1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if CFG is modified in any way. 295 bool ModifiedDT; 296 297 /// True if optimizing for size. 298 bool OptSize; 299 300 /// DataLayout for the Function being processed. 301 const DataLayout *DL = nullptr; 302 303 public: 304 static char ID; // Pass identification, replacement for typeid 305 306 CodeGenPrepare() : FunctionPass(ID) { 307 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 308 } 309 310 bool runOnFunction(Function &F) override; 311 312 StringRef getPassName() const override { return "CodeGen Prepare"; } 313 314 void getAnalysisUsage(AnalysisUsage &AU) const override { 315 // FIXME: When we can selectively preserve passes, preserve the domtree. 316 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 317 AU.addRequired<TargetLibraryInfoWrapperPass>(); 318 AU.addRequired<TargetTransformInfoWrapperPass>(); 319 AU.addRequired<LoopInfoWrapperPass>(); 320 } 321 322 private: 323 template <typename F> 324 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 325 // Substituting can cause recursive simplifications, which can invalidate 326 // our iterator. Use a WeakTrackingVH to hold onto it in case this 327 // happens. 328 Value *CurValue = &*CurInstIterator; 329 WeakTrackingVH IterHandle(CurValue); 330 331 f(); 332 333 // If the iterator instruction was recursively deleted, start over at the 334 // start of the block. 335 if (IterHandle != CurValue) { 336 CurInstIterator = BB->begin(); 337 SunkAddrs.clear(); 338 } 339 } 340 341 bool eliminateFallThrough(Function &F); 342 bool eliminateMostlyEmptyBlocks(Function &F); 343 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 344 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 345 void eliminateMostlyEmptyBlock(BasicBlock *BB); 346 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 347 bool isPreheader); 348 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 349 bool optimizeInst(Instruction *I, bool &ModifiedDT); 350 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 351 Type *AccessTy, unsigned AddrSpace); 352 bool optimizeInlineAsmInst(CallInst *CS); 353 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 354 bool optimizeExt(Instruction *&I); 355 bool optimizeExtUses(Instruction *I); 356 bool optimizeLoadExt(LoadInst *Load); 357 bool optimizeSelectInst(SelectInst *SI); 358 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 359 bool optimizeSwitchInst(SwitchInst *SI); 360 bool optimizeExtractElementInst(Instruction *Inst); 361 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 362 bool placeDbgValues(Function &F); 363 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 364 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 365 bool tryToPromoteExts(TypePromotionTransaction &TPT, 366 const SmallVectorImpl<Instruction *> &Exts, 367 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 368 unsigned CreatedInstsCost = 0); 369 bool mergeSExts(Function &F); 370 bool splitLargeGEPOffsets(); 371 bool performAddressTypePromotion( 372 Instruction *&Inst, 373 bool AllowPromotionWithoutCommonHeader, 374 bool HasPromoted, TypePromotionTransaction &TPT, 375 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 376 bool splitBranchCondition(Function &F); 377 bool simplifyOffsetableRelocate(Instruction &I); 378 }; 379 380 } // end anonymous namespace 381 382 char CodeGenPrepare::ID = 0; 383 384 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 385 "Optimize for code generation", false, false) 386 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 387 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 388 "Optimize for code generation", false, false) 389 390 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 391 392 bool CodeGenPrepare::runOnFunction(Function &F) { 393 if (skipFunction(F)) 394 return false; 395 396 DL = &F.getParent()->getDataLayout(); 397 398 bool EverMadeChange = false; 399 // Clear per function information. 400 InsertedInsts.clear(); 401 PromotedInsts.clear(); 402 403 ModifiedDT = false; 404 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 405 TM = &TPC->getTM<TargetMachine>(); 406 SubtargetInfo = TM->getSubtargetImpl(F); 407 TLI = SubtargetInfo->getTargetLowering(); 408 TRI = SubtargetInfo->getRegisterInfo(); 409 } 410 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 411 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 412 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 413 BPI.reset(new BranchProbabilityInfo(F, *LI)); 414 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 415 OptSize = F.optForSize(); 416 417 ProfileSummaryInfo *PSI = 418 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 419 if (ProfileGuidedSectionPrefix) { 420 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 421 F.setSectionPrefix(".hot"); 422 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 423 F.setSectionPrefix(".unlikely"); 424 } 425 426 /// This optimization identifies DIV instructions that can be 427 /// profitably bypassed and carried out with a shorter, faster divide. 428 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 429 TLI->isSlowDivBypassed()) { 430 const DenseMap<unsigned int, unsigned int> &BypassWidths = 431 TLI->getBypassSlowDivWidths(); 432 BasicBlock* BB = &*F.begin(); 433 while (BB != nullptr) { 434 // bypassSlowDivision may create new BBs, but we don't want to reapply the 435 // optimization to those blocks. 436 BasicBlock* Next = BB->getNextNode(); 437 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 438 BB = Next; 439 } 440 } 441 442 // Eliminate blocks that contain only PHI nodes and an 443 // unconditional branch. 444 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 445 446 if (!DisableBranchOpts) 447 EverMadeChange |= splitBranchCondition(F); 448 449 // Split some critical edges where one of the sources is an indirect branch, 450 // to help generate sane code for PHIs involving such edges. 451 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 452 453 bool MadeChange = true; 454 while (MadeChange) { 455 MadeChange = false; 456 for (Function::iterator I = F.begin(); I != F.end(); ) { 457 BasicBlock *BB = &*I++; 458 bool ModifiedDTOnIteration = false; 459 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 460 461 // Restart BB iteration if the dominator tree of the Function was changed 462 if (ModifiedDTOnIteration) 463 break; 464 } 465 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 466 MadeChange |= mergeSExts(F); 467 if (!LargeOffsetGEPMap.empty()) 468 MadeChange |= splitLargeGEPOffsets(); 469 470 // Really free removed instructions during promotion. 471 for (Instruction *I : RemovedInsts) 472 I->deleteValue(); 473 474 EverMadeChange |= MadeChange; 475 SeenChainsForSExt.clear(); 476 ValToSExtendedUses.clear(); 477 RemovedInsts.clear(); 478 LargeOffsetGEPMap.clear(); 479 LargeOffsetGEPID.clear(); 480 } 481 482 SunkAddrs.clear(); 483 484 if (!DisableBranchOpts) { 485 MadeChange = false; 486 // Use a set vector to get deterministic iteration order. The order the 487 // blocks are removed may affect whether or not PHI nodes in successors 488 // are removed. 489 SmallSetVector<BasicBlock*, 8> WorkList; 490 for (BasicBlock &BB : F) { 491 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 492 MadeChange |= ConstantFoldTerminator(&BB, true); 493 if (!MadeChange) continue; 494 495 for (SmallVectorImpl<BasicBlock*>::iterator 496 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 497 if (pred_begin(*II) == pred_end(*II)) 498 WorkList.insert(*II); 499 } 500 501 // Delete the dead blocks and any of their dead successors. 502 MadeChange |= !WorkList.empty(); 503 while (!WorkList.empty()) { 504 BasicBlock *BB = WorkList.pop_back_val(); 505 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 506 507 DeleteDeadBlock(BB); 508 509 for (SmallVectorImpl<BasicBlock*>::iterator 510 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 511 if (pred_begin(*II) == pred_end(*II)) 512 WorkList.insert(*II); 513 } 514 515 // Merge pairs of basic blocks with unconditional branches, connected by 516 // a single edge. 517 if (EverMadeChange || MadeChange) 518 MadeChange |= eliminateFallThrough(F); 519 520 EverMadeChange |= MadeChange; 521 } 522 523 if (!DisableGCOpts) { 524 SmallVector<Instruction *, 2> Statepoints; 525 for (BasicBlock &BB : F) 526 for (Instruction &I : BB) 527 if (isStatepoint(I)) 528 Statepoints.push_back(&I); 529 for (auto &I : Statepoints) 530 EverMadeChange |= simplifyOffsetableRelocate(*I); 531 } 532 533 // Do this last to clean up use-before-def scenarios introduced by other 534 // preparatory transforms. 535 EverMadeChange |= placeDbgValues(F); 536 537 return EverMadeChange; 538 } 539 540 /// Merge basic blocks which are connected by a single edge, where one of the 541 /// basic blocks has a single successor pointing to the other basic block, 542 /// which has a single predecessor. 543 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 544 bool Changed = false; 545 // Scan all of the blocks in the function, except for the entry block. 546 // Use a temporary array to avoid iterator being invalidated when 547 // deleting blocks. 548 SmallVector<WeakTrackingVH, 16> Blocks; 549 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 550 Blocks.push_back(&Block); 551 552 for (auto &Block : Blocks) { 553 auto *BB = cast_or_null<BasicBlock>(Block); 554 if (!BB) 555 continue; 556 // If the destination block has a single pred, then this is a trivial 557 // edge, just collapse it. 558 BasicBlock *SinglePred = BB->getSinglePredecessor(); 559 560 // Don't merge if BB's address is taken. 561 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 562 563 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 564 if (Term && !Term->isConditional()) { 565 Changed = true; 566 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 567 568 // Merge BB into SinglePred and delete it. 569 MergeBlockIntoPredecessor(BB); 570 } 571 } 572 return Changed; 573 } 574 575 /// Find a destination block from BB if BB is mergeable empty block. 576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 577 // If this block doesn't end with an uncond branch, ignore it. 578 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 579 if (!BI || !BI->isUnconditional()) 580 return nullptr; 581 582 // If the instruction before the branch (skipping debug info) isn't a phi 583 // node, then other stuff is happening here. 584 BasicBlock::iterator BBI = BI->getIterator(); 585 if (BBI != BB->begin()) { 586 --BBI; 587 while (isa<DbgInfoIntrinsic>(BBI)) { 588 if (BBI == BB->begin()) 589 break; 590 --BBI; 591 } 592 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 593 return nullptr; 594 } 595 596 // Do not break infinite loops. 597 BasicBlock *DestBB = BI->getSuccessor(0); 598 if (DestBB == BB) 599 return nullptr; 600 601 if (!canMergeBlocks(BB, DestBB)) 602 DestBB = nullptr; 603 604 return DestBB; 605 } 606 607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 609 /// edges in ways that are non-optimal for isel. Start by eliminating these 610 /// blocks so we can split them the way we want them. 611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 612 SmallPtrSet<BasicBlock *, 16> Preheaders; 613 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 614 while (!LoopList.empty()) { 615 Loop *L = LoopList.pop_back_val(); 616 LoopList.insert(LoopList.end(), L->begin(), L->end()); 617 if (BasicBlock *Preheader = L->getLoopPreheader()) 618 Preheaders.insert(Preheader); 619 } 620 621 bool MadeChange = false; 622 // Copy blocks into a temporary array to avoid iterator invalidation issues 623 // as we remove them. 624 // Note that this intentionally skips the entry block. 625 SmallVector<WeakTrackingVH, 16> Blocks; 626 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 627 Blocks.push_back(&Block); 628 629 for (auto &Block : Blocks) { 630 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 631 if (!BB) 632 continue; 633 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 634 if (!DestBB || 635 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 636 continue; 637 638 eliminateMostlyEmptyBlock(BB); 639 MadeChange = true; 640 } 641 return MadeChange; 642 } 643 644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 645 BasicBlock *DestBB, 646 bool isPreheader) { 647 // Do not delete loop preheaders if doing so would create a critical edge. 648 // Loop preheaders can be good locations to spill registers. If the 649 // preheader is deleted and we create a critical edge, registers may be 650 // spilled in the loop body instead. 651 if (!DisablePreheaderProtect && isPreheader && 652 !(BB->getSinglePredecessor() && 653 BB->getSinglePredecessor()->getSingleSuccessor())) 654 return false; 655 656 // Try to skip merging if the unique predecessor of BB is terminated by a 657 // switch or indirect branch instruction, and BB is used as an incoming block 658 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 659 // add COPY instructions in the predecessor of BB instead of BB (if it is not 660 // merged). Note that the critical edge created by merging such blocks wont be 661 // split in MachineSink because the jump table is not analyzable. By keeping 662 // such empty block (BB), ISel will place COPY instructions in BB, not in the 663 // predecessor of BB. 664 BasicBlock *Pred = BB->getUniquePredecessor(); 665 if (!Pred || 666 !(isa<SwitchInst>(Pred->getTerminator()) || 667 isa<IndirectBrInst>(Pred->getTerminator()))) 668 return true; 669 670 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 671 return true; 672 673 // We use a simple cost heuristic which determine skipping merging is 674 // profitable if the cost of skipping merging is less than the cost of 675 // merging : Cost(skipping merging) < Cost(merging BB), where the 676 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 677 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 678 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 679 // Freq(Pred) / Freq(BB) > 2. 680 // Note that if there are multiple empty blocks sharing the same incoming 681 // value for the PHIs in the DestBB, we consider them together. In such 682 // case, Cost(merging BB) will be the sum of their frequencies. 683 684 if (!isa<PHINode>(DestBB->begin())) 685 return true; 686 687 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 688 689 // Find all other incoming blocks from which incoming values of all PHIs in 690 // DestBB are the same as the ones from BB. 691 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 692 ++PI) { 693 BasicBlock *DestBBPred = *PI; 694 if (DestBBPred == BB) 695 continue; 696 697 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 698 return DestPN.getIncomingValueForBlock(BB) == 699 DestPN.getIncomingValueForBlock(DestBBPred); 700 })) 701 SameIncomingValueBBs.insert(DestBBPred); 702 } 703 704 // See if all BB's incoming values are same as the value from Pred. In this 705 // case, no reason to skip merging because COPYs are expected to be place in 706 // Pred already. 707 if (SameIncomingValueBBs.count(Pred)) 708 return true; 709 710 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 711 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 712 713 for (auto SameValueBB : SameIncomingValueBBs) 714 if (SameValueBB->getUniquePredecessor() == Pred && 715 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 716 BBFreq += BFI->getBlockFreq(SameValueBB); 717 718 return PredFreq.getFrequency() <= 719 BBFreq.getFrequency() * FreqRatioToSkipMerge; 720 } 721 722 /// Return true if we can merge BB into DestBB if there is a single 723 /// unconditional branch between them, and BB contains no other non-phi 724 /// instructions. 725 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 726 const BasicBlock *DestBB) const { 727 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 728 // the successor. If there are more complex condition (e.g. preheaders), 729 // don't mess around with them. 730 for (const PHINode &PN : BB->phis()) { 731 for (const User *U : PN.users()) { 732 const Instruction *UI = cast<Instruction>(U); 733 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 734 return false; 735 // If User is inside DestBB block and it is a PHINode then check 736 // incoming value. If incoming value is not from BB then this is 737 // a complex condition (e.g. preheaders) we want to avoid here. 738 if (UI->getParent() == DestBB) { 739 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 740 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 741 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 742 if (Insn && Insn->getParent() == BB && 743 Insn->getParent() != UPN->getIncomingBlock(I)) 744 return false; 745 } 746 } 747 } 748 } 749 750 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 751 // and DestBB may have conflicting incoming values for the block. If so, we 752 // can't merge the block. 753 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 754 if (!DestBBPN) return true; // no conflict. 755 756 // Collect the preds of BB. 757 SmallPtrSet<const BasicBlock*, 16> BBPreds; 758 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 759 // It is faster to get preds from a PHI than with pred_iterator. 760 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 761 BBPreds.insert(BBPN->getIncomingBlock(i)); 762 } else { 763 BBPreds.insert(pred_begin(BB), pred_end(BB)); 764 } 765 766 // Walk the preds of DestBB. 767 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 768 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 769 if (BBPreds.count(Pred)) { // Common predecessor? 770 for (const PHINode &PN : DestBB->phis()) { 771 const Value *V1 = PN.getIncomingValueForBlock(Pred); 772 const Value *V2 = PN.getIncomingValueForBlock(BB); 773 774 // If V2 is a phi node in BB, look up what the mapped value will be. 775 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 776 if (V2PN->getParent() == BB) 777 V2 = V2PN->getIncomingValueForBlock(Pred); 778 779 // If there is a conflict, bail out. 780 if (V1 != V2) return false; 781 } 782 } 783 } 784 785 return true; 786 } 787 788 /// Eliminate a basic block that has only phi's and an unconditional branch in 789 /// it. 790 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 791 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 792 BasicBlock *DestBB = BI->getSuccessor(0); 793 794 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 795 << *BB << *DestBB); 796 797 // If the destination block has a single pred, then this is a trivial edge, 798 // just collapse it. 799 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 800 if (SinglePred != DestBB) { 801 assert(SinglePred == BB && 802 "Single predecessor not the same as predecessor"); 803 // Merge DestBB into SinglePred/BB and delete it. 804 MergeBlockIntoPredecessor(DestBB); 805 // Note: BB(=SinglePred) will not be deleted on this path. 806 // DestBB(=its single successor) is the one that was deleted. 807 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 808 return; 809 } 810 } 811 812 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 813 // to handle the new incoming edges it is about to have. 814 for (PHINode &PN : DestBB->phis()) { 815 // Remove the incoming value for BB, and remember it. 816 Value *InVal = PN.removeIncomingValue(BB, false); 817 818 // Two options: either the InVal is a phi node defined in BB or it is some 819 // value that dominates BB. 820 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 821 if (InValPhi && InValPhi->getParent() == BB) { 822 // Add all of the input values of the input PHI as inputs of this phi. 823 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 824 PN.addIncoming(InValPhi->getIncomingValue(i), 825 InValPhi->getIncomingBlock(i)); 826 } else { 827 // Otherwise, add one instance of the dominating value for each edge that 828 // we will be adding. 829 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 830 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 831 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 832 } else { 833 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 834 PN.addIncoming(InVal, *PI); 835 } 836 } 837 } 838 839 // The PHIs are now updated, change everything that refers to BB to use 840 // DestBB and remove BB. 841 BB->replaceAllUsesWith(DestBB); 842 BB->eraseFromParent(); 843 ++NumBlocksElim; 844 845 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 846 } 847 848 // Computes a map of base pointer relocation instructions to corresponding 849 // derived pointer relocation instructions given a vector of all relocate calls 850 static void computeBaseDerivedRelocateMap( 851 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 852 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 853 &RelocateInstMap) { 854 // Collect information in two maps: one primarily for locating the base object 855 // while filling the second map; the second map is the final structure holding 856 // a mapping between Base and corresponding Derived relocate calls 857 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 858 for (auto *ThisRelocate : AllRelocateCalls) { 859 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 860 ThisRelocate->getDerivedPtrIndex()); 861 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 862 } 863 for (auto &Item : RelocateIdxMap) { 864 std::pair<unsigned, unsigned> Key = Item.first; 865 if (Key.first == Key.second) 866 // Base relocation: nothing to insert 867 continue; 868 869 GCRelocateInst *I = Item.second; 870 auto BaseKey = std::make_pair(Key.first, Key.first); 871 872 // We're iterating over RelocateIdxMap so we cannot modify it. 873 auto MaybeBase = RelocateIdxMap.find(BaseKey); 874 if (MaybeBase == RelocateIdxMap.end()) 875 // TODO: We might want to insert a new base object relocate and gep off 876 // that, if there are enough derived object relocates. 877 continue; 878 879 RelocateInstMap[MaybeBase->second].push_back(I); 880 } 881 } 882 883 // Accepts a GEP and extracts the operands into a vector provided they're all 884 // small integer constants 885 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 886 SmallVectorImpl<Value *> &OffsetV) { 887 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 888 // Only accept small constant integer operands 889 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 890 if (!Op || Op->getZExtValue() > 20) 891 return false; 892 } 893 894 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 895 OffsetV.push_back(GEP->getOperand(i)); 896 return true; 897 } 898 899 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 900 // replace, computes a replacement, and affects it. 901 static bool 902 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 903 const SmallVectorImpl<GCRelocateInst *> &Targets) { 904 bool MadeChange = false; 905 // We must ensure the relocation of derived pointer is defined after 906 // relocation of base pointer. If we find a relocation corresponding to base 907 // defined earlier than relocation of base then we move relocation of base 908 // right before found relocation. We consider only relocation in the same 909 // basic block as relocation of base. Relocations from other basic block will 910 // be skipped by optimization and we do not care about them. 911 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 912 &*R != RelocatedBase; ++R) 913 if (auto RI = dyn_cast<GCRelocateInst>(R)) 914 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 915 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 916 RelocatedBase->moveBefore(RI); 917 break; 918 } 919 920 for (GCRelocateInst *ToReplace : Targets) { 921 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 922 "Not relocating a derived object of the original base object"); 923 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 924 // A duplicate relocate call. TODO: coalesce duplicates. 925 continue; 926 } 927 928 if (RelocatedBase->getParent() != ToReplace->getParent()) { 929 // Base and derived relocates are in different basic blocks. 930 // In this case transform is only valid when base dominates derived 931 // relocate. However it would be too expensive to check dominance 932 // for each such relocate, so we skip the whole transformation. 933 continue; 934 } 935 936 Value *Base = ToReplace->getBasePtr(); 937 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 938 if (!Derived || Derived->getPointerOperand() != Base) 939 continue; 940 941 SmallVector<Value *, 2> OffsetV; 942 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 943 continue; 944 945 // Create a Builder and replace the target callsite with a gep 946 assert(RelocatedBase->getNextNode() && 947 "Should always have one since it's not a terminator"); 948 949 // Insert after RelocatedBase 950 IRBuilder<> Builder(RelocatedBase->getNextNode()); 951 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 952 953 // If gc_relocate does not match the actual type, cast it to the right type. 954 // In theory, there must be a bitcast after gc_relocate if the type does not 955 // match, and we should reuse it to get the derived pointer. But it could be 956 // cases like this: 957 // bb1: 958 // ... 959 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 960 // br label %merge 961 // 962 // bb2: 963 // ... 964 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 965 // br label %merge 966 // 967 // merge: 968 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 969 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 970 // 971 // In this case, we can not find the bitcast any more. So we insert a new bitcast 972 // no matter there is already one or not. In this way, we can handle all cases, and 973 // the extra bitcast should be optimized away in later passes. 974 Value *ActualRelocatedBase = RelocatedBase; 975 if (RelocatedBase->getType() != Base->getType()) { 976 ActualRelocatedBase = 977 Builder.CreateBitCast(RelocatedBase, Base->getType()); 978 } 979 Value *Replacement = Builder.CreateGEP( 980 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 981 Replacement->takeName(ToReplace); 982 // If the newly generated derived pointer's type does not match the original derived 983 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 984 Value *ActualReplacement = Replacement; 985 if (Replacement->getType() != ToReplace->getType()) { 986 ActualReplacement = 987 Builder.CreateBitCast(Replacement, ToReplace->getType()); 988 } 989 ToReplace->replaceAllUsesWith(ActualReplacement); 990 ToReplace->eraseFromParent(); 991 992 MadeChange = true; 993 } 994 return MadeChange; 995 } 996 997 // Turns this: 998 // 999 // %base = ... 1000 // %ptr = gep %base + 15 1001 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1002 // %base' = relocate(%tok, i32 4, i32 4) 1003 // %ptr' = relocate(%tok, i32 4, i32 5) 1004 // %val = load %ptr' 1005 // 1006 // into this: 1007 // 1008 // %base = ... 1009 // %ptr = gep %base + 15 1010 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1011 // %base' = gc.relocate(%tok, i32 4, i32 4) 1012 // %ptr' = gep %base' + 15 1013 // %val = load %ptr' 1014 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1015 bool MadeChange = false; 1016 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1017 1018 for (auto *U : I.users()) 1019 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1020 // Collect all the relocate calls associated with a statepoint 1021 AllRelocateCalls.push_back(Relocate); 1022 1023 // We need atleast one base pointer relocation + one derived pointer 1024 // relocation to mangle 1025 if (AllRelocateCalls.size() < 2) 1026 return false; 1027 1028 // RelocateInstMap is a mapping from the base relocate instruction to the 1029 // corresponding derived relocate instructions 1030 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1031 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1032 if (RelocateInstMap.empty()) 1033 return false; 1034 1035 for (auto &Item : RelocateInstMap) 1036 // Item.first is the RelocatedBase to offset against 1037 // Item.second is the vector of Targets to replace 1038 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1039 return MadeChange; 1040 } 1041 1042 /// SinkCast - Sink the specified cast instruction into its user blocks 1043 static bool SinkCast(CastInst *CI) { 1044 BasicBlock *DefBB = CI->getParent(); 1045 1046 /// InsertedCasts - Only insert a cast in each block once. 1047 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1048 1049 bool MadeChange = false; 1050 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1051 UI != E; ) { 1052 Use &TheUse = UI.getUse(); 1053 Instruction *User = cast<Instruction>(*UI); 1054 1055 // Figure out which BB this cast is used in. For PHI's this is the 1056 // appropriate predecessor block. 1057 BasicBlock *UserBB = User->getParent(); 1058 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1059 UserBB = PN->getIncomingBlock(TheUse); 1060 } 1061 1062 // Preincrement use iterator so we don't invalidate it. 1063 ++UI; 1064 1065 // The first insertion point of a block containing an EH pad is after the 1066 // pad. If the pad is the user, we cannot sink the cast past the pad. 1067 if (User->isEHPad()) 1068 continue; 1069 1070 // If the block selected to receive the cast is an EH pad that does not 1071 // allow non-PHI instructions before the terminator, we can't sink the 1072 // cast. 1073 if (UserBB->getTerminator()->isEHPad()) 1074 continue; 1075 1076 // If this user is in the same block as the cast, don't change the cast. 1077 if (UserBB == DefBB) continue; 1078 1079 // If we have already inserted a cast into this block, use it. 1080 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1081 1082 if (!InsertedCast) { 1083 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1084 assert(InsertPt != UserBB->end()); 1085 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1086 CI->getType(), "", &*InsertPt); 1087 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1088 } 1089 1090 // Replace a use of the cast with a use of the new cast. 1091 TheUse = InsertedCast; 1092 MadeChange = true; 1093 ++NumCastUses; 1094 } 1095 1096 // If we removed all uses, nuke the cast. 1097 if (CI->use_empty()) { 1098 salvageDebugInfo(*CI); 1099 CI->eraseFromParent(); 1100 MadeChange = true; 1101 } 1102 1103 return MadeChange; 1104 } 1105 1106 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1107 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1108 /// reduce the number of virtual registers that must be created and coalesced. 1109 /// 1110 /// Return true if any changes are made. 1111 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1112 const DataLayout &DL) { 1113 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1114 // than sinking only nop casts, but is helpful on some platforms. 1115 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1116 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1117 ASC->getDestAddressSpace())) 1118 return false; 1119 } 1120 1121 // If this is a noop copy, 1122 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1123 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1124 1125 // This is an fp<->int conversion? 