1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/BlockFrequency.h" 77 #include "llvm/Support/BranchProbability.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/CommandLine.h" 80 #include "llvm/Support/Compiler.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/ErrorHandling.h" 83 #include "llvm/Support/MachineValueType.h" 84 #include "llvm/Support/MathExtras.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetOptions.h" 88 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 89 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 90 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 91 #include <algorithm> 92 #include <cassert> 93 #include <cstdint> 94 #include <iterator> 95 #include <limits> 96 #include <memory> 97 #include <utility> 98 #include <vector> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define DEBUG_TYPE "codegenprepare" 104 105 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 106 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 107 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 108 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 109 "sunken Cmps"); 110 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 111 "of sunken Casts"); 112 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 113 "computations were sunk"); 114 STATISTIC(NumMemoryInstsPhiCreated, 115 "Number of phis created when address " 116 "computations were sunk to memory instructions"); 117 STATISTIC(NumMemoryInstsSelectCreated, 118 "Number of select created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 121 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 122 STATISTIC(NumAndsAdded, 123 "Number of and mask instructions added to form ext loads"); 124 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 125 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 126 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 127 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 128 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 129 130 static cl::opt<bool> DisableBranchOpts( 131 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 132 cl::desc("Disable branch optimizations in CodeGenPrepare")); 133 134 static cl::opt<bool> 135 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable GC optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> DisableSelectToBranch( 139 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 140 cl::desc("Disable select to branch conversion.")); 141 142 static cl::opt<bool> AddrSinkUsingGEPs( 143 "addr-sink-using-gep", cl::Hidden, cl::init(true), 144 cl::desc("Address sinking in CGP using GEPs.")); 145 146 static cl::opt<bool> EnableAndCmpSinking( 147 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 148 cl::desc("Enable sinkinig and/cmp into branches.")); 149 150 static cl::opt<bool> DisableStoreExtract( 151 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 152 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 153 154 static cl::opt<bool> StressStoreExtract( 155 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> DisableExtLdPromotion( 159 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 160 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 161 "CodeGenPrepare")); 162 163 static cl::opt<bool> StressExtLdPromotion( 164 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 166 "optimization in CodeGenPrepare")); 167 168 static cl::opt<bool> DisablePreheaderProtect( 169 "disable-preheader-prot", cl::Hidden, cl::init(false), 170 cl::desc("Disable protection against removing loop preheaders")); 171 172 static cl::opt<bool> ProfileGuidedSectionPrefix( 173 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 174 cl::desc("Use profile info to add section prefix for hot/cold functions")); 175 176 static cl::opt<unsigned> FreqRatioToSkipMerge( 177 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 178 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 179 "(frequency of destination block) is greater than this ratio")); 180 181 static cl::opt<bool> ForceSplitStore( 182 "force-split-store", cl::Hidden, cl::init(false), 183 cl::desc("Force store splitting no matter what the target query says.")); 184 185 static cl::opt<bool> 186 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 187 cl::desc("Enable merging of redundant sexts when one is dominating" 188 " the other."), cl::init(true)); 189 190 static cl::opt<bool> DisableComplexAddrModes( 191 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 192 cl::desc("Disables combining addressing modes with different parts " 193 "in optimizeMemoryInst.")); 194 195 static cl::opt<bool> 196 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 197 cl::desc("Allow creation of Phis in Address sinking.")); 198 199 static cl::opt<bool> 200 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 201 cl::desc("Allow creation of selects in Address sinking.")); 202 203 static cl::opt<bool> AddrSinkCombineBaseReg( 204 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 205 cl::desc("Allow combining of BaseReg field in Address sinking.")); 206 207 static cl::opt<bool> AddrSinkCombineBaseGV( 208 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 209 cl::desc("Allow combining of BaseGV field in Address sinking.")); 210 211 static cl::opt<bool> AddrSinkCombineBaseOffs( 212 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 213 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 214 215 static cl::opt<bool> AddrSinkCombineScaledReg( 216 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 217 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 218 219 namespace { 220 221 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 222 using TypeIsSExt = PointerIntPair<Type *, 1, bool>; 223 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 224 using SExts = SmallVector<Instruction *, 16>; 225 using ValueToSExts = DenseMap<Value *, SExts>; 226 227 class TypePromotionTransaction; 228 229 class CodeGenPrepare : public FunctionPass { 230 const TargetMachine *TM = nullptr; 231 const TargetSubtargetInfo *SubtargetInfo; 232 const TargetLowering *TLI = nullptr; 233 const TargetRegisterInfo *TRI; 234 const TargetTransformInfo *TTI = nullptr; 235 const TargetLibraryInfo *TLInfo; 236 const LoopInfo *LI; 237 std::unique_ptr<BlockFrequencyInfo> BFI; 238 std::unique_ptr<BranchProbabilityInfo> BPI; 239 240 /// As we scan instructions optimizing them, this is the next instruction 241 /// to optimize. Transforms that can invalidate this should update it. 242 BasicBlock::iterator CurInstIterator; 243 244 /// Keeps track of non-local addresses that have been sunk into a block. 245 /// This allows us to avoid inserting duplicate code for blocks with 246 /// multiple load/stores of the same address. The usage of WeakTrackingVH 247 /// enables SunkAddrs to be treated as a cache whose entries can be 248 /// invalidated if a sunken address computation has been erased. 249 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 250 251 /// Keeps track of all instructions inserted for the current function. 252 SetOfInstrs InsertedInsts; 253 254 /// Keeps track of the type of the related instruction before their 255 /// promotion for the current function. 256 InstrToOrigTy PromotedInsts; 257 258 /// Keep track of instructions removed during promotion. 259 SetOfInstrs RemovedInsts; 260 261 /// Keep track of sext chains based on their initial value. 262 DenseMap<Value *, Instruction *> SeenChainsForSExt; 263 264 /// Keep track of SExt promoted. 265 ValueToSExts ValToSExtendedUses; 266 267 /// True if CFG is modified in any way. 268 bool ModifiedDT; 269 270 /// True if optimizing for size. 271 bool OptSize; 272 273 /// DataLayout for the Function being processed. 274 const DataLayout *DL = nullptr; 275 276 public: 277 static char ID; // Pass identification, replacement for typeid 278 279 CodeGenPrepare() : FunctionPass(ID) { 280 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 281 } 282 283 bool runOnFunction(Function &F) override; 284 285 StringRef getPassName() const override { return "CodeGen Prepare"; } 286 287 void getAnalysisUsage(AnalysisUsage &AU) const override { 288 // FIXME: When we can selectively preserve passes, preserve the domtree. 289 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 290 AU.addRequired<TargetLibraryInfoWrapperPass>(); 291 AU.addRequired<TargetTransformInfoWrapperPass>(); 292 AU.addRequired<LoopInfoWrapperPass>(); 293 } 294 295 private: 296 bool eliminateFallThrough(Function &F); 297 bool eliminateMostlyEmptyBlocks(Function &F); 298 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 299 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 300 void eliminateMostlyEmptyBlock(BasicBlock *BB); 301 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 302 bool isPreheader); 303 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 304 bool optimizeInst(Instruction *I, bool &ModifiedDT); 305 bool optimizeMemoryInst(Instruction *I, Value *Addr, 306 Type *AccessTy, unsigned AS); 307 bool optimizeInlineAsmInst(CallInst *CS); 308 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 309 bool optimizeExt(Instruction *&I); 310 bool optimizeExtUses(Instruction *I); 311 bool optimizeLoadExt(LoadInst *I); 312 bool optimizeSelectInst(SelectInst *SI); 313 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 314 bool optimizeSwitchInst(SwitchInst *CI); 315 bool optimizeExtractElementInst(Instruction *Inst); 316 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 317 bool placeDbgValues(Function &F); 318 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 319 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 320 bool tryToPromoteExts(TypePromotionTransaction &TPT, 321 const SmallVectorImpl<Instruction *> &Exts, 322 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 323 unsigned CreatedInstsCost = 0); 324 bool mergeSExts(Function &F); 325 bool performAddressTypePromotion( 326 Instruction *&Inst, 327 bool AllowPromotionWithoutCommonHeader, 328 bool HasPromoted, TypePromotionTransaction &TPT, 329 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 330 bool splitBranchCondition(Function &F); 331 bool simplifyOffsetableRelocate(Instruction &I); 332 }; 333 334 } // end anonymous namespace 335 336 char CodeGenPrepare::ID = 0; 337 338 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 339 "Optimize for code generation", false, false) 340 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 341 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 342 "Optimize for code generation", false, false) 343 344 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 345 346 bool CodeGenPrepare::runOnFunction(Function &F) { 347 if (skipFunction(F)) 348 return false; 349 350 DL = &F.getParent()->getDataLayout(); 351 352 bool EverMadeChange = false; 353 // Clear per function information. 354 InsertedInsts.clear(); 355 PromotedInsts.clear(); 356 357 ModifiedDT = false; 358 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 359 TM = &TPC->getTM<TargetMachine>(); 360 SubtargetInfo = TM->getSubtargetImpl(F); 361 TLI = SubtargetInfo->getTargetLowering(); 362 TRI = SubtargetInfo->getRegisterInfo(); 363 } 364 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 365 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 366 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 367 BPI.reset(new BranchProbabilityInfo(F, *LI)); 368 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 369 OptSize = F.optForSize(); 370 371 ProfileSummaryInfo *PSI = 372 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 373 if (ProfileGuidedSectionPrefix) { 374 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 375 F.setSectionPrefix(".hot"); 376 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 377 F.setSectionPrefix(".unlikely"); 378 } 379 380 /// This optimization identifies DIV instructions that can be 381 /// profitably bypassed and carried out with a shorter, faster divide. 382 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 383 TLI->isSlowDivBypassed()) { 384 const DenseMap<unsigned int, unsigned int> &BypassWidths = 385 TLI->getBypassSlowDivWidths(); 386 BasicBlock* BB = &*F.begin(); 387 while (BB != nullptr) { 388 // bypassSlowDivision may create new BBs, but we don't want to reapply the 389 // optimization to those blocks. 390 BasicBlock* Next = BB->getNextNode(); 391 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 392 BB = Next; 393 } 394 } 395 396 // Eliminate blocks that contain only PHI nodes and an 397 // unconditional branch. 398 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 399 400 // llvm.dbg.value is far away from the value then iSel may not be able 401 // handle it properly. iSel will drop llvm.dbg.value if it can not 402 // find a node corresponding to the value. 403 EverMadeChange |= placeDbgValues(F); 404 405 if (!DisableBranchOpts) 406 EverMadeChange |= splitBranchCondition(F); 407 408 // Split some critical edges where one of the sources is an indirect branch, 409 // to help generate sane code for PHIs involving such edges. 410 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 411 412 bool MadeChange = true; 413 while (MadeChange) { 414 MadeChange = false; 415 SeenChainsForSExt.clear(); 416 ValToSExtendedUses.clear(); 417 RemovedInsts.clear(); 418 for (Function::iterator I = F.begin(); I != F.end(); ) { 419 BasicBlock *BB = &*I++; 420 bool ModifiedDTOnIteration = false; 421 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 422 423 // Restart BB iteration if the dominator tree of the Function was changed 424 if (ModifiedDTOnIteration) 425 break; 426 } 427 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 428 MadeChange |= mergeSExts(F); 429 430 // Really free removed instructions during promotion. 431 for (Instruction *I : RemovedInsts) 432 I->deleteValue(); 433 434 EverMadeChange |= MadeChange; 435 } 436 437 SunkAddrs.clear(); 438 439 if (!DisableBranchOpts) { 440 MadeChange = false; 441 SmallPtrSet<BasicBlock*, 8> WorkList; 442 for (BasicBlock &BB : F) { 443 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 444 MadeChange |= ConstantFoldTerminator(&BB, true); 445 if (!MadeChange) continue; 446 447 for (SmallVectorImpl<BasicBlock*>::iterator 448 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 449 if (pred_begin(*II) == pred_end(*II)) 450 WorkList.insert(*II); 451 } 452 453 // Delete the dead blocks and any of their dead successors. 454 MadeChange |= !WorkList.empty(); 455 while (!WorkList.empty()) { 456 BasicBlock *BB = *WorkList.begin(); 457 WorkList.erase(BB); 458 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 459 460 DeleteDeadBlock(BB); 461 462 for (SmallVectorImpl<BasicBlock*>::iterator 463 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 464 if (pred_begin(*II) == pred_end(*II)) 465 WorkList.insert(*II); 466 } 467 468 // Merge pairs of basic blocks with unconditional branches, connected by 469 // a single edge. 470 if (EverMadeChange || MadeChange) 471 MadeChange |= eliminateFallThrough(F); 472 473 EverMadeChange |= MadeChange; 474 } 475 476 if (!DisableGCOpts) { 477 SmallVector<Instruction *, 2> Statepoints; 478 for (BasicBlock &BB : F) 479 for (Instruction &I : BB) 480 if (isStatepoint(I)) 481 Statepoints.push_back(&I); 482 for (auto &I : Statepoints) 483 EverMadeChange |= simplifyOffsetableRelocate(*I); 484 } 485 486 return EverMadeChange; 487 } 488 489 /// Merge basic blocks which are connected by a single edge, where one of the 490 /// basic blocks has a single successor pointing to the other basic block, 491 /// which has a single predecessor. 492 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 493 bool Changed = false; 494 // Scan all of the blocks in the function, except for the entry block. 495 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 496 BasicBlock *BB = &*I++; 497 // If the destination block has a single pred, then this is a trivial 498 // edge, just collapse it. 499 BasicBlock *SinglePred = BB->getSinglePredecessor(); 500 501 // Don't merge if BB's address is taken. 502 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 503 504 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 505 if (Term && !Term->isConditional()) { 506 Changed = true; 507 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 508 // Remember if SinglePred was the entry block of the function. 509 // If so, we will need to move BB back to the entry position. 510 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 511 MergeBasicBlockIntoOnlyPred(BB, nullptr); 512 513 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 514 BB->moveBefore(&BB->getParent()->getEntryBlock()); 515 516 // We have erased a block. Update the iterator. 517 I = BB->getIterator(); 518 } 519 } 520 return Changed; 521 } 522 523 /// Find a destination block from BB if BB is mergeable empty block. 524 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 525 // If this block doesn't end with an uncond branch, ignore it. 526 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 527 if (!BI || !BI->isUnconditional()) 528 return nullptr; 529 530 // If the instruction before the branch (skipping debug info) isn't a phi 531 // node, then other stuff is happening here. 532 BasicBlock::iterator BBI = BI->getIterator(); 533 if (BBI != BB->begin()) { 534 --BBI; 535 while (isa<DbgInfoIntrinsic>(BBI)) { 536 if (BBI == BB->begin()) 537 break; 538 --BBI; 539 } 540 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 541 return nullptr; 542 } 543 544 // Do not break infinite loops. 545 BasicBlock *DestBB = BI->getSuccessor(0); 546 if (DestBB == BB) 547 return nullptr; 548 549 if (!canMergeBlocks(BB, DestBB)) 550 DestBB = nullptr; 551 552 return DestBB; 553 } 554 555 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 556 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 557 /// edges in ways that are non-optimal for isel. Start by eliminating these 558 /// blocks so we can split them the way we want them. 559 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 560 SmallPtrSet<BasicBlock *, 16> Preheaders; 561 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 562 while (!LoopList.empty()) { 563 Loop *L = LoopList.pop_back_val(); 564 LoopList.insert(LoopList.end(), L->begin(), L->end()); 565 if (BasicBlock *Preheader = L->getLoopPreheader()) 566 Preheaders.insert(Preheader); 567 } 568 569 bool MadeChange = false; 570 // Note that this intentionally skips the entry block. 571 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 572 BasicBlock *BB = &*I++; 573 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 574 if (!DestBB || 575 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 576 continue; 577 578 eliminateMostlyEmptyBlock(BB); 579 MadeChange = true; 580 } 581 return MadeChange; 582 } 583 584 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 585 BasicBlock *DestBB, 586 bool isPreheader) { 587 // Do not delete loop preheaders if doing so would create a critical edge. 588 // Loop preheaders can be good locations to spill registers. If the 589 // preheader is deleted and we create a critical edge, registers may be 590 // spilled in the loop body instead. 591 if (!DisablePreheaderProtect && isPreheader && 592 !(BB->getSinglePredecessor() && 593 BB->getSinglePredecessor()->getSingleSuccessor())) 594 return false; 595 596 // Try to skip merging if the unique predecessor of BB is terminated by a 597 // switch or indirect branch instruction, and BB is used as an incoming block 598 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 599 // add COPY instructions in the predecessor of BB instead of BB (if it is not 600 // merged). Note that the critical edge created by merging such blocks wont be 601 // split in MachineSink because the jump table is not analyzable. By keeping 602 // such empty block (BB), ISel will place COPY instructions in BB, not in the 603 // predecessor of BB. 604 BasicBlock *Pred = BB->getUniquePredecessor(); 605 if (!Pred || 606 !(isa<SwitchInst>(Pred->getTerminator()) || 607 isa<IndirectBrInst>(Pred->getTerminator()))) 608 return true; 609 610 if (BB->getTerminator() != BB->getFirstNonPHI()) 611 return true; 612 613 // We use a simple cost heuristic which determine skipping merging is 614 // profitable if the cost of skipping merging is less than the cost of 615 // merging : Cost(skipping merging) < Cost(merging BB), where the 616 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 617 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 618 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 619 // Freq(Pred) / Freq(BB) > 2. 620 // Note that if there are multiple empty blocks sharing the same incoming 621 // value for the PHIs in the DestBB, we consider them together. In such 622 // case, Cost(merging BB) will be the sum of their frequencies. 623 624 if (!isa<PHINode>(DestBB->begin())) 625 return true; 626 627 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 628 629 // Find all other incoming blocks from which incoming values of all PHIs in 630 // DestBB are the same as the ones from BB. 631 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 632 ++PI) { 633 BasicBlock *DestBBPred = *PI; 634 if (DestBBPred == BB) 635 continue; 636 637 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 638 return DestPN.getIncomingValueForBlock(BB) == 639 DestPN.getIncomingValueForBlock(DestBBPred); 640 })) 641 SameIncomingValueBBs.insert(DestBBPred); 642 } 643 644 // See if all BB's incoming values are same as the value from Pred. In this 645 // case, no reason to skip merging because COPYs are expected to be place in 646 // Pred already. 647 if (SameIncomingValueBBs.count(Pred)) 648 return true; 649 650 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 651 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 652 653 for (auto SameValueBB : SameIncomingValueBBs) 654 if (SameValueBB->getUniquePredecessor() == Pred && 655 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 656 BBFreq += BFI->getBlockFreq(SameValueBB); 657 658 return PredFreq.getFrequency() <= 659 BBFreq.getFrequency() * FreqRatioToSkipMerge; 660 } 661 662 /// Return true if we can merge BB into DestBB if there is a single 663 /// unconditional branch between them, and BB contains no other non-phi 664 /// instructions. 665 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 666 const BasicBlock *DestBB) const { 667 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 668 // the successor. If there are more complex condition (e.g. preheaders), 669 // don't mess around with them. 670 for (const PHINode &PN : BB->phis()) { 671 for (const User *U : PN.users()) { 672 const Instruction *UI = cast<Instruction>(U); 673 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 674 return false; 675 // If User is inside DestBB block and it is a PHINode then check 676 // incoming value. If incoming value is not from BB then this is 677 // a complex condition (e.g. preheaders) we want to avoid here. 678 if (UI->getParent() == DestBB) { 679 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 680 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 681 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 682 if (Insn && Insn->getParent() == BB && 683 Insn->getParent() != UPN->getIncomingBlock(I)) 684 return false; 685 } 686 } 687 } 688 } 689 690 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 691 // and DestBB may have conflicting incoming values for the block. If so, we 692 // can't merge the block. 693 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 694 if (!DestBBPN) return true; // no conflict. 695 696 // Collect the preds of BB. 697 SmallPtrSet<const BasicBlock*, 16> BBPreds; 698 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 699 // It is faster to get preds from a PHI than with pred_iterator. 700 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 701 BBPreds.insert(BBPN->getIncomingBlock(i)); 702 } else { 703 BBPreds.insert(pred_begin(BB), pred_end(BB)); 704 } 705 706 // Walk the preds of DestBB. 707 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 708 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 709 if (BBPreds.count(Pred)) { // Common predecessor? 710 for (const PHINode &PN : DestBB->phis()) { 711 const Value *V1 = PN.getIncomingValueForBlock(Pred); 712 const Value *V2 = PN.getIncomingValueForBlock(BB); 713 714 // If V2 is a phi node in BB, look up what the mapped value will be. 715 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 716 if (V2PN->getParent() == BB) 717 V2 = V2PN->getIncomingValueForBlock(Pred); 718 719 // If there is a conflict, bail out. 720 if (V1 != V2) return false; 721 } 722 } 723 } 724 725 return true; 726 } 727 728 /// Eliminate a basic block that has only phi's and an unconditional branch in 729 /// it. 730 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 731 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 732 BasicBlock *DestBB = BI->getSuccessor(0); 733 734 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 735 736 // If the destination block has a single pred, then this is a trivial edge, 737 // just collapse it. 738 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 739 if (SinglePred != DestBB) { 740 // Remember if SinglePred was the entry block of the function. If so, we 741 // will need to move BB back to the entry position. 742 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 743 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 744 745 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 746 BB->moveBefore(&BB->getParent()->getEntryBlock()); 747 748 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 749 return; 750 } 751 } 752 753 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 754 // to handle the new incoming edges it is about to have. 755 for (PHINode &PN : DestBB->phis()) { 756 // Remove the incoming value for BB, and remember it. 757 Value *InVal = PN.removeIncomingValue(BB, false); 758 759 // Two options: either the InVal is a phi node defined in BB or it is some 760 // value that dominates BB. 761 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 762 if (InValPhi && InValPhi->getParent() == BB) { 763 // Add all of the input values of the input PHI as inputs of this phi. 764 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 765 PN.addIncoming(InValPhi->getIncomingValue(i), 766 InValPhi->getIncomingBlock(i)); 767 } else { 768 // Otherwise, add one instance of the dominating value for each edge that 769 // we will be adding. 770 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 771 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 772 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 773 } else { 774 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 775 PN.addIncoming(InVal, *PI); 776 } 777 } 778 } 779 780 // The PHIs are now updated, change everything that refers to BB to use 781 // DestBB and remove BB. 782 BB->replaceAllUsesWith(DestBB); 783 BB->eraseFromParent(); 784 ++NumBlocksElim; 785 786 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 787 } 788 789 // Computes a map of base pointer relocation instructions to corresponding 790 // derived pointer relocation instructions given a vector of all relocate calls 791 static void computeBaseDerivedRelocateMap( 792 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 793 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 794 &RelocateInstMap) { 795 // Collect information in two maps: one primarily for locating the base object 796 // while filling the second map; the second map is the final structure holding 797 // a mapping between Base and corresponding Derived relocate calls 798 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 799 for (auto *ThisRelocate : AllRelocateCalls) { 800 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 801 ThisRelocate->getDerivedPtrIndex()); 802 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 803 } 804 for (auto &Item : RelocateIdxMap) { 805 std::pair<unsigned, unsigned> Key = Item.first; 806 if (Key.first == Key.second) 807 // Base relocation: nothing to insert 808 continue; 809 810 GCRelocateInst *I = Item.second; 811 auto BaseKey = std::make_pair(Key.first, Key.first); 812 813 // We're iterating over RelocateIdxMap so we cannot modify it. 814 auto MaybeBase = RelocateIdxMap.find(BaseKey); 815 if (MaybeBase == RelocateIdxMap.end()) 816 // TODO: We might want to insert a new base object relocate and gep off 817 // that, if there are enough derived object relocates. 818 continue; 819 820 RelocateInstMap[MaybeBase->second].push_back(I); 821 } 822 } 823 824 // Accepts a GEP and extracts the operands into a vector provided they're all 825 // small integer constants 826 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 827 SmallVectorImpl<Value *> &OffsetV) { 828 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 829 // Only accept small constant integer operands 830 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 831 if (!Op || Op->getZExtValue() > 20) 832 return false; 833 } 834 835 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 836 OffsetV.push_back(GEP->getOperand(i)); 837 return true; 838 } 839 840 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 841 // replace, computes a replacement, and affects it. 842 static bool 843 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 844 const SmallVectorImpl<GCRelocateInst *> &Targets) { 845 bool MadeChange = false; 846 // We must ensure the relocation of derived pointer is defined after 847 // relocation of base pointer. If we find a relocation corresponding to base 848 // defined earlier than relocation of base then we move relocation of base 849 // right before found relocation. We consider only relocation in the same 850 // basic block as relocation of base. Relocations from other basic block will 851 // be skipped by optimization and we do not care about them. 852 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 853 &*R != RelocatedBase; ++R) 854 if (auto RI = dyn_cast<GCRelocateInst>(R)) 855 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 856 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 857 RelocatedBase->moveBefore(RI); 858 break; 859 } 860 861 for (GCRelocateInst *ToReplace : Targets) { 862 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 863 "Not relocating a derived object of the original base object"); 864 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 865 // A duplicate relocate call. TODO: coalesce duplicates. 