1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BlockFrequencyInfo.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/InstructionSimplify.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/Analysis/ProfileSummaryInfo.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/Analysis/TargetTransformInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/CodeGen/Analysis.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/IRBuilder.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/IR/ValueHandle.h" 45 #include "llvm/IR/ValueMap.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/BranchProbability.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/BuildLibCalls.h" 55 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 58 using namespace llvm; 59 using namespace llvm::PatternMatch; 60 61 #define DEBUG_TYPE "codegenprepare" 62 63 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 64 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 65 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 66 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 67 "sunken Cmps"); 68 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 69 "of sunken Casts"); 70 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 71 "computations were sunk"); 72 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 73 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 74 STATISTIC(NumAndsAdded, 75 "Number of and mask instructions added to form ext loads"); 76 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 77 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 78 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 79 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 80 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 81 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 82 83 static cl::opt<bool> DisableBranchOpts( 84 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 85 cl::desc("Disable branch optimizations in CodeGenPrepare")); 86 87 static cl::opt<bool> 88 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 89 cl::desc("Disable GC optimizations in CodeGenPrepare")); 90 91 static cl::opt<bool> DisableSelectToBranch( 92 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 93 cl::desc("Disable select to branch conversion.")); 94 95 static cl::opt<bool> AddrSinkUsingGEPs( 96 "addr-sink-using-gep", cl::Hidden, cl::init(false), 97 cl::desc("Address sinking in CGP using GEPs.")); 98 99 static cl::opt<bool> EnableAndCmpSinking( 100 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 101 cl::desc("Enable sinkinig and/cmp into branches.")); 102 103 static cl::opt<bool> DisableStoreExtract( 104 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 105 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 106 107 static cl::opt<bool> StressStoreExtract( 108 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 109 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 110 111 static cl::opt<bool> DisableExtLdPromotion( 112 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 113 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 114 "CodeGenPrepare")); 115 116 static cl::opt<bool> StressExtLdPromotion( 117 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 118 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 119 "optimization in CodeGenPrepare")); 120 121 static cl::opt<bool> DisablePreheaderProtect( 122 "disable-preheader-prot", cl::Hidden, cl::init(false), 123 cl::desc("Disable protection against removing loop preheaders")); 124 125 static cl::opt<bool> ProfileGuidedSectionPrefix( 126 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 127 cl::desc("Use profile info to add section prefix for hot/cold functions")); 128 129 static cl::opt<unsigned> FreqRatioToSkipMerge( 130 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 131 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 132 "(frequency of destination block) is greater than this ratio")); 133 134 static cl::opt<bool> ForceSplitStore( 135 "force-split-store", cl::Hidden, cl::init(false), 136 cl::desc("Force store splitting no matter what the target query says.")); 137 138 namespace { 139 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 140 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 141 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 142 class TypePromotionTransaction; 143 144 class CodeGenPrepare : public FunctionPass { 145 const TargetMachine *TM; 146 const TargetSubtargetInfo *SubtargetInfo; 147 const TargetLowering *TLI; 148 const TargetRegisterInfo *TRI; 149 const TargetTransformInfo *TTI; 150 const TargetLibraryInfo *TLInfo; 151 const LoopInfo *LI; 152 std::unique_ptr<BlockFrequencyInfo> BFI; 153 std::unique_ptr<BranchProbabilityInfo> BPI; 154 155 /// As we scan instructions optimizing them, this is the next instruction 156 /// to optimize. Transforms that can invalidate this should update it. 157 BasicBlock::iterator CurInstIterator; 158 159 /// Keeps track of non-local addresses that have been sunk into a block. 160 /// This allows us to avoid inserting duplicate code for blocks with 161 /// multiple load/stores of the same address. 162 ValueMap<Value*, Value*> SunkAddrs; 163 164 /// Keeps track of all instructions inserted for the current function. 165 SetOfInstrs InsertedInsts; 166 /// Keeps track of the type of the related instruction before their 167 /// promotion for the current function. 168 InstrToOrigTy PromotedInsts; 169 170 /// True if CFG is modified in any way. 171 bool ModifiedDT; 172 173 /// True if optimizing for size. 174 bool OptSize; 175 176 /// DataLayout for the Function being processed. 177 const DataLayout *DL; 178 179 public: 180 static char ID; // Pass identification, replacement for typeid 181 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 182 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 183 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 184 } 185 bool runOnFunction(Function &F) override; 186 187 StringRef getPassName() const override { return "CodeGen Prepare"; } 188 189 void getAnalysisUsage(AnalysisUsage &AU) const override { 190 // FIXME: When we can selectively preserve passes, preserve the domtree. 191 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 192 AU.addRequired<TargetLibraryInfoWrapperPass>(); 193 AU.addRequired<TargetTransformInfoWrapperPass>(); 194 AU.addRequired<LoopInfoWrapperPass>(); 195 } 196 197 private: 198 bool eliminateFallThrough(Function &F); 199 bool eliminateMostlyEmptyBlocks(Function &F); 200 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 201 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 202 void eliminateMostlyEmptyBlock(BasicBlock *BB); 203 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 204 bool isPreheader); 205 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 206 bool optimizeInst(Instruction *I, bool& ModifiedDT); 207 bool optimizeMemoryInst(Instruction *I, Value *Addr, 208 Type *AccessTy, unsigned AS); 209 bool optimizeInlineAsmInst(CallInst *CS); 210 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 211 bool moveExtToFormExtLoad(Instruction *&I); 212 bool optimizeExtUses(Instruction *I); 213 bool optimizeLoadExt(LoadInst *I); 214 bool optimizeSelectInst(SelectInst *SI); 215 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 216 bool optimizeSwitchInst(SwitchInst *CI); 217 bool optimizeExtractElementInst(Instruction *Inst); 218 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 219 bool placeDbgValues(Function &F); 220 bool sinkAndCmp(Function &F); 221 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 222 Instruction *&Inst, 223 const SmallVectorImpl<Instruction *> &Exts, 224 unsigned CreatedInstCost); 225 bool splitBranchCondition(Function &F); 226 bool simplifyOffsetableRelocate(Instruction &I); 227 }; 228 } 229 230 char CodeGenPrepare::ID = 0; 231 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 232 "Optimize for code generation", false, false) 233 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 234 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 235 "Optimize for code generation", false, false) 236 237 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 238 return new CodeGenPrepare(TM); 239 } 240 241 bool CodeGenPrepare::runOnFunction(Function &F) { 242 if (skipFunction(F)) 243 return false; 244 245 DL = &F.getParent()->getDataLayout(); 246 247 bool EverMadeChange = false; 248 // Clear per function information. 249 InsertedInsts.clear(); 250 PromotedInsts.clear(); 251 BFI.reset(); 252 BPI.reset(); 253 254 ModifiedDT = false; 255 if (TM) { 256 SubtargetInfo = TM->getSubtargetImpl(F); 257 TLI = SubtargetInfo->getTargetLowering(); 258 TRI = SubtargetInfo->getRegisterInfo(); 259 } 260 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 261 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 262 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 263 OptSize = F.optForSize(); 264 265 if (ProfileGuidedSectionPrefix) { 266 ProfileSummaryInfo *PSI = 267 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 268 if (PSI->isFunctionEntryHot(&F)) 269 F.setSectionPrefix(".hot"); 270 else if (PSI->isFunctionEntryCold(&F)) 271 F.setSectionPrefix(".cold"); 272 } 273 274 /// This optimization identifies DIV instructions that can be 275 /// profitably bypassed and carried out with a shorter, faster divide. 276 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 277 const DenseMap<unsigned int, unsigned int> &BypassWidths = 278 TLI->getBypassSlowDivWidths(); 279 BasicBlock* BB = &*F.begin(); 280 while (BB != nullptr) { 281 // bypassSlowDivision may create new BBs, but we don't want to reapply the 282 // optimization to those blocks. 283 BasicBlock* Next = BB->getNextNode(); 284 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 285 BB = Next; 286 } 287 } 288 289 // Eliminate blocks that contain only PHI nodes and an 290 // unconditional branch. 291 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 292 293 // llvm.dbg.value is far away from the value then iSel may not be able 294 // handle it properly. iSel will drop llvm.dbg.value if it can not 295 // find a node corresponding to the value. 296 EverMadeChange |= placeDbgValues(F); 297 298 // If there is a mask, compare against zero, and branch that can be combined 299 // into a single target instruction, push the mask and compare into branch 300 // users. Do this before OptimizeBlock -> OptimizeInst -> 301 // OptimizeCmpExpression, which perturbs the pattern being searched for. 302 if (!DisableBranchOpts) { 303 EverMadeChange |= sinkAndCmp(F); 304 EverMadeChange |= splitBranchCondition(F); 305 } 306 307 bool MadeChange = true; 308 while (MadeChange) { 309 MadeChange = false; 310 for (Function::iterator I = F.begin(); I != F.end(); ) { 311 BasicBlock *BB = &*I++; 312 bool ModifiedDTOnIteration = false; 313 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 314 315 // Restart BB iteration if the dominator tree of the Function was changed 316 if (ModifiedDTOnIteration) 317 break; 318 } 319 EverMadeChange |= MadeChange; 320 } 321 322 SunkAddrs.clear(); 323 324 if (!DisableBranchOpts) { 325 MadeChange = false; 326 SmallPtrSet<BasicBlock*, 8> WorkList; 327 for (BasicBlock &BB : F) { 328 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 329 MadeChange |= ConstantFoldTerminator(&BB, true); 330 if (!MadeChange) continue; 331 332 for (SmallVectorImpl<BasicBlock*>::iterator 333 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 334 if (pred_begin(*II) == pred_end(*II)) 335 WorkList.insert(*II); 336 } 337 338 // Delete the dead blocks and any of their dead successors. 339 MadeChange |= !WorkList.empty(); 340 while (!WorkList.empty()) { 341 BasicBlock *BB = *WorkList.begin(); 342 WorkList.erase(BB); 343 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 344 345 DeleteDeadBlock(BB); 346 347 for (SmallVectorImpl<BasicBlock*>::iterator 348 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 349 if (pred_begin(*II) == pred_end(*II)) 350 WorkList.insert(*II); 351 } 352 353 // Merge pairs of basic blocks with unconditional branches, connected by 354 // a single edge. 355 if (EverMadeChange || MadeChange) 356 MadeChange |= eliminateFallThrough(F); 357 358 EverMadeChange |= MadeChange; 359 } 360 361 if (!DisableGCOpts) { 362 SmallVector<Instruction *, 2> Statepoints; 363 for (BasicBlock &BB : F) 364 for (Instruction &I : BB) 365 if (isStatepoint(I)) 366 Statepoints.push_back(&I); 367 for (auto &I : Statepoints) 368 EverMadeChange |= simplifyOffsetableRelocate(*I); 369 } 370 371 return EverMadeChange; 372 } 373 374 /// Merge basic blocks which are connected by a single edge, where one of the 375 /// basic blocks has a single successor pointing to the other basic block, 376 /// which has a single predecessor. 377 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 378 bool Changed = false; 379 // Scan all of the blocks in the function, except for the entry block. 380 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 381 BasicBlock *BB = &*I++; 382 // If the destination block has a single pred, then this is a trivial 383 // edge, just collapse it. 384 BasicBlock *SinglePred = BB->getSinglePredecessor(); 385 386 // Don't merge if BB's address is taken. 387 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 388 389 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 390 if (Term && !Term->isConditional()) { 391 Changed = true; 392 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 393 // Remember if SinglePred was the entry block of the function. 394 // If so, we will need to move BB back to the entry position. 395 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 396 MergeBasicBlockIntoOnlyPred(BB, nullptr); 397 398 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 399 BB->moveBefore(&BB->getParent()->getEntryBlock()); 400 401 // We have erased a block. Update the iterator. 402 I = BB->getIterator(); 403 } 404 } 405 return Changed; 406 } 407 408 /// Find a destination block from BB if BB is mergeable empty block. 409 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 410 // If this block doesn't end with an uncond branch, ignore it. 411 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 412 if (!BI || !BI->isUnconditional()) 413 return nullptr; 414 415 // If the instruction before the branch (skipping debug info) isn't a phi 416 // node, then other stuff is happening here. 417 BasicBlock::iterator BBI = BI->getIterator(); 418 if (BBI != BB->begin()) { 419 --BBI; 420 while (isa<DbgInfoIntrinsic>(BBI)) { 421 if (BBI == BB->begin()) 422 break; 423 --BBI; 424 } 425 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 426 return nullptr; 427 } 428 429 // Do not break infinite loops. 430 BasicBlock *DestBB = BI->getSuccessor(0); 431 if (DestBB == BB) 432 return nullptr; 433 434 if (!canMergeBlocks(BB, DestBB)) 435 DestBB = nullptr; 436 437 return DestBB; 438 } 439 440 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 441 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 442 /// edges in ways that are non-optimal for isel. Start by eliminating these 443 /// blocks so we can split them the way we want them. 444 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 445 SmallPtrSet<BasicBlock *, 16> Preheaders; 446 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 447 while (!LoopList.empty()) { 448 Loop *L = LoopList.pop_back_val(); 449 LoopList.insert(LoopList.end(), L->begin(), L->end()); 450 if (BasicBlock *Preheader = L->getLoopPreheader()) 451 Preheaders.insert(Preheader); 452 } 453 454 bool MadeChange = false; 455 // Note that this intentionally skips the entry block. 456 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 457 BasicBlock *BB = &*I++; 458 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 459 if (!DestBB || 460 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 461 continue; 462 463 eliminateMostlyEmptyBlock(BB); 464 MadeChange = true; 465 } 466 return MadeChange; 467 } 468 469 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 470 BasicBlock *DestBB, 471 bool isPreheader) { 472 // Do not delete loop preheaders if doing so would create a critical edge. 473 // Loop preheaders can be good locations to spill registers. If the 474 // preheader is deleted and we create a critical edge, registers may be 475 // spilled in the loop body instead. 476 if (!DisablePreheaderProtect && isPreheader && 477 !(BB->getSinglePredecessor() && 478 BB->getSinglePredecessor()->getSingleSuccessor())) 479 return false; 480 481 // Try to skip merging if the unique predecessor of BB is terminated by a 482 // switch or indirect branch instruction, and BB is used as an incoming block 483 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 484 // add COPY instructions in the predecessor of BB instead of BB (if it is not 485 // merged). Note that the critical edge created by merging such blocks wont be 486 // split in MachineSink because the jump table is not analyzable. By keeping 487 // such empty block (BB), ISel will place COPY instructions in BB, not in the 488 // predecessor of BB. 489 BasicBlock *Pred = BB->getUniquePredecessor(); 490 if (!Pred || 491 !(isa<SwitchInst>(Pred->getTerminator()) || 492 isa<IndirectBrInst>(Pred->getTerminator()))) 493 return true; 494 495 if (BB->getTerminator() != BB->getFirstNonPHI()) 496 return true; 497 498 // We use a simple cost heuristic which determine skipping merging is 499 // profitable if the cost of skipping merging is less than the cost of 500 // merging : Cost(skipping merging) < Cost(merging BB), where the 501 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 502 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 503 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 504 // Freq(Pred) / Freq(BB) > 2. 505 // Note that if there are multiple empty blocks sharing the same incoming 506 // value for the PHIs in the DestBB, we consider them together. In such 507 // case, Cost(merging BB) will be the sum of their frequencies. 508 509 if (!isa<PHINode>(DestBB->begin())) 510 return true; 511 512 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 513 514 // Find all other incoming blocks from which incoming values of all PHIs in 515 // DestBB are the same as the ones from BB. 516 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 517 ++PI) { 518 BasicBlock *DestBBPred = *PI; 519 if (DestBBPred == BB) 520 continue; 521 522 bool HasAllSameValue = true; 523 BasicBlock::const_iterator DestBBI = DestBB->begin(); 524 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 525 if (DestPN->getIncomingValueForBlock(BB) != 526 DestPN->getIncomingValueForBlock(DestBBPred)) { 527 HasAllSameValue = false; 528 break; 529 } 530 } 531 if (HasAllSameValue) 532 SameIncomingValueBBs.insert(DestBBPred); 533 } 534 535 // See if all BB's incoming values are same as the value from Pred. In this 536 // case, no reason to skip merging because COPYs are expected to be place in 537 // Pred already. 538 if (SameIncomingValueBBs.count(Pred)) 539 return true; 540 541 if (!BFI) { 542 Function &F = *BB->getParent(); 543 LoopInfo LI{DominatorTree(F)}; 544 BPI.reset(new BranchProbabilityInfo(F, LI)); 545 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 546 } 547 548 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 549 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 550 551 for (auto SameValueBB : SameIncomingValueBBs) 552 if (SameValueBB->getUniquePredecessor() == Pred && 553 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 554 BBFreq += BFI->getBlockFreq(SameValueBB); 555 556 return PredFreq.getFrequency() <= 557 BBFreq.getFrequency() * FreqRatioToSkipMerge; 558 } 559 560 /// Return true if we can merge BB into DestBB if there is a single 561 /// unconditional branch between them, and BB contains no other non-phi 562 /// instructions. 563 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 564 const BasicBlock *DestBB) const { 565 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 566 // the successor. If there are more complex condition (e.g. preheaders), 567 // don't mess around with them. 568 BasicBlock::const_iterator BBI = BB->begin(); 569 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 570 for (const User *U : PN->users()) { 571 const Instruction *UI = cast<Instruction>(U); 572 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 573 return false; 574 // If User is inside DestBB block and it is a PHINode then check 575 // incoming value. If incoming value is not from BB then this is 576 // a complex condition (e.g. preheaders) we want to avoid here. 577 if (UI->getParent() == DestBB) { 578 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 579 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 580 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 581 if (Insn && Insn->getParent() == BB && 582 Insn->getParent() != UPN->getIncomingBlock(I)) 583 return false; 584 } 585 } 586 } 587 } 588 589 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 590 // and DestBB may have conflicting incoming values for the block. If so, we 591 // can't merge the block. 592 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 593 if (!DestBBPN) return true; // no conflict. 594 595 // Collect the preds of BB. 596 SmallPtrSet<const BasicBlock*, 16> BBPreds; 597 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 598 // It is faster to get preds from a PHI than with pred_iterator. 599 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 600 BBPreds.insert(BBPN->getIncomingBlock(i)); 601 } else { 602 BBPreds.insert(pred_begin(BB), pred_end(BB)); 603 } 604 605 // Walk the preds of DestBB. 606 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 607 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 608 if (BBPreds.count(Pred)) { // Common predecessor? 609 BBI = DestBB->begin(); 610 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 611 const Value *V1 = PN->getIncomingValueForBlock(Pred); 612 const Value *V2 = PN->getIncomingValueForBlock(BB); 613 614 // If V2 is a phi node in BB, look up what the mapped value will be. 615 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 616 if (V2PN->getParent() == BB) 617 V2 = V2PN->getIncomingValueForBlock(Pred); 618 619 // If there is a conflict, bail out. 620 if (V1 != V2) return false; 621 } 622 } 623 } 624 625 return true; 626 } 627 628 629 /// Eliminate a basic block that has only phi's and an unconditional branch in 630 /// it. 631 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 632 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 633 BasicBlock *DestBB = BI->getSuccessor(0); 634 635 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 636 637 // If the destination block has a single pred, then this is a trivial edge, 638 // just collapse it. 639 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 640 if (SinglePred != DestBB) { 641 // Remember if SinglePred was the entry block of the function. If so, we 642 // will need to move BB back to the entry position. 643 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 644 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 645 646 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 647 BB->moveBefore(&BB->getParent()->getEntryBlock()); 648 649 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 650 return; 651 } 652 } 653 654 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 655 // to handle the new incoming edges it is about to have. 656 PHINode *PN; 657 for (BasicBlock::iterator BBI = DestBB->begin(); 658 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 659 // Remove the incoming value for BB, and remember it. 660 Value *InVal = PN->removeIncomingValue(BB, false); 661 662 // Two options: either the InVal is a phi node defined in BB or it is some 663 // value that dominates BB. 664 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 665 if (InValPhi && InValPhi->getParent() == BB) { 666 // Add all of the input values of the input PHI as inputs of this phi. 667 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 668 PN->addIncoming(InValPhi->getIncomingValue(i), 669 InValPhi->getIncomingBlock(i)); 670 } else { 671 // Otherwise, add one instance of the dominating value for each edge that 672 // we will be adding. 673 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 674 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 675 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 676 } else { 677 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 678 PN->addIncoming(InVal, *PI); 679 } 680 } 681 } 682 683 // The PHIs are now updated, change everything that refers to BB to use 684 // DestBB and remove BB. 685 BB->replaceAllUsesWith(DestBB); 686 BB->eraseFromParent(); 687 ++NumBlocksElim; 688 689 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 690 } 691 692 // Computes a map of base pointer relocation instructions to corresponding 693 // derived pointer relocation instructions given a vector of all relocate calls 694 static void computeBaseDerivedRelocateMap( 695 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 696 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 697 &RelocateInstMap) { 698 // Collect information in two maps: one primarily for locating the base object 699 // while filling the second map; the second map is the final structure holding 700 // a mapping between Base and corresponding Derived relocate calls 701 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 702 for (auto *ThisRelocate : AllRelocateCalls) { 703 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 704 ThisRelocate->getDerivedPtrIndex()); 705 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 706 } 707 for (auto &Item : RelocateIdxMap) { 708 std::pair<unsigned, unsigned> Key = Item.first; 709 if (Key.first == Key.second) 710 // Base relocation: nothing to insert 711 continue; 712 713 GCRelocateInst *I = Item.second; 714 auto BaseKey = std::make_pair(Key.first, Key.first); 715 716 // We're iterating over RelocateIdxMap so we cannot modify it. 717 auto MaybeBase = RelocateIdxMap.find(BaseKey); 718 if (MaybeBase == RelocateIdxMap.end()) 719 // TODO: We might want to insert a new base object relocate and gep off 720 // that, if there are enough derived object relocates. 721 continue; 722 723 RelocateInstMap[MaybeBase->second].push_back(I); 724 } 725 } 726 727 // Accepts a GEP and extracts the operands into a vector provided they're all 728 // small integer constants 729 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 730 SmallVectorImpl<Value *> &OffsetV) { 731 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 732 // Only accept small constant integer operands 733 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 734 if (!Op || Op->getZExtValue() > 20) 735 return false; 736 } 737 738 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 739 OffsetV.push_back(GEP->getOperand(i)); 740 return true; 741 } 742 743 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 744 // replace, computes a replacement, and affects it. 745 static bool 746 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 747 const SmallVectorImpl<GCRelocateInst *> &Targets) { 748 bool MadeChange = false; 749 for (GCRelocateInst *ToReplace : Targets) { 750 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 751 "Not relocating a derived object of the original base object"); 752 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 753 // A duplicate relocate call. TODO: coalesce duplicates. 