1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/IR/ValueMap.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetLibraryInfo.h" 40 #include "llvm/Target/TargetLowering.h" 41 #include "llvm/Target/TargetSubtargetInfo.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include "llvm/Transforms/Utils/BuildLibCalls.h" 44 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "codegenprepare" 50 51 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 52 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 53 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 54 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 55 "sunken Cmps"); 56 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 57 "of sunken Casts"); 58 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 59 "computations were sunk"); 60 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 61 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 62 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 63 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 64 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 65 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 66 67 static cl::opt<bool> DisableBranchOpts( 68 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 69 cl::desc("Disable branch optimizations in CodeGenPrepare")); 70 71 static cl::opt<bool> DisableSelectToBranch( 72 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 73 cl::desc("Disable select to branch conversion.")); 74 75 static cl::opt<bool> AddrSinkUsingGEPs( 76 "addr-sink-using-gep", cl::Hidden, cl::init(false), 77 cl::desc("Address sinking in CGP using GEPs.")); 78 79 static cl::opt<bool> EnableAndCmpSinking( 80 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 81 cl::desc("Enable sinkinig and/cmp into branches.")); 82 83 namespace { 84 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 85 typedef DenseMap<Instruction *, Type *> InstrToOrigTy; 86 87 class CodeGenPrepare : public FunctionPass { 88 /// TLI - Keep a pointer of a TargetLowering to consult for determining 89 /// transformation profitability. 90 const TargetMachine *TM; 91 const TargetLowering *TLI; 92 const TargetLibraryInfo *TLInfo; 93 DominatorTree *DT; 94 95 /// CurInstIterator - As we scan instructions optimizing them, this is the 96 /// next instruction to optimize. Xforms that can invalidate this should 97 /// update it. 98 BasicBlock::iterator CurInstIterator; 99 100 /// Keeps track of non-local addresses that have been sunk into a block. 101 /// This allows us to avoid inserting duplicate code for blocks with 102 /// multiple load/stores of the same address. 103 ValueMap<Value*, Value*> SunkAddrs; 104 105 /// Keeps track of all truncates inserted for the current function. 106 SetOfInstrs InsertedTruncsSet; 107 /// Keeps track of the type of the related instruction before their 108 /// promotion for the current function. 109 InstrToOrigTy PromotedInsts; 110 111 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 112 /// be updated. 113 bool ModifiedDT; 114 115 /// OptSize - True if optimizing for size. 116 bool OptSize; 117 118 public: 119 static char ID; // Pass identification, replacement for typeid 120 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 121 : FunctionPass(ID), TM(TM), TLI(nullptr) { 122 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 123 } 124 bool runOnFunction(Function &F) override; 125 126 const char *getPassName() const override { return "CodeGen Prepare"; } 127 128 void getAnalysisUsage(AnalysisUsage &AU) const override { 129 AU.addPreserved<DominatorTreeWrapperPass>(); 130 AU.addRequired<TargetLibraryInfo>(); 131 } 132 133 private: 134 bool EliminateFallThrough(Function &F); 135 bool EliminateMostlyEmptyBlocks(Function &F); 136 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 137 void EliminateMostlyEmptyBlock(BasicBlock *BB); 138 bool OptimizeBlock(BasicBlock &BB); 139 bool OptimizeInst(Instruction *I); 140 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 141 bool OptimizeInlineAsmInst(CallInst *CS); 142 bool OptimizeCallInst(CallInst *CI); 143 bool MoveExtToFormExtLoad(Instruction *I); 144 bool OptimizeExtUses(Instruction *I); 145 bool OptimizeSelectInst(SelectInst *SI); 146 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 147 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 148 bool PlaceDbgValues(Function &F); 149 bool sinkAndCmp(Function &F); 150 }; 151 } 152 153 char CodeGenPrepare::ID = 0; 154 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 155 "Optimize for code generation", false, false) 156 157 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 158 return new CodeGenPrepare(TM); 159 } 160 161 bool CodeGenPrepare::runOnFunction(Function &F) { 162 if (skipOptnoneFunction(F)) 163 return false; 164 165 bool EverMadeChange = false; 166 // Clear per function information. 167 InsertedTruncsSet.clear(); 168 PromotedInsts.clear(); 169 170 ModifiedDT = false; 171 if (TM) 172 TLI = TM->getSubtargetImpl()->getTargetLowering(); 173 TLInfo = &getAnalysis<TargetLibraryInfo>(); 174 DominatorTreeWrapperPass *DTWP = 175 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 176 DT = DTWP ? &DTWP->getDomTree() : nullptr; 177 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 178 Attribute::OptimizeForSize); 179 180 /// This optimization identifies DIV instructions that can be 181 /// profitably bypassed and carried out with a shorter, faster divide. 182 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 183 const DenseMap<unsigned int, unsigned int> &BypassWidths = 184 TLI->getBypassSlowDivWidths(); 185 for (Function::iterator I = F.begin(); I != F.end(); I++) 186 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 187 } 188 189 // Eliminate blocks that contain only PHI nodes and an 190 // unconditional branch. 191 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 192 193 // llvm.dbg.value is far away from the value then iSel may not be able 194 // handle it properly. iSel will drop llvm.dbg.value if it can not 195 // find a node corresponding to the value. 196 EverMadeChange |= PlaceDbgValues(F); 197 198 // If there is a mask, compare against zero, and branch that can be combined 199 // into a single target instruction, push the mask and compare into branch 200 // users. Do this before OptimizeBlock -> OptimizeInst -> 201 // OptimizeCmpExpression, which perturbs the pattern being searched for. 202 if (!DisableBranchOpts) 203 EverMadeChange |= sinkAndCmp(F); 204 205 bool MadeChange = true; 206 while (MadeChange) { 207 MadeChange = false; 208 for (Function::iterator I = F.begin(); I != F.end(); ) { 209 BasicBlock *BB = I++; 210 MadeChange |= OptimizeBlock(*BB); 211 } 212 EverMadeChange |= MadeChange; 213 } 214 215 SunkAddrs.clear(); 216 217 if (!DisableBranchOpts) { 218 MadeChange = false; 219 SmallPtrSet<BasicBlock*, 8> WorkList; 220 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 221 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 222 MadeChange |= ConstantFoldTerminator(BB, true); 223 if (!MadeChange) continue; 224 225 for (SmallVectorImpl<BasicBlock*>::iterator 226 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 227 if (pred_begin(*II) == pred_end(*II)) 228 WorkList.insert(*II); 229 } 230 231 // Delete the dead blocks and any of their dead successors. 232 MadeChange |= !WorkList.empty(); 233 while (!WorkList.empty()) { 234 BasicBlock *BB = *WorkList.begin(); 235 WorkList.erase(BB); 236 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 237 238 DeleteDeadBlock(BB); 239 240 for (SmallVectorImpl<BasicBlock*>::iterator 241 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 242 if (pred_begin(*II) == pred_end(*II)) 243 WorkList.insert(*II); 244 } 245 246 // Merge pairs of basic blocks with unconditional branches, connected by 247 // a single edge. 248 if (EverMadeChange || MadeChange) 249 MadeChange |= EliminateFallThrough(F); 250 251 if (MadeChange) 252 ModifiedDT = true; 253 EverMadeChange |= MadeChange; 254 } 255 256 if (ModifiedDT && DT) 257 DT->recalculate(F); 258 259 return EverMadeChange; 260 } 261 262 /// EliminateFallThrough - Merge basic blocks which are connected 263 /// by a single edge, where one of the basic blocks has a single successor 264 /// pointing to the other basic block, which has a single predecessor. 265 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 266 bool Changed = false; 267 // Scan all of the blocks in the function, except for the entry block. 268 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 269 BasicBlock *BB = I++; 270 // If the destination block has a single pred, then this is a trivial 271 // edge, just collapse it. 272 BasicBlock *SinglePred = BB->getSinglePredecessor(); 273 274 // Don't merge if BB's address is taken. 275 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 276 277 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 278 if (Term && !Term->isConditional()) { 279 Changed = true; 280 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 281 // Remember if SinglePred was the entry block of the function. 282 // If so, we will need to move BB back to the entry position. 283 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 284 MergeBasicBlockIntoOnlyPred(BB, this); 285 286 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 287 BB->moveBefore(&BB->getParent()->getEntryBlock()); 288 289 // We have erased a block. Update the iterator. 290 I = BB; 291 } 292 } 293 return Changed; 294 } 295 296 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 297 /// debug info directives, and an unconditional branch. Passes before isel 298 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 299 /// isel. Start by eliminating these blocks so we can split them the way we 300 /// want them. 301 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 302 bool MadeChange = false; 303 // Note that this intentionally skips the entry block. 304 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 305 BasicBlock *BB = I++; 306 307 // If this block doesn't end with an uncond branch, ignore it. 308 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 309 if (!BI || !BI->isUnconditional()) 310 continue; 311 312 // If the instruction before the branch (skipping debug info) isn't a phi 313 // node, then other stuff is happening here. 314 BasicBlock::iterator BBI = BI; 315 if (BBI != BB->begin()) { 316 --BBI; 317 while (isa<DbgInfoIntrinsic>(BBI)) { 318 if (BBI == BB->begin()) 319 break; 320 --BBI; 321 } 322 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 323 continue; 324 } 325 326 // Do not break infinite loops. 327 BasicBlock *DestBB = BI->getSuccessor(0); 328 if (DestBB == BB) 329 continue; 330 331 if (!CanMergeBlocks(BB, DestBB)) 332 continue; 333 334 EliminateMostlyEmptyBlock(BB); 335 MadeChange = true; 336 } 337 return MadeChange; 338 } 339 340 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 341 /// single uncond branch between them, and BB contains no other non-phi 342 /// instructions. 343 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 344 const BasicBlock *DestBB) const { 345 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 346 // the successor. If there are more complex condition (e.g. preheaders), 347 // don't mess around with them. 348 BasicBlock::const_iterator BBI = BB->begin(); 349 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 350 for (const User *U : PN->users()) { 351 const Instruction *UI = cast<Instruction>(U); 352 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 353 return false; 354 // If User is inside DestBB block and it is a PHINode then check 355 // incoming value. If incoming value is not from BB then this is 356 // a complex condition (e.g. preheaders) we want to avoid here. 357 if (UI->getParent() == DestBB) { 358 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 359 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 360 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 361 if (Insn && Insn->getParent() == BB && 362 Insn->getParent() != UPN->getIncomingBlock(I)) 363 return false; 364 } 365 } 366 } 367 } 368 369 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 370 // and DestBB may have conflicting incoming values for the block. If so, we 371 // can't merge the block. 372 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 373 if (!DestBBPN) return true; // no conflict. 374 375 // Collect the preds of BB. 376 SmallPtrSet<const BasicBlock*, 16> BBPreds; 377 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 378 // It is faster to get preds from a PHI than with pred_iterator. 379 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 380 BBPreds.insert(BBPN->getIncomingBlock(i)); 381 } else { 382 BBPreds.insert(pred_begin(BB), pred_end(BB)); 383 } 384 385 // Walk the preds of DestBB. 386 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 387 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 388 if (BBPreds.count(Pred)) { // Common predecessor? 389 BBI = DestBB->begin(); 390 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 391 const Value *V1 = PN->getIncomingValueForBlock(Pred); 392 const Value *V2 = PN->getIncomingValueForBlock(BB); 393 394 // If V2 is a phi node in BB, look up what the mapped value will be. 395 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 396 if (V2PN->getParent() == BB) 397 V2 = V2PN->getIncomingValueForBlock(Pred); 398 399 // If there is a conflict, bail out. 400 if (V1 != V2) return false; 401 } 402 } 403 } 404 405 return true; 406 } 407 408 409 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 410 /// an unconditional branch in it. 411 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 412 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 413 BasicBlock *DestBB = BI->getSuccessor(0); 414 415 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 416 417 // If the destination block has a single pred, then this is a trivial edge, 418 // just collapse it. 419 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 420 if (SinglePred != DestBB) { 421 // Remember if SinglePred was the entry block of the function. If so, we 422 // will need to move BB back to the entry position. 423 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 424 MergeBasicBlockIntoOnlyPred(DestBB, this); 425 426 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 427 BB->moveBefore(&BB->getParent()->getEntryBlock()); 428 429 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 430 return; 431 } 432 } 433 434 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 435 // to handle the new incoming edges it is about to have. 436 PHINode *PN; 437 for (BasicBlock::iterator BBI = DestBB->begin(); 438 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 439 // Remove the incoming value for BB, and remember it. 440 Value *InVal = PN->removeIncomingValue(BB, false); 441 442 // Two options: either the InVal is a phi node defined in BB or it is some 443 // value that dominates BB. 444 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 445 if (InValPhi && InValPhi->getParent() == BB) { 446 // Add all of the input values of the input PHI as inputs of this phi. 447 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 448 PN->addIncoming(InValPhi->getIncomingValue(i), 449 InValPhi->getIncomingBlock(i)); 450 } else { 451 // Otherwise, add one instance of the dominating value for each edge that 452 // we will be adding. 