1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if optimizing for size. 295 bool OptSize; 296 297 /// DataLayout for the Function being processed. 298 const DataLayout *DL = nullptr; 299 300 /// Building the dominator tree can be expensive, so we only build it 301 /// lazily and update it when required. 302 std::unique_ptr<DominatorTree> DT; 303 304 public: 305 static char ID; // Pass identification, replacement for typeid 306 307 CodeGenPrepare() : FunctionPass(ID) { 308 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 309 } 310 311 bool runOnFunction(Function &F) override; 312 313 StringRef getPassName() const override { return "CodeGen Prepare"; } 314 315 void getAnalysisUsage(AnalysisUsage &AU) const override { 316 // FIXME: When we can selectively preserve passes, preserve the domtree. 317 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 318 AU.addRequired<TargetLibraryInfoWrapperPass>(); 319 AU.addRequired<TargetTransformInfoWrapperPass>(); 320 AU.addRequired<LoopInfoWrapperPass>(); 321 } 322 323 private: 324 template <typename F> 325 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 326 // Substituting can cause recursive simplifications, which can invalidate 327 // our iterator. Use a WeakTrackingVH to hold onto it in case this 328 // happens. 329 Value *CurValue = &*CurInstIterator; 330 WeakTrackingVH IterHandle(CurValue); 331 332 f(); 333 334 // If the iterator instruction was recursively deleted, start over at the 335 // start of the block. 336 if (IterHandle != CurValue) { 337 CurInstIterator = BB->begin(); 338 SunkAddrs.clear(); 339 } 340 } 341 342 // Get the DominatorTree, building if necessary. 343 DominatorTree &getDT(Function &F) { 344 if (!DT) 345 DT = llvm::make_unique<DominatorTree>(F); 346 return *DT; 347 } 348 349 bool eliminateFallThrough(Function &F); 350 bool eliminateMostlyEmptyBlocks(Function &F); 351 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 352 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 353 void eliminateMostlyEmptyBlock(BasicBlock *BB); 354 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 355 bool isPreheader); 356 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 357 bool optimizeInst(Instruction *I, bool &ModifiedDT); 358 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 359 Type *AccessTy, unsigned AddrSpace); 360 bool optimizeInlineAsmInst(CallInst *CS); 361 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 362 bool optimizeExt(Instruction *&I); 363 bool optimizeExtUses(Instruction *I); 364 bool optimizeLoadExt(LoadInst *Load); 365 bool optimizeSelectInst(SelectInst *SI); 366 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 367 bool optimizeSwitchInst(SwitchInst *SI); 368 bool optimizeExtractElementInst(Instruction *Inst); 369 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 370 bool placeDbgValues(Function &F); 371 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 372 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 373 bool tryToPromoteExts(TypePromotionTransaction &TPT, 374 const SmallVectorImpl<Instruction *> &Exts, 375 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 376 unsigned CreatedInstsCost = 0); 377 bool mergeSExts(Function &F); 378 bool splitLargeGEPOffsets(); 379 bool performAddressTypePromotion( 380 Instruction *&Inst, 381 bool AllowPromotionWithoutCommonHeader, 382 bool HasPromoted, TypePromotionTransaction &TPT, 383 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 384 bool splitBranchCondition(Function &F, bool &ModifiedDT); 385 bool simplifyOffsetableRelocate(Instruction &I); 386 387 bool tryToSinkFreeOperands(Instruction *I); 388 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 389 Intrinsic::ID IID); 390 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 391 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 392 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 393 }; 394 395 } // end anonymous namespace 396 397 char CodeGenPrepare::ID = 0; 398 399 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 400 "Optimize for code generation", false, false) 401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 402 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 403 "Optimize for code generation", false, false) 404 405 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 406 407 bool CodeGenPrepare::runOnFunction(Function &F) { 408 if (skipFunction(F)) 409 return false; 410 411 DL = &F.getParent()->getDataLayout(); 412 413 bool EverMadeChange = false; 414 // Clear per function information. 415 InsertedInsts.clear(); 416 PromotedInsts.clear(); 417 418 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 419 TM = &TPC->getTM<TargetMachine>(); 420 SubtargetInfo = TM->getSubtargetImpl(F); 421 TLI = SubtargetInfo->getTargetLowering(); 422 TRI = SubtargetInfo->getRegisterInfo(); 423 } 424 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 425 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 426 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 427 BPI.reset(new BranchProbabilityInfo(F, *LI)); 428 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 429 OptSize = F.optForSize(); 430 431 ProfileSummaryInfo *PSI = 432 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 433 if (ProfileGuidedSectionPrefix) { 434 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 435 F.setSectionPrefix(".hot"); 436 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 437 F.setSectionPrefix(".unlikely"); 438 } 439 440 /// This optimization identifies DIV instructions that can be 441 /// profitably bypassed and carried out with a shorter, faster divide. 442 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 443 TLI->isSlowDivBypassed()) { 444 const DenseMap<unsigned int, unsigned int> &BypassWidths = 445 TLI->getBypassSlowDivWidths(); 446 BasicBlock* BB = &*F.begin(); 447 while (BB != nullptr) { 448 // bypassSlowDivision may create new BBs, but we don't want to reapply the 449 // optimization to those blocks. 450 BasicBlock* Next = BB->getNextNode(); 451 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 452 BB = Next; 453 } 454 } 455 456 // Eliminate blocks that contain only PHI nodes and an 457 // unconditional branch. 458 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 459 460 bool ModifiedDT = false; 461 if (!DisableBranchOpts) 462 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 463 464 // Split some critical edges where one of the sources is an indirect branch, 465 // to help generate sane code for PHIs involving such edges. 466 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 467 468 bool MadeChange = true; 469 while (MadeChange) { 470 MadeChange = false; 471 DT.reset(); 472 for (Function::iterator I = F.begin(); I != F.end(); ) { 473 BasicBlock *BB = &*I++; 474 bool ModifiedDTOnIteration = false; 475 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 476 477 // Restart BB iteration if the dominator tree of the Function was changed 478 if (ModifiedDTOnIteration) 479 break; 480 } 481 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 482 MadeChange |= mergeSExts(F); 483 if (!LargeOffsetGEPMap.empty()) 484 MadeChange |= splitLargeGEPOffsets(); 485 486 // Really free removed instructions during promotion. 487 for (Instruction *I : RemovedInsts) 488 I->deleteValue(); 489 490 EverMadeChange |= MadeChange; 491 SeenChainsForSExt.clear(); 492 ValToSExtendedUses.clear(); 493 RemovedInsts.clear(); 494 LargeOffsetGEPMap.clear(); 495 LargeOffsetGEPID.clear(); 496 } 497 498 SunkAddrs.clear(); 499 500 if (!DisableBranchOpts) { 501 MadeChange = false; 502 // Use a set vector to get deterministic iteration order. The order the 503 // blocks are removed may affect whether or not PHI nodes in successors 504 // are removed. 505 SmallSetVector<BasicBlock*, 8> WorkList; 506 for (BasicBlock &BB : F) { 507 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 508 MadeChange |= ConstantFoldTerminator(&BB, true); 509 if (!MadeChange) continue; 510 511 for (SmallVectorImpl<BasicBlock*>::iterator 512 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 513 if (pred_begin(*II) == pred_end(*II)) 514 WorkList.insert(*II); 515 } 516 517 // Delete the dead blocks and any of their dead successors. 518 MadeChange |= !WorkList.empty(); 519 while (!WorkList.empty()) { 520 BasicBlock *BB = WorkList.pop_back_val(); 521 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 522 523 DeleteDeadBlock(BB); 524 525 for (SmallVectorImpl<BasicBlock*>::iterator 526 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 527 if (pred_begin(*II) == pred_end(*II)) 528 WorkList.insert(*II); 529 } 530 531 // Merge pairs of basic blocks with unconditional branches, connected by 532 // a single edge. 533 if (EverMadeChange || MadeChange) 534 MadeChange |= eliminateFallThrough(F); 535 536 EverMadeChange |= MadeChange; 537 } 538 539 if (!DisableGCOpts) { 540 SmallVector<Instruction *, 2> Statepoints; 541 for (BasicBlock &BB : F) 542 for (Instruction &I : BB) 543 if (isStatepoint(I)) 544 Statepoints.push_back(&I); 545 for (auto &I : Statepoints) 546 EverMadeChange |= simplifyOffsetableRelocate(*I); 547 } 548 549 // Do this last to clean up use-before-def scenarios introduced by other 550 // preparatory transforms. 551 EverMadeChange |= placeDbgValues(F); 552 553 return EverMadeChange; 554 } 555 556 /// Merge basic blocks which are connected by a single edge, where one of the 557 /// basic blocks has a single successor pointing to the other basic block, 558 /// which has a single predecessor. 559 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 560 bool Changed = false; 561 // Scan all of the blocks in the function, except for the entry block. 562 // Use a temporary array to avoid iterator being invalidated when 563 // deleting blocks. 564 SmallVector<WeakTrackingVH, 16> Blocks; 565 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 566 Blocks.push_back(&Block); 567 568 for (auto &Block : Blocks) { 569 auto *BB = cast_or_null<BasicBlock>(Block); 570 if (!BB) 571 continue; 572 // If the destination block has a single pred, then this is a trivial 573 // edge, just collapse it. 574 BasicBlock *SinglePred = BB->getSinglePredecessor(); 575 576 // Don't merge if BB's address is taken. 577 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 578 579 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 580 if (Term && !Term->isConditional()) { 581 Changed = true; 582 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 583 584 // Merge BB into SinglePred and delete it. 585 MergeBlockIntoPredecessor(BB); 586 } 587 } 588 return Changed; 589 } 590 591 /// Find a destination block from BB if BB is mergeable empty block. 592 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 593 // If this block doesn't end with an uncond branch, ignore it. 594 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 595 if (!BI || !BI->isUnconditional()) 596 return nullptr; 597 598 // If the instruction before the branch (skipping debug info) isn't a phi 599 // node, then other stuff is happening here. 600 BasicBlock::iterator BBI = BI->getIterator(); 601 if (BBI != BB->begin()) { 602 --BBI; 603 while (isa<DbgInfoIntrinsic>(BBI)) { 604 if (BBI == BB->begin()) 605 break; 606 --BBI; 607 } 608 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 609 return nullptr; 610 } 611 612 // Do not break infinite loops. 613 BasicBlock *DestBB = BI->getSuccessor(0); 614 if (DestBB == BB) 615 return nullptr; 616 617 if (!canMergeBlocks(BB, DestBB)) 618 DestBB = nullptr; 619 620 return DestBB; 621 } 622 623 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 624 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 625 /// edges in ways that are non-optimal for isel. Start by eliminating these 626 /// blocks so we can split them the way we want them. 627 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 628 SmallPtrSet<BasicBlock *, 16> Preheaders; 629 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 630 while (!LoopList.empty()) { 631 Loop *L = LoopList.pop_back_val(); 632 LoopList.insert(LoopList.end(), L->begin(), L->end()); 633 if (BasicBlock *Preheader = L->getLoopPreheader()) 634 Preheaders.insert(Preheader); 635 } 636 637 bool MadeChange = false; 638 // Copy blocks into a temporary array to avoid iterator invalidation issues 639 // as we remove them. 640 // Note that this intentionally skips the entry block. 641 SmallVector<WeakTrackingVH, 16> Blocks; 642 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 643 Blocks.push_back(&Block); 644 645 for (auto &Block : Blocks) { 646 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 647 if (!BB) 648 continue; 649 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 650 if (!DestBB || 651 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 652 continue; 653 654 eliminateMostlyEmptyBlock(BB); 655 MadeChange = true; 656 } 657 return MadeChange; 658 } 659 660 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 661 BasicBlock *DestBB, 662 bool isPreheader) { 663 // Do not delete loop preheaders if doing so would create a critical edge. 664 // Loop preheaders can be good locations to spill registers. If the 665 // preheader is deleted and we create a critical edge, registers may be 666 // spilled in the loop body instead. 667 if (!DisablePreheaderProtect && isPreheader && 668 !(BB->getSinglePredecessor() && 669 BB->getSinglePredecessor()->getSingleSuccessor())) 670 return false; 671 672 // Skip merging if the block's successor is also a successor to any callbr 673 // that leads to this block. 674 // FIXME: Is this really needed? Is this a correctness issue? 675 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 676 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 677 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 678 if (DestBB == CBI->getSuccessor(i)) 679 return false; 680 } 681 682 // Try to skip merging if the unique predecessor of BB is terminated by a 683 // switch or indirect branch instruction, and BB is used as an incoming block 684 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 685 // add COPY instructions in the predecessor of BB instead of BB (if it is not 686 // merged). Note that the critical edge created by merging such blocks wont be 687 // split in MachineSink because the jump table is not analyzable. By keeping 688 // such empty block (BB), ISel will place COPY instructions in BB, not in the 689 // predecessor of BB. 690 BasicBlock *Pred = BB->getUniquePredecessor(); 691 if (!Pred || 692 !(isa<SwitchInst>(Pred->getTerminator()) || 693 isa<IndirectBrInst>(Pred->getTerminator()))) 694 return true; 695 696 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 697 return true; 698 699 // We use a simple cost heuristic which determine skipping merging is 700 // profitable if the cost of skipping merging is less than the cost of 701 // merging : Cost(skipping merging) < Cost(merging BB), where the 702 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 703 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 704 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 705 // Freq(Pred) / Freq(BB) > 2. 706 // Note that if there are multiple empty blocks sharing the same incoming 707 // value for the PHIs in the DestBB, we consider them together. In such 708 // case, Cost(merging BB) will be the sum of their frequencies. 709 710 if (!isa<PHINode>(DestBB->begin())) 711 return true; 712 713 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 714 715 // Find all other incoming blocks from which incoming values of all PHIs in 716 // DestBB are the same as the ones from BB. 717 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 718 ++PI) { 719 BasicBlock *DestBBPred = *PI; 720 if (DestBBPred == BB) 721 continue; 722 723 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 724 return DestPN.getIncomingValueForBlock(BB) == 725 DestPN.getIncomingValueForBlock(DestBBPred); 726 })) 727 SameIncomingValueBBs.insert(DestBBPred); 728 } 729 730 // See if all BB's incoming values are same as the value from Pred. In this 731 // case, no reason to skip merging because COPYs are expected to be place in 732 // Pred already. 733 if (SameIncomingValueBBs.count(Pred)) 734 return true; 735 736 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 737 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 738 739 for (auto SameValueBB : SameIncomingValueBBs) 740 if (SameValueBB->getUniquePredecessor() == Pred && 741 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 742 BBFreq += BFI->getBlockFreq(SameValueBB); 743 744 return PredFreq.getFrequency() <= 745 BBFreq.getFrequency() * FreqRatioToSkipMerge; 746 } 747 748 /// Return true if we can merge BB into DestBB if there is a single 749 /// unconditional branch between them, and BB contains no other non-phi 750 /// instructions. 751 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 752 const BasicBlock *DestBB) const { 753 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 754 // the successor. If there are more complex condition (e.g. preheaders), 755 // don't mess around with them. 756 for (const PHINode &PN : BB->phis()) { 757 for (const User *U : PN.users()) { 758 const Instruction *UI = cast<Instruction>(U); 759 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 760 return false; 761 // If User is inside DestBB block and it is a PHINode then check 762 // incoming value. If incoming value is not from BB then this is 763 // a complex condition (e.g. preheaders) we want to avoid here. 764 if (UI->getParent() == DestBB) { 765 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 766 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 767 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 768 if (Insn && Insn->getParent() == BB && 769 Insn->getParent() != UPN->getIncomingBlock(I)) 770 return false; 771 } 772 } 773 } 774 } 775 776 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 777 // and DestBB may have conflicting incoming values for the block. If so, we 778 // can't merge the block. 779 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 780 if (!DestBBPN) return true; // no conflict. 781 782 // Collect the preds of BB. 783 SmallPtrSet<const BasicBlock*, 16> BBPreds; 784 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 785 // It is faster to get preds from a PHI than with pred_iterator. 786 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 787 BBPreds.insert(BBPN->getIncomingBlock(i)); 788 } else { 789 BBPreds.insert(pred_begin(BB), pred_end(BB)); 790 } 791 792 // Walk the preds of DestBB. 793 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 794 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 795 if (BBPreds.count(Pred)) { // Common predecessor? 796 for (const PHINode &PN : DestBB->phis()) { 797 const Value *V1 = PN.getIncomingValueForBlock(Pred); 798 const Value *V2 = PN.getIncomingValueForBlock(BB); 799 800 // If V2 is a phi node in BB, look up what the mapped value will be. 801 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 802 if (V2PN->getParent() == BB) 803 V2 = V2PN->getIncomingValueForBlock(Pred); 804 805 // If there is a conflict, bail out. 806 if (V1 != V2) return false; 807 } 808 } 809 } 810 811 return true; 812 } 813 814 /// Eliminate a basic block that has only phi's and an unconditional branch in 815 /// it. 816 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 817 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 818 BasicBlock *DestBB = BI->getSuccessor(0); 819 820 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 821 << *BB << *DestBB); 822 823 // If the destination block has a single pred, then this is a trivial edge, 824 // just collapse it. 825 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 826 if (SinglePred != DestBB) { 827 assert(SinglePred == BB && 828 "Single predecessor not the same as predecessor"); 829 // Merge DestBB into SinglePred/BB and delete it. 830 MergeBlockIntoPredecessor(DestBB); 831 // Note: BB(=SinglePred) will not be deleted on this path. 832 // DestBB(=its single successor) is the one that was deleted. 833 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 834 return; 835 } 836 } 837 838 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 839 // to handle the new incoming edges it is about to have. 840 for (PHINode &PN : DestBB->phis()) { 841 // Remove the incoming value for BB, and remember it. 842 Value *InVal = PN.removeIncomingValue(BB, false); 843 844 // Two options: either the InVal is a phi node defined in BB or it is some 845 // value that dominates BB. 846 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 847 if (InValPhi && InValPhi->getParent() == BB) { 848 // Add all of the input values of the input PHI as inputs of this phi. 849 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 850 PN.addIncoming(InValPhi->getIncomingValue(i), 851 InValPhi->getIncomingBlock(i)); 852 } else { 853 // Otherwise, add one instance of the dominating value for each edge that 854 // we will be adding. 855 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 856 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 857 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 858 } else { 859 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 860 PN.addIncoming(InVal, *PI); 861 } 862 } 863 } 864 865 // The PHIs are now updated, change everything that refers to BB to use 866 // DestBB and remove BB. 867 BB->replaceAllUsesWith(DestBB); 868 BB->eraseFromParent(); 869 ++NumBlocksElim; 870 871 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 872 } 873 874 // Computes a map of base pointer relocation instructions to corresponding 875 // derived pointer relocation instructions given a vector of all relocate calls 876 static void computeBaseDerivedRelocateMap( 877 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 878 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 879 &RelocateInstMap) { 880 // Collect information in two maps: one primarily for locating the base object 881 // while filling the second map; the second map is the final structure holding 882 // a mapping between Base and corresponding Derived relocate calls 883 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 884 for (auto *ThisRelocate : AllRelocateCalls) { 885 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 886 ThisRelocate->getDerivedPtrIndex()); 887 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 888 } 889 for (auto &Item : RelocateIdxMap) { 890 std::pair<unsigned, unsigned> Key = Item.first; 891 if (Key.first == Key.second) 892 // Base relocation: nothing to insert 893 continue; 894 895 GCRelocateInst *I = Item.second; 896 auto BaseKey = std::make_pair(Key.first, Key.first); 897 898 // We're iterating over RelocateIdxMap so we cannot modify it. 899 auto MaybeBase = RelocateIdxMap.find(BaseKey); 900 if (MaybeBase == RelocateIdxMap.end()) 901 // TODO: We might want to insert a new base object relocate and gep off 902 // that, if there are enough derived object relocates. 903 continue; 904 905 RelocateInstMap[MaybeBase->second].push_back(I); 906 } 907 } 908 909 // Accepts a GEP and extracts the operands into a vector provided they're all 910 // small integer constants 911 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 912 SmallVectorImpl<Value *> &OffsetV) { 913 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 914 // Only accept small constant integer operands 915 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 916 if (!Op || Op->getZExtValue() > 20) 917 return false; 918 } 919 920 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 921 OffsetV.push_back(GEP->getOperand(i)); 922 return true; 923 } 924 925 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 926 // replace, computes a replacement, and affects it. 927 static bool 928 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 929 const SmallVectorImpl<GCRelocateInst *> &Targets) { 930 bool MadeChange = false; 931 // We must ensure the relocation of derived pointer is defined after 932 // relocation of base pointer. If we find a relocation corresponding to base 933 // defined earlier than relocation of base then we move relocation of base 934 // right before found relocation. We consider only relocation in the same 935 // basic block as relocation of base. Relocations from other basic block will 936 // be skipped by optimization and we do not care about them. 937 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 938 &*R != RelocatedBase; ++R) 939 if (auto RI = dyn_cast<GCRelocateInst>(R)) 940 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 941 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 942 RelocatedBase->moveBefore(RI); 943 break; 944 } 945 946 for (GCRelocateInst *ToReplace : Targets) { 947 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 948 "Not relocating a derived object of the original base object"); 949 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 950 // A duplicate relocate call. TODO: coalesce duplicates. 951 continue; 952 } 953 954 if (RelocatedBase->getParent() != ToReplace->getParent()) { 955 // Base and derived relocates are in different basic blocks. 956 // In this case transform is only valid when base dominates derived 957 // relocate. However it would be too expensive to check dominance 958 // for each such relocate, so we skip the whole transformation. 959 continue; 960 } 961 962 Value *Base = ToReplace->getBasePtr(); 963 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 964 if (!Derived || Derived->getPointerOperand() != Base) 965 continue; 966 967 SmallVector<Value *, 2> OffsetV; 968 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 969 continue; 970 971 // Create a Builder and replace the target callsite with a gep 972 assert(RelocatedBase->getNextNode() && 973 "Should always have one since it's not a terminator"); 974 975 // Insert after RelocatedBase 976 IRBuilder<> Builder(RelocatedBase->getNextNode()); 977 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 978 979 // If gc_relocate does not match the actual type, cast it to the right type. 980 // In theory, there must be a bitcast after gc_relocate if the type does not 981 // match, and we should reuse it to get the derived pointer. But it could be 982 // cases like this: 983 // bb1: 984 // ... 985 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 986 // br label %merge 987 // 988 // bb2: 989 // ... 990 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 991 // br label %merge 992 // 993 // merge: 994 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 995 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 996 // 997 // In this case, we can not find the bitcast any more. So we insert a new bitcast 998 // no matter there is already one or not. In this way, we can handle all cases, and 999 // the extra bitcast should be optimized away in later passes. 1000 Value *ActualRelocatedBase = RelocatedBase; 1001 if (RelocatedBase->getType() != Base->getType()) { 1002 ActualRelocatedBase = 1003 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1004 } 1005 Value *Replacement = Builder.CreateGEP( 1006 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1007 Replacement->takeName(ToReplace); 1008 // If the newly generated derived pointer's type does not match the original derived 1009 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1010 Value *ActualReplacement = Replacement; 1011 if (Replacement->getType() != ToReplace->getType()) { 1012 ActualReplacement = 1013 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1014 } 1015 ToReplace->replaceAllUsesWith(ActualReplacement); 1016 ToReplace->eraseFromParent(); 1017 1018 MadeChange = true; 1019 } 1020 return MadeChange; 1021 } 1022 1023 // Turns this: 1024 // 1025 // %base = ... 1026 // %ptr = gep %base + 15 1027 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1028 // %base' = relocate(%tok, i32 4, i32 4) 1029 // %ptr' = relocate(%tok, i32 4, i32 5) 1030 // %val = load %ptr' 1031 // 1032 // into this: 1033 // 1034 // %base = ... 1035 // %ptr = gep %base + 15 1036 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1037 // %base' = gc.relocate(%tok, i32 4, i32 4) 1038 // %ptr' = gep %base' + 15 1039 // %val = load %ptr' 1040 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1041 bool MadeChange = false; 1042 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1043 1044 for (auto *U : I.users()) 1045 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1046 // Collect all the relocate calls associated with a statepoint 1047 AllRelocateCalls.push_back(Relocate); 1048 1049 // We need atleast one base pointer relocation + one derived pointer 1050 // relocation to mangle 1051 if (AllRelocateCalls.size() < 2) 1052 return false; 1053 1054 // RelocateInstMap is a mapping from the base relocate instruction to the 1055 // corresponding derived relocate instructions 1056 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1057 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1058 if (RelocateInstMap.empty()) 1059 return false; 1060 1061 for (auto &Item : RelocateInstMap) 1062 // Item.first is the RelocatedBase to offset against 1063 // Item.second is the vector of Targets to replace 1064 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1065 return MadeChange; 1066 } 1067 1068 /// Sink the specified cast instruction into its user blocks. 1069 static bool SinkCast(CastInst *CI) { 1070 BasicBlock *DefBB = CI->getParent(); 1071 1072 /// InsertedCasts - Only insert a cast in each block once. 1073 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1074 1075 bool MadeChange = false; 1076 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1077 UI != E; ) { 1078 Use &TheUse = UI.getUse(); 1079 Instruction *User = cast<Instruction>(*UI); 1080 1081 // Figure out which BB this cast is used in. For PHI's this is the 1082 // appropriate predecessor block. 1083 BasicBlock *UserBB = User->getParent(); 1084 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1085 UserBB = PN->getIncomingBlock(TheUse); 1086 } 1087 1088 // Preincrement use iterator so we don't invalidate it. 1089 ++UI; 1090 1091 // The first insertion point of a block containing an EH pad is after the 1092 // pad. If the pad is the user, we cannot sink the cast past the pad. 1093 if (User->isEHPad()) 1094 continue; 1095 1096 // If the block selected to receive the cast is an EH pad that does not 1097 // allow non-PHI instructions before the terminator, we can't sink the 1098 // cast. 1099 if (UserBB->getTerminator()->isEHPad()) 1100 continue; 1101 1102 // If this user is in the same block as the cast, don't change the cast. 1103 if (UserBB == DefBB) continue; 1104 1105 // If we have already inserted a cast into this block, use it. 1106 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1107 1108 if (!InsertedCast) { 1109 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1110 assert(InsertPt != UserBB->end()); 1111 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1112 CI->getType(), "", &*InsertPt); 1113 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1114 } 1115 1116 // Replace a use of the cast with a use of the new cast. 1117 TheUse = InsertedCast; 1118 MadeChange = true; 1119 ++NumCastUses; 1120 } 1121 1122 // If we removed all uses, nuke the cast. 1123 if (CI->use_empty()) { 1124 salvageDebugInfo(*CI); 1125 CI->eraseFromParent(); 1126 MadeChange = true; 1127 } 1128 1129 return MadeChange; 1130 } 1131 1132 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1133 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1134 /// reduce the number of virtual registers that must be created and coalesced. 1135 /// 1136 /// Return true if any changes are made. 1137 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1138 const DataLayout &DL) { 1139 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1140 // than sinking only nop casts, but is helpful on some platforms. 1141 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1142 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1143 ASC->getDestAddressSpace())) 1144 return false; 1145 } 1146 1147 // If this is a noop copy, 1148 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1149 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1150 1151 // This is an fp<->int conversion? 