1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/CallSite.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GetElementPtrTypeIterator.h" 54 #include "llvm/IR/GlobalValue.h" 55 #include "llvm/IR/GlobalVariable.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InlineAsm.h" 58 #include "llvm/IR/InstrTypes.h" 59 #include "llvm/IR/Instruction.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/Intrinsics.h" 63 #include "llvm/IR/IntrinsicsAArch64.h" 64 #include "llvm/IR/IntrinsicsX86.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/MDBuilder.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PatternMatch.h" 70 #include "llvm/IR/Statepoint.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/Use.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/IR/ValueHandle.h" 76 #include "llvm/IR/ValueMap.h" 77 #include "llvm/InitializePasses.h" 78 #include "llvm/Pass.h" 79 #include "llvm/Support/BlockFrequency.h" 80 #include "llvm/Support/BranchProbability.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Debug.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/MachineValueType.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Target/TargetMachine.h" 90 #include "llvm/Target/TargetOptions.h" 91 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 92 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 95 #include "llvm/Transforms/Utils/SizeOpts.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define DEBUG_TYPE "codegenprepare" 109 110 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 111 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 112 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 113 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 114 "sunken Cmps"); 115 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 116 "of sunken Casts"); 117 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 118 "computations were sunk"); 119 STATISTIC(NumMemoryInstsPhiCreated, 120 "Number of phis created when address " 121 "computations were sunk to memory instructions"); 122 STATISTIC(NumMemoryInstsSelectCreated, 123 "Number of select created when address " 124 "computations were sunk to memory instructions"); 125 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 126 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 127 STATISTIC(NumAndsAdded, 128 "Number of and mask instructions added to form ext loads"); 129 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 130 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 131 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 132 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 133 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 134 135 static cl::opt<bool> DisableBranchOpts( 136 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 137 cl::desc("Disable branch optimizations in CodeGenPrepare")); 138 139 static cl::opt<bool> 140 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 141 cl::desc("Disable GC optimizations in CodeGenPrepare")); 142 143 static cl::opt<bool> DisableSelectToBranch( 144 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 145 cl::desc("Disable select to branch conversion.")); 146 147 static cl::opt<bool> AddrSinkUsingGEPs( 148 "addr-sink-using-gep", cl::Hidden, cl::init(true), 149 cl::desc("Address sinking in CGP using GEPs.")); 150 151 static cl::opt<bool> EnableAndCmpSinking( 152 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 153 cl::desc("Enable sinkinig and/cmp into branches.")); 154 155 static cl::opt<bool> DisableStoreExtract( 156 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 157 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 158 159 static cl::opt<bool> StressStoreExtract( 160 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 161 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 162 163 static cl::opt<bool> DisableExtLdPromotion( 164 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 165 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 166 "CodeGenPrepare")); 167 168 static cl::opt<bool> StressExtLdPromotion( 169 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 170 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 171 "optimization in CodeGenPrepare")); 172 173 static cl::opt<bool> DisablePreheaderProtect( 174 "disable-preheader-prot", cl::Hidden, cl::init(false), 175 cl::desc("Disable protection against removing loop preheaders")); 176 177 static cl::opt<bool> ProfileGuidedSectionPrefix( 178 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 179 cl::desc("Use profile info to add section prefix for hot/cold functions")); 180 181 static cl::opt<unsigned> FreqRatioToSkipMerge( 182 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 183 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 184 "(frequency of destination block) is greater than this ratio")); 185 186 static cl::opt<bool> ForceSplitStore( 187 "force-split-store", cl::Hidden, cl::init(false), 188 cl::desc("Force store splitting no matter what the target query says.")); 189 190 static cl::opt<bool> 191 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 192 cl::desc("Enable merging of redundant sexts when one is dominating" 193 " the other."), cl::init(true)); 194 195 static cl::opt<bool> DisableComplexAddrModes( 196 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 197 cl::desc("Disables combining addressing modes with different parts " 198 "in optimizeMemoryInst.")); 199 200 static cl::opt<bool> 201 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 202 cl::desc("Allow creation of Phis in Address sinking.")); 203 204 static cl::opt<bool> 205 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 206 cl::desc("Allow creation of selects in Address sinking.")); 207 208 static cl::opt<bool> AddrSinkCombineBaseReg( 209 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 210 cl::desc("Allow combining of BaseReg field in Address sinking.")); 211 212 static cl::opt<bool> AddrSinkCombineBaseGV( 213 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 214 cl::desc("Allow combining of BaseGV field in Address sinking.")); 215 216 static cl::opt<bool> AddrSinkCombineBaseOffs( 217 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 218 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 219 220 static cl::opt<bool> AddrSinkCombineScaledReg( 221 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 222 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 223 224 static cl::opt<bool> 225 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 226 cl::init(true), 227 cl::desc("Enable splitting large offset of GEP.")); 228 229 static cl::opt<bool> EnableICMP_EQToICMP_ST( 230 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 231 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 232 233 namespace { 234 235 enum ExtType { 236 ZeroExtension, // Zero extension has been seen. 237 SignExtension, // Sign extension has been seen. 238 BothExtension // This extension type is used if we saw sext after 239 // ZeroExtension had been set, or if we saw zext after 240 // SignExtension had been set. It makes the type 241 // information of a promoted instruction invalid. 242 }; 243 244 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 245 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 246 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 247 using SExts = SmallVector<Instruction *, 16>; 248 using ValueToSExts = DenseMap<Value *, SExts>; 249 250 class TypePromotionTransaction; 251 252 class CodeGenPrepare : public FunctionPass { 253 const TargetMachine *TM = nullptr; 254 const TargetSubtargetInfo *SubtargetInfo; 255 const TargetLowering *TLI = nullptr; 256 const TargetRegisterInfo *TRI; 257 const TargetTransformInfo *TTI = nullptr; 258 const TargetLibraryInfo *TLInfo; 259 const LoopInfo *LI; 260 std::unique_ptr<BlockFrequencyInfo> BFI; 261 std::unique_ptr<BranchProbabilityInfo> BPI; 262 ProfileSummaryInfo *PSI; 263 264 /// As we scan instructions optimizing them, this is the next instruction 265 /// to optimize. Transforms that can invalidate this should update it. 266 BasicBlock::iterator CurInstIterator; 267 268 /// Keeps track of non-local addresses that have been sunk into a block. 269 /// This allows us to avoid inserting duplicate code for blocks with 270 /// multiple load/stores of the same address. The usage of WeakTrackingVH 271 /// enables SunkAddrs to be treated as a cache whose entries can be 272 /// invalidated if a sunken address computation has been erased. 273 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 274 275 /// Keeps track of all instructions inserted for the current function. 276 SetOfInstrs InsertedInsts; 277 278 /// Keeps track of the type of the related instruction before their 279 /// promotion for the current function. 280 InstrToOrigTy PromotedInsts; 281 282 /// Keep track of instructions removed during promotion. 283 SetOfInstrs RemovedInsts; 284 285 /// Keep track of sext chains based on their initial value. 286 DenseMap<Value *, Instruction *> SeenChainsForSExt; 287 288 /// Keep track of GEPs accessing the same data structures such as structs or 289 /// arrays that are candidates to be split later because of their large 290 /// size. 291 MapVector< 292 AssertingVH<Value>, 293 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 294 LargeOffsetGEPMap; 295 296 /// Keep track of new GEP base after splitting the GEPs having large offset. 297 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 298 299 /// Map serial numbers to Large offset GEPs. 300 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 301 302 /// Keep track of SExt promoted. 303 ValueToSExts ValToSExtendedUses; 304 305 /// True if the function has the OptSize attribute. 306 bool OptSize; 307 308 /// DataLayout for the Function being processed. 309 const DataLayout *DL = nullptr; 310 311 /// Building the dominator tree can be expensive, so we only build it 312 /// lazily and update it when required. 313 std::unique_ptr<DominatorTree> DT; 314 315 public: 316 static char ID; // Pass identification, replacement for typeid 317 318 CodeGenPrepare() : FunctionPass(ID) { 319 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 StringRef getPassName() const override { return "CodeGen Prepare"; } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 // FIXME: When we can selectively preserve passes, preserve the domtree. 328 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addRequired<TargetTransformInfoWrapperPass>(); 331 AU.addRequired<LoopInfoWrapperPass>(); 332 } 333 334 private: 335 template <typename F> 336 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 337 // Substituting can cause recursive simplifications, which can invalidate 338 // our iterator. Use a WeakTrackingVH to hold onto it in case this 339 // happens. 340 Value *CurValue = &*CurInstIterator; 341 WeakTrackingVH IterHandle(CurValue); 342 343 f(); 344 345 // If the iterator instruction was recursively deleted, start over at the 346 // start of the block. 347 if (IterHandle != CurValue) { 348 CurInstIterator = BB->begin(); 349 SunkAddrs.clear(); 350 } 351 } 352 353 // Get the DominatorTree, building if necessary. 354 DominatorTree &getDT(Function &F) { 355 if (!DT) 356 DT = std::make_unique<DominatorTree>(F); 357 return *DT; 358 } 359 360 bool eliminateFallThrough(Function &F); 361 bool eliminateMostlyEmptyBlocks(Function &F); 362 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 363 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 364 void eliminateMostlyEmptyBlock(BasicBlock *BB); 365 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 366 bool isPreheader); 367 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 368 bool optimizeInst(Instruction *I, bool &ModifiedDT); 369 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 370 Type *AccessTy, unsigned AddrSpace); 371 bool optimizeInlineAsmInst(CallInst *CS); 372 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 373 bool optimizeExt(Instruction *&I); 374 bool optimizeExtUses(Instruction *I); 375 bool optimizeLoadExt(LoadInst *Load); 376 bool optimizeShiftInst(BinaryOperator *BO); 377 bool optimizeSelectInst(SelectInst *SI); 378 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 379 bool optimizeSwitchInst(SwitchInst *SI); 380 bool optimizeExtractElementInst(Instruction *Inst); 381 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 382 bool fixupDbgValue(Instruction *I); 383 bool placeDbgValues(Function &F); 384 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 385 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 386 bool tryToPromoteExts(TypePromotionTransaction &TPT, 387 const SmallVectorImpl<Instruction *> &Exts, 388 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 389 unsigned CreatedInstsCost = 0); 390 bool mergeSExts(Function &F); 391 bool splitLargeGEPOffsets(); 392 bool performAddressTypePromotion( 393 Instruction *&Inst, 394 bool AllowPromotionWithoutCommonHeader, 395 bool HasPromoted, TypePromotionTransaction &TPT, 396 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 397 bool splitBranchCondition(Function &F, bool &ModifiedDT); 398 bool simplifyOffsetableRelocate(Instruction &I); 399 400 bool tryToSinkFreeOperands(Instruction *I); 401 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 402 Intrinsic::ID IID); 403 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 404 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 405 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 406 }; 407 408 } // end anonymous namespace 409 410 char CodeGenPrepare::ID = 0; 411 412 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 413 "Optimize for code generation", false, false) 414 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 415 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 416 "Optimize for code generation", false, false) 417 418 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 419 420 bool CodeGenPrepare::runOnFunction(Function &F) { 421 if (skipFunction(F)) 422 return false; 423 424 DL = &F.getParent()->getDataLayout(); 425 426 bool EverMadeChange = false; 427 // Clear per function information. 428 InsertedInsts.clear(); 429 PromotedInsts.clear(); 430 431 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 432 TM = &TPC->getTM<TargetMachine>(); 433 SubtargetInfo = TM->getSubtargetImpl(F); 434 TLI = SubtargetInfo->getTargetLowering(); 435 TRI = SubtargetInfo->getRegisterInfo(); 436 } 437 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 438 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 439 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 440 BPI.reset(new BranchProbabilityInfo(F, *LI)); 441 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 442 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 443 OptSize = F.hasOptSize(); 444 if (ProfileGuidedSectionPrefix) { 445 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 446 F.setSectionPrefix(".hot"); 447 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 448 F.setSectionPrefix(".unlikely"); 449 } 450 451 /// This optimization identifies DIV instructions that can be 452 /// profitably bypassed and carried out with a shorter, faster divide. 453 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 454 TLI->isSlowDivBypassed()) { 455 const DenseMap<unsigned int, unsigned int> &BypassWidths = 456 TLI->getBypassSlowDivWidths(); 457 BasicBlock* BB = &*F.begin(); 458 while (BB != nullptr) { 459 // bypassSlowDivision may create new BBs, but we don't want to reapply the 460 // optimization to those blocks. 461 BasicBlock* Next = BB->getNextNode(); 462 // F.hasOptSize is already checked in the outer if statement. 463 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 464 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 465 BB = Next; 466 } 467 } 468 469 // Eliminate blocks that contain only PHI nodes and an 470 // unconditional branch. 471 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 472 473 bool ModifiedDT = false; 474 if (!DisableBranchOpts) 475 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 476 477 // Split some critical edges where one of the sources is an indirect branch, 478 // to help generate sane code for PHIs involving such edges. 479 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 480 481 bool MadeChange = true; 482 while (MadeChange) { 483 MadeChange = false; 484 DT.reset(); 485 for (Function::iterator I = F.begin(); I != F.end(); ) { 486 BasicBlock *BB = &*I++; 487 bool ModifiedDTOnIteration = false; 488 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 489 490 // Restart BB iteration if the dominator tree of the Function was changed 491 if (ModifiedDTOnIteration) 492 break; 493 } 494 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 495 MadeChange |= mergeSExts(F); 496 if (!LargeOffsetGEPMap.empty()) 497 MadeChange |= splitLargeGEPOffsets(); 498 499 // Really free removed instructions during promotion. 500 for (Instruction *I : RemovedInsts) 501 I->deleteValue(); 502 503 EverMadeChange |= MadeChange; 504 SeenChainsForSExt.clear(); 505 ValToSExtendedUses.clear(); 506 RemovedInsts.clear(); 507 LargeOffsetGEPMap.clear(); 508 LargeOffsetGEPID.clear(); 509 } 510 511 SunkAddrs.clear(); 512 513 if (!DisableBranchOpts) { 514 MadeChange = false; 515 // Use a set vector to get deterministic iteration order. The order the 516 // blocks are removed may affect whether or not PHI nodes in successors 517 // are removed. 518 SmallSetVector<BasicBlock*, 8> WorkList; 519 for (BasicBlock &BB : F) { 520 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 521 MadeChange |= ConstantFoldTerminator(&BB, true); 522 if (!MadeChange) continue; 523 524 for (SmallVectorImpl<BasicBlock*>::iterator 525 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 526 if (pred_begin(*II) == pred_end(*II)) 527 WorkList.insert(*II); 528 } 529 530 // Delete the dead blocks and any of their dead successors. 531 MadeChange |= !WorkList.empty(); 532 while (!WorkList.empty()) { 533 BasicBlock *BB = WorkList.pop_back_val(); 534 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 535 536 DeleteDeadBlock(BB); 537 538 for (SmallVectorImpl<BasicBlock*>::iterator 539 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 540 if (pred_begin(*II) == pred_end(*II)) 541 WorkList.insert(*II); 542 } 543 544 // Merge pairs of basic blocks with unconditional branches, connected by 545 // a single edge. 546 if (EverMadeChange || MadeChange) 547 MadeChange |= eliminateFallThrough(F); 548 549 EverMadeChange |= MadeChange; 550 } 551 552 if (!DisableGCOpts) { 553 SmallVector<Instruction *, 2> Statepoints; 554 for (BasicBlock &BB : F) 555 for (Instruction &I : BB) 556 if (isStatepoint(I)) 557 Statepoints.push_back(&I); 558 for (auto &I : Statepoints) 559 EverMadeChange |= simplifyOffsetableRelocate(*I); 560 } 561 562 // Do this last to clean up use-before-def scenarios introduced by other 563 // preparatory transforms. 564 EverMadeChange |= placeDbgValues(F); 565 566 return EverMadeChange; 567 } 568 569 /// Merge basic blocks which are connected by a single edge, where one of the 570 /// basic blocks has a single successor pointing to the other basic block, 571 /// which has a single predecessor. 572 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 573 bool Changed = false; 574 // Scan all of the blocks in the function, except for the entry block. 575 // Use a temporary array to avoid iterator being invalidated when 576 // deleting blocks. 577 SmallVector<WeakTrackingVH, 16> Blocks; 578 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 579 Blocks.push_back(&Block); 580 581 for (auto &Block : Blocks) { 582 auto *BB = cast_or_null<BasicBlock>(Block); 583 if (!BB) 584 continue; 585 // If the destination block has a single pred, then this is a trivial 586 // edge, just collapse it. 587 BasicBlock *SinglePred = BB->getSinglePredecessor(); 588 589 // Don't merge if BB's address is taken. 590 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 591 592 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 593 if (Term && !Term->isConditional()) { 594 Changed = true; 595 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 596 597 // Merge BB into SinglePred and delete it. 598 MergeBlockIntoPredecessor(BB); 599 } 600 } 601 return Changed; 602 } 603 604 /// Find a destination block from BB if BB is mergeable empty block. 605 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 606 // If this block doesn't end with an uncond branch, ignore it. 607 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 608 if (!BI || !BI->isUnconditional()) 609 return nullptr; 610 611 // If the instruction before the branch (skipping debug info) isn't a phi 612 // node, then other stuff is happening here. 613 BasicBlock::iterator BBI = BI->getIterator(); 614 if (BBI != BB->begin()) { 615 --BBI; 616 while (isa<DbgInfoIntrinsic>(BBI)) { 617 if (BBI == BB->begin()) 618 break; 619 --BBI; 620 } 621 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 622 return nullptr; 623 } 624 625 // Do not break infinite loops. 626 BasicBlock *DestBB = BI->getSuccessor(0); 627 if (DestBB == BB) 628 return nullptr; 629 630 if (!canMergeBlocks(BB, DestBB)) 631 DestBB = nullptr; 632 633 return DestBB; 634 } 635 636 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 637 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 638 /// edges in ways that are non-optimal for isel. Start by eliminating these 639 /// blocks so we can split them the way we want them. 640 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 641 SmallPtrSet<BasicBlock *, 16> Preheaders; 642 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 643 while (!LoopList.empty()) { 644 Loop *L = LoopList.pop_back_val(); 645 LoopList.insert(LoopList.end(), L->begin(), L->end()); 646 if (BasicBlock *Preheader = L->getLoopPreheader()) 647 Preheaders.insert(Preheader); 648 } 649 650 bool MadeChange = false; 651 // Copy blocks into a temporary array to avoid iterator invalidation issues 652 // as we remove them. 653 // Note that this intentionally skips the entry block. 654 SmallVector<WeakTrackingVH, 16> Blocks; 655 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 656 Blocks.push_back(&Block); 657 658 for (auto &Block : Blocks) { 659 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 660 if (!BB) 661 continue; 662 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 663 if (!DestBB || 664 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 665 continue; 666 667 eliminateMostlyEmptyBlock(BB); 668 MadeChange = true; 669 } 670 return MadeChange; 671 } 672 673 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 674 BasicBlock *DestBB, 675 bool isPreheader) { 676 // Do not delete loop preheaders if doing so would create a critical edge. 677 // Loop preheaders can be good locations to spill registers. If the 678 // preheader is deleted and we create a critical edge, registers may be 679 // spilled in the loop body instead. 680 if (!DisablePreheaderProtect && isPreheader && 681 !(BB->getSinglePredecessor() && 682 BB->getSinglePredecessor()->getSingleSuccessor())) 683 return false; 684 685 // Skip merging if the block's successor is also a successor to any callbr 686 // that leads to this block. 687 // FIXME: Is this really needed? Is this a correctness issue? 688 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 689 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 690 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 691 if (DestBB == CBI->getSuccessor(i)) 692 return false; 693 } 694 695 // Try to skip merging if the unique predecessor of BB is terminated by a 696 // switch or indirect branch instruction, and BB is used as an incoming block 697 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 698 // add COPY instructions in the predecessor of BB instead of BB (if it is not 699 // merged). Note that the critical edge created by merging such blocks wont be 700 // split in MachineSink because the jump table is not analyzable. By keeping 701 // such empty block (BB), ISel will place COPY instructions in BB, not in the 702 // predecessor of BB. 703 BasicBlock *Pred = BB->getUniquePredecessor(); 704 if (!Pred || 705 !(isa<SwitchInst>(Pred->getTerminator()) || 706 isa<IndirectBrInst>(Pred->getTerminator()))) 707 return true; 708 709 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 710 return true; 711 712 // We use a simple cost heuristic which determine skipping merging is 713 // profitable if the cost of skipping merging is less than the cost of 714 // merging : Cost(skipping merging) < Cost(merging BB), where the 715 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 716 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 717 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 718 // Freq(Pred) / Freq(BB) > 2. 719 // Note that if there are multiple empty blocks sharing the same incoming 720 // value for the PHIs in the DestBB, we consider them together. In such 721 // case, Cost(merging BB) will be the sum of their frequencies. 722 723 if (!isa<PHINode>(DestBB->begin())) 724 return true; 725 726 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 727 728 // Find all other incoming blocks from which incoming values of all PHIs in 729 // DestBB are the same as the ones from BB. 730 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 731 ++PI) { 732 BasicBlock *DestBBPred = *PI; 733 if (DestBBPred == BB) 734 continue; 735 736 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 737 return DestPN.getIncomingValueForBlock(BB) == 738 DestPN.getIncomingValueForBlock(DestBBPred); 739 })) 740 SameIncomingValueBBs.insert(DestBBPred); 741 } 742 743 // See if all BB's incoming values are same as the value from Pred. In this 744 // case, no reason to skip merging because COPYs are expected to be place in 745 // Pred already. 746 if (SameIncomingValueBBs.count(Pred)) 747 return true; 748 749 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 750 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 751 752 for (auto SameValueBB : SameIncomingValueBBs) 753 if (SameValueBB->getUniquePredecessor() == Pred && 754 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 755 BBFreq += BFI->getBlockFreq(SameValueBB); 756 757 return PredFreq.getFrequency() <= 758 BBFreq.getFrequency() * FreqRatioToSkipMerge; 759 } 760 761 /// Return true if we can merge BB into DestBB if there is a single 762 /// unconditional branch between them, and BB contains no other non-phi 763 /// instructions. 764 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 765 const BasicBlock *DestBB) const { 766 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 767 // the successor. If there are more complex condition (e.g. preheaders), 768 // don't mess around with them. 769 for (const PHINode &PN : BB->phis()) { 770 for (const User *U : PN.users()) { 771 const Instruction *UI = cast<Instruction>(U); 772 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 773 return false; 774 // If User is inside DestBB block and it is a PHINode then check 775 // incoming value. If incoming value is not from BB then this is 776 // a complex condition (e.g. preheaders) we want to avoid here. 777 if (UI->getParent() == DestBB) { 778 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 779 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 780 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 781 if (Insn && Insn->getParent() == BB && 782 Insn->getParent() != UPN->getIncomingBlock(I)) 783 return false; 784 } 785 } 786 } 787 } 788 789 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 790 // and DestBB may have conflicting incoming values for the block. If so, we 791 // can't merge the block. 792 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 793 if (!DestBBPN) return true; // no conflict. 794 795 // Collect the preds of BB. 796 SmallPtrSet<const BasicBlock*, 16> BBPreds; 797 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 798 // It is faster to get preds from a PHI than with pred_iterator. 799 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 800 BBPreds.insert(BBPN->getIncomingBlock(i)); 801 } else { 802 BBPreds.insert(pred_begin(BB), pred_end(BB)); 803 } 804 805 // Walk the preds of DestBB. 806 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 807 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 808 if (BBPreds.count(Pred)) { // Common predecessor? 809 for (const PHINode &PN : DestBB->phis()) { 810 const Value *V1 = PN.getIncomingValueForBlock(Pred); 811 const Value *V2 = PN.getIncomingValueForBlock(BB); 812 813 // If V2 is a phi node in BB, look up what the mapped value will be. 814 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 815 if (V2PN->getParent() == BB) 816 V2 = V2PN->getIncomingValueForBlock(Pred); 817 818 // If there is a conflict, bail out. 819 if (V1 != V2) return false; 820 } 821 } 822 } 823 824 return true; 825 } 826 827 /// Eliminate a basic block that has only phi's and an unconditional branch in 828 /// it. 829 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 830 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 831 BasicBlock *DestBB = BI->getSuccessor(0); 832 833 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 834 << *BB << *DestBB); 835 836 // If the destination block has a single pred, then this is a trivial edge, 837 // just collapse it. 838 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 839 if (SinglePred != DestBB) { 840 assert(SinglePred == BB && 841 "Single predecessor not the same as predecessor"); 842 // Merge DestBB into SinglePred/BB and delete it. 843 MergeBlockIntoPredecessor(DestBB); 844 // Note: BB(=SinglePred) will not be deleted on this path. 845 // DestBB(=its single successor) is the one that was deleted. 846 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 847 return; 848 } 849 } 850 851 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 852 // to handle the new incoming edges it is about to have. 853 for (PHINode &PN : DestBB->phis()) { 854 // Remove the incoming value for BB, and remember it. 855 Value *InVal = PN.removeIncomingValue(BB, false); 856 857 // Two options: either the InVal is a phi node defined in BB or it is some 858 // value that dominates BB. 859 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 860 if (InValPhi && InValPhi->getParent() == BB) { 861 // Add all of the input values of the input PHI as inputs of this phi. 862 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 863 PN.addIncoming(InValPhi->getIncomingValue(i), 864 InValPhi->getIncomingBlock(i)); 865 } else { 866 // Otherwise, add one instance of the dominating value for each edge that 867 // we will be adding. 868 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 869 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 870 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 871 } else { 872 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 873 PN.addIncoming(InVal, *PI); 874 } 875 } 876 } 877 878 // The PHIs are now updated, change everything that refers to BB to use 879 // DestBB and remove BB. 880 BB->replaceAllUsesWith(DestBB); 881 BB->eraseFromParent(); 882 ++NumBlocksElim; 883 884 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 885 } 886 887 // Computes a map of base pointer relocation instructions to corresponding 888 // derived pointer relocation instructions given a vector of all relocate calls 889 static void computeBaseDerivedRelocateMap( 890 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 891 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 892 &RelocateInstMap) { 893 // Collect information in two maps: one primarily for locating the base object 894 // while filling the second map; the second map is the final structure holding 895 // a mapping between Base and corresponding Derived relocate calls 896 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 897 for (auto *ThisRelocate : AllRelocateCalls) { 898 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 899 ThisRelocate->getDerivedPtrIndex()); 900 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 901 } 902 for (auto &Item : RelocateIdxMap) { 903 std::pair<unsigned, unsigned> Key = Item.first; 904 if (Key.first == Key.second) 905 // Base relocation: nothing to insert 906 continue; 907 908 GCRelocateInst *I = Item.second; 909 auto BaseKey = std::make_pair(Key.first, Key.first); 910 911 // We're iterating over RelocateIdxMap so we cannot modify it. 912 auto MaybeBase = RelocateIdxMap.find(BaseKey); 913 if (MaybeBase == RelocateIdxMap.end()) 914 // TODO: We might want to insert a new base object relocate and gep off 915 // that, if there are enough derived object relocates. 916 continue; 917 918 RelocateInstMap[MaybeBase->second].push_back(I); 919 } 920 } 921 922 // Accepts a GEP and extracts the operands into a vector provided they're all 923 // small integer constants 924 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 925 SmallVectorImpl<Value *> &OffsetV) { 926 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 927 // Only accept small constant integer operands 928 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 929 if (!Op || Op->getZExtValue() > 20) 930 return false; 931 } 932 933 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 934 OffsetV.push_back(GEP->getOperand(i)); 935 return true; 936 } 937 938 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 939 // replace, computes a replacement, and affects it. 940 static bool 941 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 942 const SmallVectorImpl<GCRelocateInst *> &Targets) { 943 bool MadeChange = false; 944 // We must ensure the relocation of derived pointer is defined after 945 // relocation of base pointer. If we find a relocation corresponding to base 946 // defined earlier than relocation of base then we move relocation of base 947 // right before found relocation. We consider only relocation in the same 948 // basic block as relocation of base. Relocations from other basic block will 949 // be skipped by optimization and we do not care about them. 950 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 951 &*R != RelocatedBase; ++R) 952 if (auto RI = dyn_cast<GCRelocateInst>(R)) 953 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 954 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 955 RelocatedBase->moveBefore(RI); 956 break; 957 } 958 959 for (GCRelocateInst *ToReplace : Targets) { 960 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 961 "Not relocating a derived object of the original base object"); 962 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 963 // A duplicate relocate call. TODO: coalesce duplicates. 