1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/IntrinsicsX86.h" 64 #include "llvm/IR/LLVMContext.h" 65 #include "llvm/IR/MDBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/PatternMatch.h" 69 #include "llvm/IR/Statepoint.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/IR/ValueMap.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/BlockFrequency.h" 79 #include "llvm/Support/BranchProbability.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/CommandLine.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/MachineValueType.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/raw_ostream.h" 88 #include "llvm/Target/TargetMachine.h" 89 #include "llvm/Target/TargetOptions.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 92 #include "llvm/Transforms/Utils/Local.h" 93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 94 #include "llvm/Transforms/Utils/SizeOpts.h" 95 #include <algorithm> 96 #include <cassert> 97 #include <cstdint> 98 #include <iterator> 99 #include <limits> 100 #include <memory> 101 #include <utility> 102 #include <vector> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define DEBUG_TYPE "codegenprepare" 108 109 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 110 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 111 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 113 "sunken Cmps"); 114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 115 "of sunken Casts"); 116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 117 "computations were sunk"); 118 STATISTIC(NumMemoryInstsPhiCreated, 119 "Number of phis created when address " 120 "computations were sunk to memory instructions"); 121 STATISTIC(NumMemoryInstsSelectCreated, 122 "Number of select created when address " 123 "computations were sunk to memory instructions"); 124 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 125 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 126 STATISTIC(NumAndsAdded, 127 "Number of and mask instructions added to form ext loads"); 128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 129 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 133 134 static cl::opt<bool> DisableBranchOpts( 135 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 136 cl::desc("Disable branch optimizations in CodeGenPrepare")); 137 138 static cl::opt<bool> 139 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 140 cl::desc("Disable GC optimizations in CodeGenPrepare")); 141 142 static cl::opt<bool> DisableSelectToBranch( 143 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 144 cl::desc("Disable select to branch conversion.")); 145 146 static cl::opt<bool> AddrSinkUsingGEPs( 147 "addr-sink-using-gep", cl::Hidden, cl::init(true), 148 cl::desc("Address sinking in CGP using GEPs.")); 149 150 static cl::opt<bool> EnableAndCmpSinking( 151 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 152 cl::desc("Enable sinkinig and/cmp into branches.")); 153 154 static cl::opt<bool> DisableStoreExtract( 155 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 156 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 157 158 static cl::opt<bool> StressStoreExtract( 159 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 160 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 161 162 static cl::opt<bool> DisableExtLdPromotion( 163 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 165 "CodeGenPrepare")); 166 167 static cl::opt<bool> StressExtLdPromotion( 168 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 169 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 170 "optimization in CodeGenPrepare")); 171 172 static cl::opt<bool> DisablePreheaderProtect( 173 "disable-preheader-prot", cl::Hidden, cl::init(false), 174 cl::desc("Disable protection against removing loop preheaders")); 175 176 static cl::opt<bool> ProfileGuidedSectionPrefix( 177 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 178 cl::desc("Use profile info to add section prefix for hot/cold functions")); 179 180 static cl::opt<bool> ProfileUnknownInSpecialSection( 181 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 182 cl::ZeroOrMore, 183 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 184 "profile, we cannot tell the function is cold for sure because " 185 "it may be a function newly added without ever being sampled. " 186 "With the flag enabled, compiler can put such profile unknown " 187 "functions into a special section, so runtime system can choose " 188 "to handle it in a different way than .text section, to save " 189 "RAM for example. ")); 190 191 static cl::opt<unsigned> FreqRatioToSkipMerge( 192 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 193 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 194 "(frequency of destination block) is greater than this ratio")); 195 196 static cl::opt<bool> ForceSplitStore( 197 "force-split-store", cl::Hidden, cl::init(false), 198 cl::desc("Force store splitting no matter what the target query says.")); 199 200 static cl::opt<bool> 201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 202 cl::desc("Enable merging of redundant sexts when one is dominating" 203 " the other."), cl::init(true)); 204 205 static cl::opt<bool> DisableComplexAddrModes( 206 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 207 cl::desc("Disables combining addressing modes with different parts " 208 "in optimizeMemoryInst.")); 209 210 static cl::opt<bool> 211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 212 cl::desc("Allow creation of Phis in Address sinking.")); 213 214 static cl::opt<bool> 215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 216 cl::desc("Allow creation of selects in Address sinking.")); 217 218 static cl::opt<bool> AddrSinkCombineBaseReg( 219 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 220 cl::desc("Allow combining of BaseReg field in Address sinking.")); 221 222 static cl::opt<bool> AddrSinkCombineBaseGV( 223 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 224 cl::desc("Allow combining of BaseGV field in Address sinking.")); 225 226 static cl::opt<bool> AddrSinkCombineBaseOffs( 227 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 228 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 229 230 static cl::opt<bool> AddrSinkCombineScaledReg( 231 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 232 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 233 234 static cl::opt<bool> 235 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 236 cl::init(true), 237 cl::desc("Enable splitting large offset of GEP.")); 238 239 static cl::opt<bool> EnableICMP_EQToICMP_ST( 240 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 241 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 242 243 static cl::opt<bool> 244 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 245 cl::desc("Enable BFI update verification for " 246 "CodeGenPrepare.")); 247 248 static cl::opt<bool> OptimizePhiTypes( 249 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 250 cl::desc("Enable converting phi types in CodeGenPrepare")); 251 252 namespace { 253 254 enum ExtType { 255 ZeroExtension, // Zero extension has been seen. 256 SignExtension, // Sign extension has been seen. 257 BothExtension // This extension type is used if we saw sext after 258 // ZeroExtension had been set, or if we saw zext after 259 // SignExtension had been set. It makes the type 260 // information of a promoted instruction invalid. 261 }; 262 263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 266 using SExts = SmallVector<Instruction *, 16>; 267 using ValueToSExts = DenseMap<Value *, SExts>; 268 269 class TypePromotionTransaction; 270 271 class CodeGenPrepare : public FunctionPass { 272 const TargetMachine *TM = nullptr; 273 const TargetSubtargetInfo *SubtargetInfo; 274 const TargetLowering *TLI = nullptr; 275 const TargetRegisterInfo *TRI; 276 const TargetTransformInfo *TTI = nullptr; 277 const TargetLibraryInfo *TLInfo; 278 const LoopInfo *LI; 279 std::unique_ptr<BlockFrequencyInfo> BFI; 280 std::unique_ptr<BranchProbabilityInfo> BPI; 281 ProfileSummaryInfo *PSI; 282 283 /// As we scan instructions optimizing them, this is the next instruction 284 /// to optimize. Transforms that can invalidate this should update it. 285 BasicBlock::iterator CurInstIterator; 286 287 /// Keeps track of non-local addresses that have been sunk into a block. 288 /// This allows us to avoid inserting duplicate code for blocks with 289 /// multiple load/stores of the same address. The usage of WeakTrackingVH 290 /// enables SunkAddrs to be treated as a cache whose entries can be 291 /// invalidated if a sunken address computation has been erased. 292 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 293 294 /// Keeps track of all instructions inserted for the current function. 295 SetOfInstrs InsertedInsts; 296 297 /// Keeps track of the type of the related instruction before their 298 /// promotion for the current function. 299 InstrToOrigTy PromotedInsts; 300 301 /// Keep track of instructions removed during promotion. 302 SetOfInstrs RemovedInsts; 303 304 /// Keep track of sext chains based on their initial value. 305 DenseMap<Value *, Instruction *> SeenChainsForSExt; 306 307 /// Keep track of GEPs accessing the same data structures such as structs or 308 /// arrays that are candidates to be split later because of their large 309 /// size. 310 MapVector< 311 AssertingVH<Value>, 312 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 313 LargeOffsetGEPMap; 314 315 /// Keep track of new GEP base after splitting the GEPs having large offset. 316 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 317 318 /// Map serial numbers to Large offset GEPs. 319 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 320 321 /// Keep track of SExt promoted. 322 ValueToSExts ValToSExtendedUses; 323 324 /// True if the function has the OptSize attribute. 325 bool OptSize; 326 327 /// DataLayout for the Function being processed. 328 const DataLayout *DL = nullptr; 329 330 /// Building the dominator tree can be expensive, so we only build it 331 /// lazily and update it when required. 332 std::unique_ptr<DominatorTree> DT; 333 334 public: 335 static char ID; // Pass identification, replacement for typeid 336 337 CodeGenPrepare() : FunctionPass(ID) { 338 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 339 } 340 341 bool runOnFunction(Function &F) override; 342 343 StringRef getPassName() const override { return "CodeGen Prepare"; } 344 345 void getAnalysisUsage(AnalysisUsage &AU) const override { 346 // FIXME: When we can selectively preserve passes, preserve the domtree. 347 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 348 AU.addRequired<TargetLibraryInfoWrapperPass>(); 349 AU.addRequired<TargetPassConfig>(); 350 AU.addRequired<TargetTransformInfoWrapperPass>(); 351 AU.addRequired<LoopInfoWrapperPass>(); 352 } 353 354 private: 355 template <typename F> 356 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 357 // Substituting can cause recursive simplifications, which can invalidate 358 // our iterator. Use a WeakTrackingVH to hold onto it in case this 359 // happens. 360 Value *CurValue = &*CurInstIterator; 361 WeakTrackingVH IterHandle(CurValue); 362 363 f(); 364 365 // If the iterator instruction was recursively deleted, start over at the 366 // start of the block. 367 if (IterHandle != CurValue) { 368 CurInstIterator = BB->begin(); 369 SunkAddrs.clear(); 370 } 371 } 372 373 // Get the DominatorTree, building if necessary. 