1152 if (SrcVT.isInteger() != DstVT.isInteger()) 1153 return false; 1154 1155 // If this is an extension, it will be a zero or sign extension, which 1156 // isn't a noop. 1157 if (SrcVT.bitsLT(DstVT)) return false; 1158 1159 // If these values will be promoted, find out what they will be promoted 1160 // to. This helps us consider truncates on PPC as noop copies when they 1161 // are. 1162 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1163 TargetLowering::TypePromoteInteger) 1164 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1165 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1166 TargetLowering::TypePromoteInteger) 1167 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1168 1169 // If, after promotion, these are the same types, this is a noop copy. 1170 if (SrcVT != DstVT) 1171 return false; 1172 1173 return SinkCast(CI); 1174 } 1175 1176 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1177 CmpInst *Cmp, 1178 Intrinsic::ID IID) { 1179 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1180 Value *Arg0 = BO->getOperand(0); 1181 Value *Arg1 = BO->getOperand(1); 1182 if (BO->getOpcode() == Instruction::Add && 1183 IID == Intrinsic::usub_with_overflow) { 1184 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1185 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1186 } 1187 1188 Instruction *InsertPt; 1189 if (BO->hasOneUse() && BO->user_back() == Cmp) { 1190 // If the math is only used by the compare, insert at the compare to keep 1191 // the condition in the same block as its users. (CGP aggressively sinks 1192 // compares to help out SDAG.) 1193 InsertPt = Cmp; 1194 } else { 1195 // The math and compare may be independent instructions. Check dominance to 1196 // determine the insertion point for the intrinsic. 1197 bool MathDominates = getDT(*BO->getFunction()).dominates(BO, Cmp); 1198 if (!MathDominates && !getDT(*BO->getFunction()).dominates(Cmp, BO)) 1199 return false; 1200 1201 BasicBlock *MathBB = BO->getParent(), *CmpBB = Cmp->getParent(); 1202 if (MathBB != CmpBB) { 1203 // Avoid hoisting an extra op into a dominating block and creating a 1204 // potentially longer critical path. 1205 if (!MathDominates) 1206 return false; 1207 // Check that the insertion doesn't create a value that is live across 1208 // more than two blocks, so to minimise the increase in register pressure. 1209 BasicBlock *Dominator = MathDominates ? MathBB : CmpBB; 1210 BasicBlock *Dominated = MathDominates ? CmpBB : MathBB; 1211 auto Successors = successors(Dominator); 1212 if (llvm::find(Successors, Dominated) == Successors.end()) 1213 return false; 1214 } 1215 1216 InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp); 1217 } 1218 1219 IRBuilder<> Builder(InsertPt); 1220 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1221 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1222 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1223 BO->replaceAllUsesWith(Math); 1224 Cmp->replaceAllUsesWith(OV); 1225 BO->eraseFromParent(); 1226 Cmp->eraseFromParent(); 1227 return true; 1228 } 1229 1230 /// Match special-case patterns that check for unsigned add overflow. 1231 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1232 BinaryOperator *&Add) { 1233 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1234 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1235 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1236 1237 // We are not expecting non-canonical/degenerate code. Just bail out. 1238 if (isa<Constant>(A)) 1239 return false; 1240 1241 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1242 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1243 B = ConstantInt::get(B->getType(), 1); 1244 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1245 B = ConstantInt::get(B->getType(), -1); 1246 else 1247 return false; 1248 1249 // Check the users of the variable operand of the compare looking for an add 1250 // with the adjusted constant. 1251 for (User *U : A->users()) { 1252 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1253 Add = cast<BinaryOperator>(U); 1254 return true; 1255 } 1256 } 1257 return false; 1258 } 1259 1260 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1261 /// intrinsic. Return true if any changes were made. 1262 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1263 bool &ModifiedDT) { 1264 Value *A, *B; 1265 BinaryOperator *Add; 1266 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1267 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1268 return false; 1269 1270 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1271 TLI->getValueType(*DL, Add->getType()))) 1272 return false; 1273 1274 // We don't want to move around uses of condition values this late, so we 1275 // check if it is legal to create the call to the intrinsic in the basic 1276 // block containing the icmp. 1277 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1278 return false; 1279 1280 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1281 return false; 1282 1283 // Reset callers - do not crash by iterating over a dead instruction. 1284 ModifiedDT = true; 1285 return true; 1286 } 1287 1288 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1289 bool &ModifiedDT) { 1290 // We are not expecting non-canonical/degenerate code. Just bail out. 1291 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1292 if (isa<Constant>(A) && isa<Constant>(B)) 1293 return false; 1294 1295 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1296 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1297 if (Pred == ICmpInst::ICMP_UGT) { 1298 std::swap(A, B); 1299 Pred = ICmpInst::ICMP_ULT; 1300 } 1301 // Convert special-case: (A == 0) is the same as (A u< 1). 1302 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1303 B = ConstantInt::get(B->getType(), 1); 1304 Pred = ICmpInst::ICMP_ULT; 1305 } 1306 // Convert special-case: (A != 0) is the same as (0 u< A). 1307 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1308 std::swap(A, B); 1309 Pred = ICmpInst::ICMP_ULT; 1310 } 1311 if (Pred != ICmpInst::ICMP_ULT) 1312 return false; 1313 1314 // Walk the users of a variable operand of a compare looking for a subtract or 1315 // add with that same operand. Also match the 2nd operand of the compare to 1316 // the add/sub, but that may be a negated constant operand of an add. 1317 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1318 BinaryOperator *Sub = nullptr; 1319 for (User *U : CmpVariableOperand->users()) { 1320 // A - B, A u< B --> usubo(A, B) 1321 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1322 Sub = cast<BinaryOperator>(U); 1323 break; 1324 } 1325 1326 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1327 const APInt *CmpC, *AddC; 1328 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1329 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1330 Sub = cast<BinaryOperator>(U); 1331 break; 1332 } 1333 } 1334 if (!Sub) 1335 return false; 1336 1337 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1338 TLI->getValueType(*DL, Sub->getType()))) 1339 return false; 1340 1341 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1342 return false; 1343 1344 // Reset callers - do not crash by iterating over a dead instruction. 1345 ModifiedDT = true; 1346 return true; 1347 } 1348 1349 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1350 /// registers that must be created and coalesced. This is a clear win except on 1351 /// targets with multiple condition code registers (PowerPC), where it might 1352 /// lose; some adjustment may be wanted there. 1353 /// 1354 /// Return true if any changes are made. 1355 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1356 if (TLI.hasMultipleConditionRegisters()) 1357 return false; 1358 1359 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1360 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1361 return false; 1362 1363 // Only insert a cmp in each block once. 1364 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1365 1366 bool MadeChange = false; 1367 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1368 UI != E; ) { 1369 Use &TheUse = UI.getUse(); 1370 Instruction *User = cast<Instruction>(*UI); 1371 1372 // Preincrement use iterator so we don't invalidate it. 1373 ++UI; 1374 1375 // Don't bother for PHI nodes. 1376 if (isa<PHINode>(User)) 1377 continue; 1378 1379 // Figure out which BB this cmp is used in. 1380 BasicBlock *UserBB = User->getParent(); 1381 BasicBlock *DefBB = Cmp->getParent(); 1382 1383 // If this user is in the same block as the cmp, don't change the cmp. 1384 if (UserBB == DefBB) continue; 1385 1386 // If we have already inserted a cmp into this block, use it. 1387 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1388 1389 if (!InsertedCmp) { 1390 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1391 assert(InsertPt != UserBB->end()); 1392 InsertedCmp = 1393 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1394 Cmp->getOperand(0), Cmp->getOperand(1), "", 1395 &*InsertPt); 1396 // Propagate the debug info. 1397 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1398 } 1399 1400 // Replace a use of the cmp with a use of the new cmp. 1401 TheUse = InsertedCmp; 1402 MadeChange = true; 1403 ++NumCmpUses; 1404 } 1405 1406 // If we removed all uses, nuke the cmp. 1407 if (Cmp->use_empty()) { 1408 Cmp->eraseFromParent(); 1409 MadeChange = true; 1410 } 1411 1412 return MadeChange; 1413 } 1414 1415 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1416 if (sinkCmpExpression(Cmp, *TLI)) 1417 return true; 1418 1419 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1420 return true; 1421 1422 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1423 return true; 1424 1425 return false; 1426 } 1427 1428 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1429 /// used in a compare to allow isel to generate better code for targets where 1430 /// this operation can be combined. 1431 /// 1432 /// Return true if any changes are made. 1433 static bool sinkAndCmp0Expression(Instruction *AndI, 1434 const TargetLowering &TLI, 1435 SetOfInstrs &InsertedInsts) { 1436 // Double-check that we're not trying to optimize an instruction that was 1437 // already optimized by some other part of this pass. 1438 assert(!InsertedInsts.count(AndI) && 1439 "Attempting to optimize already optimized and instruction"); 1440 (void) InsertedInsts; 1441 1442 // Nothing to do for single use in same basic block. 1443 if (AndI->hasOneUse() && 1444 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1445 return false; 1446 1447 // Try to avoid cases where sinking/duplicating is likely to increase register 1448 // pressure. 1449 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1450 !isa<ConstantInt>(AndI->getOperand(1)) && 1451 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1452 return false; 1453 1454 for (auto *U : AndI->users()) { 1455 Instruction *User = cast<Instruction>(U); 1456 1457 // Only sink 'and' feeding icmp with 0. 1458 if (!isa<ICmpInst>(User)) 1459 return false; 1460 1461 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1462 if (!CmpC || !CmpC->isZero()) 1463 return false; 1464 } 1465 1466 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1467 return false; 1468 1469 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1470 LLVM_DEBUG(AndI->getParent()->dump()); 1471 1472 // Push the 'and' into the same block as the icmp 0. There should only be 1473 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1474 // others, so we don't need to keep track of which BBs we insert into. 1475 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1476 UI != E; ) { 1477 Use &TheUse = UI.getUse(); 1478 Instruction *User = cast<Instruction>(*UI); 1479 1480 // Preincrement use iterator so we don't invalidate it. 1481 ++UI; 1482 1483 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1484 1485 // Keep the 'and' in the same place if the use is already in the same block. 1486 Instruction *InsertPt = 1487 User->getParent() == AndI->getParent() ? AndI : User; 1488 Instruction *InsertedAnd = 1489 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1490 AndI->getOperand(1), "", InsertPt); 1491 // Propagate the debug info. 1492 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1493 1494 // Replace a use of the 'and' with a use of the new 'and'. 1495 TheUse = InsertedAnd; 1496 ++NumAndUses; 1497 LLVM_DEBUG(User->getParent()->dump()); 1498 } 1499 1500 // We removed all uses, nuke the and. 1501 AndI->eraseFromParent(); 1502 return true; 1503 } 1504 1505 /// Check if the candidates could be combined with a shift instruction, which 1506 /// includes: 1507 /// 1. Truncate instruction 1508 /// 2. And instruction and the imm is a mask of the low bits: 1509 /// imm & (imm+1) == 0 1510 static bool isExtractBitsCandidateUse(Instruction *User) { 1511 if (!isa<TruncInst>(User)) { 1512 if (User->getOpcode() != Instruction::And || 1513 !isa<ConstantInt>(User->getOperand(1))) 1514 return false; 1515 1516 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1517 1518 if ((Cimm & (Cimm + 1)).getBoolValue()) 1519 return false; 1520 } 1521 return true; 1522 } 1523 1524 /// Sink both shift and truncate instruction to the use of truncate's BB. 1525 static bool 1526 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1527 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1528 const TargetLowering &TLI, const DataLayout &DL) { 1529 BasicBlock *UserBB = User->getParent(); 1530 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1531 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1532 bool MadeChange = false; 1533 1534 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1535 TruncE = TruncI->user_end(); 1536 TruncUI != TruncE;) { 1537 1538 Use &TruncTheUse = TruncUI.getUse(); 1539 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1540 // Preincrement use iterator so we don't invalidate it. 1541 1542 ++TruncUI; 1543 1544 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1545 if (!ISDOpcode) 1546 continue; 1547 1548 // If the use is actually a legal node, there will not be an 1549 // implicit truncate. 1550 // FIXME: always querying the result type is just an 1551 // approximation; some nodes' legality is determined by the 1552 // operand or other means. There's no good way to find out though. 1553 if (TLI.isOperationLegalOrCustom( 1554 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1555 continue; 1556 1557 // Don't bother for PHI nodes. 1558 if (isa<PHINode>(TruncUser)) 1559 continue; 1560 1561 BasicBlock *TruncUserBB = TruncUser->getParent(); 1562 1563 if (UserBB == TruncUserBB) 1564 continue; 1565 1566 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1567 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1568 1569 if (!InsertedShift && !InsertedTrunc) { 1570 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1571 assert(InsertPt != TruncUserBB->end()); 1572 // Sink the shift 1573 if (ShiftI->getOpcode() == Instruction::AShr) 1574 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1575 "", &*InsertPt); 1576 else 1577 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1578 "", &*InsertPt); 1579 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1580 1581 // Sink the trunc 1582 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1583 TruncInsertPt++; 1584 assert(TruncInsertPt != TruncUserBB->end()); 1585 1586 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1587 TruncI->getType(), "", &*TruncInsertPt); 1588 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1589 1590 MadeChange = true; 1591 1592 TruncTheUse = InsertedTrunc; 1593 } 1594 } 1595 return MadeChange; 1596 } 1597 1598 /// Sink the shift *right* instruction into user blocks if the uses could 1599 /// potentially be combined with this shift instruction and generate BitExtract 1600 /// instruction. It will only be applied if the architecture supports BitExtract 1601 /// instruction. Here is an example: 1602 /// BB1: 1603 /// %x.extract.shift = lshr i64 %arg1, 32 1604 /// BB2: 1605 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1606 /// ==> 1607 /// 1608 /// BB2: 1609 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1610 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1611 /// 1612 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1613 /// instruction. 1614 /// Return true if any changes are made. 1615 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1616 const TargetLowering &TLI, 1617 const DataLayout &DL) { 1618 BasicBlock *DefBB = ShiftI->getParent(); 1619 1620 /// Only insert instructions in each block once. 1621 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1622 1623 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1624 1625 bool MadeChange = false; 1626 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1627 UI != E;) { 1628 Use &TheUse = UI.getUse(); 1629 Instruction *User = cast<Instruction>(*UI); 1630 // Preincrement use iterator so we don't invalidate it. 1631 ++UI; 1632 1633 // Don't bother for PHI nodes. 1634 if (isa<PHINode>(User)) 1635 continue; 1636 1637 if (!isExtractBitsCandidateUse(User)) 1638 continue; 1639 1640 BasicBlock *UserBB = User->getParent(); 1641 1642 if (UserBB == DefBB) { 1643 // If the shift and truncate instruction are in the same BB. The use of 1644 // the truncate(TruncUse) may still introduce another truncate if not 1645 // legal. In this case, we would like to sink both shift and truncate 1646 // instruction to the BB of TruncUse. 1647 // for example: 1648 // BB1: 1649 // i64 shift.result = lshr i64 opnd, imm 1650 // trunc.result = trunc shift.result to i16 1651 // 1652 // BB2: 1653 // ----> We will have an implicit truncate here if the architecture does 1654 // not have i16 compare. 1655 // cmp i16 trunc.result, opnd2 1656 // 1657 if (isa<TruncInst>(User) && shiftIsLegal 1658 // If the type of the truncate is legal, no truncate will be 1659 // introduced in other basic blocks. 1660 && 1661 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1662 MadeChange = 1663 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1664 1665 continue; 1666 } 1667 // If we have already inserted a shift into this block, use it. 1668 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1669 1670 if (!InsertedShift) { 1671 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1672 assert(InsertPt != UserBB->end()); 1673 1674 if (ShiftI->getOpcode() == Instruction::AShr) 1675 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1676 "", &*InsertPt); 1677 else 1678 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1679 "", &*InsertPt); 1680 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1681 1682 MadeChange = true; 1683 } 1684 1685 // Replace a use of the shift with a use of the new shift. 1686 TheUse = InsertedShift; 1687 } 1688 1689 // If we removed all uses, nuke the shift. 1690 if (ShiftI->use_empty()) { 1691 salvageDebugInfo(*ShiftI); 1692 ShiftI->eraseFromParent(); 1693 } 1694 1695 return MadeChange; 1696 } 1697 1698 /// If counting leading or trailing zeros is an expensive operation and a zero 1699 /// input is defined, add a check for zero to avoid calling the intrinsic. 1700 /// 1701 /// We want to transform: 1702 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1703 /// 1704 /// into: 1705 /// entry: 1706 /// %cmpz = icmp eq i64 %A, 0 1707 /// br i1 %cmpz, label %cond.end, label %cond.false 1708 /// cond.false: 1709 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1710 /// br label %cond.end 1711 /// cond.end: 1712 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1713 /// 1714 /// If the transform is performed, return true and set ModifiedDT to true. 1715 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1716 const TargetLowering *TLI, 1717 const DataLayout *DL, 1718 bool &ModifiedDT) { 1719 if (!TLI || !DL) 1720 return false; 1721 1722 // If a zero input is undefined, it doesn't make sense to despeculate that. 1723 if (match(CountZeros->getOperand(1), m_One())) 1724 return false; 1725 1726 // If it's cheap to speculate, there's nothing to do. 1727 auto IntrinsicID = CountZeros->getIntrinsicID(); 1728 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1729 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1730 return false; 1731 1732 // Only handle legal scalar cases. Anything else requires too much work. 1733 Type *Ty = CountZeros->getType(); 1734 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1735 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1736 return false; 1737 1738 // The intrinsic will be sunk behind a compare against zero and branch. 1739 BasicBlock *StartBlock = CountZeros->getParent(); 1740 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1741 1742 // Create another block after the count zero intrinsic. A PHI will be added 1743 // in this block to select the result of the intrinsic or the bit-width 1744 // constant if the input to the intrinsic is zero. 1745 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1746 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1747 1748 // Set up a builder to create a compare, conditional branch, and PHI. 1749 IRBuilder<> Builder(CountZeros->getContext()); 1750 Builder.SetInsertPoint(StartBlock->getTerminator()); 1751 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1752 1753 // Replace the unconditional branch that was created by the first split with 1754 // a compare against zero and a conditional branch. 1755 Value *Zero = Constant::getNullValue(Ty); 1756 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1757 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1758 StartBlock->getTerminator()->eraseFromParent(); 1759 1760 // Create a PHI in the end block to select either the output of the intrinsic 1761 // or the bit width of the operand. 1762 Builder.SetInsertPoint(&EndBlock->front()); 1763 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1764 CountZeros->replaceAllUsesWith(PN); 1765 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1766 PN->addIncoming(BitWidth, StartBlock); 1767 PN->addIncoming(CountZeros, CallBlock); 1768 1769 // We are explicitly handling the zero case, so we can set the intrinsic's 1770 // undefined zero argument to 'true'. This will also prevent reprocessing the 1771 // intrinsic; we only despeculate when a zero input is defined. 1772 CountZeros->setArgOperand(1, Builder.getTrue()); 1773 ModifiedDT = true; 1774 return true; 1775 } 1776 1777 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1778 BasicBlock *BB = CI->getParent(); 1779 1780 // Lower inline assembly if we can. 1781 // If we found an inline asm expession, and if the target knows how to 1782 // lower it to normal LLVM code, do so now. 1783 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1784 if (TLI->ExpandInlineAsm(CI)) { 1785 // Avoid invalidating the iterator. 1786 CurInstIterator = BB->begin(); 1787 // Avoid processing instructions out of order, which could cause 1788 // reuse before a value is defined. 1789 SunkAddrs.clear(); 1790 return true; 1791 } 1792 // Sink address computing for memory operands into the block. 1793 if (optimizeInlineAsmInst(CI)) 1794 return true; 1795 } 1796 1797 // Align the pointer arguments to this call if the target thinks it's a good 1798 // idea 1799 unsigned MinSize, PrefAlign; 1800 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1801 for (auto &Arg : CI->arg_operands()) { 1802 // We want to align both objects whose address is used directly and 1803 // objects whose address is used in casts and GEPs, though it only makes 1804 // sense for GEPs if the offset is a multiple of the desired alignment and 1805 // if size - offset meets the size threshold. 1806 if (!Arg->getType()->isPointerTy()) 1807 continue; 1808 APInt Offset(DL->getIndexSizeInBits( 1809 cast<PointerType>(Arg->getType())->getAddressSpace()), 1810 0); 1811 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1812 uint64_t Offset2 = Offset.getLimitedValue(); 1813 if ((Offset2 & (PrefAlign-1)) != 0) 1814 continue; 1815 AllocaInst *AI; 1816 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1817 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1818 AI->setAlignment(PrefAlign); 1819 // Global variables can only be aligned if they are defined in this 1820 // object (i.e. they are uniquely initialized in this object), and 1821 // over-aligning global variables that have an explicit section is 1822 // forbidden. 1823 GlobalVariable *GV; 1824 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1825 GV->getPointerAlignment(*DL) < PrefAlign && 1826 DL->getTypeAllocSize(GV->getValueType()) >= 1827 MinSize + Offset2) 1828 GV->setAlignment(PrefAlign); 1829 } 1830 // If this is a memcpy (or similar) then we may be able to improve the 1831 // alignment 1832 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1833 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1834 if (DestAlign > MI->getDestAlignment()) 1835 MI->setDestAlignment(DestAlign); 1836 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1837 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1838 if (SrcAlign > MTI->getSourceAlignment()) 1839 MTI->setSourceAlignment(SrcAlign); 1840 } 1841 } 1842 } 1843 1844 // If we have a cold call site, try to sink addressing computation into the 1845 // cold block. This interacts with our handling for loads and stores to 1846 // ensure that we can fold all uses of a potential addressing computation 1847 // into their uses. TODO: generalize this to work over profiling data 1848 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1849 for (auto &Arg : CI->arg_operands()) { 1850 if (!Arg->getType()->isPointerTy()) 1851 continue; 1852 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1853 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1854 } 1855 1856 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1857 if (II) { 1858 switch (II->getIntrinsicID()) { 1859 default: break; 1860 case Intrinsic::experimental_widenable_condition: { 1861 // Give up on future widening oppurtunties so that we can fold away dead 1862 // paths and merge blocks before going into block-local instruction 1863 // selection. 1864 if (II->use_empty()) { 1865 II->eraseFromParent(); 1866 return true; 1867 } 1868 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1869 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1870 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1871 }); 1872 return true; 1873 } 1874 case Intrinsic::objectsize: { 1875 // Lower all uses of llvm.objectsize.* 1876 Value *RetVal = 1877 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1878 1879 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1880 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1881 }); 1882 return true; 1883 } 1884 case Intrinsic::is_constant: { 1885 // If is_constant hasn't folded away yet, lower it to false now. 1886 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1887 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1888 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1889 }); 1890 return true; 1891 } 1892 case Intrinsic::aarch64_stlxr: 1893 case Intrinsic::aarch64_stxr: { 1894 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1895 if (!ExtVal || !ExtVal->hasOneUse() || 1896 ExtVal->getParent() == CI->getParent()) 1897 return false; 1898 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1899 ExtVal->moveBefore(CI); 1900 // Mark this instruction as "inserted by CGP", so that other 1901 // optimizations don't touch it. 1902 InsertedInsts.insert(ExtVal); 1903 return true; 1904 } 1905 1906 case Intrinsic::launder_invariant_group: 1907 case Intrinsic::strip_invariant_group: { 1908 Value *ArgVal = II->getArgOperand(0); 1909 auto it = LargeOffsetGEPMap.find(II); 1910 if (it != LargeOffsetGEPMap.end()) { 1911 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1912 // Make sure not to have to deal with iterator invalidation 1913 // after possibly adding ArgVal to LargeOffsetGEPMap. 1914 auto GEPs = std::move(it->second); 1915 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1916 LargeOffsetGEPMap.erase(II); 1917 } 1918 1919 II->replaceAllUsesWith(ArgVal); 1920 II->eraseFromParent(); 1921 return true; 1922 } 1923 case Intrinsic::cttz: 1924 case Intrinsic::ctlz: 1925 // If counting zeros is expensive, try to avoid it. 1926 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1927 } 1928 1929 if (TLI) { 1930 SmallVector<Value*, 2> PtrOps; 1931 Type *AccessTy; 1932 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1933 while (!PtrOps.empty()) { 1934 Value *PtrVal = PtrOps.pop_back_val(); 1935 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1936 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1937 return true; 1938 } 1939 } 1940 } 1941 1942 // From here on out we're working with named functions. 1943 if (!CI->getCalledFunction()) return false; 1944 1945 // Lower all default uses of _chk calls. This is very similar 1946 // to what InstCombineCalls does, but here we are only lowering calls 1947 // to fortified library functions (e.g. __memcpy_chk) that have the default 1948 // "don't know" as the objectsize. Anything else should be left alone. 1949 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1950 if (Value *V = Simplifier.optimizeCall(CI)) { 1951 CI->replaceAllUsesWith(V); 1952 CI->eraseFromParent(); 1953 return true; 1954 } 1955 1956 return false; 1957 } 1958 1959 /// Look for opportunities to duplicate return instructions to the predecessor 1960 /// to enable tail call optimizations. The case it is currently looking for is: 1961 /// @code 1962 /// bb0: 1963 /// %tmp0 = tail call i32 @f0() 1964 /// br label %return 1965 /// bb1: 1966 /// %tmp1 = tail call i32 @f1() 1967 /// br label %return 1968 /// bb2: 1969 /// %tmp2 = tail call i32 @f2() 1970 /// br label %return 1971 /// return: 1972 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1973 /// ret i32 %retval 1974 /// @endcode 1975 /// 1976 /// => 1977 /// 1978 /// @code 1979 /// bb0: 1980 /// %tmp0 = tail call i32 @f0() 1981 /// ret i32 %tmp0 1982 /// bb1: 1983 /// %tmp1 = tail call i32 @f1() 1984 /// ret i32 %tmp1 1985 /// bb2: 1986 /// %tmp2 = tail call i32 @f2() 1987 /// ret i32 %tmp2 1988 /// @endcode 1989 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1990 if (!TLI) 1991 return false; 1992 1993 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1994 if (!RetI) 1995 return false; 1996 1997 PHINode *PN = nullptr; 1998 BitCastInst *BCI = nullptr; 1999 Value *V = RetI->getReturnValue(); 2000 if (V) { 2001 BCI = dyn_cast<BitCastInst>(V); 2002 if (BCI) 2003 V = BCI->getOperand(0); 2004 2005 PN = dyn_cast<PHINode>(V); 2006 if (!PN) 2007 return false; 2008 } 2009 2010 if (PN && PN->getParent() != BB) 2011 return false; 2012 2013 // Make sure there are no instructions between the PHI and return, or that the 2014 // return is the first instruction in the block. 2015 if (PN) { 2016 BasicBlock::iterator BI = BB->begin(); 2017 // Skip over debug and the bitcast. 2018 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2019 if (&*BI != RetI) 2020 return false; 2021 } else { 2022 BasicBlock::iterator BI = BB->begin(); 2023 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2024 if (&*BI != RetI) 2025 return false; 2026 } 2027 2028 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2029 /// call. 2030 const Function *F = BB->getParent(); 2031 SmallVector<CallInst*, 4> TailCalls; 2032 if (PN) { 2033 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2034 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2035 // Make sure the phi value is indeed produced by the tail call. 2036 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2037 TLI->mayBeEmittedAsTailCall(CI) && 2038 attributesPermitTailCall(F, CI, RetI, *TLI)) 2039 TailCalls.push_back(CI); 2040 } 2041 } else { 2042 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2043 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2044 if (!VisitedBBs.insert(*PI).second) 2045 continue; 2046 2047 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2048 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2049 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2050 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2051 if (RI == RE) 2052 continue; 2053 2054 CallInst *CI = dyn_cast<CallInst>(&*RI); 2055 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2056 attributesPermitTailCall(F, CI, RetI, *TLI)) 2057 TailCalls.push_back(CI); 2058 } 2059 } 2060 2061 bool Changed = false; 2062 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2063 CallInst *CI = TailCalls[i]; 2064 CallSite CS(CI); 2065 2066 // Make sure the call instruction is followed by an unconditional branch to 2067 // the return block. 2068 BasicBlock *CallBB = CI->getParent(); 2069 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2070 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2071 continue; 2072 2073 // Duplicate the return into CallBB. 