453 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 454 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 455 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 456 } else { 457 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 458 PN->addIncoming(InVal, *PI); 459 } 460 } 461 } 462 463 // The PHIs are now updated, change everything that refers to BB to use 464 // DestBB and remove BB. 465 BB->replaceAllUsesWith(DestBB); 466 if (DT && !ModifiedDT) { 467 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 468 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 469 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 470 DT->changeImmediateDominator(DestBB, NewIDom); 471 DT->eraseNode(BB); 472 } 473 BB->eraseFromParent(); 474 ++NumBlocksElim; 475 476 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 477 } 478 479 /// SinkCast - Sink the specified cast instruction into its user blocks 480 static bool SinkCast(CastInst *CI) { 481 BasicBlock *DefBB = CI->getParent(); 482 483 /// InsertedCasts - Only insert a cast in each block once. 484 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 485 486 bool MadeChange = false; 487 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 488 UI != E; ) { 489 Use &TheUse = UI.getUse(); 490 Instruction *User = cast<Instruction>(*UI); 491 492 // Figure out which BB this cast is used in. For PHI's this is the 493 // appropriate predecessor block. 494 BasicBlock *UserBB = User->getParent(); 495 if (PHINode *PN = dyn_cast<PHINode>(User)) { 496 UserBB = PN->getIncomingBlock(TheUse); 497 } 498 499 // Preincrement use iterator so we don't invalidate it. 500 ++UI; 501 502 // If this user is in the same block as the cast, don't change the cast. 503 if (UserBB == DefBB) continue; 504 505 // If we have already inserted a cast into this block, use it. 506 CastInst *&InsertedCast = InsertedCasts[UserBB]; 507 508 if (!InsertedCast) { 509 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 510 InsertedCast = 511 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 512 InsertPt); 513 MadeChange = true; 514 } 515 516 // Replace a use of the cast with a use of the new cast. 517 TheUse = InsertedCast; 518 ++NumCastUses; 519 } 520 521 // If we removed all uses, nuke the cast. 522 if (CI->use_empty()) { 523 CI->eraseFromParent(); 524 MadeChange = true; 525 } 526 527 return MadeChange; 528 } 529 530 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 531 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 532 /// sink it into user blocks to reduce the number of virtual 533 /// registers that must be created and coalesced. 534 /// 535 /// Return true if any changes are made. 536 /// 537 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 538 // If this is a noop copy, 539 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 540 EVT DstVT = TLI.getValueType(CI->getType()); 541 542 // This is an fp<->int conversion? 543 if (SrcVT.isInteger() != DstVT.isInteger()) 544 return false; 545 546 // If this is an extension, it will be a zero or sign extension, which 547 // isn't a noop. 548 if (SrcVT.bitsLT(DstVT)) return false; 549 550 // If these values will be promoted, find out what they will be promoted 551 // to. This helps us consider truncates on PPC as noop copies when they 552 // are. 553 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 554 TargetLowering::TypePromoteInteger) 555 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 556 if (TLI.getTypeAction(CI->getContext(), DstVT) == 557 TargetLowering::TypePromoteInteger) 558 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 559 560 // If, after promotion, these are the same types, this is a noop copy. 561 if (SrcVT != DstVT) 562 return false; 563 564 return SinkCast(CI); 565 } 566 567 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 568 /// the number of virtual registers that must be created and coalesced. This is 569 /// a clear win except on targets with multiple condition code registers 570 /// (PowerPC), where it might lose; some adjustment may be wanted there. 571 /// 572 /// Return true if any changes are made. 573 static bool OptimizeCmpExpression(CmpInst *CI) { 574 BasicBlock *DefBB = CI->getParent(); 575 576 /// InsertedCmp - Only insert a cmp in each block once. 577 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 578 579 bool MadeChange = false; 580 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 581 UI != E; ) { 582 Use &TheUse = UI.getUse(); 583 Instruction *User = cast<Instruction>(*UI); 584 585 // Preincrement use iterator so we don't invalidate it. 586 ++UI; 587 588 // Don't bother for PHI nodes. 589 if (isa<PHINode>(User)) 590 continue; 591 592 // Figure out which BB this cmp is used in. 593 BasicBlock *UserBB = User->getParent(); 594 595 // If this user is in the same block as the cmp, don't change the cmp. 596 if (UserBB == DefBB) continue; 597 598 // If we have already inserted a cmp into this block, use it. 599 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 600 601 if (!InsertedCmp) { 602 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 603 InsertedCmp = 604 CmpInst::Create(CI->getOpcode(), 605 CI->getPredicate(), CI->getOperand(0), 606 CI->getOperand(1), "", InsertPt); 607 MadeChange = true; 608 } 609 610 // Replace a use of the cmp with a use of the new cmp. 611 TheUse = InsertedCmp; 612 ++NumCmpUses; 613 } 614 615 // If we removed all uses, nuke the cmp. 616 if (CI->use_empty()) 617 CI->eraseFromParent(); 618 619 return MadeChange; 620 } 621 622 /// isExtractBitsCandidateUse - Check if the candidates could 623 /// be combined with shift instruction, which includes: 624 /// 1. Truncate instruction 625 /// 2. And instruction and the imm is a mask of the low bits: 626 /// imm & (imm+1) == 0 627 static bool isExtractBitsCandidateUse(Instruction *User) { 628 if (!isa<TruncInst>(User)) { 629 if (User->getOpcode() != Instruction::And || 630 !isa<ConstantInt>(User->getOperand(1))) 631 return false; 632 633 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 634 635 if ((Cimm & (Cimm + 1)).getBoolValue()) 636 return false; 637 } 638 return true; 639 } 640 641 /// SinkShiftAndTruncate - sink both shift and truncate instruction 642 /// to the use of truncate's BB. 643 static bool 644 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 645 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 646 const TargetLowering &TLI) { 647 BasicBlock *UserBB = User->getParent(); 648 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 649 TruncInst *TruncI = dyn_cast<TruncInst>(User); 650 bool MadeChange = false; 651 652 for (Value::user_iterator TruncUI = TruncI->user_begin(), 653 TruncE = TruncI->user_end(); 654 TruncUI != TruncE;) { 655 656 Use &TruncTheUse = TruncUI.getUse(); 657 Instruction *TruncUser = cast<Instruction>(*TruncUI); 658 // Preincrement use iterator so we don't invalidate it. 659 660 ++TruncUI; 661 662 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 663 if (!ISDOpcode) 664 continue; 665 666 // If the use is actually a legal node, there will not be an 667 // implicit truncate. 668 // FIXME: always querying the result type is just an 669 // approximation; some nodes' legality is determined by the 670 // operand or other means. There's no good way to find out though. 671 if (TLI.isOperationLegalOrCustom(ISDOpcode, 672 EVT::getEVT(TruncUser->getType(), true))) 673 continue; 674 675 // Don't bother for PHI nodes. 676 if (isa<PHINode>(TruncUser)) 677 continue; 678 679 BasicBlock *TruncUserBB = TruncUser->getParent(); 680 681 if (UserBB == TruncUserBB) 682 continue; 683 684 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 685 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 686 687 if (!InsertedShift && !InsertedTrunc) { 688 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 689 // Sink the shift 690 if (ShiftI->getOpcode() == Instruction::AShr) 691 InsertedShift = 692 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 693 else 694 InsertedShift = 695 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 696 697 // Sink the trunc 698 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 699 TruncInsertPt++; 700 701 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 702 TruncI->getType(), "", TruncInsertPt); 703 704 MadeChange = true; 705 706 TruncTheUse = InsertedTrunc; 707 } 708 } 709 return MadeChange; 710 } 711 712 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 713 /// the uses could potentially be combined with this shift instruction and 714 /// generate BitExtract instruction. It will only be applied if the architecture 715 /// supports BitExtract instruction. Here is an example: 716 /// BB1: 717 /// %x.extract.shift = lshr i64 %arg1, 32 718 /// BB2: 719 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 720 /// ==> 721 /// 722 /// BB2: 723 /// %x.extract.shift.1 = lshr i64 %arg1, 32 724 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 725 /// 726 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 727 /// instruction. 728 /// Return true if any changes are made. 729 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 730 const TargetLowering &TLI) { 731 BasicBlock *DefBB = ShiftI->getParent(); 732 733 /// Only insert instructions in each block once. 734 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 735 736 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 737 738 bool MadeChange = false; 739 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 740 UI != E;) { 741 Use &TheUse = UI.getUse(); 742 Instruction *User = cast<Instruction>(*UI); 743 // Preincrement use iterator so we don't invalidate it. 744 ++UI; 745 746 // Don't bother for PHI nodes. 747 if (isa<PHINode>(User)) 748 continue; 749 750 if (!isExtractBitsCandidateUse(User)) 751 continue; 752 753 BasicBlock *UserBB = User->getParent(); 754 755 if (UserBB == DefBB) { 756 // If the shift and truncate instruction are in the same BB. The use of 757 // the truncate(TruncUse) may still introduce another truncate if not 758 // legal. In this case, we would like to sink both shift and truncate 759 // instruction to the BB of TruncUse. 760 // for example: 761 // BB1: 762 // i64 shift.result = lshr i64 opnd, imm 763 // trunc.result = trunc shift.result to i16 764 // 765 // BB2: 766 // ----> We will have an implicit truncate here if the architecture does 767 // not have i16 compare. 768 // cmp i16 trunc.result, opnd2 769 // 770 if (isa<TruncInst>(User) && shiftIsLegal 771 // If the type of the truncate is legal, no trucate will be 772 // introduced in other basic blocks. 773 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 774 MadeChange = 775 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 776 777 continue; 778 } 779 // If we have already inserted a shift into this block, use it. 780 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 781 782 if (!InsertedShift) { 783 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 784 785 if (ShiftI->getOpcode() == Instruction::AShr) 786 InsertedShift = 787 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 788 else 789 InsertedShift = 790 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 791 792 MadeChange = true; 793 } 794 795 // Replace a use of the shift with a use of the new shift. 796 TheUse = InsertedShift; 797 } 798 799 // If we removed all uses, nuke the shift. 800 if (ShiftI->use_empty()) 801 ShiftI->eraseFromParent(); 802 803 return MadeChange; 804 } 805 806 namespace { 807 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { 808 protected: 809 void replaceCall(Value *With) override { 810 CI->replaceAllUsesWith(With); 811 CI->eraseFromParent(); 812 } 813 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override { 814 if (ConstantInt *SizeCI = 815 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) 816 return SizeCI->isAllOnesValue(); 817 return false; 818 } 819 }; 820 } // end anonymous namespace 821 822 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { 823 BasicBlock *BB = CI->getParent(); 824 825 // Lower inline assembly if we can. 826 // If we found an inline asm expession, and if the target knows how to 827 // lower it to normal LLVM code, do so now. 828 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 829 if (TLI->ExpandInlineAsm(CI)) { 830 // Avoid invalidating the iterator. 831 CurInstIterator = BB->begin(); 832 // Avoid processing instructions out of order, which could cause 833 // reuse before a value is defined. 834 SunkAddrs.clear(); 835 return true; 836 } 837 // Sink address computing for memory operands into the block. 838 if (OptimizeInlineAsmInst(CI)) 839 return true; 840 } 841 842 // Lower all uses of llvm.objectsize.* 843 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 844 if (II && II->getIntrinsicID() == Intrinsic::objectsize) { 845 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 846 Type *ReturnTy = CI->getType(); 847 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 848 849 // Substituting this can cause recursive simplifications, which can 850 // invalidate our iterator. Use a WeakVH to hold onto it in case this 851 // happens. 852 WeakVH IterHandle(CurInstIterator); 853 854 replaceAndRecursivelySimplify(CI, RetVal, 855 TLI ? TLI->getDataLayout() : nullptr, 856 TLInfo, ModifiedDT ? nullptr : DT); 857 858 // If the iterator instruction was recursively deleted, start over at the 859 // start of the block. 860 if (IterHandle != CurInstIterator) { 861 CurInstIterator = BB->begin(); 862 SunkAddrs.clear(); 863 } 864 return true; 865 } 866 867 if (II && TLI) { 868 SmallVector<Value*, 2> PtrOps; 869 Type *AccessTy; 870 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 871 while (!PtrOps.empty()) 872 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 873 return true; 874 } 875 876 // From here on out we're working with named functions. 877 if (!CI->getCalledFunction()) return false; 878 879 // We'll need DataLayout from here on out. 880 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 881 if (!TD) return false; 882 883 // Lower all default uses of _chk calls. This is very similar 884 // to what InstCombineCalls does, but here we are only lowering calls 885 // that have the default "don't know" as the objectsize. Anything else 886 // should be left alone. 