374 DominatorTree &getDT(Function &F) { 375 if (!DT) 376 DT = std::make_unique<DominatorTree>(F); 377 return *DT; 378 } 379 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 388 bool optimizeInst(Instruction *I, bool &ModifiedDT); 389 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 390 Type *AccessTy, unsigned AddrSpace); 391 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 392 bool optimizeInlineAsmInst(CallInst *CS); 393 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 394 bool optimizeExt(Instruction *&I); 395 bool optimizeExtUses(Instruction *I); 396 bool optimizeLoadExt(LoadInst *Load); 397 bool optimizeShiftInst(BinaryOperator *BO); 398 bool optimizeFunnelShift(IntrinsicInst *Fsh); 399 bool optimizeSelectInst(SelectInst *SI); 400 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 401 bool optimizeSwitchInst(SwitchInst *SI); 402 bool optimizeExtractElementInst(Instruction *Inst); 403 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 404 bool fixupDbgValue(Instruction *I); 405 bool placeDbgValues(Function &F); 406 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 407 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 408 bool tryToPromoteExts(TypePromotionTransaction &TPT, 409 const SmallVectorImpl<Instruction *> &Exts, 410 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 411 unsigned CreatedInstsCost = 0); 412 bool mergeSExts(Function &F); 413 bool splitLargeGEPOffsets(); 414 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 415 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 416 bool optimizePhiTypes(Function &F); 417 bool performAddressTypePromotion( 418 Instruction *&Inst, 419 bool AllowPromotionWithoutCommonHeader, 420 bool HasPromoted, TypePromotionTransaction &TPT, 421 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 422 bool splitBranchCondition(Function &F, bool &ModifiedDT); 423 bool simplifyOffsetableRelocate(GCStatepointInst &I); 424 425 bool tryToSinkFreeOperands(Instruction *I); 426 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 427 Value *Arg1, CmpInst *Cmp, 428 Intrinsic::ID IID); 429 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 430 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 void verifyBFIUpdates(Function &F); 433 }; 434 435 } // end anonymous namespace 436 437 char CodeGenPrepare::ID = 0; 438 439 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 440 "Optimize for code generation", false, false) 441 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 442 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 443 "Optimize for code generation", false, false) 444 445 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 446 447 bool CodeGenPrepare::runOnFunction(Function &F) { 448 if (skipFunction(F)) 449 return false; 450 451 DL = &F.getParent()->getDataLayout(); 452 453 bool EverMadeChange = false; 454 // Clear per function information. 455 InsertedInsts.clear(); 456 PromotedInsts.clear(); 457 458 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 459 SubtargetInfo = TM->getSubtargetImpl(F); 460 TLI = SubtargetInfo->getTargetLowering(); 461 TRI = SubtargetInfo->getRegisterInfo(); 462 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 463 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 464 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 465 BPI.reset(new BranchProbabilityInfo(F, *LI)); 466 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 467 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 468 OptSize = F.hasOptSize(); 469 if (ProfileGuidedSectionPrefix) { 470 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 471 F.setSectionPrefix(".hot"); 472 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 473 F.setSectionPrefix(".unlikely"); 474 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 475 PSI->isFunctionHotnessUnknown(F)) 476 F.setSectionPrefix(".unknown"); 477 } 478 479 /// This optimization identifies DIV instructions that can be 480 /// profitably bypassed and carried out with a shorter, faster divide. 481 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 482 const DenseMap<unsigned int, unsigned int> &BypassWidths = 483 TLI->getBypassSlowDivWidths(); 484 BasicBlock* BB = &*F.begin(); 485 while (BB != nullptr) { 486 // bypassSlowDivision may create new BBs, but we don't want to reapply the 487 // optimization to those blocks. 488 BasicBlock* Next = BB->getNextNode(); 489 // F.hasOptSize is already checked in the outer if statement. 490 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 491 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 492 BB = Next; 493 } 494 } 495 496 // Eliminate blocks that contain only PHI nodes and an 497 // unconditional branch. 498 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 499 500 bool ModifiedDT = false; 501 if (!DisableBranchOpts) 502 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 503 504 // Split some critical edges where one of the sources is an indirect branch, 505 // to help generate sane code for PHIs involving such edges. 506 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 507 508 bool MadeChange = true; 509 while (MadeChange) { 510 MadeChange = false; 511 DT.reset(); 512 for (Function::iterator I = F.begin(); I != F.end(); ) { 513 BasicBlock *BB = &*I++; 514 bool ModifiedDTOnIteration = false; 515 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 516 517 // Restart BB iteration if the dominator tree of the Function was changed 518 if (ModifiedDTOnIteration) 519 break; 520 } 521 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 522 MadeChange |= mergeSExts(F); 523 if (!LargeOffsetGEPMap.empty()) 524 MadeChange |= splitLargeGEPOffsets(); 525 MadeChange |= optimizePhiTypes(F); 526 527 if (MadeChange) 528 eliminateFallThrough(F); 529 530 // Really free removed instructions during promotion. 531 for (Instruction *I : RemovedInsts) 532 I->deleteValue(); 533 534 EverMadeChange |= MadeChange; 535 SeenChainsForSExt.clear(); 536 ValToSExtendedUses.clear(); 537 RemovedInsts.clear(); 538 LargeOffsetGEPMap.clear(); 539 LargeOffsetGEPID.clear(); 540 } 541 542 SunkAddrs.clear(); 543 544 if (!DisableBranchOpts) { 545 MadeChange = false; 546 // Use a set vector to get deterministic iteration order. The order the 547 // blocks are removed may affect whether or not PHI nodes in successors 548 // are removed. 549 SmallSetVector<BasicBlock*, 8> WorkList; 550 for (BasicBlock &BB : F) { 551 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 552 MadeChange |= ConstantFoldTerminator(&BB, true); 553 if (!MadeChange) continue; 554 555 for (SmallVectorImpl<BasicBlock*>::iterator 556 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 557 if (pred_begin(*II) == pred_end(*II)) 558 WorkList.insert(*II); 559 } 560 561 // Delete the dead blocks and any of their dead successors. 562 MadeChange |= !WorkList.empty(); 563 while (!WorkList.empty()) { 564 BasicBlock *BB = WorkList.pop_back_val(); 565 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 566 567 DeleteDeadBlock(BB); 568 569 for (SmallVectorImpl<BasicBlock*>::iterator 570 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 571 if (pred_begin(*II) == pred_end(*II)) 572 WorkList.insert(*II); 573 } 574 575 // Merge pairs of basic blocks with unconditional branches, connected by 576 // a single edge. 577 if (EverMadeChange || MadeChange) 578 MadeChange |= eliminateFallThrough(F); 579 580 EverMadeChange |= MadeChange; 581 } 582 583 if (!DisableGCOpts) { 584 SmallVector<GCStatepointInst *, 2> Statepoints; 585 for (BasicBlock &BB : F) 586 for (Instruction &I : BB) 587 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 588 Statepoints.push_back(SP); 589 for (auto &I : Statepoints) 590 EverMadeChange |= simplifyOffsetableRelocate(*I); 591 } 592 593 // Do this last to clean up use-before-def scenarios introduced by other 594 // preparatory transforms. 595 EverMadeChange |= placeDbgValues(F); 596 597 #ifndef NDEBUG 598 if (VerifyBFIUpdates) 599 verifyBFIUpdates(F); 600 #endif 601 602 return EverMadeChange; 603 } 604 605 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 606 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 607 DominatorTree NewDT(F); 608 LoopInfo NewLI(NewDT); 609 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 610 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 611 NewBFI.verifyMatch(*BFI); 612 } 613 614 /// Merge basic blocks which are connected by a single edge, where one of the 615 /// basic blocks has a single successor pointing to the other basic block, 616 /// which has a single predecessor. 617 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 618 bool Changed = false; 619 // Scan all of the blocks in the function, except for the entry block. 620 // Use a temporary array to avoid iterator being invalidated when 621 // deleting blocks. 622 SmallVector<WeakTrackingVH, 16> Blocks; 623 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 624 Blocks.push_back(&Block); 625 626 for (auto &Block : Blocks) { 627 auto *BB = cast_or_null<BasicBlock>(Block); 628 if (!BB) 629 continue; 630 // If the destination block has a single pred, then this is a trivial 631 // edge, just collapse it. 632 BasicBlock *SinglePred = BB->getSinglePredecessor(); 633 634 // Don't merge if BB's address is taken. 635 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 636 637 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 638 if (Term && !Term->isConditional()) { 639 Changed = true; 640 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 641 642 // Merge BB into SinglePred and delete it. 643 MergeBlockIntoPredecessor(BB); 644 } 645 } 646 return Changed; 647 } 648 649 /// Find a destination block from BB if BB is mergeable empty block. 650 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 651 // If this block doesn't end with an uncond branch, ignore it. 652 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 653 if (!BI || !BI->isUnconditional()) 654 return nullptr; 655 656 // If the instruction before the branch (skipping debug info) isn't a phi 657 // node, then other stuff is happening here. 658 BasicBlock::iterator BBI = BI->getIterator(); 659 if (BBI != BB->begin()) { 660 --BBI; 661 while (isa<DbgInfoIntrinsic>(BBI)) { 662 if (BBI == BB->begin()) 663 break; 664 --BBI; 665 } 666 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 667 return nullptr; 668 } 669 670 // Do not break infinite loops. 671 BasicBlock *DestBB = BI->getSuccessor(0); 672 if (DestBB == BB) 673 return nullptr; 674 675 if (!canMergeBlocks(BB, DestBB)) 676 DestBB = nullptr; 677 678 return DestBB; 679 } 680 681 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 682 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 683 /// edges in ways that are non-optimal for isel. Start by eliminating these 684 /// blocks so we can split them the way we want them. 685 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 686 SmallPtrSet<BasicBlock *, 16> Preheaders; 687 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 688 while (!LoopList.empty()) { 689 Loop *L = LoopList.pop_back_val(); 690 LoopList.insert(LoopList.end(), L->begin(), L->end()); 691 if (BasicBlock *Preheader = L->getLoopPreheader()) 692 Preheaders.insert(Preheader); 693 } 694 695 bool MadeChange = false; 696 // Copy blocks into a temporary array to avoid iterator invalidation issues 697 // as we remove them. 698 // Note that this intentionally skips the entry block. 699 SmallVector<WeakTrackingVH, 16> Blocks; 700 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 701 Blocks.push_back(&Block); 702 703 for (auto &Block : Blocks) { 704 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 705 if (!BB) 706 continue; 707 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 708 if (!DestBB || 709 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 710 continue; 711 712 eliminateMostlyEmptyBlock(BB); 713 MadeChange = true; 714 } 715 return MadeChange; 716 } 717 718 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 719 BasicBlock *DestBB, 720 bool isPreheader) { 721 // Do not delete loop preheaders if doing so would create a critical edge. 722 // Loop preheaders can be good locations to spill registers. If the 723 // preheader is deleted and we create a critical edge, registers may be 724 // spilled in the loop body instead. 