1126 if (SrcVT.isInteger() != DstVT.isInteger()) 1127 return false; 1128 1129 // If this is an extension, it will be a zero or sign extension, which 1130 // isn't a noop. 1131 if (SrcVT.bitsLT(DstVT)) return false; 1132 1133 // If these values will be promoted, find out what they will be promoted 1134 // to. This helps us consider truncates on PPC as noop copies when they 1135 // are. 1136 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1137 TargetLowering::TypePromoteInteger) 1138 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1139 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1140 TargetLowering::TypePromoteInteger) 1141 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1142 1143 // If, after promotion, these are the same types, this is a noop copy. 1144 if (SrcVT != DstVT) 1145 return false; 1146 1147 return SinkCast(CI); 1148 } 1149 1150 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1151 /// possible. 1152 /// 1153 /// Return true if any changes were made. 1154 static bool CombineUAddWithOverflow(CmpInst *CI) { 1155 Value *A, *B; 1156 Instruction *AddI; 1157 if (!match(CI, 1158 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1159 return false; 1160 1161 Type *Ty = AddI->getType(); 1162 if (!isa<IntegerType>(Ty)) 1163 return false; 1164 1165 // We don't want to move around uses of condition values this late, so we we 1166 // check if it is legal to create the call to the intrinsic in the basic 1167 // block containing the icmp: 1168 1169 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1170 return false; 1171 1172 #ifndef NDEBUG 1173 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1174 // for now: 1175 if (AddI->hasOneUse()) 1176 assert(*AddI->user_begin() == CI && "expected!"); 1177 #endif 1178 1179 Module *M = CI->getModule(); 1180 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1181 1182 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1183 1184 DebugLoc Loc = CI->getDebugLoc(); 1185 auto *UAddWithOverflow = 1186 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1187 UAddWithOverflow->setDebugLoc(Loc); 1188 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1189 UAdd->setDebugLoc(Loc); 1190 auto *Overflow = 1191 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1192 Overflow->setDebugLoc(Loc); 1193 1194 CI->replaceAllUsesWith(Overflow); 1195 AddI->replaceAllUsesWith(UAdd); 1196 CI->eraseFromParent(); 1197 AddI->eraseFromParent(); 1198 return true; 1199 } 1200 1201 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1202 /// registers that must be created and coalesced. This is a clear win except on 1203 /// targets with multiple condition code registers (PowerPC), where it might 1204 /// lose; some adjustment may be wanted there. 1205 /// 1206 /// Return true if any changes are made. 1207 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1208 BasicBlock *DefBB = CI->getParent(); 1209 1210 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1211 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1212 return false; 1213 1214 // Only insert a cmp in each block once. 1215 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1216 1217 bool MadeChange = false; 1218 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1219 UI != E; ) { 1220 Use &TheUse = UI.getUse(); 1221 Instruction *User = cast<Instruction>(*UI); 1222 1223 // Preincrement use iterator so we don't invalidate it. 1224 ++UI; 1225 1226 // Don't bother for PHI nodes. 1227 if (isa<PHINode>(User)) 1228 continue; 1229 1230 // Figure out which BB this cmp is used in. 1231 BasicBlock *UserBB = User->getParent(); 1232 1233 // If this user is in the same block as the cmp, don't change the cmp. 1234 if (UserBB == DefBB) continue; 1235 1236 // If we have already inserted a cmp into this block, use it. 1237 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1238 1239 if (!InsertedCmp) { 1240 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1241 assert(InsertPt != UserBB->end()); 1242 InsertedCmp = 1243 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1244 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1245 // Propagate the debug info. 1246 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1247 } 1248 1249 // Replace a use of the cmp with a use of the new cmp. 1250 TheUse = InsertedCmp; 1251 MadeChange = true; 1252 ++NumCmpUses; 1253 } 1254 1255 // If we removed all uses, nuke the cmp. 1256 if (CI->use_empty()) { 1257 CI->eraseFromParent(); 1258 MadeChange = true; 1259 } 1260 1261 return MadeChange; 1262 } 1263 1264 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1265 if (SinkCmpExpression(CI, TLI)) 1266 return true; 1267 1268 if (CombineUAddWithOverflow(CI)) 1269 return true; 1270 1271 return false; 1272 } 1273 1274 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1275 /// used in a compare to allow isel to generate better code for targets where 1276 /// this operation can be combined. 1277 /// 1278 /// Return true if any changes are made. 1279 static bool sinkAndCmp0Expression(Instruction *AndI, 1280 const TargetLowering &TLI, 1281 SetOfInstrs &InsertedInsts) { 1282 // Double-check that we're not trying to optimize an instruction that was 1283 // already optimized by some other part of this pass. 1284 assert(!InsertedInsts.count(AndI) && 1285 "Attempting to optimize already optimized and instruction"); 1286 (void) InsertedInsts; 1287 1288 // Nothing to do for single use in same basic block. 1289 if (AndI->hasOneUse() && 1290 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1291 return false; 1292 1293 // Try to avoid cases where sinking/duplicating is likely to increase register 1294 // pressure. 1295 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1296 !isa<ConstantInt>(AndI->getOperand(1)) && 1297 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1298 return false; 1299 1300 for (auto *U : AndI->users()) { 1301 Instruction *User = cast<Instruction>(U); 1302 1303 // Only sink for and mask feeding icmp with 0. 1304 if (!isa<ICmpInst>(User)) 1305 return false; 1306 1307 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1308 if (!CmpC || !CmpC->isZero()) 1309 return false; 1310 } 1311 1312 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1313 return false; 1314 1315 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1316 LLVM_DEBUG(AndI->getParent()->dump()); 1317 1318 // Push the 'and' into the same block as the icmp 0. There should only be 1319 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1320 // others, so we don't need to keep track of which BBs we insert into. 1321 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1322 UI != E; ) { 1323 Use &TheUse = UI.getUse(); 1324 Instruction *User = cast<Instruction>(*UI); 1325 1326 // Preincrement use iterator so we don't invalidate it. 1327 ++UI; 1328 1329 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1330 1331 // Keep the 'and' in the same place if the use is already in the same block. 1332 Instruction *InsertPt = 1333 User->getParent() == AndI->getParent() ? AndI : User; 1334 Instruction *InsertedAnd = 1335 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1336 AndI->getOperand(1), "", InsertPt); 1337 // Propagate the debug info. 1338 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1339 1340 // Replace a use of the 'and' with a use of the new 'and'. 1341 TheUse = InsertedAnd; 1342 ++NumAndUses; 1343 LLVM_DEBUG(User->getParent()->dump()); 1344 } 1345 1346 // We removed all uses, nuke the and. 1347 AndI->eraseFromParent(); 1348 return true; 1349 } 1350 1351 /// Check if the candidates could be combined with a shift instruction, which 1352 /// includes: 1353 /// 1. Truncate instruction 1354 /// 2. And instruction and the imm is a mask of the low bits: 1355 /// imm & (imm+1) == 0 1356 static bool isExtractBitsCandidateUse(Instruction *User) { 1357 if (!isa<TruncInst>(User)) { 1358 if (User->getOpcode() != Instruction::And || 1359 !isa<ConstantInt>(User->getOperand(1))) 1360 return false; 1361 1362 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1363 1364 if ((Cimm & (Cimm + 1)).getBoolValue()) 1365 return false; 1366 } 1367 return true; 1368 } 1369 1370 /// Sink both shift and truncate instruction to the use of truncate's BB. 1371 static bool 1372 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1373 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1374 const TargetLowering &TLI, const DataLayout &DL) { 1375 BasicBlock *UserBB = User->getParent(); 1376 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1377 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1378 bool MadeChange = false; 1379 1380 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1381 TruncE = TruncI->user_end(); 1382 TruncUI != TruncE;) { 1383 1384 Use &TruncTheUse = TruncUI.getUse(); 1385 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1386 // Preincrement use iterator so we don't invalidate it. 1387 1388 ++TruncUI; 1389 1390 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1391 if (!ISDOpcode) 1392 continue; 1393 1394 // If the use is actually a legal node, there will not be an 1395 // implicit truncate. 1396 // FIXME: always querying the result type is just an 1397 // approximation; some nodes' legality is determined by the 1398 // operand or other means. There's no good way to find out though. 1399 if (TLI.isOperationLegalOrCustom( 1400 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1401 continue; 1402 1403 // Don't bother for PHI nodes. 1404 if (isa<PHINode>(TruncUser)) 1405 continue; 1406 1407 BasicBlock *TruncUserBB = TruncUser->getParent(); 1408 1409 if (UserBB == TruncUserBB) 1410 continue; 1411 1412 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1413 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1414 1415 if (!InsertedShift && !InsertedTrunc) { 1416 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1417 assert(InsertPt != TruncUserBB->end()); 1418 // Sink the shift 1419 if (ShiftI->getOpcode() == Instruction::AShr) 1420 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1421 "", &*InsertPt); 1422 else 1423 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1424 "", &*InsertPt); 1425 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1426 1427 // Sink the trunc 1428 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1429 TruncInsertPt++; 1430 assert(TruncInsertPt != TruncUserBB->end()); 1431 1432 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1433 TruncI->getType(), "", &*TruncInsertPt); 1434 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1435 1436 MadeChange = true; 1437 1438 TruncTheUse = InsertedTrunc; 1439 } 1440 } 1441 return MadeChange; 1442 } 1443 1444 /// Sink the shift *right* instruction into user blocks if the uses could 1445 /// potentially be combined with this shift instruction and generate BitExtract 1446 /// instruction. It will only be applied if the architecture supports BitExtract 1447 /// instruction. Here is an example: 1448 /// BB1: 1449 /// %x.extract.shift = lshr i64 %arg1, 32 1450 /// BB2: 1451 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1452 /// ==> 1453 /// 1454 /// BB2: 1455 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1456 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1457 /// 1458 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1459 /// instruction. 1460 /// Return true if any changes are made. 1461 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1462 const TargetLowering &TLI, 1463 const DataLayout &DL) { 1464 BasicBlock *DefBB = ShiftI->getParent(); 1465 1466 /// Only insert instructions in each block once. 1467 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1468 1469 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1470 1471 bool MadeChange = false; 1472 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1473 UI != E;) { 1474 Use &TheUse = UI.getUse(); 1475 Instruction *User = cast<Instruction>(*UI); 1476 // Preincrement use iterator so we don't invalidate it. 1477 ++UI; 1478 1479 // Don't bother for PHI nodes. 1480 if (isa<PHINode>(User)) 1481 continue; 1482 1483 if (!isExtractBitsCandidateUse(User)) 1484 continue; 1485 1486 BasicBlock *UserBB = User->getParent(); 1487 1488 if (UserBB == DefBB) { 1489 // If the shift and truncate instruction are in the same BB. The use of 1490 // the truncate(TruncUse) may still introduce another truncate if not 1491 // legal. In this case, we would like to sink both shift and truncate 1492 // instruction to the BB of TruncUse. 1493 // for example: 1494 // BB1: 1495 // i64 shift.result = lshr i64 opnd, imm 1496 // trunc.result = trunc shift.result to i16 1497 // 1498 // BB2: 1499 // ----> We will have an implicit truncate here if the architecture does 1500 // not have i16 compare. 1501 // cmp i16 trunc.result, opnd2 1502 // 1503 if (isa<TruncInst>(User) && shiftIsLegal 1504 // If the type of the truncate is legal, no truncate will be 1505 // introduced in other basic blocks. 1506 && 1507 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1508 MadeChange = 1509 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1510 1511 continue; 1512 } 1513 // If we have already inserted a shift into this block, use it. 1514 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1515 1516 if (!InsertedShift) { 1517 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1518 assert(InsertPt != UserBB->end()); 1519 1520 if (ShiftI->getOpcode() == Instruction::AShr) 1521 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1522 "", &*InsertPt); 1523 else 1524 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1525 "", &*InsertPt); 1526 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1527 1528 MadeChange = true; 1529 } 1530 1531 // Replace a use of the shift with a use of the new shift. 1532 TheUse = InsertedShift; 1533 } 1534 1535 // If we removed all uses, nuke the shift. 1536 if (ShiftI->use_empty()) { 1537 salvageDebugInfo(*ShiftI); 1538 ShiftI->eraseFromParent(); 1539 } 1540 1541 return MadeChange; 1542 } 1543 1544 /// If counting leading or trailing zeros is an expensive operation and a zero 1545 /// input is defined, add a check for zero to avoid calling the intrinsic. 1546 /// 1547 /// We want to transform: 1548 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1549 /// 1550 /// into: 1551 /// entry: 1552 /// %cmpz = icmp eq i64 %A, 0 1553 /// br i1 %cmpz, label %cond.end, label %cond.false 1554 /// cond.false: 1555 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1556 /// br label %cond.end 1557 /// cond.end: 1558 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1559 /// 1560 /// If the transform is performed, return true and set ModifiedDT to true. 1561 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1562 const TargetLowering *TLI, 1563 const DataLayout *DL, 1564 bool &ModifiedDT) { 1565 if (!TLI || !DL) 1566 return false; 1567 1568 // If a zero input is undefined, it doesn't make sense to despeculate that. 1569 if (match(CountZeros->getOperand(1), m_One())) 1570 return false; 1571 1572 // If it's cheap to speculate, there's nothing to do. 1573 auto IntrinsicID = CountZeros->getIntrinsicID(); 1574 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1575 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1576 return false; 1577 1578 // Only handle legal scalar cases. Anything else requires too much work. 1579 Type *Ty = CountZeros->getType(); 1580 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1581 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1582 return false; 1583 1584 // The intrinsic will be sunk behind a compare against zero and branch. 1585 BasicBlock *StartBlock = CountZeros->getParent(); 1586 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1587 1588 // Create another block after the count zero intrinsic. A PHI will be added 1589 // in this block to select the result of the intrinsic or the bit-width 1590 // constant if the input to the intrinsic is zero. 1591 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1592 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1593 1594 // Set up a builder to create a compare, conditional branch, and PHI. 1595 IRBuilder<> Builder(CountZeros->getContext()); 1596 Builder.SetInsertPoint(StartBlock->getTerminator()); 1597 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1598 1599 // Replace the unconditional branch that was created by the first split with 1600 // a compare against zero and a conditional branch. 1601 Value *Zero = Constant::getNullValue(Ty); 1602 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1603 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1604 StartBlock->getTerminator()->eraseFromParent(); 1605 1606 // Create a PHI in the end block to select either the output of the intrinsic 1607 // or the bit width of the operand. 1608 Builder.SetInsertPoint(&EndBlock->front()); 1609 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1610 CountZeros->replaceAllUsesWith(PN); 1611 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1612 PN->addIncoming(BitWidth, StartBlock); 1613 PN->addIncoming(CountZeros, CallBlock); 1614 1615 // We are explicitly handling the zero case, so we can set the intrinsic's 1616 // undefined zero argument to 'true'. This will also prevent reprocessing the 1617 // intrinsic; we only despeculate when a zero input is defined. 1618 CountZeros->setArgOperand(1, Builder.getTrue()); 1619 ModifiedDT = true; 1620 return true; 1621 } 1622 1623 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1624 BasicBlock *BB = CI->getParent(); 1625 1626 // Lower inline assembly if we can. 1627 // If we found an inline asm expession, and if the target knows how to 1628 // lower it to normal LLVM code, do so now. 1629 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1630 if (TLI->ExpandInlineAsm(CI)) { 1631 // Avoid invalidating the iterator. 1632 CurInstIterator = BB->begin(); 1633 // Avoid processing instructions out of order, which could cause 1634 // reuse before a value is defined. 1635 SunkAddrs.clear(); 1636 return true; 1637 } 1638 // Sink address computing for memory operands into the block. 1639 if (optimizeInlineAsmInst(CI)) 1640 return true; 1641 } 1642 1643 // Align the pointer arguments to this call if the target thinks it's a good 1644 // idea 1645 unsigned MinSize, PrefAlign; 1646 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1647 for (auto &Arg : CI->arg_operands()) { 1648 // We want to align both objects whose address is used directly and 1649 // objects whose address is used in casts and GEPs, though it only makes 1650 // sense for GEPs if the offset is a multiple of the desired alignment and 1651 // if size - offset meets the size threshold. 1652 if (!Arg->getType()->isPointerTy()) 1653 continue; 1654 APInt Offset(DL->getIndexSizeInBits( 1655 cast<PointerType>(Arg->getType())->getAddressSpace()), 1656 0); 1657 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1658 uint64_t Offset2 = Offset.getLimitedValue(); 1659 if ((Offset2 & (PrefAlign-1)) != 0) 1660 continue; 1661 AllocaInst *AI; 1662 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1663 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1664 AI->setAlignment(PrefAlign); 1665 // Global variables can only be aligned if they are defined in this 1666 // object (i.e. they are uniquely initialized in this object), and 1667 // over-aligning global variables that have an explicit section is 1668 // forbidden. 1669 GlobalVariable *GV; 1670 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1671 GV->getPointerAlignment(*DL) < PrefAlign && 1672 DL->getTypeAllocSize(GV->getValueType()) >= 1673 MinSize + Offset2) 1674 GV->setAlignment(PrefAlign); 1675 } 1676 // If this is a memcpy (or similar) then we may be able to improve the 1677 // alignment 1678 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1679 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1680 if (DestAlign > MI->getDestAlignment()) 1681 MI->setDestAlignment(DestAlign); 1682 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1683 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1684 if (SrcAlign > MTI->getSourceAlignment()) 1685 MTI->setSourceAlignment(SrcAlign); 1686 } 1687 } 1688 } 1689 1690 // If we have a cold call site, try to sink addressing computation into the 1691 // cold block. This interacts with our handling for loads and stores to 1692 // ensure that we can fold all uses of a potential addressing computation 1693 // into their uses. TODO: generalize this to work over profiling data 1694 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1695 for (auto &Arg : CI->arg_operands()) { 1696 if (!Arg->getType()->isPointerTy()) 1697 continue; 1698 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1699 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1700 } 1701 1702 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1703 if (II) { 1704 switch (II->getIntrinsicID()) { 1705 default: break; 1706 case Intrinsic::objectsize: { 1707 // Lower all uses of llvm.objectsize.* 1708 ConstantInt *RetVal = 1709 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1710 1711 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1712 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1713 }); 1714 return true; 1715 } 1716 case Intrinsic::is_constant: { 1717 // If is_constant hasn't folded away yet, lower it to false now. 1718 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1719 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1720 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1721 }); 1722 return true; 1723 } 1724 case Intrinsic::aarch64_stlxr: 1725 case Intrinsic::aarch64_stxr: { 1726 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1727 if (!ExtVal || !ExtVal->hasOneUse() || 1728 ExtVal->getParent() == CI->getParent()) 1729 return false; 1730 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1731 ExtVal->moveBefore(CI); 1732 // Mark this instruction as "inserted by CGP", so that other 1733 // optimizations don't touch it. 1734 InsertedInsts.insert(ExtVal); 1735 return true; 1736 } 1737 case Intrinsic::launder_invariant_group: 1738 case Intrinsic::strip_invariant_group: { 1739 Value *ArgVal = II->getArgOperand(0); 1740 auto it = LargeOffsetGEPMap.find(II); 1741 if (it != LargeOffsetGEPMap.end()) { 1742 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1743 // Make sure not to have to deal with iterator invalidation 1744 // after possibly adding ArgVal to LargeOffsetGEPMap. 1745 auto GEPs = std::move(it->second); 1746 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1747 LargeOffsetGEPMap.erase(II); 1748 } 1749 1750 II->replaceAllUsesWith(ArgVal); 1751 II->eraseFromParent(); 1752 return true; 1753 } 1754 case Intrinsic::cttz: 1755 case Intrinsic::ctlz: 1756 // If counting zeros is expensive, try to avoid it. 1757 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1758 } 1759 1760 if (TLI) { 1761 SmallVector<Value*, 2> PtrOps; 1762 Type *AccessTy; 1763 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1764 while (!PtrOps.empty()) { 1765 Value *PtrVal = PtrOps.pop_back_val(); 1766 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1767 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1768 return true; 1769 } 1770 } 1771 } 1772 1773 // From here on out we're working with named functions. 1774 if (!CI->getCalledFunction()) return false; 1775 1776 // Lower all default uses of _chk calls. This is very similar 1777 // to what InstCombineCalls does, but here we are only lowering calls 1778 // to fortified library functions (e.g. __memcpy_chk) that have the default 1779 // "don't know" as the objectsize. Anything else should be left alone. 1780 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1781 if (Value *V = Simplifier.optimizeCall(CI)) { 1782 CI->replaceAllUsesWith(V); 1783 CI->eraseFromParent(); 1784 return true; 1785 } 1786 1787 return false; 1788 } 1789 1790 /// Look for opportunities to duplicate return instructions to the predecessor 1791 /// to enable tail call optimizations. The case it is currently looking for is: 1792 /// @code 1793 /// bb0: 1794 /// %tmp0 = tail call i32 @f0() 1795 /// br label %return 1796 /// bb1: 1797 /// %tmp1 = tail call i32 @f1() 1798 /// br label %return 1799 /// bb2: 1800 /// %tmp2 = tail call i32 @f2() 1801 /// br label %return 1802 /// return: 1803 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1804 /// ret i32 %retval 1805 /// @endcode 1806 /// 1807 /// => 1808 /// 1809 /// @code 1810 /// bb0: 1811 /// %tmp0 = tail call i32 @f0() 1812 /// ret i32 %tmp0 1813 /// bb1: 1814 /// %tmp1 = tail call i32 @f1() 1815 /// ret i32 %tmp1 1816 /// bb2: 1817 /// %tmp2 = tail call i32 @f2() 1818 /// ret i32 %tmp2 1819 /// @endcode 1820 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 1821 if (!TLI) 1822 return false; 1823 1824 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1825 if (!RetI) 1826 return false; 1827 1828 PHINode *PN = nullptr; 1829 BitCastInst *BCI = nullptr; 1830 Value *V = RetI->getReturnValue(); 1831 if (V) { 1832 BCI = dyn_cast<BitCastInst>(V); 1833 if (BCI) 1834 V = BCI->getOperand(0); 1835 1836 PN = dyn_cast<PHINode>(V); 1837 if (!PN) 1838 return false; 1839 } 1840 1841 if (PN && PN->getParent() != BB) 1842 return false; 1843 1844 // Make sure there are no instructions between the PHI and return, or that the 1845 // return is the first instruction in the block. 1846 if (PN) { 1847 BasicBlock::iterator BI = BB->begin(); 1848 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1849 if (&*BI == BCI) 1850 // Also skip over the bitcast. 1851 ++BI; 1852 if (&*BI != RetI) 1853 return false; 1854 } else { 1855 BasicBlock::iterator BI = BB->begin(); 1856 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1857 if (&*BI != RetI) 1858 return false; 1859 } 1860 1861 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1862 /// call. 1863 const Function *F = BB->getParent(); 1864 SmallVector<CallInst*, 4> TailCalls; 1865 if (PN) { 1866 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1867 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1868 // Make sure the phi value is indeed produced by the tail call. 1869 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1870 TLI->mayBeEmittedAsTailCall(CI) && 1871 attributesPermitTailCall(F, CI, RetI, *TLI)) 1872 TailCalls.push_back(CI); 1873 } 1874 } else { 1875 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1876 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1877 if (!VisitedBBs.insert(*PI).second) 1878 continue; 1879 1880 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1881 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1882 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1883 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1884 if (RI == RE) 1885 continue; 1886 1887 CallInst *CI = dyn_cast<CallInst>(&*RI); 1888 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 1889 attributesPermitTailCall(F, CI, RetI, *TLI)) 1890 TailCalls.push_back(CI); 1891 } 1892 } 1893 1894 bool Changed = false; 1895 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1896 CallInst *CI = TailCalls[i]; 1897 CallSite CS(CI); 1898 1899 // Make sure the call instruction is followed by an unconditional branch to 1900 // the return block. 1901 BasicBlock *CallBB = CI->getParent(); 1902 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1903 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1904 continue; 1905 1906 // Duplicate the return into CallBB. 1907 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 1908 ModifiedDT = Changed = true; 1909 ++NumRetsDup; 1910 } 1911 1912 // If we eliminated all predecessors of the block, delete the block now. 1913 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1914 BB->eraseFromParent(); 1915 1916 return Changed; 1917 } 1918 1919 //===----------------------------------------------------------------------===// 1920 // Memory Optimization 1921 //===----------------------------------------------------------------------===// 1922 1923 namespace { 1924 1925 /// This is an extended version of TargetLowering::AddrMode 1926 /// which holds actual Value*'s for register values. 1927 struct ExtAddrMode : public TargetLowering::AddrMode { 1928 Value *BaseReg = nullptr; 1929 Value *ScaledReg = nullptr; 1930 Value *OriginalValue = nullptr; 1931 1932 enum FieldName { 1933 NoField = 0x00, 1934 BaseRegField = 0x01, 1935 BaseGVField = 0x02, 1936 BaseOffsField = 0x04, 1937 ScaledRegField = 0x08, 1938 ScaleField = 0x10, 1939 MultipleFields = 0xff 1940 }; 1941 1942 ExtAddrMode() = default; 1943 1944 void print(raw_ostream &OS) const; 1945 void dump() const; 1946 1947 FieldName compare(const ExtAddrMode &other) { 1948 // First check that the types are the same on each field, as differing types 1949 // is something we can't cope with later on. 1950 if (BaseReg && other.BaseReg && 1951 BaseReg->getType() != other.BaseReg->getType()) 1952 return MultipleFields; 1953 if (BaseGV && other.BaseGV && 1954 BaseGV->getType() != other.BaseGV->getType()) 1955 return MultipleFields; 1956 if (ScaledReg && other.ScaledReg && 1957 ScaledReg->getType() != other.ScaledReg->getType()) 1958 return MultipleFields; 1959 1960 // Check each field to see if it differs. 1961 unsigned Result = NoField; 1962 if (BaseReg != other.BaseReg) 1963 Result |= BaseRegField; 1964 if (BaseGV != other.BaseGV) 1965 Result |= BaseGVField; 1966 if (BaseOffs != other.BaseOffs) 1967 Result |= BaseOffsField; 1968 if (ScaledReg != other.ScaledReg) 1969 Result |= ScaledRegField; 1970 // Don't count 0 as being a different scale, because that actually means 1971 // unscaled (which will already be counted by having no ScaledReg). 1972 if (Scale && other.Scale && Scale != other.Scale) 1973 Result |= ScaleField; 1974 1975 if (countPopulation(Result) > 1) 1976 return MultipleFields; 1977 else 1978 return static_cast<FieldName>(Result); 1979 } 1980 1981 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 1982 // with no offset. 1983 bool isTrivial() { 1984 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 1985 // trivial if at most one of these terms is nonzero, except that BaseGV and 1986 // BaseReg both being zero actually means a null pointer value, which we 1987 // consider to be 'non-zero' here. 1988 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 1989 } 1990 1991 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 1992 switch (Field) { 1993 default: 1994 return nullptr; 1995 case BaseRegField: 1996 return BaseReg; 1997 case BaseGVField: 1998 return BaseGV; 1999 case ScaledRegField: 2000 return ScaledReg; 2001 case BaseOffsField: 2002 return ConstantInt::get(IntPtrTy, BaseOffs); 2003 } 2004 } 2005 2006 void SetCombinedField(FieldName Field, Value *V, 2007 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2008 switch (Field) { 2009 default: 2010 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2011 break; 2012 case ExtAddrMode::BaseRegField: 2013 BaseReg = V; 2014 break; 2015 case ExtAddrMode::BaseGVField: 2016 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2017 // in the BaseReg field. 2018 assert(BaseReg == nullptr); 2019 BaseReg = V; 2020 BaseGV = nullptr; 2021 break; 2022 case ExtAddrMode::ScaledRegField: 2023 ScaledReg = V; 2024 // If we have a mix of scaled and unscaled addrmodes then we want scale 2025 // to be the scale and not zero. 2026 if (!Scale) 2027 for (const ExtAddrMode &AM : AddrModes) 2028 if (AM.Scale) { 2029 Scale = AM.Scale; 2030 break; 2031 } 2032 break; 2033 case ExtAddrMode::BaseOffsField: 2034 // The offset is no longer a constant, so it goes in ScaledReg with a 2035 // scale of 1. 