2074 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2075 ModifiedDT = Changed = true; 2076 ++NumRetsDup; 2077 } 2078 2079 // If we eliminated all predecessors of the block, delete the block now. 2080 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2081 BB->eraseFromParent(); 2082 2083 return Changed; 2084 } 2085 2086 //===----------------------------------------------------------------------===// 2087 // Memory Optimization 2088 //===----------------------------------------------------------------------===// 2089 2090 namespace { 2091 2092 /// This is an extended version of TargetLowering::AddrMode 2093 /// which holds actual Value*'s for register values. 2094 struct ExtAddrMode : public TargetLowering::AddrMode { 2095 Value *BaseReg = nullptr; 2096 Value *ScaledReg = nullptr; 2097 Value *OriginalValue = nullptr; 2098 bool InBounds = true; 2099 2100 enum FieldName { 2101 NoField = 0x00, 2102 BaseRegField = 0x01, 2103 BaseGVField = 0x02, 2104 BaseOffsField = 0x04, 2105 ScaledRegField = 0x08, 2106 ScaleField = 0x10, 2107 MultipleFields = 0xff 2108 }; 2109 2110 2111 ExtAddrMode() = default; 2112 2113 void print(raw_ostream &OS) const; 2114 void dump() const; 2115 2116 FieldName compare(const ExtAddrMode &other) { 2117 // First check that the types are the same on each field, as differing types 2118 // is something we can't cope with later on. 2119 if (BaseReg && other.BaseReg && 2120 BaseReg->getType() != other.BaseReg->getType()) 2121 return MultipleFields; 2122 if (BaseGV && other.BaseGV && 2123 BaseGV->getType() != other.BaseGV->getType()) 2124 return MultipleFields; 2125 if (ScaledReg && other.ScaledReg && 2126 ScaledReg->getType() != other.ScaledReg->getType()) 2127 return MultipleFields; 2128 2129 // Conservatively reject 'inbounds' mismatches. 2130 if (InBounds != other.InBounds) 2131 return MultipleFields; 2132 2133 // Check each field to see if it differs. 2134 unsigned Result = NoField; 2135 if (BaseReg != other.BaseReg) 2136 Result |= BaseRegField; 2137 if (BaseGV != other.BaseGV) 2138 Result |= BaseGVField; 2139 if (BaseOffs != other.BaseOffs) 2140 Result |= BaseOffsField; 2141 if (ScaledReg != other.ScaledReg) 2142 Result |= ScaledRegField; 2143 // Don't count 0 as being a different scale, because that actually means 2144 // unscaled (which will already be counted by having no ScaledReg). 2145 if (Scale && other.Scale && Scale != other.Scale) 2146 Result |= ScaleField; 2147 2148 if (countPopulation(Result) > 1) 2149 return MultipleFields; 2150 else 2151 return static_cast<FieldName>(Result); 2152 } 2153 2154 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2155 // with no offset. 2156 bool isTrivial() { 2157 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2158 // trivial if at most one of these terms is nonzero, except that BaseGV and 2159 // BaseReg both being zero actually means a null pointer value, which we 2160 // consider to be 'non-zero' here. 2161 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2162 } 2163 2164 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2165 switch (Field) { 2166 default: 2167 return nullptr; 2168 case BaseRegField: 2169 return BaseReg; 2170 case BaseGVField: 2171 return BaseGV; 2172 case ScaledRegField: 2173 return ScaledReg; 2174 case BaseOffsField: 2175 return ConstantInt::get(IntPtrTy, BaseOffs); 2176 } 2177 } 2178 2179 void SetCombinedField(FieldName Field, Value *V, 2180 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2181 switch (Field) { 2182 default: 2183 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2184 break; 2185 case ExtAddrMode::BaseRegField: 2186 BaseReg = V; 2187 break; 2188 case ExtAddrMode::BaseGVField: 2189 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2190 // in the BaseReg field. 2191 assert(BaseReg == nullptr); 2192 BaseReg = V; 2193 BaseGV = nullptr; 2194 break; 2195 case ExtAddrMode::ScaledRegField: 2196 ScaledReg = V; 2197 // If we have a mix of scaled and unscaled addrmodes then we want scale 2198 // to be the scale and not zero. 2199 if (!Scale) 2200 for (const ExtAddrMode &AM : AddrModes) 2201 if (AM.Scale) { 2202 Scale = AM.Scale; 2203 break; 2204 } 2205 break; 2206 case ExtAddrMode::BaseOffsField: 2207 // The offset is no longer a constant, so it goes in ScaledReg with a 2208 // scale of 1. 2209 assert(ScaledReg == nullptr); 2210 ScaledReg = V; 2211 Scale = 1; 2212 BaseOffs = 0; 2213 break; 2214 } 2215 } 2216 }; 2217 2218 } // end anonymous namespace 2219 2220 #ifndef NDEBUG 2221 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2222 AM.print(OS); 2223 return OS; 2224 } 2225 #endif 2226 2227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2228 void ExtAddrMode::print(raw_ostream &OS) const { 2229 bool NeedPlus = false; 2230 OS << "["; 2231 if (InBounds) 2232 OS << "inbounds "; 2233 if (BaseGV) { 2234 OS << (NeedPlus ? " + " : "") 2235 << "GV:"; 2236 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2237 NeedPlus = true; 2238 } 2239 2240 if (BaseOffs) { 2241 OS << (NeedPlus ? " + " : "") 2242 << BaseOffs; 2243 NeedPlus = true; 2244 } 2245 2246 if (BaseReg) { 2247 OS << (NeedPlus ? " + " : "") 2248 << "Base:"; 2249 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2250 NeedPlus = true; 2251 } 2252 if (Scale) { 2253 OS << (NeedPlus ? " + " : "") 2254 << Scale << "*"; 2255 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2256 } 2257 2258 OS << ']'; 2259 } 2260 2261 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2262 print(dbgs()); 2263 dbgs() << '\n'; 2264 } 2265 #endif 2266 2267 namespace { 2268 2269 /// This class provides transaction based operation on the IR. 2270 /// Every change made through this class is recorded in the internal state and 2271 /// can be undone (rollback) until commit is called. 2272 class TypePromotionTransaction { 2273 /// This represents the common interface of the individual transaction. 2274 /// Each class implements the logic for doing one specific modification on 2275 /// the IR via the TypePromotionTransaction. 2276 class TypePromotionAction { 2277 protected: 2278 /// The Instruction modified. 2279 Instruction *Inst; 2280 2281 public: 2282 /// Constructor of the action. 2283 /// The constructor performs the related action on the IR. 2284 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2285 2286 virtual ~TypePromotionAction() = default; 2287 2288 /// Undo the modification done by this action. 2289 /// When this method is called, the IR must be in the same state as it was 2290 /// before this action was applied. 2291 /// \pre Undoing the action works if and only if the IR is in the exact same 2292 /// state as it was directly after this action was applied. 2293 virtual void undo() = 0; 2294 2295 /// Advocate every change made by this action. 2296 /// When the results on the IR of the action are to be kept, it is important 2297 /// to call this function, otherwise hidden information may be kept forever. 2298 virtual void commit() { 2299 // Nothing to be done, this action is not doing anything. 2300 } 2301 }; 2302 2303 /// Utility to remember the position of an instruction. 2304 class InsertionHandler { 2305 /// Position of an instruction. 2306 /// Either an instruction: 2307 /// - Is the first in a basic block: BB is used. 2308 /// - Has a previous instruction: PrevInst is used. 2309 union { 2310 Instruction *PrevInst; 2311 BasicBlock *BB; 2312 } Point; 2313 2314 /// Remember whether or not the instruction had a previous instruction. 2315 bool HasPrevInstruction; 2316 2317 public: 2318 /// Record the position of \p Inst. 2319 InsertionHandler(Instruction *Inst) { 2320 BasicBlock::iterator It = Inst->getIterator(); 2321 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2322 if (HasPrevInstruction) 2323 Point.PrevInst = &*--It; 2324 else 2325 Point.BB = Inst->getParent(); 2326 } 2327 2328 /// Insert \p Inst at the recorded position. 2329 void insert(Instruction *Inst) { 2330 if (HasPrevInstruction) { 2331 if (Inst->getParent()) 2332 Inst->removeFromParent(); 2333 Inst->insertAfter(Point.PrevInst); 2334 } else { 2335 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2336 if (Inst->getParent()) 2337 Inst->moveBefore(Position); 2338 else 2339 Inst->insertBefore(Position); 2340 } 2341 } 2342 }; 2343 2344 /// Move an instruction before another. 2345 class InstructionMoveBefore : public TypePromotionAction { 2346 /// Original position of the instruction. 2347 InsertionHandler Position; 2348 2349 public: 2350 /// Move \p Inst before \p Before. 2351 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2352 : TypePromotionAction(Inst), Position(Inst) { 2353 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2354 << "\n"); 2355 Inst->moveBefore(Before); 2356 } 2357 2358 /// Move the instruction back to its original position. 2359 void undo() override { 2360 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2361 Position.insert(Inst); 2362 } 2363 }; 2364 2365 /// Set the operand of an instruction with a new value. 2366 class OperandSetter : public TypePromotionAction { 2367 /// Original operand of the instruction. 2368 Value *Origin; 2369 2370 /// Index of the modified instruction. 2371 unsigned Idx; 2372 2373 public: 2374 /// Set \p Idx operand of \p Inst with \p NewVal. 2375 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2376 : TypePromotionAction(Inst), Idx(Idx) { 2377 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2378 << "for:" << *Inst << "\n" 2379 << "with:" << *NewVal << "\n"); 2380 Origin = Inst->getOperand(Idx); 2381 Inst->setOperand(Idx, NewVal); 2382 } 2383 2384 /// Restore the original value of the instruction. 2385 void undo() override { 2386 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2387 << "for: " << *Inst << "\n" 2388 << "with: " << *Origin << "\n"); 2389 Inst->setOperand(Idx, Origin); 2390 } 2391 }; 2392 2393 /// Hide the operands of an instruction. 2394 /// Do as if this instruction was not using any of its operands. 2395 class OperandsHider : public TypePromotionAction { 2396 /// The list of original operands. 2397 SmallVector<Value *, 4> OriginalValues; 2398 2399 public: 2400 /// Remove \p Inst from the uses of the operands of \p Inst. 2401 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2402 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2403 unsigned NumOpnds = Inst->getNumOperands(); 2404 OriginalValues.reserve(NumOpnds); 2405 for (unsigned It = 0; It < NumOpnds; ++It) { 2406 // Save the current operand. 2407 Value *Val = Inst->getOperand(It); 2408 OriginalValues.push_back(Val); 2409 // Set a dummy one. 2410 // We could use OperandSetter here, but that would imply an overhead 2411 // that we are not willing to pay. 2412 Inst->setOperand(It, UndefValue::get(Val->getType())); 2413 } 2414 } 2415 2416 /// Restore the original list of uses. 2417 void undo() override { 2418 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2419 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2420 Inst->setOperand(It, OriginalValues[It]); 2421 } 2422 }; 2423 2424 /// Build a truncate instruction. 2425 class TruncBuilder : public TypePromotionAction { 2426 Value *Val; 2427 2428 public: 2429 /// Build a truncate instruction of \p Opnd producing a \p Ty 2430 /// result. 2431 /// trunc Opnd to Ty. 2432 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2433 IRBuilder<> Builder(Opnd); 2434 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2435 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2436 } 2437 2438 /// Get the built value. 2439 Value *getBuiltValue() { return Val; } 2440 2441 /// Remove the built instruction. 2442 void undo() override { 2443 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2444 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2445 IVal->eraseFromParent(); 2446 } 2447 }; 2448 2449 /// Build a sign extension instruction. 2450 class SExtBuilder : public TypePromotionAction { 2451 Value *Val; 2452 2453 public: 2454 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2455 /// result. 2456 /// sext Opnd to Ty. 2457 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2458 : TypePromotionAction(InsertPt) { 2459 IRBuilder<> Builder(InsertPt); 2460 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2461 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2462 } 2463 2464 /// Get the built value. 2465 Value *getBuiltValue() { return Val; } 2466 2467 /// Remove the built instruction. 2468 void undo() override { 2469 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2470 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2471 IVal->eraseFromParent(); 2472 } 2473 }; 2474 2475 /// Build a zero extension instruction. 2476 class ZExtBuilder : public TypePromotionAction { 2477 Value *Val; 2478 2479 public: 2480 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2481 /// result. 2482 /// zext Opnd to Ty. 2483 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2484 : TypePromotionAction(InsertPt) { 2485 IRBuilder<> Builder(InsertPt); 2486 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2487 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2488 } 2489 2490 /// Get the built value. 2491 Value *getBuiltValue() { return Val; } 2492 2493 /// Remove the built instruction. 2494 void undo() override { 2495 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2496 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2497 IVal->eraseFromParent(); 2498 } 2499 }; 2500 2501 /// Mutate an instruction to another type. 2502 class TypeMutator : public TypePromotionAction { 2503 /// Record the original type. 2504 Type *OrigTy; 2505 2506 public: 2507 /// Mutate the type of \p Inst into \p NewTy. 2508 TypeMutator(Instruction *Inst, Type *NewTy) 2509 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2510 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2511 << "\n"); 2512 Inst->mutateType(NewTy); 2513 } 2514 2515 /// Mutate the instruction back to its original type. 2516 void undo() override { 2517 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2518 << "\n"); 2519 Inst->mutateType(OrigTy); 2520 } 2521 }; 2522 2523 /// Replace the uses of an instruction by another instruction. 2524 class UsesReplacer : public TypePromotionAction { 2525 /// Helper structure to keep track of the replaced uses. 2526 struct InstructionAndIdx { 2527 /// The instruction using the instruction. 2528 Instruction *Inst; 2529 2530 /// The index where this instruction is used for Inst. 2531 unsigned Idx; 2532 2533 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2534 : Inst(Inst), Idx(Idx) {} 2535 }; 2536 2537 /// Keep track of the original uses (pair Instruction, Index). 2538 SmallVector<InstructionAndIdx, 4> OriginalUses; 2539 /// Keep track of the debug users. 2540 SmallVector<DbgValueInst *, 1> DbgValues; 2541 2542 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2543 2544 public: 2545 /// Replace all the use of \p Inst by \p New. 2546 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2547 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2548 << "\n"); 2549 // Record the original uses. 2550 for (Use &U : Inst->uses()) { 2551 Instruction *UserI = cast<Instruction>(U.getUser()); 2552 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2553 } 2554 // Record the debug uses separately. They are not in the instruction's 2555 // use list, but they are replaced by RAUW. 2556 findDbgValues(DbgValues, Inst); 2557 2558 // Now, we can replace the uses. 2559 Inst->replaceAllUsesWith(New); 2560 } 2561 2562 /// Reassign the original uses of Inst to Inst. 2563 void undo() override { 2564 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2565 for (use_iterator UseIt = OriginalUses.begin(), 2566 EndIt = OriginalUses.end(); 2567 UseIt != EndIt; ++UseIt) { 2568 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2569 } 2570 // RAUW has replaced all original uses with references to the new value, 2571 // including the debug uses. Since we are undoing the replacements, 2572 // the original debug uses must also be reinstated to maintain the 2573 // correctness and utility of debug value instructions. 2574 for (auto *DVI: DbgValues) { 2575 LLVMContext &Ctx = Inst->getType()->getContext(); 2576 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2577 DVI->setOperand(0, MV); 2578 } 2579 } 2580 }; 2581 2582 /// Remove an instruction from the IR. 2583 class InstructionRemover : public TypePromotionAction { 2584 /// Original position of the instruction. 2585 InsertionHandler Inserter; 2586 2587 /// Helper structure to hide all the link to the instruction. In other 2588 /// words, this helps to do as if the instruction was removed. 2589 OperandsHider Hider; 2590 2591 /// Keep track of the uses replaced, if any. 2592 UsesReplacer *Replacer = nullptr; 2593 2594 /// Keep track of instructions removed. 2595 SetOfInstrs &RemovedInsts; 2596 2597 public: 2598 /// Remove all reference of \p Inst and optionally replace all its 2599 /// uses with New. 2600 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2601 /// \pre If !Inst->use_empty(), then New != nullptr 2602 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2603 Value *New = nullptr) 2604 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2605 RemovedInsts(RemovedInsts) { 2606 if (New) 2607 Replacer = new UsesReplacer(Inst, New); 2608 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2609 RemovedInsts.insert(Inst); 2610 /// The instructions removed here will be freed after completing 2611 /// optimizeBlock() for all blocks as we need to keep track of the 2612 /// removed instructions during promotion. 2613 Inst->removeFromParent(); 2614 } 2615 2616 ~InstructionRemover() override { delete Replacer; } 2617 2618 /// Resurrect the instruction and reassign it to the proper uses if 2619 /// new value was provided when build this action. 2620 void undo() override { 2621 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2622 Inserter.insert(Inst); 2623 if (Replacer) 2624 Replacer->undo(); 2625 Hider.undo(); 2626 RemovedInsts.erase(Inst); 2627 } 2628 }; 2629 2630 public: 2631 /// Restoration point. 2632 /// The restoration point is a pointer to an action instead of an iterator 2633 /// because the iterator may be invalidated but not the pointer. 2634 using ConstRestorationPt = const TypePromotionAction *; 2635 2636 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2637 : RemovedInsts(RemovedInsts) {} 2638 2639 /// Advocate every changes made in that transaction. 2640 void commit(); 2641 2642 /// Undo all the changes made after the given point. 2643 void rollback(ConstRestorationPt Point); 2644 2645 /// Get the current restoration point. 2646 ConstRestorationPt getRestorationPoint() const; 2647 2648 /// \name API for IR modification with state keeping to support rollback. 2649 /// @{ 2650 /// Same as Instruction::setOperand. 2651 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2652 2653 /// Same as Instruction::eraseFromParent. 2654 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2655 2656 /// Same as Value::replaceAllUsesWith. 2657 void replaceAllUsesWith(Instruction *Inst, Value *New); 2658 2659 /// Same as Value::mutateType. 2660 void mutateType(Instruction *Inst, Type *NewTy); 2661 2662 /// Same as IRBuilder::createTrunc. 2663 Value *createTrunc(Instruction *Opnd, Type *Ty); 2664 2665 /// Same as IRBuilder::createSExt. 2666 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2667 2668 /// Same as IRBuilder::createZExt. 2669 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2670 2671 /// Same as Instruction::moveBefore. 2672 void moveBefore(Instruction *Inst, Instruction *Before); 2673 /// @} 2674 2675 private: 2676 /// The ordered list of actions made so far. 2677 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2678 2679 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2680 2681 SetOfInstrs &RemovedInsts; 2682 }; 2683 2684 } // end anonymous namespace 2685 2686 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2687 Value *NewVal) { 2688 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2689 Inst, Idx, NewVal)); 2690 } 2691 2692 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2693 Value *NewVal) { 2694 Actions.push_back( 2695 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2696 Inst, RemovedInsts, NewVal)); 2697 } 2698 2699 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2700 Value *New) { 2701 Actions.push_back( 2702 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2703 } 2704 2705 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2706 Actions.push_back( 2707 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2708 } 2709 2710 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2711 Type *Ty) { 2712 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2713 Value *Val = Ptr->getBuiltValue(); 2714 Actions.push_back(std::move(Ptr)); 2715 return Val; 2716 } 2717 2718 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2719 Value *Opnd, Type *Ty) { 2720 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2721 Value *Val = Ptr->getBuiltValue(); 2722 Actions.push_back(std::move(Ptr)); 2723 return Val; 2724 } 2725 2726 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2727 Value *Opnd, Type *Ty) { 2728 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2729 Value *Val = Ptr->getBuiltValue(); 2730 Actions.push_back(std::move(Ptr)); 2731 return Val; 2732 } 2733 2734 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2735 Instruction *Before) { 2736 Actions.push_back( 2737 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2738 Inst, Before)); 2739 } 2740 2741 TypePromotionTransaction::ConstRestorationPt 2742 TypePromotionTransaction::getRestorationPoint() const { 2743 return !Actions.empty() ? Actions.back().get() : nullptr; 2744 } 2745 2746 void TypePromotionTransaction::commit() { 2747 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2748 ++It) 2749 (*It)->commit(); 2750 Actions.clear(); 2751 } 2752 2753 void TypePromotionTransaction::rollback( 2754 TypePromotionTransaction::ConstRestorationPt Point) { 2755 while (!Actions.empty() && Point != Actions.back().get()) { 2756 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2757 Curr->undo(); 2758 } 2759 } 2760 2761 namespace { 2762 2763 /// A helper class for matching addressing modes. 2764 /// 2765 /// This encapsulates the logic for matching the target-legal addressing modes. 2766 class AddressingModeMatcher { 2767 SmallVectorImpl<Instruction*> &AddrModeInsts; 2768 const TargetLowering &TLI; 2769 const TargetRegisterInfo &TRI; 2770 const DataLayout &DL; 2771 2772 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2773 /// the memory instruction that we're computing this address for. 2774 Type *AccessTy; 2775 unsigned AddrSpace; 2776 Instruction *MemoryInst; 2777 2778 /// This is the addressing mode that we're building up. This is 2779 /// part of the return value of this addressing mode matching stuff. 2780 ExtAddrMode &AddrMode; 2781 2782 /// The instructions inserted by other CodeGenPrepare optimizations. 2783 const SetOfInstrs &InsertedInsts; 2784 2785 /// A map from the instructions to their type before promotion. 2786 InstrToOrigTy &PromotedInsts; 2787 2788 /// The ongoing transaction where every action should be registered. 2789 TypePromotionTransaction &TPT; 2790 2791 // A GEP which has too large offset to be folded into the addressing mode. 2792 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2793 2794 /// This is set to true when we should not do profitability checks. 2795 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2796 bool IgnoreProfitability; 2797 2798 AddressingModeMatcher( 2799 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2800 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2801 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2802 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2803 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2804 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2805 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2806 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2807 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2808 IgnoreProfitability = false; 2809 } 2810 2811 public: 2812 /// Find the maximal addressing mode that a load/store of V can fold, 2813 /// give an access type of AccessTy. This returns a list of involved 2814 /// instructions in AddrModeInsts. 2815 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2816 /// optimizations. 2817 /// \p PromotedInsts maps the instructions to their type before promotion. 2818 /// \p The ongoing transaction where every action should be registered. 2819 static ExtAddrMode 2820 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2821 SmallVectorImpl<Instruction *> &AddrModeInsts, 2822 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2823 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2824 TypePromotionTransaction &TPT, 2825 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2826 ExtAddrMode Result; 2827 2828 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2829 MemoryInst, Result, InsertedInsts, 2830 PromotedInsts, TPT, LargeOffsetGEP) 2831 .matchAddr(V, 0); 2832 (void)Success; assert(Success && "Couldn't select *anything*?"); 2833 return Result; 2834 } 2835 2836 private: 2837 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2838 bool matchAddr(Value *Addr, unsigned Depth); 2839 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2840 bool *MovedAway = nullptr); 2841 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2842 ExtAddrMode &AMBefore, 2843 ExtAddrMode &AMAfter); 2844 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2845 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2846 Value *PromotedOperand) const; 2847 }; 2848 2849 class PhiNodeSet; 2850 2851 /// An iterator for PhiNodeSet. 2852 class PhiNodeSetIterator { 2853 PhiNodeSet * const Set; 2854 size_t CurrentIndex = 0; 2855 2856 public: 2857 /// The constructor. Start should point to either a valid element, or be equal 2858 /// to the size of the underlying SmallVector of the PhiNodeSet. 2859 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2860 PHINode * operator*() const; 2861 PhiNodeSetIterator& operator++(); 2862 bool operator==(const PhiNodeSetIterator &RHS) const; 2863 bool operator!=(const PhiNodeSetIterator &RHS) const; 2864 }; 2865 2866 /// Keeps a set of PHINodes. 2867 /// 2868 /// This is a minimal set implementation for a specific use case: 2869 /// It is very fast when there are very few elements, but also provides good 2870 /// performance when there are many. It is similar to SmallPtrSet, but also 2871 /// provides iteration by insertion order, which is deterministic and stable 2872 /// across runs. It is also similar to SmallSetVector, but provides removing 2873 /// elements in O(1) time. This is achieved by not actually removing the element 2874 /// from the underlying vector, so comes at the cost of using more memory, but 2875 /// that is fine, since PhiNodeSets are used as short lived objects. 2876 class PhiNodeSet { 2877 friend class PhiNodeSetIterator; 2878 2879 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2880 using iterator = PhiNodeSetIterator; 2881 2882 /// Keeps the elements in the order of their insertion in the underlying 2883 /// vector. To achieve constant time removal, it never deletes any element. 2884 SmallVector<PHINode *, 32> NodeList; 2885 2886 /// Keeps the elements in the underlying set implementation. This (and not the 2887 /// NodeList defined above) is the source of truth on whether an element 2888 /// is actually in the collection. 2889 MapType NodeMap; 2890 2891 /// Points to the first valid (not deleted) element when the set is not empty 2892 /// and the value is not zero. Equals to the size of the underlying vector 2893 /// when the set is empty. When the value is 0, as in the beginning, the 2894 /// first element may or may not be valid. 2895 size_t FirstValidElement = 0; 2896 2897 public: 2898 /// Inserts a new element to the collection. 2899 /// \returns true if the element is actually added, i.e. was not in the 2900 /// collection before the operation. 2901 bool insert(PHINode *Ptr) { 2902 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2903 NodeList.push_back(Ptr); 2904 return true; 2905 } 2906 return false; 2907 } 2908 2909 /// Removes the element from the collection. 2910 /// \returns whether the element is actually removed, i.e. was in the 2911 /// collection before the operation. 2912 bool erase(PHINode *Ptr) { 2913 auto it = NodeMap.find(Ptr); 2914 if (it != NodeMap.end()) { 2915 NodeMap.erase(Ptr); 2916 SkipRemovedElements(FirstValidElement); 2917 return true; 2918 } 2919 return false; 2920 } 2921 2922 /// Removes all elements and clears the collection. 2923 void clear() { 2924 NodeMap.clear(); 2925 NodeList.clear(); 2926 FirstValidElement = 0; 2927 } 2928 2929 /// \returns an iterator that will iterate the elements in the order of 2930 /// insertion. 2931 iterator begin() { 2932 if (FirstValidElement == 0) 2933 SkipRemovedElements(FirstValidElement); 2934 return PhiNodeSetIterator(this, FirstValidElement); 2935 } 2936 2937 /// \returns an iterator that points to the end of the collection. 2938 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2939 2940 /// Returns the number of elements in the collection. 2941 size_t size() const { 2942 return NodeMap.size(); 2943 } 2944 2945 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2946 size_t count(PHINode *Ptr) const { 2947 return NodeMap.count(Ptr); 2948 } 2949 2950 private: 2951 /// Updates the CurrentIndex so that it will point to a valid element. 2952 /// 2953 /// If the element of NodeList at CurrentIndex is valid, it does not 2954 /// change it. If there are no more valid elements, it updates CurrentIndex 2955 /// to point to the end of the NodeList. 2956 void SkipRemovedElements(size_t &CurrentIndex) { 2957 while (CurrentIndex < NodeList.size()) { 2958 auto it = NodeMap.find(NodeList[CurrentIndex]); 2959 // If the element has been deleted and added again later, NodeMap will 2960 // point to a different index, so CurrentIndex will still be invalid. 2961 if (it != NodeMap.end() && it->second == CurrentIndex) 2962 break; 2963 ++CurrentIndex; 2964 } 2965 } 2966 }; 2967 2968 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2969 : Set(Set), CurrentIndex(Start) {} 2970 2971 PHINode * PhiNodeSetIterator::operator*() const { 2972 assert(CurrentIndex < Set->NodeList.size() && 2973 "PhiNodeSet access out of range"); 2974 return Set->NodeList[CurrentIndex]; 2975 } 2976 2977 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2978 assert(CurrentIndex < Set->NodeList.size() && 2979 "PhiNodeSet access out of range"); 2980 ++CurrentIndex; 2981 Set->SkipRemovedElements(CurrentIndex); 2982 return *this; 2983 } 2984 2985 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2986 return CurrentIndex == RHS.CurrentIndex; 2987 } 2988 2989 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2990 return !((*this) == RHS); 2991 } 2992 2993 /// Keep track of simplification of Phi nodes. 2994 /// Accept the set of all phi nodes and erase phi node from this set 2995 /// if it is simplified. 2996 class SimplificationTracker { 2997 DenseMap<Value *, Value *> Storage; 2998 const SimplifyQuery &SQ; 2999 // Tracks newly created Phi nodes. The elements are iterated by insertion 3000 // order. 3001 PhiNodeSet AllPhiNodes; 3002 // Tracks newly created Select nodes. 3003 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3004 3005 public: 3006 SimplificationTracker(const SimplifyQuery &sq) 3007 : SQ(sq) {} 3008 3009 Value *Get(Value *V) { 3010 do { 3011 auto SV = Storage.find(V); 3012 if (SV == Storage.end()) 3013 return V; 3014 V = SV->second; 3015 } while (true); 3016 } 3017 3018 Value *Simplify(Value *Val) { 3019 SmallVector<Value *, 32> WorkList; 3020 SmallPtrSet<Value *, 32> Visited; 3021 WorkList.push_back(Val); 3022 while (!WorkList.empty()) { 3023 auto P = WorkList.pop_back_val(); 3024 if (!Visited.insert(P).second) 3025 continue; 3026 if (auto *PI = dyn_cast<Instruction>(P)) 3027 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3028 for (auto *U : PI->users()) 3029 WorkList.push_back(cast<Value>(U)); 3030 Put(PI, V); 3031 PI->replaceAllUsesWith(V); 3032 if (auto *PHI = dyn_cast<PHINode>(PI)) 3033 AllPhiNodes.erase(PHI); 3034 if (auto *Select = dyn_cast<SelectInst>(PI)) 3035 AllSelectNodes.erase(Select); 3036 PI->eraseFromParent(); 3037 } 3038 } 3039 return Get(Val); 3040 } 3041 3042 void Put(Value *From, Value *To) { 3043 Storage.insert({ From, To }); 3044 } 3045 3046 void ReplacePhi(PHINode *From, PHINode *To) { 3047 Value* OldReplacement = Get(From); 3048 while (OldReplacement != From) { 3049 From = To; 3050 To = dyn_cast<PHINode>(OldReplacement); 3051 OldReplacement = Get(From); 3052 } 3053 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3054 Put(From, To); 3055 From->replaceAllUsesWith(To); 3056 AllPhiNodes.erase(From); 3057 From->eraseFromParent(); 3058 } 3059 3060 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3061 3062 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3063 3064 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3065 3066 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3067 3068 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3069 3070 void destroyNewNodes(Type *CommonType) { 3071 // For safe erasing, replace the uses with dummy value first. 