725 if (!DisablePreheaderProtect && isPreheader && 726 !(BB->getSinglePredecessor() && 727 BB->getSinglePredecessor()->getSingleSuccessor())) 728 return false; 729 730 // Skip merging if the block's successor is also a successor to any callbr 731 // that leads to this block. 732 // FIXME: Is this really needed? Is this a correctness issue? 733 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 734 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 735 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 736 if (DestBB == CBI->getSuccessor(i)) 737 return false; 738 } 739 740 // Try to skip merging if the unique predecessor of BB is terminated by a 741 // switch or indirect branch instruction, and BB is used as an incoming block 742 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 743 // add COPY instructions in the predecessor of BB instead of BB (if it is not 744 // merged). Note that the critical edge created by merging such blocks wont be 745 // split in MachineSink because the jump table is not analyzable. By keeping 746 // such empty block (BB), ISel will place COPY instructions in BB, not in the 747 // predecessor of BB. 748 BasicBlock *Pred = BB->getUniquePredecessor(); 749 if (!Pred || 750 !(isa<SwitchInst>(Pred->getTerminator()) || 751 isa<IndirectBrInst>(Pred->getTerminator()))) 752 return true; 753 754 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 755 return true; 756 757 // We use a simple cost heuristic which determine skipping merging is 758 // profitable if the cost of skipping merging is less than the cost of 759 // merging : Cost(skipping merging) < Cost(merging BB), where the 760 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 761 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 762 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 763 // Freq(Pred) / Freq(BB) > 2. 764 // Note that if there are multiple empty blocks sharing the same incoming 765 // value for the PHIs in the DestBB, we consider them together. In such 766 // case, Cost(merging BB) will be the sum of their frequencies. 767 768 if (!isa<PHINode>(DestBB->begin())) 769 return true; 770 771 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 772 773 // Find all other incoming blocks from which incoming values of all PHIs in 774 // DestBB are the same as the ones from BB. 775 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 776 ++PI) { 777 BasicBlock *DestBBPred = *PI; 778 if (DestBBPred == BB) 779 continue; 780 781 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 782 return DestPN.getIncomingValueForBlock(BB) == 783 DestPN.getIncomingValueForBlock(DestBBPred); 784 })) 785 SameIncomingValueBBs.insert(DestBBPred); 786 } 787 788 // See if all BB's incoming values are same as the value from Pred. In this 789 // case, no reason to skip merging because COPYs are expected to be place in 790 // Pred already. 791 if (SameIncomingValueBBs.count(Pred)) 792 return true; 793 794 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 795 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 796 797 for (auto *SameValueBB : SameIncomingValueBBs) 798 if (SameValueBB->getUniquePredecessor() == Pred && 799 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 800 BBFreq += BFI->getBlockFreq(SameValueBB); 801 802 return PredFreq.getFrequency() <= 803 BBFreq.getFrequency() * FreqRatioToSkipMerge; 804 } 805 806 /// Return true if we can merge BB into DestBB if there is a single 807 /// unconditional branch between them, and BB contains no other non-phi 808 /// instructions. 809 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 810 const BasicBlock *DestBB) const { 811 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 812 // the successor. If there are more complex condition (e.g. preheaders), 813 // don't mess around with them. 814 for (const PHINode &PN : BB->phis()) { 815 for (const User *U : PN.users()) { 816 const Instruction *UI = cast<Instruction>(U); 817 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 818 return false; 819 // If User is inside DestBB block and it is a PHINode then check 820 // incoming value. If incoming value is not from BB then this is 821 // a complex condition (e.g. preheaders) we want to avoid here. 822 if (UI->getParent() == DestBB) { 823 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 824 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 825 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 826 if (Insn && Insn->getParent() == BB && 827 Insn->getParent() != UPN->getIncomingBlock(I)) 828 return false; 829 } 830 } 831 } 832 } 833 834 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 835 // and DestBB may have conflicting incoming values for the block. If so, we 836 // can't merge the block. 837 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 838 if (!DestBBPN) return true; // no conflict. 839 840 // Collect the preds of BB. 841 SmallPtrSet<const BasicBlock*, 16> BBPreds; 842 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 843 // It is faster to get preds from a PHI than with pred_iterator. 844 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 845 BBPreds.insert(BBPN->getIncomingBlock(i)); 846 } else { 847 BBPreds.insert(pred_begin(BB), pred_end(BB)); 848 } 849 850 // Walk the preds of DestBB. 851 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 852 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 853 if (BBPreds.count(Pred)) { // Common predecessor? 854 for (const PHINode &PN : DestBB->phis()) { 855 const Value *V1 = PN.getIncomingValueForBlock(Pred); 856 const Value *V2 = PN.getIncomingValueForBlock(BB); 857 858 // If V2 is a phi node in BB, look up what the mapped value will be. 859 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 860 if (V2PN->getParent() == BB) 861 V2 = V2PN->getIncomingValueForBlock(Pred); 862 863 // If there is a conflict, bail out. 864 if (V1 != V2) return false; 865 } 866 } 867 } 868 869 return true; 870 } 871 872 /// Eliminate a basic block that has only phi's and an unconditional branch in 873 /// it. 874 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 875 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 876 BasicBlock *DestBB = BI->getSuccessor(0); 877 878 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 879 << *BB << *DestBB); 880 881 // If the destination block has a single pred, then this is a trivial edge, 882 // just collapse it. 883 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 884 if (SinglePred != DestBB) { 885 assert(SinglePred == BB && 886 "Single predecessor not the same as predecessor"); 887 // Merge DestBB into SinglePred/BB and delete it. 888 MergeBlockIntoPredecessor(DestBB); 889 // Note: BB(=SinglePred) will not be deleted on this path. 890 // DestBB(=its single successor) is the one that was deleted. 891 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 892 return; 893 } 894 } 895 896 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 897 // to handle the new incoming edges it is about to have. 898 for (PHINode &PN : DestBB->phis()) { 899 // Remove the incoming value for BB, and remember it. 900 Value *InVal = PN.removeIncomingValue(BB, false); 901 902 // Two options: either the InVal is a phi node defined in BB or it is some 903 // value that dominates BB. 904 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 905 if (InValPhi && InValPhi->getParent() == BB) { 906 // Add all of the input values of the input PHI as inputs of this phi. 907 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 908 PN.addIncoming(InValPhi->getIncomingValue(i), 909 InValPhi->getIncomingBlock(i)); 910 } else { 911 // Otherwise, add one instance of the dominating value for each edge that 912 // we will be adding. 913 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 914 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 915 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 916 } else { 917 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 918 PN.addIncoming(InVal, *PI); 919 } 920 } 921 } 922 923 // The PHIs are now updated, change everything that refers to BB to use 924 // DestBB and remove BB. 925 BB->replaceAllUsesWith(DestBB); 926 BB->eraseFromParent(); 927 ++NumBlocksElim; 928 929 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 930 } 931 932 // Computes a map of base pointer relocation instructions to corresponding 933 // derived pointer relocation instructions given a vector of all relocate calls 934 static void computeBaseDerivedRelocateMap( 935 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 936 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 937 &RelocateInstMap) { 938 // Collect information in two maps: one primarily for locating the base object 939 // while filling the second map; the second map is the final structure holding 940 // a mapping between Base and corresponding Derived relocate calls 941 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 942 for (auto *ThisRelocate : AllRelocateCalls) { 943 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 944 ThisRelocate->getDerivedPtrIndex()); 945 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 946 } 947 for (auto &Item : RelocateIdxMap) { 948 std::pair<unsigned, unsigned> Key = Item.first; 949 if (Key.first == Key.second) 950 // Base relocation: nothing to insert 951 continue; 952 953 GCRelocateInst *I = Item.second; 954 auto BaseKey = std::make_pair(Key.first, Key.first); 955 956 // We're iterating over RelocateIdxMap so we cannot modify it. 957 auto MaybeBase = RelocateIdxMap.find(BaseKey); 958 if (MaybeBase == RelocateIdxMap.end()) 959 // TODO: We might want to insert a new base object relocate and gep off 960 // that, if there are enough derived object relocates. 961 continue; 962 963 RelocateInstMap[MaybeBase->second].push_back(I); 964 } 965 } 966 967 // Accepts a GEP and extracts the operands into a vector provided they're all 968 // small integer constants 969 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 970 SmallVectorImpl<Value *> &OffsetV) { 971 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 972 // Only accept small constant integer operands 973 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 974 if (!Op || Op->getZExtValue() > 20) 975 return false; 976 } 977 978 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 979 OffsetV.push_back(GEP->getOperand(i)); 980 return true; 981 } 982 983 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 984 // replace, computes a replacement, and affects it. 985 static bool 986 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 987 const SmallVectorImpl<GCRelocateInst *> &Targets) { 988 bool MadeChange = false; 989 // We must ensure the relocation of derived pointer is defined after 990 // relocation of base pointer. If we find a relocation corresponding to base 991 // defined earlier than relocation of base then we move relocation of base 992 // right before found relocation. We consider only relocation in the same 993 // basic block as relocation of base. Relocations from other basic block will 994 // be skipped by optimization and we do not care about them. 995 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 996 &*R != RelocatedBase; ++R) 997 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 998 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 999 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1000 RelocatedBase->moveBefore(RI); 1001 break; 1002 } 1003 1004 for (GCRelocateInst *ToReplace : Targets) { 1005 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1006 "Not relocating a derived object of the original base object"); 1007 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1008 // A duplicate relocate call. TODO: coalesce duplicates. 