cast<GetElementPtrInst>(AddrInst);
3827         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
3828             (BaseI && !isa<CastInst>(BaseI) &&
3829              !isa<GetElementPtrInst>(BaseI))) {
3830           // If the base is an instruction, make sure the GEP is not in the same
3831           // basic block as the base. If the base is an argument or global
3832           // value, make sure the GEP is not in the entry block.  Otherwise,
3833           // instruction selection can undo the split.  Also make sure the
3834           // parent block allows inserting non-PHI instructions before the
3835           // terminator.
3836           BasicBlock *Parent =
3837               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
3838           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
3839             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
3840         }
3841       }
3842       AddrMode.BaseOffs -= ConstantOffset;
3843       return false;
3844     }
3845 
3846     // Save the valid addressing mode in case we can't match.
3847     ExtAddrMode BackupAddrMode = AddrMode;
3848     unsigned OldSize = AddrModeInsts.size();
3849 
3850     // See if the scale and offset amount is valid for this target.
3851     AddrMode.BaseOffs += ConstantOffset;
3852 
3853     // Match the base operand of the GEP.
3854     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
3855       // If it couldn't be matched, just stuff the value in a register.
3856       if (AddrMode.HasBaseReg) {
3857         AddrMode = BackupAddrMode;
3858         AddrModeInsts.resize(OldSize);
3859         return false;
3860       }
3861       AddrMode.HasBaseReg = true;
3862       AddrMode.BaseReg = AddrInst->getOperand(0);
3863     }
3864 
3865     // Match the remaining variable portion of the GEP.
3866     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
3867                           Depth)) {
3868       // If it couldn't be matched, try stuffing the base into a register
3869       // instead of matching it, and retrying the match of the scale.
3870       AddrMode = BackupAddrMode;
3871       AddrModeInsts.resize(OldSize);
3872       if (AddrMode.HasBaseReg)
3873         return false;
3874       AddrMode.HasBaseReg = true;
3875       AddrMode.BaseReg = AddrInst->getOperand(0);
3876       AddrMode.BaseOffs += ConstantOffset;
3877       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
3878                             VariableScale, Depth)) {
3879         // If even that didn't work, bail.
3880         AddrMode = BackupAddrMode;
3881         AddrModeInsts.resize(OldSize);
3882         return false;
3883       }
3884     }
3885 
3886     return true;
3887   }
3888   case Instruction::SExt:
3889   case Instruction::ZExt: {
3890     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
3891     if (!Ext)
3892       return false;
3893 
3894     // Try to move this ext out of the way of the addressing mode.
3895     // Ask for a method for doing so.
3896     TypePromotionHelper::Action TPH =
3897         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
3898     if (!TPH)
3899       return false;
3900 
3901     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3902         TPT.getRestorationPoint();
3903     unsigned CreatedInstsCost = 0;
3904     unsigned ExtCost = !TLI.isExtFree(Ext);
3905     Value *PromotedOperand =
3906         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
3907     // SExt has been moved away.
3908     // Thus either it will be rematched later in the recursive calls or it is
3909     // gone. Anyway, we must not fold it into the addressing mode at this point.
3910     // E.g.,
3911     // op = add opnd, 1
3912     // idx = ext op
3913     // addr = gep base, idx
3914     // is now:
3915     // promotedOpnd = ext opnd            <- no match here
3916     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
3917     // addr = gep base, op                <- match
3918     if (MovedAway)
3919       *MovedAway = true;
3920 
3921     assert(PromotedOperand &&
3922            "TypePromotionHelper should have filtered out those cases");
3923 
3924     ExtAddrMode BackupAddrMode = AddrMode;
3925     unsigned OldSize = AddrModeInsts.size();
3926 
3927     if (!matchAddr(PromotedOperand, Depth) ||
3928         // The total of the new cost is equal to the cost of the created
3929         // instructions.
3930         // The total of the old cost is equal to the cost of the extension plus
3931         // what we have saved in the addressing mode.
3932         !isPromotionProfitable(CreatedInstsCost,
3933                                ExtCost + (AddrModeInsts.size() - OldSize),
3934                                PromotedOperand)) {
3935       AddrMode = BackupAddrMode;
3936       AddrModeInsts.resize(OldSize);
3937       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
3938       TPT.rollback(LastKnownGood);
3939       return false;
3940     }
3941     return true;
3942   }
3943   }
3944   return false;
3945 }
3946 
3947 /// If we can, try to add the value of 'Addr' into the current addressing mode.
3948 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
3949 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
3950 /// for the target.
3951 ///
3952 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
3953   // Start a transaction at this point that we will rollback if the matching
3954   // fails.
3955   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
3956       TPT.getRestorationPoint();
3957   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
3958     // Fold in immediates if legal for the target.
3959     AddrMode.BaseOffs += CI->getSExtValue();
3960     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3961       return true;
3962     AddrMode.BaseOffs -= CI->getSExtValue();
3963   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
3964     // If this is a global variable, try to fold it into the addressing mode.
3965     if (!AddrMode.BaseGV) {
3966       AddrMode.BaseGV = GV;
3967       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
3968         return true;
3969       AddrMode.BaseGV = nullptr;
3970     }
3971   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
3972     ExtAddrMode BackupAddrMode = AddrMode;
3973     unsigned OldSize = AddrModeInsts.size();
3974 
3975     // Check to see if it is possible to fold this operation.
3976     bool MovedAway = false;
3977     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
3978       // This instruction may have been moved away. If so, there is nothing
3979       // to check here.
3980       if (MovedAway)
3981         return true;
3982       // Okay, it's possible to fold this.  Check to see if it is actually
3983       // *profitable* to do so.  We use a simple cost model to avoid increasing
3984       // register pressure too much.
3985       if (I->hasOneUse() ||
3986           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
3987         AddrModeInsts.push_back(I);
3988         return true;
3989       }
3990 
3991       // It isn't profitable to do this, roll back.
3992       //cerr << "NOT FOLDING: " << *I;
3993       AddrMode = BackupAddrMode;
3994       AddrModeInsts.resize(OldSize);
3995       TPT.rollback(LastKnownGood);
3996     }
3997   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
3998     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
3999       return true;
4000     TPT.rollback(LastKnownGood);
4001   } else if (isa<ConstantPointerNull>(Addr)) {
4002     // Null pointer gets folded without affecting the addressing mode.
4003     return true;
4004   }
4005 
4006   // Worse case, the target should support [reg] addressing modes. :)
4007   if (!AddrMode.HasBaseReg) {
4008     AddrMode.HasBaseReg = true;
4009     AddrMode.BaseReg = Addr;
4010     // Still check for legality in case the target supports [imm] but not [i+r].
4011     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4012       return true;
4013     AddrMode.HasBaseReg = false;
4014     AddrMode.BaseReg = nullptr;
4015   }
4016 
4017   // If the base register is already taken, see if we can do [r+r].
4018   if (AddrMode.Scale == 0) {
4019     AddrMode.Scale = 1;
4020     AddrMode.ScaledReg = Addr;
4021     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4022       return true;
4023     AddrMode.Scale = 0;
4024     AddrMode.ScaledReg = nullptr;
4025   }
4026   // Couldn't match.
4027   TPT.rollback(LastKnownGood);
4028   return false;
4029 }
4030 
4031 /// Check to see if all uses of OpVal by the specified inline asm call are due
4032 /// to memory operands. If so, return true, otherwise return false.
4033 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4034                                     const TargetLowering &TLI,
4035                                     const TargetRegisterInfo &TRI) {
4036   const Function *F = CI->getFunction();
4037   TargetLowering::AsmOperandInfoVector TargetConstraints =
4038       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4039                             ImmutableCallSite(CI));
4040 
4041   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4042     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4043 
4044     // Compute the constraint code and ConstraintType to use.
4045     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4046 
4047     // If this asm operand is our Value*, and if it isn't an indirect memory
4048     // operand, we can't fold it!
4049     if (OpInfo.CallOperandVal == OpVal &&
4050         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4051          !OpInfo.isIndirect))
4052       return false;
4053   }
4054 
4055   return true;
4056 }
4057 
4058 // Max number of memory uses to look at before aborting the search to conserve
4059 // compile time.
4060 static constexpr int MaxMemoryUsesToScan = 20;
4061 
4062 /// Recursively walk all the uses of I until we find a memory use.
4063 /// If we find an obviously non-foldable instruction, return true.
4064 /// Add the ultimately found memory instructions to MemoryUses.
4065 static bool FindAllMemoryUses(
4066     Instruction *I,
4067     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4068     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4069     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4070   // If we already considered this instruction, we're done.
4071   if (!ConsideredInsts.insert(I).second)
4072     return false;
4073 
4074   // If this is an obviously unfoldable instruction, bail out.
4075   if (!MightBeFoldableInst(I))
4076     return true;
4077 
4078   const bool OptSize = I->getFunction()->optForSize();
4079 
4080   // Loop over all the uses, recursively processing them.
4081   for (Use &U : I->uses()) {
4082     // Conservatively return true if we're seeing a large number or a deep chain
4083     // of users. This avoids excessive compilation times in pathological cases.
4084     if (SeenInsts++ >= MaxMemoryUsesToScan)
4085       return true;
4086 
4087     Instruction *UserI = cast<Instruction>(U.getUser());
4088     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4089       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4090       continue;
4091     }
4092 
4093     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4094       unsigned opNo = U.getOperandNo();
4095       if (opNo != StoreInst::getPointerOperandIndex())
4096         return true; // Storing addr, not into addr.
4097       MemoryUses.push_back(std::make_pair(SI, opNo));
4098       continue;
4099     }
4100 
4101     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4102       unsigned opNo = U.getOperandNo();
4103       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4104         return true; // Storing addr, not into addr.
4105       MemoryUses.push_back(std::make_pair(RMW, opNo));
4106       continue;
4107     }
4108 
4109     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4110       unsigned opNo = U.getOperandNo();
4111       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4112         return true; // Storing addr, not into addr.
4113       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4114       continue;
4115     }
4116 
4117     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4118       // If this is a cold call, we can sink the addressing calculation into
4119       // the cold path.  See optimizeCallInst
4120       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4121         continue;
4122 
4123       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4124       if (!IA) return true;
4125 
4126       // If this is a memory operand, we're cool, otherwise bail out.
4127       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4128         return true;
4129       continue;
4130     }
4131 
4132     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4133                           SeenInsts))
4134       return true;
4135   }
4136 
4137   return false;
4138 }
4139 
4140 /// Return true if Val is already known to be live at the use site that we're
4141 /// folding it into. If so, there is no cost to include it in the addressing
4142 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4143 /// instruction already.
4144 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4145                                                    Value *KnownLive2) {
4146   // If Val is either of the known-live values, we know it is live!
4147   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4148     return true;
4149 
4150   // All values other than instructions and arguments (e.g. constants) are live.
4151   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4152 
4153   // If Val is a constant sized alloca in the entry block, it is live, this is
4154   // true because it is just a reference to the stack/frame pointer, which is
4155   // live for the whole function.
4156   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4157     if (AI->isStaticAlloca())
4158       return true;
4159 
4160   // Check to see if this value is already used in the memory instruction's
4161   // block.  If so, it's already live into the block at the very least, so we
4162   // can reasonably fold it.
4163   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4164 }
4165 
4166 /// It is possible for the addressing mode of the machine to fold the specified
4167 /// instruction into a load or store that ultimately uses it.
4168 /// However, the specified instruction has multiple uses.
4169 /// Given this, it may actually increase register pressure to fold it
4170 /// into the load. For example, consider this code:
4171 ///
4172 ///     X = ...
4173 ///     Y = X+1
4174 ///     use(Y)   -> nonload/store
4175 ///     Z = Y+1
4176 ///     load Z
4177 ///
4178 /// In this case, Y has multiple uses, and can be folded into the load of Z
4179 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4180 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4181 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4182 /// number of computations either.
4183 ///
4184 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4185 /// X was live across 'load Z' for other reasons, we actually *would* want to
4186 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4187 bool AddressingModeMatcher::
4188 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4189                                      ExtAddrMode &AMAfter) {
4190   if (IgnoreProfitability) return true;
4191 
4192   // AMBefore is the addressing mode before this instruction was folded into it,
4193   // and AMAfter is the addressing mode after the instruction was folded.  Get
4194   // the set of registers referenced by AMAfter and subtract out those
4195   // referenced by AMBefore: this is the set of values which folding in this
4196   // address extends the lifetime of.
4197   //
4198   // Note that there are only two potential values being referenced here,
4199   // BaseReg and ScaleReg (global addresses are always available, as are any
4200   // folded immediates).
4201   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4202 
4203   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4204   // lifetime wasn't extended by adding this instruction.
4205   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4206     BaseReg = nullptr;
4207   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4208     ScaledReg = nullptr;
4209 
4210   // If folding this instruction (and it's subexprs) didn't extend any live
4211   // ranges, we're ok with it.