964 continue; 965 } 966 967 if (RelocatedBase->getParent() != ToReplace->getParent()) { 968 // Base and derived relocates are in different basic blocks. 969 // In this case transform is only valid when base dominates derived 970 // relocate. However it would be too expensive to check dominance 971 // for each such relocate, so we skip the whole transformation. 972 continue; 973 } 974 975 Value *Base = ToReplace->getBasePtr(); 976 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 977 if (!Derived || Derived->getPointerOperand() != Base) 978 continue; 979 980 SmallVector<Value *, 2> OffsetV; 981 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 982 continue; 983 984 // Create a Builder and replace the target callsite with a gep 985 assert(RelocatedBase->getNextNode() && 986 "Should always have one since it's not a terminator"); 987 988 // Insert after RelocatedBase 989 IRBuilder<> Builder(RelocatedBase->getNextNode()); 990 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 991 992 // If gc_relocate does not match the actual type, cast it to the right type. 993 // In theory, there must be a bitcast after gc_relocate if the type does not 994 // match, and we should reuse it to get the derived pointer. But it could be 995 // cases like this: 996 // bb1: 997 // ... 998 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 999 // br label %merge 1000 // 1001 // bb2: 1002 // ... 1003 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1004 // br label %merge 1005 // 1006 // merge: 1007 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1008 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1009 // 1010 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1011 // no matter there is already one or not. In this way, we can handle all cases, and 1012 // the extra bitcast should be optimized away in later passes. 1013 Value *ActualRelocatedBase = RelocatedBase; 1014 if (RelocatedBase->getType() != Base->getType()) { 1015 ActualRelocatedBase = 1016 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1017 } 1018 Value *Replacement = Builder.CreateGEP( 1019 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1020 Replacement->takeName(ToReplace); 1021 // If the newly generated derived pointer's type does not match the original derived 1022 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1023 Value *ActualReplacement = Replacement; 1024 if (Replacement->getType() != ToReplace->getType()) { 1025 ActualReplacement = 1026 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1027 } 1028 ToReplace->replaceAllUsesWith(ActualReplacement); 1029 ToReplace->eraseFromParent(); 1030 1031 MadeChange = true; 1032 } 1033 return MadeChange; 1034 } 1035 1036 // Turns this: 1037 // 1038 // %base = ... 1039 // %ptr = gep %base + 15 1040 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1041 // %base' = relocate(%tok, i32 4, i32 4) 1042 // %ptr' = relocate(%tok, i32 4, i32 5) 1043 // %val = load %ptr' 1044 // 1045 // into this: 1046 // 1047 // %base = ... 1048 // %ptr = gep %base + 15 1049 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1050 // %base' = gc.relocate(%tok, i32 4, i32 4) 1051 // %ptr' = gep %base' + 15 1052 // %val = load %ptr' 1053 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1054 bool MadeChange = false; 1055 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1056 1057 for (auto *U : I.users()) 1058 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1059 // Collect all the relocate calls associated with a statepoint 1060 AllRelocateCalls.push_back(Relocate); 1061 1062 // We need at least one base pointer relocation + one derived pointer 1063 // relocation to mangle 1064 if (AllRelocateCalls.size() < 2) 1065 return false; 1066 1067 // RelocateInstMap is a mapping from the base relocate instruction to the 1068 // corresponding derived relocate instructions 1069 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1070 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1071 if (RelocateInstMap.empty()) 1072 return false; 1073 1074 for (auto &Item : RelocateInstMap) 1075 // Item.first is the RelocatedBase to offset against 1076 // Item.second is the vector of Targets to replace 1077 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1078 return MadeChange; 1079 } 1080 1081 /// Sink the specified cast instruction into its user blocks. 1082 static bool SinkCast(CastInst *CI) { 1083 BasicBlock *DefBB = CI->getParent(); 1084 1085 /// InsertedCasts - Only insert a cast in each block once. 1086 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1087 1088 bool MadeChange = false; 1089 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1090 UI != E; ) { 1091 Use &TheUse = UI.getUse(); 1092 Instruction *User = cast<Instruction>(*UI); 1093 1094 // Figure out which BB this cast is used in. For PHI's this is the 1095 // appropriate predecessor block. 1096 BasicBlock *UserBB = User->getParent(); 1097 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1098 UserBB = PN->getIncomingBlock(TheUse); 1099 } 1100 1101 // Preincrement use iterator so we don't invalidate it. 1102 ++UI; 1103 1104 // The first insertion point of a block containing an EH pad is after the 1105 // pad. If the pad is the user, we cannot sink the cast past the pad. 1106 if (User->isEHPad()) 1107 continue; 1108 1109 // If the block selected to receive the cast is an EH pad that does not 1110 // allow non-PHI instructions before the terminator, we can't sink the 1111 // cast. 1112 if (UserBB->getTerminator()->isEHPad()) 1113 continue; 1114 1115 // If this user is in the same block as the cast, don't change the cast. 1116 if (UserBB == DefBB) continue; 1117 1118 // If we have already inserted a cast into this block, use it. 1119 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1120 1121 if (!InsertedCast) { 1122 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1123 assert(InsertPt != UserBB->end()); 1124 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1125 CI->getType(), "", &*InsertPt); 1126 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1127 } 1128 1129 // Replace a use of the cast with a use of the new cast. 1130 TheUse = InsertedCast; 1131 MadeChange = true; 1132 ++NumCastUses; 1133 } 1134 1135 // If we removed all uses, nuke the cast. 1136 if (CI->use_empty()) { 1137 salvageDebugInfo(*CI); 1138 CI->eraseFromParent(); 1139 MadeChange = true; 1140 } 1141 1142 return MadeChange; 1143 } 1144 1145 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1146 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1147 /// reduce the number of virtual registers that must be created and coalesced. 1148 /// 1149 /// Return true if any changes are made. 1150 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1151 const DataLayout &DL) { 1152 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1153 // than sinking only nop casts, but is helpful on some platforms. 1154 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1155 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1156 ASC->getDestAddressSpace())) 1157 return false; 1158 } 1159 1160 // If this is a noop copy, 1161 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1162 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1163 1164 // This is an fp<->int conversion? 1165 if (SrcVT.isInteger() != DstVT.isInteger()) 1166 return false; 1167 1168 // If this is an extension, it will be a zero or sign extension, which 1169 // isn't a noop. 1170 if (SrcVT.bitsLT(DstVT)) return false; 1171 1172 // If these values will be promoted, find out what they will be promoted 1173 // to. This helps us consider truncates on PPC as noop copies when they 1174 // are. 1175 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1176 TargetLowering::TypePromoteInteger) 1177 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1178 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1179 TargetLowering::TypePromoteInteger) 1180 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1181 1182 // If, after promotion, these are the same types, this is a noop copy. 1183 if (SrcVT != DstVT) 1184 return false; 1185 1186 return SinkCast(CI); 1187 } 1188 1189 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1190 CmpInst *Cmp, 1191 Intrinsic::ID IID) { 1192 if (BO->getParent() != Cmp->getParent()) { 1193 // We used to use a dominator tree here to allow multi-block optimization. 1194 // But that was problematic because: 1195 // 1. It could cause a perf regression by hoisting the math op into the 1196 // critical path. 1197 // 2. It could cause a perf regression by creating a value that was live 1198 // across multiple blocks and increasing register pressure. 1199 // 3. Use of a dominator tree could cause large compile-time regression. 1200 // This is because we recompute the DT on every change in the main CGP 1201 // run-loop. The recomputing is probably unnecessary in many cases, so if 1202 // that was fixed, using a DT here would be ok. 1203 return false; 1204 } 1205 1206 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1207 Value *Arg0 = BO->getOperand(0); 1208 Value *Arg1 = BO->getOperand(1); 1209 if (BO->getOpcode() == Instruction::Add && 1210 IID == Intrinsic::usub_with_overflow) { 1211 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1212 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1213 } 1214 1215 // Insert at the first instruction of the pair. 1216 Instruction *InsertPt = nullptr; 1217 for (Instruction &Iter : *Cmp->getParent()) { 1218 if (&Iter == BO || &Iter == Cmp) { 1219 InsertPt = &Iter; 1220 break; 1221 } 1222 } 1223 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1224 1225 IRBuilder<> Builder(InsertPt); 1226 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1227 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1228 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1229 BO->replaceAllUsesWith(Math); 1230 Cmp->replaceAllUsesWith(OV); 1231 BO->eraseFromParent(); 1232 Cmp->eraseFromParent(); 1233 return true; 1234 } 1235 1236 /// Match special-case patterns that check for unsigned add overflow. 1237 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1238 BinaryOperator *&Add) { 1239 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1240 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1241 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1242 1243 // We are not expecting non-canonical/degenerate code. Just bail out. 1244 if (isa<Constant>(A)) 1245 return false; 1246 1247 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1248 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1249 B = ConstantInt::get(B->getType(), 1); 1250 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1251 B = ConstantInt::get(B->getType(), -1); 1252 else 1253 return false; 1254 1255 // Check the users of the variable operand of the compare looking for an add 1256 // with the adjusted constant. 1257 for (User *U : A->users()) { 1258 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1259 Add = cast<BinaryOperator>(U); 1260 return true; 1261 } 1262 } 1263 return false; 1264 } 1265 1266 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1267 /// intrinsic. Return true if any changes were made. 1268 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1269 bool &ModifiedDT) { 1270 Value *A, *B; 1271 BinaryOperator *Add; 1272 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1273 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1274 return false; 1275 1276 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1277 TLI->getValueType(*DL, Add->getType()))) 1278 return false; 1279 1280 // We don't want to move around uses of condition values this late, so we 1281 // check if it is legal to create the call to the intrinsic in the basic 1282 // block containing the icmp. 1283 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1284 return false; 1285 1286 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) 1287 return false; 1288 1289 // Reset callers - do not crash by iterating over a dead instruction. 1290 ModifiedDT = true; 1291 return true; 1292 } 1293 1294 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1295 bool &ModifiedDT) { 1296 // We are not expecting non-canonical/degenerate code. Just bail out. 1297 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1298 if (isa<Constant>(A) && isa<Constant>(B)) 1299 return false; 1300 1301 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1302 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1303 if (Pred == ICmpInst::ICMP_UGT) { 1304 std::swap(A, B); 1305 Pred = ICmpInst::ICMP_ULT; 1306 } 1307 // Convert special-case: (A == 0) is the same as (A u< 1). 1308 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1309 B = ConstantInt::get(B->getType(), 1); 1310 Pred = ICmpInst::ICMP_ULT; 1311 } 1312 // Convert special-case: (A != 0) is the same as (0 u< A). 1313 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1314 std::swap(A, B); 1315 Pred = ICmpInst::ICMP_ULT; 1316 } 1317 if (Pred != ICmpInst::ICMP_ULT) 1318 return false; 1319 1320 // Walk the users of a variable operand of a compare looking for a subtract or 1321 // add with that same operand. Also match the 2nd operand of the compare to 1322 // the add/sub, but that may be a negated constant operand of an add. 1323 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1324 BinaryOperator *Sub = nullptr; 1325 for (User *U : CmpVariableOperand->users()) { 1326 // A - B, A u< B --> usubo(A, B) 1327 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1328 Sub = cast<BinaryOperator>(U); 1329 break; 1330 } 1331 1332 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1333 const APInt *CmpC, *AddC; 1334 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1335 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1336 Sub = cast<BinaryOperator>(U); 1337 break; 1338 } 1339 } 1340 if (!Sub) 1341 return false; 1342 1343 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1344 TLI->getValueType(*DL, Sub->getType()))) 1345 return false; 1346 1347 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) 1348 return false; 1349 1350 // Reset callers - do not crash by iterating over a dead instruction. 1351 ModifiedDT = true; 1352 return true; 1353 } 1354 1355 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1356 /// registers that must be created and coalesced. This is a clear win except on 1357 /// targets with multiple condition code registers (PowerPC), where it might 1358 /// lose; some adjustment may be wanted there. 1359 /// 1360 /// Return true if any changes are made. 1361 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1362 if (TLI.hasMultipleConditionRegisters()) 1363 return false; 1364 1365 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1366 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1367 return false; 1368 1369 // Only insert a cmp in each block once. 1370 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1371 1372 bool MadeChange = false; 1373 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1374 UI != E; ) { 1375 Use &TheUse = UI.getUse(); 1376 Instruction *User = cast<Instruction>(*UI); 1377 1378 // Preincrement use iterator so we don't invalidate it. 1379 ++UI; 1380 1381 // Don't bother for PHI nodes. 1382 if (isa<PHINode>(User)) 1383 continue; 1384 1385 // Figure out which BB this cmp is used in. 1386 BasicBlock *UserBB = User->getParent(); 1387 BasicBlock *DefBB = Cmp->getParent(); 1388 1389 // If this user is in the same block as the cmp, don't change the cmp. 1390 if (UserBB == DefBB) continue; 1391 1392 // If we have already inserted a cmp into this block, use it. 1393 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1394 1395 if (!InsertedCmp) { 1396 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1397 assert(InsertPt != UserBB->end()); 1398 InsertedCmp = 1399 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1400 Cmp->getOperand(0), Cmp->getOperand(1), "", 1401 &*InsertPt); 1402 // Propagate the debug info. 1403 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1404 } 1405 1406 // Replace a use of the cmp with a use of the new cmp. 1407 TheUse = InsertedCmp; 1408 MadeChange = true; 1409 ++NumCmpUses; 1410 } 1411 1412 // If we removed all uses, nuke the cmp. 1413 if (Cmp->use_empty()) { 1414 Cmp->eraseFromParent(); 1415 MadeChange = true; 1416 } 1417 1418 return MadeChange; 1419 } 1420 1421 /// For pattern like: 1422 /// 1423 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1424 /// ... 1425 /// DomBB: 1426 /// ... 1427 /// br DomCond, TrueBB, CmpBB 1428 /// CmpBB: (with DomBB being the single predecessor) 1429 /// ... 1430 /// Cmp = icmp eq CmpOp0, CmpOp1 1431 /// ... 1432 /// 1433 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1434 /// different from lowering of icmp eq (PowerPC). This function try to convert 1435 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1436 /// After that, DomCond and Cmp can use the same comparison so reduce one 1437 /// comparison. 1438 /// 1439 /// Return true if any changes are made. 1440 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1441 const TargetLowering &TLI) { 1442 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1443 return false; 1444 1445 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1446 if (Pred != ICmpInst::ICMP_EQ) 1447 return false; 1448 1449 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1450 // icmp slt/sgt would introduce more redundant LLVM IR. 1451 for (User *U : Cmp->users()) { 1452 if (isa<BranchInst>(U)) 1453 continue; 1454 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1455 continue; 1456 return false; 1457 } 1458 1459 // This is a cheap/incomplete check for dominance - just match a single 1460 // predecessor with a conditional branch. 1461 BasicBlock *CmpBB = Cmp->getParent(); 1462 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1463 if (!DomBB) 1464 return false; 1465 1466 // We want to ensure that the only way control gets to the comparison of 1467 // interest is that a less/greater than comparison on the same operands is 1468 // false. 1469 Value *DomCond; 1470 BasicBlock *TrueBB, *FalseBB; 1471 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1472 return false; 1473 if (CmpBB != FalseBB) 1474 return false; 1475 1476 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1477 ICmpInst::Predicate DomPred; 1478 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1479 return false; 1480 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1481 return false; 1482 1483 // Convert the equality comparison to the opposite of the dominating 1484 // comparison and swap the direction for all branch/select users. 1485 // We have conceptually converted: 1486 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1487 // to 1488 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1489 // And similarly for branches. 1490 for (User *U : Cmp->users()) { 1491 if (auto *BI = dyn_cast<BranchInst>(U)) { 1492 assert(BI->isConditional() && "Must be conditional"); 1493 BI->swapSuccessors(); 1494 continue; 1495 } 1496 if (auto *SI = dyn_cast<SelectInst>(U)) { 1497 // Swap operands 1498 SI->swapValues(); 1499 SI->swapProfMetadata(); 1500 continue; 1501 } 1502 llvm_unreachable("Must be a branch or a select"); 1503 } 1504 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1505 return true; 1506 } 1507 1508 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1509 if (sinkCmpExpression(Cmp, *TLI)) 1510 return true; 1511 1512 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1513 return true; 1514 1515 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1516 return true; 1517 1518 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1519 return true; 1520 1521 return false; 1522 } 1523 1524 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1525 /// used in a compare to allow isel to generate better code for targets where 1526 /// this operation can be combined. 1527 /// 1528 /// Return true if any changes are made. 1529 static bool sinkAndCmp0Expression(Instruction *AndI, 1530 const TargetLowering &TLI, 1531 SetOfInstrs &InsertedInsts) { 1532 // Double-check that we're not trying to optimize an instruction that was 1533 // already optimized by some other part of this pass. 1534 assert(!InsertedInsts.count(AndI) && 1535 "Attempting to optimize already optimized and instruction"); 1536 (void) InsertedInsts; 1537 1538 // Nothing to do for single use in same basic block. 1539 if (AndI->hasOneUse() && 1540 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1541 return false; 1542 1543 // Try to avoid cases where sinking/duplicating is likely to increase register 1544 // pressure. 1545 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1546 !isa<ConstantInt>(AndI->getOperand(1)) && 1547 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1548 return false; 1549 1550 for (auto *U : AndI->users()) { 1551 Instruction *User = cast<Instruction>(U); 1552 1553 // Only sink 'and' feeding icmp with 0. 1554 if (!isa<ICmpInst>(User)) 1555 return false; 1556 1557 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1558 if (!CmpC || !CmpC->isZero()) 1559 return false; 1560 } 1561 1562 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1563 return false; 1564 1565 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1566 LLVM_DEBUG(AndI->getParent()->dump()); 1567 1568 // Push the 'and' into the same block as the icmp 0. There should only be 1569 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1570 // others, so we don't need to keep track of which BBs we insert into. 1571 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1572 UI != E; ) { 1573 Use &TheUse = UI.getUse(); 1574 Instruction *User = cast<Instruction>(*UI); 1575 1576 // Preincrement use iterator so we don't invalidate it. 1577 ++UI; 1578 1579 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1580 1581 // Keep the 'and' in the same place if the use is already in the same block. 1582 Instruction *InsertPt = 1583 User->getParent() == AndI->getParent() ? AndI : User; 1584 Instruction *InsertedAnd = 1585 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1586 AndI->getOperand(1), "", InsertPt); 1587 // Propagate the debug info. 1588 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1589 1590 // Replace a use of the 'and' with a use of the new 'and'. 1591 TheUse = InsertedAnd; 1592 ++NumAndUses; 1593 LLVM_DEBUG(User->getParent()->dump()); 1594 } 1595 1596 // We removed all uses, nuke the and. 1597 AndI->eraseFromParent(); 1598 return true; 1599 } 1600 1601 /// Check if the candidates could be combined with a shift instruction, which 1602 /// includes: 1603 /// 1. Truncate instruction 1604 /// 2. And instruction and the imm is a mask of the low bits: 1605 /// imm & (imm+1) == 0 1606 static bool isExtractBitsCandidateUse(Instruction *User) { 1607 if (!isa<TruncInst>(User)) { 1608 if (User->getOpcode() != Instruction::And || 1609 !isa<ConstantInt>(User->getOperand(1))) 1610 return false; 1611 1612 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1613 1614 if ((Cimm & (Cimm + 1)).getBoolValue()) 1615 return false; 1616 } 1617 return true; 1618 } 1619 1620 /// Sink both shift and truncate instruction to the use of truncate's BB. 1621 static bool 1622 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1623 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1624 const TargetLowering &TLI, const DataLayout &DL) { 1625 BasicBlock *UserBB = User->getParent(); 1626 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1627 auto *TruncI = cast<TruncInst>(User); 1628 bool MadeChange = false; 1629 1630 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1631 TruncE = TruncI->user_end(); 1632 TruncUI != TruncE;) { 1633 1634 Use &TruncTheUse = TruncUI.getUse(); 1635 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1636 // Preincrement use iterator so we don't invalidate it. 1637 1638 ++TruncUI; 1639 1640 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1641 if (!ISDOpcode) 1642 continue; 1643 1644 // If the use is actually a legal node, there will not be an 1645 // implicit truncate. 1646 // FIXME: always querying the result type is just an 1647 // approximation; some nodes' legality is determined by the 1648 // operand or other means. There's no good way to find out though. 1649 if (TLI.isOperationLegalOrCustom( 1650 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1651 continue; 1652 1653 // Don't bother for PHI nodes. 1654 if (isa<PHINode>(TruncUser)) 1655 continue; 1656 1657 BasicBlock *TruncUserBB = TruncUser->getParent(); 1658 1659 if (UserBB == TruncUserBB) 1660 continue; 1661 1662 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1663 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1664 1665 if (!InsertedShift && !InsertedTrunc) { 1666 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1667 assert(InsertPt != TruncUserBB->end()); 1668 // Sink the shift 1669 if (ShiftI->getOpcode() == Instruction::AShr) 1670 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1671 "", &*InsertPt); 1672 else 1673 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1674 "", &*InsertPt); 1675 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1676 1677 // Sink the trunc 1678 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1679 TruncInsertPt++; 1680 assert(TruncInsertPt != TruncUserBB->end()); 1681 1682 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1683 TruncI->getType(), "", &*TruncInsertPt); 1684 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1685 1686 MadeChange = true; 1687 1688 TruncTheUse = InsertedTrunc; 1689 } 1690 } 1691 return MadeChange; 1692 } 1693 1694 /// Sink the shift *right* instruction into user blocks if the uses could 1695 /// potentially be combined with this shift instruction and generate BitExtract 1696 /// instruction. It will only be applied if the architecture supports BitExtract 1697 /// instruction. Here is an example: 1698 /// BB1: 1699 /// %x.extract.shift = lshr i64 %arg1, 32 1700 /// BB2: 1701 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1702 /// ==> 1703 /// 1704 /// BB2: 1705 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1706 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1707 /// 1708 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1709 /// instruction. 1710 /// Return true if any changes are made. 1711 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1712 const TargetLowering &TLI, 1713 const DataLayout &DL) { 1714 BasicBlock *DefBB = ShiftI->getParent(); 1715 1716 /// Only insert instructions in each block once. 1717 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1718 1719 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1720 1721 bool MadeChange = false; 1722 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1723 UI != E;) { 1724 Use &TheUse = UI.getUse(); 1725 Instruction *User = cast<Instruction>(*UI); 1726 // Preincrement use iterator so we don't invalidate it. 1727 ++UI; 1728 1729 // Don't bother for PHI nodes. 1730 if (isa<PHINode>(User)) 1731 continue; 1732 1733 if (!isExtractBitsCandidateUse(User)) 1734 continue; 1735 1736 BasicBlock *UserBB = User->getParent(); 1737 1738 if (UserBB == DefBB) { 1739 // If the shift and truncate instruction are in the same BB. The use of 1740 // the truncate(TruncUse) may still introduce another truncate if not 1741 // legal. In this case, we would like to sink both shift and truncate 1742 // instruction to the BB of TruncUse. 1743 // for example: 1744 // BB1: 1745 // i64 shift.result = lshr i64 opnd, imm 1746 // trunc.result = trunc shift.result to i16 1747 // 1748 // BB2: 1749 // ----> We will have an implicit truncate here if the architecture does 1750 // not have i16 compare. 1751 // cmp i16 trunc.result, opnd2 1752 // 1753 if (isa<TruncInst>(User) && shiftIsLegal 1754 // If the type of the truncate is legal, no truncate will be 1755 // introduced in other basic blocks. 1756 && 1757 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1758 MadeChange = 1759 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1760 1761 continue; 1762 } 1763 // If we have already inserted a shift into this block, use it. 1764 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1765 1766 if (!InsertedShift) { 1767 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1768 assert(InsertPt != UserBB->end()); 1769 1770 if (ShiftI->getOpcode() == Instruction::AShr) 1771 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1772 "", &*InsertPt); 1773 else 1774 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1775 "", &*InsertPt); 1776 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1777 1778 MadeChange = true; 1779 } 1780 1781 // Replace a use of the shift with a use of the new shift. 1782 TheUse = InsertedShift; 1783 } 1784 1785 // If we removed all uses, or there are none, nuke the shift. 1786 if (ShiftI->use_empty()) { 1787 salvageDebugInfo(*ShiftI); 1788 ShiftI->eraseFromParent(); 1789 MadeChange = true; 1790 } 1791 1792 return MadeChange; 1793 } 1794 1795 /// If counting leading or trailing zeros is an expensive operation and a zero 1796 /// input is defined, add a check for zero to avoid calling the intrinsic. 1797 /// 1798 /// We want to transform: 1799 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1800 /// 1801 /// into: 1802 /// entry: 1803 /// %cmpz = icmp eq i64 %A, 0 1804 /// br i1 %cmpz, label %cond.end, label %cond.false 1805 /// cond.false: 1806 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1807 /// br label %cond.end 1808 /// cond.end: 1809 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1810 /// 1811 /// If the transform is performed, return true and set ModifiedDT to true. 1812 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1813 const TargetLowering *TLI, 1814 const DataLayout *DL, 1815 bool &ModifiedDT) { 1816 if (!TLI || !DL) 1817 return false; 1818 1819 // If a zero input is undefined, it doesn't make sense to despeculate that. 1820 if (match(CountZeros->getOperand(1), m_One())) 1821 return false; 1822 1823 // If it's cheap to speculate, there's nothing to do. 1824 auto IntrinsicID = CountZeros->getIntrinsicID(); 1825 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1826 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1827 return false; 1828 1829 // Only handle legal scalar cases. Anything else requires too much work. 1830 Type *Ty = CountZeros->getType(); 1831 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1832 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1833 return false; 1834 1835 // The intrinsic will be sunk behind a compare against zero and branch. 1836 BasicBlock *StartBlock = CountZeros->getParent(); 1837 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1838 1839 // Create another block after the count zero intrinsic. A PHI will be added 1840 // in this block to select the result of the intrinsic or the bit-width 1841 // constant if the input to the intrinsic is zero. 1842 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1843 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1844 1845 // Set up a builder to create a compare, conditional branch, and PHI. 1846 IRBuilder<> Builder(CountZeros->getContext()); 1847 Builder.SetInsertPoint(StartBlock->getTerminator()); 1848 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1849 1850 // Replace the unconditional branch that was created by the first split with 1851 // a compare against zero and a conditional branch. 1852 Value *Zero = Constant::getNullValue(Ty); 1853 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1854 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1855 StartBlock->getTerminator()->eraseFromParent(); 1856 1857 // Create a PHI in the end block to select either the output of the intrinsic 1858 // or the bit width of the operand. 1859 Builder.SetInsertPoint(&EndBlock->front()); 1860 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1861 CountZeros->replaceAllUsesWith(PN); 1862 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1863 PN->addIncoming(BitWidth, StartBlock); 1864 PN->addIncoming(CountZeros, CallBlock); 1865 1866 // We are explicitly handling the zero case, so we can set the intrinsic's 1867 // undefined zero argument to 'true'. This will also prevent reprocessing the 1868 // intrinsic; we only despeculate when a zero input is defined. 1869 CountZeros->setArgOperand(1, Builder.getTrue()); 1870 ModifiedDT = true; 1871 return true; 1872 } 1873 1874 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1875 BasicBlock *BB = CI->getParent(); 1876 1877 // Lower inline assembly if we can. 1878 // If we found an inline asm expession, and if the target knows how to 1879 // lower it to normal LLVM code, do so now. 1880 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1881 if (TLI->ExpandInlineAsm(CI)) { 1882 // Avoid invalidating the iterator. 1883 CurInstIterator = BB->begin(); 1884 // Avoid processing instructions out of order, which could cause 1885 // reuse before a value is defined. 1886 SunkAddrs.clear(); 1887 return true; 1888 } 1889 // Sink address computing for memory operands into the block. 1890 if (optimizeInlineAsmInst(CI)) 1891 return true; 1892 } 1893 1894 // Align the pointer arguments to this call if the target thinks it's a good 1895 // idea 1896 unsigned MinSize, PrefAlign; 1897 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1898 for (auto &Arg : CI->arg_operands()) { 1899 // We want to align both objects whose address is used directly and 1900 // objects whose address is used in casts and GEPs, though it only makes 1901 // sense for GEPs if the offset is a multiple of the desired alignment and 1902 // if size - offset meets the size threshold. 1903 if (!Arg->getType()->isPointerTy()) 1904 continue; 1905 APInt Offset(DL->getIndexSizeInBits( 1906 cast<PointerType>(Arg->getType())->getAddressSpace()), 1907 0); 1908 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1909 uint64_t Offset2 = Offset.getLimitedValue(); 1910 if ((Offset2 & (PrefAlign-1)) != 0) 1911 continue; 1912 AllocaInst *AI; 1913 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1914 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1915 AI->setAlignment(MaybeAlign(PrefAlign)); 1916 // Global variables can only be aligned if they are defined in this 1917 // object (i.e. they are uniquely initialized in this object), and 1918 // over-aligning global variables that have an explicit section is 1919 // forbidden. 