866 continue; 867 } 868 869 if (RelocatedBase->getParent() != ToReplace->getParent()) { 870 // Base and derived relocates are in different basic blocks. 871 // In this case transform is only valid when base dominates derived 872 // relocate. However it would be too expensive to check dominance 873 // for each such relocate, so we skip the whole transformation. 874 continue; 875 } 876 877 Value *Base = ToReplace->getBasePtr(); 878 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 879 if (!Derived || Derived->getPointerOperand() != Base) 880 continue; 881 882 SmallVector<Value *, 2> OffsetV; 883 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 884 continue; 885 886 // Create a Builder and replace the target callsite with a gep 887 assert(RelocatedBase->getNextNode() && 888 "Should always have one since it's not a terminator"); 889 890 // Insert after RelocatedBase 891 IRBuilder<> Builder(RelocatedBase->getNextNode()); 892 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 893 894 // If gc_relocate does not match the actual type, cast it to the right type. 895 // In theory, there must be a bitcast after gc_relocate if the type does not 896 // match, and we should reuse it to get the derived pointer. But it could be 897 // cases like this: 898 // bb1: 899 // ... 900 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 901 // br label %merge 902 // 903 // bb2: 904 // ... 905 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 906 // br label %merge 907 // 908 // merge: 909 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 910 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 911 // 912 // In this case, we can not find the bitcast any more. So we insert a new bitcast 913 // no matter there is already one or not. In this way, we can handle all cases, and 914 // the extra bitcast should be optimized away in later passes. 915 Value *ActualRelocatedBase = RelocatedBase; 916 if (RelocatedBase->getType() != Base->getType()) { 917 ActualRelocatedBase = 918 Builder.CreateBitCast(RelocatedBase, Base->getType()); 919 } 920 Value *Replacement = Builder.CreateGEP( 921 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 922 Replacement->takeName(ToReplace); 923 // If the newly generated derived pointer's type does not match the original derived 924 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 925 Value *ActualReplacement = Replacement; 926 if (Replacement->getType() != ToReplace->getType()) { 927 ActualReplacement = 928 Builder.CreateBitCast(Replacement, ToReplace->getType()); 929 } 930 ToReplace->replaceAllUsesWith(ActualReplacement); 931 ToReplace->eraseFromParent(); 932 933 MadeChange = true; 934 } 935 return MadeChange; 936 } 937 938 // Turns this: 939 // 940 // %base = ... 941 // %ptr = gep %base + 15 942 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 943 // %base' = relocate(%tok, i32 4, i32 4) 944 // %ptr' = relocate(%tok, i32 4, i32 5) 945 // %val = load %ptr' 946 // 947 // into this: 948 // 949 // %base = ... 950 // %ptr = gep %base + 15 951 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 952 // %base' = gc.relocate(%tok, i32 4, i32 4) 953 // %ptr' = gep %base' + 15 954 // %val = load %ptr' 955 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 956 bool MadeChange = false; 957 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 958 959 for (auto *U : I.users()) 960 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 961 // Collect all the relocate calls associated with a statepoint 962 AllRelocateCalls.push_back(Relocate); 963 964 // We need atleast one base pointer relocation + one derived pointer 965 // relocation to mangle 966 if (AllRelocateCalls.size() < 2) 967 return false; 968 969 // RelocateInstMap is a mapping from the base relocate instruction to the 970 // corresponding derived relocate instructions 971 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 972 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 973 if (RelocateInstMap.empty()) 974 return false; 975 976 for (auto &Item : RelocateInstMap) 977 // Item.first is the RelocatedBase to offset against 978 // Item.second is the vector of Targets to replace 979 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 980 return MadeChange; 981 } 982 983 /// SinkCast - Sink the specified cast instruction into its user blocks 984 static bool SinkCast(CastInst *CI) { 985 BasicBlock *DefBB = CI->getParent(); 986 987 /// InsertedCasts - Only insert a cast in each block once. 988 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 989 990 bool MadeChange = false; 991 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 992 UI != E; ) { 993 Use &TheUse = UI.getUse(); 994 Instruction *User = cast<Instruction>(*UI); 995 996 // Figure out which BB this cast is used in. For PHI's this is the 997 // appropriate predecessor block. 998 BasicBlock *UserBB = User->getParent(); 999 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1000 UserBB = PN->getIncomingBlock(TheUse); 1001 } 1002 1003 // Preincrement use iterator so we don't invalidate it. 1004 ++UI; 1005 1006 // The first insertion point of a block containing an EH pad is after the 1007 // pad. If the pad is the user, we cannot sink the cast past the pad. 1008 if (User->isEHPad()) 1009 continue; 1010 1011 // If the block selected to receive the cast is an EH pad that does not 1012 // allow non-PHI instructions before the terminator, we can't sink the 1013 // cast. 1014 if (UserBB->getTerminator()->isEHPad()) 1015 continue; 1016 1017 // If this user is in the same block as the cast, don't change the cast. 1018 if (UserBB == DefBB) continue; 1019 1020 // If we have already inserted a cast into this block, use it. 1021 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1022 1023 if (!InsertedCast) { 1024 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1025 assert(InsertPt != UserBB->end()); 1026 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1027 CI->getType(), "", &*InsertPt); 1028 } 1029 1030 // Replace a use of the cast with a use of the new cast. 1031 TheUse = InsertedCast; 1032 MadeChange = true; 1033 ++NumCastUses; 1034 } 1035 1036 // If we removed all uses, nuke the cast. 1037 if (CI->use_empty()) { 1038 salvageDebugInfo(*CI); 1039 CI->eraseFromParent(); 1040 MadeChange = true; 1041 } 1042 1043 return MadeChange; 1044 } 1045 1046 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1047 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1048 /// reduce the number of virtual registers that must be created and coalesced. 1049 /// 1050 /// Return true if any changes are made. 1051 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1052 const DataLayout &DL) { 1053 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1054 // than sinking only nop casts, but is helpful on some platforms. 1055 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1056 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1057 ASC->getDestAddressSpace())) 1058 return false; 1059 } 1060 1061 // If this is a noop copy, 1062 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1063 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1064 1065 // This is an fp<->int conversion? 1066 if (SrcVT.isInteger() != DstVT.isInteger()) 1067 return false; 1068 1069 // If this is an extension, it will be a zero or sign extension, which 1070 // isn't a noop. 1071 if (SrcVT.bitsLT(DstVT)) return false; 1072 1073 // If these values will be promoted, find out what they will be promoted 1074 // to. This helps us consider truncates on PPC as noop copies when they 1075 // are. 1076 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1077 TargetLowering::TypePromoteInteger) 1078 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1079 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1080 TargetLowering::TypePromoteInteger) 1081 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1082 1083 // If, after promotion, these are the same types, this is a noop copy. 1084 if (SrcVT != DstVT) 1085 return false; 1086 1087 return SinkCast(CI); 1088 } 1089 1090 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1091 /// possible. 1092 /// 1093 /// Return true if any changes were made. 1094 static bool CombineUAddWithOverflow(CmpInst *CI) { 1095 Value *A, *B; 1096 Instruction *AddI; 1097 if (!match(CI, 1098 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1099 return false; 1100 1101 Type *Ty = AddI->getType(); 1102 if (!isa<IntegerType>(Ty)) 1103 return false; 1104 1105 // We don't want to move around uses of condition values this late, so we we 1106 // check if it is legal to create the call to the intrinsic in the basic 1107 // block containing the icmp: 1108 1109 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1110 return false; 1111 1112 #ifndef NDEBUG 1113 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1114 // for now: 1115 if (AddI->hasOneUse()) 1116 assert(*AddI->user_begin() == CI && "expected!"); 1117 #endif 1118 1119 Module *M = CI->getModule(); 1120 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1121 1122 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1123 1124 auto *UAddWithOverflow = 1125 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1126 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1127 auto *Overflow = 1128 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1129 1130 CI->replaceAllUsesWith(Overflow); 1131 AddI->replaceAllUsesWith(UAdd); 1132 CI->eraseFromParent(); 1133 AddI->eraseFromParent(); 1134 return true; 1135 } 1136 1137 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1138 /// registers that must be created and coalesced. This is a clear win except on 1139 /// targets with multiple condition code registers (PowerPC), where it might 1140 /// lose; some adjustment may be wanted there. 1141 /// 1142 /// Return true if any changes are made. 1143 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1144 BasicBlock *DefBB = CI->getParent(); 1145 1146 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1147 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1148 return false; 1149 1150 // Only insert a cmp in each block once. 1151 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1152 1153 bool MadeChange = false; 1154 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1155 UI != E; ) { 1156 Use &TheUse = UI.getUse(); 1157 Instruction *User = cast<Instruction>(*UI); 1158 1159 // Preincrement use iterator so we don't invalidate it. 1160 ++UI; 1161 1162 // Don't bother for PHI nodes. 1163 if (isa<PHINode>(User)) 1164 continue; 1165 1166 // Figure out which BB this cmp is used in. 1167 BasicBlock *UserBB = User->getParent(); 1168 1169 // If this user is in the same block as the cmp, don't change the cmp. 1170 if (UserBB == DefBB) continue; 1171 1172 // If we have already inserted a cmp into this block, use it. 1173 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1174 1175 if (!InsertedCmp) { 1176 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1177 assert(InsertPt != UserBB->end()); 1178 InsertedCmp = 1179 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1180 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1181 // Propagate the debug info. 1182 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1183 } 1184 1185 // Replace a use of the cmp with a use of the new cmp. 1186 TheUse = InsertedCmp; 1187 MadeChange = true; 1188 ++NumCmpUses; 1189 } 1190 1191 // If we removed all uses, nuke the cmp. 1192 if (CI->use_empty()) { 1193 CI->eraseFromParent(); 1194 MadeChange = true; 1195 } 1196 1197 return MadeChange; 1198 } 1199 1200 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1201 if (SinkCmpExpression(CI, TLI)) 1202 return true; 1203 1204 if (CombineUAddWithOverflow(CI)) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1211 /// used in a compare to allow isel to generate better code for targets where 1212 /// this operation can be combined. 1213 /// 1214 /// Return true if any changes are made. 1215 static bool sinkAndCmp0Expression(Instruction *AndI, 1216 const TargetLowering &TLI, 1217 SetOfInstrs &InsertedInsts) { 1218 // Double-check that we're not trying to optimize an instruction that was 1219 // already optimized by some other part of this pass. 1220 assert(!InsertedInsts.count(AndI) && 1221 "Attempting to optimize already optimized and instruction"); 1222 (void) InsertedInsts; 1223 1224 // Nothing to do for single use in same basic block. 1225 if (AndI->hasOneUse() && 1226 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1227 return false; 1228 1229 // Try to avoid cases where sinking/duplicating is likely to increase register 1230 // pressure. 1231 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1232 !isa<ConstantInt>(AndI->getOperand(1)) && 1233 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1234 return false; 1235 1236 for (auto *U : AndI->users()) { 1237 Instruction *User = cast<Instruction>(U); 1238 1239 // Only sink for and mask feeding icmp with 0. 1240 if (!isa<ICmpInst>(User)) 1241 return false; 1242 1243 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1244 if (!CmpC || !CmpC->isZero()) 1245 return false; 1246 } 1247 1248 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1249 return false; 1250 1251 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1252 DEBUG(AndI->getParent()->dump()); 1253 1254 // Push the 'and' into the same block as the icmp 0. There should only be 1255 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1256 // others, so we don't need to keep track of which BBs we insert into. 1257 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1258 UI != E; ) { 1259 Use &TheUse = UI.getUse(); 1260 Instruction *User = cast<Instruction>(*UI); 1261 1262 // Preincrement use iterator so we don't invalidate it. 1263 ++UI; 1264 1265 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1266 1267 // Keep the 'and' in the same place if the use is already in the same block. 1268 Instruction *InsertPt = 1269 User->getParent() == AndI->getParent() ? AndI : User; 1270 Instruction *InsertedAnd = 1271 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1272 AndI->getOperand(1), "", InsertPt); 1273 // Propagate the debug info. 1274 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1275 1276 // Replace a use of the 'and' with a use of the new 'and'. 1277 TheUse = InsertedAnd; 1278 ++NumAndUses; 1279 DEBUG(User->getParent()->dump()); 1280 } 1281 1282 // We removed all uses, nuke the and. 1283 AndI->eraseFromParent(); 1284 return true; 1285 } 1286 1287 /// Check if the candidates could be combined with a shift instruction, which 1288 /// includes: 1289 /// 1. Truncate instruction 1290 /// 2. And instruction and the imm is a mask of the low bits: 1291 /// imm & (imm+1) == 0 1292 static bool isExtractBitsCandidateUse(Instruction *User) { 1293 if (!isa<TruncInst>(User)) { 1294 if (User->getOpcode() != Instruction::And || 1295 !isa<ConstantInt>(User->getOperand(1))) 1296 return false; 1297 1298 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1299 1300 if ((Cimm & (Cimm + 1)).getBoolValue()) 1301 return false; 1302 } 1303 return true; 1304 } 1305 1306 /// Sink both shift and truncate instruction to the use of truncate's BB. 1307 static bool 1308 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1309 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1310 const TargetLowering &TLI, const DataLayout &DL) { 1311 BasicBlock *UserBB = User->getParent(); 1312 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1313 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1314 bool MadeChange = false; 1315 1316 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1317 TruncE = TruncI->user_end(); 1318 TruncUI != TruncE;) { 1319 1320 Use &TruncTheUse = TruncUI.getUse(); 1321 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1322 // Preincrement use iterator so we don't invalidate it. 1323 1324 ++TruncUI; 1325 1326 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1327 if (!ISDOpcode) 1328 continue; 1329 1330 // If the use is actually a legal node, there will not be an 1331 // implicit truncate. 1332 // FIXME: always querying the result type is just an 1333 // approximation; some nodes' legality is determined by the 1334 // operand or other means. There's no good way to find out though. 1335 if (TLI.isOperationLegalOrCustom( 1336 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1337 continue; 1338 1339 // Don't bother for PHI nodes. 1340 if (isa<PHINode>(TruncUser)) 1341 continue; 1342 1343 BasicBlock *TruncUserBB = TruncUser->getParent(); 1344 1345 if (UserBB == TruncUserBB) 1346 continue; 1347 1348 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1349 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1350 1351 if (!InsertedShift && !InsertedTrunc) { 1352 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1353 assert(InsertPt != TruncUserBB->end()); 1354 // Sink the shift 1355 if (ShiftI->getOpcode() == Instruction::AShr) 1356 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1357 "", &*InsertPt); 1358 else 1359 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1360 "", &*InsertPt); 1361 1362 // Sink the trunc 1363 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1364 TruncInsertPt++; 1365 assert(TruncInsertPt != TruncUserBB->end()); 1366 1367 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1368 TruncI->getType(), "", &*TruncInsertPt); 1369 1370 MadeChange = true; 1371 1372 TruncTheUse = InsertedTrunc; 1373 } 1374 } 1375 return MadeChange; 1376 } 1377 1378 /// Sink the shift *right* instruction into user blocks if the uses could 1379 /// potentially be combined with this shift instruction and generate BitExtract 1380 /// instruction. It will only be applied if the architecture supports BitExtract 1381 /// instruction. Here is an example: 1382 /// BB1: 1383 /// %x.extract.shift = lshr i64 %arg1, 32 1384 /// BB2: 1385 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1386 /// ==> 1387 /// 1388 /// BB2: 1389 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1390 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1391 /// 1392 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1393 /// instruction. 1394 /// Return true if any changes are made. 1395 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1396 const TargetLowering &TLI, 1397 const DataLayout &DL) { 1398 BasicBlock *DefBB = ShiftI->getParent(); 1399 1400 /// Only insert instructions in each block once. 1401 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1402 1403 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1404 1405 bool MadeChange = false; 1406 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1407 UI != E;) { 1408 Use &TheUse = UI.getUse(); 1409 Instruction *User = cast<Instruction>(*UI); 1410 // Preincrement use iterator so we don't invalidate it. 1411 ++UI; 1412 1413 // Don't bother for PHI nodes. 1414 if (isa<PHINode>(User)) 1415 continue; 1416 1417 if (!isExtractBitsCandidateUse(User)) 1418 continue; 1419 1420 BasicBlock *UserBB = User->getParent(); 1421 1422 if (UserBB == DefBB) { 1423 // If the shift and truncate instruction are in the same BB. The use of 1424 // the truncate(TruncUse) may still introduce another truncate if not 1425 // legal. In this case, we would like to sink both shift and truncate 1426 // instruction to the BB of TruncUse. 1427 // for example: 1428 // BB1: 1429 // i64 shift.result = lshr i64 opnd, imm 1430 // trunc.result = trunc shift.result to i16 1431 // 1432 // BB2: 1433 // ----> We will have an implicit truncate here if the architecture does 1434 // not have i16 compare. 1435 // cmp i16 trunc.result, opnd2 1436 // 1437 if (isa<TruncInst>(User) && shiftIsLegal 1438 // If the type of the truncate is legal, no trucate will be 1439 // introduced in other basic blocks. 1440 && 1441 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1442 MadeChange = 1443 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1444 1445 continue; 1446 } 1447 // If we have already inserted a shift into this block, use it. 1448 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1449 1450 if (!InsertedShift) { 1451 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1452 assert(InsertPt != UserBB->end()); 1453 1454 if (ShiftI->getOpcode() == Instruction::AShr) 1455 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1456 "", &*InsertPt); 1457 else 1458 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1459 "", &*InsertPt); 1460 1461 MadeChange = true; 1462 } 1463 1464 // Replace a use of the shift with a use of the new shift. 1465 TheUse = InsertedShift; 1466 } 1467 1468 // If we removed all uses, nuke the shift. 1469 if (ShiftI->use_empty()) 1470 ShiftI->eraseFromParent(); 1471 1472 return MadeChange; 1473 } 1474 1475 /// If counting leading or trailing zeros is an expensive operation and a zero 1476 /// input is defined, add a check for zero to avoid calling the intrinsic. 1477 /// 1478 /// We want to transform: 1479 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1480 /// 1481 /// into: 1482 /// entry: 1483 /// %cmpz = icmp eq i64 %A, 0 1484 /// br i1 %cmpz, label %cond.end, label %cond.false 1485 /// cond.false: 1486 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1487 /// br label %cond.end 1488 /// cond.end: 1489 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1490 /// 1491 /// If the transform is performed, return true and set ModifiedDT to true. 1492 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1493 const TargetLowering *TLI, 1494 const DataLayout *DL, 1495 bool &ModifiedDT) { 1496 if (!TLI || !DL) 1497 return false; 1498 1499 // If a zero input is undefined, it doesn't make sense to despeculate that. 1500 if (match(CountZeros->getOperand(1), m_One())) 1501 return false; 1502 1503 // If it's cheap to speculate, there's nothing to do. 1504 auto IntrinsicID = CountZeros->getIntrinsicID(); 1505 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1506 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1507 return false; 1508 1509 // Only handle legal scalar cases. Anything else requires too much work. 1510 Type *Ty = CountZeros->getType(); 1511 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1512 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1513 return false; 1514 1515 // The intrinsic will be sunk behind a compare against zero and branch. 1516 BasicBlock *StartBlock = CountZeros->getParent(); 1517 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1518 1519 // Create another block after the count zero intrinsic. A PHI will be added 1520 // in this block to select the result of the intrinsic or the bit-width 1521 // constant if the input to the intrinsic is zero. 1522 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1523 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1524 1525 // Set up a builder to create a compare, conditional branch, and PHI. 1526 IRBuilder<> Builder(CountZeros->getContext()); 1527 Builder.SetInsertPoint(StartBlock->getTerminator()); 1528 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1529 1530 // Replace the unconditional branch that was created by the first split with 1531 // a compare against zero and a conditional branch. 1532 Value *Zero = Constant::getNullValue(Ty); 1533 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1534 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1535 StartBlock->getTerminator()->eraseFromParent(); 1536 1537 // Create a PHI in the end block to select either the output of the intrinsic 1538 // or the bit width of the operand. 1539 Builder.SetInsertPoint(&EndBlock->front()); 1540 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1541 CountZeros->replaceAllUsesWith(PN); 1542 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1543 PN->addIncoming(BitWidth, StartBlock); 1544 PN->addIncoming(CountZeros, CallBlock); 1545 1546 // We are explicitly handling the zero case, so we can set the intrinsic's 1547 // undefined zero argument to 'true'. This will also prevent reprocessing the 1548 // intrinsic; we only despeculate when a zero input is defined. 1549 CountZeros->setArgOperand(1, Builder.getTrue()); 1550 ModifiedDT = true; 1551 return true; 1552 } 1553 1554 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1555 BasicBlock *BB = CI->getParent(); 1556 1557 // Lower inline assembly if we can. 1558 // If we found an inline asm expession, and if the target knows how to 1559 // lower it to normal LLVM code, do so now. 1560 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1561 if (TLI->ExpandInlineAsm(CI)) { 1562 // Avoid invalidating the iterator. 1563 CurInstIterator = BB->begin(); 1564 // Avoid processing instructions out of order, which could cause 1565 // reuse before a value is defined. 1566 SunkAddrs.clear(); 1567 return true; 1568 } 1569 // Sink address computing for memory operands into the block. 1570 if (optimizeInlineAsmInst(CI)) 1571 return true; 1572 } 1573 1574 // Align the pointer arguments to this call if the target thinks it's a good 1575 // idea 1576 unsigned MinSize, PrefAlign; 1577 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1578 for (auto &Arg : CI->arg_operands()) { 1579 // We want to align both objects whose address is used directly and 1580 // objects whose address is used in casts and GEPs, though it only makes 1581 // sense for GEPs if the offset is a multiple of the desired alignment and 1582 // if size - offset meets the size threshold. 1583 if (!Arg->getType()->isPointerTy()) 1584 continue; 1585 APInt Offset(DL->getIndexSizeInBits( 1586 cast<PointerType>(Arg->getType())->getAddressSpace()), 1587 0); 1588 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1589 uint64_t Offset2 = Offset.getLimitedValue(); 1590 if ((Offset2 & (PrefAlign-1)) != 0) 1591 continue; 1592 AllocaInst *AI; 1593 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1594 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1595 AI->setAlignment(PrefAlign); 1596 // Global variables can only be aligned if they are defined in this 1597 // object (i.e. they are uniquely initialized in this object), and 1598 // over-aligning global variables that have an explicit section is 1599 // forbidden. 1600 GlobalVariable *GV; 1601 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1602 GV->getPointerAlignment(*DL) < PrefAlign && 1603 DL->getTypeAllocSize(GV->getValueType()) >= 1604 MinSize + Offset2) 1605 GV->setAlignment(PrefAlign); 1606 } 1607 // If this is a memcpy (or similar) then we may be able to improve the 1608 // alignment 1609 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1610 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1611 if (DestAlign > MI->getDestAlignment()) 1612 MI->setDestAlignment(DestAlign); 1613 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1614 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1615 if (SrcAlign > MTI->getSourceAlignment()) 1616 MTI->setSourceAlignment(SrcAlign); 1617 } 1618 } 1619 } 1620 1621 // If we have a cold call site, try to sink addressing computation into the 1622 // cold block. This interacts with our handling for loads and stores to 1623 // ensure that we can fold all uses of a potential addressing computation 1624 // into their uses. TODO: generalize this to work over profiling data 1625 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1626 for (auto &Arg : CI->arg_operands()) { 1627 if (!Arg->getType()->isPointerTy()) 1628 continue; 1629 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1630 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1631 } 1632 1633 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1634 if (II) { 1635 switch (II->getIntrinsicID()) { 1636 default: break; 1637 case Intrinsic::objectsize: { 1638 // Lower all uses of llvm.objectsize.* 1639 ConstantInt *RetVal = 1640 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1641 // Substituting this can cause recursive simplifications, which can 1642 // invalidate our iterator. Use a WeakTrackingVH to hold onto it in case 1643 // this 1644 // happens. 1645 Value *CurValue = &*CurInstIterator; 1646 WeakTrackingVH IterHandle(CurValue); 1647 1648 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1649 1650 // If the iterator instruction was recursively deleted, start over at the 1651 // start of the block. 1652 if (IterHandle != CurValue) { 1653 CurInstIterator = BB->begin(); 1654 SunkAddrs.clear(); 1655 } 1656 return true; 1657 } 1658 case Intrinsic::aarch64_stlxr: 1659 case Intrinsic::aarch64_stxr: { 1660 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1661 if (!ExtVal || !ExtVal->hasOneUse() || 1662 ExtVal->getParent() == CI->getParent()) 1663 return false; 1664 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1665 ExtVal->moveBefore(CI); 1666 // Mark this instruction as "inserted by CGP", so that other 1667 // optimizations don't touch it. 1668 InsertedInsts.insert(ExtVal); 1669 return true; 1670 } 1671 case Intrinsic::invariant_group_barrier: 1672 II->replaceAllUsesWith(II->getArgOperand(0)); 1673 II->eraseFromParent(); 1674 return true; 1675 1676 case Intrinsic::cttz: 1677 case Intrinsic::ctlz: 1678 // If counting zeros is expensive, try to avoid it. 1679 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1680 } 1681 1682 if (TLI) { 1683 SmallVector<Value*, 2> PtrOps; 1684 Type *AccessTy; 1685 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1686 while (!PtrOps.empty()) { 1687 Value *PtrVal = PtrOps.pop_back_val(); 1688 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1689 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1690 return true; 1691 } 1692 } 1693 } 1694 1695 // From here on out we're working with named functions. 1696 if (!CI->getCalledFunction()) return false; 1697 1698 // Lower all default uses of _chk calls. This is very similar 1699 // to what InstCombineCalls does, but here we are only lowering calls 1700 // to fortified library functions (e.g. __memcpy_chk) that have the default 1701 // "don't know" as the objectsize. Anything else should be left alone. 