887 CodeGenPrepareFortifiedLibCalls Simplifier; 888 return Simplifier.fold(CI, TD, TLInfo); 889 } 890 891 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 892 /// instructions to the predecessor to enable tail call optimizations. The 893 /// case it is currently looking for is: 894 /// @code 895 /// bb0: 896 /// %tmp0 = tail call i32 @f0() 897 /// br label %return 898 /// bb1: 899 /// %tmp1 = tail call i32 @f1() 900 /// br label %return 901 /// bb2: 902 /// %tmp2 = tail call i32 @f2() 903 /// br label %return 904 /// return: 905 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 906 /// ret i32 %retval 907 /// @endcode 908 /// 909 /// => 910 /// 911 /// @code 912 /// bb0: 913 /// %tmp0 = tail call i32 @f0() 914 /// ret i32 %tmp0 915 /// bb1: 916 /// %tmp1 = tail call i32 @f1() 917 /// ret i32 %tmp1 918 /// bb2: 919 /// %tmp2 = tail call i32 @f2() 920 /// ret i32 %tmp2 921 /// @endcode 922 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 923 if (!TLI) 924 return false; 925 926 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 927 if (!RI) 928 return false; 929 930 PHINode *PN = nullptr; 931 BitCastInst *BCI = nullptr; 932 Value *V = RI->getReturnValue(); 933 if (V) { 934 BCI = dyn_cast<BitCastInst>(V); 935 if (BCI) 936 V = BCI->getOperand(0); 937 938 PN = dyn_cast<PHINode>(V); 939 if (!PN) 940 return false; 941 } 942 943 if (PN && PN->getParent() != BB) 944 return false; 945 946 // It's not safe to eliminate the sign / zero extension of the return value. 947 // See llvm::isInTailCallPosition(). 948 const Function *F = BB->getParent(); 949 AttributeSet CallerAttrs = F->getAttributes(); 950 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 951 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 952 return false; 953 954 // Make sure there are no instructions between the PHI and return, or that the 955 // return is the first instruction in the block. 956 if (PN) { 957 BasicBlock::iterator BI = BB->begin(); 958 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 959 if (&*BI == BCI) 960 // Also skip over the bitcast. 961 ++BI; 962 if (&*BI != RI) 963 return false; 964 } else { 965 BasicBlock::iterator BI = BB->begin(); 966 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 967 if (&*BI != RI) 968 return false; 969 } 970 971 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 972 /// call. 973 SmallVector<CallInst*, 4> TailCalls; 974 if (PN) { 975 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 976 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 977 // Make sure the phi value is indeed produced by the tail call. 978 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 979 TLI->mayBeEmittedAsTailCall(CI)) 980 TailCalls.push_back(CI); 981 } 982 } else { 983 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 984 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 985 if (!VisitedBBs.insert(*PI)) 986 continue; 987 988 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 989 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 990 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 991 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 992 if (RI == RE) 993 continue; 994 995 CallInst *CI = dyn_cast<CallInst>(&*RI); 996 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 997 TailCalls.push_back(CI); 998 } 999 } 1000 1001 bool Changed = false; 1002 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1003 CallInst *CI = TailCalls[i]; 1004 CallSite CS(CI); 1005 1006 // Conservatively require the attributes of the call to match those of the 1007 // return. Ignore noalias because it doesn't affect the call sequence. 1008 AttributeSet CalleeAttrs = CS.getAttributes(); 1009 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1010 removeAttribute(Attribute::NoAlias) != 1011 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1012 removeAttribute(Attribute::NoAlias)) 1013 continue; 1014 1015 // Make sure the call instruction is followed by an unconditional branch to 1016 // the return block. 1017 BasicBlock *CallBB = CI->getParent(); 1018 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1019 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1020 continue; 1021 1022 // Duplicate the return into CallBB. 1023 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1024 ModifiedDT = Changed = true; 1025 ++NumRetsDup; 1026 } 1027 1028 // If we eliminated all predecessors of the block, delete the block now. 1029 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1030 BB->eraseFromParent(); 1031 1032 return Changed; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Memory Optimization 1037 //===----------------------------------------------------------------------===// 1038 1039 namespace { 1040 1041 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1042 /// which holds actual Value*'s for register values. 1043 struct ExtAddrMode : public TargetLowering::AddrMode { 1044 Value *BaseReg; 1045 Value *ScaledReg; 1046 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1047 void print(raw_ostream &OS) const; 1048 void dump() const; 1049 1050 bool operator==(const ExtAddrMode& O) const { 1051 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1052 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1053 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1054 } 1055 }; 1056 1057 #ifndef NDEBUG 1058 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1059 AM.print(OS); 1060 return OS; 1061 } 1062 #endif 1063 1064 void ExtAddrMode::print(raw_ostream &OS) const { 1065 bool NeedPlus = false; 1066 OS << "["; 1067 if (BaseGV) { 1068 OS << (NeedPlus ? " + " : "") 1069 << "GV:"; 1070 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1071 NeedPlus = true; 1072 } 1073 1074 if (BaseOffs) { 1075 OS << (NeedPlus ? " + " : "") 1076 << BaseOffs; 1077 NeedPlus = true; 1078 } 1079 1080 if (BaseReg) { 1081 OS << (NeedPlus ? " + " : "") 1082 << "Base:"; 1083 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1084 NeedPlus = true; 1085 } 1086 if (Scale) { 1087 OS << (NeedPlus ? " + " : "") 1088 << Scale << "*"; 1089 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1090 } 1091 1092 OS << ']'; 1093 } 1094 1095 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1096 void ExtAddrMode::dump() const { 1097 print(dbgs()); 1098 dbgs() << '\n'; 1099 } 1100 #endif 1101 1102 /// \brief This class provides transaction based operation on the IR. 1103 /// Every change made through this class is recorded in the internal state and 1104 /// can be undone (rollback) until commit is called. 1105 class TypePromotionTransaction { 1106 1107 /// \brief This represents the common interface of the individual transaction. 1108 /// Each class implements the logic for doing one specific modification on 1109 /// the IR via the TypePromotionTransaction. 1110 class TypePromotionAction { 1111 protected: 1112 /// The Instruction modified. 1113 Instruction *Inst; 1114 1115 public: 1116 /// \brief Constructor of the action. 1117 /// The constructor performs the related action on the IR. 1118 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1119 1120 virtual ~TypePromotionAction() {} 1121 1122 /// \brief Undo the modification done by this action. 1123 /// When this method is called, the IR must be in the same state as it was 1124 /// before this action was applied. 1125 /// \pre Undoing the action works if and only if the IR is in the exact same 1126 /// state as it was directly after this action was applied. 1127 virtual void undo() = 0; 1128 1129 /// \brief Advocate every change made by this action. 1130 /// When the results on the IR of the action are to be kept, it is important 1131 /// to call this function, otherwise hidden information may be kept forever. 1132 virtual void commit() { 1133 // Nothing to be done, this action is not doing anything. 1134 } 1135 }; 1136 1137 /// \brief Utility to remember the position of an instruction. 1138 class InsertionHandler { 1139 /// Position of an instruction. 1140 /// Either an instruction: 1141 /// - Is the first in a basic block: BB is used. 1142 /// - Has a previous instructon: PrevInst is used. 1143 union { 1144 Instruction *PrevInst; 1145 BasicBlock *BB; 1146 } Point; 1147 /// Remember whether or not the instruction had a previous instruction. 1148 bool HasPrevInstruction; 1149 1150 public: 1151 /// \brief Record the position of \p Inst. 1152 InsertionHandler(Instruction *Inst) { 1153 BasicBlock::iterator It = Inst; 1154 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1155 if (HasPrevInstruction) 1156 Point.PrevInst = --It; 1157 else 1158 Point.BB = Inst->getParent(); 1159 } 1160 1161 /// \brief Insert \p Inst at the recorded position. 1162 void insert(Instruction *Inst) { 1163 if (HasPrevInstruction) { 1164 if (Inst->getParent()) 1165 Inst->removeFromParent(); 1166 Inst->insertAfter(Point.PrevInst); 1167 } else { 1168 Instruction *Position = Point.BB->getFirstInsertionPt(); 1169 if (Inst->getParent()) 1170 Inst->moveBefore(Position); 1171 else 1172 Inst->insertBefore(Position); 1173 } 1174 } 1175 }; 1176 1177 /// \brief Move an instruction before another. 1178 class InstructionMoveBefore : public TypePromotionAction { 1179 /// Original position of the instruction. 1180 InsertionHandler Position; 1181 1182 public: 1183 /// \brief Move \p Inst before \p Before. 1184 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1185 : TypePromotionAction(Inst), Position(Inst) { 1186 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1187 Inst->moveBefore(Before); 1188 } 1189 1190 /// \brief Move the instruction back to its original position. 1191 void undo() override { 1192 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1193 Position.insert(Inst); 1194 } 1195 }; 1196 1197 /// \brief Set the operand of an instruction with a new value. 1198 class OperandSetter : public TypePromotionAction { 1199 /// Original operand of the instruction. 1200 Value *Origin; 1201 /// Index of the modified instruction. 1202 unsigned Idx; 1203 1204 public: 1205 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1206 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1207 : TypePromotionAction(Inst), Idx(Idx) { 1208 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1209 << "for:" << *Inst << "\n" 1210 << "with:" << *NewVal << "\n"); 1211 Origin = Inst->getOperand(Idx); 1212 Inst->setOperand(Idx, NewVal); 1213 } 1214 1215 /// \brief Restore the original value of the instruction. 1216 void undo() override { 1217 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1218 << "for: " << *Inst << "\n" 1219 << "with: " << *Origin << "\n"); 1220 Inst->setOperand(Idx, Origin); 1221 } 1222 }; 1223 1224 /// \brief Hide the operands of an instruction. 1225 /// Do as if this instruction was not using any of its operands. 1226 class OperandsHider : public TypePromotionAction { 1227 /// The list of original operands. 1228 SmallVector<Value *, 4> OriginalValues; 1229 1230 public: 1231 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1232 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1233 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1234 unsigned NumOpnds = Inst->getNumOperands(); 1235 OriginalValues.reserve(NumOpnds); 1236 for (unsigned It = 0; It < NumOpnds; ++It) { 1237 // Save the current operand. 1238 Value *Val = Inst->getOperand(It); 1239 OriginalValues.push_back(Val); 1240 // Set a dummy one. 1241 // We could use OperandSetter here, but that would implied an overhead 1242 // that we are not willing to pay. 1243 Inst->setOperand(It, UndefValue::get(Val->getType())); 1244 } 1245 } 1246 1247 /// \brief Restore the original list of uses. 1248 void undo() override { 1249 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1250 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1251 Inst->setOperand(It, OriginalValues[It]); 1252 } 1253 }; 1254 1255 /// \brief Build a truncate instruction. 1256 class TruncBuilder : public TypePromotionAction { 1257 public: 1258 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1259 /// result. 1260 /// trunc Opnd to Ty. 1261 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1262 IRBuilder<> Builder(Opnd); 1263 Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted")); 1264 DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n"); 1265 } 1266 1267 /// \brief Get the built instruction. 1268 Instruction *getBuiltInstruction() { return Inst; } 1269 1270 /// \brief Remove the built instruction. 1271 void undo() override { 1272 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n"); 1273 Inst->eraseFromParent(); 1274 } 1275 }; 1276 1277 /// \brief Build a sign extension instruction. 1278 class SExtBuilder : public TypePromotionAction { 1279 public: 1280 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1281 /// result. 1282 /// sext Opnd to Ty. 1283 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1284 : TypePromotionAction(Inst) { 1285 IRBuilder<> Builder(InsertPt); 1286 Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted")); 1287 DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n"); 1288 } 1289 1290 /// \brief Get the built instruction. 1291 Instruction *getBuiltInstruction() { return Inst; } 1292 1293 /// \brief Remove the built instruction. 1294 void undo() override { 1295 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n"); 1296 Inst->eraseFromParent(); 1297 } 1298 }; 1299 1300 /// \brief Mutate an instruction to another type. 1301 class TypeMutator : public TypePromotionAction { 1302 /// Record the original type. 1303 Type *OrigTy; 1304 1305 public: 1306 /// \brief Mutate the type of \p Inst into \p NewTy. 1307 TypeMutator(Instruction *Inst, Type *NewTy) 1308 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1309 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1310 << "\n"); 1311 Inst->mutateType(NewTy); 1312 } 1313 1314 /// \brief Mutate the instruction back to its original type. 1315 void undo() override { 1316 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1317 << "\n"); 1318 Inst->mutateType(OrigTy); 1319 } 1320 }; 1321 1322 /// \brief Replace the uses of an instruction by another instruction. 1323 class UsesReplacer : public TypePromotionAction { 1324 /// Helper structure to keep track of the replaced uses. 1325 struct InstructionAndIdx { 1326 /// The instruction using the instruction. 1327 Instruction *Inst; 1328 /// The index where this instruction is used for Inst. 1329 unsigned Idx; 1330 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1331 : Inst(Inst), Idx(Idx) {} 1332 }; 1333 1334 /// Keep track of the original uses (pair Instruction, Index). 1335 SmallVector<InstructionAndIdx, 4> OriginalUses; 1336 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1337 1338 public: 1339 /// \brief Replace all the use of \p Inst by \p New. 1340 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1341 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1342 << "\n"); 1343 // Record the original uses. 1344 for (Use &U : Inst->uses()) { 1345 Instruction *UserI = cast<Instruction>(U.getUser()); 1346 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1347 } 1348 // Now, we can replace the uses. 1349 Inst->replaceAllUsesWith(New); 1350 } 1351 1352 /// \brief Reassign the original uses of Inst to Inst. 1353 void undo() override { 1354 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1355 for (use_iterator UseIt = OriginalUses.begin(), 1356 EndIt = OriginalUses.end(); 1357 UseIt != EndIt; ++UseIt) { 1358 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1359 } 1360 } 1361 }; 1362 1363 /// \brief Remove an instruction from the IR. 1364 class InstructionRemover : public TypePromotionAction { 1365 /// Original position of the instruction. 