1920 GlobalVariable *GV; 1921 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1922 GV->getPointerAlignment(*DL) < PrefAlign && 1923 DL->getTypeAllocSize(GV->getValueType()) >= 1924 MinSize + Offset2) 1925 GV->setAlignment(MaybeAlign(PrefAlign)); 1926 } 1927 // If this is a memcpy (or similar) then we may be able to improve the 1928 // alignment 1929 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1930 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1931 if (DestAlign > MI->getDestAlignment()) 1932 MI->setDestAlignment(DestAlign); 1933 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1934 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1935 if (SrcAlign > MTI->getSourceAlignment()) 1936 MTI->setSourceAlignment(SrcAlign); 1937 } 1938 } 1939 } 1940 1941 // If we have a cold call site, try to sink addressing computation into the 1942 // cold block. This interacts with our handling for loads and stores to 1943 // ensure that we can fold all uses of a potential addressing computation 1944 // into their uses. TODO: generalize this to work over profiling data 1945 bool OptForSize = OptSize || llvm::shouldOptimizeForSize(BB, PSI, BFI.get()); 1946 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 1947 for (auto &Arg : CI->arg_operands()) { 1948 if (!Arg->getType()->isPointerTy()) 1949 continue; 1950 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1951 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1952 } 1953 1954 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1955 if (II) { 1956 switch (II->getIntrinsicID()) { 1957 default: break; 1958 case Intrinsic::experimental_widenable_condition: { 1959 // Give up on future widening oppurtunties so that we can fold away dead 1960 // paths and merge blocks before going into block-local instruction 1961 // selection. 1962 if (II->use_empty()) { 1963 II->eraseFromParent(); 1964 return true; 1965 } 1966 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1967 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1968 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1969 }); 1970 return true; 1971 } 1972 case Intrinsic::objectsize: 1973 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 1974 case Intrinsic::is_constant: 1975 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 1976 case Intrinsic::aarch64_stlxr: 1977 case Intrinsic::aarch64_stxr: { 1978 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1979 if (!ExtVal || !ExtVal->hasOneUse() || 1980 ExtVal->getParent() == CI->getParent()) 1981 return false; 1982 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1983 ExtVal->moveBefore(CI); 1984 // Mark this instruction as "inserted by CGP", so that other 1985 // optimizations don't touch it. 1986 InsertedInsts.insert(ExtVal); 1987 return true; 1988 } 1989 1990 case Intrinsic::launder_invariant_group: 1991 case Intrinsic::strip_invariant_group: { 1992 Value *ArgVal = II->getArgOperand(0); 1993 auto it = LargeOffsetGEPMap.find(II); 1994 if (it != LargeOffsetGEPMap.end()) { 1995 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1996 // Make sure not to have to deal with iterator invalidation 1997 // after possibly adding ArgVal to LargeOffsetGEPMap. 1998 auto GEPs = std::move(it->second); 1999 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2000 LargeOffsetGEPMap.erase(II); 2001 } 2002 2003 II->replaceAllUsesWith(ArgVal); 2004 II->eraseFromParent(); 2005 return true; 2006 } 2007 case Intrinsic::cttz: 2008 case Intrinsic::ctlz: 2009 // If counting zeros is expensive, try to avoid it. 2010 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2011 case Intrinsic::dbg_value: 2012 return fixupDbgValue(II); 2013 case Intrinsic::vscale: { 2014 // If datalayout has no special restrictions on vector data layout, 2015 // replace `llvm.vscale` by an equivalent constant expression 2016 // to benefit from cheap constant propagation. 2017 Type *ScalableVectorTy = 2018 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2019 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2020 auto Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2021 auto One = ConstantInt::getSigned(II->getType(), 1); 2022 auto *CGep = 2023 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2024 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2025 II->eraseFromParent(); 2026 return true; 2027 } 2028 } 2029 } 2030 2031 if (TLI) { 2032 SmallVector<Value*, 2> PtrOps; 2033 Type *AccessTy; 2034 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2035 while (!PtrOps.empty()) { 2036 Value *PtrVal = PtrOps.pop_back_val(); 2037 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2038 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2039 return true; 2040 } 2041 } 2042 } 2043 2044 // From here on out we're working with named functions. 2045 if (!CI->getCalledFunction()) return false; 2046 2047 // Lower all default uses of _chk calls. This is very similar 2048 // to what InstCombineCalls does, but here we are only lowering calls 2049 // to fortified library functions (e.g. __memcpy_chk) that have the default 2050 // "don't know" as the objectsize. Anything else should be left alone. 2051 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2052 if (Value *V = Simplifier.optimizeCall(CI)) { 2053 CI->replaceAllUsesWith(V); 2054 CI->eraseFromParent(); 2055 return true; 2056 } 2057 2058 return false; 2059 } 2060 2061 /// Look for opportunities to duplicate return instructions to the predecessor 2062 /// to enable tail call optimizations. The case it is currently looking for is: 2063 /// @code 2064 /// bb0: 2065 /// %tmp0 = tail call i32 @f0() 2066 /// br label %return 2067 /// bb1: 2068 /// %tmp1 = tail call i32 @f1() 2069 /// br label %return 2070 /// bb2: 2071 /// %tmp2 = tail call i32 @f2() 2072 /// br label %return 2073 /// return: 2074 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2075 /// ret i32 %retval 2076 /// @endcode 2077 /// 2078 /// => 2079 /// 2080 /// @code 2081 /// bb0: 2082 /// %tmp0 = tail call i32 @f0() 2083 /// ret i32 %tmp0 2084 /// bb1: 2085 /// %tmp1 = tail call i32 @f1() 2086 /// ret i32 %tmp1 2087 /// bb2: 2088 /// %tmp2 = tail call i32 @f2() 2089 /// ret i32 %tmp2 2090 /// @endcode 2091 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2092 if (!TLI) 2093 return false; 2094 2095 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2096 if (!RetI) 2097 return false; 2098 2099 PHINode *PN = nullptr; 2100 BitCastInst *BCI = nullptr; 2101 Value *V = RetI->getReturnValue(); 2102 if (V) { 2103 BCI = dyn_cast<BitCastInst>(V); 2104 if (BCI) 2105 V = BCI->getOperand(0); 2106 2107 PN = dyn_cast<PHINode>(V); 2108 if (!PN) 2109 return false; 2110 } 2111 2112 if (PN && PN->getParent() != BB) 2113 return false; 2114 2115 // Make sure there are no instructions between the PHI and return, or that the 2116 // return is the first instruction in the block. 2117 if (PN) { 2118 BasicBlock::iterator BI = BB->begin(); 2119 // Skip over debug and the bitcast. 2120 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2121 if (&*BI != RetI) 2122 return false; 2123 } else { 2124 BasicBlock::iterator BI = BB->begin(); 2125 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2126 if (&*BI != RetI) 2127 return false; 2128 } 2129 2130 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2131 /// call. 2132 const Function *F = BB->getParent(); 2133 SmallVector<BasicBlock*, 4> TailCallBBs; 2134 if (PN) { 2135 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2136 // Look through bitcasts. 2137 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2138 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2139 BasicBlock *PredBB = PN->getIncomingBlock(I); 2140 // Make sure the phi value is indeed produced by the tail call. 2141 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2142 TLI->mayBeEmittedAsTailCall(CI) && 2143 attributesPermitTailCall(F, CI, RetI, *TLI)) 2144 TailCallBBs.push_back(PredBB); 2145 } 2146 } else { 2147 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2148 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2149 if (!VisitedBBs.insert(*PI).second) 2150 continue; 2151 2152 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2153 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2154 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2155 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2156 if (RI == RE) 2157 continue; 2158 2159 CallInst *CI = dyn_cast<CallInst>(&*RI); 2160 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2161 attributesPermitTailCall(F, CI, RetI, *TLI)) 2162 TailCallBBs.push_back(*PI); 2163 } 2164 } 2165 2166 bool Changed = false; 2167 for (auto const &TailCallBB : TailCallBBs) { 2168 // Make sure the call instruction is followed by an unconditional branch to 2169 // the return block. 2170 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2171 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2172 continue; 2173 2174 // Duplicate the return into TailCallBB. 2175 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2176 ModifiedDT = Changed = true; 2177 ++NumRetsDup; 2178 } 2179 2180 // If we eliminated all predecessors of the block, delete the block now. 2181 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2182 BB->eraseFromParent(); 2183 2184 return Changed; 2185 } 2186 2187 //===----------------------------------------------------------------------===// 2188 // Memory Optimization 2189 //===----------------------------------------------------------------------===// 2190 2191 namespace { 2192 2193 /// This is an extended version of TargetLowering::AddrMode 2194 /// which holds actual Value*'s for register values. 2195 struct ExtAddrMode : public TargetLowering::AddrMode { 2196 Value *BaseReg = nullptr; 2197 Value *ScaledReg = nullptr; 2198 Value *OriginalValue = nullptr; 2199 bool InBounds = true; 2200 2201 enum FieldName { 2202 NoField = 0x00, 2203 BaseRegField = 0x01, 2204 BaseGVField = 0x02, 2205 BaseOffsField = 0x04, 2206 ScaledRegField = 0x08, 2207 ScaleField = 0x10, 2208 MultipleFields = 0xff 2209 }; 2210 2211 2212 ExtAddrMode() = default; 2213 2214 void print(raw_ostream &OS) const; 2215 void dump() const; 2216 2217 FieldName compare(const ExtAddrMode &other) { 2218 // First check that the types are the same on each field, as differing types 2219 // is something we can't cope with later on. 2220 if (BaseReg && other.BaseReg && 2221 BaseReg->getType() != other.BaseReg->getType()) 2222 return MultipleFields; 2223 if (BaseGV && other.BaseGV && 2224 BaseGV->getType() != other.BaseGV->getType()) 2225 return MultipleFields; 2226 if (ScaledReg && other.ScaledReg && 2227 ScaledReg->getType() != other.ScaledReg->getType()) 2228 return MultipleFields; 2229 2230 // Conservatively reject 'inbounds' mismatches. 2231 if (InBounds != other.InBounds) 2232 return MultipleFields; 2233 2234 // Check each field to see if it differs. 2235 unsigned Result = NoField; 2236 if (BaseReg != other.BaseReg) 2237 Result |= BaseRegField; 2238 if (BaseGV != other.BaseGV) 2239 Result |= BaseGVField; 2240 if (BaseOffs != other.BaseOffs) 2241 Result |= BaseOffsField; 2242 if (ScaledReg != other.ScaledReg) 2243 Result |= ScaledRegField; 2244 // Don't count 0 as being a different scale, because that actually means 2245 // unscaled (which will already be counted by having no ScaledReg). 2246 if (Scale && other.Scale && Scale != other.Scale) 2247 Result |= ScaleField; 2248 2249 if (countPopulation(Result) > 1) 2250 return MultipleFields; 2251 else 2252 return static_cast<FieldName>(Result); 2253 } 2254 2255 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2256 // with no offset. 2257 bool isTrivial() { 2258 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2259 // trivial if at most one of these terms is nonzero, except that BaseGV and 2260 // BaseReg both being zero actually means a null pointer value, which we 2261 // consider to be 'non-zero' here. 2262 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2263 } 2264 2265 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2266 switch (Field) { 2267 default: 2268 return nullptr; 2269 case BaseRegField: 2270 return BaseReg; 2271 case BaseGVField: 2272 return BaseGV; 2273 case ScaledRegField: 2274 return ScaledReg; 2275 case BaseOffsField: 2276 return ConstantInt::get(IntPtrTy, BaseOffs); 2277 } 2278 } 2279 2280 void SetCombinedField(FieldName Field, Value *V, 2281 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2282 switch (Field) { 2283 default: 2284 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2285 break; 2286 case ExtAddrMode::BaseRegField: 2287 BaseReg = V; 2288 break; 2289 case ExtAddrMode::BaseGVField: 2290 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2291 // in the BaseReg field. 2292 assert(BaseReg == nullptr); 2293 BaseReg = V; 2294 BaseGV = nullptr; 2295 break; 2296 case ExtAddrMode::ScaledRegField: 2297 ScaledReg = V; 2298 // If we have a mix of scaled and unscaled addrmodes then we want scale 2299 // to be the scale and not zero. 2300 if (!Scale) 2301 for (const ExtAddrMode &AM : AddrModes) 2302 if (AM.Scale) { 2303 Scale = AM.Scale; 2304 break; 2305 } 2306 break; 2307 case ExtAddrMode::BaseOffsField: 2308 // The offset is no longer a constant, so it goes in ScaledReg with a 2309 // scale of 1. 2310 assert(ScaledReg == nullptr); 2311 ScaledReg = V; 2312 Scale = 1; 2313 BaseOffs = 0; 2314 break; 2315 } 2316 } 2317 }; 2318 2319 } // end anonymous namespace 2320 2321 #ifndef NDEBUG 2322 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2323 AM.print(OS); 2324 return OS; 2325 } 2326 #endif 2327 2328 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2329 void ExtAddrMode::print(raw_ostream &OS) const { 2330 bool NeedPlus = false; 2331 OS << "["; 2332 if (InBounds) 2333 OS << "inbounds "; 2334 if (BaseGV) { 2335 OS << (NeedPlus ? " + " : "") 2336 << "GV:"; 2337 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2338 NeedPlus = true; 2339 } 2340 2341 if (BaseOffs) { 2342 OS << (NeedPlus ? " + " : "") 2343 << BaseOffs; 2344 NeedPlus = true; 2345 } 2346 2347 if (BaseReg) { 2348 OS << (NeedPlus ? " + " : "") 2349 << "Base:"; 2350 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2351 NeedPlus = true; 2352 } 2353 if (Scale) { 2354 OS << (NeedPlus ? " + " : "") 2355 << Scale << "*"; 2356 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2357 } 2358 2359 OS << ']'; 2360 } 2361 2362 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2363 print(dbgs()); 2364 dbgs() << '\n'; 2365 } 2366 #endif 2367 2368 namespace { 2369 2370 /// This class provides transaction based operation on the IR. 2371 /// Every change made through this class is recorded in the internal state and 2372 /// can be undone (rollback) until commit is called. 2373 class TypePromotionTransaction { 2374 /// This represents the common interface of the individual transaction. 2375 /// Each class implements the logic for doing one specific modification on 2376 /// the IR via the TypePromotionTransaction. 2377 class TypePromotionAction { 2378 protected: 2379 /// The Instruction modified. 2380 Instruction *Inst; 2381 2382 public: 2383 /// Constructor of the action. 2384 /// The constructor performs the related action on the IR. 2385 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2386 2387 virtual ~TypePromotionAction() = default; 2388 2389 /// Undo the modification done by this action. 2390 /// When this method is called, the IR must be in the same state as it was 2391 /// before this action was applied. 2392 /// \pre Undoing the action works if and only if the IR is in the exact same 2393 /// state as it was directly after this action was applied. 2394 virtual void undo() = 0; 2395 2396 /// Advocate every change made by this action. 2397 /// When the results on the IR of the action are to be kept, it is important 2398 /// to call this function, otherwise hidden information may be kept forever. 2399 virtual void commit() { 2400 // Nothing to be done, this action is not doing anything. 2401 } 2402 }; 2403 2404 /// Utility to remember the position of an instruction. 2405 class InsertionHandler { 2406 /// Position of an instruction. 2407 /// Either an instruction: 2408 /// - Is the first in a basic block: BB is used. 2409 /// - Has a previous instruction: PrevInst is used. 2410 union { 2411 Instruction *PrevInst; 2412 BasicBlock *BB; 2413 } Point; 2414 2415 /// Remember whether or not the instruction had a previous instruction. 2416 bool HasPrevInstruction; 2417 2418 public: 2419 /// Record the position of \p Inst. 2420 InsertionHandler(Instruction *Inst) { 2421 BasicBlock::iterator It = Inst->getIterator(); 2422 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2423 if (HasPrevInstruction) 2424 Point.PrevInst = &*--It; 2425 else 2426 Point.BB = Inst->getParent(); 2427 } 2428 2429 /// Insert \p Inst at the recorded position. 2430 void insert(Instruction *Inst) { 2431 if (HasPrevInstruction) { 2432 if (Inst->getParent()) 2433 Inst->removeFromParent(); 2434 Inst->insertAfter(Point.PrevInst); 2435 } else { 2436 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2437 if (Inst->getParent()) 2438 Inst->moveBefore(Position); 2439 else 2440 Inst->insertBefore(Position); 2441 } 2442 } 2443 }; 2444 2445 /// Move an instruction before another. 2446 class InstructionMoveBefore : public TypePromotionAction { 2447 /// Original position of the instruction. 2448 InsertionHandler Position; 2449 2450 public: 2451 /// Move \p Inst before \p Before. 2452 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2453 : TypePromotionAction(Inst), Position(Inst) { 2454 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2455 << "\n"); 2456 Inst->moveBefore(Before); 2457 } 2458 2459 /// Move the instruction back to its original position. 2460 void undo() override { 2461 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2462 Position.insert(Inst); 2463 } 2464 }; 2465 2466 /// Set the operand of an instruction with a new value. 2467 class OperandSetter : public TypePromotionAction { 2468 /// Original operand of the instruction. 2469 Value *Origin; 2470 2471 /// Index of the modified instruction. 2472 unsigned Idx; 2473 2474 public: 2475 /// Set \p Idx operand of \p Inst with \p NewVal. 2476 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2477 : TypePromotionAction(Inst), Idx(Idx) { 2478 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2479 << "for:" << *Inst << "\n" 2480 << "with:" << *NewVal << "\n"); 2481 Origin = Inst->getOperand(Idx); 2482 Inst->setOperand(Idx, NewVal); 2483 } 2484 2485 /// Restore the original value of the instruction. 2486 void undo() override { 2487 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2488 << "for: " << *Inst << "\n" 2489 << "with: " << *Origin << "\n"); 2490 Inst->setOperand(Idx, Origin); 2491 } 2492 }; 2493 2494 /// Hide the operands of an instruction. 2495 /// Do as if this instruction was not using any of its operands. 2496 class OperandsHider : public TypePromotionAction { 2497 /// The list of original operands. 2498 SmallVector<Value *, 4> OriginalValues; 2499 2500 public: 2501 /// Remove \p Inst from the uses of the operands of \p Inst. 2502 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2503 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2504 unsigned NumOpnds = Inst->getNumOperands(); 2505 OriginalValues.reserve(NumOpnds); 2506 for (unsigned It = 0; It < NumOpnds; ++It) { 2507 // Save the current operand. 2508 Value *Val = Inst->getOperand(It); 2509 OriginalValues.push_back(Val); 2510 // Set a dummy one. 2511 // We could use OperandSetter here, but that would imply an overhead 2512 // that we are not willing to pay. 2513 Inst->setOperand(It, UndefValue::get(Val->getType())); 2514 } 2515 } 2516 2517 /// Restore the original list of uses. 2518 void undo() override { 2519 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2520 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2521 Inst->setOperand(It, OriginalValues[It]); 2522 } 2523 }; 2524 2525 /// Build a truncate instruction. 2526 class TruncBuilder : public TypePromotionAction { 2527 Value *Val; 2528 2529 public: 2530 /// Build a truncate instruction of \p Opnd producing a \p Ty 2531 /// result. 2532 /// trunc Opnd to Ty. 2533 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2534 IRBuilder<> Builder(Opnd); 2535 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2536 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2537 } 2538 2539 /// Get the built value. 2540 Value *getBuiltValue() { return Val; } 2541 2542 /// Remove the built instruction. 2543 void undo() override { 2544 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2545 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2546 IVal->eraseFromParent(); 2547 } 2548 }; 2549 2550 /// Build a sign extension instruction. 2551 class SExtBuilder : public TypePromotionAction { 2552 Value *Val; 2553 2554 public: 2555 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2556 /// result. 2557 /// sext Opnd to Ty. 2558 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2559 : TypePromotionAction(InsertPt) { 2560 IRBuilder<> Builder(InsertPt); 2561 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2562 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2563 } 2564 2565 /// Get the built value. 2566 Value *getBuiltValue() { return Val; } 2567 2568 /// Remove the built instruction. 2569 void undo() override { 2570 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2571 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2572 IVal->eraseFromParent(); 2573 } 2574 }; 2575 2576 /// Build a zero extension instruction. 2577 class ZExtBuilder : public TypePromotionAction { 2578 Value *Val; 2579 2580 public: 2581 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2582 /// result. 2583 /// zext Opnd to Ty. 2584 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2585 : TypePromotionAction(InsertPt) { 2586 IRBuilder<> Builder(InsertPt); 2587 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2588 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2589 } 2590 2591 /// Get the built value. 2592 Value *getBuiltValue() { return Val; } 2593 2594 /// Remove the built instruction. 2595 void undo() override { 2596 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2597 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2598 IVal->eraseFromParent(); 2599 } 2600 }; 2601 2602 /// Mutate an instruction to another type. 2603 class TypeMutator : public TypePromotionAction { 2604 /// Record the original type. 2605 Type *OrigTy; 2606 2607 public: 2608 /// Mutate the type of \p Inst into \p NewTy. 2609 TypeMutator(Instruction *Inst, Type *NewTy) 2610 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2611 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2612 << "\n"); 2613 Inst->mutateType(NewTy); 2614 } 2615 2616 /// Mutate the instruction back to its original type. 2617 void undo() override { 2618 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2619 << "\n"); 2620 Inst->mutateType(OrigTy); 2621 } 2622 }; 2623 2624 /// Replace the uses of an instruction by another instruction. 2625 class UsesReplacer : public TypePromotionAction { 2626 /// Helper structure to keep track of the replaced uses. 2627 struct InstructionAndIdx { 2628 /// The instruction using the instruction. 2629 Instruction *Inst; 2630 2631 /// The index where this instruction is used for Inst. 2632 unsigned Idx; 2633 2634 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2635 : Inst(Inst), Idx(Idx) {} 2636 }; 2637 2638 /// Keep track of the original uses (pair Instruction, Index). 2639 SmallVector<InstructionAndIdx, 4> OriginalUses; 2640 /// Keep track of the debug users. 2641 SmallVector<DbgValueInst *, 1> DbgValues; 2642 2643 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2644 2645 public: 2646 /// Replace all the use of \p Inst by \p New. 2647 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2648 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2649 << "\n"); 2650 // Record the original uses. 2651 for (Use &U : Inst->uses()) { 2652 Instruction *UserI = cast<Instruction>(U.getUser()); 2653 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2654 } 2655 // Record the debug uses separately. They are not in the instruction's 2656 // use list, but they are replaced by RAUW. 2657 findDbgValues(DbgValues, Inst); 2658 2659 // Now, we can replace the uses. 2660 Inst->replaceAllUsesWith(New); 2661 } 2662 2663 /// Reassign the original uses of Inst to Inst. 2664 void undo() override { 2665 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2666 for (use_iterator UseIt = OriginalUses.begin(), 2667 EndIt = OriginalUses.end(); 2668 UseIt != EndIt; ++UseIt) { 2669 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2670 } 2671 // RAUW has replaced all original uses with references to the new value, 2672 // including the debug uses. Since we are undoing the replacements, 2673 // the original debug uses must also be reinstated to maintain the 2674 // correctness and utility of debug value instructions. 2675 for (auto *DVI: DbgValues) { 2676 LLVMContext &Ctx = Inst->getType()->getContext(); 2677 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2678 DVI->setOperand(0, MV); 2679 } 2680 } 2681 }; 2682 2683 /// Remove an instruction from the IR. 2684 class InstructionRemover : public TypePromotionAction { 2685 /// Original position of the instruction. 2686 InsertionHandler Inserter; 2687 2688 /// Helper structure to hide all the link to the instruction. In other 2689 /// words, this helps to do as if the instruction was removed. 2690 OperandsHider Hider; 2691 2692 /// Keep track of the uses replaced, if any. 2693 UsesReplacer *Replacer = nullptr; 2694 2695 /// Keep track of instructions removed. 2696 SetOfInstrs &RemovedInsts; 2697 2698 public: 2699 /// Remove all reference of \p Inst and optionally replace all its 2700 /// uses with New. 2701 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2702 /// \pre If !Inst->use_empty(), then New != nullptr 2703 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2704 Value *New = nullptr) 2705 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2706 RemovedInsts(RemovedInsts) { 2707 if (New) 2708 Replacer = new UsesReplacer(Inst, New); 2709 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2710 RemovedInsts.insert(Inst); 2711 /// The instructions removed here will be freed after completing 2712 /// optimizeBlock() for all blocks as we need to keep track of the 2713 /// removed instructions during promotion. 2714 Inst->removeFromParent(); 2715 } 2716 2717 ~InstructionRemover() override { delete Replacer; } 2718 2719 /// Resurrect the instruction and reassign it to the proper uses if 2720 /// new value was provided when build this action. 2721 void undo() override { 2722 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2723 Inserter.insert(Inst); 2724 if (Replacer) 2725 Replacer->undo(); 2726 Hider.undo(); 2727 RemovedInsts.erase(Inst); 2728 } 2729 }; 2730 2731 public: 2732 /// Restoration point. 2733 /// The restoration point is a pointer to an action instead of an iterator 2734 /// because the iterator may be invalidated but not the pointer. 2735 using ConstRestorationPt = const TypePromotionAction *; 2736 2737 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2738 : RemovedInsts(RemovedInsts) {} 2739 2740 /// Advocate every changes made in that transaction. 2741 void commit(); 2742 2743 /// Undo all the changes made after the given point. 2744 void rollback(ConstRestorationPt Point); 2745 2746 /// Get the current restoration point. 2747 ConstRestorationPt getRestorationPoint() const; 2748 2749 /// \name API for IR modification with state keeping to support rollback. 2750 /// @{ 2751 /// Same as Instruction::setOperand. 2752 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2753 2754 /// Same as Instruction::eraseFromParent. 2755 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2756 2757 /// Same as Value::replaceAllUsesWith. 2758 void replaceAllUsesWith(Instruction *Inst, Value *New); 2759 2760 /// Same as Value::mutateType. 2761 void mutateType(Instruction *Inst, Type *NewTy); 2762 2763 /// Same as IRBuilder::createTrunc. 2764 Value *createTrunc(Instruction *Opnd, Type *Ty); 2765 2766 /// Same as IRBuilder::createSExt. 2767 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2768 2769 /// Same as IRBuilder::createZExt. 2770 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2771 2772 /// Same as Instruction::moveBefore. 2773 void moveBefore(Instruction *Inst, Instruction *Before); 2774 /// @} 2775 2776 private: 2777 /// The ordered list of actions made so far. 2778 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2779 2780 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2781 2782 SetOfInstrs &RemovedInsts; 2783 }; 2784 2785 } // end anonymous namespace 2786 2787 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2788 Value *NewVal) { 2789 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2790 Inst, Idx, NewVal)); 2791 } 2792 2793 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2794 Value *NewVal) { 2795 Actions.push_back( 2796 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2797 Inst, RemovedInsts, NewVal)); 2798 } 2799 2800 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2801 Value *New) { 2802 Actions.push_back( 2803 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2804 } 2805 2806 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2807 Actions.push_back( 2808 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2809 } 2810 2811 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2812 Type *Ty) { 2813 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2814 Value *Val = Ptr->getBuiltValue(); 2815 Actions.push_back(std::move(Ptr)); 2816 return Val; 2817 } 2818 2819 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2820 Value *Opnd, Type *Ty) { 2821 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2822 Value *Val = Ptr->getBuiltValue(); 2823 Actions.push_back(std::move(Ptr)); 2824 return Val; 2825 } 2826 2827 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2828 Value *Opnd, Type *Ty) { 2829 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2830 Value *Val = Ptr->getBuiltValue(); 2831 Actions.push_back(std::move(Ptr)); 2832 return Val; 2833 } 2834 2835 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2836 Instruction *Before) { 2837 Actions.push_back( 2838 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2839 Inst, Before)); 2840 } 2841 2842 TypePromotionTransaction::ConstRestorationPt 2843 TypePromotionTransaction::getRestorationPoint() const { 2844 return !Actions.empty() ? Actions.back().get() : nullptr; 2845 } 2846 2847 void TypePromotionTransaction::commit() { 2848 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2849 ++It) 2850 (*It)->commit(); 2851 Actions.clear(); 2852 } 2853 2854 void TypePromotionTransaction::rollback( 2855 TypePromotionTransaction::ConstRestorationPt Point) { 2856 while (!Actions.empty() && Point != Actions.back().get()) { 2857 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2858 Curr->undo(); 2859 } 2860 } 2861 2862 namespace { 2863 2864 /// A helper class for matching addressing modes. 2865 /// 2866 /// This encapsulates the logic for matching the target-legal addressing modes. 2867 class AddressingModeMatcher { 2868 SmallVectorImpl<Instruction*> &AddrModeInsts; 2869 const TargetLowering &TLI; 2870 const TargetRegisterInfo &TRI; 2871 const DataLayout &DL; 2872 2873 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2874 /// the memory instruction that we're computing this address for. 2875 Type *AccessTy; 2876 unsigned AddrSpace; 2877 Instruction *MemoryInst; 2878 2879 /// This is the addressing mode that we're building up. This is 2880 /// part of the return value of this addressing mode matching stuff. 2881 ExtAddrMode &AddrMode; 2882 2883 /// The instructions inserted by other CodeGenPrepare optimizations. 2884 const SetOfInstrs &InsertedInsts; 2885 2886 /// A map from the instructions to their type before promotion. 2887 InstrToOrigTy &PromotedInsts; 2888 2889 /// The ongoing transaction where every action should be registered. 2890 TypePromotionTransaction &TPT; 2891 2892 // A GEP which has too large offset to be folded into the addressing mode. 2893 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2894 2895 /// This is set to true when we should not do profitability checks. 2896 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2897 bool IgnoreProfitability; 2898 2899 /// True if we are optimizing for size. 2900 bool OptSize; 2901 2902 ProfileSummaryInfo *PSI; 2903 BlockFrequencyInfo *BFI; 2904 2905 AddressingModeMatcher( 2906 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2907 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2908 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2909 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2910 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2911 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2912 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2913 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2914 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2915 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 2916 OptSize(OptSize), PSI(PSI), BFI(BFI) { 2917 IgnoreProfitability = false; 2918 } 2919 2920 public: 2921 /// Find the maximal addressing mode that a load/store of V can fold, 2922 /// give an access type of AccessTy. This returns a list of involved 2923 /// instructions in AddrModeInsts. 2924 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2925 /// optimizations. 2926 /// \p PromotedInsts maps the instructions to their type before promotion. 2927 /// \p The ongoing transaction where every action should be registered. 2928 static ExtAddrMode 2929 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2930 SmallVectorImpl<Instruction *> &AddrModeInsts, 2931 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2932 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2933 TypePromotionTransaction &TPT, 2934 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2935 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 2936 ExtAddrMode Result; 2937 2938 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2939 MemoryInst, Result, InsertedInsts, 2940 PromotedInsts, TPT, LargeOffsetGEP, 2941 OptSize, PSI, BFI) 2942 .matchAddr(V, 0); 2943 (void)Success; assert(Success && "Couldn't select *anything*?"); 2944 return Result; 2945 } 2946 2947 private: 2948 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2949 bool matchAddr(Value *Addr, unsigned Depth); 2950 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2951 bool *MovedAway = nullptr); 2952 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2953 ExtAddrMode &AMBefore, 2954 ExtAddrMode &AMAfter); 2955 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2956 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2957 Value *PromotedOperand) const; 2958 }; 2959 2960 class PhiNodeSet; 2961 2962 /// An iterator for PhiNodeSet. 