1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/IntrinsicsAArch64.h"
63 #include "llvm/IR/LLVMContext.h"
64 #include "llvm/IR/MDBuilder.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/IR/Statepoint.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/ValueMap.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/BlockFrequency.h"
78 #include "llvm/Support/BranchProbability.h"
79 #include "llvm/Support/Casting.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/Compiler.h"
82 #include "llvm/Support/Debug.h"
83 #include "llvm/Support/ErrorHandling.h"
84 #include "llvm/Support/MachineValueType.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Target/TargetMachine.h"
88 #include "llvm/Target/TargetOptions.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
93 #include "llvm/Transforms/Utils/SizeOpts.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <limits>
99 #include <memory>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 using namespace llvm::PatternMatch;
105 
106 #define DEBUG_TYPE "codegenprepare"
107 
108 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
109 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
110 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
112                       "sunken Cmps");
113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
114                        "of sunken Casts");
115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
116                           "computations were sunk");
117 STATISTIC(NumMemoryInstsPhiCreated,
118           "Number of phis created when address "
119           "computations were sunk to memory instructions");
120 STATISTIC(NumMemoryInstsSelectCreated,
121           "Number of select created when address "
122           "computations were sunk to memory instructions");
123 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
124 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
125 STATISTIC(NumAndsAdded,
126           "Number of and mask instructions added to form ext loads");
127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
128 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
132 
133 static cl::opt<bool> DisableBranchOpts(
134   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
135   cl::desc("Disable branch optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool>
138     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
139                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
140 
141 static cl::opt<bool> DisableSelectToBranch(
142   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
143   cl::desc("Disable select to branch conversion."));
144 
145 static cl::opt<bool> AddrSinkUsingGEPs(
146   "addr-sink-using-gep", cl::Hidden, cl::init(true),
147   cl::desc("Address sinking in CGP using GEPs."));
148 
149 static cl::opt<bool> EnableAndCmpSinking(
150    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
151    cl::desc("Enable sinkinig and/cmp into branches."));
152 
153 static cl::opt<bool> DisableStoreExtract(
154     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> StressStoreExtract(
158     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
159     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
160 
161 static cl::opt<bool> DisableExtLdPromotion(
162     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
163     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
164              "CodeGenPrepare"));
165 
166 static cl::opt<bool> StressExtLdPromotion(
167     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
168     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
169              "optimization in CodeGenPrepare"));
170 
171 static cl::opt<bool> DisablePreheaderProtect(
172     "disable-preheader-prot", cl::Hidden, cl::init(false),
173     cl::desc("Disable protection against removing loop preheaders"));
174 
175 static cl::opt<bool> ProfileGuidedSectionPrefix(
176     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
177     cl::desc("Use profile info to add section prefix for hot/cold functions"));
178 
179 static cl::opt<bool> ProfileUnknownInSpecialSection(
180     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
181     cl::ZeroOrMore,
182     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
183              "profile, we cannot tell the function is cold for sure because "
184              "it may be a function newly added without ever being sampled. "
185              "With the flag enabled, compiler can put such profile unknown "
186              "functions into a special section, so runtime system can choose "
187              "to handle it in a different way than .text section, to save "
188              "RAM for example. "));
189 
190 static cl::opt<unsigned> FreqRatioToSkipMerge(
191     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
192     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
193              "(frequency of destination block) is greater than this ratio"));
194 
195 static cl::opt<bool> ForceSplitStore(
196     "force-split-store", cl::Hidden, cl::init(false),
197     cl::desc("Force store splitting no matter what the target query says."));
198 
199 static cl::opt<bool>
200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
201     cl::desc("Enable merging of redundant sexts when one is dominating"
202     " the other."), cl::init(true));
203 
204 static cl::opt<bool> DisableComplexAddrModes(
205     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
206     cl::desc("Disables combining addressing modes with different parts "
207              "in optimizeMemoryInst."));
208 
209 static cl::opt<bool>
210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
211                 cl::desc("Allow creation of Phis in Address sinking."));
212 
213 static cl::opt<bool>
214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
215                    cl::desc("Allow creation of selects in Address sinking."));
216 
217 static cl::opt<bool> AddrSinkCombineBaseReg(
218     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
219     cl::desc("Allow combining of BaseReg field in Address sinking."));
220 
221 static cl::opt<bool> AddrSinkCombineBaseGV(
222     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
223     cl::desc("Allow combining of BaseGV field in Address sinking."));
224 
225 static cl::opt<bool> AddrSinkCombineBaseOffs(
226     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
227     cl::desc("Allow combining of BaseOffs field in Address sinking."));
228 
229 static cl::opt<bool> AddrSinkCombineScaledReg(
230     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
231     cl::desc("Allow combining of ScaledReg field in Address sinking."));
232 
233 static cl::opt<bool>
234     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
235                          cl::init(true),
236                          cl::desc("Enable splitting large offset of GEP."));
237 
238 static cl::opt<bool> EnableICMP_EQToICMP_ST(
239     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
240     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
241 
242 static cl::opt<bool>
243     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
244                      cl::desc("Enable BFI update verification for "
245                               "CodeGenPrepare."));
246 
247 static cl::opt<bool> OptimizePhiTypes(
248     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
249     cl::desc("Enable converting phi types in CodeGenPrepare"));
250 
251 namespace {
252 
253 enum ExtType {
254   ZeroExtension,   // Zero extension has been seen.
255   SignExtension,   // Sign extension has been seen.
256   BothExtension    // This extension type is used if we saw sext after
257                    // ZeroExtension had been set, or if we saw zext after
258                    // SignExtension had been set. It makes the type
259                    // information of a promoted instruction invalid.
260 };
261 
262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
265 using SExts = SmallVector<Instruction *, 16>;
266 using ValueToSExts = DenseMap<Value *, SExts>;
267 
268 class TypePromotionTransaction;
269 
270   class CodeGenPrepare : public FunctionPass {
271     const TargetMachine *TM = nullptr;
272     const TargetSubtargetInfo *SubtargetInfo;
273     const TargetLowering *TLI = nullptr;
274     const TargetRegisterInfo *TRI;
275     const TargetTransformInfo *TTI = nullptr;
276     const TargetLibraryInfo *TLInfo;
277     const LoopInfo *LI;
278     std::unique_ptr<BlockFrequencyInfo> BFI;
279     std::unique_ptr<BranchProbabilityInfo> BPI;
280     ProfileSummaryInfo *PSI;
281 
282     /// As we scan instructions optimizing them, this is the next instruction
283     /// to optimize. Transforms that can invalidate this should update it.
284     BasicBlock::iterator CurInstIterator;
285 
286     /// Keeps track of non-local addresses that have been sunk into a block.
287     /// This allows us to avoid inserting duplicate code for blocks with
288     /// multiple load/stores of the same address. The usage of WeakTrackingVH
289     /// enables SunkAddrs to be treated as a cache whose entries can be
290     /// invalidated if a sunken address computation has been erased.
291     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
292 
293     /// Keeps track of all instructions inserted for the current function.
294     SetOfInstrs InsertedInsts;
295 
296     /// Keeps track of the type of the related instruction before their
297     /// promotion for the current function.
298     InstrToOrigTy PromotedInsts;
299 
300     /// Keep track of instructions removed during promotion.
301     SetOfInstrs RemovedInsts;
302 
303     /// Keep track of sext chains based on their initial value.
304     DenseMap<Value *, Instruction *> SeenChainsForSExt;
305 
306     /// Keep track of GEPs accessing the same data structures such as structs or
307     /// arrays that are candidates to be split later because of their large
308     /// size.
309     MapVector<
310         AssertingVH<Value>,
311         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
312         LargeOffsetGEPMap;
313 
314     /// Keep track of new GEP base after splitting the GEPs having large offset.
315     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
316 
317     /// Map serial numbers to Large offset GEPs.
318     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
319 
320     /// Keep track of SExt promoted.
321     ValueToSExts ValToSExtendedUses;
322 
323     /// True if the function has the OptSize attribute.
324     bool OptSize;
325 
326     /// DataLayout for the Function being processed.
327     const DataLayout *DL = nullptr;
328 
329     /// Building the dominator tree can be expensive, so we only build it
330     /// lazily and update it when required.
331     std::unique_ptr<DominatorTree> DT;
332 
333   public:
334     static char ID; // Pass identification, replacement for typeid
335 
336     CodeGenPrepare() : FunctionPass(ID) {
337       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
338     }
339 
340     bool runOnFunction(Function &F) override;
341 
342     StringRef getPassName() const override { return "CodeGen Prepare"; }
343 
344     void getAnalysisUsage(AnalysisUsage &AU) const override {
345       // FIXME: When we can selectively preserve passes, preserve the domtree.
346       AU.addRequired<ProfileSummaryInfoWrapperPass>();
347       AU.addRequired<TargetLibraryInfoWrapperPass>();
348       AU.addRequired<TargetPassConfig>();
349       AU.addRequired<TargetTransformInfoWrapperPass>();
350       AU.addRequired<LoopInfoWrapperPass>();
351     }
352 
353   private:
354     template <typename F>
355     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
356       // Substituting can cause recursive simplifications, which can invalidate
357       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
358       // happens.
359       Value *CurValue = &*CurInstIterator;
360       WeakTrackingVH IterHandle(CurValue);
361 
362       f();
363 
364       // If the iterator instruction was recursively deleted, start over at the
365       // start of the block.
366       if (IterHandle != CurValue) {
367         CurInstIterator = BB->begin();
368         SunkAddrs.clear();
369       }
370     }
371 
372     // Get the DominatorTree, building if necessary.
373     DominatorTree &getDT(Function &F) {
374       if (!DT)
375         DT = std::make_unique<DominatorTree>(F);
376       return *DT;
377     }
378 
379     void removeAllAssertingVHReferences(Value *V);
380     bool eliminateFallThrough(Function &F);
381     bool eliminateMostlyEmptyBlocks(Function &F);
382     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
383     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
384     void eliminateMostlyEmptyBlock(BasicBlock *BB);
385     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
386                                        bool isPreheader);
387     bool makeBitReverse(Instruction &I);
388     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
389     bool optimizeInst(Instruction *I, bool &ModifiedDT);
390     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
391                             Type *AccessTy, unsigned AddrSpace);
392     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
393     bool optimizeInlineAsmInst(CallInst *CS);
394     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
395     bool optimizeExt(Instruction *&I);
396     bool optimizeExtUses(Instruction *I);
397     bool optimizeLoadExt(LoadInst *Load);
398     bool optimizeShiftInst(BinaryOperator *BO);
399     bool optimizeFunnelShift(IntrinsicInst *Fsh);
400     bool optimizeSelectInst(SelectInst *SI);
401     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
402     bool optimizeSwitchInst(SwitchInst *SI);
403     bool optimizeExtractElementInst(Instruction *Inst);
404     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
405     bool fixupDbgValue(Instruction *I);
406     bool placeDbgValues(Function &F);
407     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
408                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
409     bool tryToPromoteExts(TypePromotionTransaction &TPT,
410                           const SmallVectorImpl<Instruction *> &Exts,
411                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
412                           unsigned CreatedInstsCost = 0);
413     bool mergeSExts(Function &F);
414     bool splitLargeGEPOffsets();
415     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
416                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
417     bool optimizePhiTypes(Function &F);
418     bool performAddressTypePromotion(
419         Instruction *&Inst,
420         bool AllowPromotionWithoutCommonHeader,
421         bool HasPromoted, TypePromotionTransaction &TPT,
422         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
423     bool splitBranchCondition(Function &F, bool &ModifiedDT);
424     bool simplifyOffsetableRelocate(GCStatepointInst &I);
425 
426     bool tryToSinkFreeOperands(Instruction *I);
427     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
428                                      Value *Arg1, CmpInst *Cmp,
429                                      Intrinsic::ID IID);
430     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
431     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
432     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
433     void verifyBFIUpdates(Function &F);
434   };
435 
436 } // end anonymous namespace
437 
438 char CodeGenPrepare::ID = 0;
439 
440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
441                       "Optimize for code generation", false, false)
442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
448                     "Optimize for code generation", false, false)
449 
450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
451 
452 bool CodeGenPrepare::runOnFunction(Function &F) {
453   if (skipFunction(F))
454     return false;
455 
456   DL = &F.getParent()->getDataLayout();
457 
458   bool EverMadeChange = false;
459   // Clear per function information.
460   InsertedInsts.clear();
461   PromotedInsts.clear();
462 
463   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
464   SubtargetInfo = TM->getSubtargetImpl(F);
465   TLI = SubtargetInfo->getTargetLowering();
466   TRI = SubtargetInfo->getRegisterInfo();
467   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
468   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
469   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
470   BPI.reset(new BranchProbabilityInfo(F, *LI));
471   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
472   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
473   OptSize = F.hasOptSize();
474   if (ProfileGuidedSectionPrefix) {
475     // The hot attribute overwrites profile count based hotness while profile
476     // counts based hotness overwrite the cold attribute.
477     // This is a conservative behabvior.
478     if (F.hasFnAttribute(Attribute::Hot) ||
479         PSI->isFunctionHotInCallGraph(&F, *BFI))
480       F.setSectionPrefix("hot");
481     // If PSI shows this function is not hot, we will placed the function
482     // into unlikely section if (1) PSI shows this is a cold function, or
483     // (2) the function has a attribute of cold.
484     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
485              F.hasFnAttribute(Attribute::Cold))
486       F.setSectionPrefix("unlikely");
487     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
488              PSI->isFunctionHotnessUnknown(F))
489       F.setSectionPrefix("unknown");
490   }
491 
492   /// This optimization identifies DIV instructions that can be
493   /// profitably bypassed and carried out with a shorter, faster divide.
494   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
495     const DenseMap<unsigned int, unsigned int> &BypassWidths =
496         TLI->getBypassSlowDivWidths();
497     BasicBlock* BB = &*F.begin();
498     while (BB != nullptr) {
499       // bypassSlowDivision may create new BBs, but we don't want to reapply the
500       // optimization to those blocks.
501       BasicBlock* Next = BB->getNextNode();
502       // F.hasOptSize is already checked in the outer if statement.
503       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
504         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
505       BB = Next;
506     }
507   }
508 
509   // Eliminate blocks that contain only PHI nodes and an
510   // unconditional branch.
511   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
512 
513   bool ModifiedDT = false;
514   if (!DisableBranchOpts)
515     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
516 
517   // Split some critical edges where one of the sources is an indirect branch,
518   // to help generate sane code for PHIs involving such edges.
519   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
520 
521   bool MadeChange = true;
522   while (MadeChange) {
523     MadeChange = false;
524     DT.reset();
525     for (Function::iterator I = F.begin(); I != F.end(); ) {
526       BasicBlock *BB = &*I++;
527       bool ModifiedDTOnIteration = false;
528       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
529 
530       // Restart BB iteration if the dominator tree of the Function was changed
531       if (ModifiedDTOnIteration)
532         break;
533     }
534     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
535       MadeChange |= mergeSExts(F);
536     if (!LargeOffsetGEPMap.empty())
537       MadeChange |= splitLargeGEPOffsets();
538     MadeChange |= optimizePhiTypes(F);
539 
540     if (MadeChange)
541       eliminateFallThrough(F);
542 
543     // Really free removed instructions during promotion.
544     for (Instruction *I : RemovedInsts)
545       I->deleteValue();
546 
547     EverMadeChange |= MadeChange;
548     SeenChainsForSExt.clear();
549     ValToSExtendedUses.clear();
550     RemovedInsts.clear();
551     LargeOffsetGEPMap.clear();
552     LargeOffsetGEPID.clear();
553   }
554 
555   NewGEPBases.clear();
556   SunkAddrs.clear();
557 
558   if (!DisableBranchOpts) {
559     MadeChange = false;
560     // Use a set vector to get deterministic iteration order. The order the
561     // blocks are removed may affect whether or not PHI nodes in successors
562     // are removed.
563     SmallSetVector<BasicBlock*, 8> WorkList;
564     for (BasicBlock &BB : F) {
565       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
566       MadeChange |= ConstantFoldTerminator(&BB, true);
567       if (!MadeChange) continue;
568 
569       for (SmallVectorImpl<BasicBlock*>::iterator
570              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
571         if (pred_empty(*II))
572           WorkList.insert(*II);
573     }
574 
575     // Delete the dead blocks and any of their dead successors.
576     MadeChange |= !WorkList.empty();
577     while (!WorkList.empty()) {
578       BasicBlock *BB = WorkList.pop_back_val();
579       SmallVector<BasicBlock*, 2> Successors(successors(BB));
580 
581       DeleteDeadBlock(BB);
582 
583       for (SmallVectorImpl<BasicBlock*>::iterator
584              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
585         if (pred_empty(*II))
586           WorkList.insert(*II);
587     }
588 
589     // Merge pairs of basic blocks with unconditional branches, connected by
590     // a single edge.
591     if (EverMadeChange || MadeChange)
592       MadeChange |= eliminateFallThrough(F);
593 
594     EverMadeChange |= MadeChange;
595   }
596 
597   if (!DisableGCOpts) {
598     SmallVector<GCStatepointInst *, 2> Statepoints;
599     for (BasicBlock &BB : F)
600       for (Instruction &I : BB)
601         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
602           Statepoints.push_back(SP);
603     for (auto &I : Statepoints)
604       EverMadeChange |= simplifyOffsetableRelocate(*I);
605   }
606 
607   // Do this last to clean up use-before-def scenarios introduced by other
608   // preparatory transforms.
609   EverMadeChange |= placeDbgValues(F);
610 
611 #ifndef NDEBUG
612   if (VerifyBFIUpdates)
613     verifyBFIUpdates(F);
614 #endif
615 
616   return EverMadeChange;
617 }
618 
619 /// An instruction is about to be deleted, so remove all references to it in our
620 /// GEP-tracking data strcutures.
621 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
622   LargeOffsetGEPMap.erase(V);
623   NewGEPBases.erase(V);
624 
625   auto GEP = dyn_cast<GetElementPtrInst>(V);
626   if (!GEP)
627     return;
628 
629   LargeOffsetGEPID.erase(GEP);
630 
631   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
632   if (VecI == LargeOffsetGEPMap.end())
633     return;
634 
635   auto &GEPVector = VecI->second;
636   const auto &I =
637       llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
638   if (I == GEPVector.end())
639     return;
640 
641   GEPVector.erase(I);
642   if (GEPVector.empty())
643     LargeOffsetGEPMap.erase(VecI);
644 }
645 
646 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
647 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
648   DominatorTree NewDT(F);
649   LoopInfo NewLI(NewDT);
650   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
651   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
652   NewBFI.verifyMatch(*BFI);
653 }
654 
655 /// Merge basic blocks which are connected by a single edge, where one of the
656 /// basic blocks has a single successor pointing to the other basic block,
657 /// which has a single predecessor.
658 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
659   bool Changed = false;
660   // Scan all of the blocks in the function, except for the entry block.
661   // Use a temporary array to avoid iterator being invalidated when
662   // deleting blocks.
663   SmallVector<WeakTrackingVH, 16> Blocks;
664   for (auto &Block : llvm::drop_begin(F))
665     Blocks.push_back(&Block);
666 
667   SmallSet<WeakTrackingVH, 16> Preds;
668   for (auto &Block : Blocks) {
669     auto *BB = cast_or_null<BasicBlock>(Block);
670     if (!BB)
671       continue;
672     // If the destination block has a single pred, then this is a trivial
673     // edge, just collapse it.
674     BasicBlock *SinglePred = BB->getSinglePredecessor();
675 
676     // Don't merge if BB's address is taken.
677     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
678 
679     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
680     if (Term && !Term->isConditional()) {
681       Changed = true;
682       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
683 
684       // Merge BB into SinglePred and delete it.
685       MergeBlockIntoPredecessor(BB);
686       Preds.insert(SinglePred);
687     }
688   }
689 
690   // (Repeatedly) merging blocks into their predecessors can create redundant
691   // debug intrinsics.
692   for (auto &Pred : Preds)
693     if (auto *BB = cast_or_null<BasicBlock>(Pred))
694       RemoveRedundantDbgInstrs(BB);
695 
696   return Changed;
697 }
698 
699 /// Find a destination block from BB if BB is mergeable empty block.
700 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
701   // If this block doesn't end with an uncond branch, ignore it.
702   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
703   if (!BI || !BI->isUnconditional())
704     return nullptr;
705 
706   // If the instruction before the branch (skipping debug info) isn't a phi
707   // node, then other stuff is happening here.
708   BasicBlock::iterator BBI = BI->getIterator();
709   if (BBI != BB->begin()) {
710     --BBI;
711     while (isa<DbgInfoIntrinsic>(BBI)) {
712       if (BBI == BB->begin())
713         break;
714       --BBI;
715     }
716     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
717       return nullptr;
718   }
719 
720   // Do not break infinite loops.
721   BasicBlock *DestBB = BI->getSuccessor(0);
722   if (DestBB == BB)
723     return nullptr;
724 
725   if (!canMergeBlocks(BB, DestBB))
726     DestBB = nullptr;
727 
728   return DestBB;
729 }
730 
731 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
732 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
733 /// edges in ways that are non-optimal for isel. Start by eliminating these
734 /// blocks so we can split them the way we want them.
735 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
736   SmallPtrSet<BasicBlock *, 16> Preheaders;
737   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
738   while (!LoopList.empty()) {
739     Loop *L = LoopList.pop_back_val();
740     llvm::append_range(LoopList, *L);
741     if (BasicBlock *Preheader = L->getLoopPreheader())
742       Preheaders.insert(Preheader);
743   }
744 
745   bool MadeChange = false;
746   // Copy blocks into a temporary array to avoid iterator invalidation issues
747   // as we remove them.
748   // Note that this intentionally skips the entry block.
749   SmallVector<WeakTrackingVH, 16> Blocks;
750   for (auto &Block : llvm::drop_begin(F))
751     Blocks.push_back(&Block);
752 
753   for (auto &Block : Blocks) {
754     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
755     if (!BB)
756       continue;
757     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
758     if (!DestBB ||
759         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
760       continue;
761 
762     eliminateMostlyEmptyBlock(BB);
763     MadeChange = true;
764   }
765   return MadeChange;
766 }
767 
768 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
769                                                    BasicBlock *DestBB,
770                                                    bool isPreheader) {
771   // Do not delete loop preheaders if doing so would create a critical edge.
772   // Loop preheaders can be good locations to spill registers. If the
773   // preheader is deleted and we create a critical edge, registers may be
774   // spilled in the loop body instead.
775   if (!DisablePreheaderProtect && isPreheader &&
776       !(BB->getSinglePredecessor() &&
777         BB->getSinglePredecessor()->getSingleSuccessor()))
778     return false;
779 
780   // Skip merging if the block's successor is also a successor to any callbr
781   // that leads to this block.
782   // FIXME: Is this really needed? Is this a correctness issue?
783   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
784     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
785       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
786         if (DestBB == CBI->getSuccessor(i))
787           return false;
788   }
789 
790   // Try to skip merging if the unique predecessor of BB is terminated by a
791   // switch or indirect branch instruction, and BB is used as an incoming block
792   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
793   // add COPY instructions in the predecessor of BB instead of BB (if it is not
794   // merged). Note that the critical edge created by merging such blocks wont be
795   // split in MachineSink because the jump table is not analyzable. By keeping
796   // such empty block (BB), ISel will place COPY instructions in BB, not in the
797   // predecessor of BB.
798   BasicBlock *Pred = BB->getUniquePredecessor();
799   if (!Pred ||
800       !(isa<SwitchInst>(Pred->getTerminator()) ||
801         isa<IndirectBrInst>(Pred->getTerminator())))
802     return true;
803 
804   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
805     return true;
806 
807   // We use a simple cost heuristic which determine skipping merging is
808   // profitable if the cost of skipping merging is less than the cost of
809   // merging : Cost(skipping merging) < Cost(merging BB), where the
810   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
811   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
812   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
813   //   Freq(Pred) / Freq(BB) > 2.
814   // Note that if there are multiple empty blocks sharing the same incoming
815   // value for the PHIs in the DestBB, we consider them together. In such
816   // case, Cost(merging BB) will be the sum of their frequencies.
817 
818   if (!isa<PHINode>(DestBB->begin()))
819     return true;
820 
821   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
822 
823   // Find all other incoming blocks from which incoming values of all PHIs in
824   // DestBB are the same as the ones from BB.
825   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
826        ++PI) {
827     BasicBlock *DestBBPred = *PI;
828     if (DestBBPred == BB)
829       continue;
830 
831     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
832           return DestPN.getIncomingValueForBlock(BB) ==
833                  DestPN.getIncomingValueForBlock(DestBBPred);
834         }))
835       SameIncomingValueBBs.insert(DestBBPred);
836   }
837 
838   // See if all BB's incoming values are same as the value from Pred. In this
839   // case, no reason to skip merging because COPYs are expected to be place in
840   // Pred already.
841   if (SameIncomingValueBBs.count(Pred))
842     return true;
843 
844   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
845   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
846 
847   for (auto *SameValueBB : SameIncomingValueBBs)
848     if (SameValueBB->getUniquePredecessor() == Pred &&
849         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
850       BBFreq += BFI->getBlockFreq(SameValueBB);
851 
852   return PredFreq.getFrequency() <=
853          BBFreq.getFrequency() * FreqRatioToSkipMerge;
854 }
855 
856 /// Return true if we can merge BB into DestBB if there is a single
857 /// unconditional branch between them, and BB contains no other non-phi
858 /// instructions.
859 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
860                                     const BasicBlock *DestBB) const {
861   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
862   // the successor.  If there are more complex condition (e.g. preheaders),
863   // don't mess around with them.
864   for (const PHINode &PN : BB->phis()) {
865     for (const User *U : PN.users()) {
866       const Instruction *UI = cast<Instruction>(U);
867       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
868         return false;
869       // If User is inside DestBB block and it is a PHINode then check
870       // incoming value. If incoming value is not from BB then this is
871       // a complex condition (e.g. preheaders) we want to avoid here.
872       if (UI->getParent() == DestBB) {
873         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
874           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
875             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
876             if (Insn && Insn->getParent() == BB &&
877                 Insn->getParent() != UPN->getIncomingBlock(I))
878               return false;
879           }
880       }
881     }
882   }
883 
884   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
885   // and DestBB may have conflicting incoming values for the block.  If so, we
886   // can't merge the block.
887   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
888   if (!DestBBPN) return true;  // no conflict.
889 
890   // Collect the preds of BB.
891   SmallPtrSet<const BasicBlock*, 16> BBPreds;
892   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
893     // It is faster to get preds from a PHI than with pred_iterator.
894     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
895       BBPreds.insert(BBPN->getIncomingBlock(i));
896   } else {
897     BBPreds.insert(pred_begin(BB), pred_end(BB));
898   }
899 
900   // Walk the preds of DestBB.
901   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
902     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
903     if (BBPreds.count(Pred)) {   // Common predecessor?
904       for (const PHINode &PN : DestBB->phis()) {
905         const Value *V1 = PN.getIncomingValueForBlock(Pred);
906         const Value *V2 = PN.getIncomingValueForBlock(BB);
907 
908         // If V2 is a phi node in BB, look up what the mapped value will be.
909         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
910           if (V2PN->getParent() == BB)
911             V2 = V2PN->getIncomingValueForBlock(Pred);
912 
913         // If there is a conflict, bail out.
914         if (V1 != V2) return false;
915       }
916     }
917   }
918 
919   return true;
920 }
921 
922 /// Eliminate a basic block that has only phi's and an unconditional branch in
923 /// it.
924 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
925   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
926   BasicBlock *DestBB = BI->getSuccessor(0);
927 
928   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
929                     << *BB << *DestBB);
930 
931   // If the destination block has a single pred, then this is a trivial edge,
932   // just collapse it.
933   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
934     if (SinglePred != DestBB) {
935       assert(SinglePred == BB &&
936              "Single predecessor not the same as predecessor");
937       // Merge DestBB into SinglePred/BB and delete it.
938       MergeBlockIntoPredecessor(DestBB);
939       // Note: BB(=SinglePred) will not be deleted on this path.
940       // DestBB(=its single successor) is the one that was deleted.
941       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
942       return;
943     }
944   }
945 
946   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
947   // to handle the new incoming edges it is about to have.
948   for (PHINode &PN : DestBB->phis()) {
949     // Remove the incoming value for BB, and remember it.
950     Value *InVal = PN.removeIncomingValue(BB, false);
951 
952     // Two options: either the InVal is a phi node defined in BB or it is some
953     // value that dominates BB.
954     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
955     if (InValPhi && InValPhi->getParent() == BB) {
956       // Add all of the input values of the input PHI as inputs of this phi.
957       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
958         PN.addIncoming(InValPhi->getIncomingValue(i),
959                        InValPhi->getIncomingBlock(i));
960     } else {
961       // Otherwise, add one instance of the dominating value for each edge that
962       // we will be adding.
963       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
964         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
965           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
966       } else {
967         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
968           PN.addIncoming(InVal, *PI);
969       }
970     }
971   }
972 
973   // The PHIs are now updated, change everything that refers to BB to use
974   // DestBB and remove BB.
975   BB->replaceAllUsesWith(DestBB);
976   BB->eraseFromParent();
977   ++NumBlocksElim;
978 
979   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
980 }
981 
982 // Computes a map of base pointer relocation instructions to corresponding
983 // derived pointer relocation instructions given a vector of all relocate calls
984 static void computeBaseDerivedRelocateMap(
985     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
986     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
987         &RelocateInstMap) {
988   // Collect information in two maps: one primarily for locating the base object
989   // while filling the second map; the second map is the final structure holding
990   // a mapping between Base and corresponding Derived relocate calls
991   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
992   for (auto *ThisRelocate : AllRelocateCalls) {
993     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
994                             ThisRelocate->getDerivedPtrIndex());
995     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
996   }
997   for (auto &Item : RelocateIdxMap) {
998     std::pair<unsigned, unsigned> Key = Item.first;
999     if (Key.first == Key.second)
1000       // Base relocation: nothing to insert
1001       continue;
1002 
1003     GCRelocateInst *I = Item.second;
1004     auto BaseKey = std::make_pair(Key.first, Key.first);
1005 
1006     // We're iterating over RelocateIdxMap so we cannot modify it.
1007     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1008     if (MaybeBase == RelocateIdxMap.end())
1009       // TODO: We might want to insert a new base object relocate and gep off
1010       // that, if there are enough derived object relocates.
1011       continue;
1012 
1013     RelocateInstMap[MaybeBase->second].push_back(I);
1014   }
1015 }
1016 
1017 // Accepts a GEP and extracts the operands into a vector provided they're all
1018 // small integer constants
1019 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1020                                           SmallVectorImpl<Value *> &OffsetV) {
1021   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1022     // Only accept small constant integer operands
1023     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1024     if (!Op || Op->getZExtValue() > 20)
1025       return false;
1026   }
1027 
1028   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1029     OffsetV.push_back(GEP->getOperand(i));
1030   return true;
1031 }
1032 
1033 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1034 // replace, computes a replacement, and affects it.
1035 static bool
1036 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1037                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1038   bool MadeChange = false;
1039   // We must ensure the relocation of derived pointer is defined after
1040   // relocation of base pointer. If we find a relocation corresponding to base
1041   // defined earlier than relocation of base then we move relocation of base
1042   // right before found relocation. We consider only relocation in the same
1043   // basic block as relocation of base. Relocations from other basic block will
1044   // be skipped by optimization and we do not care about them.
1045   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1046        &*R != RelocatedBase; ++R)
1047     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1048       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1049         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1050           RelocatedBase->moveBefore(RI);
1051           break;
1052         }
1053 
1054   for (GCRelocateInst *ToReplace : Targets) {
1055     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1056            "Not relocating a derived object of the original base object");
1057     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1058       // A duplicate relocate call. TODO: coalesce duplicates.
1059       continue;
1060     }
1061 
1062     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1063       // Base and derived relocates are in different basic blocks.
1064       // In this case transform is only valid when base dominates derived
1065       // relocate. However it would be too expensive to check dominance
1066       // for each such relocate, so we skip the whole transformation.