1366 InsertionHandler Inserter; 1367 /// Helper structure to hide all the link to the instruction. In other 1368 /// words, this helps to do as if the instruction was removed. 1369 OperandsHider Hider; 1370 /// Keep track of the uses replaced, if any. 1371 UsesReplacer *Replacer; 1372 1373 public: 1374 /// \brief Remove all reference of \p Inst and optinally replace all its 1375 /// uses with New. 1376 /// \pre If !Inst->use_empty(), then New != nullptr 1377 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1378 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1379 Replacer(nullptr) { 1380 if (New) 1381 Replacer = new UsesReplacer(Inst, New); 1382 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1383 Inst->removeFromParent(); 1384 } 1385 1386 ~InstructionRemover() { delete Replacer; } 1387 1388 /// \brief Really remove the instruction. 1389 void commit() override { delete Inst; } 1390 1391 /// \brief Resurrect the instruction and reassign it to the proper uses if 1392 /// new value was provided when build this action. 1393 void undo() override { 1394 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1395 Inserter.insert(Inst); 1396 if (Replacer) 1397 Replacer->undo(); 1398 Hider.undo(); 1399 } 1400 }; 1401 1402 public: 1403 /// Restoration point. 1404 /// The restoration point is a pointer to an action instead of an iterator 1405 /// because the iterator may be invalidated but not the pointer. 1406 typedef const TypePromotionAction *ConstRestorationPt; 1407 /// Advocate every changes made in that transaction. 1408 void commit(); 1409 /// Undo all the changes made after the given point. 1410 void rollback(ConstRestorationPt Point); 1411 /// Get the current restoration point. 1412 ConstRestorationPt getRestorationPoint() const; 1413 1414 /// \name API for IR modification with state keeping to support rollback. 1415 /// @{ 1416 /// Same as Instruction::setOperand. 1417 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1418 /// Same as Instruction::eraseFromParent. 1419 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1420 /// Same as Value::replaceAllUsesWith. 1421 void replaceAllUsesWith(Instruction *Inst, Value *New); 1422 /// Same as Value::mutateType. 1423 void mutateType(Instruction *Inst, Type *NewTy); 1424 /// Same as IRBuilder::createTrunc. 1425 Instruction *createTrunc(Instruction *Opnd, Type *Ty); 1426 /// Same as IRBuilder::createSExt. 1427 Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1428 /// Same as Instruction::moveBefore. 1429 void moveBefore(Instruction *Inst, Instruction *Before); 1430 /// @} 1431 1432 private: 1433 /// The ordered list of actions made so far. 1434 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1435 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1436 }; 1437 1438 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1439 Value *NewVal) { 1440 Actions.push_back( 1441 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1442 } 1443 1444 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1445 Value *NewVal) { 1446 Actions.push_back( 1447 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1448 } 1449 1450 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1451 Value *New) { 1452 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1453 } 1454 1455 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1456 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1457 } 1458 1459 Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1460 Type *Ty) { 1461 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1462 Instruction *I = Ptr->getBuiltInstruction(); 1463 Actions.push_back(std::move(Ptr)); 1464 return I; 1465 } 1466 1467 Instruction *TypePromotionTransaction::createSExt(Instruction *Inst, 1468 Value *Opnd, Type *Ty) { 1469 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1470 Instruction *I = Ptr->getBuiltInstruction(); 1471 Actions.push_back(std::move(Ptr)); 1472 return I; 1473 } 1474 1475 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1476 Instruction *Before) { 1477 Actions.push_back( 1478 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1479 } 1480 1481 TypePromotionTransaction::ConstRestorationPt 1482 TypePromotionTransaction::getRestorationPoint() const { 1483 return !Actions.empty() ? Actions.back().get() : nullptr; 1484 } 1485 1486 void TypePromotionTransaction::commit() { 1487 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1488 ++It) 1489 (*It)->commit(); 1490 Actions.clear(); 1491 } 1492 1493 void TypePromotionTransaction::rollback( 1494 TypePromotionTransaction::ConstRestorationPt Point) { 1495 while (!Actions.empty() && Point != Actions.back().get()) { 1496 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1497 Curr->undo(); 1498 } 1499 } 1500 1501 /// \brief A helper class for matching addressing modes. 1502 /// 1503 /// This encapsulates the logic for matching the target-legal addressing modes. 1504 class AddressingModeMatcher { 1505 SmallVectorImpl<Instruction*> &AddrModeInsts; 1506 const TargetLowering &TLI; 1507 1508 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1509 /// the memory instruction that we're computing this address for. 1510 Type *AccessTy; 1511 Instruction *MemoryInst; 1512 1513 /// AddrMode - This is the addressing mode that we're building up. This is 1514 /// part of the return value of this addressing mode matching stuff. 1515 ExtAddrMode &AddrMode; 1516 1517 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1518 const SetOfInstrs &InsertedTruncs; 1519 /// A map from the instructions to their type before promotion. 1520 InstrToOrigTy &PromotedInsts; 1521 /// The ongoing transaction where every action should be registered. 1522 TypePromotionTransaction &TPT; 1523 1524 /// IgnoreProfitability - This is set to true when we should not do 1525 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1526 /// always returns true. 1527 bool IgnoreProfitability; 1528 1529 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1530 const TargetLowering &T, Type *AT, 1531 Instruction *MI, ExtAddrMode &AM, 1532 const SetOfInstrs &InsertedTruncs, 1533 InstrToOrigTy &PromotedInsts, 1534 TypePromotionTransaction &TPT) 1535 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1536 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1537 IgnoreProfitability = false; 1538 } 1539 public: 1540 1541 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1542 /// give an access type of AccessTy. This returns a list of involved 1543 /// instructions in AddrModeInsts. 1544 /// \p InsertedTruncs The truncate instruction inserted by other 1545 /// CodeGenPrepare 1546 /// optimizations. 1547 /// \p PromotedInsts maps the instructions to their type before promotion. 1548 /// \p The ongoing transaction where every action should be registered. 1549 static ExtAddrMode Match(Value *V, Type *AccessTy, 1550 Instruction *MemoryInst, 1551 SmallVectorImpl<Instruction*> &AddrModeInsts, 1552 const TargetLowering &TLI, 1553 const SetOfInstrs &InsertedTruncs, 1554 InstrToOrigTy &PromotedInsts, 1555 TypePromotionTransaction &TPT) { 1556 ExtAddrMode Result; 1557 1558 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 1559 MemoryInst, Result, InsertedTruncs, 1560 PromotedInsts, TPT).MatchAddr(V, 0); 1561 (void)Success; assert(Success && "Couldn't select *anything*?"); 1562 return Result; 1563 } 1564 private: 1565 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 1566 bool MatchAddr(Value *V, unsigned Depth); 1567 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 1568 bool *MovedAway = nullptr); 1569 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 1570 ExtAddrMode &AMBefore, 1571 ExtAddrMode &AMAfter); 1572 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 1573 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 1574 Value *PromotedOperand) const; 1575 }; 1576 1577 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 1578 /// Return true and update AddrMode if this addr mode is legal for the target, 1579 /// false if not. 1580 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 1581 unsigned Depth) { 1582 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 1583 // mode. Just process that directly. 1584 if (Scale == 1) 1585 return MatchAddr(ScaleReg, Depth); 1586 1587 // If the scale is 0, it takes nothing to add this. 1588 if (Scale == 0) 1589 return true; 1590 1591 // If we already have a scale of this value, we can add to it, otherwise, we 1592 // need an available scale field. 1593 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 1594 return false; 1595 1596 ExtAddrMode TestAddrMode = AddrMode; 1597 1598 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 1599 // [A+B + A*7] -> [B+A*8]. 1600 TestAddrMode.Scale += Scale; 1601 TestAddrMode.ScaledReg = ScaleReg; 1602 1603 // If the new address isn't legal, bail out. 1604 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 1605 return false; 1606 1607 // It was legal, so commit it. 1608 AddrMode = TestAddrMode; 1609 1610 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 1611 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 1612 // X*Scale + C*Scale to addr mode. 1613 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 1614 if (isa<Instruction>(ScaleReg) && // not a constant expr. 1615 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 1616 TestAddrMode.ScaledReg = AddLHS; 1617 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 1618 1619 // If this addressing mode is legal, commit it and remember that we folded 1620 // this instruction. 1621 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 1622 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 1623 AddrMode = TestAddrMode; 1624 return true; 1625 } 1626 } 1627 1628 // Otherwise, not (x+c)*scale, just return what we have. 1629 return true; 1630 } 1631 1632 /// MightBeFoldableInst - This is a little filter, which returns true if an 1633 /// addressing computation involving I might be folded into a load/store 1634 /// accessing it. This doesn't need to be perfect, but needs to accept at least 1635 /// the set of instructions that MatchOperationAddr can. 1636 static bool MightBeFoldableInst(Instruction *I) { 1637 switch (I->getOpcode()) { 1638 case Instruction::BitCast: 1639 case Instruction::AddrSpaceCast: 1640 // Don't touch identity bitcasts. 1641 if (I->getType() == I->getOperand(0)->getType()) 1642 return false; 1643 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 1644 case Instruction::PtrToInt: 1645 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1646 return true; 1647 case Instruction::IntToPtr: 1648 // We know the input is intptr_t, so this is foldable. 1649 return true; 1650 case Instruction::Add: 1651 return true; 1652 case Instruction::Mul: 1653 case Instruction::Shl: 1654 // Can only handle X*C and X << C. 1655 return isa<ConstantInt>(I->getOperand(1)); 1656 case Instruction::GetElementPtr: 1657 return true; 1658 default: 1659 return false; 1660 } 1661 } 1662 1663 /// \brief Hepler class to perform type promotion. 1664 class TypePromotionHelper { 1665 /// \brief Utility function to check whether or not a sign extension of 1666 /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either 1667 /// using the operands of \p Inst or promoting \p Inst. 1668 /// In other words, check if: 1669 /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType. 1670 /// #1 Promotion applies: 1671 /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...). 1672 /// #2 Operand reuses: 1673 /// sext opnd1 to ConsideredSExtType. 1674 /// \p PromotedInsts maps the instructions to their type before promotion. 1675 static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType, 1676 const InstrToOrigTy &PromotedInsts); 1677 1678 /// \brief Utility function to determine if \p OpIdx should be promoted when 1679 /// promoting \p Inst. 1680 static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) { 1681 if (isa<SelectInst>(Inst) && OpIdx == 0) 1682 return false; 1683 return true; 1684 } 1685 1686 /// \brief Utility function to promote the operand of \p SExt when this 1687 /// operand is a promotable trunc or sext. 1688 /// \p PromotedInsts maps the instructions to their type before promotion. 1689 /// \p CreatedInsts[out] contains how many non-free instructions have been 1690 /// created to promote the operand of SExt. 1691 /// Should never be called directly. 1692 /// \return The promoted value which is used instead of SExt. 1693 static Value *promoteOperandForTruncAndSExt(Instruction *SExt, 1694 TypePromotionTransaction &TPT, 1695 InstrToOrigTy &PromotedInsts, 1696 unsigned &CreatedInsts); 1697 1698 /// \brief Utility function to promote the operand of \p SExt when this 1699 /// operand is promotable and is not a supported trunc or sext. 1700 /// \p PromotedInsts maps the instructions to their type before promotion. 1701 /// \p CreatedInsts[out] contains how many non-free instructions have been 1702 /// created to promote the operand of SExt. 1703 /// Should never be called directly. 1704 /// \return The promoted value which is used instead of SExt. 1705 static Value *promoteOperandForOther(Instruction *SExt, 1706 TypePromotionTransaction &TPT, 1707 InstrToOrigTy &PromotedInsts, 1708 unsigned &CreatedInsts); 1709 1710 public: 1711 /// Type for the utility function that promotes the operand of SExt. 1712 typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT, 1713 InstrToOrigTy &PromotedInsts, 1714 unsigned &CreatedInsts); 1715 /// \brief Given a sign extend instruction \p SExt, return the approriate 1716 /// action to promote the operand of \p SExt instead of using SExt. 1717 /// \return NULL if no promotable action is possible with the current 1718 /// sign extension. 1719 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 1720 /// the others CodeGenPrepare optimizations. This information is important 1721 /// because we do not want to promote these instructions as CodeGenPrepare 1722 /// will reinsert them later. Thus creating an infinite loop: create/remove. 1723 /// \p PromotedInsts maps the instructions to their type before promotion. 1724 static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1725 const TargetLowering &TLI, 1726 const InstrToOrigTy &PromotedInsts); 1727 }; 1728 1729 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 1730 Type *ConsideredSExtType, 1731 const InstrToOrigTy &PromotedInsts) { 1732 // We can always get through sext. 1733 if (isa<SExtInst>(Inst)) 1734 return true; 1735 1736 // We can get through binary operator, if it is legal. In other words, the 1737 // binary operator must have a nuw or nsw flag. 1738 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 1739 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 1740 (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap())) 1741 return true; 1742 1743 // Check if we can do the following simplification. 