4212   if (!BaseReg && !ScaledReg)
4213     return true;
4214 
4215   // If all uses of this instruction can have the address mode sunk into them,
4216   // we can remove the addressing mode and effectively trade one live register
4217   // for another (at worst.)  In this context, folding an addressing mode into
4218   // the use is just a particularly nice way of sinking it.
4219   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4220   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4221   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4222     return false;  // Has a non-memory, non-foldable use!
4223 
4224   // Now that we know that all uses of this instruction are part of a chain of
4225   // computation involving only operations that could theoretically be folded
4226   // into a memory use, loop over each of these memory operation uses and see
4227   // if they could  *actually* fold the instruction.  The assumption is that
4228   // addressing modes are cheap and that duplicating the computation involved
4229   // many times is worthwhile, even on a fastpath. For sinking candidates
4230   // (i.e. cold call sites), this serves as a way to prevent excessive code
4231   // growth since most architectures have some reasonable small and fast way to
4232   // compute an effective address.  (i.e LEA on x86)
4233   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4234   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4235     Instruction *User = MemoryUses[i].first;
4236     unsigned OpNo = MemoryUses[i].second;
4237 
4238     // Get the access type of this use.  If the use isn't a pointer, we don't
4239     // know what it accesses.
4240     Value *Address = User->getOperand(OpNo);
4241     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4242     if (!AddrTy)
4243       return false;
4244     Type *AddressAccessTy = AddrTy->getElementType();
4245     unsigned AS = AddrTy->getAddressSpace();
4246 
4247     // Do a match against the root of this address, ignoring profitability. This
4248     // will tell us if the addressing mode for the memory operation will
4249     // *actually* cover the shared instruction.
4250     ExtAddrMode Result;
4251     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4252                                                                       0);
4253     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4254         TPT.getRestorationPoint();
4255     AddressingModeMatcher Matcher(
4256         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4257         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4258     Matcher.IgnoreProfitability = true;
4259     bool Success = Matcher.matchAddr(Address, 0);
4260     (void)Success; assert(Success && "Couldn't select *anything*?");
4261 
4262     // The match was to check the profitability, the changes made are not
4263     // part of the original matcher. Therefore, they should be dropped
4264     // otherwise the original matcher will not present the right state.
4265     TPT.rollback(LastKnownGood);
4266 
4267     // If the match didn't cover I, then it won't be shared by it.
4268     if (!is_contained(MatchedAddrModeInsts, I))
4269       return false;
4270 
4271     MatchedAddrModeInsts.clear();
4272   }
4273 
4274   return true;
4275 }
4276 
4277 /// Return true if the specified values are defined in a
4278 /// different basic block than BB.
4279 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4280   if (Instruction *I = dyn_cast<Instruction>(V))
4281     return I->getParent() != BB;
4282   return false;
4283 }
4284 
4285 /// Sink addressing mode computation immediate before MemoryInst if doing so
4286 /// can be done without increasing register pressure.  The need for the
4287 /// register pressure constraint means this can end up being an all or nothing
4288 /// decision for all uses of the same addressing computation.
4289 ///
4290 /// Load and Store Instructions often have addressing modes that can do
4291 /// significant amounts of computation. As such, instruction selection will try
4292 /// to get the load or store to do as much computation as possible for the
4293 /// program. The problem is that isel can only see within a single block. As
4294 /// such, we sink as much legal addressing mode work into the block as possible.
4295 ///
4296 /// This method is used to optimize both load/store and inline asms with memory
4297 /// operands.  It's also used to sink addressing computations feeding into cold
4298 /// call sites into their (cold) basic block.
4299 ///
4300 /// The motivation for handling sinking into cold blocks is that doing so can
4301 /// both enable other address mode sinking (by satisfying the register pressure
4302 /// constraint above), and reduce register pressure globally (by removing the
4303 /// addressing mode computation from the fast path entirely.).
4304 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4305                                         Type *AccessTy, unsigned AddrSpace) {
4306   Value *Repl = Addr;
4307 
4308   // Try to collapse single-value PHI nodes.  This is necessary to undo
4309   // unprofitable PRE transformations.
4310   SmallVector<Value*, 8> worklist;
4311   SmallPtrSet<Value*, 16> Visited;
4312   worklist.push_back(Addr);
4313 
4314   // Use a worklist to iteratively look through PHI and select nodes, and
4315   // ensure that the addressing mode obtained from the non-PHI/select roots of
4316   // the graph are compatible.
4317   bool PhiOrSelectSeen = false;
4318   SmallVector<Instruction*, 16> AddrModeInsts;
4319   const SimplifyQuery SQ(*DL, TLInfo);
4320   AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() });
4321   TypePromotionTransaction TPT(RemovedInsts);
4322   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4323       TPT.getRestorationPoint();
4324   while (!worklist.empty()) {
4325     Value *V = worklist.back();
4326     worklist.pop_back();
4327 
4328     // We allow traversing cyclic Phi nodes.
4329     // In case of success after this loop we ensure that traversing through
4330     // Phi nodes ends up with all cases to compute address of the form
4331     //    BaseGV + Base + Scale * Index + Offset
4332     // where Scale and Offset are constans and BaseGV, Base and Index
4333     // are exactly the same Values in all cases.
4334     // It means that BaseGV, Scale and Offset dominate our memory instruction
4335     // and have the same value as they had in address computation represented
4336     // as Phi. So we can safely sink address computation to memory instruction.
4337     if (!Visited.insert(V).second)
4338       continue;
4339 
4340     // For a PHI node, push all of its incoming values.
4341     if (PHINode *P = dyn_cast<PHINode>(V)) {
4342       for (Value *IncValue : P->incoming_values())
4343         worklist.push_back(IncValue);
4344       PhiOrSelectSeen = true;
4345       continue;
4346     }
4347     // Similar for select.
4348     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4349       worklist.push_back(SI->getFalseValue());
4350       worklist.push_back(SI->getTrueValue());
4351       PhiOrSelectSeen = true;
4352       continue;
4353     }
4354 
4355     // For non-PHIs, determine the addressing mode being computed.  Note that
4356     // the result may differ depending on what other uses our candidate
4357     // addressing instructions might have.
4358     AddrModeInsts.clear();
4359     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4360                                                                       0);
4361     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4362         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4363         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4364 
4365     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4366     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4367         !NewGEPBases.count(GEP)) {
4368       // If splitting the underlying data structure can reduce the offset of a
4369       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4370       // previously split data structures.
4371       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4372       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4373         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4374     }
4375 
4376     NewAddrMode.OriginalValue = V;
4377     if (!AddrModes.addNewAddrMode(NewAddrMode))
4378       break;
4379   }
4380 
4381   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4382   // or we have multiple but either couldn't combine them or combining them
4383   // wouldn't do anything useful, bail out now.
4384   if (!AddrModes.combineAddrModes()) {
4385     TPT.rollback(LastKnownGood);
4386     return false;
4387   }
4388   TPT.commit();
4389 
4390   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4391   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4392 
4393   // If all the instructions matched are already in this BB, don't do anything.
4394   // If we saw a Phi node then it is not local definitely, and if we saw a select
4395   // then we want to push the address calculation past it even if it's already
4396   // in this BB.
4397   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4398         return IsNonLocalValue(V, MemoryInst->getParent());
4399                   })) {
4400     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4401                       << "\n");
4402     return false;
4403   }
4404 
4405   // Insert this computation right after this user.  Since our caller is
4406   // scanning from the top of the BB to the bottom, reuse of the expr are
4407   // guaranteed to happen later.
4408   IRBuilder<> Builder(MemoryInst);
4409 
4410   // Now that we determined the addressing expression we want to use and know
4411   // that we have to sink it into this block.  Check to see if we have already
4412   // done this for some other load/store instr in this block.  If so, reuse
4413   // the computation.  Before attempting reuse, check if the address is valid
4414   // as it may have been erased.
4415 
4416   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4417 
4418   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4419   if (SunkAddr) {
4420     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4421                       << " for " << *MemoryInst << "\n");
4422     if (SunkAddr->getType() != Addr->getType())
4423       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4424   } else if (AddrSinkUsingGEPs ||
4425              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4426     // By default, we use the GEP-based method when AA is used later. This
4427     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4428     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4429                       << " for " << *MemoryInst << "\n");
4430     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4431     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4432 
4433     // First, find the pointer.
4434     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4435       ResultPtr = AddrMode.BaseReg;
4436       AddrMode.BaseReg = nullptr;
4437     }
4438 
4439     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4440       // We can't add more than one pointer together, nor can we scale a
4441       // pointer (both of which seem meaningless).
4442       if (ResultPtr || AddrMode.Scale != 1)
4443         return false;
4444 
4445       ResultPtr = AddrMode.ScaledReg;
4446       AddrMode.Scale = 0;
4447     }
4448 
4449     // It is only safe to sign extend the BaseReg if we know that the math
4450     // required to create it did not overflow before we extend it. Since
4451     // the original IR value was tossed in favor of a constant back when
4452     // the AddrMode was created we need to bail out gracefully if widths
4453     // do not match instead of extending it.
4454     //
4455     // (See below for code to add the scale.)
4456     if (AddrMode.Scale) {
4457       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4458       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4459           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4460         return false;
4461     }
4462 
4463     if (AddrMode.BaseGV) {
4464       if (ResultPtr)
4465         return false;
4466 
4467       ResultPtr = AddrMode.BaseGV;
4468     }
4469 
4470     // If the real base value actually came from an inttoptr, then the matcher
4471     // will look through it and provide only the integer value. In that case,
4472     // use it here.
4473     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4474       if (!ResultPtr && AddrMode.BaseReg) {
4475         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4476                                            "sunkaddr");
4477         AddrMode.BaseReg = nullptr;
4478       } else if (!ResultPtr && AddrMode.Scale == 1) {
4479         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4480                                            "sunkaddr");
4481         AddrMode.Scale = 0;
4482       }
4483     }
4484 
4485     if (!ResultPtr &&
4486         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4487       SunkAddr = Constant::getNullValue(Addr->getType());
4488     } else if (!ResultPtr) {
4489       return false;
4490     } else {
4491       Type *I8PtrTy =
4492           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4493       Type *I8Ty = Builder.getInt8Ty();
4494 
4495       // Start with the base register. Do this first so that subsequent address
4496       // matching finds it last, which will prevent it from trying to match it
4497       // as the scaled value in case it happens to be a mul. That would be
4498       // problematic if we've sunk a different mul for the scale, because then
4499       // we'd end up sinking both muls.
4500       if (AddrMode.BaseReg) {
4501         Value *V = AddrMode.BaseReg;
4502         if (V->getType() != IntPtrTy)
4503           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4504 
4505         ResultIndex = V;
4506       }
4507 
4508       // Add the scale value.
4509       if (AddrMode.Scale) {
4510         Value *V = AddrMode.ScaledReg;
4511         if (V->getType() == IntPtrTy) {
4512           // done.
4513         } else {
4514           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4515                  cast<IntegerType>(V->getType())->getBitWidth() &&
4516                  "We can't transform if ScaledReg is too narrow");
4517           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4518         }
4519 
4520         if (AddrMode.Scale != 1)
4521           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4522                                 "sunkaddr");
4523         if (ResultIndex)
4524           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4525         else
4526           ResultIndex = V;
4527       }
4528 
4529       // Add in the Base Offset if present.
4530       if (AddrMode.BaseOffs) {
4531         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4532         if (ResultIndex) {
4533           // We need to add this separately from the scale above to help with
4534           // SDAG consecutive load/store merging.
4535           if (ResultPtr->getType() != I8PtrTy)
4536             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4537           ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4538         }
4539 
4540         ResultIndex = V;
4541       }
4542 
4543       if (!ResultIndex) {
4544         SunkAddr = ResultPtr;
4545       } else {
4546         if (ResultPtr->getType() != I8PtrTy)
4547           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4548         SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4549       }
4550 
4551       if (SunkAddr->getType() != Addr->getType())
4552         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4553     }
4554   } else {
4555     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4556     // non-integral pointers, so in that case bail out now.
4557     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4558     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4559     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4560     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4561     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4562         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4563         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4564         (AddrMode.BaseGV &&
4565          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4566       return false;
4567 
4568     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4569                       << " for " << *MemoryInst << "\n");
4570     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4571     Value *Result = nullptr;
4572 
4573     // Start with the base register. Do this first so that subsequent address
4574     // matching finds it last, which will prevent it from trying to match it
4575     // as the scaled value in case it happens to be a mul. That would be
4576     // problematic if we've sunk a different mul for the scale, because then
4577     // we'd end up sinking both muls.
4578     if (AddrMode.BaseReg) {
4579       Value *V = AddrMode.BaseReg;
4580       if (V->getType()->isPointerTy())
4581         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4582       if (V->getType() != IntPtrTy)
4583         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4584       Result = V;
4585     }
4586 
4587     // Add the scale value.