1702 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1703 if (Value *V = Simplifier.optimizeCall(CI)) { 1704 CI->replaceAllUsesWith(V); 1705 CI->eraseFromParent(); 1706 return true; 1707 } 1708 1709 return false; 1710 } 1711 1712 /// Look for opportunities to duplicate return instructions to the predecessor 1713 /// to enable tail call optimizations. The case it is currently looking for is: 1714 /// @code 1715 /// bb0: 1716 /// %tmp0 = tail call i32 @f0() 1717 /// br label %return 1718 /// bb1: 1719 /// %tmp1 = tail call i32 @f1() 1720 /// br label %return 1721 /// bb2: 1722 /// %tmp2 = tail call i32 @f2() 1723 /// br label %return 1724 /// return: 1725 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1726 /// ret i32 %retval 1727 /// @endcode 1728 /// 1729 /// => 1730 /// 1731 /// @code 1732 /// bb0: 1733 /// %tmp0 = tail call i32 @f0() 1734 /// ret i32 %tmp0 1735 /// bb1: 1736 /// %tmp1 = tail call i32 @f1() 1737 /// ret i32 %tmp1 1738 /// bb2: 1739 /// %tmp2 = tail call i32 @f2() 1740 /// ret i32 %tmp2 1741 /// @endcode 1742 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1743 if (!TLI) 1744 return false; 1745 1746 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1747 if (!RetI) 1748 return false; 1749 1750 PHINode *PN = nullptr; 1751 BitCastInst *BCI = nullptr; 1752 Value *V = RetI->getReturnValue(); 1753 if (V) { 1754 BCI = dyn_cast<BitCastInst>(V); 1755 if (BCI) 1756 V = BCI->getOperand(0); 1757 1758 PN = dyn_cast<PHINode>(V); 1759 if (!PN) 1760 return false; 1761 } 1762 1763 if (PN && PN->getParent() != BB) 1764 return false; 1765 1766 // Make sure there are no instructions between the PHI and return, or that the 1767 // return is the first instruction in the block. 1768 if (PN) { 1769 BasicBlock::iterator BI = BB->begin(); 1770 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1771 if (&*BI == BCI) 1772 // Also skip over the bitcast. 1773 ++BI; 1774 if (&*BI != RetI) 1775 return false; 1776 } else { 1777 BasicBlock::iterator BI = BB->begin(); 1778 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1779 if (&*BI != RetI) 1780 return false; 1781 } 1782 1783 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1784 /// call. 1785 const Function *F = BB->getParent(); 1786 SmallVector<CallInst*, 4> TailCalls; 1787 if (PN) { 1788 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1789 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1790 // Make sure the phi value is indeed produced by the tail call. 1791 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1792 TLI->mayBeEmittedAsTailCall(CI) && 1793 attributesPermitTailCall(F, CI, RetI, *TLI)) 1794 TailCalls.push_back(CI); 1795 } 1796 } else { 1797 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1798 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1799 if (!VisitedBBs.insert(*PI).second) 1800 continue; 1801 1802 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1803 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1804 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1805 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1806 if (RI == RE) 1807 continue; 1808 1809 CallInst *CI = dyn_cast<CallInst>(&*RI); 1810 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1811 attributesPermitTailCall(F, CI, RetI, *TLI)) 1812 TailCalls.push_back(CI); 1813 } 1814 } 1815 1816 bool Changed = false; 1817 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1818 CallInst *CI = TailCalls[i]; 1819 CallSite CS(CI); 1820 1821 // Conservatively require the attributes of the call to match those of the 1822 // return. Ignore noalias because it doesn't affect the call sequence. 1823 AttributeList CalleeAttrs = CS.getAttributes(); 1824 if (AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1825 .removeAttribute(Attribute::NoAlias) != 1826 AttrBuilder(CalleeAttrs, AttributeList::ReturnIndex) 1827 .removeAttribute(Attribute::NoAlias)) 1828 continue; 1829 1830 // Make sure the call instruction is followed by an unconditional branch to 1831 // the return block. 1832 BasicBlock *CallBB = CI->getParent(); 1833 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1834 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1835 continue; 1836 1837 // Duplicate the return into CallBB. 1838 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1839 ModifiedDT = Changed = true; 1840 ++NumRetsDup; 1841 } 1842 1843 // If we eliminated all predecessors of the block, delete the block now. 1844 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1845 BB->eraseFromParent(); 1846 1847 return Changed; 1848 } 1849 1850 //===----------------------------------------------------------------------===// 1851 // Memory Optimization 1852 //===----------------------------------------------------------------------===// 1853 1854 namespace { 1855 1856 /// This is an extended version of TargetLowering::AddrMode 1857 /// which holds actual Value*'s for register values. 1858 struct ExtAddrMode : public TargetLowering::AddrMode { 1859 Value *BaseReg = nullptr; 1860 Value *ScaledReg = nullptr; 1861 Value *OriginalValue = nullptr; 1862 1863 enum FieldName { 1864 NoField = 0x00, 1865 BaseRegField = 0x01, 1866 BaseGVField = 0x02, 1867 BaseOffsField = 0x04, 1868 ScaledRegField = 0x08, 1869 ScaleField = 0x10, 1870 MultipleFields = 0xff 1871 }; 1872 1873 ExtAddrMode() = default; 1874 1875 void print(raw_ostream &OS) const; 1876 void dump() const; 1877 1878 FieldName compare(const ExtAddrMode &other) { 1879 // First check that the types are the same on each field, as differing types 1880 // is something we can't cope with later on. 1881 if (BaseReg && other.BaseReg && 1882 BaseReg->getType() != other.BaseReg->getType()) 1883 return MultipleFields; 1884 if (BaseGV && other.BaseGV && 1885 BaseGV->getType() != other.BaseGV->getType()) 1886 return MultipleFields; 1887 if (ScaledReg && other.ScaledReg && 1888 ScaledReg->getType() != other.ScaledReg->getType()) 1889 return MultipleFields; 1890 1891 // Check each field to see if it differs. 1892 unsigned Result = NoField; 1893 if (BaseReg != other.BaseReg) 1894 Result |= BaseRegField; 1895 if (BaseGV != other.BaseGV) 1896 Result |= BaseGVField; 1897 if (BaseOffs != other.BaseOffs) 1898 Result |= BaseOffsField; 1899 if (ScaledReg != other.ScaledReg) 1900 Result |= ScaledRegField; 1901 // Don't count 0 as being a different scale, because that actually means 1902 // unscaled (which will already be counted by having no ScaledReg). 1903 if (Scale && other.Scale && Scale != other.Scale) 1904 Result |= ScaleField; 1905 1906 if (countPopulation(Result) > 1) 1907 return MultipleFields; 1908 else 1909 return static_cast<FieldName>(Result); 1910 } 1911 1912 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1913 // with no offset. 1914 bool isTrivial() { 1915 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1916 // trivial if at most one of these terms is nonzero, except that BaseGV and 1917 // BaseReg both being zero actually means a null pointer value, which we 1918 // consider to be 'non-zero' here. 1919 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1920 } 1921 1922 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1923 switch (Field) { 1924 default: 1925 return nullptr; 1926 case BaseRegField: 1927 return BaseReg; 1928 case BaseGVField: 1929 return BaseGV; 1930 case ScaledRegField: 1931 return ScaledReg; 1932 case BaseOffsField: 1933 return ConstantInt::get(IntPtrTy, BaseOffs); 1934 } 1935 } 1936 1937 void SetCombinedField(FieldName Field, Value *V, 1938 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 1939 switch (Field) { 1940 default: 1941 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 1942 break; 1943 case ExtAddrMode::BaseRegField: 1944 BaseReg = V; 1945 break; 1946 case ExtAddrMode::BaseGVField: 1947 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 1948 // in the BaseReg field. 1949 assert(BaseReg == nullptr); 1950 BaseReg = V; 1951 BaseGV = nullptr; 1952 break; 1953 case ExtAddrMode::ScaledRegField: 1954 ScaledReg = V; 1955 // If we have a mix of scaled and unscaled addrmodes then we want scale 1956 // to be the scale and not zero. 1957 if (!Scale) 1958 for (const ExtAddrMode &AM : AddrModes) 1959 if (AM.Scale) { 1960 Scale = AM.Scale; 1961 break; 1962 } 1963 break; 1964 case ExtAddrMode::BaseOffsField: 1965 // The offset is no longer a constant, so it goes in ScaledReg with a 1966 // scale of 1. 1967 assert(ScaledReg == nullptr); 1968 ScaledReg = V; 1969 Scale = 1; 1970 BaseOffs = 0; 1971 break; 1972 } 1973 } 1974 }; 1975 1976 } // end anonymous namespace 1977 1978 #ifndef NDEBUG 1979 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1980 AM.print(OS); 1981 return OS; 1982 } 1983 #endif 1984 1985 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1986 void ExtAddrMode::print(raw_ostream &OS) const { 1987 bool NeedPlus = false; 1988 OS << "["; 1989 if (BaseGV) { 1990 OS << (NeedPlus ? " + " : "") 1991 << "GV:"; 1992 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1993 NeedPlus = true; 1994 } 1995 1996 if (BaseOffs) { 1997 OS << (NeedPlus ? " + " : "") 1998 << BaseOffs; 1999 NeedPlus = true; 2000 } 2001 2002 if (BaseReg) { 2003 OS << (NeedPlus ? " + " : "") 2004 << "Base:"; 2005 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2006 NeedPlus = true; 2007 } 2008 if (Scale) { 2009 OS << (NeedPlus ? " + " : "") 2010 << Scale << "*"; 2011 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2012 } 2013 2014 OS << ']'; 2015 } 2016 2017 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2018 print(dbgs()); 2019 dbgs() << '\n'; 2020 } 2021 #endif 2022 2023 namespace { 2024 2025 /// This class provides transaction based operation on the IR. 2026 /// Every change made through this class is recorded in the internal state and 2027 /// can be undone (rollback) until commit is called. 2028 class TypePromotionTransaction { 2029 /// This represents the common interface of the individual transaction. 2030 /// Each class implements the logic for doing one specific modification on 2031 /// the IR via the TypePromotionTransaction. 2032 class TypePromotionAction { 2033 protected: 2034 /// The Instruction modified. 2035 Instruction *Inst; 2036 2037 public: 2038 /// Constructor of the action. 2039 /// The constructor performs the related action on the IR. 2040 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2041 2042 virtual ~TypePromotionAction() = default; 2043 2044 /// Undo the modification done by this action. 2045 /// When this method is called, the IR must be in the same state as it was 2046 /// before this action was applied. 2047 /// \pre Undoing the action works if and only if the IR is in the exact same 2048 /// state as it was directly after this action was applied. 2049 virtual void undo() = 0; 2050 2051 /// Advocate every change made by this action. 2052 /// When the results on the IR of the action are to be kept, it is important 2053 /// to call this function, otherwise hidden information may be kept forever. 2054 virtual void commit() { 2055 // Nothing to be done, this action is not doing anything. 2056 } 2057 }; 2058 2059 /// Utility to remember the position of an instruction. 2060 class InsertionHandler { 2061 /// Position of an instruction. 2062 /// Either an instruction: 2063 /// - Is the first in a basic block: BB is used. 2064 /// - Has a previous instructon: PrevInst is used. 2065 union { 2066 Instruction *PrevInst; 2067 BasicBlock *BB; 2068 } Point; 2069 2070 /// Remember whether or not the instruction had a previous instruction. 2071 bool HasPrevInstruction; 2072 2073 public: 2074 /// Record the position of \p Inst. 2075 InsertionHandler(Instruction *Inst) { 2076 BasicBlock::iterator It = Inst->getIterator(); 2077 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2078 if (HasPrevInstruction) 2079 Point.PrevInst = &*--It; 2080 else 2081 Point.BB = Inst->getParent(); 2082 } 2083 2084 /// Insert \p Inst at the recorded position. 2085 void insert(Instruction *Inst) { 2086 if (HasPrevInstruction) { 2087 if (Inst->getParent()) 2088 Inst->removeFromParent(); 2089 Inst->insertAfter(Point.PrevInst); 2090 } else { 2091 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2092 if (Inst->getParent()) 2093 Inst->moveBefore(Position); 2094 else 2095 Inst->insertBefore(Position); 2096 } 2097 } 2098 }; 2099 2100 /// Move an instruction before another. 2101 class InstructionMoveBefore : public TypePromotionAction { 2102 /// Original position of the instruction. 2103 InsertionHandler Position; 2104 2105 public: 2106 /// Move \p Inst before \p Before. 2107 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2108 : TypePromotionAction(Inst), Position(Inst) { 2109 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2110 Inst->moveBefore(Before); 2111 } 2112 2113 /// Move the instruction back to its original position. 2114 void undo() override { 2115 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2116 Position.insert(Inst); 2117 } 2118 }; 2119 2120 /// Set the operand of an instruction with a new value. 2121 class OperandSetter : public TypePromotionAction { 2122 /// Original operand of the instruction. 2123 Value *Origin; 2124 2125 /// Index of the modified instruction. 2126 unsigned Idx; 2127 2128 public: 2129 /// Set \p Idx operand of \p Inst with \p NewVal. 2130 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2131 : TypePromotionAction(Inst), Idx(Idx) { 2132 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2133 << "for:" << *Inst << "\n" 2134 << "with:" << *NewVal << "\n"); 2135 Origin = Inst->getOperand(Idx); 2136 Inst->setOperand(Idx, NewVal); 2137 } 2138 2139 /// Restore the original value of the instruction. 2140 void undo() override { 2141 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2142 << "for: " << *Inst << "\n" 2143 << "with: " << *Origin << "\n"); 2144 Inst->setOperand(Idx, Origin); 2145 } 2146 }; 2147 2148 /// Hide the operands of an instruction. 2149 /// Do as if this instruction was not using any of its operands. 2150 class OperandsHider : public TypePromotionAction { 2151 /// The list of original operands. 2152 SmallVector<Value *, 4> OriginalValues; 2153 2154 public: 2155 /// Remove \p Inst from the uses of the operands of \p Inst. 2156 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2157 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2158 unsigned NumOpnds = Inst->getNumOperands(); 2159 OriginalValues.reserve(NumOpnds); 2160 for (unsigned It = 0; It < NumOpnds; ++It) { 2161 // Save the current operand. 2162 Value *Val = Inst->getOperand(It); 2163 OriginalValues.push_back(Val); 2164 // Set a dummy one. 2165 // We could use OperandSetter here, but that would imply an overhead 2166 // that we are not willing to pay. 2167 Inst->setOperand(It, UndefValue::get(Val->getType())); 2168 } 2169 } 2170 2171 /// Restore the original list of uses. 2172 void undo() override { 2173 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2174 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2175 Inst->setOperand(It, OriginalValues[It]); 2176 } 2177 }; 2178 2179 /// Build a truncate instruction. 2180 class TruncBuilder : public TypePromotionAction { 2181 Value *Val; 2182 2183 public: 2184 /// Build a truncate instruction of \p Opnd producing a \p Ty 2185 /// result. 2186 /// trunc Opnd to Ty. 2187 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2188 IRBuilder<> Builder(Opnd); 2189 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2190 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2191 } 2192 2193 /// Get the built value. 2194 Value *getBuiltValue() { return Val; } 2195 2196 /// Remove the built instruction. 2197 void undo() override { 2198 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2199 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2200 IVal->eraseFromParent(); 2201 } 2202 }; 2203 2204 /// Build a sign extension instruction. 2205 class SExtBuilder : public TypePromotionAction { 2206 Value *Val; 2207 2208 public: 2209 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2210 /// result. 2211 /// sext Opnd to Ty. 2212 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2213 : TypePromotionAction(InsertPt) { 2214 IRBuilder<> Builder(InsertPt); 2215 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2216 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2217 } 2218 2219 /// Get the built value. 2220 Value *getBuiltValue() { return Val; } 2221 2222 /// Remove the built instruction. 2223 void undo() override { 2224 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2225 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2226 IVal->eraseFromParent(); 2227 } 2228 }; 2229 2230 /// Build a zero extension instruction. 2231 class ZExtBuilder : public TypePromotionAction { 2232 Value *Val; 2233 2234 public: 2235 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2236 /// result. 2237 /// zext Opnd to Ty. 2238 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2239 : TypePromotionAction(InsertPt) { 2240 IRBuilder<> Builder(InsertPt); 2241 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2242 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2243 } 2244 2245 /// Get the built value. 2246 Value *getBuiltValue() { return Val; } 2247 2248 /// Remove the built instruction. 2249 void undo() override { 2250 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2251 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2252 IVal->eraseFromParent(); 2253 } 2254 }; 2255 2256 /// Mutate an instruction to another type. 2257 class TypeMutator : public TypePromotionAction { 2258 /// Record the original type. 2259 Type *OrigTy; 2260 2261 public: 2262 /// Mutate the type of \p Inst into \p NewTy. 2263 TypeMutator(Instruction *Inst, Type *NewTy) 2264 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2265 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2266 << "\n"); 2267 Inst->mutateType(NewTy); 2268 } 2269 2270 /// Mutate the instruction back to its original type. 2271 void undo() override { 2272 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2273 << "\n"); 2274 Inst->mutateType(OrigTy); 2275 } 2276 }; 2277 2278 /// Replace the uses of an instruction by another instruction. 2279 class UsesReplacer : public TypePromotionAction { 2280 /// Helper structure to keep track of the replaced uses. 2281 struct InstructionAndIdx { 2282 /// The instruction using the instruction. 2283 Instruction *Inst; 2284 2285 /// The index where this instruction is used for Inst. 2286 unsigned Idx; 2287 2288 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2289 : Inst(Inst), Idx(Idx) {} 2290 }; 2291 2292 /// Keep track of the original uses (pair Instruction, Index). 2293 SmallVector<InstructionAndIdx, 4> OriginalUses; 2294 2295 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2296 2297 public: 2298 /// Replace all the use of \p Inst by \p New. 2299 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2300 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2301 << "\n"); 2302 // Record the original uses. 2303 for (Use &U : Inst->uses()) { 2304 Instruction *UserI = cast<Instruction>(U.getUser()); 2305 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2306 } 2307 // Now, we can replace the uses. 2308 Inst->replaceAllUsesWith(New); 2309 } 2310 2311 /// Reassign the original uses of Inst to Inst. 2312 void undo() override { 2313 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2314 for (use_iterator UseIt = OriginalUses.begin(), 2315 EndIt = OriginalUses.end(); 2316 UseIt != EndIt; ++UseIt) { 2317 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2318 } 2319 } 2320 }; 2321 2322 /// Remove an instruction from the IR. 2323 class InstructionRemover : public TypePromotionAction { 2324 /// Original position of the instruction. 2325 InsertionHandler Inserter; 2326 2327 /// Helper structure to hide all the link to the instruction. In other 2328 /// words, this helps to do as if the instruction was removed. 2329 OperandsHider Hider; 2330 2331 /// Keep track of the uses replaced, if any. 2332 UsesReplacer *Replacer = nullptr; 2333 2334 /// Keep track of instructions removed. 2335 SetOfInstrs &RemovedInsts; 2336 2337 public: 2338 /// Remove all reference of \p Inst and optinally replace all its 2339 /// uses with New. 2340 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2341 /// \pre If !Inst->use_empty(), then New != nullptr 2342 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2343 Value *New = nullptr) 2344 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2345 RemovedInsts(RemovedInsts) { 2346 if (New) 2347 Replacer = new UsesReplacer(Inst, New); 2348 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2349 RemovedInsts.insert(Inst); 2350 /// The instructions removed here will be freed after completing 2351 /// optimizeBlock() for all blocks as we need to keep track of the 2352 /// removed instructions during promotion. 2353 Inst->removeFromParent(); 2354 } 2355 2356 ~InstructionRemover() override { delete Replacer; } 2357 2358 /// Resurrect the instruction and reassign it to the proper uses if 2359 /// new value was provided when build this action. 2360 void undo() override { 2361 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2362 Inserter.insert(Inst); 2363 if (Replacer) 2364 Replacer->undo(); 2365 Hider.undo(); 2366 RemovedInsts.erase(Inst); 2367 } 2368 }; 2369 2370 public: 2371 /// Restoration point. 2372 /// The restoration point is a pointer to an action instead of an iterator 2373 /// because the iterator may be invalidated but not the pointer. 2374 using ConstRestorationPt = const TypePromotionAction *; 2375 2376 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2377 : RemovedInsts(RemovedInsts) {} 2378 2379 /// Advocate every changes made in that transaction. 2380 void commit(); 2381 2382 /// Undo all the changes made after the given point. 2383 void rollback(ConstRestorationPt Point); 2384 2385 /// Get the current restoration point. 2386 ConstRestorationPt getRestorationPoint() const; 2387 2388 /// \name API for IR modification with state keeping to support rollback. 2389 /// @{ 2390 /// Same as Instruction::setOperand. 2391 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2392 2393 /// Same as Instruction::eraseFromParent. 2394 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2395 2396 /// Same as Value::replaceAllUsesWith. 2397 void replaceAllUsesWith(Instruction *Inst, Value *New); 2398 2399 /// Same as Value::mutateType. 2400 void mutateType(Instruction *Inst, Type *NewTy); 2401 2402 /// Same as IRBuilder::createTrunc. 2403 Value *createTrunc(Instruction *Opnd, Type *Ty); 2404 2405 /// Same as IRBuilder::createSExt. 2406 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2407 2408 /// Same as IRBuilder::createZExt. 2409 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2410 2411 /// Same as Instruction::moveBefore. 2412 void moveBefore(Instruction *Inst, Instruction *Before); 2413 /// @} 2414 2415 private: 2416 /// The ordered list of actions made so far. 2417 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2418 2419 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2420 2421 SetOfInstrs &RemovedInsts; 2422 }; 2423 2424 } // end anonymous namespace 2425 2426 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2427 Value *NewVal) { 2428 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2429 Inst, Idx, NewVal)); 2430 } 2431 2432 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2433 Value *NewVal) { 2434 Actions.push_back( 2435 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2436 Inst, RemovedInsts, NewVal)); 2437 } 2438 2439 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2440 Value *New) { 2441 Actions.push_back( 2442 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2443 } 2444 2445 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2446 Actions.push_back( 2447 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2448 } 2449 2450 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2451 Type *Ty) { 2452 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2453 Value *Val = Ptr->getBuiltValue(); 2454 Actions.push_back(std::move(Ptr)); 2455 return Val; 2456 } 2457 2458 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2459 Value *Opnd, Type *Ty) { 2460 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2461 Value *Val = Ptr->getBuiltValue(); 2462 Actions.push_back(std::move(Ptr)); 2463 return Val; 2464 } 2465 2466 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2467 Value *Opnd, Type *Ty) { 2468 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2469 Value *Val = Ptr->getBuiltValue(); 2470 Actions.push_back(std::move(Ptr)); 2471 return Val; 2472 } 2473 2474 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2475 Instruction *Before) { 2476 Actions.push_back( 2477 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2478 Inst, Before)); 2479 } 2480 2481 TypePromotionTransaction::ConstRestorationPt 2482 TypePromotionTransaction::getRestorationPoint() const { 2483 return !Actions.empty() ? Actions.back().get() : nullptr; 2484 } 2485 2486 void TypePromotionTransaction::commit() { 2487 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2488 ++It) 2489 (*It)->commit(); 2490 Actions.clear(); 2491 } 2492 2493 void TypePromotionTransaction::rollback( 2494 TypePromotionTransaction::ConstRestorationPt Point) { 2495 while (!Actions.empty() && Point != Actions.back().get()) { 2496 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2497 Curr->undo(); 2498 } 2499 } 2500 2501 namespace { 2502 2503 /// A helper class for matching addressing modes. 2504 /// 2505 /// This encapsulates the logic for matching the target-legal addressing modes. 2506 class AddressingModeMatcher { 2507 SmallVectorImpl<Instruction*> &AddrModeInsts; 2508 const TargetLowering &TLI; 2509 const TargetRegisterInfo &TRI; 2510 const DataLayout &DL; 2511 2512 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2513 /// the memory instruction that we're computing this address for. 2514 Type *AccessTy; 2515 unsigned AddrSpace; 2516 Instruction *MemoryInst; 2517 2518 /// This is the addressing mode that we're building up. This is 2519 /// part of the return value of this addressing mode matching stuff. 2520 ExtAddrMode &AddrMode; 2521 2522 /// The instructions inserted by other CodeGenPrepare optimizations. 2523 const SetOfInstrs &InsertedInsts; 2524 2525 /// A map from the instructions to their type before promotion. 2526 InstrToOrigTy &PromotedInsts; 2527 2528 /// The ongoing transaction where every action should be registered. 2529 TypePromotionTransaction &TPT; 2530 2531 /// This is set to true when we should not do profitability checks. 2532 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2533 bool IgnoreProfitability; 2534 2535 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2536 const TargetLowering &TLI, 2537 const TargetRegisterInfo &TRI, 2538 Type *AT, unsigned AS, 2539 Instruction *MI, ExtAddrMode &AM, 2540 const SetOfInstrs &InsertedInsts, 2541 InstrToOrigTy &PromotedInsts, 2542 TypePromotionTransaction &TPT) 2543 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2544 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2545 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2546 PromotedInsts(PromotedInsts), TPT(TPT) { 2547 IgnoreProfitability = false; 2548 } 2549 2550 public: 2551 /// Find the maximal addressing mode that a load/store of V can fold, 2552 /// give an access type of AccessTy. This returns a list of involved 2553 /// instructions in AddrModeInsts. 2554 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2555 /// optimizations. 2556 /// \p PromotedInsts maps the instructions to their type before promotion. 2557 /// \p The ongoing transaction where every action should be registered. 2558 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2559 Instruction *MemoryInst, 2560 SmallVectorImpl<Instruction*> &AddrModeInsts, 2561 const TargetLowering &TLI, 2562 const TargetRegisterInfo &TRI, 2563 const SetOfInstrs &InsertedInsts, 2564 InstrToOrigTy &PromotedInsts, 2565 TypePromotionTransaction &TPT) { 2566 ExtAddrMode Result; 2567 2568 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2569 AccessTy, AS, 2570 MemoryInst, Result, InsertedInsts, 2571 PromotedInsts, TPT).matchAddr(V, 0); 2572 (void)Success; assert(Success && "Couldn't select *anything*?"); 2573 return Result; 2574 } 2575 2576 private: 2577 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2578 bool matchAddr(Value *V, unsigned Depth); 2579 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2580 bool *MovedAway = nullptr); 2581 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2582 ExtAddrMode &AMBefore, 2583 ExtAddrMode &AMAfter); 2584 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2585 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2586 Value *PromotedOperand) const; 2587 }; 2588 2589 /// Keep track of simplification of Phi nodes. 2590 /// Accept the set of all phi nodes and erase phi node from this set 2591 /// if it is simplified. 2592 class SimplificationTracker { 2593 DenseMap<Value *, Value *> Storage; 2594 const SimplifyQuery &SQ; 2595 // Tracks newly created Phi nodes. We use a SetVector to get deterministic 2596 // order when iterating over the set in MatchPhiSet. 2597 SmallSetVector<PHINode *, 32> AllPhiNodes; 2598 // Tracks newly created Select nodes. 2599 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2600 2601 public: 2602 SimplificationTracker(const SimplifyQuery &sq) 2603 : SQ(sq) {} 2604 2605 Value *Get(Value *V) { 2606 do { 2607 auto SV = Storage.find(V); 2608 if (SV == Storage.end()) 2609 return V; 2610 V = SV->second; 2611 } while (true); 2612 } 2613 2614 Value *Simplify(Value *Val) { 2615 SmallVector<Value *, 32> WorkList; 2616 SmallPtrSet<Value *, 32> Visited; 2617 WorkList.push_back(Val); 2618 while (!WorkList.empty()) { 2619 auto P = WorkList.pop_back_val(); 2620 if (!Visited.insert(P).second) 2621 continue; 2622 if (auto *PI = dyn_cast<Instruction>(P)) 2623 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2624 for (auto *U : PI->users()) 2625 WorkList.push_back(cast<Value>(U)); 2626 Put(PI, V); 2627 PI->replaceAllUsesWith(V); 2628 if (auto *PHI = dyn_cast<PHINode>(PI)) 2629 AllPhiNodes.remove(PHI); 2630 if (auto *Select = dyn_cast<SelectInst>(PI)) 2631 AllSelectNodes.erase(Select); 2632 PI->eraseFromParent(); 2633 } 2634 } 2635 return Get(Val); 2636 } 2637 2638 void Put(Value *From, Value *To) { 2639 Storage.insert({ From, To }); 2640 } 2641 2642 void ReplacePhi(PHINode *From, PHINode *To) { 2643 Value* OldReplacement = Get(From); 2644 while (OldReplacement != From) { 2645 From = To; 2646 To = dyn_cast<PHINode>(OldReplacement); 2647 OldReplacement = Get(From); 2648 } 2649 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2650 Put(From, To); 2651 From->replaceAllUsesWith(To); 2652 AllPhiNodes.remove(From); 2653 From->eraseFromParent(); 2654 } 2655 2656 SmallSetVector<PHINode *, 32>& newPhiNodes() { return AllPhiNodes; } 2657 2658 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2659 2660 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2661 2662 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2663 2664 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2665 2666 void destroyNewNodes(Type *CommonType) { 2667 // For safe erasing, replace the uses with dummy value first. 