2036 assert(ScaledReg == nullptr); 2037 ScaledReg = V; 2038 Scale = 1; 2039 BaseOffs = 0; 2040 break; 2041 } 2042 } 2043 }; 2044 2045 } // end anonymous namespace 2046 2047 #ifndef NDEBUG 2048 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2049 AM.print(OS); 2050 return OS; 2051 } 2052 #endif 2053 2054 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2055 void ExtAddrMode::print(raw_ostream &OS) const { 2056 bool NeedPlus = false; 2057 OS << "["; 2058 if (BaseGV) { 2059 OS << (NeedPlus ? " + " : "") 2060 << "GV:"; 2061 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2062 NeedPlus = true; 2063 } 2064 2065 if (BaseOffs) { 2066 OS << (NeedPlus ? " + " : "") 2067 << BaseOffs; 2068 NeedPlus = true; 2069 } 2070 2071 if (BaseReg) { 2072 OS << (NeedPlus ? " + " : "") 2073 << "Base:"; 2074 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2075 NeedPlus = true; 2076 } 2077 if (Scale) { 2078 OS << (NeedPlus ? " + " : "") 2079 << Scale << "*"; 2080 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2081 } 2082 2083 OS << ']'; 2084 } 2085 2086 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2087 print(dbgs()); 2088 dbgs() << '\n'; 2089 } 2090 #endif 2091 2092 namespace { 2093 2094 /// This class provides transaction based operation on the IR. 2095 /// Every change made through this class is recorded in the internal state and 2096 /// can be undone (rollback) until commit is called. 2097 class TypePromotionTransaction { 2098 /// This represents the common interface of the individual transaction. 2099 /// Each class implements the logic for doing one specific modification on 2100 /// the IR via the TypePromotionTransaction. 2101 class TypePromotionAction { 2102 protected: 2103 /// The Instruction modified. 2104 Instruction *Inst; 2105 2106 public: 2107 /// Constructor of the action. 2108 /// The constructor performs the related action on the IR. 2109 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2110 2111 virtual ~TypePromotionAction() = default; 2112 2113 /// Undo the modification done by this action. 2114 /// When this method is called, the IR must be in the same state as it was 2115 /// before this action was applied. 2116 /// \pre Undoing the action works if and only if the IR is in the exact same 2117 /// state as it was directly after this action was applied. 2118 virtual void undo() = 0; 2119 2120 /// Advocate every change made by this action. 2121 /// When the results on the IR of the action are to be kept, it is important 2122 /// to call this function, otherwise hidden information may be kept forever. 2123 virtual void commit() { 2124 // Nothing to be done, this action is not doing anything. 2125 } 2126 }; 2127 2128 /// Utility to remember the position of an instruction. 2129 class InsertionHandler { 2130 /// Position of an instruction. 2131 /// Either an instruction: 2132 /// - Is the first in a basic block: BB is used. 2133 /// - Has a previous instruction: PrevInst is used. 2134 union { 2135 Instruction *PrevInst; 2136 BasicBlock *BB; 2137 } Point; 2138 2139 /// Remember whether or not the instruction had a previous instruction. 2140 bool HasPrevInstruction; 2141 2142 public: 2143 /// Record the position of \p Inst. 2144 InsertionHandler(Instruction *Inst) { 2145 BasicBlock::iterator It = Inst->getIterator(); 2146 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2147 if (HasPrevInstruction) 2148 Point.PrevInst = &*--It; 2149 else 2150 Point.BB = Inst->getParent(); 2151 } 2152 2153 /// Insert \p Inst at the recorded position. 2154 void insert(Instruction *Inst) { 2155 if (HasPrevInstruction) { 2156 if (Inst->getParent()) 2157 Inst->removeFromParent(); 2158 Inst->insertAfter(Point.PrevInst); 2159 } else { 2160 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2161 if (Inst->getParent()) 2162 Inst->moveBefore(Position); 2163 else 2164 Inst->insertBefore(Position); 2165 } 2166 } 2167 }; 2168 2169 /// Move an instruction before another. 2170 class InstructionMoveBefore : public TypePromotionAction { 2171 /// Original position of the instruction. 2172 InsertionHandler Position; 2173 2174 public: 2175 /// Move \p Inst before \p Before. 2176 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2177 : TypePromotionAction(Inst), Position(Inst) { 2178 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2179 << "\n"); 2180 Inst->moveBefore(Before); 2181 } 2182 2183 /// Move the instruction back to its original position. 2184 void undo() override { 2185 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2186 Position.insert(Inst); 2187 } 2188 }; 2189 2190 /// Set the operand of an instruction with a new value. 2191 class OperandSetter : public TypePromotionAction { 2192 /// Original operand of the instruction. 2193 Value *Origin; 2194 2195 /// Index of the modified instruction. 2196 unsigned Idx; 2197 2198 public: 2199 /// Set \p Idx operand of \p Inst with \p NewVal. 2200 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2201 : TypePromotionAction(Inst), Idx(Idx) { 2202 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2203 << "for:" << *Inst << "\n" 2204 << "with:" << *NewVal << "\n"); 2205 Origin = Inst->getOperand(Idx); 2206 Inst->setOperand(Idx, NewVal); 2207 } 2208 2209 /// Restore the original value of the instruction. 2210 void undo() override { 2211 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2212 << "for: " << *Inst << "\n" 2213 << "with: " << *Origin << "\n"); 2214 Inst->setOperand(Idx, Origin); 2215 } 2216 }; 2217 2218 /// Hide the operands of an instruction. 2219 /// Do as if this instruction was not using any of its operands. 2220 class OperandsHider : public TypePromotionAction { 2221 /// The list of original operands. 2222 SmallVector<Value *, 4> OriginalValues; 2223 2224 public: 2225 /// Remove \p Inst from the uses of the operands of \p Inst. 2226 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2227 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2228 unsigned NumOpnds = Inst->getNumOperands(); 2229 OriginalValues.reserve(NumOpnds); 2230 for (unsigned It = 0; It < NumOpnds; ++It) { 2231 // Save the current operand. 2232 Value *Val = Inst->getOperand(It); 2233 OriginalValues.push_back(Val); 2234 // Set a dummy one. 2235 // We could use OperandSetter here, but that would imply an overhead 2236 // that we are not willing to pay. 2237 Inst->setOperand(It, UndefValue::get(Val->getType())); 2238 } 2239 } 2240 2241 /// Restore the original list of uses. 2242 void undo() override { 2243 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2244 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2245 Inst->setOperand(It, OriginalValues[It]); 2246 } 2247 }; 2248 2249 /// Build a truncate instruction. 2250 class TruncBuilder : public TypePromotionAction { 2251 Value *Val; 2252 2253 public: 2254 /// Build a truncate instruction of \p Opnd producing a \p Ty 2255 /// result. 2256 /// trunc Opnd to Ty. 2257 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2258 IRBuilder<> Builder(Opnd); 2259 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2260 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2261 } 2262 2263 /// Get the built value. 2264 Value *getBuiltValue() { return Val; } 2265 2266 /// Remove the built instruction. 2267 void undo() override { 2268 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2269 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2270 IVal->eraseFromParent(); 2271 } 2272 }; 2273 2274 /// Build a sign extension instruction. 2275 class SExtBuilder : public TypePromotionAction { 2276 Value *Val; 2277 2278 public: 2279 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2280 /// result. 2281 /// sext Opnd to Ty. 2282 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2283 : TypePromotionAction(InsertPt) { 2284 IRBuilder<> Builder(InsertPt); 2285 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2286 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2287 } 2288 2289 /// Get the built value. 2290 Value *getBuiltValue() { return Val; } 2291 2292 /// Remove the built instruction. 2293 void undo() override { 2294 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2295 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2296 IVal->eraseFromParent(); 2297 } 2298 }; 2299 2300 /// Build a zero extension instruction. 2301 class ZExtBuilder : public TypePromotionAction { 2302 Value *Val; 2303 2304 public: 2305 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2306 /// result. 2307 /// zext Opnd to Ty. 2308 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2309 : TypePromotionAction(InsertPt) { 2310 IRBuilder<> Builder(InsertPt); 2311 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2312 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2313 } 2314 2315 /// Get the built value. 2316 Value *getBuiltValue() { return Val; } 2317 2318 /// Remove the built instruction. 2319 void undo() override { 2320 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2321 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2322 IVal->eraseFromParent(); 2323 } 2324 }; 2325 2326 /// Mutate an instruction to another type. 2327 class TypeMutator : public TypePromotionAction { 2328 /// Record the original type. 2329 Type *OrigTy; 2330 2331 public: 2332 /// Mutate the type of \p Inst into \p NewTy. 2333 TypeMutator(Instruction *Inst, Type *NewTy) 2334 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2335 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2336 << "\n"); 2337 Inst->mutateType(NewTy); 2338 } 2339 2340 /// Mutate the instruction back to its original type. 2341 void undo() override { 2342 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2343 << "\n"); 2344 Inst->mutateType(OrigTy); 2345 } 2346 }; 2347 2348 /// Replace the uses of an instruction by another instruction. 2349 class UsesReplacer : public TypePromotionAction { 2350 /// Helper structure to keep track of the replaced uses. 2351 struct InstructionAndIdx { 2352 /// The instruction using the instruction. 2353 Instruction *Inst; 2354 2355 /// The index where this instruction is used for Inst. 2356 unsigned Idx; 2357 2358 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2359 : Inst(Inst), Idx(Idx) {} 2360 }; 2361 2362 /// Keep track of the original uses (pair Instruction, Index). 2363 SmallVector<InstructionAndIdx, 4> OriginalUses; 2364 /// Keep track of the debug users. 2365 SmallVector<DbgValueInst *, 1> DbgValues; 2366 2367 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2368 2369 public: 2370 /// Replace all the use of \p Inst by \p New. 2371 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2372 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2373 << "\n"); 2374 // Record the original uses. 2375 for (Use &U : Inst->uses()) { 2376 Instruction *UserI = cast<Instruction>(U.getUser()); 2377 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2378 } 2379 // Record the debug uses separately. They are not in the instruction's 2380 // use list, but they are replaced by RAUW. 2381 findDbgValues(DbgValues, Inst); 2382 2383 // Now, we can replace the uses. 2384 Inst->replaceAllUsesWith(New); 2385 } 2386 2387 /// Reassign the original uses of Inst to Inst. 2388 void undo() override { 2389 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2390 for (use_iterator UseIt = OriginalUses.begin(), 2391 EndIt = OriginalUses.end(); 2392 UseIt != EndIt; ++UseIt) { 2393 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2394 } 2395 // RAUW has replaced all original uses with references to the new value, 2396 // including the debug uses. Since we are undoing the replacements, 2397 // the original debug uses must also be reinstated to maintain the 2398 // correctness and utility of debug value instructions. 2399 for (auto *DVI: DbgValues) { 2400 LLVMContext &Ctx = Inst->getType()->getContext(); 2401 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2402 DVI->setOperand(0, MV); 2403 } 2404 } 2405 }; 2406 2407 /// Remove an instruction from the IR. 2408 class InstructionRemover : public TypePromotionAction { 2409 /// Original position of the instruction. 2410 InsertionHandler Inserter; 2411 2412 /// Helper structure to hide all the link to the instruction. In other 2413 /// words, this helps to do as if the instruction was removed. 2414 OperandsHider Hider; 2415 2416 /// Keep track of the uses replaced, if any. 2417 UsesReplacer *Replacer = nullptr; 2418 2419 /// Keep track of instructions removed. 2420 SetOfInstrs &RemovedInsts; 2421 2422 public: 2423 /// Remove all reference of \p Inst and optionally replace all its 2424 /// uses with New. 2425 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2426 /// \pre If !Inst->use_empty(), then New != nullptr 2427 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2428 Value *New = nullptr) 2429 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2430 RemovedInsts(RemovedInsts) { 2431 if (New) 2432 Replacer = new UsesReplacer(Inst, New); 2433 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2434 RemovedInsts.insert(Inst); 2435 /// The instructions removed here will be freed after completing 2436 /// optimizeBlock() for all blocks as we need to keep track of the 2437 /// removed instructions during promotion. 2438 Inst->removeFromParent(); 2439 } 2440 2441 ~InstructionRemover() override { delete Replacer; } 2442 2443 /// Resurrect the instruction and reassign it to the proper uses if 2444 /// new value was provided when build this action. 2445 void undo() override { 2446 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2447 Inserter.insert(Inst); 2448 if (Replacer) 2449 Replacer->undo(); 2450 Hider.undo(); 2451 RemovedInsts.erase(Inst); 2452 } 2453 }; 2454 2455 public: 2456 /// Restoration point. 2457 /// The restoration point is a pointer to an action instead of an iterator 2458 /// because the iterator may be invalidated but not the pointer. 2459 using ConstRestorationPt = const TypePromotionAction *; 2460 2461 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2462 : RemovedInsts(RemovedInsts) {} 2463 2464 /// Advocate every changes made in that transaction. 2465 void commit(); 2466 2467 /// Undo all the changes made after the given point. 2468 void rollback(ConstRestorationPt Point); 2469 2470 /// Get the current restoration point. 2471 ConstRestorationPt getRestorationPoint() const; 2472 2473 /// \name API for IR modification with state keeping to support rollback. 2474 /// @{ 2475 /// Same as Instruction::setOperand. 2476 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2477 2478 /// Same as Instruction::eraseFromParent. 2479 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2480 2481 /// Same as Value::replaceAllUsesWith. 2482 void replaceAllUsesWith(Instruction *Inst, Value *New); 2483 2484 /// Same as Value::mutateType. 2485 void mutateType(Instruction *Inst, Type *NewTy); 2486 2487 /// Same as IRBuilder::createTrunc. 2488 Value *createTrunc(Instruction *Opnd, Type *Ty); 2489 2490 /// Same as IRBuilder::createSExt. 2491 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2492 2493 /// Same as IRBuilder::createZExt. 2494 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2495 2496 /// Same as Instruction::moveBefore. 2497 void moveBefore(Instruction *Inst, Instruction *Before); 2498 /// @} 2499 2500 private: 2501 /// The ordered list of actions made so far. 2502 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2503 2504 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2505 2506 SetOfInstrs &RemovedInsts; 2507 }; 2508 2509 } // end anonymous namespace 2510 2511 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2512 Value *NewVal) { 2513 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2514 Inst, Idx, NewVal)); 2515 } 2516 2517 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2518 Value *NewVal) { 2519 Actions.push_back( 2520 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2521 Inst, RemovedInsts, NewVal)); 2522 } 2523 2524 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2525 Value *New) { 2526 Actions.push_back( 2527 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2528 } 2529 2530 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2531 Actions.push_back( 2532 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2533 } 2534 2535 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2536 Type *Ty) { 2537 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2538 Value *Val = Ptr->getBuiltValue(); 2539 Actions.push_back(std::move(Ptr)); 2540 return Val; 2541 } 2542 2543 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2544 Value *Opnd, Type *Ty) { 2545 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2546 Value *Val = Ptr->getBuiltValue(); 2547 Actions.push_back(std::move(Ptr)); 2548 return Val; 2549 } 2550 2551 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2552 Value *Opnd, Type *Ty) { 2553 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2554 Value *Val = Ptr->getBuiltValue(); 2555 Actions.push_back(std::move(Ptr)); 2556 return Val; 2557 } 2558 2559 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2560 Instruction *Before) { 2561 Actions.push_back( 2562 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2563 Inst, Before)); 2564 } 2565 2566 TypePromotionTransaction::ConstRestorationPt 2567 TypePromotionTransaction::getRestorationPoint() const { 2568 return !Actions.empty() ? Actions.back().get() : nullptr; 2569 } 2570 2571 void TypePromotionTransaction::commit() { 2572 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2573 ++It) 2574 (*It)->commit(); 2575 Actions.clear(); 2576 } 2577 2578 void TypePromotionTransaction::rollback( 2579 TypePromotionTransaction::ConstRestorationPt Point) { 2580 while (!Actions.empty() && Point != Actions.back().get()) { 2581 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2582 Curr->undo(); 2583 } 2584 } 2585 2586 namespace { 2587 2588 /// A helper class for matching addressing modes. 2589 /// 2590 /// This encapsulates the logic for matching the target-legal addressing modes. 2591 class AddressingModeMatcher { 2592 SmallVectorImpl<Instruction*> &AddrModeInsts; 2593 const TargetLowering &TLI; 2594 const TargetRegisterInfo &TRI; 2595 const DataLayout &DL; 2596 2597 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2598 /// the memory instruction that we're computing this address for. 2599 Type *AccessTy; 2600 unsigned AddrSpace; 2601 Instruction *MemoryInst; 2602 2603 /// This is the addressing mode that we're building up. This is 2604 /// part of the return value of this addressing mode matching stuff. 2605 ExtAddrMode &AddrMode; 2606 2607 /// The instructions inserted by other CodeGenPrepare optimizations. 2608 const SetOfInstrs &InsertedInsts; 2609 2610 /// A map from the instructions to their type before promotion. 2611 InstrToOrigTy &PromotedInsts; 2612 2613 /// The ongoing transaction where every action should be registered. 2614 TypePromotionTransaction &TPT; 2615 2616 // A GEP which has too large offset to be folded into the addressing mode. 2617 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2618 2619 /// This is set to true when we should not do profitability checks. 2620 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2621 bool IgnoreProfitability; 2622 2623 AddressingModeMatcher( 2624 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2625 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2626 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2627 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2628 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2629 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2630 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2631 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2632 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2633 IgnoreProfitability = false; 2634 } 2635 2636 public: 2637 /// Find the maximal addressing mode that a load/store of V can fold, 2638 /// give an access type of AccessTy. This returns a list of involved 2639 /// instructions in AddrModeInsts. 2640 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2641 /// optimizations. 2642 /// \p PromotedInsts maps the instructions to their type before promotion. 2643 /// \p The ongoing transaction where every action should be registered. 2644 static ExtAddrMode 2645 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2646 SmallVectorImpl<Instruction *> &AddrModeInsts, 2647 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2648 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2649 TypePromotionTransaction &TPT, 2650 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2651 ExtAddrMode Result; 2652 2653 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2654 MemoryInst, Result, InsertedInsts, 2655 PromotedInsts, TPT, LargeOffsetGEP) 2656 .matchAddr(V, 0); 2657 (void)Success; assert(Success && "Couldn't select *anything*?"); 2658 return Result; 2659 } 2660 2661 private: 2662 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2663 bool matchAddr(Value *Addr, unsigned Depth); 2664 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2665 bool *MovedAway = nullptr); 2666 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2667 ExtAddrMode &AMBefore, 2668 ExtAddrMode &AMAfter); 2669 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2670 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2671 Value *PromotedOperand) const; 2672 }; 2673 2674 class PhiNodeSet; 2675 2676 /// An iterator for PhiNodeSet. 2677 class PhiNodeSetIterator { 2678 PhiNodeSet * const Set; 2679 size_t CurrentIndex = 0; 2680 2681 public: 2682 /// The constructor. Start should point to either a valid element, or be equal 2683 /// to the size of the underlying SmallVector of the PhiNodeSet. 2684 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2685 PHINode * operator*() const; 2686 PhiNodeSetIterator& operator++(); 2687 bool operator==(const PhiNodeSetIterator &RHS) const; 2688 bool operator!=(const PhiNodeSetIterator &RHS) const; 2689 }; 2690 2691 /// Keeps a set of PHINodes. 2692 /// 2693 /// This is a minimal set implementation for a specific use case: 2694 /// It is very fast when there are very few elements, but also provides good 2695 /// performance when there are many. It is similar to SmallPtrSet, but also 2696 /// provides iteration by insertion order, which is deterministic and stable 2697 /// across runs. It is also similar to SmallSetVector, but provides removing 2698 /// elements in O(1) time. This is achieved by not actually removing the element 2699 /// from the underlying vector, so comes at the cost of using more memory, but 2700 /// that is fine, since PhiNodeSets are used as short lived objects. 2701 class PhiNodeSet { 2702 friend class PhiNodeSetIterator; 2703 2704 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2705 using iterator = PhiNodeSetIterator; 2706 2707 /// Keeps the elements in the order of their insertion in the underlying 2708 /// vector. To achieve constant time removal, it never deletes any element. 2709 SmallVector<PHINode *, 32> NodeList; 2710 2711 /// Keeps the elements in the underlying set implementation. This (and not the 2712 /// NodeList defined above) is the source of truth on whether an element 2713 /// is actually in the collection. 2714 MapType NodeMap; 2715 2716 /// Points to the first valid (not deleted) element when the set is not empty 2717 /// and the value is not zero. Equals to the size of the underlying vector 2718 /// when the set is empty. When the value is 0, as in the beginning, the 2719 /// first element may or may not be valid. 2720 size_t FirstValidElement = 0; 2721 2722 public: 2723 /// Inserts a new element to the collection. 2724 /// \returns true if the element is actually added, i.e. was not in the 2725 /// collection before the operation. 2726 bool insert(PHINode *Ptr) { 2727 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2728 NodeList.push_back(Ptr); 2729 return true; 2730 } 2731 return false; 2732 } 2733 2734 /// Removes the element from the collection. 2735 /// \returns whether the element is actually removed, i.e. was in the 2736 /// collection before the operation. 2737 bool erase(PHINode *Ptr) { 2738 auto it = NodeMap.find(Ptr); 2739 if (it != NodeMap.end()) { 2740 NodeMap.erase(Ptr); 2741 SkipRemovedElements(FirstValidElement); 2742 return true; 2743 } 2744 return false; 2745 } 2746 2747 /// Removes all elements and clears the collection. 2748 void clear() { 2749 NodeMap.clear(); 2750 NodeList.clear(); 2751 FirstValidElement = 0; 2752 } 2753 2754 /// \returns an iterator that will iterate the elements in the order of 2755 /// insertion. 2756 iterator begin() { 2757 if (FirstValidElement == 0) 2758 SkipRemovedElements(FirstValidElement); 2759 return PhiNodeSetIterator(this, FirstValidElement); 2760 } 2761 2762 /// \returns an iterator that points to the end of the collection. 2763 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2764 2765 /// Returns the number of elements in the collection. 2766 size_t size() const { 2767 return NodeMap.size(); 2768 } 2769 2770 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2771 size_t count(PHINode *Ptr) const { 2772 return NodeMap.count(Ptr); 2773 } 2774 2775 private: 2776 /// Updates the CurrentIndex so that it will point to a valid element. 2777 /// 2778 /// If the element of NodeList at CurrentIndex is valid, it does not 2779 /// change it. If there are no more valid elements, it updates CurrentIndex 2780 /// to point to the end of the NodeList. 2781 void SkipRemovedElements(size_t &CurrentIndex) { 2782 while (CurrentIndex < NodeList.size()) { 2783 auto it = NodeMap.find(NodeList[CurrentIndex]); 2784 // If the element has been deleted and added again later, NodeMap will 2785 // point to a different index, so CurrentIndex will still be invalid. 2786 if (it != NodeMap.end() && it->second == CurrentIndex) 2787 break; 2788 ++CurrentIndex; 2789 } 2790 } 2791 }; 2792 2793 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2794 : Set(Set), CurrentIndex(Start) {} 2795 2796 PHINode * PhiNodeSetIterator::operator*() const { 2797 assert(CurrentIndex < Set->NodeList.size() && 2798 "PhiNodeSet access out of range"); 2799 return Set->NodeList[CurrentIndex]; 2800 } 2801 2802 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2803 assert(CurrentIndex < Set->NodeList.size() && 2804 "PhiNodeSet access out of range"); 2805 ++CurrentIndex; 2806 Set->SkipRemovedElements(CurrentIndex); 2807 return *this; 2808 } 2809 2810 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2811 return CurrentIndex == RHS.CurrentIndex; 2812 } 2813 2814 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2815 return !((*this) == RHS); 2816 } 2817 2818 /// Keep track of simplification of Phi nodes. 2819 /// Accept the set of all phi nodes and erase phi node from this set 2820 /// if it is simplified. 2821 class SimplificationTracker { 2822 DenseMap<Value *, Value *> Storage; 2823 const SimplifyQuery &SQ; 2824 // Tracks newly created Phi nodes. The elements are iterated by insertion 2825 // order. 2826 PhiNodeSet AllPhiNodes; 2827 // Tracks newly created Select nodes. 2828 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2829 2830 public: 2831 SimplificationTracker(const SimplifyQuery &sq) 2832 : SQ(sq) {} 2833 2834 Value *Get(Value *V) { 2835 do { 2836 auto SV = Storage.find(V); 2837 if (SV == Storage.end()) 2838 return V; 2839 V = SV->second; 2840 } while (true); 2841 } 2842 2843 Value *Simplify(Value *Val) { 2844 SmallVector<Value *, 32> WorkList; 2845 SmallPtrSet<Value *, 32> Visited; 2846 WorkList.push_back(Val); 2847 while (!WorkList.empty()) { 2848 auto P = WorkList.pop_back_val(); 2849 if (!Visited.insert(P).second) 2850 continue; 2851 if (auto *PI = dyn_cast<Instruction>(P)) 2852 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 2853 for (auto *U : PI->users()) 2854 WorkList.push_back(cast<Value>(U)); 2855 Put(PI, V); 2856 PI->replaceAllUsesWith(V); 2857 if (auto *PHI = dyn_cast<PHINode>(PI)) 2858 AllPhiNodes.erase(PHI); 2859 if (auto *Select = dyn_cast<SelectInst>(PI)) 2860 AllSelectNodes.erase(Select); 2861 PI->eraseFromParent(); 2862 } 2863 } 2864 return Get(Val); 2865 } 2866 2867 void Put(Value *From, Value *To) { 2868 Storage.insert({ From, To }); 2869 } 2870 2871 void ReplacePhi(PHINode *From, PHINode *To) { 2872 Value* OldReplacement = Get(From); 2873 while (OldReplacement != From) { 2874 From = To; 2875 To = dyn_cast<PHINode>(OldReplacement); 2876 OldReplacement = Get(From); 2877 } 2878 assert(Get(To) == To && "Replacement PHI node is already replaced."); 2879 Put(From, To); 2880 From->replaceAllUsesWith(To); 2881 AllPhiNodes.erase(From); 2882 From->eraseFromParent(); 2883 } 2884 2885 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 2886 2887 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 2888 2889 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 2890 2891 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 2892 2893 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 2894 2895 void destroyNewNodes(Type *CommonType) { 2896 // For safe erasing, replace the uses with dummy value first. 2897 auto Dummy = UndefValue::get(CommonType); 2898 for (auto I : AllPhiNodes) { 2899 I->replaceAllUsesWith(Dummy); 2900 I->eraseFromParent(); 2901 } 2902 AllPhiNodes.clear(); 2903 for (auto I : AllSelectNodes) { 2904 I->replaceAllUsesWith(Dummy); 2905 I->eraseFromParent(); 2906 } 2907 AllSelectNodes.clear(); 2908 } 2909 }; 2910 2911 /// A helper class for combining addressing modes. 2912 class AddressingModeCombiner { 2913 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 2914 typedef std::pair<PHINode *, PHINode *> PHIPair; 2915 2916 private: 2917 /// The addressing modes we've collected. 2918 SmallVector<ExtAddrMode, 16> AddrModes; 2919 2920 /// The field in which the AddrModes differ, when we have more than one. 2921 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 2922 2923 /// Are the AddrModes that we have all just equal to their original values? 2924 bool AllAddrModesTrivial = true; 2925 2926 /// Common Type for all different fields in addressing modes. 2927 Type *CommonType; 2928 2929 /// SimplifyQuery for simplifyInstruction utility. 2930 const SimplifyQuery &SQ; 2931 2932 /// Original Address. 2933 Value *Original; 2934 2935 public: 2936 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 2937 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 2938 2939 /// Get the combined AddrMode 2940 const ExtAddrMode &getAddrMode() const { 2941 return AddrModes[0]; 2942 } 2943 2944 /// Add a new AddrMode if it's compatible with the AddrModes we already 2945 /// have. 2946 /// \return True iff we succeeded in doing so. 2947 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 2948 // Take note of if we have any non-trivial AddrModes, as we need to detect 2949 // when all AddrModes are trivial as then we would introduce a phi or select 2950 // which just duplicates what's already there. 2951 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 2952 2953 // If this is the first addrmode then everything is fine. 2954 if (AddrModes.empty()) { 2955 AddrModes.emplace_back(NewAddrMode); 2956 return true; 2957 } 2958 2959 // Figure out how different this is from the other address modes, which we 2960 // can do just by comparing against the first one given that we only care 2961 // about the cumulative difference. 2962 ExtAddrMode::FieldName ThisDifferentField = 2963 AddrModes[0].compare(NewAddrMode); 2964 if (DifferentField == ExtAddrMode::NoField) 2965 DifferentField = ThisDifferentField; 2966 else if (DifferentField != ThisDifferentField) 2967 DifferentField = ExtAddrMode::MultipleFields; 2968 2969 // If NewAddrMode differs in more than one dimension we cannot handle it. 2970 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 2971 2972 // If Scale Field is different then we reject. 