4588     if (AddrMode.Scale) {
4589       Value *V = AddrMode.ScaledReg;
4590       if (V->getType() == IntPtrTy) {
4591         // done.
4592       } else if (V->getType()->isPointerTy()) {
4593         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4594       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4595                  cast<IntegerType>(V->getType())->getBitWidth()) {
4596         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4597       } else {
4598         // It is only safe to sign extend the BaseReg if we know that the math
4599         // required to create it did not overflow before we extend it. Since
4600         // the original IR value was tossed in favor of a constant back when
4601         // the AddrMode was created we need to bail out gracefully if widths
4602         // do not match instead of extending it.
4603         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4604         if (I && (Result != AddrMode.BaseReg))
4605           I->eraseFromParent();
4606         return false;
4607       }
4608       if (AddrMode.Scale != 1)
4609         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4610                               "sunkaddr");
4611       if (Result)
4612         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4613       else
4614         Result = V;
4615     }
4616 
4617     // Add in the BaseGV if present.
4618     if (AddrMode.BaseGV) {
4619       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4620       if (Result)
4621         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4622       else
4623         Result = V;
4624     }
4625 
4626     // Add in the Base Offset if present.
4627     if (AddrMode.BaseOffs) {
4628       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4629       if (Result)
4630         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4631       else
4632         Result = V;
4633     }
4634 
4635     if (!Result)
4636       SunkAddr = Constant::getNullValue(Addr->getType());
4637     else
4638       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
4639   }
4640 
4641   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
4642   // Store the newly computed address into the cache. In the case we reused a
4643   // value, this should be idempotent.
4644   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
4645 
4646   // If we have no uses, recursively delete the value and all dead instructions
4647   // using it.
4648   if (Repl->use_empty()) {
4649     // This can cause recursive deletion, which can invalidate our iterator.
4650     // Use a WeakTrackingVH to hold onto it in case this happens.
4651     Value *CurValue = &*CurInstIterator;
4652     WeakTrackingVH IterHandle(CurValue);
4653     BasicBlock *BB = CurInstIterator->getParent();
4654 
4655     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
4656 
4657     if (IterHandle != CurValue) {
4658       // If the iterator instruction was recursively deleted, start over at the
4659       // start of the block.
4660       CurInstIterator = BB->begin();
4661       SunkAddrs.clear();
4662     }
4663   }
4664   ++NumMemoryInsts;
4665   return true;
4666 }
4667 
4668 /// If there are any memory operands, use OptimizeMemoryInst to sink their
4669 /// address computing into the block when possible / profitable.
4670 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
4671   bool MadeChange = false;
4672 
4673   const TargetRegisterInfo *TRI =
4674       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
4675   TargetLowering::AsmOperandInfoVector TargetConstraints =
4676       TLI->ParseConstraints(*DL, TRI, CS);
4677   unsigned ArgNo = 0;
4678   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4679     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4680 
4681     // Compute the constraint code and ConstraintType to use.
4682     TLI->ComputeConstraintToUse(OpInfo, SDValue());
4683 
4684     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4685         OpInfo.isIndirect) {
4686       Value *OpVal = CS->getArgOperand(ArgNo++);
4687       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
4688     } else if (OpInfo.Type == InlineAsm::isInput)
4689       ArgNo++;
4690   }
4691 
4692   return MadeChange;
4693 }
4694 
4695 /// Check if all the uses of \p Val are equivalent (or free) zero or
4696 /// sign extensions.
4697 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
4698   assert(!Val->use_empty() && "Input must have at least one use");
4699   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
4700   bool IsSExt = isa<SExtInst>(FirstUser);
4701   Type *ExtTy = FirstUser->getType();
4702   for (const User *U : Val->users()) {
4703     const Instruction *UI = cast<Instruction>(U);
4704     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
4705       return false;
4706     Type *CurTy = UI->getType();
4707     // Same input and output types: Same instruction after CSE.
4708     if (CurTy == ExtTy)
4709       continue;
4710 
4711     // If IsSExt is true, we are in this situation:
4712     // a = Val
4713     // b = sext ty1 a to ty2
4714     // c = sext ty1 a to ty3
4715     // Assuming ty2 is shorter than ty3, this could be turned into:
4716     // a = Val
4717     // b = sext ty1 a to ty2
4718     // c = sext ty2 b to ty3
4719     // However, the last sext is not free.
4720     if (IsSExt)
4721       return false;
4722 
4723     // This is a ZExt, maybe this is free to extend from one type to another.
4724     // In that case, we would not account for a different use.
4725     Type *NarrowTy;
4726     Type *LargeTy;
4727     if (ExtTy->getScalarType()->getIntegerBitWidth() >
4728         CurTy->getScalarType()->getIntegerBitWidth()) {
4729       NarrowTy = CurTy;
4730       LargeTy = ExtTy;
4731     } else {
4732       NarrowTy = ExtTy;
4733       LargeTy = CurTy;
4734     }
4735 
4736     if (!TLI.isZExtFree(NarrowTy, LargeTy))
4737       return false;
4738   }
4739   // All uses are the same or can be derived from one another for free.
4740   return true;
4741 }
4742 
4743 /// Try to speculatively promote extensions in \p Exts and continue
4744 /// promoting through newly promoted operands recursively as far as doing so is
4745 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
4746 /// When some promotion happened, \p TPT contains the proper state to revert
4747 /// them.
4748 ///
4749 /// \return true if some promotion happened, false otherwise.
4750 bool CodeGenPrepare::tryToPromoteExts(
4751     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
4752     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
4753     unsigned CreatedInstsCost) {
4754   bool Promoted = false;
4755 
4756   // Iterate over all the extensions to try to promote them.
4757   for (auto I : Exts) {
4758     // Early check if we directly have ext(load).
4759     if (isa<LoadInst>(I->getOperand(0))) {
4760       ProfitablyMovedExts.push_back(I);
4761       continue;
4762     }
4763 
4764     // Check whether or not we want to do any promotion.  The reason we have
4765     // this check inside the for loop is to catch the case where an extension
4766     // is directly fed by a load because in such case the extension can be moved
4767     // up without any promotion on its operands.
4768     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
4769       return false;
4770 
4771     // Get the action to perform the promotion.
4772     TypePromotionHelper::Action TPH =
4773         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
4774     // Check if we can promote.
4775     if (!TPH) {
4776       // Save the current extension as we cannot move up through its operand.
4777       ProfitablyMovedExts.push_back(I);
4778       continue;
4779     }
4780 
4781     // Save the current state.
4782     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4783         TPT.getRestorationPoint();
4784     SmallVector<Instruction *, 4> NewExts;
4785     unsigned NewCreatedInstsCost = 0;
4786     unsigned ExtCost = !TLI->isExtFree(I);
4787     // Promote.
4788     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
4789                              &NewExts, nullptr, *TLI);
4790     assert(PromotedVal &&
4791            "TypePromotionHelper should have filtered out those cases");
4792 
4793     // We would be able to merge only one extension in a load.
4794     // Therefore, if we have more than 1 new extension we heuristically
4795     // cut this search path, because it means we degrade the code quality.
4796     // With exactly 2, the transformation is neutral, because we will merge
4797     // one extension but leave one. However, we optimistically keep going,
4798     // because the new extension may be removed too.
4799     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
4800     // FIXME: It would be possible to propagate a negative value instead of
4801     // conservatively ceiling it to 0.
4802     TotalCreatedInstsCost =
4803         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
4804     if (!StressExtLdPromotion &&
4805         (TotalCreatedInstsCost > 1 ||
4806          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
4807       // This promotion is not profitable, rollback to the previous state, and
4808       // save the current extension in ProfitablyMovedExts as the latest
4809       // speculative promotion turned out to be unprofitable.
4810       TPT.rollback(LastKnownGood);
4811       ProfitablyMovedExts.push_back(I);
4812       continue;
4813     }
4814     // Continue promoting NewExts as far as doing so is profitable.
4815     SmallVector<Instruction *, 2> NewlyMovedExts;
4816     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
4817     bool NewPromoted = false;
4818     for (auto ExtInst : NewlyMovedExts) {
4819       Instruction *MovedExt = cast<Instruction>(ExtInst);
4820       Value *ExtOperand = MovedExt->getOperand(0);
4821       // If we have reached to a load, we need this extra profitability check
4822       // as it could potentially be merged into an ext(load).
4823       if (isa<LoadInst>(ExtOperand) &&
4824           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
4825             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
4826         continue;
4827 
4828       ProfitablyMovedExts.push_back(MovedExt);
4829       NewPromoted = true;
4830     }
4831 
4832     // If none of speculative promotions for NewExts is profitable, rollback
4833     // and save the current extension (I) as the last profitable extension.
4834     if (!NewPromoted) {
4835       TPT.rollback(LastKnownGood);
4836       ProfitablyMovedExts.push_back(I);
4837       continue;
4838     }
4839     // The promotion is profitable.
4840     Promoted = true;
4841   }
4842   return Promoted;
4843 }
4844 
4845 /// Merging redundant sexts when one is dominating the other.
4846 bool CodeGenPrepare::mergeSExts(Function &F) {
4847   DominatorTree DT(F);
4848   bool Changed = false;
4849   for (auto &Entry : ValToSExtendedUses) {
4850     SExts &Insts = Entry.second;
4851     SExts CurPts;
4852     for (Instruction *Inst : Insts) {
4853       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
4854           Inst->getOperand(0) != Entry.first)
4855         continue;
4856       bool inserted = false;
4857       for (auto &Pt : CurPts) {
4858         if (DT.dominates(Inst, Pt)) {
4859           Pt->replaceAllUsesWith(Inst);
4860           RemovedInsts.insert(Pt);
4861           Pt->removeFromParent();
4862           Pt = Inst;
4863           inserted = true;
4864           Changed = true;
4865           break;
4866         }
4867         if (!DT.dominates(Pt, Inst))
4868           // Give up if we need to merge in a common dominator as the
4869           // expermients show it is not profitable.
4870           continue;
4871         Inst->replaceAllUsesWith(Pt);
4872         RemovedInsts.insert(Inst);
4873         Inst->removeFromParent();
4874         inserted = true;
4875         Changed = true;
4876         break;
4877       }
4878       if (!inserted)
4879         CurPts.push_back(Inst);
4880     }
4881   }
4882   return Changed;
4883 }
4884 
4885 // Spliting large data structures so that the GEPs accessing them can have
4886 // smaller offsets so that they can be sunk to the same blocks as their users.
4887 // For example, a large struct starting from %base is splitted into two parts
4888 // where the second part starts from %new_base.
4889 //
4890 // Before:
4891 // BB0:
4892 //   %base     =
4893 //
4894 // BB1:
4895 //   %gep0     = gep %base, off0
4896 //   %gep1     = gep %base, off1
4897 //   %gep2     = gep %base, off2
4898 //
4899 // BB2:
4900 //   %load1    = load %gep0
4901 //   %load2    = load %gep1
4902 //   %load3    = load %gep2
4903 //
4904 // After:
4905 // BB0:
4906 //   %base     =
4907 //   %new_base = gep %base, off0
4908 //
4909 // BB1:
4910 //   %new_gep0 = %new_base
4911 //   %new_gep1 = gep %new_base, off1 - off0
4912 //   %new_gep2 = gep %new_base, off2 - off0
4913 //
4914 // BB2:
4915 //   %load1    = load i32, i32* %new_gep0
4916 //   %load2    = load i32, i32* %new_gep1
4917 //   %load3    = load i32, i32* %new_gep2
4918 //
4919 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
4920 // their offsets are smaller enough to fit into the addressing mode.
4921 bool CodeGenPrepare::splitLargeGEPOffsets() {
4922   bool Changed = false;
4923   for (auto &Entry : LargeOffsetGEPMap) {
4924     Value *OldBase = Entry.first;
4925     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
4926         &LargeOffsetGEPs = Entry.second;
4927     auto compareGEPOffset =
4928         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
4929             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
4930           if (LHS.first == RHS.first)
4931             return false;
4932           if (LHS.second != RHS.second)
4933             return LHS.second < RHS.second;
4934           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
4935         };
4936     // Sorting all the GEPs of the same data structures based on the offsets.
4937     llvm::sort(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end(),
4938                compareGEPOffset);
4939     LargeOffsetGEPs.erase(
4940         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
4941         LargeOffsetGEPs.end());
4942     // Skip if all the GEPs have the same offsets.
4943     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
4944       continue;
4945     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
4946     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
4947     Value *NewBaseGEP = nullptr;
4948 
4949     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
4950     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
4951       GetElementPtrInst *GEP = LargeOffsetGEP->first;
4952       int64_t Offset = LargeOffsetGEP->second;
4953       if (Offset != BaseOffset) {
4954         TargetLowering::AddrMode AddrMode;
4955         AddrMode.BaseOffs = Offset - BaseOffset;
4956         // The result type of the GEP might not be the type of the memory
4957         // access.