2963 class PhiNodeSetIterator { 2964 PhiNodeSet * const Set; 2965 size_t CurrentIndex = 0; 2966 2967 public: 2968 /// The constructor. Start should point to either a valid element, or be equal 2969 /// to the size of the underlying SmallVector of the PhiNodeSet. 2970 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2971 PHINode * operator*() const; 2972 PhiNodeSetIterator& operator++(); 2973 bool operator==(const PhiNodeSetIterator &RHS) const; 2974 bool operator!=(const PhiNodeSetIterator &RHS) const; 2975 }; 2976 2977 /// Keeps a set of PHINodes. 2978 /// 2979 /// This is a minimal set implementation for a specific use case: 2980 /// It is very fast when there are very few elements, but also provides good 2981 /// performance when there are many. It is similar to SmallPtrSet, but also 2982 /// provides iteration by insertion order, which is deterministic and stable 2983 /// across runs. It is also similar to SmallSetVector, but provides removing 2984 /// elements in O(1) time. This is achieved by not actually removing the element 2985 /// from the underlying vector, so comes at the cost of using more memory, but 2986 /// that is fine, since PhiNodeSets are used as short lived objects. 2987 class PhiNodeSet { 2988 friend class PhiNodeSetIterator; 2989 2990 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2991 using iterator = PhiNodeSetIterator; 2992 2993 /// Keeps the elements in the order of their insertion in the underlying 2994 /// vector. To achieve constant time removal, it never deletes any element. 2995 SmallVector<PHINode *, 32> NodeList; 2996 2997 /// Keeps the elements in the underlying set implementation. This (and not the 2998 /// NodeList defined above) is the source of truth on whether an element 2999 /// is actually in the collection. 3000 MapType NodeMap; 3001 3002 /// Points to the first valid (not deleted) element when the set is not empty 3003 /// and the value is not zero. Equals to the size of the underlying vector 3004 /// when the set is empty. When the value is 0, as in the beginning, the 3005 /// first element may or may not be valid. 3006 size_t FirstValidElement = 0; 3007 3008 public: 3009 /// Inserts a new element to the collection. 3010 /// \returns true if the element is actually added, i.e. was not in the 3011 /// collection before the operation. 3012 bool insert(PHINode *Ptr) { 3013 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3014 NodeList.push_back(Ptr); 3015 return true; 3016 } 3017 return false; 3018 } 3019 3020 /// Removes the element from the collection. 3021 /// \returns whether the element is actually removed, i.e. was in the 3022 /// collection before the operation. 3023 bool erase(PHINode *Ptr) { 3024 auto it = NodeMap.find(Ptr); 3025 if (it != NodeMap.end()) { 3026 NodeMap.erase(Ptr); 3027 SkipRemovedElements(FirstValidElement); 3028 return true; 3029 } 3030 return false; 3031 } 3032 3033 /// Removes all elements and clears the collection. 3034 void clear() { 3035 NodeMap.clear(); 3036 NodeList.clear(); 3037 FirstValidElement = 0; 3038 } 3039 3040 /// \returns an iterator that will iterate the elements in the order of 3041 /// insertion. 3042 iterator begin() { 3043 if (FirstValidElement == 0) 3044 SkipRemovedElements(FirstValidElement); 3045 return PhiNodeSetIterator(this, FirstValidElement); 3046 } 3047 3048 /// \returns an iterator that points to the end of the collection. 3049 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3050 3051 /// Returns the number of elements in the collection. 3052 size_t size() const { 3053 return NodeMap.size(); 3054 } 3055 3056 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3057 size_t count(PHINode *Ptr) const { 3058 return NodeMap.count(Ptr); 3059 } 3060 3061 private: 3062 /// Updates the CurrentIndex so that it will point to a valid element. 3063 /// 3064 /// If the element of NodeList at CurrentIndex is valid, it does not 3065 /// change it. If there are no more valid elements, it updates CurrentIndex 3066 /// to point to the end of the NodeList. 3067 void SkipRemovedElements(size_t &CurrentIndex) { 3068 while (CurrentIndex < NodeList.size()) { 3069 auto it = NodeMap.find(NodeList[CurrentIndex]); 3070 // If the element has been deleted and added again later, NodeMap will 3071 // point to a different index, so CurrentIndex will still be invalid. 3072 if (it != NodeMap.end() && it->second == CurrentIndex) 3073 break; 3074 ++CurrentIndex; 3075 } 3076 } 3077 }; 3078 3079 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3080 : Set(Set), CurrentIndex(Start) {} 3081 3082 PHINode * PhiNodeSetIterator::operator*() const { 3083 assert(CurrentIndex < Set->NodeList.size() && 3084 "PhiNodeSet access out of range"); 3085 return Set->NodeList[CurrentIndex]; 3086 } 3087 3088 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3089 assert(CurrentIndex < Set->NodeList.size() && 3090 "PhiNodeSet access out of range"); 3091 ++CurrentIndex; 3092 Set->SkipRemovedElements(CurrentIndex); 3093 return *this; 3094 } 3095 3096 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3097 return CurrentIndex == RHS.CurrentIndex; 3098 } 3099 3100 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3101 return !((*this) == RHS); 3102 } 3103 3104 /// Keep track of simplification of Phi nodes. 3105 /// Accept the set of all phi nodes and erase phi node from this set 3106 /// if it is simplified. 3107 class SimplificationTracker { 3108 DenseMap<Value *, Value *> Storage; 3109 const SimplifyQuery &SQ; 3110 // Tracks newly created Phi nodes. The elements are iterated by insertion 3111 // order. 3112 PhiNodeSet AllPhiNodes; 3113 // Tracks newly created Select nodes. 3114 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3115 3116 public: 3117 SimplificationTracker(const SimplifyQuery &sq) 3118 : SQ(sq) {} 3119 3120 Value *Get(Value *V) { 3121 do { 3122 auto SV = Storage.find(V); 3123 if (SV == Storage.end()) 3124 return V; 3125 V = SV->second; 3126 } while (true); 3127 } 3128 3129 Value *Simplify(Value *Val) { 3130 SmallVector<Value *, 32> WorkList; 3131 SmallPtrSet<Value *, 32> Visited; 3132 WorkList.push_back(Val); 3133 while (!WorkList.empty()) { 3134 auto P = WorkList.pop_back_val(); 3135 if (!Visited.insert(P).second) 3136 continue; 3137 if (auto *PI = dyn_cast<Instruction>(P)) 3138 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3139 for (auto *U : PI->users()) 3140 WorkList.push_back(cast<Value>(U)); 3141 Put(PI, V); 3142 PI->replaceAllUsesWith(V); 3143 if (auto *PHI = dyn_cast<PHINode>(PI)) 3144 AllPhiNodes.erase(PHI); 3145 if (auto *Select = dyn_cast<SelectInst>(PI)) 3146 AllSelectNodes.erase(Select); 3147 PI->eraseFromParent(); 3148 } 3149 } 3150 return Get(Val); 3151 } 3152 3153 void Put(Value *From, Value *To) { 3154 Storage.insert({ From, To }); 3155 } 3156 3157 void ReplacePhi(PHINode *From, PHINode *To) { 3158 Value* OldReplacement = Get(From); 3159 while (OldReplacement != From) { 3160 From = To; 3161 To = dyn_cast<PHINode>(OldReplacement); 3162 OldReplacement = Get(From); 3163 } 3164 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3165 Put(From, To); 3166 From->replaceAllUsesWith(To); 3167 AllPhiNodes.erase(From); 3168 From->eraseFromParent(); 3169 } 3170 3171 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3172 3173 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3174 3175 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3176 3177 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3178 3179 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3180 3181 void destroyNewNodes(Type *CommonType) { 3182 // For safe erasing, replace the uses with dummy value first. 3183 auto Dummy = UndefValue::get(CommonType); 3184 for (auto I : AllPhiNodes) { 3185 I->replaceAllUsesWith(Dummy); 3186 I->eraseFromParent(); 3187 } 3188 AllPhiNodes.clear(); 3189 for (auto I : AllSelectNodes) { 3190 I->replaceAllUsesWith(Dummy); 3191 I->eraseFromParent(); 3192 } 3193 AllSelectNodes.clear(); 3194 } 3195 }; 3196 3197 /// A helper class for combining addressing modes. 3198 class AddressingModeCombiner { 3199 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3200 typedef std::pair<PHINode *, PHINode *> PHIPair; 3201 3202 private: 3203 /// The addressing modes we've collected. 3204 SmallVector<ExtAddrMode, 16> AddrModes; 3205 3206 /// The field in which the AddrModes differ, when we have more than one. 3207 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3208 3209 /// Are the AddrModes that we have all just equal to their original values? 3210 bool AllAddrModesTrivial = true; 3211 3212 /// Common Type for all different fields in addressing modes. 3213 Type *CommonType; 3214 3215 /// SimplifyQuery for simplifyInstruction utility. 3216 const SimplifyQuery &SQ; 3217 3218 /// Original Address. 3219 Value *Original; 3220 3221 public: 3222 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3223 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3224 3225 /// Get the combined AddrMode 3226 const ExtAddrMode &getAddrMode() const { 3227 return AddrModes[0]; 3228 } 3229 3230 /// Add a new AddrMode if it's compatible with the AddrModes we already 3231 /// have. 3232 /// \return True iff we succeeded in doing so. 3233 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3234 // Take note of if we have any non-trivial AddrModes, as we need to detect 3235 // when all AddrModes are trivial as then we would introduce a phi or select 3236 // which just duplicates what's already there. 3237 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3238 3239 // If this is the first addrmode then everything is fine. 3240 if (AddrModes.empty()) { 3241 AddrModes.emplace_back(NewAddrMode); 3242 return true; 3243 } 3244 3245 // Figure out how different this is from the other address modes, which we 3246 // can do just by comparing against the first one given that we only care 3247 // about the cumulative difference. 3248 ExtAddrMode::FieldName ThisDifferentField = 3249 AddrModes[0].compare(NewAddrMode); 3250 if (DifferentField == ExtAddrMode::NoField) 3251 DifferentField = ThisDifferentField; 3252 else if (DifferentField != ThisDifferentField) 3253 DifferentField = ExtAddrMode::MultipleFields; 3254 3255 // If NewAddrMode differs in more than one dimension we cannot handle it. 3256 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3257 3258 // If Scale Field is different then we reject. 3259 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3260 3261 // We also must reject the case when base offset is different and 3262 // scale reg is not null, we cannot handle this case due to merge of 3263 // different offsets will be used as ScaleReg. 3264 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3265 !NewAddrMode.ScaledReg); 3266 3267 // We also must reject the case when GV is different and BaseReg installed 3268 // due to we want to use base reg as a merge of GV values. 3269 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3270 !NewAddrMode.HasBaseReg); 3271 3272 // Even if NewAddMode is the same we still need to collect it due to 3273 // original value is different. And later we will need all original values 3274 // as anchors during finding the common Phi node. 3275 if (CanHandle) 3276 AddrModes.emplace_back(NewAddrMode); 3277 else 3278 AddrModes.clear(); 3279 3280 return CanHandle; 3281 } 3282 3283 /// Combine the addressing modes we've collected into a single 3284 /// addressing mode. 3285 /// \return True iff we successfully combined them or we only had one so 3286 /// didn't need to combine them anyway. 3287 bool combineAddrModes() { 3288 // If we have no AddrModes then they can't be combined. 3289 if (AddrModes.size() == 0) 3290 return false; 3291 3292 // A single AddrMode can trivially be combined. 3293 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3294 return true; 3295 3296 // If the AddrModes we collected are all just equal to the value they are 3297 // derived from then combining them wouldn't do anything useful. 3298 if (AllAddrModesTrivial) 3299 return false; 3300 3301 if (!addrModeCombiningAllowed()) 3302 return false; 3303 3304 // Build a map between <original value, basic block where we saw it> to 3305 // value of base register. 3306 // Bail out if there is no common type. 3307 FoldAddrToValueMapping Map; 3308 if (!initializeMap(Map)) 3309 return false; 3310 3311 Value *CommonValue = findCommon(Map); 3312 if (CommonValue) 3313 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3314 return CommonValue != nullptr; 3315 } 3316 3317 private: 3318 /// Initialize Map with anchor values. For address seen 3319 /// we set the value of different field saw in this address. 3320 /// At the same time we find a common type for different field we will 3321 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3322 /// Return false if there is no common type found. 3323 bool initializeMap(FoldAddrToValueMapping &Map) { 3324 // Keep track of keys where the value is null. We will need to replace it 3325 // with constant null when we know the common type. 3326 SmallVector<Value *, 2> NullValue; 3327 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3328 for (auto &AM : AddrModes) { 3329 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3330 if (DV) { 3331 auto *Type = DV->getType(); 3332 if (CommonType && CommonType != Type) 3333 return false; 3334 CommonType = Type; 3335 Map[AM.OriginalValue] = DV; 3336 } else { 3337 NullValue.push_back(AM.OriginalValue); 3338 } 3339 } 3340 assert(CommonType && "At least one non-null value must be!"); 3341 for (auto *V : NullValue) 3342 Map[V] = Constant::getNullValue(CommonType); 3343 return true; 3344 } 3345 3346 /// We have mapping between value A and other value B where B was a field in 3347 /// addressing mode represented by A. Also we have an original value C 3348 /// representing an address we start with. Traversing from C through phi and 3349 /// selects we ended up with A's in a map. This utility function tries to find 3350 /// a value V which is a field in addressing mode C and traversing through phi 3351 /// nodes and selects we will end up in corresponded values B in a map. 3352 /// The utility will create a new Phi/Selects if needed. 3353 // The simple example looks as follows: 3354 // BB1: 3355 // p1 = b1 + 40 3356 // br cond BB2, BB3 3357 // BB2: 3358 // p2 = b2 + 40 3359 // br BB3 3360 // BB3: 3361 // p = phi [p1, BB1], [p2, BB2] 3362 // v = load p 3363 // Map is 3364 // p1 -> b1 3365 // p2 -> b2 3366 // Request is 3367 // p -> ? 3368 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3369 Value *findCommon(FoldAddrToValueMapping &Map) { 3370 // Tracks the simplification of newly created phi nodes. The reason we use 3371 // this mapping is because we will add new created Phi nodes in AddrToBase. 3372 // Simplification of Phi nodes is recursive, so some Phi node may 3373 // be simplified after we added it to AddrToBase. In reality this 3374 // simplification is possible only if original phi/selects were not 3375 // simplified yet. 3376 // Using this mapping we can find the current value in AddrToBase. 3377 SimplificationTracker ST(SQ); 3378 3379 // First step, DFS to create PHI nodes for all intermediate blocks. 3380 // Also fill traverse order for the second step. 3381 SmallVector<Value *, 32> TraverseOrder; 3382 InsertPlaceholders(Map, TraverseOrder, ST); 3383 3384 // Second Step, fill new nodes by merged values and simplify if possible. 3385 FillPlaceholders(Map, TraverseOrder, ST); 3386 3387 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3388 ST.destroyNewNodes(CommonType); 3389 return nullptr; 3390 } 3391 3392 // Now we'd like to match New Phi nodes to existed ones. 3393 unsigned PhiNotMatchedCount = 0; 3394 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3395 ST.destroyNewNodes(CommonType); 3396 return nullptr; 3397 } 3398 3399 auto *Result = ST.Get(Map.find(Original)->second); 3400 if (Result) { 3401 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3402 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3403 } 3404 return Result; 3405 } 3406 3407 /// Try to match PHI node to Candidate. 3408 /// Matcher tracks the matched Phi nodes. 3409 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3410 SmallSetVector<PHIPair, 8> &Matcher, 3411 PhiNodeSet &PhiNodesToMatch) { 3412 SmallVector<PHIPair, 8> WorkList; 3413 Matcher.insert({ PHI, Candidate }); 3414 SmallSet<PHINode *, 8> MatchedPHIs; 3415 MatchedPHIs.insert(PHI); 3416 WorkList.push_back({ PHI, Candidate }); 3417 SmallSet<PHIPair, 8> Visited; 3418 while (!WorkList.empty()) { 3419 auto Item = WorkList.pop_back_val(); 3420 if (!Visited.insert(Item).second) 3421 continue; 3422 // We iterate over all incoming values to Phi to compare them. 3423 // If values are different and both of them Phi and the first one is a 3424 // Phi we added (subject to match) and both of them is in the same basic 3425 // block then we can match our pair if values match. So we state that 3426 // these values match and add it to work list to verify that. 3427 for (auto B : Item.first->blocks()) { 3428 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3429 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3430 if (FirstValue == SecondValue) 3431 continue; 3432 3433 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3434 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3435 3436 // One of them is not Phi or 3437 // The first one is not Phi node from the set we'd like to match or 3438 // Phi nodes from different basic blocks then 3439 // we will not be able to match. 3440 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3441 FirstPhi->getParent() != SecondPhi->getParent()) 3442 return false; 3443 3444 // If we already matched them then continue. 3445 if (Matcher.count({ FirstPhi, SecondPhi })) 3446 continue; 3447 // So the values are different and does not match. So we need them to 3448 // match. (But we register no more than one match per PHI node, so that 3449 // we won't later try to replace them twice.) 3450 if (MatchedPHIs.insert(FirstPhi).second) 3451 Matcher.insert({ FirstPhi, SecondPhi }); 3452 // But me must check it. 3453 WorkList.push_back({ FirstPhi, SecondPhi }); 3454 } 3455 } 3456 return true; 3457 } 3458 3459 /// For the given set of PHI nodes (in the SimplificationTracker) try 3460 /// to find their equivalents. 3461 /// Returns false if this matching fails and creation of new Phi is disabled. 3462 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3463 unsigned &PhiNotMatchedCount) { 3464 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3465 // order, so the replacements (ReplacePhi) are also done in a deterministic 3466 // order. 3467 SmallSetVector<PHIPair, 8> Matched; 3468 SmallPtrSet<PHINode *, 8> WillNotMatch; 3469 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3470 while (PhiNodesToMatch.size()) { 3471 PHINode *PHI = *PhiNodesToMatch.begin(); 3472 3473 // Add us, if no Phi nodes in the basic block we do not match. 3474 WillNotMatch.clear(); 3475 WillNotMatch.insert(PHI); 3476 3477 // Traverse all Phis until we found equivalent or fail to do that. 3478 bool IsMatched = false; 3479 for (auto &P : PHI->getParent()->phis()) { 3480 if (&P == PHI) 3481 continue; 3482 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3483 break; 3484 // If it does not match, collect all Phi nodes from matcher. 3485 // if we end up with no match, them all these Phi nodes will not match 3486 // later. 3487 for (auto M : Matched) 3488 WillNotMatch.insert(M.first); 3489 Matched.clear(); 3490 } 3491 if (IsMatched) { 3492 // Replace all matched values and erase them. 3493 for (auto MV : Matched) 3494 ST.ReplacePhi(MV.first, MV.second); 3495 Matched.clear(); 3496 continue; 3497 } 3498 // If we are not allowed to create new nodes then bail out. 3499 if (!AllowNewPhiNodes) 3500 return false; 3501 // Just remove all seen values in matcher. They will not match anything. 3502 PhiNotMatchedCount += WillNotMatch.size(); 3503 for (auto *P : WillNotMatch) 3504 PhiNodesToMatch.erase(P); 3505 } 3506 return true; 3507 } 3508 /// Fill the placeholders with values from predecessors and simplify them. 3509 void FillPlaceholders(FoldAddrToValueMapping &Map, 3510 SmallVectorImpl<Value *> &TraverseOrder, 3511 SimplificationTracker &ST) { 3512 while (!TraverseOrder.empty()) { 3513 Value *Current = TraverseOrder.pop_back_val(); 3514 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3515 Value *V = Map[Current]; 3516 3517 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3518 // CurrentValue also must be Select. 3519 auto *CurrentSelect = cast<SelectInst>(Current); 3520 auto *TrueValue = CurrentSelect->getTrueValue(); 3521 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3522 Select->setTrueValue(ST.Get(Map[TrueValue])); 3523 auto *FalseValue = CurrentSelect->getFalseValue(); 3524 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3525 Select->setFalseValue(ST.Get(Map[FalseValue])); 3526 } else { 3527 // Must be a Phi node then. 3528 auto *PHI = cast<PHINode>(V); 3529 // Fill the Phi node with values from predecessors. 3530 for (auto B : predecessors(PHI->getParent())) { 3531 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3532 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3533 PHI->addIncoming(ST.Get(Map[PV]), B); 3534 } 3535 } 3536 Map[Current] = ST.Simplify(V); 3537 } 3538 } 3539 3540 /// Starting from original value recursively iterates over def-use chain up to 3541 /// known ending values represented in a map. For each traversed phi/select 3542 /// inserts a placeholder Phi or Select. 3543 /// Reports all new created Phi/Select nodes by adding them to set. 3544 /// Also reports and order in what values have been traversed. 3545 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3546 SmallVectorImpl<Value *> &TraverseOrder, 3547 SimplificationTracker &ST) { 3548 SmallVector<Value *, 32> Worklist; 3549 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3550 "Address must be a Phi or Select node"); 3551 auto *Dummy = UndefValue::get(CommonType); 3552 Worklist.push_back(Original); 3553 while (!Worklist.empty()) { 3554 Value *Current = Worklist.pop_back_val(); 3555 // if it is already visited or it is an ending value then skip it. 3556 if (Map.find(Current) != Map.end()) 3557 continue; 3558 TraverseOrder.push_back(Current); 3559 3560 // CurrentValue must be a Phi node or select. All others must be covered 3561 // by anchors. 3562 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3563 // Is it OK to get metadata from OrigSelect?! 3564 // Create a Select placeholder with dummy value. 3565 SelectInst *Select = SelectInst::Create( 3566 CurrentSelect->getCondition(), Dummy, Dummy, 3567 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3568 Map[Current] = Select; 3569 ST.insertNewSelect(Select); 3570 // We are interested in True and False values. 3571 Worklist.push_back(CurrentSelect->getTrueValue()); 3572 Worklist.push_back(CurrentSelect->getFalseValue()); 3573 } else { 3574 // It must be a Phi node then. 3575 PHINode *CurrentPhi = cast<PHINode>(Current); 3576 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3577 PHINode *PHI = 3578 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3579 Map[Current] = PHI; 3580 ST.insertNewPhi(PHI); 3581 for (Value *P : CurrentPhi->incoming_values()) 3582 Worklist.push_back(P); 3583 } 3584 } 3585 } 3586 3587 bool addrModeCombiningAllowed() { 3588 if (DisableComplexAddrModes) 3589 return false; 3590 switch (DifferentField) { 3591 default: 3592 return false; 3593 case ExtAddrMode::BaseRegField: 3594 return AddrSinkCombineBaseReg; 3595 case ExtAddrMode::BaseGVField: 3596 return AddrSinkCombineBaseGV; 3597 case ExtAddrMode::BaseOffsField: 3598 return AddrSinkCombineBaseOffs; 3599 case ExtAddrMode::ScaledRegField: 3600 return AddrSinkCombineScaledReg; 3601 } 3602 } 3603 }; 3604 } // end anonymous namespace 3605 3606 /// Try adding ScaleReg*Scale to the current addressing mode. 3607 /// Return true and update AddrMode if this addr mode is legal for the target, 3608 /// false if not. 3609 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3610 unsigned Depth) { 3611 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3612 // mode. Just process that directly. 3613 if (Scale == 1) 3614 return matchAddr(ScaleReg, Depth); 3615 3616 // If the scale is 0, it takes nothing to add this. 3617 if (Scale == 0) 3618 return true; 3619 3620 // If we already have a scale of this value, we can add to it, otherwise, we 3621 // need an available scale field. 3622 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3623 return false; 3624 3625 ExtAddrMode TestAddrMode = AddrMode; 3626 3627 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3628 // [A+B + A*7] -> [B+A*8]. 3629 TestAddrMode.Scale += Scale; 3630 TestAddrMode.ScaledReg = ScaleReg; 3631 3632 // If the new address isn't legal, bail out. 3633 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3634 return false; 3635 3636 // It was legal, so commit it. 3637 AddrMode = TestAddrMode; 3638 3639 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3640 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3641 // X*Scale + C*Scale to addr mode. 3642 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3643 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3644 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3645 TestAddrMode.InBounds = false; 3646 TestAddrMode.ScaledReg = AddLHS; 3647 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3648 3649 // If this addressing mode is legal, commit it and remember that we folded 3650 // this instruction. 3651 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3652 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3653 AddrMode = TestAddrMode; 3654 return true; 3655 } 3656 } 3657 3658 // Otherwise, not (x+c)*scale, just return what we have. 3659 return true; 3660 } 3661 3662 /// This is a little filter, which returns true if an addressing computation 3663 /// involving I might be folded into a load/store accessing it. 3664 /// This doesn't need to be perfect, but needs to accept at least 3665 /// the set of instructions that MatchOperationAddr can. 3666 static bool MightBeFoldableInst(Instruction *I) { 3667 switch (I->getOpcode()) { 3668 case Instruction::BitCast: 3669 case Instruction::AddrSpaceCast: 3670 // Don't touch identity bitcasts. 3671 if (I->getType() == I->getOperand(0)->getType()) 3672 return false; 3673 return I->getType()->isIntOrPtrTy(); 3674 case Instruction::PtrToInt: 3675 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3676 return true; 3677 case Instruction::IntToPtr: 3678 // We know the input is intptr_t, so this is foldable. 3679 return true; 3680 case Instruction::Add: 3681 return true; 3682 case Instruction::Mul: 3683 case Instruction::Shl: 3684 // Can only handle X*C and X << C. 3685 return isa<ConstantInt>(I->getOperand(1)); 3686 case Instruction::GetElementPtr: 3687 return true; 3688 default: 3689 return false; 3690 } 3691 } 3692 3693 /// Check whether or not \p Val is a legal instruction for \p TLI. 3694 /// \note \p Val is assumed to be the product of some type promotion. 3695 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3696 /// to be legal, as the non-promoted value would have had the same state. 3697 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3698 const DataLayout &DL, Value *Val) { 3699 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3700 if (!PromotedInst) 3701 return false; 3702 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3703 // If the ISDOpcode is undefined, it was undefined before the promotion. 3704 if (!ISDOpcode) 3705 return true; 3706 // Otherwise, check if the promoted instruction is legal or not. 3707 return TLI.isOperationLegalOrCustom( 3708 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3709 } 3710 3711 namespace { 3712 3713 /// Hepler class to perform type promotion. 3714 class TypePromotionHelper { 3715 /// Utility function to add a promoted instruction \p ExtOpnd to 3716 /// \p PromotedInsts and record the type of extension we have seen. 3717 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3718 Instruction *ExtOpnd, 3719 bool IsSExt) { 3720 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3721 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3722 if (It != PromotedInsts.end()) { 3723 // If the new extension is same as original, the information in 3724 // PromotedInsts[ExtOpnd] is still correct. 3725 if (It->second.getInt() == ExtTy) 3726 return; 3727 3728 // Now the new extension is different from old extension, we make 3729 // the type information invalid by setting extension type to 3730 // BothExtension. 3731 ExtTy = BothExtension; 3732 } 3733 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3734 } 3735 3736 /// Utility function to query the original type of instruction \p Opnd 3737 /// with a matched extension type. If the extension doesn't match, we 3738 /// cannot use the information we had on the original type. 3739 /// BothExtension doesn't match any extension type. 3740 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3741 Instruction *Opnd, 3742 bool IsSExt) { 3743 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3744 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3745 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3746 return It->second.getPointer(); 3747 return nullptr; 3748 } 3749 3750 /// Utility function to check whether or not a sign or zero extension 3751 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3752 /// either using the operands of \p Inst or promoting \p Inst. 3753 /// The type of the extension is defined by \p IsSExt. 3754 /// In other words, check if: 3755 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3756 /// #1 Promotion applies: 3757 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3758 /// #2 Operand reuses: 3759 /// ext opnd1 to ConsideredExtType. 3760 /// \p PromotedInsts maps the instructions to their type before promotion. 3761 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3762 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3763 3764 /// Utility function to determine if \p OpIdx should be promoted when 3765 /// promoting \p Inst. 3766 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3767 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3768 } 3769 3770 /// Utility function to promote the operand of \p Ext when this 3771 /// operand is a promotable trunc or sext or zext. 3772 /// \p PromotedInsts maps the instructions to their type before promotion. 3773 /// \p CreatedInstsCost[out] contains the cost of all instructions 3774 /// created to promote the operand of Ext. 3775 /// Newly added extensions are inserted in \p Exts. 3776 /// Newly added truncates are inserted in \p Truncs. 3777 /// Should never be called directly. 3778 /// \return The promoted value which is used instead of Ext. 3779 static Value *promoteOperandForTruncAndAnyExt( 3780 Instruction *Ext, TypePromotionTransaction &TPT, 3781 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3782 SmallVectorImpl<Instruction *> *Exts, 3783 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3784 3785 /// Utility function to promote the operand of \p Ext when this 3786 /// operand is promotable and is not a supported trunc or sext. 3787 /// \p PromotedInsts maps the instructions to their type before promotion. 3788 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3789 /// created to promote the operand of Ext. 3790 /// Newly added extensions are inserted in \p Exts. 3791 /// Newly added truncates are inserted in \p Truncs. 3792 /// Should never be called directly. 3793 /// \return The promoted value which is used instead of Ext. 3794 static Value *promoteOperandForOther(Instruction *Ext, 3795 TypePromotionTransaction &TPT, 3796 InstrToOrigTy &PromotedInsts, 3797 unsigned &CreatedInstsCost, 3798 SmallVectorImpl<Instruction *> *Exts, 3799 SmallVectorImpl<Instruction *> *Truncs, 3800 const TargetLowering &TLI, bool IsSExt); 3801 3802 /// \see promoteOperandForOther. 3803 static Value *signExtendOperandForOther( 3804 Instruction *Ext, TypePromotionTransaction &TPT, 3805 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3806 SmallVectorImpl<Instruction *> *Exts, 3807 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3808 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3809 Exts, Truncs, TLI, true); 3810 } 3811 3812 /// \see promoteOperandForOther. 3813 static Value *zeroExtendOperandForOther( 3814 Instruction *Ext, TypePromotionTransaction &TPT, 3815 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3816 SmallVectorImpl<Instruction *> *Exts, 3817 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3818 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3819 Exts, Truncs, TLI, false); 3820 } 3821 3822 public: 3823 /// Type for the utility function that promotes the operand of Ext. 3824 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3825 InstrToOrigTy &PromotedInsts, 3826 unsigned &CreatedInstsCost, 3827 SmallVectorImpl<Instruction *> *Exts, 3828 SmallVectorImpl<Instruction *> *Truncs, 3829 const TargetLowering &TLI); 3830 3831 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3832 /// action to promote the operand of \p Ext instead of using Ext. 3833 /// \return NULL if no promotable action is possible with the current 3834 /// sign extension. 3835 /// \p InsertedInsts keeps track of all the instructions inserted by the 3836 /// other CodeGenPrepare optimizations. This information is important 3837 /// because we do not want to promote these instructions as CodeGenPrepare 3838 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3839 /// \p PromotedInsts maps the instructions to their type before promotion. 