2668 auto Dummy = UndefValue::get(CommonType); 2669 for (auto I : AllPhiNodes) { 2670 I->replaceAllUsesWith(Dummy); 2671 I->eraseFromParent(); 2672 } 2673 AllPhiNodes.clear(); 2674 for (auto I : AllSelectNodes) { 2675 I->replaceAllUsesWith(Dummy); 2676 I->eraseFromParent(); 2677 } 2678 AllSelectNodes.clear(); 2679 } 2680 }; 2681 2682 /// A helper class for combining addressing modes. 2683 class AddressingModeCombiner { 2684 typedef std::pair<Value *, BasicBlock *> ValueInBB; 2685 typedef DenseMap<ValueInBB, Value *> FoldAddrToValueMapping; 2686 typedef std::pair<PHINode *, PHINode *> PHIPair; 2687 2688 private: 2689 /// The addressing modes we've collected. 2690 SmallVector<ExtAddrMode, 16> AddrModes; 2691 2692 /// The field in which the AddrModes differ, when we have more than one. 2693 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2694 2695 /// Are the AddrModes that we have all just equal to their original values? 2696 bool AllAddrModesTrivial = true; 2697 2698 /// Common Type for all different fields in addressing modes. 2699 Type *CommonType; 2700 2701 /// SimplifyQuery for simplifyInstruction utility. 2702 const SimplifyQuery &SQ; 2703 2704 /// Original Address. 2705 ValueInBB Original; 2706 2707 public: 2708 AddressingModeCombiner(const SimplifyQuery &_SQ, ValueInBB OriginalValue) 2709 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2710 2711 /// Get the combined AddrMode 2712 const ExtAddrMode &getAddrMode() const { 2713 return AddrModes[0]; 2714 } 2715 2716 /// Add a new AddrMode if it's compatible with the AddrModes we already 2717 /// have. 2718 /// \return True iff we succeeded in doing so. 2719 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2720 // Take note of if we have any non-trivial AddrModes, as we need to detect 2721 // when all AddrModes are trivial as then we would introduce a phi or select 2722 // which just duplicates what's already there. 2723 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2724 2725 // If this is the first addrmode then everything is fine. 2726 if (AddrModes.empty()) { 2727 AddrModes.emplace_back(NewAddrMode); 2728 return true; 2729 } 2730 2731 // Figure out how different this is from the other address modes, which we 2732 // can do just by comparing against the first one given that we only care 2733 // about the cumulative difference. 2734 ExtAddrMode::FieldName ThisDifferentField = 2735 AddrModes[0].compare(NewAddrMode); 2736 if (DifferentField == ExtAddrMode::NoField) 2737 DifferentField = ThisDifferentField; 2738 else if (DifferentField != ThisDifferentField) 2739 DifferentField = ExtAddrMode::MultipleFields; 2740 2741 // If NewAddrMode differs in more than one dimension we cannot handle it. 2742 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2743 2744 // If Scale Field is different then we reject. 2745 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2746 2747 // We also must reject the case when base offset is different and 2748 // scale reg is not null, we cannot handle this case due to merge of 2749 // different offsets will be used as ScaleReg. 2750 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2751 !NewAddrMode.ScaledReg); 2752 2753 // We also must reject the case when GV is different and BaseReg installed 2754 // due to we want to use base reg as a merge of GV values. 2755 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2756 !NewAddrMode.HasBaseReg); 2757 2758 // Even if NewAddMode is the same we still need to collect it due to 2759 // original value is different. And later we will need all original values 2760 // as anchors during finding the common Phi node. 2761 if (CanHandle) 2762 AddrModes.emplace_back(NewAddrMode); 2763 else 2764 AddrModes.clear(); 2765 2766 return CanHandle; 2767 } 2768 2769 /// Combine the addressing modes we've collected into a single 2770 /// addressing mode. 2771 /// \return True iff we successfully combined them or we only had one so 2772 /// didn't need to combine them anyway. 2773 bool combineAddrModes() { 2774 // If we have no AddrModes then they can't be combined. 2775 if (AddrModes.size() == 0) 2776 return false; 2777 2778 // A single AddrMode can trivially be combined. 2779 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 2780 return true; 2781 2782 // If the AddrModes we collected are all just equal to the value they are 2783 // derived from then combining them wouldn't do anything useful. 2784 if (AllAddrModesTrivial) 2785 return false; 2786 2787 if (!addrModeCombiningAllowed()) 2788 return false; 2789 2790 // Build a map between <original value, basic block where we saw it> to 2791 // value of base register. 2792 // Bail out if there is no common type. 2793 FoldAddrToValueMapping Map; 2794 if (!initializeMap(Map)) 2795 return false; 2796 2797 Value *CommonValue = findCommon(Map); 2798 if (CommonValue) 2799 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 2800 return CommonValue != nullptr; 2801 } 2802 2803 private: 2804 /// Initialize Map with anchor values. For address seen in some BB 2805 /// we set the value of different field saw in this address. 2806 /// If address is not an instruction than basic block is set to null. 2807 /// At the same time we find a common type for different field we will 2808 /// use to create new Phi/Select nodes. Keep it in CommonType field. 2809 /// Return false if there is no common type found. 2810 bool initializeMap(FoldAddrToValueMapping &Map) { 2811 // Keep track of keys where the value is null. We will need to replace it 2812 // with constant null when we know the common type. 2813 SmallVector<ValueInBB, 2> NullValue; 2814 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 2815 for (auto &AM : AddrModes) { 2816 BasicBlock *BB = nullptr; 2817 if (Instruction *I = dyn_cast<Instruction>(AM.OriginalValue)) 2818 BB = I->getParent(); 2819 2820 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 2821 if (DV) { 2822 auto *Type = DV->getType(); 2823 if (CommonType && CommonType != Type) 2824 return false; 2825 CommonType = Type; 2826 Map[{ AM.OriginalValue, BB }] = DV; 2827 } else { 2828 NullValue.push_back({ AM.OriginalValue, BB }); 2829 } 2830 } 2831 assert(CommonType && "At least one non-null value must be!"); 2832 for (auto VIBB : NullValue) 2833 Map[VIBB] = Constant::getNullValue(CommonType); 2834 return true; 2835 } 2836 2837 /// We have mapping between value A and basic block where value A 2838 /// seen to other value B where B was a field in addressing mode represented 2839 /// by A. Also we have an original value C representin an address in some 2840 /// basic block. Traversing from C through phi and selects we ended up with 2841 /// A's in a map. This utility function tries to find a value V which is a 2842 /// field in addressing mode C and traversing through phi nodes and selects 2843 /// we will end up in corresponded values B in a map. 2844 /// The utility will create a new Phi/Selects if needed. 2845 // The simple example looks as follows: 2846 // BB1: 2847 // p1 = b1 + 40 2848 // br cond BB2, BB3 2849 // BB2: 2850 // p2 = b2 + 40 2851 // br BB3 2852 // BB3: 2853 // p = phi [p1, BB1], [p2, BB2] 2854 // v = load p 2855 // Map is 2856 // <p1, BB1> -> b1 2857 // <p2, BB2> -> b2 2858 // Request is 2859 // <p, BB3> -> ? 2860 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3 2861 Value *findCommon(FoldAddrToValueMapping &Map) { 2862 // Tracks the simplification of newly created phi nodes. The reason we use 2863 // this mapping is because we will add new created Phi nodes in AddrToBase. 2864 // Simplification of Phi nodes is recursive, so some Phi node may 2865 // be simplified after we added it to AddrToBase. 2866 // Using this mapping we can find the current value in AddrToBase. 2867 SimplificationTracker ST(SQ); 2868 2869 // First step, DFS to create PHI nodes for all intermediate blocks. 2870 // Also fill traverse order for the second step. 2871 SmallVector<ValueInBB, 32> TraverseOrder; 2872 InsertPlaceholders(Map, TraverseOrder, ST); 2873 2874 // Second Step, fill new nodes by merged values and simplify if possible. 2875 FillPlaceholders(Map, TraverseOrder, ST); 2876 2877 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 2878 ST.destroyNewNodes(CommonType); 2879 return nullptr; 2880 } 2881 2882 // Now we'd like to match New Phi nodes to existed ones. 2883 unsigned PhiNotMatchedCount = 0; 2884 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 2885 ST.destroyNewNodes(CommonType); 2886 return nullptr; 2887 } 2888 2889 auto *Result = ST.Get(Map.find(Original)->second); 2890 if (Result) { 2891 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 2892 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 2893 } 2894 return Result; 2895 } 2896 2897 /// Try to match PHI node to Candidate. 2898 /// Matcher tracks the matched Phi nodes. 2899 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 2900 SmallSetVector<PHIPair, 8> &Matcher, 2901 SmallSetVector<PHINode *, 32> &PhiNodesToMatch) { 2902 SmallVector<PHIPair, 8> WorkList; 2903 Matcher.insert({ PHI, Candidate }); 2904 WorkList.push_back({ PHI, Candidate }); 2905 SmallSet<PHIPair, 8> Visited; 2906 while (!WorkList.empty()) { 2907 auto Item = WorkList.pop_back_val(); 2908 if (!Visited.insert(Item).second) 2909 continue; 2910 // We iterate over all incoming values to Phi to compare them. 2911 // If values are different and both of them Phi and the first one is a 2912 // Phi we added (subject to match) and both of them is in the same basic 2913 // block then we can match our pair if values match. So we state that 2914 // these values match and add it to work list to verify that. 2915 for (auto B : Item.first->blocks()) { 2916 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 2917 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 2918 if (FirstValue == SecondValue) 2919 continue; 2920 2921 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 2922 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 2923 2924 // One of them is not Phi or 2925 // The first one is not Phi node from the set we'd like to match or 2926 // Phi nodes from different basic blocks then 2927 // we will not be able to match. 2928 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 2929 FirstPhi->getParent() != SecondPhi->getParent()) 2930 return false; 2931 2932 // If we already matched them then continue. 2933 if (Matcher.count({ FirstPhi, SecondPhi })) 2934 continue; 2935 // So the values are different and does not match. So we need them to 2936 // match. 2937 Matcher.insert({ FirstPhi, SecondPhi }); 2938 // But me must check it. 2939 WorkList.push_back({ FirstPhi, SecondPhi }); 2940 } 2941 } 2942 return true; 2943 } 2944 2945 /// For the given set of PHI nodes (in the SimplificationTracker) try 2946 /// to find their equivalents. 2947 /// Returns false if this matching fails and creation of new Phi is disabled. 2948 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 2949 unsigned &PhiNotMatchedCount) { 2950 // Use a SetVector for Matched to make sure we do replacements (ReplacePhi) 2951 // in a deterministic order below. 2952 SmallSetVector<PHIPair, 8> Matched; 2953 SmallPtrSet<PHINode *, 8> WillNotMatch; 2954 SmallSetVector<PHINode *, 32> &PhiNodesToMatch = ST.newPhiNodes(); 2955 while (PhiNodesToMatch.size()) { 2956 PHINode *PHI = *PhiNodesToMatch.begin(); 2957 2958 // Add us, if no Phi nodes in the basic block we do not match. 2959 WillNotMatch.clear(); 2960 WillNotMatch.insert(PHI); 2961 2962 // Traverse all Phis until we found equivalent or fail to do that. 2963 bool IsMatched = false; 2964 for (auto &P : PHI->getParent()->phis()) { 2965 if (&P == PHI) 2966 continue; 2967 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 2968 break; 2969 // If it does not match, collect all Phi nodes from matcher. 2970 // if we end up with no match, them all these Phi nodes will not match 2971 // later. 2972 for (auto M : Matched) 2973 WillNotMatch.insert(M.first); 2974 Matched.clear(); 2975 } 2976 if (IsMatched) { 2977 // Replace all matched values and erase them. 2978 for (auto MV : Matched) 2979 ST.ReplacePhi(MV.first, MV.second); 2980 Matched.clear(); 2981 continue; 2982 } 2983 // If we are not allowed to create new nodes then bail out. 2984 if (!AllowNewPhiNodes) 2985 return false; 2986 // Just remove all seen values in matcher. They will not match anything. 2987 PhiNotMatchedCount += WillNotMatch.size(); 2988 for (auto *P : WillNotMatch) 2989 PhiNodesToMatch.remove(P); 2990 } 2991 return true; 2992 } 2993 /// Fill the placeholder with values from predecessors and simplify it. 2994 void FillPlaceholders(FoldAddrToValueMapping &Map, 2995 SmallVectorImpl<ValueInBB> &TraverseOrder, 2996 SimplificationTracker &ST) { 2997 while (!TraverseOrder.empty()) { 2998 auto Current = TraverseOrder.pop_back_val(); 2999 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3000 Value *CurrentValue = Current.first; 3001 BasicBlock *CurrentBlock = Current.second; 3002 Value *V = Map[Current]; 3003 3004 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3005 // CurrentValue also must be Select. 3006 auto *CurrentSelect = cast<SelectInst>(CurrentValue); 3007 auto *TrueValue = CurrentSelect->getTrueValue(); 3008 ValueInBB TrueItem = { TrueValue, isa<Instruction>(TrueValue) 3009 ? CurrentBlock 3010 : nullptr }; 3011 assert(Map.find(TrueItem) != Map.end() && "No True Value!"); 3012 Select->setTrueValue(ST.Get(Map[TrueItem])); 3013 auto *FalseValue = CurrentSelect->getFalseValue(); 3014 ValueInBB FalseItem = { FalseValue, isa<Instruction>(FalseValue) 3015 ? CurrentBlock 3016 : nullptr }; 3017 assert(Map.find(FalseItem) != Map.end() && "No False Value!"); 3018 Select->setFalseValue(ST.Get(Map[FalseItem])); 3019 } else { 3020 // Must be a Phi node then. 3021 PHINode *PHI = cast<PHINode>(V); 3022 // Fill the Phi node with values from predecessors. 3023 bool IsDefinedInThisBB = 3024 cast<Instruction>(CurrentValue)->getParent() == CurrentBlock; 3025 auto *CurrentPhi = dyn_cast<PHINode>(CurrentValue); 3026 for (auto B : predecessors(CurrentBlock)) { 3027 Value *PV = IsDefinedInThisBB 3028 ? CurrentPhi->getIncomingValueForBlock(B) 3029 : CurrentValue; 3030 ValueInBB item = { PV, isa<Instruction>(PV) ? B : nullptr }; 3031 assert(Map.find(item) != Map.end() && "No predecessor Value!"); 3032 PHI->addIncoming(ST.Get(Map[item]), B); 3033 } 3034 } 3035 // Simplify if possible. 3036 Map[Current] = ST.Simplify(V); 3037 } 3038 } 3039 3040 /// Starting from value recursively iterates over predecessors up to known 3041 /// ending values represented in a map. For each traversed block inserts 3042 /// a placeholder Phi or Select. 3043 /// Reports all new created Phi/Select nodes by adding them to set. 3044 /// Also reports and order in what basic blocks have been traversed. 3045 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3046 SmallVectorImpl<ValueInBB> &TraverseOrder, 3047 SimplificationTracker &ST) { 3048 SmallVector<ValueInBB, 32> Worklist; 3049 assert((isa<PHINode>(Original.first) || isa<SelectInst>(Original.first)) && 3050 "Address must be a Phi or Select node"); 3051 auto *Dummy = UndefValue::get(CommonType); 3052 Worklist.push_back(Original); 3053 while (!Worklist.empty()) { 3054 auto Current = Worklist.pop_back_val(); 3055 // If value is not an instruction it is something global, constant, 3056 // parameter and we can say that this value is observable in any block. 3057 // Set block to null to denote it. 3058 // Also please take into account that it is how we build anchors. 3059 if (!isa<Instruction>(Current.first)) 3060 Current.second = nullptr; 3061 // if it is already visited or it is an ending value then skip it. 3062 if (Map.find(Current) != Map.end()) 3063 continue; 3064 TraverseOrder.push_back(Current); 3065 3066 Value *CurrentValue = Current.first; 3067 BasicBlock *CurrentBlock = Current.second; 3068 // CurrentValue must be a Phi node or select. All others must be covered 3069 // by anchors. 3070 Instruction *CurrentI = cast<Instruction>(CurrentValue); 3071 bool IsDefinedInThisBB = CurrentI->getParent() == CurrentBlock; 3072 3073 unsigned PredCount = 3074 std::distance(pred_begin(CurrentBlock), pred_end(CurrentBlock)); 3075 // if Current Value is not defined in this basic block we are interested 3076 // in values in predecessors. 3077 if (!IsDefinedInThisBB) { 3078 assert(PredCount && "Unreachable block?!"); 3079 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3080 &CurrentBlock->front()); 3081 Map[Current] = PHI; 3082 ST.insertNewPhi(PHI); 3083 // Add all predecessors in work list. 3084 for (auto B : predecessors(CurrentBlock)) 3085 Worklist.push_back({ CurrentValue, B }); 3086 continue; 3087 } 3088 // Value is defined in this basic block. 3089 if (SelectInst *OrigSelect = dyn_cast<SelectInst>(CurrentI)) { 3090 // Is it OK to get metadata from OrigSelect?! 3091 // Create a Select placeholder with dummy value. 3092 SelectInst *Select = 3093 SelectInst::Create(OrigSelect->getCondition(), Dummy, Dummy, 3094 OrigSelect->getName(), OrigSelect, OrigSelect); 3095 Map[Current] = Select; 3096 ST.insertNewSelect(Select); 3097 // We are interested in True and False value in this basic block. 3098 Worklist.push_back({ OrigSelect->getTrueValue(), CurrentBlock }); 3099 Worklist.push_back({ OrigSelect->getFalseValue(), CurrentBlock }); 3100 } else { 3101 // It must be a Phi node then. 3102 auto *CurrentPhi = cast<PHINode>(CurrentI); 3103 // Create new Phi node for merge of bases. 3104 assert(PredCount && "Unreachable block?!"); 3105 PHINode *PHI = PHINode::Create(CommonType, PredCount, "sunk_phi", 3106 &CurrentBlock->front()); 3107 Map[Current] = PHI; 3108 ST.insertNewPhi(PHI); 3109 3110 // Add all predecessors in work list. 3111 for (auto B : predecessors(CurrentBlock)) 3112 Worklist.push_back({ CurrentPhi->getIncomingValueForBlock(B), B }); 3113 } 3114 } 3115 } 3116 3117 bool addrModeCombiningAllowed() { 3118 if (DisableComplexAddrModes) 3119 return false; 3120 switch (DifferentField) { 3121 default: 3122 return false; 3123 case ExtAddrMode::BaseRegField: 3124 return AddrSinkCombineBaseReg; 3125 case ExtAddrMode::BaseGVField: 3126 return AddrSinkCombineBaseGV; 3127 case ExtAddrMode::BaseOffsField: 3128 return AddrSinkCombineBaseOffs; 3129 case ExtAddrMode::ScaledRegField: 3130 return AddrSinkCombineScaledReg; 3131 } 3132 } 3133 }; 3134 } // end anonymous namespace 3135 3136 /// Try adding ScaleReg*Scale to the current addressing mode. 3137 /// Return true and update AddrMode if this addr mode is legal for the target, 3138 /// false if not. 3139 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3140 unsigned Depth) { 3141 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3142 // mode. Just process that directly. 3143 if (Scale == 1) 3144 return matchAddr(ScaleReg, Depth); 3145 3146 // If the scale is 0, it takes nothing to add this. 3147 if (Scale == 0) 3148 return true; 3149 3150 // If we already have a scale of this value, we can add to it, otherwise, we 3151 // need an available scale field. 3152 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3153 return false; 3154 3155 ExtAddrMode TestAddrMode = AddrMode; 3156 3157 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3158 // [A+B + A*7] -> [B+A*8]. 3159 TestAddrMode.Scale += Scale; 3160 TestAddrMode.ScaledReg = ScaleReg; 3161 3162 // If the new address isn't legal, bail out. 3163 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3164 return false; 3165 3166 // It was legal, so commit it. 3167 AddrMode = TestAddrMode; 3168 3169 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3170 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3171 // X*Scale + C*Scale to addr mode. 3172 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3173 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3174 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3175 TestAddrMode.ScaledReg = AddLHS; 3176 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3177 3178 // If this addressing mode is legal, commit it and remember that we folded 3179 // this instruction. 3180 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3181 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3182 AddrMode = TestAddrMode; 3183 return true; 3184 } 3185 } 3186 3187 // Otherwise, not (x+c)*scale, just return what we have. 3188 return true; 3189 } 3190 3191 /// This is a little filter, which returns true if an addressing computation 3192 /// involving I might be folded into a load/store accessing it. 3193 /// This doesn't need to be perfect, but needs to accept at least 3194 /// the set of instructions that MatchOperationAddr can. 3195 static bool MightBeFoldableInst(Instruction *I) { 3196 switch (I->getOpcode()) { 3197 case Instruction::BitCast: 3198 case Instruction::AddrSpaceCast: 3199 // Don't touch identity bitcasts. 3200 if (I->getType() == I->getOperand(0)->getType()) 3201 return false; 3202 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3203 case Instruction::PtrToInt: 3204 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3205 return true; 3206 case Instruction::IntToPtr: 3207 // We know the input is intptr_t, so this is foldable. 3208 return true; 3209 case Instruction::Add: 3210 return true; 3211 case Instruction::Mul: 3212 case Instruction::Shl: 3213 // Can only handle X*C and X << C. 3214 return isa<ConstantInt>(I->getOperand(1)); 3215 case Instruction::GetElementPtr: 3216 return true; 3217 default: 3218 return false; 3219 } 3220 } 3221 3222 /// Check whether or not \p Val is a legal instruction for \p TLI. 3223 /// \note \p Val is assumed to be the product of some type promotion. 3224 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3225 /// to be legal, as the non-promoted value would have had the same state. 3226 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3227 const DataLayout &DL, Value *Val) { 3228 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3229 if (!PromotedInst) 3230 return false; 3231 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3232 // If the ISDOpcode is undefined, it was undefined before the promotion. 3233 if (!ISDOpcode) 3234 return true; 3235 // Otherwise, check if the promoted instruction is legal or not. 3236 return TLI.isOperationLegalOrCustom( 3237 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3238 } 3239 3240 namespace { 3241 3242 /// Hepler class to perform type promotion. 3243 class TypePromotionHelper { 3244 /// Utility function to check whether or not a sign or zero extension 3245 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3246 /// either using the operands of \p Inst or promoting \p Inst. 3247 /// The type of the extension is defined by \p IsSExt. 3248 /// In other words, check if: 3249 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3250 /// #1 Promotion applies: 3251 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3252 /// #2 Operand reuses: 3253 /// ext opnd1 to ConsideredExtType. 3254 /// \p PromotedInsts maps the instructions to their type before promotion. 3255 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3256 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3257 3258 /// Utility function to determine if \p OpIdx should be promoted when 3259 /// promoting \p Inst. 3260 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3261 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3262 } 3263 3264 /// Utility function to promote the operand of \p Ext when this 3265 /// operand is a promotable trunc or sext or zext. 3266 /// \p PromotedInsts maps the instructions to their type before promotion. 3267 /// \p CreatedInstsCost[out] contains the cost of all instructions 3268 /// created to promote the operand of Ext. 3269 /// Newly added extensions are inserted in \p Exts. 3270 /// Newly added truncates are inserted in \p Truncs. 3271 /// Should never be called directly. 3272 /// \return The promoted value which is used instead of Ext. 3273 static Value *promoteOperandForTruncAndAnyExt( 3274 Instruction *Ext, TypePromotionTransaction &TPT, 3275 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3276 SmallVectorImpl<Instruction *> *Exts, 3277 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3278 3279 /// Utility function to promote the operand of \p Ext when this 3280 /// operand is promotable and is not a supported trunc or sext. 3281 /// \p PromotedInsts maps the instructions to their type before promotion. 3282 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3283 /// created to promote the operand of Ext. 3284 /// Newly added extensions are inserted in \p Exts. 3285 /// Newly added truncates are inserted in \p Truncs. 3286 /// Should never be called directly. 3287 /// \return The promoted value which is used instead of Ext. 3288 static Value *promoteOperandForOther(Instruction *Ext, 3289 TypePromotionTransaction &TPT, 3290 InstrToOrigTy &PromotedInsts, 3291 unsigned &CreatedInstsCost, 3292 SmallVectorImpl<Instruction *> *Exts, 3293 SmallVectorImpl<Instruction *> *Truncs, 3294 const TargetLowering &TLI, bool IsSExt); 3295 3296 /// \see promoteOperandForOther. 3297 static Value *signExtendOperandForOther( 3298 Instruction *Ext, TypePromotionTransaction &TPT, 3299 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3300 SmallVectorImpl<Instruction *> *Exts, 3301 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3302 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3303 Exts, Truncs, TLI, true); 3304 } 3305 3306 /// \see promoteOperandForOther. 3307 static Value *zeroExtendOperandForOther( 3308 Instruction *Ext, TypePromotionTransaction &TPT, 3309 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3310 SmallVectorImpl<Instruction *> *Exts, 3311 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3312 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3313 Exts, Truncs, TLI, false); 3314 } 3315 3316 public: 3317 /// Type for the utility function that promotes the operand of Ext. 3318 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3319 InstrToOrigTy &PromotedInsts, 3320 unsigned &CreatedInstsCost, 3321 SmallVectorImpl<Instruction *> *Exts, 3322 SmallVectorImpl<Instruction *> *Truncs, 3323 const TargetLowering &TLI); 3324 3325 /// Given a sign/zero extend instruction \p Ext, return the approriate 3326 /// action to promote the operand of \p Ext instead of using Ext. 3327 /// \return NULL if no promotable action is possible with the current 3328 /// sign extension. 3329 /// \p InsertedInsts keeps track of all the instructions inserted by the 3330 /// other CodeGenPrepare optimizations. This information is important 3331 /// because we do not want to promote these instructions as CodeGenPrepare 3332 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3333 /// \p PromotedInsts maps the instructions to their type before promotion. 3334 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3335 const TargetLowering &TLI, 3336 const InstrToOrigTy &PromotedInsts); 3337 }; 3338 3339 } // end anonymous namespace 3340 3341 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3342 Type *ConsideredExtType, 3343 const InstrToOrigTy &PromotedInsts, 3344 bool IsSExt) { 3345 // The promotion helper does not know how to deal with vector types yet. 3346 // To be able to fix that, we would need to fix the places where we 3347 // statically extend, e.g., constants and such. 3348 if (Inst->getType()->isVectorTy()) 3349 return false; 3350 3351 // We can always get through zext. 3352 if (isa<ZExtInst>(Inst)) 3353 return true; 3354 3355 // sext(sext) is ok too. 3356 if (IsSExt && isa<SExtInst>(Inst)) 3357 return true; 3358 3359 // We can get through binary operator, if it is legal. In other words, the 3360 // binary operator must have a nuw or nsw flag. 3361 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3362 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3363 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3364 (IsSExt && BinOp->hasNoSignedWrap()))) 3365 return true; 3366 3367 // Check if we can do the following simplification. 3368 // ext(trunc(opnd)) --> ext(opnd) 3369 if (!isa<TruncInst>(Inst)) 3370 return false; 3371 3372 Value *OpndVal = Inst->getOperand(0); 3373 // Check if we can use this operand in the extension. 3374 // If the type is larger than the result type of the extension, we cannot. 3375 if (!OpndVal->getType()->isIntegerTy() || 3376 OpndVal->getType()->getIntegerBitWidth() > 3377 ConsideredExtType->getIntegerBitWidth()) 3378 return false; 3379 3380 // If the operand of the truncate is not an instruction, we will not have 3381 // any information on the dropped bits. 3382 // (Actually we could for constant but it is not worth the extra logic). 3383 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3384 if (!Opnd) 3385 return false; 3386 3387 // Check if the source of the type is narrow enough. 3388 // I.e., check that trunc just drops extended bits of the same kind of 3389 // the extension. 3390 // #1 get the type of the operand and check the kind of the extended bits. 3391 const Type *OpndType; 3392 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3393 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3394 OpndType = It->second.getPointer(); 3395 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3396 OpndType = Opnd->getOperand(0)->getType(); 3397 else 3398 return false; 3399 3400 // #2 check that the truncate just drops extended bits. 3401 return Inst->getType()->getIntegerBitWidth() >= 3402 OpndType->getIntegerBitWidth(); 3403 } 3404 3405 TypePromotionHelper::Action TypePromotionHelper::getAction( 3406 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3407 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3408 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3409 "Unexpected instruction type"); 3410 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3411 Type *ExtTy = Ext->getType(); 3412 bool IsSExt = isa<SExtInst>(Ext); 3413 // If the operand of the extension is not an instruction, we cannot 3414 // get through. 