3072 auto Dummy = UndefValue::get(CommonType); 3073 for (auto I : AllPhiNodes) { 3074 I->replaceAllUsesWith(Dummy); 3075 I->eraseFromParent(); 3076 } 3077 AllPhiNodes.clear(); 3078 for (auto I : AllSelectNodes) { 3079 I->replaceAllUsesWith(Dummy); 3080 I->eraseFromParent(); 3081 } 3082 AllSelectNodes.clear(); 3083 } 3084 }; 3085 3086 /// A helper class for combining addressing modes. 3087 class AddressingModeCombiner { 3088 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3089 typedef std::pair<PHINode *, PHINode *> PHIPair; 3090 3091 private: 3092 /// The addressing modes we've collected. 3093 SmallVector<ExtAddrMode, 16> AddrModes; 3094 3095 /// The field in which the AddrModes differ, when we have more than one. 3096 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3097 3098 /// Are the AddrModes that we have all just equal to their original values? 3099 bool AllAddrModesTrivial = true; 3100 3101 /// Common Type for all different fields in addressing modes. 3102 Type *CommonType; 3103 3104 /// SimplifyQuery for simplifyInstruction utility. 3105 const SimplifyQuery &SQ; 3106 3107 /// Original Address. 3108 Value *Original; 3109 3110 public: 3111 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3112 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3113 3114 /// Get the combined AddrMode 3115 const ExtAddrMode &getAddrMode() const { 3116 return AddrModes[0]; 3117 } 3118 3119 /// Add a new AddrMode if it's compatible with the AddrModes we already 3120 /// have. 3121 /// \return True iff we succeeded in doing so. 3122 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3123 // Take note of if we have any non-trivial AddrModes, as we need to detect 3124 // when all AddrModes are trivial as then we would introduce a phi or select 3125 // which just duplicates what's already there. 3126 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3127 3128 // If this is the first addrmode then everything is fine. 3129 if (AddrModes.empty()) { 3130 AddrModes.emplace_back(NewAddrMode); 3131 return true; 3132 } 3133 3134 // Figure out how different this is from the other address modes, which we 3135 // can do just by comparing against the first one given that we only care 3136 // about the cumulative difference. 3137 ExtAddrMode::FieldName ThisDifferentField = 3138 AddrModes[0].compare(NewAddrMode); 3139 if (DifferentField == ExtAddrMode::NoField) 3140 DifferentField = ThisDifferentField; 3141 else if (DifferentField != ThisDifferentField) 3142 DifferentField = ExtAddrMode::MultipleFields; 3143 3144 // If NewAddrMode differs in more than one dimension we cannot handle it. 3145 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3146 3147 // If Scale Field is different then we reject. 3148 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3149 3150 // We also must reject the case when base offset is different and 3151 // scale reg is not null, we cannot handle this case due to merge of 3152 // different offsets will be used as ScaleReg. 3153 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3154 !NewAddrMode.ScaledReg); 3155 3156 // We also must reject the case when GV is different and BaseReg installed 3157 // due to we want to use base reg as a merge of GV values. 3158 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3159 !NewAddrMode.HasBaseReg); 3160 3161 // Even if NewAddMode is the same we still need to collect it due to 3162 // original value is different. And later we will need all original values 3163 // as anchors during finding the common Phi node. 3164 if (CanHandle) 3165 AddrModes.emplace_back(NewAddrMode); 3166 else 3167 AddrModes.clear(); 3168 3169 return CanHandle; 3170 } 3171 3172 /// Combine the addressing modes we've collected into a single 3173 /// addressing mode. 3174 /// \return True iff we successfully combined them or we only had one so 3175 /// didn't need to combine them anyway. 3176 bool combineAddrModes() { 3177 // If we have no AddrModes then they can't be combined. 3178 if (AddrModes.size() == 0) 3179 return false; 3180 3181 // A single AddrMode can trivially be combined. 3182 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3183 return true; 3184 3185 // If the AddrModes we collected are all just equal to the value they are 3186 // derived from then combining them wouldn't do anything useful. 3187 if (AllAddrModesTrivial) 3188 return false; 3189 3190 if (!addrModeCombiningAllowed()) 3191 return false; 3192 3193 // Build a map between <original value, basic block where we saw it> to 3194 // value of base register. 3195 // Bail out if there is no common type. 3196 FoldAddrToValueMapping Map; 3197 if (!initializeMap(Map)) 3198 return false; 3199 3200 Value *CommonValue = findCommon(Map); 3201 if (CommonValue) 3202 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3203 return CommonValue != nullptr; 3204 } 3205 3206 private: 3207 /// Initialize Map with anchor values. For address seen 3208 /// we set the value of different field saw in this address. 3209 /// At the same time we find a common type for different field we will 3210 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3211 /// Return false if there is no common type found. 3212 bool initializeMap(FoldAddrToValueMapping &Map) { 3213 // Keep track of keys where the value is null. We will need to replace it 3214 // with constant null when we know the common type. 3215 SmallVector<Value *, 2> NullValue; 3216 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3217 for (auto &AM : AddrModes) { 3218 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3219 if (DV) { 3220 auto *Type = DV->getType(); 3221 if (CommonType && CommonType != Type) 3222 return false; 3223 CommonType = Type; 3224 Map[AM.OriginalValue] = DV; 3225 } else { 3226 NullValue.push_back(AM.OriginalValue); 3227 } 3228 } 3229 assert(CommonType && "At least one non-null value must be!"); 3230 for (auto *V : NullValue) 3231 Map[V] = Constant::getNullValue(CommonType); 3232 return true; 3233 } 3234 3235 /// We have mapping between value A and other value B where B was a field in 3236 /// addressing mode represented by A. Also we have an original value C 3237 /// representing an address we start with. Traversing from C through phi and 3238 /// selects we ended up with A's in a map. This utility function tries to find 3239 /// a value V which is a field in addressing mode C and traversing through phi 3240 /// nodes and selects we will end up in corresponded values B in a map. 3241 /// The utility will create a new Phi/Selects if needed. 3242 // The simple example looks as follows: 3243 // BB1: 3244 // p1 = b1 + 40 3245 // br cond BB2, BB3 3246 // BB2: 3247 // p2 = b2 + 40 3248 // br BB3 3249 // BB3: 3250 // p = phi [p1, BB1], [p2, BB2] 3251 // v = load p 3252 // Map is 3253 // p1 -> b1 3254 // p2 -> b2 3255 // Request is 3256 // p -> ? 3257 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3258 Value *findCommon(FoldAddrToValueMapping &Map) { 3259 // Tracks the simplification of newly created phi nodes. The reason we use 3260 // this mapping is because we will add new created Phi nodes in AddrToBase. 3261 // Simplification of Phi nodes is recursive, so some Phi node may 3262 // be simplified after we added it to AddrToBase. In reality this 3263 // simplification is possible only if original phi/selects were not 3264 // simplified yet. 3265 // Using this mapping we can find the current value in AddrToBase. 3266 SimplificationTracker ST(SQ); 3267 3268 // First step, DFS to create PHI nodes for all intermediate blocks. 3269 // Also fill traverse order for the second step. 3270 SmallVector<Value *, 32> TraverseOrder; 3271 InsertPlaceholders(Map, TraverseOrder, ST); 3272 3273 // Second Step, fill new nodes by merged values and simplify if possible. 3274 FillPlaceholders(Map, TraverseOrder, ST); 3275 3276 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3277 ST.destroyNewNodes(CommonType); 3278 return nullptr; 3279 } 3280 3281 // Now we'd like to match New Phi nodes to existed ones. 3282 unsigned PhiNotMatchedCount = 0; 3283 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3284 ST.destroyNewNodes(CommonType); 3285 return nullptr; 3286 } 3287 3288 auto *Result = ST.Get(Map.find(Original)->second); 3289 if (Result) { 3290 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3291 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3292 } 3293 return Result; 3294 } 3295 3296 /// Try to match PHI node to Candidate. 3297 /// Matcher tracks the matched Phi nodes. 3298 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3299 SmallSetVector<PHIPair, 8> &Matcher, 3300 PhiNodeSet &PhiNodesToMatch) { 3301 SmallVector<PHIPair, 8> WorkList; 3302 Matcher.insert({ PHI, Candidate }); 3303 SmallSet<PHINode *, 8> MatchedPHIs; 3304 MatchedPHIs.insert(PHI); 3305 WorkList.push_back({ PHI, Candidate }); 3306 SmallSet<PHIPair, 8> Visited; 3307 while (!WorkList.empty()) { 3308 auto Item = WorkList.pop_back_val(); 3309 if (!Visited.insert(Item).second) 3310 continue; 3311 // We iterate over all incoming values to Phi to compare them. 3312 // If values are different and both of them Phi and the first one is a 3313 // Phi we added (subject to match) and both of them is in the same basic 3314 // block then we can match our pair if values match. So we state that 3315 // these values match and add it to work list to verify that. 3316 for (auto B : Item.first->blocks()) { 3317 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3318 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3319 if (FirstValue == SecondValue) 3320 continue; 3321 3322 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3323 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3324 3325 // One of them is not Phi or 3326 // The first one is not Phi node from the set we'd like to match or 3327 // Phi nodes from different basic blocks then 3328 // we will not be able to match. 3329 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3330 FirstPhi->getParent() != SecondPhi->getParent()) 3331 return false; 3332 3333 // If we already matched them then continue. 3334 if (Matcher.count({ FirstPhi, SecondPhi })) 3335 continue; 3336 // So the values are different and does not match. So we need them to 3337 // match. (But we register no more than one match per PHI node, so that 3338 // we won't later try to replace them twice.) 3339 if (!MatchedPHIs.insert(FirstPhi).second) 3340 Matcher.insert({ FirstPhi, SecondPhi }); 3341 // But me must check it. 3342 WorkList.push_back({ FirstPhi, SecondPhi }); 3343 } 3344 } 3345 return true; 3346 } 3347 3348 /// For the given set of PHI nodes (in the SimplificationTracker) try 3349 /// to find their equivalents. 3350 /// Returns false if this matching fails and creation of new Phi is disabled. 3351 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3352 unsigned &PhiNotMatchedCount) { 3353 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3354 // order, so the replacements (ReplacePhi) are also done in a deterministic 3355 // order. 3356 SmallSetVector<PHIPair, 8> Matched; 3357 SmallPtrSet<PHINode *, 8> WillNotMatch; 3358 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3359 while (PhiNodesToMatch.size()) { 3360 PHINode *PHI = *PhiNodesToMatch.begin(); 3361 3362 // Add us, if no Phi nodes in the basic block we do not match. 3363 WillNotMatch.clear(); 3364 WillNotMatch.insert(PHI); 3365 3366 // Traverse all Phis until we found equivalent or fail to do that. 3367 bool IsMatched = false; 3368 for (auto &P : PHI->getParent()->phis()) { 3369 if (&P == PHI) 3370 continue; 3371 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3372 break; 3373 // If it does not match, collect all Phi nodes from matcher. 3374 // if we end up with no match, them all these Phi nodes will not match 3375 // later. 3376 for (auto M : Matched) 3377 WillNotMatch.insert(M.first); 3378 Matched.clear(); 3379 } 3380 if (IsMatched) { 3381 // Replace all matched values and erase them. 3382 for (auto MV : Matched) 3383 ST.ReplacePhi(MV.first, MV.second); 3384 Matched.clear(); 3385 continue; 3386 } 3387 // If we are not allowed to create new nodes then bail out. 3388 if (!AllowNewPhiNodes) 3389 return false; 3390 // Just remove all seen values in matcher. They will not match anything. 3391 PhiNotMatchedCount += WillNotMatch.size(); 3392 for (auto *P : WillNotMatch) 3393 PhiNodesToMatch.erase(P); 3394 } 3395 return true; 3396 } 3397 /// Fill the placeholders with values from predecessors and simplify them. 3398 void FillPlaceholders(FoldAddrToValueMapping &Map, 3399 SmallVectorImpl<Value *> &TraverseOrder, 3400 SimplificationTracker &ST) { 3401 while (!TraverseOrder.empty()) { 3402 Value *Current = TraverseOrder.pop_back_val(); 3403 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3404 Value *V = Map[Current]; 3405 3406 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3407 // CurrentValue also must be Select. 3408 auto *CurrentSelect = cast<SelectInst>(Current); 3409 auto *TrueValue = CurrentSelect->getTrueValue(); 3410 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3411 Select->setTrueValue(ST.Get(Map[TrueValue])); 3412 auto *FalseValue = CurrentSelect->getFalseValue(); 3413 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3414 Select->setFalseValue(ST.Get(Map[FalseValue])); 3415 } else { 3416 // Must be a Phi node then. 3417 PHINode *PHI = cast<PHINode>(V); 3418 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3419 // Fill the Phi node with values from predecessors. 3420 for (auto B : predecessors(PHI->getParent())) { 3421 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3422 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3423 PHI->addIncoming(ST.Get(Map[PV]), B); 3424 } 3425 } 3426 Map[Current] = ST.Simplify(V); 3427 } 3428 } 3429 3430 /// Starting from original value recursively iterates over def-use chain up to 3431 /// known ending values represented in a map. For each traversed phi/select 3432 /// inserts a placeholder Phi or Select. 3433 /// Reports all new created Phi/Select nodes by adding them to set. 3434 /// Also reports and order in what values have been traversed. 3435 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3436 SmallVectorImpl<Value *> &TraverseOrder, 3437 SimplificationTracker &ST) { 3438 SmallVector<Value *, 32> Worklist; 3439 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3440 "Address must be a Phi or Select node"); 3441 auto *Dummy = UndefValue::get(CommonType); 3442 Worklist.push_back(Original); 3443 while (!Worklist.empty()) { 3444 Value *Current = Worklist.pop_back_val(); 3445 // if it is already visited or it is an ending value then skip it. 3446 if (Map.find(Current) != Map.end()) 3447 continue; 3448 TraverseOrder.push_back(Current); 3449 3450 // CurrentValue must be a Phi node or select. All others must be covered 3451 // by anchors. 3452 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3453 // Is it OK to get metadata from OrigSelect?! 3454 // Create a Select placeholder with dummy value. 3455 SelectInst *Select = SelectInst::Create( 3456 CurrentSelect->getCondition(), Dummy, Dummy, 3457 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3458 Map[Current] = Select; 3459 ST.insertNewSelect(Select); 3460 // We are interested in True and False values. 3461 Worklist.push_back(CurrentSelect->getTrueValue()); 3462 Worklist.push_back(CurrentSelect->getFalseValue()); 3463 } else { 3464 // It must be a Phi node then. 3465 PHINode *CurrentPhi = cast<PHINode>(Current); 3466 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3467 PHINode *PHI = 3468 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3469 Map[Current] = PHI; 3470 ST.insertNewPhi(PHI); 3471 for (Value *P : CurrentPhi->incoming_values()) 3472 Worklist.push_back(P); 3473 } 3474 } 3475 } 3476 3477 bool addrModeCombiningAllowed() { 3478 if (DisableComplexAddrModes) 3479 return false; 3480 switch (DifferentField) { 3481 default: 3482 return false; 3483 case ExtAddrMode::BaseRegField: 3484 return AddrSinkCombineBaseReg; 3485 case ExtAddrMode::BaseGVField: 3486 return AddrSinkCombineBaseGV; 3487 case ExtAddrMode::BaseOffsField: 3488 return AddrSinkCombineBaseOffs; 3489 case ExtAddrMode::ScaledRegField: 3490 return AddrSinkCombineScaledReg; 3491 } 3492 } 3493 }; 3494 } // end anonymous namespace 3495 3496 /// Try adding ScaleReg*Scale to the current addressing mode. 3497 /// Return true and update AddrMode if this addr mode is legal for the target, 3498 /// false if not. 3499 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3500 unsigned Depth) { 3501 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3502 // mode. Just process that directly. 3503 if (Scale == 1) 3504 return matchAddr(ScaleReg, Depth); 3505 3506 // If the scale is 0, it takes nothing to add this. 3507 if (Scale == 0) 3508 return true; 3509 3510 // If we already have a scale of this value, we can add to it, otherwise, we 3511 // need an available scale field. 3512 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3513 return false; 3514 3515 ExtAddrMode TestAddrMode = AddrMode; 3516 3517 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3518 // [A+B + A*7] -> [B+A*8]. 3519 TestAddrMode.Scale += Scale; 3520 TestAddrMode.ScaledReg = ScaleReg; 3521 3522 // If the new address isn't legal, bail out. 3523 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3524 return false; 3525 3526 // It was legal, so commit it. 3527 AddrMode = TestAddrMode; 3528 3529 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3530 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3531 // X*Scale + C*Scale to addr mode. 3532 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3533 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3534 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3535 TestAddrMode.InBounds = false; 3536 TestAddrMode.ScaledReg = AddLHS; 3537 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3538 3539 // If this addressing mode is legal, commit it and remember that we folded 3540 // this instruction. 3541 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3542 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3543 AddrMode = TestAddrMode; 3544 return true; 3545 } 3546 } 3547 3548 // Otherwise, not (x+c)*scale, just return what we have. 3549 return true; 3550 } 3551 3552 /// This is a little filter, which returns true if an addressing computation 3553 /// involving I might be folded into a load/store accessing it. 3554 /// This doesn't need to be perfect, but needs to accept at least 3555 /// the set of instructions that MatchOperationAddr can. 3556 static bool MightBeFoldableInst(Instruction *I) { 3557 switch (I->getOpcode()) { 3558 case Instruction::BitCast: 3559 case Instruction::AddrSpaceCast: 3560 // Don't touch identity bitcasts. 3561 if (I->getType() == I->getOperand(0)->getType()) 3562 return false; 3563 return I->getType()->isIntOrPtrTy(); 3564 case Instruction::PtrToInt: 3565 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3566 return true; 3567 case Instruction::IntToPtr: 3568 // We know the input is intptr_t, so this is foldable. 3569 return true; 3570 case Instruction::Add: 3571 return true; 3572 case Instruction::Mul: 3573 case Instruction::Shl: 3574 // Can only handle X*C and X << C. 3575 return isa<ConstantInt>(I->getOperand(1)); 3576 case Instruction::GetElementPtr: 3577 return true; 3578 default: 3579 return false; 3580 } 3581 } 3582 3583 /// Check whether or not \p Val is a legal instruction for \p TLI. 3584 /// \note \p Val is assumed to be the product of some type promotion. 3585 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3586 /// to be legal, as the non-promoted value would have had the same state. 3587 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3588 const DataLayout &DL, Value *Val) { 3589 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3590 if (!PromotedInst) 3591 return false; 3592 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3593 // If the ISDOpcode is undefined, it was undefined before the promotion. 3594 if (!ISDOpcode) 3595 return true; 3596 // Otherwise, check if the promoted instruction is legal or not. 3597 return TLI.isOperationLegalOrCustom( 3598 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3599 } 3600 3601 namespace { 3602 3603 /// Hepler class to perform type promotion. 3604 class TypePromotionHelper { 3605 /// Utility function to add a promoted instruction \p ExtOpnd to 3606 /// \p PromotedInsts and record the type of extension we have seen. 3607 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3608 Instruction *ExtOpnd, 3609 bool IsSExt) { 3610 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3611 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3612 if (It != PromotedInsts.end()) { 3613 // If the new extension is same as original, the information in 3614 // PromotedInsts[ExtOpnd] is still correct. 3615 if (It->second.getInt() == ExtTy) 3616 return; 3617 3618 // Now the new extension is different from old extension, we make 3619 // the type information invalid by setting extension type to 3620 // BothExtension. 3621 ExtTy = BothExtension; 3622 } 3623 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3624 } 3625 3626 /// Utility function to query the original type of instruction \p Opnd 3627 /// with a matched extension type. If the extension doesn't match, we 3628 /// cannot use the information we had on the original type. 3629 /// BothExtension doesn't match any extension type. 3630 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3631 Instruction *Opnd, 3632 bool IsSExt) { 3633 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3634 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3635 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3636 return It->second.getPointer(); 3637 return nullptr; 3638 } 3639 3640 /// Utility function to check whether or not a sign or zero extension 3641 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3642 /// either using the operands of \p Inst or promoting \p Inst. 3643 /// The type of the extension is defined by \p IsSExt. 3644 /// In other words, check if: 3645 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3646 /// #1 Promotion applies: 3647 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3648 /// #2 Operand reuses: 3649 /// ext opnd1 to ConsideredExtType. 3650 /// \p PromotedInsts maps the instructions to their type before promotion. 3651 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3652 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3653 3654 /// Utility function to determine if \p OpIdx should be promoted when 3655 /// promoting \p Inst. 3656 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3657 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3658 } 3659 3660 /// Utility function to promote the operand of \p Ext when this 3661 /// operand is a promotable trunc or sext or zext. 3662 /// \p PromotedInsts maps the instructions to their type before promotion. 3663 /// \p CreatedInstsCost[out] contains the cost of all instructions 3664 /// created to promote the operand of Ext. 3665 /// Newly added extensions are inserted in \p Exts. 3666 /// Newly added truncates are inserted in \p Truncs. 3667 /// Should never be called directly. 3668 /// \return The promoted value which is used instead of Ext. 3669 static Value *promoteOperandForTruncAndAnyExt( 3670 Instruction *Ext, TypePromotionTransaction &TPT, 3671 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3672 SmallVectorImpl<Instruction *> *Exts, 3673 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3674 3675 /// Utility function to promote the operand of \p Ext when this 3676 /// operand is promotable and is not a supported trunc or sext. 3677 /// \p PromotedInsts maps the instructions to their type before promotion. 3678 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3679 /// created to promote the operand of Ext. 3680 /// Newly added extensions are inserted in \p Exts. 3681 /// Newly added truncates are inserted in \p Truncs. 3682 /// Should never be called directly. 3683 /// \return The promoted value which is used instead of Ext. 3684 static Value *promoteOperandForOther(Instruction *Ext, 3685 TypePromotionTransaction &TPT, 3686 InstrToOrigTy &PromotedInsts, 3687 unsigned &CreatedInstsCost, 3688 SmallVectorImpl<Instruction *> *Exts, 3689 SmallVectorImpl<Instruction *> *Truncs, 3690 const TargetLowering &TLI, bool IsSExt); 3691 3692 /// \see promoteOperandForOther. 3693 static Value *signExtendOperandForOther( 3694 Instruction *Ext, TypePromotionTransaction &TPT, 3695 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3696 SmallVectorImpl<Instruction *> *Exts, 3697 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3698 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3699 Exts, Truncs, TLI, true); 3700 } 3701 3702 /// \see promoteOperandForOther. 3703 static Value *zeroExtendOperandForOther( 3704 Instruction *Ext, TypePromotionTransaction &TPT, 3705 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3706 SmallVectorImpl<Instruction *> *Exts, 3707 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3708 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3709 Exts, Truncs, TLI, false); 3710 } 3711 3712 public: 3713 /// Type for the utility function that promotes the operand of Ext. 3714 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3715 InstrToOrigTy &PromotedInsts, 3716 unsigned &CreatedInstsCost, 3717 SmallVectorImpl<Instruction *> *Exts, 3718 SmallVectorImpl<Instruction *> *Truncs, 3719 const TargetLowering &TLI); 3720 3721 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3722 /// action to promote the operand of \p Ext instead of using Ext. 3723 /// \return NULL if no promotable action is possible with the current 3724 /// sign extension. 3725 /// \p InsertedInsts keeps track of all the instructions inserted by the 3726 /// other CodeGenPrepare optimizations. This information is important 3727 /// because we do not want to promote these instructions as CodeGenPrepare 3728 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3729 /// \p PromotedInsts maps the instructions to their type before promotion. 3730 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3731 const TargetLowering &TLI, 3732 const InstrToOrigTy &PromotedInsts); 3733 }; 3734 3735 } // end anonymous namespace 3736 3737 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3738 Type *ConsideredExtType, 3739 const InstrToOrigTy &PromotedInsts, 3740 bool IsSExt) { 3741 // The promotion helper does not know how to deal with vector types yet. 3742 // To be able to fix that, we would need to fix the places where we 3743 // statically extend, e.g., constants and such. 3744 if (Inst->getType()->isVectorTy()) 3745 return false; 3746 3747 // We can always get through zext. 3748 if (isa<ZExtInst>(Inst)) 3749 return true; 3750 3751 // sext(sext) is ok too. 3752 if (IsSExt && isa<SExtInst>(Inst)) 3753 return true; 3754 3755 // We can get through binary operator, if it is legal. In other words, the 3756 // binary operator must have a nuw or nsw flag. 3757 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3758 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3759 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3760 (IsSExt && BinOp->hasNoSignedWrap()))) 3761 return true; 3762 3763 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3764 if ((Inst->getOpcode() == Instruction::And || 3765 Inst->getOpcode() == Instruction::Or)) 3766 return true; 3767 3768 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3769 if (Inst->getOpcode() == Instruction::Xor) { 3770 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3771 // Make sure it is not a NOT. 3772 if (Cst && !Cst->getValue().isAllOnesValue()) 3773 return true; 3774 } 3775 3776 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3777 // It may change a poisoned value into a regular value, like 3778 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3779 // poisoned value regular value 3780 // It should be OK since undef covers valid value. 3781 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3782 return true; 3783 3784 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3785 // It may change a poisoned value into a regular value, like 3786 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3787 // poisoned value regular value 3788 // It should be OK since undef covers valid value. 3789 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3790 const Instruction *ExtInst = 3791 dyn_cast<const Instruction>(*Inst->user_begin()); 3792 if (ExtInst->hasOneUse()) { 3793 const Instruction *AndInst = 3794 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3795 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3796 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3797 if (Cst && 3798 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3799 return true; 3800 } 3801 } 3802 } 3803 3804 // Check if we can do the following simplification. 3805 // ext(trunc(opnd)) --> ext(opnd) 3806 if (!isa<TruncInst>(Inst)) 3807 return false; 3808 3809 Value *OpndVal = Inst->getOperand(0); 3810 // Check if we can use this operand in the extension. 3811 // If the type is larger than the result type of the extension, we cannot. 3812 if (!OpndVal->getType()->isIntegerTy() || 3813 OpndVal->getType()->getIntegerBitWidth() > 3814 ConsideredExtType->getIntegerBitWidth()) 3815 return false; 3816 3817 // If the operand of the truncate is not an instruction, we will not have 3818 // any information on the dropped bits. 3819 // (Actually we could for constant but it is not worth the extra logic). 3820 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3821 if (!Opnd) 3822 return false; 3823 3824 // Check if the source of the type is narrow enough. 3825 // I.e., check that trunc just drops extended bits of the same kind of 3826 // the extension. 3827 // #1 get the type of the operand and check the kind of the extended bits. 3828 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3829 if (OpndType) 3830 ; 3831 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3832 OpndType = Opnd->getOperand(0)->getType(); 3833 else 3834 return false; 3835 3836 // #2 check that the truncate just drops extended bits. 3837 return Inst->getType()->getIntegerBitWidth() >= 3838 OpndType->getIntegerBitWidth(); 3839 } 3840 3841 TypePromotionHelper::Action TypePromotionHelper::getAction( 3842 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3843 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3844 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3845 "Unexpected instruction type"); 3846 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3847 Type *ExtTy = Ext->getType(); 3848 bool IsSExt = isa<SExtInst>(Ext); 3849 // If the operand of the extension is not an instruction, we cannot 3850 // get through. 3851 // If it, check we can get through. 3852 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3853 return nullptr; 3854 3855 // Do not promote if the operand has been added by codegenprepare. 3856 // Otherwise, it means we are undoing an optimization that is likely to be 3857 // redone, thus causing potential infinite loop. 3858 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3859 return nullptr; 3860 3861 // SExt or Trunc instructions. 3862 // Return the related handler. 3863 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3864 isa<ZExtInst>(ExtOpnd)) 3865 return promoteOperandForTruncAndAnyExt; 3866 3867 // Regular instruction. 3868 // Abort early if we will have to insert non-free instructions. 