3840 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3841 const TargetLowering &TLI, 3842 const InstrToOrigTy &PromotedInsts); 3843 }; 3844 3845 } // end anonymous namespace 3846 3847 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3848 Type *ConsideredExtType, 3849 const InstrToOrigTy &PromotedInsts, 3850 bool IsSExt) { 3851 // The promotion helper does not know how to deal with vector types yet. 3852 // To be able to fix that, we would need to fix the places where we 3853 // statically extend, e.g., constants and such. 3854 if (Inst->getType()->isVectorTy()) 3855 return false; 3856 3857 // We can always get through zext. 3858 if (isa<ZExtInst>(Inst)) 3859 return true; 3860 3861 // sext(sext) is ok too. 3862 if (IsSExt && isa<SExtInst>(Inst)) 3863 return true; 3864 3865 // We can get through binary operator, if it is legal. In other words, the 3866 // binary operator must have a nuw or nsw flag. 3867 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3868 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3869 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3870 (IsSExt && BinOp->hasNoSignedWrap()))) 3871 return true; 3872 3873 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3874 if ((Inst->getOpcode() == Instruction::And || 3875 Inst->getOpcode() == Instruction::Or)) 3876 return true; 3877 3878 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3879 if (Inst->getOpcode() == Instruction::Xor) { 3880 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3881 // Make sure it is not a NOT. 3882 if (Cst && !Cst->getValue().isAllOnesValue()) 3883 return true; 3884 } 3885 3886 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3887 // It may change a poisoned value into a regular value, like 3888 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3889 // poisoned value regular value 3890 // It should be OK since undef covers valid value. 3891 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3892 return true; 3893 3894 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3895 // It may change a poisoned value into a regular value, like 3896 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3897 // poisoned value regular value 3898 // It should be OK since undef covers valid value. 3899 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3900 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3901 if (ExtInst->hasOneUse()) { 3902 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3903 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3904 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3905 if (Cst && 3906 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3907 return true; 3908 } 3909 } 3910 } 3911 3912 // Check if we can do the following simplification. 3913 // ext(trunc(opnd)) --> ext(opnd) 3914 if (!isa<TruncInst>(Inst)) 3915 return false; 3916 3917 Value *OpndVal = Inst->getOperand(0); 3918 // Check if we can use this operand in the extension. 3919 // If the type is larger than the result type of the extension, we cannot. 3920 if (!OpndVal->getType()->isIntegerTy() || 3921 OpndVal->getType()->getIntegerBitWidth() > 3922 ConsideredExtType->getIntegerBitWidth()) 3923 return false; 3924 3925 // If the operand of the truncate is not an instruction, we will not have 3926 // any information on the dropped bits. 3927 // (Actually we could for constant but it is not worth the extra logic). 3928 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3929 if (!Opnd) 3930 return false; 3931 3932 // Check if the source of the type is narrow enough. 3933 // I.e., check that trunc just drops extended bits of the same kind of 3934 // the extension. 3935 // #1 get the type of the operand and check the kind of the extended bits. 3936 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3937 if (OpndType) 3938 ; 3939 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3940 OpndType = Opnd->getOperand(0)->getType(); 3941 else 3942 return false; 3943 3944 // #2 check that the truncate just drops extended bits. 3945 return Inst->getType()->getIntegerBitWidth() >= 3946 OpndType->getIntegerBitWidth(); 3947 } 3948 3949 TypePromotionHelper::Action TypePromotionHelper::getAction( 3950 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3951 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3952 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3953 "Unexpected instruction type"); 3954 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3955 Type *ExtTy = Ext->getType(); 3956 bool IsSExt = isa<SExtInst>(Ext); 3957 // If the operand of the extension is not an instruction, we cannot 3958 // get through. 3959 // If it, check we can get through. 3960 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3961 return nullptr; 3962 3963 // Do not promote if the operand has been added by codegenprepare. 3964 // Otherwise, it means we are undoing an optimization that is likely to be 3965 // redone, thus causing potential infinite loop. 3966 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3967 return nullptr; 3968 3969 // SExt or Trunc instructions. 3970 // Return the related handler. 3971 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3972 isa<ZExtInst>(ExtOpnd)) 3973 return promoteOperandForTruncAndAnyExt; 3974 3975 // Regular instruction. 3976 // Abort early if we will have to insert non-free instructions. 3977 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3978 return nullptr; 3979 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3980 } 3981 3982 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3983 Instruction *SExt, TypePromotionTransaction &TPT, 3984 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3985 SmallVectorImpl<Instruction *> *Exts, 3986 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3987 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3988 // get through it and this method should not be called. 3989 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3990 Value *ExtVal = SExt; 3991 bool HasMergedNonFreeExt = false; 3992 if (isa<ZExtInst>(SExtOpnd)) { 3993 // Replace s|zext(zext(opnd)) 3994 // => zext(opnd). 3995 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3996 Value *ZExt = 3997 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3998 TPT.replaceAllUsesWith(SExt, ZExt); 3999 TPT.eraseInstruction(SExt); 4000 ExtVal = ZExt; 4001 } else { 4002 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4003 // => z|sext(opnd). 4004 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4005 } 4006 CreatedInstsCost = 0; 4007 4008 // Remove dead code. 4009 if (SExtOpnd->use_empty()) 4010 TPT.eraseInstruction(SExtOpnd); 4011 4012 // Check if the extension is still needed. 4013 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4014 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4015 if (ExtInst) { 4016 if (Exts) 4017 Exts->push_back(ExtInst); 4018 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4019 } 4020 return ExtVal; 4021 } 4022 4023 // At this point we have: ext ty opnd to ty. 4024 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4025 Value *NextVal = ExtInst->getOperand(0); 4026 TPT.eraseInstruction(ExtInst, NextVal); 4027 return NextVal; 4028 } 4029 4030 Value *TypePromotionHelper::promoteOperandForOther( 4031 Instruction *Ext, TypePromotionTransaction &TPT, 4032 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4033 SmallVectorImpl<Instruction *> *Exts, 4034 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4035 bool IsSExt) { 4036 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4037 // get through it and this method should not be called. 4038 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4039 CreatedInstsCost = 0; 4040 if (!ExtOpnd->hasOneUse()) { 4041 // ExtOpnd will be promoted. 4042 // All its uses, but Ext, will need to use a truncated value of the 4043 // promoted version. 4044 // Create the truncate now. 4045 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4046 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4047 // Insert it just after the definition. 4048 ITrunc->moveAfter(ExtOpnd); 4049 if (Truncs) 4050 Truncs->push_back(ITrunc); 4051 } 4052 4053 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4054 // Restore the operand of Ext (which has been replaced by the previous call 4055 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4056 TPT.setOperand(Ext, 0, ExtOpnd); 4057 } 4058 4059 // Get through the Instruction: 4060 // 1. Update its type. 4061 // 2. Replace the uses of Ext by Inst. 4062 // 3. Extend each operand that needs to be extended. 4063 4064 // Remember the original type of the instruction before promotion. 4065 // This is useful to know that the high bits are sign extended bits. 4066 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4067 // Step #1. 4068 TPT.mutateType(ExtOpnd, Ext->getType()); 4069 // Step #2. 4070 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4071 // Step #3. 4072 Instruction *ExtForOpnd = Ext; 4073 4074 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4075 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4076 ++OpIdx) { 4077 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4078 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4079 !shouldExtOperand(ExtOpnd, OpIdx)) { 4080 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4081 continue; 4082 } 4083 // Check if we can statically extend the operand. 4084 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4085 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4086 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4087 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4088 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4089 : Cst->getValue().zext(BitWidth); 4090 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4091 continue; 4092 } 4093 // UndefValue are typed, so we have to statically sign extend them. 4094 if (isa<UndefValue>(Opnd)) { 4095 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4096 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4097 continue; 4098 } 4099 4100 // Otherwise we have to explicitly sign extend the operand. 4101 // Check if Ext was reused to extend an operand. 4102 if (!ExtForOpnd) { 4103 // If yes, create a new one. 4104 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4105 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4106 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4107 if (!isa<Instruction>(ValForExtOpnd)) { 4108 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4109 continue; 4110 } 4111 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4112 } 4113 if (Exts) 4114 Exts->push_back(ExtForOpnd); 4115 TPT.setOperand(ExtForOpnd, 0, Opnd); 4116 4117 // Move the sign extension before the insertion point. 4118 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4119 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4120 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4121 // If more sext are required, new instructions will have to be created. 4122 ExtForOpnd = nullptr; 4123 } 4124 if (ExtForOpnd == Ext) { 4125 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4126 TPT.eraseInstruction(Ext); 4127 } 4128 return ExtOpnd; 4129 } 4130 4131 /// Check whether or not promoting an instruction to a wider type is profitable. 4132 /// \p NewCost gives the cost of extension instructions created by the 4133 /// promotion. 4134 /// \p OldCost gives the cost of extension instructions before the promotion 4135 /// plus the number of instructions that have been 4136 /// matched in the addressing mode the promotion. 4137 /// \p PromotedOperand is the value that has been promoted. 4138 /// \return True if the promotion is profitable, false otherwise. 4139 bool AddressingModeMatcher::isPromotionProfitable( 4140 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4141 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4142 << '\n'); 4143 // The cost of the new extensions is greater than the cost of the 4144 // old extension plus what we folded. 4145 // This is not profitable. 4146 if (NewCost > OldCost) 4147 return false; 4148 if (NewCost < OldCost) 4149 return true; 4150 // The promotion is neutral but it may help folding the sign extension in 4151 // loads for instance. 4152 // Check that we did not create an illegal instruction. 4153 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4154 } 4155 4156 /// Given an instruction or constant expr, see if we can fold the operation 4157 /// into the addressing mode. If so, update the addressing mode and return 4158 /// true, otherwise return false without modifying AddrMode. 4159 /// If \p MovedAway is not NULL, it contains the information of whether or 4160 /// not AddrInst has to be folded into the addressing mode on success. 4161 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4162 /// because it has been moved away. 4163 /// Thus AddrInst must not be added in the matched instructions. 4164 /// This state can happen when AddrInst is a sext, since it may be moved away. 4165 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4166 /// not be referenced anymore. 4167 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4168 unsigned Depth, 4169 bool *MovedAway) { 4170 // Avoid exponential behavior on extremely deep expression trees. 4171 if (Depth >= 5) return false; 4172 4173 // By default, all matched instructions stay in place. 4174 if (MovedAway) 4175 *MovedAway = false; 4176 4177 switch (Opcode) { 4178 case Instruction::PtrToInt: 4179 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4180 return matchAddr(AddrInst->getOperand(0), Depth); 4181 case Instruction::IntToPtr: { 4182 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4183 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4184 // This inttoptr is a no-op if the integer type is pointer sized. 4185 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4186 return matchAddr(AddrInst->getOperand(0), Depth); 4187 return false; 4188 } 4189 case Instruction::BitCast: 4190 // BitCast is always a noop, and we can handle it as long as it is 4191 // int->int or pointer->pointer (we don't want int<->fp or something). 4192 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4193 // Don't touch identity bitcasts. These were probably put here by LSR, 4194 // and we don't want to mess around with them. Assume it knows what it 4195 // is doing. 4196 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4197 return matchAddr(AddrInst->getOperand(0), Depth); 4198 return false; 4199 case Instruction::AddrSpaceCast: { 4200 unsigned SrcAS 4201 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4202 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4203 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4204 return matchAddr(AddrInst->getOperand(0), Depth); 4205 return false; 4206 } 4207 case Instruction::Add: { 4208 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4209 ExtAddrMode BackupAddrMode = AddrMode; 4210 unsigned OldSize = AddrModeInsts.size(); 4211 // Start a transaction at this point. 4212 // The LHS may match but not the RHS. 4213 // Therefore, we need a higher level restoration point to undo partially 4214 // matched operation. 4215 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4216 TPT.getRestorationPoint(); 4217 4218 AddrMode.InBounds = false; 4219 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4220 matchAddr(AddrInst->getOperand(0), Depth+1)) 4221 return true; 4222 4223 // Restore the old addr mode info. 4224 AddrMode = BackupAddrMode; 4225 AddrModeInsts.resize(OldSize); 4226 TPT.rollback(LastKnownGood); 4227 4228 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4229 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4230 matchAddr(AddrInst->getOperand(1), Depth+1)) 4231 return true; 4232 4233 // Otherwise we definitely can't merge the ADD in. 4234 AddrMode = BackupAddrMode; 4235 AddrModeInsts.resize(OldSize); 4236 TPT.rollback(LastKnownGood); 4237 break; 4238 } 4239 //case Instruction::Or: 4240 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4241 //break; 4242 case Instruction::Mul: 4243 case Instruction::Shl: { 4244 // Can only handle X*C and X << C. 4245 AddrMode.InBounds = false; 4246 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4247 if (!RHS || RHS->getBitWidth() > 64) 4248 return false; 4249 int64_t Scale = RHS->getSExtValue(); 4250 if (Opcode == Instruction::Shl) 4251 Scale = 1LL << Scale; 4252 4253 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4254 } 4255 case Instruction::GetElementPtr: { 4256 // Scan the GEP. We check it if it contains constant offsets and at most 4257 // one variable offset. 4258 int VariableOperand = -1; 4259 unsigned VariableScale = 0; 4260 4261 int64_t ConstantOffset = 0; 4262 gep_type_iterator GTI = gep_type_begin(AddrInst); 4263 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4264 if (StructType *STy = GTI.getStructTypeOrNull()) { 4265 const StructLayout *SL = DL.getStructLayout(STy); 4266 unsigned Idx = 4267 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4268 ConstantOffset += SL->getElementOffset(Idx); 4269 } else { 4270 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4272 const APInt &CVal = CI->getValue(); 4273 if (CVal.getMinSignedBits() <= 64) { 4274 ConstantOffset += CVal.getSExtValue() * TypeSize; 4275 continue; 4276 } 4277 } 4278 if (TypeSize) { // Scales of zero don't do anything. 4279 // We only allow one variable index at the moment. 4280 if (VariableOperand != -1) 4281 return false; 4282 4283 // Remember the variable index. 4284 VariableOperand = i; 4285 VariableScale = TypeSize; 4286 } 4287 } 4288 } 4289 4290 // A common case is for the GEP to only do a constant offset. In this case, 4291 // just add it to the disp field and check validity. 4292 if (VariableOperand == -1) { 4293 AddrMode.BaseOffs += ConstantOffset; 4294 if (ConstantOffset == 0 || 4295 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4296 // Check to see if we can fold the base pointer in too. 4297 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4298 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4299 AddrMode.InBounds = false; 4300 return true; 4301 } 4302 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4303 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4304 ConstantOffset > 0) { 4305 // Record GEPs with non-zero offsets as candidates for splitting in the 4306 // event that the offset cannot fit into the r+i addressing mode. 4307 // Simple and common case that only one GEP is used in calculating the 4308 // address for the memory access. 4309 Value *Base = AddrInst->getOperand(0); 4310 auto *BaseI = dyn_cast<Instruction>(Base); 4311 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4312 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4313 (BaseI && !isa<CastInst>(BaseI) && 4314 !isa<GetElementPtrInst>(BaseI))) { 4315 // Make sure the parent block allows inserting non-PHI instructions 4316 // before the terminator. 4317 BasicBlock *Parent = 4318 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4319 if (!Parent->getTerminator()->isEHPad()) 4320 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4321 } 4322 } 4323 AddrMode.BaseOffs -= ConstantOffset; 4324 return false; 4325 } 4326 4327 // Save the valid addressing mode in case we can't match. 4328 ExtAddrMode BackupAddrMode = AddrMode; 4329 unsigned OldSize = AddrModeInsts.size(); 4330 4331 // See if the scale and offset amount is valid for this target. 4332 AddrMode.BaseOffs += ConstantOffset; 4333 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4334 AddrMode.InBounds = false; 4335 4336 // Match the base operand of the GEP. 4337 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4338 // If it couldn't be matched, just stuff the value in a register. 4339 if (AddrMode.HasBaseReg) { 4340 AddrMode = BackupAddrMode; 4341 AddrModeInsts.resize(OldSize); 4342 return false; 4343 } 4344 AddrMode.HasBaseReg = true; 4345 AddrMode.BaseReg = AddrInst->getOperand(0); 4346 } 4347 4348 // Match the remaining variable portion of the GEP. 4349 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4350 Depth)) { 4351 // If it couldn't be matched, try stuffing the base into a register 4352 // instead of matching it, and retrying the match of the scale. 4353 AddrMode = BackupAddrMode; 4354 AddrModeInsts.resize(OldSize); 4355 if (AddrMode.HasBaseReg) 4356 return false; 4357 AddrMode.HasBaseReg = true; 4358 AddrMode.BaseReg = AddrInst->getOperand(0); 4359 AddrMode.BaseOffs += ConstantOffset; 4360 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4361 VariableScale, Depth)) { 4362 // If even that didn't work, bail. 4363 AddrMode = BackupAddrMode; 4364 AddrModeInsts.resize(OldSize); 4365 return false; 4366 } 4367 } 4368 4369 return true; 4370 } 4371 case Instruction::SExt: 4372 case Instruction::ZExt: { 4373 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4374 if (!Ext) 4375 return false; 4376 4377 // Try to move this ext out of the way of the addressing mode. 4378 // Ask for a method for doing so. 4379 TypePromotionHelper::Action TPH = 4380 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4381 if (!TPH) 4382 return false; 4383 4384 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4385 TPT.getRestorationPoint(); 4386 unsigned CreatedInstsCost = 0; 4387 unsigned ExtCost = !TLI.isExtFree(Ext); 4388 Value *PromotedOperand = 4389 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4390 // SExt has been moved away. 4391 // Thus either it will be rematched later in the recursive calls or it is 4392 // gone. Anyway, we must not fold it into the addressing mode at this point. 4393 // E.g., 4394 // op = add opnd, 1 4395 // idx = ext op 4396 // addr = gep base, idx 4397 // is now: 4398 // promotedOpnd = ext opnd <- no match here 4399 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4400 // addr = gep base, op <- match 4401 if (MovedAway) 4402 *MovedAway = true; 4403 4404 assert(PromotedOperand && 4405 "TypePromotionHelper should have filtered out those cases"); 4406 4407 ExtAddrMode BackupAddrMode = AddrMode; 4408 unsigned OldSize = AddrModeInsts.size(); 4409 4410 if (!matchAddr(PromotedOperand, Depth) || 4411 // The total of the new cost is equal to the cost of the created 4412 // instructions. 4413 // The total of the old cost is equal to the cost of the extension plus 4414 // what we have saved in the addressing mode. 4415 !isPromotionProfitable(CreatedInstsCost, 4416 ExtCost + (AddrModeInsts.size() - OldSize), 4417 PromotedOperand)) { 4418 AddrMode = BackupAddrMode; 4419 AddrModeInsts.resize(OldSize); 4420 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4421 TPT.rollback(LastKnownGood); 4422 return false; 4423 } 4424 return true; 4425 } 4426 } 4427 return false; 4428 } 4429 4430 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4431 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4432 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4433 /// for the target. 4434 /// 4435 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4436 // Start a transaction at this point that we will rollback if the matching 4437 // fails. 4438 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4439 TPT.getRestorationPoint(); 4440 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4441 // Fold in immediates if legal for the target. 4442 AddrMode.BaseOffs += CI->getSExtValue(); 4443 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4444 return true; 4445 AddrMode.BaseOffs -= CI->getSExtValue(); 4446 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4447 // If this is a global variable, try to fold it into the addressing mode. 4448 if (!AddrMode.BaseGV) { 4449 AddrMode.BaseGV = GV; 4450 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4451 return true; 4452 AddrMode.BaseGV = nullptr; 4453 } 4454 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4455 ExtAddrMode BackupAddrMode = AddrMode; 4456 unsigned OldSize = AddrModeInsts.size(); 4457 4458 // Check to see if it is possible to fold this operation. 4459 bool MovedAway = false; 4460 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4461 // This instruction may have been moved away. If so, there is nothing 4462 // to check here. 4463 if (MovedAway) 4464 return true; 4465 // Okay, it's possible to fold this. Check to see if it is actually 4466 // *profitable* to do so. We use a simple cost model to avoid increasing 4467 // register pressure too much. 4468 if (I->hasOneUse() || 4469 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4470 AddrModeInsts.push_back(I); 4471 return true; 4472 } 4473 4474 // It isn't profitable to do this, roll back. 4475 //cerr << "NOT FOLDING: " << *I; 4476 AddrMode = BackupAddrMode; 4477 AddrModeInsts.resize(OldSize); 4478 TPT.rollback(LastKnownGood); 4479 } 4480 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4481 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4482 return true; 4483 TPT.rollback(LastKnownGood); 4484 } else if (isa<ConstantPointerNull>(Addr)) { 4485 // Null pointer gets folded without affecting the addressing mode. 4486 return true; 4487 } 4488 4489 // Worse case, the target should support [reg] addressing modes. :) 4490 if (!AddrMode.HasBaseReg) { 4491 AddrMode.HasBaseReg = true; 4492 AddrMode.BaseReg = Addr; 4493 // Still check for legality in case the target supports [imm] but not [i+r]. 4494 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4495 return true; 4496 AddrMode.HasBaseReg = false; 4497 AddrMode.BaseReg = nullptr; 4498 } 4499 4500 // If the base register is already taken, see if we can do [r+r]. 4501 if (AddrMode.Scale == 0) { 4502 AddrMode.Scale = 1; 4503 AddrMode.ScaledReg = Addr; 4504 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4505 return true; 4506 AddrMode.Scale = 0; 4507 AddrMode.ScaledReg = nullptr; 4508 } 4509 // Couldn't match. 4510 TPT.rollback(LastKnownGood); 4511 return false; 4512 } 4513 4514 /// Check to see if all uses of OpVal by the specified inline asm call are due 4515 /// to memory operands. If so, return true, otherwise return false. 4516 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4517 const TargetLowering &TLI, 4518 const TargetRegisterInfo &TRI) { 4519 const Function *F = CI->getFunction(); 4520 TargetLowering::AsmOperandInfoVector TargetConstraints = 4521 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4522 ImmutableCallSite(CI)); 4523 4524 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4525 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4526 4527 // Compute the constraint code and ConstraintType to use. 4528 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4529 4530 // If this asm operand is our Value*, and if it isn't an indirect memory 4531 // operand, we can't fold it! 4532 if (OpInfo.CallOperandVal == OpVal && 4533 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4534 !OpInfo.isIndirect)) 4535 return false; 4536 } 4537 4538 return true; 4539 } 4540 4541 // Max number of memory uses to look at before aborting the search to conserve 4542 // compile time. 4543 static constexpr int MaxMemoryUsesToScan = 20; 4544 4545 /// Recursively walk all the uses of I until we find a memory use. 4546 /// If we find an obviously non-foldable instruction, return true. 4547 /// Add the ultimately found memory instructions to MemoryUses. 4548 static bool FindAllMemoryUses( 4549 Instruction *I, 4550 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4551 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4552 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4553 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4554 // If we already considered this instruction, we're done. 4555 if (!ConsideredInsts.insert(I).second) 4556 return false; 4557 4558 // If this is an obviously unfoldable instruction, bail out. 4559 if (!MightBeFoldableInst(I)) 4560 return true; 4561 4562 // Loop over all the uses, recursively processing them. 4563 for (Use &U : I->uses()) { 4564 // Conservatively return true if we're seeing a large number or a deep chain 4565 // of users. This avoids excessive compilation times in pathological cases. 4566 if (SeenInsts++ >= MaxMemoryUsesToScan) 4567 return true; 4568 4569 Instruction *UserI = cast<Instruction>(U.getUser()); 4570 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4571 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4572 continue; 4573 } 4574 4575 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4576 unsigned opNo = U.getOperandNo(); 4577 if (opNo != StoreInst::getPointerOperandIndex()) 4578 return true; // Storing addr, not into addr. 4579 MemoryUses.push_back(std::make_pair(SI, opNo)); 4580 continue; 4581 } 4582 4583 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4584 unsigned opNo = U.getOperandNo(); 4585 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4586 return true; // Storing addr, not into addr. 4587 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4588 continue; 4589 } 4590 4591 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4592 unsigned opNo = U.getOperandNo(); 4593 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4594 return true; // Storing addr, not into addr. 4595 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4596 continue; 4597 } 4598 4599 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4600 // If this is a cold call, we can sink the addressing calculation into 4601 // the cold path. See optimizeCallInst 4602 bool OptForSize = OptSize || 4603 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4604 if (!OptForSize && CI->hasFnAttr(Attribute::Cold)) 4605 continue; 4606 4607 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4608 if (!IA) return true; 4609 4610 // If this is a memory operand, we're cool, otherwise bail out. 4611 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4612 return true; 4613 continue; 4614 } 4615 4616 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4617 PSI, BFI, SeenInsts)) 4618 return true; 4619 } 4620 4621 return false; 4622 } 4623 4624 /// Return true if Val is already known to be live at the use site that we're 4625 /// folding it into. If so, there is no cost to include it in the addressing 4626 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4627 /// instruction already. 4628 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4629 Value *KnownLive2) { 4630 // If Val is either of the known-live values, we know it is live! 4631 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4632 return true; 4633 4634 // All values other than instructions and arguments (e.g. constants) are live. 4635 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4636 4637 // If Val is a constant sized alloca in the entry block, it is live, this is 4638 // true because it is just a reference to the stack/frame pointer, which is 4639 // live for the whole function. 4640 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4641 if (AI->isStaticAlloca()) 4642 return true; 4643 4644 // Check to see if this value is already used in the memory instruction's 4645 // block. If so, it's already live into the block at the very least, so we 4646 // can reasonably fold it. 4647 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4648 } 4649 4650 /// It is possible for the addressing mode of the machine to fold the specified 4651 /// instruction into a load or store that ultimately uses it. 4652 /// However, the specified instruction has multiple uses. 4653 /// Given this, it may actually increase register pressure to fold it 4654 /// into the load. For example, consider this code: 4655 /// 4656 /// X = ... 4657 /// Y = X+1 4658 /// use(Y) -> nonload/store 4659 /// Z = Y+1 4660 /// load Z 4661 /// 4662 /// In this case, Y has multiple uses, and can be folded into the load of Z 4663 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4664 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4665 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4666 /// number of computations either. 4667 /// 4668 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4669 /// X was live across 'load Z' for other reasons, we actually *would* want to 4670 /// fold the addressing mode in the Z case. This would make Y die earlier. 4671 bool AddressingModeMatcher:: 4672 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4673 ExtAddrMode &AMAfter) { 4674 if (IgnoreProfitability) return true; 4675 4676 // AMBefore is the addressing mode before this instruction was folded into it, 4677 // and AMAfter is the addressing mode after the instruction was folded. Get 4678 // the set of registers referenced by AMAfter and subtract out those 4679 // referenced by AMBefore: this is the set of values which folding in this 4680 // address extends the lifetime of. 4681 // 4682 // Note that there are only two potential values being referenced here, 4683 // BaseReg and ScaleReg (global addresses are always available, as are any 4684 // folded immediates). 4685 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4686 4687 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4688 // lifetime wasn't extended by adding this instruction. 4689 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4690 BaseReg = nullptr; 4691 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4692 ScaledReg = nullptr; 4693 4694 // If folding this instruction (and it's subexprs) didn't extend any live 4695 // ranges, we're ok with it. 4696 if (!BaseReg && !ScaledReg) 4697 return true; 4698 4699 // If all uses of this instruction can have the address mode sunk into them, 4700 // we can remove the addressing mode and effectively trade one live register 4701 // for another (at worst.) In this context, folding an addressing mode into 4702 // the use is just a particularly nice way of sinking it. 4703 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4704 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4705 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4706 PSI, BFI)) 4707 return false; // Has a non-memory, non-foldable use! 4708 4709 // Now that we know that all uses of this instruction are part of a chain of 4710 // computation involving only operations that could theoretically be folded 4711 // into a memory use, loop over each of these memory operation uses and see 4712 // if they could *actually* fold the instruction. The assumption is that 4713 // addressing modes are cheap and that duplicating the computation involved 4714 // many times is worthwhile, even on a fastpath. For sinking candidates 4715 // (i.e. cold call sites), this serves as a way to prevent excessive code 4716 // growth since most architectures have some reasonable small and fast way to 4717 // compute an effective address. (i.e LEA on x86) 4718 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4719 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4720 Instruction *User = MemoryUses[i].first; 4721 unsigned OpNo = MemoryUses[i].second; 4722 4723 // Get the access type of this use. If the use isn't a pointer, we don't 4724 // know what it accesses. 