2973 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 2974 2975 // We also must reject the case when base offset is different and 2976 // scale reg is not null, we cannot handle this case due to merge of 2977 // different offsets will be used as ScaleReg. 2978 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 2979 !NewAddrMode.ScaledReg); 2980 2981 // We also must reject the case when GV is different and BaseReg installed 2982 // due to we want to use base reg as a merge of GV values. 2983 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 2984 !NewAddrMode.HasBaseReg); 2985 2986 // Even if NewAddMode is the same we still need to collect it due to 2987 // original value is different. And later we will need all original values 2988 // as anchors during finding the common Phi node. 2989 if (CanHandle) 2990 AddrModes.emplace_back(NewAddrMode); 2991 else 2992 AddrModes.clear(); 2993 2994 return CanHandle; 2995 } 2996 2997 /// Combine the addressing modes we've collected into a single 2998 /// addressing mode. 2999 /// \return True iff we successfully combined them or we only had one so 3000 /// didn't need to combine them anyway. 3001 bool combineAddrModes() { 3002 // If we have no AddrModes then they can't be combined. 3003 if (AddrModes.size() == 0) 3004 return false; 3005 3006 // A single AddrMode can trivially be combined. 3007 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3008 return true; 3009 3010 // If the AddrModes we collected are all just equal to the value they are 3011 // derived from then combining them wouldn't do anything useful. 3012 if (AllAddrModesTrivial) 3013 return false; 3014 3015 if (!addrModeCombiningAllowed()) 3016 return false; 3017 3018 // Build a map between <original value, basic block where we saw it> to 3019 // value of base register. 3020 // Bail out if there is no common type. 3021 FoldAddrToValueMapping Map; 3022 if (!initializeMap(Map)) 3023 return false; 3024 3025 Value *CommonValue = findCommon(Map); 3026 if (CommonValue) 3027 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3028 return CommonValue != nullptr; 3029 } 3030 3031 private: 3032 /// Initialize Map with anchor values. For address seen 3033 /// we set the value of different field saw in this address. 3034 /// At the same time we find a common type for different field we will 3035 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3036 /// Return false if there is no common type found. 3037 bool initializeMap(FoldAddrToValueMapping &Map) { 3038 // Keep track of keys where the value is null. We will need to replace it 3039 // with constant null when we know the common type. 3040 SmallVector<Value *, 2> NullValue; 3041 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3042 for (auto &AM : AddrModes) { 3043 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3044 if (DV) { 3045 auto *Type = DV->getType(); 3046 if (CommonType && CommonType != Type) 3047 return false; 3048 CommonType = Type; 3049 Map[AM.OriginalValue] = DV; 3050 } else { 3051 NullValue.push_back(AM.OriginalValue); 3052 } 3053 } 3054 assert(CommonType && "At least one non-null value must be!"); 3055 for (auto *V : NullValue) 3056 Map[V] = Constant::getNullValue(CommonType); 3057 return true; 3058 } 3059 3060 /// We have mapping between value A and other value B where B was a field in 3061 /// addressing mode represented by A. Also we have an original value C 3062 /// representing an address we start with. Traversing from C through phi and 3063 /// selects we ended up with A's in a map. This utility function tries to find 3064 /// a value V which is a field in addressing mode C and traversing through phi 3065 /// nodes and selects we will end up in corresponded values B in a map. 3066 /// The utility will create a new Phi/Selects if needed. 3067 // The simple example looks as follows: 3068 // BB1: 3069 // p1 = b1 + 40 3070 // br cond BB2, BB3 3071 // BB2: 3072 // p2 = b2 + 40 3073 // br BB3 3074 // BB3: 3075 // p = phi [p1, BB1], [p2, BB2] 3076 // v = load p 3077 // Map is 3078 // p1 -> b1 3079 // p2 -> b2 3080 // Request is 3081 // p -> ? 3082 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3083 Value *findCommon(FoldAddrToValueMapping &Map) { 3084 // Tracks the simplification of newly created phi nodes. The reason we use 3085 // this mapping is because we will add new created Phi nodes in AddrToBase. 3086 // Simplification of Phi nodes is recursive, so some Phi node may 3087 // be simplified after we added it to AddrToBase. In reality this 3088 // simplification is possible only if original phi/selects were not 3089 // simplified yet. 3090 // Using this mapping we can find the current value in AddrToBase. 3091 SimplificationTracker ST(SQ); 3092 3093 // First step, DFS to create PHI nodes for all intermediate blocks. 3094 // Also fill traverse order for the second step. 3095 SmallVector<Value *, 32> TraverseOrder; 3096 InsertPlaceholders(Map, TraverseOrder, ST); 3097 3098 // Second Step, fill new nodes by merged values and simplify if possible. 3099 FillPlaceholders(Map, TraverseOrder, ST); 3100 3101 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3102 ST.destroyNewNodes(CommonType); 3103 return nullptr; 3104 } 3105 3106 // Now we'd like to match New Phi nodes to existed ones. 3107 unsigned PhiNotMatchedCount = 0; 3108 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3109 ST.destroyNewNodes(CommonType); 3110 return nullptr; 3111 } 3112 3113 auto *Result = ST.Get(Map.find(Original)->second); 3114 if (Result) { 3115 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3116 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3117 } 3118 return Result; 3119 } 3120 3121 /// Try to match PHI node to Candidate. 3122 /// Matcher tracks the matched Phi nodes. 3123 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3124 SmallSetVector<PHIPair, 8> &Matcher, 3125 PhiNodeSet &PhiNodesToMatch) { 3126 SmallVector<PHIPair, 8> WorkList; 3127 Matcher.insert({ PHI, Candidate }); 3128 WorkList.push_back({ PHI, Candidate }); 3129 SmallSet<PHIPair, 8> Visited; 3130 while (!WorkList.empty()) { 3131 auto Item = WorkList.pop_back_val(); 3132 if (!Visited.insert(Item).second) 3133 continue; 3134 // We iterate over all incoming values to Phi to compare them. 3135 // If values are different and both of them Phi and the first one is a 3136 // Phi we added (subject to match) and both of them is in the same basic 3137 // block then we can match our pair if values match. So we state that 3138 // these values match and add it to work list to verify that. 3139 for (auto B : Item.first->blocks()) { 3140 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3141 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3142 if (FirstValue == SecondValue) 3143 continue; 3144 3145 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3146 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3147 3148 // One of them is not Phi or 3149 // The first one is not Phi node from the set we'd like to match or 3150 // Phi nodes from different basic blocks then 3151 // we will not be able to match. 3152 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3153 FirstPhi->getParent() != SecondPhi->getParent()) 3154 return false; 3155 3156 // If we already matched them then continue. 3157 if (Matcher.count({ FirstPhi, SecondPhi })) 3158 continue; 3159 // So the values are different and does not match. So we need them to 3160 // match. 3161 Matcher.insert({ FirstPhi, SecondPhi }); 3162 // But me must check it. 3163 WorkList.push_back({ FirstPhi, SecondPhi }); 3164 } 3165 } 3166 return true; 3167 } 3168 3169 /// For the given set of PHI nodes (in the SimplificationTracker) try 3170 /// to find their equivalents. 3171 /// Returns false if this matching fails and creation of new Phi is disabled. 3172 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3173 unsigned &PhiNotMatchedCount) { 3174 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3175 // order, so the replacements (ReplacePhi) are also done in a deterministic 3176 // order. 3177 SmallSetVector<PHIPair, 8> Matched; 3178 SmallPtrSet<PHINode *, 8> WillNotMatch; 3179 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3180 while (PhiNodesToMatch.size()) { 3181 PHINode *PHI = *PhiNodesToMatch.begin(); 3182 3183 // Add us, if no Phi nodes in the basic block we do not match. 3184 WillNotMatch.clear(); 3185 WillNotMatch.insert(PHI); 3186 3187 // Traverse all Phis until we found equivalent or fail to do that. 3188 bool IsMatched = false; 3189 for (auto &P : PHI->getParent()->phis()) { 3190 if (&P == PHI) 3191 continue; 3192 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3193 break; 3194 // If it does not match, collect all Phi nodes from matcher. 3195 // if we end up with no match, them all these Phi nodes will not match 3196 // later. 3197 for (auto M : Matched) 3198 WillNotMatch.insert(M.first); 3199 Matched.clear(); 3200 } 3201 if (IsMatched) { 3202 // Replace all matched values and erase them. 3203 for (auto MV : Matched) 3204 ST.ReplacePhi(MV.first, MV.second); 3205 Matched.clear(); 3206 continue; 3207 } 3208 // If we are not allowed to create new nodes then bail out. 3209 if (!AllowNewPhiNodes) 3210 return false; 3211 // Just remove all seen values in matcher. They will not match anything. 3212 PhiNotMatchedCount += WillNotMatch.size(); 3213 for (auto *P : WillNotMatch) 3214 PhiNodesToMatch.erase(P); 3215 } 3216 return true; 3217 } 3218 /// Fill the placeholders with values from predecessors and simplify them. 3219 void FillPlaceholders(FoldAddrToValueMapping &Map, 3220 SmallVectorImpl<Value *> &TraverseOrder, 3221 SimplificationTracker &ST) { 3222 while (!TraverseOrder.empty()) { 3223 Value *Current = TraverseOrder.pop_back_val(); 3224 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3225 Value *V = Map[Current]; 3226 3227 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3228 // CurrentValue also must be Select. 3229 auto *CurrentSelect = cast<SelectInst>(Current); 3230 auto *TrueValue = CurrentSelect->getTrueValue(); 3231 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3232 Select->setTrueValue(ST.Get(Map[TrueValue])); 3233 auto *FalseValue = CurrentSelect->getFalseValue(); 3234 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3235 Select->setFalseValue(ST.Get(Map[FalseValue])); 3236 } else { 3237 // Must be a Phi node then. 3238 PHINode *PHI = cast<PHINode>(V); 3239 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3240 // Fill the Phi node with values from predecessors. 3241 for (auto B : predecessors(PHI->getParent())) { 3242 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3243 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3244 PHI->addIncoming(ST.Get(Map[PV]), B); 3245 } 3246 } 3247 Map[Current] = ST.Simplify(V); 3248 } 3249 } 3250 3251 /// Starting from original value recursively iterates over def-use chain up to 3252 /// known ending values represented in a map. For each traversed phi/select 3253 /// inserts a placeholder Phi or Select. 3254 /// Reports all new created Phi/Select nodes by adding them to set. 3255 /// Also reports and order in what values have been traversed. 3256 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3257 SmallVectorImpl<Value *> &TraverseOrder, 3258 SimplificationTracker &ST) { 3259 SmallVector<Value *, 32> Worklist; 3260 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3261 "Address must be a Phi or Select node"); 3262 auto *Dummy = UndefValue::get(CommonType); 3263 Worklist.push_back(Original); 3264 while (!Worklist.empty()) { 3265 Value *Current = Worklist.pop_back_val(); 3266 // if it is already visited or it is an ending value then skip it. 3267 if (Map.find(Current) != Map.end()) 3268 continue; 3269 TraverseOrder.push_back(Current); 3270 3271 // CurrentValue must be a Phi node or select. All others must be covered 3272 // by anchors. 3273 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3274 // Is it OK to get metadata from OrigSelect?! 3275 // Create a Select placeholder with dummy value. 3276 SelectInst *Select = SelectInst::Create( 3277 CurrentSelect->getCondition(), Dummy, Dummy, 3278 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3279 Map[Current] = Select; 3280 ST.insertNewSelect(Select); 3281 // We are interested in True and False values. 3282 Worklist.push_back(CurrentSelect->getTrueValue()); 3283 Worklist.push_back(CurrentSelect->getFalseValue()); 3284 } else { 3285 // It must be a Phi node then. 3286 PHINode *CurrentPhi = cast<PHINode>(Current); 3287 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3288 PHINode *PHI = 3289 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3290 Map[Current] = PHI; 3291 ST.insertNewPhi(PHI); 3292 for (Value *P : CurrentPhi->incoming_values()) 3293 Worklist.push_back(P); 3294 } 3295 } 3296 } 3297 3298 bool addrModeCombiningAllowed() { 3299 if (DisableComplexAddrModes) 3300 return false; 3301 switch (DifferentField) { 3302 default: 3303 return false; 3304 case ExtAddrMode::BaseRegField: 3305 return AddrSinkCombineBaseReg; 3306 case ExtAddrMode::BaseGVField: 3307 return AddrSinkCombineBaseGV; 3308 case ExtAddrMode::BaseOffsField: 3309 return AddrSinkCombineBaseOffs; 3310 case ExtAddrMode::ScaledRegField: 3311 return AddrSinkCombineScaledReg; 3312 } 3313 } 3314 }; 3315 } // end anonymous namespace 3316 3317 /// Try adding ScaleReg*Scale to the current addressing mode. 3318 /// Return true and update AddrMode if this addr mode is legal for the target, 3319 /// false if not. 3320 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3321 unsigned Depth) { 3322 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3323 // mode. Just process that directly. 3324 if (Scale == 1) 3325 return matchAddr(ScaleReg, Depth); 3326 3327 // If the scale is 0, it takes nothing to add this. 3328 if (Scale == 0) 3329 return true; 3330 3331 // If we already have a scale of this value, we can add to it, otherwise, we 3332 // need an available scale field. 3333 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3334 return false; 3335 3336 ExtAddrMode TestAddrMode = AddrMode; 3337 3338 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3339 // [A+B + A*7] -> [B+A*8]. 3340 TestAddrMode.Scale += Scale; 3341 TestAddrMode.ScaledReg = ScaleReg; 3342 3343 // If the new address isn't legal, bail out. 3344 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3345 return false; 3346 3347 // It was legal, so commit it. 3348 AddrMode = TestAddrMode; 3349 3350 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3351 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3352 // X*Scale + C*Scale to addr mode. 3353 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3354 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3355 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3356 TestAddrMode.ScaledReg = AddLHS; 3357 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3358 3359 // If this addressing mode is legal, commit it and remember that we folded 3360 // this instruction. 3361 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3362 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3363 AddrMode = TestAddrMode; 3364 return true; 3365 } 3366 } 3367 3368 // Otherwise, not (x+c)*scale, just return what we have. 3369 return true; 3370 } 3371 3372 /// This is a little filter, which returns true if an addressing computation 3373 /// involving I might be folded into a load/store accessing it. 3374 /// This doesn't need to be perfect, but needs to accept at least 3375 /// the set of instructions that MatchOperationAddr can. 3376 static bool MightBeFoldableInst(Instruction *I) { 3377 switch (I->getOpcode()) { 3378 case Instruction::BitCast: 3379 case Instruction::AddrSpaceCast: 3380 // Don't touch identity bitcasts. 3381 if (I->getType() == I->getOperand(0)->getType()) 3382 return false; 3383 return I->getType()->isIntOrPtrTy(); 3384 case Instruction::PtrToInt: 3385 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3386 return true; 3387 case Instruction::IntToPtr: 3388 // We know the input is intptr_t, so this is foldable. 3389 return true; 3390 case Instruction::Add: 3391 return true; 3392 case Instruction::Mul: 3393 case Instruction::Shl: 3394 // Can only handle X*C and X << C. 3395 return isa<ConstantInt>(I->getOperand(1)); 3396 case Instruction::GetElementPtr: 3397 return true; 3398 default: 3399 return false; 3400 } 3401 } 3402 3403 /// Check whether or not \p Val is a legal instruction for \p TLI. 3404 /// \note \p Val is assumed to be the product of some type promotion. 3405 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3406 /// to be legal, as the non-promoted value would have had the same state. 3407 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3408 const DataLayout &DL, Value *Val) { 3409 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3410 if (!PromotedInst) 3411 return false; 3412 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3413 // If the ISDOpcode is undefined, it was undefined before the promotion. 3414 if (!ISDOpcode) 3415 return true; 3416 // Otherwise, check if the promoted instruction is legal or not. 3417 return TLI.isOperationLegalOrCustom( 3418 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3419 } 3420 3421 namespace { 3422 3423 /// Hepler class to perform type promotion. 3424 class TypePromotionHelper { 3425 /// Utility function to add a promoted instruction \p ExtOpnd to 3426 /// \p PromotedInsts and record the type of extension we have seen. 3427 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3428 Instruction *ExtOpnd, 3429 bool IsSExt) { 3430 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3431 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3432 if (It != PromotedInsts.end()) { 3433 // If the new extension is same as original, the information in 3434 // PromotedInsts[ExtOpnd] is still correct. 3435 if (It->second.getInt() == ExtTy) 3436 return; 3437 3438 // Now the new extension is different from old extension, we make 3439 // the type information invalid by setting extension type to 3440 // BothExtension. 3441 ExtTy = BothExtension; 3442 } 3443 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3444 } 3445 3446 /// Utility function to query the original type of instruction \p Opnd 3447 /// with a matched extension type. If the extension doesn't match, we 3448 /// cannot use the information we had on the original type. 3449 /// BothExtension doesn't match any extension type. 3450 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3451 Instruction *Opnd, 3452 bool IsSExt) { 3453 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3454 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3455 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3456 return It->second.getPointer(); 3457 return nullptr; 3458 } 3459 3460 /// Utility function to check whether or not a sign or zero extension 3461 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3462 /// either using the operands of \p Inst or promoting \p Inst. 3463 /// The type of the extension is defined by \p IsSExt. 3464 /// In other words, check if: 3465 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3466 /// #1 Promotion applies: 3467 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3468 /// #2 Operand reuses: 3469 /// ext opnd1 to ConsideredExtType. 3470 /// \p PromotedInsts maps the instructions to their type before promotion. 3471 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3472 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3473 3474 /// Utility function to determine if \p OpIdx should be promoted when 3475 /// promoting \p Inst. 3476 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3477 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3478 } 3479 3480 /// Utility function to promote the operand of \p Ext when this 3481 /// operand is a promotable trunc or sext or zext. 3482 /// \p PromotedInsts maps the instructions to their type before promotion. 3483 /// \p CreatedInstsCost[out] contains the cost of all instructions 3484 /// created to promote the operand of Ext. 3485 /// Newly added extensions are inserted in \p Exts. 3486 /// Newly added truncates are inserted in \p Truncs. 3487 /// Should never be called directly. 3488 /// \return The promoted value which is used instead of Ext. 3489 static Value *promoteOperandForTruncAndAnyExt( 3490 Instruction *Ext, TypePromotionTransaction &TPT, 3491 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3492 SmallVectorImpl<Instruction *> *Exts, 3493 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3494 3495 /// Utility function to promote the operand of \p Ext when this 3496 /// operand is promotable and is not a supported trunc or sext. 3497 /// \p PromotedInsts maps the instructions to their type before promotion. 3498 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3499 /// created to promote the operand of Ext. 3500 /// Newly added extensions are inserted in \p Exts. 3501 /// Newly added truncates are inserted in \p Truncs. 3502 /// Should never be called directly. 3503 /// \return The promoted value which is used instead of Ext. 3504 static Value *promoteOperandForOther(Instruction *Ext, 3505 TypePromotionTransaction &TPT, 3506 InstrToOrigTy &PromotedInsts, 3507 unsigned &CreatedInstsCost, 3508 SmallVectorImpl<Instruction *> *Exts, 3509 SmallVectorImpl<Instruction *> *Truncs, 3510 const TargetLowering &TLI, bool IsSExt); 3511 3512 /// \see promoteOperandForOther. 3513 static Value *signExtendOperandForOther( 3514 Instruction *Ext, TypePromotionTransaction &TPT, 3515 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3516 SmallVectorImpl<Instruction *> *Exts, 3517 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3518 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3519 Exts, Truncs, TLI, true); 3520 } 3521 3522 /// \see promoteOperandForOther. 3523 static Value *zeroExtendOperandForOther( 3524 Instruction *Ext, TypePromotionTransaction &TPT, 3525 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3526 SmallVectorImpl<Instruction *> *Exts, 3527 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3528 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3529 Exts, Truncs, TLI, false); 3530 } 3531 3532 public: 3533 /// Type for the utility function that promotes the operand of Ext. 3534 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3535 InstrToOrigTy &PromotedInsts, 3536 unsigned &CreatedInstsCost, 3537 SmallVectorImpl<Instruction *> *Exts, 3538 SmallVectorImpl<Instruction *> *Truncs, 3539 const TargetLowering &TLI); 3540 3541 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3542 /// action to promote the operand of \p Ext instead of using Ext. 3543 /// \return NULL if no promotable action is possible with the current 3544 /// sign extension. 3545 /// \p InsertedInsts keeps track of all the instructions inserted by the 3546 /// other CodeGenPrepare optimizations. This information is important 3547 /// because we do not want to promote these instructions as CodeGenPrepare 3548 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3549 /// \p PromotedInsts maps the instructions to their type before promotion. 3550 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3551 const TargetLowering &TLI, 3552 const InstrToOrigTy &PromotedInsts); 3553 }; 3554 3555 } // end anonymous namespace 3556 3557 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3558 Type *ConsideredExtType, 3559 const InstrToOrigTy &PromotedInsts, 3560 bool IsSExt) { 3561 // The promotion helper does not know how to deal with vector types yet. 3562 // To be able to fix that, we would need to fix the places where we 3563 // statically extend, e.g., constants and such. 3564 if (Inst->getType()->isVectorTy()) 3565 return false; 3566 3567 // We can always get through zext. 3568 if (isa<ZExtInst>(Inst)) 3569 return true; 3570 3571 // sext(sext) is ok too. 3572 if (IsSExt && isa<SExtInst>(Inst)) 3573 return true; 3574 3575 // We can get through binary operator, if it is legal. In other words, the 3576 // binary operator must have a nuw or nsw flag. 3577 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3578 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3579 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3580 (IsSExt && BinOp->hasNoSignedWrap()))) 3581 return true; 3582 3583 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3584 if ((Inst->getOpcode() == Instruction::And || 3585 Inst->getOpcode() == Instruction::Or)) 3586 return true; 3587 3588 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3589 if (Inst->getOpcode() == Instruction::Xor) { 3590 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3591 // Make sure it is not a NOT. 3592 if (Cst && !Cst->getValue().isAllOnesValue()) 3593 return true; 3594 } 3595 3596 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3597 // It may change a poisoned value into a regular value, like 3598 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3599 // poisoned value regular value 3600 // It should be OK since undef covers valid value. 3601 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3602 return true; 3603 3604 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3605 // It may change a poisoned value into a regular value, like 3606 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3607 // poisoned value regular value 3608 // It should be OK since undef covers valid value. 3609 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3610 const Instruction *ExtInst = 3611 dyn_cast<const Instruction>(*Inst->user_begin()); 3612 if (ExtInst->hasOneUse()) { 3613 const Instruction *AndInst = 3614 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3615 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3616 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3617 if (Cst && 3618 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3619 return true; 3620 } 3621 } 3622 } 3623 3624 // Check if we can do the following simplification. 3625 // ext(trunc(opnd)) --> ext(opnd) 3626 if (!isa<TruncInst>(Inst)) 3627 return false; 3628 3629 Value *OpndVal = Inst->getOperand(0); 3630 // Check if we can use this operand in the extension. 3631 // If the type is larger than the result type of the extension, we cannot. 3632 if (!OpndVal->getType()->isIntegerTy() || 3633 OpndVal->getType()->getIntegerBitWidth() > 3634 ConsideredExtType->getIntegerBitWidth()) 3635 return false; 3636 3637 // If the operand of the truncate is not an instruction, we will not have 3638 // any information on the dropped bits. 3639 // (Actually we could for constant but it is not worth the extra logic). 3640 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3641 if (!Opnd) 3642 return false; 3643 3644 // Check if the source of the type is narrow enough. 3645 // I.e., check that trunc just drops extended bits of the same kind of 3646 // the extension. 3647 // #1 get the type of the operand and check the kind of the extended bits. 3648 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3649 if (OpndType) 3650 ; 3651 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3652 OpndType = Opnd->getOperand(0)->getType(); 3653 else 3654 return false; 3655 3656 // #2 check that the truncate just drops extended bits. 3657 return Inst->getType()->getIntegerBitWidth() >= 3658 OpndType->getIntegerBitWidth(); 3659 } 3660 3661 TypePromotionHelper::Action TypePromotionHelper::getAction( 3662 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3663 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3664 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3665 "Unexpected instruction type"); 3666 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3667 Type *ExtTy = Ext->getType(); 3668 bool IsSExt = isa<SExtInst>(Ext); 3669 // If the operand of the extension is not an instruction, we cannot 3670 // get through. 3671 // If it, check we can get through. 3672 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3673 return nullptr; 3674 3675 // Do not promote if the operand has been added by codegenprepare. 3676 // Otherwise, it means we are undoing an optimization that is likely to be 3677 // redone, thus causing potential infinite loop. 3678 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3679 return nullptr; 3680 3681 // SExt or Trunc instructions. 3682 // Return the related handler. 3683 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3684 isa<ZExtInst>(ExtOpnd)) 3685 return promoteOperandForTruncAndAnyExt; 3686 3687 // Regular instruction. 3688 // Abort early if we will have to insert non-free instructions. 3689 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3690 return nullptr; 3691 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3692 } 3693 3694 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3695 Instruction *SExt, TypePromotionTransaction &TPT, 3696 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3697 SmallVectorImpl<Instruction *> *Exts, 3698 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3699 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3700 // get through it and this method should not be called. 3701 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3702 Value *ExtVal = SExt; 3703 bool HasMergedNonFreeExt = false; 3704 if (isa<ZExtInst>(SExtOpnd)) { 3705 // Replace s|zext(zext(opnd)) 3706 // => zext(opnd). 3707 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3708 Value *ZExt = 3709 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3710 TPT.replaceAllUsesWith(SExt, ZExt); 3711 TPT.eraseInstruction(SExt); 3712 ExtVal = ZExt; 3713 } else { 3714 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3715 // => z|sext(opnd). 3716 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3717 } 3718 CreatedInstsCost = 0; 3719 3720 // Remove dead code. 3721 if (SExtOpnd->use_empty()) 3722 TPT.eraseInstruction(SExtOpnd); 3723 3724 // Check if the extension is still needed. 3725 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3726 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3727 if (ExtInst) { 3728 if (Exts) 3729 Exts->push_back(ExtInst); 3730 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3731 } 3732 return ExtVal; 3733 } 3734 3735 // At this point we have: ext ty opnd to ty. 3736 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3737 Value *NextVal = ExtInst->getOperand(0); 3738 TPT.eraseInstruction(ExtInst, NextVal); 3739 return NextVal; 3740 } 3741 3742 Value *TypePromotionHelper::promoteOperandForOther( 3743 Instruction *Ext, TypePromotionTransaction &TPT, 3744 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3745 SmallVectorImpl<Instruction *> *Exts, 3746 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3747 bool IsSExt) { 3748 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3749 // get through it and this method should not be called. 3750 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3751 CreatedInstsCost = 0; 3752 if (!ExtOpnd->hasOneUse()) { 3753 // ExtOpnd will be promoted. 3754 // All its uses, but Ext, will need to use a truncated value of the 3755 // promoted version. 3756 // Create the truncate now. 3757 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3758 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3759 // Insert it just after the definition. 