1067       continue;
1068     }
1069 
1070     Value *Base = ToReplace->getBasePtr();
1071     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1072     if (!Derived || Derived->getPointerOperand() != Base)
1073       continue;
1074 
1075     SmallVector<Value *, 2> OffsetV;
1076     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1077       continue;
1078 
1079     // Create a Builder and replace the target callsite with a gep
1080     assert(RelocatedBase->getNextNode() &&
1081            "Should always have one since it's not a terminator");
1082 
1083     // Insert after RelocatedBase
1084     IRBuilder<> Builder(RelocatedBase->getNextNode());
1085     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1086 
1087     // If gc_relocate does not match the actual type, cast it to the right type.
1088     // In theory, there must be a bitcast after gc_relocate if the type does not
1089     // match, and we should reuse it to get the derived pointer. But it could be
1090     // cases like this:
1091     // bb1:
1092     //  ...
1093     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1094     //  br label %merge
1095     //
1096     // bb2:
1097     //  ...
1098     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1099     //  br label %merge
1100     //
1101     // merge:
1102     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1103     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1104     //
1105     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1106     // no matter there is already one or not. In this way, we can handle all cases, and
1107     // the extra bitcast should be optimized away in later passes.
1108     Value *ActualRelocatedBase = RelocatedBase;
1109     if (RelocatedBase->getType() != Base->getType()) {
1110       ActualRelocatedBase =
1111           Builder.CreateBitCast(RelocatedBase, Base->getType());
1112     }
1113     Value *Replacement = Builder.CreateGEP(
1114         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1115     Replacement->takeName(ToReplace);
1116     // If the newly generated derived pointer's type does not match the original derived
1117     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1118     Value *ActualReplacement = Replacement;
1119     if (Replacement->getType() != ToReplace->getType()) {
1120       ActualReplacement =
1121           Builder.CreateBitCast(Replacement, ToReplace->getType());
1122     }
1123     ToReplace->replaceAllUsesWith(ActualReplacement);
1124     ToReplace->eraseFromParent();
1125 
1126     MadeChange = true;
1127   }
1128   return MadeChange;
1129 }
1130 
1131 // Turns this:
1132 //
1133 // %base = ...
1134 // %ptr = gep %base + 15
1135 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1136 // %base' = relocate(%tok, i32 4, i32 4)
1137 // %ptr' = relocate(%tok, i32 4, i32 5)
1138 // %val = load %ptr'
1139 //
1140 // into this:
1141 //
1142 // %base = ...
1143 // %ptr = gep %base + 15
1144 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1145 // %base' = gc.relocate(%tok, i32 4, i32 4)
1146 // %ptr' = gep %base' + 15
1147 // %val = load %ptr'
1148 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1149   bool MadeChange = false;
1150   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1151   for (auto *U : I.users())
1152     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1153       // Collect all the relocate calls associated with a statepoint
1154       AllRelocateCalls.push_back(Relocate);
1155 
1156   // We need at least one base pointer relocation + one derived pointer
1157   // relocation to mangle
1158   if (AllRelocateCalls.size() < 2)
1159     return false;
1160 
1161   // RelocateInstMap is a mapping from the base relocate instruction to the
1162   // corresponding derived relocate instructions
1163   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1164   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1165   if (RelocateInstMap.empty())
1166     return false;
1167 
1168   for (auto &Item : RelocateInstMap)
1169     // Item.first is the RelocatedBase to offset against
1170     // Item.second is the vector of Targets to replace
1171     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1172   return MadeChange;
1173 }
1174 
1175 /// Sink the specified cast instruction into its user blocks.
1176 static bool SinkCast(CastInst *CI) {
1177   BasicBlock *DefBB = CI->getParent();
1178 
1179   /// InsertedCasts - Only insert a cast in each block once.
1180   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1181 
1182   bool MadeChange = false;
1183   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1184        UI != E; ) {
1185     Use &TheUse = UI.getUse();
1186     Instruction *User = cast<Instruction>(*UI);
1187 
1188     // Figure out which BB this cast is used in.  For PHI's this is the
1189     // appropriate predecessor block.
1190     BasicBlock *UserBB = User->getParent();
1191     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1192       UserBB = PN->getIncomingBlock(TheUse);
1193     }
1194 
1195     // Preincrement use iterator so we don't invalidate it.
1196     ++UI;
1197 
1198     // The first insertion point of a block containing an EH pad is after the
1199     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1200     if (User->isEHPad())
1201       continue;
1202 
1203     // If the block selected to receive the cast is an EH pad that does not
1204     // allow non-PHI instructions before the terminator, we can't sink the
1205     // cast.
1206     if (UserBB->getTerminator()->isEHPad())
1207       continue;
1208 
1209     // If this user is in the same block as the cast, don't change the cast.
1210     if (UserBB == DefBB) continue;
1211 
1212     // If we have already inserted a cast into this block, use it.
1213     CastInst *&InsertedCast = InsertedCasts[UserBB];
1214 
1215     if (!InsertedCast) {
1216       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1217       assert(InsertPt != UserBB->end());
1218       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1219                                       CI->getType(), "", &*InsertPt);
1220       InsertedCast->setDebugLoc(CI->getDebugLoc());
1221     }
1222 
1223     // Replace a use of the cast with a use of the new cast.
1224     TheUse = InsertedCast;
1225     MadeChange = true;
1226     ++NumCastUses;
1227   }
1228 
1229   // If we removed all uses, nuke the cast.
1230   if (CI->use_empty()) {
1231     salvageDebugInfo(*CI);
1232     CI->eraseFromParent();
1233     MadeChange = true;
1234   }
1235 
1236   return MadeChange;
1237 }
1238 
1239 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1240 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1241 /// reduce the number of virtual registers that must be created and coalesced.
1242 ///
1243 /// Return true if any changes are made.
1244 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1245                                        const DataLayout &DL) {
1246   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1247   // than sinking only nop casts, but is helpful on some platforms.
1248   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1249     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1250                                  ASC->getDestAddressSpace()))
1251       return false;
1252   }
1253 
1254   // If this is a noop copy,
1255   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1256   EVT DstVT = TLI.getValueType(DL, CI->getType());
1257 
1258   // This is an fp<->int conversion?
1259   if (SrcVT.isInteger() != DstVT.isInteger())
1260     return false;
1261 
1262   // If this is an extension, it will be a zero or sign extension, which
1263   // isn't a noop.
1264   if (SrcVT.bitsLT(DstVT)) return false;
1265 
1266   // If these values will be promoted, find out what they will be promoted
1267   // to.  This helps us consider truncates on PPC as noop copies when they
1268   // are.
1269   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1270       TargetLowering::TypePromoteInteger)
1271     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1272   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1273       TargetLowering::TypePromoteInteger)
1274     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1275 
1276   // If, after promotion, these are the same types, this is a noop copy.
1277   if (SrcVT != DstVT)
1278     return false;
1279 
1280   return SinkCast(CI);
1281 }
1282 
1283 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1284                                                  Value *Arg0, Value *Arg1,
1285                                                  CmpInst *Cmp,
1286                                                  Intrinsic::ID IID) {
1287   if (BO->getParent() != Cmp->getParent()) {
1288     // We used to use a dominator tree here to allow multi-block optimization.
1289     // But that was problematic because:
1290     // 1. It could cause a perf regression by hoisting the math op into the
1291     //    critical path.
1292     // 2. It could cause a perf regression by creating a value that was live
1293     //    across multiple blocks and increasing register pressure.
1294     // 3. Use of a dominator tree could cause large compile-time regression.
1295     //    This is because we recompute the DT on every change in the main CGP
1296     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1297     //    that was fixed, using a DT here would be ok.
1298     return false;
1299   }
1300 
1301   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1302   if (BO->getOpcode() == Instruction::Add &&
1303       IID == Intrinsic::usub_with_overflow) {
1304     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1305     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1306   }
1307 
1308   // Insert at the first instruction of the pair.
1309   Instruction *InsertPt = nullptr;
1310   for (Instruction &Iter : *Cmp->getParent()) {
1311     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1312     // the overflow intrinsic are defined.
1313     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1314       InsertPt = &Iter;
1315       break;
1316     }
1317   }
1318   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1319 
1320   IRBuilder<> Builder(InsertPt);
1321   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1322   if (BO->getOpcode() != Instruction::Xor) {
1323     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1324     BO->replaceAllUsesWith(Math);
1325   } else
1326     assert(BO->hasOneUse() &&
1327            "Patterns with XOr should use the BO only in the compare");
1328   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1329   Cmp->replaceAllUsesWith(OV);
1330   Cmp->eraseFromParent();
1331   BO->eraseFromParent();
1332   return true;
1333 }
1334 
1335 /// Match special-case patterns that check for unsigned add overflow.
1336 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1337                                                    BinaryOperator *&Add) {
1338   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1339   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1340   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1341 
1342   // We are not expecting non-canonical/degenerate code. Just bail out.
1343   if (isa<Constant>(A))
1344     return false;
1345 
1346   ICmpInst::Predicate Pred = Cmp->getPredicate();
1347   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1348     B = ConstantInt::get(B->getType(), 1);
1349   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1350     B = ConstantInt::get(B->getType(), -1);
1351   else
1352     return false;
1353 
1354   // Check the users of the variable operand of the compare looking for an add
1355   // with the adjusted constant.
1356   for (User *U : A->users()) {
1357     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1358       Add = cast<BinaryOperator>(U);
1359       return true;
1360     }
1361   }
1362   return false;
1363 }
1364 
1365 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1366 /// intrinsic. Return true if any changes were made.
1367 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1368                                                bool &ModifiedDT) {
1369   Value *A, *B;
1370   BinaryOperator *Add;
1371   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1372     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1373       return false;
1374     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1375     A = Add->getOperand(0);
1376     B = Add->getOperand(1);
1377   }
1378 
1379   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1380                                  TLI->getValueType(*DL, Add->getType()),
1381                                  Add->hasNUsesOrMore(2)))
1382     return false;
1383 
1384   // We don't want to move around uses of condition values this late, so we
1385   // check if it is legal to create the call to the intrinsic in the basic
1386   // block containing the icmp.
1387   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1388     return false;
1389 
1390   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1391                                    Intrinsic::uadd_with_overflow))
1392     return false;
1393 
1394   // Reset callers - do not crash by iterating over a dead instruction.
1395   ModifiedDT = true;
1396   return true;
1397 }
1398 
1399 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1400                                                bool &ModifiedDT) {
1401   // We are not expecting non-canonical/degenerate code. Just bail out.
1402   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1403   if (isa<Constant>(A) && isa<Constant>(B))
1404     return false;
1405 
1406   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1407   ICmpInst::Predicate Pred = Cmp->getPredicate();
1408   if (Pred == ICmpInst::ICMP_UGT) {
1409     std::swap(A, B);
1410     Pred = ICmpInst::ICMP_ULT;
1411   }
1412   // Convert special-case: (A == 0) is the same as (A u< 1).
1413   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1414     B = ConstantInt::get(B->getType(), 1);
1415     Pred = ICmpInst::ICMP_ULT;
1416   }
1417   // Convert special-case: (A != 0) is the same as (0 u< A).
1418   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1419     std::swap(A, B);
1420     Pred = ICmpInst::ICMP_ULT;
1421   }
1422   if (Pred != ICmpInst::ICMP_ULT)
1423     return false;
1424 
1425   // Walk the users of a variable operand of a compare looking for a subtract or
1426   // add with that same operand. Also match the 2nd operand of the compare to
1427   // the add/sub, but that may be a negated constant operand of an add.
1428   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1429   BinaryOperator *Sub = nullptr;
1430   for (User *U : CmpVariableOperand->users()) {
1431     // A - B, A u< B --> usubo(A, B)
1432     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1433       Sub = cast<BinaryOperator>(U);
1434       break;
1435     }
1436 
1437     // A + (-C), A u< C (canonicalized form of (sub A, C))
1438     const APInt *CmpC, *AddC;
1439     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1440         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1441       Sub = cast<BinaryOperator>(U);
1442       break;
1443     }
1444   }
1445   if (!Sub)
1446     return false;
1447 
1448   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1449                                  TLI->getValueType(*DL, Sub->getType()),
1450                                  Sub->hasNUsesOrMore(2)))
1451     return false;
1452 
1453   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1454                                    Cmp, Intrinsic::usub_with_overflow))
1455     return false;
1456 
1457   // Reset callers - do not crash by iterating over a dead instruction.
1458   ModifiedDT = true;
1459   return true;
1460 }
1461 
1462 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1463 /// registers that must be created and coalesced. This is a clear win except on
1464 /// targets with multiple condition code registers (PowerPC), where it might
1465 /// lose; some adjustment may be wanted there.
1466 ///
1467 /// Return true if any changes are made.
1468 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1469   if (TLI.hasMultipleConditionRegisters())
1470     return false;
1471 
1472   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1473   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1474     return false;
1475 
1476   // Only insert a cmp in each block once.
1477   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1478 
1479   bool MadeChange = false;
1480   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1481        UI != E; ) {
1482     Use &TheUse = UI.getUse();
1483     Instruction *User = cast<Instruction>(*UI);
1484 
1485     // Preincrement use iterator so we don't invalidate it.
1486     ++UI;
1487 
1488     // Don't bother for PHI nodes.
1489     if (isa<PHINode>(User))
1490       continue;
1491 
1492     // Figure out which BB this cmp is used in.
1493     BasicBlock *UserBB = User->getParent();
1494     BasicBlock *DefBB = Cmp->getParent();
1495 
1496     // If this user is in the same block as the cmp, don't change the cmp.
1497     if (UserBB == DefBB) continue;
1498 
1499     // If we have already inserted a cmp into this block, use it.
1500     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1501 
1502     if (!InsertedCmp) {
1503       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1504       assert(InsertPt != UserBB->end());
1505       InsertedCmp =
1506           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1507                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1508                           &*InsertPt);
1509       // Propagate the debug info.
1510       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1511     }
1512 
1513     // Replace a use of the cmp with a use of the new cmp.
1514     TheUse = InsertedCmp;
1515     MadeChange = true;
1516     ++NumCmpUses;
1517   }
1518 
1519   // If we removed all uses, nuke the cmp.
1520   if (Cmp->use_empty()) {
1521     Cmp->eraseFromParent();
1522     MadeChange = true;
1523   }
1524 
1525   return MadeChange;
1526 }
1527 
1528 /// For pattern like:
1529 ///
1530 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1531 ///   ...
1532 /// DomBB:
1533 ///   ...
1534 ///   br DomCond, TrueBB, CmpBB
1535 /// CmpBB: (with DomBB being the single predecessor)
1536 ///   ...
1537 ///   Cmp = icmp eq CmpOp0, CmpOp1
1538 ///   ...
1539 ///
1540 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1541 /// different from lowering of icmp eq (PowerPC). This function try to convert
1542 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1543 /// After that, DomCond and Cmp can use the same comparison so reduce one
1544 /// comparison.
1545 ///
1546 /// Return true if any changes are made.
1547 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1548                                        const TargetLowering &TLI) {
1549   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1550     return false;
1551 
1552   ICmpInst::Predicate Pred = Cmp->getPredicate();
1553   if (Pred != ICmpInst::ICMP_EQ)
1554     return false;
1555 
1556   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1557   // icmp slt/sgt would introduce more redundant LLVM IR.
1558   for (User *U : Cmp->users()) {
1559     if (isa<BranchInst>(U))
1560       continue;
1561     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1562       continue;
1563     return false;
1564   }
1565 
1566   // This is a cheap/incomplete check for dominance - just match a single
1567   // predecessor with a conditional branch.
1568   BasicBlock *CmpBB = Cmp->getParent();
1569   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1570   if (!DomBB)
1571     return false;
1572 
1573   // We want to ensure that the only way control gets to the comparison of
1574   // interest is that a less/greater than comparison on the same operands is
1575   // false.
1576   Value *DomCond;
1577   BasicBlock *TrueBB, *FalseBB;
1578   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1579     return false;
1580   if (CmpBB != FalseBB)
1581     return false;
1582 
1583   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1584   ICmpInst::Predicate DomPred;
1585   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1586     return false;
1587   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1588     return false;
1589 
1590   // Convert the equality comparison to the opposite of the dominating
1591   // comparison and swap the direction for all branch/select users.
1592   // We have conceptually converted:
1593   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1594   // to
1595   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1596   // And similarly for branches.
1597   for (User *U : Cmp->users()) {
1598     if (auto *BI = dyn_cast<BranchInst>(U)) {
1599       assert(BI->isConditional() && "Must be conditional");
1600       BI->swapSuccessors();
1601       continue;
1602     }
1603     if (auto *SI = dyn_cast<SelectInst>(U)) {
1604       // Swap operands
1605       SI->swapValues();
1606       SI->swapProfMetadata();
1607       continue;
1608     }
1609     llvm_unreachable("Must be a branch or a select");
1610   }
1611   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1612   return true;
1613 }
1614 
1615 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1616   if (sinkCmpExpression(Cmp, *TLI))
1617     return true;
1618 
1619   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1620     return true;
1621 
1622   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1623     return true;
1624 
1625   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1626     return true;
1627 
1628   return false;
1629 }
1630 
1631 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1632 /// used in a compare to allow isel to generate better code for targets where
1633 /// this operation can be combined.
1634 ///
1635 /// Return true if any changes are made.
1636 static bool sinkAndCmp0Expression(Instruction *AndI,
1637                                   const TargetLowering &TLI,
1638                                   SetOfInstrs &InsertedInsts) {
1639   // Double-check that we're not trying to optimize an instruction that was
1640   // already optimized by some other part of this pass.
1641   assert(!InsertedInsts.count(AndI) &&
1642          "Attempting to optimize already optimized and instruction");
1643   (void) InsertedInsts;
1644 
1645   // Nothing to do for single use in same basic block.
1646   if (AndI->hasOneUse() &&
1647       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1648     return false;
1649 
1650   // Try to avoid cases where sinking/duplicating is likely to increase register
1651   // pressure.
1652   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1653       !isa<ConstantInt>(AndI->getOperand(1)) &&
1654       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1655     return false;
1656 
1657   for (auto *U : AndI->users()) {
1658     Instruction *User = cast<Instruction>(U);
1659 
1660     // Only sink 'and' feeding icmp with 0.
1661     if (!isa<ICmpInst>(User))
1662       return false;
1663 
1664     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1665     if (!CmpC || !CmpC->isZero())
1666       return false;
1667   }
1668 
1669   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1670     return false;
1671 
1672   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1673   LLVM_DEBUG(AndI->getParent()->dump());
1674 
1675   // Push the 'and' into the same block as the icmp 0.  There should only be
1676   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1677   // others, so we don't need to keep track of which BBs we insert into.
1678   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1679        UI != E; ) {
1680     Use &TheUse = UI.getUse();
1681     Instruction *User = cast<Instruction>(*UI);
1682 
1683     // Preincrement use iterator so we don't invalidate it.
1684     ++UI;
1685 
1686     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1687 
1688     // Keep the 'and' in the same place if the use is already in the same block.
1689     Instruction *InsertPt =
1690         User->getParent() == AndI->getParent() ? AndI : User;
1691     Instruction *InsertedAnd =
1692         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1693                                AndI->getOperand(1), "", InsertPt);
1694     // Propagate the debug info.
1695     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1696 
1697     // Replace a use of the 'and' with a use of the new 'and'.
1698     TheUse = InsertedAnd;
1699     ++NumAndUses;
1700     LLVM_DEBUG(User->getParent()->dump());
1701   }
1702 
1703   // We removed all uses, nuke the and.
1704   AndI->eraseFromParent();
1705   return true;
1706 }
1707 
1708 /// Check if the candidates could be combined with a shift instruction, which
1709 /// includes:
1710 /// 1. Truncate instruction
1711 /// 2. And instruction and the imm is a mask of the low bits:
1712 /// imm & (imm+1) == 0
1713 static bool isExtractBitsCandidateUse(Instruction *User) {
1714   if (!isa<TruncInst>(User)) {
1715     if (User->getOpcode() != Instruction::And ||
1716         !isa<ConstantInt>(User->getOperand(1)))
1717       return false;
1718 
1719     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1720 
1721     if ((Cimm & (Cimm + 1)).getBoolValue())
1722       return false;
1723   }
1724   return true;
1725 }
1726 
1727 /// Sink both shift and truncate instruction to the use of truncate's BB.
1728 static bool
1729 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1730                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1731                      const TargetLowering &TLI, const DataLayout &DL) {
1732   BasicBlock *UserBB = User->getParent();
1733   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1734   auto *TruncI = cast<TruncInst>(User);
1735   bool MadeChange = false;
1736 
1737   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1738                             TruncE = TruncI->user_end();
1739        TruncUI != TruncE;) {
1740 
1741     Use &TruncTheUse = TruncUI.getUse();
1742     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1743     // Preincrement use iterator so we don't invalidate it.
1744 
1745     ++TruncUI;
1746 
1747     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1748     if (!ISDOpcode)
1749       continue;
1750 
1751     // If the use is actually a legal node, there will not be an
1752     // implicit truncate.
1753     // FIXME: always querying the result type is just an
1754     // approximation; some nodes' legality is determined by the
1755     // operand or other means. There's no good way to find out though.
1756     if (TLI.isOperationLegalOrCustom(
1757             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1758       continue;
1759 
1760     // Don't bother for PHI nodes.
1761     if (isa<PHINode>(TruncUser))
1762       continue;
1763 
1764     BasicBlock *TruncUserBB = TruncUser->getParent();
1765 
1766     if (UserBB == TruncUserBB)
1767       continue;
1768 
1769     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1770     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1771 
1772     if (!InsertedShift && !InsertedTrunc) {
1773       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1774       assert(InsertPt != TruncUserBB->end());
1775       // Sink the shift
1776       if (ShiftI->getOpcode() == Instruction::AShr)
1777         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1778                                                    "", &*InsertPt);
1779       else
1780         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1781                                                    "", &*InsertPt);
1782       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1783 
1784       // Sink the trunc
1785       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1786       TruncInsertPt++;
1787       assert(TruncInsertPt != TruncUserBB->end());
1788 
1789       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1790                                        TruncI->getType(), "", &*TruncInsertPt);
1791       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1792 
1793       MadeChange = true;
1794 
1795       TruncTheUse = InsertedTrunc;
1796     }
1797   }
1798   return MadeChange;
1799 }
1800 
1801 /// Sink the shift *right* instruction into user blocks if the uses could
1802 /// potentially be combined with this shift instruction and generate BitExtract
1803 /// instruction. It will only be applied if the architecture supports BitExtract
1804 /// instruction. Here is an example:
1805 /// BB1:
1806 ///   %x.extract.shift = lshr i64 %arg1, 32
1807 /// BB2:
1808 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1809 /// ==>
1810 ///
1811 /// BB2:
1812 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1813 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1814 ///
1815 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1816 /// instruction.
1817 /// Return true if any changes are made.
1818 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1819                                 const TargetLowering &TLI,
1820                                 const DataLayout &DL) {
1821   BasicBlock *DefBB = ShiftI->getParent();
1822 
1823   /// Only insert instructions in each block once.
1824   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1825 
1826   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1827 
1828   bool MadeChange = false;
1829   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1830        UI != E;) {
1831     Use &TheUse = UI.getUse();
1832     Instruction *User = cast<Instruction>(*UI);
1833     // Preincrement use iterator so we don't invalidate it.
1834     ++UI;
1835 
1836     // Don't bother for PHI nodes.
1837     if (isa<PHINode>(User))
1838       continue;
1839 
1840     if (!isExtractBitsCandidateUse(User))
1841       continue;
1842 
1843     BasicBlock *UserBB = User->getParent();
1844 
1845     if (UserBB == DefBB) {
1846       // If the shift and truncate instruction are in the same BB. The use of
1847       // the truncate(TruncUse) may still introduce another truncate if not
1848       // legal. In this case, we would like to sink both shift and truncate
1849       // instruction to the BB of TruncUse.
1850       // for example:
1851       // BB1:
1852       // i64 shift.result = lshr i64 opnd, imm
1853       // trunc.result = trunc shift.result to i16
1854       //
1855       // BB2:
1856       //   ----> We will have an implicit truncate here if the architecture does
1857       //   not have i16 compare.
1858       // cmp i16 trunc.result, opnd2
1859       //
1860       if (isa<TruncInst>(User) && shiftIsLegal
1861           // If the type of the truncate is legal, no truncate will be
1862           // introduced in other basic blocks.
1863           &&
1864           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1865         MadeChange =
1866             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1867 
1868       continue;
1869     }
1870     // If we have already inserted a shift into this block, use it.
1871     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1872 
1873     if (!InsertedShift) {
1874       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1875       assert(InsertPt != UserBB->end());
1876 
1877       if (ShiftI->getOpcode() == Instruction::AShr)
1878         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1879                                                    "", &*InsertPt);
1880       else
1881         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1882                                                    "", &*InsertPt);
1883       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1884 
1885       MadeChange = true;
1886     }
1887 
1888     // Replace a use of the shift with a use of the new shift.
1889     TheUse = InsertedShift;
1890   }
1891 
1892   // If we removed all uses, or there are none, nuke the shift.
1893   if (ShiftI->use_empty()) {
1894     salvageDebugInfo(*ShiftI);
1895     ShiftI->eraseFromParent();
1896     MadeChange = true;
1897   }
1898 
1899   return MadeChange;
1900 }
1901 
1902 /// If counting leading or trailing zeros is an expensive operation and a zero
1903 /// input is defined, add a check for zero to avoid calling the intrinsic.
1904 ///
1905 /// We want to transform:
1906 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1907 ///
1908 /// into:
1909 ///   entry:
1910 ///     %cmpz = icmp eq i64 %A, 0
1911 ///     br i1 %cmpz, label %cond.end, label %cond.false
1912 ///   cond.false:
1913 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1914 ///     br label %cond.end
1915 ///   cond.end:
1916 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1917 ///
1918 /// If the transform is performed, return true and set ModifiedDT to true.
1919 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1920                                   const TargetLowering *TLI,
1921                                   const DataLayout *DL,
1922                                   bool &ModifiedDT) {
1923   // If a zero input is undefined, it doesn't make sense to despeculate that.
1924   if (match(CountZeros->getOperand(1), m_One()))
1925     return false;
1926 
1927   // If it's cheap to speculate, there's nothing to do.
1928   auto IntrinsicID = CountZeros->getIntrinsicID();
1929   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1930       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1931     return false;
1932 
1933   // Only handle legal scalar cases. Anything else requires too much work.
1934   Type *Ty = CountZeros->getType();
1935   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1936   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1937     return false;
1938 
1939   // The intrinsic will be sunk behind a compare against zero and branch.
1940   BasicBlock *StartBlock = CountZeros->getParent();
1941   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1942 
1943   // Create another block after the count zero intrinsic. A PHI will be added
1944   // in this block to select the result of the intrinsic or the bit-width
1945   // constant if the input to the intrinsic is zero.
1946   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1947   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1948 
1949   // Set up a builder to create a compare, conditional branch, and PHI.
1950   IRBuilder<> Builder(CountZeros->getContext());
1951   Builder.SetInsertPoint(StartBlock->getTerminator());
1952   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1953 
1954   // Replace the unconditional branch that was created by the first split with
1955   // a compare against zero and a conditional branch.
1956   Value *Zero = Constant::getNullValue(Ty);
1957   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1958   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1959   StartBlock->getTerminator()->eraseFromParent();
1960 
1961   // Create a PHI in the end block to select either the output of the intrinsic
1962   // or the bit width of the operand.
1963   Builder.SetInsertPoint(&EndBlock->front());
1964   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1965   CountZeros->replaceAllUsesWith(PN);
1966   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1967   PN->addIncoming(BitWidth, StartBlock);
1968   PN->addIncoming(CountZeros, CallBlock);
1969 
1970   // We are explicitly handling the zero case, so we can set the intrinsic's
1971   // undefined zero argument to 'true'. This will also prevent reprocessing the
1972   // intrinsic; we only despeculate when a zero input is defined.
1973   CountZeros->setArgOperand(1, Builder.getTrue());
1974   ModifiedDT = true;
1975   return true;
1976 }
1977 
1978 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1979   BasicBlock *BB = CI->getParent();
1980 
1981   // Lower inline assembly if we can.
1982   // If we found an inline asm expession, and if the target knows how to
1983   // lower it to normal LLVM code, do so now.
1984   if (CI->isInlineAsm()) {
1985     if (TLI->ExpandInlineAsm(CI)) {
1986       // Avoid invalidating the iterator.
1987       CurInstIterator = BB->begin();
1988       // Avoid processing instructions out of order, which could cause
1989       // reuse before a value is defined.
1990       SunkAddrs.clear();
1991       return true;
1992     }
1993     // Sink address computing for memory operands into the block.
1994     if (optimizeInlineAsmInst(CI))
1995       return true;
1996   }
1997 
1998   // Align the pointer arguments to this call if the target thinks it's a good
1999   // idea
2000   unsigned MinSize, PrefAlign;
2001   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2002     for (auto &Arg : CI->arg_operands()) {
2003       // We want to align both objects whose address is used directly and
2004       // objects whose address is used in casts and GEPs, though it only makes
2005       // sense for GEPs if the offset is a multiple of the desired alignment and
2006       // if size - offset meets the size threshold.
2007       if (!Arg->getType()->isPointerTy())
2008         continue;
2009       APInt Offset(DL->getIndexSizeInBits(
2010                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2011                    0);
2012       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2013       uint64_t Offset2 = Offset.getLimitedValue();
2014       if ((Offset2 & (PrefAlign-1)) != 0)
2015         continue;
2016       AllocaInst *AI;
2017       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2018           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2019         AI->setAlignment(Align(PrefAlign));
2020       // Global variables can only be aligned if they are defined in this
2021       // object (i.e. they are uniquely initialized in this object), and
2022       // over-aligning global variables that have an explicit section is
2023       // forbidden.
2024       GlobalVariable *GV;
2025       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2026           GV->getPointerAlignment(*DL) < PrefAlign &&
2027           DL->getTypeAllocSize(GV->getValueType()) >=
2028               MinSize + Offset2)
2029         GV->setAlignment(MaybeAlign(PrefAlign));
2030     }
2031     // If this is a memcpy (or similar) then we may be able to improve the
2032     // alignment
2033     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2034       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2035       MaybeAlign MIDestAlign = MI->getDestAlign();
2036       if (!MIDestAlign || DestAlign > *MIDestAlign)
2037         MI->setDestAlignment(DestAlign);
2038       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2039         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2040         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2041         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2042           MTI->setSourceAlignment(SrcAlign);
2043       }
2044     }
2045   }
2046 
2047   // If we have a cold call site, try to sink addressing computation into the
2048   // cold block.  This interacts with our handling for loads and stores to
2049   // ensure that we can fold all uses of a potential addressing computation
2050   // into their uses.  TODO: generalize this to work over profiling data
2051   if (CI->hasFnAttr(Attribute::Cold) &&
2052       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2053     for (auto &Arg : CI->arg_operands()) {
2054       if (!Arg->getType()->isPointerTy())
2055         continue;
2056       unsigned AS = Arg->getType()->getPointerAddressSpace();
2057       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2058     }
2059 
2060   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2061   if (II) {
2062     switch (II->getIntrinsicID()) {
2063     default: break;
2064     case Intrinsic::assume: {
2065       Value *Operand = II->getOperand(0);
2066       II->eraseFromParent();
2067       // Prune the operand, it's most likely dead.
2068       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2069         RecursivelyDeleteTriviallyDeadInstructions(
2070             Operand, TLInfo, nullptr,
2071             [&](Value *V) { removeAllAssertingVHReferences(V); });
2072       });
2073       return true;
2074     }
2075 
2076     case Intrinsic::experimental_widenable_condition: {
2077       // Give up on future widening oppurtunties so that we can fold away dead
2078       // paths and merge blocks before going into block-local instruction
2079       // selection.
2080       if (II->use_empty()) {
2081         II->eraseFromParent();
2082         return true;
2083       }
2084       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2085       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2086         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2087       });
2088       return true;
2089     }
2090     case Intrinsic::objectsize:
2091       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2092     case Intrinsic::is_constant:
2093       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2094     case Intrinsic::aarch64_stlxr:
2095     case Intrinsic::aarch64_stxr: {
2096       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2097       if (!ExtVal || !ExtVal->hasOneUse() ||
2098           ExtVal->getParent() == CI->getParent())
2099         return false;
2100       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2101       ExtVal->moveBefore(CI);
2102       // Mark this instruction as "inserted by CGP", so that other
2103       // optimizations don't touch it.