4725 Value *Address = User->getOperand(OpNo); 4726 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4727 if (!AddrTy) 4728 return false; 4729 Type *AddressAccessTy = AddrTy->getElementType(); 4730 unsigned AS = AddrTy->getAddressSpace(); 4731 4732 // Do a match against the root of this address, ignoring profitability. This 4733 // will tell us if the addressing mode for the memory operation will 4734 // *actually* cover the shared instruction. 4735 ExtAddrMode Result; 4736 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4737 0); 4738 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4739 TPT.getRestorationPoint(); 4740 AddressingModeMatcher Matcher( 4741 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4742 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4743 Matcher.IgnoreProfitability = true; 4744 bool Success = Matcher.matchAddr(Address, 0); 4745 (void)Success; assert(Success && "Couldn't select *anything*?"); 4746 4747 // The match was to check the profitability, the changes made are not 4748 // part of the original matcher. Therefore, they should be dropped 4749 // otherwise the original matcher will not present the right state. 4750 TPT.rollback(LastKnownGood); 4751 4752 // If the match didn't cover I, then it won't be shared by it. 4753 if (!is_contained(MatchedAddrModeInsts, I)) 4754 return false; 4755 4756 MatchedAddrModeInsts.clear(); 4757 } 4758 4759 return true; 4760 } 4761 4762 /// Return true if the specified values are defined in a 4763 /// different basic block than BB. 4764 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4765 if (Instruction *I = dyn_cast<Instruction>(V)) 4766 return I->getParent() != BB; 4767 return false; 4768 } 4769 4770 /// Sink addressing mode computation immediate before MemoryInst if doing so 4771 /// can be done without increasing register pressure. The need for the 4772 /// register pressure constraint means this can end up being an all or nothing 4773 /// decision for all uses of the same addressing computation. 4774 /// 4775 /// Load and Store Instructions often have addressing modes that can do 4776 /// significant amounts of computation. As such, instruction selection will try 4777 /// to get the load or store to do as much computation as possible for the 4778 /// program. The problem is that isel can only see within a single block. As 4779 /// such, we sink as much legal addressing mode work into the block as possible. 4780 /// 4781 /// This method is used to optimize both load/store and inline asms with memory 4782 /// operands. It's also used to sink addressing computations feeding into cold 4783 /// call sites into their (cold) basic block. 4784 /// 4785 /// The motivation for handling sinking into cold blocks is that doing so can 4786 /// both enable other address mode sinking (by satisfying the register pressure 4787 /// constraint above), and reduce register pressure globally (by removing the 4788 /// addressing mode computation from the fast path entirely.). 4789 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4790 Type *AccessTy, unsigned AddrSpace) { 4791 Value *Repl = Addr; 4792 4793 // Try to collapse single-value PHI nodes. This is necessary to undo 4794 // unprofitable PRE transformations. 4795 SmallVector<Value*, 8> worklist; 4796 SmallPtrSet<Value*, 16> Visited; 4797 worklist.push_back(Addr); 4798 4799 // Use a worklist to iteratively look through PHI and select nodes, and 4800 // ensure that the addressing mode obtained from the non-PHI/select roots of 4801 // the graph are compatible. 4802 bool PhiOrSelectSeen = false; 4803 SmallVector<Instruction*, 16> AddrModeInsts; 4804 const SimplifyQuery SQ(*DL, TLInfo); 4805 AddressingModeCombiner AddrModes(SQ, Addr); 4806 TypePromotionTransaction TPT(RemovedInsts); 4807 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4808 TPT.getRestorationPoint(); 4809 while (!worklist.empty()) { 4810 Value *V = worklist.back(); 4811 worklist.pop_back(); 4812 4813 // We allow traversing cyclic Phi nodes. 4814 // In case of success after this loop we ensure that traversing through 4815 // Phi nodes ends up with all cases to compute address of the form 4816 // BaseGV + Base + Scale * Index + Offset 4817 // where Scale and Offset are constans and BaseGV, Base and Index 4818 // are exactly the same Values in all cases. 4819 // It means that BaseGV, Scale and Offset dominate our memory instruction 4820 // and have the same value as they had in address computation represented 4821 // as Phi. So we can safely sink address computation to memory instruction. 4822 if (!Visited.insert(V).second) 4823 continue; 4824 4825 // For a PHI node, push all of its incoming values. 4826 if (PHINode *P = dyn_cast<PHINode>(V)) { 4827 for (Value *IncValue : P->incoming_values()) 4828 worklist.push_back(IncValue); 4829 PhiOrSelectSeen = true; 4830 continue; 4831 } 4832 // Similar for select. 4833 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4834 worklist.push_back(SI->getFalseValue()); 4835 worklist.push_back(SI->getTrueValue()); 4836 PhiOrSelectSeen = true; 4837 continue; 4838 } 4839 4840 // For non-PHIs, determine the addressing mode being computed. Note that 4841 // the result may differ depending on what other uses our candidate 4842 // addressing instructions might have. 4843 AddrModeInsts.clear(); 4844 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4845 0); 4846 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4847 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4848 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4849 BFI.get()); 4850 4851 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4852 if (GEP && !NewGEPBases.count(GEP)) { 4853 // If splitting the underlying data structure can reduce the offset of a 4854 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4855 // previously split data structures. 4856 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4857 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4858 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4859 } 4860 4861 NewAddrMode.OriginalValue = V; 4862 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4863 break; 4864 } 4865 4866 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4867 // or we have multiple but either couldn't combine them or combining them 4868 // wouldn't do anything useful, bail out now. 4869 if (!AddrModes.combineAddrModes()) { 4870 TPT.rollback(LastKnownGood); 4871 return false; 4872 } 4873 TPT.commit(); 4874 4875 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4876 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4877 4878 // If all the instructions matched are already in this BB, don't do anything. 4879 // If we saw a Phi node then it is not local definitely, and if we saw a select 4880 // then we want to push the address calculation past it even if it's already 4881 // in this BB. 4882 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4883 return IsNonLocalValue(V, MemoryInst->getParent()); 4884 })) { 4885 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4886 << "\n"); 4887 return false; 4888 } 4889 4890 // Insert this computation right after this user. Since our caller is 4891 // scanning from the top of the BB to the bottom, reuse of the expr are 4892 // guaranteed to happen later. 4893 IRBuilder<> Builder(MemoryInst); 4894 4895 // Now that we determined the addressing expression we want to use and know 4896 // that we have to sink it into this block. Check to see if we have already 4897 // done this for some other load/store instr in this block. If so, reuse 4898 // the computation. Before attempting reuse, check if the address is valid 4899 // as it may have been erased. 4900 4901 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4902 4903 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4904 if (SunkAddr) { 4905 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4906 << " for " << *MemoryInst << "\n"); 4907 if (SunkAddr->getType() != Addr->getType()) 4908 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4909 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 4910 TM && SubtargetInfo->addrSinkUsingGEPs())) { 4911 // By default, we use the GEP-based method when AA is used later. This 4912 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4913 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4914 << " for " << *MemoryInst << "\n"); 4915 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4916 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4917 4918 // First, find the pointer. 4919 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4920 ResultPtr = AddrMode.BaseReg; 4921 AddrMode.BaseReg = nullptr; 4922 } 4923 4924 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4925 // We can't add more than one pointer together, nor can we scale a 4926 // pointer (both of which seem meaningless). 4927 if (ResultPtr || AddrMode.Scale != 1) 4928 return false; 4929 4930 ResultPtr = AddrMode.ScaledReg; 4931 AddrMode.Scale = 0; 4932 } 4933 4934 // It is only safe to sign extend the BaseReg if we know that the math 4935 // required to create it did not overflow before we extend it. Since 4936 // the original IR value was tossed in favor of a constant back when 4937 // the AddrMode was created we need to bail out gracefully if widths 4938 // do not match instead of extending it. 4939 // 4940 // (See below for code to add the scale.) 4941 if (AddrMode.Scale) { 4942 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4943 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4944 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4945 return false; 4946 } 4947 4948 if (AddrMode.BaseGV) { 4949 if (ResultPtr) 4950 return false; 4951 4952 ResultPtr = AddrMode.BaseGV; 4953 } 4954 4955 // If the real base value actually came from an inttoptr, then the matcher 4956 // will look through it and provide only the integer value. In that case, 4957 // use it here. 4958 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4959 if (!ResultPtr && AddrMode.BaseReg) { 4960 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4961 "sunkaddr"); 4962 AddrMode.BaseReg = nullptr; 4963 } else if (!ResultPtr && AddrMode.Scale == 1) { 4964 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4965 "sunkaddr"); 4966 AddrMode.Scale = 0; 4967 } 4968 } 4969 4970 if (!ResultPtr && 4971 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4972 SunkAddr = Constant::getNullValue(Addr->getType()); 4973 } else if (!ResultPtr) { 4974 return false; 4975 } else { 4976 Type *I8PtrTy = 4977 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4978 Type *I8Ty = Builder.getInt8Ty(); 4979 4980 // Start with the base register. Do this first so that subsequent address 4981 // matching finds it last, which will prevent it from trying to match it 4982 // as the scaled value in case it happens to be a mul. That would be 4983 // problematic if we've sunk a different mul for the scale, because then 4984 // we'd end up sinking both muls. 4985 if (AddrMode.BaseReg) { 4986 Value *V = AddrMode.BaseReg; 4987 if (V->getType() != IntPtrTy) 4988 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4989 4990 ResultIndex = V; 4991 } 4992 4993 // Add the scale value. 4994 if (AddrMode.Scale) { 4995 Value *V = AddrMode.ScaledReg; 4996 if (V->getType() == IntPtrTy) { 4997 // done. 4998 } else { 4999 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5000 cast<IntegerType>(V->getType())->getBitWidth() && 5001 "We can't transform if ScaledReg is too narrow"); 5002 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5003 } 5004 5005 if (AddrMode.Scale != 1) 5006 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5007 "sunkaddr"); 5008 if (ResultIndex) 5009 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5010 else 5011 ResultIndex = V; 5012 } 5013 5014 // Add in the Base Offset if present. 5015 if (AddrMode.BaseOffs) { 5016 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5017 if (ResultIndex) { 5018 // We need to add this separately from the scale above to help with 5019 // SDAG consecutive load/store merging. 5020 if (ResultPtr->getType() != I8PtrTy) 5021 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5022 ResultPtr = 5023 AddrMode.InBounds 5024 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5025 "sunkaddr") 5026 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5027 } 5028 5029 ResultIndex = V; 5030 } 5031 5032 if (!ResultIndex) { 5033 SunkAddr = ResultPtr; 5034 } else { 5035 if (ResultPtr->getType() != I8PtrTy) 5036 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5037 SunkAddr = 5038 AddrMode.InBounds 5039 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5040 "sunkaddr") 5041 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5042 } 5043 5044 if (SunkAddr->getType() != Addr->getType()) 5045 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5046 } 5047 } else { 5048 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5049 // non-integral pointers, so in that case bail out now. 5050 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5051 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5052 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5053 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5054 if (DL->isNonIntegralPointerType(Addr->getType()) || 5055 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5056 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5057 (AddrMode.BaseGV && 5058 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5059 return false; 5060 5061 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5062 << " for " << *MemoryInst << "\n"); 5063 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5064 Value *Result = nullptr; 5065 5066 // Start with the base register. Do this first so that subsequent address 5067 // matching finds it last, which will prevent it from trying to match it 5068 // as the scaled value in case it happens to be a mul. That would be 5069 // problematic if we've sunk a different mul for the scale, because then 5070 // we'd end up sinking both muls. 5071 if (AddrMode.BaseReg) { 5072 Value *V = AddrMode.BaseReg; 5073 if (V->getType()->isPointerTy()) 5074 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5075 if (V->getType() != IntPtrTy) 5076 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5077 Result = V; 5078 } 5079 5080 // Add the scale value. 5081 if (AddrMode.Scale) { 5082 Value *V = AddrMode.ScaledReg; 5083 if (V->getType() == IntPtrTy) { 5084 // done. 5085 } else if (V->getType()->isPointerTy()) { 5086 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5087 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5088 cast<IntegerType>(V->getType())->getBitWidth()) { 5089 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5090 } else { 5091 // It is only safe to sign extend the BaseReg if we know that the math 5092 // required to create it did not overflow before we extend it. Since 5093 // the original IR value was tossed in favor of a constant back when 5094 // the AddrMode was created we need to bail out gracefully if widths 5095 // do not match instead of extending it. 5096 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5097 if (I && (Result != AddrMode.BaseReg)) 5098 I->eraseFromParent(); 5099 return false; 5100 } 5101 if (AddrMode.Scale != 1) 5102 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5103 "sunkaddr"); 5104 if (Result) 5105 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5106 else 5107 Result = V; 5108 } 5109 5110 // Add in the BaseGV if present. 5111 if (AddrMode.BaseGV) { 5112 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5113 if (Result) 5114 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5115 else 5116 Result = V; 5117 } 5118 5119 // Add in the Base Offset if present. 5120 if (AddrMode.BaseOffs) { 5121 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5122 if (Result) 5123 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5124 else 5125 Result = V; 5126 } 5127 5128 if (!Result) 5129 SunkAddr = Constant::getNullValue(Addr->getType()); 5130 else 5131 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5132 } 5133 5134 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5135 // Store the newly computed address into the cache. In the case we reused a 5136 // value, this should be idempotent. 5137 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5138 5139 // If we have no uses, recursively delete the value and all dead instructions 5140 // using it. 5141 if (Repl->use_empty()) { 5142 // This can cause recursive deletion, which can invalidate our iterator. 5143 // Use a WeakTrackingVH to hold onto it in case this happens. 5144 Value *CurValue = &*CurInstIterator; 5145 WeakTrackingVH IterHandle(CurValue); 5146 BasicBlock *BB = CurInstIterator->getParent(); 5147 5148 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5149 5150 if (IterHandle != CurValue) { 5151 // If the iterator instruction was recursively deleted, start over at the 5152 // start of the block. 5153 CurInstIterator = BB->begin(); 5154 SunkAddrs.clear(); 5155 } 5156 } 5157 ++NumMemoryInsts; 5158 return true; 5159 } 5160 5161 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5162 /// address computing into the block when possible / profitable. 5163 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5164 bool MadeChange = false; 5165 5166 const TargetRegisterInfo *TRI = 5167 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5168 TargetLowering::AsmOperandInfoVector TargetConstraints = 5169 TLI->ParseConstraints(*DL, TRI, CS); 5170 unsigned ArgNo = 0; 5171 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5172 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5173 5174 // Compute the constraint code and ConstraintType to use. 5175 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5176 5177 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5178 OpInfo.isIndirect) { 5179 Value *OpVal = CS->getArgOperand(ArgNo++); 5180 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5181 } else if (OpInfo.Type == InlineAsm::isInput) 5182 ArgNo++; 5183 } 5184 5185 return MadeChange; 5186 } 5187 5188 /// Check if all the uses of \p Val are equivalent (or free) zero or 5189 /// sign extensions. 5190 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5191 assert(!Val->use_empty() && "Input must have at least one use"); 5192 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5193 bool IsSExt = isa<SExtInst>(FirstUser); 5194 Type *ExtTy = FirstUser->getType(); 5195 for (const User *U : Val->users()) { 5196 const Instruction *UI = cast<Instruction>(U); 5197 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5198 return false; 5199 Type *CurTy = UI->getType(); 5200 // Same input and output types: Same instruction after CSE. 5201 if (CurTy == ExtTy) 5202 continue; 5203 5204 // If IsSExt is true, we are in this situation: 5205 // a = Val 5206 // b = sext ty1 a to ty2 5207 // c = sext ty1 a to ty3 5208 // Assuming ty2 is shorter than ty3, this could be turned into: 5209 // a = Val 5210 // b = sext ty1 a to ty2 5211 // c = sext ty2 b to ty3 5212 // However, the last sext is not free. 5213 if (IsSExt) 5214 return false; 5215 5216 // This is a ZExt, maybe this is free to extend from one type to another. 5217 // In that case, we would not account for a different use. 5218 Type *NarrowTy; 5219 Type *LargeTy; 5220 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5221 CurTy->getScalarType()->getIntegerBitWidth()) { 5222 NarrowTy = CurTy; 5223 LargeTy = ExtTy; 5224 } else { 5225 NarrowTy = ExtTy; 5226 LargeTy = CurTy; 5227 } 5228 5229 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5230 return false; 5231 } 5232 // All uses are the same or can be derived from one another for free. 5233 return true; 5234 } 5235 5236 /// Try to speculatively promote extensions in \p Exts and continue 5237 /// promoting through newly promoted operands recursively as far as doing so is 5238 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5239 /// When some promotion happened, \p TPT contains the proper state to revert 5240 /// them. 5241 /// 5242 /// \return true if some promotion happened, false otherwise. 5243 bool CodeGenPrepare::tryToPromoteExts( 5244 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5245 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5246 unsigned CreatedInstsCost) { 5247 bool Promoted = false; 5248 5249 // Iterate over all the extensions to try to promote them. 5250 for (auto I : Exts) { 5251 // Early check if we directly have ext(load). 5252 if (isa<LoadInst>(I->getOperand(0))) { 5253 ProfitablyMovedExts.push_back(I); 5254 continue; 5255 } 5256 5257 // Check whether or not we want to do any promotion. The reason we have 5258 // this check inside the for loop is to catch the case where an extension 5259 // is directly fed by a load because in such case the extension can be moved 5260 // up without any promotion on its operands. 5261 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5262 return false; 5263 5264 // Get the action to perform the promotion. 5265 TypePromotionHelper::Action TPH = 5266 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5267 // Check if we can promote. 5268 if (!TPH) { 5269 // Save the current extension as we cannot move up through its operand. 5270 ProfitablyMovedExts.push_back(I); 5271 continue; 5272 } 5273 5274 // Save the current state. 5275 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5276 TPT.getRestorationPoint(); 5277 SmallVector<Instruction *, 4> NewExts; 5278 unsigned NewCreatedInstsCost = 0; 5279 unsigned ExtCost = !TLI->isExtFree(I); 5280 // Promote. 5281 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5282 &NewExts, nullptr, *TLI); 5283 assert(PromotedVal && 5284 "TypePromotionHelper should have filtered out those cases"); 5285 5286 // We would be able to merge only one extension in a load. 5287 // Therefore, if we have more than 1 new extension we heuristically 5288 // cut this search path, because it means we degrade the code quality. 5289 // With exactly 2, the transformation is neutral, because we will merge 5290 // one extension but leave one. However, we optimistically keep going, 5291 // because the new extension may be removed too. 5292 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5293 // FIXME: It would be possible to propagate a negative value instead of 5294 // conservatively ceiling it to 0. 5295 TotalCreatedInstsCost = 5296 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5297 if (!StressExtLdPromotion && 5298 (TotalCreatedInstsCost > 1 || 5299 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5300 // This promotion is not profitable, rollback to the previous state, and 5301 // save the current extension in ProfitablyMovedExts as the latest 5302 // speculative promotion turned out to be unprofitable. 5303 TPT.rollback(LastKnownGood); 5304 ProfitablyMovedExts.push_back(I); 5305 continue; 5306 } 5307 // Continue promoting NewExts as far as doing so is profitable. 5308 SmallVector<Instruction *, 2> NewlyMovedExts; 5309 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5310 bool NewPromoted = false; 5311 for (auto ExtInst : NewlyMovedExts) { 5312 Instruction *MovedExt = cast<Instruction>(ExtInst); 5313 Value *ExtOperand = MovedExt->getOperand(0); 5314 // If we have reached to a load, we need this extra profitability check 5315 // as it could potentially be merged into an ext(load). 5316 if (isa<LoadInst>(ExtOperand) && 5317 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5318 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5319 continue; 5320 5321 ProfitablyMovedExts.push_back(MovedExt); 5322 NewPromoted = true; 5323 } 5324 5325 // If none of speculative promotions for NewExts is profitable, rollback 5326 // and save the current extension (I) as the last profitable extension. 5327 if (!NewPromoted) { 5328 TPT.rollback(LastKnownGood); 5329 ProfitablyMovedExts.push_back(I); 5330 continue; 5331 } 5332 // The promotion is profitable. 5333 Promoted = true; 5334 } 5335 return Promoted; 5336 } 5337 5338 /// Merging redundant sexts when one is dominating the other. 5339 bool CodeGenPrepare::mergeSExts(Function &F) { 5340 bool Changed = false; 5341 for (auto &Entry : ValToSExtendedUses) { 5342 SExts &Insts = Entry.second; 5343 SExts CurPts; 5344 for (Instruction *Inst : Insts) { 5345 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5346 Inst->getOperand(0) != Entry.first) 5347 continue; 5348 bool inserted = false; 5349 for (auto &Pt : CurPts) { 5350 if (getDT(F).dominates(Inst, Pt)) { 5351 Pt->replaceAllUsesWith(Inst); 5352 RemovedInsts.insert(Pt); 5353 Pt->removeFromParent(); 5354 Pt = Inst; 5355 inserted = true; 5356 Changed = true; 5357 break; 5358 } 5359 if (!getDT(F).dominates(Pt, Inst)) 5360 // Give up if we need to merge in a common dominator as the 5361 // experiments show it is not profitable. 5362 continue; 5363 Inst->replaceAllUsesWith(Pt); 5364 RemovedInsts.insert(Inst); 5365 Inst->removeFromParent(); 5366 inserted = true; 5367 Changed = true; 5368 break; 5369 } 5370 if (!inserted) 5371 CurPts.push_back(Inst); 5372 } 5373 } 5374 return Changed; 5375 } 5376 5377 // Spliting large data structures so that the GEPs accessing them can have 5378 // smaller offsets so that they can be sunk to the same blocks as their users. 5379 // For example, a large struct starting from %base is splitted into two parts 5380 // where the second part starts from %new_base. 5381 // 5382 // Before: 5383 // BB0: 5384 // %base = 5385 // 5386 // BB1: 5387 // %gep0 = gep %base, off0 5388 // %gep1 = gep %base, off1 5389 // %gep2 = gep %base, off2 5390 // 5391 // BB2: 5392 // %load1 = load %gep0 5393 // %load2 = load %gep1 5394 // %load3 = load %gep2 5395 // 5396 // After: 5397 // BB0: 5398 // %base = 5399 // %new_base = gep %base, off0 5400 // 5401 // BB1: 5402 // %new_gep0 = %new_base 5403 // %new_gep1 = gep %new_base, off1 - off0 5404 // %new_gep2 = gep %new_base, off2 - off0 5405 // 5406 // BB2: 5407 // %load1 = load i32, i32* %new_gep0 5408 // %load2 = load i32, i32* %new_gep1 5409 // %load3 = load i32, i32* %new_gep2 5410 // 5411 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5412 // their offsets are smaller enough to fit into the addressing mode. 5413 bool CodeGenPrepare::splitLargeGEPOffsets() { 5414 bool Changed = false; 5415 for (auto &Entry : LargeOffsetGEPMap) { 5416 Value *OldBase = Entry.first; 5417 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5418 &LargeOffsetGEPs = Entry.second; 5419 auto compareGEPOffset = 5420 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5421 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5422 if (LHS.first == RHS.first) 5423 return false; 5424 if (LHS.second != RHS.second) 5425 return LHS.second < RHS.second; 5426 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5427 }; 5428 // Sorting all the GEPs of the same data structures based on the offsets. 5429 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5430 LargeOffsetGEPs.erase( 5431 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5432 LargeOffsetGEPs.end()); 5433 // Skip if all the GEPs have the same offsets. 5434 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5435 continue; 5436 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5437 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5438 Value *NewBaseGEP = nullptr; 5439 5440 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5441 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5442 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5443 int64_t Offset = LargeOffsetGEP->second; 5444 if (Offset != BaseOffset) { 5445 TargetLowering::AddrMode AddrMode; 5446 AddrMode.BaseOffs = Offset - BaseOffset; 5447 // The result type of the GEP might not be the type of the memory 5448 // access. 5449 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5450 GEP->getResultElementType(), 5451 GEP->getAddressSpace())) { 5452 // We need to create a new base if the offset to the current base is 5453 // too large to fit into the addressing mode. So, a very large struct 5454 // may be splitted into several parts. 5455 BaseGEP = GEP; 5456 BaseOffset = Offset; 5457 NewBaseGEP = nullptr; 5458 } 5459 } 5460 5461 // Generate a new GEP to replace the current one. 5462 LLVMContext &Ctx = GEP->getContext(); 5463 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5464 Type *I8PtrTy = 5465 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5466 Type *I8Ty = Type::getInt8Ty(Ctx); 5467 5468 if (!NewBaseGEP) { 5469 // Create a new base if we don't have one yet. Find the insertion 5470 // pointer for the new base first. 5471 BasicBlock::iterator NewBaseInsertPt; 5472 BasicBlock *NewBaseInsertBB; 5473 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5474 // If the base of the struct is an instruction, the new base will be 5475 // inserted close to it. 5476 NewBaseInsertBB = BaseI->getParent(); 5477 if (isa<PHINode>(BaseI)) 5478 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5479 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5480 NewBaseInsertBB = 5481 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5482 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5483 } else 5484 NewBaseInsertPt = std::next(BaseI->getIterator()); 5485 } else { 5486 // If the current base is an argument or global value, the new base 5487 // will be inserted to the entry block. 5488 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5489 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5490 } 5491 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5492 // Create a new base. 5493 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5494 NewBaseGEP = OldBase; 5495 if (NewBaseGEP->getType() != I8PtrTy) 5496 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5497 NewBaseGEP = 5498 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5499 NewGEPBases.insert(NewBaseGEP); 5500 } 5501 5502 IRBuilder<> Builder(GEP); 5503 Value *NewGEP = NewBaseGEP; 5504 if (Offset == BaseOffset) { 5505 if (GEP->getType() != I8PtrTy) 5506 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5507 } else { 5508 // Calculate the new offset for the new GEP. 5509 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5510 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5511 5512 if (GEP->getType() != I8PtrTy) 5513 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5514 } 5515 GEP->replaceAllUsesWith(NewGEP); 5516 LargeOffsetGEPID.erase(GEP); 5517 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5518 GEP->eraseFromParent(); 5519 Changed = true; 5520 } 5521 } 5522 return Changed; 5523 } 5524 5525 /// Return true, if an ext(load) can be formed from an extension in 5526 /// \p MovedExts. 5527 bool CodeGenPrepare::canFormExtLd( 5528 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5529 Instruction *&Inst, bool HasPromoted) { 5530 for (auto *MovedExtInst : MovedExts) { 5531 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5532 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5533 Inst = MovedExtInst; 5534 break; 5535 } 5536 } 5537 if (!LI) 5538 return false; 5539 5540 // If they're already in the same block, there's nothing to do. 5541 // Make the cheap checks first if we did not promote. 5542 // If we promoted, we need to check if it is indeed profitable. 5543 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5544 return false; 5545 5546 return TLI->isExtLoad(LI, Inst, *DL); 5547 } 5548 5549 /// Move a zext or sext fed by a load into the same basic block as the load, 5550 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5551 /// extend into the load. 5552 /// 5553 /// E.g., 5554 /// \code 5555 /// %ld = load i32* %addr 5556 /// %add = add nuw i32 %ld, 4 5557 /// %zext = zext i32 %add to i64 5558 // \endcode 5559 /// => 5560 /// \code 5561 /// %ld = load i32* %addr 5562 /// %zext = zext i32 %ld to i64 5563 /// %add = add nuw i64 %zext, 4 5564 /// \encode 5565 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5566 /// allow us to match zext(load i32*) to i64. 5567 /// 5568 /// Also, try to promote the computations used to obtain a sign extended 5569 /// value used into memory accesses. 5570 /// E.g., 5571 /// \code 5572 /// a = add nsw i32 b, 3 5573 /// d = sext i32 a to i64 5574 /// e = getelementptr ..., i64 d 5575 /// \endcode 5576 /// => 5577 /// \code 5578 /// f = sext i32 b to i64 5579 /// a = add nsw i64 f, 3 5580 /// e = getelementptr ..., i64 a 5581 /// \endcode 5582 /// 5583 /// \p Inst[in/out] the extension may be modified during the process if some 5584 /// promotions apply. 5585 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5586 // ExtLoad formation and address type promotion infrastructure requires TLI to 5587 // be effective. 5588 if (!TLI) 5589 return false; 5590 5591 bool AllowPromotionWithoutCommonHeader = false; 5592 /// See if it is an interesting sext operations for the address type 5593 /// promotion before trying to promote it, e.g., the ones with the right 5594 /// type and used in memory accesses. 5595 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5596 *Inst, AllowPromotionWithoutCommonHeader); 5597 TypePromotionTransaction TPT(RemovedInsts); 5598 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5599 TPT.getRestorationPoint(); 5600 SmallVector<Instruction *, 1> Exts; 5601 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5602 Exts.push_back(Inst); 5603 5604 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5605 5606 // Look for a load being extended. 5607 LoadInst *LI = nullptr; 5608 Instruction *ExtFedByLoad; 5609 5610 // Try to promote a chain of computation if it allows to form an extended 5611 // load. 5612 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5613 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5614 TPT.commit(); 5615 // Move the extend into the same block as the load 5616 ExtFedByLoad->moveAfter(LI); 5617 // CGP does not check if the zext would be speculatively executed when moved 5618 // to the same basic block as the load. Preserving its original location 5619 // would pessimize the debugging experience, as well as negatively impact 5620 // the quality of sample pgo. We don't want to use "line 0" as that has a 5621 // size cost in the line-table section and logically the zext can be seen as 5622 // part of the load. Therefore we conservatively reuse the same debug 5623 // location for the load and the zext. 5624 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5625 ++NumExtsMoved; 5626 Inst = ExtFedByLoad; 5627 return true; 5628 } 5629 5630 // Continue promoting SExts if known as considerable depending on targets. 5631 if (ATPConsiderable && 5632 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5633 HasPromoted, TPT, SpeculativelyMovedExts)) 5634 return true; 5635 5636 TPT.rollback(LastKnownGood); 5637 return false; 5638 } 5639 5640 // Perform address type promotion if doing so is profitable. 