754 continue; 755 } 756 757 if (RelocatedBase->getParent() != ToReplace->getParent()) { 758 // Base and derived relocates are in different basic blocks. 759 // In this case transform is only valid when base dominates derived 760 // relocate. However it would be too expensive to check dominance 761 // for each such relocate, so we skip the whole transformation. 762 continue; 763 } 764 765 Value *Base = ToReplace->getBasePtr(); 766 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 767 if (!Derived || Derived->getPointerOperand() != Base) 768 continue; 769 770 SmallVector<Value *, 2> OffsetV; 771 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 772 continue; 773 774 // Create a Builder and replace the target callsite with a gep 775 assert(RelocatedBase->getNextNode() && 776 "Should always have one since it's not a terminator"); 777 778 // Insert after RelocatedBase 779 IRBuilder<> Builder(RelocatedBase->getNextNode()); 780 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 781 782 // If gc_relocate does not match the actual type, cast it to the right type. 783 // In theory, there must be a bitcast after gc_relocate if the type does not 784 // match, and we should reuse it to get the derived pointer. But it could be 785 // cases like this: 786 // bb1: 787 // ... 788 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 789 // br label %merge 790 // 791 // bb2: 792 // ... 793 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 794 // br label %merge 795 // 796 // merge: 797 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 798 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 799 // 800 // In this case, we can not find the bitcast any more. So we insert a new bitcast 801 // no matter there is already one or not. In this way, we can handle all cases, and 802 // the extra bitcast should be optimized away in later passes. 803 Value *ActualRelocatedBase = RelocatedBase; 804 if (RelocatedBase->getType() != Base->getType()) { 805 ActualRelocatedBase = 806 Builder.CreateBitCast(RelocatedBase, Base->getType()); 807 } 808 Value *Replacement = Builder.CreateGEP( 809 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 810 Replacement->takeName(ToReplace); 811 // If the newly generated derived pointer's type does not match the original derived 812 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 813 Value *ActualReplacement = Replacement; 814 if (Replacement->getType() != ToReplace->getType()) { 815 ActualReplacement = 816 Builder.CreateBitCast(Replacement, ToReplace->getType()); 817 } 818 ToReplace->replaceAllUsesWith(ActualReplacement); 819 ToReplace->eraseFromParent(); 820 821 MadeChange = true; 822 } 823 return MadeChange; 824 } 825 826 // Turns this: 827 // 828 // %base = ... 829 // %ptr = gep %base + 15 830 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 831 // %base' = relocate(%tok, i32 4, i32 4) 832 // %ptr' = relocate(%tok, i32 4, i32 5) 833 // %val = load %ptr' 834 // 835 // into this: 836 // 837 // %base = ... 838 // %ptr = gep %base + 15 839 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 840 // %base' = gc.relocate(%tok, i32 4, i32 4) 841 // %ptr' = gep %base' + 15 842 // %val = load %ptr' 843 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 844 bool MadeChange = false; 845 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 846 847 for (auto *U : I.users()) 848 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 849 // Collect all the relocate calls associated with a statepoint 850 AllRelocateCalls.push_back(Relocate); 851 852 // We need atleast one base pointer relocation + one derived pointer 853 // relocation to mangle 854 if (AllRelocateCalls.size() < 2) 855 return false; 856 857 // RelocateInstMap is a mapping from the base relocate instruction to the 858 // corresponding derived relocate instructions 859 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 860 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 861 if (RelocateInstMap.empty()) 862 return false; 863 864 for (auto &Item : RelocateInstMap) 865 // Item.first is the RelocatedBase to offset against 866 // Item.second is the vector of Targets to replace 867 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 868 return MadeChange; 869 } 870 871 /// SinkCast - Sink the specified cast instruction into its user blocks 872 static bool SinkCast(CastInst *CI) { 873 BasicBlock *DefBB = CI->getParent(); 874 875 /// InsertedCasts - Only insert a cast in each block once. 876 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 877 878 bool MadeChange = false; 879 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 880 UI != E; ) { 881 Use &TheUse = UI.getUse(); 882 Instruction *User = cast<Instruction>(*UI); 883 884 // Figure out which BB this cast is used in. For PHI's this is the 885 // appropriate predecessor block. 886 BasicBlock *UserBB = User->getParent(); 887 if (PHINode *PN = dyn_cast<PHINode>(User)) { 888 UserBB = PN->getIncomingBlock(TheUse); 889 } 890 891 // Preincrement use iterator so we don't invalidate it. 892 ++UI; 893 894 // The first insertion point of a block containing an EH pad is after the 895 // pad. If the pad is the user, we cannot sink the cast past the pad. 896 if (User->isEHPad()) 897 continue; 898 899 // If the block selected to receive the cast is an EH pad that does not 900 // allow non-PHI instructions before the terminator, we can't sink the 901 // cast. 902 if (UserBB->getTerminator()->isEHPad()) 903 continue; 904 905 // If this user is in the same block as the cast, don't change the cast. 906 if (UserBB == DefBB) continue; 907 908 // If we have already inserted a cast into this block, use it. 909 CastInst *&InsertedCast = InsertedCasts[UserBB]; 910 911 if (!InsertedCast) { 912 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 913 assert(InsertPt != UserBB->end()); 914 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 915 CI->getType(), "", &*InsertPt); 916 } 917 918 // Replace a use of the cast with a use of the new cast. 919 TheUse = InsertedCast; 920 MadeChange = true; 921 ++NumCastUses; 922 } 923 924 // If we removed all uses, nuke the cast. 925 if (CI->use_empty()) { 926 CI->eraseFromParent(); 927 MadeChange = true; 928 } 929 930 return MadeChange; 931 } 932 933 /// If the specified cast instruction is a noop copy (e.g. it's casting from 934 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 935 /// reduce the number of virtual registers that must be created and coalesced. 936 /// 937 /// Return true if any changes are made. 938 /// 939 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 940 const DataLayout &DL) { 941 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 942 // than sinking only nop casts, but is helpful on some platforms. 943 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 944 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 945 ASC->getDestAddressSpace())) 946 return false; 947 } 948 949 // If this is a noop copy, 950 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 951 EVT DstVT = TLI.getValueType(DL, CI->getType()); 952 953 // This is an fp<->int conversion? 954 if (SrcVT.isInteger() != DstVT.isInteger()) 955 return false; 956 957 // If this is an extension, it will be a zero or sign extension, which 958 // isn't a noop. 959 if (SrcVT.bitsLT(DstVT)) return false; 960 961 // If these values will be promoted, find out what they will be promoted 962 // to. This helps us consider truncates on PPC as noop copies when they 963 // are. 964 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 965 TargetLowering::TypePromoteInteger) 966 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 967 if (TLI.getTypeAction(CI->getContext(), DstVT) == 968 TargetLowering::TypePromoteInteger) 969 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 970 971 // If, after promotion, these are the same types, this is a noop copy. 972 if (SrcVT != DstVT) 973 return false; 974 975 return SinkCast(CI); 976 } 977 978 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 979 /// possible. 980 /// 981 /// Return true if any changes were made. 982 static bool CombineUAddWithOverflow(CmpInst *CI) { 983 Value *A, *B; 984 Instruction *AddI; 985 if (!match(CI, 986 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 987 return false; 988 989 Type *Ty = AddI->getType(); 990 if (!isa<IntegerType>(Ty)) 991 return false; 992 993 // We don't want to move around uses of condition values this late, so we we 994 // check if it is legal to create the call to the intrinsic in the basic 995 // block containing the icmp: 996 997 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 998 return false; 999 1000 #ifndef NDEBUG 1001 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1002 // for now: 1003 if (AddI->hasOneUse()) 1004 assert(*AddI->user_begin() == CI && "expected!"); 1005 #endif 1006 1007 Module *M = CI->getModule(); 1008 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1009 1010 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1011 1012 auto *UAddWithOverflow = 1013 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1014 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1015 auto *Overflow = 1016 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1017 1018 CI->replaceAllUsesWith(Overflow); 1019 AddI->replaceAllUsesWith(UAdd); 1020 CI->eraseFromParent(); 1021 AddI->eraseFromParent(); 1022 return true; 1023 } 1024 1025 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1026 /// registers that must be created and coalesced. This is a clear win except on 1027 /// targets with multiple condition code registers (PowerPC), where it might 1028 /// lose; some adjustment may be wanted there. 1029 /// 1030 /// Return true if any changes are made. 1031 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1032 BasicBlock *DefBB = CI->getParent(); 1033 1034 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1035 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1036 return false; 1037 1038 // Only insert a cmp in each block once. 1039 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1040 1041 bool MadeChange = false; 1042 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1043 UI != E; ) { 1044 Use &TheUse = UI.getUse(); 1045 Instruction *User = cast<Instruction>(*UI); 1046 1047 // Preincrement use iterator so we don't invalidate it. 1048 ++UI; 1049 1050 // Don't bother for PHI nodes. 1051 if (isa<PHINode>(User)) 1052 continue; 1053 1054 // Figure out which BB this cmp is used in. 1055 BasicBlock *UserBB = User->getParent(); 1056 1057 // If this user is in the same block as the cmp, don't change the cmp. 1058 if (UserBB == DefBB) continue; 1059 1060 // If we have already inserted a cmp into this block, use it. 1061 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1062 1063 if (!InsertedCmp) { 1064 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1065 assert(InsertPt != UserBB->end()); 1066 InsertedCmp = 1067 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1068 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1069 // Propagate the debug info. 1070 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1071 } 1072 1073 // Replace a use of the cmp with a use of the new cmp. 1074 TheUse = InsertedCmp; 1075 MadeChange = true; 1076 ++NumCmpUses; 1077 } 1078 1079 // If we removed all uses, nuke the cmp. 1080 if (CI->use_empty()) { 1081 CI->eraseFromParent(); 1082 MadeChange = true; 1083 } 1084 1085 return MadeChange; 1086 } 1087 1088 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1089 if (SinkCmpExpression(CI, TLI)) 1090 return true; 1091 1092 if (CombineUAddWithOverflow(CI)) 1093 return true; 1094 1095 return false; 1096 } 1097 1098 /// Check if the candidates could be combined with a shift instruction, which 1099 /// includes: 1100 /// 1. Truncate instruction 1101 /// 2. And instruction and the imm is a mask of the low bits: 1102 /// imm & (imm+1) == 0 1103 static bool isExtractBitsCandidateUse(Instruction *User) { 1104 if (!isa<TruncInst>(User)) { 1105 if (User->getOpcode() != Instruction::And || 1106 !isa<ConstantInt>(User->getOperand(1))) 1107 return false; 1108 1109 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1110 1111 if ((Cimm & (Cimm + 1)).getBoolValue()) 1112 return false; 1113 } 1114 return true; 1115 } 1116 1117 /// Sink both shift and truncate instruction to the use of truncate's BB. 1118 static bool 1119 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1120 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1121 const TargetLowering &TLI, const DataLayout &DL) { 1122 BasicBlock *UserBB = User->getParent(); 1123 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1124 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1125 bool MadeChange = false; 1126 1127 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1128 TruncE = TruncI->user_end(); 1129 TruncUI != TruncE;) { 1130 1131 Use &TruncTheUse = TruncUI.getUse(); 1132 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1133 // Preincrement use iterator so we don't invalidate it. 1134 1135 ++TruncUI; 1136 1137 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1138 if (!ISDOpcode) 1139 continue; 1140 1141 // If the use is actually a legal node, there will not be an 1142 // implicit truncate. 1143 // FIXME: always querying the result type is just an 1144 // approximation; some nodes' legality is determined by the 1145 // operand or other means. There's no good way to find out though. 1146 if (TLI.isOperationLegalOrCustom( 1147 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1148 continue; 1149 1150 // Don't bother for PHI nodes. 1151 if (isa<PHINode>(TruncUser)) 1152 continue; 1153 1154 BasicBlock *TruncUserBB = TruncUser->getParent(); 1155 1156 if (UserBB == TruncUserBB) 1157 continue; 1158 1159 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1160 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1161 1162 if (!InsertedShift && !InsertedTrunc) { 1163 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1164 assert(InsertPt != TruncUserBB->end()); 1165 // Sink the shift 1166 if (ShiftI->getOpcode() == Instruction::AShr) 1167 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1168 "", &*InsertPt); 1169 else 1170 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1171 "", &*InsertPt); 1172 1173 // Sink the trunc 1174 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1175 TruncInsertPt++; 1176 assert(TruncInsertPt != TruncUserBB->end()); 1177 1178 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1179 TruncI->getType(), "", &*TruncInsertPt); 1180 1181 MadeChange = true; 1182 1183 TruncTheUse = InsertedTrunc; 1184 } 1185 } 1186 return MadeChange; 1187 } 1188 1189 /// Sink the shift *right* instruction into user blocks if the uses could 1190 /// potentially be combined with this shift instruction and generate BitExtract 1191 /// instruction. It will only be applied if the architecture supports BitExtract 1192 /// instruction. Here is an example: 1193 /// BB1: 1194 /// %x.extract.shift = lshr i64 %arg1, 32 1195 /// BB2: 1196 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1197 /// ==> 1198 /// 1199 /// BB2: 1200 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1201 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1202 /// 1203 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1204 /// instruction. 1205 /// Return true if any changes are made. 1206 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1207 const TargetLowering &TLI, 1208 const DataLayout &DL) { 1209 BasicBlock *DefBB = ShiftI->getParent(); 1210 1211 /// Only insert instructions in each block once. 1212 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1213 1214 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1215 1216 bool MadeChange = false; 1217 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1218 UI != E;) { 1219 Use &TheUse = UI.getUse(); 1220 Instruction *User = cast<Instruction>(*UI); 1221 // Preincrement use iterator so we don't invalidate it. 1222 ++UI; 1223 1224 // Don't bother for PHI nodes. 1225 if (isa<PHINode>(User)) 1226 continue; 1227 1228 if (!isExtractBitsCandidateUse(User)) 1229 continue; 1230 1231 BasicBlock *UserBB = User->getParent(); 1232 1233 if (UserBB == DefBB) { 1234 // If the shift and truncate instruction are in the same BB. The use of 1235 // the truncate(TruncUse) may still introduce another truncate if not 1236 // legal. In this case, we would like to sink both shift and truncate 1237 // instruction to the BB of TruncUse. 1238 // for example: 1239 // BB1: 1240 // i64 shift.result = lshr i64 opnd, imm 1241 // trunc.result = trunc shift.result to i16 1242 // 1243 // BB2: 1244 // ----> We will have an implicit truncate here if the architecture does 1245 // not have i16 compare. 1246 // cmp i16 trunc.result, opnd2 1247 // 1248 if (isa<TruncInst>(User) && shiftIsLegal 1249 // If the type of the truncate is legal, no trucate will be 1250 // introduced in other basic blocks. 1251 && 1252 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1253 MadeChange = 1254 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1255 1256 continue; 1257 } 1258 // If we have already inserted a shift into this block, use it. 1259 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1260 1261 if (!InsertedShift) { 1262 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1263 assert(InsertPt != UserBB->end()); 1264 1265 if (ShiftI->getOpcode() == Instruction::AShr) 1266 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1267 "", &*InsertPt); 1268 else 1269 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1270 "", &*InsertPt); 1271 1272 MadeChange = true; 1273 } 1274 1275 // Replace a use of the shift with a use of the new shift. 1276 TheUse = InsertedShift; 1277 } 1278 1279 // If we removed all uses, nuke the shift. 1280 if (ShiftI->use_empty()) 1281 ShiftI->eraseFromParent(); 1282 1283 return MadeChange; 1284 } 1285 1286 // Translate a masked load intrinsic like 1287 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1288 // <16 x i1> %mask, <16 x i32> %passthru) 1289 // to a chain of basic blocks, with loading element one-by-one if 1290 // the appropriate mask bit is set 1291 // 1292 // %1 = bitcast i8* %addr to i32* 1293 // %2 = extractelement <16 x i1> %mask, i32 0 1294 // %3 = icmp eq i1 %2, true 1295 // br i1 %3, label %cond.load, label %else 1296 // 1297 //cond.load: ; preds = %0 1298 // %4 = getelementptr i32* %1, i32 0 1299 // %5 = load i32* %4 1300 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1301 // br label %else 1302 // 1303 //else: ; preds = %0, %cond.load 1304 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1305 // %7 = extractelement <16 x i1> %mask, i32 1 1306 // %8 = icmp eq i1 %7, true 1307 // br i1 %8, label %cond.load1, label %else2 1308 // 1309 //cond.load1: ; preds = %else 1310 // %9 = getelementptr i32* %1, i32 1 1311 // %10 = load i32* %9 1312 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1313 // br label %else2 1314 // 1315 //else2: ; preds = %else, %cond.load1 1316 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1317 // %12 = extractelement <16 x i1> %mask, i32 2 1318 // %13 = icmp eq i1 %12, true 1319 // br i1 %13, label %cond.load4, label %else5 1320 // 1321 static void scalarizeMaskedLoad(CallInst *CI) { 1322 Value *Ptr = CI->getArgOperand(0); 1323 Value *Alignment = CI->getArgOperand(1); 1324 Value *Mask = CI->getArgOperand(2); 1325 Value *Src0 = CI->getArgOperand(3); 1326 1327 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1328 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1329 assert(VecType && "Unexpected return type of masked load intrinsic"); 1330 1331 Type *EltTy = CI->getType()->getVectorElementType(); 1332 1333 IRBuilder<> Builder(CI->getContext()); 1334 Instruction *InsertPt = CI; 1335 BasicBlock *IfBlock = CI->getParent(); 1336 BasicBlock *CondBlock = nullptr; 1337 BasicBlock *PrevIfBlock = CI->getParent(); 1338 1339 Builder.SetInsertPoint(InsertPt); 1340 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1341 1342 // Short-cut if the mask is all-true. 1343 bool IsAllOnesMask = isa<Constant>(Mask) && 1344 cast<Constant>(Mask)->isAllOnesValue(); 1345 1346 if (IsAllOnesMask) { 1347 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1348 CI->replaceAllUsesWith(NewI); 1349 CI->eraseFromParent(); 1350 return; 1351 } 1352 1353 // Adjust alignment for the scalar instruction. 1354 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1355 // Bitcast %addr fron i8* to EltTy* 1356 Type *NewPtrType = 1357 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1358 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1359 unsigned VectorWidth = VecType->getNumElements(); 1360 1361 Value *UndefVal = UndefValue::get(VecType); 1362 1363 // The result vector 1364 Value *VResult = UndefVal; 1365 1366 if (isa<ConstantVector>(Mask)) { 1367 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1368 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1369 continue; 1370 Value *Gep = 1371 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1372 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1373 VResult = Builder.CreateInsertElement(VResult, Load, 1374 Builder.getInt32(Idx)); 1375 } 1376 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1377 CI->replaceAllUsesWith(NewI); 1378 CI->eraseFromParent(); 1379 return; 1380 } 1381 1382 PHINode *Phi = nullptr; 1383 Value *PrevPhi = UndefVal; 1384 1385 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1386 1387 // Fill the "else" block, created in the previous iteration 1388 // 1389 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1390 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1391 // %to_load = icmp eq i1 %mask_1, true 1392 // br i1 %to_load, label %cond.load, label %else 1393 // 1394 if (Idx > 0) { 1395 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1396 Phi->addIncoming(VResult, CondBlock); 1397 Phi->addIncoming(PrevPhi, PrevIfBlock); 1398 PrevPhi = Phi; 1399 VResult = Phi; 1400 } 1401 1402 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1403 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1404 ConstantInt::get(Predicate->getType(), 1)); 1405 1406 // Create "cond" block 1407 // 1408 // %EltAddr = getelementptr i32* %1, i32 0 1409 // %Elt = load i32* %EltAddr 1410 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1411 // 1412 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1413 Builder.SetInsertPoint(InsertPt); 1414 1415 Value *Gep = 1416 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1417 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1418 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1419 1420 // Create "else" block, fill it in the next iteration 1421 BasicBlock *NewIfBlock = 1422 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1423 Builder.SetInsertPoint(InsertPt); 1424 Instruction *OldBr = IfBlock->getTerminator(); 1425 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1426 OldBr->eraseFromParent(); 1427 PrevIfBlock = IfBlock; 1428 IfBlock = NewIfBlock; 1429 } 1430 1431 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1432 Phi->addIncoming(VResult, CondBlock); 1433 Phi->addIncoming(PrevPhi, PrevIfBlock); 1434 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1435 CI->replaceAllUsesWith(NewI); 1436 CI->eraseFromParent(); 1437 } 1438 1439 // Translate a masked store intrinsic, like 1440 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1441 // <16 x i1> %mask) 1442 // to a chain of basic blocks, that stores element one-by-one if 1443 // the appropriate mask bit is set 1444 // 1445 // %1 = bitcast i8* %addr to i32* 1446 // %2 = extractelement <16 x i1> %mask, i32 0 1447 // %3 = icmp eq i1 %2, true 1448 // br i1 %3, label %cond.store, label %else 1449 // 1450 // cond.store: ; preds = %0 1451 // %4 = extractelement <16 x i32> %val, i32 0 1452 // %5 = getelementptr i32* %1, i32 0 1453 // store i32 %4, i32* %5 1454 // br label %else 1455 // 1456 // else: ; preds = %0, %cond.store 1457 // %6 = extractelement <16 x i1> %mask, i32 1 1458 // %7 = icmp eq i1 %6, true 1459 // br i1 %7, label %cond.store1, label %else2 1460 // 1461 // cond.store1: ; preds = %else 1462 // %8 = extractelement <16 x i32> %val, i32 1 1463 // %9 = getelementptr i32* %1, i32 1 1464 // store i32 %8, i32* %9 1465 // br label %else2 1466 // . . . 1467 static void scalarizeMaskedStore(CallInst *CI) { 1468 Value *Src = CI->getArgOperand(0); 1469 Value *Ptr = CI->getArgOperand(1); 1470 Value *Alignment = CI->getArgOperand(2); 1471 Value *Mask = CI->getArgOperand(3); 1472 1473 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1474 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1475 assert(VecType && "Unexpected data type in masked store intrinsic"); 1476 1477 Type *EltTy = VecType->getElementType(); 1478 1479 IRBuilder<> Builder(CI->getContext()); 1480 Instruction *InsertPt = CI; 1481 BasicBlock *IfBlock = CI->getParent(); 1482 Builder.SetInsertPoint(InsertPt); 1483 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1484 1485 // Short-cut if the mask is all-true. 1486 bool IsAllOnesMask = isa<Constant>(Mask) && 1487 cast<Constant>(Mask)->isAllOnesValue(); 1488 1489 if (IsAllOnesMask) { 1490 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1491 CI->eraseFromParent(); 1492 return; 1493 } 1494 1495 // Adjust alignment for the scalar instruction. 1496 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1497 // Bitcast %addr fron i8* to EltTy* 1498 Type *NewPtrType = 1499 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1500 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1501 unsigned VectorWidth = VecType->getNumElements(); 1502 1503 if (isa<ConstantVector>(Mask)) { 1504 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1505 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1506 continue; 1507 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1508 Value *Gep = 1509 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1510 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1511 } 1512 CI->eraseFromParent(); 1513 return; 1514 } 1515 1516 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1517 1518 // Fill the "else" block, created in the previous iteration 1519 // 1520 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1521 // %to_store = icmp eq i1 %mask_1, true 1522 // br i1 %to_store, label %cond.store, label %else 1523 // 1524 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1525 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1526 ConstantInt::get(Predicate->getType(), 1)); 1527 1528 // Create "cond" block 1529 // 1530 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1531 // %EltAddr = getelementptr i32* %1, i32 0 1532 // %store i32 %OneElt, i32* %EltAddr 1533 // 1534 BasicBlock *CondBlock = 1535 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1536 Builder.SetInsertPoint(InsertPt); 1537 1538 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1539 Value *Gep = 1540 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1541 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1542 1543 // Create "else" block, fill it in the next iteration 1544 BasicBlock *NewIfBlock = 1545 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1546 Builder.SetInsertPoint(InsertPt); 1547 Instruction *OldBr = IfBlock->getTerminator(); 1548 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1549 OldBr->eraseFromParent(); 1550 IfBlock = NewIfBlock; 1551 } 1552 CI->eraseFromParent(); 1553 } 1554 1555 // Translate a masked gather intrinsic like 1556 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1557 // <16 x i1> %Mask, <16 x i32> %Src) 1558 // to a chain of basic blocks, with loading element one-by-one if 1559 // the appropriate mask bit is set 1560 // 1561 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1562 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1563 // % ToLoad0 = icmp eq i1 % Mask0, true 1564 // br i1 % ToLoad0, label %cond.load, label %else 1565 // 1566 // cond.load: 1567 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1568 // % Load0 = load i32, i32* % Ptr0, align 4 1569 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1570 // br label %else 1571 // 1572 // else: 1573 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1574 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1575 // % ToLoad1 = icmp eq i1 % Mask1, true 1576 // br i1 % ToLoad1, label %cond.load1, label %else2 1577 // 1578 // cond.load1: 1579 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1580 // % Load1 = load i32, i32* % Ptr1, align 4 1581 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1582 // br label %else2 1583 // . . . 