1744 // sext(trunc(sext)) --> sext 1745 if (!isa<TruncInst>(Inst)) 1746 return false; 1747 1748 Value *OpndVal = Inst->getOperand(0); 1749 // Check if we can use this operand in the sext. 1750 // If the type is larger than the result type of the sign extension, 1751 // we cannot. 1752 if (OpndVal->getType()->getIntegerBitWidth() > 1753 ConsideredSExtType->getIntegerBitWidth()) 1754 return false; 1755 1756 // If the operand of the truncate is not an instruction, we will not have 1757 // any information on the dropped bits. 1758 // (Actually we could for constant but it is not worth the extra logic). 1759 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 1760 if (!Opnd) 1761 return false; 1762 1763 // Check if the source of the type is narrow enough. 1764 // I.e., check that trunc just drops sign extended bits. 1765 // #1 get the type of the operand. 1766 const Type *OpndType; 1767 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 1768 if (It != PromotedInsts.end()) 1769 OpndType = It->second; 1770 else if (isa<SExtInst>(Opnd)) 1771 OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType(); 1772 else 1773 return false; 1774 1775 // #2 check that the truncate just drop sign extended bits. 1776 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 1777 return true; 1778 1779 return false; 1780 } 1781 1782 TypePromotionHelper::Action TypePromotionHelper::getAction( 1783 Instruction *SExt, const SetOfInstrs &InsertedTruncs, 1784 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 1785 Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0)); 1786 Type *SExtTy = SExt->getType(); 1787 // If the operand of the sign extension is not an instruction, we cannot 1788 // get through. 1789 // If it, check we can get through. 1790 if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts)) 1791 return nullptr; 1792 1793 // Do not promote if the operand has been added by codegenprepare. 1794 // Otherwise, it means we are undoing an optimization that is likely to be 1795 // redone, thus causing potential infinite loop. 1796 if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd)) 1797 return nullptr; 1798 1799 // SExt or Trunc instructions. 1800 // Return the related handler. 1801 if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd)) 1802 return promoteOperandForTruncAndSExt; 1803 1804 // Regular instruction. 1805 // Abort early if we will have to insert non-free instructions. 1806 if (!SExtOpnd->hasOneUse() && 1807 !TLI.isTruncateFree(SExtTy, SExtOpnd->getType())) 1808 return nullptr; 1809 return promoteOperandForOther; 1810 } 1811 1812 Value *TypePromotionHelper::promoteOperandForTruncAndSExt( 1813 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 1814 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) { 1815 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1816 // get through it and this method should not be called. 1817 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1818 // Replace sext(trunc(opnd)) or sext(sext(opnd)) 1819 // => sext(opnd). 1820 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 1821 CreatedInsts = 0; 1822 1823 // Remove dead code. 1824 if (SExtOpnd->use_empty()) 1825 TPT.eraseInstruction(SExtOpnd); 1826 1827 // Check if the sext is still needed. 1828 if (SExt->getType() != SExt->getOperand(0)->getType()) 1829 return SExt; 1830 1831 // At this point we have: sext ty opnd to ty. 1832 // Reassign the uses of SExt to the opnd and remove SExt. 1833 Value *NextVal = SExt->getOperand(0); 1834 TPT.eraseInstruction(SExt, NextVal); 1835 return NextVal; 1836 } 1837 1838 Value * 1839 TypePromotionHelper::promoteOperandForOther(Instruction *SExt, 1840 TypePromotionTransaction &TPT, 1841 InstrToOrigTy &PromotedInsts, 1842 unsigned &CreatedInsts) { 1843 // By construction, the operand of SExt is an instruction. Otherwise we cannot 1844 // get through it and this method should not be called. 1845 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 1846 CreatedInsts = 0; 1847 if (!SExtOpnd->hasOneUse()) { 1848 // SExtOpnd will be promoted. 1849 // All its uses, but SExt, will need to use a truncated value of the 1850 // promoted version. 1851 // Create the truncate now. 1852 Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType()); 1853 Trunc->removeFromParent(); 1854 // Insert it just after the definition. 1855 Trunc->insertAfter(SExtOpnd); 1856 1857 TPT.replaceAllUsesWith(SExtOpnd, Trunc); 1858 // Restore the operand of SExt (which has been replace by the previous call 1859 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 1860 TPT.setOperand(SExt, 0, SExtOpnd); 1861 } 1862 1863 // Get through the Instruction: 1864 // 1. Update its type. 1865 // 2. Replace the uses of SExt by Inst. 1866 // 3. Sign extend each operand that needs to be sign extended. 1867 1868 // Remember the original type of the instruction before promotion. 1869 // This is useful to know that the high bits are sign extended bits. 1870 PromotedInsts.insert( 1871 std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType())); 1872 // Step #1. 1873 TPT.mutateType(SExtOpnd, SExt->getType()); 1874 // Step #2. 1875 TPT.replaceAllUsesWith(SExt, SExtOpnd); 1876 // Step #3. 1877 Instruction *SExtForOpnd = SExt; 1878 1879 DEBUG(dbgs() << "Propagate SExt to operands\n"); 1880 for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 1881 ++OpIdx) { 1882 DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n'); 1883 if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() || 1884 !shouldSExtOperand(SExtOpnd, OpIdx)) { 1885 DEBUG(dbgs() << "No need to propagate\n"); 1886 continue; 1887 } 1888 // Check if we can statically sign extend the operand. 1889 Value *Opnd = SExtOpnd->getOperand(OpIdx); 1890 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 1891 DEBUG(dbgs() << "Statically sign extend\n"); 1892 TPT.setOperand( 1893 SExtOpnd, OpIdx, 1894 ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue())); 1895 continue; 1896 } 1897 // UndefValue are typed, so we have to statically sign extend them. 1898 if (isa<UndefValue>(Opnd)) { 1899 DEBUG(dbgs() << "Statically sign extend\n"); 1900 TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType())); 1901 continue; 1902 } 1903 1904 // Otherwise we have to explicity sign extend the operand. 1905 // Check if SExt was reused to sign extend an operand. 1906 if (!SExtForOpnd) { 1907 // If yes, create a new one. 1908 DEBUG(dbgs() << "More operands to sext\n"); 1909 SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType()); 1910 ++CreatedInsts; 1911 } 1912 1913 TPT.setOperand(SExtForOpnd, 0, Opnd); 1914 1915 // Move the sign extension before the insertion point. 1916 TPT.moveBefore(SExtForOpnd, SExtOpnd); 1917 TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd); 1918 // If more sext are required, new instructions will have to be created. 1919 SExtForOpnd = nullptr; 1920 } 1921 if (SExtForOpnd == SExt) { 1922 DEBUG(dbgs() << "Sign extension is useless now\n"); 1923 TPT.eraseInstruction(SExt); 1924 } 1925 return SExtOpnd; 1926 } 1927 1928 /// IsPromotionProfitable - Check whether or not promoting an instruction 1929 /// to a wider type was profitable. 1930 /// \p MatchedSize gives the number of instructions that have been matched 1931 /// in the addressing mode after the promotion was applied. 1932 /// \p SizeWithPromotion gives the number of created instructions for 1933 /// the promotion plus the number of instructions that have been 1934 /// matched in the addressing mode before the promotion. 1935 /// \p PromotedOperand is the value that has been promoted. 1936 /// \return True if the promotion is profitable, false otherwise. 1937 bool 1938 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 1939 unsigned SizeWithPromotion, 1940 Value *PromotedOperand) const { 1941 // We folded less instructions than what we created to promote the operand. 1942 // This is not profitable. 1943 if (MatchedSize < SizeWithPromotion) 1944 return false; 1945 if (MatchedSize > SizeWithPromotion) 1946 return true; 1947 // The promotion is neutral but it may help folding the sign extension in 1948 // loads for instance. 1949 // Check that we did not create an illegal instruction. 1950 Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand); 1951 if (!PromotedInst) 1952 return false; 1953 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 1954 // If the ISDOpcode is undefined, it was undefined before the promotion. 1955 if (!ISDOpcode) 1956 return true; 1957 // Otherwise, check if the promoted instruction is legal or not. 1958 return TLI.isOperationLegalOrCustom(ISDOpcode, 1959 EVT::getEVT(PromotedInst->getType())); 1960 } 1961 1962 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 1963 /// fold the operation into the addressing mode. If so, update the addressing 1964 /// mode and return true, otherwise return false without modifying AddrMode. 1965 /// If \p MovedAway is not NULL, it contains the information of whether or 1966 /// not AddrInst has to be folded into the addressing mode on success. 1967 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 1968 /// because it has been moved away. 1969 /// Thus AddrInst must not be added in the matched instructions. 1970 /// This state can happen when AddrInst is a sext, since it may be moved away. 1971 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 1972 /// not be referenced anymore. 1973 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 1974 unsigned Depth, 1975 bool *MovedAway) { 1976 // Avoid exponential behavior on extremely deep expression trees. 1977 if (Depth >= 5) return false; 1978 1979 // By default, all matched instructions stay in place. 1980 if (MovedAway) 1981 *MovedAway = false; 1982 1983 switch (Opcode) { 1984 case Instruction::PtrToInt: 1985 // PtrToInt is always a noop, as we know that the int type is pointer sized. 1986 return MatchAddr(AddrInst->getOperand(0), Depth); 1987 case Instruction::IntToPtr: 1988 // This inttoptr is a no-op if the integer type is pointer sized. 1989 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 1990 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 1991 return MatchAddr(AddrInst->getOperand(0), Depth); 1992 return false; 1993 case Instruction::BitCast: 1994 case Instruction::AddrSpaceCast: 1995 // BitCast is always a noop, and we can handle it as long as it is 1996 // int->int or pointer->pointer (we don't want int<->fp or something). 1997 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 1998 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 1999 // Don't touch identity bitcasts. These were probably put here by LSR, 2000 // and we don't want to mess around with them. Assume it knows what it 2001 // is doing. 2002 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2003 return MatchAddr(AddrInst->getOperand(0), Depth); 2004 return false; 2005 case Instruction::Add: { 2006 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2007 ExtAddrMode BackupAddrMode = AddrMode; 2008 unsigned OldSize = AddrModeInsts.size(); 2009 // Start a transaction at this point. 2010 // The LHS may match but not the RHS. 2011 // Therefore, we need a higher level restoration point to undo partially 2012 // matched operation. 2013 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2014 TPT.getRestorationPoint(); 2015 2016 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2017 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2018 return true; 2019 2020 // Restore the old addr mode info. 2021 AddrMode = BackupAddrMode; 2022 AddrModeInsts.resize(OldSize); 2023 TPT.rollback(LastKnownGood); 2024 2025 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2026 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2027 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2028 return true; 2029 2030 // Otherwise we definitely can't merge the ADD in. 2031 AddrMode = BackupAddrMode; 2032 AddrModeInsts.resize(OldSize); 2033 TPT.rollback(LastKnownGood); 2034 break; 2035 } 2036 //case Instruction::Or: 2037 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2038 //break; 2039 case Instruction::Mul: 2040 case Instruction::Shl: { 2041 // Can only handle X*C and X << C. 2042 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2043 if (!RHS) 2044 return false; 2045 int64_t Scale = RHS->getSExtValue(); 2046 if (Opcode == Instruction::Shl) 2047 Scale = 1LL << Scale; 2048 2049 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2050 } 2051 case Instruction::GetElementPtr: { 2052 // Scan the GEP. We check it if it contains constant offsets and at most 2053 // one variable offset. 2054 int VariableOperand = -1; 2055 unsigned VariableScale = 0; 2056 2057 int64_t ConstantOffset = 0; 2058 const DataLayout *TD = TLI.getDataLayout(); 2059 gep_type_iterator GTI = gep_type_begin(AddrInst); 2060 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2061 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2062 const StructLayout *SL = TD->getStructLayout(STy); 2063 unsigned Idx = 2064 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2065 ConstantOffset += SL->getElementOffset(Idx); 2066 } else { 2067 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2068 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2069 ConstantOffset += CI->getSExtValue()*TypeSize; 2070 } else if (TypeSize) { // Scales of zero don't do anything. 2071 // We only allow one variable index at the moment. 2072 if (VariableOperand != -1) 2073 return false; 2074 2075 // Remember the variable index. 2076 VariableOperand = i; 2077 VariableScale = TypeSize; 2078 } 2079 } 2080 } 2081 2082 // A common case is for the GEP to only do a constant offset. In this case, 2083 // just add it to the disp field and check validity. 2084 if (VariableOperand == -1) { 2085 AddrMode.BaseOffs += ConstantOffset; 2086 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2087 // Check to see if we can fold the base pointer in too. 2088 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2089 return true; 2090 } 2091 AddrMode.BaseOffs -= ConstantOffset; 2092 return false; 2093 } 2094 2095 // Save the valid addressing mode in case we can't match. 2096 ExtAddrMode BackupAddrMode = AddrMode; 2097 unsigned OldSize = AddrModeInsts.size(); 2098 2099 // See if the scale and offset amount is valid for this target. 2100 AddrMode.BaseOffs += ConstantOffset; 2101 2102 // Match the base operand of the GEP. 2103 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2104 // If it couldn't be matched, just stuff the value in a register. 