1009 continue; 1010 } 1011 1012 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1013 // Base and derived relocates are in different basic blocks. 1014 // In this case transform is only valid when base dominates derived 1015 // relocate. However it would be too expensive to check dominance 1016 // for each such relocate, so we skip the whole transformation. 1017 continue; 1018 } 1019 1020 Value *Base = ToReplace->getBasePtr(); 1021 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1022 if (!Derived || Derived->getPointerOperand() != Base) 1023 continue; 1024 1025 SmallVector<Value *, 2> OffsetV; 1026 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1027 continue; 1028 1029 // Create a Builder and replace the target callsite with a gep 1030 assert(RelocatedBase->getNextNode() && 1031 "Should always have one since it's not a terminator"); 1032 1033 // Insert after RelocatedBase 1034 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1035 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1036 1037 // If gc_relocate does not match the actual type, cast it to the right type. 1038 // In theory, there must be a bitcast after gc_relocate if the type does not 1039 // match, and we should reuse it to get the derived pointer. But it could be 1040 // cases like this: 1041 // bb1: 1042 // ... 1043 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1044 // br label %merge 1045 // 1046 // bb2: 1047 // ... 1048 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1049 // br label %merge 1050 // 1051 // merge: 1052 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1053 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1054 // 1055 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1056 // no matter there is already one or not. In this way, we can handle all cases, and 1057 // the extra bitcast should be optimized away in later passes. 1058 Value *ActualRelocatedBase = RelocatedBase; 1059 if (RelocatedBase->getType() != Base->getType()) { 1060 ActualRelocatedBase = 1061 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1062 } 1063 Value *Replacement = Builder.CreateGEP( 1064 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1065 Replacement->takeName(ToReplace); 1066 // If the newly generated derived pointer's type does not match the original derived 1067 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1068 Value *ActualReplacement = Replacement; 1069 if (Replacement->getType() != ToReplace->getType()) { 1070 ActualReplacement = 1071 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1072 } 1073 ToReplace->replaceAllUsesWith(ActualReplacement); 1074 ToReplace->eraseFromParent(); 1075 1076 MadeChange = true; 1077 } 1078 return MadeChange; 1079 } 1080 1081 // Turns this: 1082 // 1083 // %base = ... 1084 // %ptr = gep %base + 15 1085 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1086 // %base' = relocate(%tok, i32 4, i32 4) 1087 // %ptr' = relocate(%tok, i32 4, i32 5) 1088 // %val = load %ptr' 1089 // 1090 // into this: 1091 // 1092 // %base = ... 1093 // %ptr = gep %base + 15 1094 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1095 // %base' = gc.relocate(%tok, i32 4, i32 4) 1096 // %ptr' = gep %base' + 15 1097 // %val = load %ptr' 1098 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1099 bool MadeChange = false; 1100 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1101 for (auto *U : I.users()) 1102 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1103 // Collect all the relocate calls associated with a statepoint 1104 AllRelocateCalls.push_back(Relocate); 1105 1106 // We need at least one base pointer relocation + one derived pointer 1107 // relocation to mangle 1108 if (AllRelocateCalls.size() < 2) 1109 return false; 1110 1111 // RelocateInstMap is a mapping from the base relocate instruction to the 1112 // corresponding derived relocate instructions 1113 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1114 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1115 if (RelocateInstMap.empty()) 1116 return false; 1117 1118 for (auto &Item : RelocateInstMap) 1119 // Item.first is the RelocatedBase to offset against 1120 // Item.second is the vector of Targets to replace 1121 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1122 return MadeChange; 1123 } 1124 1125 /// Sink the specified cast instruction into its user blocks. 1126 static bool SinkCast(CastInst *CI) { 1127 BasicBlock *DefBB = CI->getParent(); 1128 1129 /// InsertedCasts - Only insert a cast in each block once. 1130 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1131 1132 bool MadeChange = false; 1133 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1134 UI != E; ) { 1135 Use &TheUse = UI.getUse(); 1136 Instruction *User = cast<Instruction>(*UI); 1137 1138 // Figure out which BB this cast is used in. For PHI's this is the 1139 // appropriate predecessor block. 1140 BasicBlock *UserBB = User->getParent(); 1141 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1142 UserBB = PN->getIncomingBlock(TheUse); 1143 } 1144 1145 // Preincrement use iterator so we don't invalidate it. 1146 ++UI; 1147 1148 // The first insertion point of a block containing an EH pad is after the 1149 // pad. If the pad is the user, we cannot sink the cast past the pad. 1150 if (User->isEHPad()) 1151 continue; 1152 1153 // If the block selected to receive the cast is an EH pad that does not 1154 // allow non-PHI instructions before the terminator, we can't sink the 1155 // cast. 1156 if (UserBB->getTerminator()->isEHPad()) 1157 continue; 1158 1159 // If this user is in the same block as the cast, don't change the cast. 1160 if (UserBB == DefBB) continue; 1161 1162 // If we have already inserted a cast into this block, use it. 1163 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1164 1165 if (!InsertedCast) { 1166 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1167 assert(InsertPt != UserBB->end()); 1168 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1169 CI->getType(), "", &*InsertPt); 1170 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1171 } 1172 1173 // Replace a use of the cast with a use of the new cast. 1174 TheUse = InsertedCast; 1175 MadeChange = true; 1176 ++NumCastUses; 1177 } 1178 1179 // If we removed all uses, nuke the cast. 1180 if (CI->use_empty()) { 1181 salvageDebugInfo(*CI); 1182 CI->eraseFromParent(); 1183 MadeChange = true; 1184 } 1185 1186 return MadeChange; 1187 } 1188 1189 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1190 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1191 /// reduce the number of virtual registers that must be created and coalesced. 1192 /// 1193 /// Return true if any changes are made. 1194 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1195 const DataLayout &DL) { 1196 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1197 // than sinking only nop casts, but is helpful on some platforms. 1198 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1199 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1200 ASC->getDestAddressSpace())) 1201 return false; 1202 } 1203 1204 // If this is a noop copy, 1205 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1206 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1207 1208 // This is an fp<->int conversion? 1209 if (SrcVT.isInteger() != DstVT.isInteger()) 1210 return false; 1211 1212 // If this is an extension, it will be a zero or sign extension, which 1213 // isn't a noop. 1214 if (SrcVT.bitsLT(DstVT)) return false; 1215 1216 // If these values will be promoted, find out what they will be promoted 1217 // to. This helps us consider truncates on PPC as noop copies when they 1218 // are. 1219 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1220 TargetLowering::TypePromoteInteger) 1221 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1222 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1223 TargetLowering::TypePromoteInteger) 1224 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1225 1226 // If, after promotion, these are the same types, this is a noop copy. 1227 if (SrcVT != DstVT) 1228 return false; 1229 1230 return SinkCast(CI); 1231 } 1232 1233 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1234 Value *Arg0, Value *Arg1, 1235 CmpInst *Cmp, 1236 Intrinsic::ID IID) { 1237 if (BO->getParent() != Cmp->getParent()) { 1238 // We used to use a dominator tree here to allow multi-block optimization. 1239 // But that was problematic because: 1240 // 1. It could cause a perf regression by hoisting the math op into the 1241 // critical path. 1242 // 2. It could cause a perf regression by creating a value that was live 1243 // across multiple blocks and increasing register pressure. 1244 // 3. Use of a dominator tree could cause large compile-time regression. 1245 // This is because we recompute the DT on every change in the main CGP 1246 // run-loop. The recomputing is probably unnecessary in many cases, so if 1247 // that was fixed, using a DT here would be ok. 1248 return false; 1249 } 1250 1251 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1252 if (BO->getOpcode() == Instruction::Add && 1253 IID == Intrinsic::usub_with_overflow) { 1254 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1255 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1256 } 1257 1258 // Insert at the first instruction of the pair. 1259 Instruction *InsertPt = nullptr; 1260 for (Instruction &Iter : *Cmp->getParent()) { 1261 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1262 // the overflow intrinsic are defined. 1263 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1264 InsertPt = &Iter; 1265 break; 1266 } 1267 } 1268 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1269 1270 IRBuilder<> Builder(InsertPt); 1271 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1272 if (BO->getOpcode() != Instruction::Xor) { 1273 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1274 BO->replaceAllUsesWith(Math); 1275 } else 1276 assert(BO->hasOneUse() && 1277 "Patterns with XOr should use the BO only in the compare"); 1278 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1279 Cmp->replaceAllUsesWith(OV); 1280 Cmp->eraseFromParent(); 1281 BO->eraseFromParent(); 1282 return true; 1283 } 1284 1285 /// Match special-case patterns that check for unsigned add overflow. 1286 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1287 BinaryOperator *&Add) { 1288 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1289 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1290 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1291 1292 // We are not expecting non-canonical/degenerate code. Just bail out. 1293 if (isa<Constant>(A)) 1294 return false; 1295 1296 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1297 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1298 B = ConstantInt::get(B->getType(), 1); 1299 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1300 B = ConstantInt::get(B->getType(), -1); 1301 else 1302 return false; 1303 1304 // Check the users of the variable operand of the compare looking for an add 1305 // with the adjusted constant. 