1584 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1585 // ret <16 x i32> %Result 1586 static void scalarizeMaskedGather(CallInst *CI) { 1587 Value *Ptrs = CI->getArgOperand(0); 1588 Value *Alignment = CI->getArgOperand(1); 1589 Value *Mask = CI->getArgOperand(2); 1590 Value *Src0 = CI->getArgOperand(3); 1591 1592 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1593 1594 assert(VecType && "Unexpected return type of masked load intrinsic"); 1595 1596 IRBuilder<> Builder(CI->getContext()); 1597 Instruction *InsertPt = CI; 1598 BasicBlock *IfBlock = CI->getParent(); 1599 BasicBlock *CondBlock = nullptr; 1600 BasicBlock *PrevIfBlock = CI->getParent(); 1601 Builder.SetInsertPoint(InsertPt); 1602 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1603 1604 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1605 1606 Value *UndefVal = UndefValue::get(VecType); 1607 1608 // The result vector 1609 Value *VResult = UndefVal; 1610 unsigned VectorWidth = VecType->getNumElements(); 1611 1612 // Shorten the way if the mask is a vector of constants. 1613 bool IsConstMask = isa<ConstantVector>(Mask); 1614 1615 if (IsConstMask) { 1616 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1617 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1618 continue; 1619 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1620 "Ptr" + Twine(Idx)); 1621 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1622 "Load" + Twine(Idx)); 1623 VResult = Builder.CreateInsertElement(VResult, Load, 1624 Builder.getInt32(Idx), 1625 "Res" + Twine(Idx)); 1626 } 1627 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1628 CI->replaceAllUsesWith(NewI); 1629 CI->eraseFromParent(); 1630 return; 1631 } 1632 1633 PHINode *Phi = nullptr; 1634 Value *PrevPhi = UndefVal; 1635 1636 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1637 1638 // Fill the "else" block, created in the previous iteration 1639 // 1640 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1641 // %ToLoad1 = icmp eq i1 %Mask1, true 1642 // br i1 %ToLoad1, label %cond.load, label %else 1643 // 1644 if (Idx > 0) { 1645 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1646 Phi->addIncoming(VResult, CondBlock); 1647 Phi->addIncoming(PrevPhi, PrevIfBlock); 1648 PrevPhi = Phi; 1649 VResult = Phi; 1650 } 1651 1652 Value *Predicate = Builder.CreateExtractElement(Mask, 1653 Builder.getInt32(Idx), 1654 "Mask" + Twine(Idx)); 1655 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1656 ConstantInt::get(Predicate->getType(), 1), 1657 "ToLoad" + Twine(Idx)); 1658 1659 // Create "cond" block 1660 // 1661 // %EltAddr = getelementptr i32* %1, i32 0 1662 // %Elt = load i32* %EltAddr 1663 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1664 // 1665 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1666 Builder.SetInsertPoint(InsertPt); 1667 1668 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1669 "Ptr" + Twine(Idx)); 1670 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1671 "Load" + Twine(Idx)); 1672 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1673 "Res" + Twine(Idx)); 1674 1675 // Create "else" block, fill it in the next iteration 1676 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1677 Builder.SetInsertPoint(InsertPt); 1678 Instruction *OldBr = IfBlock->getTerminator(); 1679 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1680 OldBr->eraseFromParent(); 1681 PrevIfBlock = IfBlock; 1682 IfBlock = NewIfBlock; 1683 } 1684 1685 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1686 Phi->addIncoming(VResult, CondBlock); 1687 Phi->addIncoming(PrevPhi, PrevIfBlock); 1688 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1689 CI->replaceAllUsesWith(NewI); 1690 CI->eraseFromParent(); 1691 } 1692 1693 // Translate a masked scatter intrinsic, like 1694 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1695 // <16 x i1> %Mask) 1696 // to a chain of basic blocks, that stores element one-by-one if 1697 // the appropriate mask bit is set. 1698 // 1699 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1700 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1701 // % ToStore0 = icmp eq i1 % Mask0, true 1702 // br i1 %ToStore0, label %cond.store, label %else 1703 // 1704 // cond.store: 1705 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1706 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1707 // store i32 %Elt0, i32* % Ptr0, align 4 1708 // br label %else 1709 // 1710 // else: 1711 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1712 // % ToStore1 = icmp eq i1 % Mask1, true 1713 // br i1 % ToStore1, label %cond.store1, label %else2 1714 // 1715 // cond.store1: 1716 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1717 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1718 // store i32 % Elt1, i32* % Ptr1, align 4 1719 // br label %else2 1720 // . . . 1721 static void scalarizeMaskedScatter(CallInst *CI) { 1722 Value *Src = CI->getArgOperand(0); 1723 Value *Ptrs = CI->getArgOperand(1); 1724 Value *Alignment = CI->getArgOperand(2); 1725 Value *Mask = CI->getArgOperand(3); 1726 1727 assert(isa<VectorType>(Src->getType()) && 1728 "Unexpected data type in masked scatter intrinsic"); 1729 assert(isa<VectorType>(Ptrs->getType()) && 1730 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1731 "Vector of pointers is expected in masked scatter intrinsic"); 1732 1733 IRBuilder<> Builder(CI->getContext()); 1734 Instruction *InsertPt = CI; 1735 BasicBlock *IfBlock = CI->getParent(); 1736 Builder.SetInsertPoint(InsertPt); 1737 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1738 1739 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1740 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1741 1742 // Shorten the way if the mask is a vector of constants. 1743 bool IsConstMask = isa<ConstantVector>(Mask); 1744 1745 if (IsConstMask) { 1746 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1747 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1748 continue; 1749 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1750 "Elt" + Twine(Idx)); 1751 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1752 "Ptr" + Twine(Idx)); 1753 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1754 } 1755 CI->eraseFromParent(); 1756 return; 1757 } 1758 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1759 // Fill the "else" block, created in the previous iteration 1760 // 1761 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1762 // % ToStore = icmp eq i1 % Mask1, true 1763 // br i1 % ToStore, label %cond.store, label %else 1764 // 1765 Value *Predicate = Builder.CreateExtractElement(Mask, 1766 Builder.getInt32(Idx), 1767 "Mask" + Twine(Idx)); 1768 Value *Cmp = 1769 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1770 ConstantInt::get(Predicate->getType(), 1), 1771 "ToStore" + Twine(Idx)); 1772 1773 // Create "cond" block 1774 // 1775 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1776 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1777 // %store i32 % Elt1, i32* % Ptr1 1778 // 1779 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1780 Builder.SetInsertPoint(InsertPt); 1781 1782 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1783 "Elt" + Twine(Idx)); 1784 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1785 "Ptr" + Twine(Idx)); 1786 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1787 1788 // Create "else" block, fill it in the next iteration 1789 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1790 Builder.SetInsertPoint(InsertPt); 1791 Instruction *OldBr = IfBlock->getTerminator(); 1792 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1793 OldBr->eraseFromParent(); 1794 IfBlock = NewIfBlock; 1795 } 1796 CI->eraseFromParent(); 1797 } 1798 1799 /// If counting leading or trailing zeros is an expensive operation and a zero 1800 /// input is defined, add a check for zero to avoid calling the intrinsic. 1801 /// 1802 /// We want to transform: 1803 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1804 /// 1805 /// into: 1806 /// entry: 1807 /// %cmpz = icmp eq i64 %A, 0 1808 /// br i1 %cmpz, label %cond.end, label %cond.false 1809 /// cond.false: 1810 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1811 /// br label %cond.end 1812 /// cond.end: 1813 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1814 /// 1815 /// If the transform is performed, return true and set ModifiedDT to true. 1816 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1817 const TargetLowering *TLI, 1818 const DataLayout *DL, 1819 bool &ModifiedDT) { 1820 if (!TLI || !DL) 1821 return false; 1822 1823 // If a zero input is undefined, it doesn't make sense to despeculate that. 1824 if (match(CountZeros->getOperand(1), m_One())) 1825 return false; 1826 1827 // If it's cheap to speculate, there's nothing to do. 1828 auto IntrinsicID = CountZeros->getIntrinsicID(); 1829 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1830 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1831 return false; 1832 1833 // Only handle legal scalar cases. Anything else requires too much work. 1834 Type *Ty = CountZeros->getType(); 1835 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1836 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1837 return false; 1838 1839 // The intrinsic will be sunk behind a compare against zero and branch. 1840 BasicBlock *StartBlock = CountZeros->getParent(); 1841 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1842 1843 // Create another block after the count zero intrinsic. A PHI will be added 1844 // in this block to select the result of the intrinsic or the bit-width 1845 // constant if the input to the intrinsic is zero. 1846 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1847 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1848 1849 // Set up a builder to create a compare, conditional branch, and PHI. 1850 IRBuilder<> Builder(CountZeros->getContext()); 1851 Builder.SetInsertPoint(StartBlock->getTerminator()); 1852 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1853 1854 // Replace the unconditional branch that was created by the first split with 1855 // a compare against zero and a conditional branch. 1856 Value *Zero = Constant::getNullValue(Ty); 1857 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1858 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1859 StartBlock->getTerminator()->eraseFromParent(); 1860 1861 // Create a PHI in the end block to select either the output of the intrinsic 1862 // or the bit width of the operand. 1863 Builder.SetInsertPoint(&EndBlock->front()); 1864 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1865 CountZeros->replaceAllUsesWith(PN); 1866 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1867 PN->addIncoming(BitWidth, StartBlock); 1868 PN->addIncoming(CountZeros, CallBlock); 1869 1870 // We are explicitly handling the zero case, so we can set the intrinsic's 1871 // undefined zero argument to 'true'. This will also prevent reprocessing the 1872 // intrinsic; we only despeculate when a zero input is defined. 1873 CountZeros->setArgOperand(1, Builder.getTrue()); 1874 ModifiedDT = true; 1875 return true; 1876 } 1877 1878 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1879 BasicBlock *BB = CI->getParent(); 1880 1881 // Lower inline assembly if we can. 1882 // If we found an inline asm expession, and if the target knows how to 1883 // lower it to normal LLVM code, do so now. 1884 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1885 if (TLI->ExpandInlineAsm(CI)) { 1886 // Avoid invalidating the iterator. 1887 CurInstIterator = BB->begin(); 1888 // Avoid processing instructions out of order, which could cause 1889 // reuse before a value is defined. 1890 SunkAddrs.clear(); 1891 return true; 1892 } 1893 // Sink address computing for memory operands into the block. 1894 if (optimizeInlineAsmInst(CI)) 1895 return true; 1896 } 1897 1898 // Align the pointer arguments to this call if the target thinks it's a good 1899 // idea 1900 unsigned MinSize, PrefAlign; 1901 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1902 for (auto &Arg : CI->arg_operands()) { 1903 // We want to align both objects whose address is used directly and 1904 // objects whose address is used in casts and GEPs, though it only makes 1905 // sense for GEPs if the offset is a multiple of the desired alignment and 1906 // if size - offset meets the size threshold. 1907 if (!Arg->getType()->isPointerTy()) 1908 continue; 1909 APInt Offset(DL->getPointerSizeInBits( 1910 cast<PointerType>(Arg->getType())->getAddressSpace()), 1911 0); 1912 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1913 uint64_t Offset2 = Offset.getLimitedValue(); 1914 if ((Offset2 & (PrefAlign-1)) != 0) 1915 continue; 1916 AllocaInst *AI; 1917 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1918 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1919 AI->setAlignment(PrefAlign); 1920 // Global variables can only be aligned if they are defined in this 1921 // object (i.e. they are uniquely initialized in this object), and 1922 // over-aligning global variables that have an explicit section is 1923 // forbidden. 1924 GlobalVariable *GV; 1925 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1926 GV->getPointerAlignment(*DL) < PrefAlign && 1927 DL->getTypeAllocSize(GV->getValueType()) >= 1928 MinSize + Offset2) 1929 GV->setAlignment(PrefAlign); 1930 } 1931 // If this is a memcpy (or similar) then we may be able to improve the 1932 // alignment 1933 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1934 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 1935 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 1936 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 1937 if (Align > MI->getAlignment()) 1938 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 1939 } 1940 } 1941 1942 // If we have a cold call site, try to sink addressing computation into the 1943 // cold block. This interacts with our handling for loads and stores to 1944 // ensure that we can fold all uses of a potential addressing computation 1945 // into their uses. TODO: generalize this to work over profiling data 1946 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1947 for (auto &Arg : CI->arg_operands()) { 1948 if (!Arg->getType()->isPointerTy()) 1949 continue; 1950 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1951 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1952 } 1953 1954 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1955 if (II) { 1956 switch (II->getIntrinsicID()) { 1957 default: break; 1958 case Intrinsic::objectsize: { 1959 // Lower all uses of llvm.objectsize.* 1960 ConstantInt *RetVal = 1961 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1962 // Substituting this can cause recursive simplifications, which can 1963 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1964 // happens. 1965 Value *CurValue = &*CurInstIterator; 1966 WeakVH IterHandle(CurValue); 1967 1968 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1969 1970 // If the iterator instruction was recursively deleted, start over at the 1971 // start of the block. 1972 if (IterHandle != CurValue) { 1973 CurInstIterator = BB->begin(); 1974 SunkAddrs.clear(); 1975 } 1976 return true; 1977 } 1978 case Intrinsic::masked_load: { 1979 // Scalarize unsupported vector masked load 1980 if (!TTI->isLegalMaskedLoad(CI->getType())) { 1981 scalarizeMaskedLoad(CI); 1982 ModifiedDT = true; 1983 return true; 1984 } 1985 return false; 1986 } 1987 case Intrinsic::masked_store: { 1988 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 1989 scalarizeMaskedStore(CI); 1990 ModifiedDT = true; 1991 return true; 1992 } 1993 return false; 1994 } 1995 case Intrinsic::masked_gather: { 1996 if (!TTI->isLegalMaskedGather(CI->getType())) { 1997 scalarizeMaskedGather(CI); 1998 ModifiedDT = true; 1999 return true; 2000 } 2001 return false; 2002 } 2003 case Intrinsic::masked_scatter: { 2004 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2005 scalarizeMaskedScatter(CI); 2006 ModifiedDT = true; 2007 return true; 2008 } 2009 return false; 2010 } 2011 case Intrinsic::aarch64_stlxr: 2012 case Intrinsic::aarch64_stxr: { 2013 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2014 if (!ExtVal || !ExtVal->hasOneUse() || 2015 ExtVal->getParent() == CI->getParent()) 2016 return false; 2017 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2018 ExtVal->moveBefore(CI); 2019 // Mark this instruction as "inserted by CGP", so that other 2020 // optimizations don't touch it. 2021 InsertedInsts.insert(ExtVal); 2022 return true; 2023 } 2024 case Intrinsic::invariant_group_barrier: 2025 II->replaceAllUsesWith(II->getArgOperand(0)); 2026 II->eraseFromParent(); 2027 return true; 2028 2029 case Intrinsic::cttz: 2030 case Intrinsic::ctlz: 2031 // If counting zeros is expensive, try to avoid it. 2032 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2033 } 2034 2035 if (TLI) { 2036 SmallVector<Value*, 2> PtrOps; 2037 Type *AccessTy; 2038 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2039 while (!PtrOps.empty()) { 2040 Value *PtrVal = PtrOps.pop_back_val(); 2041 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2042 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2043 return true; 2044 } 2045 } 2046 } 2047 2048 // From here on out we're working with named functions. 2049 if (!CI->getCalledFunction()) return false; 2050 2051 // Lower all default uses of _chk calls. This is very similar 2052 // to what InstCombineCalls does, but here we are only lowering calls 2053 // to fortified library functions (e.g. __memcpy_chk) that have the default 2054 // "don't know" as the objectsize. Anything else should be left alone. 2055 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2056 if (Value *V = Simplifier.optimizeCall(CI)) { 2057 CI->replaceAllUsesWith(V); 2058 CI->eraseFromParent(); 2059 return true; 2060 } 2061 return false; 2062 } 2063 2064 /// Look for opportunities to duplicate return instructions to the predecessor 2065 /// to enable tail call optimizations. The case it is currently looking for is: 2066 /// @code 2067 /// bb0: 2068 /// %tmp0 = tail call i32 @f0() 2069 /// br label %return 2070 /// bb1: 2071 /// %tmp1 = tail call i32 @f1() 2072 /// br label %return 2073 /// bb2: 2074 /// %tmp2 = tail call i32 @f2() 2075 /// br label %return 2076 /// return: 2077 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2078 /// ret i32 %retval 2079 /// @endcode 2080 /// 2081 /// => 2082 /// 2083 /// @code 2084 /// bb0: 2085 /// %tmp0 = tail call i32 @f0() 2086 /// ret i32 %tmp0 2087 /// bb1: 2088 /// %tmp1 = tail call i32 @f1() 2089 /// ret i32 %tmp1 2090 /// bb2: 2091 /// %tmp2 = tail call i32 @f2() 2092 /// ret i32 %tmp2 2093 /// @endcode 2094 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2095 if (!TLI) 2096 return false; 2097 2098 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2099 if (!RetI) 2100 return false; 2101 2102 PHINode *PN = nullptr; 2103 BitCastInst *BCI = nullptr; 2104 Value *V = RetI->getReturnValue(); 2105 if (V) { 2106 BCI = dyn_cast<BitCastInst>(V); 2107 if (BCI) 2108 V = BCI->getOperand(0); 2109 2110 PN = dyn_cast<PHINode>(V); 2111 if (!PN) 2112 return false; 2113 } 2114 2115 if (PN && PN->getParent() != BB) 2116 return false; 2117 2118 // Make sure there are no instructions between the PHI and return, or that the 2119 // return is the first instruction in the block. 2120 if (PN) { 2121 BasicBlock::iterator BI = BB->begin(); 2122 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2123 if (&*BI == BCI) 2124 // Also skip over the bitcast. 2125 ++BI; 2126 if (&*BI != RetI) 2127 return false; 2128 } else { 2129 BasicBlock::iterator BI = BB->begin(); 2130 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2131 if (&*BI != RetI) 2132 return false; 2133 } 2134 2135 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2136 /// call. 2137 const Function *F = BB->getParent(); 2138 SmallVector<CallInst*, 4> TailCalls; 2139 if (PN) { 2140 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2141 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2142 // Make sure the phi value is indeed produced by the tail call. 2143 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2144 TLI->mayBeEmittedAsTailCall(CI) && 2145 attributesPermitTailCall(F, CI, RetI, *TLI)) 2146 TailCalls.push_back(CI); 2147 } 2148 } else { 2149 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2150 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2151 if (!VisitedBBs.insert(*PI).second) 2152 continue; 2153 2154 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2155 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2156 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2157 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2158 if (RI == RE) 2159 continue; 2160 2161 CallInst *CI = dyn_cast<CallInst>(&*RI); 2162 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2163 attributesPermitTailCall(F, CI, RetI, *TLI)) 2164 TailCalls.push_back(CI); 2165 } 2166 } 2167 2168 bool Changed = false; 2169 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2170 CallInst *CI = TailCalls[i]; 2171 CallSite CS(CI); 2172 2173 // Conservatively require the attributes of the call to match those of the 2174 // return. Ignore noalias because it doesn't affect the call sequence. 2175 AttributeSet CalleeAttrs = CS.getAttributes(); 2176 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2177 removeAttribute(Attribute::NoAlias) != 2178 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2179 removeAttribute(Attribute::NoAlias)) 2180 continue; 2181 2182 // Make sure the call instruction is followed by an unconditional branch to 2183 // the return block. 2184 BasicBlock *CallBB = CI->getParent(); 2185 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2186 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2187 continue; 2188 2189 // Duplicate the return into CallBB. 2190 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2191 ModifiedDT = Changed = true; 2192 ++NumRetsDup; 2193 } 2194 2195 // If we eliminated all predecessors of the block, delete the block now. 2196 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2197 BB->eraseFromParent(); 2198 2199 return Changed; 2200 } 2201 2202 //===----------------------------------------------------------------------===// 2203 // Memory Optimization 2204 //===----------------------------------------------------------------------===// 2205 2206 namespace { 2207 2208 /// This is an extended version of TargetLowering::AddrMode 2209 /// which holds actual Value*'s for register values. 2210 struct ExtAddrMode : public TargetLowering::AddrMode { 2211 Value *BaseReg; 2212 Value *ScaledReg; 2213 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2214 void print(raw_ostream &OS) const; 2215 void dump() const; 2216 2217 bool operator==(const ExtAddrMode& O) const { 2218 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2219 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2220 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2221 } 2222 }; 2223 2224 #ifndef NDEBUG 2225 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2226 AM.print(OS); 2227 return OS; 2228 } 2229 #endif 2230 2231 void ExtAddrMode::print(raw_ostream &OS) const { 2232 bool NeedPlus = false; 2233 OS << "["; 2234 if (BaseGV) { 2235 OS << (NeedPlus ? " + " : "") 2236 << "GV:"; 2237 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2238 NeedPlus = true; 2239 } 2240 2241 if (BaseOffs) { 2242 OS << (NeedPlus ? " + " : "") 2243 << BaseOffs; 2244 NeedPlus = true; 2245 } 2246 2247 if (BaseReg) { 2248 OS << (NeedPlus ? " + " : "") 2249 << "Base:"; 2250 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2251 NeedPlus = true; 2252 } 2253 if (Scale) { 2254 OS << (NeedPlus ? " + " : "") 2255 << Scale << "*"; 2256 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2257 } 2258 2259 OS << ']'; 2260 } 2261 2262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2263 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2264 print(dbgs()); 2265 dbgs() << '\n'; 2266 } 2267 #endif 2268 2269 /// \brief This class provides transaction based operation on the IR. 2270 /// Every change made through this class is recorded in the internal state and 2271 /// can be undone (rollback) until commit is called. 2272 class TypePromotionTransaction { 2273 2274 /// \brief This represents the common interface of the individual transaction. 2275 /// Each class implements the logic for doing one specific modification on 2276 /// the IR via the TypePromotionTransaction. 2277 class TypePromotionAction { 2278 protected: 2279 /// The Instruction modified. 2280 Instruction *Inst; 2281 2282 public: 2283 /// \brief Constructor of the action. 2284 /// The constructor performs the related action on the IR. 2285 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2286 2287 virtual ~TypePromotionAction() {} 2288 2289 /// \brief Undo the modification done by this action. 2290 /// When this method is called, the IR must be in the same state as it was 2291 /// before this action was applied. 2292 /// \pre Undoing the action works if and only if the IR is in the exact same 2293 /// state as it was directly after this action was applied. 2294 virtual void undo() = 0; 2295 2296 /// \brief Advocate every change made by this action. 2297 /// When the results on the IR of the action are to be kept, it is important 2298 /// to call this function, otherwise hidden information may be kept forever. 2299 virtual void commit() { 2300 // Nothing to be done, this action is not doing anything. 2301 } 2302 }; 2303 2304 /// \brief Utility to remember the position of an instruction. 2305 class InsertionHandler { 2306 /// Position of an instruction. 2307 /// Either an instruction: 2308 /// - Is the first in a basic block: BB is used. 2309 /// - Has a previous instructon: PrevInst is used. 2310 union { 2311 Instruction *PrevInst; 2312 BasicBlock *BB; 2313 } Point; 2314 /// Remember whether or not the instruction had a previous instruction. 