3415 // If it, check we can get through. 3416 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3417 return nullptr; 3418 3419 // Do not promote if the operand has been added by codegenprepare. 3420 // Otherwise, it means we are undoing an optimization that is likely to be 3421 // redone, thus causing potential infinite loop. 3422 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3423 return nullptr; 3424 3425 // SExt or Trunc instructions. 3426 // Return the related handler. 3427 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3428 isa<ZExtInst>(ExtOpnd)) 3429 return promoteOperandForTruncAndAnyExt; 3430 3431 // Regular instruction. 3432 // Abort early if we will have to insert non-free instructions. 3433 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3434 return nullptr; 3435 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3436 } 3437 3438 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3439 Instruction *SExt, TypePromotionTransaction &TPT, 3440 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3441 SmallVectorImpl<Instruction *> *Exts, 3442 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3443 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3444 // get through it and this method should not be called. 3445 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3446 Value *ExtVal = SExt; 3447 bool HasMergedNonFreeExt = false; 3448 if (isa<ZExtInst>(SExtOpnd)) { 3449 // Replace s|zext(zext(opnd)) 3450 // => zext(opnd). 3451 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3452 Value *ZExt = 3453 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3454 TPT.replaceAllUsesWith(SExt, ZExt); 3455 TPT.eraseInstruction(SExt); 3456 ExtVal = ZExt; 3457 } else { 3458 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3459 // => z|sext(opnd). 3460 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3461 } 3462 CreatedInstsCost = 0; 3463 3464 // Remove dead code. 3465 if (SExtOpnd->use_empty()) 3466 TPT.eraseInstruction(SExtOpnd); 3467 3468 // Check if the extension is still needed. 3469 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3470 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3471 if (ExtInst) { 3472 if (Exts) 3473 Exts->push_back(ExtInst); 3474 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3475 } 3476 return ExtVal; 3477 } 3478 3479 // At this point we have: ext ty opnd to ty. 3480 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3481 Value *NextVal = ExtInst->getOperand(0); 3482 TPT.eraseInstruction(ExtInst, NextVal); 3483 return NextVal; 3484 } 3485 3486 Value *TypePromotionHelper::promoteOperandForOther( 3487 Instruction *Ext, TypePromotionTransaction &TPT, 3488 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3489 SmallVectorImpl<Instruction *> *Exts, 3490 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3491 bool IsSExt) { 3492 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3493 // get through it and this method should not be called. 3494 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3495 CreatedInstsCost = 0; 3496 if (!ExtOpnd->hasOneUse()) { 3497 // ExtOpnd will be promoted. 3498 // All its uses, but Ext, will need to use a truncated value of the 3499 // promoted version. 3500 // Create the truncate now. 3501 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3502 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3503 // Insert it just after the definition. 3504 ITrunc->moveAfter(ExtOpnd); 3505 if (Truncs) 3506 Truncs->push_back(ITrunc); 3507 } 3508 3509 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3510 // Restore the operand of Ext (which has been replaced by the previous call 3511 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3512 TPT.setOperand(Ext, 0, ExtOpnd); 3513 } 3514 3515 // Get through the Instruction: 3516 // 1. Update its type. 3517 // 2. Replace the uses of Ext by Inst. 3518 // 3. Extend each operand that needs to be extended. 3519 3520 // Remember the original type of the instruction before promotion. 3521 // This is useful to know that the high bits are sign extended bits. 3522 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3523 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3524 // Step #1. 3525 TPT.mutateType(ExtOpnd, Ext->getType()); 3526 // Step #2. 3527 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3528 // Step #3. 3529 Instruction *ExtForOpnd = Ext; 3530 3531 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3532 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3533 ++OpIdx) { 3534 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3535 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3536 !shouldExtOperand(ExtOpnd, OpIdx)) { 3537 DEBUG(dbgs() << "No need to propagate\n"); 3538 continue; 3539 } 3540 // Check if we can statically extend the operand. 3541 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3542 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3543 DEBUG(dbgs() << "Statically extend\n"); 3544 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3545 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3546 : Cst->getValue().zext(BitWidth); 3547 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3548 continue; 3549 } 3550 // UndefValue are typed, so we have to statically sign extend them. 3551 if (isa<UndefValue>(Opnd)) { 3552 DEBUG(dbgs() << "Statically extend\n"); 3553 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3554 continue; 3555 } 3556 3557 // Otherwise we have to explicity sign extend the operand. 3558 // Check if Ext was reused to extend an operand. 3559 if (!ExtForOpnd) { 3560 // If yes, create a new one. 3561 DEBUG(dbgs() << "More operands to ext\n"); 3562 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3563 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3564 if (!isa<Instruction>(ValForExtOpnd)) { 3565 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3566 continue; 3567 } 3568 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3569 } 3570 if (Exts) 3571 Exts->push_back(ExtForOpnd); 3572 TPT.setOperand(ExtForOpnd, 0, Opnd); 3573 3574 // Move the sign extension before the insertion point. 3575 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3576 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3577 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3578 // If more sext are required, new instructions will have to be created. 3579 ExtForOpnd = nullptr; 3580 } 3581 if (ExtForOpnd == Ext) { 3582 DEBUG(dbgs() << "Extension is useless now\n"); 3583 TPT.eraseInstruction(Ext); 3584 } 3585 return ExtOpnd; 3586 } 3587 3588 /// Check whether or not promoting an instruction to a wider type is profitable. 3589 /// \p NewCost gives the cost of extension instructions created by the 3590 /// promotion. 3591 /// \p OldCost gives the cost of extension instructions before the promotion 3592 /// plus the number of instructions that have been 3593 /// matched in the addressing mode the promotion. 3594 /// \p PromotedOperand is the value that has been promoted. 3595 /// \return True if the promotion is profitable, false otherwise. 3596 bool AddressingModeMatcher::isPromotionProfitable( 3597 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3598 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3599 // The cost of the new extensions is greater than the cost of the 3600 // old extension plus what we folded. 3601 // This is not profitable. 3602 if (NewCost > OldCost) 3603 return false; 3604 if (NewCost < OldCost) 3605 return true; 3606 // The promotion is neutral but it may help folding the sign extension in 3607 // loads for instance. 3608 // Check that we did not create an illegal instruction. 3609 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3610 } 3611 3612 /// Given an instruction or constant expr, see if we can fold the operation 3613 /// into the addressing mode. If so, update the addressing mode and return 3614 /// true, otherwise return false without modifying AddrMode. 3615 /// If \p MovedAway is not NULL, it contains the information of whether or 3616 /// not AddrInst has to be folded into the addressing mode on success. 3617 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3618 /// because it has been moved away. 3619 /// Thus AddrInst must not be added in the matched instructions. 3620 /// This state can happen when AddrInst is a sext, since it may be moved away. 3621 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3622 /// not be referenced anymore. 3623 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3624 unsigned Depth, 3625 bool *MovedAway) { 3626 // Avoid exponential behavior on extremely deep expression trees. 3627 if (Depth >= 5) return false; 3628 3629 // By default, all matched instructions stay in place. 3630 if (MovedAway) 3631 *MovedAway = false; 3632 3633 switch (Opcode) { 3634 case Instruction::PtrToInt: 3635 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3636 return matchAddr(AddrInst->getOperand(0), Depth); 3637 case Instruction::IntToPtr: { 3638 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3639 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3640 // This inttoptr is a no-op if the integer type is pointer sized. 3641 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3642 return matchAddr(AddrInst->getOperand(0), Depth); 3643 return false; 3644 } 3645 case Instruction::BitCast: 3646 // BitCast is always a noop, and we can handle it as long as it is 3647 // int->int or pointer->pointer (we don't want int<->fp or something). 3648 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3649 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3650 // Don't touch identity bitcasts. These were probably put here by LSR, 3651 // and we don't want to mess around with them. Assume it knows what it 3652 // is doing. 3653 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3654 return matchAddr(AddrInst->getOperand(0), Depth); 3655 return false; 3656 case Instruction::AddrSpaceCast: { 3657 unsigned SrcAS 3658 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3659 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3660 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3661 return matchAddr(AddrInst->getOperand(0), Depth); 3662 return false; 3663 } 3664 case Instruction::Add: { 3665 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3666 ExtAddrMode BackupAddrMode = AddrMode; 3667 unsigned OldSize = AddrModeInsts.size(); 3668 // Start a transaction at this point. 3669 // The LHS may match but not the RHS. 3670 // Therefore, we need a higher level restoration point to undo partially 3671 // matched operation. 3672 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3673 TPT.getRestorationPoint(); 3674 3675 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3676 matchAddr(AddrInst->getOperand(0), Depth+1)) 3677 return true; 3678 3679 // Restore the old addr mode info. 3680 AddrMode = BackupAddrMode; 3681 AddrModeInsts.resize(OldSize); 3682 TPT.rollback(LastKnownGood); 3683 3684 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3685 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3686 matchAddr(AddrInst->getOperand(1), Depth+1)) 3687 return true; 3688 3689 // Otherwise we definitely can't merge the ADD in. 3690 AddrMode = BackupAddrMode; 3691 AddrModeInsts.resize(OldSize); 3692 TPT.rollback(LastKnownGood); 3693 break; 3694 } 3695 //case Instruction::Or: 3696 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3697 //break; 3698 case Instruction::Mul: 3699 case Instruction::Shl: { 3700 // Can only handle X*C and X << C. 3701 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3702 if (!RHS || RHS->getBitWidth() > 64) 3703 return false; 3704 int64_t Scale = RHS->getSExtValue(); 3705 if (Opcode == Instruction::Shl) 3706 Scale = 1LL << Scale; 3707 3708 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3709 } 3710 case Instruction::GetElementPtr: { 3711 // Scan the GEP. We check it if it contains constant offsets and at most 3712 // one variable offset. 3713 int VariableOperand = -1; 3714 unsigned VariableScale = 0; 3715 3716 int64_t ConstantOffset = 0; 3717 gep_type_iterator GTI = gep_type_begin(AddrInst); 3718 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3719 if (StructType *STy = GTI.getStructTypeOrNull()) { 3720 const StructLayout *SL = DL.getStructLayout(STy); 3721 unsigned Idx = 3722 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3723 ConstantOffset += SL->getElementOffset(Idx); 3724 } else { 3725 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3726 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3727 ConstantOffset += CI->getSExtValue() * TypeSize; 3728 } else if (TypeSize) { // Scales of zero don't do anything. 3729 // We only allow one variable index at the moment. 3730 if (VariableOperand != -1) 3731 return false; 3732 3733 // Remember the variable index. 3734 VariableOperand = i; 3735 VariableScale = TypeSize; 3736 } 3737 } 3738 } 3739 3740 // A common case is for the GEP to only do a constant offset. In this case, 3741 // just add it to the disp field and check validity. 3742 if (VariableOperand == -1) { 3743 AddrMode.BaseOffs += ConstantOffset; 3744 if (ConstantOffset == 0 || 3745 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3746 // Check to see if we can fold the base pointer in too. 3747 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3748 return true; 3749 } 3750 AddrMode.BaseOffs -= ConstantOffset; 3751 return false; 3752 } 3753 3754 // Save the valid addressing mode in case we can't match. 3755 ExtAddrMode BackupAddrMode = AddrMode; 3756 unsigned OldSize = AddrModeInsts.size(); 3757 3758 // See if the scale and offset amount is valid for this target. 3759 AddrMode.BaseOffs += ConstantOffset; 3760 3761 // Match the base operand of the GEP. 3762 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3763 // If it couldn't be matched, just stuff the value in a register. 3764 if (AddrMode.HasBaseReg) { 3765 AddrMode = BackupAddrMode; 3766 AddrModeInsts.resize(OldSize); 3767 return false; 3768 } 3769 AddrMode.HasBaseReg = true; 3770 AddrMode.BaseReg = AddrInst->getOperand(0); 3771 } 3772 3773 // Match the remaining variable portion of the GEP. 3774 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3775 Depth)) { 3776 // If it couldn't be matched, try stuffing the base into a register 3777 // instead of matching it, and retrying the match of the scale. 3778 AddrMode = BackupAddrMode; 3779 AddrModeInsts.resize(OldSize); 3780 if (AddrMode.HasBaseReg) 3781 return false; 3782 AddrMode.HasBaseReg = true; 3783 AddrMode.BaseReg = AddrInst->getOperand(0); 3784 AddrMode.BaseOffs += ConstantOffset; 3785 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3786 VariableScale, Depth)) { 3787 // If even that didn't work, bail. 3788 AddrMode = BackupAddrMode; 3789 AddrModeInsts.resize(OldSize); 3790 return false; 3791 } 3792 } 3793 3794 return true; 3795 } 3796 case Instruction::SExt: 3797 case Instruction::ZExt: { 3798 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3799 if (!Ext) 3800 return false; 3801 3802 // Try to move this ext out of the way of the addressing mode. 3803 // Ask for a method for doing so. 3804 TypePromotionHelper::Action TPH = 3805 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3806 if (!TPH) 3807 return false; 3808 3809 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3810 TPT.getRestorationPoint(); 3811 unsigned CreatedInstsCost = 0; 3812 unsigned ExtCost = !TLI.isExtFree(Ext); 3813 Value *PromotedOperand = 3814 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3815 // SExt has been moved away. 3816 // Thus either it will be rematched later in the recursive calls or it is 3817 // gone. Anyway, we must not fold it into the addressing mode at this point. 3818 // E.g., 3819 // op = add opnd, 1 3820 // idx = ext op 3821 // addr = gep base, idx 3822 // is now: 3823 // promotedOpnd = ext opnd <- no match here 3824 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3825 // addr = gep base, op <- match 3826 if (MovedAway) 3827 *MovedAway = true; 3828 3829 assert(PromotedOperand && 3830 "TypePromotionHelper should have filtered out those cases"); 3831 3832 ExtAddrMode BackupAddrMode = AddrMode; 3833 unsigned OldSize = AddrModeInsts.size(); 3834 3835 if (!matchAddr(PromotedOperand, Depth) || 3836 // The total of the new cost is equal to the cost of the created 3837 // instructions. 3838 // The total of the old cost is equal to the cost of the extension plus 3839 // what we have saved in the addressing mode. 3840 !isPromotionProfitable(CreatedInstsCost, 3841 ExtCost + (AddrModeInsts.size() - OldSize), 3842 PromotedOperand)) { 3843 AddrMode = BackupAddrMode; 3844 AddrModeInsts.resize(OldSize); 3845 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3846 TPT.rollback(LastKnownGood); 3847 return false; 3848 } 3849 return true; 3850 } 3851 } 3852 return false; 3853 } 3854 3855 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3856 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3857 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3858 /// for the target. 3859 /// 3860 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3861 // Start a transaction at this point that we will rollback if the matching 3862 // fails. 3863 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3864 TPT.getRestorationPoint(); 3865 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3866 // Fold in immediates if legal for the target. 3867 AddrMode.BaseOffs += CI->getSExtValue(); 3868 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3869 return true; 3870 AddrMode.BaseOffs -= CI->getSExtValue(); 3871 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3872 // If this is a global variable, try to fold it into the addressing mode. 3873 if (!AddrMode.BaseGV) { 3874 AddrMode.BaseGV = GV; 3875 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3876 return true; 3877 AddrMode.BaseGV = nullptr; 3878 } 3879 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3880 ExtAddrMode BackupAddrMode = AddrMode; 3881 unsigned OldSize = AddrModeInsts.size(); 3882 3883 // Check to see if it is possible to fold this operation. 3884 bool MovedAway = false; 3885 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3886 // This instruction may have been moved away. If so, there is nothing 3887 // to check here. 3888 if (MovedAway) 3889 return true; 3890 // Okay, it's possible to fold this. Check to see if it is actually 3891 // *profitable* to do so. We use a simple cost model to avoid increasing 3892 // register pressure too much. 3893 if (I->hasOneUse() || 3894 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3895 AddrModeInsts.push_back(I); 3896 return true; 3897 } 3898 3899 // It isn't profitable to do this, roll back. 3900 //cerr << "NOT FOLDING: " << *I; 3901 AddrMode = BackupAddrMode; 3902 AddrModeInsts.resize(OldSize); 3903 TPT.rollback(LastKnownGood); 3904 } 3905 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3906 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3907 return true; 3908 TPT.rollback(LastKnownGood); 3909 } else if (isa<ConstantPointerNull>(Addr)) { 3910 // Null pointer gets folded without affecting the addressing mode. 3911 return true; 3912 } 3913 3914 // Worse case, the target should support [reg] addressing modes. :) 3915 if (!AddrMode.HasBaseReg) { 3916 AddrMode.HasBaseReg = true; 3917 AddrMode.BaseReg = Addr; 3918 // Still check for legality in case the target supports [imm] but not [i+r]. 3919 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3920 return true; 3921 AddrMode.HasBaseReg = false; 3922 AddrMode.BaseReg = nullptr; 3923 } 3924 3925 // If the base register is already taken, see if we can do [r+r]. 3926 if (AddrMode.Scale == 0) { 3927 AddrMode.Scale = 1; 3928 AddrMode.ScaledReg = Addr; 3929 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3930 return true; 3931 AddrMode.Scale = 0; 3932 AddrMode.ScaledReg = nullptr; 3933 } 3934 // Couldn't match. 3935 TPT.rollback(LastKnownGood); 3936 return false; 3937 } 3938 3939 /// Check to see if all uses of OpVal by the specified inline asm call are due 3940 /// to memory operands. If so, return true, otherwise return false. 3941 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3942 const TargetLowering &TLI, 3943 const TargetRegisterInfo &TRI) { 3944 const Function *F = CI->getFunction(); 3945 TargetLowering::AsmOperandInfoVector TargetConstraints = 3946 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3947 ImmutableCallSite(CI)); 3948 3949 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3950 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3951 3952 // Compute the constraint code and ConstraintType to use. 3953 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3954 3955 // If this asm operand is our Value*, and if it isn't an indirect memory 3956 // operand, we can't fold it! 3957 if (OpInfo.CallOperandVal == OpVal && 3958 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3959 !OpInfo.isIndirect)) 3960 return false; 3961 } 3962 3963 return true; 3964 } 3965 3966 // Max number of memory uses to look at before aborting the search to conserve 3967 // compile time. 3968 static constexpr int MaxMemoryUsesToScan = 20; 3969 3970 /// Recursively walk all the uses of I until we find a memory use. 3971 /// If we find an obviously non-foldable instruction, return true. 3972 /// Add the ultimately found memory instructions to MemoryUses. 3973 static bool FindAllMemoryUses( 3974 Instruction *I, 3975 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3976 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 3977 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 3978 // If we already considered this instruction, we're done. 3979 if (!ConsideredInsts.insert(I).second) 3980 return false; 3981 3982 // If this is an obviously unfoldable instruction, bail out. 3983 if (!MightBeFoldableInst(I)) 3984 return true; 3985 3986 const bool OptSize = I->getFunction()->optForSize(); 3987 3988 // Loop over all the uses, recursively processing them. 3989 for (Use &U : I->uses()) { 3990 // Conservatively return true if we're seeing a large number or a deep chain 3991 // of users. This avoids excessive compilation times in pathological cases. 3992 if (SeenInsts++ >= MaxMemoryUsesToScan) 3993 return true; 3994 3995 Instruction *UserI = cast<Instruction>(U.getUser()); 3996 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3997 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3998 continue; 3999 } 4000 4001 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4002 unsigned opNo = U.getOperandNo(); 4003 if (opNo != StoreInst::getPointerOperandIndex()) 4004 return true; // Storing addr, not into addr. 4005 MemoryUses.push_back(std::make_pair(SI, opNo)); 4006 continue; 4007 } 4008 4009 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4010 unsigned opNo = U.getOperandNo(); 4011 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4012 return true; // Storing addr, not into addr. 4013 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4014 continue; 4015 } 4016 4017 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4018 unsigned opNo = U.getOperandNo(); 4019 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4020 return true; // Storing addr, not into addr. 4021 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4022 continue; 4023 } 4024 4025 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4026 // If this is a cold call, we can sink the addressing calculation into 4027 // the cold path. See optimizeCallInst 4028 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4029 continue; 4030 4031 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4032 if (!IA) return true; 4033 4034 // If this is a memory operand, we're cool, otherwise bail out. 4035 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4036 return true; 4037 continue; 4038 } 4039 4040 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4041 SeenInsts)) 4042 return true; 4043 } 4044 4045 return false; 4046 } 4047 4048 /// Return true if Val is already known to be live at the use site that we're 4049 /// folding it into. If so, there is no cost to include it in the addressing 4050 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4051 /// instruction already. 4052 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4053 Value *KnownLive2) { 4054 // If Val is either of the known-live values, we know it is live! 4055 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4056 return true; 4057 4058 // All values other than instructions and arguments (e.g. constants) are live. 4059 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4060 4061 // If Val is a constant sized alloca in the entry block, it is live, this is 4062 // true because it is just a reference to the stack/frame pointer, which is 4063 // live for the whole function. 4064 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4065 if (AI->isStaticAlloca()) 4066 return true; 4067 4068 // Check to see if this value is already used in the memory instruction's 4069 // block. If so, it's already live into the block at the very least, so we 4070 // can reasonably fold it. 4071 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4072 } 4073 4074 /// It is possible for the addressing mode of the machine to fold the specified 4075 /// instruction into a load or store that ultimately uses it. 4076 /// However, the specified instruction has multiple uses. 4077 /// Given this, it may actually increase register pressure to fold it 4078 /// into the load. For example, consider this code: 4079 /// 4080 /// X = ... 4081 /// Y = X+1 4082 /// use(Y) -> nonload/store 4083 /// Z = Y+1 4084 /// load Z 4085 /// 4086 /// In this case, Y has multiple uses, and can be folded into the load of Z 4087 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4088 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4089 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4090 /// number of computations either. 4091 /// 4092 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4093 /// X was live across 'load Z' for other reasons, we actually *would* want to 4094 /// fold the addressing mode in the Z case. This would make Y die earlier. 4095 bool AddressingModeMatcher:: 4096 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4097 ExtAddrMode &AMAfter) { 4098 if (IgnoreProfitability) return true; 4099 4100 // AMBefore is the addressing mode before this instruction was folded into it, 4101 // and AMAfter is the addressing mode after the instruction was folded. Get 4102 // the set of registers referenced by AMAfter and subtract out those 4103 // referenced by AMBefore: this is the set of values which folding in this 4104 // address extends the lifetime of. 4105 // 4106 // Note that there are only two potential values being referenced here, 4107 // BaseReg and ScaleReg (global addresses are always available, as are any 4108 // folded immediates). 4109 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4110 4111 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4112 // lifetime wasn't extended by adding this instruction. 4113 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4114 BaseReg = nullptr; 4115 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4116 ScaledReg = nullptr; 4117 4118 // If folding this instruction (and it's subexprs) didn't extend any live 4119 // ranges, we're ok with it. 4120 if (!BaseReg && !ScaledReg) 4121 return true; 4122 4123 // If all uses of this instruction can have the address mode sunk into them, 4124 // we can remove the addressing mode and effectively trade one live register 4125 // for another (at worst.) In this context, folding an addressing mode into 4126 // the use is just a particularly nice way of sinking it. 4127 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4128 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4129 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4130 return false; // Has a non-memory, non-foldable use! 4131 4132 // Now that we know that all uses of this instruction are part of a chain of 4133 // computation involving only operations that could theoretically be folded 4134 // into a memory use, loop over each of these memory operation uses and see 4135 // if they could *actually* fold the instruction. The assumption is that 4136 // addressing modes are cheap and that duplicating the computation involved 4137 // many times is worthwhile, even on a fastpath. For sinking candidates 4138 // (i.e. cold call sites), this serves as a way to prevent excessive code 4139 // growth since most architectures have some reasonable small and fast way to 4140 // compute an effective address. (i.e LEA on x86) 4141 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4142 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4143 Instruction *User = MemoryUses[i].first; 4144 unsigned OpNo = MemoryUses[i].second; 4145 4146 // Get the access type of this use. If the use isn't a pointer, we don't 4147 // know what it accesses. 4148 Value *Address = User->getOperand(OpNo); 4149 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4150 if (!AddrTy) 4151 return false; 4152 Type *AddressAccessTy = AddrTy->getElementType(); 4153 unsigned AS = AddrTy->getAddressSpace(); 4154 4155 // Do a match against the root of this address, ignoring profitability. This 4156 // will tell us if the addressing mode for the memory operation will 4157 // *actually* cover the shared instruction. 4158 ExtAddrMode Result; 4159 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4160 TPT.getRestorationPoint(); 4161 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4162 AddressAccessTy, AS, 4163 MemoryInst, Result, InsertedInsts, 4164 PromotedInsts, TPT); 4165 Matcher.IgnoreProfitability = true; 4166 bool Success = Matcher.matchAddr(Address, 0); 4167 (void)Success; assert(Success && "Couldn't select *anything*?"); 4168 4169 // The match was to check the profitability, the changes made are not 4170 // part of the original matcher. Therefore, they should be dropped 4171 // otherwise the original matcher will not present the right state. 