2104       InsertedInsts.insert(ExtVal);
2105       return true;
2106     }
2107 
2108     case Intrinsic::launder_invariant_group:
2109     case Intrinsic::strip_invariant_group: {
2110       Value *ArgVal = II->getArgOperand(0);
2111       auto it = LargeOffsetGEPMap.find(II);
2112       if (it != LargeOffsetGEPMap.end()) {
2113           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2114           // Make sure not to have to deal with iterator invalidation
2115           // after possibly adding ArgVal to LargeOffsetGEPMap.
2116           auto GEPs = std::move(it->second);
2117           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2118           LargeOffsetGEPMap.erase(II);
2119       }
2120 
2121       II->replaceAllUsesWith(ArgVal);
2122       II->eraseFromParent();
2123       return true;
2124     }
2125     case Intrinsic::cttz:
2126     case Intrinsic::ctlz:
2127       // If counting zeros is expensive, try to avoid it.
2128       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2129     case Intrinsic::fshl:
2130     case Intrinsic::fshr:
2131       return optimizeFunnelShift(II);
2132     case Intrinsic::dbg_value:
2133       return fixupDbgValue(II);
2134     case Intrinsic::vscale: {
2135       // If datalayout has no special restrictions on vector data layout,
2136       // replace `llvm.vscale` by an equivalent constant expression
2137       // to benefit from cheap constant propagation.
2138       Type *ScalableVectorTy =
2139           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2140       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2141         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2142         auto *One = ConstantInt::getSigned(II->getType(), 1);
2143         auto *CGep =
2144             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2145         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2146         II->eraseFromParent();
2147         return true;
2148       }
2149       break;
2150     }
2151     case Intrinsic::masked_gather:
2152       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2153     case Intrinsic::masked_scatter:
2154       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2155     }
2156 
2157     SmallVector<Value *, 2> PtrOps;
2158     Type *AccessTy;
2159     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2160       while (!PtrOps.empty()) {
2161         Value *PtrVal = PtrOps.pop_back_val();
2162         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2163         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2164           return true;
2165       }
2166   }
2167 
2168   // From here on out we're working with named functions.
2169   if (!CI->getCalledFunction()) return false;
2170 
2171   // Lower all default uses of _chk calls.  This is very similar
2172   // to what InstCombineCalls does, but here we are only lowering calls
2173   // to fortified library functions (e.g. __memcpy_chk) that have the default
2174   // "don't know" as the objectsize.  Anything else should be left alone.
2175   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2176   IRBuilder<> Builder(CI);
2177   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2178     CI->replaceAllUsesWith(V);
2179     CI->eraseFromParent();
2180     return true;
2181   }
2182 
2183   return false;
2184 }
2185 
2186 /// Look for opportunities to duplicate return instructions to the predecessor
2187 /// to enable tail call optimizations. The case it is currently looking for is:
2188 /// @code
2189 /// bb0:
2190 ///   %tmp0 = tail call i32 @f0()
2191 ///   br label %return
2192 /// bb1:
2193 ///   %tmp1 = tail call i32 @f1()
2194 ///   br label %return
2195 /// bb2:
2196 ///   %tmp2 = tail call i32 @f2()
2197 ///   br label %return
2198 /// return:
2199 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2200 ///   ret i32 %retval
2201 /// @endcode
2202 ///
2203 /// =>
2204 ///
2205 /// @code
2206 /// bb0:
2207 ///   %tmp0 = tail call i32 @f0()
2208 ///   ret i32 %tmp0
2209 /// bb1:
2210 ///   %tmp1 = tail call i32 @f1()
2211 ///   ret i32 %tmp1
2212 /// bb2:
2213 ///   %tmp2 = tail call i32 @f2()
2214 ///   ret i32 %tmp2
2215 /// @endcode
2216 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2217   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2218   if (!RetI)
2219     return false;
2220 
2221   PHINode *PN = nullptr;
2222   ExtractValueInst *EVI = nullptr;
2223   BitCastInst *BCI = nullptr;
2224   Value *V = RetI->getReturnValue();
2225   if (V) {
2226     BCI = dyn_cast<BitCastInst>(V);
2227     if (BCI)
2228       V = BCI->getOperand(0);
2229 
2230     EVI = dyn_cast<ExtractValueInst>(V);
2231     if (EVI) {
2232       V = EVI->getOperand(0);
2233       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2234         return false;
2235     }
2236 
2237     PN = dyn_cast<PHINode>(V);
2238     if (!PN)
2239       return false;
2240   }
2241 
2242   if (PN && PN->getParent() != BB)
2243     return false;
2244 
2245   // Make sure there are no instructions between the PHI and return, or that the
2246   // return is the first instruction in the block.
2247   if (PN) {
2248     BasicBlock::iterator BI = BB->begin();
2249     // Skip over debug and the bitcast.
2250     do {
2251       ++BI;
2252     } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI ||
2253              isa<PseudoProbeInst>(BI));
2254     if (&*BI != RetI)
2255       return false;
2256   } else {
2257     if (BB->getFirstNonPHIOrDbg(true) != RetI)
2258       return false;
2259   }
2260 
2261   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2262   /// call.
2263   const Function *F = BB->getParent();
2264   SmallVector<BasicBlock*, 4> TailCallBBs;
2265   if (PN) {
2266     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2267       // Look through bitcasts.
2268       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2269       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2270       BasicBlock *PredBB = PN->getIncomingBlock(I);
2271       // Make sure the phi value is indeed produced by the tail call.
2272       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2273           TLI->mayBeEmittedAsTailCall(CI) &&
2274           attributesPermitTailCall(F, CI, RetI, *TLI))
2275         TailCallBBs.push_back(PredBB);
2276     }
2277   } else {
2278     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2279     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2280       if (!VisitedBBs.insert(*PI).second)
2281         continue;
2282       if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) {
2283         CallInst *CI = dyn_cast<CallInst>(I);
2284         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2285             attributesPermitTailCall(F, CI, RetI, *TLI))
2286           TailCallBBs.push_back(*PI);
2287       }
2288     }
2289   }
2290 
2291   bool Changed = false;
2292   for (auto const &TailCallBB : TailCallBBs) {
2293     // Make sure the call instruction is followed by an unconditional branch to
2294     // the return block.
2295     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2296     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2297       continue;
2298 
2299     // Duplicate the return into TailCallBB.
2300     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2301     assert(!VerifyBFIUpdates ||
2302            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2303     BFI->setBlockFreq(
2304         BB,
2305         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2306     ModifiedDT = Changed = true;
2307     ++NumRetsDup;
2308   }
2309 
2310   // If we eliminated all predecessors of the block, delete the block now.
2311   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2312     BB->eraseFromParent();
2313 
2314   return Changed;
2315 }
2316 
2317 //===----------------------------------------------------------------------===//
2318 // Memory Optimization
2319 //===----------------------------------------------------------------------===//
2320 
2321 namespace {
2322 
2323 /// This is an extended version of TargetLowering::AddrMode
2324 /// which holds actual Value*'s for register values.
2325 struct ExtAddrMode : public TargetLowering::AddrMode {
2326   Value *BaseReg = nullptr;
2327   Value *ScaledReg = nullptr;
2328   Value *OriginalValue = nullptr;
2329   bool InBounds = true;
2330 
2331   enum FieldName {
2332     NoField        = 0x00,
2333     BaseRegField   = 0x01,
2334     BaseGVField    = 0x02,
2335     BaseOffsField  = 0x04,
2336     ScaledRegField = 0x08,
2337     ScaleField     = 0x10,
2338     MultipleFields = 0xff
2339   };
2340 
2341 
2342   ExtAddrMode() = default;
2343 
2344   void print(raw_ostream &OS) const;
2345   void dump() const;
2346 
2347   FieldName compare(const ExtAddrMode &other) {
2348     // First check that the types are the same on each field, as differing types
2349     // is something we can't cope with later on.
2350     if (BaseReg && other.BaseReg &&
2351         BaseReg->getType() != other.BaseReg->getType())
2352       return MultipleFields;
2353     if (BaseGV && other.BaseGV &&
2354         BaseGV->getType() != other.BaseGV->getType())
2355       return MultipleFields;
2356     if (ScaledReg && other.ScaledReg &&
2357         ScaledReg->getType() != other.ScaledReg->getType())
2358       return MultipleFields;
2359 
2360     // Conservatively reject 'inbounds' mismatches.
2361     if (InBounds != other.InBounds)
2362       return MultipleFields;
2363 
2364     // Check each field to see if it differs.
2365     unsigned Result = NoField;
2366     if (BaseReg != other.BaseReg)
2367       Result |= BaseRegField;
2368     if (BaseGV != other.BaseGV)
2369       Result |= BaseGVField;
2370     if (BaseOffs != other.BaseOffs)
2371       Result |= BaseOffsField;
2372     if (ScaledReg != other.ScaledReg)
2373       Result |= ScaledRegField;
2374     // Don't count 0 as being a different scale, because that actually means
2375     // unscaled (which will already be counted by having no ScaledReg).
2376     if (Scale && other.Scale && Scale != other.Scale)
2377       Result |= ScaleField;
2378 
2379     if (countPopulation(Result) > 1)
2380       return MultipleFields;
2381     else
2382       return static_cast<FieldName>(Result);
2383   }
2384 
2385   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2386   // with no offset.
2387   bool isTrivial() {
2388     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2389     // trivial if at most one of these terms is nonzero, except that BaseGV and
2390     // BaseReg both being zero actually means a null pointer value, which we
2391     // consider to be 'non-zero' here.
2392     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2393   }
2394 
2395   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2396     switch (Field) {
2397     default:
2398       return nullptr;
2399     case BaseRegField:
2400       return BaseReg;
2401     case BaseGVField:
2402       return BaseGV;
2403     case ScaledRegField:
2404       return ScaledReg;
2405     case BaseOffsField:
2406       return ConstantInt::get(IntPtrTy, BaseOffs);
2407     }
2408   }
2409 
2410   void SetCombinedField(FieldName Field, Value *V,
2411                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2412     switch (Field) {
2413     default:
2414       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2415       break;
2416     case ExtAddrMode::BaseRegField:
2417       BaseReg = V;
2418       break;
2419     case ExtAddrMode::BaseGVField:
2420       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2421       // in the BaseReg field.
2422       assert(BaseReg == nullptr);
2423       BaseReg = V;
2424       BaseGV = nullptr;
2425       break;
2426     case ExtAddrMode::ScaledRegField:
2427       ScaledReg = V;
2428       // If we have a mix of scaled and unscaled addrmodes then we want scale
2429       // to be the scale and not zero.
2430       if (!Scale)
2431         for (const ExtAddrMode &AM : AddrModes)
2432           if (AM.Scale) {
2433             Scale = AM.Scale;
2434             break;
2435           }
2436       break;
2437     case ExtAddrMode::BaseOffsField:
2438       // The offset is no longer a constant, so it goes in ScaledReg with a
2439       // scale of 1.
2440       assert(ScaledReg == nullptr);
2441       ScaledReg = V;
2442       Scale = 1;
2443       BaseOffs = 0;
2444       break;
2445     }
2446   }
2447 };
2448 
2449 } // end anonymous namespace
2450 
2451 #ifndef NDEBUG
2452 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2453   AM.print(OS);
2454   return OS;
2455 }
2456 #endif
2457 
2458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2459 void ExtAddrMode::print(raw_ostream &OS) const {
2460   bool NeedPlus = false;
2461   OS << "[";
2462   if (InBounds)
2463     OS << "inbounds ";
2464   if (BaseGV) {
2465     OS << (NeedPlus ? " + " : "")
2466        << "GV:";
2467     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2468     NeedPlus = true;
2469   }
2470 
2471   if (BaseOffs) {
2472     OS << (NeedPlus ? " + " : "")
2473        << BaseOffs;
2474     NeedPlus = true;
2475   }
2476 
2477   if (BaseReg) {
2478     OS << (NeedPlus ? " + " : "")
2479        << "Base:";
2480     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2481     NeedPlus = true;
2482   }
2483   if (Scale) {
2484     OS << (NeedPlus ? " + " : "")
2485        << Scale << "*";
2486     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2487   }
2488 
2489   OS << ']';
2490 }
2491 
2492 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2493   print(dbgs());
2494   dbgs() << '\n';
2495 }
2496 #endif
2497 
2498 namespace {
2499 
2500 /// This class provides transaction based operation on the IR.
2501 /// Every change made through this class is recorded in the internal state and
2502 /// can be undone (rollback) until commit is called.
2503 /// CGP does not check if instructions could be speculatively executed when
2504 /// moved. Preserving the original location would pessimize the debugging
2505 /// experience, as well as negatively impact the quality of sample PGO.
2506 class TypePromotionTransaction {
2507   /// This represents the common interface of the individual transaction.
2508   /// Each class implements the logic for doing one specific modification on
2509   /// the IR via the TypePromotionTransaction.
2510   class TypePromotionAction {
2511   protected:
2512     /// The Instruction modified.
2513     Instruction *Inst;
2514 
2515   public:
2516     /// Constructor of the action.
2517     /// The constructor performs the related action on the IR.
2518     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2519 
2520     virtual ~TypePromotionAction() = default;
2521 
2522     /// Undo the modification done by this action.
2523     /// When this method is called, the IR must be in the same state as it was
2524     /// before this action was applied.
2525     /// \pre Undoing the action works if and only if the IR is in the exact same
2526     /// state as it was directly after this action was applied.
2527     virtual void undo() = 0;
2528 
2529     /// Advocate every change made by this action.
2530     /// When the results on the IR of the action are to be kept, it is important
2531     /// to call this function, otherwise hidden information may be kept forever.
2532     virtual void commit() {
2533       // Nothing to be done, this action is not doing anything.
2534     }
2535   };
2536 
2537   /// Utility to remember the position of an instruction.
2538   class InsertionHandler {
2539     /// Position of an instruction.
2540     /// Either an instruction:
2541     /// - Is the first in a basic block: BB is used.
2542     /// - Has a previous instruction: PrevInst is used.
2543     union {
2544       Instruction *PrevInst;
2545       BasicBlock *BB;
2546     } Point;
2547 
2548     /// Remember whether or not the instruction had a previous instruction.
2549     bool HasPrevInstruction;
2550 
2551   public:
2552     /// Record the position of \p Inst.
2553     InsertionHandler(Instruction *Inst) {
2554       BasicBlock::iterator It = Inst->getIterator();
2555       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2556       if (HasPrevInstruction)
2557         Point.PrevInst = &*--It;
2558       else
2559         Point.BB = Inst->getParent();
2560     }
2561 
2562     /// Insert \p Inst at the recorded position.
2563     void insert(Instruction *Inst) {
2564       if (HasPrevInstruction) {
2565         if (Inst->getParent())
2566           Inst->removeFromParent();
2567         Inst->insertAfter(Point.PrevInst);
2568       } else {
2569         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2570         if (Inst->getParent())
2571           Inst->moveBefore(Position);
2572         else
2573           Inst->insertBefore(Position);
2574       }
2575     }
2576   };
2577 
2578   /// Move an instruction before another.
2579   class InstructionMoveBefore : public TypePromotionAction {
2580     /// Original position of the instruction.
2581     InsertionHandler Position;
2582 
2583   public:
2584     /// Move \p Inst before \p Before.
2585     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2586         : TypePromotionAction(Inst), Position(Inst) {
2587       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2588                         << "\n");
2589       Inst->moveBefore(Before);
2590     }
2591 
2592     /// Move the instruction back to its original position.
2593     void undo() override {
2594       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2595       Position.insert(Inst);
2596     }
2597   };
2598 
2599   /// Set the operand of an instruction with a new value.
2600   class OperandSetter : public TypePromotionAction {
2601     /// Original operand of the instruction.
2602     Value *Origin;
2603 
2604     /// Index of the modified instruction.
2605     unsigned Idx;
2606 
2607   public:
2608     /// Set \p Idx operand of \p Inst with \p NewVal.
2609     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2610         : TypePromotionAction(Inst), Idx(Idx) {
2611       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2612                         << "for:" << *Inst << "\n"
2613                         << "with:" << *NewVal << "\n");
2614       Origin = Inst->getOperand(Idx);
2615       Inst->setOperand(Idx, NewVal);
2616     }
2617 
2618     /// Restore the original value of the instruction.
2619     void undo() override {
2620       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2621                         << "for: " << *Inst << "\n"
2622                         << "with: " << *Origin << "\n");
2623       Inst->setOperand(Idx, Origin);
2624     }
2625   };
2626 
2627   /// Hide the operands of an instruction.
2628   /// Do as if this instruction was not using any of its operands.
2629   class OperandsHider : public TypePromotionAction {
2630     /// The list of original operands.
2631     SmallVector<Value *, 4> OriginalValues;
2632 
2633   public:
2634     /// Remove \p Inst from the uses of the operands of \p Inst.
2635     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2636       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2637       unsigned NumOpnds = Inst->getNumOperands();
2638       OriginalValues.reserve(NumOpnds);
2639       for (unsigned It = 0; It < NumOpnds; ++It) {
2640         // Save the current operand.
2641         Value *Val = Inst->getOperand(It);
2642         OriginalValues.push_back(Val);
2643         // Set a dummy one.
2644         // We could use OperandSetter here, but that would imply an overhead
2645         // that we are not willing to pay.
2646         Inst->setOperand(It, UndefValue::get(Val->getType()));
2647       }
2648     }
2649 
2650     /// Restore the original list of uses.
2651     void undo() override {
2652       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2653       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2654         Inst->setOperand(It, OriginalValues[It]);
2655     }
2656   };
2657 
2658   /// Build a truncate instruction.
2659   class TruncBuilder : public TypePromotionAction {
2660     Value *Val;
2661 
2662   public:
2663     /// Build a truncate instruction of \p Opnd producing a \p Ty
2664     /// result.
2665     /// trunc Opnd to Ty.
2666     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2667       IRBuilder<> Builder(Opnd);
2668       Builder.SetCurrentDebugLocation(DebugLoc());
2669       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2670       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2671     }
2672 
2673     /// Get the built value.
2674     Value *getBuiltValue() { return Val; }
2675 
2676     /// Remove the built instruction.
2677     void undo() override {
2678       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2679       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2680         IVal->eraseFromParent();
2681     }
2682   };
2683 
2684   /// Build a sign extension instruction.
2685   class SExtBuilder : public TypePromotionAction {
2686     Value *Val;
2687 
2688   public:
2689     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2690     /// result.
2691     /// sext Opnd to Ty.
2692     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2693         : TypePromotionAction(InsertPt) {
2694       IRBuilder<> Builder(InsertPt);
2695       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2696       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2697     }
2698 
2699     /// Get the built value.
2700     Value *getBuiltValue() { return Val; }
2701 
2702     /// Remove the built instruction.
2703     void undo() override {
2704       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2705       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2706         IVal->eraseFromParent();
2707     }
2708   };
2709 
2710   /// Build a zero extension instruction.
2711   class ZExtBuilder : public TypePromotionAction {
2712     Value *Val;
2713 
2714   public:
2715     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2716     /// result.
2717     /// zext Opnd to Ty.
2718     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2719         : TypePromotionAction(InsertPt) {
2720       IRBuilder<> Builder(InsertPt);
2721       Builder.SetCurrentDebugLocation(DebugLoc());
2722       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2723       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2724     }
2725 
2726     /// Get the built value.
2727     Value *getBuiltValue() { return Val; }
2728 
2729     /// Remove the built instruction.
2730     void undo() override {
2731       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2732       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2733         IVal->eraseFromParent();
2734     }
2735   };
2736 
2737   /// Mutate an instruction to another type.
2738   class TypeMutator : public TypePromotionAction {
2739     /// Record the original type.
2740     Type *OrigTy;
2741 
2742   public:
2743     /// Mutate the type of \p Inst into \p NewTy.
2744     TypeMutator(Instruction *Inst, Type *NewTy)
2745         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2746       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2747                         << "\n");
2748       Inst->mutateType(NewTy);
2749     }
2750 
2751     /// Mutate the instruction back to its original type.
2752     void undo() override {
2753       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2754                         << "\n");
2755       Inst->mutateType(OrigTy);
2756     }
2757   };
2758 
2759   /// Replace the uses of an instruction by another instruction.
2760   class UsesReplacer : public TypePromotionAction {
2761     /// Helper structure to keep track of the replaced uses.
2762     struct InstructionAndIdx {
2763       /// The instruction using the instruction.
2764       Instruction *Inst;
2765 
2766       /// The index where this instruction is used for Inst.
2767       unsigned Idx;
2768 
2769       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2770           : Inst(Inst), Idx(Idx) {}
2771     };
2772 
2773     /// Keep track of the original uses (pair Instruction, Index).
2774     SmallVector<InstructionAndIdx, 4> OriginalUses;
2775     /// Keep track of the debug users.
2776     SmallVector<DbgValueInst *, 1> DbgValues;
2777 
2778     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2779 
2780   public:
2781     /// Replace all the use of \p Inst by \p New.
2782     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2783       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2784                         << "\n");
2785       // Record the original uses.
2786       for (Use &U : Inst->uses()) {
2787         Instruction *UserI = cast<Instruction>(U.getUser());
2788         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2789       }
2790       // Record the debug uses separately. They are not in the instruction's
2791       // use list, but they are replaced by RAUW.
2792       findDbgValues(DbgValues, Inst);
2793 
2794       // Now, we can replace the uses.
2795       Inst->replaceAllUsesWith(New);
2796     }
2797 
2798     /// Reassign the original uses of Inst to Inst.
2799     void undo() override {
2800       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2801       for (use_iterator UseIt = OriginalUses.begin(),
2802                         EndIt = OriginalUses.end();
2803            UseIt != EndIt; ++UseIt) {
2804         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2805       }
2806       // RAUW has replaced all original uses with references to the new value,
2807       // including the debug uses. Since we are undoing the replacements,
2808       // the original debug uses must also be reinstated to maintain the
2809       // correctness and utility of debug value instructions.
2810       for (auto *DVI: DbgValues) {
2811         LLVMContext &Ctx = Inst->getType()->getContext();
2812         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2813         DVI->setOperand(0, MV);
2814       }
2815     }
2816   };
2817 
2818   /// Remove an instruction from the IR.
2819   class InstructionRemover : public TypePromotionAction {
2820     /// Original position of the instruction.
2821     InsertionHandler Inserter;
2822 
2823     /// Helper structure to hide all the link to the instruction. In other
2824     /// words, this helps to do as if the instruction was removed.
2825     OperandsHider Hider;
2826 
2827     /// Keep track of the uses replaced, if any.
2828     UsesReplacer *Replacer = nullptr;
2829 
2830     /// Keep track of instructions removed.
2831     SetOfInstrs &RemovedInsts;
2832 
2833   public:
2834     /// Remove all reference of \p Inst and optionally replace all its
2835     /// uses with New.
2836     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2837     /// \pre If !Inst->use_empty(), then New != nullptr
2838     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2839                        Value *New = nullptr)
2840         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2841           RemovedInsts(RemovedInsts) {
2842       if (New)
2843         Replacer = new UsesReplacer(Inst, New);
2844       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2845       RemovedInsts.insert(Inst);
2846       /// The instructions removed here will be freed after completing
2847       /// optimizeBlock() for all blocks as we need to keep track of the
2848       /// removed instructions during promotion.
2849       Inst->removeFromParent();
2850     }
2851 
2852     ~InstructionRemover() override { delete Replacer; }
2853 
2854     /// Resurrect the instruction and reassign it to the proper uses if
2855     /// new value was provided when build this action.
2856     void undo() override {
2857       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2858       Inserter.insert(Inst);
2859       if (Replacer)
2860         Replacer->undo();
2861       Hider.undo();
2862       RemovedInsts.erase(Inst);
2863     }
2864   };
2865 
2866 public:
2867   /// Restoration point.
2868   /// The restoration point is a pointer to an action instead of an iterator
2869   /// because the iterator may be invalidated but not the pointer.
2870   using ConstRestorationPt = const TypePromotionAction *;
2871 
2872   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2873       : RemovedInsts(RemovedInsts) {}
2874 
2875   /// Advocate every changes made in that transaction. Return true if any change
2876   /// happen.
2877   bool commit();
2878 
2879   /// Undo all the changes made after the given point.
2880   void rollback(ConstRestorationPt Point);
2881 
2882   /// Get the current restoration point.
2883   ConstRestorationPt getRestorationPoint() const;
2884 
2885   /// \name API for IR modification with state keeping to support rollback.
2886   /// @{
2887   /// Same as Instruction::setOperand.
2888   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2889 
2890   /// Same as Instruction::eraseFromParent.
2891   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2892 
2893   /// Same as Value::replaceAllUsesWith.
2894   void replaceAllUsesWith(Instruction *Inst, Value *New);
2895 
2896   /// Same as Value::mutateType.
2897   void mutateType(Instruction *Inst, Type *NewTy);
2898 
2899   /// Same as IRBuilder::createTrunc.
2900   Value *createTrunc(Instruction *Opnd, Type *Ty);
2901 
2902   /// Same as IRBuilder::createSExt.
2903   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2904 
2905   /// Same as IRBuilder::createZExt.
2906   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2907 
2908   /// Same as Instruction::moveBefore.
2909   void moveBefore(Instruction *Inst, Instruction *Before);
2910   /// @}
2911 
2912 private:
2913   /// The ordered list of actions made so far.
2914   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2915 
2916   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2917 
2918   SetOfInstrs &RemovedInsts;
2919 };
2920 
2921 } // end anonymous namespace
2922 
2923 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2924                                           Value *NewVal) {
2925   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
2926       Inst, Idx, NewVal));
2927 }
2928 
2929 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2930                                                 Value *NewVal) {
2931   Actions.push_back(
2932       std::make_unique<TypePromotionTransaction::InstructionRemover>(
2933           Inst, RemovedInsts, NewVal));
2934 }
2935 
2936 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2937                                                   Value *New) {
2938   Actions.push_back(
2939       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2940 }
2941 
2942 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2943   Actions.push_back(
2944       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2945 }
2946 
2947 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2948                                              Type *Ty) {
2949   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2950   Value *Val = Ptr->getBuiltValue();
2951   Actions.push_back(std::move(Ptr));
2952   return Val;
2953 }
2954 
2955 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2956                                             Value *Opnd, Type *Ty) {
2957   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2958   Value *Val = Ptr->getBuiltValue();
2959   Actions.push_back(std::move(Ptr));
2960   return Val;
2961 }
2962 
2963 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2964                                             Value *Opnd, Type *Ty) {
2965   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2966   Value *Val = Ptr->getBuiltValue();
2967   Actions.push_back(std::move(Ptr));
2968   return Val;
2969 }
2970 
2971 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2972                                           Instruction *Before) {
2973   Actions.push_back(
2974       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2975           Inst, Before));
2976 }
2977 
2978 TypePromotionTransaction::ConstRestorationPt
2979 TypePromotionTransaction::getRestorationPoint() const {
2980   return !Actions.empty() ? Actions.back().get() : nullptr;
2981 }
2982 
2983 bool TypePromotionTransaction::commit() {
2984   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2985        ++It)
2986     (*It)->commit();
2987   bool Modified = !Actions.empty();
2988   Actions.clear();
2989   return Modified;
2990 }
2991 
2992 void TypePromotionTransaction::rollback(
2993     TypePromotionTransaction::ConstRestorationPt Point) {
2994   while (!Actions.empty() && Point != Actions.back().get()) {
2995     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2996     Curr->undo();
2997   }
2998 }
2999 
3000 namespace {
3001 
3002 /// A helper class for matching addressing modes.
3003 ///
3004 /// This encapsulates the logic for matching the target-legal addressing modes.
3005 class AddressingModeMatcher {
3006   SmallVectorImpl<Instruction*> &AddrModeInsts;
3007   const TargetLowering &TLI;
3008   const TargetRegisterInfo &TRI;
3009   const DataLayout &DL;
3010 
3011   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3012   /// the memory instruction that we're computing this address for.
3013   Type *AccessTy;
3014   unsigned AddrSpace;
3015   Instruction *MemoryInst;
3016 
3017   /// This is the addressing mode that we're building up. This is
3018   /// part of the return value of this addressing mode matching stuff.
3019   ExtAddrMode &AddrMode;
3020 
3021   /// The instructions inserted by other CodeGenPrepare optimizations.
3022   const SetOfInstrs &InsertedInsts;
3023 
3024   /// A map from the instructions to their type before promotion.
3025   InstrToOrigTy &PromotedInsts;
3026 
3027   /// The ongoing transaction where every action should be registered.
3028   TypePromotionTransaction &TPT;
3029 
3030   // A GEP which has too large offset to be folded into the addressing mode.
3031   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3032 
3033   /// This is set to true when we should not do profitability checks.
3034   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3035   bool IgnoreProfitability;
3036 
3037   /// True if we are optimizing for size.
3038   bool OptSize;
3039 
3040   ProfileSummaryInfo *PSI;
3041   BlockFrequencyInfo *BFI;
3042 
3043   AddressingModeMatcher(
3044       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3045       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
3046       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
3047       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3048       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3049       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3050       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3051         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
3052         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
3053         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP),
3054         OptSize(OptSize), PSI(PSI), BFI(BFI) {
3055     IgnoreProfitability = false;
3056   }
3057 
3058 public:
3059   /// Find the maximal addressing mode that a load/store of V can fold,
3060   /// give an access type of AccessTy.  This returns a list of involved
3061   /// instructions in AddrModeInsts.
3062   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3063   /// optimizations.
3064   /// \p PromotedInsts maps the instructions to their type before promotion.
3065   /// \p The ongoing transaction where every action should be registered.
3066   static ExtAddrMode
3067   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3068         SmallVectorImpl<Instruction *> &AddrModeInsts,
3069         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
3070         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3071         TypePromotionTransaction &TPT,
3072         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3073         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3074     ExtAddrMode Result;
3075 
3076     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
3077                                          MemoryInst, Result, InsertedInsts,
3078                                          PromotedInsts, TPT, LargeOffsetGEP,
3079                                          OptSize, PSI, BFI)
3080                        .matchAddr(V, 0);
3081     (void)Success; assert(Success && "Couldn't select *anything*?");
3082     return Result;
3083   }
3084 
3085 private:
3086   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3087   bool matchAddr(Value *Addr, unsigned Depth);
3088   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3089                           bool *MovedAway = nullptr);
3090   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3091                                             ExtAddrMode &AMBefore,
3092                                             ExtAddrMode &AMAfter);
3093   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3094   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3095                              Value *PromotedOperand) const;
3096 };
3097 
3098 class PhiNodeSet;
3099 
3100 /// An iterator for PhiNodeSet.
3101 class PhiNodeSetIterator {
3102   PhiNodeSet * const Set;
3103   size_t CurrentIndex = 0;
3104 
3105 public:
3106   /// The constructor. Start should point to either a valid element, or be equal
3107   /// to the size of the underlying SmallVector of the PhiNodeSet.
3108   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3109   PHINode * operator*() const;
3110   PhiNodeSetIterator& operator++();
3111   bool operator==(const PhiNodeSetIterator &RHS) const;
3112   bool operator!=(const PhiNodeSetIterator &RHS) const;
3113 };
3114 
3115 /// Keeps a set of PHINodes.
3116 ///
3117 /// This is a minimal set implementation for a specific use case:
3118 /// It is very fast when there are very few elements, but also provides good
3119 /// performance when there are many. It is similar to SmallPtrSet, but also
3120 /// provides iteration by insertion order, which is deterministic and stable
3121 /// across runs. It is also similar to SmallSetVector, but provides removing
3122 /// elements in O(1) time. This is achieved by not actually removing the element
3123 /// from the underlying vector, so comes at the cost of using more memory, but
3124 /// that is fine, since PhiNodeSets are used as short lived objects.
3125 class PhiNodeSet {
3126   friend class PhiNodeSetIterator;
3127 
3128   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3129   using iterator =  PhiNodeSetIterator;
3130 
3131   /// Keeps the elements in the order of their insertion in the underlying
3132   /// vector. To achieve constant time removal, it never deletes any element.
3133   SmallVector<PHINode *, 32> NodeList;
3134 
3135   /// Keeps the elements in the underlying set implementation. This (and not the
3136   /// NodeList defined above) is the source of truth on whether an element
3137   /// is actually in the collection.