5641 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5642 // instructions that sign extended the same initial value. However, if 5643 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5644 // extension is just profitable. 5645 bool CodeGenPrepare::performAddressTypePromotion( 5646 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5647 bool HasPromoted, TypePromotionTransaction &TPT, 5648 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5649 bool Promoted = false; 5650 SmallPtrSet<Instruction *, 1> UnhandledExts; 5651 bool AllSeenFirst = true; 5652 for (auto I : SpeculativelyMovedExts) { 5653 Value *HeadOfChain = I->getOperand(0); 5654 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5655 SeenChainsForSExt.find(HeadOfChain); 5656 // If there is an unhandled SExt which has the same header, try to promote 5657 // it as well. 5658 if (AlreadySeen != SeenChainsForSExt.end()) { 5659 if (AlreadySeen->second != nullptr) 5660 UnhandledExts.insert(AlreadySeen->second); 5661 AllSeenFirst = false; 5662 } 5663 } 5664 5665 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5666 SpeculativelyMovedExts.size() == 1)) { 5667 TPT.commit(); 5668 if (HasPromoted) 5669 Promoted = true; 5670 for (auto I : SpeculativelyMovedExts) { 5671 Value *HeadOfChain = I->getOperand(0); 5672 SeenChainsForSExt[HeadOfChain] = nullptr; 5673 ValToSExtendedUses[HeadOfChain].push_back(I); 5674 } 5675 // Update Inst as promotion happen. 5676 Inst = SpeculativelyMovedExts.pop_back_val(); 5677 } else { 5678 // This is the first chain visited from the header, keep the current chain 5679 // as unhandled. Defer to promote this until we encounter another SExt 5680 // chain derived from the same header. 5681 for (auto I : SpeculativelyMovedExts) { 5682 Value *HeadOfChain = I->getOperand(0); 5683 SeenChainsForSExt[HeadOfChain] = Inst; 5684 } 5685 return false; 5686 } 5687 5688 if (!AllSeenFirst && !UnhandledExts.empty()) 5689 for (auto VisitedSExt : UnhandledExts) { 5690 if (RemovedInsts.count(VisitedSExt)) 5691 continue; 5692 TypePromotionTransaction TPT(RemovedInsts); 5693 SmallVector<Instruction *, 1> Exts; 5694 SmallVector<Instruction *, 2> Chains; 5695 Exts.push_back(VisitedSExt); 5696 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5697 TPT.commit(); 5698 if (HasPromoted) 5699 Promoted = true; 5700 for (auto I : Chains) { 5701 Value *HeadOfChain = I->getOperand(0); 5702 // Mark this as handled. 5703 SeenChainsForSExt[HeadOfChain] = nullptr; 5704 ValToSExtendedUses[HeadOfChain].push_back(I); 5705 } 5706 } 5707 return Promoted; 5708 } 5709 5710 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5711 BasicBlock *DefBB = I->getParent(); 5712 5713 // If the result of a {s|z}ext and its source are both live out, rewrite all 5714 // other uses of the source with result of extension. 5715 Value *Src = I->getOperand(0); 5716 if (Src->hasOneUse()) 5717 return false; 5718 5719 // Only do this xform if truncating is free. 5720 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5721 return false; 5722 5723 // Only safe to perform the optimization if the source is also defined in 5724 // this block. 5725 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5726 return false; 5727 5728 bool DefIsLiveOut = false; 5729 for (User *U : I->users()) { 5730 Instruction *UI = cast<Instruction>(U); 5731 5732 // Figure out which BB this ext is used in. 5733 BasicBlock *UserBB = UI->getParent(); 5734 if (UserBB == DefBB) continue; 5735 DefIsLiveOut = true; 5736 break; 5737 } 5738 if (!DefIsLiveOut) 5739 return false; 5740 5741 // Make sure none of the uses are PHI nodes. 5742 for (User *U : Src->users()) { 5743 Instruction *UI = cast<Instruction>(U); 5744 BasicBlock *UserBB = UI->getParent(); 5745 if (UserBB == DefBB) continue; 5746 // Be conservative. We don't want this xform to end up introducing 5747 // reloads just before load / store instructions. 5748 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5749 return false; 5750 } 5751 5752 // InsertedTruncs - Only insert one trunc in each block once. 5753 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5754 5755 bool MadeChange = false; 5756 for (Use &U : Src->uses()) { 5757 Instruction *User = cast<Instruction>(U.getUser()); 5758 5759 // Figure out which BB this ext is used in. 5760 BasicBlock *UserBB = User->getParent(); 5761 if (UserBB == DefBB) continue; 5762 5763 // Both src and def are live in this block. Rewrite the use. 5764 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5765 5766 if (!InsertedTrunc) { 5767 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5768 assert(InsertPt != UserBB->end()); 5769 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5770 InsertedInsts.insert(InsertedTrunc); 5771 } 5772 5773 // Replace a use of the {s|z}ext source with a use of the result. 5774 U = InsertedTrunc; 5775 ++NumExtUses; 5776 MadeChange = true; 5777 } 5778 5779 return MadeChange; 5780 } 5781 5782 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5783 // just after the load if the target can fold this into one extload instruction, 5784 // with the hope of eliminating some of the other later "and" instructions using 5785 // the loaded value. "and"s that are made trivially redundant by the insertion 5786 // of the new "and" are removed by this function, while others (e.g. those whose 5787 // path from the load goes through a phi) are left for isel to potentially 5788 // remove. 5789 // 5790 // For example: 5791 // 5792 // b0: 5793 // x = load i32 5794 // ... 5795 // b1: 5796 // y = and x, 0xff 5797 // z = use y 5798 // 5799 // becomes: 5800 // 5801 // b0: 5802 // x = load i32 5803 // x' = and x, 0xff 5804 // ... 5805 // b1: 5806 // z = use x' 5807 // 5808 // whereas: 5809 // 5810 // b0: 5811 // x1 = load i32 5812 // ... 5813 // b1: 5814 // x2 = load i32 5815 // ... 5816 // b2: 5817 // x = phi x1, x2 5818 // y = and x, 0xff 5819 // 5820 // becomes (after a call to optimizeLoadExt for each load): 5821 // 5822 // b0: 5823 // x1 = load i32 5824 // x1' = and x1, 0xff 5825 // ... 5826 // b1: 5827 // x2 = load i32 5828 // x2' = and x2, 0xff 5829 // ... 5830 // b2: 5831 // x = phi x1', x2' 5832 // y = and x, 0xff 5833 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5834 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5835 return false; 5836 5837 // Skip loads we've already transformed. 5838 if (Load->hasOneUse() && 5839 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5840 return false; 5841 5842 // Look at all uses of Load, looking through phis, to determine how many bits 5843 // of the loaded value are needed. 5844 SmallVector<Instruction *, 8> WorkList; 5845 SmallPtrSet<Instruction *, 16> Visited; 5846 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5847 for (auto *U : Load->users()) 5848 WorkList.push_back(cast<Instruction>(U)); 5849 5850 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5851 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5852 APInt DemandBits(BitWidth, 0); 5853 APInt WidestAndBits(BitWidth, 0); 5854 5855 while (!WorkList.empty()) { 5856 Instruction *I = WorkList.back(); 5857 WorkList.pop_back(); 5858 5859 // Break use-def graph loops. 5860 if (!Visited.insert(I).second) 5861 continue; 5862 5863 // For a PHI node, push all of its users. 5864 if (auto *Phi = dyn_cast<PHINode>(I)) { 5865 for (auto *U : Phi->users()) 5866 WorkList.push_back(cast<Instruction>(U)); 5867 continue; 5868 } 5869 5870 switch (I->getOpcode()) { 5871 case Instruction::And: { 5872 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5873 if (!AndC) 5874 return false; 5875 APInt AndBits = AndC->getValue(); 5876 DemandBits |= AndBits; 5877 // Keep track of the widest and mask we see. 5878 if (AndBits.ugt(WidestAndBits)) 5879 WidestAndBits = AndBits; 5880 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5881 AndsToMaybeRemove.push_back(I); 5882 break; 5883 } 5884 5885 case Instruction::Shl: { 5886 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5887 if (!ShlC) 5888 return false; 5889 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5890 DemandBits.setLowBits(BitWidth - ShiftAmt); 5891 break; 5892 } 5893 5894 case Instruction::Trunc: { 5895 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5896 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5897 DemandBits.setLowBits(TruncBitWidth); 5898 break; 5899 } 5900 5901 default: 5902 return false; 5903 } 5904 } 5905 5906 uint32_t ActiveBits = DemandBits.getActiveBits(); 5907 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5908 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5909 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5910 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5911 // followed by an AND. 5912 // TODO: Look into removing this restriction by fixing backends to either 5913 // return false for isLoadExtLegal for i1 or have them select this pattern to 5914 // a single instruction. 5915 // 5916 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5917 // mask, since these are the only ands that will be removed by isel. 5918 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5919 WidestAndBits != DemandBits) 5920 return false; 5921 5922 LLVMContext &Ctx = Load->getType()->getContext(); 5923 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5924 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5925 5926 // Reject cases that won't be matched as extloads. 5927 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5928 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5929 return false; 5930 5931 IRBuilder<> Builder(Load->getNextNode()); 5932 auto *NewAnd = cast<Instruction>( 5933 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5934 // Mark this instruction as "inserted by CGP", so that other 5935 // optimizations don't touch it. 5936 InsertedInsts.insert(NewAnd); 5937 5938 // Replace all uses of load with new and (except for the use of load in the 5939 // new and itself). 5940 Load->replaceAllUsesWith(NewAnd); 5941 NewAnd->setOperand(0, Load); 5942 5943 // Remove any and instructions that are now redundant. 5944 for (auto *And : AndsToMaybeRemove) 5945 // Check that the and mask is the same as the one we decided to put on the 5946 // new and. 5947 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5948 And->replaceAllUsesWith(NewAnd); 5949 if (&*CurInstIterator == And) 5950 CurInstIterator = std::next(And->getIterator()); 5951 And->eraseFromParent(); 5952 ++NumAndUses; 5953 } 5954 5955 ++NumAndsAdded; 5956 return true; 5957 } 5958 5959 /// Check if V (an operand of a select instruction) is an expensive instruction 5960 /// that is only used once. 5961 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5962 auto *I = dyn_cast<Instruction>(V); 5963 // If it's safe to speculatively execute, then it should not have side 5964 // effects; therefore, it's safe to sink and possibly *not* execute. 5965 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5966 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5967 } 5968 5969 /// Returns true if a SelectInst should be turned into an explicit branch. 5970 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5971 const TargetLowering *TLI, 5972 SelectInst *SI) { 5973 // If even a predictable select is cheap, then a branch can't be cheaper. 5974 if (!TLI->isPredictableSelectExpensive()) 5975 return false; 5976 5977 // FIXME: This should use the same heuristics as IfConversion to determine 5978 // whether a select is better represented as a branch. 5979 5980 // If metadata tells us that the select condition is obviously predictable, 5981 // then we want to replace the select with a branch. 5982 uint64_t TrueWeight, FalseWeight; 5983 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5984 uint64_t Max = std::max(TrueWeight, FalseWeight); 5985 uint64_t Sum = TrueWeight + FalseWeight; 5986 if (Sum != 0) { 5987 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5988 if (Probability > TLI->getPredictableBranchThreshold()) 5989 return true; 5990 } 5991 } 5992 5993 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5994 5995 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5996 // comparison condition. If the compare has more than one use, there's 5997 // probably another cmov or setcc around, so it's not worth emitting a branch. 5998 if (!Cmp || !Cmp->hasOneUse()) 5999 return false; 6000 6001 // If either operand of the select is expensive and only needed on one side 6002 // of the select, we should form a branch. 6003 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6004 sinkSelectOperand(TTI, SI->getFalseValue())) 6005 return true; 6006 6007 return false; 6008 } 6009 6010 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6011 /// false value of \p SI. If the true/false value of \p SI is defined by any 6012 /// select instructions in \p Selects, look through the defining select 6013 /// instruction until the true/false value is not defined in \p Selects. 6014 static Value *getTrueOrFalseValue( 6015 SelectInst *SI, bool isTrue, 6016 const SmallPtrSet<const Instruction *, 2> &Selects) { 6017 Value *V = nullptr; 6018 6019 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6020 DefSI = dyn_cast<SelectInst>(V)) { 6021 assert(DefSI->getCondition() == SI->getCondition() && 6022 "The condition of DefSI does not match with SI"); 6023 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6024 } 6025 6026 assert(V && "Failed to get select true/false value"); 6027 return V; 6028 } 6029 6030 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6031 assert(Shift->isShift() && "Expected a shift"); 6032 6033 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6034 // general vector shifts, and (3) the shift amount is a select-of-splatted 6035 // values, hoist the shifts before the select: 6036 // shift Op0, (select Cond, TVal, FVal) --> 6037 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6038 // 6039 // This is inverting a generic IR transform when we know that the cost of a 6040 // general vector shift is more than the cost of 2 shift-by-scalars. 6041 // We can't do this effectively in SDAG because we may not be able to 6042 // determine if the select operands are splats from within a basic block. 6043 Type *Ty = Shift->getType(); 6044 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6045 return false; 6046 Value *Cond, *TVal, *FVal; 6047 if (!match(Shift->getOperand(1), 6048 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6049 return false; 6050 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6051 return false; 6052 6053 IRBuilder<> Builder(Shift); 6054 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6055 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6056 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6057 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6058 Shift->replaceAllUsesWith(NewSel); 6059 Shift->eraseFromParent(); 6060 return true; 6061 } 6062 6063 /// If we have a SelectInst that will likely profit from branch prediction, 6064 /// turn it into a branch. 6065 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6066 // If branch conversion isn't desirable, exit early. 6067 if (DisableSelectToBranch || 6068 OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()) || 6069 !TLI) 6070 return false; 6071 6072 // Find all consecutive select instructions that share the same condition. 6073 SmallVector<SelectInst *, 2> ASI; 6074 ASI.push_back(SI); 6075 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6076 It != SI->getParent()->end(); ++It) { 6077 SelectInst *I = dyn_cast<SelectInst>(&*It); 6078 if (I && SI->getCondition() == I->getCondition()) { 6079 ASI.push_back(I); 6080 } else { 6081 break; 6082 } 6083 } 6084 6085 SelectInst *LastSI = ASI.back(); 6086 // Increment the current iterator to skip all the rest of select instructions 6087 // because they will be either "not lowered" or "all lowered" to branch. 6088 CurInstIterator = std::next(LastSI->getIterator()); 6089 6090 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6091 6092 // Can we convert the 'select' to CF ? 6093 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6094 return false; 6095 6096 TargetLowering::SelectSupportKind SelectKind; 6097 if (VectorCond) 6098 SelectKind = TargetLowering::VectorMaskSelect; 6099 else if (SI->getType()->isVectorTy()) 6100 SelectKind = TargetLowering::ScalarCondVectorVal; 6101 else 6102 SelectKind = TargetLowering::ScalarValSelect; 6103 6104 if (TLI->isSelectSupported(SelectKind) && 6105 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6106 return false; 6107 6108 // The DominatorTree needs to be rebuilt by any consumers after this 6109 // transformation. We simply reset here rather than setting the ModifiedDT 6110 // flag to avoid restarting the function walk in runOnFunction for each 6111 // select optimized. 6112 DT.reset(); 6113 6114 // Transform a sequence like this: 6115 // start: 6116 // %cmp = cmp uge i32 %a, %b 6117 // %sel = select i1 %cmp, i32 %c, i32 %d 6118 // 6119 // Into: 6120 // start: 6121 // %cmp = cmp uge i32 %a, %b 6122 // br i1 %cmp, label %select.true, label %select.false 6123 // select.true: 6124 // br label %select.end 6125 // select.false: 6126 // br label %select.end 6127 // select.end: 6128 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6129 // 6130 // In addition, we may sink instructions that produce %c or %d from 6131 // the entry block into the destination(s) of the new branch. 6132 // If the true or false blocks do not contain a sunken instruction, that 6133 // block and its branch may be optimized away. In that case, one side of the 6134 // first branch will point directly to select.end, and the corresponding PHI 6135 // predecessor block will be the start block. 6136 6137 // First, we split the block containing the select into 2 blocks. 6138 BasicBlock *StartBlock = SI->getParent(); 6139 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6140 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6141 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6142 6143 // Delete the unconditional branch that was just created by the split. 6144 StartBlock->getTerminator()->eraseFromParent(); 6145 6146 // These are the new basic blocks for the conditional branch. 6147 // At least one will become an actual new basic block. 6148 BasicBlock *TrueBlock = nullptr; 6149 BasicBlock *FalseBlock = nullptr; 6150 BranchInst *TrueBranch = nullptr; 6151 BranchInst *FalseBranch = nullptr; 6152 6153 // Sink expensive instructions into the conditional blocks to avoid executing 6154 // them speculatively. 6155 for (SelectInst *SI : ASI) { 6156 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6157 if (TrueBlock == nullptr) { 6158 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6159 EndBlock->getParent(), EndBlock); 6160 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6161 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6162 } 6163 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6164 TrueInst->moveBefore(TrueBranch); 6165 } 6166 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6167 if (FalseBlock == nullptr) { 6168 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6169 EndBlock->getParent(), EndBlock); 6170 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6171 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6172 } 6173 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6174 FalseInst->moveBefore(FalseBranch); 6175 } 6176 } 6177 6178 // If there was nothing to sink, then arbitrarily choose the 'false' side 6179 // for a new input value to the PHI. 6180 if (TrueBlock == FalseBlock) { 6181 assert(TrueBlock == nullptr && 6182 "Unexpected basic block transform while optimizing select"); 6183 6184 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6185 EndBlock->getParent(), EndBlock); 6186 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6187 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6188 } 6189 6190 // Insert the real conditional branch based on the original condition. 6191 // If we did not create a new block for one of the 'true' or 'false' paths 6192 // of the condition, it means that side of the branch goes to the end block 6193 // directly and the path originates from the start block from the point of 6194 // view of the new PHI. 6195 BasicBlock *TT, *FT; 6196 if (TrueBlock == nullptr) { 6197 TT = EndBlock; 6198 FT = FalseBlock; 6199 TrueBlock = StartBlock; 6200 } else if (FalseBlock == nullptr) { 6201 TT = TrueBlock; 6202 FT = EndBlock; 6203 FalseBlock = StartBlock; 6204 } else { 6205 TT = TrueBlock; 6206 FT = FalseBlock; 6207 } 6208 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6209 6210 SmallPtrSet<const Instruction *, 2> INS; 6211 INS.insert(ASI.begin(), ASI.end()); 6212 // Use reverse iterator because later select may use the value of the 6213 // earlier select, and we need to propagate value through earlier select 6214 // to get the PHI operand. 6215 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6216 SelectInst *SI = *It; 6217 // The select itself is replaced with a PHI Node. 6218 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6219 PN->takeName(SI); 6220 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6221 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6222 PN->setDebugLoc(SI->getDebugLoc()); 6223 6224 SI->replaceAllUsesWith(PN); 6225 SI->eraseFromParent(); 6226 INS.erase(SI); 6227 ++NumSelectsExpanded; 6228 } 6229 6230 // Instruct OptimizeBlock to skip to the next block. 6231 CurInstIterator = StartBlock->end(); 6232 return true; 6233 } 6234 6235 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6236 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6237 int SplatElem = -1; 6238 for (unsigned i = 0; i < Mask.size(); ++i) { 6239 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6240 return false; 6241 SplatElem = Mask[i]; 6242 } 6243 6244 return true; 6245 } 6246 6247 /// Some targets have expensive vector shifts if the lanes aren't all the same 6248 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6249 /// it's often worth sinking a shufflevector splat down to its use so that 6250 /// codegen can spot all lanes are identical. 6251 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6252 BasicBlock *DefBB = SVI->getParent(); 6253 6254 // Only do this xform if variable vector shifts are particularly expensive. 6255 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6256 return false; 6257 6258 // We only expect better codegen by sinking a shuffle if we can recognise a 6259 // constant splat. 6260 if (!isBroadcastShuffle(SVI)) 6261 return false; 6262 6263 // InsertedShuffles - Only insert a shuffle in each block once. 6264 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6265 6266 bool MadeChange = false; 6267 for (User *U : SVI->users()) { 6268 Instruction *UI = cast<Instruction>(U); 6269 6270 // Figure out which BB this ext is used in. 6271 BasicBlock *UserBB = UI->getParent(); 6272 if (UserBB == DefBB) continue; 6273 6274 // For now only apply this when the splat is used by a shift instruction. 6275 if (!UI->isShift()) continue; 6276 6277 // Everything checks out, sink the shuffle if the user's block doesn't 6278 // already have a copy. 6279 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6280 6281 if (!InsertedShuffle) { 6282 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6283 assert(InsertPt != UserBB->end()); 6284 InsertedShuffle = 6285 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6286 SVI->getOperand(2), "", &*InsertPt); 6287 InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); 6288 } 6289 6290 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6291 MadeChange = true; 6292 } 6293 6294 // If we removed all uses, nuke the shuffle. 6295 if (SVI->use_empty()) { 6296 SVI->eraseFromParent(); 6297 MadeChange = true; 6298 } 6299 6300 return MadeChange; 6301 } 6302 6303 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6304 // If the operands of I can be folded into a target instruction together with 6305 // I, duplicate and sink them. 6306 SmallVector<Use *, 4> OpsToSink; 6307 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6308 return false; 6309 6310 // OpsToSink can contain multiple uses in a use chain (e.g. 6311 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6312 // uses must come first, so we process the ops in reverse order so as to not 6313 // create invalid IR. 6314 BasicBlock *TargetBB = I->getParent(); 6315 bool Changed = false; 6316 SmallVector<Use *, 4> ToReplace; 6317 for (Use *U : reverse(OpsToSink)) { 6318 auto *UI = cast<Instruction>(U->get()); 6319 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6320 continue; 6321 ToReplace.push_back(U); 6322 } 6323 6324 SetVector<Instruction *> MaybeDead; 6325 DenseMap<Instruction *, Instruction *> NewInstructions; 6326 Instruction *InsertPoint = I; 6327 for (Use *U : ToReplace) { 6328 auto *UI = cast<Instruction>(U->get()); 6329 Instruction *NI = UI->clone(); 6330 NewInstructions[UI] = NI; 6331 MaybeDead.insert(UI); 6332 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6333 NI->insertBefore(InsertPoint); 6334 InsertPoint = NI; 6335 InsertedInsts.insert(NI); 6336 6337 // Update the use for the new instruction, making sure that we update the 6338 // sunk instruction uses, if it is part of a chain that has already been 6339 // sunk. 6340 Instruction *OldI = cast<Instruction>(U->getUser()); 6341 if (NewInstructions.count(OldI)) 6342 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6343 else 6344 U->set(NI); 6345 Changed = true; 6346 } 6347 6348 // Remove instructions that are dead after sinking. 6349 for (auto *I : MaybeDead) { 6350 if (!I->hasNUsesOrMore(1)) { 6351 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6352 I->eraseFromParent(); 6353 } 6354 } 6355 6356 return Changed; 6357 } 6358 6359 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6360 if (!TLI || !DL) 6361 return false; 6362 6363 Value *Cond = SI->getCondition(); 6364 Type *OldType = Cond->getType(); 6365 LLVMContext &Context = Cond->getContext(); 6366 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6367 unsigned RegWidth = RegType.getSizeInBits(); 6368 6369 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6370 return false; 6371 6372 // If the register width is greater than the type width, expand the condition 6373 // of the switch instruction and each case constant to the width of the 6374 // register. By widening the type of the switch condition, subsequent 6375 // comparisons (for case comparisons) will not need to be extended to the 6376 // preferred register width, so we will potentially eliminate N-1 extends, 6377 // where N is the number of cases in the switch. 6378 auto *NewType = Type::getIntNTy(Context, RegWidth); 6379 6380 // Zero-extend the switch condition and case constants unless the switch 6381 // condition is a function argument that is already being sign-extended. 6382 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6383 // everything instead. 6384 Instruction::CastOps ExtType = Instruction::ZExt; 6385 if (auto *Arg = dyn_cast<Argument>(Cond)) 6386 if (Arg->hasSExtAttr()) 6387 ExtType = Instruction::SExt; 6388 6389 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6390 ExtInst->insertBefore(SI); 6391 ExtInst->setDebugLoc(SI->getDebugLoc()); 6392 SI->setCondition(ExtInst); 6393 for (auto Case : SI->cases()) { 6394 APInt NarrowConst = Case.getCaseValue()->getValue(); 6395 APInt WideConst = (ExtType == Instruction::ZExt) ? 6396 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6397 Case.setValue(ConstantInt::get(Context, WideConst)); 6398 } 6399 6400 return true; 6401 } 6402 6403 6404 namespace { 6405 6406 /// Helper class to promote a scalar operation to a vector one. 6407 /// This class is used to move downward extractelement transition. 6408 /// E.g., 6409 /// a = vector_op <2 x i32> 6410 /// b = extractelement <2 x i32> a, i32 0 6411 /// c = scalar_op b 6412 /// store c 6413 /// 6414 /// => 6415 /// a = vector_op <2 x i32> 6416 /// c = vector_op a (equivalent to scalar_op on the related lane) 6417 /// * d = extractelement <2 x i32> c, i32 0 6418 /// * store d 6419 /// Assuming both extractelement and store can be combine, we get rid of the 6420 /// transition. 6421 class VectorPromoteHelper { 6422 /// DataLayout associated with the current module. 6423 const DataLayout &DL; 6424 6425 /// Used to perform some checks on the legality of vector operations. 6426 const TargetLowering &TLI; 6427 6428 /// Used to estimated the cost of the promoted chain. 6429 const TargetTransformInfo &TTI; 6430 6431 /// The transition being moved downwards. 6432 Instruction *Transition; 6433 6434 /// The sequence of instructions to be promoted. 6435 SmallVector<Instruction *, 4> InstsToBePromoted; 6436 6437 /// Cost of combining a store and an extract. 6438 unsigned StoreExtractCombineCost; 6439 6440 /// Instruction that will be combined with the transition. 6441 Instruction *CombineInst = nullptr; 6442 6443 /// The instruction that represents the current end of the transition. 6444 /// Since we are faking the promotion until we reach the end of the chain 6445 /// of computation, we need a way to get the current end of the transition. 6446 Instruction *getEndOfTransition() const { 6447 if (InstsToBePromoted.empty()) 6448 return Transition; 6449 return InstsToBePromoted.back(); 6450 } 6451 6452 /// Return the index of the original value in the transition. 6453 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6454 /// c, is at index 0. 6455 unsigned getTransitionOriginalValueIdx() const { 6456 assert(isa<ExtractElementInst>(Transition) && 6457 "Other kind of transitions are not supported yet"); 6458 return 0; 6459 } 6460 6461 /// Return the index of the index in the transition. 6462 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6463 /// is at index 1. 6464 unsigned getTransitionIdx() const { 6465 assert(isa<ExtractElementInst>(Transition) && 6466 "Other kind of transitions are not supported yet"); 6467 return 1; 6468 } 6469 6470 /// Get the type of the transition. 6471 /// This is the type of the original value. 6472 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6473 /// transition is <2 x i32>. 6474 Type *getTransitionType() const { 6475 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6476 } 6477 6478 /// Promote \p ToBePromoted by moving \p Def downward through. 6479 /// I.e., we have the following sequence: 6480 /// Def = Transition <ty1> a to <ty2> 6481 /// b = ToBePromoted <ty2> Def, ... 6482 /// => 6483 /// b = ToBePromoted <ty1> a, ... 6484 /// Def = Transition <ty1> ToBePromoted to <ty2> 6485 void promoteImpl(Instruction *ToBePromoted); 6486 6487 /// Check whether or not it is profitable to promote all the 6488 /// instructions enqueued to be promoted. 6489 bool isProfitableToPromote() { 6490 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6491 unsigned Index = isa<ConstantInt>(ValIdx) 6492 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6493 : -1; 6494 Type *PromotedType = getTransitionType(); 6495 6496 StoreInst *ST = cast<StoreInst>(CombineInst); 6497 unsigned AS = ST->getPointerAddressSpace(); 6498 unsigned Align = ST->getAlignment(); 6499 // Check if this store is supported. 6500 if (!TLI.allowsMisalignedMemoryAccesses( 6501 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6502 Align)) { 6503 // If this is not supported, there is no way we can combine 6504 // the extract with the store. 6505 return false; 6506 } 6507 6508 // The scalar chain of computation has to pay for the transition 6509 // scalar to vector. 6510 // The vector chain has to account for the combining cost. 6511 uint64_t ScalarCost = 6512 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6513 uint64_t VectorCost = StoreExtractCombineCost; 6514 for (const auto &Inst : InstsToBePromoted) { 6515 // Compute the cost. 6516 // By construction, all instructions being promoted are arithmetic ones. 6517 // Moreover, one argument is a constant that can be viewed as a splat 6518 // constant. 6519 Value *Arg0 = Inst->getOperand(0); 6520 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6521 isa<ConstantFP>(Arg0); 6522 TargetTransformInfo::OperandValueKind Arg0OVK = 6523 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6524 : TargetTransformInfo::OK_AnyValue; 6525 TargetTransformInfo::OperandValueKind Arg1OVK = 6526 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6527 : TargetTransformInfo::OK_AnyValue; 6528 ScalarCost += TTI.getArithmeticInstrCost( 6529 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6530 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6531 Arg0OVK, Arg1OVK); 6532 } 6533 LLVM_DEBUG( 6534 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6535 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6536 return ScalarCost > VectorCost; 6537 } 6538 6539 /// Generate a constant vector with \p Val with the same 6540 /// number of elements as the transition. 6541 /// \p UseSplat defines whether or not \p Val should be replicated 6542 /// across the whole vector. 6543 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6544 /// otherwise we generate a vector with as many undef as possible: 6545 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6546 /// used at the index of the extract. 6547 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6548 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6549 if (!UseSplat) { 6550 // If we cannot determine where the constant must be, we have to 6551 // use a splat constant. 6552 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6553 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6554 ExtractIdx = CstVal->getSExtValue(); 6555 else 6556 UseSplat = true; 6557 } 6558 6559 unsigned End = getTransitionType()->getVectorNumElements(); 6560 if (UseSplat) 6561 return ConstantVector::getSplat(End, Val); 6562 6563 SmallVector<Constant *, 4> ConstVec; 6564 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6565 for (unsigned Idx = 0; Idx != End; ++Idx) { 6566 if (Idx == ExtractIdx) 6567 ConstVec.push_back(Val); 6568 else 6569 ConstVec.push_back(UndefVal); 6570 } 6571 return ConstantVector::get(ConstVec); 6572 } 6573 6574 /// Check if promoting to a vector type an operand at \p OperandIdx 6575 /// in \p Use can trigger undefined behavior. 6576 static bool canCauseUndefinedBehavior(const Instruction *Use, 6577 unsigned OperandIdx) { 6578 // This is not safe to introduce undef when the operand is on 6579 // the right hand side of a division-like instruction. 