3760 ITrunc->moveAfter(ExtOpnd); 3761 if (Truncs) 3762 Truncs->push_back(ITrunc); 3763 } 3764 3765 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3766 // Restore the operand of Ext (which has been replaced by the previous call 3767 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3768 TPT.setOperand(Ext, 0, ExtOpnd); 3769 } 3770 3771 // Get through the Instruction: 3772 // 1. Update its type. 3773 // 2. Replace the uses of Ext by Inst. 3774 // 3. Extend each operand that needs to be extended. 3775 3776 // Remember the original type of the instruction before promotion. 3777 // This is useful to know that the high bits are sign extended bits. 3778 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3779 // Step #1. 3780 TPT.mutateType(ExtOpnd, Ext->getType()); 3781 // Step #2. 3782 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3783 // Step #3. 3784 Instruction *ExtForOpnd = Ext; 3785 3786 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3787 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3788 ++OpIdx) { 3789 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3790 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3791 !shouldExtOperand(ExtOpnd, OpIdx)) { 3792 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3793 continue; 3794 } 3795 // Check if we can statically extend the operand. 3796 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3797 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3798 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3799 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3800 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3801 : Cst->getValue().zext(BitWidth); 3802 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3803 continue; 3804 } 3805 // UndefValue are typed, so we have to statically sign extend them. 3806 if (isa<UndefValue>(Opnd)) { 3807 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3808 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3809 continue; 3810 } 3811 3812 // Otherwise we have to explicitly sign extend the operand. 3813 // Check if Ext was reused to extend an operand. 3814 if (!ExtForOpnd) { 3815 // If yes, create a new one. 3816 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3817 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3818 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3819 if (!isa<Instruction>(ValForExtOpnd)) { 3820 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3821 continue; 3822 } 3823 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3824 } 3825 if (Exts) 3826 Exts->push_back(ExtForOpnd); 3827 TPT.setOperand(ExtForOpnd, 0, Opnd); 3828 3829 // Move the sign extension before the insertion point. 3830 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3831 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3832 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3833 // If more sext are required, new instructions will have to be created. 3834 ExtForOpnd = nullptr; 3835 } 3836 if (ExtForOpnd == Ext) { 3837 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 3838 TPT.eraseInstruction(Ext); 3839 } 3840 return ExtOpnd; 3841 } 3842 3843 /// Check whether or not promoting an instruction to a wider type is profitable. 3844 /// \p NewCost gives the cost of extension instructions created by the 3845 /// promotion. 3846 /// \p OldCost gives the cost of extension instructions before the promotion 3847 /// plus the number of instructions that have been 3848 /// matched in the addressing mode the promotion. 3849 /// \p PromotedOperand is the value that has been promoted. 3850 /// \return True if the promotion is profitable, false otherwise. 3851 bool AddressingModeMatcher::isPromotionProfitable( 3852 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3853 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 3854 << '\n'); 3855 // The cost of the new extensions is greater than the cost of the 3856 // old extension plus what we folded. 3857 // This is not profitable. 3858 if (NewCost > OldCost) 3859 return false; 3860 if (NewCost < OldCost) 3861 return true; 3862 // The promotion is neutral but it may help folding the sign extension in 3863 // loads for instance. 3864 // Check that we did not create an illegal instruction. 3865 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3866 } 3867 3868 /// Given an instruction or constant expr, see if we can fold the operation 3869 /// into the addressing mode. If so, update the addressing mode and return 3870 /// true, otherwise return false without modifying AddrMode. 3871 /// If \p MovedAway is not NULL, it contains the information of whether or 3872 /// not AddrInst has to be folded into the addressing mode on success. 3873 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3874 /// because it has been moved away. 3875 /// Thus AddrInst must not be added in the matched instructions. 3876 /// This state can happen when AddrInst is a sext, since it may be moved away. 3877 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3878 /// not be referenced anymore. 3879 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3880 unsigned Depth, 3881 bool *MovedAway) { 3882 // Avoid exponential behavior on extremely deep expression trees. 3883 if (Depth >= 5) return false; 3884 3885 // By default, all matched instructions stay in place. 3886 if (MovedAway) 3887 *MovedAway = false; 3888 3889 switch (Opcode) { 3890 case Instruction::PtrToInt: 3891 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3892 return matchAddr(AddrInst->getOperand(0), Depth); 3893 case Instruction::IntToPtr: { 3894 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3895 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3896 // This inttoptr is a no-op if the integer type is pointer sized. 3897 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3898 return matchAddr(AddrInst->getOperand(0), Depth); 3899 return false; 3900 } 3901 case Instruction::BitCast: 3902 // BitCast is always a noop, and we can handle it as long as it is 3903 // int->int or pointer->pointer (we don't want int<->fp or something). 3904 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 3905 // Don't touch identity bitcasts. These were probably put here by LSR, 3906 // and we don't want to mess around with them. Assume it knows what it 3907 // is doing. 3908 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3909 return matchAddr(AddrInst->getOperand(0), Depth); 3910 return false; 3911 case Instruction::AddrSpaceCast: { 3912 unsigned SrcAS 3913 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3914 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3915 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3916 return matchAddr(AddrInst->getOperand(0), Depth); 3917 return false; 3918 } 3919 case Instruction::Add: { 3920 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3921 ExtAddrMode BackupAddrMode = AddrMode; 3922 unsigned OldSize = AddrModeInsts.size(); 3923 // Start a transaction at this point. 3924 // The LHS may match but not the RHS. 3925 // Therefore, we need a higher level restoration point to undo partially 3926 // matched operation. 3927 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3928 TPT.getRestorationPoint(); 3929 3930 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3931 matchAddr(AddrInst->getOperand(0), Depth+1)) 3932 return true; 3933 3934 // Restore the old addr mode info. 3935 AddrMode = BackupAddrMode; 3936 AddrModeInsts.resize(OldSize); 3937 TPT.rollback(LastKnownGood); 3938 3939 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3940 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3941 matchAddr(AddrInst->getOperand(1), Depth+1)) 3942 return true; 3943 3944 // Otherwise we definitely can't merge the ADD in. 3945 AddrMode = BackupAddrMode; 3946 AddrModeInsts.resize(OldSize); 3947 TPT.rollback(LastKnownGood); 3948 break; 3949 } 3950 //case Instruction::Or: 3951 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3952 //break; 3953 case Instruction::Mul: 3954 case Instruction::Shl: { 3955 // Can only handle X*C and X << C. 3956 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3957 if (!RHS || RHS->getBitWidth() > 64) 3958 return false; 3959 int64_t Scale = RHS->getSExtValue(); 3960 if (Opcode == Instruction::Shl) 3961 Scale = 1LL << Scale; 3962 3963 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3964 } 3965 case Instruction::GetElementPtr: { 3966 // Scan the GEP. We check it if it contains constant offsets and at most 3967 // one variable offset. 3968 int VariableOperand = -1; 3969 unsigned VariableScale = 0; 3970 3971 int64_t ConstantOffset = 0; 3972 gep_type_iterator GTI = gep_type_begin(AddrInst); 3973 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3974 if (StructType *STy = GTI.getStructTypeOrNull()) { 3975 const StructLayout *SL = DL.getStructLayout(STy); 3976 unsigned Idx = 3977 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3978 ConstantOffset += SL->getElementOffset(Idx); 3979 } else { 3980 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3981 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3982 const APInt &CVal = CI->getValue(); 3983 if (CVal.getMinSignedBits() <= 64) { 3984 ConstantOffset += CVal.getSExtValue() * TypeSize; 3985 continue; 3986 } 3987 } 3988 if (TypeSize) { // Scales of zero don't do anything. 3989 // We only allow one variable index at the moment. 3990 if (VariableOperand != -1) 3991 return false; 3992 3993 // Remember the variable index. 3994 VariableOperand = i; 3995 VariableScale = TypeSize; 3996 } 3997 } 3998 } 3999 4000 // A common case is for the GEP to only do a constant offset. In this case, 4001 // just add it to the disp field and check validity. 4002 if (VariableOperand == -1) { 4003 AddrMode.BaseOffs += ConstantOffset; 4004 if (ConstantOffset == 0 || 4005 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4006 // Check to see if we can fold the base pointer in too. 4007 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 4008 return true; 4009 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4010 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4011 ConstantOffset > 0) { 4012 // Record GEPs with non-zero offsets as candidates for splitting in the 4013 // event that the offset cannot fit into the r+i addressing mode. 4014 // Simple and common case that only one GEP is used in calculating the 4015 // address for the memory access. 4016 Value *Base = AddrInst->getOperand(0); 4017 auto *BaseI = dyn_cast<Instruction>(Base); 4018 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4019 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4020 (BaseI && !isa<CastInst>(BaseI) && 4021 !isa<GetElementPtrInst>(BaseI))) { 4022 // If the base is an instruction, make sure the GEP is not in the same 4023 // basic block as the base. If the base is an argument or global 4024 // value, make sure the GEP is not in the entry block. Otherwise, 4025 // instruction selection can undo the split. Also make sure the 4026 // parent block allows inserting non-PHI instructions before the 4027 // terminator. 4028 BasicBlock *Parent = 4029 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4030 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4031 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4032 } 4033 } 4034 AddrMode.BaseOffs -= ConstantOffset; 4035 return false; 4036 } 4037 4038 // Save the valid addressing mode in case we can't match. 4039 ExtAddrMode BackupAddrMode = AddrMode; 4040 unsigned OldSize = AddrModeInsts.size(); 4041 4042 // See if the scale and offset amount is valid for this target. 4043 AddrMode.BaseOffs += ConstantOffset; 4044 4045 // Match the base operand of the GEP. 4046 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4047 // If it couldn't be matched, just stuff the value in a register. 4048 if (AddrMode.HasBaseReg) { 4049 AddrMode = BackupAddrMode; 4050 AddrModeInsts.resize(OldSize); 4051 return false; 4052 } 4053 AddrMode.HasBaseReg = true; 4054 AddrMode.BaseReg = AddrInst->getOperand(0); 4055 } 4056 4057 // Match the remaining variable portion of the GEP. 4058 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4059 Depth)) { 4060 // If it couldn't be matched, try stuffing the base into a register 4061 // instead of matching it, and retrying the match of the scale. 4062 AddrMode = BackupAddrMode; 4063 AddrModeInsts.resize(OldSize); 4064 if (AddrMode.HasBaseReg) 4065 return false; 4066 AddrMode.HasBaseReg = true; 4067 AddrMode.BaseReg = AddrInst->getOperand(0); 4068 AddrMode.BaseOffs += ConstantOffset; 4069 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4070 VariableScale, Depth)) { 4071 // If even that didn't work, bail. 4072 AddrMode = BackupAddrMode; 4073 AddrModeInsts.resize(OldSize); 4074 return false; 4075 } 4076 } 4077 4078 return true; 4079 } 4080 case Instruction::SExt: 4081 case Instruction::ZExt: { 4082 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4083 if (!Ext) 4084 return false; 4085 4086 // Try to move this ext out of the way of the addressing mode. 4087 // Ask for a method for doing so. 4088 TypePromotionHelper::Action TPH = 4089 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4090 if (!TPH) 4091 return false; 4092 4093 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4094 TPT.getRestorationPoint(); 4095 unsigned CreatedInstsCost = 0; 4096 unsigned ExtCost = !TLI.isExtFree(Ext); 4097 Value *PromotedOperand = 4098 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4099 // SExt has been moved away. 4100 // Thus either it will be rematched later in the recursive calls or it is 4101 // gone. Anyway, we must not fold it into the addressing mode at this point. 4102 // E.g., 4103 // op = add opnd, 1 4104 // idx = ext op 4105 // addr = gep base, idx 4106 // is now: 4107 // promotedOpnd = ext opnd <- no match here 4108 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4109 // addr = gep base, op <- match 4110 if (MovedAway) 4111 *MovedAway = true; 4112 4113 assert(PromotedOperand && 4114 "TypePromotionHelper should have filtered out those cases"); 4115 4116 ExtAddrMode BackupAddrMode = AddrMode; 4117 unsigned OldSize = AddrModeInsts.size(); 4118 4119 if (!matchAddr(PromotedOperand, Depth) || 4120 // The total of the new cost is equal to the cost of the created 4121 // instructions. 4122 // The total of the old cost is equal to the cost of the extension plus 4123 // what we have saved in the addressing mode. 4124 !isPromotionProfitable(CreatedInstsCost, 4125 ExtCost + (AddrModeInsts.size() - OldSize), 4126 PromotedOperand)) { 4127 AddrMode = BackupAddrMode; 4128 AddrModeInsts.resize(OldSize); 4129 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4130 TPT.rollback(LastKnownGood); 4131 return false; 4132 } 4133 return true; 4134 } 4135 } 4136 return false; 4137 } 4138 4139 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4140 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4141 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4142 /// for the target. 4143 /// 4144 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4145 // Start a transaction at this point that we will rollback if the matching 4146 // fails. 4147 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4148 TPT.getRestorationPoint(); 4149 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4150 // Fold in immediates if legal for the target. 4151 AddrMode.BaseOffs += CI->getSExtValue(); 4152 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4153 return true; 4154 AddrMode.BaseOffs -= CI->getSExtValue(); 4155 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4156 // If this is a global variable, try to fold it into the addressing mode. 4157 if (!AddrMode.BaseGV) { 4158 AddrMode.BaseGV = GV; 4159 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4160 return true; 4161 AddrMode.BaseGV = nullptr; 4162 } 4163 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4164 ExtAddrMode BackupAddrMode = AddrMode; 4165 unsigned OldSize = AddrModeInsts.size(); 4166 4167 // Check to see if it is possible to fold this operation. 4168 bool MovedAway = false; 4169 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4170 // This instruction may have been moved away. If so, there is nothing 4171 // to check here. 4172 if (MovedAway) 4173 return true; 4174 // Okay, it's possible to fold this. Check to see if it is actually 4175 // *profitable* to do so. We use a simple cost model to avoid increasing 4176 // register pressure too much. 4177 if (I->hasOneUse() || 4178 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4179 AddrModeInsts.push_back(I); 4180 return true; 4181 } 4182 4183 // It isn't profitable to do this, roll back. 4184 //cerr << "NOT FOLDING: " << *I; 4185 AddrMode = BackupAddrMode; 4186 AddrModeInsts.resize(OldSize); 4187 TPT.rollback(LastKnownGood); 4188 } 4189 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4190 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4191 return true; 4192 TPT.rollback(LastKnownGood); 4193 } else if (isa<ConstantPointerNull>(Addr)) { 4194 // Null pointer gets folded without affecting the addressing mode. 4195 return true; 4196 } 4197 4198 // Worse case, the target should support [reg] addressing modes. :) 4199 if (!AddrMode.HasBaseReg) { 4200 AddrMode.HasBaseReg = true; 4201 AddrMode.BaseReg = Addr; 4202 // Still check for legality in case the target supports [imm] but not [i+r]. 4203 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4204 return true; 4205 AddrMode.HasBaseReg = false; 4206 AddrMode.BaseReg = nullptr; 4207 } 4208 4209 // If the base register is already taken, see if we can do [r+r]. 4210 if (AddrMode.Scale == 0) { 4211 AddrMode.Scale = 1; 4212 AddrMode.ScaledReg = Addr; 4213 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4214 return true; 4215 AddrMode.Scale = 0; 4216 AddrMode.ScaledReg = nullptr; 4217 } 4218 // Couldn't match. 4219 TPT.rollback(LastKnownGood); 4220 return false; 4221 } 4222 4223 /// Check to see if all uses of OpVal by the specified inline asm call are due 4224 /// to memory operands. If so, return true, otherwise return false. 4225 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4226 const TargetLowering &TLI, 4227 const TargetRegisterInfo &TRI) { 4228 const Function *F = CI->getFunction(); 4229 TargetLowering::AsmOperandInfoVector TargetConstraints = 4230 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4231 ImmutableCallSite(CI)); 4232 4233 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4234 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4235 4236 // Compute the constraint code and ConstraintType to use. 4237 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4238 4239 // If this asm operand is our Value*, and if it isn't an indirect memory 4240 // operand, we can't fold it! 4241 if (OpInfo.CallOperandVal == OpVal && 4242 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4243 !OpInfo.isIndirect)) 4244 return false; 4245 } 4246 4247 return true; 4248 } 4249 4250 // Max number of memory uses to look at before aborting the search to conserve 4251 // compile time. 4252 static constexpr int MaxMemoryUsesToScan = 20; 4253 4254 /// Recursively walk all the uses of I until we find a memory use. 4255 /// If we find an obviously non-foldable instruction, return true. 4256 /// Add the ultimately found memory instructions to MemoryUses. 4257 static bool FindAllMemoryUses( 4258 Instruction *I, 4259 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4260 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4261 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4262 // If we already considered this instruction, we're done. 4263 if (!ConsideredInsts.insert(I).second) 4264 return false; 4265 4266 // If this is an obviously unfoldable instruction, bail out. 4267 if (!MightBeFoldableInst(I)) 4268 return true; 4269 4270 const bool OptSize = I->getFunction()->optForSize(); 4271 4272 // Loop over all the uses, recursively processing them. 4273 for (Use &U : I->uses()) { 4274 // Conservatively return true if we're seeing a large number or a deep chain 4275 // of users. This avoids excessive compilation times in pathological cases. 4276 if (SeenInsts++ >= MaxMemoryUsesToScan) 4277 return true; 4278 4279 Instruction *UserI = cast<Instruction>(U.getUser()); 4280 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4281 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4282 continue; 4283 } 4284 4285 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4286 unsigned opNo = U.getOperandNo(); 4287 if (opNo != StoreInst::getPointerOperandIndex()) 4288 return true; // Storing addr, not into addr. 4289 MemoryUses.push_back(std::make_pair(SI, opNo)); 4290 continue; 4291 } 4292 4293 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4294 unsigned opNo = U.getOperandNo(); 4295 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4296 return true; // Storing addr, not into addr. 4297 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4298 continue; 4299 } 4300 4301 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4302 unsigned opNo = U.getOperandNo(); 4303 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4304 return true; // Storing addr, not into addr. 4305 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4306 continue; 4307 } 4308 4309 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4310 // If this is a cold call, we can sink the addressing calculation into 4311 // the cold path. See optimizeCallInst 4312 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4313 continue; 4314 4315 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4316 if (!IA) return true; 4317 4318 // If this is a memory operand, we're cool, otherwise bail out. 4319 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4320 return true; 4321 continue; 4322 } 4323 4324 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4325 SeenInsts)) 4326 return true; 4327 } 4328 4329 return false; 4330 } 4331 4332 /// Return true if Val is already known to be live at the use site that we're 4333 /// folding it into. If so, there is no cost to include it in the addressing 4334 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4335 /// instruction already. 4336 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4337 Value *KnownLive2) { 4338 // If Val is either of the known-live values, we know it is live! 4339 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4340 return true; 4341 4342 // All values other than instructions and arguments (e.g. constants) are live. 4343 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4344 4345 // If Val is a constant sized alloca in the entry block, it is live, this is 4346 // true because it is just a reference to the stack/frame pointer, which is 4347 // live for the whole function. 4348 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4349 if (AI->isStaticAlloca()) 4350 return true; 4351 4352 // Check to see if this value is already used in the memory instruction's 4353 // block. If so, it's already live into the block at the very least, so we 4354 // can reasonably fold it. 4355 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4356 } 4357 4358 /// It is possible for the addressing mode of the machine to fold the specified 4359 /// instruction into a load or store that ultimately uses it. 4360 /// However, the specified instruction has multiple uses. 4361 /// Given this, it may actually increase register pressure to fold it 4362 /// into the load. For example, consider this code: 4363 /// 4364 /// X = ... 4365 /// Y = X+1 4366 /// use(Y) -> nonload/store 4367 /// Z = Y+1 4368 /// load Z 4369 /// 4370 /// In this case, Y has multiple uses, and can be folded into the load of Z 4371 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4372 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4373 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4374 /// number of computations either. 4375 /// 4376 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4377 /// X was live across 'load Z' for other reasons, we actually *would* want to 4378 /// fold the addressing mode in the Z case. This would make Y die earlier. 4379 bool AddressingModeMatcher:: 4380 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4381 ExtAddrMode &AMAfter) { 4382 if (IgnoreProfitability) return true; 4383 4384 // AMBefore is the addressing mode before this instruction was folded into it, 4385 // and AMAfter is the addressing mode after the instruction was folded. Get 4386 // the set of registers referenced by AMAfter and subtract out those 4387 // referenced by AMBefore: this is the set of values which folding in this 4388 // address extends the lifetime of. 4389 // 4390 // Note that there are only two potential values being referenced here, 4391 // BaseReg and ScaleReg (global addresses are always available, as are any 4392 // folded immediates). 4393 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4394 4395 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4396 // lifetime wasn't extended by adding this instruction. 4397 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4398 BaseReg = nullptr; 4399 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4400 ScaledReg = nullptr; 4401 4402 // If folding this instruction (and it's subexprs) didn't extend any live 4403 // ranges, we're ok with it. 4404 if (!BaseReg && !ScaledReg) 4405 return true; 4406 4407 // If all uses of this instruction can have the address mode sunk into them, 4408 // we can remove the addressing mode and effectively trade one live register 4409 // for another (at worst.) In this context, folding an addressing mode into 4410 // the use is just a particularly nice way of sinking it. 4411 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4412 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4413 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4414 return false; // Has a non-memory, non-foldable use! 4415 4416 // Now that we know that all uses of this instruction are part of a chain of 4417 // computation involving only operations that could theoretically be folded 4418 // into a memory use, loop over each of these memory operation uses and see 4419 // if they could *actually* fold the instruction. The assumption is that 4420 // addressing modes are cheap and that duplicating the computation involved 4421 // many times is worthwhile, even on a fastpath. For sinking candidates 4422 // (i.e. cold call sites), this serves as a way to prevent excessive code 4423 // growth since most architectures have some reasonable small and fast way to 4424 // compute an effective address. (i.e LEA on x86) 4425 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4426 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4427 Instruction *User = MemoryUses[i].first; 4428 unsigned OpNo = MemoryUses[i].second; 4429 4430 // Get the access type of this use. If the use isn't a pointer, we don't 4431 // know what it accesses. 4432 Value *Address = User->getOperand(OpNo); 4433 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4434 if (!AddrTy) 4435 return false; 4436 Type *AddressAccessTy = AddrTy->getElementType(); 4437 unsigned AS = AddrTy->getAddressSpace(); 4438 4439 // Do a match against the root of this address, ignoring profitability. This 4440 // will tell us if the addressing mode for the memory operation will 4441 // *actually* cover the shared instruction. 4442 ExtAddrMode Result; 4443 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4444 0); 4445 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4446 TPT.getRestorationPoint(); 4447 AddressingModeMatcher Matcher( 4448 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4449 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4450 Matcher.IgnoreProfitability = true; 4451 bool Success = Matcher.matchAddr(Address, 0); 4452 (void)Success; assert(Success && "Couldn't select *anything*?"); 4453 4454 // The match was to check the profitability, the changes made are not 4455 // part of the original matcher. Therefore, they should be dropped 4456 // otherwise the original matcher will not present the right state. 4457 TPT.rollback(LastKnownGood); 4458 4459 // If the match didn't cover I, then it won't be shared by it. 4460 if (!is_contained(MatchedAddrModeInsts, I)) 4461 return false; 4462 4463 MatchedAddrModeInsts.clear(); 4464 } 4465 4466 return true; 4467 } 4468 4469 /// Return true if the specified values are defined in a 4470 /// different basic block than BB. 4471 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4472 if (Instruction *I = dyn_cast<Instruction>(V)) 4473 return I->getParent() != BB; 4474 return false; 4475 } 4476 4477 /// Sink addressing mode computation immediate before MemoryInst if doing so 4478 /// can be done without increasing register pressure. The need for the 4479 /// register pressure constraint means this can end up being an all or nothing 4480 /// decision for all uses of the same addressing computation. 4481 /// 4482 /// Load and Store Instructions often have addressing modes that can do 4483 /// significant amounts of computation. As such, instruction selection will try 4484 /// to get the load or store to do as much computation as possible for the 4485 /// program. The problem is that isel can only see within a single block. As 4486 /// such, we sink as much legal addressing mode work into the block as possible. 4487 /// 4488 /// This method is used to optimize both load/store and inline asms with memory 4489 /// operands. It's also used to sink addressing computations feeding into cold 4490 /// call sites into their (cold) basic block. 4491 /// 4492 /// The motivation for handling sinking into cold blocks is that doing so can 4493 /// both enable other address mode sinking (by satisfying the register pressure 4494 /// constraint above), and reduce register pressure globally (by removing the 4495 /// addressing mode computation from the fast path entirely.). 4496 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4497 Type *AccessTy, unsigned AddrSpace) { 4498 Value *Repl = Addr; 4499 4500 // Try to collapse single-value PHI nodes. This is necessary to undo 4501 // unprofitable PRE transformations. 4502 SmallVector<Value*, 8> worklist; 4503 SmallPtrSet<Value*, 16> Visited; 4504 worklist.push_back(Addr); 4505 4506 // Use a worklist to iteratively look through PHI and select nodes, and 4507 // ensure that the addressing mode obtained from the non-PHI/select roots of 4508 // the graph are compatible. 4509 bool PhiOrSelectSeen = false; 4510 SmallVector<Instruction*, 16> AddrModeInsts; 4511 const SimplifyQuery SQ(*DL, TLInfo); 4512 AddressingModeCombiner AddrModes(SQ, Addr); 4513 TypePromotionTransaction TPT(RemovedInsts); 4514 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4515 TPT.getRestorationPoint(); 4516 while (!worklist.empty()) { 4517 Value *V = worklist.back(); 4518 worklist.pop_back(); 4519 4520 // We allow traversing cyclic Phi nodes. 4521 // In case of success after this loop we ensure that traversing through 4522 // Phi nodes ends up with all cases to compute address of the form 4523 // BaseGV + Base + Scale * Index + Offset 4524 // where Scale and Offset are constans and BaseGV, Base and Index 4525 // are exactly the same Values in all cases. 4526 // It means that BaseGV, Scale and Offset dominate our memory instruction 4527 // and have the same value as they had in address computation represented 4528 // as Phi. So we can safely sink address computation to memory instruction. 