3138   MapType NodeMap;
3139 
3140   /// Points to the first valid (not deleted) element when the set is not empty
3141   /// and the value is not zero. Equals to the size of the underlying vector
3142   /// when the set is empty. When the value is 0, as in the beginning, the
3143   /// first element may or may not be valid.
3144   size_t FirstValidElement = 0;
3145 
3146 public:
3147   /// Inserts a new element to the collection.
3148   /// \returns true if the element is actually added, i.e. was not in the
3149   /// collection before the operation.
3150   bool insert(PHINode *Ptr) {
3151     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3152       NodeList.push_back(Ptr);
3153       return true;
3154     }
3155     return false;
3156   }
3157 
3158   /// Removes the element from the collection.
3159   /// \returns whether the element is actually removed, i.e. was in the
3160   /// collection before the operation.
3161   bool erase(PHINode *Ptr) {
3162     if (NodeMap.erase(Ptr)) {
3163       SkipRemovedElements(FirstValidElement);
3164       return true;
3165     }
3166     return false;
3167   }
3168 
3169   /// Removes all elements and clears the collection.
3170   void clear() {
3171     NodeMap.clear();
3172     NodeList.clear();
3173     FirstValidElement = 0;
3174   }
3175 
3176   /// \returns an iterator that will iterate the elements in the order of
3177   /// insertion.
3178   iterator begin() {
3179     if (FirstValidElement == 0)
3180       SkipRemovedElements(FirstValidElement);
3181     return PhiNodeSetIterator(this, FirstValidElement);
3182   }
3183 
3184   /// \returns an iterator that points to the end of the collection.
3185   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3186 
3187   /// Returns the number of elements in the collection.
3188   size_t size() const {
3189     return NodeMap.size();
3190   }
3191 
3192   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3193   size_t count(PHINode *Ptr) const {
3194     return NodeMap.count(Ptr);
3195   }
3196 
3197 private:
3198   /// Updates the CurrentIndex so that it will point to a valid element.
3199   ///
3200   /// If the element of NodeList at CurrentIndex is valid, it does not
3201   /// change it. If there are no more valid elements, it updates CurrentIndex
3202   /// to point to the end of the NodeList.
3203   void SkipRemovedElements(size_t &CurrentIndex) {
3204     while (CurrentIndex < NodeList.size()) {
3205       auto it = NodeMap.find(NodeList[CurrentIndex]);
3206       // If the element has been deleted and added again later, NodeMap will
3207       // point to a different index, so CurrentIndex will still be invalid.
3208       if (it != NodeMap.end() && it->second == CurrentIndex)
3209         break;
3210       ++CurrentIndex;
3211     }
3212   }
3213 };
3214 
3215 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3216     : Set(Set), CurrentIndex(Start) {}
3217 
3218 PHINode * PhiNodeSetIterator::operator*() const {
3219   assert(CurrentIndex < Set->NodeList.size() &&
3220          "PhiNodeSet access out of range");
3221   return Set->NodeList[CurrentIndex];
3222 }
3223 
3224 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3225   assert(CurrentIndex < Set->NodeList.size() &&
3226          "PhiNodeSet access out of range");
3227   ++CurrentIndex;
3228   Set->SkipRemovedElements(CurrentIndex);
3229   return *this;
3230 }
3231 
3232 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3233   return CurrentIndex == RHS.CurrentIndex;
3234 }
3235 
3236 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3237   return !((*this) == RHS);
3238 }
3239 
3240 /// Keep track of simplification of Phi nodes.
3241 /// Accept the set of all phi nodes and erase phi node from this set
3242 /// if it is simplified.
3243 class SimplificationTracker {
3244   DenseMap<Value *, Value *> Storage;
3245   const SimplifyQuery &SQ;
3246   // Tracks newly created Phi nodes. The elements are iterated by insertion
3247   // order.
3248   PhiNodeSet AllPhiNodes;
3249   // Tracks newly created Select nodes.
3250   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3251 
3252 public:
3253   SimplificationTracker(const SimplifyQuery &sq)
3254       : SQ(sq) {}
3255 
3256   Value *Get(Value *V) {
3257     do {
3258       auto SV = Storage.find(V);
3259       if (SV == Storage.end())
3260         return V;
3261       V = SV->second;
3262     } while (true);
3263   }
3264 
3265   Value *Simplify(Value *Val) {
3266     SmallVector<Value *, 32> WorkList;
3267     SmallPtrSet<Value *, 32> Visited;
3268     WorkList.push_back(Val);
3269     while (!WorkList.empty()) {
3270       auto *P = WorkList.pop_back_val();
3271       if (!Visited.insert(P).second)
3272         continue;
3273       if (auto *PI = dyn_cast<Instruction>(P))
3274         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3275           for (auto *U : PI->users())
3276             WorkList.push_back(cast<Value>(U));
3277           Put(PI, V);
3278           PI->replaceAllUsesWith(V);
3279           if (auto *PHI = dyn_cast<PHINode>(PI))
3280             AllPhiNodes.erase(PHI);
3281           if (auto *Select = dyn_cast<SelectInst>(PI))
3282             AllSelectNodes.erase(Select);
3283           PI->eraseFromParent();
3284         }
3285     }
3286     return Get(Val);
3287   }
3288 
3289   void Put(Value *From, Value *To) {
3290     Storage.insert({ From, To });
3291   }
3292 
3293   void ReplacePhi(PHINode *From, PHINode *To) {
3294     Value* OldReplacement = Get(From);
3295     while (OldReplacement != From) {
3296       From = To;
3297       To = dyn_cast<PHINode>(OldReplacement);
3298       OldReplacement = Get(From);
3299     }
3300     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3301     Put(From, To);
3302     From->replaceAllUsesWith(To);
3303     AllPhiNodes.erase(From);
3304     From->eraseFromParent();
3305   }
3306 
3307   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3308 
3309   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3310 
3311   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3312 
3313   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3314 
3315   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3316 
3317   void destroyNewNodes(Type *CommonType) {
3318     // For safe erasing, replace the uses with dummy value first.
3319     auto *Dummy = UndefValue::get(CommonType);
3320     for (auto *I : AllPhiNodes) {
3321       I->replaceAllUsesWith(Dummy);
3322       I->eraseFromParent();
3323     }
3324     AllPhiNodes.clear();
3325     for (auto *I : AllSelectNodes) {
3326       I->replaceAllUsesWith(Dummy);
3327       I->eraseFromParent();
3328     }
3329     AllSelectNodes.clear();
3330   }
3331 };
3332 
3333 /// A helper class for combining addressing modes.
3334 class AddressingModeCombiner {
3335   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3336   typedef std::pair<PHINode *, PHINode *> PHIPair;
3337 
3338 private:
3339   /// The addressing modes we've collected.
3340   SmallVector<ExtAddrMode, 16> AddrModes;
3341 
3342   /// The field in which the AddrModes differ, when we have more than one.
3343   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3344 
3345   /// Are the AddrModes that we have all just equal to their original values?
3346   bool AllAddrModesTrivial = true;
3347 
3348   /// Common Type for all different fields in addressing modes.
3349   Type *CommonType;
3350 
3351   /// SimplifyQuery for simplifyInstruction utility.
3352   const SimplifyQuery &SQ;
3353 
3354   /// Original Address.
3355   Value *Original;
3356 
3357 public:
3358   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3359       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3360 
3361   /// Get the combined AddrMode
3362   const ExtAddrMode &getAddrMode() const {
3363     return AddrModes[0];
3364   }
3365 
3366   /// Add a new AddrMode if it's compatible with the AddrModes we already
3367   /// have.
3368   /// \return True iff we succeeded in doing so.
3369   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3370     // Take note of if we have any non-trivial AddrModes, as we need to detect
3371     // when all AddrModes are trivial as then we would introduce a phi or select
3372     // which just duplicates what's already there.
3373     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3374 
3375     // If this is the first addrmode then everything is fine.
3376     if (AddrModes.empty()) {
3377       AddrModes.emplace_back(NewAddrMode);
3378       return true;
3379     }
3380 
3381     // Figure out how different this is from the other address modes, which we
3382     // can do just by comparing against the first one given that we only care
3383     // about the cumulative difference.
3384     ExtAddrMode::FieldName ThisDifferentField =
3385       AddrModes[0].compare(NewAddrMode);
3386     if (DifferentField == ExtAddrMode::NoField)
3387       DifferentField = ThisDifferentField;
3388     else if (DifferentField != ThisDifferentField)
3389       DifferentField = ExtAddrMode::MultipleFields;
3390 
3391     // If NewAddrMode differs in more than one dimension we cannot handle it.
3392     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3393 
3394     // If Scale Field is different then we reject.
3395     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3396 
3397     // We also must reject the case when base offset is different and
3398     // scale reg is not null, we cannot handle this case due to merge of
3399     // different offsets will be used as ScaleReg.
3400     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3401                               !NewAddrMode.ScaledReg);
3402 
3403     // We also must reject the case when GV is different and BaseReg installed
3404     // due to we want to use base reg as a merge of GV values.
3405     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3406                               !NewAddrMode.HasBaseReg);
3407 
3408     // Even if NewAddMode is the same we still need to collect it due to
3409     // original value is different. And later we will need all original values
3410     // as anchors during finding the common Phi node.
3411     if (CanHandle)
3412       AddrModes.emplace_back(NewAddrMode);
3413     else
3414       AddrModes.clear();
3415 
3416     return CanHandle;
3417   }
3418 
3419   /// Combine the addressing modes we've collected into a single
3420   /// addressing mode.
3421   /// \return True iff we successfully combined them or we only had one so
3422   /// didn't need to combine them anyway.
3423   bool combineAddrModes() {
3424     // If we have no AddrModes then they can't be combined.
3425     if (AddrModes.size() == 0)
3426       return false;
3427 
3428     // A single AddrMode can trivially be combined.
3429     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3430       return true;
3431 
3432     // If the AddrModes we collected are all just equal to the value they are
3433     // derived from then combining them wouldn't do anything useful.
3434     if (AllAddrModesTrivial)
3435       return false;
3436 
3437     if (!addrModeCombiningAllowed())
3438       return false;
3439 
3440     // Build a map between <original value, basic block where we saw it> to
3441     // value of base register.
3442     // Bail out if there is no common type.
3443     FoldAddrToValueMapping Map;
3444     if (!initializeMap(Map))
3445       return false;
3446 
3447     Value *CommonValue = findCommon(Map);
3448     if (CommonValue)
3449       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3450     return CommonValue != nullptr;
3451   }
3452 
3453 private:
3454   /// Initialize Map with anchor values. For address seen
3455   /// we set the value of different field saw in this address.
3456   /// At the same time we find a common type for different field we will
3457   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3458   /// Return false if there is no common type found.
3459   bool initializeMap(FoldAddrToValueMapping &Map) {
3460     // Keep track of keys where the value is null. We will need to replace it
3461     // with constant null when we know the common type.
3462     SmallVector<Value *, 2> NullValue;
3463     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3464     for (auto &AM : AddrModes) {
3465       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3466       if (DV) {
3467         auto *Type = DV->getType();
3468         if (CommonType && CommonType != Type)
3469           return false;
3470         CommonType = Type;
3471         Map[AM.OriginalValue] = DV;
3472       } else {
3473         NullValue.push_back(AM.OriginalValue);
3474       }
3475     }
3476     assert(CommonType && "At least one non-null value must be!");
3477     for (auto *V : NullValue)
3478       Map[V] = Constant::getNullValue(CommonType);
3479     return true;
3480   }
3481 
3482   /// We have mapping between value A and other value B where B was a field in
3483   /// addressing mode represented by A. Also we have an original value C
3484   /// representing an address we start with. Traversing from C through phi and
3485   /// selects we ended up with A's in a map. This utility function tries to find
3486   /// a value V which is a field in addressing mode C and traversing through phi
3487   /// nodes and selects we will end up in corresponded values B in a map.
3488   /// The utility will create a new Phi/Selects if needed.
3489   // The simple example looks as follows:
3490   // BB1:
3491   //   p1 = b1 + 40
3492   //   br cond BB2, BB3
3493   // BB2:
3494   //   p2 = b2 + 40
3495   //   br BB3
3496   // BB3:
3497   //   p = phi [p1, BB1], [p2, BB2]
3498   //   v = load p
3499   // Map is
3500   //   p1 -> b1
3501   //   p2 -> b2
3502   // Request is
3503   //   p -> ?
3504   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3505   Value *findCommon(FoldAddrToValueMapping &Map) {
3506     // Tracks the simplification of newly created phi nodes. The reason we use
3507     // this mapping is because we will add new created Phi nodes in AddrToBase.
3508     // Simplification of Phi nodes is recursive, so some Phi node may
3509     // be simplified after we added it to AddrToBase. In reality this
3510     // simplification is possible only if original phi/selects were not
3511     // simplified yet.
3512     // Using this mapping we can find the current value in AddrToBase.
3513     SimplificationTracker ST(SQ);
3514 
3515     // First step, DFS to create PHI nodes for all intermediate blocks.
3516     // Also fill traverse order for the second step.
3517     SmallVector<Value *, 32> TraverseOrder;
3518     InsertPlaceholders(Map, TraverseOrder, ST);
3519 
3520     // Second Step, fill new nodes by merged values and simplify if possible.
3521     FillPlaceholders(Map, TraverseOrder, ST);
3522 
3523     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3524       ST.destroyNewNodes(CommonType);
3525       return nullptr;
3526     }
3527 
3528     // Now we'd like to match New Phi nodes to existed ones.
3529     unsigned PhiNotMatchedCount = 0;
3530     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3531       ST.destroyNewNodes(CommonType);
3532       return nullptr;
3533     }
3534 
3535     auto *Result = ST.Get(Map.find(Original)->second);
3536     if (Result) {
3537       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3538       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3539     }
3540     return Result;
3541   }
3542 
3543   /// Try to match PHI node to Candidate.
3544   /// Matcher tracks the matched Phi nodes.
3545   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3546                     SmallSetVector<PHIPair, 8> &Matcher,
3547                     PhiNodeSet &PhiNodesToMatch) {
3548     SmallVector<PHIPair, 8> WorkList;
3549     Matcher.insert({ PHI, Candidate });
3550     SmallSet<PHINode *, 8> MatchedPHIs;
3551     MatchedPHIs.insert(PHI);
3552     WorkList.push_back({ PHI, Candidate });
3553     SmallSet<PHIPair, 8> Visited;
3554     while (!WorkList.empty()) {
3555       auto Item = WorkList.pop_back_val();
3556       if (!Visited.insert(Item).second)
3557         continue;
3558       // We iterate over all incoming values to Phi to compare them.
3559       // If values are different and both of them Phi and the first one is a
3560       // Phi we added (subject to match) and both of them is in the same basic
3561       // block then we can match our pair if values match. So we state that
3562       // these values match and add it to work list to verify that.
3563       for (auto B : Item.first->blocks()) {
3564         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3565         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3566         if (FirstValue == SecondValue)
3567           continue;
3568 
3569         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3570         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3571 
3572         // One of them is not Phi or
3573         // The first one is not Phi node from the set we'd like to match or
3574         // Phi nodes from different basic blocks then
3575         // we will not be able to match.
3576         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3577             FirstPhi->getParent() != SecondPhi->getParent())
3578           return false;
3579 
3580         // If we already matched them then continue.
3581         if (Matcher.count({ FirstPhi, SecondPhi }))
3582           continue;
3583         // So the values are different and does not match. So we need them to
3584         // match. (But we register no more than one match per PHI node, so that
3585         // we won't later try to replace them twice.)
3586         if (MatchedPHIs.insert(FirstPhi).second)
3587           Matcher.insert({ FirstPhi, SecondPhi });
3588         // But me must check it.
3589         WorkList.push_back({ FirstPhi, SecondPhi });
3590       }
3591     }
3592     return true;
3593   }
3594 
3595   /// For the given set of PHI nodes (in the SimplificationTracker) try
3596   /// to find their equivalents.
3597   /// Returns false if this matching fails and creation of new Phi is disabled.
3598   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3599                    unsigned &PhiNotMatchedCount) {
3600     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3601     // order, so the replacements (ReplacePhi) are also done in a deterministic
3602     // order.
3603     SmallSetVector<PHIPair, 8> Matched;
3604     SmallPtrSet<PHINode *, 8> WillNotMatch;
3605     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3606     while (PhiNodesToMatch.size()) {
3607       PHINode *PHI = *PhiNodesToMatch.begin();
3608 
3609       // Add us, if no Phi nodes in the basic block we do not match.
3610       WillNotMatch.clear();
3611       WillNotMatch.insert(PHI);
3612 
3613       // Traverse all Phis until we found equivalent or fail to do that.
3614       bool IsMatched = false;
3615       for (auto &P : PHI->getParent()->phis()) {
3616         if (&P == PHI)
3617           continue;
3618         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3619           break;
3620         // If it does not match, collect all Phi nodes from matcher.
3621         // if we end up with no match, them all these Phi nodes will not match
3622         // later.
3623         for (auto M : Matched)
3624           WillNotMatch.insert(M.first);
3625         Matched.clear();
3626       }
3627       if (IsMatched) {
3628         // Replace all matched values and erase them.
3629         for (auto MV : Matched)
3630           ST.ReplacePhi(MV.first, MV.second);
3631         Matched.clear();
3632         continue;
3633       }
3634       // If we are not allowed to create new nodes then bail out.
3635       if (!AllowNewPhiNodes)
3636         return false;
3637       // Just remove all seen values in matcher. They will not match anything.
3638       PhiNotMatchedCount += WillNotMatch.size();
3639       for (auto *P : WillNotMatch)
3640         PhiNodesToMatch.erase(P);
3641     }
3642     return true;
3643   }
3644   /// Fill the placeholders with values from predecessors and simplify them.
3645   void FillPlaceholders(FoldAddrToValueMapping &Map,
3646                         SmallVectorImpl<Value *> &TraverseOrder,
3647                         SimplificationTracker &ST) {
3648     while (!TraverseOrder.empty()) {
3649       Value *Current = TraverseOrder.pop_back_val();
3650       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3651       Value *V = Map[Current];
3652 
3653       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3654         // CurrentValue also must be Select.
3655         auto *CurrentSelect = cast<SelectInst>(Current);
3656         auto *TrueValue = CurrentSelect->getTrueValue();
3657         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3658         Select->setTrueValue(ST.Get(Map[TrueValue]));
3659         auto *FalseValue = CurrentSelect->getFalseValue();
3660         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3661         Select->setFalseValue(ST.Get(Map[FalseValue]));
3662       } else {
3663         // Must be a Phi node then.
3664         auto *PHI = cast<PHINode>(V);
3665         // Fill the Phi node with values from predecessors.
3666         for (auto *B : predecessors(PHI->getParent())) {
3667           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3668           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3669           PHI->addIncoming(ST.Get(Map[PV]), B);
3670         }
3671       }
3672       Map[Current] = ST.Simplify(V);
3673     }
3674   }
3675 
3676   /// Starting from original value recursively iterates over def-use chain up to
3677   /// known ending values represented in a map. For each traversed phi/select
3678   /// inserts a placeholder Phi or Select.
3679   /// Reports all new created Phi/Select nodes by adding them to set.
3680   /// Also reports and order in what values have been traversed.
3681   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3682                           SmallVectorImpl<Value *> &TraverseOrder,
3683                           SimplificationTracker &ST) {
3684     SmallVector<Value *, 32> Worklist;
3685     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3686            "Address must be a Phi or Select node");
3687     auto *Dummy = UndefValue::get(CommonType);
3688     Worklist.push_back(Original);
3689     while (!Worklist.empty()) {
3690       Value *Current = Worklist.pop_back_val();
3691       // if it is already visited or it is an ending value then skip it.
3692       if (Map.find(Current) != Map.end())
3693         continue;
3694       TraverseOrder.push_back(Current);
3695 
3696       // CurrentValue must be a Phi node or select. All others must be covered
3697       // by anchors.
3698       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3699         // Is it OK to get metadata from OrigSelect?!
3700         // Create a Select placeholder with dummy value.
3701         SelectInst *Select = SelectInst::Create(
3702             CurrentSelect->getCondition(), Dummy, Dummy,
3703             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3704         Map[Current] = Select;
3705         ST.insertNewSelect(Select);
3706         // We are interested in True and False values.
3707         Worklist.push_back(CurrentSelect->getTrueValue());
3708         Worklist.push_back(CurrentSelect->getFalseValue());
3709       } else {
3710         // It must be a Phi node then.
3711         PHINode *CurrentPhi = cast<PHINode>(Current);
3712         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3713         PHINode *PHI =
3714             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3715         Map[Current] = PHI;
3716         ST.insertNewPhi(PHI);
3717         for (Value *P : CurrentPhi->incoming_values())
3718           Worklist.push_back(P);
3719       }
3720     }
3721   }
3722 
3723   bool addrModeCombiningAllowed() {
3724     if (DisableComplexAddrModes)
3725       return false;
3726     switch (DifferentField) {
3727     default:
3728       return false;
3729     case ExtAddrMode::BaseRegField:
3730       return AddrSinkCombineBaseReg;
3731     case ExtAddrMode::BaseGVField:
3732       return AddrSinkCombineBaseGV;
3733     case ExtAddrMode::BaseOffsField:
3734       return AddrSinkCombineBaseOffs;
3735     case ExtAddrMode::ScaledRegField:
3736       return AddrSinkCombineScaledReg;
3737     }
3738   }
3739 };
3740 } // end anonymous namespace
3741 
3742 /// Try adding ScaleReg*Scale to the current addressing mode.
3743 /// Return true and update AddrMode if this addr mode is legal for the target,
3744 /// false if not.
3745 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3746                                              unsigned Depth) {
3747   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3748   // mode.  Just process that directly.
3749   if (Scale == 1)
3750     return matchAddr(ScaleReg, Depth);
3751 
3752   // If the scale is 0, it takes nothing to add this.
3753   if (Scale == 0)
3754     return true;
3755 
3756   // If we already have a scale of this value, we can add to it, otherwise, we
3757   // need an available scale field.
3758   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3759     return false;
3760 
3761   ExtAddrMode TestAddrMode = AddrMode;
3762 
3763   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3764   // [A+B + A*7] -> [B+A*8].
3765   TestAddrMode.Scale += Scale;
3766   TestAddrMode.ScaledReg = ScaleReg;
3767 
3768   // If the new address isn't legal, bail out.
3769   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3770     return false;
3771 
3772   // It was legal, so commit it.
3773   AddrMode = TestAddrMode;
3774 
3775   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3776   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3777   // X*Scale + C*Scale to addr mode.
3778   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3779   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3780       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3781       CI->getValue().isSignedIntN(64)) {
3782     TestAddrMode.InBounds = false;
3783     TestAddrMode.ScaledReg = AddLHS;
3784     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3785 
3786     // If this addressing mode is legal, commit it and remember that we folded
3787     // this instruction.
3788     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3789       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3790       AddrMode = TestAddrMode;
3791       return true;
3792     }
3793   }
3794 
3795   // Otherwise, not (x+c)*scale, just return what we have.
3796   return true;
3797 }
3798 
3799 /// This is a little filter, which returns true if an addressing computation
3800 /// involving I might be folded into a load/store accessing it.
3801 /// This doesn't need to be perfect, but needs to accept at least
3802 /// the set of instructions that MatchOperationAddr can.
3803 static bool MightBeFoldableInst(Instruction *I) {
3804   switch (I->getOpcode()) {
3805   case Instruction::BitCast:
3806   case Instruction::AddrSpaceCast:
3807     // Don't touch identity bitcasts.
3808     if (I->getType() == I->getOperand(0)->getType())
3809       return false;
3810     return I->getType()->isIntOrPtrTy();
3811   case Instruction::PtrToInt:
3812     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3813     return true;
3814   case Instruction::IntToPtr:
3815     // We know the input is intptr_t, so this is foldable.
3816     return true;
3817   case Instruction::Add:
3818     return true;
3819   case Instruction::Mul:
3820   case Instruction::Shl:
3821     // Can only handle X*C and X << C.
3822     return isa<ConstantInt>(I->getOperand(1));
3823   case Instruction::GetElementPtr:
3824     return true;
3825   default:
3826     return false;
3827   }
3828 }
3829 
3830 /// Check whether or not \p Val is a legal instruction for \p TLI.
3831 /// \note \p Val is assumed to be the product of some type promotion.
3832 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3833 /// to be legal, as the non-promoted value would have had the same state.
3834 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3835                                        const DataLayout &DL, Value *Val) {
3836   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3837   if (!PromotedInst)
3838     return false;
3839   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3840   // If the ISDOpcode is undefined, it was undefined before the promotion.
3841   if (!ISDOpcode)
3842     return true;
3843   // Otherwise, check if the promoted instruction is legal or not.
3844   return TLI.isOperationLegalOrCustom(
3845       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3846 }
3847 
3848 namespace {
3849 
3850 /// Hepler class to perform type promotion.
3851 class TypePromotionHelper {
3852   /// Utility function to add a promoted instruction \p ExtOpnd to
3853   /// \p PromotedInsts and record the type of extension we have seen.
3854   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3855                               Instruction *ExtOpnd,
3856                               bool IsSExt) {
3857     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3858     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3859     if (It != PromotedInsts.end()) {
3860       // If the new extension is same as original, the information in
3861       // PromotedInsts[ExtOpnd] is still correct.
3862       if (It->second.getInt() == ExtTy)
3863         return;
3864 
3865       // Now the new extension is different from old extension, we make
3866       // the type information invalid by setting extension type to
3867       // BothExtension.
3868       ExtTy = BothExtension;
3869     }
3870     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3871   }
3872 
3873   /// Utility function to query the original type of instruction \p Opnd
3874   /// with a matched extension type. If the extension doesn't match, we
3875   /// cannot use the information we had on the original type.
3876   /// BothExtension doesn't match any extension type.
3877   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3878                                  Instruction *Opnd,
3879                                  bool IsSExt) {
3880     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3881     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3882     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3883       return It->second.getPointer();
3884     return nullptr;
3885   }
3886 
3887   /// Utility function to check whether or not a sign or zero extension
3888   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3889   /// either using the operands of \p Inst or promoting \p Inst.
3890   /// The type of the extension is defined by \p IsSExt.
3891   /// In other words, check if:
3892   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3893   /// #1 Promotion applies:
3894   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3895   /// #2 Operand reuses:
3896   /// ext opnd1 to ConsideredExtType.
3897   /// \p PromotedInsts maps the instructions to their type before promotion.
3898   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3899                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3900 
3901   /// Utility function to determine if \p OpIdx should be promoted when
3902   /// promoting \p Inst.
3903   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3904     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3905   }
3906 
3907   /// Utility function to promote the operand of \p Ext when this
3908   /// operand is a promotable trunc or sext or zext.
3909   /// \p PromotedInsts maps the instructions to their type before promotion.
3910   /// \p CreatedInstsCost[out] contains the cost of all instructions
3911   /// created to promote the operand of Ext.
3912   /// Newly added extensions are inserted in \p Exts.
3913   /// Newly added truncates are inserted in \p Truncs.
3914   /// Should never be called directly.
3915   /// \return The promoted value which is used instead of Ext.
3916   static Value *promoteOperandForTruncAndAnyExt(
3917       Instruction *Ext, TypePromotionTransaction &TPT,
3918       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3919       SmallVectorImpl<Instruction *> *Exts,
3920       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3921 
3922   /// Utility function to promote the operand of \p Ext when this
3923   /// operand is promotable and is not a supported trunc or sext.
3924   /// \p PromotedInsts maps the instructions to their type before promotion.
3925   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3926   /// created to promote the operand of Ext.
3927   /// Newly added extensions are inserted in \p Exts.
3928   /// Newly added truncates are inserted in \p Truncs.
3929   /// Should never be called directly.
3930   /// \return The promoted value which is used instead of Ext.
3931   static Value *promoteOperandForOther(Instruction *Ext,
3932                                        TypePromotionTransaction &TPT,
3933                                        InstrToOrigTy &PromotedInsts,
3934                                        unsigned &CreatedInstsCost,
3935                                        SmallVectorImpl<Instruction *> *Exts,
3936                                        SmallVectorImpl<Instruction *> *Truncs,
3937                                        const TargetLowering &TLI, bool IsSExt);
3938 
3939   /// \see promoteOperandForOther.
3940   static Value *signExtendOperandForOther(
3941       Instruction *Ext, TypePromotionTransaction &TPT,
3942       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3943       SmallVectorImpl<Instruction *> *Exts,
3944       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3945     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3946                                   Exts, Truncs, TLI, true);
3947   }
3948 
3949   /// \see promoteOperandForOther.
3950   static Value *zeroExtendOperandForOther(
3951       Instruction *Ext, TypePromotionTransaction &TPT,
3952       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3953       SmallVectorImpl<Instruction *> *Exts,
3954       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3955     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3956                                   Exts, Truncs, TLI, false);
3957   }
3958 
3959 public:
3960   /// Type for the utility function that promotes the operand of Ext.
3961   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3962                             InstrToOrigTy &PromotedInsts,
3963                             unsigned &CreatedInstsCost,
3964                             SmallVectorImpl<Instruction *> *Exts,
3965                             SmallVectorImpl<Instruction *> *Truncs,
3966                             const TargetLowering &TLI);
3967 
3968   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3969   /// action to promote the operand of \p Ext instead of using Ext.
3970   /// \return NULL if no promotable action is possible with the current
3971   /// sign extension.
3972   /// \p InsertedInsts keeps track of all the instructions inserted by the
3973   /// other CodeGenPrepare optimizations. This information is important
3974   /// because we do not want to promote these instructions as CodeGenPrepare
3975   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3976   /// \p PromotedInsts maps the instructions to their type before promotion.
3977   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3978                           const TargetLowering &TLI,
3979                           const InstrToOrigTy &PromotedInsts);
3980 };
3981 
3982 } // end anonymous namespace
3983 
3984 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3985                                         Type *ConsideredExtType,
3986                                         const InstrToOrigTy &PromotedInsts,
3987                                         bool IsSExt) {
3988   // The promotion helper does not know how to deal with vector types yet.
3989   // To be able to fix that, we would need to fix the places where we
3990   // statically extend, e.g., constants and such.
3991   if (Inst->getType()->isVectorTy())
3992     return false;
3993 
3994   // We can always get through zext.
3995   if (isa<ZExtInst>(Inst))
3996     return true;
3997 
3998   // sext(sext) is ok too.
3999   if (IsSExt && isa<SExtInst>(Inst))
4000     return true;
4001 
4002   // We can get through binary operator, if it is legal. In other words, the
4003   // binary operator must have a nuw or nsw flag.
4004   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4005   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4006       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4007        (IsSExt && BinOp->hasNoSignedWrap())))
4008     return true;
4009 
4010   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4011   if ((Inst->getOpcode() == Instruction::And ||
4012        Inst->getOpcode() == Instruction::Or))
4013     return true;
4014 
4015   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4016   if (Inst->getOpcode() == Instruction::Xor) {
4017     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4018     // Make sure it is not a NOT.
4019     if (Cst && !Cst->getValue().isAllOnesValue())
4020       return true;
4021   }
4022 
4023   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4024   // It may change a poisoned value into a regular value, like
4025   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4026   //          poisoned value                    regular value
4027   // It should be OK since undef covers valid value.
4028   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4029     return true;
4030 
4031   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4032   // It may change a poisoned value into a regular value, like
4033   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4034   //          poisoned value                    regular value
4035   // It should be OK since undef covers valid value.
4036   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4037     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4038     if (ExtInst->hasOneUse()) {
4039       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4040       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4041         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4042         if (Cst &&
4043             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4044           return true;
4045       }
4046     }
4047   }
4048 
4049   // Check if we can do the following simplification.
4050   // ext(trunc(opnd)) --> ext(opnd)
4051   if (!isa<TruncInst>(Inst))
4052     return false;
4053 
4054   Value *OpndVal = Inst->getOperand(0);
4055   // Check if we can use this operand in the extension.
4056   // If the type is larger than the result type of the extension, we cannot.
4057   if (!OpndVal->getType()->isIntegerTy() ||
4058       OpndVal->getType()->getIntegerBitWidth() >
4059           ConsideredExtType->getIntegerBitWidth())
4060     return false;
4061 
4062   // If the operand of the truncate is not an instruction, we will not have
4063   // any information on the dropped bits.