2315 bool HasPrevInstruction; 2316 2317 public: 2318 /// \brief Record the position of \p Inst. 2319 InsertionHandler(Instruction *Inst) { 2320 BasicBlock::iterator It = Inst->getIterator(); 2321 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2322 if (HasPrevInstruction) 2323 Point.PrevInst = &*--It; 2324 else 2325 Point.BB = Inst->getParent(); 2326 } 2327 2328 /// \brief Insert \p Inst at the recorded position. 2329 void insert(Instruction *Inst) { 2330 if (HasPrevInstruction) { 2331 if (Inst->getParent()) 2332 Inst->removeFromParent(); 2333 Inst->insertAfter(Point.PrevInst); 2334 } else { 2335 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2336 if (Inst->getParent()) 2337 Inst->moveBefore(Position); 2338 else 2339 Inst->insertBefore(Position); 2340 } 2341 } 2342 }; 2343 2344 /// \brief Move an instruction before another. 2345 class InstructionMoveBefore : public TypePromotionAction { 2346 /// Original position of the instruction. 2347 InsertionHandler Position; 2348 2349 public: 2350 /// \brief Move \p Inst before \p Before. 2351 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2352 : TypePromotionAction(Inst), Position(Inst) { 2353 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2354 Inst->moveBefore(Before); 2355 } 2356 2357 /// \brief Move the instruction back to its original position. 2358 void undo() override { 2359 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2360 Position.insert(Inst); 2361 } 2362 }; 2363 2364 /// \brief Set the operand of an instruction with a new value. 2365 class OperandSetter : public TypePromotionAction { 2366 /// Original operand of the instruction. 2367 Value *Origin; 2368 /// Index of the modified instruction. 2369 unsigned Idx; 2370 2371 public: 2372 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2373 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2374 : TypePromotionAction(Inst), Idx(Idx) { 2375 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2376 << "for:" << *Inst << "\n" 2377 << "with:" << *NewVal << "\n"); 2378 Origin = Inst->getOperand(Idx); 2379 Inst->setOperand(Idx, NewVal); 2380 } 2381 2382 /// \brief Restore the original value of the instruction. 2383 void undo() override { 2384 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2385 << "for: " << *Inst << "\n" 2386 << "with: " << *Origin << "\n"); 2387 Inst->setOperand(Idx, Origin); 2388 } 2389 }; 2390 2391 /// \brief Hide the operands of an instruction. 2392 /// Do as if this instruction was not using any of its operands. 2393 class OperandsHider : public TypePromotionAction { 2394 /// The list of original operands. 2395 SmallVector<Value *, 4> OriginalValues; 2396 2397 public: 2398 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2399 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2400 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2401 unsigned NumOpnds = Inst->getNumOperands(); 2402 OriginalValues.reserve(NumOpnds); 2403 for (unsigned It = 0; It < NumOpnds; ++It) { 2404 // Save the current operand. 2405 Value *Val = Inst->getOperand(It); 2406 OriginalValues.push_back(Val); 2407 // Set a dummy one. 2408 // We could use OperandSetter here, but that would imply an overhead 2409 // that we are not willing to pay. 2410 Inst->setOperand(It, UndefValue::get(Val->getType())); 2411 } 2412 } 2413 2414 /// \brief Restore the original list of uses. 2415 void undo() override { 2416 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2417 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2418 Inst->setOperand(It, OriginalValues[It]); 2419 } 2420 }; 2421 2422 /// \brief Build a truncate instruction. 2423 class TruncBuilder : public TypePromotionAction { 2424 Value *Val; 2425 public: 2426 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2427 /// result. 2428 /// trunc Opnd to Ty. 2429 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2430 IRBuilder<> Builder(Opnd); 2431 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2432 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2433 } 2434 2435 /// \brief Get the built value. 2436 Value *getBuiltValue() { return Val; } 2437 2438 /// \brief Remove the built instruction. 2439 void undo() override { 2440 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2441 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2442 IVal->eraseFromParent(); 2443 } 2444 }; 2445 2446 /// \brief Build a sign extension instruction. 2447 class SExtBuilder : public TypePromotionAction { 2448 Value *Val; 2449 public: 2450 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2451 /// result. 2452 /// sext Opnd to Ty. 2453 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2454 : TypePromotionAction(InsertPt) { 2455 IRBuilder<> Builder(InsertPt); 2456 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2457 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2458 } 2459 2460 /// \brief Get the built value. 2461 Value *getBuiltValue() { return Val; } 2462 2463 /// \brief Remove the built instruction. 2464 void undo() override { 2465 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2466 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2467 IVal->eraseFromParent(); 2468 } 2469 }; 2470 2471 /// \brief Build a zero extension instruction. 2472 class ZExtBuilder : public TypePromotionAction { 2473 Value *Val; 2474 public: 2475 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2476 /// result. 2477 /// zext Opnd to Ty. 2478 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2479 : TypePromotionAction(InsertPt) { 2480 IRBuilder<> Builder(InsertPt); 2481 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2482 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2483 } 2484 2485 /// \brief Get the built value. 2486 Value *getBuiltValue() { return Val; } 2487 2488 /// \brief Remove the built instruction. 2489 void undo() override { 2490 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2491 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2492 IVal->eraseFromParent(); 2493 } 2494 }; 2495 2496 /// \brief Mutate an instruction to another type. 2497 class TypeMutator : public TypePromotionAction { 2498 /// Record the original type. 2499 Type *OrigTy; 2500 2501 public: 2502 /// \brief Mutate the type of \p Inst into \p NewTy. 2503 TypeMutator(Instruction *Inst, Type *NewTy) 2504 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2505 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2506 << "\n"); 2507 Inst->mutateType(NewTy); 2508 } 2509 2510 /// \brief Mutate the instruction back to its original type. 2511 void undo() override { 2512 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2513 << "\n"); 2514 Inst->mutateType(OrigTy); 2515 } 2516 }; 2517 2518 /// \brief Replace the uses of an instruction by another instruction. 2519 class UsesReplacer : public TypePromotionAction { 2520 /// Helper structure to keep track of the replaced uses. 2521 struct InstructionAndIdx { 2522 /// The instruction using the instruction. 2523 Instruction *Inst; 2524 /// The index where this instruction is used for Inst. 2525 unsigned Idx; 2526 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2527 : Inst(Inst), Idx(Idx) {} 2528 }; 2529 2530 /// Keep track of the original uses (pair Instruction, Index). 2531 SmallVector<InstructionAndIdx, 4> OriginalUses; 2532 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2533 2534 public: 2535 /// \brief Replace all the use of \p Inst by \p New. 2536 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2537 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2538 << "\n"); 2539 // Record the original uses. 2540 for (Use &U : Inst->uses()) { 2541 Instruction *UserI = cast<Instruction>(U.getUser()); 2542 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2543 } 2544 // Now, we can replace the uses. 2545 Inst->replaceAllUsesWith(New); 2546 } 2547 2548 /// \brief Reassign the original uses of Inst to Inst. 2549 void undo() override { 2550 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2551 for (use_iterator UseIt = OriginalUses.begin(), 2552 EndIt = OriginalUses.end(); 2553 UseIt != EndIt; ++UseIt) { 2554 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2555 } 2556 } 2557 }; 2558 2559 /// \brief Remove an instruction from the IR. 2560 class InstructionRemover : public TypePromotionAction { 2561 /// Original position of the instruction. 2562 InsertionHandler Inserter; 2563 /// Helper structure to hide all the link to the instruction. In other 2564 /// words, this helps to do as if the instruction was removed. 2565 OperandsHider Hider; 2566 /// Keep track of the uses replaced, if any. 2567 UsesReplacer *Replacer; 2568 2569 public: 2570 /// \brief Remove all reference of \p Inst and optinally replace all its 2571 /// uses with New. 2572 /// \pre If !Inst->use_empty(), then New != nullptr 2573 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2574 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2575 Replacer(nullptr) { 2576 if (New) 2577 Replacer = new UsesReplacer(Inst, New); 2578 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2579 Inst->removeFromParent(); 2580 } 2581 2582 ~InstructionRemover() override { delete Replacer; } 2583 2584 /// \brief Really remove the instruction. 2585 void commit() override { delete Inst; } 2586 2587 /// \brief Resurrect the instruction and reassign it to the proper uses if 2588 /// new value was provided when build this action. 2589 void undo() override { 2590 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2591 Inserter.insert(Inst); 2592 if (Replacer) 2593 Replacer->undo(); 2594 Hider.undo(); 2595 } 2596 }; 2597 2598 public: 2599 /// Restoration point. 2600 /// The restoration point is a pointer to an action instead of an iterator 2601 /// because the iterator may be invalidated but not the pointer. 2602 typedef const TypePromotionAction *ConstRestorationPt; 2603 /// Advocate every changes made in that transaction. 2604 void commit(); 2605 /// Undo all the changes made after the given point. 2606 void rollback(ConstRestorationPt Point); 2607 /// Get the current restoration point. 2608 ConstRestorationPt getRestorationPoint() const; 2609 2610 /// \name API for IR modification with state keeping to support rollback. 2611 /// @{ 2612 /// Same as Instruction::setOperand. 2613 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2614 /// Same as Instruction::eraseFromParent. 2615 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2616 /// Same as Value::replaceAllUsesWith. 2617 void replaceAllUsesWith(Instruction *Inst, Value *New); 2618 /// Same as Value::mutateType. 2619 void mutateType(Instruction *Inst, Type *NewTy); 2620 /// Same as IRBuilder::createTrunc. 2621 Value *createTrunc(Instruction *Opnd, Type *Ty); 2622 /// Same as IRBuilder::createSExt. 2623 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2624 /// Same as IRBuilder::createZExt. 2625 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2626 /// Same as Instruction::moveBefore. 2627 void moveBefore(Instruction *Inst, Instruction *Before); 2628 /// @} 2629 2630 private: 2631 /// The ordered list of actions made so far. 2632 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2633 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2634 }; 2635 2636 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2637 Value *NewVal) { 2638 Actions.push_back( 2639 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2640 } 2641 2642 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2643 Value *NewVal) { 2644 Actions.push_back( 2645 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2646 } 2647 2648 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2649 Value *New) { 2650 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2651 } 2652 2653 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2654 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2655 } 2656 2657 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2658 Type *Ty) { 2659 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2660 Value *Val = Ptr->getBuiltValue(); 2661 Actions.push_back(std::move(Ptr)); 2662 return Val; 2663 } 2664 2665 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2666 Value *Opnd, Type *Ty) { 2667 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2668 Value *Val = Ptr->getBuiltValue(); 2669 Actions.push_back(std::move(Ptr)); 2670 return Val; 2671 } 2672 2673 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2674 Value *Opnd, Type *Ty) { 2675 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2676 Value *Val = Ptr->getBuiltValue(); 2677 Actions.push_back(std::move(Ptr)); 2678 return Val; 2679 } 2680 2681 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2682 Instruction *Before) { 2683 Actions.push_back( 2684 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2685 } 2686 2687 TypePromotionTransaction::ConstRestorationPt 2688 TypePromotionTransaction::getRestorationPoint() const { 2689 return !Actions.empty() ? Actions.back().get() : nullptr; 2690 } 2691 2692 void TypePromotionTransaction::commit() { 2693 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2694 ++It) 2695 (*It)->commit(); 2696 Actions.clear(); 2697 } 2698 2699 void TypePromotionTransaction::rollback( 2700 TypePromotionTransaction::ConstRestorationPt Point) { 2701 while (!Actions.empty() && Point != Actions.back().get()) { 2702 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2703 Curr->undo(); 2704 } 2705 } 2706 2707 /// \brief A helper class for matching addressing modes. 2708 /// 2709 /// This encapsulates the logic for matching the target-legal addressing modes. 2710 class AddressingModeMatcher { 2711 SmallVectorImpl<Instruction*> &AddrModeInsts; 2712 const TargetLowering &TLI; 2713 const TargetRegisterInfo &TRI; 2714 const DataLayout &DL; 2715 2716 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2717 /// the memory instruction that we're computing this address for. 2718 Type *AccessTy; 2719 unsigned AddrSpace; 2720 Instruction *MemoryInst; 2721 2722 /// This is the addressing mode that we're building up. This is 2723 /// part of the return value of this addressing mode matching stuff. 2724 ExtAddrMode &AddrMode; 2725 2726 /// The instructions inserted by other CodeGenPrepare optimizations. 2727 const SetOfInstrs &InsertedInsts; 2728 /// A map from the instructions to their type before promotion. 2729 InstrToOrigTy &PromotedInsts; 2730 /// The ongoing transaction where every action should be registered. 2731 TypePromotionTransaction &TPT; 2732 2733 /// This is set to true when we should not do profitability checks. 2734 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2735 bool IgnoreProfitability; 2736 2737 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2738 const TargetLowering &TLI, 2739 const TargetRegisterInfo &TRI, 2740 Type *AT, unsigned AS, 2741 Instruction *MI, ExtAddrMode &AM, 2742 const SetOfInstrs &InsertedInsts, 2743 InstrToOrigTy &PromotedInsts, 2744 TypePromotionTransaction &TPT) 2745 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2746 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2747 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2748 PromotedInsts(PromotedInsts), TPT(TPT) { 2749 IgnoreProfitability = false; 2750 } 2751 public: 2752 2753 /// Find the maximal addressing mode that a load/store of V can fold, 2754 /// give an access type of AccessTy. This returns a list of involved 2755 /// instructions in AddrModeInsts. 2756 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2757 /// optimizations. 2758 /// \p PromotedInsts maps the instructions to their type before promotion. 2759 /// \p The ongoing transaction where every action should be registered. 2760 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2761 Instruction *MemoryInst, 2762 SmallVectorImpl<Instruction*> &AddrModeInsts, 2763 const TargetLowering &TLI, 2764 const TargetRegisterInfo &TRI, 2765 const SetOfInstrs &InsertedInsts, 2766 InstrToOrigTy &PromotedInsts, 2767 TypePromotionTransaction &TPT) { 2768 ExtAddrMode Result; 2769 2770 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2771 AccessTy, AS, 2772 MemoryInst, Result, InsertedInsts, 2773 PromotedInsts, TPT).matchAddr(V, 0); 2774 (void)Success; assert(Success && "Couldn't select *anything*?"); 2775 return Result; 2776 } 2777 private: 2778 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2779 bool matchAddr(Value *V, unsigned Depth); 2780 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2781 bool *MovedAway = nullptr); 2782 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2783 ExtAddrMode &AMBefore, 2784 ExtAddrMode &AMAfter); 2785 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2786 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2787 Value *PromotedOperand) const; 2788 }; 2789 2790 /// Try adding ScaleReg*Scale to the current addressing mode. 2791 /// Return true and update AddrMode if this addr mode is legal for the target, 2792 /// false if not. 2793 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 2794 unsigned Depth) { 2795 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2796 // mode. Just process that directly. 2797 if (Scale == 1) 2798 return matchAddr(ScaleReg, Depth); 2799 2800 // If the scale is 0, it takes nothing to add this. 2801 if (Scale == 0) 2802 return true; 2803 2804 // If we already have a scale of this value, we can add to it, otherwise, we 2805 // need an available scale field. 2806 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2807 return false; 2808 2809 ExtAddrMode TestAddrMode = AddrMode; 2810 2811 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2812 // [A+B + A*7] -> [B+A*8]. 2813 TestAddrMode.Scale += Scale; 2814 TestAddrMode.ScaledReg = ScaleReg; 2815 2816 // If the new address isn't legal, bail out. 2817 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 2818 return false; 2819 2820 // It was legal, so commit it. 2821 AddrMode = TestAddrMode; 2822 2823 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2824 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2825 // X*Scale + C*Scale to addr mode. 2826 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2827 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2828 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2829 TestAddrMode.ScaledReg = AddLHS; 2830 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2831 2832 // If this addressing mode is legal, commit it and remember that we folded 2833 // this instruction. 2834 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 2835 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2836 AddrMode = TestAddrMode; 2837 return true; 2838 } 2839 } 2840 2841 // Otherwise, not (x+c)*scale, just return what we have. 2842 return true; 2843 } 2844 2845 /// This is a little filter, which returns true if an addressing computation 2846 /// involving I might be folded into a load/store accessing it. 2847 /// This doesn't need to be perfect, but needs to accept at least 2848 /// the set of instructions that MatchOperationAddr can. 2849 static bool MightBeFoldableInst(Instruction *I) { 2850 switch (I->getOpcode()) { 2851 case Instruction::BitCast: 2852 case Instruction::AddrSpaceCast: 2853 // Don't touch identity bitcasts. 2854 if (I->getType() == I->getOperand(0)->getType()) 2855 return false; 2856 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2857 case Instruction::PtrToInt: 2858 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2859 return true; 2860 case Instruction::IntToPtr: 2861 // We know the input is intptr_t, so this is foldable. 2862 return true; 2863 case Instruction::Add: 2864 return true; 2865 case Instruction::Mul: 2866 case Instruction::Shl: 2867 // Can only handle X*C and X << C. 2868 return isa<ConstantInt>(I->getOperand(1)); 2869 case Instruction::GetElementPtr: 2870 return true; 2871 default: 2872 return false; 2873 } 2874 } 2875 2876 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2877 /// \note \p Val is assumed to be the product of some type promotion. 2878 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2879 /// to be legal, as the non-promoted value would have had the same state. 2880 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 2881 const DataLayout &DL, Value *Val) { 2882 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2883 if (!PromotedInst) 2884 return false; 2885 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2886 // If the ISDOpcode is undefined, it was undefined before the promotion. 2887 if (!ISDOpcode) 2888 return true; 2889 // Otherwise, check if the promoted instruction is legal or not. 2890 return TLI.isOperationLegalOrCustom( 2891 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 2892 } 2893 2894 /// \brief Hepler class to perform type promotion. 2895 class TypePromotionHelper { 2896 /// \brief Utility function to check whether or not a sign or zero extension 2897 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2898 /// either using the operands of \p Inst or promoting \p Inst. 2899 /// The type of the extension is defined by \p IsSExt. 2900 /// In other words, check if: 2901 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2902 /// #1 Promotion applies: 2903 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2904 /// #2 Operand reuses: 2905 /// ext opnd1 to ConsideredExtType. 2906 /// \p PromotedInsts maps the instructions to their type before promotion. 2907 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2908 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2909 2910 /// \brief Utility function to determine if \p OpIdx should be promoted when 2911 /// promoting \p Inst. 2912 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2913 return !(isa<SelectInst>(Inst) && OpIdx == 0); 2914 } 2915 2916 /// \brief Utility function to promote the operand of \p Ext when this 2917 /// operand is a promotable trunc or sext or zext. 2918 /// \p PromotedInsts maps the instructions to their type before promotion. 2919 /// \p CreatedInstsCost[out] contains the cost of all instructions 2920 /// created to promote the operand of Ext. 2921 /// Newly added extensions are inserted in \p Exts. 2922 /// Newly added truncates are inserted in \p Truncs. 2923 /// Should never be called directly. 2924 /// \return The promoted value which is used instead of Ext. 2925 static Value *promoteOperandForTruncAndAnyExt( 2926 Instruction *Ext, TypePromotionTransaction &TPT, 2927 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2928 SmallVectorImpl<Instruction *> *Exts, 2929 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 2930 2931 /// \brief Utility function to promote the operand of \p Ext when this 2932 /// operand is promotable and is not a supported trunc or sext. 2933 /// \p PromotedInsts maps the instructions to their type before promotion. 2934 /// \p CreatedInstsCost[out] contains the cost of all the instructions 2935 /// created to promote the operand of Ext. 2936 /// Newly added extensions are inserted in \p Exts. 2937 /// Newly added truncates are inserted in \p Truncs. 2938 /// Should never be called directly. 2939 /// \return The promoted value which is used instead of Ext. 2940 static Value *promoteOperandForOther(Instruction *Ext, 2941 TypePromotionTransaction &TPT, 2942 InstrToOrigTy &PromotedInsts, 2943 unsigned &CreatedInstsCost, 2944 SmallVectorImpl<Instruction *> *Exts, 2945 SmallVectorImpl<Instruction *> *Truncs, 2946 const TargetLowering &TLI, bool IsSExt); 2947 2948 /// \see promoteOperandForOther. 2949 static Value *signExtendOperandForOther( 2950 Instruction *Ext, TypePromotionTransaction &TPT, 2951 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2952 SmallVectorImpl<Instruction *> *Exts, 2953 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2954 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2955 Exts, Truncs, TLI, true); 2956 } 2957 2958 /// \see promoteOperandForOther. 2959 static Value *zeroExtendOperandForOther( 2960 Instruction *Ext, TypePromotionTransaction &TPT, 2961 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 2962 SmallVectorImpl<Instruction *> *Exts, 2963 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 2964 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 2965 Exts, Truncs, TLI, false); 2966 } 2967 2968 public: 2969 /// Type for the utility function that promotes the operand of Ext. 2970 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2971 InstrToOrigTy &PromotedInsts, 2972 unsigned &CreatedInstsCost, 2973 SmallVectorImpl<Instruction *> *Exts, 2974 SmallVectorImpl<Instruction *> *Truncs, 2975 const TargetLowering &TLI); 2976 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2977 /// action to promote the operand of \p Ext instead of using Ext. 2978 /// \return NULL if no promotable action is possible with the current 2979 /// sign extension. 2980 /// \p InsertedInsts keeps track of all the instructions inserted by the 2981 /// other CodeGenPrepare optimizations. This information is important 2982 /// because we do not want to promote these instructions as CodeGenPrepare 2983 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2984 /// \p PromotedInsts maps the instructions to their type before promotion. 2985 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 2986 const TargetLowering &TLI, 2987 const InstrToOrigTy &PromotedInsts); 2988 }; 2989 2990 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2991 Type *ConsideredExtType, 2992 const InstrToOrigTy &PromotedInsts, 2993 bool IsSExt) { 2994 // The promotion helper does not know how to deal with vector types yet. 2995 // To be able to fix that, we would need to fix the places where we 2996 // statically extend, e.g., constants and such. 2997 if (Inst->getType()->isVectorTy()) 2998 return false; 2999 3000 // We can always get through zext. 3001 if (isa<ZExtInst>(Inst)) 3002 return true; 3003 3004 // sext(sext) is ok too. 3005 if (IsSExt && isa<SExtInst>(Inst)) 3006 return true; 3007 3008 // We can get through binary operator, if it is legal. In other words, the 3009 // binary operator must have a nuw or nsw flag. 3010 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3011 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3012 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3013 (IsSExt && BinOp->hasNoSignedWrap()))) 3014 return true; 3015 3016 // Check if we can do the following simplification. 3017 // ext(trunc(opnd)) --> ext(opnd) 3018 if (!isa<TruncInst>(Inst)) 3019 return false; 3020 3021 Value *OpndVal = Inst->getOperand(0); 3022 // Check if we can use this operand in the extension. 3023 // If the type is larger than the result type of the extension, we cannot. 3024 if (!OpndVal->getType()->isIntegerTy() || 3025 OpndVal->getType()->getIntegerBitWidth() > 3026 ConsideredExtType->getIntegerBitWidth()) 3027 return false; 3028 3029 // If the operand of the truncate is not an instruction, we will not have 3030 // any information on the dropped bits. 3031 // (Actually we could for constant but it is not worth the extra logic). 3032 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3033 if (!Opnd) 3034 return false; 3035 3036 // Check if the source of the type is narrow enough. 3037 // I.e., check that trunc just drops extended bits of the same kind of 3038 // the extension. 