1306 for (User *U : A->users()) { 1307 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1308 Add = cast<BinaryOperator>(U); 1309 return true; 1310 } 1311 } 1312 return false; 1313 } 1314 1315 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1316 /// intrinsic. Return true if any changes were made. 1317 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1318 bool &ModifiedDT) { 1319 Value *A, *B; 1320 BinaryOperator *Add; 1321 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1322 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1323 return false; 1324 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1325 A = Add->getOperand(0); 1326 B = Add->getOperand(1); 1327 } 1328 1329 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1330 TLI->getValueType(*DL, Add->getType()), 1331 Add->hasNUsesOrMore(2))) 1332 return false; 1333 1334 // We don't want to move around uses of condition values this late, so we 1335 // check if it is legal to create the call to the intrinsic in the basic 1336 // block containing the icmp. 1337 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1338 return false; 1339 1340 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1341 Intrinsic::uadd_with_overflow)) 1342 return false; 1343 1344 // Reset callers - do not crash by iterating over a dead instruction. 1345 ModifiedDT = true; 1346 return true; 1347 } 1348 1349 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1350 bool &ModifiedDT) { 1351 // We are not expecting non-canonical/degenerate code. Just bail out. 1352 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1353 if (isa<Constant>(A) && isa<Constant>(B)) 1354 return false; 1355 1356 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1357 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1358 if (Pred == ICmpInst::ICMP_UGT) { 1359 std::swap(A, B); 1360 Pred = ICmpInst::ICMP_ULT; 1361 } 1362 // Convert special-case: (A == 0) is the same as (A u< 1). 1363 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1364 B = ConstantInt::get(B->getType(), 1); 1365 Pred = ICmpInst::ICMP_ULT; 1366 } 1367 // Convert special-case: (A != 0) is the same as (0 u< A). 1368 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1369 std::swap(A, B); 1370 Pred = ICmpInst::ICMP_ULT; 1371 } 1372 if (Pred != ICmpInst::ICMP_ULT) 1373 return false; 1374 1375 // Walk the users of a variable operand of a compare looking for a subtract or 1376 // add with that same operand. Also match the 2nd operand of the compare to 1377 // the add/sub, but that may be a negated constant operand of an add. 1378 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1379 BinaryOperator *Sub = nullptr; 1380 for (User *U : CmpVariableOperand->users()) { 1381 // A - B, A u< B --> usubo(A, B) 1382 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1383 Sub = cast<BinaryOperator>(U); 1384 break; 1385 } 1386 1387 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1388 const APInt *CmpC, *AddC; 1389 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1390 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1391 Sub = cast<BinaryOperator>(U); 1392 break; 1393 } 1394 } 1395 if (!Sub) 1396 return false; 1397 1398 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1399 TLI->getValueType(*DL, Sub->getType()), 1400 Sub->hasNUsesOrMore(2))) 1401 return false; 1402 1403 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1404 Cmp, Intrinsic::usub_with_overflow)) 1405 return false; 1406 1407 // Reset callers - do not crash by iterating over a dead instruction. 1408 ModifiedDT = true; 1409 return true; 1410 } 1411 1412 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1413 /// registers that must be created and coalesced. This is a clear win except on 1414 /// targets with multiple condition code registers (PowerPC), where it might 1415 /// lose; some adjustment may be wanted there. 1416 /// 1417 /// Return true if any changes are made. 1418 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1419 if (TLI.hasMultipleConditionRegisters()) 1420 return false; 1421 1422 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1423 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1424 return false; 1425 1426 // Only insert a cmp in each block once. 1427 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1428 1429 bool MadeChange = false; 1430 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1431 UI != E; ) { 1432 Use &TheUse = UI.getUse(); 1433 Instruction *User = cast<Instruction>(*UI); 1434 1435 // Preincrement use iterator so we don't invalidate it. 1436 ++UI; 1437 1438 // Don't bother for PHI nodes. 1439 if (isa<PHINode>(User)) 1440 continue; 1441 1442 // Figure out which BB this cmp is used in. 1443 BasicBlock *UserBB = User->getParent(); 1444 BasicBlock *DefBB = Cmp->getParent(); 1445 1446 // If this user is in the same block as the cmp, don't change the cmp. 1447 if (UserBB == DefBB) continue; 1448 1449 // If we have already inserted a cmp into this block, use it. 1450 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1451 1452 if (!InsertedCmp) { 1453 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1454 assert(InsertPt != UserBB->end()); 1455 InsertedCmp = 1456 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1457 Cmp->getOperand(0), Cmp->getOperand(1), "", 1458 &*InsertPt); 1459 // Propagate the debug info. 1460 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1461 } 1462 1463 // Replace a use of the cmp with a use of the new cmp. 1464 TheUse = InsertedCmp; 1465 MadeChange = true; 1466 ++NumCmpUses; 1467 } 1468 1469 // If we removed all uses, nuke the cmp. 1470 if (Cmp->use_empty()) { 1471 Cmp->eraseFromParent(); 1472 MadeChange = true; 1473 } 1474 1475 return MadeChange; 1476 } 1477 1478 /// For pattern like: 1479 /// 1480 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1481 /// ... 1482 /// DomBB: 1483 /// ... 1484 /// br DomCond, TrueBB, CmpBB 1485 /// CmpBB: (with DomBB being the single predecessor) 1486 /// ... 1487 /// Cmp = icmp eq CmpOp0, CmpOp1 1488 /// ... 1489 /// 1490 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1491 /// different from lowering of icmp eq (PowerPC). This function try to convert 1492 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1493 /// After that, DomCond and Cmp can use the same comparison so reduce one 1494 /// comparison. 1495 /// 1496 /// Return true if any changes are made. 1497 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1498 const TargetLowering &TLI) { 1499 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1500 return false; 1501 1502 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1503 if (Pred != ICmpInst::ICMP_EQ) 1504 return false; 1505 1506 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1507 // icmp slt/sgt would introduce more redundant LLVM IR. 1508 for (User *U : Cmp->users()) { 1509 if (isa<BranchInst>(U)) 1510 continue; 1511 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1512 continue; 1513 return false; 1514 } 1515 1516 // This is a cheap/incomplete check for dominance - just match a single 1517 // predecessor with a conditional branch. 1518 BasicBlock *CmpBB = Cmp->getParent(); 1519 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1520 if (!DomBB) 1521 return false; 1522 1523 // We want to ensure that the only way control gets to the comparison of 1524 // interest is that a less/greater than comparison on the same operands is 1525 // false. 1526 Value *DomCond; 1527 BasicBlock *TrueBB, *FalseBB; 1528 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1529 return false; 1530 if (CmpBB != FalseBB) 1531 return false; 1532 1533 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1534 ICmpInst::Predicate DomPred; 1535 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1536 return false; 1537 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1538 return false; 1539 1540 // Convert the equality comparison to the opposite of the dominating 1541 // comparison and swap the direction for all branch/select users. 1542 // We have conceptually converted: 1543 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1544 // to 1545 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1546 // And similarly for branches. 1547 for (User *U : Cmp->users()) { 1548 if (auto *BI = dyn_cast<BranchInst>(U)) { 1549 assert(BI->isConditional() && "Must be conditional"); 1550 BI->swapSuccessors(); 1551 continue; 1552 } 1553 if (auto *SI = dyn_cast<SelectInst>(U)) { 1554 // Swap operands 1555 SI->swapValues(); 1556 SI->swapProfMetadata(); 1557 continue; 1558 } 1559 llvm_unreachable("Must be a branch or a select"); 1560 } 1561 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1562 return true; 1563 } 1564 1565 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1566 if (sinkCmpExpression(Cmp, *TLI)) 1567 return true; 1568 1569 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1570 return true; 1571 1572 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1573 return true; 1574 1575 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1576 return true; 1577 1578 return false; 1579 } 1580 1581 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1582 /// used in a compare to allow isel to generate better code for targets where 1583 /// this operation can be combined. 1584 /// 1585 /// Return true if any changes are made. 1586 static bool sinkAndCmp0Expression(Instruction *AndI, 1587 const TargetLowering &TLI, 1588 SetOfInstrs &InsertedInsts) { 1589 // Double-check that we're not trying to optimize an instruction that was 1590 // already optimized by some other part of this pass. 1591 assert(!InsertedInsts.count(AndI) && 1592 "Attempting to optimize already optimized and instruction"); 1593 (void) InsertedInsts; 1594 1595 // Nothing to do for single use in same basic block. 1596 if (AndI->hasOneUse() && 1597 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1598 return false; 1599 1600 // Try to avoid cases where sinking/duplicating is likely to increase register 1601 // pressure. 1602 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1603 !isa<ConstantInt>(AndI->getOperand(1)) && 1604 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1605 return false; 1606 1607 for (auto *U : AndI->users()) { 1608 Instruction *User = cast<Instruction>(U); 1609 1610 // Only sink 'and' feeding icmp with 0. 1611 if (!isa<ICmpInst>(User)) 1612 return false; 1613 1614 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1615 if (!CmpC || !CmpC->isZero()) 1616 return false; 1617 } 1618 1619 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1620 return false; 1621 1622 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1623 LLVM_DEBUG(AndI->getParent()->dump()); 1624 1625 // Push the 'and' into the same block as the icmp 0. There should only be 1626 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1627 // others, so we don't need to keep track of which BBs we insert into. 1628 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1629 UI != E; ) { 1630 Use &TheUse = UI.getUse(); 1631 Instruction *User = cast<Instruction>(*UI); 1632 1633 // Preincrement use iterator so we don't invalidate it. 1634 ++UI; 1635 1636 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1637 1638 // Keep the 'and' in the same place if the use is already in the same block. 1639 Instruction *InsertPt = 1640 User->getParent() == AndI->getParent() ? AndI : User; 1641 Instruction *InsertedAnd = 1642 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1643 AndI->getOperand(1), "", InsertPt); 1644 // Propagate the debug info. 1645 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1646 1647 // Replace a use of the 'and' with a use of the new 'and'. 