4064   // (Actually we could for constant but it is not worth the extra logic).
4065   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4066   if (!Opnd)
4067     return false;
4068 
4069   // Check if the source of the type is narrow enough.
4070   // I.e., check that trunc just drops extended bits of the same kind of
4071   // the extension.
4072   // #1 get the type of the operand and check the kind of the extended bits.
4073   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4074   if (OpndType)
4075     ;
4076   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4077     OpndType = Opnd->getOperand(0)->getType();
4078   else
4079     return false;
4080 
4081   // #2 check that the truncate just drops extended bits.
4082   return Inst->getType()->getIntegerBitWidth() >=
4083          OpndType->getIntegerBitWidth();
4084 }
4085 
4086 TypePromotionHelper::Action TypePromotionHelper::getAction(
4087     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4088     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4089   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4090          "Unexpected instruction type");
4091   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4092   Type *ExtTy = Ext->getType();
4093   bool IsSExt = isa<SExtInst>(Ext);
4094   // If the operand of the extension is not an instruction, we cannot
4095   // get through.
4096   // If it, check we can get through.
4097   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4098     return nullptr;
4099 
4100   // Do not promote if the operand has been added by codegenprepare.
4101   // Otherwise, it means we are undoing an optimization that is likely to be
4102   // redone, thus causing potential infinite loop.
4103   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4104     return nullptr;
4105 
4106   // SExt or Trunc instructions.
4107   // Return the related handler.
4108   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4109       isa<ZExtInst>(ExtOpnd))
4110     return promoteOperandForTruncAndAnyExt;
4111 
4112   // Regular instruction.
4113   // Abort early if we will have to insert non-free instructions.
4114   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4115     return nullptr;
4116   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4117 }
4118 
4119 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4120     Instruction *SExt, TypePromotionTransaction &TPT,
4121     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4122     SmallVectorImpl<Instruction *> *Exts,
4123     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4124   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4125   // get through it and this method should not be called.
4126   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4127   Value *ExtVal = SExt;
4128   bool HasMergedNonFreeExt = false;
4129   if (isa<ZExtInst>(SExtOpnd)) {
4130     // Replace s|zext(zext(opnd))
4131     // => zext(opnd).
4132     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4133     Value *ZExt =
4134         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4135     TPT.replaceAllUsesWith(SExt, ZExt);
4136     TPT.eraseInstruction(SExt);
4137     ExtVal = ZExt;
4138   } else {
4139     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4140     // => z|sext(opnd).
4141     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4142   }
4143   CreatedInstsCost = 0;
4144 
4145   // Remove dead code.
4146   if (SExtOpnd->use_empty())
4147     TPT.eraseInstruction(SExtOpnd);
4148 
4149   // Check if the extension is still needed.
4150   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4151   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4152     if (ExtInst) {
4153       if (Exts)
4154         Exts->push_back(ExtInst);
4155       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4156     }
4157     return ExtVal;
4158   }
4159 
4160   // At this point we have: ext ty opnd to ty.
4161   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4162   Value *NextVal = ExtInst->getOperand(0);
4163   TPT.eraseInstruction(ExtInst, NextVal);
4164   return NextVal;
4165 }
4166 
4167 Value *TypePromotionHelper::promoteOperandForOther(
4168     Instruction *Ext, TypePromotionTransaction &TPT,
4169     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4170     SmallVectorImpl<Instruction *> *Exts,
4171     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4172     bool IsSExt) {
4173   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4174   // get through it and this method should not be called.
4175   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4176   CreatedInstsCost = 0;
4177   if (!ExtOpnd->hasOneUse()) {
4178     // ExtOpnd will be promoted.
4179     // All its uses, but Ext, will need to use a truncated value of the
4180     // promoted version.
4181     // Create the truncate now.
4182     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4183     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4184       // Insert it just after the definition.
4185       ITrunc->moveAfter(ExtOpnd);
4186       if (Truncs)
4187         Truncs->push_back(ITrunc);
4188     }
4189 
4190     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4191     // Restore the operand of Ext (which has been replaced by the previous call
4192     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4193     TPT.setOperand(Ext, 0, ExtOpnd);
4194   }
4195 
4196   // Get through the Instruction:
4197   // 1. Update its type.
4198   // 2. Replace the uses of Ext by Inst.
4199   // 3. Extend each operand that needs to be extended.
4200 
4201   // Remember the original type of the instruction before promotion.
4202   // This is useful to know that the high bits are sign extended bits.
4203   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4204   // Step #1.
4205   TPT.mutateType(ExtOpnd, Ext->getType());
4206   // Step #2.
4207   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4208   // Step #3.
4209   Instruction *ExtForOpnd = Ext;
4210 
4211   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4212   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4213        ++OpIdx) {
4214     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4215     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4216         !shouldExtOperand(ExtOpnd, OpIdx)) {
4217       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4218       continue;
4219     }
4220     // Check if we can statically extend the operand.
4221     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4222     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4223       LLVM_DEBUG(dbgs() << "Statically extend\n");
4224       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4225       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4226                             : Cst->getValue().zext(BitWidth);
4227       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4228       continue;
4229     }
4230     // UndefValue are typed, so we have to statically sign extend them.
4231     if (isa<UndefValue>(Opnd)) {
4232       LLVM_DEBUG(dbgs() << "Statically extend\n");
4233       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4234       continue;
4235     }
4236 
4237     // Otherwise we have to explicitly sign extend the operand.
4238     // Check if Ext was reused to extend an operand.
4239     if (!ExtForOpnd) {
4240       // If yes, create a new one.
4241       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4242       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4243         : TPT.createZExt(Ext, Opnd, Ext->getType());
4244       if (!isa<Instruction>(ValForExtOpnd)) {
4245         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4246         continue;
4247       }
4248       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4249     }
4250     if (Exts)
4251       Exts->push_back(ExtForOpnd);
4252     TPT.setOperand(ExtForOpnd, 0, Opnd);
4253 
4254     // Move the sign extension before the insertion point.
4255     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4256     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4257     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4258     // If more sext are required, new instructions will have to be created.
4259     ExtForOpnd = nullptr;
4260   }
4261   if (ExtForOpnd == Ext) {
4262     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4263     TPT.eraseInstruction(Ext);
4264   }
4265   return ExtOpnd;
4266 }
4267 
4268 /// Check whether or not promoting an instruction to a wider type is profitable.
4269 /// \p NewCost gives the cost of extension instructions created by the
4270 /// promotion.
4271 /// \p OldCost gives the cost of extension instructions before the promotion
4272 /// plus the number of instructions that have been
4273 /// matched in the addressing mode the promotion.
4274 /// \p PromotedOperand is the value that has been promoted.
4275 /// \return True if the promotion is profitable, false otherwise.
4276 bool AddressingModeMatcher::isPromotionProfitable(
4277     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4278   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4279                     << '\n');
4280   // The cost of the new extensions is greater than the cost of the
4281   // old extension plus what we folded.
4282   // This is not profitable.
4283   if (NewCost > OldCost)
4284     return false;
4285   if (NewCost < OldCost)
4286     return true;
4287   // The promotion is neutral but it may help folding the sign extension in
4288   // loads for instance.
4289   // Check that we did not create an illegal instruction.
4290   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4291 }
4292 
4293 /// Given an instruction or constant expr, see if we can fold the operation
4294 /// into the addressing mode. If so, update the addressing mode and return
4295 /// true, otherwise return false without modifying AddrMode.
4296 /// If \p MovedAway is not NULL, it contains the information of whether or
4297 /// not AddrInst has to be folded into the addressing mode on success.
4298 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4299 /// because it has been moved away.
4300 /// Thus AddrInst must not be added in the matched instructions.
4301 /// This state can happen when AddrInst is a sext, since it may be moved away.
4302 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4303 /// not be referenced anymore.
4304 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4305                                                unsigned Depth,
4306                                                bool *MovedAway) {
4307   // Avoid exponential behavior on extremely deep expression trees.
4308   if (Depth >= 5) return false;
4309 
4310   // By default, all matched instructions stay in place.
4311   if (MovedAway)
4312     *MovedAway = false;
4313 
4314   switch (Opcode) {
4315   case Instruction::PtrToInt:
4316     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4317     return matchAddr(AddrInst->getOperand(0), Depth);
4318   case Instruction::IntToPtr: {
4319     auto AS = AddrInst->getType()->getPointerAddressSpace();
4320     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4321     // This inttoptr is a no-op if the integer type is pointer sized.
4322     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4323       return matchAddr(AddrInst->getOperand(0), Depth);
4324     return false;
4325   }
4326   case Instruction::BitCast:
4327     // BitCast is always a noop, and we can handle it as long as it is
4328     // int->int or pointer->pointer (we don't want int<->fp or something).
4329     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4330         // Don't touch identity bitcasts.  These were probably put here by LSR,
4331         // and we don't want to mess around with them.  Assume it knows what it
4332         // is doing.
4333         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4334       return matchAddr(AddrInst->getOperand(0), Depth);
4335     return false;
4336   case Instruction::AddrSpaceCast: {
4337     unsigned SrcAS
4338       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4339     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4340     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4341       return matchAddr(AddrInst->getOperand(0), Depth);
4342     return false;
4343   }
4344   case Instruction::Add: {
4345     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4346     ExtAddrMode BackupAddrMode = AddrMode;
4347     unsigned OldSize = AddrModeInsts.size();
4348     // Start a transaction at this point.
4349     // The LHS may match but not the RHS.
4350     // Therefore, we need a higher level restoration point to undo partially
4351     // matched operation.
4352     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4353         TPT.getRestorationPoint();
4354 
4355     AddrMode.InBounds = false;
4356     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4357         matchAddr(AddrInst->getOperand(0), Depth+1))
4358       return true;
4359 
4360     // Restore the old addr mode info.
4361     AddrMode = BackupAddrMode;
4362     AddrModeInsts.resize(OldSize);
4363     TPT.rollback(LastKnownGood);
4364 
4365     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4366     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4367         matchAddr(AddrInst->getOperand(1), Depth+1))
4368       return true;
4369 
4370     // Otherwise we definitely can't merge the ADD in.
4371     AddrMode = BackupAddrMode;
4372     AddrModeInsts.resize(OldSize);
4373     TPT.rollback(LastKnownGood);
4374     break;
4375   }
4376   //case Instruction::Or:
4377   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4378   //break;
4379   case Instruction::Mul:
4380   case Instruction::Shl: {
4381     // Can only handle X*C and X << C.
4382     AddrMode.InBounds = false;
4383     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4384     if (!RHS || RHS->getBitWidth() > 64)
4385       return false;
4386     int64_t Scale = RHS->getSExtValue();
4387     if (Opcode == Instruction::Shl)
4388       Scale = 1LL << Scale;
4389 
4390     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4391   }
4392   case Instruction::GetElementPtr: {
4393     // Scan the GEP.  We check it if it contains constant offsets and at most
4394     // one variable offset.
4395     int VariableOperand = -1;
4396     unsigned VariableScale = 0;
4397 
4398     int64_t ConstantOffset = 0;
4399     gep_type_iterator GTI = gep_type_begin(AddrInst);
4400     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4401       if (StructType *STy = GTI.getStructTypeOrNull()) {
4402         const StructLayout *SL = DL.getStructLayout(STy);
4403         unsigned Idx =
4404           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4405         ConstantOffset += SL->getElementOffset(Idx);
4406       } else {
4407         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4408         if (TS.isNonZero()) {
4409           // The optimisations below currently only work for fixed offsets.
4410           if (TS.isScalable())
4411             return false;
4412           int64_t TypeSize = TS.getFixedSize();
4413           if (ConstantInt *CI =
4414                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4415             const APInt &CVal = CI->getValue();
4416             if (CVal.getMinSignedBits() <= 64) {
4417               ConstantOffset += CVal.getSExtValue() * TypeSize;
4418               continue;
4419             }
4420           }
4421           // We only allow one variable index at the moment.
4422           if (VariableOperand != -1)
4423             return false;
4424 
4425           // Remember the variable index.
4426           VariableOperand = i;
4427           VariableScale = TypeSize;
4428         }
4429       }
4430     }
4431 
4432     // A common case is for the GEP to only do a constant offset.  In this case,
4433     // just add it to the disp field and check validity.
4434     if (VariableOperand == -1) {
4435       AddrMode.BaseOffs += ConstantOffset;
4436       if (ConstantOffset == 0 ||
4437           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4438         // Check to see if we can fold the base pointer in too.
4439         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4440           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4441             AddrMode.InBounds = false;
4442           return true;
4443         }
4444       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4445                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4446                  ConstantOffset > 0) {
4447         // Record GEPs with non-zero offsets as candidates for splitting in the
4448         // event that the offset cannot fit into the r+i addressing mode.
4449         // Simple and common case that only one GEP is used in calculating the
4450         // address for the memory access.
4451         Value *Base = AddrInst->getOperand(0);
4452         auto *BaseI = dyn_cast<Instruction>(Base);
4453         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4454         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4455             (BaseI && !isa<CastInst>(BaseI) &&
4456              !isa<GetElementPtrInst>(BaseI))) {
4457           // Make sure the parent block allows inserting non-PHI instructions
4458           // before the terminator.
4459           BasicBlock *Parent =
4460               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4461           if (!Parent->getTerminator()->isEHPad())
4462             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4463         }
4464       }
4465       AddrMode.BaseOffs -= ConstantOffset;
4466       return false;
4467     }
4468 
4469     // Save the valid addressing mode in case we can't match.
4470     ExtAddrMode BackupAddrMode = AddrMode;
4471     unsigned OldSize = AddrModeInsts.size();
4472 
4473     // See if the scale and offset amount is valid for this target.
4474     AddrMode.BaseOffs += ConstantOffset;
4475     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4476       AddrMode.InBounds = false;
4477 
4478     // Match the base operand of the GEP.
4479     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4480       // If it couldn't be matched, just stuff the value in a register.
4481       if (AddrMode.HasBaseReg) {
4482         AddrMode = BackupAddrMode;
4483         AddrModeInsts.resize(OldSize);
4484         return false;
4485       }
4486       AddrMode.HasBaseReg = true;
4487       AddrMode.BaseReg = AddrInst->getOperand(0);
4488     }
4489 
4490     // Match the remaining variable portion of the GEP.
4491     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4492                           Depth)) {
4493       // If it couldn't be matched, try stuffing the base into a register
4494       // instead of matching it, and retrying the match of the scale.
4495       AddrMode = BackupAddrMode;
4496       AddrModeInsts.resize(OldSize);
4497       if (AddrMode.HasBaseReg)
4498         return false;
4499       AddrMode.HasBaseReg = true;
4500       AddrMode.BaseReg = AddrInst->getOperand(0);
4501       AddrMode.BaseOffs += ConstantOffset;
4502       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4503                             VariableScale, Depth)) {
4504         // If even that didn't work, bail.
4505         AddrMode = BackupAddrMode;
4506         AddrModeInsts.resize(OldSize);
4507         return false;
4508       }
4509     }
4510 
4511     return true;
4512   }
4513   case Instruction::SExt:
4514   case Instruction::ZExt: {
4515     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4516     if (!Ext)
4517       return false;
4518 
4519     // Try to move this ext out of the way of the addressing mode.
4520     // Ask for a method for doing so.
4521     TypePromotionHelper::Action TPH =
4522         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4523     if (!TPH)
4524       return false;
4525 
4526     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4527         TPT.getRestorationPoint();
4528     unsigned CreatedInstsCost = 0;
4529     unsigned ExtCost = !TLI.isExtFree(Ext);
4530     Value *PromotedOperand =
4531         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4532     // SExt has been moved away.
4533     // Thus either it will be rematched later in the recursive calls or it is
4534     // gone. Anyway, we must not fold it into the addressing mode at this point.
4535     // E.g.,
4536     // op = add opnd, 1
4537     // idx = ext op
4538     // addr = gep base, idx
4539     // is now:
4540     // promotedOpnd = ext opnd            <- no match here
4541     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4542     // addr = gep base, op                <- match
4543     if (MovedAway)
4544       *MovedAway = true;
4545 
4546     assert(PromotedOperand &&
4547            "TypePromotionHelper should have filtered out those cases");
4548 
4549     ExtAddrMode BackupAddrMode = AddrMode;
4550     unsigned OldSize = AddrModeInsts.size();
4551 
4552     if (!matchAddr(PromotedOperand, Depth) ||
4553         // The total of the new cost is equal to the cost of the created
4554         // instructions.
4555         // The total of the old cost is equal to the cost of the extension plus
4556         // what we have saved in the addressing mode.
4557         !isPromotionProfitable(CreatedInstsCost,
4558                                ExtCost + (AddrModeInsts.size() - OldSize),
4559                                PromotedOperand)) {
4560       AddrMode = BackupAddrMode;
4561       AddrModeInsts.resize(OldSize);
4562       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4563       TPT.rollback(LastKnownGood);
4564       return false;
4565     }
4566     return true;
4567   }
4568   }
4569   return false;
4570 }
4571 
4572 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4573 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4574 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4575 /// for the target.
4576 ///
4577 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4578   // Start a transaction at this point that we will rollback if the matching
4579   // fails.
4580   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4581       TPT.getRestorationPoint();
4582   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4583     if (CI->getValue().isSignedIntN(64)) {
4584       // Fold in immediates if legal for the target.
4585       AddrMode.BaseOffs += CI->getSExtValue();
4586       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4587         return true;
4588       AddrMode.BaseOffs -= CI->getSExtValue();
4589     }
4590   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4591     // If this is a global variable, try to fold it into the addressing mode.
4592     if (!AddrMode.BaseGV) {
4593       AddrMode.BaseGV = GV;
4594       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4595         return true;
4596       AddrMode.BaseGV = nullptr;
4597     }
4598   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4599     ExtAddrMode BackupAddrMode = AddrMode;
4600     unsigned OldSize = AddrModeInsts.size();
4601 
4602     // Check to see if it is possible to fold this operation.
4603     bool MovedAway = false;
4604     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4605       // This instruction may have been moved away. If so, there is nothing
4606       // to check here.
4607       if (MovedAway)
4608         return true;
4609       // Okay, it's possible to fold this.  Check to see if it is actually
4610       // *profitable* to do so.  We use a simple cost model to avoid increasing
4611       // register pressure too much.
4612       if (I->hasOneUse() ||
4613           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4614         AddrModeInsts.push_back(I);
4615         return true;
4616       }
4617 
4618       // It isn't profitable to do this, roll back.
4619       //cerr << "NOT FOLDING: " << *I;
4620       AddrMode = BackupAddrMode;
4621       AddrModeInsts.resize(OldSize);
4622       TPT.rollback(LastKnownGood);
4623     }
4624   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4625     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4626       return true;
4627     TPT.rollback(LastKnownGood);
4628   } else if (isa<ConstantPointerNull>(Addr)) {
4629     // Null pointer gets folded without affecting the addressing mode.
4630     return true;
4631   }
4632 
4633   // Worse case, the target should support [reg] addressing modes. :)
4634   if (!AddrMode.HasBaseReg) {
4635     AddrMode.HasBaseReg = true;
4636     AddrMode.BaseReg = Addr;
4637     // Still check for legality in case the target supports [imm] but not [i+r].
4638     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4639       return true;
4640     AddrMode.HasBaseReg = false;
4641     AddrMode.BaseReg = nullptr;
4642   }
4643 
4644   // If the base register is already taken, see if we can do [r+r].
4645   if (AddrMode.Scale == 0) {
4646     AddrMode.Scale = 1;
4647     AddrMode.ScaledReg = Addr;
4648     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4649       return true;
4650     AddrMode.Scale = 0;
4651     AddrMode.ScaledReg = nullptr;
4652   }
4653   // Couldn't match.
4654   TPT.rollback(LastKnownGood);
4655   return false;
4656 }
4657 
4658 /// Check to see if all uses of OpVal by the specified inline asm call are due
4659 /// to memory operands. If so, return true, otherwise return false.
4660 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4661                                     const TargetLowering &TLI,
4662                                     const TargetRegisterInfo &TRI) {
4663   const Function *F = CI->getFunction();
4664   TargetLowering::AsmOperandInfoVector TargetConstraints =
4665       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4666 
4667   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4668     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4669 
4670     // Compute the constraint code and ConstraintType to use.
4671     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4672 
4673     // If this asm operand is our Value*, and if it isn't an indirect memory
4674     // operand, we can't fold it!
4675     if (OpInfo.CallOperandVal == OpVal &&
4676         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4677          !OpInfo.isIndirect))
4678       return false;
4679   }
4680 
4681   return true;
4682 }
4683 
4684 // Max number of memory uses to look at before aborting the search to conserve
4685 // compile time.
4686 static constexpr int MaxMemoryUsesToScan = 20;
4687 
4688 /// Recursively walk all the uses of I until we find a memory use.
4689 /// If we find an obviously non-foldable instruction, return true.
4690 /// Add the ultimately found memory instructions to MemoryUses.
4691 static bool FindAllMemoryUses(
4692     Instruction *I,
4693     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4694     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4695     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4696     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4697   // If we already considered this instruction, we're done.
4698   if (!ConsideredInsts.insert(I).second)
4699     return false;
4700 
4701   // If this is an obviously unfoldable instruction, bail out.
4702   if (!MightBeFoldableInst(I))
4703     return true;
4704 
4705   // Loop over all the uses, recursively processing them.
4706   for (Use &U : I->uses()) {
4707     // Conservatively return true if we're seeing a large number or a deep chain
4708     // of users. This avoids excessive compilation times in pathological cases.
4709     if (SeenInsts++ >= MaxMemoryUsesToScan)
4710       return true;
4711 
4712     Instruction *UserI = cast<Instruction>(U.getUser());
4713     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4714       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4715       continue;
4716     }
4717 
4718     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4719       unsigned opNo = U.getOperandNo();
4720       if (opNo != StoreInst::getPointerOperandIndex())
4721         return true; // Storing addr, not into addr.
4722       MemoryUses.push_back(std::make_pair(SI, opNo));
4723       continue;
4724     }
4725 
4726     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4727       unsigned opNo = U.getOperandNo();
4728       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4729         return true; // Storing addr, not into addr.
4730       MemoryUses.push_back(std::make_pair(RMW, opNo));
4731       continue;
4732     }
4733 
4734     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4735       unsigned opNo = U.getOperandNo();
4736       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4737         return true; // Storing addr, not into addr.
4738       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4739       continue;
4740     }
4741 
4742     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4743       if (CI->hasFnAttr(Attribute::Cold)) {
4744         // If this is a cold call, we can sink the addressing calculation into
4745         // the cold path.  See optimizeCallInst
4746         bool OptForSize = OptSize ||
4747           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4748         if (!OptForSize)
4749           continue;
4750       }
4751 
4752       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4753       if (!IA) return true;
4754 
4755       // If this is a memory operand, we're cool, otherwise bail out.
4756       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4757         return true;
4758       continue;
4759     }
4760 
4761     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4762                           PSI, BFI, SeenInsts))
4763       return true;
4764   }
4765 
4766   return false;
4767 }
4768 
4769 /// Return true if Val is already known to be live at the use site that we're
4770 /// folding it into. If so, there is no cost to include it in the addressing
4771 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4772 /// instruction already.
4773 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4774                                                    Value *KnownLive2) {
4775   // If Val is either of the known-live values, we know it is live!
4776   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4777     return true;
4778 
4779   // All values other than instructions and arguments (e.g. constants) are live.
4780   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4781 
4782   // If Val is a constant sized alloca in the entry block, it is live, this is
4783   // true because it is just a reference to the stack/frame pointer, which is
4784   // live for the whole function.
4785   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4786     if (AI->isStaticAlloca())
4787       return true;
4788 
4789   // Check to see if this value is already used in the memory instruction's
4790   // block.  If so, it's already live into the block at the very least, so we
4791   // can reasonably fold it.
4792   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4793 }
4794 
4795 /// It is possible for the addressing mode of the machine to fold the specified
4796 /// instruction into a load or store that ultimately uses it.
4797 /// However, the specified instruction has multiple uses.
4798 /// Given this, it may actually increase register pressure to fold it
4799 /// into the load. For example, consider this code:
4800 ///
4801 ///     X = ...
4802 ///     Y = X+1
4803 ///     use(Y)   -> nonload/store
4804 ///     Z = Y+1
4805 ///     load Z
4806 ///
4807 /// In this case, Y has multiple uses, and can be folded into the load of Z
4808 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4809 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4810 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4811 /// number of computations either.
4812 ///
4813 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4814 /// X was live across 'load Z' for other reasons, we actually *would* want to
4815 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4816 bool AddressingModeMatcher::
4817 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4818                                      ExtAddrMode &AMAfter) {
4819   if (IgnoreProfitability) return true;
4820 
4821   // AMBefore is the addressing mode before this instruction was folded into it,
4822   // and AMAfter is the addressing mode after the instruction was folded.  Get
4823   // the set of registers referenced by AMAfter and subtract out those
4824   // referenced by AMBefore: this is the set of values which folding in this
4825   // address extends the lifetime of.
4826   //
4827   // Note that there are only two potential values being referenced here,
4828   // BaseReg and ScaleReg (global addresses are always available, as are any
4829   // folded immediates).
4830   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4831 
4832   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4833   // lifetime wasn't extended by adding this instruction.
4834   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4835     BaseReg = nullptr;
4836   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4837     ScaledReg = nullptr;
4838 
4839   // If folding this instruction (and it's subexprs) didn't extend any live
4840   // ranges, we're ok with it.
4841   if (!BaseReg && !ScaledReg)
4842     return true;
4843 
4844   // If all uses of this instruction can have the address mode sunk into them,
4845   // we can remove the addressing mode and effectively trade one live register
4846   // for another (at worst.)  In this context, folding an addressing mode into
4847   // the use is just a particularly nice way of sinking it.
4848   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4849   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4850   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4851                         PSI, BFI))
4852     return false;  // Has a non-memory, non-foldable use!
4853 
4854   // Now that we know that all uses of this instruction are part of a chain of
4855   // computation involving only operations that could theoretically be folded
4856   // into a memory use, loop over each of these memory operation uses and see
4857   // if they could  *actually* fold the instruction.  The assumption is that
4858   // addressing modes are cheap and that duplicating the computation involved
4859   // many times is worthwhile, even on a fastpath. For sinking candidates
4860   // (i.e. cold call sites), this serves as a way to prevent excessive code
4861   // growth since most architectures have some reasonable small and fast way to
4862   // compute an effective address.  (i.e LEA on x86)
4863   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4864   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4865     Instruction *User = MemoryUses[i].first;
4866     unsigned OpNo = MemoryUses[i].second;
4867 
4868     // Get the access type of this use.  If the use isn't a pointer, we don't
4869     // know what it accesses.
4870     Value *Address = User->getOperand(OpNo);
4871     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4872     if (!AddrTy)
4873       return false;
4874     Type *AddressAccessTy = AddrTy->getElementType();
4875     unsigned AS = AddrTy->getAddressSpace();
4876 
4877     // Do a match against the root of this address, ignoring profitability. This
4878     // will tell us if the addressing mode for the memory operation will
4879     // *actually* cover the shared instruction.
4880     ExtAddrMode Result;
4881     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4882                                                                       0);
4883     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4884         TPT.getRestorationPoint();
4885     AddressingModeMatcher Matcher(
4886         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4887         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI);
4888     Matcher.IgnoreProfitability = true;
4889     bool Success = Matcher.matchAddr(Address, 0);
4890     (void)Success; assert(Success && "Couldn't select *anything*?");
4891 
4892     // The match was to check the profitability, the changes made are not
4893     // part of the original matcher. Therefore, they should be dropped
4894     // otherwise the original matcher will not present the right state.
4895     TPT.rollback(LastKnownGood);
4896 
4897     // If the match didn't cover I, then it won't be shared by it.
4898     if (!is_contained(MatchedAddrModeInsts, I))
4899       return false;
4900 
4901     MatchedAddrModeInsts.clear();
4902   }
4903 
4904   return true;
4905 }
4906 
4907 /// Return true if the specified values are defined in a
4908 /// different basic block than BB.
4909 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4910   if (Instruction *I = dyn_cast<Instruction>(V))
4911     return I->getParent() != BB;
4912   return false;
4913 }
4914 
4915 /// Sink addressing mode computation immediate before MemoryInst if doing so
4916 /// can be done without increasing register pressure.  The need for the
4917 /// register pressure constraint means this can end up being an all or nothing
4918 /// decision for all uses of the same addressing computation.
4919 ///
4920 /// Load and Store Instructions often have addressing modes that can do
4921 /// significant amounts of computation. As such, instruction selection will try
4922 /// to get the load or store to do as much computation as possible for the
4923 /// program. The problem is that isel can only see within a single block. As
4924 /// such, we sink as much legal addressing mode work into the block as possible.
4925 ///
4926 /// This method is used to optimize both load/store and inline asms with memory
4927 /// operands.  It's also used to sink addressing computations feeding into cold
4928 /// call sites into their (cold) basic block.
4929 ///
4930 /// The motivation for handling sinking into cold blocks is that doing so can
4931 /// both enable other address mode sinking (by satisfying the register pressure
4932 /// constraint above), and reduce register pressure globally (by removing the
4933 /// addressing mode computation from the fast path entirely.).
4934 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4935                                         Type *AccessTy, unsigned AddrSpace) {
4936   Value *Repl = Addr;
4937 
4938   // Try to collapse single-value PHI nodes.  This is necessary to undo
4939   // unprofitable PRE transformations.
4940   SmallVector<Value*, 8> worklist;
4941   SmallPtrSet<Value*, 16> Visited;
4942   worklist.push_back(Addr);
4943 
4944   // Use a worklist to iteratively look through PHI and select nodes, and
4945   // ensure that the addressing mode obtained from the non-PHI/select roots of
4946   // the graph are compatible.
4947   bool PhiOrSelectSeen = false;
4948   SmallVector<Instruction*, 16> AddrModeInsts;
4949   const SimplifyQuery SQ(*DL, TLInfo);
4950   AddressingModeCombiner AddrModes(SQ, Addr);
4951   TypePromotionTransaction TPT(RemovedInsts);
4952   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4953       TPT.getRestorationPoint();
4954   while (!worklist.empty()) {
4955     Value *V = worklist.back();
4956     worklist.pop_back();
4957 
4958     // We allow traversing cyclic Phi nodes.
4959     // In case of success after this loop we ensure that traversing through
4960     // Phi nodes ends up with all cases to compute address of the form
4961     //    BaseGV + Base + Scale * Index + Offset
4962     // where Scale and Offset are constans and BaseGV, Base and Index
4963     // are exactly the same Values in all cases.
4964     // It means that BaseGV, Scale and Offset dominate our memory instruction
4965     // and have the same value as they had in address computation represented
4966     // as Phi. So we can safely sink address computation to memory instruction.
4967     if (!Visited.insert(V).second)
4968       continue;
4969 
4970     // For a PHI node, push all of its incoming values.
4971     if (PHINode *P = dyn_cast<PHINode>(V)) {
4972       for (Value *IncValue : P->incoming_values())
4973         worklist.push_back(IncValue);
4974       PhiOrSelectSeen = true;
4975       continue;
4976     }
4977     // Similar for select.
4978     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4979       worklist.push_back(SI->getFalseValue());
4980       worklist.push_back(SI->getTrueValue());
4981       PhiOrSelectSeen = true;
4982       continue;
4983     }
4984 
4985     // For non-PHIs, determine the addressing mode being computed.  Note that
4986     // the result may differ depending on what other uses our candidate
4987     // addressing instructions might have.
4988     AddrModeInsts.clear();
4989     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4990                                                                       0);
4991     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4992         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4993         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
4994         BFI.get());
4995 
4996     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4997     if (GEP && !NewGEPBases.count(GEP)) {
4998       // If splitting the underlying data structure can reduce the offset of a
4999       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5000       // previously split data structures.
5001       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5002       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5003         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5004     }
5005 
5006     NewAddrMode.OriginalValue = V;
5007     if (!AddrModes.addNewAddrMode(NewAddrMode))
5008       break;
5009   }
5010 
5011   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5012   // or we have multiple but either couldn't combine them or combining them
5013   // wouldn't do anything useful, bail out now.