4958         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
4959                                         GEP->getResultElementType(),
4960                                         GEP->getAddressSpace())) {
4961           // We need to create a new base if the offset to the current base is
4962           // too large to fit into the addressing mode. So, a very large struct
4963           // may be splitted into several parts.
4964           BaseGEP = GEP;
4965           BaseOffset = Offset;
4966           NewBaseGEP = nullptr;
4967         }
4968       }
4969 
4970       // Generate a new GEP to replace the current one.
4971       IRBuilder<> Builder(GEP);
4972       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
4973       Type *I8PtrTy =
4974           Builder.getInt8PtrTy(GEP->getType()->getPointerAddressSpace());
4975       Type *I8Ty = Builder.getInt8Ty();
4976 
4977       if (!NewBaseGEP) {
4978         // Create a new base if we don't have one yet.  Find the insertion
4979         // pointer for the new base first.
4980         BasicBlock::iterator NewBaseInsertPt;
4981         BasicBlock *NewBaseInsertBB;
4982         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
4983           // If the base of the struct is an instruction, the new base will be
4984           // inserted close to it.
4985           NewBaseInsertBB = BaseI->getParent();
4986           if (isa<PHINode>(BaseI))
4987             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
4988           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
4989             NewBaseInsertBB =
4990                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
4991             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
4992           } else
4993             NewBaseInsertPt = std::next(BaseI->getIterator());
4994         } else {
4995           // If the current base is an argument or global value, the new base
4996           // will be inserted to the entry block.
4997           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
4998           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
4999         }
5000         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5001         // Create a new base.
5002         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5003         NewBaseGEP = OldBase;
5004         if (NewBaseGEP->getType() != I8PtrTy)
5005           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5006         NewBaseGEP =
5007             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5008         NewGEPBases.insert(NewBaseGEP);
5009       }
5010 
5011       Value *NewGEP = NewBaseGEP;
5012       if (Offset == BaseOffset) {
5013         if (GEP->getType() != I8PtrTy)
5014           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5015       } else {
5016         // Calculate the new offset for the new GEP.
5017         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5018         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5019 
5020         if (GEP->getType() != I8PtrTy)
5021           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5022       }
5023       GEP->replaceAllUsesWith(NewGEP);
5024       LargeOffsetGEPID.erase(GEP);
5025       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5026       GEP->eraseFromParent();
5027       Changed = true;
5028     }
5029   }
5030   return Changed;
5031 }
5032 
5033 /// Return true, if an ext(load) can be formed from an extension in
5034 /// \p MovedExts.
5035 bool CodeGenPrepare::canFormExtLd(
5036     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5037     Instruction *&Inst, bool HasPromoted) {
5038   for (auto *MovedExtInst : MovedExts) {
5039     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5040       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5041       Inst = MovedExtInst;
5042       break;
5043     }
5044   }
5045   if (!LI)
5046     return false;
5047 
5048   // If they're already in the same block, there's nothing to do.
5049   // Make the cheap checks first if we did not promote.
5050   // If we promoted, we need to check if it is indeed profitable.
5051   if (!HasPromoted && LI->getParent() == Inst->getParent())
5052     return false;
5053 
5054   return TLI->isExtLoad(LI, Inst, *DL);
5055 }
5056 
5057 /// Move a zext or sext fed by a load into the same basic block as the load,
5058 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5059 /// extend into the load.
5060 ///
5061 /// E.g.,
5062 /// \code
5063 /// %ld = load i32* %addr
5064 /// %add = add nuw i32 %ld, 4
5065 /// %zext = zext i32 %add to i64
5066 // \endcode
5067 /// =>
5068 /// \code
5069 /// %ld = load i32* %addr
5070 /// %zext = zext i32 %ld to i64
5071 /// %add = add nuw i64 %zext, 4
5072 /// \encode
5073 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5074 /// allow us to match zext(load i32*) to i64.
5075 ///
5076 /// Also, try to promote the computations used to obtain a sign extended
5077 /// value used into memory accesses.
5078 /// E.g.,
5079 /// \code
5080 /// a = add nsw i32 b, 3
5081 /// d = sext i32 a to i64
5082 /// e = getelementptr ..., i64 d
5083 /// \endcode
5084 /// =>
5085 /// \code
5086 /// f = sext i32 b to i64
5087 /// a = add nsw i64 f, 3
5088 /// e = getelementptr ..., i64 a
5089 /// \endcode
5090 ///
5091 /// \p Inst[in/out] the extension may be modified during the process if some
5092 /// promotions apply.
5093 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5094   // ExtLoad formation and address type promotion infrastructure requires TLI to
5095   // be effective.
5096   if (!TLI)
5097     return false;
5098 
5099   bool AllowPromotionWithoutCommonHeader = false;
5100   /// See if it is an interesting sext operations for the address type
5101   /// promotion before trying to promote it, e.g., the ones with the right
5102   /// type and used in memory accesses.
5103   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5104       *Inst, AllowPromotionWithoutCommonHeader);
5105   TypePromotionTransaction TPT(RemovedInsts);
5106   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5107       TPT.getRestorationPoint();
5108   SmallVector<Instruction *, 1> Exts;
5109   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5110   Exts.push_back(Inst);
5111 
5112   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5113 
5114   // Look for a load being extended.
5115   LoadInst *LI = nullptr;
5116   Instruction *ExtFedByLoad;
5117 
5118   // Try to promote a chain of computation if it allows to form an extended
5119   // load.
5120   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5121     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5122     TPT.commit();
5123     // Move the extend into the same block as the load
5124     ExtFedByLoad->moveAfter(LI);
5125     // CGP does not check if the zext would be speculatively executed when moved
5126     // to the same basic block as the load. Preserving its original location
5127     // would pessimize the debugging experience, as well as negatively impact
5128     // the quality of sample pgo. We don't want to use "line 0" as that has a
5129     // size cost in the line-table section and logically the zext can be seen as
5130     // part of the load. Therefore we conservatively reuse the same debug
5131     // location for the load and the zext.
5132     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5133     ++NumExtsMoved;
5134     Inst = ExtFedByLoad;
5135     return true;
5136   }
5137 
5138   // Continue promoting SExts if known as considerable depending on targets.
5139   if (ATPConsiderable &&
5140       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5141                                   HasPromoted, TPT, SpeculativelyMovedExts))
5142     return true;
5143 
5144   TPT.rollback(LastKnownGood);
5145   return false;
5146 }
5147 
5148 // Perform address type promotion if doing so is profitable.
5149 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5150 // instructions that sign extended the same initial value. However, if
5151 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5152 // extension is just profitable.
5153 bool CodeGenPrepare::performAddressTypePromotion(
5154     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5155     bool HasPromoted, TypePromotionTransaction &TPT,
5156     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5157   bool Promoted = false;
5158   SmallPtrSet<Instruction *, 1> UnhandledExts;
5159   bool AllSeenFirst = true;
5160   for (auto I : SpeculativelyMovedExts) {
5161     Value *HeadOfChain = I->getOperand(0);
5162     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5163         SeenChainsForSExt.find(HeadOfChain);
5164     // If there is an unhandled SExt which has the same header, try to promote
5165     // it as well.
5166     if (AlreadySeen != SeenChainsForSExt.end()) {
5167       if (AlreadySeen->second != nullptr)
5168         UnhandledExts.insert(AlreadySeen->second);
5169       AllSeenFirst = false;
5170     }
5171   }
5172 
5173   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5174                         SpeculativelyMovedExts.size() == 1)) {
5175     TPT.commit();
5176     if (HasPromoted)
5177       Promoted = true;
5178     for (auto I : SpeculativelyMovedExts) {
5179       Value *HeadOfChain = I->getOperand(0);
5180       SeenChainsForSExt[HeadOfChain] = nullptr;
5181       ValToSExtendedUses[HeadOfChain].push_back(I);
5182     }
5183     // Update Inst as promotion happen.
5184     Inst = SpeculativelyMovedExts.pop_back_val();
5185   } else {
5186     // This is the first chain visited from the header, keep the current chain
5187     // as unhandled. Defer to promote this until we encounter another SExt
5188     // chain derived from the same header.
5189     for (auto I : SpeculativelyMovedExts) {
5190       Value *HeadOfChain = I->getOperand(0);
5191       SeenChainsForSExt[HeadOfChain] = Inst;
5192     }
5193     return false;
5194   }
5195 
5196   if (!AllSeenFirst && !UnhandledExts.empty())
5197     for (auto VisitedSExt : UnhandledExts) {
5198       if (RemovedInsts.count(VisitedSExt))
5199         continue;
5200       TypePromotionTransaction TPT(RemovedInsts);
5201       SmallVector<Instruction *, 1> Exts;
5202       SmallVector<Instruction *, 2> Chains;
5203       Exts.push_back(VisitedSExt);
5204       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5205       TPT.commit();
5206       if (HasPromoted)
5207         Promoted = true;
5208       for (auto I : Chains) {
5209         Value *HeadOfChain = I->getOperand(0);
5210         // Mark this as handled.
5211         SeenChainsForSExt[HeadOfChain] = nullptr;
5212         ValToSExtendedUses[HeadOfChain].push_back(I);
5213       }
5214     }
5215   return Promoted;
5216 }
5217 
5218 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5219   BasicBlock *DefBB = I->getParent();
5220 
5221   // If the result of a {s|z}ext and its source are both live out, rewrite all
5222   // other uses of the source with result of extension.
5223   Value *Src = I->getOperand(0);
5224   if (Src->hasOneUse())
5225     return false;
5226 
5227   // Only do this xform if truncating is free.
5228   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5229     return false;
5230 
5231   // Only safe to perform the optimization if the source is also defined in
5232   // this block.
5233   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5234     return false;
5235 
5236   bool DefIsLiveOut = false;
5237   for (User *U : I->users()) {
5238     Instruction *UI = cast<Instruction>(U);
5239 
5240     // Figure out which BB this ext is used in.
5241     BasicBlock *UserBB = UI->getParent();
5242     if (UserBB == DefBB) continue;
5243     DefIsLiveOut = true;
5244     break;
5245   }
5246   if (!DefIsLiveOut)
5247     return false;
5248 
5249   // Make sure none of the uses are PHI nodes.
5250   for (User *U : Src->users()) {
5251     Instruction *UI = cast<Instruction>(U);
5252     BasicBlock *UserBB = UI->getParent();
5253     if (UserBB == DefBB) continue;
5254     // Be conservative. We don't want this xform to end up introducing
5255     // reloads just before load / store instructions.
5256     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5257       return false;
5258   }
5259 
5260   // InsertedTruncs - Only insert one trunc in each block once.
5261   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5262 
5263   bool MadeChange = false;
5264   for (Use &U : Src->uses()) {
5265     Instruction *User = cast<Instruction>(U.getUser());
5266 
5267     // Figure out which BB this ext is used in.
5268     BasicBlock *UserBB = User->getParent();
5269     if (UserBB == DefBB) continue;
5270 
5271     // Both src and def are live in this block. Rewrite the use.
5272     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5273 
5274     if (!InsertedTrunc) {
5275       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5276       assert(InsertPt != UserBB->end());
5277       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5278       InsertedInsts.insert(InsertedTrunc);
5279     }
5280 
5281     // Replace a use of the {s|z}ext source with a use of the result.
5282     U = InsertedTrunc;
5283     ++NumExtUses;
5284     MadeChange = true;
5285   }
5286 
5287   return MadeChange;
5288 }
5289 
5290 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5291 // just after the load if the target can fold this into one extload instruction,
5292 // with the hope of eliminating some of the other later "and" instructions using
5293 // the loaded value.  "and"s that are made trivially redundant by the insertion
5294 // of the new "and" are removed by this function, while others (e.g. those whose
5295 // path from the load goes through a phi) are left for isel to potentially
5296 // remove.
5297 //
5298 // For example:
5299 //
5300 // b0:
5301 //   x = load i32
5302 //   ...
5303 // b1:
5304 //   y = and x, 0xff
5305 //   z = use y
5306 //
5307 // becomes:
5308 //
5309 // b0:
5310 //   x = load i32
5311 //   x' = and x, 0xff
5312 //   ...
5313 // b1:
5314 //   z = use x'
5315 //
5316 // whereas:
5317 //
5318 // b0:
5319 //   x1 = load i32
5320 //   ...
5321 // b1:
5322 //   x2 = load i32
5323 //   ...
5324 // b2:
5325 //   x = phi x1, x2
5326 //   y = and x, 0xff
5327 //
5328 // becomes (after a call to optimizeLoadExt for each load):
5329 //
5330 // b0:
5331 //   x1 = load i32
5332 //   x1' = and x1, 0xff
5333 //   ...
5334 // b1:
5335 //   x2 = load i32
5336 //   x2' = and x2, 0xff
5337 //   ...
5338 // b2:
5339 //   x = phi x1', x2'
5340 //   y = and x, 0xff
5341 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5342   if (!Load->isSimple() ||
5343       !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy()))
5344     return false;
5345 
5346   // Skip loads we've already transformed.