3869 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3870 return nullptr; 3871 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3872 } 3873 3874 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3875 Instruction *SExt, TypePromotionTransaction &TPT, 3876 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3877 SmallVectorImpl<Instruction *> *Exts, 3878 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3879 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3880 // get through it and this method should not be called. 3881 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3882 Value *ExtVal = SExt; 3883 bool HasMergedNonFreeExt = false; 3884 if (isa<ZExtInst>(SExtOpnd)) { 3885 // Replace s|zext(zext(opnd)) 3886 // => zext(opnd). 3887 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3888 Value *ZExt = 3889 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3890 TPT.replaceAllUsesWith(SExt, ZExt); 3891 TPT.eraseInstruction(SExt); 3892 ExtVal = ZExt; 3893 } else { 3894 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3895 // => z|sext(opnd). 3896 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3897 } 3898 CreatedInstsCost = 0; 3899 3900 // Remove dead code. 3901 if (SExtOpnd->use_empty()) 3902 TPT.eraseInstruction(SExtOpnd); 3903 3904 // Check if the extension is still needed. 3905 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3906 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3907 if (ExtInst) { 3908 if (Exts) 3909 Exts->push_back(ExtInst); 3910 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3911 } 3912 return ExtVal; 3913 } 3914 3915 // At this point we have: ext ty opnd to ty. 3916 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3917 Value *NextVal = ExtInst->getOperand(0); 3918 TPT.eraseInstruction(ExtInst, NextVal); 3919 return NextVal; 3920 } 3921 3922 Value *TypePromotionHelper::promoteOperandForOther( 3923 Instruction *Ext, TypePromotionTransaction &TPT, 3924 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3925 SmallVectorImpl<Instruction *> *Exts, 3926 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3927 bool IsSExt) { 3928 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3929 // get through it and this method should not be called. 3930 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3931 CreatedInstsCost = 0; 3932 if (!ExtOpnd->hasOneUse()) { 3933 // ExtOpnd will be promoted. 3934 // All its uses, but Ext, will need to use a truncated value of the 3935 // promoted version. 3936 // Create the truncate now. 3937 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3938 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3939 // Insert it just after the definition. 3940 ITrunc->moveAfter(ExtOpnd); 3941 if (Truncs) 3942 Truncs->push_back(ITrunc); 3943 } 3944 3945 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3946 // Restore the operand of Ext (which has been replaced by the previous call 3947 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3948 TPT.setOperand(Ext, 0, ExtOpnd); 3949 } 3950 3951 // Get through the Instruction: 3952 // 1. Update its type. 3953 // 2. Replace the uses of Ext by Inst. 3954 // 3. Extend each operand that needs to be extended. 3955 3956 // Remember the original type of the instruction before promotion. 3957 // This is useful to know that the high bits are sign extended bits. 3958 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3959 // Step #1. 3960 TPT.mutateType(ExtOpnd, Ext->getType()); 3961 // Step #2. 3962 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3963 // Step #3. 3964 Instruction *ExtForOpnd = Ext; 3965 3966 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3967 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3968 ++OpIdx) { 3969 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3970 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3971 !shouldExtOperand(ExtOpnd, OpIdx)) { 3972 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3973 continue; 3974 } 3975 // Check if we can statically extend the operand. 3976 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3977 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3978 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3979 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3980 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3981 : Cst->getValue().zext(BitWidth); 3982 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3983 continue; 3984 } 3985 // UndefValue are typed, so we have to statically sign extend them. 3986 if (isa<UndefValue>(Opnd)) { 3987 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3988 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3989 continue; 3990 } 3991 3992 // Otherwise we have to explicitly sign extend the operand. 3993 // Check if Ext was reused to extend an operand. 3994 if (!ExtForOpnd) { 3995 // If yes, create a new one. 3996 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3997 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3998 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3999 if (!isa<Instruction>(ValForExtOpnd)) { 4000 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4001 continue; 4002 } 4003 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4004 } 4005 if (Exts) 4006 Exts->push_back(ExtForOpnd); 4007 TPT.setOperand(ExtForOpnd, 0, Opnd); 4008 4009 // Move the sign extension before the insertion point. 4010 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4011 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4012 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4013 // If more sext are required, new instructions will have to be created. 4014 ExtForOpnd = nullptr; 4015 } 4016 if (ExtForOpnd == Ext) { 4017 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4018 TPT.eraseInstruction(Ext); 4019 } 4020 return ExtOpnd; 4021 } 4022 4023 /// Check whether or not promoting an instruction to a wider type is profitable. 4024 /// \p NewCost gives the cost of extension instructions created by the 4025 /// promotion. 4026 /// \p OldCost gives the cost of extension instructions before the promotion 4027 /// plus the number of instructions that have been 4028 /// matched in the addressing mode the promotion. 4029 /// \p PromotedOperand is the value that has been promoted. 4030 /// \return True if the promotion is profitable, false otherwise. 4031 bool AddressingModeMatcher::isPromotionProfitable( 4032 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4033 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4034 << '\n'); 4035 // The cost of the new extensions is greater than the cost of the 4036 // old extension plus what we folded. 4037 // This is not profitable. 4038 if (NewCost > OldCost) 4039 return false; 4040 if (NewCost < OldCost) 4041 return true; 4042 // The promotion is neutral but it may help folding the sign extension in 4043 // loads for instance. 4044 // Check that we did not create an illegal instruction. 4045 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4046 } 4047 4048 /// Given an instruction or constant expr, see if we can fold the operation 4049 /// into the addressing mode. If so, update the addressing mode and return 4050 /// true, otherwise return false without modifying AddrMode. 4051 /// If \p MovedAway is not NULL, it contains the information of whether or 4052 /// not AddrInst has to be folded into the addressing mode on success. 4053 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4054 /// because it has been moved away. 4055 /// Thus AddrInst must not be added in the matched instructions. 4056 /// This state can happen when AddrInst is a sext, since it may be moved away. 4057 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4058 /// not be referenced anymore. 4059 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4060 unsigned Depth, 4061 bool *MovedAway) { 4062 // Avoid exponential behavior on extremely deep expression trees. 4063 if (Depth >= 5) return false; 4064 4065 // By default, all matched instructions stay in place. 4066 if (MovedAway) 4067 *MovedAway = false; 4068 4069 switch (Opcode) { 4070 case Instruction::PtrToInt: 4071 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4072 return matchAddr(AddrInst->getOperand(0), Depth); 4073 case Instruction::IntToPtr: { 4074 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4075 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4076 // This inttoptr is a no-op if the integer type is pointer sized. 4077 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4078 return matchAddr(AddrInst->getOperand(0), Depth); 4079 return false; 4080 } 4081 case Instruction::BitCast: 4082 // BitCast is always a noop, and we can handle it as long as it is 4083 // int->int or pointer->pointer (we don't want int<->fp or something). 4084 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4085 // Don't touch identity bitcasts. These were probably put here by LSR, 4086 // and we don't want to mess around with them. Assume it knows what it 4087 // is doing. 4088 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4089 return matchAddr(AddrInst->getOperand(0), Depth); 4090 return false; 4091 case Instruction::AddrSpaceCast: { 4092 unsigned SrcAS 4093 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4094 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4095 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4096 return matchAddr(AddrInst->getOperand(0), Depth); 4097 return false; 4098 } 4099 case Instruction::Add: { 4100 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4101 ExtAddrMode BackupAddrMode = AddrMode; 4102 unsigned OldSize = AddrModeInsts.size(); 4103 // Start a transaction at this point. 4104 // The LHS may match but not the RHS. 4105 // Therefore, we need a higher level restoration point to undo partially 4106 // matched operation. 4107 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4108 TPT.getRestorationPoint(); 4109 4110 AddrMode.InBounds = false; 4111 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4112 matchAddr(AddrInst->getOperand(0), Depth+1)) 4113 return true; 4114 4115 // Restore the old addr mode info. 4116 AddrMode = BackupAddrMode; 4117 AddrModeInsts.resize(OldSize); 4118 TPT.rollback(LastKnownGood); 4119 4120 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4121 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4122 matchAddr(AddrInst->getOperand(1), Depth+1)) 4123 return true; 4124 4125 // Otherwise we definitely can't merge the ADD in. 4126 AddrMode = BackupAddrMode; 4127 AddrModeInsts.resize(OldSize); 4128 TPT.rollback(LastKnownGood); 4129 break; 4130 } 4131 //case Instruction::Or: 4132 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4133 //break; 4134 case Instruction::Mul: 4135 case Instruction::Shl: { 4136 // Can only handle X*C and X << C. 4137 AddrMode.InBounds = false; 4138 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4139 if (!RHS || RHS->getBitWidth() > 64) 4140 return false; 4141 int64_t Scale = RHS->getSExtValue(); 4142 if (Opcode == Instruction::Shl) 4143 Scale = 1LL << Scale; 4144 4145 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4146 } 4147 case Instruction::GetElementPtr: { 4148 // Scan the GEP. We check it if it contains constant offsets and at most 4149 // one variable offset. 4150 int VariableOperand = -1; 4151 unsigned VariableScale = 0; 4152 4153 int64_t ConstantOffset = 0; 4154 gep_type_iterator GTI = gep_type_begin(AddrInst); 4155 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4156 if (StructType *STy = GTI.getStructTypeOrNull()) { 4157 const StructLayout *SL = DL.getStructLayout(STy); 4158 unsigned Idx = 4159 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4160 ConstantOffset += SL->getElementOffset(Idx); 4161 } else { 4162 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4163 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4164 const APInt &CVal = CI->getValue(); 4165 if (CVal.getMinSignedBits() <= 64) { 4166 ConstantOffset += CVal.getSExtValue() * TypeSize; 4167 continue; 4168 } 4169 } 4170 if (TypeSize) { // Scales of zero don't do anything. 4171 // We only allow one variable index at the moment. 4172 if (VariableOperand != -1) 4173 return false; 4174 4175 // Remember the variable index. 4176 VariableOperand = i; 4177 VariableScale = TypeSize; 4178 } 4179 } 4180 } 4181 4182 // A common case is for the GEP to only do a constant offset. In this case, 4183 // just add it to the disp field and check validity. 4184 if (VariableOperand == -1) { 4185 AddrMode.BaseOffs += ConstantOffset; 4186 if (ConstantOffset == 0 || 4187 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4188 // Check to see if we can fold the base pointer in too. 4189 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4190 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4191 AddrMode.InBounds = false; 4192 return true; 4193 } 4194 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4195 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4196 ConstantOffset > 0) { 4197 // Record GEPs with non-zero offsets as candidates for splitting in the 4198 // event that the offset cannot fit into the r+i addressing mode. 4199 // Simple and common case that only one GEP is used in calculating the 4200 // address for the memory access. 4201 Value *Base = AddrInst->getOperand(0); 4202 auto *BaseI = dyn_cast<Instruction>(Base); 4203 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4204 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4205 (BaseI && !isa<CastInst>(BaseI) && 4206 !isa<GetElementPtrInst>(BaseI))) { 4207 // If the base is an instruction, make sure the GEP is not in the same 4208 // basic block as the base. If the base is an argument or global 4209 // value, make sure the GEP is not in the entry block. Otherwise, 4210 // instruction selection can undo the split. Also make sure the 4211 // parent block allows inserting non-PHI instructions before the 4212 // terminator. 4213 BasicBlock *Parent = 4214 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4215 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4216 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4217 } 4218 } 4219 AddrMode.BaseOffs -= ConstantOffset; 4220 return false; 4221 } 4222 4223 // Save the valid addressing mode in case we can't match. 4224 ExtAddrMode BackupAddrMode = AddrMode; 4225 unsigned OldSize = AddrModeInsts.size(); 4226 4227 // See if the scale and offset amount is valid for this target. 4228 AddrMode.BaseOffs += ConstantOffset; 4229 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4230 AddrMode.InBounds = false; 4231 4232 // Match the base operand of the GEP. 4233 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4234 // If it couldn't be matched, just stuff the value in a register. 4235 if (AddrMode.HasBaseReg) { 4236 AddrMode = BackupAddrMode; 4237 AddrModeInsts.resize(OldSize); 4238 return false; 4239 } 4240 AddrMode.HasBaseReg = true; 4241 AddrMode.BaseReg = AddrInst->getOperand(0); 4242 } 4243 4244 // Match the remaining variable portion of the GEP. 4245 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4246 Depth)) { 4247 // If it couldn't be matched, try stuffing the base into a register 4248 // instead of matching it, and retrying the match of the scale. 4249 AddrMode = BackupAddrMode; 4250 AddrModeInsts.resize(OldSize); 4251 if (AddrMode.HasBaseReg) 4252 return false; 4253 AddrMode.HasBaseReg = true; 4254 AddrMode.BaseReg = AddrInst->getOperand(0); 4255 AddrMode.BaseOffs += ConstantOffset; 4256 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4257 VariableScale, Depth)) { 4258 // If even that didn't work, bail. 4259 AddrMode = BackupAddrMode; 4260 AddrModeInsts.resize(OldSize); 4261 return false; 4262 } 4263 } 4264 4265 return true; 4266 } 4267 case Instruction::SExt: 4268 case Instruction::ZExt: { 4269 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4270 if (!Ext) 4271 return false; 4272 4273 // Try to move this ext out of the way of the addressing mode. 4274 // Ask for a method for doing so. 4275 TypePromotionHelper::Action TPH = 4276 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4277 if (!TPH) 4278 return false; 4279 4280 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4281 TPT.getRestorationPoint(); 4282 unsigned CreatedInstsCost = 0; 4283 unsigned ExtCost = !TLI.isExtFree(Ext); 4284 Value *PromotedOperand = 4285 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4286 // SExt has been moved away. 4287 // Thus either it will be rematched later in the recursive calls or it is 4288 // gone. Anyway, we must not fold it into the addressing mode at this point. 4289 // E.g., 4290 // op = add opnd, 1 4291 // idx = ext op 4292 // addr = gep base, idx 4293 // is now: 4294 // promotedOpnd = ext opnd <- no match here 4295 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4296 // addr = gep base, op <- match 4297 if (MovedAway) 4298 *MovedAway = true; 4299 4300 assert(PromotedOperand && 4301 "TypePromotionHelper should have filtered out those cases"); 4302 4303 ExtAddrMode BackupAddrMode = AddrMode; 4304 unsigned OldSize = AddrModeInsts.size(); 4305 4306 if (!matchAddr(PromotedOperand, Depth) || 4307 // The total of the new cost is equal to the cost of the created 4308 // instructions. 4309 // The total of the old cost is equal to the cost of the extension plus 4310 // what we have saved in the addressing mode. 4311 !isPromotionProfitable(CreatedInstsCost, 4312 ExtCost + (AddrModeInsts.size() - OldSize), 4313 PromotedOperand)) { 4314 AddrMode = BackupAddrMode; 4315 AddrModeInsts.resize(OldSize); 4316 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4317 TPT.rollback(LastKnownGood); 4318 return false; 4319 } 4320 return true; 4321 } 4322 } 4323 return false; 4324 } 4325 4326 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4327 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4328 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4329 /// for the target. 4330 /// 4331 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4332 // Start a transaction at this point that we will rollback if the matching 4333 // fails. 4334 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4335 TPT.getRestorationPoint(); 4336 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4337 // Fold in immediates if legal for the target. 4338 AddrMode.BaseOffs += CI->getSExtValue(); 4339 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4340 return true; 4341 AddrMode.BaseOffs -= CI->getSExtValue(); 4342 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4343 // If this is a global variable, try to fold it into the addressing mode. 4344 if (!AddrMode.BaseGV) { 4345 AddrMode.BaseGV = GV; 4346 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4347 return true; 4348 AddrMode.BaseGV = nullptr; 4349 } 4350 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4351 ExtAddrMode BackupAddrMode = AddrMode; 4352 unsigned OldSize = AddrModeInsts.size(); 4353 4354 // Check to see if it is possible to fold this operation. 4355 bool MovedAway = false; 4356 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4357 // This instruction may have been moved away. If so, there is nothing 4358 // to check here. 4359 if (MovedAway) 4360 return true; 4361 // Okay, it's possible to fold this. Check to see if it is actually 4362 // *profitable* to do so. We use a simple cost model to avoid increasing 4363 // register pressure too much. 4364 if (I->hasOneUse() || 4365 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4366 AddrModeInsts.push_back(I); 4367 return true; 4368 } 4369 4370 // It isn't profitable to do this, roll back. 4371 //cerr << "NOT FOLDING: " << *I; 4372 AddrMode = BackupAddrMode; 4373 AddrModeInsts.resize(OldSize); 4374 TPT.rollback(LastKnownGood); 4375 } 4376 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4377 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4378 return true; 4379 TPT.rollback(LastKnownGood); 4380 } else if (isa<ConstantPointerNull>(Addr)) { 4381 // Null pointer gets folded without affecting the addressing mode. 4382 return true; 4383 } 4384 4385 // Worse case, the target should support [reg] addressing modes. :) 4386 if (!AddrMode.HasBaseReg) { 4387 AddrMode.HasBaseReg = true; 4388 AddrMode.BaseReg = Addr; 4389 // Still check for legality in case the target supports [imm] but not [i+r]. 4390 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4391 return true; 4392 AddrMode.HasBaseReg = false; 4393 AddrMode.BaseReg = nullptr; 4394 } 4395 4396 // If the base register is already taken, see if we can do [r+r]. 4397 if (AddrMode.Scale == 0) { 4398 AddrMode.Scale = 1; 4399 AddrMode.ScaledReg = Addr; 4400 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4401 return true; 4402 AddrMode.Scale = 0; 4403 AddrMode.ScaledReg = nullptr; 4404 } 4405 // Couldn't match. 4406 TPT.rollback(LastKnownGood); 4407 return false; 4408 } 4409 4410 /// Check to see if all uses of OpVal by the specified inline asm call are due 4411 /// to memory operands. If so, return true, otherwise return false. 4412 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4413 const TargetLowering &TLI, 4414 const TargetRegisterInfo &TRI) { 4415 const Function *F = CI->getFunction(); 4416 TargetLowering::AsmOperandInfoVector TargetConstraints = 4417 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4418 ImmutableCallSite(CI)); 4419 4420 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4421 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4422 4423 // Compute the constraint code and ConstraintType to use. 4424 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4425 4426 // If this asm operand is our Value*, and if it isn't an indirect memory 4427 // operand, we can't fold it! 4428 if (OpInfo.CallOperandVal == OpVal && 4429 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4430 !OpInfo.isIndirect)) 4431 return false; 4432 } 4433 4434 return true; 4435 } 4436 4437 // Max number of memory uses to look at before aborting the search to conserve 4438 // compile time. 4439 static constexpr int MaxMemoryUsesToScan = 20; 4440 4441 /// Recursively walk all the uses of I until we find a memory use. 4442 /// If we find an obviously non-foldable instruction, return true. 4443 /// Add the ultimately found memory instructions to MemoryUses. 4444 static bool FindAllMemoryUses( 4445 Instruction *I, 4446 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4447 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4448 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4449 // If we already considered this instruction, we're done. 4450 if (!ConsideredInsts.insert(I).second) 4451 return false; 4452 4453 // If this is an obviously unfoldable instruction, bail out. 4454 if (!MightBeFoldableInst(I)) 4455 return true; 4456 4457 const bool OptSize = I->getFunction()->optForSize(); 4458 4459 // Loop over all the uses, recursively processing them. 4460 for (Use &U : I->uses()) { 4461 // Conservatively return true if we're seeing a large number or a deep chain 4462 // of users. This avoids excessive compilation times in pathological cases. 4463 if (SeenInsts++ >= MaxMemoryUsesToScan) 4464 return true; 4465 4466 Instruction *UserI = cast<Instruction>(U.getUser()); 4467 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4468 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4469 continue; 4470 } 4471 4472 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4473 unsigned opNo = U.getOperandNo(); 4474 if (opNo != StoreInst::getPointerOperandIndex()) 4475 return true; // Storing addr, not into addr. 4476 MemoryUses.push_back(std::make_pair(SI, opNo)); 4477 continue; 4478 } 4479 4480 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4481 unsigned opNo = U.getOperandNo(); 4482 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4483 return true; // Storing addr, not into addr. 4484 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4485 continue; 4486 } 4487 4488 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4489 unsigned opNo = U.getOperandNo(); 4490 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4491 return true; // Storing addr, not into addr. 4492 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4493 continue; 4494 } 4495 4496 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4497 // If this is a cold call, we can sink the addressing calculation into 4498 // the cold path. See optimizeCallInst 4499 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4500 continue; 4501 4502 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4503 if (!IA) return true; 4504 4505 // If this is a memory operand, we're cool, otherwise bail out. 4506 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4507 return true; 4508 continue; 4509 } 4510 4511 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4512 SeenInsts)) 4513 return true; 4514 } 4515 4516 return false; 4517 } 4518 4519 /// Return true if Val is already known to be live at the use site that we're 4520 /// folding it into. If so, there is no cost to include it in the addressing 4521 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4522 /// instruction already. 4523 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4524 Value *KnownLive2) { 4525 // If Val is either of the known-live values, we know it is live! 4526 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4527 return true; 4528 4529 // All values other than instructions and arguments (e.g. constants) are live. 4530 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4531 4532 // If Val is a constant sized alloca in the entry block, it is live, this is 4533 // true because it is just a reference to the stack/frame pointer, which is 4534 // live for the whole function. 4535 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4536 if (AI->isStaticAlloca()) 4537 return true; 4538 4539 // Check to see if this value is already used in the memory instruction's 4540 // block. If so, it's already live into the block at the very least, so we 4541 // can reasonably fold it. 4542 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4543 } 4544 4545 /// It is possible for the addressing mode of the machine to fold the specified 4546 /// instruction into a load or store that ultimately uses it. 4547 /// However, the specified instruction has multiple uses. 4548 /// Given this, it may actually increase register pressure to fold it 4549 /// into the load. For example, consider this code: 4550 /// 4551 /// X = ... 4552 /// Y = X+1 4553 /// use(Y) -> nonload/store 4554 /// Z = Y+1 4555 /// load Z 4556 /// 4557 /// In this case, Y has multiple uses, and can be folded into the load of Z 4558 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4559 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4560 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4561 /// number of computations either. 4562 /// 4563 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4564 /// X was live across 'load Z' for other reasons, we actually *would* want to 4565 /// fold the addressing mode in the Z case. This would make Y die earlier. 4566 bool AddressingModeMatcher:: 4567 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4568 ExtAddrMode &AMAfter) { 4569 if (IgnoreProfitability) return true; 4570 4571 // AMBefore is the addressing mode before this instruction was folded into it, 4572 // and AMAfter is the addressing mode after the instruction was folded. Get 4573 // the set of registers referenced by AMAfter and subtract out those 4574 // referenced by AMBefore: this is the set of values which folding in this 4575 // address extends the lifetime of. 4576 // 4577 // Note that there are only two potential values being referenced here, 4578 // BaseReg and ScaleReg (global addresses are always available, as are any 4579 // folded immediates). 4580 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4581 4582 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4583 // lifetime wasn't extended by adding this instruction. 4584 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4585 BaseReg = nullptr; 4586 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4587 ScaledReg = nullptr; 4588 4589 // If folding this instruction (and it's subexprs) didn't extend any live 4590 // ranges, we're ok with it. 4591 if (!BaseReg && !ScaledReg) 4592 return true; 4593 4594 // If all uses of this instruction can have the address mode sunk into them, 4595 // we can remove the addressing mode and effectively trade one live register 4596 // for another (at worst.) In this context, folding an addressing mode into 4597 // the use is just a particularly nice way of sinking it. 4598 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4599 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4600 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4601 return false; // Has a non-memory, non-foldable use! 4602 4603 // Now that we know that all uses of this instruction are part of a chain of 4604 // computation involving only operations that could theoretically be folded 4605 // into a memory use, loop over each of these memory operation uses and see 4606 // if they could *actually* fold the instruction. The assumption is that 4607 // addressing modes are cheap and that duplicating the computation involved 4608 // many times is worthwhile, even on a fastpath. For sinking candidates 4609 // (i.e. cold call sites), this serves as a way to prevent excessive code 4610 // growth since most architectures have some reasonable small and fast way to 4611 // compute an effective address. (i.e LEA on x86) 4612 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4613 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4614 Instruction *User = MemoryUses[i].first; 4615 unsigned OpNo = MemoryUses[i].second; 4616 4617 // Get the access type of this use. If the use isn't a pointer, we don't 4618 // know what it accesses. 4619 Value *Address = User->getOperand(OpNo); 4620 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4621 if (!AddrTy) 4622 return false; 4623 Type *AddressAccessTy = AddrTy->getElementType(); 4624 unsigned AS = AddrTy->getAddressSpace(); 4625 4626 // Do a match against the root of this address, ignoring profitability. This 4627 // will tell us if the addressing mode for the memory operation will 4628 // *actually* cover the shared instruction. 4629 ExtAddrMode Result; 4630 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4631 0); 4632 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4633 TPT.getRestorationPoint(); 4634 AddressingModeMatcher Matcher( 4635 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4636 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4637 Matcher.IgnoreProfitability = true; 4638 bool Success = Matcher.matchAddr(Address, 0); 4639 (void)Success; assert(Success && "Couldn't select *anything*?"); 4640 4641 // The match was to check the profitability, the changes made are not 4642 // part of the original matcher. Therefore, they should be dropped 4643 // otherwise the original matcher will not present the right state. 4644 TPT.rollback(LastKnownGood); 4645 4646 // If the match didn't cover I, then it won't be shared by it. 4647 if (!is_contained(MatchedAddrModeInsts, I)) 4648 return false; 4649 4650 MatchedAddrModeInsts.clear(); 4651 } 4652 4653 return true; 4654 } 4655 4656 /// Return true if the specified values are defined in a 4657 /// different basic block than BB. 4658 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4659 if (Instruction *I = dyn_cast<Instruction>(V)) 4660 return I->getParent() != BB; 4661 return false; 4662 } 4663 4664 /// Sink addressing mode computation immediate before MemoryInst if doing so 4665 /// can be done without increasing register pressure. The need for the 4666 /// register pressure constraint means this can end up being an all or nothing 4667 /// decision for all uses of the same addressing computation. 4668 /// 4669 /// Load and Store Instructions often have addressing modes that can do 4670 /// significant amounts of computation. As such, instruction selection will try 4671 /// to get the load or store to do as much computation as possible for the 4672 /// program. The problem is that isel can only see within a single block. As 4673 /// such, we sink as much legal addressing mode work into the block as possible. 4674 /// 4675 /// This method is used to optimize both load/store and inline asms with memory 4676 /// operands. It's also used to sink addressing computations feeding into cold 4677 /// call sites into their (cold) basic block. 