5014   if (!AddrModes.combineAddrModes()) {
5015     TPT.rollback(LastKnownGood);
5016     return false;
5017   }
5018   bool Modified = TPT.commit();
5019 
5020   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5021   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5022 
5023   // If all the instructions matched are already in this BB, don't do anything.
5024   // If we saw a Phi node then it is not local definitely, and if we saw a select
5025   // then we want to push the address calculation past it even if it's already
5026   // in this BB.
5027   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5028         return IsNonLocalValue(V, MemoryInst->getParent());
5029                   })) {
5030     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5031                       << "\n");
5032     return Modified;
5033   }
5034 
5035   // Insert this computation right after this user.  Since our caller is
5036   // scanning from the top of the BB to the bottom, reuse of the expr are
5037   // guaranteed to happen later.
5038   IRBuilder<> Builder(MemoryInst);
5039 
5040   // Now that we determined the addressing expression we want to use and know
5041   // that we have to sink it into this block.  Check to see if we have already
5042   // done this for some other load/store instr in this block.  If so, reuse
5043   // the computation.  Before attempting reuse, check if the address is valid
5044   // as it may have been erased.
5045 
5046   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5047 
5048   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5049   if (SunkAddr) {
5050     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5051                       << " for " << *MemoryInst << "\n");
5052     if (SunkAddr->getType() != Addr->getType())
5053       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5054   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5055                                    SubtargetInfo->addrSinkUsingGEPs())) {
5056     // By default, we use the GEP-based method when AA is used later. This
5057     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5058     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5059                       << " for " << *MemoryInst << "\n");
5060     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5061     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5062 
5063     // First, find the pointer.
5064     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5065       ResultPtr = AddrMode.BaseReg;
5066       AddrMode.BaseReg = nullptr;
5067     }
5068 
5069     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5070       // We can't add more than one pointer together, nor can we scale a
5071       // pointer (both of which seem meaningless).
5072       if (ResultPtr || AddrMode.Scale != 1)
5073         return Modified;
5074 
5075       ResultPtr = AddrMode.ScaledReg;
5076       AddrMode.Scale = 0;
5077     }
5078 
5079     // It is only safe to sign extend the BaseReg if we know that the math
5080     // required to create it did not overflow before we extend it. Since
5081     // the original IR value was tossed in favor of a constant back when
5082     // the AddrMode was created we need to bail out gracefully if widths
5083     // do not match instead of extending it.
5084     //
5085     // (See below for code to add the scale.)
5086     if (AddrMode.Scale) {
5087       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5088       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5089           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5090         return Modified;
5091     }
5092 
5093     if (AddrMode.BaseGV) {
5094       if (ResultPtr)
5095         return Modified;
5096 
5097       ResultPtr = AddrMode.BaseGV;
5098     }
5099 
5100     // If the real base value actually came from an inttoptr, then the matcher
5101     // will look through it and provide only the integer value. In that case,
5102     // use it here.
5103     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5104       if (!ResultPtr && AddrMode.BaseReg) {
5105         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5106                                            "sunkaddr");
5107         AddrMode.BaseReg = nullptr;
5108       } else if (!ResultPtr && AddrMode.Scale == 1) {
5109         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5110                                            "sunkaddr");
5111         AddrMode.Scale = 0;
5112       }
5113     }
5114 
5115     if (!ResultPtr &&
5116         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5117       SunkAddr = Constant::getNullValue(Addr->getType());
5118     } else if (!ResultPtr) {
5119       return Modified;
5120     } else {
5121       Type *I8PtrTy =
5122           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5123       Type *I8Ty = Builder.getInt8Ty();
5124 
5125       // Start with the base register. Do this first so that subsequent address
5126       // matching finds it last, which will prevent it from trying to match it
5127       // as the scaled value in case it happens to be a mul. That would be
5128       // problematic if we've sunk a different mul for the scale, because then
5129       // we'd end up sinking both muls.
5130       if (AddrMode.BaseReg) {
5131         Value *V = AddrMode.BaseReg;
5132         if (V->getType() != IntPtrTy)
5133           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5134 
5135         ResultIndex = V;
5136       }
5137 
5138       // Add the scale value.
5139       if (AddrMode.Scale) {
5140         Value *V = AddrMode.ScaledReg;
5141         if (V->getType() == IntPtrTy) {
5142           // done.
5143         } else {
5144           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5145                  cast<IntegerType>(V->getType())->getBitWidth() &&
5146                  "We can't transform if ScaledReg is too narrow");
5147           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5148         }
5149 
5150         if (AddrMode.Scale != 1)
5151           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5152                                 "sunkaddr");
5153         if (ResultIndex)
5154           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5155         else
5156           ResultIndex = V;
5157       }
5158 
5159       // Add in the Base Offset if present.
5160       if (AddrMode.BaseOffs) {
5161         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5162         if (ResultIndex) {
5163           // We need to add this separately from the scale above to help with
5164           // SDAG consecutive load/store merging.
5165           if (ResultPtr->getType() != I8PtrTy)
5166             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5167           ResultPtr =
5168               AddrMode.InBounds
5169                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5170                                               "sunkaddr")
5171                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5172         }
5173 
5174         ResultIndex = V;
5175       }
5176 
5177       if (!ResultIndex) {
5178         SunkAddr = ResultPtr;
5179       } else {
5180         if (ResultPtr->getType() != I8PtrTy)
5181           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5182         SunkAddr =
5183             AddrMode.InBounds
5184                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5185                                             "sunkaddr")
5186                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5187       }
5188 
5189       if (SunkAddr->getType() != Addr->getType())
5190         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5191     }
5192   } else {
5193     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5194     // non-integral pointers, so in that case bail out now.
5195     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5196     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5197     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5198     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5199     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5200         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5201         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5202         (AddrMode.BaseGV &&
5203          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5204       return Modified;
5205 
5206     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5207                       << " for " << *MemoryInst << "\n");
5208     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5209     Value *Result = nullptr;
5210 
5211     // Start with the base register. Do this first so that subsequent address
5212     // matching finds it last, which will prevent it from trying to match it
5213     // as the scaled value in case it happens to be a mul. That would be
5214     // problematic if we've sunk a different mul for the scale, because then
5215     // we'd end up sinking both muls.
5216     if (AddrMode.BaseReg) {
5217       Value *V = AddrMode.BaseReg;
5218       if (V->getType()->isPointerTy())
5219         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5220       if (V->getType() != IntPtrTy)
5221         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5222       Result = V;
5223     }
5224 
5225     // Add the scale value.
5226     if (AddrMode.Scale) {
5227       Value *V = AddrMode.ScaledReg;
5228       if (V->getType() == IntPtrTy) {
5229         // done.
5230       } else if (V->getType()->isPointerTy()) {
5231         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5232       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5233                  cast<IntegerType>(V->getType())->getBitWidth()) {
5234         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5235       } else {
5236         // It is only safe to sign extend the BaseReg if we know that the math
5237         // required to create it did not overflow before we extend it. Since
5238         // the original IR value was tossed in favor of a constant back when
5239         // the AddrMode was created we need to bail out gracefully if widths
5240         // do not match instead of extending it.
5241         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5242         if (I && (Result != AddrMode.BaseReg))
5243           I->eraseFromParent();
5244         return Modified;
5245       }
5246       if (AddrMode.Scale != 1)
5247         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5248                               "sunkaddr");
5249       if (Result)
5250         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5251       else
5252         Result = V;
5253     }
5254 
5255     // Add in the BaseGV if present.
5256     if (AddrMode.BaseGV) {
5257       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5258       if (Result)
5259         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5260       else
5261         Result = V;
5262     }
5263 
5264     // Add in the Base Offset if present.
5265     if (AddrMode.BaseOffs) {
5266       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5267       if (Result)
5268         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5269       else
5270         Result = V;
5271     }
5272 
5273     if (!Result)
5274       SunkAddr = Constant::getNullValue(Addr->getType());
5275     else
5276       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5277   }
5278 
5279   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5280   // Store the newly computed address into the cache. In the case we reused a
5281   // value, this should be idempotent.
5282   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5283 
5284   // If we have no uses, recursively delete the value and all dead instructions
5285   // using it.
5286   if (Repl->use_empty()) {
5287     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5288       RecursivelyDeleteTriviallyDeadInstructions(
5289           Repl, TLInfo, nullptr,
5290           [&](Value *V) { removeAllAssertingVHReferences(V); });
5291     });
5292   }
5293   ++NumMemoryInsts;
5294   return true;
5295 }
5296 
5297 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5298 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5299 /// only handle a 2 operand GEP in the same basic block or a splat constant
5300 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5301 /// index.
5302 ///
5303 /// If the existing GEP has a vector base pointer that is splat, we can look
5304 /// through the splat to find the scalar pointer. If we can't find a scalar
5305 /// pointer there's nothing we can do.
5306 ///
5307 /// If we have a GEP with more than 2 indices where the middle indices are all
5308 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5309 ///
5310 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5311 /// followed by a GEP with an all zeroes vector index. This will enable
5312 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5313 /// zero index.
5314 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5315                                                Value *Ptr) {
5316   Value *NewAddr;
5317 
5318   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5319     // Don't optimize GEPs that don't have indices.
5320     if (!GEP->hasIndices())
5321       return false;
5322 
5323     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5324     // FIXME: We should support this by sinking the GEP.
5325     if (MemoryInst->getParent() != GEP->getParent())
5326       return false;
5327 
5328     SmallVector<Value *, 2> Ops(GEP->operands());
5329 
5330     bool RewriteGEP = false;
5331 
5332     if (Ops[0]->getType()->isVectorTy()) {
5333       Ops[0] = getSplatValue(Ops[0]);
5334       if (!Ops[0])
5335         return false;
5336       RewriteGEP = true;
5337     }
5338 
5339     unsigned FinalIndex = Ops.size() - 1;
5340 
5341     // Ensure all but the last index is 0.
5342     // FIXME: This isn't strictly required. All that's required is that they are
5343     // all scalars or splats.
5344     for (unsigned i = 1; i < FinalIndex; ++i) {
5345       auto *C = dyn_cast<Constant>(Ops[i]);
5346       if (!C)
5347         return false;
5348       if (isa<VectorType>(C->getType()))
5349         C = C->getSplatValue();
5350       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5351       if (!CI || !CI->isZero())
5352         return false;
5353       // Scalarize the index if needed.
5354       Ops[i] = CI;
5355     }
5356 
5357     // Try to scalarize the final index.
5358     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5359       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5360         auto *C = dyn_cast<ConstantInt>(V);
5361         // Don't scalarize all zeros vector.
5362         if (!C || !C->isZero()) {
5363           Ops[FinalIndex] = V;
5364           RewriteGEP = true;
5365         }
5366       }
5367     }
5368 
5369     // If we made any changes or the we have extra operands, we need to generate
5370     // new instructions.
5371     if (!RewriteGEP && Ops.size() == 2)
5372       return false;
5373 
5374     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5375 
5376     IRBuilder<> Builder(MemoryInst);
5377 
5378     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5379 
5380     // If the final index isn't a vector, emit a scalar GEP containing all ops
5381     // and a vector GEP with all zeroes final index.
5382     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5383       NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front());
5384       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5385       NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
5386     } else {
5387       Value *Base = Ops[0];
5388       Value *Index = Ops[FinalIndex];
5389 
5390       // Create a scalar GEP if there are more than 2 operands.
5391       if (Ops.size() != 2) {
5392         // Replace the last index with 0.
5393         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5394         Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front());
5395       }
5396 
5397       // Now create the GEP with scalar pointer and vector index.
5398       NewAddr = Builder.CreateGEP(Base, Index);
5399     }
5400   } else if (!isa<Constant>(Ptr)) {
5401     // Not a GEP, maybe its a splat and we can create a GEP to enable
5402     // SelectionDAGBuilder to use it as a uniform base.
5403     Value *V = getSplatValue(Ptr);
5404     if (!V)
5405       return false;
5406 
5407     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5408 
5409     IRBuilder<> Builder(MemoryInst);
5410 
5411     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5412     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5413     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5414     NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
5415   } else {
5416     // Constant, SelectionDAGBuilder knows to check if its a splat.
5417     return false;
5418   }
5419 
5420   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5421 
5422   // If we have no uses, recursively delete the value and all dead instructions
5423   // using it.
5424   if (Ptr->use_empty())
5425     RecursivelyDeleteTriviallyDeadInstructions(
5426         Ptr, TLInfo, nullptr,
5427         [&](Value *V) { removeAllAssertingVHReferences(V); });
5428 
5429   return true;
5430 }
5431 
5432 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5433 /// address computing into the block when possible / profitable.
5434 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5435   bool MadeChange = false;
5436 
5437   const TargetRegisterInfo *TRI =
5438       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5439   TargetLowering::AsmOperandInfoVector TargetConstraints =
5440       TLI->ParseConstraints(*DL, TRI, *CS);
5441   unsigned ArgNo = 0;
5442   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5443     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5444 
5445     // Compute the constraint code and ConstraintType to use.
5446     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5447 
5448     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5449         OpInfo.isIndirect) {
5450       Value *OpVal = CS->getArgOperand(ArgNo++);
5451       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5452     } else if (OpInfo.Type == InlineAsm::isInput)
5453       ArgNo++;
5454   }
5455 
5456   return MadeChange;
5457 }
5458 
5459 /// Check if all the uses of \p Val are equivalent (or free) zero or
5460 /// sign extensions.
5461 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5462   assert(!Val->use_empty() && "Input must have at least one use");
5463   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5464   bool IsSExt = isa<SExtInst>(FirstUser);
5465   Type *ExtTy = FirstUser->getType();
5466   for (const User *U : Val->users()) {
5467     const Instruction *UI = cast<Instruction>(U);
5468     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5469       return false;
5470     Type *CurTy = UI->getType();
5471     // Same input and output types: Same instruction after CSE.
5472     if (CurTy == ExtTy)
5473       continue;
5474 
5475     // If IsSExt is true, we are in this situation:
5476     // a = Val
5477     // b = sext ty1 a to ty2
5478     // c = sext ty1 a to ty3
5479     // Assuming ty2 is shorter than ty3, this could be turned into:
5480     // a = Val
5481     // b = sext ty1 a to ty2
5482     // c = sext ty2 b to ty3
5483     // However, the last sext is not free.
5484     if (IsSExt)
5485       return false;
5486 
5487     // This is a ZExt, maybe this is free to extend from one type to another.
5488     // In that case, we would not account for a different use.
5489     Type *NarrowTy;
5490     Type *LargeTy;
5491     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5492         CurTy->getScalarType()->getIntegerBitWidth()) {
5493       NarrowTy = CurTy;
5494       LargeTy = ExtTy;
5495     } else {
5496       NarrowTy = ExtTy;
5497       LargeTy = CurTy;
5498     }
5499 
5500     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5501       return false;
5502   }
5503   // All uses are the same or can be derived from one another for free.
5504   return true;
5505 }
5506 
5507 /// Try to speculatively promote extensions in \p Exts and continue
5508 /// promoting through newly promoted operands recursively as far as doing so is
5509 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5510 /// When some promotion happened, \p TPT contains the proper state to revert
5511 /// them.
5512 ///
5513 /// \return true if some promotion happened, false otherwise.
5514 bool CodeGenPrepare::tryToPromoteExts(
5515     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5516     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5517     unsigned CreatedInstsCost) {
5518   bool Promoted = false;
5519 
5520   // Iterate over all the extensions to try to promote them.
5521   for (auto *I : Exts) {
5522     // Early check if we directly have ext(load).
5523     if (isa<LoadInst>(I->getOperand(0))) {
5524       ProfitablyMovedExts.push_back(I);
5525       continue;
5526     }
5527 
5528     // Check whether or not we want to do any promotion.  The reason we have
5529     // this check inside the for loop is to catch the case where an extension
5530     // is directly fed by a load because in such case the extension can be moved
5531     // up without any promotion on its operands.
5532     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5533       return false;
5534 
5535     // Get the action to perform the promotion.
5536     TypePromotionHelper::Action TPH =
5537         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5538     // Check if we can promote.
5539     if (!TPH) {
5540       // Save the current extension as we cannot move up through its operand.
5541       ProfitablyMovedExts.push_back(I);
5542       continue;
5543     }
5544 
5545     // Save the current state.
5546     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5547         TPT.getRestorationPoint();
5548     SmallVector<Instruction *, 4> NewExts;
5549     unsigned NewCreatedInstsCost = 0;
5550     unsigned ExtCost = !TLI->isExtFree(I);
5551     // Promote.
5552     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5553                              &NewExts, nullptr, *TLI);
5554     assert(PromotedVal &&
5555            "TypePromotionHelper should have filtered out those cases");
5556 
5557     // We would be able to merge only one extension in a load.
5558     // Therefore, if we have more than 1 new extension we heuristically
5559     // cut this search path, because it means we degrade the code quality.
5560     // With exactly 2, the transformation is neutral, because we will merge
5561     // one extension but leave one. However, we optimistically keep going,
5562     // because the new extension may be removed too.
5563     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5564     // FIXME: It would be possible to propagate a negative value instead of
5565     // conservatively ceiling it to 0.
5566     TotalCreatedInstsCost =
5567         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5568     if (!StressExtLdPromotion &&
5569         (TotalCreatedInstsCost > 1 ||
5570          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5571       // This promotion is not profitable, rollback to the previous state, and
5572       // save the current extension in ProfitablyMovedExts as the latest
5573       // speculative promotion turned out to be unprofitable.
5574       TPT.rollback(LastKnownGood);
5575       ProfitablyMovedExts.push_back(I);
5576       continue;
5577     }
5578     // Continue promoting NewExts as far as doing so is profitable.
5579     SmallVector<Instruction *, 2> NewlyMovedExts;
5580     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5581     bool NewPromoted = false;
5582     for (auto *ExtInst : NewlyMovedExts) {
5583       Instruction *MovedExt = cast<Instruction>(ExtInst);
5584       Value *ExtOperand = MovedExt->getOperand(0);
5585       // If we have reached to a load, we need this extra profitability check
5586       // as it could potentially be merged into an ext(load).
5587       if (isa<LoadInst>(ExtOperand) &&
5588           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5589             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5590         continue;
5591 
5592       ProfitablyMovedExts.push_back(MovedExt);
5593       NewPromoted = true;
5594     }
5595 
5596     // If none of speculative promotions for NewExts is profitable, rollback
5597     // and save the current extension (I) as the last profitable extension.
5598     if (!NewPromoted) {
5599       TPT.rollback(LastKnownGood);
5600       ProfitablyMovedExts.push_back(I);
5601       continue;
5602     }
5603     // The promotion is profitable.
5604     Promoted = true;
5605   }
5606   return Promoted;
5607 }
5608 
5609 /// Merging redundant sexts when one is dominating the other.
5610 bool CodeGenPrepare::mergeSExts(Function &F) {
5611   bool Changed = false;
5612   for (auto &Entry : ValToSExtendedUses) {
5613     SExts &Insts = Entry.second;
5614     SExts CurPts;
5615     for (Instruction *Inst : Insts) {
5616       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5617           Inst->getOperand(0) != Entry.first)
5618         continue;
5619       bool inserted = false;
5620       for (auto &Pt : CurPts) {
5621         if (getDT(F).dominates(Inst, Pt)) {
5622           Pt->replaceAllUsesWith(Inst);
5623           RemovedInsts.insert(Pt);
5624           Pt->removeFromParent();
5625           Pt = Inst;
5626           inserted = true;
5627           Changed = true;
5628           break;
5629         }
5630         if (!getDT(F).dominates(Pt, Inst))
5631           // Give up if we need to merge in a common dominator as the
5632           // experiments show it is not profitable.
5633           continue;
5634         Inst->replaceAllUsesWith(Pt);
5635         RemovedInsts.insert(Inst);
5636         Inst->removeFromParent();
5637         inserted = true;
5638         Changed = true;
5639         break;
5640       }
5641       if (!inserted)
5642         CurPts.push_back(Inst);
5643     }
5644   }
5645   return Changed;
5646 }
5647 
5648 // Splitting large data structures so that the GEPs accessing them can have
5649 // smaller offsets so that they can be sunk to the same blocks as their users.
5650 // For example, a large struct starting from %base is split into two parts
5651 // where the second part starts from %new_base.
5652 //
5653 // Before:
5654 // BB0:
5655 //   %base     =
5656 //
5657 // BB1:
5658 //   %gep0     = gep %base, off0
5659 //   %gep1     = gep %base, off1
5660 //   %gep2     = gep %base, off2
5661 //
5662 // BB2:
5663 //   %load1    = load %gep0
5664 //   %load2    = load %gep1
5665 //   %load3    = load %gep2
5666 //
5667 // After:
5668 // BB0:
5669 //   %base     =
5670 //   %new_base = gep %base, off0
5671 //
5672 // BB1:
5673 //   %new_gep0 = %new_base
5674 //   %new_gep1 = gep %new_base, off1 - off0
5675 //   %new_gep2 = gep %new_base, off2 - off0
5676 //
5677 // BB2:
5678 //   %load1    = load i32, i32* %new_gep0
5679 //   %load2    = load i32, i32* %new_gep1
5680 //   %load3    = load i32, i32* %new_gep2
5681 //
5682 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5683 // their offsets are smaller enough to fit into the addressing mode.
5684 bool CodeGenPrepare::splitLargeGEPOffsets() {
5685   bool Changed = false;
5686   for (auto &Entry : LargeOffsetGEPMap) {
5687     Value *OldBase = Entry.first;
5688     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5689         &LargeOffsetGEPs = Entry.second;
5690     auto compareGEPOffset =
5691         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5692             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5693           if (LHS.first == RHS.first)
5694             return false;
5695           if (LHS.second != RHS.second)
5696             return LHS.second < RHS.second;
5697           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5698         };
5699     // Sorting all the GEPs of the same data structures based on the offsets.
5700     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5701     LargeOffsetGEPs.erase(
5702         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5703         LargeOffsetGEPs.end());
5704     // Skip if all the GEPs have the same offsets.
5705     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5706       continue;
5707     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5708     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5709     Value *NewBaseGEP = nullptr;
5710 
5711     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5712     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5713       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5714       int64_t Offset = LargeOffsetGEP->second;
5715       if (Offset != BaseOffset) {
5716         TargetLowering::AddrMode AddrMode;
5717         AddrMode.BaseOffs = Offset - BaseOffset;
5718         // The result type of the GEP might not be the type of the memory
5719         // access.
5720         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5721                                         GEP->getResultElementType(),
5722                                         GEP->getAddressSpace())) {
5723           // We need to create a new base if the offset to the current base is
5724           // too large to fit into the addressing mode. So, a very large struct
5725           // may be split into several parts.
5726           BaseGEP = GEP;
5727           BaseOffset = Offset;
5728           NewBaseGEP = nullptr;
5729         }
5730       }
5731 
5732       // Generate a new GEP to replace the current one.
5733       LLVMContext &Ctx = GEP->getContext();
5734       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5735       Type *I8PtrTy =
5736           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5737       Type *I8Ty = Type::getInt8Ty(Ctx);
5738 
5739       if (!NewBaseGEP) {
5740         // Create a new base if we don't have one yet.  Find the insertion
5741         // pointer for the new base first.
5742         BasicBlock::iterator NewBaseInsertPt;
5743         BasicBlock *NewBaseInsertBB;
5744         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5745           // If the base of the struct is an instruction, the new base will be
5746           // inserted close to it.
5747           NewBaseInsertBB = BaseI->getParent();
5748           if (isa<PHINode>(BaseI))
5749             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5750           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5751             NewBaseInsertBB =
5752                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5753             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5754           } else
5755             NewBaseInsertPt = std::next(BaseI->getIterator());
5756         } else {
5757           // If the current base is an argument or global value, the new base
5758           // will be inserted to the entry block.
5759           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5760           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5761         }
5762         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5763         // Create a new base.
5764         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5765         NewBaseGEP = OldBase;
5766         if (NewBaseGEP->getType() != I8PtrTy)
5767           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5768         NewBaseGEP =
5769             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5770         NewGEPBases.insert(NewBaseGEP);
5771       }
5772 
5773       IRBuilder<> Builder(GEP);
5774       Value *NewGEP = NewBaseGEP;
5775       if (Offset == BaseOffset) {
5776         if (GEP->getType() != I8PtrTy)
5777           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5778       } else {
5779         // Calculate the new offset for the new GEP.
5780         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5781         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5782 
5783         if (GEP->getType() != I8PtrTy)
5784           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5785       }
5786       GEP->replaceAllUsesWith(NewGEP);
5787       LargeOffsetGEPID.erase(GEP);
5788       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5789       GEP->eraseFromParent();
5790       Changed = true;
5791     }
5792   }
5793   return Changed;
5794 }
5795 
5796 bool CodeGenPrepare::optimizePhiType(
5797     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5798     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5799   // We are looking for a collection on interconnected phi nodes that together
5800   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5801   // are of the same type. Convert the whole set of nodes to the type of the
5802   // bitcast.
5803   Type *PhiTy = I->getType();
5804   Type *ConvertTy = nullptr;
5805   if (Visited.count(I) ||
5806       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5807     return false;
5808 
5809   SmallVector<Instruction *, 4> Worklist;
5810   Worklist.push_back(cast<Instruction>(I));
5811   SmallPtrSet<PHINode *, 4> PhiNodes;
5812   PhiNodes.insert(I);
5813   Visited.insert(I);
5814   SmallPtrSet<Instruction *, 4> Defs;
5815   SmallPtrSet<Instruction *, 4> Uses;
5816   // This works by adding extra bitcasts between load/stores and removing
5817   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5818   // we can get in the situation where we remove a bitcast in one iteration
5819   // just to add it again in the next. We need to ensure that at least one
5820   // bitcast we remove are anchored to something that will not change back.
5821   bool AnyAnchored = false;
5822 
5823   while (!Worklist.empty()) {
5824     Instruction *II = Worklist.pop_back_val();
5825 
5826     if (auto *Phi = dyn_cast<PHINode>(II)) {
5827       // Handle Defs, which might also be PHI's
5828       for (Value *V : Phi->incoming_values()) {
5829         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5830           if (!PhiNodes.count(OpPhi)) {
5831             if (Visited.count(OpPhi))
5832               return false;
5833             PhiNodes.insert(OpPhi);
5834             Visited.insert(OpPhi);
5835             Worklist.push_back(OpPhi);
5836           }
5837         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
5838           if (!OpLoad->isSimple())
5839             return false;
5840           if (!Defs.count(OpLoad)) {
5841             Defs.insert(OpLoad);
5842             Worklist.push_back(OpLoad);
5843           }
5844         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
5845           if (!Defs.count(OpEx)) {
5846             Defs.insert(OpEx);
5847             Worklist.push_back(OpEx);
5848           }
5849         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5850           if (!ConvertTy)
5851             ConvertTy = OpBC->getOperand(0)->getType();
5852           if (OpBC->getOperand(0)->getType() != ConvertTy)
5853             return false;
5854           if (!Defs.count(OpBC)) {
5855             Defs.insert(OpBC);
5856             Worklist.push_back(OpBC);
5857             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
5858                            !isa<ExtractElementInst>(OpBC->getOperand(0));
5859           }
5860         } else if (!isa<UndefValue>(V)) {
5861           return false;
5862         }
5863       }
5864     }
5865 
5866     // Handle uses which might also be phi's
5867     for (User *V : II->users()) {
5868       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
5869         if (!PhiNodes.count(OpPhi)) {
5870           if (Visited.count(OpPhi))
5871             return false;
5872           PhiNodes.insert(OpPhi);
5873           Visited.insert(OpPhi);
5874           Worklist.push_back(OpPhi);
5875         }
5876       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
5877         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
5878           return false;
5879         Uses.insert(OpStore);
5880       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
5881         if (!ConvertTy)
5882           ConvertTy = OpBC->getType();
5883         if (OpBC->getType() != ConvertTy)
5884           return false;
5885         Uses.insert(OpBC);
5886         AnyAnchored |=
5887             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
5888       } else {
5889         return false;
5890       }
5891     }
5892   }
5893 
5894   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
5895     return false;
5896 
5897   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
5898                     << *ConvertTy << "\n");
5899 
5900   // Create all the new phi nodes of the new type, and bitcast any loads to the
5901   // correct type.
5902   ValueToValueMap ValMap;
5903   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
5904   for (Instruction *D : Defs) {
5905     if (isa<BitCastInst>(D)) {
5906       ValMap[D] = D->getOperand(0);
5907       DeletedInstrs.insert(D);
5908     } else {
5909       ValMap[D] =
5910           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
5911     }
5912   }
5913   for (PHINode *Phi : PhiNodes)
5914     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
5915                                   Phi->getName() + ".tc", Phi);
5916   // Pipe together all the PhiNodes.
5917   for (PHINode *Phi : PhiNodes) {
5918     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
5919     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
5920       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
5921                           Phi->getIncomingBlock(i));
5922     Visited.insert(NewPhi);
5923   }
5924   // And finally pipe up the stores and bitcasts
5925   for (Instruction *U : Uses) {
5926     if (isa<BitCastInst>(U)) {
5927       DeletedInstrs.insert(U);
5928       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
5929     } else {
5930       U->setOperand(0,
5931                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
5932     }
5933   }
5934 
5935   // Save the removed phis to be deleted later.
5936   for (PHINode *Phi : PhiNodes)
5937     DeletedInstrs.insert(Phi);
5938   return true;
5939 }
5940 
5941 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
5942   if (!OptimizePhiTypes)
5943     return false;
5944 
5945   bool Changed = false;
5946   SmallPtrSet<PHINode *, 4> Visited;
5947   SmallPtrSet<Instruction *, 4> DeletedInstrs;
5948 
5949   // Attempt to optimize all the phis in the functions to the correct type.
5950   for (auto &BB : F)
5951     for (auto &Phi : BB.phis())
5952       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
5953 
5954   // Remove any old phi's that have been converted.
5955   for (auto *I : DeletedInstrs) {
5956     I->replaceAllUsesWith(UndefValue::get(I->getType()));
5957     I->eraseFromParent();
5958   }
5959 
5960   return Changed;
5961 }
5962 
5963 /// Return true, if an ext(load) can be formed from an extension in
5964 /// \p MovedExts.
5965 bool CodeGenPrepare::canFormExtLd(
5966     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5967     Instruction *&Inst, bool HasPromoted) {
5968   for (auto *MovedExtInst : MovedExts) {
5969     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5970       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5971       Inst = MovedExtInst;
5972       break;
5973     }
5974   }
5975   if (!LI)
5976     return false;
5977 
5978   // If they're already in the same block, there's nothing to do.
5979   // Make the cheap checks first if we did not promote.
5980   // If we promoted, we need to check if it is indeed profitable.
5981   if (!HasPromoted && LI->getParent() == Inst->getParent())
5982     return false;
5983 
5984   return TLI->isExtLoad(LI, Inst, *DL);
5985 }
5986 
5987 /// Move a zext or sext fed by a load into the same basic block as the load,
5988 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5989 /// extend into the load.
5990 ///
5991 /// E.g.,
5992 /// \code
5993 /// %ld = load i32* %addr
5994 /// %add = add nuw i32 %ld, 4
5995 /// %zext = zext i32 %add to i64
5996 // \endcode
5997 /// =>
5998 /// \code
5999 /// %ld = load i32* %addr
6000 /// %zext = zext i32 %ld to i64
6001 /// %add = add nuw i64 %zext, 4
6002 /// \encode
6003 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6004 /// allow us to match zext(load i32*) to i64.
6005 ///
6006 /// Also, try to promote the computations used to obtain a sign extended
6007 /// value used into memory accesses.
6008 /// E.g.,
6009 /// \code
6010 /// a = add nsw i32 b, 3
6011 /// d = sext i32 a to i64
6012 /// e = getelementptr ..., i64 d
6013 /// \endcode
6014 /// =>
6015 /// \code
6016 /// f = sext i32 b to i64
6017 /// a = add nsw i64 f, 3
6018 /// e = getelementptr ..., i64 a
6019 /// \endcode
6020 ///
6021 /// \p Inst[in/out] the extension may be modified during the process if some
6022 /// promotions apply.
6023 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6024   bool AllowPromotionWithoutCommonHeader = false;
6025   /// See if it is an interesting sext operations for the address type
6026   /// promotion before trying to promote it, e.g., the ones with the right
6027   /// type and used in memory accesses.