4172 TPT.rollback(LastKnownGood); 4173 4174 // If the match didn't cover I, then it won't be shared by it. 4175 if (!is_contained(MatchedAddrModeInsts, I)) 4176 return false; 4177 4178 MatchedAddrModeInsts.clear(); 4179 } 4180 4181 return true; 4182 } 4183 4184 /// Return true if the specified values are defined in a 4185 /// different basic block than BB. 4186 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4187 if (Instruction *I = dyn_cast<Instruction>(V)) 4188 return I->getParent() != BB; 4189 return false; 4190 } 4191 4192 /// Sink addressing mode computation immediate before MemoryInst if doing so 4193 /// can be done without increasing register pressure. The need for the 4194 /// register pressure constraint means this can end up being an all or nothing 4195 /// decision for all uses of the same addressing computation. 4196 /// 4197 /// Load and Store Instructions often have addressing modes that can do 4198 /// significant amounts of computation. As such, instruction selection will try 4199 /// to get the load or store to do as much computation as possible for the 4200 /// program. The problem is that isel can only see within a single block. As 4201 /// such, we sink as much legal addressing mode work into the block as possible. 4202 /// 4203 /// This method is used to optimize both load/store and inline asms with memory 4204 /// operands. It's also used to sink addressing computations feeding into cold 4205 /// call sites into their (cold) basic block. 4206 /// 4207 /// The motivation for handling sinking into cold blocks is that doing so can 4208 /// both enable other address mode sinking (by satisfying the register pressure 4209 /// constraint above), and reduce register pressure globally (by removing the 4210 /// addressing mode computation from the fast path entirely.). 4211 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4212 Type *AccessTy, unsigned AddrSpace) { 4213 Value *Repl = Addr; 4214 4215 // Try to collapse single-value PHI nodes. This is necessary to undo 4216 // unprofitable PRE transformations. 4217 SmallVector<Value*, 8> worklist; 4218 SmallPtrSet<Value*, 16> Visited; 4219 worklist.push_back(Addr); 4220 4221 // Use a worklist to iteratively look through PHI and select nodes, and 4222 // ensure that the addressing mode obtained from the non-PHI/select roots of 4223 // the graph are compatible. 4224 bool PhiOrSelectSeen = false; 4225 SmallVector<Instruction*, 16> AddrModeInsts; 4226 const SimplifyQuery SQ(*DL, TLInfo); 4227 AddressingModeCombiner AddrModes(SQ, { Addr, MemoryInst->getParent() }); 4228 TypePromotionTransaction TPT(RemovedInsts); 4229 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4230 TPT.getRestorationPoint(); 4231 while (!worklist.empty()) { 4232 Value *V = worklist.back(); 4233 worklist.pop_back(); 4234 4235 // We allow traversing cyclic Phi nodes. 4236 // In case of success after this loop we ensure that traversing through 4237 // Phi nodes ends up with all cases to compute address of the form 4238 // BaseGV + Base + Scale * Index + Offset 4239 // where Scale and Offset are constans and BaseGV, Base and Index 4240 // are exactly the same Values in all cases. 4241 // It means that BaseGV, Scale and Offset dominate our memory instruction 4242 // and have the same value as they had in address computation represented 4243 // as Phi. So we can safely sink address computation to memory instruction. 4244 if (!Visited.insert(V).second) 4245 continue; 4246 4247 // For a PHI node, push all of its incoming values. 4248 if (PHINode *P = dyn_cast<PHINode>(V)) { 4249 for (Value *IncValue : P->incoming_values()) 4250 worklist.push_back(IncValue); 4251 PhiOrSelectSeen = true; 4252 continue; 4253 } 4254 // Similar for select. 4255 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4256 worklist.push_back(SI->getFalseValue()); 4257 worklist.push_back(SI->getTrueValue()); 4258 PhiOrSelectSeen = true; 4259 continue; 4260 } 4261 4262 // For non-PHIs, determine the addressing mode being computed. Note that 4263 // the result may differ depending on what other uses our candidate 4264 // addressing instructions might have. 4265 AddrModeInsts.clear(); 4266 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4267 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4268 InsertedInsts, PromotedInsts, TPT); 4269 NewAddrMode.OriginalValue = V; 4270 4271 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4272 break; 4273 } 4274 4275 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4276 // or we have multiple but either couldn't combine them or combining them 4277 // wouldn't do anything useful, bail out now. 4278 if (!AddrModes.combineAddrModes()) { 4279 TPT.rollback(LastKnownGood); 4280 return false; 4281 } 4282 TPT.commit(); 4283 4284 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4285 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4286 4287 // If all the instructions matched are already in this BB, don't do anything. 4288 // If we saw a Phi node then it is not local definitely, and if we saw a select 4289 // then we want to push the address calculation past it even if it's already 4290 // in this BB. 4291 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4292 return IsNonLocalValue(V, MemoryInst->getParent()); 4293 })) { 4294 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4295 return false; 4296 } 4297 4298 // Insert this computation right after this user. Since our caller is 4299 // scanning from the top of the BB to the bottom, reuse of the expr are 4300 // guaranteed to happen later. 4301 IRBuilder<> Builder(MemoryInst); 4302 4303 // Now that we determined the addressing expression we want to use and know 4304 // that we have to sink it into this block. Check to see if we have already 4305 // done this for some other load/store instr in this block. If so, reuse 4306 // the computation. Before attempting reuse, check if the address is valid 4307 // as it may have been erased. 4308 4309 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4310 4311 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4312 if (SunkAddr) { 4313 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4314 << *MemoryInst << "\n"); 4315 if (SunkAddr->getType() != Addr->getType()) 4316 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4317 } else if (AddrSinkUsingGEPs || 4318 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4319 // By default, we use the GEP-based method when AA is used later. This 4320 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4321 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4322 << *MemoryInst << "\n"); 4323 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4324 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4325 4326 // First, find the pointer. 4327 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4328 ResultPtr = AddrMode.BaseReg; 4329 AddrMode.BaseReg = nullptr; 4330 } 4331 4332 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4333 // We can't add more than one pointer together, nor can we scale a 4334 // pointer (both of which seem meaningless). 4335 if (ResultPtr || AddrMode.Scale != 1) 4336 return false; 4337 4338 ResultPtr = AddrMode.ScaledReg; 4339 AddrMode.Scale = 0; 4340 } 4341 4342 // It is only safe to sign extend the BaseReg if we know that the math 4343 // required to create it did not overflow before we extend it. Since 4344 // the original IR value was tossed in favor of a constant back when 4345 // the AddrMode was created we need to bail out gracefully if widths 4346 // do not match instead of extending it. 4347 // 4348 // (See below for code to add the scale.) 4349 if (AddrMode.Scale) { 4350 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4351 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4352 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4353 return false; 4354 } 4355 4356 if (AddrMode.BaseGV) { 4357 if (ResultPtr) 4358 return false; 4359 4360 ResultPtr = AddrMode.BaseGV; 4361 } 4362 4363 // If the real base value actually came from an inttoptr, then the matcher 4364 // will look through it and provide only the integer value. In that case, 4365 // use it here. 4366 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4367 if (!ResultPtr && AddrMode.BaseReg) { 4368 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4369 "sunkaddr"); 4370 AddrMode.BaseReg = nullptr; 4371 } else if (!ResultPtr && AddrMode.Scale == 1) { 4372 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4373 "sunkaddr"); 4374 AddrMode.Scale = 0; 4375 } 4376 } 4377 4378 if (!ResultPtr && 4379 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4380 SunkAddr = Constant::getNullValue(Addr->getType()); 4381 } else if (!ResultPtr) { 4382 return false; 4383 } else { 4384 Type *I8PtrTy = 4385 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4386 Type *I8Ty = Builder.getInt8Ty(); 4387 4388 // Start with the base register. Do this first so that subsequent address 4389 // matching finds it last, which will prevent it from trying to match it 4390 // as the scaled value in case it happens to be a mul. That would be 4391 // problematic if we've sunk a different mul for the scale, because then 4392 // we'd end up sinking both muls. 4393 if (AddrMode.BaseReg) { 4394 Value *V = AddrMode.BaseReg; 4395 if (V->getType() != IntPtrTy) 4396 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4397 4398 ResultIndex = V; 4399 } 4400 4401 // Add the scale value. 4402 if (AddrMode.Scale) { 4403 Value *V = AddrMode.ScaledReg; 4404 if (V->getType() == IntPtrTy) { 4405 // done. 4406 } else { 4407 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4408 cast<IntegerType>(V->getType())->getBitWidth() && 4409 "We can't transform if ScaledReg is too narrow"); 4410 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4411 } 4412 4413 if (AddrMode.Scale != 1) 4414 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4415 "sunkaddr"); 4416 if (ResultIndex) 4417 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4418 else 4419 ResultIndex = V; 4420 } 4421 4422 // Add in the Base Offset if present. 4423 if (AddrMode.BaseOffs) { 4424 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4425 if (ResultIndex) { 4426 // We need to add this separately from the scale above to help with 4427 // SDAG consecutive load/store merging. 4428 if (ResultPtr->getType() != I8PtrTy) 4429 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4430 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4431 } 4432 4433 ResultIndex = V; 4434 } 4435 4436 if (!ResultIndex) { 4437 SunkAddr = ResultPtr; 4438 } else { 4439 if (ResultPtr->getType() != I8PtrTy) 4440 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4441 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4442 } 4443 4444 if (SunkAddr->getType() != Addr->getType()) 4445 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4446 } 4447 } else { 4448 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4449 // non-integral pointers, so in that case bail out now. 4450 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4451 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4452 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4453 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4454 if (DL->isNonIntegralPointerType(Addr->getType()) || 4455 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4456 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4457 (AddrMode.BaseGV && 4458 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4459 return false; 4460 4461 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4462 << *MemoryInst << "\n"); 4463 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4464 Value *Result = nullptr; 4465 4466 // Start with the base register. Do this first so that subsequent address 4467 // matching finds it last, which will prevent it from trying to match it 4468 // as the scaled value in case it happens to be a mul. That would be 4469 // problematic if we've sunk a different mul for the scale, because then 4470 // we'd end up sinking both muls. 4471 if (AddrMode.BaseReg) { 4472 Value *V = AddrMode.BaseReg; 4473 if (V->getType()->isPointerTy()) 4474 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4475 if (V->getType() != IntPtrTy) 4476 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4477 Result = V; 4478 } 4479 4480 // Add the scale value. 4481 if (AddrMode.Scale) { 4482 Value *V = AddrMode.ScaledReg; 4483 if (V->getType() == IntPtrTy) { 4484 // done. 4485 } else if (V->getType()->isPointerTy()) { 4486 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4487 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4488 cast<IntegerType>(V->getType())->getBitWidth()) { 4489 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4490 } else { 4491 // It is only safe to sign extend the BaseReg if we know that the math 4492 // required to create it did not overflow before we extend it. Since 4493 // the original IR value was tossed in favor of a constant back when 4494 // the AddrMode was created we need to bail out gracefully if widths 4495 // do not match instead of extending it. 4496 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4497 if (I && (Result != AddrMode.BaseReg)) 4498 I->eraseFromParent(); 4499 return false; 4500 } 4501 if (AddrMode.Scale != 1) 4502 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4503 "sunkaddr"); 4504 if (Result) 4505 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4506 else 4507 Result = V; 4508 } 4509 4510 // Add in the BaseGV if present. 4511 if (AddrMode.BaseGV) { 4512 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4513 if (Result) 4514 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4515 else 4516 Result = V; 4517 } 4518 4519 // Add in the Base Offset if present. 4520 if (AddrMode.BaseOffs) { 4521 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4522 if (Result) 4523 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4524 else 4525 Result = V; 4526 } 4527 4528 if (!Result) 4529 SunkAddr = Constant::getNullValue(Addr->getType()); 4530 else 4531 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4532 } 4533 4534 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4535 // Store the newly computed address into the cache. In the case we reused a 4536 // value, this should be idempotent. 4537 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4538 4539 // If we have no uses, recursively delete the value and all dead instructions 4540 // using it. 4541 if (Repl->use_empty()) { 4542 // This can cause recursive deletion, which can invalidate our iterator. 4543 // Use a WeakTrackingVH to hold onto it in case this happens. 4544 Value *CurValue = &*CurInstIterator; 4545 WeakTrackingVH IterHandle(CurValue); 4546 BasicBlock *BB = CurInstIterator->getParent(); 4547 4548 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4549 4550 if (IterHandle != CurValue) { 4551 // If the iterator instruction was recursively deleted, start over at the 4552 // start of the block. 4553 CurInstIterator = BB->begin(); 4554 SunkAddrs.clear(); 4555 } 4556 } 4557 ++NumMemoryInsts; 4558 return true; 4559 } 4560 4561 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4562 /// address computing into the block when possible / profitable. 4563 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4564 bool MadeChange = false; 4565 4566 const TargetRegisterInfo *TRI = 4567 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4568 TargetLowering::AsmOperandInfoVector TargetConstraints = 4569 TLI->ParseConstraints(*DL, TRI, CS); 4570 unsigned ArgNo = 0; 4571 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4572 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4573 4574 // Compute the constraint code and ConstraintType to use. 4575 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4576 4577 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4578 OpInfo.isIndirect) { 4579 Value *OpVal = CS->getArgOperand(ArgNo++); 4580 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4581 } else if (OpInfo.Type == InlineAsm::isInput) 4582 ArgNo++; 4583 } 4584 4585 return MadeChange; 4586 } 4587 4588 /// Check if all the uses of \p Val are equivalent (or free) zero or 4589 /// sign extensions. 4590 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4591 assert(!Val->use_empty() && "Input must have at least one use"); 4592 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4593 bool IsSExt = isa<SExtInst>(FirstUser); 4594 Type *ExtTy = FirstUser->getType(); 4595 for (const User *U : Val->users()) { 4596 const Instruction *UI = cast<Instruction>(U); 4597 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4598 return false; 4599 Type *CurTy = UI->getType(); 4600 // Same input and output types: Same instruction after CSE. 4601 if (CurTy == ExtTy) 4602 continue; 4603 4604 // If IsSExt is true, we are in this situation: 4605 // a = Val 4606 // b = sext ty1 a to ty2 4607 // c = sext ty1 a to ty3 4608 // Assuming ty2 is shorter than ty3, this could be turned into: 4609 // a = Val 4610 // b = sext ty1 a to ty2 4611 // c = sext ty2 b to ty3 4612 // However, the last sext is not free. 4613 if (IsSExt) 4614 return false; 4615 4616 // This is a ZExt, maybe this is free to extend from one type to another. 4617 // In that case, we would not account for a different use. 4618 Type *NarrowTy; 4619 Type *LargeTy; 4620 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4621 CurTy->getScalarType()->getIntegerBitWidth()) { 4622 NarrowTy = CurTy; 4623 LargeTy = ExtTy; 4624 } else { 4625 NarrowTy = ExtTy; 4626 LargeTy = CurTy; 4627 } 4628 4629 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4630 return false; 4631 } 4632 // All uses are the same or can be derived from one another for free. 4633 return true; 4634 } 4635 4636 /// Try to speculatively promote extensions in \p Exts and continue 4637 /// promoting through newly promoted operands recursively as far as doing so is 4638 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4639 /// When some promotion happened, \p TPT contains the proper state to revert 4640 /// them. 4641 /// 4642 /// \return true if some promotion happened, false otherwise. 4643 bool CodeGenPrepare::tryToPromoteExts( 4644 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4645 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4646 unsigned CreatedInstsCost) { 4647 bool Promoted = false; 4648 4649 // Iterate over all the extensions to try to promote them. 4650 for (auto I : Exts) { 4651 // Early check if we directly have ext(load). 4652 if (isa<LoadInst>(I->getOperand(0))) { 4653 ProfitablyMovedExts.push_back(I); 4654 continue; 4655 } 4656 4657 // Check whether or not we want to do any promotion. The reason we have 4658 // this check inside the for loop is to catch the case where an extension 4659 // is directly fed by a load because in such case the extension can be moved 4660 // up without any promotion on its operands. 4661 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4662 return false; 4663 4664 // Get the action to perform the promotion. 4665 TypePromotionHelper::Action TPH = 4666 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4667 // Check if we can promote. 4668 if (!TPH) { 4669 // Save the current extension as we cannot move up through its operand. 4670 ProfitablyMovedExts.push_back(I); 4671 continue; 4672 } 4673 4674 // Save the current state. 4675 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4676 TPT.getRestorationPoint(); 4677 SmallVector<Instruction *, 4> NewExts; 4678 unsigned NewCreatedInstsCost = 0; 4679 unsigned ExtCost = !TLI->isExtFree(I); 4680 // Promote. 4681 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4682 &NewExts, nullptr, *TLI); 4683 assert(PromotedVal && 4684 "TypePromotionHelper should have filtered out those cases"); 4685 4686 // We would be able to merge only one extension in a load. 4687 // Therefore, if we have more than 1 new extension we heuristically 4688 // cut this search path, because it means we degrade the code quality. 4689 // With exactly 2, the transformation is neutral, because we will merge 4690 // one extension but leave one. However, we optimistically keep going, 4691 // because the new extension may be removed too. 4692 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4693 // FIXME: It would be possible to propagate a negative value instead of 4694 // conservatively ceiling it to 0. 4695 TotalCreatedInstsCost = 4696 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4697 if (!StressExtLdPromotion && 4698 (TotalCreatedInstsCost > 1 || 4699 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4700 // This promotion is not profitable, rollback to the previous state, and 4701 // save the current extension in ProfitablyMovedExts as the latest 4702 // speculative promotion turned out to be unprofitable. 4703 TPT.rollback(LastKnownGood); 4704 ProfitablyMovedExts.push_back(I); 4705 continue; 4706 } 4707 // Continue promoting NewExts as far as doing so is profitable. 4708 SmallVector<Instruction *, 2> NewlyMovedExts; 4709 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 4710 bool NewPromoted = false; 4711 for (auto ExtInst : NewlyMovedExts) { 4712 Instruction *MovedExt = cast<Instruction>(ExtInst); 4713 Value *ExtOperand = MovedExt->getOperand(0); 4714 // If we have reached to a load, we need this extra profitability check 4715 // as it could potentially be merged into an ext(load). 4716 if (isa<LoadInst>(ExtOperand) && 4717 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4718 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 4719 continue; 4720 4721 ProfitablyMovedExts.push_back(MovedExt); 4722 NewPromoted = true; 4723 } 4724 4725 // If none of speculative promotions for NewExts is profitable, rollback 4726 // and save the current extension (I) as the last profitable extension. 4727 if (!NewPromoted) { 4728 TPT.rollback(LastKnownGood); 4729 ProfitablyMovedExts.push_back(I); 4730 continue; 4731 } 4732 // The promotion is profitable. 4733 Promoted = true; 4734 } 4735 return Promoted; 4736 } 4737 4738 /// Merging redundant sexts when one is dominating the other. 4739 bool CodeGenPrepare::mergeSExts(Function &F) { 4740 DominatorTree DT(F); 4741 bool Changed = false; 4742 for (auto &Entry : ValToSExtendedUses) { 4743 SExts &Insts = Entry.second; 4744 SExts CurPts; 4745 for (Instruction *Inst : Insts) { 4746 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 4747 Inst->getOperand(0) != Entry.first) 4748 continue; 4749 bool inserted = false; 4750 for (auto &Pt : CurPts) { 4751 if (DT.dominates(Inst, Pt)) { 4752 Pt->replaceAllUsesWith(Inst); 4753 RemovedInsts.insert(Pt); 4754 Pt->removeFromParent(); 4755 Pt = Inst; 4756 inserted = true; 4757 Changed = true; 4758 break; 4759 } 4760 if (!DT.dominates(Pt, Inst)) 4761 // Give up if we need to merge in a common dominator as the 4762 // expermients show it is not profitable. 4763 continue; 4764 Inst->replaceAllUsesWith(Pt); 4765 RemovedInsts.insert(Inst); 4766 Inst->removeFromParent(); 4767 inserted = true; 4768 Changed = true; 4769 break; 4770 } 4771 if (!inserted) 4772 CurPts.push_back(Inst); 4773 } 4774 } 4775 return Changed; 4776 } 4777 4778 /// Return true, if an ext(load) can be formed from an extension in 4779 /// \p MovedExts. 4780 bool CodeGenPrepare::canFormExtLd( 4781 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 4782 Instruction *&Inst, bool HasPromoted) { 4783 for (auto *MovedExtInst : MovedExts) { 4784 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 4785 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 4786 Inst = MovedExtInst; 4787 break; 4788 } 4789 } 4790 if (!LI) 4791 return false; 4792 4793 // If they're already in the same block, there's nothing to do. 4794 // Make the cheap checks first if we did not promote. 4795 // If we promoted, we need to check if it is indeed profitable. 4796 if (!HasPromoted && LI->getParent() == Inst->getParent()) 4797 return false; 4798 4799 return TLI->isExtLoad(LI, Inst, *DL); 4800 } 4801 4802 /// Move a zext or sext fed by a load into the same basic block as the load, 4803 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4804 /// extend into the load. 4805 /// 4806 /// E.g., 4807 /// \code 4808 /// %ld = load i32* %addr 4809 /// %add = add nuw i32 %ld, 4 4810 /// %zext = zext i32 %add to i64 4811 // \endcode 4812 /// => 4813 /// \code 4814 /// %ld = load i32* %addr 4815 /// %zext = zext i32 %ld to i64 4816 /// %add = add nuw i64 %zext, 4 4817 /// \encode 4818 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 4819 /// allow us to match zext(load i32*) to i64. 4820 /// 4821 /// Also, try to promote the computations used to obtain a sign extended 4822 /// value used into memory accesses. 4823 /// E.g., 4824 /// \code 4825 /// a = add nsw i32 b, 3 4826 /// d = sext i32 a to i64 4827 /// e = getelementptr ..., i64 d 4828 /// \endcode 4829 /// => 4830 /// \code 4831 /// f = sext i32 b to i64 4832 /// a = add nsw i64 f, 3 4833 /// e = getelementptr ..., i64 a 4834 /// \endcode 4835 /// 4836 /// \p Inst[in/out] the extension may be modified during the process if some 4837 /// promotions apply. 4838 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 4839 // ExtLoad formation and address type promotion infrastructure requires TLI to 4840 // be effective. 4841 if (!TLI) 4842 return false; 4843 4844 bool AllowPromotionWithoutCommonHeader = false; 4845 /// See if it is an interesting sext operations for the address type 4846 /// promotion before trying to promote it, e.g., the ones with the right 4847 /// type and used in memory accesses. 4848 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 4849 *Inst, AllowPromotionWithoutCommonHeader); 4850 TypePromotionTransaction TPT(RemovedInsts); 4851 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4852 TPT.getRestorationPoint(); 4853 SmallVector<Instruction *, 1> Exts; 4854 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 4855 Exts.push_back(Inst); 4856 4857 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 4858 4859 // Look for a load being extended. 4860 LoadInst *LI = nullptr; 4861 Instruction *ExtFedByLoad; 4862 4863 // Try to promote a chain of computation if it allows to form an extended 4864 // load. 4865 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 4866 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 4867 TPT.commit(); 4868 // Move the extend into the same block as the load 4869 ExtFedByLoad->moveAfter(LI); 4870 // CGP does not check if the zext would be speculatively executed when moved 4871 // to the same basic block as the load. Preserving its original location 4872 // would pessimize the debugging experience, as well as negatively impact 4873 // the quality of sample pgo. We don't want to use "line 0" as that has a 4874 // size cost in the line-table section and logically the zext can be seen as 4875 // part of the load. Therefore we conservatively reuse the same debug 4876 // location for the load and the zext. 4877 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 4878 ++NumExtsMoved; 4879 Inst = ExtFedByLoad; 4880 return true; 4881 } 4882 4883 // Continue promoting SExts if known as considerable depending on targets. 4884 if (ATPConsiderable && 4885 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 4886 HasPromoted, TPT, SpeculativelyMovedExts)) 4887 return true; 4888 4889 TPT.rollback(LastKnownGood); 4890 return false; 4891 } 4892 4893 // Perform address type promotion if doing so is profitable. 4894 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 4895 // instructions that sign extended the same initial value. However, if 4896 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 4897 // extension is just profitable. 4898 bool CodeGenPrepare::performAddressTypePromotion( 4899 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 4900 bool HasPromoted, TypePromotionTransaction &TPT, 4901 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 4902 bool Promoted = false; 4903 SmallPtrSet<Instruction *, 1> UnhandledExts; 4904 bool AllSeenFirst = true; 4905 for (auto I : SpeculativelyMovedExts) { 4906 Value *HeadOfChain = I->getOperand(0); 4907 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 4908 SeenChainsForSExt.find(HeadOfChain); 4909 // If there is an unhandled SExt which has the same header, try to promote 4910 // it as well. 4911 if (AlreadySeen != SeenChainsForSExt.end()) { 4912 if (AlreadySeen->second != nullptr) 4913 UnhandledExts.insert(AlreadySeen->second); 4914 AllSeenFirst = false; 4915 } 4916 } 4917 4918 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 4919 SpeculativelyMovedExts.size() == 1)) { 4920 TPT.commit(); 4921 if (HasPromoted) 4922 Promoted = true; 4923 for (auto I : SpeculativelyMovedExts) { 4924 Value *HeadOfChain = I->getOperand(0); 4925 SeenChainsForSExt[HeadOfChain] = nullptr; 4926 ValToSExtendedUses[HeadOfChain].push_back(I); 4927 } 4928 // Update Inst as promotion happen. 4929 Inst = SpeculativelyMovedExts.pop_back_val(); 4930 } else { 4931 // This is the first chain visited from the header, keep the current chain 4932 // as unhandled. Defer to promote this until we encounter another SExt 4933 // chain derived from the same header. 4934 for (auto I : SpeculativelyMovedExts) { 4935 Value *HeadOfChain = I->getOperand(0); 4936 SeenChainsForSExt[HeadOfChain] = Inst; 4937 } 4938 return false; 4939 } 4940 4941 if (!AllSeenFirst && !UnhandledExts.empty()) 4942 for (auto VisitedSExt : UnhandledExts) { 4943 if (RemovedInsts.count(VisitedSExt)) 4944 continue; 4945 TypePromotionTransaction TPT(RemovedInsts); 4946 SmallVector<Instruction *, 1> Exts; 4947 SmallVector<Instruction *, 2> Chains; 4948 Exts.push_back(VisitedSExt); 4949 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 4950 TPT.commit(); 4951 if (HasPromoted) 4952 Promoted = true; 4953 for (auto I : Chains) { 4954 Value *HeadOfChain = I->getOperand(0); 4955 // Mark this as handled. 4956 SeenChainsForSExt[HeadOfChain] = nullptr; 4957 ValToSExtendedUses[HeadOfChain].push_back(I); 4958 } 4959 } 4960 return Promoted; 4961 } 4962 4963 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4964 BasicBlock *DefBB = I->getParent(); 4965 4966 // If the result of a {s|z}ext and its source are both live out, rewrite all 4967 // other uses of the source with result of extension. 