4678 /// 4679 /// The motivation for handling sinking into cold blocks is that doing so can 4680 /// both enable other address mode sinking (by satisfying the register pressure 4681 /// constraint above), and reduce register pressure globally (by removing the 4682 /// addressing mode computation from the fast path entirely.). 4683 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4684 Type *AccessTy, unsigned AddrSpace) { 4685 Value *Repl = Addr; 4686 4687 // Try to collapse single-value PHI nodes. This is necessary to undo 4688 // unprofitable PRE transformations. 4689 SmallVector<Value*, 8> worklist; 4690 SmallPtrSet<Value*, 16> Visited; 4691 worklist.push_back(Addr); 4692 4693 // Use a worklist to iteratively look through PHI and select nodes, and 4694 // ensure that the addressing mode obtained from the non-PHI/select roots of 4695 // the graph are compatible. 4696 bool PhiOrSelectSeen = false; 4697 SmallVector<Instruction*, 16> AddrModeInsts; 4698 const SimplifyQuery SQ(*DL, TLInfo); 4699 AddressingModeCombiner AddrModes(SQ, Addr); 4700 TypePromotionTransaction TPT(RemovedInsts); 4701 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4702 TPT.getRestorationPoint(); 4703 while (!worklist.empty()) { 4704 Value *V = worklist.back(); 4705 worklist.pop_back(); 4706 4707 // We allow traversing cyclic Phi nodes. 4708 // In case of success after this loop we ensure that traversing through 4709 // Phi nodes ends up with all cases to compute address of the form 4710 // BaseGV + Base + Scale * Index + Offset 4711 // where Scale and Offset are constans and BaseGV, Base and Index 4712 // are exactly the same Values in all cases. 4713 // It means that BaseGV, Scale and Offset dominate our memory instruction 4714 // and have the same value as they had in address computation represented 4715 // as Phi. So we can safely sink address computation to memory instruction. 4716 if (!Visited.insert(V).second) 4717 continue; 4718 4719 // For a PHI node, push all of its incoming values. 4720 if (PHINode *P = dyn_cast<PHINode>(V)) { 4721 for (Value *IncValue : P->incoming_values()) 4722 worklist.push_back(IncValue); 4723 PhiOrSelectSeen = true; 4724 continue; 4725 } 4726 // Similar for select. 4727 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4728 worklist.push_back(SI->getFalseValue()); 4729 worklist.push_back(SI->getTrueValue()); 4730 PhiOrSelectSeen = true; 4731 continue; 4732 } 4733 4734 // For non-PHIs, determine the addressing mode being computed. Note that 4735 // the result may differ depending on what other uses our candidate 4736 // addressing instructions might have. 4737 AddrModeInsts.clear(); 4738 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4739 0); 4740 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4741 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4742 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4743 4744 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4745 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4746 !NewGEPBases.count(GEP)) { 4747 // If splitting the underlying data structure can reduce the offset of a 4748 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4749 // previously split data structures. 4750 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4751 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4752 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4753 } 4754 4755 NewAddrMode.OriginalValue = V; 4756 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4757 break; 4758 } 4759 4760 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4761 // or we have multiple but either couldn't combine them or combining them 4762 // wouldn't do anything useful, bail out now. 4763 if (!AddrModes.combineAddrModes()) { 4764 TPT.rollback(LastKnownGood); 4765 return false; 4766 } 4767 TPT.commit(); 4768 4769 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4770 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4771 4772 // If all the instructions matched are already in this BB, don't do anything. 4773 // If we saw a Phi node then it is not local definitely, and if we saw a select 4774 // then we want to push the address calculation past it even if it's already 4775 // in this BB. 4776 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4777 return IsNonLocalValue(V, MemoryInst->getParent()); 4778 })) { 4779 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4780 << "\n"); 4781 return false; 4782 } 4783 4784 // Insert this computation right after this user. Since our caller is 4785 // scanning from the top of the BB to the bottom, reuse of the expr are 4786 // guaranteed to happen later. 4787 IRBuilder<> Builder(MemoryInst); 4788 4789 // Now that we determined the addressing expression we want to use and know 4790 // that we have to sink it into this block. Check to see if we have already 4791 // done this for some other load/store instr in this block. If so, reuse 4792 // the computation. Before attempting reuse, check if the address is valid 4793 // as it may have been erased. 4794 4795 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4796 4797 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4798 if (SunkAddr) { 4799 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4800 << " for " << *MemoryInst << "\n"); 4801 if (SunkAddr->getType() != Addr->getType()) 4802 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4803 } else if (AddrSinkUsingGEPs || 4804 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4805 // By default, we use the GEP-based method when AA is used later. This 4806 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4807 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4808 << " for " << *MemoryInst << "\n"); 4809 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4810 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4811 4812 // First, find the pointer. 4813 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4814 ResultPtr = AddrMode.BaseReg; 4815 AddrMode.BaseReg = nullptr; 4816 } 4817 4818 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4819 // We can't add more than one pointer together, nor can we scale a 4820 // pointer (both of which seem meaningless). 4821 if (ResultPtr || AddrMode.Scale != 1) 4822 return false; 4823 4824 ResultPtr = AddrMode.ScaledReg; 4825 AddrMode.Scale = 0; 4826 } 4827 4828 // It is only safe to sign extend the BaseReg if we know that the math 4829 // required to create it did not overflow before we extend it. Since 4830 // the original IR value was tossed in favor of a constant back when 4831 // the AddrMode was created we need to bail out gracefully if widths 4832 // do not match instead of extending it. 4833 // 4834 // (See below for code to add the scale.) 4835 if (AddrMode.Scale) { 4836 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4837 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4838 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4839 return false; 4840 } 4841 4842 if (AddrMode.BaseGV) { 4843 if (ResultPtr) 4844 return false; 4845 4846 ResultPtr = AddrMode.BaseGV; 4847 } 4848 4849 // If the real base value actually came from an inttoptr, then the matcher 4850 // will look through it and provide only the integer value. In that case, 4851 // use it here. 4852 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4853 if (!ResultPtr && AddrMode.BaseReg) { 4854 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4855 "sunkaddr"); 4856 AddrMode.BaseReg = nullptr; 4857 } else if (!ResultPtr && AddrMode.Scale == 1) { 4858 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4859 "sunkaddr"); 4860 AddrMode.Scale = 0; 4861 } 4862 } 4863 4864 if (!ResultPtr && 4865 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4866 SunkAddr = Constant::getNullValue(Addr->getType()); 4867 } else if (!ResultPtr) { 4868 return false; 4869 } else { 4870 Type *I8PtrTy = 4871 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4872 Type *I8Ty = Builder.getInt8Ty(); 4873 4874 // Start with the base register. Do this first so that subsequent address 4875 // matching finds it last, which will prevent it from trying to match it 4876 // as the scaled value in case it happens to be a mul. That would be 4877 // problematic if we've sunk a different mul for the scale, because then 4878 // we'd end up sinking both muls. 4879 if (AddrMode.BaseReg) { 4880 Value *V = AddrMode.BaseReg; 4881 if (V->getType() != IntPtrTy) 4882 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4883 4884 ResultIndex = V; 4885 } 4886 4887 // Add the scale value. 4888 if (AddrMode.Scale) { 4889 Value *V = AddrMode.ScaledReg; 4890 if (V->getType() == IntPtrTy) { 4891 // done. 4892 } else { 4893 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4894 cast<IntegerType>(V->getType())->getBitWidth() && 4895 "We can't transform if ScaledReg is too narrow"); 4896 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4897 } 4898 4899 if (AddrMode.Scale != 1) 4900 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4901 "sunkaddr"); 4902 if (ResultIndex) 4903 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4904 else 4905 ResultIndex = V; 4906 } 4907 4908 // Add in the Base Offset if present. 4909 if (AddrMode.BaseOffs) { 4910 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4911 if (ResultIndex) { 4912 // We need to add this separately from the scale above to help with 4913 // SDAG consecutive load/store merging. 4914 if (ResultPtr->getType() != I8PtrTy) 4915 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4916 ResultPtr = 4917 AddrMode.InBounds 4918 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4919 "sunkaddr") 4920 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4921 } 4922 4923 ResultIndex = V; 4924 } 4925 4926 if (!ResultIndex) { 4927 SunkAddr = ResultPtr; 4928 } else { 4929 if (ResultPtr->getType() != I8PtrTy) 4930 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4931 SunkAddr = 4932 AddrMode.InBounds 4933 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4934 "sunkaddr") 4935 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4936 } 4937 4938 if (SunkAddr->getType() != Addr->getType()) 4939 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4940 } 4941 } else { 4942 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4943 // non-integral pointers, so in that case bail out now. 4944 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4945 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4946 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4947 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4948 if (DL->isNonIntegralPointerType(Addr->getType()) || 4949 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4950 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4951 (AddrMode.BaseGV && 4952 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4953 return false; 4954 4955 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4956 << " for " << *MemoryInst << "\n"); 4957 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4958 Value *Result = nullptr; 4959 4960 // Start with the base register. Do this first so that subsequent address 4961 // matching finds it last, which will prevent it from trying to match it 4962 // as the scaled value in case it happens to be a mul. That would be 4963 // problematic if we've sunk a different mul for the scale, because then 4964 // we'd end up sinking both muls. 4965 if (AddrMode.BaseReg) { 4966 Value *V = AddrMode.BaseReg; 4967 if (V->getType()->isPointerTy()) 4968 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4969 if (V->getType() != IntPtrTy) 4970 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4971 Result = V; 4972 } 4973 4974 // Add the scale value. 4975 if (AddrMode.Scale) { 4976 Value *V = AddrMode.ScaledReg; 4977 if (V->getType() == IntPtrTy) { 4978 // done. 4979 } else if (V->getType()->isPointerTy()) { 4980 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4981 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4982 cast<IntegerType>(V->getType())->getBitWidth()) { 4983 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4984 } else { 4985 // It is only safe to sign extend the BaseReg if we know that the math 4986 // required to create it did not overflow before we extend it. Since 4987 // the original IR value was tossed in favor of a constant back when 4988 // the AddrMode was created we need to bail out gracefully if widths 4989 // do not match instead of extending it. 4990 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4991 if (I && (Result != AddrMode.BaseReg)) 4992 I->eraseFromParent(); 4993 return false; 4994 } 4995 if (AddrMode.Scale != 1) 4996 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4997 "sunkaddr"); 4998 if (Result) 4999 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5000 else 5001 Result = V; 5002 } 5003 5004 // Add in the BaseGV if present. 5005 if (AddrMode.BaseGV) { 5006 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5007 if (Result) 5008 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5009 else 5010 Result = V; 5011 } 5012 5013 // Add in the Base Offset if present. 5014 if (AddrMode.BaseOffs) { 5015 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5016 if (Result) 5017 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5018 else 5019 Result = V; 5020 } 5021 5022 if (!Result) 5023 SunkAddr = Constant::getNullValue(Addr->getType()); 5024 else 5025 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5026 } 5027 5028 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5029 // Store the newly computed address into the cache. In the case we reused a 5030 // value, this should be idempotent. 5031 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5032 5033 // If we have no uses, recursively delete the value and all dead instructions 5034 // using it. 5035 if (Repl->use_empty()) { 5036 // This can cause recursive deletion, which can invalidate our iterator. 5037 // Use a WeakTrackingVH to hold onto it in case this happens. 5038 Value *CurValue = &*CurInstIterator; 5039 WeakTrackingVH IterHandle(CurValue); 5040 BasicBlock *BB = CurInstIterator->getParent(); 5041 5042 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5043 5044 if (IterHandle != CurValue) { 5045 // If the iterator instruction was recursively deleted, start over at the 5046 // start of the block. 5047 CurInstIterator = BB->begin(); 5048 SunkAddrs.clear(); 5049 } 5050 } 5051 ++NumMemoryInsts; 5052 return true; 5053 } 5054 5055 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5056 /// address computing into the block when possible / profitable. 5057 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5058 bool MadeChange = false; 5059 5060 const TargetRegisterInfo *TRI = 5061 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5062 TargetLowering::AsmOperandInfoVector TargetConstraints = 5063 TLI->ParseConstraints(*DL, TRI, CS); 5064 unsigned ArgNo = 0; 5065 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5066 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5067 5068 // Compute the constraint code and ConstraintType to use. 5069 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5070 5071 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5072 OpInfo.isIndirect) { 5073 Value *OpVal = CS->getArgOperand(ArgNo++); 5074 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5075 } else if (OpInfo.Type == InlineAsm::isInput) 5076 ArgNo++; 5077 } 5078 5079 return MadeChange; 5080 } 5081 5082 /// Check if all the uses of \p Val are equivalent (or free) zero or 5083 /// sign extensions. 5084 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5085 assert(!Val->use_empty() && "Input must have at least one use"); 5086 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5087 bool IsSExt = isa<SExtInst>(FirstUser); 5088 Type *ExtTy = FirstUser->getType(); 5089 for (const User *U : Val->users()) { 5090 const Instruction *UI = cast<Instruction>(U); 5091 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5092 return false; 5093 Type *CurTy = UI->getType(); 5094 // Same input and output types: Same instruction after CSE. 5095 if (CurTy == ExtTy) 5096 continue; 5097 5098 // If IsSExt is true, we are in this situation: 5099 // a = Val 5100 // b = sext ty1 a to ty2 5101 // c = sext ty1 a to ty3 5102 // Assuming ty2 is shorter than ty3, this could be turned into: 5103 // a = Val 5104 // b = sext ty1 a to ty2 5105 // c = sext ty2 b to ty3 5106 // However, the last sext is not free. 5107 if (IsSExt) 5108 return false; 5109 5110 // This is a ZExt, maybe this is free to extend from one type to another. 5111 // In that case, we would not account for a different use. 5112 Type *NarrowTy; 5113 Type *LargeTy; 5114 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5115 CurTy->getScalarType()->getIntegerBitWidth()) { 5116 NarrowTy = CurTy; 5117 LargeTy = ExtTy; 5118 } else { 5119 NarrowTy = ExtTy; 5120 LargeTy = CurTy; 5121 } 5122 5123 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5124 return false; 5125 } 5126 // All uses are the same or can be derived from one another for free. 5127 return true; 5128 } 5129 5130 /// Try to speculatively promote extensions in \p Exts and continue 5131 /// promoting through newly promoted operands recursively as far as doing so is 5132 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5133 /// When some promotion happened, \p TPT contains the proper state to revert 5134 /// them. 5135 /// 5136 /// \return true if some promotion happened, false otherwise. 5137 bool CodeGenPrepare::tryToPromoteExts( 5138 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5139 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5140 unsigned CreatedInstsCost) { 5141 bool Promoted = false; 5142 5143 // Iterate over all the extensions to try to promote them. 5144 for (auto I : Exts) { 5145 // Early check if we directly have ext(load). 5146 if (isa<LoadInst>(I->getOperand(0))) { 5147 ProfitablyMovedExts.push_back(I); 5148 continue; 5149 } 5150 5151 // Check whether or not we want to do any promotion. The reason we have 5152 // this check inside the for loop is to catch the case where an extension 5153 // is directly fed by a load because in such case the extension can be moved 5154 // up without any promotion on its operands. 5155 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5156 return false; 5157 5158 // Get the action to perform the promotion. 5159 TypePromotionHelper::Action TPH = 5160 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5161 // Check if we can promote. 5162 if (!TPH) { 5163 // Save the current extension as we cannot move up through its operand. 5164 ProfitablyMovedExts.push_back(I); 5165 continue; 5166 } 5167 5168 // Save the current state. 5169 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5170 TPT.getRestorationPoint(); 5171 SmallVector<Instruction *, 4> NewExts; 5172 unsigned NewCreatedInstsCost = 0; 5173 unsigned ExtCost = !TLI->isExtFree(I); 5174 // Promote. 5175 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5176 &NewExts, nullptr, *TLI); 5177 assert(PromotedVal && 5178 "TypePromotionHelper should have filtered out those cases"); 5179 5180 // We would be able to merge only one extension in a load. 5181 // Therefore, if we have more than 1 new extension we heuristically 5182 // cut this search path, because it means we degrade the code quality. 5183 // With exactly 2, the transformation is neutral, because we will merge 5184 // one extension but leave one. However, we optimistically keep going, 5185 // because the new extension may be removed too. 5186 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5187 // FIXME: It would be possible to propagate a negative value instead of 5188 // conservatively ceiling it to 0. 5189 TotalCreatedInstsCost = 5190 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5191 if (!StressExtLdPromotion && 5192 (TotalCreatedInstsCost > 1 || 5193 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5194 // This promotion is not profitable, rollback to the previous state, and 5195 // save the current extension in ProfitablyMovedExts as the latest 5196 // speculative promotion turned out to be unprofitable. 5197 TPT.rollback(LastKnownGood); 5198 ProfitablyMovedExts.push_back(I); 5199 continue; 5200 } 5201 // Continue promoting NewExts as far as doing so is profitable. 5202 SmallVector<Instruction *, 2> NewlyMovedExts; 5203 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5204 bool NewPromoted = false; 5205 for (auto ExtInst : NewlyMovedExts) { 5206 Instruction *MovedExt = cast<Instruction>(ExtInst); 5207 Value *ExtOperand = MovedExt->getOperand(0); 5208 // If we have reached to a load, we need this extra profitability check 5209 // as it could potentially be merged into an ext(load). 5210 if (isa<LoadInst>(ExtOperand) && 5211 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5212 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5213 continue; 5214 5215 ProfitablyMovedExts.push_back(MovedExt); 5216 NewPromoted = true; 5217 } 5218 5219 // If none of speculative promotions for NewExts is profitable, rollback 5220 // and save the current extension (I) as the last profitable extension. 5221 if (!NewPromoted) { 5222 TPT.rollback(LastKnownGood); 5223 ProfitablyMovedExts.push_back(I); 5224 continue; 5225 } 5226 // The promotion is profitable. 5227 Promoted = true; 5228 } 5229 return Promoted; 5230 } 5231 5232 /// Merging redundant sexts when one is dominating the other. 5233 bool CodeGenPrepare::mergeSExts(Function &F) { 5234 bool Changed = false; 5235 for (auto &Entry : ValToSExtendedUses) { 5236 SExts &Insts = Entry.second; 5237 SExts CurPts; 5238 for (Instruction *Inst : Insts) { 5239 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5240 Inst->getOperand(0) != Entry.first) 5241 continue; 5242 bool inserted = false; 5243 for (auto &Pt : CurPts) { 5244 if (getDT(F).dominates(Inst, Pt)) { 5245 Pt->replaceAllUsesWith(Inst); 5246 RemovedInsts.insert(Pt); 5247 Pt->removeFromParent(); 5248 Pt = Inst; 5249 inserted = true; 5250 Changed = true; 5251 break; 5252 } 5253 if (!getDT(F).dominates(Pt, Inst)) 5254 // Give up if we need to merge in a common dominator as the 5255 // experiments show it is not profitable. 5256 continue; 5257 Inst->replaceAllUsesWith(Pt); 5258 RemovedInsts.insert(Inst); 5259 Inst->removeFromParent(); 5260 inserted = true; 5261 Changed = true; 5262 break; 5263 } 5264 if (!inserted) 5265 CurPts.push_back(Inst); 5266 } 5267 } 5268 return Changed; 5269 } 5270 5271 // Spliting large data structures so that the GEPs accessing them can have 5272 // smaller offsets so that they can be sunk to the same blocks as their users. 5273 // For example, a large struct starting from %base is splitted into two parts 5274 // where the second part starts from %new_base. 5275 // 5276 // Before: 5277 // BB0: 5278 // %base = 5279 // 5280 // BB1: 5281 // %gep0 = gep %base, off0 5282 // %gep1 = gep %base, off1 5283 // %gep2 = gep %base, off2 5284 // 5285 // BB2: 5286 // %load1 = load %gep0 5287 // %load2 = load %gep1 5288 // %load3 = load %gep2 5289 // 5290 // After: 5291 // BB0: 5292 // %base = 5293 // %new_base = gep %base, off0 5294 // 5295 // BB1: 5296 // %new_gep0 = %new_base 5297 // %new_gep1 = gep %new_base, off1 - off0 5298 // %new_gep2 = gep %new_base, off2 - off0 5299 // 5300 // BB2: 5301 // %load1 = load i32, i32* %new_gep0 5302 // %load2 = load i32, i32* %new_gep1 5303 // %load3 = load i32, i32* %new_gep2 5304 // 5305 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5306 // their offsets are smaller enough to fit into the addressing mode. 5307 bool CodeGenPrepare::splitLargeGEPOffsets() { 5308 bool Changed = false; 5309 for (auto &Entry : LargeOffsetGEPMap) { 5310 Value *OldBase = Entry.first; 5311 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5312 &LargeOffsetGEPs = Entry.second; 5313 auto compareGEPOffset = 5314 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5315 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5316 if (LHS.first == RHS.first) 5317 return false; 5318 if (LHS.second != RHS.second) 5319 return LHS.second < RHS.second; 5320 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5321 }; 5322 // Sorting all the GEPs of the same data structures based on the offsets. 5323 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5324 LargeOffsetGEPs.erase( 5325 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5326 LargeOffsetGEPs.end()); 5327 // Skip if all the GEPs have the same offsets. 5328 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5329 continue; 5330 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5331 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5332 Value *NewBaseGEP = nullptr; 5333 5334 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5335 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5336 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5337 int64_t Offset = LargeOffsetGEP->second; 5338 if (Offset != BaseOffset) { 5339 TargetLowering::AddrMode AddrMode; 5340 AddrMode.BaseOffs = Offset - BaseOffset; 5341 // The result type of the GEP might not be the type of the memory 5342 // access. 5343 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5344 GEP->getResultElementType(), 5345 GEP->getAddressSpace())) { 5346 // We need to create a new base if the offset to the current base is 5347 // too large to fit into the addressing mode. So, a very large struct 5348 // may be splitted into several parts. 5349 BaseGEP = GEP; 5350 BaseOffset = Offset; 5351 NewBaseGEP = nullptr; 5352 } 5353 } 5354 5355 // Generate a new GEP to replace the current one. 5356 LLVMContext &Ctx = GEP->getContext(); 5357 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5358 Type *I8PtrTy = 5359 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5360 Type *I8Ty = Type::getInt8Ty(Ctx); 5361 5362 if (!NewBaseGEP) { 5363 // Create a new base if we don't have one yet. Find the insertion 5364 // pointer for the new base first. 5365 BasicBlock::iterator NewBaseInsertPt; 5366 BasicBlock *NewBaseInsertBB; 5367 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5368 // If the base of the struct is an instruction, the new base will be 5369 // inserted close to it. 5370 NewBaseInsertBB = BaseI->getParent(); 5371 if (isa<PHINode>(BaseI)) 5372 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5373 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5374 NewBaseInsertBB = 5375 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5376 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5377 } else 5378 NewBaseInsertPt = std::next(BaseI->getIterator()); 5379 } else { 5380 // If the current base is an argument or global value, the new base 5381 // will be inserted to the entry block. 5382 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5383 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5384 } 5385 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5386 // Create a new base. 5387 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5388 NewBaseGEP = OldBase; 5389 if (NewBaseGEP->getType() != I8PtrTy) 5390 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5391 NewBaseGEP = 5392 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5393 NewGEPBases.insert(NewBaseGEP); 5394 } 5395 5396 IRBuilder<> Builder(GEP); 5397 Value *NewGEP = NewBaseGEP; 5398 if (Offset == BaseOffset) { 5399 if (GEP->getType() != I8PtrTy) 5400 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5401 } else { 5402 // Calculate the new offset for the new GEP. 5403 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5404 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5405 5406 if (GEP->getType() != I8PtrTy) 5407 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5408 } 5409 GEP->replaceAllUsesWith(NewGEP); 5410 LargeOffsetGEPID.erase(GEP); 5411 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5412 GEP->eraseFromParent(); 5413 Changed = true; 5414 } 5415 } 5416 return Changed; 5417 } 5418 5419 /// Return true, if an ext(load) can be formed from an extension in 5420 /// \p MovedExts. 5421 bool CodeGenPrepare::canFormExtLd( 5422 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5423 Instruction *&Inst, bool HasPromoted) { 5424 for (auto *MovedExtInst : MovedExts) { 5425 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5426 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5427 Inst = MovedExtInst; 5428 break; 5429 } 5430 } 5431 if (!LI) 5432 return false; 5433 5434 // If they're already in the same block, there's nothing to do. 5435 // Make the cheap checks first if we did not promote. 5436 // If we promoted, we need to check if it is indeed profitable. 5437 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5438 return false; 5439 5440 return TLI->isExtLoad(LI, Inst, *DL); 5441 } 5442 5443 /// Move a zext or sext fed by a load into the same basic block as the load, 5444 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5445 /// extend into the load. 5446 /// 5447 /// E.g., 5448 /// \code 5449 /// %ld = load i32* %addr 5450 /// %add = add nuw i32 %ld, 4 5451 /// %zext = zext i32 %add to i64 5452 // \endcode 5453 /// => 5454 /// \code 5455 /// %ld = load i32* %addr 5456 /// %zext = zext i32 %ld to i64 5457 /// %add = add nuw i64 %zext, 4 5458 /// \encode 5459 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5460 /// allow us to match zext(load i32*) to i64. 5461 /// 5462 /// Also, try to promote the computations used to obtain a sign extended 5463 /// value used into memory accesses. 5464 /// E.g., 5465 /// \code 5466 /// a = add nsw i32 b, 3 5467 /// d = sext i32 a to i64 5468 /// e = getelementptr ..., i64 d 5469 /// \endcode 5470 /// => 5471 /// \code 5472 /// f = sext i32 b to i64 5473 /// a = add nsw i64 f, 3 5474 /// e = getelementptr ..., i64 a 5475 /// \endcode 5476 /// 5477 /// \p Inst[in/out] the extension may be modified during the process if some 5478 /// promotions apply. 5479 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5480 // ExtLoad formation and address type promotion infrastructure requires TLI to 5481 // be effective. 5482 if (!TLI) 5483 return false; 5484 5485 bool AllowPromotionWithoutCommonHeader = false; 5486 /// See if it is an interesting sext operations for the address type 5487 /// promotion before trying to promote it, e.g., the ones with the right 5488 /// type and used in memory accesses. 5489 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5490 *Inst, AllowPromotionWithoutCommonHeader); 5491 TypePromotionTransaction TPT(RemovedInsts); 5492 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5493 TPT.getRestorationPoint(); 5494 SmallVector<Instruction *, 1> Exts; 5495 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5496 Exts.push_back(Inst); 5497 5498 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5499 5500 // Look for a load being extended. 5501 LoadInst *LI = nullptr; 5502 Instruction *ExtFedByLoad; 5503 5504 // Try to promote a chain of computation if it allows to form an extended 5505 // load. 5506 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5507 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5508 TPT.commit(); 5509 // Move the extend into the same block as the load 5510 ExtFedByLoad->moveAfter(LI); 5511 // CGP does not check if the zext would be speculatively executed when moved 5512 // to the same basic block as the load. Preserving its original location 5513 // would pessimize the debugging experience, as well as negatively impact 5514 // the quality of sample pgo. We don't want to use "line 0" as that has a 5515 // size cost in the line-table section and logically the zext can be seen as 5516 // part of the load. Therefore we conservatively reuse the same debug 5517 // location for the load and the zext. 5518 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5519 ++NumExtsMoved; 5520 Inst = ExtFedByLoad; 5521 return true; 5522 } 5523 5524 // Continue promoting SExts if known as considerable depending on targets. 5525 if (ATPConsiderable && 5526 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5527 HasPromoted, TPT, SpeculativelyMovedExts)) 5528 return true; 5529 5530 TPT.rollback(LastKnownGood); 5531 return false; 5532 } 5533 5534 // Perform address type promotion if doing so is profitable. 5535 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5536 // instructions that sign extended the same initial value. However, if 5537 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5538 // extension is just profitable. 