3039 // #1 get the type of the operand and check the kind of the extended bits. 3040 const Type *OpndType; 3041 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3042 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3043 OpndType = It->second.getPointer(); 3044 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3045 OpndType = Opnd->getOperand(0)->getType(); 3046 else 3047 return false; 3048 3049 // #2 check that the truncate just drops extended bits. 3050 return Inst->getType()->getIntegerBitWidth() >= 3051 OpndType->getIntegerBitWidth(); 3052 } 3053 3054 TypePromotionHelper::Action TypePromotionHelper::getAction( 3055 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3056 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3057 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3058 "Unexpected instruction type"); 3059 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3060 Type *ExtTy = Ext->getType(); 3061 bool IsSExt = isa<SExtInst>(Ext); 3062 // If the operand of the extension is not an instruction, we cannot 3063 // get through. 3064 // If it, check we can get through. 3065 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3066 return nullptr; 3067 3068 // Do not promote if the operand has been added by codegenprepare. 3069 // Otherwise, it means we are undoing an optimization that is likely to be 3070 // redone, thus causing potential infinite loop. 3071 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3072 return nullptr; 3073 3074 // SExt or Trunc instructions. 3075 // Return the related handler. 3076 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3077 isa<ZExtInst>(ExtOpnd)) 3078 return promoteOperandForTruncAndAnyExt; 3079 3080 // Regular instruction. 3081 // Abort early if we will have to insert non-free instructions. 3082 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3083 return nullptr; 3084 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3085 } 3086 3087 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3088 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3089 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3090 SmallVectorImpl<Instruction *> *Exts, 3091 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3092 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3093 // get through it and this method should not be called. 3094 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3095 Value *ExtVal = SExt; 3096 bool HasMergedNonFreeExt = false; 3097 if (isa<ZExtInst>(SExtOpnd)) { 3098 // Replace s|zext(zext(opnd)) 3099 // => zext(opnd). 3100 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3101 Value *ZExt = 3102 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3103 TPT.replaceAllUsesWith(SExt, ZExt); 3104 TPT.eraseInstruction(SExt); 3105 ExtVal = ZExt; 3106 } else { 3107 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3108 // => z|sext(opnd). 3109 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3110 } 3111 CreatedInstsCost = 0; 3112 3113 // Remove dead code. 3114 if (SExtOpnd->use_empty()) 3115 TPT.eraseInstruction(SExtOpnd); 3116 3117 // Check if the extension is still needed. 3118 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3119 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3120 if (ExtInst) { 3121 if (Exts) 3122 Exts->push_back(ExtInst); 3123 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3124 } 3125 return ExtVal; 3126 } 3127 3128 // At this point we have: ext ty opnd to ty. 3129 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3130 Value *NextVal = ExtInst->getOperand(0); 3131 TPT.eraseInstruction(ExtInst, NextVal); 3132 return NextVal; 3133 } 3134 3135 Value *TypePromotionHelper::promoteOperandForOther( 3136 Instruction *Ext, TypePromotionTransaction &TPT, 3137 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3138 SmallVectorImpl<Instruction *> *Exts, 3139 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3140 bool IsSExt) { 3141 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3142 // get through it and this method should not be called. 3143 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3144 CreatedInstsCost = 0; 3145 if (!ExtOpnd->hasOneUse()) { 3146 // ExtOpnd will be promoted. 3147 // All its uses, but Ext, will need to use a truncated value of the 3148 // promoted version. 3149 // Create the truncate now. 3150 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3151 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3152 ITrunc->removeFromParent(); 3153 // Insert it just after the definition. 3154 ITrunc->insertAfter(ExtOpnd); 3155 if (Truncs) 3156 Truncs->push_back(ITrunc); 3157 } 3158 3159 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3160 // Restore the operand of Ext (which has been replaced by the previous call 3161 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3162 TPT.setOperand(Ext, 0, ExtOpnd); 3163 } 3164 3165 // Get through the Instruction: 3166 // 1. Update its type. 3167 // 2. Replace the uses of Ext by Inst. 3168 // 3. Extend each operand that needs to be extended. 3169 3170 // Remember the original type of the instruction before promotion. 3171 // This is useful to know that the high bits are sign extended bits. 3172 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3173 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3174 // Step #1. 3175 TPT.mutateType(ExtOpnd, Ext->getType()); 3176 // Step #2. 3177 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3178 // Step #3. 3179 Instruction *ExtForOpnd = Ext; 3180 3181 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3182 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3183 ++OpIdx) { 3184 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3185 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3186 !shouldExtOperand(ExtOpnd, OpIdx)) { 3187 DEBUG(dbgs() << "No need to propagate\n"); 3188 continue; 3189 } 3190 // Check if we can statically extend the operand. 3191 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3192 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3193 DEBUG(dbgs() << "Statically extend\n"); 3194 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3195 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3196 : Cst->getValue().zext(BitWidth); 3197 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3198 continue; 3199 } 3200 // UndefValue are typed, so we have to statically sign extend them. 3201 if (isa<UndefValue>(Opnd)) { 3202 DEBUG(dbgs() << "Statically extend\n"); 3203 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3204 continue; 3205 } 3206 3207 // Otherwise we have to explicity sign extend the operand. 3208 // Check if Ext was reused to extend an operand. 3209 if (!ExtForOpnd) { 3210 // If yes, create a new one. 3211 DEBUG(dbgs() << "More operands to ext\n"); 3212 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3213 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3214 if (!isa<Instruction>(ValForExtOpnd)) { 3215 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3216 continue; 3217 } 3218 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3219 } 3220 if (Exts) 3221 Exts->push_back(ExtForOpnd); 3222 TPT.setOperand(ExtForOpnd, 0, Opnd); 3223 3224 // Move the sign extension before the insertion point. 3225 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3226 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3227 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3228 // If more sext are required, new instructions will have to be created. 3229 ExtForOpnd = nullptr; 3230 } 3231 if (ExtForOpnd == Ext) { 3232 DEBUG(dbgs() << "Extension is useless now\n"); 3233 TPT.eraseInstruction(Ext); 3234 } 3235 return ExtOpnd; 3236 } 3237 3238 /// Check whether or not promoting an instruction to a wider type is profitable. 3239 /// \p NewCost gives the cost of extension instructions created by the 3240 /// promotion. 3241 /// \p OldCost gives the cost of extension instructions before the promotion 3242 /// plus the number of instructions that have been 3243 /// matched in the addressing mode the promotion. 3244 /// \p PromotedOperand is the value that has been promoted. 3245 /// \return True if the promotion is profitable, false otherwise. 3246 bool AddressingModeMatcher::isPromotionProfitable( 3247 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3248 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3249 // The cost of the new extensions is greater than the cost of the 3250 // old extension plus what we folded. 3251 // This is not profitable. 3252 if (NewCost > OldCost) 3253 return false; 3254 if (NewCost < OldCost) 3255 return true; 3256 // The promotion is neutral but it may help folding the sign extension in 3257 // loads for instance. 3258 // Check that we did not create an illegal instruction. 3259 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3260 } 3261 3262 /// Given an instruction or constant expr, see if we can fold the operation 3263 /// into the addressing mode. If so, update the addressing mode and return 3264 /// true, otherwise return false without modifying AddrMode. 3265 /// If \p MovedAway is not NULL, it contains the information of whether or 3266 /// not AddrInst has to be folded into the addressing mode on success. 3267 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3268 /// because it has been moved away. 3269 /// Thus AddrInst must not be added in the matched instructions. 3270 /// This state can happen when AddrInst is a sext, since it may be moved away. 3271 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3272 /// not be referenced anymore. 3273 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3274 unsigned Depth, 3275 bool *MovedAway) { 3276 // Avoid exponential behavior on extremely deep expression trees. 3277 if (Depth >= 5) return false; 3278 3279 // By default, all matched instructions stay in place. 3280 if (MovedAway) 3281 *MovedAway = false; 3282 3283 switch (Opcode) { 3284 case Instruction::PtrToInt: 3285 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3286 return matchAddr(AddrInst->getOperand(0), Depth); 3287 case Instruction::IntToPtr: { 3288 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3289 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3290 // This inttoptr is a no-op if the integer type is pointer sized. 3291 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3292 return matchAddr(AddrInst->getOperand(0), Depth); 3293 return false; 3294 } 3295 case Instruction::BitCast: 3296 // BitCast is always a noop, and we can handle it as long as it is 3297 // int->int or pointer->pointer (we don't want int<->fp or something). 3298 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3299 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3300 // Don't touch identity bitcasts. These were probably put here by LSR, 3301 // and we don't want to mess around with them. Assume it knows what it 3302 // is doing. 3303 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3304 return matchAddr(AddrInst->getOperand(0), Depth); 3305 return false; 3306 case Instruction::AddrSpaceCast: { 3307 unsigned SrcAS 3308 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3309 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3310 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3311 return matchAddr(AddrInst->getOperand(0), Depth); 3312 return false; 3313 } 3314 case Instruction::Add: { 3315 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3316 ExtAddrMode BackupAddrMode = AddrMode; 3317 unsigned OldSize = AddrModeInsts.size(); 3318 // Start a transaction at this point. 3319 // The LHS may match but not the RHS. 3320 // Therefore, we need a higher level restoration point to undo partially 3321 // matched operation. 3322 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3323 TPT.getRestorationPoint(); 3324 3325 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3326 matchAddr(AddrInst->getOperand(0), Depth+1)) 3327 return true; 3328 3329 // Restore the old addr mode info. 3330 AddrMode = BackupAddrMode; 3331 AddrModeInsts.resize(OldSize); 3332 TPT.rollback(LastKnownGood); 3333 3334 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3335 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3336 matchAddr(AddrInst->getOperand(1), Depth+1)) 3337 return true; 3338 3339 // Otherwise we definitely can't merge the ADD in. 3340 AddrMode = BackupAddrMode; 3341 AddrModeInsts.resize(OldSize); 3342 TPT.rollback(LastKnownGood); 3343 break; 3344 } 3345 //case Instruction::Or: 3346 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3347 //break; 3348 case Instruction::Mul: 3349 case Instruction::Shl: { 3350 // Can only handle X*C and X << C. 3351 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3352 if (!RHS) 3353 return false; 3354 int64_t Scale = RHS->getSExtValue(); 3355 if (Opcode == Instruction::Shl) 3356 Scale = 1LL << Scale; 3357 3358 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3359 } 3360 case Instruction::GetElementPtr: { 3361 // Scan the GEP. We check it if it contains constant offsets and at most 3362 // one variable offset. 3363 int VariableOperand = -1; 3364 unsigned VariableScale = 0; 3365 3366 int64_t ConstantOffset = 0; 3367 gep_type_iterator GTI = gep_type_begin(AddrInst); 3368 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3369 if (StructType *STy = GTI.getStructTypeOrNull()) { 3370 const StructLayout *SL = DL.getStructLayout(STy); 3371 unsigned Idx = 3372 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3373 ConstantOffset += SL->getElementOffset(Idx); 3374 } else { 3375 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3376 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3377 ConstantOffset += CI->getSExtValue()*TypeSize; 3378 } else if (TypeSize) { // Scales of zero don't do anything. 3379 // We only allow one variable index at the moment. 3380 if (VariableOperand != -1) 3381 return false; 3382 3383 // Remember the variable index. 3384 VariableOperand = i; 3385 VariableScale = TypeSize; 3386 } 3387 } 3388 } 3389 3390 // A common case is for the GEP to only do a constant offset. In this case, 3391 // just add it to the disp field and check validity. 3392 if (VariableOperand == -1) { 3393 AddrMode.BaseOffs += ConstantOffset; 3394 if (ConstantOffset == 0 || 3395 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3396 // Check to see if we can fold the base pointer in too. 3397 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3398 return true; 3399 } 3400 AddrMode.BaseOffs -= ConstantOffset; 3401 return false; 3402 } 3403 3404 // Save the valid addressing mode in case we can't match. 3405 ExtAddrMode BackupAddrMode = AddrMode; 3406 unsigned OldSize = AddrModeInsts.size(); 3407 3408 // See if the scale and offset amount is valid for this target. 3409 AddrMode.BaseOffs += ConstantOffset; 3410 3411 // Match the base operand of the GEP. 3412 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3413 // If it couldn't be matched, just stuff the value in a register. 3414 if (AddrMode.HasBaseReg) { 3415 AddrMode = BackupAddrMode; 3416 AddrModeInsts.resize(OldSize); 3417 return false; 3418 } 3419 AddrMode.HasBaseReg = true; 3420 AddrMode.BaseReg = AddrInst->getOperand(0); 3421 } 3422 3423 // Match the remaining variable portion of the GEP. 3424 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3425 Depth)) { 3426 // If it couldn't be matched, try stuffing the base into a register 3427 // instead of matching it, and retrying the match of the scale. 3428 AddrMode = BackupAddrMode; 3429 AddrModeInsts.resize(OldSize); 3430 if (AddrMode.HasBaseReg) 3431 return false; 3432 AddrMode.HasBaseReg = true; 3433 AddrMode.BaseReg = AddrInst->getOperand(0); 3434 AddrMode.BaseOffs += ConstantOffset; 3435 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3436 VariableScale, Depth)) { 3437 // If even that didn't work, bail. 3438 AddrMode = BackupAddrMode; 3439 AddrModeInsts.resize(OldSize); 3440 return false; 3441 } 3442 } 3443 3444 return true; 3445 } 3446 case Instruction::SExt: 3447 case Instruction::ZExt: { 3448 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3449 if (!Ext) 3450 return false; 3451 3452 // Try to move this ext out of the way of the addressing mode. 3453 // Ask for a method for doing so. 3454 TypePromotionHelper::Action TPH = 3455 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3456 if (!TPH) 3457 return false; 3458 3459 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3460 TPT.getRestorationPoint(); 3461 unsigned CreatedInstsCost = 0; 3462 unsigned ExtCost = !TLI.isExtFree(Ext); 3463 Value *PromotedOperand = 3464 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3465 // SExt has been moved away. 3466 // Thus either it will be rematched later in the recursive calls or it is 3467 // gone. Anyway, we must not fold it into the addressing mode at this point. 3468 // E.g., 3469 // op = add opnd, 1 3470 // idx = ext op 3471 // addr = gep base, idx 3472 // is now: 3473 // promotedOpnd = ext opnd <- no match here 3474 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3475 // addr = gep base, op <- match 3476 if (MovedAway) 3477 *MovedAway = true; 3478 3479 assert(PromotedOperand && 3480 "TypePromotionHelper should have filtered out those cases"); 3481 3482 ExtAddrMode BackupAddrMode = AddrMode; 3483 unsigned OldSize = AddrModeInsts.size(); 3484 3485 if (!matchAddr(PromotedOperand, Depth) || 3486 // The total of the new cost is equal to the cost of the created 3487 // instructions. 3488 // The total of the old cost is equal to the cost of the extension plus 3489 // what we have saved in the addressing mode. 3490 !isPromotionProfitable(CreatedInstsCost, 3491 ExtCost + (AddrModeInsts.size() - OldSize), 3492 PromotedOperand)) { 3493 AddrMode = BackupAddrMode; 3494 AddrModeInsts.resize(OldSize); 3495 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3496 TPT.rollback(LastKnownGood); 3497 return false; 3498 } 3499 return true; 3500 } 3501 } 3502 return false; 3503 } 3504 3505 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3506 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3507 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3508 /// for the target. 3509 /// 3510 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3511 // Start a transaction at this point that we will rollback if the matching 3512 // fails. 3513 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3514 TPT.getRestorationPoint(); 3515 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3516 // Fold in immediates if legal for the target. 3517 AddrMode.BaseOffs += CI->getSExtValue(); 3518 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3519 return true; 3520 AddrMode.BaseOffs -= CI->getSExtValue(); 3521 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3522 // If this is a global variable, try to fold it into the addressing mode. 3523 if (!AddrMode.BaseGV) { 3524 AddrMode.BaseGV = GV; 3525 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3526 return true; 3527 AddrMode.BaseGV = nullptr; 3528 } 3529 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3530 ExtAddrMode BackupAddrMode = AddrMode; 3531 unsigned OldSize = AddrModeInsts.size(); 3532 3533 // Check to see if it is possible to fold this operation. 3534 bool MovedAway = false; 3535 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3536 // This instruction may have been moved away. If so, there is nothing 3537 // to check here. 3538 if (MovedAway) 3539 return true; 3540 // Okay, it's possible to fold this. Check to see if it is actually 3541 // *profitable* to do so. We use a simple cost model to avoid increasing 3542 // register pressure too much. 3543 if (I->hasOneUse() || 3544 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3545 AddrModeInsts.push_back(I); 3546 return true; 3547 } 3548 3549 // It isn't profitable to do this, roll back. 3550 //cerr << "NOT FOLDING: " << *I; 3551 AddrMode = BackupAddrMode; 3552 AddrModeInsts.resize(OldSize); 3553 TPT.rollback(LastKnownGood); 3554 } 3555 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3556 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3557 return true; 3558 TPT.rollback(LastKnownGood); 3559 } else if (isa<ConstantPointerNull>(Addr)) { 3560 // Null pointer gets folded without affecting the addressing mode. 3561 return true; 3562 } 3563 3564 // Worse case, the target should support [reg] addressing modes. :) 3565 if (!AddrMode.HasBaseReg) { 3566 AddrMode.HasBaseReg = true; 3567 AddrMode.BaseReg = Addr; 3568 // Still check for legality in case the target supports [imm] but not [i+r]. 3569 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3570 return true; 3571 AddrMode.HasBaseReg = false; 3572 AddrMode.BaseReg = nullptr; 3573 } 3574 3575 // If the base register is already taken, see if we can do [r+r]. 3576 if (AddrMode.Scale == 0) { 3577 AddrMode.Scale = 1; 3578 AddrMode.ScaledReg = Addr; 3579 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3580 return true; 3581 AddrMode.Scale = 0; 3582 AddrMode.ScaledReg = nullptr; 3583 } 3584 // Couldn't match. 3585 TPT.rollback(LastKnownGood); 3586 return false; 3587 } 3588 3589 /// Check to see if all uses of OpVal by the specified inline asm call are due 3590 /// to memory operands. If so, return true, otherwise return false. 3591 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3592 const TargetLowering &TLI, 3593 const TargetRegisterInfo &TRI) { 3594 const Function *F = CI->getParent()->getParent(); 3595 TargetLowering::AsmOperandInfoVector TargetConstraints = 3596 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3597 ImmutableCallSite(CI)); 3598 3599 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3600 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3601 3602 // Compute the constraint code and ConstraintType to use. 3603 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3604 3605 // If this asm operand is our Value*, and if it isn't an indirect memory 3606 // operand, we can't fold it! 3607 if (OpInfo.CallOperandVal == OpVal && 3608 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3609 !OpInfo.isIndirect)) 3610 return false; 3611 } 3612 3613 return true; 3614 } 3615 3616 /// Recursively walk all the uses of I until we find a memory use. 3617 /// If we find an obviously non-foldable instruction, return true. 3618 /// Add the ultimately found memory instructions to MemoryUses. 3619 static bool FindAllMemoryUses( 3620 Instruction *I, 3621 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3622 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3623 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3624 // If we already considered this instruction, we're done. 3625 if (!ConsideredInsts.insert(I).second) 3626 return false; 3627 3628 // If this is an obviously unfoldable instruction, bail out. 3629 if (!MightBeFoldableInst(I)) 3630 return true; 3631 3632 const bool OptSize = I->getFunction()->optForSize(); 3633 3634 // Loop over all the uses, recursively processing them. 3635 for (Use &U : I->uses()) { 3636 Instruction *UserI = cast<Instruction>(U.getUser()); 3637 3638 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3639 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3640 continue; 3641 } 3642 3643 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3644 unsigned opNo = U.getOperandNo(); 3645 if (opNo == 0) return true; // Storing addr, not into addr. 3646 MemoryUses.push_back(std::make_pair(SI, opNo)); 3647 continue; 3648 } 3649 3650 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3651 // If this is a cold call, we can sink the addressing calculation into 3652 // the cold path. See optimizeCallInst 3653 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3654 continue; 3655 3656 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3657 if (!IA) return true; 3658 3659 // If this is a memory operand, we're cool, otherwise bail out. 3660 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3661 return true; 3662 continue; 3663 } 3664 3665 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3666 return true; 3667 } 3668 3669 return false; 3670 } 3671 3672 /// Return true if Val is already known to be live at the use site that we're 3673 /// folding it into. If so, there is no cost to include it in the addressing 3674 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3675 /// instruction already. 3676 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3677 Value *KnownLive2) { 3678 // If Val is either of the known-live values, we know it is live! 3679 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3680 return true; 3681 3682 // All values other than instructions and arguments (e.g. constants) are live. 3683 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3684 3685 // If Val is a constant sized alloca in the entry block, it is live, this is 3686 // true because it is just a reference to the stack/frame pointer, which is 3687 // live for the whole function. 3688 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3689 if (AI->isStaticAlloca()) 3690 return true; 3691 3692 // Check to see if this value is already used in the memory instruction's 3693 // block. If so, it's already live into the block at the very least, so we 3694 // can reasonably fold it. 3695 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3696 } 3697 3698 /// It is possible for the addressing mode of the machine to fold the specified 3699 /// instruction into a load or store that ultimately uses it. 3700 /// However, the specified instruction has multiple uses. 3701 /// Given this, it may actually increase register pressure to fold it 3702 /// into the load. For example, consider this code: 3703 /// 3704 /// X = ... 3705 /// Y = X+1 3706 /// use(Y) -> nonload/store 3707 /// Z = Y+1 3708 /// load Z 3709 /// 3710 /// In this case, Y has multiple uses, and can be folded into the load of Z 3711 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3712 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3713 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3714 /// number of computations either. 3715 /// 3716 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3717 /// X was live across 'load Z' for other reasons, we actually *would* want to 3718 /// fold the addressing mode in the Z case. This would make Y die earlier. 3719 bool AddressingModeMatcher:: 3720 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3721 ExtAddrMode &AMAfter) { 3722 if (IgnoreProfitability) return true; 3723 3724 // AMBefore is the addressing mode before this instruction was folded into it, 3725 // and AMAfter is the addressing mode after the instruction was folded. Get 3726 // the set of registers referenced by AMAfter and subtract out those 3727 // referenced by AMBefore: this is the set of values which folding in this 3728 // address extends the lifetime of. 3729 // 3730 // Note that there are only two potential values being referenced here, 3731 // BaseReg and ScaleReg (global addresses are always available, as are any 3732 // folded immediates). 3733 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3734 3735 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3736 // lifetime wasn't extended by adding this instruction. 