1648 TheUse = InsertedAnd; 1649 ++NumAndUses; 1650 LLVM_DEBUG(User->getParent()->dump()); 1651 } 1652 1653 // We removed all uses, nuke the and. 1654 AndI->eraseFromParent(); 1655 return true; 1656 } 1657 1658 /// Check if the candidates could be combined with a shift instruction, which 1659 /// includes: 1660 /// 1. Truncate instruction 1661 /// 2. And instruction and the imm is a mask of the low bits: 1662 /// imm & (imm+1) == 0 1663 static bool isExtractBitsCandidateUse(Instruction *User) { 1664 if (!isa<TruncInst>(User)) { 1665 if (User->getOpcode() != Instruction::And || 1666 !isa<ConstantInt>(User->getOperand(1))) 1667 return false; 1668 1669 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1670 1671 if ((Cimm & (Cimm + 1)).getBoolValue()) 1672 return false; 1673 } 1674 return true; 1675 } 1676 1677 /// Sink both shift and truncate instruction to the use of truncate's BB. 1678 static bool 1679 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1680 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1681 const TargetLowering &TLI, const DataLayout &DL) { 1682 BasicBlock *UserBB = User->getParent(); 1683 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1684 auto *TruncI = cast<TruncInst>(User); 1685 bool MadeChange = false; 1686 1687 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1688 TruncE = TruncI->user_end(); 1689 TruncUI != TruncE;) { 1690 1691 Use &TruncTheUse = TruncUI.getUse(); 1692 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1693 // Preincrement use iterator so we don't invalidate it. 1694 1695 ++TruncUI; 1696 1697 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1698 if (!ISDOpcode) 1699 continue; 1700 1701 // If the use is actually a legal node, there will not be an 1702 // implicit truncate. 1703 // FIXME: always querying the result type is just an 1704 // approximation; some nodes' legality is determined by the 1705 // operand or other means. There's no good way to find out though. 1706 if (TLI.isOperationLegalOrCustom( 1707 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1708 continue; 1709 1710 // Don't bother for PHI nodes. 1711 if (isa<PHINode>(TruncUser)) 1712 continue; 1713 1714 BasicBlock *TruncUserBB = TruncUser->getParent(); 1715 1716 if (UserBB == TruncUserBB) 1717 continue; 1718 1719 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1720 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1721 1722 if (!InsertedShift && !InsertedTrunc) { 1723 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1724 assert(InsertPt != TruncUserBB->end()); 1725 // Sink the shift 1726 if (ShiftI->getOpcode() == Instruction::AShr) 1727 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1728 "", &*InsertPt); 1729 else 1730 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1731 "", &*InsertPt); 1732 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1733 1734 // Sink the trunc 1735 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1736 TruncInsertPt++; 1737 assert(TruncInsertPt != TruncUserBB->end()); 1738 1739 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1740 TruncI->getType(), "", &*TruncInsertPt); 1741 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1742 1743 MadeChange = true; 1744 1745 TruncTheUse = InsertedTrunc; 1746 } 1747 } 1748 return MadeChange; 1749 } 1750 1751 /// Sink the shift *right* instruction into user blocks if the uses could 1752 /// potentially be combined with this shift instruction and generate BitExtract 1753 /// instruction. It will only be applied if the architecture supports BitExtract 1754 /// instruction. Here is an example: 1755 /// BB1: 1756 /// %x.extract.shift = lshr i64 %arg1, 32 1757 /// BB2: 1758 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1759 /// ==> 1760 /// 1761 /// BB2: 1762 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1763 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1764 /// 1765 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1766 /// instruction. 1767 /// Return true if any changes are made. 1768 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1769 const TargetLowering &TLI, 1770 const DataLayout &DL) { 1771 BasicBlock *DefBB = ShiftI->getParent(); 1772 1773 /// Only insert instructions in each block once. 1774 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1775 1776 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1777 1778 bool MadeChange = false; 1779 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1780 UI != E;) { 1781 Use &TheUse = UI.getUse(); 1782 Instruction *User = cast<Instruction>(*UI); 1783 // Preincrement use iterator so we don't invalidate it. 1784 ++UI; 1785 1786 // Don't bother for PHI nodes. 1787 if (isa<PHINode>(User)) 1788 continue; 1789 1790 if (!isExtractBitsCandidateUse(User)) 1791 continue; 1792 1793 BasicBlock *UserBB = User->getParent(); 1794 1795 if (UserBB == DefBB) { 1796 // If the shift and truncate instruction are in the same BB. The use of 1797 // the truncate(TruncUse) may still introduce another truncate if not 1798 // legal. In this case, we would like to sink both shift and truncate 1799 // instruction to the BB of TruncUse. 1800 // for example: 1801 // BB1: 1802 // i64 shift.result = lshr i64 opnd, imm 1803 // trunc.result = trunc shift.result to i16 1804 // 1805 // BB2: 1806 // ----> We will have an implicit truncate here if the architecture does 1807 // not have i16 compare. 1808 // cmp i16 trunc.result, opnd2 1809 // 1810 if (isa<TruncInst>(User) && shiftIsLegal 1811 // If the type of the truncate is legal, no truncate will be 1812 // introduced in other basic blocks. 1813 && 1814 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1815 MadeChange = 1816 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1817 1818 continue; 1819 } 1820 // If we have already inserted a shift into this block, use it. 1821 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1822 1823 if (!InsertedShift) { 1824 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1825 assert(InsertPt != UserBB->end()); 1826 1827 if (ShiftI->getOpcode() == Instruction::AShr) 1828 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1829 "", &*InsertPt); 1830 else 1831 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1832 "", &*InsertPt); 1833 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1834 1835 MadeChange = true; 1836 } 1837 1838 // Replace a use of the shift with a use of the new shift. 1839 TheUse = InsertedShift; 1840 } 1841 1842 // If we removed all uses, or there are none, nuke the shift. 1843 if (ShiftI->use_empty()) { 1844 salvageDebugInfo(*ShiftI); 1845 ShiftI->eraseFromParent(); 1846 MadeChange = true; 1847 } 1848 1849 return MadeChange; 1850 } 1851 1852 /// If counting leading or trailing zeros is an expensive operation and a zero 1853 /// input is defined, add a check for zero to avoid calling the intrinsic. 1854 /// 1855 /// We want to transform: 1856 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1857 /// 1858 /// into: 1859 /// entry: 1860 /// %cmpz = icmp eq i64 %A, 0 1861 /// br i1 %cmpz, label %cond.end, label %cond.false 1862 /// cond.false: 1863 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1864 /// br label %cond.end 1865 /// cond.end: 1866 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1867 /// 1868 /// If the transform is performed, return true and set ModifiedDT to true. 1869 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1870 const TargetLowering *TLI, 1871 const DataLayout *DL, 1872 bool &ModifiedDT) { 1873 // If a zero input is undefined, it doesn't make sense to despeculate that. 1874 if (match(CountZeros->getOperand(1), m_One())) 1875 return false; 1876 1877 // If it's cheap to speculate, there's nothing to do. 1878 auto IntrinsicID = CountZeros->getIntrinsicID(); 1879 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1880 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1881 return false; 1882 1883 // Only handle legal scalar cases. Anything else requires too much work. 1884 Type *Ty = CountZeros->getType(); 1885 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1886 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1887 return false; 1888 1889 // The intrinsic will be sunk behind a compare against zero and branch. 1890 BasicBlock *StartBlock = CountZeros->getParent(); 1891 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1892 1893 // Create another block after the count zero intrinsic. A PHI will be added 1894 // in this block to select the result of the intrinsic or the bit-width 1895 // constant if the input to the intrinsic is zero. 1896 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1897 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1898 1899 // Set up a builder to create a compare, conditional branch, and PHI. 1900 IRBuilder<> Builder(CountZeros->getContext()); 1901 Builder.SetInsertPoint(StartBlock->getTerminator()); 1902 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1903 1904 // Replace the unconditional branch that was created by the first split with 1905 // a compare against zero and a conditional branch. 1906 Value *Zero = Constant::getNullValue(Ty); 1907 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1908 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1909 StartBlock->getTerminator()->eraseFromParent(); 1910 1911 // Create a PHI in the end block to select either the output of the intrinsic 1912 // or the bit width of the operand. 1913 Builder.SetInsertPoint(&EndBlock->front()); 1914 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1915 CountZeros->replaceAllUsesWith(PN); 1916 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1917 PN->addIncoming(BitWidth, StartBlock); 1918 PN->addIncoming(CountZeros, CallBlock); 1919 1920 // We are explicitly handling the zero case, so we can set the intrinsic's 1921 // undefined zero argument to 'true'. This will also prevent reprocessing the 1922 // intrinsic; we only despeculate when a zero input is defined. 1923 CountZeros->setArgOperand(1, Builder.getTrue()); 1924 ModifiedDT = true; 1925 return true; 1926 } 1927 1928 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1929 BasicBlock *BB = CI->getParent(); 1930 1931 // Lower inline assembly if we can. 1932 // If we found an inline asm expession, and if the target knows how to 1933 // lower it to normal LLVM code, do so now. 1934 if (CI->isInlineAsm()) { 1935 if (TLI->ExpandInlineAsm(CI)) { 1936 // Avoid invalidating the iterator. 1937 CurInstIterator = BB->begin(); 1938 // Avoid processing instructions out of order, which could cause 1939 // reuse before a value is defined. 1940 SunkAddrs.clear(); 1941 return true; 1942 } 1943 // Sink address computing for memory operands into the block. 1944 if (optimizeInlineAsmInst(CI)) 1945 return true; 1946 } 1947 1948 // Align the pointer arguments to this call if the target thinks it's a good 1949 // idea 1950 unsigned MinSize, PrefAlign; 1951 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1952 for (auto &Arg : CI->arg_operands()) { 1953 // We want to align both objects whose address is used directly and 1954 // objects whose address is used in casts and GEPs, though it only makes 1955 // sense for GEPs if the offset is a multiple of the desired alignment and 1956 // if size - offset meets the size threshold. 1957 if (!Arg->getType()->isPointerTy()) 1958 continue; 1959 APInt Offset(DL->getIndexSizeInBits( 1960 cast<PointerType>(Arg->getType())->getAddressSpace()), 1961 0); 1962 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1963 uint64_t Offset2 = Offset.getLimitedValue(); 1964 if ((Offset2 & (PrefAlign-1)) != 0) 1965 continue; 1966 AllocaInst *AI; 1967 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1968 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1969 AI->setAlignment(Align(PrefAlign)); 1970 // Global variables can only be aligned if they are defined in this 1971 // object (i.e. they are uniquely initialized in this object), and 1972 // over-aligning global variables that have an explicit section is 1973 // forbidden. 