6028   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6029       *Inst, AllowPromotionWithoutCommonHeader);
6030   TypePromotionTransaction TPT(RemovedInsts);
6031   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6032       TPT.getRestorationPoint();
6033   SmallVector<Instruction *, 1> Exts;
6034   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6035   Exts.push_back(Inst);
6036 
6037   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6038 
6039   // Look for a load being extended.
6040   LoadInst *LI = nullptr;
6041   Instruction *ExtFedByLoad;
6042 
6043   // Try to promote a chain of computation if it allows to form an extended
6044   // load.
6045   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6046     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6047     TPT.commit();
6048     // Move the extend into the same block as the load.
6049     ExtFedByLoad->moveAfter(LI);
6050     ++NumExtsMoved;
6051     Inst = ExtFedByLoad;
6052     return true;
6053   }
6054 
6055   // Continue promoting SExts if known as considerable depending on targets.
6056   if (ATPConsiderable &&
6057       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6058                                   HasPromoted, TPT, SpeculativelyMovedExts))
6059     return true;
6060 
6061   TPT.rollback(LastKnownGood);
6062   return false;
6063 }
6064 
6065 // Perform address type promotion if doing so is profitable.
6066 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6067 // instructions that sign extended the same initial value. However, if
6068 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6069 // extension is just profitable.
6070 bool CodeGenPrepare::performAddressTypePromotion(
6071     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6072     bool HasPromoted, TypePromotionTransaction &TPT,
6073     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6074   bool Promoted = false;
6075   SmallPtrSet<Instruction *, 1> UnhandledExts;
6076   bool AllSeenFirst = true;
6077   for (auto *I : SpeculativelyMovedExts) {
6078     Value *HeadOfChain = I->getOperand(0);
6079     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6080         SeenChainsForSExt.find(HeadOfChain);
6081     // If there is an unhandled SExt which has the same header, try to promote
6082     // it as well.
6083     if (AlreadySeen != SeenChainsForSExt.end()) {
6084       if (AlreadySeen->second != nullptr)
6085         UnhandledExts.insert(AlreadySeen->second);
6086       AllSeenFirst = false;
6087     }
6088   }
6089 
6090   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6091                         SpeculativelyMovedExts.size() == 1)) {
6092     TPT.commit();
6093     if (HasPromoted)
6094       Promoted = true;
6095     for (auto *I : SpeculativelyMovedExts) {
6096       Value *HeadOfChain = I->getOperand(0);
6097       SeenChainsForSExt[HeadOfChain] = nullptr;
6098       ValToSExtendedUses[HeadOfChain].push_back(I);
6099     }
6100     // Update Inst as promotion happen.
6101     Inst = SpeculativelyMovedExts.pop_back_val();
6102   } else {
6103     // This is the first chain visited from the header, keep the current chain
6104     // as unhandled. Defer to promote this until we encounter another SExt
6105     // chain derived from the same header.
6106     for (auto *I : SpeculativelyMovedExts) {
6107       Value *HeadOfChain = I->getOperand(0);
6108       SeenChainsForSExt[HeadOfChain] = Inst;
6109     }
6110     return false;
6111   }
6112 
6113   if (!AllSeenFirst && !UnhandledExts.empty())
6114     for (auto *VisitedSExt : UnhandledExts) {
6115       if (RemovedInsts.count(VisitedSExt))
6116         continue;
6117       TypePromotionTransaction TPT(RemovedInsts);
6118       SmallVector<Instruction *, 1> Exts;
6119       SmallVector<Instruction *, 2> Chains;
6120       Exts.push_back(VisitedSExt);
6121       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6122       TPT.commit();
6123       if (HasPromoted)
6124         Promoted = true;
6125       for (auto *I : Chains) {
6126         Value *HeadOfChain = I->getOperand(0);
6127         // Mark this as handled.
6128         SeenChainsForSExt[HeadOfChain] = nullptr;
6129         ValToSExtendedUses[HeadOfChain].push_back(I);
6130       }
6131     }
6132   return Promoted;
6133 }
6134 
6135 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6136   BasicBlock *DefBB = I->getParent();
6137 
6138   // If the result of a {s|z}ext and its source are both live out, rewrite all
6139   // other uses of the source with result of extension.
6140   Value *Src = I->getOperand(0);
6141   if (Src->hasOneUse())
6142     return false;
6143 
6144   // Only do this xform if truncating is free.
6145   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6146     return false;
6147 
6148   // Only safe to perform the optimization if the source is also defined in
6149   // this block.
6150   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6151     return false;
6152 
6153   bool DefIsLiveOut = false;
6154   for (User *U : I->users()) {
6155     Instruction *UI = cast<Instruction>(U);
6156 
6157     // Figure out which BB this ext is used in.
6158     BasicBlock *UserBB = UI->getParent();
6159     if (UserBB == DefBB) continue;
6160     DefIsLiveOut = true;
6161     break;
6162   }
6163   if (!DefIsLiveOut)
6164     return false;
6165 
6166   // Make sure none of the uses are PHI nodes.
6167   for (User *U : Src->users()) {
6168     Instruction *UI = cast<Instruction>(U);
6169     BasicBlock *UserBB = UI->getParent();
6170     if (UserBB == DefBB) continue;
6171     // Be conservative. We don't want this xform to end up introducing
6172     // reloads just before load / store instructions.
6173     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6174       return false;
6175   }
6176 
6177   // InsertedTruncs - Only insert one trunc in each block once.
6178   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6179 
6180   bool MadeChange = false;
6181   for (Use &U : Src->uses()) {
6182     Instruction *User = cast<Instruction>(U.getUser());
6183 
6184     // Figure out which BB this ext is used in.
6185     BasicBlock *UserBB = User->getParent();
6186     if (UserBB == DefBB) continue;
6187 
6188     // Both src and def are live in this block. Rewrite the use.
6189     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6190 
6191     if (!InsertedTrunc) {
6192       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6193       assert(InsertPt != UserBB->end());
6194       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6195       InsertedInsts.insert(InsertedTrunc);
6196     }
6197 
6198     // Replace a use of the {s|z}ext source with a use of the result.
6199     U = InsertedTrunc;
6200     ++NumExtUses;
6201     MadeChange = true;
6202   }
6203 
6204   return MadeChange;
6205 }
6206 
6207 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6208 // just after the load if the target can fold this into one extload instruction,
6209 // with the hope of eliminating some of the other later "and" instructions using
6210 // the loaded value.  "and"s that are made trivially redundant by the insertion
6211 // of the new "and" are removed by this function, while others (e.g. those whose
6212 // path from the load goes through a phi) are left for isel to potentially
6213 // remove.
6214 //
6215 // For example:
6216 //
6217 // b0:
6218 //   x = load i32
6219 //   ...
6220 // b1:
6221 //   y = and x, 0xff
6222 //   z = use y
6223 //
6224 // becomes:
6225 //
6226 // b0:
6227 //   x = load i32
6228 //   x' = and x, 0xff
6229 //   ...
6230 // b1:
6231 //   z = use x'
6232 //
6233 // whereas:
6234 //
6235 // b0:
6236 //   x1 = load i32
6237 //   ...
6238 // b1:
6239 //   x2 = load i32
6240 //   ...
6241 // b2:
6242 //   x = phi x1, x2
6243 //   y = and x, 0xff
6244 //
6245 // becomes (after a call to optimizeLoadExt for each load):
6246 //
6247 // b0:
6248 //   x1 = load i32
6249 //   x1' = and x1, 0xff
6250 //   ...
6251 // b1:
6252 //   x2 = load i32
6253 //   x2' = and x2, 0xff
6254 //   ...
6255 // b2:
6256 //   x = phi x1', x2'
6257 //   y = and x, 0xff
6258 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6259   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6260     return false;
6261 
6262   // Skip loads we've already transformed.
6263   if (Load->hasOneUse() &&
6264       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6265     return false;
6266 
6267   // Look at all uses of Load, looking through phis, to determine how many bits
6268   // of the loaded value are needed.
6269   SmallVector<Instruction *, 8> WorkList;
6270   SmallPtrSet<Instruction *, 16> Visited;
6271   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6272   for (auto *U : Load->users())
6273     WorkList.push_back(cast<Instruction>(U));
6274 
6275   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6276   unsigned BitWidth = LoadResultVT.getSizeInBits();
6277   APInt DemandBits(BitWidth, 0);
6278   APInt WidestAndBits(BitWidth, 0);
6279 
6280   while (!WorkList.empty()) {
6281     Instruction *I = WorkList.back();
6282     WorkList.pop_back();
6283 
6284     // Break use-def graph loops.
6285     if (!Visited.insert(I).second)
6286       continue;
6287 
6288     // For a PHI node, push all of its users.
6289     if (auto *Phi = dyn_cast<PHINode>(I)) {
6290       for (auto *U : Phi->users())
6291         WorkList.push_back(cast<Instruction>(U));
6292       continue;
6293     }
6294 
6295     switch (I->getOpcode()) {
6296     case Instruction::And: {
6297       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6298       if (!AndC)
6299         return false;
6300       APInt AndBits = AndC->getValue();
6301       DemandBits |= AndBits;
6302       // Keep track of the widest and mask we see.
6303       if (AndBits.ugt(WidestAndBits))
6304         WidestAndBits = AndBits;
6305       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6306         AndsToMaybeRemove.push_back(I);
6307       break;
6308     }
6309 
6310     case Instruction::Shl: {
6311       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6312       if (!ShlC)
6313         return false;
6314       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6315       DemandBits.setLowBits(BitWidth - ShiftAmt);
6316       break;
6317     }
6318 
6319     case Instruction::Trunc: {
6320       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6321       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6322       DemandBits.setLowBits(TruncBitWidth);
6323       break;
6324     }
6325 
6326     default:
6327       return false;
6328     }
6329   }
6330 
6331   uint32_t ActiveBits = DemandBits.getActiveBits();
6332   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6333   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6334   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6335   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6336   // followed by an AND.
6337   // TODO: Look into removing this restriction by fixing backends to either
6338   // return false for isLoadExtLegal for i1 or have them select this pattern to
6339   // a single instruction.
6340   //
6341   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6342   // mask, since these are the only ands that will be removed by isel.
6343   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6344       WidestAndBits != DemandBits)
6345     return false;
6346 
6347   LLVMContext &Ctx = Load->getType()->getContext();
6348   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6349   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6350 
6351   // Reject cases that won't be matched as extloads.
6352   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6353       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6354     return false;
6355 
6356   IRBuilder<> Builder(Load->getNextNode());
6357   auto *NewAnd = cast<Instruction>(
6358       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6359   // Mark this instruction as "inserted by CGP", so that other
6360   // optimizations don't touch it.
6361   InsertedInsts.insert(NewAnd);
6362 
6363   // Replace all uses of load with new and (except for the use of load in the
6364   // new and itself).
6365   Load->replaceAllUsesWith(NewAnd);
6366   NewAnd->setOperand(0, Load);
6367 
6368   // Remove any and instructions that are now redundant.
6369   for (auto *And : AndsToMaybeRemove)
6370     // Check that the and mask is the same as the one we decided to put on the
6371     // new and.
6372     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6373       And->replaceAllUsesWith(NewAnd);
6374       if (&*CurInstIterator == And)
6375         CurInstIterator = std::next(And->getIterator());
6376       And->eraseFromParent();
6377       ++NumAndUses;
6378     }
6379 
6380   ++NumAndsAdded;
6381   return true;
6382 }
6383 
6384 /// Check if V (an operand of a select instruction) is an expensive instruction
6385 /// that is only used once.
6386 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6387   auto *I = dyn_cast<Instruction>(V);
6388   // If it's safe to speculatively execute, then it should not have side
6389   // effects; therefore, it's safe to sink and possibly *not* execute.
6390   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6391          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6392          TargetTransformInfo::TCC_Expensive;
6393 }
6394 
6395 /// Returns true if a SelectInst should be turned into an explicit branch.
6396 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6397                                                 const TargetLowering *TLI,
6398                                                 SelectInst *SI) {
6399   // If even a predictable select is cheap, then a branch can't be cheaper.
6400   if (!TLI->isPredictableSelectExpensive())
6401     return false;
6402 
6403   // FIXME: This should use the same heuristics as IfConversion to determine
6404   // whether a select is better represented as a branch.
6405 
6406   // If metadata tells us that the select condition is obviously predictable,
6407   // then we want to replace the select with a branch.
6408   uint64_t TrueWeight, FalseWeight;
6409   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6410     uint64_t Max = std::max(TrueWeight, FalseWeight);
6411     uint64_t Sum = TrueWeight + FalseWeight;
6412     if (Sum != 0) {
6413       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6414       if (Probability > TLI->getPredictableBranchThreshold())
6415         return true;
6416     }
6417   }
6418 
6419   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6420 
6421   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6422   // comparison condition. If the compare has more than one use, there's
6423   // probably another cmov or setcc around, so it's not worth emitting a branch.
6424   if (!Cmp || !Cmp->hasOneUse())
6425     return false;
6426 
6427   // If either operand of the select is expensive and only needed on one side
6428   // of the select, we should form a branch.
6429   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6430       sinkSelectOperand(TTI, SI->getFalseValue()))
6431     return true;
6432 
6433   return false;
6434 }
6435 
6436 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6437 /// false value of \p SI. If the true/false value of \p SI is defined by any
6438 /// select instructions in \p Selects, look through the defining select
6439 /// instruction until the true/false value is not defined in \p Selects.
6440 static Value *getTrueOrFalseValue(
6441     SelectInst *SI, bool isTrue,
6442     const SmallPtrSet<const Instruction *, 2> &Selects) {
6443   Value *V = nullptr;
6444 
6445   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6446        DefSI = dyn_cast<SelectInst>(V)) {
6447     assert(DefSI->getCondition() == SI->getCondition() &&
6448            "The condition of DefSI does not match with SI");
6449     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6450   }
6451 
6452   assert(V && "Failed to get select true/false value");
6453   return V;
6454 }
6455 
6456 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6457   assert(Shift->isShift() && "Expected a shift");
6458 
6459   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6460   // general vector shifts, and (3) the shift amount is a select-of-splatted
6461   // values, hoist the shifts before the select:
6462   //   shift Op0, (select Cond, TVal, FVal) -->
6463   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6464   //
6465   // This is inverting a generic IR transform when we know that the cost of a
6466   // general vector shift is more than the cost of 2 shift-by-scalars.
6467   // We can't do this effectively in SDAG because we may not be able to
6468   // determine if the select operands are splats from within a basic block.
6469   Type *Ty = Shift->getType();
6470   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6471     return false;
6472   Value *Cond, *TVal, *FVal;
6473   if (!match(Shift->getOperand(1),
6474              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6475     return false;
6476   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6477     return false;
6478 
6479   IRBuilder<> Builder(Shift);
6480   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6481   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6482   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6483   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6484   Shift->replaceAllUsesWith(NewSel);
6485   Shift->eraseFromParent();
6486   return true;
6487 }
6488 
6489 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6490   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6491   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6492          "Expected a funnel shift");
6493 
6494   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6495   // than general vector shifts, and (3) the shift amount is select-of-splatted
6496   // values, hoist the funnel shifts before the select:
6497   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6498   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6499   //
6500   // This is inverting a generic IR transform when we know that the cost of a
6501   // general vector shift is more than the cost of 2 shift-by-scalars.
6502   // We can't do this effectively in SDAG because we may not be able to
6503   // determine if the select operands are splats from within a basic block.
6504   Type *Ty = Fsh->getType();
6505   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6506     return false;
6507   Value *Cond, *TVal, *FVal;
6508   if (!match(Fsh->getOperand(2),
6509              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6510     return false;
6511   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6512     return false;
6513 
6514   IRBuilder<> Builder(Fsh);
6515   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6516   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6517   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6518   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6519   Fsh->replaceAllUsesWith(NewSel);
6520   Fsh->eraseFromParent();
6521   return true;
6522 }
6523 
6524 /// If we have a SelectInst that will likely profit from branch prediction,
6525 /// turn it into a branch.
6526 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6527   if (DisableSelectToBranch)
6528     return false;
6529 
6530   // Find all consecutive select instructions that share the same condition.
6531   SmallVector<SelectInst *, 2> ASI;
6532   ASI.push_back(SI);
6533   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6534        It != SI->getParent()->end(); ++It) {
6535     SelectInst *I = dyn_cast<SelectInst>(&*It);
6536     if (I && SI->getCondition() == I->getCondition()) {
6537       ASI.push_back(I);
6538     } else {
6539       break;
6540     }
6541   }
6542 
6543   SelectInst *LastSI = ASI.back();
6544   // Increment the current iterator to skip all the rest of select instructions
6545   // because they will be either "not lowered" or "all lowered" to branch.
6546   CurInstIterator = std::next(LastSI->getIterator());
6547 
6548   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6549 
6550   // Can we convert the 'select' to CF ?
6551   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6552     return false;
6553 
6554   TargetLowering::SelectSupportKind SelectKind;
6555   if (VectorCond)
6556     SelectKind = TargetLowering::VectorMaskSelect;
6557   else if (SI->getType()->isVectorTy())
6558     SelectKind = TargetLowering::ScalarCondVectorVal;
6559   else
6560     SelectKind = TargetLowering::ScalarValSelect;
6561 
6562   if (TLI->isSelectSupported(SelectKind) &&
6563       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6564        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6565     return false;
6566 
6567   // The DominatorTree needs to be rebuilt by any consumers after this
6568   // transformation. We simply reset here rather than setting the ModifiedDT
6569   // flag to avoid restarting the function walk in runOnFunction for each
6570   // select optimized.
6571   DT.reset();
6572 
6573   // Transform a sequence like this:
6574   //    start:
6575   //       %cmp = cmp uge i32 %a, %b
6576   //       %sel = select i1 %cmp, i32 %c, i32 %d
6577   //
6578   // Into:
6579   //    start:
6580   //       %cmp = cmp uge i32 %a, %b
6581   //       %cmp.frozen = freeze %cmp
6582   //       br i1 %cmp.frozen, label %select.true, label %select.false
6583   //    select.true:
6584   //       br label %select.end
6585   //    select.false:
6586   //       br label %select.end
6587   //    select.end:
6588   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6589   //
6590   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6591   // In addition, we may sink instructions that produce %c or %d from
6592   // the entry block into the destination(s) of the new branch.
6593   // If the true or false blocks do not contain a sunken instruction, that
6594   // block and its branch may be optimized away. In that case, one side of the
6595   // first branch will point directly to select.end, and the corresponding PHI
6596   // predecessor block will be the start block.
6597 
6598   // First, we split the block containing the select into 2 blocks.
6599   BasicBlock *StartBlock = SI->getParent();
6600   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6601   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6602   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6603 
6604   // Delete the unconditional branch that was just created by the split.
6605   StartBlock->getTerminator()->eraseFromParent();
6606 
6607   // These are the new basic blocks for the conditional branch.
6608   // At least one will become an actual new basic block.
6609   BasicBlock *TrueBlock = nullptr;
6610   BasicBlock *FalseBlock = nullptr;
6611   BranchInst *TrueBranch = nullptr;
6612   BranchInst *FalseBranch = nullptr;
6613 
6614   // Sink expensive instructions into the conditional blocks to avoid executing
6615   // them speculatively.
6616   for (SelectInst *SI : ASI) {
6617     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6618       if (TrueBlock == nullptr) {
6619         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6620                                        EndBlock->getParent(), EndBlock);
6621         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6622         TrueBranch->setDebugLoc(SI->getDebugLoc());
6623       }
6624       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6625       TrueInst->moveBefore(TrueBranch);
6626     }
6627     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6628       if (FalseBlock == nullptr) {
6629         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6630                                         EndBlock->getParent(), EndBlock);
6631         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6632         FalseBranch->setDebugLoc(SI->getDebugLoc());
6633       }
6634       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6635       FalseInst->moveBefore(FalseBranch);
6636     }
6637   }
6638 
6639   // If there was nothing to sink, then arbitrarily choose the 'false' side
6640   // for a new input value to the PHI.
6641   if (TrueBlock == FalseBlock) {
6642     assert(TrueBlock == nullptr &&
6643            "Unexpected basic block transform while optimizing select");
6644 
6645     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6646                                     EndBlock->getParent(), EndBlock);
6647     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6648     FalseBranch->setDebugLoc(SI->getDebugLoc());
6649   }
6650 
6651   // Insert the real conditional branch based on the original condition.
6652   // If we did not create a new block for one of the 'true' or 'false' paths
6653   // of the condition, it means that side of the branch goes to the end block
6654   // directly and the path originates from the start block from the point of
6655   // view of the new PHI.
6656   BasicBlock *TT, *FT;
6657   if (TrueBlock == nullptr) {
6658     TT = EndBlock;
6659     FT = FalseBlock;
6660     TrueBlock = StartBlock;
6661   } else if (FalseBlock == nullptr) {
6662     TT = TrueBlock;
6663     FT = EndBlock;
6664     FalseBlock = StartBlock;
6665   } else {
6666     TT = TrueBlock;
6667     FT = FalseBlock;
6668   }
6669   IRBuilder<> IB(SI);
6670   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6671   IB.CreateCondBr(CondFr, TT, FT, SI);
6672 
6673   SmallPtrSet<const Instruction *, 2> INS;
6674   INS.insert(ASI.begin(), ASI.end());
6675   // Use reverse iterator because later select may use the value of the
6676   // earlier select, and we need to propagate value through earlier select
6677   // to get the PHI operand.
6678   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6679     SelectInst *SI = *It;
6680     // The select itself is replaced with a PHI Node.
6681     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6682     PN->takeName(SI);
6683     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6684     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6685     PN->setDebugLoc(SI->getDebugLoc());
6686 
6687     SI->replaceAllUsesWith(PN);
6688     SI->eraseFromParent();
6689     INS.erase(SI);
6690     ++NumSelectsExpanded;
6691   }
6692 
6693   // Instruct OptimizeBlock to skip to the next block.
6694   CurInstIterator = StartBlock->end();
6695   return true;
6696 }
6697 
6698 /// Some targets only accept certain types for splat inputs. For example a VDUP
6699 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6700 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
6701 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6702   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6703   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6704                             m_Undef(), m_ZeroMask())))
6705     return false;
6706   Type *NewType = TLI->shouldConvertSplatType(SVI);
6707   if (!NewType)
6708     return false;
6709 
6710   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6711   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6712   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6713          "Expected a type of the same size!");
6714   auto *NewVecType =
6715       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6716 
6717   // Create a bitcast (shuffle (insert (bitcast(..))))
6718   IRBuilder<> Builder(SVI->getContext());
6719   Builder.SetInsertPoint(SVI);
6720   Value *BC1 = Builder.CreateBitCast(
6721       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6722   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6723   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6724 
6725   SVI->replaceAllUsesWith(BC2);
6726   RecursivelyDeleteTriviallyDeadInstructions(
6727       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6728 
6729   // Also hoist the bitcast up to its operand if it they are not in the same
6730   // block.
6731   if (auto *BCI = dyn_cast<Instruction>(BC1))
6732     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6733       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6734           !Op->isTerminator() && !Op->isEHPad())
6735         BCI->moveAfter(Op);
6736 
6737   return true;
6738 }
6739 
6740 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6741   // If the operands of I can be folded into a target instruction together with
6742   // I, duplicate and sink them.
6743   SmallVector<Use *, 4> OpsToSink;
6744   if (!TLI->shouldSinkOperands(I, OpsToSink))
6745     return false;
6746 
6747   // OpsToSink can contain multiple uses in a use chain (e.g.
6748   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6749   // uses must come first, so we process the ops in reverse order so as to not
6750   // create invalid IR.
6751   BasicBlock *TargetBB = I->getParent();
6752   bool Changed = false;
6753   SmallVector<Use *, 4> ToReplace;
6754   for (Use *U : reverse(OpsToSink)) {
6755     auto *UI = cast<Instruction>(U->get());
6756     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6757       continue;
6758     ToReplace.push_back(U);
6759   }
6760 
6761   SetVector<Instruction *> MaybeDead;
6762   DenseMap<Instruction *, Instruction *> NewInstructions;
6763   Instruction *InsertPoint = I;
6764   for (Use *U : ToReplace) {
6765     auto *UI = cast<Instruction>(U->get());
6766     Instruction *NI = UI->clone();
6767     NewInstructions[UI] = NI;
6768     MaybeDead.insert(UI);
6769     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6770     NI->insertBefore(InsertPoint);
6771     InsertPoint = NI;
6772     InsertedInsts.insert(NI);
6773 
6774     // Update the use for the new instruction, making sure that we update the
6775     // sunk instruction uses, if it is part of a chain that has already been
6776     // sunk.
6777     Instruction *OldI = cast<Instruction>(U->getUser());
6778     if (NewInstructions.count(OldI))
6779       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6780     else
6781       U->set(NI);
6782     Changed = true;
6783   }
6784 
6785   // Remove instructions that are dead after sinking.
6786   for (auto *I : MaybeDead) {
6787     if (!I->hasNUsesOrMore(1)) {
6788       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6789       I->eraseFromParent();
6790     }
6791   }
6792 
6793   return Changed;
6794 }
6795 
6796 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6797   Value *Cond = SI->getCondition();
6798   Type *OldType = Cond->getType();
6799   LLVMContext &Context = Cond->getContext();
6800   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6801   unsigned RegWidth = RegType.getSizeInBits();
6802 
6803   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6804     return false;
6805 
6806   // If the register width is greater than the type width, expand the condition
6807   // of the switch instruction and each case constant to the width of the
6808   // register. By widening the type of the switch condition, subsequent
6809   // comparisons (for case comparisons) will not need to be extended to the
6810   // preferred register width, so we will potentially eliminate N-1 extends,
6811   // where N is the number of cases in the switch.
6812   auto *NewType = Type::getIntNTy(Context, RegWidth);
6813 
6814   // Zero-extend the switch condition and case constants unless the switch
6815   // condition is a function argument that is already being sign-extended.
6816   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6817   // everything instead.
6818   Instruction::CastOps ExtType = Instruction::ZExt;
6819   if (auto *Arg = dyn_cast<Argument>(Cond))
6820     if (Arg->hasSExtAttr())
6821       ExtType = Instruction::SExt;
6822 
6823   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6824   ExtInst->insertBefore(SI);
6825   ExtInst->setDebugLoc(SI->getDebugLoc());
6826   SI->setCondition(ExtInst);
6827   for (auto Case : SI->cases()) {
6828     APInt NarrowConst = Case.getCaseValue()->getValue();
6829     APInt WideConst = (ExtType == Instruction::ZExt) ?
6830                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6831     Case.setValue(ConstantInt::get(Context, WideConst));
6832   }
6833 
6834   return true;
6835 }
6836 
6837 
6838 namespace {
6839 
6840 /// Helper class to promote a scalar operation to a vector one.
6841 /// This class is used to move downward extractelement transition.
6842 /// E.g.,
6843 /// a = vector_op <2 x i32>
6844 /// b = extractelement <2 x i32> a, i32 0
6845 /// c = scalar_op b
6846 /// store c
6847 ///
6848 /// =>
6849 /// a = vector_op <2 x i32>
6850 /// c = vector_op a (equivalent to scalar_op on the related lane)
6851 /// * d = extractelement <2 x i32> c, i32 0
6852 /// * store d
6853 /// Assuming both extractelement and store can be combine, we get rid of the
6854 /// transition.
6855 class VectorPromoteHelper {
6856   /// DataLayout associated with the current module.
6857   const DataLayout &DL;
6858 
6859   /// Used to perform some checks on the legality of vector operations.
6860   const TargetLowering &TLI;
6861 
6862   /// Used to estimated the cost of the promoted chain.
6863   const TargetTransformInfo &TTI;
6864 
6865   /// The transition being moved downwards.
6866   Instruction *Transition;
6867 
6868   /// The sequence of instructions to be promoted.
6869   SmallVector<Instruction *, 4> InstsToBePromoted;
6870 
6871   /// Cost of combining a store and an extract.
6872   unsigned StoreExtractCombineCost;
6873 
6874   /// Instruction that will be combined with the transition.
6875   Instruction *CombineInst = nullptr;
6876 
6877   /// The instruction that represents the current end of the transition.
6878   /// Since we are faking the promotion until we reach the end of the chain
6879   /// of computation, we need a way to get the current end of the transition.
6880   Instruction *getEndOfTransition() const {
6881     if (InstsToBePromoted.empty())
6882       return Transition;
6883     return InstsToBePromoted.back();
6884   }
6885 
6886   /// Return the index of the original value in the transition.
6887   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6888   /// c, is at index 0.
6889   unsigned getTransitionOriginalValueIdx() const {
6890     assert(isa<ExtractElementInst>(Transition) &&
6891            "Other kind of transitions are not supported yet");
6892     return 0;
6893   }
6894 
6895   /// Return the index of the index in the transition.
6896   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6897   /// is at index 1.
6898   unsigned getTransitionIdx() const {
6899     assert(isa<ExtractElementInst>(Transition) &&
6900            "Other kind of transitions are not supported yet");
6901     return 1;
6902   }
6903 
6904   /// Get the type of the transition.
6905   /// This is the type of the original value.
6906   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6907   /// transition is <2 x i32>.
6908   Type *getTransitionType() const {
6909     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6910   }
6911 
6912   /// Promote \p ToBePromoted by moving \p Def downward through.
6913   /// I.e., we have the following sequence:
6914   /// Def = Transition <ty1> a to <ty2>
6915   /// b = ToBePromoted <ty2> Def, ...
6916   /// =>
6917   /// b = ToBePromoted <ty1> a, ...
6918   /// Def = Transition <ty1> ToBePromoted to <ty2>
6919   void promoteImpl(Instruction *ToBePromoted);
6920 
6921   /// Check whether or not it is profitable to promote all the
6922   /// instructions enqueued to be promoted.
6923   bool isProfitableToPromote() {
6924     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6925     unsigned Index = isa<ConstantInt>(ValIdx)
6926                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6927                          : -1;
6928     Type *PromotedType = getTransitionType();
6929 
6930     StoreInst *ST = cast<StoreInst>(CombineInst);
6931     unsigned AS = ST->getPointerAddressSpace();
6932     unsigned Align = ST->getAlignment();
6933     // Check if this store is supported.
6934     if (!TLI.allowsMisalignedMemoryAccesses(
6935             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6936             Align)) {
6937       // If this is not supported, there is no way we can combine
6938       // the extract with the store.
6939       return false;
6940     }
6941 
6942     // The scalar chain of computation has to pay for the transition
6943     // scalar to vector.
6944     // The vector chain has to account for the combining cost.
6945     uint64_t ScalarCost =
6946         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6947     uint64_t VectorCost = StoreExtractCombineCost;
6948     enum TargetTransformInfo::TargetCostKind CostKind =
6949       TargetTransformInfo::TCK_RecipThroughput;
6950     for (const auto &Inst : InstsToBePromoted) {
6951       // Compute the cost.
6952       // By construction, all instructions being promoted are arithmetic ones.
6953       // Moreover, one argument is a constant that can be viewed as a splat
6954       // constant.
6955       Value *Arg0 = Inst->getOperand(0);
6956       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6957                             isa<ConstantFP>(Arg0);
6958       TargetTransformInfo::OperandValueKind Arg0OVK =
6959           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6960                          : TargetTransformInfo::OK_AnyValue;
6961       TargetTransformInfo::OperandValueKind Arg1OVK =
6962           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6963                           : TargetTransformInfo::OK_AnyValue;
6964       ScalarCost += TTI.getArithmeticInstrCost(
6965           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
6966       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6967                                                CostKind,
6968                                                Arg0OVK, Arg1OVK);
6969     }
6970     LLVM_DEBUG(
6971         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6972                << ScalarCost << "\nVector: " << VectorCost << '\n');
6973     return ScalarCost > VectorCost;
6974   }
6975 
6976   /// Generate a constant vector with \p Val with the same
6977   /// number of elements as the transition.
6978   /// \p UseSplat defines whether or not \p Val should be replicated
6979   /// across the whole vector.
6980   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6981   /// otherwise we generate a vector with as many undef as possible:
6982   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6983   /// used at the index of the extract.
6984   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6985     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6986     if (!UseSplat) {
6987       // If we cannot determine where the constant must be, we have to
6988       // use a splat constant.