3737 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3738 BaseReg = nullptr; 3739 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3740 ScaledReg = nullptr; 3741 3742 // If folding this instruction (and it's subexprs) didn't extend any live 3743 // ranges, we're ok with it. 3744 if (!BaseReg && !ScaledReg) 3745 return true; 3746 3747 // If all uses of this instruction can have the address mode sunk into them, 3748 // we can remove the addressing mode and effectively trade one live register 3749 // for another (at worst.) In this context, folding an addressing mode into 3750 // the use is just a particularly nice way of sinking it. 3751 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3752 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3753 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3754 return false; // Has a non-memory, non-foldable use! 3755 3756 // Now that we know that all uses of this instruction are part of a chain of 3757 // computation involving only operations that could theoretically be folded 3758 // into a memory use, loop over each of these memory operation uses and see 3759 // if they could *actually* fold the instruction. The assumption is that 3760 // addressing modes are cheap and that duplicating the computation involved 3761 // many times is worthwhile, even on a fastpath. For sinking candidates 3762 // (i.e. cold call sites), this serves as a way to prevent excessive code 3763 // growth since most architectures have some reasonable small and fast way to 3764 // compute an effective address. (i.e LEA on x86) 3765 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3766 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3767 Instruction *User = MemoryUses[i].first; 3768 unsigned OpNo = MemoryUses[i].second; 3769 3770 // Get the access type of this use. If the use isn't a pointer, we don't 3771 // know what it accesses. 3772 Value *Address = User->getOperand(OpNo); 3773 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 3774 if (!AddrTy) 3775 return false; 3776 Type *AddressAccessTy = AddrTy->getElementType(); 3777 unsigned AS = AddrTy->getAddressSpace(); 3778 3779 // Do a match against the root of this address, ignoring profitability. This 3780 // will tell us if the addressing mode for the memory operation will 3781 // *actually* cover the shared instruction. 3782 ExtAddrMode Result; 3783 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3784 TPT.getRestorationPoint(); 3785 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 3786 AddressAccessTy, AS, 3787 MemoryInst, Result, InsertedInsts, 3788 PromotedInsts, TPT); 3789 Matcher.IgnoreProfitability = true; 3790 bool Success = Matcher.matchAddr(Address, 0); 3791 (void)Success; assert(Success && "Couldn't select *anything*?"); 3792 3793 // The match was to check the profitability, the changes made are not 3794 // part of the original matcher. Therefore, they should be dropped 3795 // otherwise the original matcher will not present the right state. 3796 TPT.rollback(LastKnownGood); 3797 3798 // If the match didn't cover I, then it won't be shared by it. 3799 if (!is_contained(MatchedAddrModeInsts, I)) 3800 return false; 3801 3802 MatchedAddrModeInsts.clear(); 3803 } 3804 3805 return true; 3806 } 3807 3808 } // end anonymous namespace 3809 3810 /// Return true if the specified values are defined in a 3811 /// different basic block than BB. 3812 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3813 if (Instruction *I = dyn_cast<Instruction>(V)) 3814 return I->getParent() != BB; 3815 return false; 3816 } 3817 3818 /// Sink addressing mode computation immediate before MemoryInst if doing so 3819 /// can be done without increasing register pressure. The need for the 3820 /// register pressure constraint means this can end up being an all or nothing 3821 /// decision for all uses of the same addressing computation. 3822 /// 3823 /// Load and Store Instructions often have addressing modes that can do 3824 /// significant amounts of computation. As such, instruction selection will try 3825 /// to get the load or store to do as much computation as possible for the 3826 /// program. The problem is that isel can only see within a single block. As 3827 /// such, we sink as much legal addressing mode work into the block as possible. 3828 /// 3829 /// This method is used to optimize both load/store and inline asms with memory 3830 /// operands. It's also used to sink addressing computations feeding into cold 3831 /// call sites into their (cold) basic block. 3832 /// 3833 /// The motivation for handling sinking into cold blocks is that doing so can 3834 /// both enable other address mode sinking (by satisfying the register pressure 3835 /// constraint above), and reduce register pressure globally (by removing the 3836 /// addressing mode computation from the fast path entirely.). 3837 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3838 Type *AccessTy, unsigned AddrSpace) { 3839 Value *Repl = Addr; 3840 3841 // Try to collapse single-value PHI nodes. This is necessary to undo 3842 // unprofitable PRE transformations. 3843 SmallVector<Value*, 8> worklist; 3844 SmallPtrSet<Value*, 16> Visited; 3845 worklist.push_back(Addr); 3846 3847 // Use a worklist to iteratively look through PHI nodes, and ensure that 3848 // the addressing mode obtained from the non-PHI roots of the graph 3849 // are equivalent. 3850 Value *Consensus = nullptr; 3851 unsigned NumUsesConsensus = 0; 3852 bool IsNumUsesConsensusValid = false; 3853 SmallVector<Instruction*, 16> AddrModeInsts; 3854 ExtAddrMode AddrMode; 3855 TypePromotionTransaction TPT; 3856 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3857 TPT.getRestorationPoint(); 3858 while (!worklist.empty()) { 3859 Value *V = worklist.back(); 3860 worklist.pop_back(); 3861 3862 // Break use-def graph loops. 3863 if (!Visited.insert(V).second) { 3864 Consensus = nullptr; 3865 break; 3866 } 3867 3868 // For a PHI node, push all of its incoming values. 3869 if (PHINode *P = dyn_cast<PHINode>(V)) { 3870 for (Value *IncValue : P->incoming_values()) 3871 worklist.push_back(IncValue); 3872 continue; 3873 } 3874 3875 // For non-PHIs, determine the addressing mode being computed. Note that 3876 // the result may differ depending on what other uses our candidate 3877 // addressing instructions might have. 3878 SmallVector<Instruction*, 16> NewAddrModeInsts; 3879 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3880 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 3881 InsertedInsts, PromotedInsts, TPT); 3882 3883 // This check is broken into two cases with very similar code to avoid using 3884 // getNumUses() as much as possible. Some values have a lot of uses, so 3885 // calling getNumUses() unconditionally caused a significant compile-time 3886 // regression. 3887 if (!Consensus) { 3888 Consensus = V; 3889 AddrMode = NewAddrMode; 3890 AddrModeInsts = NewAddrModeInsts; 3891 continue; 3892 } else if (NewAddrMode == AddrMode) { 3893 if (!IsNumUsesConsensusValid) { 3894 NumUsesConsensus = Consensus->getNumUses(); 3895 IsNumUsesConsensusValid = true; 3896 } 3897 3898 // Ensure that the obtained addressing mode is equivalent to that obtained 3899 // for all other roots of the PHI traversal. Also, when choosing one 3900 // such root as representative, select the one with the most uses in order 3901 // to keep the cost modeling heuristics in AddressingModeMatcher 3902 // applicable. 3903 unsigned NumUses = V->getNumUses(); 3904 if (NumUses > NumUsesConsensus) { 3905 Consensus = V; 3906 NumUsesConsensus = NumUses; 3907 AddrModeInsts = NewAddrModeInsts; 3908 } 3909 continue; 3910 } 3911 3912 Consensus = nullptr; 3913 break; 3914 } 3915 3916 // If the addressing mode couldn't be determined, or if multiple different 3917 // ones were determined, bail out now. 3918 if (!Consensus) { 3919 TPT.rollback(LastKnownGood); 3920 return false; 3921 } 3922 TPT.commit(); 3923 3924 // If all the instructions matched are already in this BB, don't do anything. 3925 if (none_of(AddrModeInsts, [&](Value *V) { 3926 return IsNonLocalValue(V, MemoryInst->getParent()); 3927 })) { 3928 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3929 return false; 3930 } 3931 3932 // Insert this computation right after this user. Since our caller is 3933 // scanning from the top of the BB to the bottom, reuse of the expr are 3934 // guaranteed to happen later. 3935 IRBuilder<> Builder(MemoryInst); 3936 3937 // Now that we determined the addressing expression we want to use and know 3938 // that we have to sink it into this block. Check to see if we have already 3939 // done this for some other load/store instr in this block. If so, reuse the 3940 // computation. 3941 Value *&SunkAddr = SunkAddrs[Addr]; 3942 if (SunkAddr) { 3943 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3944 << *MemoryInst << "\n"); 3945 if (SunkAddr->getType() != Addr->getType()) 3946 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3947 } else if (AddrSinkUsingGEPs || 3948 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3949 SubtargetInfo->useAA())) { 3950 // By default, we use the GEP-based method when AA is used later. This 3951 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3952 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3953 << *MemoryInst << "\n"); 3954 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 3955 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3956 3957 // First, find the pointer. 3958 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3959 ResultPtr = AddrMode.BaseReg; 3960 AddrMode.BaseReg = nullptr; 3961 } 3962 3963 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3964 // We can't add more than one pointer together, nor can we scale a 3965 // pointer (both of which seem meaningless). 3966 if (ResultPtr || AddrMode.Scale != 1) 3967 return false; 3968 3969 ResultPtr = AddrMode.ScaledReg; 3970 AddrMode.Scale = 0; 3971 } 3972 3973 if (AddrMode.BaseGV) { 3974 if (ResultPtr) 3975 return false; 3976 3977 ResultPtr = AddrMode.BaseGV; 3978 } 3979 3980 // If the real base value actually came from an inttoptr, then the matcher 3981 // will look through it and provide only the integer value. In that case, 3982 // use it here. 3983 if (!ResultPtr && AddrMode.BaseReg) { 3984 ResultPtr = 3985 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3986 AddrMode.BaseReg = nullptr; 3987 } else if (!ResultPtr && AddrMode.Scale == 1) { 3988 ResultPtr = 3989 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3990 AddrMode.Scale = 0; 3991 } 3992 3993 if (!ResultPtr && 3994 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3995 SunkAddr = Constant::getNullValue(Addr->getType()); 3996 } else if (!ResultPtr) { 3997 return false; 3998 } else { 3999 Type *I8PtrTy = 4000 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4001 Type *I8Ty = Builder.getInt8Ty(); 4002 4003 // Start with the base register. Do this first so that subsequent address 4004 // matching finds it last, which will prevent it from trying to match it 4005 // as the scaled value in case it happens to be a mul. That would be 4006 // problematic if we've sunk a different mul for the scale, because then 4007 // we'd end up sinking both muls. 4008 if (AddrMode.BaseReg) { 4009 Value *V = AddrMode.BaseReg; 4010 if (V->getType() != IntPtrTy) 4011 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4012 4013 ResultIndex = V; 4014 } 4015 4016 // Add the scale value. 4017 if (AddrMode.Scale) { 4018 Value *V = AddrMode.ScaledReg; 4019 if (V->getType() == IntPtrTy) { 4020 // done. 4021 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4022 cast<IntegerType>(V->getType())->getBitWidth()) { 4023 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4024 } else { 4025 // It is only safe to sign extend the BaseReg if we know that the math 4026 // required to create it did not overflow before we extend it. Since 4027 // the original IR value was tossed in favor of a constant back when 4028 // the AddrMode was created we need to bail out gracefully if widths 4029 // do not match instead of extending it. 4030 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4031 if (I && (ResultIndex != AddrMode.BaseReg)) 4032 I->eraseFromParent(); 4033 return false; 4034 } 4035 4036 if (AddrMode.Scale != 1) 4037 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4038 "sunkaddr"); 4039 if (ResultIndex) 4040 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4041 else 4042 ResultIndex = V; 4043 } 4044 4045 // Add in the Base Offset if present. 4046 if (AddrMode.BaseOffs) { 4047 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4048 if (ResultIndex) { 4049 // We need to add this separately from the scale above to help with 4050 // SDAG consecutive load/store merging. 4051 if (ResultPtr->getType() != I8PtrTy) 4052 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4053 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4054 } 4055 4056 ResultIndex = V; 4057 } 4058 4059 if (!ResultIndex) { 4060 SunkAddr = ResultPtr; 4061 } else { 4062 if (ResultPtr->getType() != I8PtrTy) 4063 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 4064 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4065 } 4066 4067 if (SunkAddr->getType() != Addr->getType()) 4068 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 4069 } 4070 } else { 4071 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4072 << *MemoryInst << "\n"); 4073 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4074 Value *Result = nullptr; 4075 4076 // Start with the base register. Do this first so that subsequent address 4077 // matching finds it last, which will prevent it from trying to match it 4078 // as the scaled value in case it happens to be a mul. That would be 4079 // problematic if we've sunk a different mul for the scale, because then 4080 // we'd end up sinking both muls. 4081 if (AddrMode.BaseReg) { 4082 Value *V = AddrMode.BaseReg; 4083 if (V->getType()->isPointerTy()) 4084 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4085 if (V->getType() != IntPtrTy) 4086 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4087 Result = V; 4088 } 4089 4090 // Add the scale value. 4091 if (AddrMode.Scale) { 4092 Value *V = AddrMode.ScaledReg; 4093 if (V->getType() == IntPtrTy) { 4094 // done. 4095 } else if (V->getType()->isPointerTy()) { 4096 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4097 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4098 cast<IntegerType>(V->getType())->getBitWidth()) { 4099 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4100 } else { 4101 // It is only safe to sign extend the BaseReg if we know that the math 4102 // required to create it did not overflow before we extend it. Since 4103 // the original IR value was tossed in favor of a constant back when 4104 // the AddrMode was created we need to bail out gracefully if widths 4105 // do not match instead of extending it. 4106 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4107 if (I && (Result != AddrMode.BaseReg)) 4108 I->eraseFromParent(); 4109 return false; 4110 } 4111 if (AddrMode.Scale != 1) 4112 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4113 "sunkaddr"); 4114 if (Result) 4115 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4116 else 4117 Result = V; 4118 } 4119 4120 // Add in the BaseGV if present. 4121 if (AddrMode.BaseGV) { 4122 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4123 if (Result) 4124 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4125 else 4126 Result = V; 4127 } 4128 4129 // Add in the Base Offset if present. 4130 if (AddrMode.BaseOffs) { 4131 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4132 if (Result) 4133 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4134 else 4135 Result = V; 4136 } 4137 4138 if (!Result) 4139 SunkAddr = Constant::getNullValue(Addr->getType()); 4140 else 4141 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4142 } 4143 4144 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4145 4146 // If we have no uses, recursively delete the value and all dead instructions 4147 // using it. 4148 if (Repl->use_empty()) { 4149 // This can cause recursive deletion, which can invalidate our iterator. 4150 // Use a WeakVH to hold onto it in case this happens. 4151 Value *CurValue = &*CurInstIterator; 4152 WeakVH IterHandle(CurValue); 4153 BasicBlock *BB = CurInstIterator->getParent(); 4154 4155 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4156 4157 if (IterHandle != CurValue) { 4158 // If the iterator instruction was recursively deleted, start over at the 4159 // start of the block. 4160 CurInstIterator = BB->begin(); 4161 SunkAddrs.clear(); 4162 } 4163 } 4164 ++NumMemoryInsts; 4165 return true; 4166 } 4167 4168 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4169 /// address computing into the block when possible / profitable. 4170 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4171 bool MadeChange = false; 4172 4173 const TargetRegisterInfo *TRI = 4174 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4175 TargetLowering::AsmOperandInfoVector TargetConstraints = 4176 TLI->ParseConstraints(*DL, TRI, CS); 4177 unsigned ArgNo = 0; 4178 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4179 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4180 4181 // Compute the constraint code and ConstraintType to use. 4182 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4183 4184 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4185 OpInfo.isIndirect) { 4186 Value *OpVal = CS->getArgOperand(ArgNo++); 4187 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4188 } else if (OpInfo.Type == InlineAsm::isInput) 4189 ArgNo++; 4190 } 4191 4192 return MadeChange; 4193 } 4194 4195 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4196 /// sign extensions. 4197 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4198 assert(!Inst->use_empty() && "Input must have at least one use"); 4199 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4200 bool IsSExt = isa<SExtInst>(FirstUser); 4201 Type *ExtTy = FirstUser->getType(); 4202 for (const User *U : Inst->users()) { 4203 const Instruction *UI = cast<Instruction>(U); 4204 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4205 return false; 4206 Type *CurTy = UI->getType(); 4207 // Same input and output types: Same instruction after CSE. 4208 if (CurTy == ExtTy) 4209 continue; 4210 4211 // If IsSExt is true, we are in this situation: 4212 // a = Inst 4213 // b = sext ty1 a to ty2 4214 // c = sext ty1 a to ty3 4215 // Assuming ty2 is shorter than ty3, this could be turned into: 4216 // a = Inst 4217 // b = sext ty1 a to ty2 4218 // c = sext ty2 b to ty3 4219 // However, the last sext is not free. 4220 if (IsSExt) 4221 return false; 4222 4223 // This is a ZExt, maybe this is free to extend from one type to another. 4224 // In that case, we would not account for a different use. 4225 Type *NarrowTy; 4226 Type *LargeTy; 4227 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4228 CurTy->getScalarType()->getIntegerBitWidth()) { 4229 NarrowTy = CurTy; 4230 LargeTy = ExtTy; 4231 } else { 4232 NarrowTy = ExtTy; 4233 LargeTy = CurTy; 4234 } 4235 4236 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4237 return false; 4238 } 4239 // All uses are the same or can be derived from one another for free. 4240 return true; 4241 } 4242 4243 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4244 /// load instruction. 4245 /// If an ext(load) can be formed, it is returned via \p LI for the load 4246 /// and \p Inst for the extension. 4247 /// Otherwise LI == nullptr and Inst == nullptr. 4248 /// When some promotion happened, \p TPT contains the proper state to 4249 /// revert them. 4250 /// 4251 /// \return true when promoting was necessary to expose the ext(load) 4252 /// opportunity, false otherwise. 4253 /// 4254 /// Example: 4255 /// \code 4256 /// %ld = load i32* %addr 4257 /// %add = add nuw i32 %ld, 4 4258 /// %zext = zext i32 %add to i64 4259 /// \endcode 4260 /// => 4261 /// \code 4262 /// %ld = load i32* %addr 4263 /// %zext = zext i32 %ld to i64 4264 /// %add = add nuw i64 %zext, 4 4265 /// \endcode 4266 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4267 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4268 LoadInst *&LI, Instruction *&Inst, 4269 const SmallVectorImpl<Instruction *> &Exts, 4270 unsigned CreatedInstsCost = 0) { 4271 // Iterate over all the extensions to see if one form an ext(load). 4272 for (auto I : Exts) { 4273 // Check if we directly have ext(load). 4274 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4275 Inst = I; 4276 // No promotion happened here. 4277 return false; 4278 } 4279 // Check whether or not we want to do any promotion. 4280 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4281 continue; 4282 // Get the action to perform the promotion. 4283 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4284 I, InsertedInsts, *TLI, PromotedInsts); 4285 // Check if we can promote. 4286 if (!TPH) 4287 continue; 4288 // Save the current state. 4289 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4290 TPT.getRestorationPoint(); 4291 SmallVector<Instruction *, 4> NewExts; 4292 unsigned NewCreatedInstsCost = 0; 4293 unsigned ExtCost = !TLI->isExtFree(I); 4294 // Promote. 4295 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4296 &NewExts, nullptr, *TLI); 4297 assert(PromotedVal && 4298 "TypePromotionHelper should have filtered out those cases"); 4299 4300 // We would be able to merge only one extension in a load. 4301 // Therefore, if we have more than 1 new extension we heuristically 4302 // cut this search path, because it means we degrade the code quality. 4303 // With exactly 2, the transformation is neutral, because we will merge 4304 // one extension but leave one. However, we optimistically keep going, 4305 // because the new extension may be removed too. 4306 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4307 // FIXME: It would be possible to propagate a negative value instead of 4308 // conservatively ceiling it to 0. 4309 TotalCreatedInstsCost = 4310 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4311 if (!StressExtLdPromotion && 4312 (TotalCreatedInstsCost > 1 || 4313 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4314 // The promotion is not profitable, rollback to the previous state. 4315 TPT.rollback(LastKnownGood); 4316 continue; 4317 } 4318 // The promotion is profitable. 4319 // Check if it exposes an ext(load). 4320 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4321 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4322 // If we have created a new extension, i.e., now we have two 4323 // extensions. We must make sure one of them is merged with 4324 // the load, otherwise we may degrade the code quality. 4325 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4326 // Promotion happened. 4327 return true; 4328 // If this does not help to expose an ext(load) then, rollback. 4329 TPT.rollback(LastKnownGood); 4330 } 4331 // None of the extension can form an ext(load). 4332 LI = nullptr; 4333 Inst = nullptr; 4334 return false; 4335 } 4336 4337 /// Move a zext or sext fed by a load into the same basic block as the load, 4338 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4339 /// extend into the load. 4340 /// \p I[in/out] the extension may be modified during the process if some 4341 /// promotions apply. 4342 /// 4343 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4344 // ExtLoad formation infrastructure requires TLI to be effective. 4345 if (!TLI) 4346 return false; 4347 4348 // Try to promote a chain of computation if it allows to form 4349 // an extended load. 4350 TypePromotionTransaction TPT; 4351 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4352 TPT.getRestorationPoint(); 4353 SmallVector<Instruction *, 1> Exts; 4354 Exts.push_back(I); 4355 // Look for a load being extended. 4356 LoadInst *LI = nullptr; 4357 Instruction *OldExt = I; 4358 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4359 if (!LI || !I) { 4360 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4361 "the code must remain the same"); 4362 I = OldExt; 4363 return false; 4364 } 4365 4366 // If they're already in the same block, there's nothing to do. 4367 // Make the cheap checks first if we did not promote. 4368 // If we promoted, we need to check if it is indeed profitable. 4369 if (!HasPromoted && LI->getParent() == I->getParent()) 4370 return false; 4371 4372 EVT VT = TLI->getValueType(*DL, I->getType()); 4373 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4374 4375 // If the load has other users and the truncate is not free, this probably 4376 // isn't worthwhile. 4377 if (!LI->hasOneUse() && 4378 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4379 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4380 I = OldExt; 4381 TPT.rollback(LastKnownGood); 4382 return false; 4383 } 4384 4385 // Check whether the target supports casts folded into loads. 4386 unsigned LType; 4387 if (isa<ZExtInst>(I)) 4388 LType = ISD::ZEXTLOAD; 4389 else { 4390 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4391 LType = ISD::SEXTLOAD; 4392 } 4393 if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4394 I = OldExt; 4395 TPT.rollback(LastKnownGood); 4396 return false; 4397 } 4398 4399 // Move the extend into the same block as the load, so that SelectionDAG 4400 // can fold it. 4401 TPT.commit(); 4402 I->removeFromParent(); 4403 I->insertAfter(LI); 4404 // CGP does not check if the zext would be speculatively executed when moved 4405 // to the same basic block as the load. Preserving its original location would 4406 // pessimize the debugging experience, as well as negatively impact the 4407 // quality of sample pgo. We don't want to use "line 0" as that has a 4408 // size cost in the line-table section and logically the zext can be seen as 4409 // part of the load. Therefore we conservatively reuse the same debug location 4410 // for the load and the zext. 4411 I->setDebugLoc(LI->getDebugLoc()); 4412 ++NumExtsMoved; 4413 return true; 4414 } 4415 4416 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4417 BasicBlock *DefBB = I->getParent(); 4418 4419 // If the result of a {s|z}ext and its source are both live out, rewrite all 4420 // other uses of the source with result of extension. 4421 Value *Src = I->getOperand(0); 4422 if (Src->hasOneUse()) 4423 return false; 4424 4425 // Only do this xform if truncating is free. 4426 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4427 return false; 4428 4429 // Only safe to perform the optimization if the source is also defined in 4430 // this block. 4431 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4432 return false; 4433 4434 bool DefIsLiveOut = false; 4435 for (User *U : I->users()) { 4436 Instruction *UI = cast<Instruction>(U); 4437 4438 // Figure out which BB this ext is used in. 4439 BasicBlock *UserBB = UI->getParent(); 4440 if (UserBB == DefBB) continue; 4441 DefIsLiveOut = true; 4442 break; 4443 } 4444 if (!DefIsLiveOut) 4445 return false; 4446 4447 // Make sure none of the uses are PHI nodes. 4448 for (User *U : Src->users()) { 4449 Instruction *UI = cast<Instruction>(U); 4450 BasicBlock *UserBB = UI->getParent(); 4451 if (UserBB == DefBB) continue; 4452 // Be conservative. We don't want this xform to end up introducing 4453 // reloads just before load / store instructions. 