2105 if (AddrMode.HasBaseReg) { 2106 AddrMode = BackupAddrMode; 2107 AddrModeInsts.resize(OldSize); 2108 return false; 2109 } 2110 AddrMode.HasBaseReg = true; 2111 AddrMode.BaseReg = AddrInst->getOperand(0); 2112 } 2113 2114 // Match the remaining variable portion of the GEP. 2115 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2116 Depth)) { 2117 // If it couldn't be matched, try stuffing the base into a register 2118 // instead of matching it, and retrying the match of the scale. 2119 AddrMode = BackupAddrMode; 2120 AddrModeInsts.resize(OldSize); 2121 if (AddrMode.HasBaseReg) 2122 return false; 2123 AddrMode.HasBaseReg = true; 2124 AddrMode.BaseReg = AddrInst->getOperand(0); 2125 AddrMode.BaseOffs += ConstantOffset; 2126 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2127 VariableScale, Depth)) { 2128 // If even that didn't work, bail. 2129 AddrMode = BackupAddrMode; 2130 AddrModeInsts.resize(OldSize); 2131 return false; 2132 } 2133 } 2134 2135 return true; 2136 } 2137 case Instruction::SExt: { 2138 Instruction *SExt = dyn_cast<Instruction>(AddrInst); 2139 if (!SExt) 2140 return false; 2141 2142 // Try to move this sext out of the way of the addressing mode. 2143 // Ask for a method for doing so. 2144 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 2145 SExt, InsertedTruncs, TLI, PromotedInsts); 2146 if (!TPH) 2147 return false; 2148 2149 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2150 TPT.getRestorationPoint(); 2151 unsigned CreatedInsts = 0; 2152 Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts); 2153 // SExt has been moved away. 2154 // Thus either it will be rematched later in the recursive calls or it is 2155 // gone. Anyway, we must not fold it into the addressing mode at this point. 2156 // E.g., 2157 // op = add opnd, 1 2158 // idx = sext op 2159 // addr = gep base, idx 2160 // is now: 2161 // promotedOpnd = sext opnd <- no match here 2162 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2163 // addr = gep base, op <- match 2164 if (MovedAway) 2165 *MovedAway = true; 2166 2167 assert(PromotedOperand && 2168 "TypePromotionHelper should have filtered out those cases"); 2169 2170 ExtAddrMode BackupAddrMode = AddrMode; 2171 unsigned OldSize = AddrModeInsts.size(); 2172 2173 if (!MatchAddr(PromotedOperand, Depth) || 2174 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2175 PromotedOperand)) { 2176 AddrMode = BackupAddrMode; 2177 AddrModeInsts.resize(OldSize); 2178 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2179 TPT.rollback(LastKnownGood); 2180 return false; 2181 } 2182 return true; 2183 } 2184 } 2185 return false; 2186 } 2187 2188 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2189 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2190 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2191 /// or intptr_t for the target. 2192 /// 2193 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2194 // Start a transaction at this point that we will rollback if the matching 2195 // fails. 2196 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2197 TPT.getRestorationPoint(); 2198 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2199 // Fold in immediates if legal for the target. 2200 AddrMode.BaseOffs += CI->getSExtValue(); 2201 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2202 return true; 2203 AddrMode.BaseOffs -= CI->getSExtValue(); 2204 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2205 // If this is a global variable, try to fold it into the addressing mode. 2206 if (!AddrMode.BaseGV) { 2207 AddrMode.BaseGV = GV; 2208 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2209 return true; 2210 AddrMode.BaseGV = nullptr; 2211 } 2212 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2213 ExtAddrMode BackupAddrMode = AddrMode; 2214 unsigned OldSize = AddrModeInsts.size(); 2215 2216 // Check to see if it is possible to fold this operation. 2217 bool MovedAway = false; 2218 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2219 // This instruction may have been move away. If so, there is nothing 2220 // to check here. 2221 if (MovedAway) 2222 return true; 2223 // Okay, it's possible to fold this. Check to see if it is actually 2224 // *profitable* to do so. We use a simple cost model to avoid increasing 2225 // register pressure too much. 2226 if (I->hasOneUse() || 2227 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2228 AddrModeInsts.push_back(I); 2229 return true; 2230 } 2231 2232 // It isn't profitable to do this, roll back. 2233 //cerr << "NOT FOLDING: " << *I; 2234 AddrMode = BackupAddrMode; 2235 AddrModeInsts.resize(OldSize); 2236 TPT.rollback(LastKnownGood); 2237 } 2238 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2239 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2240 return true; 2241 TPT.rollback(LastKnownGood); 2242 } else if (isa<ConstantPointerNull>(Addr)) { 2243 // Null pointer gets folded without affecting the addressing mode. 2244 return true; 2245 } 2246 2247 // Worse case, the target should support [reg] addressing modes. :) 2248 if (!AddrMode.HasBaseReg) { 2249 AddrMode.HasBaseReg = true; 2250 AddrMode.BaseReg = Addr; 2251 // Still check for legality in case the target supports [imm] but not [i+r]. 2252 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2253 return true; 2254 AddrMode.HasBaseReg = false; 2255 AddrMode.BaseReg = nullptr; 2256 } 2257 2258 // If the base register is already taken, see if we can do [r+r]. 2259 if (AddrMode.Scale == 0) { 2260 AddrMode.Scale = 1; 2261 AddrMode.ScaledReg = Addr; 2262 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2263 return true; 2264 AddrMode.Scale = 0; 2265 AddrMode.ScaledReg = nullptr; 2266 } 2267 // Couldn't match. 2268 TPT.rollback(LastKnownGood); 2269 return false; 2270 } 2271 2272 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2273 /// inline asm call are due to memory operands. If so, return true, otherwise 2274 /// return false. 2275 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2276 const TargetLowering &TLI) { 2277 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2278 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2279 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2280 2281 // Compute the constraint code and ConstraintType to use. 2282 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2283 2284 // If this asm operand is our Value*, and if it isn't an indirect memory 2285 // operand, we can't fold it! 2286 if (OpInfo.CallOperandVal == OpVal && 2287 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2288 !OpInfo.isIndirect)) 2289 return false; 2290 } 2291 2292 return true; 2293 } 2294 2295 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2296 /// memory use. If we find an obviously non-foldable instruction, return true. 2297 /// Add the ultimately found memory instructions to MemoryUses. 2298 static bool FindAllMemoryUses(Instruction *I, 2299 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2300 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2301 const TargetLowering &TLI) { 2302 // If we already considered this instruction, we're done. 2303 if (!ConsideredInsts.insert(I)) 2304 return false; 2305 2306 // If this is an obviously unfoldable instruction, bail out. 2307 if (!MightBeFoldableInst(I)) 2308 return true; 2309 2310 // Loop over all the uses, recursively processing them. 2311 for (Use &U : I->uses()) { 2312 Instruction *UserI = cast<Instruction>(U.getUser()); 2313 2314 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2315 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2316 continue; 2317 } 2318 2319 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2320 unsigned opNo = U.getOperandNo(); 2321 if (opNo == 0) return true; // Storing addr, not into addr. 2322 MemoryUses.push_back(std::make_pair(SI, opNo)); 2323 continue; 2324 } 2325 2326 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2327 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2328 if (!IA) return true; 2329 2330 // If this is a memory operand, we're cool, otherwise bail out. 2331 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2332 return true; 2333 continue; 2334 } 2335 2336 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2337 return true; 2338 } 2339 2340 return false; 2341 } 2342 2343 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2344 /// the use site that we're folding it into. If so, there is no cost to 2345 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2346 /// that we know are live at the instruction already. 2347 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2348 Value *KnownLive2) { 2349 // If Val is either of the known-live values, we know it is live! 2350 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2351 return true; 2352 2353 // All values other than instructions and arguments (e.g. constants) are live. 2354 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2355 2356 // If Val is a constant sized alloca in the entry block, it is live, this is 2357 // true because it is just a reference to the stack/frame pointer, which is 2358 // live for the whole function. 2359 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2360 if (AI->isStaticAlloca()) 2361 return true; 2362 2363 // Check to see if this value is already used in the memory instruction's 2364 // block. If so, it's already live into the block at the very least, so we 2365 // can reasonably fold it. 2366 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2367 } 2368 2369 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2370 /// mode of the machine to fold the specified instruction into a load or store 2371 /// that ultimately uses it. However, the specified instruction has multiple 2372 /// uses. Given this, it may actually increase register pressure to fold it 2373 /// into the load. For example, consider this code: 2374 /// 2375 /// X = ... 2376 /// Y = X+1 2377 /// use(Y) -> nonload/store 2378 /// Z = Y+1 2379 /// load Z 2380 /// 2381 /// In this case, Y has multiple uses, and can be folded into the load of Z 2382 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2383 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2384 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2385 /// number of computations either. 2386 /// 2387 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2388 /// X was live across 'load Z' for other reasons, we actually *would* want to 2389 /// fold the addressing mode in the Z case. This would make Y die earlier. 2390 bool AddressingModeMatcher:: 2391 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2392 ExtAddrMode &AMAfter) { 2393 if (IgnoreProfitability) return true; 2394 2395 // AMBefore is the addressing mode before this instruction was folded into it, 2396 // and AMAfter is the addressing mode after the instruction was folded. Get 2397 // the set of registers referenced by AMAfter and subtract out those 2398 // referenced by AMBefore: this is the set of values which folding in this 2399 // address extends the lifetime of. 2400 // 2401 // Note that there are only two potential values being referenced here, 2402 // BaseReg and ScaleReg (global addresses are always available, as are any 2403 // folded immediates). 2404 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2405 2406 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2407 // lifetime wasn't extended by adding this instruction. 2408 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2409 BaseReg = nullptr; 2410 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2411 ScaledReg = nullptr; 2412 2413 // If folding this instruction (and it's subexprs) didn't extend any live 2414 // ranges, we're ok with it. 2415 if (!BaseReg && !ScaledReg) 2416 return true; 2417 2418 // If all uses of this instruction are ultimately load/store/inlineasm's, 2419 // check to see if their addressing modes will include this instruction. If 2420 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2421 // uses. 2422 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2423 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2424 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2425 return false; // Has a non-memory, non-foldable use! 2426 2427 // Now that we know that all uses of this instruction are part of a chain of 2428 // computation involving only operations that could theoretically be folded 2429 // into a memory use, loop over each of these uses and see if they could 2430 // *actually* fold the instruction. 2431 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2432 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2433 Instruction *User = MemoryUses[i].first; 2434 unsigned OpNo = MemoryUses[i].second; 2435 2436 // Get the access type of this use. If the use isn't a pointer, we don't 2437 // know what it accesses. 2438 Value *Address = User->getOperand(OpNo); 2439 if (!Address->getType()->isPointerTy()) 2440 return false; 2441 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2442 2443 // Do a match against the root of this address, ignoring profitability. This 2444 // will tell us if the addressing mode for the memory operation will 2445 // *actually* cover the shared instruction. 2446 ExtAddrMode Result; 2447 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2448 TPT.getRestorationPoint(); 2449 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2450 MemoryInst, Result, InsertedTruncs, 2451 PromotedInsts, TPT); 2452 Matcher.IgnoreProfitability = true; 2453 bool Success = Matcher.MatchAddr(Address, 0); 2454 (void)Success; assert(Success && "Couldn't select *anything*?"); 2455 2456 // The match was to check the profitability, the changes made are not 2457 // part of the original matcher. Therefore, they should be dropped 2458 // otherwise the original matcher will not present the right state. 2459 TPT.rollback(LastKnownGood); 2460 2461 // If the match didn't cover I, then it won't be shared by it. 2462 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 2463 I) == MatchedAddrModeInsts.end()) 2464 return false; 2465 2466 MatchedAddrModeInsts.clear(); 2467 } 2468 2469 return true; 2470 } 2471 2472 } // end anonymous namespace 2473 2474 /// IsNonLocalValue - Return true if the specified values are defined in a 2475 /// different basic block than BB. 2476 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 2477 if (Instruction *I = dyn_cast<Instruction>(V)) 2478 return I->getParent() != BB; 2479 return false; 2480 } 2481 2482 /// OptimizeMemoryInst - Load and Store Instructions often have 2483 /// addressing modes that can do significant amounts of computation. As such, 2484 /// instruction selection will try to get the load or store to do as much 2485 /// computation as possible for the program. The problem is that isel can only 2486 /// see within a single block. As such, we sink as much legal addressing mode 2487 /// stuff into the block as possible. 2488 /// 2489 /// This method is used to optimize both load/store and inline asms with memory 2490 /// operands. 2491 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 2492 Type *AccessTy) { 2493 Value *Repl = Addr; 2494 2495 // Try to collapse single-value PHI nodes. This is necessary to undo 2496 // unprofitable PRE transformations. 