5347   if (Load->hasOneUse() &&
5348       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5349     return false;
5350 
5351   // Look at all uses of Load, looking through phis, to determine how many bits
5352   // of the loaded value are needed.
5353   SmallVector<Instruction *, 8> WorkList;
5354   SmallPtrSet<Instruction *, 16> Visited;
5355   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5356   for (auto *U : Load->users())
5357     WorkList.push_back(cast<Instruction>(U));
5358 
5359   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5360   unsigned BitWidth = LoadResultVT.getSizeInBits();
5361   APInt DemandBits(BitWidth, 0);
5362   APInt WidestAndBits(BitWidth, 0);
5363 
5364   while (!WorkList.empty()) {
5365     Instruction *I = WorkList.back();
5366     WorkList.pop_back();
5367 
5368     // Break use-def graph loops.
5369     if (!Visited.insert(I).second)
5370       continue;
5371 
5372     // For a PHI node, push all of its users.
5373     if (auto *Phi = dyn_cast<PHINode>(I)) {
5374       for (auto *U : Phi->users())
5375         WorkList.push_back(cast<Instruction>(U));
5376       continue;
5377     }
5378 
5379     switch (I->getOpcode()) {
5380     case Instruction::And: {
5381       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5382       if (!AndC)
5383         return false;
5384       APInt AndBits = AndC->getValue();
5385       DemandBits |= AndBits;
5386       // Keep track of the widest and mask we see.
5387       if (AndBits.ugt(WidestAndBits))
5388         WidestAndBits = AndBits;
5389       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5390         AndsToMaybeRemove.push_back(I);
5391       break;
5392     }
5393 
5394     case Instruction::Shl: {
5395       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5396       if (!ShlC)
5397         return false;
5398       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5399       DemandBits.setLowBits(BitWidth - ShiftAmt);
5400       break;
5401     }
5402 
5403     case Instruction::Trunc: {
5404       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5405       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5406       DemandBits.setLowBits(TruncBitWidth);
5407       break;
5408     }
5409 
5410     default:
5411       return false;
5412     }
5413   }
5414 
5415   uint32_t ActiveBits = DemandBits.getActiveBits();
5416   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5417   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5418   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5419   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5420   // followed by an AND.
5421   // TODO: Look into removing this restriction by fixing backends to either
5422   // return false for isLoadExtLegal for i1 or have them select this pattern to
5423   // a single instruction.
5424   //
5425   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5426   // mask, since these are the only ands that will be removed by isel.
5427   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5428       WidestAndBits != DemandBits)
5429     return false;
5430 
5431   LLVMContext &Ctx = Load->getType()->getContext();
5432   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5433   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5434 
5435   // Reject cases that won't be matched as extloads.
5436   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5437       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5438     return false;
5439 
5440   IRBuilder<> Builder(Load->getNextNode());
5441   auto *NewAnd = dyn_cast<Instruction>(
5442       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5443   // Mark this instruction as "inserted by CGP", so that other
5444   // optimizations don't touch it.
5445   InsertedInsts.insert(NewAnd);
5446 
5447   // Replace all uses of load with new and (except for the use of load in the
5448   // new and itself).
5449   Load->replaceAllUsesWith(NewAnd);
5450   NewAnd->setOperand(0, Load);
5451 
5452   // Remove any and instructions that are now redundant.
5453   for (auto *And : AndsToMaybeRemove)
5454     // Check that the and mask is the same as the one we decided to put on the
5455     // new and.
5456     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5457       And->replaceAllUsesWith(NewAnd);
5458       if (&*CurInstIterator == And)
5459         CurInstIterator = std::next(And->getIterator());
5460       And->eraseFromParent();
5461       ++NumAndUses;
5462     }
5463 
5464   ++NumAndsAdded;
5465   return true;
5466 }
5467 
5468 /// Check if V (an operand of a select instruction) is an expensive instruction
5469 /// that is only used once.
5470 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5471   auto *I = dyn_cast<Instruction>(V);
5472   // If it's safe to speculatively execute, then it should not have side
5473   // effects; therefore, it's safe to sink and possibly *not* execute.
5474   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5475          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5476 }
5477 
5478 /// Returns true if a SelectInst should be turned into an explicit branch.
5479 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5480                                                 const TargetLowering *TLI,
5481                                                 SelectInst *SI) {
5482   // If even a predictable select is cheap, then a branch can't be cheaper.
5483   if (!TLI->isPredictableSelectExpensive())
5484     return false;
5485 
5486   // FIXME: This should use the same heuristics as IfConversion to determine
5487   // whether a select is better represented as a branch.
5488 
5489   // If metadata tells us that the select condition is obviously predictable,
5490   // then we want to replace the select with a branch.
5491   uint64_t TrueWeight, FalseWeight;
5492   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5493     uint64_t Max = std::max(TrueWeight, FalseWeight);
5494     uint64_t Sum = TrueWeight + FalseWeight;
5495     if (Sum != 0) {
5496       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5497       if (Probability > TLI->getPredictableBranchThreshold())
5498         return true;
5499     }
5500   }
5501 
5502   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5503 
5504   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5505   // comparison condition. If the compare has more than one use, there's
5506   // probably another cmov or setcc around, so it's not worth emitting a branch.
5507   if (!Cmp || !Cmp->hasOneUse())
5508     return false;
5509 
5510   // If either operand of the select is expensive and only needed on one side
5511   // of the select, we should form a branch.
5512   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5513       sinkSelectOperand(TTI, SI->getFalseValue()))
5514     return true;
5515 
5516   return false;
5517 }
5518 
5519 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5520 /// false value of \p SI. If the true/false value of \p SI is defined by any
5521 /// select instructions in \p Selects, look through the defining select
5522 /// instruction until the true/false value is not defined in \p Selects.
5523 static Value *getTrueOrFalseValue(
5524     SelectInst *SI, bool isTrue,
5525     const SmallPtrSet<const Instruction *, 2> &Selects) {
5526   Value *V;
5527 
5528   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5529        DefSI = dyn_cast<SelectInst>(V)) {
5530     assert(DefSI->getCondition() == SI->getCondition() &&
5531            "The condition of DefSI does not match with SI");
5532     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5533   }
5534   return V;
5535 }
5536 
5537 /// If we have a SelectInst that will likely profit from branch prediction,
5538 /// turn it into a branch.
5539 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
5540   // Find all consecutive select instructions that share the same condition.
5541   SmallVector<SelectInst *, 2> ASI;
5542   ASI.push_back(SI);
5543   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5544        It != SI->getParent()->end(); ++It) {
5545     SelectInst *I = dyn_cast<SelectInst>(&*It);
5546     if (I && SI->getCondition() == I->getCondition()) {
5547       ASI.push_back(I);
5548     } else {
5549       break;
5550     }
5551   }
5552 
5553   SelectInst *LastSI = ASI.back();
5554   // Increment the current iterator to skip all the rest of select instructions
5555   // because they will be either "not lowered" or "all lowered" to branch.
5556   CurInstIterator = std::next(LastSI->getIterator());
5557 
5558   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5559 
5560   // Can we convert the 'select' to CF ?
5561   if (DisableSelectToBranch || OptSize || !TLI || VectorCond ||
5562       SI->getMetadata(LLVMContext::MD_unpredictable))
5563     return false;
5564 
5565   TargetLowering::SelectSupportKind SelectKind;
5566   if (VectorCond)
5567     SelectKind = TargetLowering::VectorMaskSelect;
5568   else if (SI->getType()->isVectorTy())
5569     SelectKind = TargetLowering::ScalarCondVectorVal;
5570   else
5571     SelectKind = TargetLowering::ScalarValSelect;
5572 
5573   if (TLI->isSelectSupported(SelectKind) &&
5574       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5575     return false;
5576 
5577   ModifiedDT = true;
5578 
5579   // Transform a sequence like this:
5580   //    start:
5581   //       %cmp = cmp uge i32 %a, %b
5582   //       %sel = select i1 %cmp, i32 %c, i32 %d
5583   //
5584   // Into:
5585   //    start:
5586   //       %cmp = cmp uge i32 %a, %b
5587   //       br i1 %cmp, label %select.true, label %select.false
5588   //    select.true:
5589   //       br label %select.end
5590   //    select.false:
5591   //       br label %select.end
5592   //    select.end:
5593   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5594   //
5595   // In addition, we may sink instructions that produce %c or %d from
5596   // the entry block into the destination(s) of the new branch.
5597   // If the true or false blocks do not contain a sunken instruction, that
5598   // block and its branch may be optimized away. In that case, one side of the
5599   // first branch will point directly to select.end, and the corresponding PHI
5600   // predecessor block will be the start block.
5601 
5602   // First, we split the block containing the select into 2 blocks.
5603   BasicBlock *StartBlock = SI->getParent();
5604   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5605   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5606 
5607   // Delete the unconditional branch that was just created by the split.
5608   StartBlock->getTerminator()->eraseFromParent();
5609 
5610   // These are the new basic blocks for the conditional branch.
5611   // At least one will become an actual new basic block.
5612   BasicBlock *TrueBlock = nullptr;
5613   BasicBlock *FalseBlock = nullptr;
5614   BranchInst *TrueBranch = nullptr;
5615   BranchInst *FalseBranch = nullptr;
5616 
5617   // Sink expensive instructions into the conditional blocks to avoid executing
5618   // them speculatively.
5619   for (SelectInst *SI : ASI) {
5620     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5621       if (TrueBlock == nullptr) {
5622         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5623                                        EndBlock->getParent(), EndBlock);
5624         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
5625       }
5626       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
5627       TrueInst->moveBefore(TrueBranch);
5628     }
5629     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
5630       if (FalseBlock == nullptr) {
5631         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
5632                                         EndBlock->getParent(), EndBlock);
5633         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
5634       }
5635       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
5636       FalseInst->moveBefore(FalseBranch);
5637     }
5638   }
5639 
5640   // If there was nothing to sink, then arbitrarily choose the 'false' side
5641   // for a new input value to the PHI.
5642   if (TrueBlock == FalseBlock) {
5643     assert(TrueBlock == nullptr &&
5644            "Unexpected basic block transform while optimizing select");
5645 
5646     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
5647                                     EndBlock->getParent(), EndBlock);
5648     BranchInst::Create(EndBlock, FalseBlock);
5649   }
5650 
5651   // Insert the real conditional branch based on the original condition.
5652   // If we did not create a new block for one of the 'true' or 'false' paths
5653   // of the condition, it means that side of the branch goes to the end block
5654   // directly and the path originates from the start block from the point of
5655   // view of the new PHI.
5656   BasicBlock *TT, *FT;
5657   if (TrueBlock == nullptr) {
5658     TT = EndBlock;
5659     FT = FalseBlock;
5660     TrueBlock = StartBlock;
5661   } else if (FalseBlock == nullptr) {
5662     TT = TrueBlock;
5663     FT = EndBlock;
5664     FalseBlock = StartBlock;
5665   } else {
5666     TT = TrueBlock;
5667     FT = FalseBlock;
5668   }
5669   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
5670 
5671   SmallPtrSet<const Instruction *, 2> INS;
5672   INS.insert(ASI.begin(), ASI.end());
5673   // Use reverse iterator because later select may use the value of the
5674   // earlier select, and we need to propagate value through earlier select
5675   // to get the PHI operand.
5676   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
5677     SelectInst *SI = *It;
5678     // The select itself is replaced with a PHI Node.
5679     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
5680     PN->takeName(SI);
5681     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
5682     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
5683 
5684     SI->replaceAllUsesWith(PN);
5685     SI->eraseFromParent();
5686     INS.erase(SI);
5687     ++NumSelectsExpanded;
5688   }
5689 
5690   // Instruct OptimizeBlock to skip to the next block.
5691   CurInstIterator = StartBlock->end();
5692   return true;
5693 }
5694 
5695 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
5696   SmallVector<int, 16> Mask(SVI->getShuffleMask());
5697   int SplatElem = -1;
5698   for (unsigned i = 0; i < Mask.size(); ++i) {
5699     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
5700       return false;
5701     SplatElem = Mask[i];
5702   }
5703 
5704   return true;
5705 }
5706 
5707 /// Some targets have expensive vector shifts if the lanes aren't all the same
5708 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
5709 /// it's often worth sinking a shufflevector splat down to its use so that
5710 /// codegen can spot all lanes are identical.
5711 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
5712   BasicBlock *DefBB = SVI->getParent();
5713 
5714   // Only do this xform if variable vector shifts are particularly expensive.
5715   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
5716     return false;
5717 
5718   // We only expect better codegen by sinking a shuffle if we can recognise a
5719   // constant splat.
5720   if (!isBroadcastShuffle(SVI))
5721     return false;
5722 
5723   // InsertedShuffles - Only insert a shuffle in each block once.