4454 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4455 return false; 4456 } 4457 4458 // InsertedTruncs - Only insert one trunc in each block once. 4459 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4460 4461 bool MadeChange = false; 4462 for (Use &U : Src->uses()) { 4463 Instruction *User = cast<Instruction>(U.getUser()); 4464 4465 // Figure out which BB this ext is used in. 4466 BasicBlock *UserBB = User->getParent(); 4467 if (UserBB == DefBB) continue; 4468 4469 // Both src and def are live in this block. Rewrite the use. 4470 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4471 4472 if (!InsertedTrunc) { 4473 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4474 assert(InsertPt != UserBB->end()); 4475 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4476 InsertedInsts.insert(InsertedTrunc); 4477 } 4478 4479 // Replace a use of the {s|z}ext source with a use of the result. 4480 U = InsertedTrunc; 4481 ++NumExtUses; 4482 MadeChange = true; 4483 } 4484 4485 return MadeChange; 4486 } 4487 4488 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4489 // just after the load if the target can fold this into one extload instruction, 4490 // with the hope of eliminating some of the other later "and" instructions using 4491 // the loaded value. "and"s that are made trivially redundant by the insertion 4492 // of the new "and" are removed by this function, while others (e.g. those whose 4493 // path from the load goes through a phi) are left for isel to potentially 4494 // remove. 4495 // 4496 // For example: 4497 // 4498 // b0: 4499 // x = load i32 4500 // ... 4501 // b1: 4502 // y = and x, 0xff 4503 // z = use y 4504 // 4505 // becomes: 4506 // 4507 // b0: 4508 // x = load i32 4509 // x' = and x, 0xff 4510 // ... 4511 // b1: 4512 // z = use x' 4513 // 4514 // whereas: 4515 // 4516 // b0: 4517 // x1 = load i32 4518 // ... 4519 // b1: 4520 // x2 = load i32 4521 // ... 4522 // b2: 4523 // x = phi x1, x2 4524 // y = and x, 0xff 4525 // 4526 // becomes (after a call to optimizeLoadExt for each load): 4527 // 4528 // b0: 4529 // x1 = load i32 4530 // x1' = and x1, 0xff 4531 // ... 4532 // b1: 4533 // x2 = load i32 4534 // x2' = and x2, 0xff 4535 // ... 4536 // b2: 4537 // x = phi x1', x2' 4538 // y = and x, 0xff 4539 // 4540 4541 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4542 4543 if (!Load->isSimple() || 4544 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4545 return false; 4546 4547 // Skip loads we've already transformed or have no reason to transform. 4548 if (Load->hasOneUse()) { 4549 User *LoadUser = *Load->user_begin(); 4550 if (cast<Instruction>(LoadUser)->getParent() == Load->getParent() && 4551 !dyn_cast<PHINode>(LoadUser)) 4552 return false; 4553 } 4554 4555 // Look at all uses of Load, looking through phis, to determine how many bits 4556 // of the loaded value are needed. 4557 SmallVector<Instruction *, 8> WorkList; 4558 SmallPtrSet<Instruction *, 16> Visited; 4559 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4560 for (auto *U : Load->users()) 4561 WorkList.push_back(cast<Instruction>(U)); 4562 4563 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4564 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4565 APInt DemandBits(BitWidth, 0); 4566 APInt WidestAndBits(BitWidth, 0); 4567 4568 while (!WorkList.empty()) { 4569 Instruction *I = WorkList.back(); 4570 WorkList.pop_back(); 4571 4572 // Break use-def graph loops. 4573 if (!Visited.insert(I).second) 4574 continue; 4575 4576 // For a PHI node, push all of its users. 4577 if (auto *Phi = dyn_cast<PHINode>(I)) { 4578 for (auto *U : Phi->users()) 4579 WorkList.push_back(cast<Instruction>(U)); 4580 continue; 4581 } 4582 4583 switch (I->getOpcode()) { 4584 case llvm::Instruction::And: { 4585 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4586 if (!AndC) 4587 return false; 4588 APInt AndBits = AndC->getValue(); 4589 DemandBits |= AndBits; 4590 // Keep track of the widest and mask we see. 4591 if (AndBits.ugt(WidestAndBits)) 4592 WidestAndBits = AndBits; 4593 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4594 AndsToMaybeRemove.push_back(I); 4595 break; 4596 } 4597 4598 case llvm::Instruction::Shl: { 4599 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4600 if (!ShlC) 4601 return false; 4602 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4603 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4604 DemandBits |= ShlDemandBits; 4605 break; 4606 } 4607 4608 case llvm::Instruction::Trunc: { 4609 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4610 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4611 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4612 DemandBits |= TruncBits; 4613 break; 4614 } 4615 4616 default: 4617 return false; 4618 } 4619 } 4620 4621 uint32_t ActiveBits = DemandBits.getActiveBits(); 4622 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4623 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4624 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4625 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4626 // followed by an AND. 4627 // TODO: Look into removing this restriction by fixing backends to either 4628 // return false for isLoadExtLegal for i1 or have them select this pattern to 4629 // a single instruction. 4630 // 4631 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4632 // mask, since these are the only ands that will be removed by isel. 4633 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4634 WidestAndBits != DemandBits) 4635 return false; 4636 4637 LLVMContext &Ctx = Load->getType()->getContext(); 4638 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4639 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4640 4641 // Reject cases that won't be matched as extloads. 4642 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4643 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4644 return false; 4645 4646 IRBuilder<> Builder(Load->getNextNode()); 4647 auto *NewAnd = dyn_cast<Instruction>( 4648 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4649 4650 // Replace all uses of load with new and (except for the use of load in the 4651 // new and itself). 4652 Load->replaceAllUsesWith(NewAnd); 4653 NewAnd->setOperand(0, Load); 4654 4655 // Remove any and instructions that are now redundant. 4656 for (auto *And : AndsToMaybeRemove) 4657 // Check that the and mask is the same as the one we decided to put on the 4658 // new and. 4659 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4660 And->replaceAllUsesWith(NewAnd); 4661 if (&*CurInstIterator == And) 4662 CurInstIterator = std::next(And->getIterator()); 4663 And->eraseFromParent(); 4664 ++NumAndUses; 4665 } 4666 4667 ++NumAndsAdded; 4668 return true; 4669 } 4670 4671 /// Check if V (an operand of a select instruction) is an expensive instruction 4672 /// that is only used once. 4673 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4674 auto *I = dyn_cast<Instruction>(V); 4675 // If it's safe to speculatively execute, then it should not have side 4676 // effects; therefore, it's safe to sink and possibly *not* execute. 4677 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4678 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4679 } 4680 4681 /// Returns true if a SelectInst should be turned into an explicit branch. 4682 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4683 const TargetLowering *TLI, 4684 SelectInst *SI) { 4685 // If even a predictable select is cheap, then a branch can't be cheaper. 4686 if (!TLI->isPredictableSelectExpensive()) 4687 return false; 4688 4689 // FIXME: This should use the same heuristics as IfConversion to determine 4690 // whether a select is better represented as a branch. 4691 4692 // If metadata tells us that the select condition is obviously predictable, 4693 // then we want to replace the select with a branch. 4694 uint64_t TrueWeight, FalseWeight; 4695 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4696 uint64_t Max = std::max(TrueWeight, FalseWeight); 4697 uint64_t Sum = TrueWeight + FalseWeight; 4698 if (Sum != 0) { 4699 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4700 if (Probability > TLI->getPredictableBranchThreshold()) 4701 return true; 4702 } 4703 } 4704 4705 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4706 4707 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4708 // comparison condition. If the compare has more than one use, there's 4709 // probably another cmov or setcc around, so it's not worth emitting a branch. 4710 if (!Cmp || !Cmp->hasOneUse()) 4711 return false; 4712 4713 // If either operand of the select is expensive and only needed on one side 4714 // of the select, we should form a branch. 4715 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4716 sinkSelectOperand(TTI, SI->getFalseValue())) 4717 return true; 4718 4719 return false; 4720 } 4721 4722 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4723 /// false value of \p SI. If the true/false value of \p SI is defined by any 4724 /// select instructions in \p Selects, look through the defining select 4725 /// instruction until the true/false value is not defined in \p Selects. 4726 static Value *getTrueOrFalseValue( 4727 SelectInst *SI, bool isTrue, 4728 const SmallPtrSet<const Instruction *, 2> &Selects) { 4729 Value *V; 4730 4731 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4732 DefSI = dyn_cast<SelectInst>(V)) { 4733 assert(DefSI->getCondition() == SI->getCondition() && 4734 "The condition of DefSI does not match with SI"); 4735 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4736 } 4737 return V; 4738 } 4739 4740 /// If we have a SelectInst that will likely profit from branch prediction, 4741 /// turn it into a branch. 4742 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4743 // Find all consecutive select instructions that share the same condition. 4744 SmallVector<SelectInst *, 2> ASI; 4745 ASI.push_back(SI); 4746 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4747 It != SI->getParent()->end(); ++It) { 4748 SelectInst *I = dyn_cast<SelectInst>(&*It); 4749 if (I && SI->getCondition() == I->getCondition()) { 4750 ASI.push_back(I); 4751 } else { 4752 break; 4753 } 4754 } 4755 4756 SelectInst *LastSI = ASI.back(); 4757 // Increment the current iterator to skip all the rest of select instructions 4758 // because they will be either "not lowered" or "all lowered" to branch. 4759 CurInstIterator = std::next(LastSI->getIterator()); 4760 4761 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4762 4763 // Can we convert the 'select' to CF ? 4764 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4765 SI->getMetadata(LLVMContext::MD_unpredictable)) 4766 return false; 4767 4768 TargetLowering::SelectSupportKind SelectKind; 4769 if (VectorCond) 4770 SelectKind = TargetLowering::VectorMaskSelect; 4771 else if (SI->getType()->isVectorTy()) 4772 SelectKind = TargetLowering::ScalarCondVectorVal; 4773 else 4774 SelectKind = TargetLowering::ScalarValSelect; 4775 4776 if (TLI->isSelectSupported(SelectKind) && 4777 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 4778 return false; 4779 4780 ModifiedDT = true; 4781 4782 // Transform a sequence like this: 4783 // start: 4784 // %cmp = cmp uge i32 %a, %b 4785 // %sel = select i1 %cmp, i32 %c, i32 %d 4786 // 4787 // Into: 4788 // start: 4789 // %cmp = cmp uge i32 %a, %b 4790 // br i1 %cmp, label %select.true, label %select.false 4791 // select.true: 4792 // br label %select.end 4793 // select.false: 4794 // br label %select.end 4795 // select.end: 4796 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 4797 // 4798 // In addition, we may sink instructions that produce %c or %d from 4799 // the entry block into the destination(s) of the new branch. 4800 // If the true or false blocks do not contain a sunken instruction, that 4801 // block and its branch may be optimized away. In that case, one side of the 4802 // first branch will point directly to select.end, and the corresponding PHI 4803 // predecessor block will be the start block. 4804 4805 // First, we split the block containing the select into 2 blocks. 4806 BasicBlock *StartBlock = SI->getParent(); 4807 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 4808 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 4809 4810 // Delete the unconditional branch that was just created by the split. 4811 StartBlock->getTerminator()->eraseFromParent(); 4812 4813 // These are the new basic blocks for the conditional branch. 4814 // At least one will become an actual new basic block. 4815 BasicBlock *TrueBlock = nullptr; 4816 BasicBlock *FalseBlock = nullptr; 4817 BranchInst *TrueBranch = nullptr; 4818 BranchInst *FalseBranch = nullptr; 4819 4820 // Sink expensive instructions into the conditional blocks to avoid executing 4821 // them speculatively. 4822 for (SelectInst *SI : ASI) { 4823 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 4824 if (TrueBlock == nullptr) { 4825 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 4826 EndBlock->getParent(), EndBlock); 4827 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 4828 } 4829 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 4830 TrueInst->moveBefore(TrueBranch); 4831 } 4832 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 4833 if (FalseBlock == nullptr) { 4834 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 4835 EndBlock->getParent(), EndBlock); 4836 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 4837 } 4838 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 4839 FalseInst->moveBefore(FalseBranch); 4840 } 4841 } 4842 4843 // If there was nothing to sink, then arbitrarily choose the 'false' side 4844 // for a new input value to the PHI. 4845 if (TrueBlock == FalseBlock) { 4846 assert(TrueBlock == nullptr && 4847 "Unexpected basic block transform while optimizing select"); 4848 4849 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 4850 EndBlock->getParent(), EndBlock); 4851 BranchInst::Create(EndBlock, FalseBlock); 4852 } 4853 4854 // Insert the real conditional branch based on the original condition. 4855 // If we did not create a new block for one of the 'true' or 'false' paths 4856 // of the condition, it means that side of the branch goes to the end block 4857 // directly and the path originates from the start block from the point of 4858 // view of the new PHI. 4859 BasicBlock *TT, *FT; 4860 if (TrueBlock == nullptr) { 4861 TT = EndBlock; 4862 FT = FalseBlock; 4863 TrueBlock = StartBlock; 4864 } else if (FalseBlock == nullptr) { 4865 TT = TrueBlock; 4866 FT = EndBlock; 4867 FalseBlock = StartBlock; 4868 } else { 4869 TT = TrueBlock; 4870 FT = FalseBlock; 4871 } 4872 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 4873 4874 SmallPtrSet<const Instruction *, 2> INS; 4875 INS.insert(ASI.begin(), ASI.end()); 4876 // Use reverse iterator because later select may use the value of the 4877 // earlier select, and we need to propagate value through earlier select 4878 // to get the PHI operand. 4879 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 4880 SelectInst *SI = *It; 4881 // The select itself is replaced with a PHI Node. 4882 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 4883 PN->takeName(SI); 4884 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 4885 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 4886 4887 SI->replaceAllUsesWith(PN); 4888 SI->eraseFromParent(); 4889 INS.erase(SI); 4890 ++NumSelectsExpanded; 4891 } 4892 4893 // Instruct OptimizeBlock to skip to the next block. 4894 CurInstIterator = StartBlock->end(); 4895 return true; 4896 } 4897 4898 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 4899 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 4900 int SplatElem = -1; 4901 for (unsigned i = 0; i < Mask.size(); ++i) { 4902 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 4903 return false; 4904 SplatElem = Mask[i]; 4905 } 4906 4907 return true; 4908 } 4909 4910 /// Some targets have expensive vector shifts if the lanes aren't all the same 4911 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 4912 /// it's often worth sinking a shufflevector splat down to its use so that 4913 /// codegen can spot all lanes are identical. 4914 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 4915 BasicBlock *DefBB = SVI->getParent(); 4916 4917 // Only do this xform if variable vector shifts are particularly expensive. 4918 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 4919 return false; 4920 4921 // We only expect better codegen by sinking a shuffle if we can recognise a 4922 // constant splat. 4923 if (!isBroadcastShuffle(SVI)) 4924 return false; 4925 4926 // InsertedShuffles - Only insert a shuffle in each block once. 4927 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 4928 4929 bool MadeChange = false; 4930 for (User *U : SVI->users()) { 4931 Instruction *UI = cast<Instruction>(U); 4932 4933 // Figure out which BB this ext is used in. 4934 BasicBlock *UserBB = UI->getParent(); 4935 if (UserBB == DefBB) continue; 4936 4937 // For now only apply this when the splat is used by a shift instruction. 4938 if (!UI->isShift()) continue; 4939 4940 // Everything checks out, sink the shuffle if the user's block doesn't 4941 // already have a copy. 4942 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 4943 4944 if (!InsertedShuffle) { 4945 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4946 assert(InsertPt != UserBB->end()); 4947 InsertedShuffle = 4948 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4949 SVI->getOperand(2), "", &*InsertPt); 4950 } 4951 4952 UI->replaceUsesOfWith(SVI, InsertedShuffle); 4953 MadeChange = true; 4954 } 4955 4956 // If we removed all uses, nuke the shuffle. 4957 if (SVI->use_empty()) { 4958 SVI->eraseFromParent(); 4959 MadeChange = true; 4960 } 4961 4962 return MadeChange; 4963 } 4964 4965 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 4966 if (!TLI || !DL) 4967 return false; 4968 4969 Value *Cond = SI->getCondition(); 4970 Type *OldType = Cond->getType(); 4971 LLVMContext &Context = Cond->getContext(); 4972 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 4973 unsigned RegWidth = RegType.getSizeInBits(); 4974 4975 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 4976 return false; 4977 4978 // If the register width is greater than the type width, expand the condition 4979 // of the switch instruction and each case constant to the width of the 4980 // register. By widening the type of the switch condition, subsequent 4981 // comparisons (for case comparisons) will not need to be extended to the 4982 // preferred register width, so we will potentially eliminate N-1 extends, 4983 // where N is the number of cases in the switch. 4984 auto *NewType = Type::getIntNTy(Context, RegWidth); 4985 4986 // Zero-extend the switch condition and case constants unless the switch 4987 // condition is a function argument that is already being sign-extended. 4988 // In that case, we can avoid an unnecessary mask/extension by sign-extending 4989 // everything instead. 4990 Instruction::CastOps ExtType = Instruction::ZExt; 4991 if (auto *Arg = dyn_cast<Argument>(Cond)) 4992 if (Arg->hasSExtAttr()) 4993 ExtType = Instruction::SExt; 4994 4995 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 4996 ExtInst->insertBefore(SI); 4997 SI->setCondition(ExtInst); 4998 for (SwitchInst::CaseIt Case : SI->cases()) { 4999 APInt NarrowConst = Case.getCaseValue()->getValue(); 5000 APInt WideConst = (ExtType == Instruction::ZExt) ? 5001 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5002 Case.setValue(ConstantInt::get(Context, WideConst)); 5003 } 5004 5005 return true; 5006 } 5007 5008 namespace { 5009 /// \brief Helper class to promote a scalar operation to a vector one. 5010 /// This class is used to move downward extractelement transition. 5011 /// E.g., 5012 /// a = vector_op <2 x i32> 5013 /// b = extractelement <2 x i32> a, i32 0 5014 /// c = scalar_op b 5015 /// store c 5016 /// 5017 /// => 5018 /// a = vector_op <2 x i32> 5019 /// c = vector_op a (equivalent to scalar_op on the related lane) 5020 /// * d = extractelement <2 x i32> c, i32 0 5021 /// * store d 5022 /// Assuming both extractelement and store can be combine, we get rid of the 5023 /// transition. 5024 class VectorPromoteHelper { 5025 /// DataLayout associated with the current module. 5026 const DataLayout &DL; 5027 5028 /// Used to perform some checks on the legality of vector operations. 5029 const TargetLowering &TLI; 5030 5031 /// Used to estimated the cost of the promoted chain. 5032 const TargetTransformInfo &TTI; 5033 5034 /// The transition being moved downwards. 5035 Instruction *Transition; 5036 /// The sequence of instructions to be promoted. 5037 SmallVector<Instruction *, 4> InstsToBePromoted; 5038 /// Cost of combining a store and an extract. 5039 unsigned StoreExtractCombineCost; 5040 /// Instruction that will be combined with the transition. 5041 Instruction *CombineInst; 5042 5043 /// \brief The instruction that represents the current end of the transition. 5044 /// Since we are faking the promotion until we reach the end of the chain 5045 /// of computation, we need a way to get the current end of the transition. 5046 Instruction *getEndOfTransition() const { 5047 if (InstsToBePromoted.empty()) 5048 return Transition; 5049 return InstsToBePromoted.back(); 5050 } 5051 5052 /// \brief Return the index of the original value in the transition. 5053 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5054 /// c, is at index 0. 5055 unsigned getTransitionOriginalValueIdx() const { 5056 assert(isa<ExtractElementInst>(Transition) && 5057 "Other kind of transitions are not supported yet"); 5058 return 0; 5059 } 5060 5061 /// \brief Return the index of the index in the transition. 5062 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5063 /// is at index 1. 5064 unsigned getTransitionIdx() const { 5065 assert(isa<ExtractElementInst>(Transition) && 5066 "Other kind of transitions are not supported yet"); 5067 return 1; 5068 } 5069 5070 /// \brief Get the type of the transition. 5071 /// This is the type of the original value. 5072 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5073 /// transition is <2 x i32>. 5074 Type *getTransitionType() const { 5075 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5076 } 5077 5078 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5079 /// I.e., we have the following sequence: 5080 /// Def = Transition <ty1> a to <ty2> 5081 /// b = ToBePromoted <ty2> Def, ... 5082 /// => 5083 /// b = ToBePromoted <ty1> a, ... 5084 /// Def = Transition <ty1> ToBePromoted to <ty2> 5085 void promoteImpl(Instruction *ToBePromoted); 5086 5087 /// \brief Check whether or not it is profitable to promote all the 5088 /// instructions enqueued to be promoted. 5089 bool isProfitableToPromote() { 5090 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5091 unsigned Index = isa<ConstantInt>(ValIdx) 5092 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5093 : -1; 5094 Type *PromotedType = getTransitionType(); 5095 5096 StoreInst *ST = cast<StoreInst>(CombineInst); 5097 unsigned AS = ST->getPointerAddressSpace(); 5098 unsigned Align = ST->getAlignment(); 5099 // Check if this store is supported. 5100 if (!TLI.allowsMisalignedMemoryAccesses( 5101 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5102 Align)) { 5103 // If this is not supported, there is no way we can combine 5104 // the extract with the store. 5105 return false; 5106 } 5107 5108 // The scalar chain of computation has to pay for the transition 5109 // scalar to vector. 5110 // The vector chain has to account for the combining cost. 5111 uint64_t ScalarCost = 5112 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5113 uint64_t VectorCost = StoreExtractCombineCost; 5114 for (const auto &Inst : InstsToBePromoted) { 5115 // Compute the cost. 5116 // By construction, all instructions being promoted are arithmetic ones. 5117 // Moreover, one argument is a constant that can be viewed as a splat 5118 // constant. 5119 Value *Arg0 = Inst->getOperand(0); 5120 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5121 isa<ConstantFP>(Arg0); 5122 TargetTransformInfo::OperandValueKind Arg0OVK = 5123 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5124 : TargetTransformInfo::OK_AnyValue; 5125 TargetTransformInfo::OperandValueKind Arg1OVK = 5126 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5127 : TargetTransformInfo::OK_AnyValue; 5128 ScalarCost += TTI.getArithmeticInstrCost( 5129 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5130 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5131 Arg0OVK, Arg1OVK); 5132 } 5133 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5134 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5135 return ScalarCost > VectorCost; 5136 } 5137 5138 /// \brief Generate a constant vector with \p Val with the same 5139 /// number of elements as the transition. 5140 /// \p UseSplat defines whether or not \p Val should be replicated 5141 /// across the whole vector. 5142 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5143 /// otherwise we generate a vector with as many undef as possible: 5144 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5145 /// used at the index of the extract. 5146 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5147 unsigned ExtractIdx = UINT_MAX; 5148 if (!UseSplat) { 5149 // If we cannot determine where the constant must be, we have to 5150 // use a splat constant. 5151 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5152 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5153 ExtractIdx = CstVal->getSExtValue(); 5154 else 5155 UseSplat = true; 5156 } 5157 5158 unsigned End = getTransitionType()->getVectorNumElements(); 5159 if (UseSplat) 5160 return ConstantVector::getSplat(End, Val); 5161 5162 SmallVector<Constant *, 4> ConstVec; 5163 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5164 for (unsigned Idx = 0; Idx != End; ++Idx) { 5165 if (Idx == ExtractIdx) 5166 ConstVec.push_back(Val); 5167 else 5168 ConstVec.push_back(UndefVal); 5169 } 5170 return ConstantVector::get(ConstVec); 5171 } 5172 5173 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5174 /// in \p Use can trigger undefined behavior. 5175 static bool canCauseUndefinedBehavior(const Instruction *Use, 5176 unsigned OperandIdx) { 5177 // This is not safe to introduce undef when the operand is on 5178 // the right hand side of a division-like instruction. 5179 if (OperandIdx != 1) 5180 return false; 5181 switch (Use->getOpcode()) { 5182 default: 5183 return false; 5184 case Instruction::SDiv: 5185 case Instruction::UDiv: 5186 case Instruction::SRem: 5187 case Instruction::URem: 5188 return true; 5189 case Instruction::FDiv: 5190 case Instruction::FRem: 5191 return !Use->hasNoNaNs(); 5192 } 5193 llvm_unreachable(nullptr); 5194 } 5195 5196 public: 5197 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5198 const TargetTransformInfo &TTI, Instruction *Transition, 5199 unsigned CombineCost) 5200 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5201 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5202 assert(Transition && "Do not know how to promote null"); 5203 } 5204 5205 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5206 bool canPromote(const Instruction *ToBePromoted) const { 5207 // We could support CastInst too. 5208 return isa<BinaryOperator>(ToBePromoted); 5209 } 5210 5211 /// \brief Check if it is profitable to promote \p ToBePromoted 5212 /// by moving downward the transition through. 5213 bool shouldPromote(const Instruction *ToBePromoted) const { 5214 // Promote only if all the operands can be statically expanded. 5215 // Indeed, we do not want to introduce any new kind of transitions. 