5539 bool CodeGenPrepare::performAddressTypePromotion( 5540 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5541 bool HasPromoted, TypePromotionTransaction &TPT, 5542 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5543 bool Promoted = false; 5544 SmallPtrSet<Instruction *, 1> UnhandledExts; 5545 bool AllSeenFirst = true; 5546 for (auto I : SpeculativelyMovedExts) { 5547 Value *HeadOfChain = I->getOperand(0); 5548 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5549 SeenChainsForSExt.find(HeadOfChain); 5550 // If there is an unhandled SExt which has the same header, try to promote 5551 // it as well. 5552 if (AlreadySeen != SeenChainsForSExt.end()) { 5553 if (AlreadySeen->second != nullptr) 5554 UnhandledExts.insert(AlreadySeen->second); 5555 AllSeenFirst = false; 5556 } 5557 } 5558 5559 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5560 SpeculativelyMovedExts.size() == 1)) { 5561 TPT.commit(); 5562 if (HasPromoted) 5563 Promoted = true; 5564 for (auto I : SpeculativelyMovedExts) { 5565 Value *HeadOfChain = I->getOperand(0); 5566 SeenChainsForSExt[HeadOfChain] = nullptr; 5567 ValToSExtendedUses[HeadOfChain].push_back(I); 5568 } 5569 // Update Inst as promotion happen. 5570 Inst = SpeculativelyMovedExts.pop_back_val(); 5571 } else { 5572 // This is the first chain visited from the header, keep the current chain 5573 // as unhandled. Defer to promote this until we encounter another SExt 5574 // chain derived from the same header. 5575 for (auto I : SpeculativelyMovedExts) { 5576 Value *HeadOfChain = I->getOperand(0); 5577 SeenChainsForSExt[HeadOfChain] = Inst; 5578 } 5579 return false; 5580 } 5581 5582 if (!AllSeenFirst && !UnhandledExts.empty()) 5583 for (auto VisitedSExt : UnhandledExts) { 5584 if (RemovedInsts.count(VisitedSExt)) 5585 continue; 5586 TypePromotionTransaction TPT(RemovedInsts); 5587 SmallVector<Instruction *, 1> Exts; 5588 SmallVector<Instruction *, 2> Chains; 5589 Exts.push_back(VisitedSExt); 5590 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5591 TPT.commit(); 5592 if (HasPromoted) 5593 Promoted = true; 5594 for (auto I : Chains) { 5595 Value *HeadOfChain = I->getOperand(0); 5596 // Mark this as handled. 5597 SeenChainsForSExt[HeadOfChain] = nullptr; 5598 ValToSExtendedUses[HeadOfChain].push_back(I); 5599 } 5600 } 5601 return Promoted; 5602 } 5603 5604 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5605 BasicBlock *DefBB = I->getParent(); 5606 5607 // If the result of a {s|z}ext and its source are both live out, rewrite all 5608 // other uses of the source with result of extension. 5609 Value *Src = I->getOperand(0); 5610 if (Src->hasOneUse()) 5611 return false; 5612 5613 // Only do this xform if truncating is free. 5614 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5615 return false; 5616 5617 // Only safe to perform the optimization if the source is also defined in 5618 // this block. 5619 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5620 return false; 5621 5622 bool DefIsLiveOut = false; 5623 for (User *U : I->users()) { 5624 Instruction *UI = cast<Instruction>(U); 5625 5626 // Figure out which BB this ext is used in. 5627 BasicBlock *UserBB = UI->getParent(); 5628 if (UserBB == DefBB) continue; 5629 DefIsLiveOut = true; 5630 break; 5631 } 5632 if (!DefIsLiveOut) 5633 return false; 5634 5635 // Make sure none of the uses are PHI nodes. 5636 for (User *U : Src->users()) { 5637 Instruction *UI = cast<Instruction>(U); 5638 BasicBlock *UserBB = UI->getParent(); 5639 if (UserBB == DefBB) continue; 5640 // Be conservative. We don't want this xform to end up introducing 5641 // reloads just before load / store instructions. 5642 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5643 return false; 5644 } 5645 5646 // InsertedTruncs - Only insert one trunc in each block once. 5647 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5648 5649 bool MadeChange = false; 5650 for (Use &U : Src->uses()) { 5651 Instruction *User = cast<Instruction>(U.getUser()); 5652 5653 // Figure out which BB this ext is used in. 5654 BasicBlock *UserBB = User->getParent(); 5655 if (UserBB == DefBB) continue; 5656 5657 // Both src and def are live in this block. Rewrite the use. 5658 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5659 5660 if (!InsertedTrunc) { 5661 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5662 assert(InsertPt != UserBB->end()); 5663 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5664 InsertedInsts.insert(InsertedTrunc); 5665 } 5666 5667 // Replace a use of the {s|z}ext source with a use of the result. 5668 U = InsertedTrunc; 5669 ++NumExtUses; 5670 MadeChange = true; 5671 } 5672 5673 return MadeChange; 5674 } 5675 5676 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5677 // just after the load if the target can fold this into one extload instruction, 5678 // with the hope of eliminating some of the other later "and" instructions using 5679 // the loaded value. "and"s that are made trivially redundant by the insertion 5680 // of the new "and" are removed by this function, while others (e.g. those whose 5681 // path from the load goes through a phi) are left for isel to potentially 5682 // remove. 5683 // 5684 // For example: 5685 // 5686 // b0: 5687 // x = load i32 5688 // ... 5689 // b1: 5690 // y = and x, 0xff 5691 // z = use y 5692 // 5693 // becomes: 5694 // 5695 // b0: 5696 // x = load i32 5697 // x' = and x, 0xff 5698 // ... 5699 // b1: 5700 // z = use x' 5701 // 5702 // whereas: 5703 // 5704 // b0: 5705 // x1 = load i32 5706 // ... 5707 // b1: 5708 // x2 = load i32 5709 // ... 5710 // b2: 5711 // x = phi x1, x2 5712 // y = and x, 0xff 5713 // 5714 // becomes (after a call to optimizeLoadExt for each load): 5715 // 5716 // b0: 5717 // x1 = load i32 5718 // x1' = and x1, 0xff 5719 // ... 5720 // b1: 5721 // x2 = load i32 5722 // x2' = and x2, 0xff 5723 // ... 5724 // b2: 5725 // x = phi x1', x2' 5726 // y = and x, 0xff 5727 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5728 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5729 return false; 5730 5731 // Skip loads we've already transformed. 5732 if (Load->hasOneUse() && 5733 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5734 return false; 5735 5736 // Look at all uses of Load, looking through phis, to determine how many bits 5737 // of the loaded value are needed. 5738 SmallVector<Instruction *, 8> WorkList; 5739 SmallPtrSet<Instruction *, 16> Visited; 5740 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5741 for (auto *U : Load->users()) 5742 WorkList.push_back(cast<Instruction>(U)); 5743 5744 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5745 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5746 APInt DemandBits(BitWidth, 0); 5747 APInt WidestAndBits(BitWidth, 0); 5748 5749 while (!WorkList.empty()) { 5750 Instruction *I = WorkList.back(); 5751 WorkList.pop_back(); 5752 5753 // Break use-def graph loops. 5754 if (!Visited.insert(I).second) 5755 continue; 5756 5757 // For a PHI node, push all of its users. 5758 if (auto *Phi = dyn_cast<PHINode>(I)) { 5759 for (auto *U : Phi->users()) 5760 WorkList.push_back(cast<Instruction>(U)); 5761 continue; 5762 } 5763 5764 switch (I->getOpcode()) { 5765 case Instruction::And: { 5766 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5767 if (!AndC) 5768 return false; 5769 APInt AndBits = AndC->getValue(); 5770 DemandBits |= AndBits; 5771 // Keep track of the widest and mask we see. 5772 if (AndBits.ugt(WidestAndBits)) 5773 WidestAndBits = AndBits; 5774 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5775 AndsToMaybeRemove.push_back(I); 5776 break; 5777 } 5778 5779 case Instruction::Shl: { 5780 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5781 if (!ShlC) 5782 return false; 5783 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5784 DemandBits.setLowBits(BitWidth - ShiftAmt); 5785 break; 5786 } 5787 5788 case Instruction::Trunc: { 5789 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5790 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5791 DemandBits.setLowBits(TruncBitWidth); 5792 break; 5793 } 5794 5795 default: 5796 return false; 5797 } 5798 } 5799 5800 uint32_t ActiveBits = DemandBits.getActiveBits(); 5801 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5802 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5803 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5804 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5805 // followed by an AND. 5806 // TODO: Look into removing this restriction by fixing backends to either 5807 // return false for isLoadExtLegal for i1 or have them select this pattern to 5808 // a single instruction. 5809 // 5810 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5811 // mask, since these are the only ands that will be removed by isel. 5812 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5813 WidestAndBits != DemandBits) 5814 return false; 5815 5816 LLVMContext &Ctx = Load->getType()->getContext(); 5817 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5818 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5819 5820 // Reject cases that won't be matched as extloads. 5821 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5822 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5823 return false; 5824 5825 IRBuilder<> Builder(Load->getNextNode()); 5826 auto *NewAnd = dyn_cast<Instruction>( 5827 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5828 // Mark this instruction as "inserted by CGP", so that other 5829 // optimizations don't touch it. 5830 InsertedInsts.insert(NewAnd); 5831 5832 // Replace all uses of load with new and (except for the use of load in the 5833 // new and itself). 5834 Load->replaceAllUsesWith(NewAnd); 5835 NewAnd->setOperand(0, Load); 5836 5837 // Remove any and instructions that are now redundant. 5838 for (auto *And : AndsToMaybeRemove) 5839 // Check that the and mask is the same as the one we decided to put on the 5840 // new and. 5841 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5842 And->replaceAllUsesWith(NewAnd); 5843 if (&*CurInstIterator == And) 5844 CurInstIterator = std::next(And->getIterator()); 5845 And->eraseFromParent(); 5846 ++NumAndUses; 5847 } 5848 5849 ++NumAndsAdded; 5850 return true; 5851 } 5852 5853 /// Check if V (an operand of a select instruction) is an expensive instruction 5854 /// that is only used once. 5855 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5856 auto *I = dyn_cast<Instruction>(V); 5857 // If it's safe to speculatively execute, then it should not have side 5858 // effects; therefore, it's safe to sink and possibly *not* execute. 5859 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5860 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5861 } 5862 5863 /// Returns true if a SelectInst should be turned into an explicit branch. 5864 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5865 const TargetLowering *TLI, 5866 SelectInst *SI) { 5867 // If even a predictable select is cheap, then a branch can't be cheaper. 5868 if (!TLI->isPredictableSelectExpensive()) 5869 return false; 5870 5871 // FIXME: This should use the same heuristics as IfConversion to determine 5872 // whether a select is better represented as a branch. 5873 5874 // If metadata tells us that the select condition is obviously predictable, 5875 // then we want to replace the select with a branch. 5876 uint64_t TrueWeight, FalseWeight; 5877 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5878 uint64_t Max = std::max(TrueWeight, FalseWeight); 5879 uint64_t Sum = TrueWeight + FalseWeight; 5880 if (Sum != 0) { 5881 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5882 if (Probability > TLI->getPredictableBranchThreshold()) 5883 return true; 5884 } 5885 } 5886 5887 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5888 5889 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5890 // comparison condition. If the compare has more than one use, there's 5891 // probably another cmov or setcc around, so it's not worth emitting a branch. 5892 if (!Cmp || !Cmp->hasOneUse()) 5893 return false; 5894 5895 // If either operand of the select is expensive and only needed on one side 5896 // of the select, we should form a branch. 5897 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5898 sinkSelectOperand(TTI, SI->getFalseValue())) 5899 return true; 5900 5901 return false; 5902 } 5903 5904 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5905 /// false value of \p SI. If the true/false value of \p SI is defined by any 5906 /// select instructions in \p Selects, look through the defining select 5907 /// instruction until the true/false value is not defined in \p Selects. 5908 static Value *getTrueOrFalseValue( 5909 SelectInst *SI, bool isTrue, 5910 const SmallPtrSet<const Instruction *, 2> &Selects) { 5911 Value *V; 5912 5913 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5914 DefSI = dyn_cast<SelectInst>(V)) { 5915 assert(DefSI->getCondition() == SI->getCondition() && 5916 "The condition of DefSI does not match with SI"); 5917 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5918 } 5919 return V; 5920 } 5921 5922 /// If we have a SelectInst that will likely profit from branch prediction, 5923 /// turn it into a branch. 5924 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5925 // If branch conversion isn't desirable, exit early. 5926 if (DisableSelectToBranch || OptSize || !TLI) 5927 return false; 5928 5929 // Find all consecutive select instructions that share the same condition. 5930 SmallVector<SelectInst *, 2> ASI; 5931 ASI.push_back(SI); 5932 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5933 It != SI->getParent()->end(); ++It) { 5934 SelectInst *I = dyn_cast<SelectInst>(&*It); 5935 if (I && SI->getCondition() == I->getCondition()) { 5936 ASI.push_back(I); 5937 } else { 5938 break; 5939 } 5940 } 5941 5942 SelectInst *LastSI = ASI.back(); 5943 // Increment the current iterator to skip all the rest of select instructions 5944 // because they will be either "not lowered" or "all lowered" to branch. 5945 CurInstIterator = std::next(LastSI->getIterator()); 5946 5947 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5948 5949 // Can we convert the 'select' to CF ? 5950 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5951 return false; 5952 5953 TargetLowering::SelectSupportKind SelectKind; 5954 if (VectorCond) 5955 SelectKind = TargetLowering::VectorMaskSelect; 5956 else if (SI->getType()->isVectorTy()) 5957 SelectKind = TargetLowering::ScalarCondVectorVal; 5958 else 5959 SelectKind = TargetLowering::ScalarValSelect; 5960 5961 if (TLI->isSelectSupported(SelectKind) && 5962 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5963 return false; 5964 5965 // The DominatorTree needs to be rebuilt by any consumers after this 5966 // transformation. We simply reset here rather than setting the ModifiedDT 5967 // flag to avoid restarting the function walk in runOnFunction for each 5968 // select optimized. 5969 DT.reset(); 5970 5971 // Transform a sequence like this: 5972 // start: 5973 // %cmp = cmp uge i32 %a, %b 5974 // %sel = select i1 %cmp, i32 %c, i32 %d 5975 // 5976 // Into: 5977 // start: 5978 // %cmp = cmp uge i32 %a, %b 5979 // br i1 %cmp, label %select.true, label %select.false 5980 // select.true: 5981 // br label %select.end 5982 // select.false: 5983 // br label %select.end 5984 // select.end: 5985 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5986 // 5987 // In addition, we may sink instructions that produce %c or %d from 5988 // the entry block into the destination(s) of the new branch. 5989 // If the true or false blocks do not contain a sunken instruction, that 5990 // block and its branch may be optimized away. In that case, one side of the 5991 // first branch will point directly to select.end, and the corresponding PHI 5992 // predecessor block will be the start block. 5993 5994 // First, we split the block containing the select into 2 blocks. 5995 BasicBlock *StartBlock = SI->getParent(); 5996 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5997 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5998 5999 // Delete the unconditional branch that was just created by the split. 6000 StartBlock->getTerminator()->eraseFromParent(); 6001 6002 // These are the new basic blocks for the conditional branch. 6003 // At least one will become an actual new basic block. 6004 BasicBlock *TrueBlock = nullptr; 6005 BasicBlock *FalseBlock = nullptr; 6006 BranchInst *TrueBranch = nullptr; 6007 BranchInst *FalseBranch = nullptr; 6008 6009 // Sink expensive instructions into the conditional blocks to avoid executing 6010 // them speculatively. 6011 for (SelectInst *SI : ASI) { 6012 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6013 if (TrueBlock == nullptr) { 6014 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6015 EndBlock->getParent(), EndBlock); 6016 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6017 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6018 } 6019 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6020 TrueInst->moveBefore(TrueBranch); 6021 } 6022 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6023 if (FalseBlock == nullptr) { 6024 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6025 EndBlock->getParent(), EndBlock); 6026 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6027 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6028 } 6029 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6030 FalseInst->moveBefore(FalseBranch); 6031 } 6032 } 6033 6034 // If there was nothing to sink, then arbitrarily choose the 'false' side 6035 // for a new input value to the PHI. 6036 if (TrueBlock == FalseBlock) { 6037 assert(TrueBlock == nullptr && 6038 "Unexpected basic block transform while optimizing select"); 6039 6040 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6041 EndBlock->getParent(), EndBlock); 6042 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6043 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6044 } 6045 6046 // Insert the real conditional branch based on the original condition. 6047 // If we did not create a new block for one of the 'true' or 'false' paths 6048 // of the condition, it means that side of the branch goes to the end block 6049 // directly and the path originates from the start block from the point of 6050 // view of the new PHI. 6051 BasicBlock *TT, *FT; 6052 if (TrueBlock == nullptr) { 6053 TT = EndBlock; 6054 FT = FalseBlock; 6055 TrueBlock = StartBlock; 6056 } else if (FalseBlock == nullptr) { 6057 TT = TrueBlock; 6058 FT = EndBlock; 6059 FalseBlock = StartBlock; 6060 } else { 6061 TT = TrueBlock; 6062 FT = FalseBlock; 6063 } 6064 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6065 6066 SmallPtrSet<const Instruction *, 2> INS; 6067 INS.insert(ASI.begin(), ASI.end()); 6068 // Use reverse iterator because later select may use the value of the 6069 // earlier select, and we need to propagate value through earlier select 6070 // to get the PHI operand. 6071 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6072 SelectInst *SI = *It; 6073 // The select itself is replaced with a PHI Node. 6074 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6075 PN->takeName(SI); 6076 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6077 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6078 PN->setDebugLoc(SI->getDebugLoc()); 6079 6080 SI->replaceAllUsesWith(PN); 6081 SI->eraseFromParent(); 6082 INS.erase(SI); 6083 ++NumSelectsExpanded; 6084 } 6085 6086 // Instruct OptimizeBlock to skip to the next block. 6087 CurInstIterator = StartBlock->end(); 6088 return true; 6089 } 6090 6091 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6092 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6093 int SplatElem = -1; 6094 for (unsigned i = 0; i < Mask.size(); ++i) { 6095 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6096 return false; 6097 SplatElem = Mask[i]; 6098 } 6099 6100 return true; 6101 } 6102 6103 /// Some targets have expensive vector shifts if the lanes aren't all the same 6104 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6105 /// it's often worth sinking a shufflevector splat down to its use so that 6106 /// codegen can spot all lanes are identical. 6107 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6108 BasicBlock *DefBB = SVI->getParent(); 6109 6110 // Only do this xform if variable vector shifts are particularly expensive. 6111 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6112 return false; 6113 6114 // We only expect better codegen by sinking a shuffle if we can recognise a 6115 // constant splat. 6116 if (!isBroadcastShuffle(SVI)) 6117 return false; 6118 6119 // InsertedShuffles - Only insert a shuffle in each block once. 6120 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6121 6122 bool MadeChange = false; 6123 for (User *U : SVI->users()) { 6124 Instruction *UI = cast<Instruction>(U); 6125 6126 // Figure out which BB this ext is used in. 6127 BasicBlock *UserBB = UI->getParent(); 6128 if (UserBB == DefBB) continue; 6129 6130 // For now only apply this when the splat is used by a shift instruction. 6131 if (!UI->isShift()) continue; 6132 6133 // Everything checks out, sink the shuffle if the user's block doesn't 6134 // already have a copy. 6135 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6136 6137 if (!InsertedShuffle) { 6138 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6139 assert(InsertPt != UserBB->end()); 6140 InsertedShuffle = 6141 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6142 SVI->getOperand(2), "", &*InsertPt); 6143 } 6144 6145 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6146 MadeChange = true; 6147 } 6148 6149 // If we removed all uses, nuke the shuffle. 6150 if (SVI->use_empty()) { 6151 SVI->eraseFromParent(); 6152 MadeChange = true; 6153 } 6154 6155 return MadeChange; 6156 } 6157 6158 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6159 // If the operands of I can be folded into a target instruction together with 6160 // I, duplicate and sink them. 6161 SmallVector<Use *, 4> OpsToSink; 6162 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6163 return false; 6164 6165 // OpsToSink can contain multiple uses in a use chain (e.g. 6166 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6167 // uses must come first, which means they are sunk first, temporarily creating 6168 // invalid IR. This will be fixed once their dominated users are sunk and 6169 // updated. 6170 BasicBlock *TargetBB = I->getParent(); 6171 bool Changed = false; 6172 SmallVector<Use *, 4> ToReplace; 6173 for (Use *U : OpsToSink) { 6174 auto *UI = cast<Instruction>(U->get()); 6175 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6176 continue; 6177 ToReplace.push_back(U); 6178 } 6179 6180 SmallPtrSet<Instruction *, 4> MaybeDead; 6181 for (Use *U : ToReplace) { 6182 auto *UI = cast<Instruction>(U->get()); 6183 Instruction *NI = UI->clone(); 6184 MaybeDead.insert(UI); 6185 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6186 NI->insertBefore(I); 6187 InsertedInsts.insert(NI); 6188 U->set(NI); 6189 Changed = true; 6190 } 6191 6192 // Remove instructions that are dead after sinking. 6193 for (auto *I : MaybeDead) 6194 if (!I->hasNUsesOrMore(1)) 6195 I->eraseFromParent(); 6196 6197 return Changed; 6198 } 6199 6200 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6201 if (!TLI || !DL) 6202 return false; 6203 6204 Value *Cond = SI->getCondition(); 6205 Type *OldType = Cond->getType(); 6206 LLVMContext &Context = Cond->getContext(); 6207 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6208 unsigned RegWidth = RegType.getSizeInBits(); 6209 6210 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6211 return false; 6212 6213 // If the register width is greater than the type width, expand the condition 6214 // of the switch instruction and each case constant to the width of the 6215 // register. By widening the type of the switch condition, subsequent 6216 // comparisons (for case comparisons) will not need to be extended to the 6217 // preferred register width, so we will potentially eliminate N-1 extends, 6218 // where N is the number of cases in the switch. 6219 auto *NewType = Type::getIntNTy(Context, RegWidth); 6220 6221 // Zero-extend the switch condition and case constants unless the switch 6222 // condition is a function argument that is already being sign-extended. 6223 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6224 // everything instead. 6225 Instruction::CastOps ExtType = Instruction::ZExt; 6226 if (auto *Arg = dyn_cast<Argument>(Cond)) 6227 if (Arg->hasSExtAttr()) 6228 ExtType = Instruction::SExt; 6229 6230 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6231 ExtInst->insertBefore(SI); 6232 ExtInst->setDebugLoc(SI->getDebugLoc()); 6233 SI->setCondition(ExtInst); 6234 for (auto Case : SI->cases()) { 6235 APInt NarrowConst = Case.getCaseValue()->getValue(); 6236 APInt WideConst = (ExtType == Instruction::ZExt) ? 6237 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6238 Case.setValue(ConstantInt::get(Context, WideConst)); 6239 } 6240 6241 return true; 6242 } 6243 6244 6245 namespace { 6246 6247 /// Helper class to promote a scalar operation to a vector one. 6248 /// This class is used to move downward extractelement transition. 6249 /// E.g., 6250 /// a = vector_op <2 x i32> 6251 /// b = extractelement <2 x i32> a, i32 0 6252 /// c = scalar_op b 6253 /// store c 6254 /// 6255 /// => 6256 /// a = vector_op <2 x i32> 6257 /// c = vector_op a (equivalent to scalar_op on the related lane) 6258 /// * d = extractelement <2 x i32> c, i32 0 6259 /// * store d 6260 /// Assuming both extractelement and store can be combine, we get rid of the 6261 /// transition. 6262 class VectorPromoteHelper { 6263 /// DataLayout associated with the current module. 6264 const DataLayout &DL; 6265 6266 /// Used to perform some checks on the legality of vector operations. 6267 const TargetLowering &TLI; 6268 6269 /// Used to estimated the cost of the promoted chain. 6270 const TargetTransformInfo &TTI; 6271 6272 /// The transition being moved downwards. 6273 Instruction *Transition; 6274 6275 /// The sequence of instructions to be promoted. 6276 SmallVector<Instruction *, 4> InstsToBePromoted; 6277 6278 /// Cost of combining a store and an extract. 6279 unsigned StoreExtractCombineCost; 6280 6281 /// Instruction that will be combined with the transition. 6282 Instruction *CombineInst = nullptr; 6283 6284 /// The instruction that represents the current end of the transition. 6285 /// Since we are faking the promotion until we reach the end of the chain 6286 /// of computation, we need a way to get the current end of the transition. 6287 Instruction *getEndOfTransition() const { 6288 if (InstsToBePromoted.empty()) 6289 return Transition; 6290 return InstsToBePromoted.back(); 6291 } 6292 6293 /// Return the index of the original value in the transition. 6294 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6295 /// c, is at index 0. 6296 unsigned getTransitionOriginalValueIdx() const { 6297 assert(isa<ExtractElementInst>(Transition) && 6298 "Other kind of transitions are not supported yet"); 6299 return 0; 6300 } 6301 6302 /// Return the index of the index in the transition. 6303 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6304 /// is at index 1. 6305 unsigned getTransitionIdx() const { 6306 assert(isa<ExtractElementInst>(Transition) && 6307 "Other kind of transitions are not supported yet"); 6308 return 1; 6309 } 6310 6311 /// Get the type of the transition. 6312 /// This is the type of the original value. 6313 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6314 /// transition is <2 x i32>. 6315 Type *getTransitionType() const { 6316 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6317 } 6318 6319 /// Promote \p ToBePromoted by moving \p Def downward through. 6320 /// I.e., we have the following sequence: 6321 /// Def = Transition <ty1> a to <ty2> 6322 /// b = ToBePromoted <ty2> Def, ... 6323 /// => 6324 /// b = ToBePromoted <ty1> a, ... 6325 /// Def = Transition <ty1> ToBePromoted to <ty2> 6326 void promoteImpl(Instruction *ToBePromoted); 6327 6328 /// Check whether or not it is profitable to promote all the 6329 /// instructions enqueued to be promoted. 6330 bool isProfitableToPromote() { 6331 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6332 unsigned Index = isa<ConstantInt>(ValIdx) 6333 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6334 : -1; 6335 Type *PromotedType = getTransitionType(); 6336 6337 StoreInst *ST = cast<StoreInst>(CombineInst); 6338 unsigned AS = ST->getPointerAddressSpace(); 6339 unsigned Align = ST->getAlignment(); 6340 // Check if this store is supported. 6341 if (!TLI.allowsMisalignedMemoryAccesses( 6342 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6343 Align)) { 6344 // If this is not supported, there is no way we can combine 6345 // the extract with the store. 6346 return false; 6347 } 6348 6349 // The scalar chain of computation has to pay for the transition 6350 // scalar to vector. 6351 // The vector chain has to account for the combining cost. 6352 uint64_t ScalarCost = 6353 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6354 uint64_t VectorCost = StoreExtractCombineCost; 6355 for (const auto &Inst : InstsToBePromoted) { 6356 // Compute the cost. 6357 // By construction, all instructions being promoted are arithmetic ones. 6358 // Moreover, one argument is a constant that can be viewed as a splat 6359 // constant. 6360 Value *Arg0 = Inst->getOperand(0); 6361 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6362 isa<ConstantFP>(Arg0); 6363 TargetTransformInfo::OperandValueKind Arg0OVK = 6364 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6365 : TargetTransformInfo::OK_AnyValue; 6366 TargetTransformInfo::OperandValueKind Arg1OVK = 6367 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6368 : TargetTransformInfo::OK_AnyValue; 6369 ScalarCost += TTI.getArithmeticInstrCost( 6370 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6371 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6372 Arg0OVK, Arg1OVK); 6373 } 6374 LLVM_DEBUG( 6375 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6376 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6377 return ScalarCost > VectorCost; 6378 } 6379 6380 /// Generate a constant vector with \p Val with the same 6381 /// number of elements as the transition. 6382 /// \p UseSplat defines whether or not \p Val should be replicated 6383 /// across the whole vector. 6384 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6385 /// otherwise we generate a vector with as many undef as possible: 6386 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6387 /// used at the index of the extract. 6388 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6389 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6390 if (!UseSplat) { 6391 // If we cannot determine where the constant must be, we have to 6392 // use a splat constant. 6393 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6394 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6395 ExtractIdx = CstVal->getSExtValue(); 6396 else 6397 UseSplat = true; 6398 } 6399 6400 unsigned End = getTransitionType()->getVectorNumElements(); 6401 if (UseSplat) 6402 return ConstantVector::getSplat(End, Val); 6403 6404 SmallVector<Constant *, 4> ConstVec; 6405 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6406 for (unsigned Idx = 0; Idx != End; ++Idx) { 6407 if (Idx == ExtractIdx) 6408 ConstVec.push_back(Val); 6409 else 6410 ConstVec.push_back(UndefVal); 6411 } 6412 return ConstantVector::get(ConstVec); 6413 } 6414 6415 /// Check if promoting to a vector type an operand at \p OperandIdx 6416 /// in \p Use can trigger undefined behavior. 6417 static bool canCauseUndefinedBehavior(const Instruction *Use, 6418 unsigned OperandIdx) { 6419 // This is not safe to introduce undef when the operand is on 6420 // the right hand side of a division-like instruction. 6421 if (OperandIdx != 1) 6422 return false; 6423 switch (Use->getOpcode()) { 6424 default: 6425 return false; 6426 case Instruction::SDiv: 6427 case Instruction::UDiv: 6428 case Instruction::SRem: 6429 case Instruction::URem: 6430 return true; 6431 case Instruction::FDiv: 6432 case Instruction::FRem: 6433 return !Use->hasNoNaNs(); 6434 } 6435 llvm_unreachable(nullptr); 6436 } 6437 6438 public: 6439 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6440 const TargetTransformInfo &TTI, Instruction *Transition, 6441 unsigned CombineCost) 6442 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6443 StoreExtractCombineCost(CombineCost) { 6444 assert(Transition && "Do not know how to promote null"); 6445 } 6446 6447 /// Check if we can promote \p ToBePromoted to \p Type. 6448 bool canPromote(const Instruction *ToBePromoted) const { 6449 // We could support CastInst too. 6450 return isa<BinaryOperator>(ToBePromoted); 6451 } 6452 6453 /// Check if it is profitable to promote \p ToBePromoted 6454 /// by moving downward the transition through. 