4968 Value *Src = I->getOperand(0); 4969 if (Src->hasOneUse()) 4970 return false; 4971 4972 // Only do this xform if truncating is free. 4973 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4974 return false; 4975 4976 // Only safe to perform the optimization if the source is also defined in 4977 // this block. 4978 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4979 return false; 4980 4981 bool DefIsLiveOut = false; 4982 for (User *U : I->users()) { 4983 Instruction *UI = cast<Instruction>(U); 4984 4985 // Figure out which BB this ext is used in. 4986 BasicBlock *UserBB = UI->getParent(); 4987 if (UserBB == DefBB) continue; 4988 DefIsLiveOut = true; 4989 break; 4990 } 4991 if (!DefIsLiveOut) 4992 return false; 4993 4994 // Make sure none of the uses are PHI nodes. 4995 for (User *U : Src->users()) { 4996 Instruction *UI = cast<Instruction>(U); 4997 BasicBlock *UserBB = UI->getParent(); 4998 if (UserBB == DefBB) continue; 4999 // Be conservative. We don't want this xform to end up introducing 5000 // reloads just before load / store instructions. 5001 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5002 return false; 5003 } 5004 5005 // InsertedTruncs - Only insert one trunc in each block once. 5006 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5007 5008 bool MadeChange = false; 5009 for (Use &U : Src->uses()) { 5010 Instruction *User = cast<Instruction>(U.getUser()); 5011 5012 // Figure out which BB this ext is used in. 5013 BasicBlock *UserBB = User->getParent(); 5014 if (UserBB == DefBB) continue; 5015 5016 // Both src and def are live in this block. Rewrite the use. 5017 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5018 5019 if (!InsertedTrunc) { 5020 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5021 assert(InsertPt != UserBB->end()); 5022 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5023 InsertedInsts.insert(InsertedTrunc); 5024 } 5025 5026 // Replace a use of the {s|z}ext source with a use of the result. 5027 U = InsertedTrunc; 5028 ++NumExtUses; 5029 MadeChange = true; 5030 } 5031 5032 return MadeChange; 5033 } 5034 5035 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5036 // just after the load if the target can fold this into one extload instruction, 5037 // with the hope of eliminating some of the other later "and" instructions using 5038 // the loaded value. "and"s that are made trivially redundant by the insertion 5039 // of the new "and" are removed by this function, while others (e.g. those whose 5040 // path from the load goes through a phi) are left for isel to potentially 5041 // remove. 5042 // 5043 // For example: 5044 // 5045 // b0: 5046 // x = load i32 5047 // ... 5048 // b1: 5049 // y = and x, 0xff 5050 // z = use y 5051 // 5052 // becomes: 5053 // 5054 // b0: 5055 // x = load i32 5056 // x' = and x, 0xff 5057 // ... 5058 // b1: 5059 // z = use x' 5060 // 5061 // whereas: 5062 // 5063 // b0: 5064 // x1 = load i32 5065 // ... 5066 // b1: 5067 // x2 = load i32 5068 // ... 5069 // b2: 5070 // x = phi x1, x2 5071 // y = and x, 0xff 5072 // 5073 // becomes (after a call to optimizeLoadExt for each load): 5074 // 5075 // b0: 5076 // x1 = load i32 5077 // x1' = and x1, 0xff 5078 // ... 5079 // b1: 5080 // x2 = load i32 5081 // x2' = and x2, 0xff 5082 // ... 5083 // b2: 5084 // x = phi x1', x2' 5085 // y = and x, 0xff 5086 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5087 if (!Load->isSimple() || 5088 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 5089 return false; 5090 5091 // Skip loads we've already transformed. 5092 if (Load->hasOneUse() && 5093 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5094 return false; 5095 5096 // Look at all uses of Load, looking through phis, to determine how many bits 5097 // of the loaded value are needed. 5098 SmallVector<Instruction *, 8> WorkList; 5099 SmallPtrSet<Instruction *, 16> Visited; 5100 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5101 for (auto *U : Load->users()) 5102 WorkList.push_back(cast<Instruction>(U)); 5103 5104 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5105 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5106 APInt DemandBits(BitWidth, 0); 5107 APInt WidestAndBits(BitWidth, 0); 5108 5109 while (!WorkList.empty()) { 5110 Instruction *I = WorkList.back(); 5111 WorkList.pop_back(); 5112 5113 // Break use-def graph loops. 5114 if (!Visited.insert(I).second) 5115 continue; 5116 5117 // For a PHI node, push all of its users. 5118 if (auto *Phi = dyn_cast<PHINode>(I)) { 5119 for (auto *U : Phi->users()) 5120 WorkList.push_back(cast<Instruction>(U)); 5121 continue; 5122 } 5123 5124 switch (I->getOpcode()) { 5125 case Instruction::And: { 5126 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5127 if (!AndC) 5128 return false; 5129 APInt AndBits = AndC->getValue(); 5130 DemandBits |= AndBits; 5131 // Keep track of the widest and mask we see. 5132 if (AndBits.ugt(WidestAndBits)) 5133 WidestAndBits = AndBits; 5134 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5135 AndsToMaybeRemove.push_back(I); 5136 break; 5137 } 5138 5139 case Instruction::Shl: { 5140 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5141 if (!ShlC) 5142 return false; 5143 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5144 DemandBits.setLowBits(BitWidth - ShiftAmt); 5145 break; 5146 } 5147 5148 case Instruction::Trunc: { 5149 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5150 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5151 DemandBits.setLowBits(TruncBitWidth); 5152 break; 5153 } 5154 5155 default: 5156 return false; 5157 } 5158 } 5159 5160 uint32_t ActiveBits = DemandBits.getActiveBits(); 5161 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5162 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5163 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5164 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5165 // followed by an AND. 5166 // TODO: Look into removing this restriction by fixing backends to either 5167 // return false for isLoadExtLegal for i1 or have them select this pattern to 5168 // a single instruction. 5169 // 5170 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5171 // mask, since these are the only ands that will be removed by isel. 5172 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5173 WidestAndBits != DemandBits) 5174 return false; 5175 5176 LLVMContext &Ctx = Load->getType()->getContext(); 5177 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5178 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5179 5180 // Reject cases that won't be matched as extloads. 5181 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5182 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5183 return false; 5184 5185 IRBuilder<> Builder(Load->getNextNode()); 5186 auto *NewAnd = dyn_cast<Instruction>( 5187 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5188 // Mark this instruction as "inserted by CGP", so that other 5189 // optimizations don't touch it. 5190 InsertedInsts.insert(NewAnd); 5191 5192 // Replace all uses of load with new and (except for the use of load in the 5193 // new and itself). 5194 Load->replaceAllUsesWith(NewAnd); 5195 NewAnd->setOperand(0, Load); 5196 5197 // Remove any and instructions that are now redundant. 5198 for (auto *And : AndsToMaybeRemove) 5199 // Check that the and mask is the same as the one we decided to put on the 5200 // new and. 5201 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5202 And->replaceAllUsesWith(NewAnd); 5203 if (&*CurInstIterator == And) 5204 CurInstIterator = std::next(And->getIterator()); 5205 And->eraseFromParent(); 5206 ++NumAndUses; 5207 } 5208 5209 ++NumAndsAdded; 5210 return true; 5211 } 5212 5213 /// Check if V (an operand of a select instruction) is an expensive instruction 5214 /// that is only used once. 5215 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5216 auto *I = dyn_cast<Instruction>(V); 5217 // If it's safe to speculatively execute, then it should not have side 5218 // effects; therefore, it's safe to sink and possibly *not* execute. 5219 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5220 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5221 } 5222 5223 /// Returns true if a SelectInst should be turned into an explicit branch. 5224 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5225 const TargetLowering *TLI, 5226 SelectInst *SI) { 5227 // If even a predictable select is cheap, then a branch can't be cheaper. 5228 if (!TLI->isPredictableSelectExpensive()) 5229 return false; 5230 5231 // FIXME: This should use the same heuristics as IfConversion to determine 5232 // whether a select is better represented as a branch. 5233 5234 // If metadata tells us that the select condition is obviously predictable, 5235 // then we want to replace the select with a branch. 5236 uint64_t TrueWeight, FalseWeight; 5237 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5238 uint64_t Max = std::max(TrueWeight, FalseWeight); 5239 uint64_t Sum = TrueWeight + FalseWeight; 5240 if (Sum != 0) { 5241 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5242 if (Probability > TLI->getPredictableBranchThreshold()) 5243 return true; 5244 } 5245 } 5246 5247 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5248 5249 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5250 // comparison condition. If the compare has more than one use, there's 5251 // probably another cmov or setcc around, so it's not worth emitting a branch. 5252 if (!Cmp || !Cmp->hasOneUse()) 5253 return false; 5254 5255 // If either operand of the select is expensive and only needed on one side 5256 // of the select, we should form a branch. 5257 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5258 sinkSelectOperand(TTI, SI->getFalseValue())) 5259 return true; 5260 5261 return false; 5262 } 5263 5264 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5265 /// false value of \p SI. If the true/false value of \p SI is defined by any 5266 /// select instructions in \p Selects, look through the defining select 5267 /// instruction until the true/false value is not defined in \p Selects. 5268 static Value *getTrueOrFalseValue( 5269 SelectInst *SI, bool isTrue, 5270 const SmallPtrSet<const Instruction *, 2> &Selects) { 5271 Value *V; 5272 5273 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5274 DefSI = dyn_cast<SelectInst>(V)) { 5275 assert(DefSI->getCondition() == SI->getCondition() && 5276 "The condition of DefSI does not match with SI"); 5277 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5278 } 5279 return V; 5280 } 5281 5282 /// If we have a SelectInst that will likely profit from branch prediction, 5283 /// turn it into a branch. 5284 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5285 // Find all consecutive select instructions that share the same condition. 5286 SmallVector<SelectInst *, 2> ASI; 5287 ASI.push_back(SI); 5288 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5289 It != SI->getParent()->end(); ++It) { 5290 SelectInst *I = dyn_cast<SelectInst>(&*It); 5291 if (I && SI->getCondition() == I->getCondition()) { 5292 ASI.push_back(I); 5293 } else { 5294 break; 5295 } 5296 } 5297 5298 SelectInst *LastSI = ASI.back(); 5299 // Increment the current iterator to skip all the rest of select instructions 5300 // because they will be either "not lowered" or "all lowered" to branch. 5301 CurInstIterator = std::next(LastSI->getIterator()); 5302 5303 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5304 5305 // Can we convert the 'select' to CF ? 5306 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 5307 SI->getMetadata(LLVMContext::MD_unpredictable)) 5308 return false; 5309 5310 TargetLowering::SelectSupportKind SelectKind; 5311 if (VectorCond) 5312 SelectKind = TargetLowering::VectorMaskSelect; 5313 else if (SI->getType()->isVectorTy()) 5314 SelectKind = TargetLowering::ScalarCondVectorVal; 5315 else 5316 SelectKind = TargetLowering::ScalarValSelect; 5317 5318 if (TLI->isSelectSupported(SelectKind) && 5319 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5320 return false; 5321 5322 ModifiedDT = true; 5323 5324 // Transform a sequence like this: 5325 // start: 5326 // %cmp = cmp uge i32 %a, %b 5327 // %sel = select i1 %cmp, i32 %c, i32 %d 5328 // 5329 // Into: 5330 // start: 5331 // %cmp = cmp uge i32 %a, %b 5332 // br i1 %cmp, label %select.true, label %select.false 5333 // select.true: 5334 // br label %select.end 5335 // select.false: 5336 // br label %select.end 5337 // select.end: 5338 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5339 // 5340 // In addition, we may sink instructions that produce %c or %d from 5341 // the entry block into the destination(s) of the new branch. 5342 // If the true or false blocks do not contain a sunken instruction, that 5343 // block and its branch may be optimized away. In that case, one side of the 5344 // first branch will point directly to select.end, and the corresponding PHI 5345 // predecessor block will be the start block. 5346 5347 // First, we split the block containing the select into 2 blocks. 5348 BasicBlock *StartBlock = SI->getParent(); 5349 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5350 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5351 5352 // Delete the unconditional branch that was just created by the split. 5353 StartBlock->getTerminator()->eraseFromParent(); 5354 5355 // These are the new basic blocks for the conditional branch. 5356 // At least one will become an actual new basic block. 5357 BasicBlock *TrueBlock = nullptr; 5358 BasicBlock *FalseBlock = nullptr; 5359 BranchInst *TrueBranch = nullptr; 5360 BranchInst *FalseBranch = nullptr; 5361 5362 // Sink expensive instructions into the conditional blocks to avoid executing 5363 // them speculatively. 5364 for (SelectInst *SI : ASI) { 5365 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5366 if (TrueBlock == nullptr) { 5367 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5368 EndBlock->getParent(), EndBlock); 5369 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5370 } 5371 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5372 TrueInst->moveBefore(TrueBranch); 5373 } 5374 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5375 if (FalseBlock == nullptr) { 5376 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5377 EndBlock->getParent(), EndBlock); 5378 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5379 } 5380 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5381 FalseInst->moveBefore(FalseBranch); 5382 } 5383 } 5384 5385 // If there was nothing to sink, then arbitrarily choose the 'false' side 5386 // for a new input value to the PHI. 5387 if (TrueBlock == FalseBlock) { 5388 assert(TrueBlock == nullptr && 5389 "Unexpected basic block transform while optimizing select"); 5390 5391 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5392 EndBlock->getParent(), EndBlock); 5393 BranchInst::Create(EndBlock, FalseBlock); 5394 } 5395 5396 // Insert the real conditional branch based on the original condition. 5397 // If we did not create a new block for one of the 'true' or 'false' paths 5398 // of the condition, it means that side of the branch goes to the end block 5399 // directly and the path originates from the start block from the point of 5400 // view of the new PHI. 5401 BasicBlock *TT, *FT; 5402 if (TrueBlock == nullptr) { 5403 TT = EndBlock; 5404 FT = FalseBlock; 5405 TrueBlock = StartBlock; 5406 } else if (FalseBlock == nullptr) { 5407 TT = TrueBlock; 5408 FT = EndBlock; 5409 FalseBlock = StartBlock; 5410 } else { 5411 TT = TrueBlock; 5412 FT = FalseBlock; 5413 } 5414 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5415 5416 SmallPtrSet<const Instruction *, 2> INS; 5417 INS.insert(ASI.begin(), ASI.end()); 5418 // Use reverse iterator because later select may use the value of the 5419 // earlier select, and we need to propagate value through earlier select 5420 // to get the PHI operand. 5421 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5422 SelectInst *SI = *It; 5423 // The select itself is replaced with a PHI Node. 5424 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5425 PN->takeName(SI); 5426 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5427 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5428 5429 SI->replaceAllUsesWith(PN); 5430 SI->eraseFromParent(); 5431 INS.erase(SI); 5432 ++NumSelectsExpanded; 5433 } 5434 5435 // Instruct OptimizeBlock to skip to the next block. 5436 CurInstIterator = StartBlock->end(); 5437 return true; 5438 } 5439 5440 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5441 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5442 int SplatElem = -1; 5443 for (unsigned i = 0; i < Mask.size(); ++i) { 5444 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5445 return false; 5446 SplatElem = Mask[i]; 5447 } 5448 5449 return true; 5450 } 5451 5452 /// Some targets have expensive vector shifts if the lanes aren't all the same 5453 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5454 /// it's often worth sinking a shufflevector splat down to its use so that 5455 /// codegen can spot all lanes are identical. 5456 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5457 BasicBlock *DefBB = SVI->getParent(); 5458 5459 // Only do this xform if variable vector shifts are particularly expensive. 5460 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5461 return false; 5462 5463 // We only expect better codegen by sinking a shuffle if we can recognise a 5464 // constant splat. 5465 if (!isBroadcastShuffle(SVI)) 5466 return false; 5467 5468 // InsertedShuffles - Only insert a shuffle in each block once. 5469 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5470 5471 bool MadeChange = false; 5472 for (User *U : SVI->users()) { 5473 Instruction *UI = cast<Instruction>(U); 5474 5475 // Figure out which BB this ext is used in. 5476 BasicBlock *UserBB = UI->getParent(); 5477 if (UserBB == DefBB) continue; 5478 5479 // For now only apply this when the splat is used by a shift instruction. 5480 if (!UI->isShift()) continue; 5481 5482 // Everything checks out, sink the shuffle if the user's block doesn't 5483 // already have a copy. 5484 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5485 5486 if (!InsertedShuffle) { 5487 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5488 assert(InsertPt != UserBB->end()); 5489 InsertedShuffle = 5490 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5491 SVI->getOperand(2), "", &*InsertPt); 5492 } 5493 5494 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5495 MadeChange = true; 5496 } 5497 5498 // If we removed all uses, nuke the shuffle. 5499 if (SVI->use_empty()) { 5500 SVI->eraseFromParent(); 5501 MadeChange = true; 5502 } 5503 5504 return MadeChange; 5505 } 5506 5507 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5508 if (!TLI || !DL) 5509 return false; 5510 5511 Value *Cond = SI->getCondition(); 5512 Type *OldType = Cond->getType(); 5513 LLVMContext &Context = Cond->getContext(); 5514 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5515 unsigned RegWidth = RegType.getSizeInBits(); 5516 5517 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5518 return false; 5519 5520 // If the register width is greater than the type width, expand the condition 5521 // of the switch instruction and each case constant to the width of the 5522 // register. By widening the type of the switch condition, subsequent 5523 // comparisons (for case comparisons) will not need to be extended to the 5524 // preferred register width, so we will potentially eliminate N-1 extends, 5525 // where N is the number of cases in the switch. 5526 auto *NewType = Type::getIntNTy(Context, RegWidth); 5527 5528 // Zero-extend the switch condition and case constants unless the switch 5529 // condition is a function argument that is already being sign-extended. 5530 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5531 // everything instead. 5532 Instruction::CastOps ExtType = Instruction::ZExt; 5533 if (auto *Arg = dyn_cast<Argument>(Cond)) 5534 if (Arg->hasSExtAttr()) 5535 ExtType = Instruction::SExt; 5536 5537 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5538 ExtInst->insertBefore(SI); 5539 SI->setCondition(ExtInst); 5540 for (auto Case : SI->cases()) { 5541 APInt NarrowConst = Case.getCaseValue()->getValue(); 5542 APInt WideConst = (ExtType == Instruction::ZExt) ? 5543 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5544 Case.setValue(ConstantInt::get(Context, WideConst)); 5545 } 5546 5547 return true; 5548 } 5549 5550 5551 namespace { 5552 5553 /// Helper class to promote a scalar operation to a vector one. 5554 /// This class is used to move downward extractelement transition. 5555 /// E.g., 5556 /// a = vector_op <2 x i32> 5557 /// b = extractelement <2 x i32> a, i32 0 5558 /// c = scalar_op b 5559 /// store c 5560 /// 5561 /// => 5562 /// a = vector_op <2 x i32> 5563 /// c = vector_op a (equivalent to scalar_op on the related lane) 5564 /// * d = extractelement <2 x i32> c, i32 0 5565 /// * store d 5566 /// Assuming both extractelement and store can be combine, we get rid of the 5567 /// transition. 5568 class VectorPromoteHelper { 5569 /// DataLayout associated with the current module. 5570 const DataLayout &DL; 5571 5572 /// Used to perform some checks on the legality of vector operations. 5573 const TargetLowering &TLI; 5574 5575 /// Used to estimated the cost of the promoted chain. 5576 const TargetTransformInfo &TTI; 5577 5578 /// The transition being moved downwards. 5579 Instruction *Transition; 5580 5581 /// The sequence of instructions to be promoted. 5582 SmallVector<Instruction *, 4> InstsToBePromoted; 5583 5584 /// Cost of combining a store and an extract. 5585 unsigned StoreExtractCombineCost; 5586 5587 /// Instruction that will be combined with the transition. 5588 Instruction *CombineInst = nullptr; 5589 5590 /// The instruction that represents the current end of the transition. 5591 /// Since we are faking the promotion until we reach the end of the chain 5592 /// of computation, we need a way to get the current end of the transition. 5593 Instruction *getEndOfTransition() const { 5594 if (InstsToBePromoted.empty()) 5595 return Transition; 5596 return InstsToBePromoted.back(); 5597 } 5598 5599 /// Return the index of the original value in the transition. 5600 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5601 /// c, is at index 0. 5602 unsigned getTransitionOriginalValueIdx() const { 5603 assert(isa<ExtractElementInst>(Transition) && 5604 "Other kind of transitions are not supported yet"); 5605 return 0; 5606 } 5607 5608 /// Return the index of the index in the transition. 5609 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5610 /// is at index 1. 5611 unsigned getTransitionIdx() const { 5612 assert(isa<ExtractElementInst>(Transition) && 5613 "Other kind of transitions are not supported yet"); 5614 return 1; 5615 } 5616 5617 /// Get the type of the transition. 5618 /// This is the type of the original value. 5619 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5620 /// transition is <2 x i32>. 5621 Type *getTransitionType() const { 5622 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5623 } 5624 5625 /// Promote \p ToBePromoted by moving \p Def downward through. 5626 /// I.e., we have the following sequence: 5627 /// Def = Transition <ty1> a to <ty2> 5628 /// b = ToBePromoted <ty2> Def, ... 5629 /// => 5630 /// b = ToBePromoted <ty1> a, ... 5631 /// Def = Transition <ty1> ToBePromoted to <ty2> 5632 void promoteImpl(Instruction *ToBePromoted); 5633 5634 /// Check whether or not it is profitable to promote all the 5635 /// instructions enqueued to be promoted. 5636 bool isProfitableToPromote() { 5637 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5638 unsigned Index = isa<ConstantInt>(ValIdx) 5639 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5640 : -1; 5641 Type *PromotedType = getTransitionType(); 5642 5643 StoreInst *ST = cast<StoreInst>(CombineInst); 5644 unsigned AS = ST->getPointerAddressSpace(); 5645 unsigned Align = ST->getAlignment(); 5646 // Check if this store is supported. 5647 if (!TLI.allowsMisalignedMemoryAccesses( 5648 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5649 Align)) { 5650 // If this is not supported, there is no way we can combine 5651 // the extract with the store. 5652 return false; 5653 } 5654 5655 // The scalar chain of computation has to pay for the transition 5656 // scalar to vector. 5657 // The vector chain has to account for the combining cost. 5658 uint64_t ScalarCost = 5659 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5660 uint64_t VectorCost = StoreExtractCombineCost; 5661 for (const auto &Inst : InstsToBePromoted) { 5662 // Compute the cost. 5663 // By construction, all instructions being promoted are arithmetic ones. 5664 // Moreover, one argument is a constant that can be viewed as a splat 5665 // constant. 5666 Value *Arg0 = Inst->getOperand(0); 5667 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5668 isa<ConstantFP>(Arg0); 5669 TargetTransformInfo::OperandValueKind Arg0OVK = 5670 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5671 : TargetTransformInfo::OK_AnyValue; 5672 TargetTransformInfo::OperandValueKind Arg1OVK = 5673 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5674 : TargetTransformInfo::OK_AnyValue; 5675 ScalarCost += TTI.getArithmeticInstrCost( 5676 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5677 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5678 Arg0OVK, Arg1OVK); 5679 } 5680 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5681 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5682 return ScalarCost > VectorCost; 5683 } 5684 5685 /// Generate a constant vector with \p Val with the same 5686 /// number of elements as the transition. 5687 /// \p UseSplat defines whether or not \p Val should be replicated 5688 /// across the whole vector. 5689 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5690 /// otherwise we generate a vector with as many undef as possible: 5691 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5692 /// used at the index of the extract. 5693 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5694 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 5695 if (!UseSplat) { 5696 // If we cannot determine where the constant must be, we have to 5697 // use a splat constant. 5698 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5699 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5700 ExtractIdx = CstVal->getSExtValue(); 5701 else 5702 UseSplat = true; 5703 } 5704 5705 unsigned End = getTransitionType()->getVectorNumElements(); 5706 if (UseSplat) 5707 return ConstantVector::getSplat(End, Val); 5708 5709 SmallVector<Constant *, 4> ConstVec; 5710 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5711 for (unsigned Idx = 0; Idx != End; ++Idx) { 5712 if (Idx == ExtractIdx) 5713 ConstVec.push_back(Val); 5714 else 5715 ConstVec.push_back(UndefVal); 5716 } 5717 return ConstantVector::get(ConstVec); 5718 } 5719 5720 /// Check if promoting to a vector type an operand at \p OperandIdx 5721 /// in \p Use can trigger undefined behavior. 5722 static bool canCauseUndefinedBehavior(const Instruction *Use, 5723 unsigned OperandIdx) { 5724 // This is not safe to introduce undef when the operand is on 5725 // the right hand side of a division-like instruction. 5726 if (OperandIdx != 1) 5727 return false; 5728 switch (Use->getOpcode()) { 5729 default: 5730 return false; 5731 case Instruction::SDiv: 5732 case Instruction::UDiv: 5733 case Instruction::SRem: 5734 case Instruction::URem: 5735 return true; 5736 case Instruction::FDiv: 5737 case Instruction::FRem: 5738 return !Use->hasNoNaNs(); 5739 } 5740 llvm_unreachable(nullptr); 5741 } 5742 5743 public: 5744 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5745 const TargetTransformInfo &TTI, Instruction *Transition, 5746 unsigned CombineCost) 5747 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5748 StoreExtractCombineCost(CombineCost) { 5749 assert(Transition && "Do not know how to promote null"); 5750 } 5751 5752 /// Check if we can promote \p ToBePromoted to \p Type. 5753 bool canPromote(const Instruction *ToBePromoted) const { 5754 // We could support CastInst too. 5755 return isa<BinaryOperator>(ToBePromoted); 5756 } 5757 5758 /// Check if it is profitable to promote \p ToBePromoted 5759 /// by moving downward the transition through. 5760 bool shouldPromote(const Instruction *ToBePromoted) const { 5761 // Promote only if all the operands can be statically expanded. 5762 // Indeed, we do not want to introduce any new kind of transitions. 5763 for (const Use &U : ToBePromoted->operands()) { 5764 const Value *Val = U.get(); 5765 if (Val == getEndOfTransition()) { 5766 // If the use is a division and the transition is on the rhs, 5767 // we cannot promote the operation, otherwise we may create a 5768 // division by zero. 5769 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5770 return false; 5771 continue; 5772 } 5773 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5774 !isa<ConstantFP>(Val)) 5775 return false; 5776 } 5777 // Check that the resulting operation is legal. 5778 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5779 if (!ISDOpcode) 5780 return false; 5781 return StressStoreExtract || 5782 TLI.isOperationLegalOrCustom( 5783 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5784 } 5785 5786 /// Check whether or not \p Use can be combined 5787 /// with the transition. 5788 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5789 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5790 5791 /// Record \p ToBePromoted as part of the chain to be promoted. 5792 void enqueueForPromotion(Instruction *ToBePromoted) { 5793 InstsToBePromoted.push_back(ToBePromoted); 5794 } 5795 5796 /// Set the instruction that will be combined with the transition. 5797 void recordCombineInstruction(Instruction *ToBeCombined) { 5798 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5799 CombineInst = ToBeCombined; 5800 } 5801 5802 /// Promote all the instructions enqueued for promotion if it is 5803 /// is profitable. 