5216 for (const Use &U : ToBePromoted->operands()) { 5217 const Value *Val = U.get(); 5218 if (Val == getEndOfTransition()) { 5219 // If the use is a division and the transition is on the rhs, 5220 // we cannot promote the operation, otherwise we may create a 5221 // division by zero. 5222 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5223 return false; 5224 continue; 5225 } 5226 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5227 !isa<ConstantFP>(Val)) 5228 return false; 5229 } 5230 // Check that the resulting operation is legal. 5231 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5232 if (!ISDOpcode) 5233 return false; 5234 return StressStoreExtract || 5235 TLI.isOperationLegalOrCustom( 5236 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5237 } 5238 5239 /// \brief Check whether or not \p Use can be combined 5240 /// with the transition. 5241 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5242 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5243 5244 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5245 void enqueueForPromotion(Instruction *ToBePromoted) { 5246 InstsToBePromoted.push_back(ToBePromoted); 5247 } 5248 5249 /// \brief Set the instruction that will be combined with the transition. 5250 void recordCombineInstruction(Instruction *ToBeCombined) { 5251 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5252 CombineInst = ToBeCombined; 5253 } 5254 5255 /// \brief Promote all the instructions enqueued for promotion if it is 5256 /// is profitable. 5257 /// \return True if the promotion happened, false otherwise. 5258 bool promote() { 5259 // Check if there is something to promote. 5260 // Right now, if we do not have anything to combine with, 5261 // we assume the promotion is not profitable. 5262 if (InstsToBePromoted.empty() || !CombineInst) 5263 return false; 5264 5265 // Check cost. 5266 if (!StressStoreExtract && !isProfitableToPromote()) 5267 return false; 5268 5269 // Promote. 5270 for (auto &ToBePromoted : InstsToBePromoted) 5271 promoteImpl(ToBePromoted); 5272 InstsToBePromoted.clear(); 5273 return true; 5274 } 5275 }; 5276 } // End of anonymous namespace. 5277 5278 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5279 // At this point, we know that all the operands of ToBePromoted but Def 5280 // can be statically promoted. 5281 // For Def, we need to use its parameter in ToBePromoted: 5282 // b = ToBePromoted ty1 a 5283 // Def = Transition ty1 b to ty2 5284 // Move the transition down. 5285 // 1. Replace all uses of the promoted operation by the transition. 5286 // = ... b => = ... Def. 5287 assert(ToBePromoted->getType() == Transition->getType() && 5288 "The type of the result of the transition does not match " 5289 "the final type"); 5290 ToBePromoted->replaceAllUsesWith(Transition); 5291 // 2. Update the type of the uses. 5292 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5293 Type *TransitionTy = getTransitionType(); 5294 ToBePromoted->mutateType(TransitionTy); 5295 // 3. Update all the operands of the promoted operation with promoted 5296 // operands. 5297 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5298 for (Use &U : ToBePromoted->operands()) { 5299 Value *Val = U.get(); 5300 Value *NewVal = nullptr; 5301 if (Val == Transition) 5302 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5303 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5304 isa<ConstantFP>(Val)) { 5305 // Use a splat constant if it is not safe to use undef. 5306 NewVal = getConstantVector( 5307 cast<Constant>(Val), 5308 isa<UndefValue>(Val) || 5309 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5310 } else 5311 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5312 "this?"); 5313 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5314 } 5315 Transition->removeFromParent(); 5316 Transition->insertAfter(ToBePromoted); 5317 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5318 } 5319 5320 /// Some targets can do store(extractelement) with one instruction. 5321 /// Try to push the extractelement towards the stores when the target 5322 /// has this feature and this is profitable. 5323 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5324 unsigned CombineCost = UINT_MAX; 5325 if (DisableStoreExtract || !TLI || 5326 (!StressStoreExtract && 5327 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5328 Inst->getOperand(1), CombineCost))) 5329 return false; 5330 5331 // At this point we know that Inst is a vector to scalar transition. 5332 // Try to move it down the def-use chain, until: 5333 // - We can combine the transition with its single use 5334 // => we got rid of the transition. 5335 // - We escape the current basic block 5336 // => we would need to check that we are moving it at a cheaper place and 5337 // we do not do that for now. 5338 BasicBlock *Parent = Inst->getParent(); 5339 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5340 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5341 // If the transition has more than one use, assume this is not going to be 5342 // beneficial. 5343 while (Inst->hasOneUse()) { 5344 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5345 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5346 5347 if (ToBePromoted->getParent() != Parent) { 5348 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5349 << ToBePromoted->getParent()->getName() 5350 << ") than the transition (" << Parent->getName() << ").\n"); 5351 return false; 5352 } 5353 5354 if (VPH.canCombine(ToBePromoted)) { 5355 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5356 << "will be combined with: " << *ToBePromoted << '\n'); 5357 VPH.recordCombineInstruction(ToBePromoted); 5358 bool Changed = VPH.promote(); 5359 NumStoreExtractExposed += Changed; 5360 return Changed; 5361 } 5362 5363 DEBUG(dbgs() << "Try promoting.\n"); 5364 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5365 return false; 5366 5367 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5368 5369 VPH.enqueueForPromotion(ToBePromoted); 5370 Inst = ToBePromoted; 5371 } 5372 return false; 5373 } 5374 5375 /// For the instruction sequence of store below, F and I values 5376 /// are bundled together as an i64 value before being stored into memory. 5377 /// Sometimes it is more efficent to generate separate stores for F and I, 5378 /// which can remove the bitwise instructions or sink them to colder places. 5379 /// 5380 /// (store (or (zext (bitcast F to i32) to i64), 5381 /// (shl (zext I to i64), 32)), addr) --> 5382 /// (store F, addr) and (store I, addr+4) 5383 /// 5384 /// Similarly, splitting for other merged store can also be beneficial, like: 5385 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5386 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5387 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5388 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5389 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5390 /// 5391 /// We allow each target to determine specifically which kind of splitting is 5392 /// supported. 5393 /// 5394 /// The store patterns are commonly seen from the simple code snippet below 5395 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5396 /// void goo(const std::pair<int, float> &); 5397 /// hoo() { 5398 /// ... 5399 /// goo(std::make_pair(tmp, ftmp)); 5400 /// ... 5401 /// } 5402 /// 5403 /// Although we already have similar splitting in DAG Combine, we duplicate 5404 /// it in CodeGenPrepare to catch the case in which pattern is across 5405 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5406 /// during code expansion. 5407 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5408 const TargetLowering &TLI) { 5409 // Handle simple but common cases only. 5410 Type *StoreType = SI.getValueOperand()->getType(); 5411 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5412 DL.getTypeSizeInBits(StoreType) == 0) 5413 return false; 5414 5415 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5416 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5417 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5418 DL.getTypeSizeInBits(SplitStoreType)) 5419 return false; 5420 5421 // Match the following patterns: 5422 // (store (or (zext LValue to i64), 5423 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5424 // or 5425 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5426 // (zext LValue to i64), 5427 // Expect both operands of OR and the first operand of SHL have only 5428 // one use. 5429 Value *LValue, *HValue; 5430 if (!match(SI.getValueOperand(), 5431 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5432 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5433 m_SpecificInt(HalfValBitSize)))))) 5434 return false; 5435 5436 // Check LValue and HValue are int with size less or equal than 32. 5437 if (!LValue->getType()->isIntegerTy() || 5438 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5439 !HValue->getType()->isIntegerTy() || 5440 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5441 return false; 5442 5443 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5444 // as the input of target query. 5445 auto *LBC = dyn_cast<BitCastInst>(LValue); 5446 auto *HBC = dyn_cast<BitCastInst>(HValue); 5447 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5448 : EVT::getEVT(LValue->getType()); 5449 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5450 : EVT::getEVT(HValue->getType()); 5451 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5452 return false; 5453 5454 // Start to split store. 5455 IRBuilder<> Builder(SI.getContext()); 5456 Builder.SetInsertPoint(&SI); 5457 5458 // If LValue/HValue is a bitcast in another BB, create a new one in current 5459 // BB so it may be merged with the splitted stores by dag combiner. 5460 if (LBC && LBC->getParent() != SI.getParent()) 5461 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5462 if (HBC && HBC->getParent() != SI.getParent()) 5463 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5464 5465 auto CreateSplitStore = [&](Value *V, bool Upper) { 5466 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5467 Value *Addr = Builder.CreateBitCast( 5468 SI.getOperand(1), 5469 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5470 if (Upper) 5471 Addr = Builder.CreateGEP( 5472 SplitStoreType, Addr, 5473 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5474 Builder.CreateAlignedStore( 5475 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5476 }; 5477 5478 CreateSplitStore(LValue, false); 5479 CreateSplitStore(HValue, true); 5480 5481 // Delete the old store. 5482 SI.eraseFromParent(); 5483 return true; 5484 } 5485 5486 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5487 // Bail out if we inserted the instruction to prevent optimizations from 5488 // stepping on each other's toes. 5489 if (InsertedInsts.count(I)) 5490 return false; 5491 5492 if (PHINode *P = dyn_cast<PHINode>(I)) { 5493 // It is possible for very late stage optimizations (such as SimplifyCFG) 5494 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5495 // trivial PHI, go ahead and zap it here. 5496 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5497 P->replaceAllUsesWith(V); 5498 P->eraseFromParent(); 5499 ++NumPHIsElim; 5500 return true; 5501 } 5502 return false; 5503 } 5504 5505 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5506 // If the source of the cast is a constant, then this should have 5507 // already been constant folded. The only reason NOT to constant fold 5508 // it is if something (e.g. LSR) was careful to place the constant 5509 // evaluation in a block other than then one that uses it (e.g. to hoist 5510 // the address of globals out of a loop). If this is the case, we don't 5511 // want to forward-subst the cast. 5512 if (isa<Constant>(CI->getOperand(0))) 5513 return false; 5514 5515 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5516 return true; 5517 5518 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5519 /// Sink a zext or sext into its user blocks if the target type doesn't 5520 /// fit in one register 5521 if (TLI && 5522 TLI->getTypeAction(CI->getContext(), 5523 TLI->getValueType(*DL, CI->getType())) == 5524 TargetLowering::TypeExpandInteger) { 5525 return SinkCast(CI); 5526 } else { 5527 bool MadeChange = moveExtToFormExtLoad(I); 5528 return MadeChange | optimizeExtUses(I); 5529 } 5530 } 5531 return false; 5532 } 5533 5534 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5535 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5536 return OptimizeCmpExpression(CI, TLI); 5537 5538 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5539 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5540 if (TLI) { 5541 bool Modified = optimizeLoadExt(LI); 5542 unsigned AS = LI->getPointerAddressSpace(); 5543 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5544 return Modified; 5545 } 5546 return false; 5547 } 5548 5549 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5550 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5551 return true; 5552 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5553 if (TLI) { 5554 unsigned AS = SI->getPointerAddressSpace(); 5555 return optimizeMemoryInst(I, SI->getOperand(1), 5556 SI->getOperand(0)->getType(), AS); 5557 } 5558 return false; 5559 } 5560 5561 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5562 5563 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5564 BinOp->getOpcode() == Instruction::LShr)) { 5565 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5566 if (TLI && CI && TLI->hasExtractBitsInsn()) 5567 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5568 5569 return false; 5570 } 5571 5572 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5573 if (GEPI->hasAllZeroIndices()) { 5574 /// The GEP operand must be a pointer, so must its result -> BitCast 5575 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5576 GEPI->getName(), GEPI); 5577 GEPI->replaceAllUsesWith(NC); 5578 GEPI->eraseFromParent(); 5579 ++NumGEPsElim; 5580 optimizeInst(NC, ModifiedDT); 5581 return true; 5582 } 5583 return false; 5584 } 5585 5586 if (CallInst *CI = dyn_cast<CallInst>(I)) 5587 return optimizeCallInst(CI, ModifiedDT); 5588 5589 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5590 return optimizeSelectInst(SI); 5591 5592 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5593 return optimizeShuffleVectorInst(SVI); 5594 5595 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5596 return optimizeSwitchInst(Switch); 5597 5598 if (isa<ExtractElementInst>(I)) 5599 return optimizeExtractElementInst(I); 5600 5601 return false; 5602 } 5603 5604 /// Given an OR instruction, check to see if this is a bitreverse 5605 /// idiom. If so, insert the new intrinsic and return true. 5606 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5607 const TargetLowering &TLI) { 5608 if (!I.getType()->isIntegerTy() || 5609 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5610 TLI.getValueType(DL, I.getType(), true))) 5611 return false; 5612 5613 SmallVector<Instruction*, 4> Insts; 5614 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5615 return false; 5616 Instruction *LastInst = Insts.back(); 5617 I.replaceAllUsesWith(LastInst); 5618 RecursivelyDeleteTriviallyDeadInstructions(&I); 5619 return true; 5620 } 5621 5622 // In this pass we look for GEP and cast instructions that are used 5623 // across basic blocks and rewrite them to improve basic-block-at-a-time 5624 // selection. 5625 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5626 SunkAddrs.clear(); 5627 bool MadeChange = false; 5628 5629 CurInstIterator = BB.begin(); 5630 while (CurInstIterator != BB.end()) { 5631 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5632 if (ModifiedDT) 5633 return true; 5634 } 5635 5636 bool MadeBitReverse = true; 5637 while (TLI && MadeBitReverse) { 5638 MadeBitReverse = false; 5639 for (auto &I : reverse(BB)) { 5640 if (makeBitReverse(I, *DL, *TLI)) { 5641 MadeBitReverse = MadeChange = true; 5642 ModifiedDT = true; 5643 break; 5644 } 5645 } 5646 } 5647 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5648 5649 return MadeChange; 5650 } 5651 5652 // llvm.dbg.value is far away from the value then iSel may not be able 5653 // handle it properly. iSel will drop llvm.dbg.value if it can not 5654 // find a node corresponding to the value. 5655 bool CodeGenPrepare::placeDbgValues(Function &F) { 5656 bool MadeChange = false; 5657 for (BasicBlock &BB : F) { 5658 Instruction *PrevNonDbgInst = nullptr; 5659 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5660 Instruction *Insn = &*BI++; 5661 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5662 // Leave dbg.values that refer to an alloca alone. These 5663 // instrinsics describe the address of a variable (= the alloca) 5664 // being taken. They should not be moved next to the alloca 5665 // (and to the beginning of the scope), but rather stay close to 5666 // where said address is used. 5667 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5668 PrevNonDbgInst = Insn; 5669 continue; 5670 } 5671 5672 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5673 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5674 // If VI is a phi in a block with an EHPad terminator, we can't insert 5675 // after it. 5676 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5677 continue; 5678 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5679 DVI->removeFromParent(); 5680 if (isa<PHINode>(VI)) 5681 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5682 else 5683 DVI->insertAfter(VI); 5684 MadeChange = true; 5685 ++NumDbgValueMoved; 5686 } 5687 } 5688 } 5689 return MadeChange; 5690 } 5691 5692 // If there is a sequence that branches based on comparing a single bit 5693 // against zero that can be combined into a single instruction, and the 5694 // target supports folding these into a single instruction, sink the 5695 // mask and compare into the branch uses. Do this before OptimizeBlock -> 5696 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 5697 // searched for. 5698 bool CodeGenPrepare::sinkAndCmp(Function &F) { 5699 if (!EnableAndCmpSinking) 5700 return false; 5701 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 5702 return false; 5703 bool MadeChange = false; 5704 for (BasicBlock &BB : F) { 5705 // Does this BB end with the following? 5706 // %andVal = and %val, #single-bit-set 5707 // %icmpVal = icmp %andResult, 0 5708 // br i1 %cmpVal label %dest1, label %dest2" 5709 BranchInst *Brcc = dyn_cast<BranchInst>(BB.getTerminator()); 5710 if (!Brcc || !Brcc->isConditional()) 5711 continue; 5712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 5713 if (!Cmp || Cmp->getParent() != &BB) 5714 continue; 5715 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 5716 if (!Zero || !Zero->isZero()) 5717 continue; 5718 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 5719 if (!And || And->getOpcode() != Instruction::And || And->getParent() != &BB) 5720 continue; 5721 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 5722 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 5723 continue; 5724 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB.dump()); 5725 5726 // Push the "and; icmp" for any users that are conditional branches. 5727 // Since there can only be one branch use per BB, we don't need to keep 5728 // track of which BBs we insert into. 5729 for (Use &TheUse : Cmp->uses()) { 5730 // Find brcc use. 5731 BranchInst *BrccUser = dyn_cast<BranchInst>(TheUse); 5732 if (!BrccUser || !BrccUser->isConditional()) 5733 continue; 5734 BasicBlock *UserBB = BrccUser->getParent(); 5735 if (UserBB == &BB) continue; 5736 DEBUG(dbgs() << "found Brcc use\n"); 5737 5738 // Sink the "and; icmp" to use. 5739 MadeChange = true; 5740 BinaryOperator *NewAnd = 5741 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 5742 BrccUser); 5743 CmpInst *NewCmp = 5744 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 5745 "", BrccUser); 5746 TheUse = NewCmp; 5747 ++NumAndCmpsMoved; 5748 DEBUG(BrccUser->getParent()->dump()); 5749 } 5750 } 5751 return MadeChange; 5752 } 5753 5754 /// \brief Scale down both weights to fit into uint32_t. 5755 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5756 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5757 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5758 NewTrue = NewTrue / Scale; 5759 NewFalse = NewFalse / Scale; 5760 } 5761 5762 /// \brief Some targets prefer to split a conditional branch like: 5763 /// \code 5764 /// %0 = icmp ne i32 %a, 0 5765 /// %1 = icmp ne i32 %b, 0 5766 /// %or.cond = or i1 %0, %1 5767 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5768 /// \endcode 5769 /// into multiple branch instructions like: 5770 /// \code 5771 /// bb1: 5772 /// %0 = icmp ne i32 %a, 0 5773 /// br i1 %0, label %TrueBB, label %bb2 5774 /// bb2: 5775 /// %1 = icmp ne i32 %b, 0 5776 /// br i1 %1, label %TrueBB, label %FalseBB 5777 /// \endcode 5778 /// This usually allows instruction selection to do even further optimizations 5779 /// and combine the compare with the branch instruction. Currently this is 5780 /// applied for targets which have "cheap" jump instructions. 5781 /// 5782 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5783 /// 5784 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5785 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5786 return false; 5787 5788 bool MadeChange = false; 5789 for (auto &BB : F) { 5790 // Does this BB end with the following? 5791 // %cond1 = icmp|fcmp|binary instruction ... 5792 // %cond2 = icmp|fcmp|binary instruction ... 5793 // %cond.or = or|and i1 %cond1, cond2 5794 // br i1 %cond.or label %dest1, label %dest2" 5795 BinaryOperator *LogicOp; 5796 BasicBlock *TBB, *FBB; 5797 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5798 continue; 5799 5800 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5801 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5802 continue; 5803 5804 unsigned Opc; 5805 Value *Cond1, *Cond2; 5806 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5807 m_OneUse(m_Value(Cond2))))) 5808 Opc = Instruction::And; 5809 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5810 m_OneUse(m_Value(Cond2))))) 5811 Opc = Instruction::Or; 5812 else 5813 continue; 5814 5815 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5816 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5817 continue; 5818 5819 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5820 5821 // Create a new BB. 5822 auto TmpBB = 5823 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5824 BB.getParent(), BB.getNextNode()); 5825 5826 // Update original basic block by using the first condition directly by the 5827 // branch instruction and removing the no longer needed and/or instruction. 5828 Br1->setCondition(Cond1); 5829 LogicOp->eraseFromParent(); 5830 5831 // Depending on the conditon we have to either replace the true or the false 5832 // successor of the original branch instruction. 5833 if (Opc == Instruction::And) 5834 Br1->setSuccessor(0, TmpBB); 5835 else 5836 Br1->setSuccessor(1, TmpBB); 5837 5838 // Fill in the new basic block. 5839 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 5840 if (auto *I = dyn_cast<Instruction>(Cond2)) { 5841 I->removeFromParent(); 5842 I->insertBefore(Br2); 5843 } 5844 5845 // Update PHI nodes in both successors. The original BB needs to be 5846 // replaced in one succesor's PHI nodes, because the branch comes now from 5847 // the newly generated BB (NewBB). In the other successor we need to add one 5848 // incoming edge to the PHI nodes, because both branch instructions target 5849 // now the same successor. Depending on the original branch condition 5850 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 5851 // we perform the correct update for the PHI nodes. 5852 // This doesn't change the successor order of the just created branch 5853 // instruction (or any other instruction). 5854 if (Opc == Instruction::Or) 5855 std::swap(TBB, FBB); 5856 5857 // Replace the old BB with the new BB. 5858 for (auto &I : *TBB) { 5859 PHINode *PN = dyn_cast<PHINode>(&I); 5860 if (!PN) 5861 break; 5862 int i; 5863 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 5864 PN->setIncomingBlock(i, TmpBB); 5865 } 5866 5867 // Add another incoming edge form the new BB. 5868 for (auto &I : *FBB) { 5869 PHINode *PN = dyn_cast<PHINode>(&I); 5870 if (!PN) 5871 break; 5872 auto *Val = PN->getIncomingValueForBlock(&BB); 5873 PN->addIncoming(Val, TmpBB); 5874 } 5875 5876 // Update the branch weights (from SelectionDAGBuilder:: 5877 // FindMergedConditions). 5878 if (Opc == Instruction::Or) { 5879 // Codegen X | Y as: 5880 // BB1: 5881 // jmp_if_X TBB 5882 // jmp TmpBB 5883 // TmpBB: 5884 // jmp_if_Y TBB 5885 // jmp FBB 5886 // 5887 5888 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 5889 // The requirement is that 5890 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 5891 // = TrueProb for orignal BB. 5892 // Assuming the orignal weights are A and B, one choice is to set BB1's 5893 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 5894 // assumes that 5895 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 5896 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 5897 // TmpBB, but the math is more complicated. 5898 uint64_t TrueWeight, FalseWeight; 5899 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5900 uint64_t NewTrueWeight = TrueWeight; 5901 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 5902 scaleWeights(NewTrueWeight, NewFalseWeight); 5903 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5904 .createBranchWeights(TrueWeight, FalseWeight)); 5905 5906 NewTrueWeight = TrueWeight; 5907 NewFalseWeight = 2 * FalseWeight; 5908 scaleWeights(NewTrueWeight, NewFalseWeight); 5909 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5910 .createBranchWeights(TrueWeight, FalseWeight)); 5911 } 5912 } else { 5913 // Codegen X & Y as: 5914 // BB1: 5915 // jmp_if_X TmpBB 5916 // jmp FBB 5917 // TmpBB: 5918 // jmp_if_Y TBB 5919 // jmp FBB 5920 // 5921 // This requires creation of TmpBB after CurBB. 5922 5923 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 5924 // The requirement is that 5925 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 5926 // = FalseProb for orignal BB. 5927 // Assuming the orignal weights are A and B, one choice is to set BB1's 5928 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 5929 // assumes that 5930 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 5931 uint64_t TrueWeight, FalseWeight; 5932 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 5933 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 5934 uint64_t NewFalseWeight = FalseWeight; 5935 scaleWeights(NewTrueWeight, NewFalseWeight); 5936 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 5937 .createBranchWeights(TrueWeight, FalseWeight)); 5938 5939 NewTrueWeight = 2 * TrueWeight; 5940 NewFalseWeight = FalseWeight; 5941 scaleWeights(NewTrueWeight, NewFalseWeight); 5942 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 5943 .createBranchWeights(TrueWeight, FalseWeight)); 5944 } 5945 } 5946 5947 // Note: No point in getting fancy here, since the DT info is never 5948 // available to CodeGenPrepare. 5949 ModifiedDT = true; 5950 5951 MadeChange = true; 5952 5953 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 5954 TmpBB->dump()); 5955 } 5956 return MadeChange; 5957 } 5958