5724   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
5725 
5726   bool MadeChange = false;
5727   for (User *U : SVI->users()) {
5728     Instruction *UI = cast<Instruction>(U);
5729 
5730     // Figure out which BB this ext is used in.
5731     BasicBlock *UserBB = UI->getParent();
5732     if (UserBB == DefBB) continue;
5733 
5734     // For now only apply this when the splat is used by a shift instruction.
5735     if (!UI->isShift()) continue;
5736 
5737     // Everything checks out, sink the shuffle if the user's block doesn't
5738     // already have a copy.
5739     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
5740 
5741     if (!InsertedShuffle) {
5742       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5743       assert(InsertPt != UserBB->end());
5744       InsertedShuffle =
5745           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5746                                 SVI->getOperand(2), "", &*InsertPt);
5747     }
5748 
5749     UI->replaceUsesOfWith(SVI, InsertedShuffle);
5750     MadeChange = true;
5751   }
5752 
5753   // If we removed all uses, nuke the shuffle.
5754   if (SVI->use_empty()) {
5755     SVI->eraseFromParent();
5756     MadeChange = true;
5757   }
5758 
5759   return MadeChange;
5760 }
5761 
5762 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
5763   if (!TLI || !DL)
5764     return false;
5765 
5766   Value *Cond = SI->getCondition();
5767   Type *OldType = Cond->getType();
5768   LLVMContext &Context = Cond->getContext();
5769   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
5770   unsigned RegWidth = RegType.getSizeInBits();
5771 
5772   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
5773     return false;
5774 
5775   // If the register width is greater than the type width, expand the condition
5776   // of the switch instruction and each case constant to the width of the
5777   // register. By widening the type of the switch condition, subsequent
5778   // comparisons (for case comparisons) will not need to be extended to the
5779   // preferred register width, so we will potentially eliminate N-1 extends,
5780   // where N is the number of cases in the switch.
5781   auto *NewType = Type::getIntNTy(Context, RegWidth);
5782 
5783   // Zero-extend the switch condition and case constants unless the switch
5784   // condition is a function argument that is already being sign-extended.
5785   // In that case, we can avoid an unnecessary mask/extension by sign-extending
5786   // everything instead.
5787   Instruction::CastOps ExtType = Instruction::ZExt;
5788   if (auto *Arg = dyn_cast<Argument>(Cond))
5789     if (Arg->hasSExtAttr())
5790       ExtType = Instruction::SExt;
5791 
5792   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
5793   ExtInst->insertBefore(SI);
5794   SI->setCondition(ExtInst);
5795   for (auto Case : SI->cases()) {
5796     APInt NarrowConst = Case.getCaseValue()->getValue();
5797     APInt WideConst = (ExtType == Instruction::ZExt) ?
5798                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
5799     Case.setValue(ConstantInt::get(Context, WideConst));
5800   }
5801 
5802   return true;
5803 }
5804 
5805 
5806 namespace {
5807 
5808 /// Helper class to promote a scalar operation to a vector one.
5809 /// This class is used to move downward extractelement transition.
5810 /// E.g.,
5811 /// a = vector_op <2 x i32>
5812 /// b = extractelement <2 x i32> a, i32 0
5813 /// c = scalar_op b
5814 /// store c
5815 ///
5816 /// =>
5817 /// a = vector_op <2 x i32>
5818 /// c = vector_op a (equivalent to scalar_op on the related lane)
5819 /// * d = extractelement <2 x i32> c, i32 0
5820 /// * store d
5821 /// Assuming both extractelement and store can be combine, we get rid of the
5822 /// transition.
5823 class VectorPromoteHelper {
5824   /// DataLayout associated with the current module.
5825   const DataLayout &DL;
5826 
5827   /// Used to perform some checks on the legality of vector operations.
5828   const TargetLowering &TLI;
5829 
5830   /// Used to estimated the cost of the promoted chain.
5831   const TargetTransformInfo &TTI;
5832 
5833   /// The transition being moved downwards.
5834   Instruction *Transition;
5835 
5836   /// The sequence of instructions to be promoted.
5837   SmallVector<Instruction *, 4> InstsToBePromoted;
5838 
5839   /// Cost of combining a store and an extract.
5840   unsigned StoreExtractCombineCost;
5841 
5842   /// Instruction that will be combined with the transition.
5843   Instruction *CombineInst = nullptr;
5844 
5845   /// The instruction that represents the current end of the transition.
5846   /// Since we are faking the promotion until we reach the end of the chain
5847   /// of computation, we need a way to get the current end of the transition.
5848   Instruction *getEndOfTransition() const {
5849     if (InstsToBePromoted.empty())
5850       return Transition;
5851     return InstsToBePromoted.back();
5852   }
5853 
5854   /// Return the index of the original value in the transition.
5855   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
5856   /// c, is at index 0.
5857   unsigned getTransitionOriginalValueIdx() const {
5858     assert(isa<ExtractElementInst>(Transition) &&
5859            "Other kind of transitions are not supported yet");
5860     return 0;
5861   }
5862 
5863   /// Return the index of the index in the transition.
5864   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
5865   /// is at index 1.
5866   unsigned getTransitionIdx() const {
5867     assert(isa<ExtractElementInst>(Transition) &&
5868            "Other kind of transitions are not supported yet");
5869     return 1;
5870   }
5871 
5872   /// Get the type of the transition.
5873   /// This is the type of the original value.
5874   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
5875   /// transition is <2 x i32>.
5876   Type *getTransitionType() const {
5877     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
5878   }
5879 
5880   /// Promote \p ToBePromoted by moving \p Def downward through.
5881   /// I.e., we have the following sequence:
5882   /// Def = Transition <ty1> a to <ty2>
5883   /// b = ToBePromoted <ty2> Def, ...
5884   /// =>
5885   /// b = ToBePromoted <ty1> a, ...
5886   /// Def = Transition <ty1> ToBePromoted to <ty2>
5887   void promoteImpl(Instruction *ToBePromoted);
5888 
5889   /// Check whether or not it is profitable to promote all the
5890   /// instructions enqueued to be promoted.
5891   bool isProfitableToPromote() {
5892     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
5893     unsigned Index = isa<ConstantInt>(ValIdx)
5894                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
5895                          : -1;
5896     Type *PromotedType = getTransitionType();
5897 
5898     StoreInst *ST = cast<StoreInst>(CombineInst);
5899     unsigned AS = ST->getPointerAddressSpace();
5900     unsigned Align = ST->getAlignment();
5901     // Check if this store is supported.
5902     if (!TLI.allowsMisalignedMemoryAccesses(
5903             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
5904             Align)) {
5905       // If this is not supported, there is no way we can combine
5906       // the extract with the store.
5907       return false;
5908     }
5909 
5910     // The scalar chain of computation has to pay for the transition
5911     // scalar to vector.
5912     // The vector chain has to account for the combining cost.
5913     uint64_t ScalarCost =
5914         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
5915     uint64_t VectorCost = StoreExtractCombineCost;
5916     for (const auto &Inst : InstsToBePromoted) {
5917       // Compute the cost.
5918       // By construction, all instructions being promoted are arithmetic ones.
5919       // Moreover, one argument is a constant that can be viewed as a splat
5920       // constant.
5921       Value *Arg0 = Inst->getOperand(0);
5922       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
5923                             isa<ConstantFP>(Arg0);
5924       TargetTransformInfo::OperandValueKind Arg0OVK =
5925           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5926                          : TargetTransformInfo::OK_AnyValue;
5927       TargetTransformInfo::OperandValueKind Arg1OVK =
5928           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
5929                           : TargetTransformInfo::OK_AnyValue;
5930       ScalarCost += TTI.getArithmeticInstrCost(
5931           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
5932       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
5933                                                Arg0OVK, Arg1OVK);
5934     }
5935     LLVM_DEBUG(
5936         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
5937                << ScalarCost << "\nVector: " << VectorCost << '\n');
5938     return ScalarCost > VectorCost;
5939   }
5940 
5941   /// Generate a constant vector with \p Val with the same
5942   /// number of elements as the transition.
5943   /// \p UseSplat defines whether or not \p Val should be replicated
5944   /// across the whole vector.
5945   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
5946   /// otherwise we generate a vector with as many undef as possible:
5947   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
5948   /// used at the index of the extract.
5949   Value *getConstantVector(Constant *Val, bool UseSplat) const {
5950     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
5951     if (!UseSplat) {
5952       // If we cannot determine where the constant must be, we have to
5953       // use a splat constant.
5954       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
5955       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
5956         ExtractIdx = CstVal->getSExtValue();
5957       else
5958         UseSplat = true;
5959     }
5960 
5961     unsigned End = getTransitionType()->getVectorNumElements();
5962     if (UseSplat)
5963       return ConstantVector::getSplat(End, Val);
5964 
5965     SmallVector<Constant *, 4> ConstVec;
5966     UndefValue *UndefVal = UndefValue::get(Val->getType());
5967     for (unsigned Idx = 0; Idx != End; ++Idx) {
5968       if (Idx == ExtractIdx)
5969         ConstVec.push_back(Val);
5970       else
5971         ConstVec.push_back(UndefVal);
5972     }
5973     return ConstantVector::get(ConstVec);
5974   }
5975 
5976   /// Check if promoting to a vector type an operand at \p OperandIdx
5977   /// in \p Use can trigger undefined behavior.
5978   static bool canCauseUndefinedBehavior(const Instruction *Use,
5979                                         unsigned OperandIdx) {
5980     // This is not safe to introduce undef when the operand is on
5981     // the right hand side of a division-like instruction.
5982     if (OperandIdx != 1)
5983       return false;
5984     switch (Use->getOpcode()) {
5985     default:
5986       return false;
5987     case Instruction::SDiv:
5988     case Instruction::UDiv:
5989     case Instruction::SRem:
5990     case Instruction::URem:
5991       return true;
5992     case Instruction::FDiv:
5993     case Instruction::FRem:
5994       return !Use->hasNoNaNs();
5995     }
5996     llvm_unreachable(nullptr);
5997   }
5998 
5999 public:
6000   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6001                       const TargetTransformInfo &TTI, Instruction *Transition,
6002                       unsigned CombineCost)
6003       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6004         StoreExtractCombineCost(CombineCost) {
6005     assert(Transition && "Do not know how to promote null");
6006   }
6007 
6008   /// Check if we can promote \p ToBePromoted to \p Type.
6009   bool canPromote(const Instruction *ToBePromoted) const {
6010     // We could support CastInst too.
6011     return isa<BinaryOperator>(ToBePromoted);
6012   }
6013 
6014   /// Check if it is profitable to promote \p ToBePromoted
6015   /// by moving downward the transition through.
6016   bool shouldPromote(const Instruction *ToBePromoted) const {
6017     // Promote only if all the operands can be statically expanded.
6018     // Indeed, we do not want to introduce any new kind of transitions.
6019     for (const Use &U : ToBePromoted->operands()) {
6020       const Value *Val = U.get();
6021       if (Val == getEndOfTransition()) {
6022         // If the use is a division and the transition is on the rhs,
6023         // we cannot promote the operation, otherwise we may create a
6024         // division by zero.
6025         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6026           return false;
6027         continue;
6028       }
6029       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6030           !isa<ConstantFP>(Val))
6031         return false;
6032     }
6033     // Check that the resulting operation is legal.
6034     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6035     if (!ISDOpcode)
6036       return false;
6037     return StressStoreExtract ||
6038            TLI.isOperationLegalOrCustom(
6039                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6040   }
6041 
6042   /// Check whether or not \p Use can be combined
6043   /// with the transition.
6044   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6045   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6046 
6047   /// Record \p ToBePromoted as part of the chain to be promoted.
6048   void enqueueForPromotion(Instruction *ToBePromoted) {
6049     InstsToBePromoted.push_back(ToBePromoted);
6050   }
6051 
6052   /// Set the instruction that will be combined with the transition.
6053   void recordCombineInstruction(Instruction *ToBeCombined) {
6054     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6055     CombineInst = ToBeCombined;
6056   }
6057 
6058   /// Promote all the instructions enqueued for promotion if it is
6059   /// is profitable.
6060   /// \return True if the promotion happened, false otherwise.
6061   bool promote() {
6062     // Check if there is something to promote.
6063     // Right now, if we do not have anything to combine with,
6064     // we assume the promotion is not profitable.
6065     if (InstsToBePromoted.empty() || !CombineInst)
6066       return false;
6067 
6068     // Check cost.
6069     if (!StressStoreExtract && !isProfitableToPromote())
6070       return false;
6071 
6072     // Promote.
6073     for (auto &ToBePromoted : InstsToBePromoted)
6074       promoteImpl(ToBePromoted);
6075     InstsToBePromoted.clear();
6076     return true;
6077   }
6078 };
6079 
6080 } // end anonymous namespace
6081 
6082 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6083   // At this point, we know that all the operands of ToBePromoted but Def
6084   // can be statically promoted.
6085   // For Def, we need to use its parameter in ToBePromoted:
6086   // b = ToBePromoted ty1 a
6087   // Def = Transition ty1 b to ty2
6088   // Move the transition down.