6989       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6990       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6991         ExtractIdx = CstVal->getSExtValue();
6992       else
6993         UseSplat = true;
6994     }
6995 
6996     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
6997     if (UseSplat)
6998       return ConstantVector::getSplat(EC, Val);
6999 
7000     if (!EC.isScalable()) {
7001       SmallVector<Constant *, 4> ConstVec;
7002       UndefValue *UndefVal = UndefValue::get(Val->getType());
7003       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7004         if (Idx == ExtractIdx)
7005           ConstVec.push_back(Val);
7006         else
7007           ConstVec.push_back(UndefVal);
7008       }
7009       return ConstantVector::get(ConstVec);
7010     } else
7011       llvm_unreachable(
7012           "Generate scalable vector for non-splat is unimplemented");
7013   }
7014 
7015   /// Check if promoting to a vector type an operand at \p OperandIdx
7016   /// in \p Use can trigger undefined behavior.
7017   static bool canCauseUndefinedBehavior(const Instruction *Use,
7018                                         unsigned OperandIdx) {
7019     // This is not safe to introduce undef when the operand is on
7020     // the right hand side of a division-like instruction.
7021     if (OperandIdx != 1)
7022       return false;
7023     switch (Use->getOpcode()) {
7024     default:
7025       return false;
7026     case Instruction::SDiv:
7027     case Instruction::UDiv:
7028     case Instruction::SRem:
7029     case Instruction::URem:
7030       return true;
7031     case Instruction::FDiv:
7032     case Instruction::FRem:
7033       return !Use->hasNoNaNs();
7034     }
7035     llvm_unreachable(nullptr);
7036   }
7037 
7038 public:
7039   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7040                       const TargetTransformInfo &TTI, Instruction *Transition,
7041                       unsigned CombineCost)
7042       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7043         StoreExtractCombineCost(CombineCost) {
7044     assert(Transition && "Do not know how to promote null");
7045   }
7046 
7047   /// Check if we can promote \p ToBePromoted to \p Type.
7048   bool canPromote(const Instruction *ToBePromoted) const {
7049     // We could support CastInst too.
7050     return isa<BinaryOperator>(ToBePromoted);
7051   }
7052 
7053   /// Check if it is profitable to promote \p ToBePromoted
7054   /// by moving downward the transition through.
7055   bool shouldPromote(const Instruction *ToBePromoted) const {
7056     // Promote only if all the operands can be statically expanded.
7057     // Indeed, we do not want to introduce any new kind of transitions.
7058     for (const Use &U : ToBePromoted->operands()) {
7059       const Value *Val = U.get();
7060       if (Val == getEndOfTransition()) {
7061         // If the use is a division and the transition is on the rhs,
7062         // we cannot promote the operation, otherwise we may create a
7063         // division by zero.
7064         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7065           return false;
7066         continue;
7067       }
7068       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7069           !isa<ConstantFP>(Val))
7070         return false;
7071     }
7072     // Check that the resulting operation is legal.
7073     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7074     if (!ISDOpcode)
7075       return false;
7076     return StressStoreExtract ||
7077            TLI.isOperationLegalOrCustom(
7078                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7079   }
7080 
7081   /// Check whether or not \p Use can be combined
7082   /// with the transition.
7083   /// I.e., is it possible to do Use(Transition) => AnotherUse?
7084   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7085 
7086   /// Record \p ToBePromoted as part of the chain to be promoted.
7087   void enqueueForPromotion(Instruction *ToBePromoted) {
7088     InstsToBePromoted.push_back(ToBePromoted);
7089   }
7090 
7091   /// Set the instruction that will be combined with the transition.
7092   void recordCombineInstruction(Instruction *ToBeCombined) {
7093     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7094     CombineInst = ToBeCombined;
7095   }
7096 
7097   /// Promote all the instructions enqueued for promotion if it is
7098   /// is profitable.
7099   /// \return True if the promotion happened, false otherwise.
7100   bool promote() {
7101     // Check if there is something to promote.
7102     // Right now, if we do not have anything to combine with,
7103     // we assume the promotion is not profitable.
7104     if (InstsToBePromoted.empty() || !CombineInst)
7105       return false;
7106 
7107     // Check cost.
7108     if (!StressStoreExtract && !isProfitableToPromote())
7109       return false;
7110 
7111     // Promote.
7112     for (auto &ToBePromoted : InstsToBePromoted)
7113       promoteImpl(ToBePromoted);
7114     InstsToBePromoted.clear();
7115     return true;
7116   }
7117 };
7118 
7119 } // end anonymous namespace
7120 
7121 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7122   // At this point, we know that all the operands of ToBePromoted but Def
7123   // can be statically promoted.
7124   // For Def, we need to use its parameter in ToBePromoted:
7125   // b = ToBePromoted ty1 a
7126   // Def = Transition ty1 b to ty2
7127   // Move the transition down.
7128   // 1. Replace all uses of the promoted operation by the transition.
7129   // = ... b => = ... Def.
7130   assert(ToBePromoted->getType() == Transition->getType() &&
7131          "The type of the result of the transition does not match "
7132          "the final type");
7133   ToBePromoted->replaceAllUsesWith(Transition);
7134   // 2. Update the type of the uses.
7135   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7136   Type *TransitionTy = getTransitionType();
7137   ToBePromoted->mutateType(TransitionTy);
7138   // 3. Update all the operands of the promoted operation with promoted
7139   // operands.
7140   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7141   for (Use &U : ToBePromoted->operands()) {
7142     Value *Val = U.get();
7143     Value *NewVal = nullptr;
7144     if (Val == Transition)
7145       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7146     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7147              isa<ConstantFP>(Val)) {
7148       // Use a splat constant if it is not safe to use undef.
7149       NewVal = getConstantVector(
7150           cast<Constant>(Val),
7151           isa<UndefValue>(Val) ||
7152               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7153     } else
7154       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7155                        "this?");
7156     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7157   }
7158   Transition->moveAfter(ToBePromoted);
7159   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7160 }
7161 
7162 /// Some targets can do store(extractelement) with one instruction.
7163 /// Try to push the extractelement towards the stores when the target
7164 /// has this feature and this is profitable.
7165 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7166   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7167   if (DisableStoreExtract ||
7168       (!StressStoreExtract &&
7169        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7170                                        Inst->getOperand(1), CombineCost)))
7171     return false;
7172 
7173   // At this point we know that Inst is a vector to scalar transition.
7174   // Try to move it down the def-use chain, until:
7175   // - We can combine the transition with its single use
7176   //   => we got rid of the transition.
7177   // - We escape the current basic block
7178   //   => we would need to check that we are moving it at a cheaper place and
7179   //      we do not do that for now.
7180   BasicBlock *Parent = Inst->getParent();
7181   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7182   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7183   // If the transition has more than one use, assume this is not going to be
7184   // beneficial.
7185   while (Inst->hasOneUse()) {
7186     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7187     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7188 
7189     if (ToBePromoted->getParent() != Parent) {
7190       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7191                         << ToBePromoted->getParent()->getName()
7192                         << ") than the transition (" << Parent->getName()
7193                         << ").\n");
7194       return false;
7195     }
7196 
7197     if (VPH.canCombine(ToBePromoted)) {
7198       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7199                         << "will be combined with: " << *ToBePromoted << '\n');
7200       VPH.recordCombineInstruction(ToBePromoted);
7201       bool Changed = VPH.promote();
7202       NumStoreExtractExposed += Changed;
7203       return Changed;
7204     }
7205 
7206     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7207     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7208       return false;
7209 
7210     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7211 
7212     VPH.enqueueForPromotion(ToBePromoted);
7213     Inst = ToBePromoted;
7214   }
7215   return false;
7216 }
7217 
7218 /// For the instruction sequence of store below, F and I values
7219 /// are bundled together as an i64 value before being stored into memory.
7220 /// Sometimes it is more efficient to generate separate stores for F and I,
7221 /// which can remove the bitwise instructions or sink them to colder places.
7222 ///
7223 ///   (store (or (zext (bitcast F to i32) to i64),
7224 ///              (shl (zext I to i64), 32)), addr)  -->
7225 ///   (store F, addr) and (store I, addr+4)
7226 ///
7227 /// Similarly, splitting for other merged store can also be beneficial, like:
7228 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7229 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7230 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7231 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7232 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7233 ///
7234 /// We allow each target to determine specifically which kind of splitting is
7235 /// supported.
7236 ///
7237 /// The store patterns are commonly seen from the simple code snippet below
7238 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7239 ///   void goo(const std::pair<int, float> &);
7240 ///   hoo() {
7241 ///     ...
7242 ///     goo(std::make_pair(tmp, ftmp));
7243 ///     ...
7244 ///   }
7245 ///
7246 /// Although we already have similar splitting in DAG Combine, we duplicate
7247 /// it in CodeGenPrepare to catch the case in which pattern is across
7248 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7249 /// during code expansion.
7250 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7251                                 const TargetLowering &TLI) {
7252   // Handle simple but common cases only.
7253   Type *StoreType = SI.getValueOperand()->getType();
7254 
7255   // The code below assumes shifting a value by <number of bits>,
7256   // whereas scalable vectors would have to be shifted by
7257   // <2log(vscale) + number of bits> in order to store the
7258   // low/high parts. Bailing out for now.
7259   if (isa<ScalableVectorType>(StoreType))
7260     return false;
7261 
7262   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7263       DL.getTypeSizeInBits(StoreType) == 0)
7264     return false;
7265 
7266   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7267   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7268   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7269     return false;
7270 
7271   // Don't split the store if it is volatile.
7272   if (SI.isVolatile())
7273     return false;
7274 
7275   // Match the following patterns:
7276   // (store (or (zext LValue to i64),
7277   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7278   //  or
7279   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7280   //            (zext LValue to i64),
7281   // Expect both operands of OR and the first operand of SHL have only
7282   // one use.
7283   Value *LValue, *HValue;
7284   if (!match(SI.getValueOperand(),
7285              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7286                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7287                                    m_SpecificInt(HalfValBitSize))))))
7288     return false;
7289 
7290   // Check LValue and HValue are int with size less or equal than 32.
7291   if (!LValue->getType()->isIntegerTy() ||
7292       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7293       !HValue->getType()->isIntegerTy() ||
7294       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7295     return false;
7296 
7297   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7298   // as the input of target query.
7299   auto *LBC = dyn_cast<BitCastInst>(LValue);
7300   auto *HBC = dyn_cast<BitCastInst>(HValue);
7301   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7302                   : EVT::getEVT(LValue->getType());
7303   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7304                    : EVT::getEVT(HValue->getType());
7305   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7306     return false;
7307 
7308   // Start to split store.
7309   IRBuilder<> Builder(SI.getContext());
7310   Builder.SetInsertPoint(&SI);
7311 
7312   // If LValue/HValue is a bitcast in another BB, create a new one in current
7313   // BB so it may be merged with the splitted stores by dag combiner.
7314   if (LBC && LBC->getParent() != SI.getParent())
7315     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7316   if (HBC && HBC->getParent() != SI.getParent())
7317     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7318 
7319   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7320   auto CreateSplitStore = [&](Value *V, bool Upper) {
7321     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7322     Value *Addr = Builder.CreateBitCast(
7323         SI.getOperand(1),
7324         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7325     Align Alignment = SI.getAlign();
7326     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7327     if (IsOffsetStore) {
7328       Addr = Builder.CreateGEP(
7329           SplitStoreType, Addr,
7330           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7331 
7332       // When splitting the store in half, naturally one half will retain the
7333       // alignment of the original wider store, regardless of whether it was
7334       // over-aligned or not, while the other will require adjustment.
7335       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7336     }
7337     Builder.CreateAlignedStore(V, Addr, Alignment);
7338   };
7339 
7340   CreateSplitStore(LValue, false);
7341   CreateSplitStore(HValue, true);
7342 
7343   // Delete the old store.
7344   SI.eraseFromParent();
7345   return true;
7346 }
7347 
7348 // Return true if the GEP has two operands, the first operand is of a sequential
7349 // type, and the second operand is a constant.
7350 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7351   gep_type_iterator I = gep_type_begin(*GEP);
7352   return GEP->getNumOperands() == 2 &&
7353       I.isSequential() &&
7354       isa<ConstantInt>(GEP->getOperand(1));
7355 }
7356 
7357 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7358 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7359 // reducing liveness interference across those edges benefits global register
7360 // allocation. Currently handles only certain cases.
7361 //
7362 // For example, unmerge %GEPI and %UGEPI as below.
7363 //
7364 // ---------- BEFORE ----------
7365 // SrcBlock:
7366 //   ...
7367 //   %GEPIOp = ...
7368 //   ...
7369 //   %GEPI = gep %GEPIOp, Idx
7370 //   ...
7371 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7372 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7373 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7374 //   %UGEPI)
7375 //
7376 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7377 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7378 // ...
7379 //
7380 // DstBi:
7381 //   ...
7382 //   %UGEPI = gep %GEPIOp, UIdx
7383 // ...
7384 // ---------------------------
7385 //
7386 // ---------- AFTER ----------
7387 // SrcBlock:
7388 //   ... (same as above)
7389 //    (* %GEPI is still alive on the indirectbr edges)
7390 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7391 //    unmerging)
7392 // ...
7393 //
7394 // DstBi:
7395 //   ...
7396 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7397 //   ...
7398 // ---------------------------
7399 //
7400 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7401 // no longer alive on them.
7402 //
7403 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7404 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7405 // not to disable further simplications and optimizations as a result of GEP
7406 // merging.
7407 //
7408 // Note this unmerging may increase the length of the data flow critical path
7409 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7410 // between the register pressure and the length of data-flow critical
7411 // path. Restricting this to the uncommon IndirectBr case would minimize the
7412 // impact of potentially longer critical path, if any, and the impact on compile
7413 // time.
7414 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7415                                              const TargetTransformInfo *TTI) {
7416   BasicBlock *SrcBlock = GEPI->getParent();
7417   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7418   // (non-IndirectBr) cases exit early here.
7419   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7420     return false;
7421   // Check that GEPI is a simple gep with a single constant index.
7422   if (!GEPSequentialConstIndexed(GEPI))
7423     return false;
7424   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7425   // Check that GEPI is a cheap one.
7426   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7427                          TargetTransformInfo::TCK_SizeAndLatency)
7428       > TargetTransformInfo::TCC_Basic)
7429     return false;
7430   Value *GEPIOp = GEPI->getOperand(0);
7431   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7432   if (!isa<Instruction>(GEPIOp))
7433     return false;
7434   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7435   if (GEPIOpI->getParent() != SrcBlock)
7436     return false;
7437   // Check that GEP is used outside the block, meaning it's alive on the
7438   // IndirectBr edge(s).
7439   if (find_if(GEPI->users(), [&](User *Usr) {
7440         if (auto *I = dyn_cast<Instruction>(Usr)) {
7441           if (I->getParent() != SrcBlock) {
7442             return true;
7443           }
7444         }
7445         return false;
7446       }) == GEPI->users().end())
7447     return false;
7448   // The second elements of the GEP chains to be unmerged.
7449   std::vector<GetElementPtrInst *> UGEPIs;
7450   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7451   // on IndirectBr edges.
7452   for (User *Usr : GEPIOp->users()) {
7453     if (Usr == GEPI) continue;
7454     // Check if Usr is an Instruction. If not, give up.
7455     if (!isa<Instruction>(Usr))
7456       return false;
7457     auto *UI = cast<Instruction>(Usr);
7458     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7459     if (UI->getParent() == SrcBlock)
7460       continue;
7461     // Check if Usr is a GEP. If not, give up.
7462     if (!isa<GetElementPtrInst>(Usr))
7463       return false;
7464     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7465     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7466     // the pointer operand to it. If so, record it in the vector. If not, give
7467     // up.
7468     if (!GEPSequentialConstIndexed(UGEPI))
7469       return false;
7470     if (UGEPI->getOperand(0) != GEPIOp)
7471       return false;
7472     if (GEPIIdx->getType() !=
7473         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7474       return false;
7475     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7476     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7477                            TargetTransformInfo::TCK_SizeAndLatency)
7478         > TargetTransformInfo::TCC_Basic)
7479       return false;
7480     UGEPIs.push_back(UGEPI);
7481   }
7482   if (UGEPIs.size() == 0)
7483     return false;
7484   // Check the materializing cost of (Uidx-Idx).
7485   for (GetElementPtrInst *UGEPI : UGEPIs) {
7486     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7487     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7488     unsigned ImmCost =
7489       TTI->getIntImmCost(NewIdx, GEPIIdx->getType(),
7490                          TargetTransformInfo::TCK_SizeAndLatency);
7491     if (ImmCost > TargetTransformInfo::TCC_Basic)
7492       return false;
7493   }
7494   // Now unmerge between GEPI and UGEPIs.
7495   for (GetElementPtrInst *UGEPI : UGEPIs) {
7496     UGEPI->setOperand(0, GEPI);
7497     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7498     Constant *NewUGEPIIdx =
7499         ConstantInt::get(GEPIIdx->getType(),
7500                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7501     UGEPI->setOperand(1, NewUGEPIIdx);
7502     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7503     // inbounds to avoid UB.
7504     if (!GEPI->isInBounds()) {
7505       UGEPI->setIsInBounds(false);
7506     }
7507   }
7508   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7509   // alive on IndirectBr edges).
7510   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7511         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7512       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7513   return true;
7514 }
7515 
7516 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7517   // Bail out if we inserted the instruction to prevent optimizations from
7518   // stepping on each other's toes.
7519   if (InsertedInsts.count(I))
7520     return false;
7521 
7522   // TODO: Move into the switch on opcode below here.
7523   if (PHINode *P = dyn_cast<PHINode>(I)) {
7524     // It is possible for very late stage optimizations (such as SimplifyCFG)
7525     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7526     // trivial PHI, go ahead and zap it here.
7527     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7528       LargeOffsetGEPMap.erase(P);
7529       P->replaceAllUsesWith(V);
7530       P->eraseFromParent();
7531       ++NumPHIsElim;
7532       return true;
7533     }
7534     return false;
7535   }
7536 
7537   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7538     // If the source of the cast is a constant, then this should have
7539     // already been constant folded.  The only reason NOT to constant fold
7540     // it is if something (e.g. LSR) was careful to place the constant
7541     // evaluation in a block other than then one that uses it (e.g. to hoist
7542     // the address of globals out of a loop).  If this is the case, we don't
7543     // want to forward-subst the cast.
7544     if (isa<Constant>(CI->getOperand(0)))
7545       return false;
7546 
7547     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7548       return true;
7549 
7550     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7551       /// Sink a zext or sext into its user blocks if the target type doesn't
7552       /// fit in one register
7553       if (TLI->getTypeAction(CI->getContext(),
7554                              TLI->getValueType(*DL, CI->getType())) ==
7555           TargetLowering::TypeExpandInteger) {
7556         return SinkCast(CI);
7557       } else {
7558         bool MadeChange = optimizeExt(I);
7559         return MadeChange | optimizeExtUses(I);
7560       }
7561     }
7562     return false;
7563   }
7564 
7565   if (auto *Cmp = dyn_cast<CmpInst>(I))
7566     if (optimizeCmp(Cmp, ModifiedDT))
7567       return true;
7568 
7569   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7570     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7571     bool Modified = optimizeLoadExt(LI);
7572     unsigned AS = LI->getPointerAddressSpace();
7573     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7574     return Modified;
7575   }
7576 
7577   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7578     if (splitMergedValStore(*SI, *DL, *TLI))
7579       return true;
7580     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7581     unsigned AS = SI->getPointerAddressSpace();
7582     return optimizeMemoryInst(I, SI->getOperand(1),
7583                               SI->getOperand(0)->getType(), AS);
7584   }
7585 
7586   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7587       unsigned AS = RMW->getPointerAddressSpace();
7588       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7589                                 RMW->getType(), AS);
7590   }
7591 
7592   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7593       unsigned AS = CmpX->getPointerAddressSpace();
7594       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7595                                 CmpX->getCompareOperand()->getType(), AS);
7596   }
7597 
7598   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7599 
7600   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7601     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7602 
7603   // TODO: Move this into the switch on opcode - it handles shifts already.
7604   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7605                 BinOp->getOpcode() == Instruction::LShr)) {
7606     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7607     if (CI && TLI->hasExtractBitsInsn())
7608       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7609         return true;
7610   }
7611 
7612   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7613     if (GEPI->hasAllZeroIndices()) {
7614       /// The GEP operand must be a pointer, so must its result -> BitCast
7615       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7616                                         GEPI->getName(), GEPI);
7617       NC->setDebugLoc(GEPI->getDebugLoc());
7618       GEPI->replaceAllUsesWith(NC);
7619       GEPI->eraseFromParent();
7620       ++NumGEPsElim;
7621       optimizeInst(NC, ModifiedDT);
7622       return true;
7623     }
7624     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7625       return true;
7626     }
7627     return false;
7628   }
7629 
7630   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7631     // freeze(icmp a, const)) -> icmp (freeze a), const
7632     // This helps generate efficient conditional jumps.
7633     Instruction *CmpI = nullptr;
7634     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7635       CmpI = II;
7636     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7637       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7638 
7639     if (CmpI && CmpI->hasOneUse()) {
7640       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7641       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7642                     isa<ConstantPointerNull>(Op0);
7643       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7644                     isa<ConstantPointerNull>(Op1);
7645       if (Const0 || Const1) {
7646         if (!Const0 || !Const1) {
7647           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7648           F->takeName(FI);
7649           CmpI->setOperand(Const0 ? 1 : 0, F);
7650         }
7651         FI->replaceAllUsesWith(CmpI);
7652         FI->eraseFromParent();
7653         return true;
7654       }
7655     }
7656     return false;
7657   }
7658 
7659   if (tryToSinkFreeOperands(I))
7660     return true;
7661 
7662   switch (I->getOpcode()) {
7663   case Instruction::Shl:
7664   case Instruction::LShr:
7665   case Instruction::AShr:
7666     return optimizeShiftInst(cast<BinaryOperator>(I));
7667   case Instruction::Call:
7668     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7669   case Instruction::Select:
7670     return optimizeSelectInst(cast<SelectInst>(I));
7671   case Instruction::ShuffleVector:
7672     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7673   case Instruction::Switch:
7674     return optimizeSwitchInst(cast<SwitchInst>(I));
7675   case Instruction::ExtractElement:
7676     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7677   }
7678 
7679   return false;
7680 }
7681 
7682 /// Given an OR instruction, check to see if this is a bitreverse
7683 /// idiom. If so, insert the new intrinsic and return true.
7684 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7685   if (!I.getType()->isIntegerTy() ||
7686       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7687                                      TLI->getValueType(*DL, I.getType(), true)))
7688     return false;
7689 
7690   SmallVector<Instruction*, 4> Insts;
7691   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7692     return false;
7693   Instruction *LastInst = Insts.back();
7694   I.replaceAllUsesWith(LastInst);
7695   RecursivelyDeleteTriviallyDeadInstructions(
7696       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7697   return true;
7698 }
7699 
7700 // In this pass we look for GEP and cast instructions that are used
7701 // across basic blocks and rewrite them to improve basic-block-at-a-time
7702 // selection.
7703 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7704   SunkAddrs.clear();
7705   bool MadeChange = false;
7706 
7707   CurInstIterator = BB.begin();
7708   while (CurInstIterator != BB.end()) {
7709     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7710     if (ModifiedDT)
7711       return true;
7712   }
7713 
7714   bool MadeBitReverse = true;
7715   while (MadeBitReverse) {
7716     MadeBitReverse = false;
7717     for (auto &I : reverse(BB)) {
7718       if (makeBitReverse(I)) {
7719         MadeBitReverse = MadeChange = true;
7720         break;
7721       }
7722     }
7723   }
7724   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7725 
7726   return MadeChange;
7727 }
7728 
7729 // Some CGP optimizations may move or alter what's computed in a block. Check
7730 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
7731 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7732   assert(isa<DbgValueInst>(I));
7733   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7734 
7735   // Does this dbg.value refer to a sunk address calculation?
7736   Value *Location = DVI.getVariableLocation();
7737   WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7738   Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7739   if (SunkAddr) {
7740     // Point dbg.value at locally computed address, which should give the best
7741     // opportunity to be accurately lowered. This update may change the type of
7742     // pointer being referred to; however this makes no difference to debugging
7743     // information, and we can't generate bitcasts that may affect codegen.
7744     DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(),
7745                                            ValueAsMetadata::get(SunkAddr)));
7746     return true;
7747   }
7748   return false;
7749 }
7750 
7751 // A llvm.dbg.value may be using a value before its definition, due to
7752 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7753 // them by moving the dbg.value to immediately after the value definition.
7754 // FIXME: Ideally this should never be necessary, and this has the potential
7755 // to re-order dbg.value intrinsics.
7756 bool CodeGenPrepare::placeDbgValues(Function &F) {
7757   bool MadeChange = false;
7758   DominatorTree DT(F);
7759 
7760   for (BasicBlock &BB : F) {
7761     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7762       Instruction *Insn = &*BI++;
7763       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7764       if (!DVI)
7765         continue;
7766 
7767       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7768 
7769       if (!VI || VI->isTerminator())
7770         continue;
7771 
7772       // If VI is a phi in a block with an EHPad terminator, we can't insert
7773       // after it.
7774       if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7775         continue;
7776 
7777       // If the defining instruction dominates the dbg.value, we do not need
7778       // to move the dbg.value.
7779       if (DT.dominates(VI, DVI))
7780         continue;
7781 
7782       LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7783                         << *DVI << ' ' << *VI);
7784       DVI->removeFromParent();
7785       if (isa<PHINode>(VI))
7786         DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7787       else
7788         DVI->insertAfter(VI);
7789       MadeChange = true;
7790       ++NumDbgValueMoved;
7791     }
7792   }
7793   return MadeChange;
7794 }
7795 
7796 /// Scale down both weights to fit into uint32_t.
7797 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7798   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7799   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7800   NewTrue = NewTrue / Scale;
7801   NewFalse = NewFalse / Scale;
7802 }
7803 
7804 /// Some targets prefer to split a conditional branch like:
7805 /// \code
7806 ///   %0 = icmp ne i32 %a, 0
7807 ///   %1 = icmp ne i32 %b, 0
7808 ///   %or.cond = or i1 %0, %1
7809 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7810 /// \endcode
7811 /// into multiple branch instructions like:
7812 /// \code
7813 ///   bb1:
7814 ///     %0 = icmp ne i32 %a, 0
7815 ///     br i1 %0, label %TrueBB, label %bb2
7816 ///   bb2:
7817 ///     %1 = icmp ne i32 %b, 0
7818 ///     br i1 %1, label %TrueBB, label %FalseBB
7819 /// \endcode
7820 /// This usually allows instruction selection to do even further optimizations
7821 /// and combine the compare with the branch instruction. Currently this is
7822 /// applied for targets which have "cheap" jump instructions.
7823 ///
7824 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7825 ///
7826 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7827   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
7828     return false;
7829 
7830   bool MadeChange = false;
7831   for (auto &BB : F) {
7832     // Does this BB end with the following?
7833     //   %cond1 = icmp|fcmp|binary instruction ...
7834     //   %cond2 = icmp|fcmp|binary instruction ...
7835     //   %cond.or = or|and i1 %cond1, cond2
7836     //   br i1 %cond.or label %dest1, label %dest2"
7837     Instruction *LogicOp;
7838     BasicBlock *TBB, *FBB;
7839     if (!match(BB.getTerminator(),
7840                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
7841       continue;
7842 
7843     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7844     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7845       continue;
7846 
7847     // The merging of mostly empty BB can cause a degenerate branch.
7848     if (TBB == FBB)
7849       continue;
7850 
7851     unsigned Opc;
7852     Value *Cond1, *Cond2;
7853     if (match(LogicOp,
7854               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
7855       Opc = Instruction::And;
7856     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
7857                                         m_OneUse(m_Value(Cond2)))))
7858       Opc = Instruction::Or;
7859     else
7860       continue;
7861 
7862     auto IsGoodCond = [](Value *Cond) {
7863       return match(
7864           Cond,
7865           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
7866                                            m_LogicalOr(m_Value(), m_Value()))));
7867     };
7868     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
7869       continue;
7870 
7871     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7872 
7873     // Create a new BB.
7874     auto *TmpBB =
7875         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7876                            BB.getParent(), BB.getNextNode());
7877 
7878     // Update original basic block by using the first condition directly by the
7879     // branch instruction and removing the no longer needed and/or instruction.
7880     Br1->setCondition(Cond1);
7881     LogicOp->eraseFromParent();
7882 
7883     // Depending on the condition we have to either replace the true or the
7884     // false successor of the original branch instruction.
7885     if (Opc == Instruction::And)
7886       Br1->setSuccessor(0, TmpBB);
7887     else
7888       Br1->setSuccessor(1, TmpBB);
7889 
7890     // Fill in the new basic block.
7891     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7892     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7893       I->removeFromParent();
7894       I->insertBefore(Br2);
7895     }
7896 
7897     // Update PHI nodes in both successors. The original BB needs to be
7898     // replaced in one successor's PHI nodes, because the branch comes now from
7899     // the newly generated BB (NewBB). In the other successor we need to add one
7900     // incoming edge to the PHI nodes, because both branch instructions target
7901     // now the same successor. Depending on the original branch condition
7902     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7903     // we perform the correct update for the PHI nodes.
7904     // This doesn't change the successor order of the just created branch
7905     // instruction (or any other instruction).
7906     if (Opc == Instruction::Or)
7907       std::swap(TBB, FBB);
7908 
7909     // Replace the old BB with the new BB.
7910     TBB->replacePhiUsesWith(&BB, TmpBB);
7911 
7912     // Add another incoming edge form the new BB.
7913     for (PHINode &PN : FBB->phis()) {
7914       auto *Val = PN.getIncomingValueForBlock(&BB);
7915       PN.addIncoming(Val, TmpBB);
7916     }
7917 
7918     // Update the branch weights (from SelectionDAGBuilder::
7919     // FindMergedConditions).
7920     if (Opc == Instruction::Or) {
7921       // Codegen X | Y as:
7922       // BB1:
7923       //   jmp_if_X TBB
7924       //   jmp TmpBB
7925       // TmpBB:
7926       //   jmp_if_Y TBB
7927       //   jmp FBB
7928       //
7929 
7930       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7931       // The requirement is that
7932       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7933       //     = TrueProb for original BB.
7934       // Assuming the original weights are A and B, one choice is to set BB1's
7935       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7936       // assumes that
7937       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7938       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7939       // TmpBB, but the math is more complicated.
7940       uint64_t TrueWeight, FalseWeight;
7941       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7942         uint64_t NewTrueWeight = TrueWeight;
7943         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7944         scaleWeights(NewTrueWeight, NewFalseWeight);
7945         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7946                          .createBranchWeights(TrueWeight, FalseWeight));
7947 
7948         NewTrueWeight = TrueWeight;
7949         NewFalseWeight = 2 * FalseWeight;
7950         scaleWeights(NewTrueWeight, NewFalseWeight);
7951         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7952                          .createBranchWeights(TrueWeight, FalseWeight));
7953       }
7954     } else {
7955       // Codegen X & Y as:
7956       // BB1:
7957       //   jmp_if_X TmpBB
7958       //   jmp FBB
7959       // TmpBB:
7960       //   jmp_if_Y TBB
7961       //   jmp FBB
7962       //
7963       //  This requires creation of TmpBB after CurBB.
7964 
7965       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7966       // The requirement is that
7967       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7968       //     = FalseProb for original BB.
7969       // Assuming the original weights are A and B, one choice is to set BB1's
7970       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7971       // assumes that
7972       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7973       uint64_t TrueWeight, FalseWeight;
7974       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7975         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7976         uint64_t NewFalseWeight = FalseWeight;
7977         scaleWeights(NewTrueWeight, NewFalseWeight);
7978         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7979                          .createBranchWeights(TrueWeight, FalseWeight));
7980 
7981         NewTrueWeight = 2 * TrueWeight;
7982         NewFalseWeight = FalseWeight;
7983         scaleWeights(NewTrueWeight, NewFalseWeight);
7984         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7985                          .createBranchWeights(TrueWeight, FalseWeight));
7986       }
7987     }
7988 
7989     ModifiedDT = true;
7990     MadeChange = true;
7991 
7992     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7993                TmpBB->dump());
7994   }
7995   return MadeChange;
7996 }
7997