2497 SmallVector<Value*, 8> worklist; 2498 SmallPtrSet<Value*, 16> Visited; 2499 worklist.push_back(Addr); 2500 2501 // Use a worklist to iteratively look through PHI nodes, and ensure that 2502 // the addressing mode obtained from the non-PHI roots of the graph 2503 // are equivalent. 2504 Value *Consensus = nullptr; 2505 unsigned NumUsesConsensus = 0; 2506 bool IsNumUsesConsensusValid = false; 2507 SmallVector<Instruction*, 16> AddrModeInsts; 2508 ExtAddrMode AddrMode; 2509 TypePromotionTransaction TPT; 2510 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2511 TPT.getRestorationPoint(); 2512 while (!worklist.empty()) { 2513 Value *V = worklist.back(); 2514 worklist.pop_back(); 2515 2516 // Break use-def graph loops. 2517 if (!Visited.insert(V)) { 2518 Consensus = nullptr; 2519 break; 2520 } 2521 2522 // For a PHI node, push all of its incoming values. 2523 if (PHINode *P = dyn_cast<PHINode>(V)) { 2524 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 2525 worklist.push_back(P->getIncomingValue(i)); 2526 continue; 2527 } 2528 2529 // For non-PHIs, determine the addressing mode being computed. 2530 SmallVector<Instruction*, 16> NewAddrModeInsts; 2531 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 2532 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 2533 PromotedInsts, TPT); 2534 2535 // This check is broken into two cases with very similar code to avoid using 2536 // getNumUses() as much as possible. Some values have a lot of uses, so 2537 // calling getNumUses() unconditionally caused a significant compile-time 2538 // regression. 2539 if (!Consensus) { 2540 Consensus = V; 2541 AddrMode = NewAddrMode; 2542 AddrModeInsts = NewAddrModeInsts; 2543 continue; 2544 } else if (NewAddrMode == AddrMode) { 2545 if (!IsNumUsesConsensusValid) { 2546 NumUsesConsensus = Consensus->getNumUses(); 2547 IsNumUsesConsensusValid = true; 2548 } 2549 2550 // Ensure that the obtained addressing mode is equivalent to that obtained 2551 // for all other roots of the PHI traversal. Also, when choosing one 2552 // such root as representative, select the one with the most uses in order 2553 // to keep the cost modeling heuristics in AddressingModeMatcher 2554 // applicable. 2555 unsigned NumUses = V->getNumUses(); 2556 if (NumUses > NumUsesConsensus) { 2557 Consensus = V; 2558 NumUsesConsensus = NumUses; 2559 AddrModeInsts = NewAddrModeInsts; 2560 } 2561 continue; 2562 } 2563 2564 Consensus = nullptr; 2565 break; 2566 } 2567 2568 // If the addressing mode couldn't be determined, or if multiple different 2569 // ones were determined, bail out now. 2570 if (!Consensus) { 2571 TPT.rollback(LastKnownGood); 2572 return false; 2573 } 2574 TPT.commit(); 2575 2576 // Check to see if any of the instructions supersumed by this addr mode are 2577 // non-local to I's BB. 2578 bool AnyNonLocal = false; 2579 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 2580 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 2581 AnyNonLocal = true; 2582 break; 2583 } 2584 } 2585 2586 // If all the instructions matched are already in this BB, don't do anything. 2587 if (!AnyNonLocal) { 2588 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 2589 return false; 2590 } 2591 2592 // Insert this computation right after this user. Since our caller is 2593 // scanning from the top of the BB to the bottom, reuse of the expr are 2594 // guaranteed to happen later. 2595 IRBuilder<> Builder(MemoryInst); 2596 2597 // Now that we determined the addressing expression we want to use and know 2598 // that we have to sink it into this block. Check to see if we have already 2599 // done this for some other load/store instr in this block. If so, reuse the 2600 // computation. 2601 Value *&SunkAddr = SunkAddrs[Addr]; 2602 if (SunkAddr) { 2603 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 2604 << *MemoryInst << "\n"); 2605 if (SunkAddr->getType() != Addr->getType()) 2606 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2607 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 2608 TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) { 2609 // By default, we use the GEP-based method when AA is used later. This 2610 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 2611 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2612 << *MemoryInst << "\n"); 2613 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2614 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 2615 2616 // First, find the pointer. 2617 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 2618 ResultPtr = AddrMode.BaseReg; 2619 AddrMode.BaseReg = nullptr; 2620 } 2621 2622 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 2623 // We can't add more than one pointer together, nor can we scale a 2624 // pointer (both of which seem meaningless). 2625 if (ResultPtr || AddrMode.Scale != 1) 2626 return false; 2627 2628 ResultPtr = AddrMode.ScaledReg; 2629 AddrMode.Scale = 0; 2630 } 2631 2632 if (AddrMode.BaseGV) { 2633 if (ResultPtr) 2634 return false; 2635 2636 ResultPtr = AddrMode.BaseGV; 2637 } 2638 2639 // If the real base value actually came from an inttoptr, then the matcher 2640 // will look through it and provide only the integer value. In that case, 2641 // use it here. 2642 if (!ResultPtr && AddrMode.BaseReg) { 2643 ResultPtr = 2644 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 2645 AddrMode.BaseReg = nullptr; 2646 } else if (!ResultPtr && AddrMode.Scale == 1) { 2647 ResultPtr = 2648 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 2649 AddrMode.Scale = 0; 2650 } 2651 2652 if (!ResultPtr && 2653 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 2654 SunkAddr = Constant::getNullValue(Addr->getType()); 2655 } else if (!ResultPtr) { 2656 return false; 2657 } else { 2658 Type *I8PtrTy = 2659 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 2660 2661 // Start with the base register. Do this first so that subsequent address 2662 // matching finds it last, which will prevent it from trying to match it 2663 // as the scaled value in case it happens to be a mul. That would be 2664 // problematic if we've sunk a different mul for the scale, because then 2665 // we'd end up sinking both muls. 2666 if (AddrMode.BaseReg) { 2667 Value *V = AddrMode.BaseReg; 2668 if (V->getType() != IntPtrTy) 2669 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2670 2671 ResultIndex = V; 2672 } 2673 2674 // Add the scale value. 2675 if (AddrMode.Scale) { 2676 Value *V = AddrMode.ScaledReg; 2677 if (V->getType() == IntPtrTy) { 2678 // done. 2679 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2680 cast<IntegerType>(V->getType())->getBitWidth()) { 2681 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2682 } else { 2683 // It is only safe to sign extend the BaseReg if we know that the math 2684 // required to create it did not overflow before we extend it. Since 2685 // the original IR value was tossed in favor of a constant back when 2686 // the AddrMode was created we need to bail out gracefully if widths 2687 // do not match instead of extending it. 2688 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 2689 if (I && (ResultIndex != AddrMode.BaseReg)) 2690 I->eraseFromParent(); 2691 return false; 2692 } 2693 2694 if (AddrMode.Scale != 1) 2695 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2696 "sunkaddr"); 2697 if (ResultIndex) 2698 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 2699 else 2700 ResultIndex = V; 2701 } 2702 2703 // Add in the Base Offset if present. 2704 if (AddrMode.BaseOffs) { 2705 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2706 if (ResultIndex) { 2707 // We need to add this separately from the scale above to help with 2708 // SDAG consecutive load/store merging. 2709 if (ResultPtr->getType() != I8PtrTy) 2710 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2711 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2712 } 2713 2714 ResultIndex = V; 2715 } 2716 2717 if (!ResultIndex) { 2718 SunkAddr = ResultPtr; 2719 } else { 2720 if (ResultPtr->getType() != I8PtrTy) 2721 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 2722 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 2723 } 2724 2725 if (SunkAddr->getType() != Addr->getType()) 2726 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 2727 } 2728 } else { 2729 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 2730 << *MemoryInst << "\n"); 2731 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 2732 Value *Result = nullptr; 2733 2734 // Start with the base register. Do this first so that subsequent address 2735 // matching finds it last, which will prevent it from trying to match it 2736 // as the scaled value in case it happens to be a mul. That would be 2737 // problematic if we've sunk a different mul for the scale, because then 2738 // we'd end up sinking both muls. 2739 if (AddrMode.BaseReg) { 2740 Value *V = AddrMode.BaseReg; 2741 if (V->getType()->isPointerTy()) 2742 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2743 if (V->getType() != IntPtrTy) 2744 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 2745 Result = V; 2746 } 2747 2748 // Add the scale value. 2749 if (AddrMode.Scale) { 2750 Value *V = AddrMode.ScaledReg; 2751 if (V->getType() == IntPtrTy) { 2752 // done. 2753 } else if (V->getType()->isPointerTy()) { 2754 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 2755 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 2756 cast<IntegerType>(V->getType())->getBitWidth()) { 2757 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 2758 } else { 2759 // It is only safe to sign extend the BaseReg if we know that the math 2760 // required to create it did not overflow before we extend it. Since 2761 // the original IR value was tossed in favor of a constant back when 2762 // the AddrMode was created we need to bail out gracefully if widths 2763 // do not match instead of extending it. 2764 Instruction *I = dyn_cast_or_null<Instruction>(Result); 2765 if (I && (Result != AddrMode.BaseReg)) 2766 I->eraseFromParent(); 2767 return false; 2768 } 2769 if (AddrMode.Scale != 1) 2770 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 2771 "sunkaddr"); 2772 if (Result) 2773 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2774 else 2775 Result = V; 2776 } 2777 2778 // Add in the BaseGV if present. 2779 if (AddrMode.BaseGV) { 2780 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 2781 if (Result) 2782 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2783 else 2784 Result = V; 2785 } 2786 2787 // Add in the Base Offset if present. 2788 if (AddrMode.BaseOffs) { 2789 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 2790 if (Result) 2791 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 2792 else 2793 Result = V; 2794 } 2795 2796 if (!Result) 2797 SunkAddr = Constant::getNullValue(Addr->getType()); 2798 else 2799 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 2800 } 2801 2802 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 2803 2804 // If we have no uses, recursively delete the value and all dead instructions 2805 // using it. 2806 if (Repl->use_empty()) { 2807 // This can cause recursive deletion, which can invalidate our iterator. 2808 // Use a WeakVH to hold onto it in case this happens. 2809 WeakVH IterHandle(CurInstIterator); 2810 BasicBlock *BB = CurInstIterator->getParent(); 2811 2812 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 2813 2814 if (IterHandle != CurInstIterator) { 2815 // If the iterator instruction was recursively deleted, start over at the 2816 // start of the block. 2817 CurInstIterator = BB->begin(); 2818 SunkAddrs.clear(); 2819 } 2820 } 2821 ++NumMemoryInsts; 2822 return true; 2823 } 2824 2825 /// OptimizeInlineAsmInst - If there are any memory operands, use 2826 /// OptimizeMemoryInst to sink their address computing into the block when 2827 /// possible / profitable. 2828 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 2829 bool MadeChange = false; 2830 2831 TargetLowering::AsmOperandInfoVector 2832 TargetConstraints = TLI->ParseConstraints(CS); 2833 unsigned ArgNo = 0; 2834 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2835 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2836 2837 // Compute the constraint code and ConstraintType to use. 2838 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 2839 2840 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 2841 OpInfo.isIndirect) { 2842 Value *OpVal = CS->getArgOperand(ArgNo++); 2843 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 2844 } else if (OpInfo.Type == InlineAsm::isInput) 2845 ArgNo++; 2846 } 2847 2848 return MadeChange; 2849 } 2850 2851 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 2852 /// basic block as the load, unless conditions are unfavorable. This allows 2853 /// SelectionDAG to fold the extend into the load. 2854 /// 2855 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { 2856 // Look for a load being extended. 2857 LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); 2858 if (!LI) return false; 2859 2860 // If they're already in the same block, there's nothing to do. 2861 if (LI->getParent() == I->getParent()) 2862 return false; 2863 2864 // If the load has other users and the truncate is not free, this probably 2865 // isn't worthwhile. 2866 if (!LI->hasOneUse() && 2867 TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || 2868 !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && 2869 !TLI->isTruncateFree(I->getType(), LI->getType())) 2870 return false; 2871 2872 // Check whether the target supports casts folded into loads. 2873 unsigned LType; 2874 if (isa<ZExtInst>(I)) 2875 LType = ISD::ZEXTLOAD; 2876 else { 2877 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 2878 LType = ISD::SEXTLOAD; 2879 } 2880 if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) 2881 return false; 2882 2883 // Move the extend into the same block as the load, so that SelectionDAG 2884 // can fold it. 2885 I->removeFromParent(); 2886 I->insertAfter(LI); 2887 ++NumExtsMoved; 2888 return true; 2889 } 2890 2891 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 2892 BasicBlock *DefBB = I->getParent(); 2893 2894 // If the result of a {s|z}ext and its source are both live out, rewrite all 2895 // other uses of the source with result of extension. 2896 Value *Src = I->getOperand(0); 2897 if (Src->hasOneUse()) 2898 return false; 2899 2900 // Only do this xform if truncating is free. 2901 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 2902 return false; 2903 2904 // Only safe to perform the optimization if the source is also defined in 2905 // this block. 2906 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 2907 return false; 2908 2909 bool DefIsLiveOut = false; 2910 for (User *U : I->users()) { 2911 Instruction *UI = cast<Instruction>(U); 2912 2913 // Figure out which BB this ext is used in. 2914 BasicBlock *UserBB = UI->getParent(); 2915 if (UserBB == DefBB) continue; 2916 DefIsLiveOut = true; 2917 break; 2918 } 2919 if (!DefIsLiveOut) 2920 return false; 2921 2922 // Make sure none of the uses are PHI nodes. 