4529 if (!Visited.insert(V).second) 4530 continue; 4531 4532 // For a PHI node, push all of its incoming values. 4533 if (PHINode *P = dyn_cast<PHINode>(V)) { 4534 for (Value *IncValue : P->incoming_values()) 4535 worklist.push_back(IncValue); 4536 PhiOrSelectSeen = true; 4537 continue; 4538 } 4539 // Similar for select. 4540 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4541 worklist.push_back(SI->getFalseValue()); 4542 worklist.push_back(SI->getTrueValue()); 4543 PhiOrSelectSeen = true; 4544 continue; 4545 } 4546 4547 // For non-PHIs, determine the addressing mode being computed. Note that 4548 // the result may differ depending on what other uses our candidate 4549 // addressing instructions might have. 4550 AddrModeInsts.clear(); 4551 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4552 0); 4553 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4554 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4555 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4556 4557 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4558 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4559 !NewGEPBases.count(GEP)) { 4560 // If splitting the underlying data structure can reduce the offset of a 4561 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4562 // previously split data structures. 4563 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4564 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4565 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4566 } 4567 4568 NewAddrMode.OriginalValue = V; 4569 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4570 break; 4571 } 4572 4573 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4574 // or we have multiple but either couldn't combine them or combining them 4575 // wouldn't do anything useful, bail out now. 4576 if (!AddrModes.combineAddrModes()) { 4577 TPT.rollback(LastKnownGood); 4578 return false; 4579 } 4580 TPT.commit(); 4581 4582 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4583 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4584 4585 // If all the instructions matched are already in this BB, don't do anything. 4586 // If we saw a Phi node then it is not local definitely, and if we saw a select 4587 // then we want to push the address calculation past it even if it's already 4588 // in this BB. 4589 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4590 return IsNonLocalValue(V, MemoryInst->getParent()); 4591 })) { 4592 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4593 << "\n"); 4594 return false; 4595 } 4596 4597 // Insert this computation right after this user. Since our caller is 4598 // scanning from the top of the BB to the bottom, reuse of the expr are 4599 // guaranteed to happen later. 4600 IRBuilder<> Builder(MemoryInst); 4601 4602 // Now that we determined the addressing expression we want to use and know 4603 // that we have to sink it into this block. Check to see if we have already 4604 // done this for some other load/store instr in this block. If so, reuse 4605 // the computation. Before attempting reuse, check if the address is valid 4606 // as it may have been erased. 4607 4608 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4609 4610 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4611 if (SunkAddr) { 4612 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4613 << " for " << *MemoryInst << "\n"); 4614 if (SunkAddr->getType() != Addr->getType()) 4615 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4616 } else if (AddrSinkUsingGEPs || 4617 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4618 // By default, we use the GEP-based method when AA is used later. This 4619 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4620 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4621 << " for " << *MemoryInst << "\n"); 4622 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4623 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4624 4625 // First, find the pointer. 4626 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4627 ResultPtr = AddrMode.BaseReg; 4628 AddrMode.BaseReg = nullptr; 4629 } 4630 4631 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4632 // We can't add more than one pointer together, nor can we scale a 4633 // pointer (both of which seem meaningless). 4634 if (ResultPtr || AddrMode.Scale != 1) 4635 return false; 4636 4637 ResultPtr = AddrMode.ScaledReg; 4638 AddrMode.Scale = 0; 4639 } 4640 4641 // It is only safe to sign extend the BaseReg if we know that the math 4642 // required to create it did not overflow before we extend it. Since 4643 // the original IR value was tossed in favor of a constant back when 4644 // the AddrMode was created we need to bail out gracefully if widths 4645 // do not match instead of extending it. 4646 // 4647 // (See below for code to add the scale.) 4648 if (AddrMode.Scale) { 4649 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4650 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4651 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4652 return false; 4653 } 4654 4655 if (AddrMode.BaseGV) { 4656 if (ResultPtr) 4657 return false; 4658 4659 ResultPtr = AddrMode.BaseGV; 4660 } 4661 4662 // If the real base value actually came from an inttoptr, then the matcher 4663 // will look through it and provide only the integer value. In that case, 4664 // use it here. 4665 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4666 const auto getResultPtr = [MemoryInst, Addr, 4667 &Builder](Value *Reg) -> Value * { 4668 BasicBlock *BB = MemoryInst->getParent(); 4669 for (User *U : Reg->users()) 4670 if (auto *I2P = dyn_cast<IntToPtrInst>(U)) 4671 if (I2P->getType() == Addr->getType() && I2P->getParent() == BB) { 4672 auto *RegInst = dyn_cast<Instruction>(Reg); 4673 if (RegInst && RegInst->getParent() == BB && 4674 !isa<PHINode>(RegInst) && !RegInst->isEHPad()) 4675 I2P->moveAfter(RegInst); 4676 else 4677 I2P->moveBefore(*BB, BB->getFirstInsertionPt()); 4678 return I2P; 4679 } 4680 return Builder.CreateIntToPtr(Reg, Addr->getType(), "sunkaddr"); 4681 }; 4682 if (!ResultPtr && AddrMode.BaseReg) { 4683 ResultPtr = getResultPtr(AddrMode.BaseReg); 4684 AddrMode.BaseReg = nullptr; 4685 } else if (!ResultPtr && AddrMode.Scale == 1) { 4686 ResultPtr = getResultPtr(AddrMode.ScaledReg); 4687 AddrMode.Scale = 0; 4688 } 4689 } 4690 4691 if (!ResultPtr && 4692 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4693 SunkAddr = Constant::getNullValue(Addr->getType()); 4694 } else if (!ResultPtr) { 4695 return false; 4696 } else { 4697 Type *I8PtrTy = 4698 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4699 Type *I8Ty = Builder.getInt8Ty(); 4700 4701 // Start with the base register. Do this first so that subsequent address 4702 // matching finds it last, which will prevent it from trying to match it 4703 // as the scaled value in case it happens to be a mul. That would be 4704 // problematic if we've sunk a different mul for the scale, because then 4705 // we'd end up sinking both muls. 4706 if (AddrMode.BaseReg) { 4707 Value *V = AddrMode.BaseReg; 4708 if (V->getType() != IntPtrTy) 4709 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4710 4711 ResultIndex = V; 4712 } 4713 4714 // Add the scale value. 4715 if (AddrMode.Scale) { 4716 Value *V = AddrMode.ScaledReg; 4717 if (V->getType() == IntPtrTy) { 4718 // done. 4719 } else { 4720 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4721 cast<IntegerType>(V->getType())->getBitWidth() && 4722 "We can't transform if ScaledReg is too narrow"); 4723 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4724 } 4725 4726 if (AddrMode.Scale != 1) 4727 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4728 "sunkaddr"); 4729 if (ResultIndex) 4730 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4731 else 4732 ResultIndex = V; 4733 } 4734 4735 // Add in the Base Offset if present. 4736 if (AddrMode.BaseOffs) { 4737 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4738 if (ResultIndex) { 4739 // We need to add this separately from the scale above to help with 4740 // SDAG consecutive load/store merging. 4741 if (ResultPtr->getType() != I8PtrTy) 4742 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4743 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4744 } 4745 4746 ResultIndex = V; 4747 } 4748 4749 if (!ResultIndex) { 4750 SunkAddr = ResultPtr; 4751 } else { 4752 if (ResultPtr->getType() != I8PtrTy) 4753 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4754 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4755 } 4756 4757 if (SunkAddr->getType() != Addr->getType()) 4758 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4759 } 4760 } else { 4761 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4762 // non-integral pointers, so in that case bail out now. 4763 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4764 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4765 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4766 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4767 if (DL->isNonIntegralPointerType(Addr->getType()) || 4768 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4769 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4770 (AddrMode.BaseGV && 4771 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4772 return false; 4773 4774 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4775 << " for " << *MemoryInst << "\n"); 4776 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4777 Value *Result = nullptr; 4778 4779 // Start with the base register. Do this first so that subsequent address 4780 // matching finds it last, which will prevent it from trying to match it 4781 // as the scaled value in case it happens to be a mul. That would be 4782 // problematic if we've sunk a different mul for the scale, because then 4783 // we'd end up sinking both muls. 4784 if (AddrMode.BaseReg) { 4785 Value *V = AddrMode.BaseReg; 4786 if (V->getType()->isPointerTy()) 4787 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4788 if (V->getType() != IntPtrTy) 4789 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4790 Result = V; 4791 } 4792 4793 // Add the scale value. 4794 if (AddrMode.Scale) { 4795 Value *V = AddrMode.ScaledReg; 4796 if (V->getType() == IntPtrTy) { 4797 // done. 4798 } else if (V->getType()->isPointerTy()) { 4799 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4800 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4801 cast<IntegerType>(V->getType())->getBitWidth()) { 4802 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4803 } else { 4804 // It is only safe to sign extend the BaseReg if we know that the math 4805 // required to create it did not overflow before we extend it. Since 4806 // the original IR value was tossed in favor of a constant back when 4807 // the AddrMode was created we need to bail out gracefully if widths 4808 // do not match instead of extending it. 4809 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4810 if (I && (Result != AddrMode.BaseReg)) 4811 I->eraseFromParent(); 4812 return false; 4813 } 4814 if (AddrMode.Scale != 1) 4815 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4816 "sunkaddr"); 4817 if (Result) 4818 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4819 else 4820 Result = V; 4821 } 4822 4823 // Add in the BaseGV if present. 4824 if (AddrMode.BaseGV) { 4825 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4826 if (Result) 4827 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4828 else 4829 Result = V; 4830 } 4831 4832 // Add in the Base Offset if present. 4833 if (AddrMode.BaseOffs) { 4834 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4835 if (Result) 4836 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4837 else 4838 Result = V; 4839 } 4840 4841 if (!Result) 4842 SunkAddr = Constant::getNullValue(Addr->getType()); 4843 else 4844 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4845 } 4846 4847 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4848 // Store the newly computed address into the cache. In the case we reused a 4849 // value, this should be idempotent. 4850 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 4851 4852 // If we have no uses, recursively delete the value and all dead instructions 4853 // using it. 4854 if (Repl->use_empty()) { 4855 // This can cause recursive deletion, which can invalidate our iterator. 4856 // Use a WeakTrackingVH to hold onto it in case this happens. 4857 Value *CurValue = &*CurInstIterator; 4858 WeakTrackingVH IterHandle(CurValue); 4859 BasicBlock *BB = CurInstIterator->getParent(); 4860 4861 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4862 4863 if (IterHandle != CurValue) { 4864 // If the iterator instruction was recursively deleted, start over at the 4865 // start of the block. 4866 CurInstIterator = BB->begin(); 4867 SunkAddrs.clear(); 4868 } 4869 } 4870 ++NumMemoryInsts; 4871 return true; 4872 } 4873 4874 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4875 /// address computing into the block when possible / profitable. 4876 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4877 bool MadeChange = false; 4878 4879 const TargetRegisterInfo *TRI = 4880 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 4881 TargetLowering::AsmOperandInfoVector TargetConstraints = 4882 TLI->ParseConstraints(*DL, TRI, CS); 4883 unsigned ArgNo = 0; 4884 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4885 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4886 4887 // Compute the constraint code and ConstraintType to use. 4888 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4889 4890 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4891 OpInfo.isIndirect) { 4892 Value *OpVal = CS->getArgOperand(ArgNo++); 4893 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4894 } else if (OpInfo.Type == InlineAsm::isInput) 4895 ArgNo++; 4896 } 4897 4898 return MadeChange; 4899 } 4900 4901 /// Check if all the uses of \p Val are equivalent (or free) zero or 4902 /// sign extensions. 4903 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 4904 assert(!Val->use_empty() && "Input must have at least one use"); 4905 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 4906 bool IsSExt = isa<SExtInst>(FirstUser); 4907 Type *ExtTy = FirstUser->getType(); 4908 for (const User *U : Val->users()) { 4909 const Instruction *UI = cast<Instruction>(U); 4910 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4911 return false; 4912 Type *CurTy = UI->getType(); 4913 // Same input and output types: Same instruction after CSE. 4914 if (CurTy == ExtTy) 4915 continue; 4916 4917 // If IsSExt is true, we are in this situation: 4918 // a = Val 4919 // b = sext ty1 a to ty2 4920 // c = sext ty1 a to ty3 4921 // Assuming ty2 is shorter than ty3, this could be turned into: 4922 // a = Val 4923 // b = sext ty1 a to ty2 4924 // c = sext ty2 b to ty3 4925 // However, the last sext is not free. 4926 if (IsSExt) 4927 return false; 4928 4929 // This is a ZExt, maybe this is free to extend from one type to another. 4930 // In that case, we would not account for a different use. 4931 Type *NarrowTy; 4932 Type *LargeTy; 4933 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4934 CurTy->getScalarType()->getIntegerBitWidth()) { 4935 NarrowTy = CurTy; 4936 LargeTy = ExtTy; 4937 } else { 4938 NarrowTy = ExtTy; 4939 LargeTy = CurTy; 4940 } 4941 4942 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4943 return false; 4944 } 4945 // All uses are the same or can be derived from one another for free. 4946 return true; 4947 } 4948 4949 /// Try to speculatively promote extensions in \p Exts and continue 4950 /// promoting through newly promoted operands recursively as far as doing so is 4951 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 4952 /// When some promotion happened, \p TPT contains the proper state to revert 4953 /// them. 4954 /// 4955 /// \return true if some promotion happened, false otherwise. 4956 bool CodeGenPrepare::tryToPromoteExts( 4957 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 4958 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 4959 unsigned CreatedInstsCost) { 4960 bool Promoted = false; 4961 4962 // Iterate over all the extensions to try to promote them. 4963 for (auto I : Exts) { 4964 // Early check if we directly have ext(load). 4965 if (isa<LoadInst>(I->getOperand(0))) { 4966 ProfitablyMovedExts.push_back(I); 4967 continue; 4968 } 4969 4970 // Check whether or not we want to do any promotion. The reason we have 4971 // this check inside the for loop is to catch the case where an extension 4972 // is directly fed by a load because in such case the extension can be moved 4973 // up without any promotion on its operands. 4974 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4975 return false; 4976 4977 // Get the action to perform the promotion. 4978 TypePromotionHelper::Action TPH = 4979 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 4980 // Check if we can promote. 4981 if (!TPH) { 4982 // Save the current extension as we cannot move up through its operand. 4983 ProfitablyMovedExts.push_back(I); 4984 continue; 4985 } 4986 4987 // Save the current state. 4988 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4989 TPT.getRestorationPoint(); 4990 SmallVector<Instruction *, 4> NewExts; 4991 unsigned NewCreatedInstsCost = 0; 4992 unsigned ExtCost = !TLI->isExtFree(I); 4993 // Promote. 4994 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4995 &NewExts, nullptr, *TLI); 4996 assert(PromotedVal && 4997 "TypePromotionHelper should have filtered out those cases"); 4998 4999 // We would be able to merge only one extension in a load. 5000 // Therefore, if we have more than 1 new extension we heuristically 5001 // cut this search path, because it means we degrade the code quality. 5002 // With exactly 2, the transformation is neutral, because we will merge 5003 // one extension but leave one. However, we optimistically keep going, 5004 // because the new extension may be removed too. 5005 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5006 // FIXME: It would be possible to propagate a negative value instead of 5007 // conservatively ceiling it to 0. 5008 TotalCreatedInstsCost = 5009 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5010 if (!StressExtLdPromotion && 5011 (TotalCreatedInstsCost > 1 || 5012 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5013 // This promotion is not profitable, rollback to the previous state, and 5014 // save the current extension in ProfitablyMovedExts as the latest 5015 // speculative promotion turned out to be unprofitable. 5016 TPT.rollback(LastKnownGood); 5017 ProfitablyMovedExts.push_back(I); 5018 continue; 5019 } 5020 // Continue promoting NewExts as far as doing so is profitable. 5021 SmallVector<Instruction *, 2> NewlyMovedExts; 5022 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5023 bool NewPromoted = false; 5024 for (auto ExtInst : NewlyMovedExts) { 5025 Instruction *MovedExt = cast<Instruction>(ExtInst); 5026 Value *ExtOperand = MovedExt->getOperand(0); 5027 // If we have reached to a load, we need this extra profitability check 5028 // as it could potentially be merged into an ext(load). 5029 if (isa<LoadInst>(ExtOperand) && 5030 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5031 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5032 continue; 5033 5034 ProfitablyMovedExts.push_back(MovedExt); 5035 NewPromoted = true; 5036 } 5037 5038 // If none of speculative promotions for NewExts is profitable, rollback 5039 // and save the current extension (I) as the last profitable extension. 5040 if (!NewPromoted) { 5041 TPT.rollback(LastKnownGood); 5042 ProfitablyMovedExts.push_back(I); 5043 continue; 5044 } 5045 // The promotion is profitable. 5046 Promoted = true; 5047 } 5048 return Promoted; 5049 } 5050 5051 /// Merging redundant sexts when one is dominating the other. 5052 bool CodeGenPrepare::mergeSExts(Function &F) { 5053 DominatorTree DT(F); 5054 bool Changed = false; 5055 for (auto &Entry : ValToSExtendedUses) { 5056 SExts &Insts = Entry.second; 5057 SExts CurPts; 5058 for (Instruction *Inst : Insts) { 5059 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5060 Inst->getOperand(0) != Entry.first) 5061 continue; 5062 bool inserted = false; 5063 for (auto &Pt : CurPts) { 5064 if (DT.dominates(Inst, Pt)) { 5065 Pt->replaceAllUsesWith(Inst); 5066 RemovedInsts.insert(Pt); 5067 Pt->removeFromParent(); 5068 Pt = Inst; 5069 inserted = true; 5070 Changed = true; 5071 break; 5072 } 5073 if (!DT.dominates(Pt, Inst)) 5074 // Give up if we need to merge in a common dominator as the 5075 // experiments show it is not profitable. 5076 continue; 5077 Inst->replaceAllUsesWith(Pt); 5078 RemovedInsts.insert(Inst); 5079 Inst->removeFromParent(); 5080 inserted = true; 5081 Changed = true; 5082 break; 5083 } 5084 if (!inserted) 5085 CurPts.push_back(Inst); 5086 } 5087 } 5088 return Changed; 5089 } 5090 5091 // Spliting large data structures so that the GEPs accessing them can have 5092 // smaller offsets so that they can be sunk to the same blocks as their users. 5093 // For example, a large struct starting from %base is splitted into two parts 5094 // where the second part starts from %new_base. 5095 // 5096 // Before: 5097 // BB0: 5098 // %base = 5099 // 5100 // BB1: 5101 // %gep0 = gep %base, off0 5102 // %gep1 = gep %base, off1 5103 // %gep2 = gep %base, off2 5104 // 5105 // BB2: 5106 // %load1 = load %gep0 5107 // %load2 = load %gep1 5108 // %load3 = load %gep2 5109 // 5110 // After: 5111 // BB0: 5112 // %base = 5113 // %new_base = gep %base, off0 5114 // 5115 // BB1: 5116 // %new_gep0 = %new_base 5117 // %new_gep1 = gep %new_base, off1 - off0 5118 // %new_gep2 = gep %new_base, off2 - off0 5119 // 5120 // BB2: 5121 // %load1 = load i32, i32* %new_gep0 5122 // %load2 = load i32, i32* %new_gep1 5123 // %load3 = load i32, i32* %new_gep2 5124 // 5125 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5126 // their offsets are smaller enough to fit into the addressing mode. 5127 bool CodeGenPrepare::splitLargeGEPOffsets() { 5128 bool Changed = false; 5129 for (auto &Entry : LargeOffsetGEPMap) { 5130 Value *OldBase = Entry.first; 5131 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5132 &LargeOffsetGEPs = Entry.second; 5133 auto compareGEPOffset = 5134 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5135 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5136 if (LHS.first == RHS.first) 5137 return false; 5138 if (LHS.second != RHS.second) 5139 return LHS.second < RHS.second; 5140 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5141 }; 5142 // Sorting all the GEPs of the same data structures based on the offsets. 5143 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5144 LargeOffsetGEPs.erase( 5145 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5146 LargeOffsetGEPs.end()); 5147 // Skip if all the GEPs have the same offsets. 5148 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5149 continue; 5150 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5151 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5152 Value *NewBaseGEP = nullptr; 5153 5154 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5155 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5156 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5157 int64_t Offset = LargeOffsetGEP->second; 5158 if (Offset != BaseOffset) { 5159 TargetLowering::AddrMode AddrMode; 5160 AddrMode.BaseOffs = Offset - BaseOffset; 5161 // The result type of the GEP might not be the type of the memory 5162 // access. 5163 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5164 GEP->getResultElementType(), 5165 GEP->getAddressSpace())) { 5166 // We need to create a new base if the offset to the current base is 5167 // too large to fit into the addressing mode. So, a very large struct 5168 // may be splitted into several parts. 5169 BaseGEP = GEP; 5170 BaseOffset = Offset; 5171 NewBaseGEP = nullptr; 5172 } 5173 } 5174 5175 // Generate a new GEP to replace the current one. 5176 LLVMContext &Ctx = GEP->getContext(); 5177 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5178 Type *I8PtrTy = 5179 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5180 Type *I8Ty = Type::getInt8Ty(Ctx); 5181 5182 if (!NewBaseGEP) { 5183 // Create a new base if we don't have one yet. Find the insertion 5184 // pointer for the new base first. 5185 BasicBlock::iterator NewBaseInsertPt; 5186 BasicBlock *NewBaseInsertBB; 5187 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5188 // If the base of the struct is an instruction, the new base will be 5189 // inserted close to it. 5190 NewBaseInsertBB = BaseI->getParent(); 5191 if (isa<PHINode>(BaseI)) 5192 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5193 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5194 NewBaseInsertBB = 5195 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5196 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5197 } else 5198 NewBaseInsertPt = std::next(BaseI->getIterator()); 5199 } else { 5200 // If the current base is an argument or global value, the new base 5201 // will be inserted to the entry block. 5202 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5203 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5204 } 5205 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5206 // Create a new base. 5207 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5208 NewBaseGEP = OldBase; 5209 if (NewBaseGEP->getType() != I8PtrTy) 5210 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5211 NewBaseGEP = 5212 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5213 NewGEPBases.insert(NewBaseGEP); 5214 } 5215 5216 IRBuilder<> Builder(GEP); 5217 Value *NewGEP = NewBaseGEP; 5218 if (Offset == BaseOffset) { 5219 if (GEP->getType() != I8PtrTy) 5220 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5221 } else { 5222 // Calculate the new offset for the new GEP. 5223 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5224 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5225 5226 if (GEP->getType() != I8PtrTy) 5227 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5228 } 5229 GEP->replaceAllUsesWith(NewGEP); 5230 LargeOffsetGEPID.erase(GEP); 5231 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5232 GEP->eraseFromParent(); 5233 Changed = true; 5234 } 5235 } 5236 return Changed; 5237 } 5238 5239 /// Return true, if an ext(load) can be formed from an extension in 5240 /// \p MovedExts. 5241 bool CodeGenPrepare::canFormExtLd( 5242 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5243 Instruction *&Inst, bool HasPromoted) { 5244 for (auto *MovedExtInst : MovedExts) { 5245 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5246 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5247 Inst = MovedExtInst; 5248 break; 5249 } 5250 } 5251 if (!LI) 5252 return false; 5253 5254 // If they're already in the same block, there's nothing to do. 5255 // Make the cheap checks first if we did not promote. 5256 // If we promoted, we need to check if it is indeed profitable. 5257 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5258 return false; 5259 5260 return TLI->isExtLoad(LI, Inst, *DL); 5261 } 5262 5263 /// Move a zext or sext fed by a load into the same basic block as the load, 5264 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5265 /// extend into the load. 5266 /// 5267 /// E.g., 5268 /// \code 5269 /// %ld = load i32* %addr 5270 /// %add = add nuw i32 %ld, 4 5271 /// %zext = zext i32 %add to i64 5272 // \endcode 5273 /// => 5274 /// \code 5275 /// %ld = load i32* %addr 5276 /// %zext = zext i32 %ld to i64 5277 /// %add = add nuw i64 %zext, 4 5278 /// \encode 5279 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5280 /// allow us to match zext(load i32*) to i64. 5281 /// 5282 /// Also, try to promote the computations used to obtain a sign extended 5283 /// value used into memory accesses. 5284 /// E.g., 5285 /// \code 5286 /// a = add nsw i32 b, 3 5287 /// d = sext i32 a to i64 5288 /// e = getelementptr ..., i64 d 5289 /// \endcode 5290 /// => 5291 /// \code 5292 /// f = sext i32 b to i64 5293 /// a = add nsw i64 f, 3 5294 /// e = getelementptr ..., i64 a 5295 /// \endcode 5296 /// 5297 /// \p Inst[in/out] the extension may be modified during the process if some 5298 /// promotions apply. 5299 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5300 // ExtLoad formation and address type promotion infrastructure requires TLI to 5301 // be effective. 5302 if (!TLI) 5303 return false; 5304 5305 bool AllowPromotionWithoutCommonHeader = false; 5306 /// See if it is an interesting sext operations for the address type 5307 /// promotion before trying to promote it, e.g., the ones with the right 5308 /// type and used in memory accesses. 5309 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5310 *Inst, AllowPromotionWithoutCommonHeader); 5311 TypePromotionTransaction TPT(RemovedInsts); 5312 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5313 TPT.getRestorationPoint(); 5314 SmallVector<Instruction *, 1> Exts; 5315 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5316 Exts.push_back(Inst); 5317 5318 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5319 5320 // Look for a load being extended. 5321 LoadInst *LI = nullptr; 5322 Instruction *ExtFedByLoad; 5323 5324 // Try to promote a chain of computation if it allows to form an extended 5325 // load. 5326 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5327 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5328 TPT.commit(); 5329 // Move the extend into the same block as the load 5330 ExtFedByLoad->moveAfter(LI); 5331 // CGP does not check if the zext would be speculatively executed when moved 5332 // to the same basic block as the load. Preserving its original location 5333 // would pessimize the debugging experience, as well as negatively impact 5334 // the quality of sample pgo. We don't want to use "line 0" as that has a 5335 // size cost in the line-table section and logically the zext can be seen as 5336 // part of the load. Therefore we conservatively reuse the same debug 5337 // location for the load and the zext. 5338 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5339 ++NumExtsMoved; 5340 Inst = ExtFedByLoad; 5341 return true; 5342 } 5343 5344 // Continue promoting SExts if known as considerable depending on targets. 5345 if (ATPConsiderable && 5346 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5347 HasPromoted, TPT, SpeculativelyMovedExts)) 5348 return true; 5349 5350 TPT.rollback(LastKnownGood); 5351 return false; 5352 } 5353 5354 // Perform address type promotion if doing so is profitable. 5355 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5356 // instructions that sign extended the same initial value. However, if 5357 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5358 // extension is just profitable. 