6089   // 1. Replace all uses of the promoted operation by the transition.
6090   // = ... b => = ... Def.
6091   assert(ToBePromoted->getType() == Transition->getType() &&
6092          "The type of the result of the transition does not match "
6093          "the final type");
6094   ToBePromoted->replaceAllUsesWith(Transition);
6095   // 2. Update the type of the uses.
6096   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6097   Type *TransitionTy = getTransitionType();
6098   ToBePromoted->mutateType(TransitionTy);
6099   // 3. Update all the operands of the promoted operation with promoted
6100   // operands.
6101   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6102   for (Use &U : ToBePromoted->operands()) {
6103     Value *Val = U.get();
6104     Value *NewVal = nullptr;
6105     if (Val == Transition)
6106       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6107     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6108              isa<ConstantFP>(Val)) {
6109       // Use a splat constant if it is not safe to use undef.
6110       NewVal = getConstantVector(
6111           cast<Constant>(Val),
6112           isa<UndefValue>(Val) ||
6113               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6114     } else
6115       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6116                        "this?");
6117     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6118   }
6119   Transition->moveAfter(ToBePromoted);
6120   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6121 }
6122 
6123 /// Some targets can do store(extractelement) with one instruction.
6124 /// Try to push the extractelement towards the stores when the target
6125 /// has this feature and this is profitable.
6126 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6127   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6128   if (DisableStoreExtract || !TLI ||
6129       (!StressStoreExtract &&
6130        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6131                                        Inst->getOperand(1), CombineCost)))
6132     return false;
6133 
6134   // At this point we know that Inst is a vector to scalar transition.
6135   // Try to move it down the def-use chain, until:
6136   // - We can combine the transition with its single use
6137   //   => we got rid of the transition.
6138   // - We escape the current basic block
6139   //   => we would need to check that we are moving it at a cheaper place and
6140   //      we do not do that for now.
6141   BasicBlock *Parent = Inst->getParent();
6142   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6143   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6144   // If the transition has more than one use, assume this is not going to be
6145   // beneficial.
6146   while (Inst->hasOneUse()) {
6147     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6148     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6149 
6150     if (ToBePromoted->getParent() != Parent) {
6151       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6152                         << ToBePromoted->getParent()->getName()
6153                         << ") than the transition (" << Parent->getName()
6154                         << ").\n");
6155       return false;
6156     }
6157 
6158     if (VPH.canCombine(ToBePromoted)) {
6159       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6160                         << "will be combined with: " << *ToBePromoted << '\n');
6161       VPH.recordCombineInstruction(ToBePromoted);
6162       bool Changed = VPH.promote();
6163       NumStoreExtractExposed += Changed;
6164       return Changed;
6165     }
6166 
6167     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6168     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6169       return false;
6170 
6171     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6172 
6173     VPH.enqueueForPromotion(ToBePromoted);
6174     Inst = ToBePromoted;
6175   }
6176   return false;
6177 }
6178 
6179 /// For the instruction sequence of store below, F and I values
6180 /// are bundled together as an i64 value before being stored into memory.
6181 /// Sometimes it is more efficent to generate separate stores for F and I,
6182 /// which can remove the bitwise instructions or sink them to colder places.
6183 ///
6184 ///   (store (or (zext (bitcast F to i32) to i64),
6185 ///              (shl (zext I to i64), 32)), addr)  -->
6186 ///   (store F, addr) and (store I, addr+4)
6187 ///
6188 /// Similarly, splitting for other merged store can also be beneficial, like:
6189 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6190 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6191 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6192 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6193 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6194 ///
6195 /// We allow each target to determine specifically which kind of splitting is
6196 /// supported.
6197 ///
6198 /// The store patterns are commonly seen from the simple code snippet below
6199 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6200 ///   void goo(const std::pair<int, float> &);
6201 ///   hoo() {
6202 ///     ...
6203 ///     goo(std::make_pair(tmp, ftmp));
6204 ///     ...
6205 ///   }
6206 ///
6207 /// Although we already have similar splitting in DAG Combine, we duplicate
6208 /// it in CodeGenPrepare to catch the case in which pattern is across
6209 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6210 /// during code expansion.
6211 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6212                                 const TargetLowering &TLI) {
6213   // Handle simple but common cases only.
6214   Type *StoreType = SI.getValueOperand()->getType();
6215   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6216       DL.getTypeSizeInBits(StoreType) == 0)
6217     return false;
6218 
6219   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6220   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6221   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6222       DL.getTypeSizeInBits(SplitStoreType))
6223     return false;
6224 
6225   // Match the following patterns:
6226   // (store (or (zext LValue to i64),
6227   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6228   //  or
6229   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6230   //            (zext LValue to i64),
6231   // Expect both operands of OR and the first operand of SHL have only
6232   // one use.
6233   Value *LValue, *HValue;
6234   if (!match(SI.getValueOperand(),
6235              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6236                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6237                                    m_SpecificInt(HalfValBitSize))))))
6238     return false;
6239 
6240   // Check LValue and HValue are int with size less or equal than 32.
6241   if (!LValue->getType()->isIntegerTy() ||
6242       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6243       !HValue->getType()->isIntegerTy() ||
6244       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6245     return false;
6246 
6247   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6248   // as the input of target query.
6249   auto *LBC = dyn_cast<BitCastInst>(LValue);
6250   auto *HBC = dyn_cast<BitCastInst>(HValue);
6251   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6252                   : EVT::getEVT(LValue->getType());
6253   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6254                    : EVT::getEVT(HValue->getType());
6255   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6256     return false;
6257 
6258   // Start to split store.
6259   IRBuilder<> Builder(SI.getContext());
6260   Builder.SetInsertPoint(&SI);
6261 
6262   // If LValue/HValue is a bitcast in another BB, create a new one in current
6263   // BB so it may be merged with the splitted stores by dag combiner.
6264   if (LBC && LBC->getParent() != SI.getParent())
6265     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6266   if (HBC && HBC->getParent() != SI.getParent())
6267     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6268 
6269   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6270   auto CreateSplitStore = [&](Value *V, bool Upper) {
6271     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6272     Value *Addr = Builder.CreateBitCast(
6273         SI.getOperand(1),
6274         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6275     if ((IsLE && Upper) || (!IsLE && !Upper))
6276       Addr = Builder.CreateGEP(
6277           SplitStoreType, Addr,
6278           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6279     Builder.CreateAlignedStore(
6280         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6281   };
6282 
6283   CreateSplitStore(LValue, false);
6284   CreateSplitStore(HValue, true);
6285 
6286   // Delete the old store.
6287   SI.eraseFromParent();
6288   return true;
6289 }
6290 
6291 // Return true if the GEP has two operands, the first operand is of a sequential
6292 // type, and the second operand is a constant.
6293 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6294   gep_type_iterator I = gep_type_begin(*GEP);
6295   return GEP->getNumOperands() == 2 &&
6296       I.isSequential() &&
6297       isa<ConstantInt>(GEP->getOperand(1));
6298 }
6299 
6300 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6301 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6302 // reducing liveness interference across those edges benefits global register
6303 // allocation. Currently handles only certain cases.
6304 //
6305 // For example, unmerge %GEPI and %UGEPI as below.
6306 //
6307 // ---------- BEFORE ----------
6308 // SrcBlock:
6309 //   ...
6310 //   %GEPIOp = ...
6311 //   ...
6312 //   %GEPI = gep %GEPIOp, Idx
6313 //   ...
6314 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6315 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6316 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6317 //   %UGEPI)
6318 //
6319 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6320 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6321 // ...
6322 //
6323 // DstBi:
6324 //   ...
6325 //   %UGEPI = gep %GEPIOp, UIdx
6326 // ...
6327 // ---------------------------
6328 //
6329 // ---------- AFTER ----------
6330 // SrcBlock:
6331 //   ... (same as above)
6332 //    (* %GEPI is still alive on the indirectbr edges)
6333 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6334 //    unmerging)
6335 // ...
6336 //
6337 // DstBi:
6338 //   ...
6339 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6340 //   ...
6341 // ---------------------------
6342 //
6343 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6344 // no longer alive on them.
6345 //
6346 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6347 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6348 // not to disable further simplications and optimizations as a result of GEP
6349 // merging.
6350 //
6351 // Note this unmerging may increase the length of the data flow critical path
6352 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6353 // between the register pressure and the length of data-flow critical
6354 // path. Restricting this to the uncommon IndirectBr case would minimize the
6355 // impact of potentially longer critical path, if any, and the impact on compile
6356 // time.
6357 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6358                                              const TargetTransformInfo *TTI) {
6359   BasicBlock *SrcBlock = GEPI->getParent();
6360   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6361   // (non-IndirectBr) cases exit early here.
6362   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6363     return false;
6364   // Check that GEPI is a simple gep with a single constant index.
6365   if (!GEPSequentialConstIndexed(GEPI))
6366     return false;
6367   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6368   // Check that GEPI is a cheap one.
6369   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6370       > TargetTransformInfo::TCC_Basic)
6371     return false;
6372   Value *GEPIOp = GEPI->getOperand(0);
6373   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6374   if (!isa<Instruction>(GEPIOp))
6375     return false;
6376   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6377   if (GEPIOpI->getParent() != SrcBlock)
6378     return false;
6379   // Check that GEP is used outside the block, meaning it's alive on the
6380   // IndirectBr edge(s).
6381   if (find_if(GEPI->users(), [&](User *Usr) {
6382         if (auto *I = dyn_cast<Instruction>(Usr)) {
6383           if (I->getParent() != SrcBlock) {
6384             return true;
6385           }
6386         }
6387         return false;
6388       }) == GEPI->users().end())
6389     return false;
6390   // The second elements of the GEP chains to be unmerged.
6391   std::vector<GetElementPtrInst *> UGEPIs;
6392   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6393   // on IndirectBr edges.
6394   for (User *Usr : GEPIOp->users()) {
6395     if (Usr == GEPI) continue;
6396     // Check if Usr is an Instruction. If not, give up.
6397     if (!isa<Instruction>(Usr))
6398       return false;
6399     auto *UI = cast<Instruction>(Usr);
6400     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6401     if (UI->getParent() == SrcBlock)
6402       continue;
6403     // Check if Usr is a GEP. If not, give up.
6404     if (!isa<GetElementPtrInst>(Usr))
6405       return false;
6406     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6407     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6408     // the pointer operand to it. If so, record it in the vector. If not, give
6409     // up.
6410     if (!GEPSequentialConstIndexed(UGEPI))
6411       return false;
6412     if (UGEPI->getOperand(0) != GEPIOp)
6413       return false;
6414     if (GEPIIdx->getType() !=
6415         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6416       return false;
6417     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6418     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6419         > TargetTransformInfo::TCC_Basic)
6420       return false;
6421     UGEPIs.push_back(UGEPI);
6422   }
6423   if (UGEPIs.size() == 0)
6424     return false;
6425   // Check the materializing cost of (Uidx-Idx).
6426   for (GetElementPtrInst *UGEPI : UGEPIs) {
6427     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6428     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6429     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6430     if (ImmCost > TargetTransformInfo::TCC_Basic)
6431       return false;
6432   }
6433   // Now unmerge between GEPI and UGEPIs.
6434   for (GetElementPtrInst *UGEPI : UGEPIs) {
6435     UGEPI->setOperand(0, GEPI);
6436     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6437     Constant *NewUGEPIIdx =
6438         ConstantInt::get(GEPIIdx->getType(),
6439                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6440     UGEPI->setOperand(1, NewUGEPIIdx);
6441     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6442     // inbounds to avoid UB.
6443     if (!GEPI->isInBounds()) {
6444       UGEPI->setIsInBounds(false);
6445     }
6446   }
6447   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6448   // alive on IndirectBr edges).
6449   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6450         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6451       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6452   return true;
6453 }
6454 
6455 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
6456   // Bail out if we inserted the instruction to prevent optimizations from
6457   // stepping on each other's toes.
6458   if (InsertedInsts.count(I))
6459     return false;
6460 
6461   if (PHINode *P = dyn_cast<PHINode>(I)) {
6462     // It is possible for very late stage optimizations (such as SimplifyCFG)
6463     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6464     // trivial PHI, go ahead and zap it here.
6465     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6466       P->replaceAllUsesWith(V);
6467       P->eraseFromParent();
6468       ++NumPHIsElim;
6469       return true;
6470     }
6471     return false;
6472   }
6473 
6474   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6475     // If the source of the cast is a constant, then this should have
6476     // already been constant folded.  The only reason NOT to constant fold
6477     // it is if something (e.g. LSR) was careful to place the constant
6478     // evaluation in a block other than then one that uses it (e.g. to hoist
6479     // the address of globals out of a loop).  If this is the case, we don't
6480     // want to forward-subst the cast.