1974 GlobalVariable *GV; 1975 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1976 GV->getPointerAlignment(*DL) < PrefAlign && 1977 DL->getTypeAllocSize(GV->getValueType()) >= 1978 MinSize + Offset2) 1979 GV->setAlignment(MaybeAlign(PrefAlign)); 1980 } 1981 // If this is a memcpy (or similar) then we may be able to improve the 1982 // alignment 1983 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1984 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 1985 MaybeAlign MIDestAlign = MI->getDestAlign(); 1986 if (!MIDestAlign || DestAlign > *MIDestAlign) 1987 MI->setDestAlignment(DestAlign); 1988 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1989 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 1990 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1991 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 1992 MTI->setSourceAlignment(SrcAlign); 1993 } 1994 } 1995 } 1996 1997 // If we have a cold call site, try to sink addressing computation into the 1998 // cold block. This interacts with our handling for loads and stores to 1999 // ensure that we can fold all uses of a potential addressing computation 2000 // into their uses. TODO: generalize this to work over profiling data 2001 if (CI->hasFnAttr(Attribute::Cold) && 2002 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2003 for (auto &Arg : CI->arg_operands()) { 2004 if (!Arg->getType()->isPointerTy()) 2005 continue; 2006 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2007 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2008 } 2009 2010 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2011 if (II) { 2012 switch (II->getIntrinsicID()) { 2013 default: break; 2014 case Intrinsic::assume: { 2015 II->eraseFromParent(); 2016 return true; 2017 } 2018 2019 case Intrinsic::experimental_widenable_condition: { 2020 // Give up on future widening oppurtunties so that we can fold away dead 2021 // paths and merge blocks before going into block-local instruction 2022 // selection. 2023 if (II->use_empty()) { 2024 II->eraseFromParent(); 2025 return true; 2026 } 2027 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2028 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2029 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2030 }); 2031 return true; 2032 } 2033 case Intrinsic::objectsize: 2034 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2035 case Intrinsic::is_constant: 2036 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2037 case Intrinsic::aarch64_stlxr: 2038 case Intrinsic::aarch64_stxr: { 2039 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2040 if (!ExtVal || !ExtVal->hasOneUse() || 2041 ExtVal->getParent() == CI->getParent()) 2042 return false; 2043 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2044 ExtVal->moveBefore(CI); 2045 // Mark this instruction as "inserted by CGP", so that other 2046 // optimizations don't touch it. 2047 InsertedInsts.insert(ExtVal); 2048 return true; 2049 } 2050 2051 case Intrinsic::launder_invariant_group: 2052 case Intrinsic::strip_invariant_group: { 2053 Value *ArgVal = II->getArgOperand(0); 2054 auto it = LargeOffsetGEPMap.find(II); 2055 if (it != LargeOffsetGEPMap.end()) { 2056 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2057 // Make sure not to have to deal with iterator invalidation 2058 // after possibly adding ArgVal to LargeOffsetGEPMap. 2059 auto GEPs = std::move(it->second); 2060 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2061 LargeOffsetGEPMap.erase(II); 2062 } 2063 2064 II->replaceAllUsesWith(ArgVal); 2065 II->eraseFromParent(); 2066 return true; 2067 } 2068 case Intrinsic::cttz: 2069 case Intrinsic::ctlz: 2070 // If counting zeros is expensive, try to avoid it. 2071 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2072 case Intrinsic::fshl: 2073 case Intrinsic::fshr: 2074 return optimizeFunnelShift(II); 2075 case Intrinsic::dbg_value: 2076 return fixupDbgValue(II); 2077 case Intrinsic::vscale: { 2078 // If datalayout has no special restrictions on vector data layout, 2079 // replace `llvm.vscale` by an equivalent constant expression 2080 // to benefit from cheap constant propagation. 2081 Type *ScalableVectorTy = 2082 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2083 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2084 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2085 auto *One = ConstantInt::getSigned(II->getType(), 1); 2086 auto *CGep = 2087 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2088 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2089 II->eraseFromParent(); 2090 return true; 2091 } 2092 break; 2093 } 2094 case Intrinsic::masked_gather: 2095 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2096 case Intrinsic::masked_scatter: 2097 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2098 } 2099 2100 SmallVector<Value *, 2> PtrOps; 2101 Type *AccessTy; 2102 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2103 while (!PtrOps.empty()) { 2104 Value *PtrVal = PtrOps.pop_back_val(); 2105 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2106 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2107 return true; 2108 } 2109 } 2110 2111 // From here on out we're working with named functions. 2112 if (!CI->getCalledFunction()) return false; 2113 2114 // Lower all default uses of _chk calls. This is very similar 2115 // to what InstCombineCalls does, but here we are only lowering calls 2116 // to fortified library functions (e.g. __memcpy_chk) that have the default 2117 // "don't know" as the objectsize. Anything else should be left alone. 2118 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2119 IRBuilder<> Builder(CI); 2120 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2121 CI->replaceAllUsesWith(V); 2122 CI->eraseFromParent(); 2123 return true; 2124 } 2125 2126 return false; 2127 } 2128 2129 /// Look for opportunities to duplicate return instructions to the predecessor 2130 /// to enable tail call optimizations. The case it is currently looking for is: 2131 /// @code 2132 /// bb0: 2133 /// %tmp0 = tail call i32 @f0() 2134 /// br label %return 2135 /// bb1: 2136 /// %tmp1 = tail call i32 @f1() 2137 /// br label %return 2138 /// bb2: 2139 /// %tmp2 = tail call i32 @f2() 2140 /// br label %return 2141 /// return: 2142 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2143 /// ret i32 %retval 2144 /// @endcode 2145 /// 2146 /// => 2147 /// 2148 /// @code 2149 /// bb0: 2150 /// %tmp0 = tail call i32 @f0() 2151 /// ret i32 %tmp0 2152 /// bb1: 2153 /// %tmp1 = tail call i32 @f1() 2154 /// ret i32 %tmp1 2155 /// bb2: 2156 /// %tmp2 = tail call i32 @f2() 2157 /// ret i32 %tmp2 2158 /// @endcode 2159 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2160 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2161 if (!RetI) 2162 return false; 2163 2164 PHINode *PN = nullptr; 2165 ExtractValueInst *EVI = nullptr; 2166 BitCastInst *BCI = nullptr; 2167 Value *V = RetI->getReturnValue(); 2168 if (V) { 2169 BCI = dyn_cast<BitCastInst>(V); 2170 if (BCI) 2171 V = BCI->getOperand(0); 2172 2173 EVI = dyn_cast<ExtractValueInst>(V); 2174 if (EVI) { 2175 V = EVI->getOperand(0); 2176 if (!std::all_of(EVI->idx_begin(), EVI->idx_end(), 2177 [](unsigned idx) { return idx == 0; })) 2178 return false; 2179 } 2180 2181 PN = dyn_cast<PHINode>(V); 2182 if (!PN) 2183 return false; 2184 } 2185 2186 if (PN && PN->getParent() != BB) 2187 return false; 2188 2189 // Make sure there are no instructions between the PHI and return, or that the 2190 // return is the first instruction in the block. 2191 if (PN) { 2192 BasicBlock::iterator BI = BB->begin(); 2193 // Skip over debug and the bitcast. 2194 do { 2195 ++BI; 2196 } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI); 2197 if (&*BI != RetI) 2198 return false; 2199 } else { 2200 BasicBlock::iterator BI = BB->begin(); 2201 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2202 if (&*BI != RetI) 2203 return false; 2204 } 2205 2206 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2207 /// call. 2208 const Function *F = BB->getParent(); 2209 SmallVector<BasicBlock*, 4> TailCallBBs; 2210 if (PN) { 2211 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2212 // Look through bitcasts. 2213 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2214 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2215 BasicBlock *PredBB = PN->getIncomingBlock(I); 2216 // Make sure the phi value is indeed produced by the tail call. 2217 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2218 TLI->mayBeEmittedAsTailCall(CI) && 2219 attributesPermitTailCall(F, CI, RetI, *TLI)) 2220 TailCallBBs.push_back(PredBB); 2221 } 2222 } else { 2223 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2224 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2225 if (!VisitedBBs.insert(*PI).second) 2226 continue; 2227 2228 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2229 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2230 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2231 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2232 if (RI == RE) 2233 continue; 2234 2235 CallInst *CI = dyn_cast<CallInst>(&*RI); 2236 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2237 attributesPermitTailCall(F, CI, RetI, *TLI)) 2238 TailCallBBs.push_back(*PI); 2239 } 2240 } 2241 2242 bool Changed = false; 2243 for (auto const &TailCallBB : TailCallBBs) { 2244 // Make sure the call instruction is followed by an unconditional branch to 2245 // the return block. 2246 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2247 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2248 continue; 2249 2250 // Duplicate the return into TailCallBB. 2251 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2252 assert(!VerifyBFIUpdates || 2253 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2254 BFI->setBlockFreq( 2255 BB, 2256 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2257 ModifiedDT = Changed = true; 2258 ++NumRetsDup; 2259 } 2260 2261 // If we eliminated all predecessors of the block, delete the block now. 2262 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2263 BB->eraseFromParent(); 2264 2265 return Changed; 2266 } 2267 2268 //===----------------------------------------------------------------------===// 2269 // Memory Optimization 2270 //===----------------------------------------------------------------------===// 2271 2272 namespace { 2273 2274 /// This is an extended version of TargetLowering::AddrMode 2275 /// which holds actual Value*'s for register values. 2276 struct ExtAddrMode : public TargetLowering::AddrMode { 2277 Value *BaseReg = nullptr; 2278 Value *ScaledReg = nullptr; 2279 Value *OriginalValue = nullptr; 2280 bool InBounds = true; 2281 2282 enum FieldName { 2283 NoField = 0x00, 2284 BaseRegField = 0x01, 2285 BaseGVField = 0x02, 2286 BaseOffsField = 0x04, 2287 ScaledRegField = 0x08, 2288 ScaleField = 0x10, 2289 MultipleFields = 0xff 2290 }; 2291 2292 2293 ExtAddrMode() = default; 2294 2295 void print(raw_ostream &OS) const; 2296 void dump() const; 2297 2298 FieldName compare(const ExtAddrMode &other) { 2299 // First check that the types are the same on each field, as differing types 2300 // is something we can't cope with later on. 2301 if (BaseReg && other.BaseReg && 2302 BaseReg->getType() != other.BaseReg->getType()) 2303 return MultipleFields; 2304 if (BaseGV && other.BaseGV && 2305 BaseGV->getType() != other.BaseGV->getType()) 2306 return MultipleFields; 2307 if (ScaledReg && other.ScaledReg && 2308 ScaledReg->getType() != other.ScaledReg->getType()) 2309 return MultipleFields; 2310 2311 // Conservatively reject 'inbounds' mismatches. 