5359 bool CodeGenPrepare::performAddressTypePromotion( 5360 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5361 bool HasPromoted, TypePromotionTransaction &TPT, 5362 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5363 bool Promoted = false; 5364 SmallPtrSet<Instruction *, 1> UnhandledExts; 5365 bool AllSeenFirst = true; 5366 for (auto I : SpeculativelyMovedExts) { 5367 Value *HeadOfChain = I->getOperand(0); 5368 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5369 SeenChainsForSExt.find(HeadOfChain); 5370 // If there is an unhandled SExt which has the same header, try to promote 5371 // it as well. 5372 if (AlreadySeen != SeenChainsForSExt.end()) { 5373 if (AlreadySeen->second != nullptr) 5374 UnhandledExts.insert(AlreadySeen->second); 5375 AllSeenFirst = false; 5376 } 5377 } 5378 5379 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5380 SpeculativelyMovedExts.size() == 1)) { 5381 TPT.commit(); 5382 if (HasPromoted) 5383 Promoted = true; 5384 for (auto I : SpeculativelyMovedExts) { 5385 Value *HeadOfChain = I->getOperand(0); 5386 SeenChainsForSExt[HeadOfChain] = nullptr; 5387 ValToSExtendedUses[HeadOfChain].push_back(I); 5388 } 5389 // Update Inst as promotion happen. 5390 Inst = SpeculativelyMovedExts.pop_back_val(); 5391 } else { 5392 // This is the first chain visited from the header, keep the current chain 5393 // as unhandled. Defer to promote this until we encounter another SExt 5394 // chain derived from the same header. 5395 for (auto I : SpeculativelyMovedExts) { 5396 Value *HeadOfChain = I->getOperand(0); 5397 SeenChainsForSExt[HeadOfChain] = Inst; 5398 } 5399 return false; 5400 } 5401 5402 if (!AllSeenFirst && !UnhandledExts.empty()) 5403 for (auto VisitedSExt : UnhandledExts) { 5404 if (RemovedInsts.count(VisitedSExt)) 5405 continue; 5406 TypePromotionTransaction TPT(RemovedInsts); 5407 SmallVector<Instruction *, 1> Exts; 5408 SmallVector<Instruction *, 2> Chains; 5409 Exts.push_back(VisitedSExt); 5410 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5411 TPT.commit(); 5412 if (HasPromoted) 5413 Promoted = true; 5414 for (auto I : Chains) { 5415 Value *HeadOfChain = I->getOperand(0); 5416 // Mark this as handled. 5417 SeenChainsForSExt[HeadOfChain] = nullptr; 5418 ValToSExtendedUses[HeadOfChain].push_back(I); 5419 } 5420 } 5421 return Promoted; 5422 } 5423 5424 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5425 BasicBlock *DefBB = I->getParent(); 5426 5427 // If the result of a {s|z}ext and its source are both live out, rewrite all 5428 // other uses of the source with result of extension. 5429 Value *Src = I->getOperand(0); 5430 if (Src->hasOneUse()) 5431 return false; 5432 5433 // Only do this xform if truncating is free. 5434 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5435 return false; 5436 5437 // Only safe to perform the optimization if the source is also defined in 5438 // this block. 5439 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5440 return false; 5441 5442 bool DefIsLiveOut = false; 5443 for (User *U : I->users()) { 5444 Instruction *UI = cast<Instruction>(U); 5445 5446 // Figure out which BB this ext is used in. 5447 BasicBlock *UserBB = UI->getParent(); 5448 if (UserBB == DefBB) continue; 5449 DefIsLiveOut = true; 5450 break; 5451 } 5452 if (!DefIsLiveOut) 5453 return false; 5454 5455 // Make sure none of the uses are PHI nodes. 5456 for (User *U : Src->users()) { 5457 Instruction *UI = cast<Instruction>(U); 5458 BasicBlock *UserBB = UI->getParent(); 5459 if (UserBB == DefBB) continue; 5460 // Be conservative. We don't want this xform to end up introducing 5461 // reloads just before load / store instructions. 5462 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5463 return false; 5464 } 5465 5466 // InsertedTruncs - Only insert one trunc in each block once. 5467 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5468 5469 bool MadeChange = false; 5470 for (Use &U : Src->uses()) { 5471 Instruction *User = cast<Instruction>(U.getUser()); 5472 5473 // Figure out which BB this ext is used in. 5474 BasicBlock *UserBB = User->getParent(); 5475 if (UserBB == DefBB) continue; 5476 5477 // Both src and def are live in this block. Rewrite the use. 5478 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5479 5480 if (!InsertedTrunc) { 5481 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5482 assert(InsertPt != UserBB->end()); 5483 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5484 InsertedInsts.insert(InsertedTrunc); 5485 } 5486 5487 // Replace a use of the {s|z}ext source with a use of the result. 5488 U = InsertedTrunc; 5489 ++NumExtUses; 5490 MadeChange = true; 5491 } 5492 5493 return MadeChange; 5494 } 5495 5496 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5497 // just after the load if the target can fold this into one extload instruction, 5498 // with the hope of eliminating some of the other later "and" instructions using 5499 // the loaded value. "and"s that are made trivially redundant by the insertion 5500 // of the new "and" are removed by this function, while others (e.g. those whose 5501 // path from the load goes through a phi) are left for isel to potentially 5502 // remove. 5503 // 5504 // For example: 5505 // 5506 // b0: 5507 // x = load i32 5508 // ... 5509 // b1: 5510 // y = and x, 0xff 5511 // z = use y 5512 // 5513 // becomes: 5514 // 5515 // b0: 5516 // x = load i32 5517 // x' = and x, 0xff 5518 // ... 5519 // b1: 5520 // z = use x' 5521 // 5522 // whereas: 5523 // 5524 // b0: 5525 // x1 = load i32 5526 // ... 5527 // b1: 5528 // x2 = load i32 5529 // ... 5530 // b2: 5531 // x = phi x1, x2 5532 // y = and x, 0xff 5533 // 5534 // becomes (after a call to optimizeLoadExt for each load): 5535 // 5536 // b0: 5537 // x1 = load i32 5538 // x1' = and x1, 0xff 5539 // ... 5540 // b1: 5541 // x2 = load i32 5542 // x2' = and x2, 0xff 5543 // ... 5544 // b2: 5545 // x = phi x1', x2' 5546 // y = and x, 0xff 5547 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5548 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5549 return false; 5550 5551 // Skip loads we've already transformed. 5552 if (Load->hasOneUse() && 5553 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5554 return false; 5555 5556 // Look at all uses of Load, looking through phis, to determine how many bits 5557 // of the loaded value are needed. 5558 SmallVector<Instruction *, 8> WorkList; 5559 SmallPtrSet<Instruction *, 16> Visited; 5560 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5561 for (auto *U : Load->users()) 5562 WorkList.push_back(cast<Instruction>(U)); 5563 5564 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5565 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5566 APInt DemandBits(BitWidth, 0); 5567 APInt WidestAndBits(BitWidth, 0); 5568 5569 while (!WorkList.empty()) { 5570 Instruction *I = WorkList.back(); 5571 WorkList.pop_back(); 5572 5573 // Break use-def graph loops. 5574 if (!Visited.insert(I).second) 5575 continue; 5576 5577 // For a PHI node, push all of its users. 5578 if (auto *Phi = dyn_cast<PHINode>(I)) { 5579 for (auto *U : Phi->users()) 5580 WorkList.push_back(cast<Instruction>(U)); 5581 continue; 5582 } 5583 5584 switch (I->getOpcode()) { 5585 case Instruction::And: { 5586 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5587 if (!AndC) 5588 return false; 5589 APInt AndBits = AndC->getValue(); 5590 DemandBits |= AndBits; 5591 // Keep track of the widest and mask we see. 5592 if (AndBits.ugt(WidestAndBits)) 5593 WidestAndBits = AndBits; 5594 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5595 AndsToMaybeRemove.push_back(I); 5596 break; 5597 } 5598 5599 case Instruction::Shl: { 5600 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5601 if (!ShlC) 5602 return false; 5603 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5604 DemandBits.setLowBits(BitWidth - ShiftAmt); 5605 break; 5606 } 5607 5608 case Instruction::Trunc: { 5609 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5610 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5611 DemandBits.setLowBits(TruncBitWidth); 5612 break; 5613 } 5614 5615 default: 5616 return false; 5617 } 5618 } 5619 5620 uint32_t ActiveBits = DemandBits.getActiveBits(); 5621 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5622 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5623 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5624 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5625 // followed by an AND. 5626 // TODO: Look into removing this restriction by fixing backends to either 5627 // return false for isLoadExtLegal for i1 or have them select this pattern to 5628 // a single instruction. 5629 // 5630 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5631 // mask, since these are the only ands that will be removed by isel. 5632 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5633 WidestAndBits != DemandBits) 5634 return false; 5635 5636 LLVMContext &Ctx = Load->getType()->getContext(); 5637 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5638 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5639 5640 // Reject cases that won't be matched as extloads. 5641 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5642 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5643 return false; 5644 5645 IRBuilder<> Builder(Load->getNextNode()); 5646 auto *NewAnd = dyn_cast<Instruction>( 5647 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5648 // Mark this instruction as "inserted by CGP", so that other 5649 // optimizations don't touch it. 5650 InsertedInsts.insert(NewAnd); 5651 5652 // Replace all uses of load with new and (except for the use of load in the 5653 // new and itself). 5654 Load->replaceAllUsesWith(NewAnd); 5655 NewAnd->setOperand(0, Load); 5656 5657 // Remove any and instructions that are now redundant. 5658 for (auto *And : AndsToMaybeRemove) 5659 // Check that the and mask is the same as the one we decided to put on the 5660 // new and. 5661 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5662 And->replaceAllUsesWith(NewAnd); 5663 if (&*CurInstIterator == And) 5664 CurInstIterator = std::next(And->getIterator()); 5665 And->eraseFromParent(); 5666 ++NumAndUses; 5667 } 5668 5669 ++NumAndsAdded; 5670 return true; 5671 } 5672 5673 /// Check if V (an operand of a select instruction) is an expensive instruction 5674 /// that is only used once. 5675 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5676 auto *I = dyn_cast<Instruction>(V); 5677 // If it's safe to speculatively execute, then it should not have side 5678 // effects; therefore, it's safe to sink and possibly *not* execute. 5679 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5680 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5681 } 5682 5683 /// Returns true if a SelectInst should be turned into an explicit branch. 5684 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5685 const TargetLowering *TLI, 5686 SelectInst *SI) { 5687 // If even a predictable select is cheap, then a branch can't be cheaper. 5688 if (!TLI->isPredictableSelectExpensive()) 5689 return false; 5690 5691 // FIXME: This should use the same heuristics as IfConversion to determine 5692 // whether a select is better represented as a branch. 5693 5694 // If metadata tells us that the select condition is obviously predictable, 5695 // then we want to replace the select with a branch. 5696 uint64_t TrueWeight, FalseWeight; 5697 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5698 uint64_t Max = std::max(TrueWeight, FalseWeight); 5699 uint64_t Sum = TrueWeight + FalseWeight; 5700 if (Sum != 0) { 5701 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5702 if (Probability > TLI->getPredictableBranchThreshold()) 5703 return true; 5704 } 5705 } 5706 5707 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5708 5709 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5710 // comparison condition. If the compare has more than one use, there's 5711 // probably another cmov or setcc around, so it's not worth emitting a branch. 5712 if (!Cmp || !Cmp->hasOneUse()) 5713 return false; 5714 5715 // If either operand of the select is expensive and only needed on one side 5716 // of the select, we should form a branch. 5717 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5718 sinkSelectOperand(TTI, SI->getFalseValue())) 5719 return true; 5720 5721 return false; 5722 } 5723 5724 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5725 /// false value of \p SI. If the true/false value of \p SI is defined by any 5726 /// select instructions in \p Selects, look through the defining select 5727 /// instruction until the true/false value is not defined in \p Selects. 5728 static Value *getTrueOrFalseValue( 5729 SelectInst *SI, bool isTrue, 5730 const SmallPtrSet<const Instruction *, 2> &Selects) { 5731 Value *V; 5732 5733 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5734 DefSI = dyn_cast<SelectInst>(V)) { 5735 assert(DefSI->getCondition() == SI->getCondition() && 5736 "The condition of DefSI does not match with SI"); 5737 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5738 } 5739 return V; 5740 } 5741 5742 /// If we have a SelectInst that will likely profit from branch prediction, 5743 /// turn it into a branch. 5744 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 5745 // If branch conversion isn't desirable, exit early. 5746 if (DisableSelectToBranch || OptSize || !TLI) 5747 return false; 5748 5749 // Find all consecutive select instructions that share the same condition. 5750 SmallVector<SelectInst *, 2> ASI; 5751 ASI.push_back(SI); 5752 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5753 It != SI->getParent()->end(); ++It) { 5754 SelectInst *I = dyn_cast<SelectInst>(&*It); 5755 if (I && SI->getCondition() == I->getCondition()) { 5756 ASI.push_back(I); 5757 } else { 5758 break; 5759 } 5760 } 5761 5762 SelectInst *LastSI = ASI.back(); 5763 // Increment the current iterator to skip all the rest of select instructions 5764 // because they will be either "not lowered" or "all lowered" to branch. 5765 CurInstIterator = std::next(LastSI->getIterator()); 5766 5767 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5768 5769 // Can we convert the 'select' to CF ? 5770 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5771 return false; 5772 5773 TargetLowering::SelectSupportKind SelectKind; 5774 if (VectorCond) 5775 SelectKind = TargetLowering::VectorMaskSelect; 5776 else if (SI->getType()->isVectorTy()) 5777 SelectKind = TargetLowering::ScalarCondVectorVal; 5778 else 5779 SelectKind = TargetLowering::ScalarValSelect; 5780 5781 if (TLI->isSelectSupported(SelectKind) && 5782 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5783 return false; 5784 5785 ModifiedDT = true; 5786 5787 // Transform a sequence like this: 5788 // start: 5789 // %cmp = cmp uge i32 %a, %b 5790 // %sel = select i1 %cmp, i32 %c, i32 %d 5791 // 5792 // Into: 5793 // start: 5794 // %cmp = cmp uge i32 %a, %b 5795 // br i1 %cmp, label %select.true, label %select.false 5796 // select.true: 5797 // br label %select.end 5798 // select.false: 5799 // br label %select.end 5800 // select.end: 5801 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5802 // 5803 // In addition, we may sink instructions that produce %c or %d from 5804 // the entry block into the destination(s) of the new branch. 5805 // If the true or false blocks do not contain a sunken instruction, that 5806 // block and its branch may be optimized away. In that case, one side of the 5807 // first branch will point directly to select.end, and the corresponding PHI 5808 // predecessor block will be the start block. 5809 5810 // First, we split the block containing the select into 2 blocks. 5811 BasicBlock *StartBlock = SI->getParent(); 5812 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5813 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5814 5815 // Delete the unconditional branch that was just created by the split. 5816 StartBlock->getTerminator()->eraseFromParent(); 5817 5818 // These are the new basic blocks for the conditional branch. 5819 // At least one will become an actual new basic block. 5820 BasicBlock *TrueBlock = nullptr; 5821 BasicBlock *FalseBlock = nullptr; 5822 BranchInst *TrueBranch = nullptr; 5823 BranchInst *FalseBranch = nullptr; 5824 5825 // Sink expensive instructions into the conditional blocks to avoid executing 5826 // them speculatively. 5827 for (SelectInst *SI : ASI) { 5828 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5829 if (TrueBlock == nullptr) { 5830 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5831 EndBlock->getParent(), EndBlock); 5832 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5833 TrueBranch->setDebugLoc(SI->getDebugLoc()); 5834 } 5835 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5836 TrueInst->moveBefore(TrueBranch); 5837 } 5838 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5839 if (FalseBlock == nullptr) { 5840 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5841 EndBlock->getParent(), EndBlock); 5842 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5843 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5844 } 5845 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5846 FalseInst->moveBefore(FalseBranch); 5847 } 5848 } 5849 5850 // If there was nothing to sink, then arbitrarily choose the 'false' side 5851 // for a new input value to the PHI. 5852 if (TrueBlock == FalseBlock) { 5853 assert(TrueBlock == nullptr && 5854 "Unexpected basic block transform while optimizing select"); 5855 5856 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5857 EndBlock->getParent(), EndBlock); 5858 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5859 FalseBranch->setDebugLoc(SI->getDebugLoc()); 5860 } 5861 5862 // Insert the real conditional branch based on the original condition. 5863 // If we did not create a new block for one of the 'true' or 'false' paths 5864 // of the condition, it means that side of the branch goes to the end block 5865 // directly and the path originates from the start block from the point of 5866 // view of the new PHI. 5867 BasicBlock *TT, *FT; 5868 if (TrueBlock == nullptr) { 5869 TT = EndBlock; 5870 FT = FalseBlock; 5871 TrueBlock = StartBlock; 5872 } else if (FalseBlock == nullptr) { 5873 TT = TrueBlock; 5874 FT = EndBlock; 5875 FalseBlock = StartBlock; 5876 } else { 5877 TT = TrueBlock; 5878 FT = FalseBlock; 5879 } 5880 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5881 5882 SmallPtrSet<const Instruction *, 2> INS; 5883 INS.insert(ASI.begin(), ASI.end()); 5884 // Use reverse iterator because later select may use the value of the 5885 // earlier select, and we need to propagate value through earlier select 5886 // to get the PHI operand. 5887 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5888 SelectInst *SI = *It; 5889 // The select itself is replaced with a PHI Node. 5890 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5891 PN->takeName(SI); 5892 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5893 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5894 PN->setDebugLoc(SI->getDebugLoc()); 5895 5896 SI->replaceAllUsesWith(PN); 5897 SI->eraseFromParent(); 5898 INS.erase(SI); 5899 ++NumSelectsExpanded; 5900 } 5901 5902 // Instruct OptimizeBlock to skip to the next block. 5903 CurInstIterator = StartBlock->end(); 5904 return true; 5905 } 5906 5907 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5908 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5909 int SplatElem = -1; 5910 for (unsigned i = 0; i < Mask.size(); ++i) { 5911 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5912 return false; 5913 SplatElem = Mask[i]; 5914 } 5915 5916 return true; 5917 } 5918 5919 /// Some targets have expensive vector shifts if the lanes aren't all the same 5920 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5921 /// it's often worth sinking a shufflevector splat down to its use so that 5922 /// codegen can spot all lanes are identical. 5923 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5924 BasicBlock *DefBB = SVI->getParent(); 5925 5926 // Only do this xform if variable vector shifts are particularly expensive. 5927 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5928 return false; 5929 5930 // We only expect better codegen by sinking a shuffle if we can recognise a 5931 // constant splat. 5932 if (!isBroadcastShuffle(SVI)) 5933 return false; 5934 5935 // InsertedShuffles - Only insert a shuffle in each block once. 5936 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5937 5938 bool MadeChange = false; 5939 for (User *U : SVI->users()) { 5940 Instruction *UI = cast<Instruction>(U); 5941 5942 // Figure out which BB this ext is used in. 5943 BasicBlock *UserBB = UI->getParent(); 5944 if (UserBB == DefBB) continue; 5945 5946 // For now only apply this when the splat is used by a shift instruction. 5947 if (!UI->isShift()) continue; 5948 5949 // Everything checks out, sink the shuffle if the user's block doesn't 5950 // already have a copy. 5951 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5952 5953 if (!InsertedShuffle) { 5954 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5955 assert(InsertPt != UserBB->end()); 5956 InsertedShuffle = 5957 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5958 SVI->getOperand(2), "", &*InsertPt); 5959 } 5960 5961 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5962 MadeChange = true; 5963 } 5964 5965 // If we removed all uses, nuke the shuffle. 5966 if (SVI->use_empty()) { 5967 SVI->eraseFromParent(); 5968 MadeChange = true; 5969 } 5970 5971 return MadeChange; 5972 } 5973 5974 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5975 if (!TLI || !DL) 5976 return false; 5977 5978 Value *Cond = SI->getCondition(); 5979 Type *OldType = Cond->getType(); 5980 LLVMContext &Context = Cond->getContext(); 5981 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5982 unsigned RegWidth = RegType.getSizeInBits(); 5983 5984 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5985 return false; 5986 5987 // If the register width is greater than the type width, expand the condition 5988 // of the switch instruction and each case constant to the width of the 5989 // register. By widening the type of the switch condition, subsequent 5990 // comparisons (for case comparisons) will not need to be extended to the 5991 // preferred register width, so we will potentially eliminate N-1 extends, 5992 // where N is the number of cases in the switch. 5993 auto *NewType = Type::getIntNTy(Context, RegWidth); 5994 5995 // Zero-extend the switch condition and case constants unless the switch 5996 // condition is a function argument that is already being sign-extended. 5997 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5998 // everything instead. 5999 Instruction::CastOps ExtType = Instruction::ZExt; 6000 if (auto *Arg = dyn_cast<Argument>(Cond)) 6001 if (Arg->hasSExtAttr()) 6002 ExtType = Instruction::SExt; 6003 6004 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6005 ExtInst->insertBefore(SI); 6006 ExtInst->setDebugLoc(SI->getDebugLoc()); 6007 SI->setCondition(ExtInst); 6008 for (auto Case : SI->cases()) { 6009 APInt NarrowConst = Case.getCaseValue()->getValue(); 6010 APInt WideConst = (ExtType == Instruction::ZExt) ? 6011 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6012 Case.setValue(ConstantInt::get(Context, WideConst)); 6013 } 6014 6015 return true; 6016 } 6017 6018 6019 namespace { 6020 6021 /// Helper class to promote a scalar operation to a vector one. 6022 /// This class is used to move downward extractelement transition. 6023 /// E.g., 6024 /// a = vector_op <2 x i32> 6025 /// b = extractelement <2 x i32> a, i32 0 6026 /// c = scalar_op b 6027 /// store c 6028 /// 6029 /// => 6030 /// a = vector_op <2 x i32> 6031 /// c = vector_op a (equivalent to scalar_op on the related lane) 6032 /// * d = extractelement <2 x i32> c, i32 0 6033 /// * store d 6034 /// Assuming both extractelement and store can be combine, we get rid of the 6035 /// transition. 6036 class VectorPromoteHelper { 6037 /// DataLayout associated with the current module. 6038 const DataLayout &DL; 6039 6040 /// Used to perform some checks on the legality of vector operations. 6041 const TargetLowering &TLI; 6042 6043 /// Used to estimated the cost of the promoted chain. 6044 const TargetTransformInfo &TTI; 6045 6046 /// The transition being moved downwards. 6047 Instruction *Transition; 6048 6049 /// The sequence of instructions to be promoted. 6050 SmallVector<Instruction *, 4> InstsToBePromoted; 6051 6052 /// Cost of combining a store and an extract. 6053 unsigned StoreExtractCombineCost; 6054 6055 /// Instruction that will be combined with the transition. 6056 Instruction *CombineInst = nullptr; 6057 6058 /// The instruction that represents the current end of the transition. 6059 /// Since we are faking the promotion until we reach the end of the chain 6060 /// of computation, we need a way to get the current end of the transition. 6061 Instruction *getEndOfTransition() const { 6062 if (InstsToBePromoted.empty()) 6063 return Transition; 6064 return InstsToBePromoted.back(); 6065 } 6066 6067 /// Return the index of the original value in the transition. 6068 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6069 /// c, is at index 0. 6070 unsigned getTransitionOriginalValueIdx() const { 6071 assert(isa<ExtractElementInst>(Transition) && 6072 "Other kind of transitions are not supported yet"); 6073 return 0; 6074 } 6075 6076 /// Return the index of the index in the transition. 6077 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6078 /// is at index 1. 6079 unsigned getTransitionIdx() const { 6080 assert(isa<ExtractElementInst>(Transition) && 6081 "Other kind of transitions are not supported yet"); 6082 return 1; 6083 } 6084 6085 /// Get the type of the transition. 6086 /// This is the type of the original value. 6087 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6088 /// transition is <2 x i32>. 6089 Type *getTransitionType() const { 6090 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6091 } 6092 6093 /// Promote \p ToBePromoted by moving \p Def downward through. 6094 /// I.e., we have the following sequence: 6095 /// Def = Transition <ty1> a to <ty2> 6096 /// b = ToBePromoted <ty2> Def, ... 6097 /// => 6098 /// b = ToBePromoted <ty1> a, ... 6099 /// Def = Transition <ty1> ToBePromoted to <ty2> 6100 void promoteImpl(Instruction *ToBePromoted); 6101 6102 /// Check whether or not it is profitable to promote all the 6103 /// instructions enqueued to be promoted. 6104 bool isProfitableToPromote() { 6105 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6106 unsigned Index = isa<ConstantInt>(ValIdx) 6107 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6108 : -1; 6109 Type *PromotedType = getTransitionType(); 6110 6111 StoreInst *ST = cast<StoreInst>(CombineInst); 6112 unsigned AS = ST->getPointerAddressSpace(); 6113 unsigned Align = ST->getAlignment(); 6114 // Check if this store is supported. 6115 if (!TLI.allowsMisalignedMemoryAccesses( 6116 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6117 Align)) { 6118 // If this is not supported, there is no way we can combine 6119 // the extract with the store. 6120 return false; 6121 } 6122 6123 // The scalar chain of computation has to pay for the transition 6124 // scalar to vector. 6125 // The vector chain has to account for the combining cost. 6126 uint64_t ScalarCost = 6127 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6128 uint64_t VectorCost = StoreExtractCombineCost; 6129 for (const auto &Inst : InstsToBePromoted) { 6130 // Compute the cost. 6131 // By construction, all instructions being promoted are arithmetic ones. 6132 // Moreover, one argument is a constant that can be viewed as a splat 6133 // constant. 6134 Value *Arg0 = Inst->getOperand(0); 6135 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6136 isa<ConstantFP>(Arg0); 6137 TargetTransformInfo::OperandValueKind Arg0OVK = 6138 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6139 : TargetTransformInfo::OK_AnyValue; 6140 TargetTransformInfo::OperandValueKind Arg1OVK = 6141 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6142 : TargetTransformInfo::OK_AnyValue; 6143 ScalarCost += TTI.getArithmeticInstrCost( 6144 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6145 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6146 Arg0OVK, Arg1OVK); 6147 } 6148 LLVM_DEBUG( 6149 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6150 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6151 return ScalarCost > VectorCost; 6152 } 6153 6154 /// Generate a constant vector with \p Val with the same 6155 /// number of elements as the transition. 6156 /// \p UseSplat defines whether or not \p Val should be replicated 6157 /// across the whole vector. 6158 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6159 /// otherwise we generate a vector with as many undef as possible: 6160 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6161 /// used at the index of the extract. 6162 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6163 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6164 if (!UseSplat) { 6165 // If we cannot determine where the constant must be, we have to 6166 // use a splat constant. 6167 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6168 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6169 ExtractIdx = CstVal->getSExtValue(); 6170 else 6171 UseSplat = true; 6172 } 6173 6174 unsigned End = getTransitionType()->getVectorNumElements(); 6175 if (UseSplat) 6176 return ConstantVector::getSplat(End, Val); 6177 6178 SmallVector<Constant *, 4> ConstVec; 6179 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6180 for (unsigned Idx = 0; Idx != End; ++Idx) { 6181 if (Idx == ExtractIdx) 6182 ConstVec.push_back(Val); 6183 else 6184 ConstVec.push_back(UndefVal); 6185 } 6186 return ConstantVector::get(ConstVec); 6187 } 6188 6189 /// Check if promoting to a vector type an operand at \p OperandIdx 6190 /// in \p Use can trigger undefined behavior. 6191 static bool canCauseUndefinedBehavior(const Instruction *Use, 6192 unsigned OperandIdx) { 6193 // This is not safe to introduce undef when the operand is on 6194 // the right hand side of a division-like instruction. 6195 if (OperandIdx != 1) 6196 return false; 6197 switch (Use->getOpcode()) { 6198 default: 6199 return false; 6200 case Instruction::SDiv: 6201 case Instruction::UDiv: 6202 case Instruction::SRem: 6203 case Instruction::URem: 6204 return true; 6205 case Instruction::FDiv: 6206 case Instruction::FRem: 6207 return !Use->hasNoNaNs(); 6208 } 6209 llvm_unreachable(nullptr); 6210 } 6211 6212 public: 6213 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6214 const TargetTransformInfo &TTI, Instruction *Transition, 6215 unsigned CombineCost) 6216 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6217 StoreExtractCombineCost(CombineCost) { 6218 assert(Transition && "Do not know how to promote null"); 6219 } 6220 6221 /// Check if we can promote \p ToBePromoted to \p Type. 6222 bool canPromote(const Instruction *ToBePromoted) const { 6223 // We could support CastInst too. 6224 return isa<BinaryOperator>(ToBePromoted); 6225 } 6226 6227 /// Check if it is profitable to promote \p ToBePromoted 6228 /// by moving downward the transition through. 6229 bool shouldPromote(const Instruction *ToBePromoted) const { 6230 // Promote only if all the operands can be statically expanded. 6231 // Indeed, we do not want to introduce any new kind of transitions. 6232 for (const Use &U : ToBePromoted->operands()) { 6233 const Value *Val = U.get(); 6234 if (Val == getEndOfTransition()) { 6235 // If the use is a division and the transition is on the rhs, 6236 // we cannot promote the operation, otherwise we may create a 6237 // division by zero. 6238 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6239 return false; 6240 continue; 6241 } 6242 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6243 !isa<ConstantFP>(Val)) 6244 return false; 6245 } 6246 // Check that the resulting operation is legal. 