6481     if (isa<Constant>(CI->getOperand(0)))
6482       return false;
6483 
6484     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6485       return true;
6486 
6487     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6488       /// Sink a zext or sext into its user blocks if the target type doesn't
6489       /// fit in one register
6490       if (TLI &&
6491           TLI->getTypeAction(CI->getContext(),
6492                              TLI->getValueType(*DL, CI->getType())) ==
6493               TargetLowering::TypeExpandInteger) {
6494         return SinkCast(CI);
6495       } else {
6496         bool MadeChange = optimizeExt(I);
6497         return MadeChange | optimizeExtUses(I);
6498       }
6499     }
6500     return false;
6501   }
6502 
6503   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6504     if (!TLI || !TLI->hasMultipleConditionRegisters())
6505       return OptimizeCmpExpression(CI, TLI);
6506 
6507   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6508     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6509     if (TLI) {
6510       bool Modified = optimizeLoadExt(LI);
6511       unsigned AS = LI->getPointerAddressSpace();
6512       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6513       return Modified;
6514     }
6515     return false;
6516   }
6517 
6518   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6519     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6520       return true;
6521     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6522     if (TLI) {
6523       unsigned AS = SI->getPointerAddressSpace();
6524       return optimizeMemoryInst(I, SI->getOperand(1),
6525                                 SI->getOperand(0)->getType(), AS);
6526     }
6527     return false;
6528   }
6529 
6530   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6531       unsigned AS = RMW->getPointerAddressSpace();
6532       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6533                                 RMW->getType(), AS);
6534   }
6535 
6536   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6537       unsigned AS = CmpX->getPointerAddressSpace();
6538       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6539                                 CmpX->getCompareOperand()->getType(), AS);
6540   }
6541 
6542   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6543 
6544   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6545       EnableAndCmpSinking && TLI)
6546     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6547 
6548   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6549                 BinOp->getOpcode() == Instruction::LShr)) {
6550     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6551     if (TLI && CI && TLI->hasExtractBitsInsn())
6552       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6553 
6554     return false;
6555   }
6556 
6557   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6558     if (GEPI->hasAllZeroIndices()) {
6559       /// The GEP operand must be a pointer, so must its result -> BitCast
6560       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6561                                         GEPI->getName(), GEPI);
6562       NC->setDebugLoc(GEPI->getDebugLoc());
6563       GEPI->replaceAllUsesWith(NC);
6564       GEPI->eraseFromParent();
6565       ++NumGEPsElim;
6566       optimizeInst(NC, ModifiedDT);
6567       return true;
6568     }
6569     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6570       return true;
6571     }
6572     return false;
6573   }
6574 
6575   if (CallInst *CI = dyn_cast<CallInst>(I))
6576     return optimizeCallInst(CI, ModifiedDT);
6577 
6578   if (SelectInst *SI = dyn_cast<SelectInst>(I))
6579     return optimizeSelectInst(SI);
6580 
6581   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
6582     return optimizeShuffleVectorInst(SVI);
6583 
6584   if (auto *Switch = dyn_cast<SwitchInst>(I))
6585     return optimizeSwitchInst(Switch);
6586 
6587   if (isa<ExtractElementInst>(I))
6588     return optimizeExtractElementInst(I);
6589 
6590   return false;
6591 }
6592 
6593 /// Given an OR instruction, check to see if this is a bitreverse
6594 /// idiom. If so, insert the new intrinsic and return true.
6595 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
6596                            const TargetLowering &TLI) {
6597   if (!I.getType()->isIntegerTy() ||
6598       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
6599                                     TLI.getValueType(DL, I.getType(), true)))
6600     return false;
6601 
6602   SmallVector<Instruction*, 4> Insts;
6603   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
6604     return false;
6605   Instruction *LastInst = Insts.back();
6606   I.replaceAllUsesWith(LastInst);
6607   RecursivelyDeleteTriviallyDeadInstructions(&I);
6608   return true;
6609 }
6610 
6611 // In this pass we look for GEP and cast instructions that are used
6612 // across basic blocks and rewrite them to improve basic-block-at-a-time
6613 // selection.
6614 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
6615   SunkAddrs.clear();
6616   bool MadeChange = false;
6617 
6618   CurInstIterator = BB.begin();
6619   while (CurInstIterator != BB.end()) {
6620     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
6621     if (ModifiedDT)
6622       return true;
6623   }
6624 
6625   bool MadeBitReverse = true;
6626   while (TLI && MadeBitReverse) {
6627     MadeBitReverse = false;
6628     for (auto &I : reverse(BB)) {
6629       if (makeBitReverse(I, *DL, *TLI)) {
6630         MadeBitReverse = MadeChange = true;
6631         ModifiedDT = true;
6632         break;
6633       }
6634     }
6635   }
6636   MadeChange |= dupRetToEnableTailCallOpts(&BB);
6637 
6638   return MadeChange;
6639 }
6640 
6641 // llvm.dbg.value is far away from the value then iSel may not be able
6642 // handle it properly. iSel will drop llvm.dbg.value if it can not
6643 // find a node corresponding to the value.
6644 bool CodeGenPrepare::placeDbgValues(Function &F) {
6645   bool MadeChange = false;
6646   for (BasicBlock &BB : F) {
6647     Instruction *PrevNonDbgInst = nullptr;
6648     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
6649       Instruction *Insn = &*BI++;
6650       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
6651       // Leave dbg.values that refer to an alloca alone. These
6652       // intrinsics describe the address of a variable (= the alloca)
6653       // being taken.  They should not be moved next to the alloca
6654       // (and to the beginning of the scope), but rather stay close to
6655       // where said address is used.
6656       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
6657         PrevNonDbgInst = Insn;
6658         continue;
6659       }
6660 
6661       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
6662       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
6663         // If VI is a phi in a block with an EHPad terminator, we can't insert
6664         // after it.
6665         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
6666           continue;
6667         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
6668                           << *DVI << ' ' << *VI);
6669         DVI->removeFromParent();
6670         if (isa<PHINode>(VI))
6671           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
6672         else
6673           DVI->insertAfter(VI);
6674         MadeChange = true;
6675         ++NumDbgValueMoved;
6676       }
6677     }
6678   }
6679   return MadeChange;
6680 }
6681 
6682 /// Scale down both weights to fit into uint32_t.
6683 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
6684   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
6685   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
6686   NewTrue = NewTrue / Scale;
6687   NewFalse = NewFalse / Scale;
6688 }
6689 
6690 /// Some targets prefer to split a conditional branch like:
6691 /// \code
6692 ///   %0 = icmp ne i32 %a, 0
6693 ///   %1 = icmp ne i32 %b, 0
6694 ///   %or.cond = or i1 %0, %1
6695 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
6696 /// \endcode
6697 /// into multiple branch instructions like:
6698 /// \code
6699 ///   bb1:
6700 ///     %0 = icmp ne i32 %a, 0
6701 ///     br i1 %0, label %TrueBB, label %bb2
6702 ///   bb2:
6703 ///     %1 = icmp ne i32 %b, 0
6704 ///     br i1 %1, label %TrueBB, label %FalseBB
6705 /// \endcode
6706 /// This usually allows instruction selection to do even further optimizations
6707 /// and combine the compare with the branch instruction. Currently this is
6708 /// applied for targets which have "cheap" jump instructions.
6709 ///
6710 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
6711 ///
6712 bool CodeGenPrepare::splitBranchCondition(Function &F) {
6713   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
6714     return false;
6715 
6716   bool MadeChange = false;
6717   for (auto &BB : F) {
6718     // Does this BB end with the following?
6719     //   %cond1 = icmp|fcmp|binary instruction ...
6720     //   %cond2 = icmp|fcmp|binary instruction ...
6721     //   %cond.or = or|and i1 %cond1, cond2
6722     //   br i1 %cond.or label %dest1, label %dest2"
6723     BinaryOperator *LogicOp;
6724     BasicBlock *TBB, *FBB;
6725     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
6726       continue;
6727 
6728     auto *Br1 = cast<BranchInst>(BB.getTerminator());
6729     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
6730       continue;
6731 
6732     unsigned Opc;
6733     Value *Cond1, *Cond2;
6734     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
6735                              m_OneUse(m_Value(Cond2)))))
6736       Opc = Instruction::And;
6737     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
6738                                  m_OneUse(m_Value(Cond2)))))
6739       Opc = Instruction::Or;
6740     else
6741       continue;
6742 
6743     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
6744         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
6745       continue;
6746 
6747     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
6748 
6749     // Create a new BB.
6750     auto TmpBB =
6751         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
6752                            BB.getParent(), BB.getNextNode());
6753 
6754     // Update original basic block by using the first condition directly by the
6755     // branch instruction and removing the no longer needed and/or instruction.
6756     Br1->setCondition(Cond1);
6757     LogicOp->eraseFromParent();
6758 
6759     // Depending on the conditon we have to either replace the true or the false
6760     // successor of the original branch instruction.
6761     if (Opc == Instruction::And)
6762       Br1->setSuccessor(0, TmpBB);
6763     else
6764       Br1->setSuccessor(1, TmpBB);
6765 
6766     // Fill in the new basic block.
6767     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
6768     if (auto *I = dyn_cast<Instruction>(Cond2)) {
6769       I->removeFromParent();
6770       I->insertBefore(Br2);
6771     }
6772 
6773     // Update PHI nodes in both successors. The original BB needs to be
6774     // replaced in one successor's PHI nodes, because the branch comes now from
6775     // the newly generated BB (NewBB). In the other successor we need to add one
6776     // incoming edge to the PHI nodes, because both branch instructions target
6777     // now the same successor. Depending on the original branch condition
6778     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
6779     // we perform the correct update for the PHI nodes.
6780     // This doesn't change the successor order of the just created branch
6781     // instruction (or any other instruction).
6782     if (Opc == Instruction::Or)
6783       std::swap(TBB, FBB);
6784 
6785     // Replace the old BB with the new BB.
6786     for (PHINode &PN : TBB->phis()) {
6787       int i;
6788       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
6789         PN.setIncomingBlock(i, TmpBB);
6790     }
6791 
6792     // Add another incoming edge form the new BB.
6793     for (PHINode &PN : FBB->phis()) {
6794       auto *Val = PN.getIncomingValueForBlock(&BB);
6795       PN.addIncoming(Val, TmpBB);
6796     }
6797 
6798     // Update the branch weights (from SelectionDAGBuilder::
6799     // FindMergedConditions).
6800     if (Opc == Instruction::Or) {
6801       // Codegen X | Y as:
6802       // BB1:
6803       //   jmp_if_X TBB
6804       //   jmp TmpBB
6805       // TmpBB:
6806       //   jmp_if_Y TBB
6807       //   jmp FBB
6808       //
6809 
6810       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
6811       // The requirement is that
6812       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
6813       //     = TrueProb for orignal BB.
6814       // Assuming the orignal weights are A and B, one choice is to set BB1's
6815       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
6816       // assumes that
6817       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
6818       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
6819       // TmpBB, but the math is more complicated.
6820       uint64_t TrueWeight, FalseWeight;
6821       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6822         uint64_t NewTrueWeight = TrueWeight;
6823         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
6824         scaleWeights(NewTrueWeight, NewFalseWeight);
6825         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6826                          .createBranchWeights(TrueWeight, FalseWeight));
6827 
6828         NewTrueWeight = TrueWeight;
6829         NewFalseWeight = 2 * FalseWeight;
6830         scaleWeights(NewTrueWeight, NewFalseWeight);
6831         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6832                          .createBranchWeights(TrueWeight, FalseWeight));
6833       }
6834     } else {
6835       // Codegen X & Y as:
6836       // BB1:
6837       //   jmp_if_X TmpBB
6838       //   jmp FBB
6839       // TmpBB:
6840       //   jmp_if_Y TBB
6841       //   jmp FBB
6842       //
6843       //  This requires creation of TmpBB after CurBB.
6844 
6845       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
6846       // The requirement is that
6847       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
6848       //     = FalseProb for orignal BB.
6849       // Assuming the orignal weights are A and B, one choice is to set BB1's
6850       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
6851       // assumes that
6852       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
6853       uint64_t TrueWeight, FalseWeight;
6854       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
6855         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
6856         uint64_t NewFalseWeight = FalseWeight;
6857         scaleWeights(NewTrueWeight, NewFalseWeight);
6858         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
6859                          .createBranchWeights(TrueWeight, FalseWeight));
6860 
6861         NewTrueWeight = 2 * TrueWeight;
6862         NewFalseWeight = FalseWeight;
6863         scaleWeights(NewTrueWeight, NewFalseWeight);
6864         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
6865                          .createBranchWeights(TrueWeight, FalseWeight));
6866       }
6867     }
6868 
6869     // Note: No point in getting fancy here, since the DT info is never
6870     // available to CodeGenPrepare.
6871     ModifiedDT = true;
6872 
6873     MadeChange = true;
6874 
6875     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
6876                TmpBB->dump());
6877   }
6878   return MadeChange;
6879 }
6880