6580 if (OperandIdx != 1) 6581 return false; 6582 switch (Use->getOpcode()) { 6583 default: 6584 return false; 6585 case Instruction::SDiv: 6586 case Instruction::UDiv: 6587 case Instruction::SRem: 6588 case Instruction::URem: 6589 return true; 6590 case Instruction::FDiv: 6591 case Instruction::FRem: 6592 return !Use->hasNoNaNs(); 6593 } 6594 llvm_unreachable(nullptr); 6595 } 6596 6597 public: 6598 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6599 const TargetTransformInfo &TTI, Instruction *Transition, 6600 unsigned CombineCost) 6601 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6602 StoreExtractCombineCost(CombineCost) { 6603 assert(Transition && "Do not know how to promote null"); 6604 } 6605 6606 /// Check if we can promote \p ToBePromoted to \p Type. 6607 bool canPromote(const Instruction *ToBePromoted) const { 6608 // We could support CastInst too. 6609 return isa<BinaryOperator>(ToBePromoted); 6610 } 6611 6612 /// Check if it is profitable to promote \p ToBePromoted 6613 /// by moving downward the transition through. 6614 bool shouldPromote(const Instruction *ToBePromoted) const { 6615 // Promote only if all the operands can be statically expanded. 6616 // Indeed, we do not want to introduce any new kind of transitions. 6617 for (const Use &U : ToBePromoted->operands()) { 6618 const Value *Val = U.get(); 6619 if (Val == getEndOfTransition()) { 6620 // If the use is a division and the transition is on the rhs, 6621 // we cannot promote the operation, otherwise we may create a 6622 // division by zero. 6623 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6624 return false; 6625 continue; 6626 } 6627 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6628 !isa<ConstantFP>(Val)) 6629 return false; 6630 } 6631 // Check that the resulting operation is legal. 6632 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6633 if (!ISDOpcode) 6634 return false; 6635 return StressStoreExtract || 6636 TLI.isOperationLegalOrCustom( 6637 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6638 } 6639 6640 /// Check whether or not \p Use can be combined 6641 /// with the transition. 6642 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6643 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6644 6645 /// Record \p ToBePromoted as part of the chain to be promoted. 6646 void enqueueForPromotion(Instruction *ToBePromoted) { 6647 InstsToBePromoted.push_back(ToBePromoted); 6648 } 6649 6650 /// Set the instruction that will be combined with the transition. 6651 void recordCombineInstruction(Instruction *ToBeCombined) { 6652 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6653 CombineInst = ToBeCombined; 6654 } 6655 6656 /// Promote all the instructions enqueued for promotion if it is 6657 /// is profitable. 6658 /// \return True if the promotion happened, false otherwise. 6659 bool promote() { 6660 // Check if there is something to promote. 6661 // Right now, if we do not have anything to combine with, 6662 // we assume the promotion is not profitable. 6663 if (InstsToBePromoted.empty() || !CombineInst) 6664 return false; 6665 6666 // Check cost. 6667 if (!StressStoreExtract && !isProfitableToPromote()) 6668 return false; 6669 6670 // Promote. 6671 for (auto &ToBePromoted : InstsToBePromoted) 6672 promoteImpl(ToBePromoted); 6673 InstsToBePromoted.clear(); 6674 return true; 6675 } 6676 }; 6677 6678 } // end anonymous namespace 6679 6680 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6681 // At this point, we know that all the operands of ToBePromoted but Def 6682 // can be statically promoted. 6683 // For Def, we need to use its parameter in ToBePromoted: 6684 // b = ToBePromoted ty1 a 6685 // Def = Transition ty1 b to ty2 6686 // Move the transition down. 6687 // 1. Replace all uses of the promoted operation by the transition. 6688 // = ... b => = ... Def. 6689 assert(ToBePromoted->getType() == Transition->getType() && 6690 "The type of the result of the transition does not match " 6691 "the final type"); 6692 ToBePromoted->replaceAllUsesWith(Transition); 6693 // 2. Update the type of the uses. 6694 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6695 Type *TransitionTy = getTransitionType(); 6696 ToBePromoted->mutateType(TransitionTy); 6697 // 3. Update all the operands of the promoted operation with promoted 6698 // operands. 6699 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6700 for (Use &U : ToBePromoted->operands()) { 6701 Value *Val = U.get(); 6702 Value *NewVal = nullptr; 6703 if (Val == Transition) 6704 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6705 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6706 isa<ConstantFP>(Val)) { 6707 // Use a splat constant if it is not safe to use undef. 6708 NewVal = getConstantVector( 6709 cast<Constant>(Val), 6710 isa<UndefValue>(Val) || 6711 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6712 } else 6713 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6714 "this?"); 6715 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6716 } 6717 Transition->moveAfter(ToBePromoted); 6718 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6719 } 6720 6721 /// Some targets can do store(extractelement) with one instruction. 6722 /// Try to push the extractelement towards the stores when the target 6723 /// has this feature and this is profitable. 6724 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6725 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6726 if (DisableStoreExtract || !TLI || 6727 (!StressStoreExtract && 6728 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6729 Inst->getOperand(1), CombineCost))) 6730 return false; 6731 6732 // At this point we know that Inst is a vector to scalar transition. 6733 // Try to move it down the def-use chain, until: 6734 // - We can combine the transition with its single use 6735 // => we got rid of the transition. 6736 // - We escape the current basic block 6737 // => we would need to check that we are moving it at a cheaper place and 6738 // we do not do that for now. 6739 BasicBlock *Parent = Inst->getParent(); 6740 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6741 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6742 // If the transition has more than one use, assume this is not going to be 6743 // beneficial. 6744 while (Inst->hasOneUse()) { 6745 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6746 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6747 6748 if (ToBePromoted->getParent() != Parent) { 6749 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6750 << ToBePromoted->getParent()->getName() 6751 << ") than the transition (" << Parent->getName() 6752 << ").\n"); 6753 return false; 6754 } 6755 6756 if (VPH.canCombine(ToBePromoted)) { 6757 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6758 << "will be combined with: " << *ToBePromoted << '\n'); 6759 VPH.recordCombineInstruction(ToBePromoted); 6760 bool Changed = VPH.promote(); 6761 NumStoreExtractExposed += Changed; 6762 return Changed; 6763 } 6764 6765 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6766 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6767 return false; 6768 6769 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6770 6771 VPH.enqueueForPromotion(ToBePromoted); 6772 Inst = ToBePromoted; 6773 } 6774 return false; 6775 } 6776 6777 /// For the instruction sequence of store below, F and I values 6778 /// are bundled together as an i64 value before being stored into memory. 6779 /// Sometimes it is more efficient to generate separate stores for F and I, 6780 /// which can remove the bitwise instructions or sink them to colder places. 6781 /// 6782 /// (store (or (zext (bitcast F to i32) to i64), 6783 /// (shl (zext I to i64), 32)), addr) --> 6784 /// (store F, addr) and (store I, addr+4) 6785 /// 6786 /// Similarly, splitting for other merged store can also be beneficial, like: 6787 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6788 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6789 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6790 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6791 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6792 /// 6793 /// We allow each target to determine specifically which kind of splitting is 6794 /// supported. 6795 /// 6796 /// The store patterns are commonly seen from the simple code snippet below 6797 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6798 /// void goo(const std::pair<int, float> &); 6799 /// hoo() { 6800 /// ... 6801 /// goo(std::make_pair(tmp, ftmp)); 6802 /// ... 6803 /// } 6804 /// 6805 /// Although we already have similar splitting in DAG Combine, we duplicate 6806 /// it in CodeGenPrepare to catch the case in which pattern is across 6807 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6808 /// during code expansion. 6809 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6810 const TargetLowering &TLI) { 6811 // Handle simple but common cases only. 6812 Type *StoreType = SI.getValueOperand()->getType(); 6813 6814 // The code below assumes shifting a value by <number of bits>, 6815 // whereas scalable vectors would have to be shifted by 6816 // <2log(vscale) + number of bits> in order to store the 6817 // low/high parts. Bailing out for now. 6818 if (StoreType->isVectorTy() && StoreType->getVectorIsScalable()) 6819 return false; 6820 6821 if (!DL.typeSizeEqualsStoreSize(StoreType) || 6822 DL.getTypeSizeInBits(StoreType) == 0) 6823 return false; 6824 6825 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6826 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6827 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 6828 return false; 6829 6830 // Don't split the store if it is volatile. 6831 if (SI.isVolatile()) 6832 return false; 6833 6834 // Match the following patterns: 6835 // (store (or (zext LValue to i64), 6836 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6837 // or 6838 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6839 // (zext LValue to i64), 6840 // Expect both operands of OR and the first operand of SHL have only 6841 // one use. 6842 Value *LValue, *HValue; 6843 if (!match(SI.getValueOperand(), 6844 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6845 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6846 m_SpecificInt(HalfValBitSize)))))) 6847 return false; 6848 6849 // Check LValue and HValue are int with size less or equal than 32. 6850 if (!LValue->getType()->isIntegerTy() || 6851 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6852 !HValue->getType()->isIntegerTy() || 6853 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6854 return false; 6855 6856 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6857 // as the input of target query. 6858 auto *LBC = dyn_cast<BitCastInst>(LValue); 6859 auto *HBC = dyn_cast<BitCastInst>(HValue); 6860 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6861 : EVT::getEVT(LValue->getType()); 6862 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6863 : EVT::getEVT(HValue->getType()); 6864 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6865 return false; 6866 6867 // Start to split store. 6868 IRBuilder<> Builder(SI.getContext()); 6869 Builder.SetInsertPoint(&SI); 6870 6871 // If LValue/HValue is a bitcast in another BB, create a new one in current 6872 // BB so it may be merged with the splitted stores by dag combiner. 6873 if (LBC && LBC->getParent() != SI.getParent()) 6874 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6875 if (HBC && HBC->getParent() != SI.getParent()) 6876 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6877 6878 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6879 auto CreateSplitStore = [&](Value *V, bool Upper) { 6880 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6881 Value *Addr = Builder.CreateBitCast( 6882 SI.getOperand(1), 6883 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6884 if ((IsLE && Upper) || (!IsLE && !Upper)) 6885 Addr = Builder.CreateGEP( 6886 SplitStoreType, Addr, 6887 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6888 Builder.CreateAlignedStore( 6889 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6890 }; 6891 6892 CreateSplitStore(LValue, false); 6893 CreateSplitStore(HValue, true); 6894 6895 // Delete the old store. 6896 SI.eraseFromParent(); 6897 return true; 6898 } 6899 6900 // Return true if the GEP has two operands, the first operand is of a sequential 6901 // type, and the second operand is a constant. 6902 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6903 gep_type_iterator I = gep_type_begin(*GEP); 6904 return GEP->getNumOperands() == 2 && 6905 I.isSequential() && 6906 isa<ConstantInt>(GEP->getOperand(1)); 6907 } 6908 6909 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6910 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6911 // reducing liveness interference across those edges benefits global register 6912 // allocation. Currently handles only certain cases. 6913 // 6914 // For example, unmerge %GEPI and %UGEPI as below. 6915 // 6916 // ---------- BEFORE ---------- 6917 // SrcBlock: 6918 // ... 6919 // %GEPIOp = ... 6920 // ... 6921 // %GEPI = gep %GEPIOp, Idx 6922 // ... 6923 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6924 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6925 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6926 // %UGEPI) 6927 // 6928 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6929 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6930 // ... 6931 // 6932 // DstBi: 6933 // ... 6934 // %UGEPI = gep %GEPIOp, UIdx 6935 // ... 6936 // --------------------------- 6937 // 6938 // ---------- AFTER ---------- 6939 // SrcBlock: 6940 // ... (same as above) 6941 // (* %GEPI is still alive on the indirectbr edges) 6942 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6943 // unmerging) 6944 // ... 6945 // 6946 // DstBi: 6947 // ... 6948 // %UGEPI = gep %GEPI, (UIdx-Idx) 6949 // ... 6950 // --------------------------- 6951 // 6952 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6953 // no longer alive on them. 6954 // 6955 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6956 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6957 // not to disable further simplications and optimizations as a result of GEP 6958 // merging. 6959 // 6960 // Note this unmerging may increase the length of the data flow critical path 6961 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6962 // between the register pressure and the length of data-flow critical 6963 // path. Restricting this to the uncommon IndirectBr case would minimize the 6964 // impact of potentially longer critical path, if any, and the impact on compile 6965 // time. 6966 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6967 const TargetTransformInfo *TTI) { 6968 BasicBlock *SrcBlock = GEPI->getParent(); 6969 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6970 // (non-IndirectBr) cases exit early here. 6971 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6972 return false; 6973 // Check that GEPI is a simple gep with a single constant index. 6974 if (!GEPSequentialConstIndexed(GEPI)) 6975 return false; 6976 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6977 // Check that GEPI is a cheap one. 6978 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6979 > TargetTransformInfo::TCC_Basic) 6980 return false; 6981 Value *GEPIOp = GEPI->getOperand(0); 6982 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6983 if (!isa<Instruction>(GEPIOp)) 6984 return false; 6985 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6986 if (GEPIOpI->getParent() != SrcBlock) 6987 return false; 6988 // Check that GEP is used outside the block, meaning it's alive on the 6989 // IndirectBr edge(s). 6990 if (find_if(GEPI->users(), [&](User *Usr) { 6991 if (auto *I = dyn_cast<Instruction>(Usr)) { 6992 if (I->getParent() != SrcBlock) { 6993 return true; 6994 } 6995 } 6996 return false; 6997 }) == GEPI->users().end()) 6998 return false; 6999 // The second elements of the GEP chains to be unmerged. 7000 std::vector<GetElementPtrInst *> UGEPIs; 7001 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7002 // on IndirectBr edges. 7003 for (User *Usr : GEPIOp->users()) { 7004 if (Usr == GEPI) continue; 7005 // Check if Usr is an Instruction. If not, give up. 7006 if (!isa<Instruction>(Usr)) 7007 return false; 7008 auto *UI = cast<Instruction>(Usr); 7009 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7010 if (UI->getParent() == SrcBlock) 7011 continue; 7012 // Check if Usr is a GEP. If not, give up. 7013 if (!isa<GetElementPtrInst>(Usr)) 7014 return false; 7015 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7016 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7017 // the pointer operand to it. If so, record it in the vector. If not, give 7018 // up. 7019 if (!GEPSequentialConstIndexed(UGEPI)) 7020 return false; 7021 if (UGEPI->getOperand(0) != GEPIOp) 7022 return false; 7023 if (GEPIIdx->getType() != 7024 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7025 return false; 7026 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7027 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 7028 > TargetTransformInfo::TCC_Basic) 7029 return false; 7030 UGEPIs.push_back(UGEPI); 7031 } 7032 if (UGEPIs.size() == 0) 7033 return false; 7034 // Check the materializing cost of (Uidx-Idx). 7035 for (GetElementPtrInst *UGEPI : UGEPIs) { 7036 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7037 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7038 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 7039 if (ImmCost > TargetTransformInfo::TCC_Basic) 7040 return false; 7041 } 7042 // Now unmerge between GEPI and UGEPIs. 7043 for (GetElementPtrInst *UGEPI : UGEPIs) { 7044 UGEPI->setOperand(0, GEPI); 7045 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7046 Constant *NewUGEPIIdx = 7047 ConstantInt::get(GEPIIdx->getType(), 7048 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7049 UGEPI->setOperand(1, NewUGEPIIdx); 7050 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7051 // inbounds to avoid UB. 7052 if (!GEPI->isInBounds()) { 7053 UGEPI->setIsInBounds(false); 7054 } 7055 } 7056 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7057 // alive on IndirectBr edges). 7058 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7059 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7060 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7061 return true; 7062 } 7063 7064 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7065 // Bail out if we inserted the instruction to prevent optimizations from 7066 // stepping on each other's toes. 7067 if (InsertedInsts.count(I)) 7068 return false; 7069 7070 // TODO: Move into the switch on opcode below here. 7071 if (PHINode *P = dyn_cast<PHINode>(I)) { 7072 // It is possible for very late stage optimizations (such as SimplifyCFG) 7073 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7074 // trivial PHI, go ahead and zap it here. 7075 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7076 LargeOffsetGEPMap.erase(P); 7077 P->replaceAllUsesWith(V); 7078 P->eraseFromParent(); 7079 ++NumPHIsElim; 7080 return true; 7081 } 7082 return false; 7083 } 7084 7085 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7086 // If the source of the cast is a constant, then this should have 7087 // already been constant folded. The only reason NOT to constant fold 7088 // it is if something (e.g. LSR) was careful to place the constant 7089 // evaluation in a block other than then one that uses it (e.g. to hoist 7090 // the address of globals out of a loop). If this is the case, we don't 7091 // want to forward-subst the cast. 7092 if (isa<Constant>(CI->getOperand(0))) 7093 return false; 7094 7095 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7096 return true; 7097 7098 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7099 /// Sink a zext or sext into its user blocks if the target type doesn't 7100 /// fit in one register 7101 if (TLI && 7102 TLI->getTypeAction(CI->getContext(), 7103 TLI->getValueType(*DL, CI->getType())) == 7104 TargetLowering::TypeExpandInteger) { 7105 return SinkCast(CI); 7106 } else { 7107 bool MadeChange = optimizeExt(I); 7108 return MadeChange | optimizeExtUses(I); 7109 } 7110 } 7111 return false; 7112 } 7113 7114 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7115 if (TLI && optimizeCmp(Cmp, ModifiedDT)) 7116 return true; 7117 7118 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7119 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7120 if (TLI) { 7121 bool Modified = optimizeLoadExt(LI); 7122 unsigned AS = LI->getPointerAddressSpace(); 7123 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7124 return Modified; 7125 } 7126 return false; 7127 } 7128 7129 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7130 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 7131 return true; 7132 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7133 if (TLI) { 7134 unsigned AS = SI->getPointerAddressSpace(); 7135 return optimizeMemoryInst(I, SI->getOperand(1), 7136 SI->getOperand(0)->getType(), AS); 7137 } 7138 return false; 7139 } 7140 7141 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7142 unsigned AS = RMW->getPointerAddressSpace(); 7143 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7144 RMW->getType(), AS); 7145 } 7146 7147 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7148 unsigned AS = CmpX->getPointerAddressSpace(); 7149 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7150 CmpX->getCompareOperand()->getType(), AS); 7151 } 7152 7153 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7154 7155 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 7156 EnableAndCmpSinking && TLI) 7157 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7158 7159 // TODO: Move this into the switch on opcode - it handles shifts already. 7160 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7161 BinOp->getOpcode() == Instruction::LShr)) { 7162 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7163 if (TLI && CI && TLI->hasExtractBitsInsn()) 7164 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7165 return true; 7166 } 7167 7168 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7169 if (GEPI->hasAllZeroIndices()) { 7170 /// The GEP operand must be a pointer, so must its result -> BitCast 7171 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7172 GEPI->getName(), GEPI); 7173 NC->setDebugLoc(GEPI->getDebugLoc()); 7174 GEPI->replaceAllUsesWith(NC); 7175 GEPI->eraseFromParent(); 7176 ++NumGEPsElim; 7177 optimizeInst(NC, ModifiedDT); 7178 return true; 7179 } 7180 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7181 return true; 7182 } 7183 return false; 7184 } 7185 7186 if (tryToSinkFreeOperands(I)) 7187 return true; 7188 7189 switch (I->getOpcode()) { 7190 case Instruction::Shl: 7191 case Instruction::LShr: 7192 case Instruction::AShr: 7193 return optimizeShiftInst(cast<BinaryOperator>(I)); 7194 case Instruction::Call: 7195 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7196 case Instruction::Select: 7197 return optimizeSelectInst(cast<SelectInst>(I)); 7198 case Instruction::ShuffleVector: 7199 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7200 case Instruction::Switch: 7201 return optimizeSwitchInst(cast<SwitchInst>(I)); 7202 case Instruction::ExtractElement: 7203 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7204 } 7205 7206 return false; 7207 } 7208 7209 /// Given an OR instruction, check to see if this is a bitreverse 7210 /// idiom. If so, insert the new intrinsic and return true. 7211 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7212 const TargetLowering &TLI) { 7213 if (!I.getType()->isIntegerTy() || 7214 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7215 TLI.getValueType(DL, I.getType(), true))) 7216 return false; 7217 7218 SmallVector<Instruction*, 4> Insts; 7219 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7220 return false; 7221 Instruction *LastInst = Insts.back(); 7222 I.replaceAllUsesWith(LastInst); 7223 RecursivelyDeleteTriviallyDeadInstructions(&I); 7224 return true; 7225 } 7226 7227 // In this pass we look for GEP and cast instructions that are used 7228 // across basic blocks and rewrite them to improve basic-block-at-a-time 7229 // selection. 7230 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7231 SunkAddrs.clear(); 7232 bool MadeChange = false; 7233 7234 CurInstIterator = BB.begin(); 7235 while (CurInstIterator != BB.end()) { 7236 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7237 if (ModifiedDT) 7238 return true; 7239 } 7240 7241 bool MadeBitReverse = true; 7242 while (TLI && MadeBitReverse) { 7243 MadeBitReverse = false; 7244 for (auto &I : reverse(BB)) { 7245 if (makeBitReverse(I, *DL, *TLI)) { 7246 MadeBitReverse = MadeChange = true; 7247 break; 7248 } 7249 } 7250 } 7251 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7252 7253 return MadeChange; 7254 } 7255 7256 // Some CGP optimizations may move or alter what's computed in a block. Check 7257 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7258 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7259 assert(isa<DbgValueInst>(I)); 7260 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7261 7262 // Does this dbg.value refer to a sunk address calculation? 7263 Value *Location = DVI.getVariableLocation(); 7264 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7265 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7266 if (SunkAddr) { 7267 // Point dbg.value at locally computed address, which should give the best 7268 // opportunity to be accurately lowered. This update may change the type of 7269 // pointer being referred to; however this makes no difference to debugging 7270 // information, and we can't generate bitcasts that may affect codegen. 7271 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7272 ValueAsMetadata::get(SunkAddr))); 7273 return true; 7274 } 7275 return false; 7276 } 7277 7278 // A llvm.dbg.value may be using a value before its definition, due to 7279 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7280 // them by moving the dbg.value to immediately after the value definition. 7281 // FIXME: Ideally this should never be necessary, and this has the potential 7282 // to re-order dbg.value intrinsics. 7283 bool CodeGenPrepare::placeDbgValues(Function &F) { 7284 bool MadeChange = false; 7285 DominatorTree DT(F); 7286 7287 for (BasicBlock &BB : F) { 7288 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7289 Instruction *Insn = &*BI++; 7290 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7291 if (!DVI) 7292 continue; 7293 7294 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7295 7296 if (!VI || VI->isTerminator()) 7297 continue; 7298 7299 // If VI is a phi in a block with an EHPad terminator, we can't insert 7300 // after it. 7301 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7302 continue; 7303 7304 // If the defining instruction dominates the dbg.value, we do not need 7305 // to move the dbg.value. 7306 if (DT.dominates(VI, DVI)) 7307 continue; 7308 7309 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7310 << *DVI << ' ' << *VI); 7311 DVI->removeFromParent(); 7312 if (isa<PHINode>(VI)) 7313 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7314 else 7315 DVI->insertAfter(VI); 7316 MadeChange = true; 7317 ++NumDbgValueMoved; 7318 } 7319 } 7320 return MadeChange; 7321 } 7322 7323 /// Scale down both weights to fit into uint32_t. 7324 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7325 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7326 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7327 NewTrue = NewTrue / Scale; 7328 NewFalse = NewFalse / Scale; 7329 } 7330 7331 /// Some targets prefer to split a conditional branch like: 7332 /// \code 7333 /// %0 = icmp ne i32 %a, 0 7334 /// %1 = icmp ne i32 %b, 0 7335 /// %or.cond = or i1 %0, %1 7336 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7337 /// \endcode 7338 /// into multiple branch instructions like: 7339 /// \code 7340 /// bb1: 7341 /// %0 = icmp ne i32 %a, 0 7342 /// br i1 %0, label %TrueBB, label %bb2 7343 /// bb2: 7344 /// %1 = icmp ne i32 %b, 0 7345 /// br i1 %1, label %TrueBB, label %FalseBB 7346 /// \endcode 7347 /// This usually allows instruction selection to do even further optimizations 7348 /// and combine the compare with the branch instruction. Currently this is 7349 /// applied for targets which have "cheap" jump instructions. 7350 /// 7351 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7352 /// 7353 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7354 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7355 return false; 7356 7357 bool MadeChange = false; 7358 for (auto &BB : F) { 7359 // Does this BB end with the following? 7360 // %cond1 = icmp|fcmp|binary instruction ... 7361 // %cond2 = icmp|fcmp|binary instruction ... 7362 // %cond.or = or|and i1 %cond1, cond2 7363 // br i1 %cond.or label %dest1, label %dest2" 7364 BinaryOperator *LogicOp; 7365 BasicBlock *TBB, *FBB; 7366 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7367 continue; 7368 7369 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7370 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7371 continue; 7372 7373 // The merging of mostly empty BB can cause a degenerate branch. 7374 if (TBB == FBB) 7375 continue; 7376 7377 unsigned Opc; 7378 Value *Cond1, *Cond2; 7379 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7380 m_OneUse(m_Value(Cond2))))) 7381 Opc = Instruction::And; 7382 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7383 m_OneUse(m_Value(Cond2))))) 7384 Opc = Instruction::Or; 7385 else 7386 continue; 7387 7388 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7389 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7390 continue; 7391 7392 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7393 7394 // Create a new BB. 7395 auto TmpBB = 7396 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7397 BB.getParent(), BB.getNextNode()); 7398 7399 // Update original basic block by using the first condition directly by the 7400 // branch instruction and removing the no longer needed and/or instruction. 7401 Br1->setCondition(Cond1); 7402 LogicOp->eraseFromParent(); 7403 7404 // Depending on the condition we have to either replace the true or the 7405 // false successor of the original branch instruction. 7406 if (Opc == Instruction::And) 7407 Br1->setSuccessor(0, TmpBB); 7408 else 7409 Br1->setSuccessor(1, TmpBB); 7410 7411 // Fill in the new basic block. 7412 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7413 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7414 I->removeFromParent(); 7415 I->insertBefore(Br2); 7416 } 7417 7418 // Update PHI nodes in both successors. The original BB needs to be 7419 // replaced in one successor's PHI nodes, because the branch comes now from 7420 // the newly generated BB (NewBB). In the other successor we need to add one 7421 // incoming edge to the PHI nodes, because both branch instructions target 7422 // now the same successor. Depending on the original branch condition 7423 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7424 // we perform the correct update for the PHI nodes. 7425 // This doesn't change the successor order of the just created branch 7426 // instruction (or any other instruction). 7427 if (Opc == Instruction::Or) 7428 std::swap(TBB, FBB); 7429 7430 // Replace the old BB with the new BB. 7431 TBB->replacePhiUsesWith(&BB, TmpBB); 7432 7433 // Add another incoming edge form the new BB. 7434 for (PHINode &PN : FBB->phis()) { 7435 auto *Val = PN.getIncomingValueForBlock(&BB); 7436 PN.addIncoming(Val, TmpBB); 7437 } 7438 7439 // Update the branch weights (from SelectionDAGBuilder:: 7440 // FindMergedConditions). 7441 if (Opc == Instruction::Or) { 7442 // Codegen X | Y as: 7443 // BB1: 7444 // jmp_if_X TBB 7445 // jmp TmpBB 7446 // TmpBB: 7447 // jmp_if_Y TBB 7448 // jmp FBB 7449 // 7450 7451 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7452 // The requirement is that 7453 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7454 // = TrueProb for original BB. 7455 // Assuming the original weights are A and B, one choice is to set BB1's 7456 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7457 // assumes that 7458 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7459 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7460 // TmpBB, but the math is more complicated. 7461 uint64_t TrueWeight, FalseWeight; 7462 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7463 uint64_t NewTrueWeight = TrueWeight; 7464 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7465 scaleWeights(NewTrueWeight, NewFalseWeight); 7466 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7467 .createBranchWeights(TrueWeight, FalseWeight)); 7468 7469 NewTrueWeight = TrueWeight; 7470 NewFalseWeight = 2 * FalseWeight; 7471 scaleWeights(NewTrueWeight, NewFalseWeight); 7472 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7473 .createBranchWeights(TrueWeight, FalseWeight)); 7474 } 7475 } else { 7476 // Codegen X & Y as: 7477 // BB1: 7478 // jmp_if_X TmpBB 7479 // jmp FBB 7480 // TmpBB: 7481 // jmp_if_Y TBB 7482 // jmp FBB 7483 // 7484 // This requires creation of TmpBB after CurBB. 7485 7486 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7487 // The requirement is that 7488 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7489 // = FalseProb for original BB. 7490 // Assuming the original weights are A and B, one choice is to set BB1's 7491 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7492 // assumes that 7493 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7494 uint64_t TrueWeight, FalseWeight; 7495 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7496 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7497 uint64_t NewFalseWeight = FalseWeight; 7498 scaleWeights(NewTrueWeight, NewFalseWeight); 7499 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7500 .createBranchWeights(TrueWeight, FalseWeight)); 7501 7502 NewTrueWeight = 2 * TrueWeight; 7503 NewFalseWeight = FalseWeight; 7504 scaleWeights(NewTrueWeight, NewFalseWeight); 7505 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7506 .createBranchWeights(TrueWeight, FalseWeight)); 7507 } 7508 } 7509 7510 ModifiedDT = true; 7511 MadeChange = true; 7512 7513 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7514 TmpBB->dump()); 7515 } 7516 return MadeChange; 7517 } 7518