6247 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6248 if (!ISDOpcode) 6249 return false; 6250 return StressStoreExtract || 6251 TLI.isOperationLegalOrCustom( 6252 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6253 } 6254 6255 /// Check whether or not \p Use can be combined 6256 /// with the transition. 6257 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6258 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6259 6260 /// Record \p ToBePromoted as part of the chain to be promoted. 6261 void enqueueForPromotion(Instruction *ToBePromoted) { 6262 InstsToBePromoted.push_back(ToBePromoted); 6263 } 6264 6265 /// Set the instruction that will be combined with the transition. 6266 void recordCombineInstruction(Instruction *ToBeCombined) { 6267 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6268 CombineInst = ToBeCombined; 6269 } 6270 6271 /// Promote all the instructions enqueued for promotion if it is 6272 /// is profitable. 6273 /// \return True if the promotion happened, false otherwise. 6274 bool promote() { 6275 // Check if there is something to promote. 6276 // Right now, if we do not have anything to combine with, 6277 // we assume the promotion is not profitable. 6278 if (InstsToBePromoted.empty() || !CombineInst) 6279 return false; 6280 6281 // Check cost. 6282 if (!StressStoreExtract && !isProfitableToPromote()) 6283 return false; 6284 6285 // Promote. 6286 for (auto &ToBePromoted : InstsToBePromoted) 6287 promoteImpl(ToBePromoted); 6288 InstsToBePromoted.clear(); 6289 return true; 6290 } 6291 }; 6292 6293 } // end anonymous namespace 6294 6295 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6296 // At this point, we know that all the operands of ToBePromoted but Def 6297 // can be statically promoted. 6298 // For Def, we need to use its parameter in ToBePromoted: 6299 // b = ToBePromoted ty1 a 6300 // Def = Transition ty1 b to ty2 6301 // Move the transition down. 6302 // 1. Replace all uses of the promoted operation by the transition. 6303 // = ... b => = ... Def. 6304 assert(ToBePromoted->getType() == Transition->getType() && 6305 "The type of the result of the transition does not match " 6306 "the final type"); 6307 ToBePromoted->replaceAllUsesWith(Transition); 6308 // 2. Update the type of the uses. 6309 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6310 Type *TransitionTy = getTransitionType(); 6311 ToBePromoted->mutateType(TransitionTy); 6312 // 3. Update all the operands of the promoted operation with promoted 6313 // operands. 6314 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6315 for (Use &U : ToBePromoted->operands()) { 6316 Value *Val = U.get(); 6317 Value *NewVal = nullptr; 6318 if (Val == Transition) 6319 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6320 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6321 isa<ConstantFP>(Val)) { 6322 // Use a splat constant if it is not safe to use undef. 6323 NewVal = getConstantVector( 6324 cast<Constant>(Val), 6325 isa<UndefValue>(Val) || 6326 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6327 } else 6328 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6329 "this?"); 6330 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6331 } 6332 Transition->moveAfter(ToBePromoted); 6333 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6334 } 6335 6336 /// Some targets can do store(extractelement) with one instruction. 6337 /// Try to push the extractelement towards the stores when the target 6338 /// has this feature and this is profitable. 6339 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6340 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6341 if (DisableStoreExtract || !TLI || 6342 (!StressStoreExtract && 6343 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6344 Inst->getOperand(1), CombineCost))) 6345 return false; 6346 6347 // At this point we know that Inst is a vector to scalar transition. 6348 // Try to move it down the def-use chain, until: 6349 // - We can combine the transition with its single use 6350 // => we got rid of the transition. 6351 // - We escape the current basic block 6352 // => we would need to check that we are moving it at a cheaper place and 6353 // we do not do that for now. 6354 BasicBlock *Parent = Inst->getParent(); 6355 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6356 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6357 // If the transition has more than one use, assume this is not going to be 6358 // beneficial. 6359 while (Inst->hasOneUse()) { 6360 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6361 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6362 6363 if (ToBePromoted->getParent() != Parent) { 6364 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6365 << ToBePromoted->getParent()->getName() 6366 << ") than the transition (" << Parent->getName() 6367 << ").\n"); 6368 return false; 6369 } 6370 6371 if (VPH.canCombine(ToBePromoted)) { 6372 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6373 << "will be combined with: " << *ToBePromoted << '\n'); 6374 VPH.recordCombineInstruction(ToBePromoted); 6375 bool Changed = VPH.promote(); 6376 NumStoreExtractExposed += Changed; 6377 return Changed; 6378 } 6379 6380 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6381 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6382 return false; 6383 6384 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6385 6386 VPH.enqueueForPromotion(ToBePromoted); 6387 Inst = ToBePromoted; 6388 } 6389 return false; 6390 } 6391 6392 /// For the instruction sequence of store below, F and I values 6393 /// are bundled together as an i64 value before being stored into memory. 6394 /// Sometimes it is more efficient to generate separate stores for F and I, 6395 /// which can remove the bitwise instructions or sink them to colder places. 6396 /// 6397 /// (store (or (zext (bitcast F to i32) to i64), 6398 /// (shl (zext I to i64), 32)), addr) --> 6399 /// (store F, addr) and (store I, addr+4) 6400 /// 6401 /// Similarly, splitting for other merged store can also be beneficial, like: 6402 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6403 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6404 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6405 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6406 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6407 /// 6408 /// We allow each target to determine specifically which kind of splitting is 6409 /// supported. 6410 /// 6411 /// The store patterns are commonly seen from the simple code snippet below 6412 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6413 /// void goo(const std::pair<int, float> &); 6414 /// hoo() { 6415 /// ... 6416 /// goo(std::make_pair(tmp, ftmp)); 6417 /// ... 6418 /// } 6419 /// 6420 /// Although we already have similar splitting in DAG Combine, we duplicate 6421 /// it in CodeGenPrepare to catch the case in which pattern is across 6422 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6423 /// during code expansion. 6424 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6425 const TargetLowering &TLI) { 6426 // Handle simple but common cases only. 6427 Type *StoreType = SI.getValueOperand()->getType(); 6428 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6429 DL.getTypeSizeInBits(StoreType) == 0) 6430 return false; 6431 6432 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6433 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6434 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6435 DL.getTypeSizeInBits(SplitStoreType)) 6436 return false; 6437 6438 // Match the following patterns: 6439 // (store (or (zext LValue to i64), 6440 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6441 // or 6442 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6443 // (zext LValue to i64), 6444 // Expect both operands of OR and the first operand of SHL have only 6445 // one use. 6446 Value *LValue, *HValue; 6447 if (!match(SI.getValueOperand(), 6448 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6449 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6450 m_SpecificInt(HalfValBitSize)))))) 6451 return false; 6452 6453 // Check LValue and HValue are int with size less or equal than 32. 6454 if (!LValue->getType()->isIntegerTy() || 6455 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6456 !HValue->getType()->isIntegerTy() || 6457 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6458 return false; 6459 6460 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6461 // as the input of target query. 6462 auto *LBC = dyn_cast<BitCastInst>(LValue); 6463 auto *HBC = dyn_cast<BitCastInst>(HValue); 6464 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6465 : EVT::getEVT(LValue->getType()); 6466 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6467 : EVT::getEVT(HValue->getType()); 6468 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6469 return false; 6470 6471 // Start to split store. 6472 IRBuilder<> Builder(SI.getContext()); 6473 Builder.SetInsertPoint(&SI); 6474 6475 // If LValue/HValue is a bitcast in another BB, create a new one in current 6476 // BB so it may be merged with the splitted stores by dag combiner. 6477 if (LBC && LBC->getParent() != SI.getParent()) 6478 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6479 if (HBC && HBC->getParent() != SI.getParent()) 6480 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6481 6482 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6483 auto CreateSplitStore = [&](Value *V, bool Upper) { 6484 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6485 Value *Addr = Builder.CreateBitCast( 6486 SI.getOperand(1), 6487 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6488 if ((IsLE && Upper) || (!IsLE && !Upper)) 6489 Addr = Builder.CreateGEP( 6490 SplitStoreType, Addr, 6491 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6492 Builder.CreateAlignedStore( 6493 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6494 }; 6495 6496 CreateSplitStore(LValue, false); 6497 CreateSplitStore(HValue, true); 6498 6499 // Delete the old store. 6500 SI.eraseFromParent(); 6501 return true; 6502 } 6503 6504 // Return true if the GEP has two operands, the first operand is of a sequential 6505 // type, and the second operand is a constant. 6506 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6507 gep_type_iterator I = gep_type_begin(*GEP); 6508 return GEP->getNumOperands() == 2 && 6509 I.isSequential() && 6510 isa<ConstantInt>(GEP->getOperand(1)); 6511 } 6512 6513 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6514 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6515 // reducing liveness interference across those edges benefits global register 6516 // allocation. Currently handles only certain cases. 6517 // 6518 // For example, unmerge %GEPI and %UGEPI as below. 6519 // 6520 // ---------- BEFORE ---------- 6521 // SrcBlock: 6522 // ... 6523 // %GEPIOp = ... 6524 // ... 6525 // %GEPI = gep %GEPIOp, Idx 6526 // ... 6527 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6528 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6529 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6530 // %UGEPI) 6531 // 6532 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6533 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6534 // ... 6535 // 6536 // DstBi: 6537 // ... 6538 // %UGEPI = gep %GEPIOp, UIdx 6539 // ... 6540 // --------------------------- 6541 // 6542 // ---------- AFTER ---------- 6543 // SrcBlock: 6544 // ... (same as above) 6545 // (* %GEPI is still alive on the indirectbr edges) 6546 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6547 // unmerging) 6548 // ... 6549 // 6550 // DstBi: 6551 // ... 6552 // %UGEPI = gep %GEPI, (UIdx-Idx) 6553 // ... 6554 // --------------------------- 6555 // 6556 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6557 // no longer alive on them. 6558 // 6559 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6560 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6561 // not to disable further simplications and optimizations as a result of GEP 6562 // merging. 6563 // 6564 // Note this unmerging may increase the length of the data flow critical path 6565 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6566 // between the register pressure and the length of data-flow critical 6567 // path. Restricting this to the uncommon IndirectBr case would minimize the 6568 // impact of potentially longer critical path, if any, and the impact on compile 6569 // time. 6570 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6571 const TargetTransformInfo *TTI) { 6572 BasicBlock *SrcBlock = GEPI->getParent(); 6573 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6574 // (non-IndirectBr) cases exit early here. 6575 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6576 return false; 6577 // Check that GEPI is a simple gep with a single constant index. 6578 if (!GEPSequentialConstIndexed(GEPI)) 6579 return false; 6580 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6581 // Check that GEPI is a cheap one. 6582 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6583 > TargetTransformInfo::TCC_Basic) 6584 return false; 6585 Value *GEPIOp = GEPI->getOperand(0); 6586 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6587 if (!isa<Instruction>(GEPIOp)) 6588 return false; 6589 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6590 if (GEPIOpI->getParent() != SrcBlock) 6591 return false; 6592 // Check that GEP is used outside the block, meaning it's alive on the 6593 // IndirectBr edge(s). 6594 if (find_if(GEPI->users(), [&](User *Usr) { 6595 if (auto *I = dyn_cast<Instruction>(Usr)) { 6596 if (I->getParent() != SrcBlock) { 6597 return true; 6598 } 6599 } 6600 return false; 6601 }) == GEPI->users().end()) 6602 return false; 6603 // The second elements of the GEP chains to be unmerged. 6604 std::vector<GetElementPtrInst *> UGEPIs; 6605 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6606 // on IndirectBr edges. 6607 for (User *Usr : GEPIOp->users()) { 6608 if (Usr == GEPI) continue; 6609 // Check if Usr is an Instruction. If not, give up. 6610 if (!isa<Instruction>(Usr)) 6611 return false; 6612 auto *UI = cast<Instruction>(Usr); 6613 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6614 if (UI->getParent() == SrcBlock) 6615 continue; 6616 // Check if Usr is a GEP. If not, give up. 6617 if (!isa<GetElementPtrInst>(Usr)) 6618 return false; 6619 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6620 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6621 // the pointer operand to it. If so, record it in the vector. If not, give 6622 // up. 6623 if (!GEPSequentialConstIndexed(UGEPI)) 6624 return false; 6625 if (UGEPI->getOperand(0) != GEPIOp) 6626 return false; 6627 if (GEPIIdx->getType() != 6628 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6629 return false; 6630 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6631 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6632 > TargetTransformInfo::TCC_Basic) 6633 return false; 6634 UGEPIs.push_back(UGEPI); 6635 } 6636 if (UGEPIs.size() == 0) 6637 return false; 6638 // Check the materializing cost of (Uidx-Idx). 6639 for (GetElementPtrInst *UGEPI : UGEPIs) { 6640 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6641 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6642 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6643 if (ImmCost > TargetTransformInfo::TCC_Basic) 6644 return false; 6645 } 6646 // Now unmerge between GEPI and UGEPIs. 6647 for (GetElementPtrInst *UGEPI : UGEPIs) { 6648 UGEPI->setOperand(0, GEPI); 6649 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6650 Constant *NewUGEPIIdx = 6651 ConstantInt::get(GEPIIdx->getType(), 6652 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6653 UGEPI->setOperand(1, NewUGEPIIdx); 6654 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6655 // inbounds to avoid UB. 6656 if (!GEPI->isInBounds()) { 6657 UGEPI->setIsInBounds(false); 6658 } 6659 } 6660 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6661 // alive on IndirectBr edges). 6662 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6663 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6664 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6665 return true; 6666 } 6667 6668 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 6669 // Bail out if we inserted the instruction to prevent optimizations from 6670 // stepping on each other's toes. 6671 if (InsertedInsts.count(I)) 6672 return false; 6673 6674 if (PHINode *P = dyn_cast<PHINode>(I)) { 6675 // It is possible for very late stage optimizations (such as SimplifyCFG) 6676 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6677 // trivial PHI, go ahead and zap it here. 6678 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6679 P->replaceAllUsesWith(V); 6680 P->eraseFromParent(); 6681 ++NumPHIsElim; 6682 return true; 6683 } 6684 return false; 6685 } 6686 6687 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6688 // If the source of the cast is a constant, then this should have 6689 // already been constant folded. The only reason NOT to constant fold 6690 // it is if something (e.g. LSR) was careful to place the constant 6691 // evaluation in a block other than then one that uses it (e.g. to hoist 6692 // the address of globals out of a loop). If this is the case, we don't 6693 // want to forward-subst the cast. 6694 if (isa<Constant>(CI->getOperand(0))) 6695 return false; 6696 6697 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6698 return true; 6699 6700 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6701 /// Sink a zext or sext into its user blocks if the target type doesn't 6702 /// fit in one register 6703 if (TLI && 6704 TLI->getTypeAction(CI->getContext(), 6705 TLI->getValueType(*DL, CI->getType())) == 6706 TargetLowering::TypeExpandInteger) { 6707 return SinkCast(CI); 6708 } else { 6709 bool MadeChange = optimizeExt(I); 6710 return MadeChange | optimizeExtUses(I); 6711 } 6712 } 6713 return false; 6714 } 6715 6716 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 6717 if (!TLI || !TLI->hasMultipleConditionRegisters()) 6718 return OptimizeCmpExpression(CI, TLI); 6719 6720 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6721 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6722 if (TLI) { 6723 bool Modified = optimizeLoadExt(LI); 6724 unsigned AS = LI->getPointerAddressSpace(); 6725 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6726 return Modified; 6727 } 6728 return false; 6729 } 6730 6731 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6732 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6733 return true; 6734 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6735 if (TLI) { 6736 unsigned AS = SI->getPointerAddressSpace(); 6737 return optimizeMemoryInst(I, SI->getOperand(1), 6738 SI->getOperand(0)->getType(), AS); 6739 } 6740 return false; 6741 } 6742 6743 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6744 unsigned AS = RMW->getPointerAddressSpace(); 6745 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6746 RMW->getType(), AS); 6747 } 6748 6749 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6750 unsigned AS = CmpX->getPointerAddressSpace(); 6751 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6752 CmpX->getCompareOperand()->getType(), AS); 6753 } 6754 6755 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6756 6757 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6758 EnableAndCmpSinking && TLI) 6759 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6760 6761 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6762 BinOp->getOpcode() == Instruction::LShr)) { 6763 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6764 if (TLI && CI && TLI->hasExtractBitsInsn()) 6765 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6766 6767 return false; 6768 } 6769 6770 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6771 if (GEPI->hasAllZeroIndices()) { 6772 /// The GEP operand must be a pointer, so must its result -> BitCast 6773 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6774 GEPI->getName(), GEPI); 6775 NC->setDebugLoc(GEPI->getDebugLoc()); 6776 GEPI->replaceAllUsesWith(NC); 6777 GEPI->eraseFromParent(); 6778 ++NumGEPsElim; 6779 optimizeInst(NC, ModifiedDT); 6780 return true; 6781 } 6782 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6783 return true; 6784 } 6785 return false; 6786 } 6787 6788 if (CallInst *CI = dyn_cast<CallInst>(I)) 6789 return optimizeCallInst(CI, ModifiedDT); 6790 6791 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 6792 return optimizeSelectInst(SI); 6793 6794 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 6795 return optimizeShuffleVectorInst(SVI); 6796 6797 if (auto *Switch = dyn_cast<SwitchInst>(I)) 6798 return optimizeSwitchInst(Switch); 6799 6800 if (isa<ExtractElementInst>(I)) 6801 return optimizeExtractElementInst(I); 6802 6803 return false; 6804 } 6805 6806 /// Given an OR instruction, check to see if this is a bitreverse 6807 /// idiom. If so, insert the new intrinsic and return true. 6808 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 6809 const TargetLowering &TLI) { 6810 if (!I.getType()->isIntegerTy() || 6811 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 6812 TLI.getValueType(DL, I.getType(), true))) 6813 return false; 6814 6815 SmallVector<Instruction*, 4> Insts; 6816 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 6817 return false; 6818 Instruction *LastInst = Insts.back(); 6819 I.replaceAllUsesWith(LastInst); 6820 RecursivelyDeleteTriviallyDeadInstructions(&I); 6821 return true; 6822 } 6823 6824 // In this pass we look for GEP and cast instructions that are used 6825 // across basic blocks and rewrite them to improve basic-block-at-a-time 6826 // selection. 6827 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 6828 SunkAddrs.clear(); 6829 bool MadeChange = false; 6830 6831 CurInstIterator = BB.begin(); 6832 while (CurInstIterator != BB.end()) { 6833 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 6834 if (ModifiedDT) 6835 return true; 6836 } 6837 6838 bool MadeBitReverse = true; 6839 while (TLI && MadeBitReverse) { 6840 MadeBitReverse = false; 6841 for (auto &I : reverse(BB)) { 6842 if (makeBitReverse(I, *DL, *TLI)) { 6843 MadeBitReverse = MadeChange = true; 6844 ModifiedDT = true; 6845 break; 6846 } 6847 } 6848 } 6849 MadeChange |= dupRetToEnableTailCallOpts(&BB); 6850 6851 return MadeChange; 6852 } 6853 6854 // llvm.dbg.value is far away from the value then iSel may not be able 6855 // handle it properly. iSel will drop llvm.dbg.value if it can not 6856 // find a node corresponding to the value. 6857 bool CodeGenPrepare::placeDbgValues(Function &F) { 6858 bool MadeChange = false; 6859 for (BasicBlock &BB : F) { 6860 Instruction *PrevNonDbgInst = nullptr; 6861 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 6862 Instruction *Insn = &*BI++; 6863 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 6864 // Leave dbg.values that refer to an alloca alone. These 6865 // intrinsics describe the address of a variable (= the alloca) 6866 // being taken. They should not be moved next to the alloca 6867 // (and to the beginning of the scope), but rather stay close to 6868 // where said address is used. 6869 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 6870 PrevNonDbgInst = Insn; 6871 continue; 6872 } 6873 6874 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 6875 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 6876 // If VI is a phi in a block with an EHPad terminator, we can't insert 6877 // after it. 6878 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 6879 continue; 6880 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 6881 << *DVI << ' ' << *VI); 6882 DVI->removeFromParent(); 6883 if (isa<PHINode>(VI)) 6884 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 6885 else 6886 DVI->insertAfter(VI); 6887 MadeChange = true; 6888 ++NumDbgValueMoved; 6889 } 6890 } 6891 } 6892 return MadeChange; 6893 } 6894 6895 /// Scale down both weights to fit into uint32_t. 6896 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 6897 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 6898 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 6899 NewTrue = NewTrue / Scale; 6900 NewFalse = NewFalse / Scale; 6901 } 6902 6903 /// Some targets prefer to split a conditional branch like: 6904 /// \code 6905 /// %0 = icmp ne i32 %a, 0 6906 /// %1 = icmp ne i32 %b, 0 6907 /// %or.cond = or i1 %0, %1 6908 /// br i1 %or.cond, label %TrueBB, label %FalseBB 6909 /// \endcode 6910 /// into multiple branch instructions like: 6911 /// \code 6912 /// bb1: 6913 /// %0 = icmp ne i32 %a, 0 6914 /// br i1 %0, label %TrueBB, label %bb2 6915 /// bb2: 6916 /// %1 = icmp ne i32 %b, 0 6917 /// br i1 %1, label %TrueBB, label %FalseBB 6918 /// \endcode 6919 /// This usually allows instruction selection to do even further optimizations 6920 /// and combine the compare with the branch instruction. Currently this is 6921 /// applied for targets which have "cheap" jump instructions. 6922 /// 6923 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 6924 /// 6925 bool CodeGenPrepare::splitBranchCondition(Function &F) { 6926 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 6927 return false; 6928 6929 bool MadeChange = false; 6930 for (auto &BB : F) { 6931 // Does this BB end with the following? 6932 // %cond1 = icmp|fcmp|binary instruction ... 6933 // %cond2 = icmp|fcmp|binary instruction ... 6934 // %cond.or = or|and i1 %cond1, cond2 6935 // br i1 %cond.or label %dest1, label %dest2" 6936 BinaryOperator *LogicOp; 6937 BasicBlock *TBB, *FBB; 6938 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 6939 continue; 6940 6941 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 6942 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 6943 continue; 6944 6945 unsigned Opc; 6946 Value *Cond1, *Cond2; 6947 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 6948 m_OneUse(m_Value(Cond2))))) 6949 Opc = Instruction::And; 6950 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 6951 m_OneUse(m_Value(Cond2))))) 6952 Opc = Instruction::Or; 6953 else 6954 continue; 6955 6956 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 6957 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 6958 continue; 6959 6960 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 6961 6962 // Create a new BB. 6963 auto TmpBB = 6964 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 6965 BB.getParent(), BB.getNextNode()); 6966 6967 // Update original basic block by using the first condition directly by the 6968 // branch instruction and removing the no longer needed and/or instruction. 6969 Br1->setCondition(Cond1); 6970 LogicOp->eraseFromParent(); 6971 6972 // Depending on the condition we have to either replace the true or the 6973 // false successor of the original branch instruction. 6974 if (Opc == Instruction::And) 6975 Br1->setSuccessor(0, TmpBB); 6976 else 6977 Br1->setSuccessor(1, TmpBB); 6978 6979 // Fill in the new basic block. 6980 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6981 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6982 I->removeFromParent(); 6983 I->insertBefore(Br2); 6984 } 6985 6986 // Update PHI nodes in both successors. The original BB needs to be 6987 // replaced in one successor's PHI nodes, because the branch comes now from 6988 // the newly generated BB (NewBB). In the other successor we need to add one 6989 // incoming edge to the PHI nodes, because both branch instructions target 6990 // now the same successor. Depending on the original branch condition 6991 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6992 // we perform the correct update for the PHI nodes. 6993 // This doesn't change the successor order of the just created branch 6994 // instruction (or any other instruction). 6995 if (Opc == Instruction::Or) 6996 std::swap(TBB, FBB); 6997 6998 // Replace the old BB with the new BB. 6999 for (PHINode &PN : TBB->phis()) { 7000 int i; 7001 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7002 PN.setIncomingBlock(i, TmpBB); 7003 } 7004 7005 // Add another incoming edge form the new BB. 7006 for (PHINode &PN : FBB->phis()) { 7007 auto *Val = PN.getIncomingValueForBlock(&BB); 7008 PN.addIncoming(Val, TmpBB); 7009 } 7010 7011 // Update the branch weights (from SelectionDAGBuilder:: 7012 // FindMergedConditions). 7013 if (Opc == Instruction::Or) { 7014 // Codegen X | Y as: 7015 // BB1: 7016 // jmp_if_X TBB 7017 // jmp TmpBB 7018 // TmpBB: 7019 // jmp_if_Y TBB 7020 // jmp FBB 7021 // 7022 7023 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7024 // The requirement is that 7025 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7026 // = TrueProb for original BB. 7027 // Assuming the original weights are A and B, one choice is to set BB1's 7028 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7029 // assumes that 7030 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7031 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7032 // TmpBB, but the math is more complicated. 7033 uint64_t TrueWeight, FalseWeight; 7034 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7035 uint64_t NewTrueWeight = TrueWeight; 7036 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7037 scaleWeights(NewTrueWeight, NewFalseWeight); 7038 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7039 .createBranchWeights(TrueWeight, FalseWeight)); 7040 7041 NewTrueWeight = TrueWeight; 7042 NewFalseWeight = 2 * FalseWeight; 7043 scaleWeights(NewTrueWeight, NewFalseWeight); 7044 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7045 .createBranchWeights(TrueWeight, FalseWeight)); 7046 } 7047 } else { 7048 // Codegen X & Y as: 7049 // BB1: 7050 // jmp_if_X TmpBB 7051 // jmp FBB 7052 // TmpBB: 7053 // jmp_if_Y TBB 7054 // jmp FBB 7055 // 7056 // This requires creation of TmpBB after CurBB. 7057 7058 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7059 // The requirement is that 7060 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7061 // = FalseProb for original BB. 7062 // Assuming the original weights are A and B, one choice is to set BB1's 7063 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7064 // assumes that 7065 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7066 uint64_t TrueWeight, FalseWeight; 7067 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7068 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7069 uint64_t NewFalseWeight = FalseWeight; 7070 scaleWeights(NewTrueWeight, NewFalseWeight); 7071 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7072 .createBranchWeights(TrueWeight, FalseWeight)); 7073 7074 NewTrueWeight = 2 * TrueWeight; 7075 NewFalseWeight = FalseWeight; 7076 scaleWeights(NewTrueWeight, NewFalseWeight); 7077 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7078 .createBranchWeights(TrueWeight, FalseWeight)); 7079 } 7080 } 7081 7082 // Note: No point in getting fancy here, since the DT info is never 7083 // available to CodeGenPrepare. 7084 ModifiedDT = true; 7085 7086 MadeChange = true; 7087 7088 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7089 TmpBB->dump()); 7090 } 7091 return MadeChange; 7092 } 7093