5804 /// \return True if the promotion happened, false otherwise. 5805 bool promote() { 5806 // Check if there is something to promote. 5807 // Right now, if we do not have anything to combine with, 5808 // we assume the promotion is not profitable. 5809 if (InstsToBePromoted.empty() || !CombineInst) 5810 return false; 5811 5812 // Check cost. 5813 if (!StressStoreExtract && !isProfitableToPromote()) 5814 return false; 5815 5816 // Promote. 5817 for (auto &ToBePromoted : InstsToBePromoted) 5818 promoteImpl(ToBePromoted); 5819 InstsToBePromoted.clear(); 5820 return true; 5821 } 5822 }; 5823 5824 } // end anonymous namespace 5825 5826 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5827 // At this point, we know that all the operands of ToBePromoted but Def 5828 // can be statically promoted. 5829 // For Def, we need to use its parameter in ToBePromoted: 5830 // b = ToBePromoted ty1 a 5831 // Def = Transition ty1 b to ty2 5832 // Move the transition down. 5833 // 1. Replace all uses of the promoted operation by the transition. 5834 // = ... b => = ... Def. 5835 assert(ToBePromoted->getType() == Transition->getType() && 5836 "The type of the result of the transition does not match " 5837 "the final type"); 5838 ToBePromoted->replaceAllUsesWith(Transition); 5839 // 2. Update the type of the uses. 5840 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5841 Type *TransitionTy = getTransitionType(); 5842 ToBePromoted->mutateType(TransitionTy); 5843 // 3. Update all the operands of the promoted operation with promoted 5844 // operands. 5845 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5846 for (Use &U : ToBePromoted->operands()) { 5847 Value *Val = U.get(); 5848 Value *NewVal = nullptr; 5849 if (Val == Transition) 5850 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5851 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5852 isa<ConstantFP>(Val)) { 5853 // Use a splat constant if it is not safe to use undef. 5854 NewVal = getConstantVector( 5855 cast<Constant>(Val), 5856 isa<UndefValue>(Val) || 5857 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5858 } else 5859 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5860 "this?"); 5861 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5862 } 5863 Transition->moveAfter(ToBePromoted); 5864 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5865 } 5866 5867 /// Some targets can do store(extractelement) with one instruction. 5868 /// Try to push the extractelement towards the stores when the target 5869 /// has this feature and this is profitable. 5870 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5871 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 5872 if (DisableStoreExtract || !TLI || 5873 (!StressStoreExtract && 5874 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5875 Inst->getOperand(1), CombineCost))) 5876 return false; 5877 5878 // At this point we know that Inst is a vector to scalar transition. 5879 // Try to move it down the def-use chain, until: 5880 // - We can combine the transition with its single use 5881 // => we got rid of the transition. 5882 // - We escape the current basic block 5883 // => we would need to check that we are moving it at a cheaper place and 5884 // we do not do that for now. 5885 BasicBlock *Parent = Inst->getParent(); 5886 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5887 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5888 // If the transition has more than one use, assume this is not going to be 5889 // beneficial. 5890 while (Inst->hasOneUse()) { 5891 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5892 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5893 5894 if (ToBePromoted->getParent() != Parent) { 5895 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5896 << ToBePromoted->getParent()->getName() 5897 << ") than the transition (" << Parent->getName() << ").\n"); 5898 return false; 5899 } 5900 5901 if (VPH.canCombine(ToBePromoted)) { 5902 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5903 << "will be combined with: " << *ToBePromoted << '\n'); 5904 VPH.recordCombineInstruction(ToBePromoted); 5905 bool Changed = VPH.promote(); 5906 NumStoreExtractExposed += Changed; 5907 return Changed; 5908 } 5909 5910 DEBUG(dbgs() << "Try promoting.\n"); 5911 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5912 return false; 5913 5914 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5915 5916 VPH.enqueueForPromotion(ToBePromoted); 5917 Inst = ToBePromoted; 5918 } 5919 return false; 5920 } 5921 5922 /// For the instruction sequence of store below, F and I values 5923 /// are bundled together as an i64 value before being stored into memory. 5924 /// Sometimes it is more efficent to generate separate stores for F and I, 5925 /// which can remove the bitwise instructions or sink them to colder places. 5926 /// 5927 /// (store (or (zext (bitcast F to i32) to i64), 5928 /// (shl (zext I to i64), 32)), addr) --> 5929 /// (store F, addr) and (store I, addr+4) 5930 /// 5931 /// Similarly, splitting for other merged store can also be beneficial, like: 5932 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5933 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5934 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5935 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5936 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5937 /// 5938 /// We allow each target to determine specifically which kind of splitting is 5939 /// supported. 5940 /// 5941 /// The store patterns are commonly seen from the simple code snippet below 5942 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5943 /// void goo(const std::pair<int, float> &); 5944 /// hoo() { 5945 /// ... 5946 /// goo(std::make_pair(tmp, ftmp)); 5947 /// ... 5948 /// } 5949 /// 5950 /// Although we already have similar splitting in DAG Combine, we duplicate 5951 /// it in CodeGenPrepare to catch the case in which pattern is across 5952 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5953 /// during code expansion. 5954 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5955 const TargetLowering &TLI) { 5956 // Handle simple but common cases only. 5957 Type *StoreType = SI.getValueOperand()->getType(); 5958 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5959 DL.getTypeSizeInBits(StoreType) == 0) 5960 return false; 5961 5962 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5963 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5964 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5965 DL.getTypeSizeInBits(SplitStoreType)) 5966 return false; 5967 5968 // Match the following patterns: 5969 // (store (or (zext LValue to i64), 5970 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5971 // or 5972 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5973 // (zext LValue to i64), 5974 // Expect both operands of OR and the first operand of SHL have only 5975 // one use. 5976 Value *LValue, *HValue; 5977 if (!match(SI.getValueOperand(), 5978 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5979 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5980 m_SpecificInt(HalfValBitSize)))))) 5981 return false; 5982 5983 // Check LValue and HValue are int with size less or equal than 32. 5984 if (!LValue->getType()->isIntegerTy() || 5985 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5986 !HValue->getType()->isIntegerTy() || 5987 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5988 return false; 5989 5990 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5991 // as the input of target query. 5992 auto *LBC = dyn_cast<BitCastInst>(LValue); 5993 auto *HBC = dyn_cast<BitCastInst>(HValue); 5994 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5995 : EVT::getEVT(LValue->getType()); 5996 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5997 : EVT::getEVT(HValue->getType()); 5998 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5999 return false; 6000 6001 // Start to split store. 6002 IRBuilder<> Builder(SI.getContext()); 6003 Builder.SetInsertPoint(&SI); 6004 6005 // If LValue/HValue is a bitcast in another BB, create a new one in current 6006 // BB so it may be merged with the splitted stores by dag combiner. 6007 if (LBC && LBC->getParent() != SI.getParent()) 6008 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6009 if (HBC && HBC->getParent() != SI.getParent()) 6010 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6011 6012 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6013 auto CreateSplitStore = [&](Value *V, bool Upper) { 6014 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6015 Value *Addr = Builder.CreateBitCast( 6016 SI.getOperand(1), 6017 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6018 if ((IsLE && Upper) || (!IsLE && !Upper)) 6019 Addr = Builder.CreateGEP( 6020 SplitStoreType, Addr, 6021 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6022 Builder.CreateAlignedStore( 6023 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6024 }; 6025 6026 CreateSplitStore(LValue, false); 6027 CreateSplitStore(HValue, true); 6028 6029 // Delete the old store. 6030 SI.eraseFromParent(); 6031 return true; 6032 } 6033 6034 // Return true if the GEP has two operands, the first operand is of a sequential 6035 // type, and the second operand is a constant. 6036 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6037 gep_type_iterator I = gep_type_begin(*GEP); 6038 return GEP->getNumOperands() == 2 && 6039 I.isSequential() && 6040 isa<ConstantInt>(GEP->getOperand(1)); 6041 } 6042 6043 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6044 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6045 // reducing liveness interference across those edges benefits global register 6046 // allocation. Currently handles only certain cases. 6047 // 6048 // For example, unmerge %GEPI and %UGEPI as below. 6049 // 6050 // ---------- BEFORE ---------- 6051 // SrcBlock: 6052 // ... 6053 // %GEPIOp = ... 6054 // ... 6055 // %GEPI = gep %GEPIOp, Idx 6056 // ... 6057 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6058 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6059 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6060 // %UGEPI) 6061 // 6062 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6063 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6064 // ... 6065 // 6066 // DstBi: 6067 // ... 6068 // %UGEPI = gep %GEPIOp, UIdx 6069 // ... 6070 // --------------------------- 6071 // 6072 // ---------- AFTER ---------- 6073 // SrcBlock: 6074 // ... (same as above) 6075 // (* %GEPI is still alive on the indirectbr edges) 6076 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6077 // unmerging) 6078 // ... 6079 // 6080 // DstBi: 6081 // ... 6082 // %UGEPI = gep %GEPI, (UIdx-Idx) 6083 // ... 6084 // --------------------------- 6085 // 6086 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6087 // no longer alive on them. 6088 // 6089 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6090 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6091 // not to disable further simplications and optimizations as a result of GEP 6092 // merging. 6093 // 6094 // Note this unmerging may increase the length of the data flow critical path 6095 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6096 // between the register pressure and the length of data-flow critical 6097 // path. Restricting this to the uncommon IndirectBr case would minimize the 6098 // impact of potentially longer critical path, if any, and the impact on compile 6099 // time. 6100 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6101 const TargetTransformInfo *TTI) { 6102 BasicBlock *SrcBlock = GEPI->getParent(); 6103 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6104 // (non-IndirectBr) cases exit early here. 6105 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6106 return false; 6107 // Check that GEPI is a simple gep with a single constant index. 6108 if (!GEPSequentialConstIndexed(GEPI)) 6109 return false; 6110 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6111 // Check that GEPI is a cheap one. 6112 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6113 > TargetTransformInfo::TCC_Basic) 6114 return false; 6115 Value *GEPIOp = GEPI->getOperand(0); 6116 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6117 if (!isa<Instruction>(GEPIOp)) 6118 return false; 6119 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6120 if (GEPIOpI->getParent() != SrcBlock) 6121 return false; 6122 // Check that GEP is used outside the block, meaning it's alive on the 6123 // IndirectBr edge(s). 6124 if (find_if(GEPI->users(), [&](User *Usr) { 6125 if (auto *I = dyn_cast<Instruction>(Usr)) { 6126 if (I->getParent() != SrcBlock) { 6127 return true; 6128 } 6129 } 6130 return false; 6131 }) == GEPI->users().end()) 6132 return false; 6133 // The second elements of the GEP chains to be unmerged. 6134 std::vector<GetElementPtrInst *> UGEPIs; 6135 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6136 // on IndirectBr edges. 6137 for (User *Usr : GEPIOp->users()) { 6138 if (Usr == GEPI) continue; 6139 // Check if Usr is an Instruction. If not, give up. 6140 if (!isa<Instruction>(Usr)) 6141 return false; 6142 auto *UI = cast<Instruction>(Usr); 6143 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6144 if (UI->getParent() == SrcBlock) 6145 continue; 6146 // Check if Usr is a GEP. If not, give up. 6147 if (!isa<GetElementPtrInst>(Usr)) 6148 return false; 6149 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6150 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6151 // the pointer operand to it. If so, record it in the vector. If not, give 6152 // up. 6153 if (!GEPSequentialConstIndexed(UGEPI)) 6154 return false; 6155 if (UGEPI->getOperand(0) != GEPIOp) 6156 return false; 6157 if (GEPIIdx->getType() != 6158 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6159 return false; 6160 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6161 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6162 > TargetTransformInfo::TCC_Basic) 6163 return false; 6164 UGEPIs.push_back(UGEPI); 6165 } 6166 if (UGEPIs.size() == 0) 6167 return false; 6168 // Check the materializing cost of (Uidx-Idx). 6169 for (GetElementPtrInst *UGEPI : UGEPIs) { 6170 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6171 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6172 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6173 if (ImmCost > TargetTransformInfo::TCC_Basic) 6174 return false; 6175 } 6176 // Now unmerge between GEPI and UGEPIs. 6177 for (GetElementPtrInst *UGEPI : UGEPIs) { 6178 UGEPI->setOperand(0, GEPI); 6179 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6180 Constant *NewUGEPIIdx = 6181 ConstantInt::get(GEPIIdx->getType(), 6182 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6183 UGEPI->setOperand(1, NewUGEPIIdx); 6184 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6185 // inbounds to avoid UB. 6186 if (!GEPI->isInBounds()) { 6187 UGEPI->setIsInBounds(false); 6188 } 6189 } 6190 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6191 // alive on IndirectBr edges). 6192 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6193 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6194 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6195 return true; 6196 } 6197 6198 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6199 // Bail out if we inserted the instruction to prevent optimizations from 6200 // stepping on each other's toes. 6201 if (InsertedInsts.count(I)) 6202 return false; 6203 6204 if (PHINode *P = dyn_cast<PHINode>(I)) { 6205 // It is possible for very late stage optimizations (such as SimplifyCFG) 6206 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6207 // trivial PHI, go ahead and zap it here. 6208 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6209 P->replaceAllUsesWith(V); 6210 P->eraseFromParent(); 6211 ++NumPHIsElim; 6212 return true; 6213 } 6214 return false; 6215 } 6216 6217 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6218 // If the source of the cast is a constant, then this should have 6219 // already been constant folded. The only reason NOT to constant fold 6220 // it is if something (e.g. LSR) was careful to place the constant 6221 // evaluation in a block other than then one that uses it (e.g. to hoist 6222 // the address of globals out of a loop). If this is the case, we don't 6223 // want to forward-subst the cast. 6224 if (isa<Constant>(CI->getOperand(0))) 6225 return false; 6226 6227 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6228 return true; 6229 6230 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6231 /// Sink a zext or sext into its user blocks if the target type doesn't 6232 /// fit in one register 6233 if (TLI && 6234 TLI->getTypeAction(CI->getContext(), 6235 TLI->getValueType(*DL, CI->getType())) == 6236 TargetLowering::TypeExpandInteger) { 6237 return SinkCast(CI); 6238 } else { 6239 bool MadeChange = optimizeExt(I); 6240 return MadeChange | optimizeExtUses(I); 6241 } 6242 } 6243 return false; 6244 } 6245 6246 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6247 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6248 return OptimizeCmpExpression(CI, TLI); 6249 6250 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6251 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6252 if (TLI) { 6253 bool Modified = optimizeLoadExt(LI); 6254 unsigned AS = LI->getPointerAddressSpace(); 6255 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6256 return Modified; 6257 } 6258 return false; 6259 } 6260 6261 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6262 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6263 return true; 6264 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6265 if (TLI) { 6266 unsigned AS = SI->getPointerAddressSpace(); 6267 return optimizeMemoryInst(I, SI->getOperand(1), 6268 SI->getOperand(0)->getType(), AS); 6269 } 6270 return false; 6271 } 6272 6273 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6274 unsigned AS = RMW->getPointerAddressSpace(); 6275 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6276 RMW->getType(), AS); 6277 } 6278 6279 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6280 unsigned AS = CmpX->getPointerAddressSpace(); 6281 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6282 CmpX->getCompareOperand()->getType(), AS); 6283 } 6284 6285 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6286 6287 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6288 EnableAndCmpSinking && TLI) 6289 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6290 6291 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6292 BinOp->getOpcode() == Instruction::LShr)) { 6293 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6294 if (TLI && CI && TLI->hasExtractBitsInsn()) 6295 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6296 6297 return false; 6298 } 6299 6300 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6301 if (GEPI->hasAllZeroIndices()) { 6302 /// The GEP operand must be a pointer, so must its result -> BitCast 6303 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6304 GEPI->getName(), GEPI); 6305 GEPI->replaceAllUsesWith(NC); 6306 GEPI->eraseFromParent(); 6307 ++NumGEPsElim; 6308 optimizeInst(NC, ModifiedDT); 6309 return true; 6310 } 6311 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6312 return true; 6313 } 6314 return false; 6315 } 6316 6317 if (CallInst *CI = dyn_cast<CallInst>(I)) 6318 return optimizeCallInst(CI, ModifiedDT); 6319 6320 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6321 return optimizeSelectInst(SI); 6322 6323 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6324 return optimizeShuffleVectorInst(SVI); 6325 6326 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6327 return optimizeSwitchInst(Switch); 6328 6329 if (isa<ExtractElementInst>(I)) 6330 return optimizeExtractElementInst(I); 6331 6332 return false; 6333 } 6334 6335 /// Given an OR instruction, check to see if this is a bitreverse 6336 /// idiom. If so, insert the new intrinsic and return true. 6337 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6338 const TargetLowering &TLI) { 6339 if (!I.getType()->isIntegerTy() || 6340 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6341 TLI.getValueType(DL, I.getType(), true))) 6342 return false; 6343 6344 SmallVector<Instruction*, 4> Insts; 6345 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6346 return false; 6347 Instruction *LastInst = Insts.back(); 6348 I.replaceAllUsesWith(LastInst); 6349 RecursivelyDeleteTriviallyDeadInstructions(&I); 6350 return true; 6351 } 6352 6353 // In this pass we look for GEP and cast instructions that are used 6354 // across basic blocks and rewrite them to improve basic-block-at-a-time 6355 // selection. 6356 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6357 SunkAddrs.clear(); 6358 bool MadeChange = false; 6359 6360 CurInstIterator = BB.begin(); 6361 while (CurInstIterator != BB.end()) { 6362 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6363 if (ModifiedDT) 6364 return true; 6365 } 6366 6367 bool MadeBitReverse = true; 6368 while (TLI && MadeBitReverse) { 6369 MadeBitReverse = false; 6370 for (auto &I : reverse(BB)) { 6371 if (makeBitReverse(I, *DL, *TLI)) { 6372 MadeBitReverse = MadeChange = true; 6373 ModifiedDT = true; 6374 break; 6375 } 6376 } 6377 } 6378 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6379 6380 return MadeChange; 6381 } 6382 6383 // llvm.dbg.value is far away from the value then iSel may not be able 6384 // handle it properly. iSel will drop llvm.dbg.value if it can not 6385 // find a node corresponding to the value. 6386 bool CodeGenPrepare::placeDbgValues(Function &F) { 6387 bool MadeChange = false; 6388 for (BasicBlock &BB : F) { 6389 Instruction *PrevNonDbgInst = nullptr; 6390 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6391 Instruction *Insn = &*BI++; 6392 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6393 // Leave dbg.values that refer to an alloca alone. These 6394 // intrinsics describe the address of a variable (= the alloca) 6395 // being taken. They should not be moved next to the alloca 6396 // (and to the beginning of the scope), but rather stay close to 6397 // where said address is used. 6398 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6399 PrevNonDbgInst = Insn; 6400 continue; 6401 } 6402 6403 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6404 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6405 // If VI is a phi in a block with an EHPad terminator, we can't insert 6406 // after it. 6407 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6408 continue; 6409 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 6410 DVI->removeFromParent(); 6411 if (isa<PHINode>(VI)) 6412 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6413 else 6414 DVI->insertAfter(VI); 6415 MadeChange = true; 6416 ++NumDbgValueMoved; 6417 } 6418 } 6419 } 6420 return MadeChange; 6421 } 6422 6423 /// Scale down both weights to fit into uint32_t. 6424 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6425 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6426 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6427 NewTrue = NewTrue / Scale; 6428 NewFalse = NewFalse / Scale; 6429 } 6430 6431 /// Some targets prefer to split a conditional branch like: 6432 /// \code 6433 /// %0 = icmp ne i32 %a, 0 6434 /// %1 = icmp ne i32 %b, 0 6435 /// %or.cond = or i1 %0, %1 6436 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6437 /// \endcode 6438 /// into multiple branch instructions like: 6439 /// \code 6440 /// bb1: 6441 /// %0 = icmp ne i32 %a, 0 6442 /// br i1 %0, label %TrueBB, label %bb2 6443 /// bb2: 6444 /// %1 = icmp ne i32 %b, 0 6445 /// br i1 %1, label %TrueBB, label %FalseBB 6446 /// \endcode 6447 /// This usually allows instruction selection to do even further optimizations 6448 /// and combine the compare with the branch instruction. Currently this is 6449 /// applied for targets which have "cheap" jump instructions. 6450 /// 6451 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6452 /// 6453 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6454 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6455 return false; 6456 6457 bool MadeChange = false; 6458 for (auto &BB : F) { 6459 // Does this BB end with the following? 6460 // %cond1 = icmp|fcmp|binary instruction ... 6461 // %cond2 = icmp|fcmp|binary instruction ... 6462 // %cond.or = or|and i1 %cond1, cond2 6463 // br i1 %cond.or label %dest1, label %dest2" 6464 BinaryOperator *LogicOp; 6465 BasicBlock *TBB, *FBB; 6466 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6467 continue; 6468 6469 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6470 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6471 continue; 6472 6473 unsigned Opc; 6474 Value *Cond1, *Cond2; 6475 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6476 m_OneUse(m_Value(Cond2))))) 6477 Opc = Instruction::And; 6478 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6479 m_OneUse(m_Value(Cond2))))) 6480 Opc = Instruction::Or; 6481 else 6482 continue; 6483 6484 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6485 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6486 continue; 6487 6488 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6489 6490 // Create a new BB. 6491 auto TmpBB = 6492 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6493 BB.getParent(), BB.getNextNode()); 6494 6495 // Update original basic block by using the first condition directly by the 6496 // branch instruction and removing the no longer needed and/or instruction. 6497 Br1->setCondition(Cond1); 6498 LogicOp->eraseFromParent(); 6499 6500 // Depending on the conditon we have to either replace the true or the false 6501 // successor of the original branch instruction. 6502 if (Opc == Instruction::And) 6503 Br1->setSuccessor(0, TmpBB); 6504 else 6505 Br1->setSuccessor(1, TmpBB); 6506 6507 // Fill in the new basic block. 6508 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6509 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6510 I->removeFromParent(); 6511 I->insertBefore(Br2); 6512 } 6513 6514 // Update PHI nodes in both successors. The original BB needs to be 6515 // replaced in one successor's PHI nodes, because the branch comes now from 6516 // the newly generated BB (NewBB). In the other successor we need to add one 6517 // incoming edge to the PHI nodes, because both branch instructions target 6518 // now the same successor. Depending on the original branch condition 6519 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6520 // we perform the correct update for the PHI nodes. 6521 // This doesn't change the successor order of the just created branch 6522 // instruction (or any other instruction). 6523 if (Opc == Instruction::Or) 6524 std::swap(TBB, FBB); 6525 6526 // Replace the old BB with the new BB. 6527 for (PHINode &PN : TBB->phis()) { 6528 int i; 6529 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 6530 PN.setIncomingBlock(i, TmpBB); 6531 } 6532 6533 // Add another incoming edge form the new BB. 6534 for (PHINode &PN : FBB->phis()) { 6535 auto *Val = PN.getIncomingValueForBlock(&BB); 6536 PN.addIncoming(Val, TmpBB); 6537 } 6538 6539 // Update the branch weights (from SelectionDAGBuilder:: 6540 // FindMergedConditions). 6541 if (Opc == Instruction::Or) { 6542 // Codegen X | Y as: 6543 // BB1: 6544 // jmp_if_X TBB 6545 // jmp TmpBB 6546 // TmpBB: 6547 // jmp_if_Y TBB 6548 // jmp FBB 6549 // 6550 6551 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6552 // The requirement is that 6553 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6554 // = TrueProb for orignal BB. 6555 // Assuming the orignal weights are A and B, one choice is to set BB1's 6556 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6557 // assumes that 6558 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6559 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6560 // TmpBB, but the math is more complicated. 6561 uint64_t TrueWeight, FalseWeight; 6562 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6563 uint64_t NewTrueWeight = TrueWeight; 6564 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6565 scaleWeights(NewTrueWeight, NewFalseWeight); 6566 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6567 .createBranchWeights(TrueWeight, FalseWeight)); 6568 6569 NewTrueWeight = TrueWeight; 6570 NewFalseWeight = 2 * FalseWeight; 6571 scaleWeights(NewTrueWeight, NewFalseWeight); 6572 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6573 .createBranchWeights(TrueWeight, FalseWeight)); 6574 } 6575 } else { 6576 // Codegen X & Y as: 6577 // BB1: 6578 // jmp_if_X TmpBB 6579 // jmp FBB 6580 // TmpBB: 6581 // jmp_if_Y TBB 6582 // jmp FBB 6583 // 6584 // This requires creation of TmpBB after CurBB. 6585 6586 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6587 // The requirement is that 6588 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6589 // = FalseProb for orignal BB. 6590 // Assuming the orignal weights are A and B, one choice is to set BB1's 6591 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6592 // assumes that 6593 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6594 uint64_t TrueWeight, FalseWeight; 6595 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6596 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6597 uint64_t NewFalseWeight = FalseWeight; 6598 scaleWeights(NewTrueWeight, NewFalseWeight); 6599 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6600 .createBranchWeights(TrueWeight, FalseWeight)); 6601 6602 NewTrueWeight = 2 * TrueWeight; 6603 NewFalseWeight = FalseWeight; 6604 scaleWeights(NewTrueWeight, NewFalseWeight); 6605 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6606 .createBranchWeights(TrueWeight, FalseWeight)); 6607 } 6608 } 6609 6610 // Note: No point in getting fancy here, since the DT info is never 6611 // available to CodeGenPrepare. 6612 ModifiedDT = true; 6613 6614 MadeChange = true; 6615 6616 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6617 TmpBB->dump()); 6618 } 6619 return MadeChange; 6620 } 6621