2923 for (User *U : Src->users()) { 2924 Instruction *UI = cast<Instruction>(U); 2925 BasicBlock *UserBB = UI->getParent(); 2926 if (UserBB == DefBB) continue; 2927 // Be conservative. We don't want this xform to end up introducing 2928 // reloads just before load / store instructions. 2929 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 2930 return false; 2931 } 2932 2933 // InsertedTruncs - Only insert one trunc in each block once. 2934 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 2935 2936 bool MadeChange = false; 2937 for (Use &U : Src->uses()) { 2938 Instruction *User = cast<Instruction>(U.getUser()); 2939 2940 // Figure out which BB this ext is used in. 2941 BasicBlock *UserBB = User->getParent(); 2942 if (UserBB == DefBB) continue; 2943 2944 // Both src and def are live in this block. Rewrite the use. 2945 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 2946 2947 if (!InsertedTrunc) { 2948 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 2949 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 2950 InsertedTruncsSet.insert(InsertedTrunc); 2951 } 2952 2953 // Replace a use of the {s|z}ext source with a use of the result. 2954 U = InsertedTrunc; 2955 ++NumExtUses; 2956 MadeChange = true; 2957 } 2958 2959 return MadeChange; 2960 } 2961 2962 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 2963 /// turned into an explicit branch. 2964 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 2965 // FIXME: This should use the same heuristics as IfConversion to determine 2966 // whether a select is better represented as a branch. This requires that 2967 // branch probability metadata is preserved for the select, which is not the 2968 // case currently. 2969 2970 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2971 2972 // If the branch is predicted right, an out of order CPU can avoid blocking on 2973 // the compare. Emit cmovs on compares with a memory operand as branches to 2974 // avoid stalls on the load from memory. If the compare has more than one use 2975 // there's probably another cmov or setcc around so it's not worth emitting a 2976 // branch. 2977 if (!Cmp) 2978 return false; 2979 2980 Value *CmpOp0 = Cmp->getOperand(0); 2981 Value *CmpOp1 = Cmp->getOperand(1); 2982 2983 // We check that the memory operand has one use to avoid uses of the loaded 2984 // value directly after the compare, making branches unprofitable. 2985 return Cmp->hasOneUse() && 2986 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 2987 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 2988 } 2989 2990 2991 /// If we have a SelectInst that will likely profit from branch prediction, 2992 /// turn it into a branch. 2993 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 2994 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 2995 2996 // Can we convert the 'select' to CF ? 2997 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 2998 return false; 2999 3000 TargetLowering::SelectSupportKind SelectKind; 3001 if (VectorCond) 3002 SelectKind = TargetLowering::VectorMaskSelect; 3003 else if (SI->getType()->isVectorTy()) 3004 SelectKind = TargetLowering::ScalarCondVectorVal; 3005 else 3006 SelectKind = TargetLowering::ScalarValSelect; 3007 3008 // Do we have efficient codegen support for this kind of 'selects' ? 3009 if (TLI->isSelectSupported(SelectKind)) { 3010 // We have efficient codegen support for the select instruction. 3011 // Check if it is profitable to keep this 'select'. 3012 if (!TLI->isPredictableSelectExpensive() || 3013 !isFormingBranchFromSelectProfitable(SI)) 3014 return false; 3015 } 3016 3017 ModifiedDT = true; 3018 3019 // First, we split the block containing the select into 2 blocks. 3020 BasicBlock *StartBlock = SI->getParent(); 3021 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3022 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3023 3024 // Create a new block serving as the landing pad for the branch. 3025 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3026 NextBlock->getParent(), NextBlock); 3027 3028 // Move the unconditional branch from the block with the select in it into our 3029 // landing pad block. 3030 StartBlock->getTerminator()->eraseFromParent(); 3031 BranchInst::Create(NextBlock, SmallBlock); 3032 3033 // Insert the real conditional branch based on the original condition. 3034 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3035 3036 // The select itself is replaced with a PHI Node. 3037 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3038 PN->takeName(SI); 3039 PN->addIncoming(SI->getTrueValue(), StartBlock); 3040 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3041 SI->replaceAllUsesWith(PN); 3042 SI->eraseFromParent(); 3043 3044 // Instruct OptimizeBlock to skip to the next block. 3045 CurInstIterator = StartBlock->end(); 3046 ++NumSelectsExpanded; 3047 return true; 3048 } 3049 3050 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3051 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3052 int SplatElem = -1; 3053 for (unsigned i = 0; i < Mask.size(); ++i) { 3054 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3055 return false; 3056 SplatElem = Mask[i]; 3057 } 3058 3059 return true; 3060 } 3061 3062 /// Some targets have expensive vector shifts if the lanes aren't all the same 3063 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3064 /// it's often worth sinking a shufflevector splat down to its use so that 3065 /// codegen can spot all lanes are identical. 3066 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3067 BasicBlock *DefBB = SVI->getParent(); 3068 3069 // Only do this xform if variable vector shifts are particularly expensive. 3070 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3071 return false; 3072 3073 // We only expect better codegen by sinking a shuffle if we can recognise a 3074 // constant splat. 3075 if (!isBroadcastShuffle(SVI)) 3076 return false; 3077 3078 // InsertedShuffles - Only insert a shuffle in each block once. 3079 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3080 3081 bool MadeChange = false; 3082 for (User *U : SVI->users()) { 3083 Instruction *UI = cast<Instruction>(U); 3084 3085 // Figure out which BB this ext is used in. 3086 BasicBlock *UserBB = UI->getParent(); 3087 if (UserBB == DefBB) continue; 3088 3089 // For now only apply this when the splat is used by a shift instruction. 3090 if (!UI->isShift()) continue; 3091 3092 // Everything checks out, sink the shuffle if the user's block doesn't 3093 // already have a copy. 3094 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3095 3096 if (!InsertedShuffle) { 3097 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3098 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3099 SVI->getOperand(1), 3100 SVI->getOperand(2), "", InsertPt); 3101 } 3102 3103 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3104 MadeChange = true; 3105 } 3106 3107 // If we removed all uses, nuke the shuffle. 3108 if (SVI->use_empty()) { 3109 SVI->eraseFromParent(); 3110 MadeChange = true; 3111 } 3112 3113 return MadeChange; 3114 } 3115 3116 bool CodeGenPrepare::OptimizeInst(Instruction *I) { 3117 if (PHINode *P = dyn_cast<PHINode>(I)) { 3118 // It is possible for very late stage optimizations (such as SimplifyCFG) 3119 // to introduce PHI nodes too late to be cleaned up. If we detect such a 3120 // trivial PHI, go ahead and zap it here. 3121 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 3122 TLInfo, DT)) { 3123 P->replaceAllUsesWith(V); 3124 P->eraseFromParent(); 3125 ++NumPHIsElim; 3126 return true; 3127 } 3128 return false; 3129 } 3130 3131 if (CastInst *CI = dyn_cast<CastInst>(I)) { 3132 // If the source of the cast is a constant, then this should have 3133 // already been constant folded. The only reason NOT to constant fold 3134 // it is if something (e.g. LSR) was careful to place the constant 3135 // evaluation in a block other than then one that uses it (e.g. to hoist 3136 // the address of globals out of a loop). If this is the case, we don't 3137 // want to forward-subst the cast. 3138 if (isa<Constant>(CI->getOperand(0))) 3139 return false; 3140 3141 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 3142 return true; 3143 3144 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 3145 /// Sink a zext or sext into its user blocks if the target type doesn't 3146 /// fit in one register 3147 if (TLI && TLI->getTypeAction(CI->getContext(), 3148 TLI->getValueType(CI->getType())) == 3149 TargetLowering::TypeExpandInteger) { 3150 return SinkCast(CI); 3151 } else { 3152 bool MadeChange = MoveExtToFormExtLoad(I); 3153 return MadeChange | OptimizeExtUses(I); 3154 } 3155 } 3156 return false; 3157 } 3158 3159 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 3160 if (!TLI || !TLI->hasMultipleConditionRegisters()) 3161 return OptimizeCmpExpression(CI); 3162 3163 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3164 if (TLI) 3165 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 3166 return false; 3167 } 3168 3169 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3170 if (TLI) 3171 return OptimizeMemoryInst(I, SI->getOperand(1), 3172 SI->getOperand(0)->getType()); 3173 return false; 3174 } 3175 3176 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 3177 3178 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 3179 BinOp->getOpcode() == Instruction::LShr)) { 3180 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 3181 if (TLI && CI && TLI->hasExtractBitsInsn()) 3182 return OptimizeExtractBits(BinOp, CI, *TLI); 3183 3184 return false; 3185 } 3186 3187 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 3188 if (GEPI->hasAllZeroIndices()) { 3189 /// The GEP operand must be a pointer, so must its result -> BitCast 3190 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 3191 GEPI->getName(), GEPI); 3192 GEPI->replaceAllUsesWith(NC); 3193 GEPI->eraseFromParent(); 3194 ++NumGEPsElim; 3195 OptimizeInst(NC); 3196 return true; 3197 } 3198 return false; 3199 } 3200 3201 if (CallInst *CI = dyn_cast<CallInst>(I)) 3202 return OptimizeCallInst(CI); 3203 3204 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 3205 return OptimizeSelectInst(SI); 3206 3207 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 3208 return OptimizeShuffleVectorInst(SVI); 3209 3210 return false; 3211 } 3212 3213 // In this pass we look for GEP and cast instructions that are used 3214 // across basic blocks and rewrite them to improve basic-block-at-a-time 3215 // selection. 3216 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { 3217 SunkAddrs.clear(); 3218 bool MadeChange = false; 3219 3220 CurInstIterator = BB.begin(); 3221 while (CurInstIterator != BB.end()) 3222 MadeChange |= OptimizeInst(CurInstIterator++); 3223 3224 MadeChange |= DupRetToEnableTailCallOpts(&BB); 3225 3226 return MadeChange; 3227 } 3228 3229 // llvm.dbg.value is far away from the value then iSel may not be able 3230 // handle it properly. iSel will drop llvm.dbg.value if it can not 3231 // find a node corresponding to the value. 3232 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 3233 bool MadeChange = false; 3234 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 3235 Instruction *PrevNonDbgInst = nullptr; 3236 for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { 3237 Instruction *Insn = BI; ++BI; 3238 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 3239 // Leave dbg.values that refer to an alloca alone. These 3240 // instrinsics describe the address of a variable (= the alloca) 3241 // being taken. They should not be moved next to the alloca 3242 // (and to the beginning of the scope), but rather stay close to 3243 // where said address is used. 3244 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 3245 PrevNonDbgInst = Insn; 3246 continue; 3247 } 3248 3249 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 3250 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 3251 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 3252 DVI->removeFromParent(); 3253 if (isa<PHINode>(VI)) 3254 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 3255 else 3256 DVI->insertAfter(VI); 3257 MadeChange = true; 3258 ++NumDbgValueMoved; 3259 } 3260 } 3261 } 3262 return MadeChange; 3263 } 3264 3265 // If there is a sequence that branches based on comparing a single bit 3266 // against zero that can be combined into a single instruction, and the 3267 // target supports folding these into a single instruction, sink the 3268 // mask and compare into the branch uses. Do this before OptimizeBlock -> 3269 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 3270 // searched for. 3271 bool CodeGenPrepare::sinkAndCmp(Function &F) { 3272 if (!EnableAndCmpSinking) 3273 return false; 3274 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 3275 return false; 3276 bool MadeChange = false; 3277 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 3278 BasicBlock *BB = I++; 3279 3280 // Does this BB end with the following? 3281 // %andVal = and %val, #single-bit-set 3282 // %icmpVal = icmp %andResult, 0 3283 // br i1 %cmpVal label %dest1, label %dest2" 3284 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 3285 if (!Brcc || !Brcc->isConditional()) 3286 continue; 3287 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 3288 if (!Cmp || Cmp->getParent() != BB) 3289 continue; 3290 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 3291 if (!Zero || !Zero->isZero()) 3292 continue; 3293 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 3294 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 3295 continue; 3296 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 3297 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 3298 continue; 3299 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 3300 3301 // Push the "and; icmp" for any users that are conditional branches. 3302 // Since there can only be one branch use per BB, we don't need to keep 3303 // track of which BBs we insert into. 3304 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 3305 UI != E; ) { 3306 Use &TheUse = *UI; 3307 // Find brcc use. 3308 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 3309 ++UI; 3310 if (!BrccUser || !BrccUser->isConditional()) 3311 continue; 3312 BasicBlock *UserBB = BrccUser->getParent(); 3313 if (UserBB == BB) continue; 3314 DEBUG(dbgs() << "found Brcc use\n"); 3315 3316 // Sink the "and; icmp" to use. 3317 MadeChange = true; 3318 BinaryOperator *NewAnd = 3319 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 3320 BrccUser); 3321 CmpInst *NewCmp = 3322 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 3323 "", BrccUser); 3324 TheUse = NewCmp; 3325 ++NumAndCmpsMoved; 3326 DEBUG(BrccUser->getParent()->dump()); 3327 } 3328 } 3329 return MadeChange; 3330 } 3331