6455 bool shouldPromote(const Instruction *ToBePromoted) const { 6456 // Promote only if all the operands can be statically expanded. 6457 // Indeed, we do not want to introduce any new kind of transitions. 6458 for (const Use &U : ToBePromoted->operands()) { 6459 const Value *Val = U.get(); 6460 if (Val == getEndOfTransition()) { 6461 // If the use is a division and the transition is on the rhs, 6462 // we cannot promote the operation, otherwise we may create a 6463 // division by zero. 6464 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6465 return false; 6466 continue; 6467 } 6468 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6469 !isa<ConstantFP>(Val)) 6470 return false; 6471 } 6472 // Check that the resulting operation is legal. 6473 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6474 if (!ISDOpcode) 6475 return false; 6476 return StressStoreExtract || 6477 TLI.isOperationLegalOrCustom( 6478 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6479 } 6480 6481 /// Check whether or not \p Use can be combined 6482 /// with the transition. 6483 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6484 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6485 6486 /// Record \p ToBePromoted as part of the chain to be promoted. 6487 void enqueueForPromotion(Instruction *ToBePromoted) { 6488 InstsToBePromoted.push_back(ToBePromoted); 6489 } 6490 6491 /// Set the instruction that will be combined with the transition. 6492 void recordCombineInstruction(Instruction *ToBeCombined) { 6493 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6494 CombineInst = ToBeCombined; 6495 } 6496 6497 /// Promote all the instructions enqueued for promotion if it is 6498 /// is profitable. 6499 /// \return True if the promotion happened, false otherwise. 6500 bool promote() { 6501 // Check if there is something to promote. 6502 // Right now, if we do not have anything to combine with, 6503 // we assume the promotion is not profitable. 6504 if (InstsToBePromoted.empty() || !CombineInst) 6505 return false; 6506 6507 // Check cost. 6508 if (!StressStoreExtract && !isProfitableToPromote()) 6509 return false; 6510 6511 // Promote. 6512 for (auto &ToBePromoted : InstsToBePromoted) 6513 promoteImpl(ToBePromoted); 6514 InstsToBePromoted.clear(); 6515 return true; 6516 } 6517 }; 6518 6519 } // end anonymous namespace 6520 6521 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6522 // At this point, we know that all the operands of ToBePromoted but Def 6523 // can be statically promoted. 6524 // For Def, we need to use its parameter in ToBePromoted: 6525 // b = ToBePromoted ty1 a 6526 // Def = Transition ty1 b to ty2 6527 // Move the transition down. 6528 // 1. Replace all uses of the promoted operation by the transition. 6529 // = ... b => = ... Def. 6530 assert(ToBePromoted->getType() == Transition->getType() && 6531 "The type of the result of the transition does not match " 6532 "the final type"); 6533 ToBePromoted->replaceAllUsesWith(Transition); 6534 // 2. Update the type of the uses. 6535 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6536 Type *TransitionTy = getTransitionType(); 6537 ToBePromoted->mutateType(TransitionTy); 6538 // 3. Update all the operands of the promoted operation with promoted 6539 // operands. 6540 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6541 for (Use &U : ToBePromoted->operands()) { 6542 Value *Val = U.get(); 6543 Value *NewVal = nullptr; 6544 if (Val == Transition) 6545 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6546 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6547 isa<ConstantFP>(Val)) { 6548 // Use a splat constant if it is not safe to use undef. 6549 NewVal = getConstantVector( 6550 cast<Constant>(Val), 6551 isa<UndefValue>(Val) || 6552 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6553 } else 6554 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6555 "this?"); 6556 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6557 } 6558 Transition->moveAfter(ToBePromoted); 6559 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6560 } 6561 6562 /// Some targets can do store(extractelement) with one instruction. 6563 /// Try to push the extractelement towards the stores when the target 6564 /// has this feature and this is profitable. 6565 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6566 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6567 if (DisableStoreExtract || !TLI || 6568 (!StressStoreExtract && 6569 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6570 Inst->getOperand(1), CombineCost))) 6571 return false; 6572 6573 // At this point we know that Inst is a vector to scalar transition. 6574 // Try to move it down the def-use chain, until: 6575 // - We can combine the transition with its single use 6576 // => we got rid of the transition. 6577 // - We escape the current basic block 6578 // => we would need to check that we are moving it at a cheaper place and 6579 // we do not do that for now. 6580 BasicBlock *Parent = Inst->getParent(); 6581 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6582 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6583 // If the transition has more than one use, assume this is not going to be 6584 // beneficial. 6585 while (Inst->hasOneUse()) { 6586 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6587 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6588 6589 if (ToBePromoted->getParent() != Parent) { 6590 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6591 << ToBePromoted->getParent()->getName() 6592 << ") than the transition (" << Parent->getName() 6593 << ").\n"); 6594 return false; 6595 } 6596 6597 if (VPH.canCombine(ToBePromoted)) { 6598 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6599 << "will be combined with: " << *ToBePromoted << '\n'); 6600 VPH.recordCombineInstruction(ToBePromoted); 6601 bool Changed = VPH.promote(); 6602 NumStoreExtractExposed += Changed; 6603 return Changed; 6604 } 6605 6606 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6607 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6608 return false; 6609 6610 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6611 6612 VPH.enqueueForPromotion(ToBePromoted); 6613 Inst = ToBePromoted; 6614 } 6615 return false; 6616 } 6617 6618 /// For the instruction sequence of store below, F and I values 6619 /// are bundled together as an i64 value before being stored into memory. 6620 /// Sometimes it is more efficient to generate separate stores for F and I, 6621 /// which can remove the bitwise instructions or sink them to colder places. 6622 /// 6623 /// (store (or (zext (bitcast F to i32) to i64), 6624 /// (shl (zext I to i64), 32)), addr) --> 6625 /// (store F, addr) and (store I, addr+4) 6626 /// 6627 /// Similarly, splitting for other merged store can also be beneficial, like: 6628 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6629 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6630 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6631 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6632 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6633 /// 6634 /// We allow each target to determine specifically which kind of splitting is 6635 /// supported. 6636 /// 6637 /// The store patterns are commonly seen from the simple code snippet below 6638 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6639 /// void goo(const std::pair<int, float> &); 6640 /// hoo() { 6641 /// ... 6642 /// goo(std::make_pair(tmp, ftmp)); 6643 /// ... 6644 /// } 6645 /// 6646 /// Although we already have similar splitting in DAG Combine, we duplicate 6647 /// it in CodeGenPrepare to catch the case in which pattern is across 6648 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6649 /// during code expansion. 6650 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6651 const TargetLowering &TLI) { 6652 // Handle simple but common cases only. 6653 Type *StoreType = SI.getValueOperand()->getType(); 6654 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6655 DL.getTypeSizeInBits(StoreType) == 0) 6656 return false; 6657 6658 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6659 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6660 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6661 DL.getTypeSizeInBits(SplitStoreType)) 6662 return false; 6663 6664 // Match the following patterns: 6665 // (store (or (zext LValue to i64), 6666 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6667 // or 6668 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6669 // (zext LValue to i64), 6670 // Expect both operands of OR and the first operand of SHL have only 6671 // one use. 6672 Value *LValue, *HValue; 6673 if (!match(SI.getValueOperand(), 6674 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6675 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6676 m_SpecificInt(HalfValBitSize)))))) 6677 return false; 6678 6679 // Check LValue and HValue are int with size less or equal than 32. 6680 if (!LValue->getType()->isIntegerTy() || 6681 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6682 !HValue->getType()->isIntegerTy() || 6683 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6684 return false; 6685 6686 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6687 // as the input of target query. 6688 auto *LBC = dyn_cast<BitCastInst>(LValue); 6689 auto *HBC = dyn_cast<BitCastInst>(HValue); 6690 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6691 : EVT::getEVT(LValue->getType()); 6692 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6693 : EVT::getEVT(HValue->getType()); 6694 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6695 return false; 6696 6697 // Start to split store. 6698 IRBuilder<> Builder(SI.getContext()); 6699 Builder.SetInsertPoint(&SI); 6700 6701 // If LValue/HValue is a bitcast in another BB, create a new one in current 6702 // BB so it may be merged with the splitted stores by dag combiner. 6703 if (LBC && LBC->getParent() != SI.getParent()) 6704 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6705 if (HBC && HBC->getParent() != SI.getParent()) 6706 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6707 6708 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6709 auto CreateSplitStore = [&](Value *V, bool Upper) { 6710 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6711 Value *Addr = Builder.CreateBitCast( 6712 SI.getOperand(1), 6713 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6714 if ((IsLE && Upper) || (!IsLE && !Upper)) 6715 Addr = Builder.CreateGEP( 6716 SplitStoreType, Addr, 6717 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6718 Builder.CreateAlignedStore( 6719 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6720 }; 6721 6722 CreateSplitStore(LValue, false); 6723 CreateSplitStore(HValue, true); 6724 6725 // Delete the old store. 6726 SI.eraseFromParent(); 6727 return true; 6728 } 6729 6730 // Return true if the GEP has two operands, the first operand is of a sequential 6731 // type, and the second operand is a constant. 6732 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6733 gep_type_iterator I = gep_type_begin(*GEP); 6734 return GEP->getNumOperands() == 2 && 6735 I.isSequential() && 6736 isa<ConstantInt>(GEP->getOperand(1)); 6737 } 6738 6739 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6740 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6741 // reducing liveness interference across those edges benefits global register 6742 // allocation. Currently handles only certain cases. 6743 // 6744 // For example, unmerge %GEPI and %UGEPI as below. 6745 // 6746 // ---------- BEFORE ---------- 6747 // SrcBlock: 6748 // ... 6749 // %GEPIOp = ... 6750 // ... 6751 // %GEPI = gep %GEPIOp, Idx 6752 // ... 6753 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6754 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6755 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6756 // %UGEPI) 6757 // 6758 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6759 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6760 // ... 6761 // 6762 // DstBi: 6763 // ... 6764 // %UGEPI = gep %GEPIOp, UIdx 6765 // ... 6766 // --------------------------- 6767 // 6768 // ---------- AFTER ---------- 6769 // SrcBlock: 6770 // ... (same as above) 6771 // (* %GEPI is still alive on the indirectbr edges) 6772 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6773 // unmerging) 6774 // ... 6775 // 6776 // DstBi: 6777 // ... 6778 // %UGEPI = gep %GEPI, (UIdx-Idx) 6779 // ... 6780 // --------------------------- 6781 // 6782 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6783 // no longer alive on them. 6784 // 6785 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6786 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6787 // not to disable further simplications and optimizations as a result of GEP 6788 // merging. 6789 // 6790 // Note this unmerging may increase the length of the data flow critical path 6791 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6792 // between the register pressure and the length of data-flow critical 6793 // path. Restricting this to the uncommon IndirectBr case would minimize the 6794 // impact of potentially longer critical path, if any, and the impact on compile 6795 // time. 6796 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6797 const TargetTransformInfo *TTI) { 6798 BasicBlock *SrcBlock = GEPI->getParent(); 6799 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6800 // (non-IndirectBr) cases exit early here. 6801 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6802 return false; 6803 // Check that GEPI is a simple gep with a single constant index. 6804 if (!GEPSequentialConstIndexed(GEPI)) 6805 return false; 6806 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6807 // Check that GEPI is a cheap one. 6808 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6809 > TargetTransformInfo::TCC_Basic) 6810 return false; 6811 Value *GEPIOp = GEPI->getOperand(0); 6812 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6813 if (!isa<Instruction>(GEPIOp)) 6814 return false; 6815 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6816 if (GEPIOpI->getParent() != SrcBlock) 6817 return false; 6818 // Check that GEP is used outside the block, meaning it's alive on the 6819 // IndirectBr edge(s). 6820 if (find_if(GEPI->users(), [&](User *Usr) { 6821 if (auto *I = dyn_cast<Instruction>(Usr)) { 6822 if (I->getParent() != SrcBlock) { 6823 return true; 6824 } 6825 } 6826 return false; 6827 }) == GEPI->users().end()) 6828 return false; 6829 // The second elements of the GEP chains to be unmerged. 6830 std::vector<GetElementPtrInst *> UGEPIs; 6831 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6832 // on IndirectBr edges. 6833 for (User *Usr : GEPIOp->users()) { 6834 if (Usr == GEPI) continue; 6835 // Check if Usr is an Instruction. If not, give up. 6836 if (!isa<Instruction>(Usr)) 6837 return false; 6838 auto *UI = cast<Instruction>(Usr); 6839 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6840 if (UI->getParent() == SrcBlock) 6841 continue; 6842 // Check if Usr is a GEP. If not, give up. 6843 if (!isa<GetElementPtrInst>(Usr)) 6844 return false; 6845 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6846 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6847 // the pointer operand to it. If so, record it in the vector. If not, give 6848 // up. 6849 if (!GEPSequentialConstIndexed(UGEPI)) 6850 return false; 6851 if (UGEPI->getOperand(0) != GEPIOp) 6852 return false; 6853 if (GEPIIdx->getType() != 6854 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6855 return false; 6856 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6857 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6858 > TargetTransformInfo::TCC_Basic) 6859 return false; 6860 UGEPIs.push_back(UGEPI); 6861 } 6862 if (UGEPIs.size() == 0) 6863 return false; 6864 // Check the materializing cost of (Uidx-Idx). 6865 for (GetElementPtrInst *UGEPI : UGEPIs) { 6866 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6867 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6868 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6869 if (ImmCost > TargetTransformInfo::TCC_Basic) 6870 return false; 6871 } 6872 // Now unmerge between GEPI and UGEPIs. 6873 for (GetElementPtrInst *UGEPI : UGEPIs) { 6874 UGEPI->setOperand(0, GEPI); 6875 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6876 Constant *NewUGEPIIdx = 6877 ConstantInt::get(GEPIIdx->getType(), 6878 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6879 UGEPI->setOperand(1, NewUGEPIIdx); 6880 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6881 // inbounds to avoid UB. 6882 if (!GEPI->isInBounds()) { 6883 UGEPI->setIsInBounds(false); 6884 } 6885 } 6886 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6887 // alive on IndirectBr edges). 6888 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6889 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6890 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6891 return true; 6892 } 6893 6894 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6895 // Bail out if we inserted the instruction to prevent optimizations from 6896 // stepping on each other's toes. 6897 if (InsertedInsts.count(I)) 6898 return false; 6899 6900 // TODO: Move into the switch on opcode below here. 6901 if (PHINode *P = dyn_cast<PHINode>(I)) { 6902 // It is possible for very late stage optimizations (such as SimplifyCFG) 6903 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6904 // trivial PHI, go ahead and zap it here. 6905 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6906 LargeOffsetGEPMap.erase(P); 6907 P->replaceAllUsesWith(V); 6908 P->eraseFromParent(); 6909 ++NumPHIsElim; 6910 return true; 6911 } 6912 return false; 6913 } 6914 6915 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6916 // If the source of the cast is a constant, then this should have 6917 // already been constant folded. The only reason NOT to constant fold 6918 // it is if something (e.g. LSR) was careful to place the constant 6919 // evaluation in a block other than then one that uses it (e.g. to hoist 6920 // the address of globals out of a loop). If this is the case, we don't 6921 // want to forward-subst the cast. 6922 if (isa<Constant>(CI->getOperand(0))) 6923 return false; 6924 6925 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6926 return true; 6927 6928 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6929 /// Sink a zext or sext into its user blocks if the target type doesn't 6930 /// fit in one register 6931 if (TLI && 6932 TLI->getTypeAction(CI->getContext(), 6933 TLI->getValueType(*DL, CI->getType())) == 6934 TargetLowering::TypeExpandInteger) { 6935 return SinkCast(CI); 6936 } else { 6937 bool MadeChange = optimizeExt(I); 6938 return MadeChange | optimizeExtUses(I); 6939 } 6940 } 6941 return false; 6942 } 6943 6944 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6945 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 6946 return true; 6947 6948 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6949 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6950 if (TLI) { 6951 bool Modified = optimizeLoadExt(LI); 6952 unsigned AS = LI->getPointerAddressSpace(); 6953 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6954 return Modified; 6955 } 6956 return false; 6957 } 6958 6959 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6960 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6961 return true; 6962 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6963 if (TLI) { 6964 unsigned AS = SI->getPointerAddressSpace(); 6965 return optimizeMemoryInst(I, SI->getOperand(1), 6966 SI->getOperand(0)->getType(), AS); 6967 } 6968 return false; 6969 } 6970 6971 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6972 unsigned AS = RMW->getPointerAddressSpace(); 6973 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6974 RMW->getType(), AS); 6975 } 6976 6977 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6978 unsigned AS = CmpX->getPointerAddressSpace(); 6979 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6980 CmpX->getCompareOperand()->getType(), AS); 6981 } 6982 6983 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6984 6985 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6986 EnableAndCmpSinking && TLI) 6987 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6988 6989 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6990 BinOp->getOpcode() == Instruction::LShr)) { 6991 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6992 if (TLI && CI && TLI->hasExtractBitsInsn()) 6993 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6994 6995 return false; 6996 } 6997 6998 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6999 if (GEPI->hasAllZeroIndices()) { 7000 /// The GEP operand must be a pointer, so must its result -> BitCast 7001 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7002 GEPI->getName(), GEPI); 7003 NC->setDebugLoc(GEPI->getDebugLoc()); 7004 GEPI->replaceAllUsesWith(NC); 7005 GEPI->eraseFromParent(); 7006 ++NumGEPsElim; 7007 optimizeInst(NC, ModifiedDT); 7008 return true; 7009 } 7010 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7011 return true; 7012 } 7013 return false; 7014 } 7015 7016 if (tryToSinkFreeOperands(I)) 7017 return true; 7018 7019 switch (I->getOpcode()) { 7020 case Instruction::Call: 7021 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7022 case Instruction::Select: 7023 return optimizeSelectInst(cast<SelectInst>(I)); 7024 case Instruction::ShuffleVector: 7025 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7026 case Instruction::Switch: 7027 return optimizeSwitchInst(cast<SwitchInst>(I)); 7028 case Instruction::ExtractElement: 7029 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7030 } 7031 7032 return false; 7033 } 7034 7035 /// Given an OR instruction, check to see if this is a bitreverse 7036 /// idiom. If so, insert the new intrinsic and return true. 7037 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7038 const TargetLowering &TLI) { 7039 if (!I.getType()->isIntegerTy() || 7040 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7041 TLI.getValueType(DL, I.getType(), true))) 7042 return false; 7043 7044 SmallVector<Instruction*, 4> Insts; 7045 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7046 return false; 7047 Instruction *LastInst = Insts.back(); 7048 I.replaceAllUsesWith(LastInst); 7049 RecursivelyDeleteTriviallyDeadInstructions(&I); 7050 return true; 7051 } 7052 7053 // In this pass we look for GEP and cast instructions that are used 7054 // across basic blocks and rewrite them to improve basic-block-at-a-time 7055 // selection. 7056 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7057 SunkAddrs.clear(); 7058 bool MadeChange = false; 7059 7060 CurInstIterator = BB.begin(); 7061 while (CurInstIterator != BB.end()) { 7062 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7063 if (ModifiedDT) 7064 return true; 7065 } 7066 7067 bool MadeBitReverse = true; 7068 while (TLI && MadeBitReverse) { 7069 MadeBitReverse = false; 7070 for (auto &I : reverse(BB)) { 7071 if (makeBitReverse(I, *DL, *TLI)) { 7072 MadeBitReverse = MadeChange = true; 7073 ModifiedDT = true; 7074 break; 7075 } 7076 } 7077 } 7078 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7079 7080 return MadeChange; 7081 } 7082 7083 // llvm.dbg.value is far away from the value then iSel may not be able 7084 // handle it properly. iSel will drop llvm.dbg.value if it can not 7085 // find a node corresponding to the value. 7086 bool CodeGenPrepare::placeDbgValues(Function &F) { 7087 bool MadeChange = false; 7088 for (BasicBlock &BB : F) { 7089 Instruction *PrevNonDbgInst = nullptr; 7090 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7091 Instruction *Insn = &*BI++; 7092 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7093 // Leave dbg.values that refer to an alloca alone. These 7094 // intrinsics describe the address of a variable (= the alloca) 7095 // being taken. They should not be moved next to the alloca 7096 // (and to the beginning of the scope), but rather stay close to 7097 // where said address is used. 7098 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7099 PrevNonDbgInst = Insn; 7100 continue; 7101 } 7102 7103 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7104 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7105 // If VI is a phi in a block with an EHPad terminator, we can't insert 7106 // after it. 7107 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7108 continue; 7109 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7110 << *DVI << ' ' << *VI); 7111 DVI->removeFromParent(); 7112 if (isa<PHINode>(VI)) 7113 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7114 else 7115 DVI->insertAfter(VI); 7116 MadeChange = true; 7117 ++NumDbgValueMoved; 7118 } 7119 } 7120 } 7121 return MadeChange; 7122 } 7123 7124 /// Scale down both weights to fit into uint32_t. 7125 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7126 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7127 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7128 NewTrue = NewTrue / Scale; 7129 NewFalse = NewFalse / Scale; 7130 } 7131 7132 /// Some targets prefer to split a conditional branch like: 7133 /// \code 7134 /// %0 = icmp ne i32 %a, 0 7135 /// %1 = icmp ne i32 %b, 0 7136 /// %or.cond = or i1 %0, %1 7137 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7138 /// \endcode 7139 /// into multiple branch instructions like: 7140 /// \code 7141 /// bb1: 7142 /// %0 = icmp ne i32 %a, 0 7143 /// br i1 %0, label %TrueBB, label %bb2 7144 /// bb2: 7145 /// %1 = icmp ne i32 %b, 0 7146 /// br i1 %1, label %TrueBB, label %FalseBB 7147 /// \endcode 7148 /// This usually allows instruction selection to do even further optimizations 7149 /// and combine the compare with the branch instruction. Currently this is 7150 /// applied for targets which have "cheap" jump instructions. 7151 /// 7152 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7153 /// 7154 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7155 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7156 return false; 7157 7158 bool MadeChange = false; 7159 for (auto &BB : F) { 7160 // Does this BB end with the following? 7161 // %cond1 = icmp|fcmp|binary instruction ... 7162 // %cond2 = icmp|fcmp|binary instruction ... 7163 // %cond.or = or|and i1 %cond1, cond2 7164 // br i1 %cond.or label %dest1, label %dest2" 7165 BinaryOperator *LogicOp; 7166 BasicBlock *TBB, *FBB; 7167 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7168 continue; 7169 7170 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7171 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7172 continue; 7173 7174 unsigned Opc; 7175 Value *Cond1, *Cond2; 7176 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7177 m_OneUse(m_Value(Cond2))))) 7178 Opc = Instruction::And; 7179 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7180 m_OneUse(m_Value(Cond2))))) 7181 Opc = Instruction::Or; 7182 else 7183 continue; 7184 7185 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7186 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7187 continue; 7188 7189 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7190 7191 // Create a new BB. 7192 auto TmpBB = 7193 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7194 BB.getParent(), BB.getNextNode()); 7195 7196 // Update original basic block by using the first condition directly by the 7197 // branch instruction and removing the no longer needed and/or instruction. 7198 Br1->setCondition(Cond1); 7199 LogicOp->eraseFromParent(); 7200 7201 // Depending on the condition we have to either replace the true or the 7202 // false successor of the original branch instruction. 7203 if (Opc == Instruction::And) 7204 Br1->setSuccessor(0, TmpBB); 7205 else 7206 Br1->setSuccessor(1, TmpBB); 7207 7208 // Fill in the new basic block. 7209 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7210 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7211 I->removeFromParent(); 7212 I->insertBefore(Br2); 7213 } 7214 7215 // Update PHI nodes in both successors. The original BB needs to be 7216 // replaced in one successor's PHI nodes, because the branch comes now from 7217 // the newly generated BB (NewBB). In the other successor we need to add one 7218 // incoming edge to the PHI nodes, because both branch instructions target 7219 // now the same successor. Depending on the original branch condition 7220 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7221 // we perform the correct update for the PHI nodes. 7222 // This doesn't change the successor order of the just created branch 7223 // instruction (or any other instruction). 7224 if (Opc == Instruction::Or) 7225 std::swap(TBB, FBB); 7226 7227 // Replace the old BB with the new BB. 7228 for (PHINode &PN : TBB->phis()) { 7229 int i; 7230 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7231 PN.setIncomingBlock(i, TmpBB); 7232 } 7233 7234 // Add another incoming edge form the new BB. 7235 for (PHINode &PN : FBB->phis()) { 7236 auto *Val = PN.getIncomingValueForBlock(&BB); 7237 PN.addIncoming(Val, TmpBB); 7238 } 7239 7240 // Update the branch weights (from SelectionDAGBuilder:: 7241 // FindMergedConditions). 7242 if (Opc == Instruction::Or) { 7243 // Codegen X | Y as: 7244 // BB1: 7245 // jmp_if_X TBB 7246 // jmp TmpBB 7247 // TmpBB: 7248 // jmp_if_Y TBB 7249 // jmp FBB 7250 // 7251 7252 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7253 // The requirement is that 7254 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7255 // = TrueProb for original BB. 7256 // Assuming the original weights are A and B, one choice is to set BB1's 7257 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7258 // assumes that 7259 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7260 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7261 // TmpBB, but the math is more complicated. 7262 uint64_t TrueWeight, FalseWeight; 7263 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7264 uint64_t NewTrueWeight = TrueWeight; 7265 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7266 scaleWeights(NewTrueWeight, NewFalseWeight); 7267 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7268 .createBranchWeights(TrueWeight, FalseWeight)); 7269 7270 NewTrueWeight = TrueWeight; 7271 NewFalseWeight = 2 * FalseWeight; 7272 scaleWeights(NewTrueWeight, NewFalseWeight); 7273 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7274 .createBranchWeights(TrueWeight, FalseWeight)); 7275 } 7276 } else { 7277 // Codegen X & Y as: 7278 // BB1: 7279 // jmp_if_X TmpBB 7280 // jmp FBB 7281 // TmpBB: 7282 // jmp_if_Y TBB 7283 // jmp FBB 7284 // 7285 // This requires creation of TmpBB after CurBB. 7286 7287 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7288 // The requirement is that 7289 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7290 // = FalseProb for original BB. 7291 // Assuming the original weights are A and B, one choice is to set BB1's 7292 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7293 // assumes that 7294 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7295 uint64_t TrueWeight, FalseWeight; 7296 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7297 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7298 uint64_t NewFalseWeight = FalseWeight; 7299 scaleWeights(NewTrueWeight, NewFalseWeight); 7300 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7301 .createBranchWeights(TrueWeight, FalseWeight)); 7302 7303 NewTrueWeight = 2 * TrueWeight; 7304 NewFalseWeight = FalseWeight; 7305 scaleWeights(NewTrueWeight, NewFalseWeight); 7306 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7307 .createBranchWeights(TrueWeight, FalseWeight)); 7308 } 7309 } 7310 7311 ModifiedDT = true; 7312 MadeChange = true; 7313 7314 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7315 TmpBB->dump()); 7316 } 7317 return MadeChange; 7318 } 7319