2312 if (InBounds != other.InBounds) 2313 return MultipleFields; 2314 2315 // Check each field to see if it differs. 2316 unsigned Result = NoField; 2317 if (BaseReg != other.BaseReg) 2318 Result |= BaseRegField; 2319 if (BaseGV != other.BaseGV) 2320 Result |= BaseGVField; 2321 if (BaseOffs != other.BaseOffs) 2322 Result |= BaseOffsField; 2323 if (ScaledReg != other.ScaledReg) 2324 Result |= ScaledRegField; 2325 // Don't count 0 as being a different scale, because that actually means 2326 // unscaled (which will already be counted by having no ScaledReg). 2327 if (Scale && other.Scale && Scale != other.Scale) 2328 Result |= ScaleField; 2329 2330 if (countPopulation(Result) > 1) 2331 return MultipleFields; 2332 else 2333 return static_cast<FieldName>(Result); 2334 } 2335 2336 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2337 // with no offset. 2338 bool isTrivial() { 2339 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2340 // trivial if at most one of these terms is nonzero, except that BaseGV and 2341 // BaseReg both being zero actually means a null pointer value, which we 2342 // consider to be 'non-zero' here. 2343 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2344 } 2345 2346 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2347 switch (Field) { 2348 default: 2349 return nullptr; 2350 case BaseRegField: 2351 return BaseReg; 2352 case BaseGVField: 2353 return BaseGV; 2354 case ScaledRegField: 2355 return ScaledReg; 2356 case BaseOffsField: 2357 return ConstantInt::get(IntPtrTy, BaseOffs); 2358 } 2359 } 2360 2361 void SetCombinedField(FieldName Field, Value *V, 2362 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2363 switch (Field) { 2364 default: 2365 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2366 break; 2367 case ExtAddrMode::BaseRegField: 2368 BaseReg = V; 2369 break; 2370 case ExtAddrMode::BaseGVField: 2371 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2372 // in the BaseReg field. 2373 assert(BaseReg == nullptr); 2374 BaseReg = V; 2375 BaseGV = nullptr; 2376 break; 2377 case ExtAddrMode::ScaledRegField: 2378 ScaledReg = V; 2379 // If we have a mix of scaled and unscaled addrmodes then we want scale 2380 // to be the scale and not zero. 2381 if (!Scale) 2382 for (const ExtAddrMode &AM : AddrModes) 2383 if (AM.Scale) { 2384 Scale = AM.Scale; 2385 break; 2386 } 2387 break; 2388 case ExtAddrMode::BaseOffsField: 2389 // The offset is no longer a constant, so it goes in ScaledReg with a 2390 // scale of 1. 2391 assert(ScaledReg == nullptr); 2392 ScaledReg = V; 2393 Scale = 1; 2394 BaseOffs = 0; 2395 break; 2396 } 2397 } 2398 }; 2399 2400 } // end anonymous namespace 2401 2402 #ifndef NDEBUG 2403 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2404 AM.print(OS); 2405 return OS; 2406 } 2407 #endif 2408 2409 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2410 void ExtAddrMode::print(raw_ostream &OS) const { 2411 bool NeedPlus = false; 2412 OS << "["; 2413 if (InBounds) 2414 OS << "inbounds "; 2415 if (BaseGV) { 2416 OS << (NeedPlus ? " + " : "") 2417 << "GV:"; 2418 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2419 NeedPlus = true; 2420 } 2421 2422 if (BaseOffs) { 2423 OS << (NeedPlus ? " + " : "") 2424 << BaseOffs; 2425 NeedPlus = true; 2426 } 2427 2428 if (BaseReg) { 2429 OS << (NeedPlus ? " + " : "") 2430 << "Base:"; 2431 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2432 NeedPlus = true; 2433 } 2434 if (Scale) { 2435 OS << (NeedPlus ? " + " : "") 2436 << Scale << "*"; 2437 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2438 } 2439 2440 OS << ']'; 2441 } 2442 2443 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2444 print(dbgs()); 2445 dbgs() << '\n'; 2446 } 2447 #endif 2448 2449 namespace { 2450 2451 /// This class provides transaction based operation on the IR. 2452 /// Every change made through this class is recorded in the internal state and 2453 /// can be undone (rollback) until commit is called. 2454 /// CGP does not check if instructions could be speculatively executed when 2455 /// moved. Preserving the original location would pessimize the debugging 2456 /// experience, as well as negatively impact the quality of sample PGO. 2457 class TypePromotionTransaction { 2458 /// This represents the common interface of the individual transaction. 2459 /// Each class implements the logic for doing one specific modification on 2460 /// the IR via the TypePromotionTransaction. 2461 class TypePromotionAction { 2462 protected: 2463 /// The Instruction modified. 2464 Instruction *Inst; 2465 2466 public: 2467 /// Constructor of the action. 2468 /// The constructor performs the related action on the IR. 2469 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2470 2471 virtual ~TypePromotionAction() = default; 2472 2473 /// Undo the modification done by this action. 2474 /// When this method is called, the IR must be in the same state as it was 2475 /// before this action was applied. 2476 /// \pre Undoing the action works if and only if the IR is in the exact same 2477 /// state as it was directly after this action was applied. 2478 virtual void undo() = 0; 2479 2480 /// Advocate every change made by this action. 2481 /// When the results on the IR of the action are to be kept, it is important 2482 /// to call this function, otherwise hidden information may be kept forever. 2483 virtual void commit() { 2484 // Nothing to be done, this action is not doing anything. 2485 } 2486 }; 2487 2488 /// Utility to remember the position of an instruction. 2489 class InsertionHandler { 2490 /// Position of an instruction. 2491 /// Either an instruction: 2492 /// - Is the first in a basic block: BB is used. 2493 /// - Has a previous instruction: PrevInst is used. 2494 union { 2495 Instruction *PrevInst; 2496 BasicBlock *BB; 2497 } Point; 2498 2499 /// Remember whether or not the instruction had a previous instruction. 2500 bool HasPrevInstruction; 2501 2502 public: 2503 /// Record the position of \p Inst. 2504 InsertionHandler(Instruction *Inst) { 2505 BasicBlock::iterator It = Inst->getIterator(); 2506 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2507 if (HasPrevInstruction) 2508 Point.PrevInst = &*--It; 2509 else 2510 Point.BB = Inst->getParent(); 2511 } 2512 2513 /// Insert \p Inst at the recorded position. 2514 void insert(Instruction *Inst) { 2515 if (HasPrevInstruction) { 2516 if (Inst->getParent()) 2517 Inst->removeFromParent(); 2518 Inst->insertAfter(Point.PrevInst); 2519 } else { 2520 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2521 if (Inst->getParent()) 2522 Inst->moveBefore(Position); 2523 else 2524 Inst->insertBefore(Position); 2525 } 2526 } 2527 }; 2528 2529 /// Move an instruction before another. 2530 class InstructionMoveBefore : public TypePromotionAction { 2531 /// Original position of the instruction. 2532 InsertionHandler Position; 2533 2534 public: 2535 /// Move \p Inst before \p Before. 2536 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2537 : TypePromotionAction(Inst), Position(Inst) { 2538 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2539 << "\n"); 2540 Inst->moveBefore(Before); 2541 } 2542 2543 /// Move the instruction back to its original position. 2544 void undo() override { 2545 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2546 Position.insert(Inst); 2547 } 2548 }; 2549 2550 /// Set the operand of an instruction with a new value. 2551 class OperandSetter : public TypePromotionAction { 2552 /// Original operand of the instruction. 2553 Value *Origin; 2554 2555 /// Index of the modified instruction. 2556 unsigned Idx; 2557 2558 public: 2559 /// Set \p Idx operand of \p Inst with \p NewVal. 2560 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2561 : TypePromotionAction(Inst), Idx(Idx) { 2562 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2563 << "for:" << *Inst << "\n" 2564 << "with:" << *NewVal << "\n"); 2565 Origin = Inst->getOperand(Idx); 2566 Inst->setOperand(Idx, NewVal); 2567 } 2568 2569 /// Restore the original value of the instruction. 2570 void undo() override { 2571 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2572 << "for: " << *Inst << "\n" 2573 << "with: " << *Origin << "\n"); 2574 Inst->setOperand(Idx, Origin); 2575 } 2576 }; 2577 2578 /// Hide the operands of an instruction. 2579 /// Do as if this instruction was not using any of its operands. 2580 class OperandsHider : public TypePromotionAction { 2581 /// The list of original operands. 2582 SmallVector<Value *, 4> OriginalValues; 2583 2584 public: 2585 /// Remove \p Inst from the uses of the operands of \p Inst. 2586 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2587 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2588 unsigned NumOpnds = Inst->getNumOperands(); 2589 OriginalValues.reserve(NumOpnds); 2590 for (unsigned It = 0; It < NumOpnds; ++It) { 2591 // Save the current operand. 2592 Value *Val = Inst->getOperand(It); 2593 OriginalValues.push_back(Val); 2594 // Set a dummy one. 2595 // We could use OperandSetter here, but that would imply an overhead 2596 // that we are not willing to pay. 2597 Inst->setOperand(It, UndefValue::get(Val->getType())); 2598 } 2599 } 2600 2601 /// Restore the original list of uses. 2602 void undo() override { 2603 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2604 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2605 Inst->setOperand(It, OriginalValues[It]); 2606 } 2607 }; 2608 2609 /// Build a truncate instruction. 2610 class TruncBuilder : public TypePromotionAction { 2611 Value *Val; 2612 2613 public: 2614 /// Build a truncate instruction of \p Opnd producing a \p Ty 2615 /// result. 2616 /// trunc Opnd to Ty. 2617 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2618 IRBuilder<> Builder(Opnd); 2619 Builder.SetCurrentDebugLocation(DebugLoc()); 2620 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2621 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2622 } 2623 2624 /// Get the built value. 2625 Value *getBuiltValue() { return Val; } 2626 2627 /// Remove the built instruction. 2628 void undo() override { 2629 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2630 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2631 IVal->eraseFromParent(); 2632 } 2633 }; 2634 2635 /// Build a sign extension instruction. 2636 class SExtBuilder : public TypePromotionAction { 2637 Value *Val; 2638 2639 public: 2640 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2641 /// result. 2642 /// sext Opnd to Ty. 2643 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2644 : TypePromotionAction(InsertPt) { 2645 IRBuilder<> Builder(InsertPt); 2646 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2647 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2648 } 2649 2650 /// Get the built value. 2651 Value *getBuiltValue() { return Val; } 2652 2653 /// Remove the built instruction. 2654 void undo() override { 2655 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2656 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2657 IVal->eraseFromParent(); 2658 } 2659 }; 2660 2661 /// Build a zero extension instruction. 2662 class ZExtBuilder : public TypePromotionAction { 2663 Value *Val; 2664 2665 public: 2666 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2667 /// result. 2668 /// zext Opnd to Ty. 2669 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2670 : TypePromotionAction(InsertPt) { 2671 IRBuilder<> Builder(InsertPt); 2672 Builder.SetCurrentDebugLocation(DebugLoc()); 2673 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2674 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2675 } 2676 2677 /// Get the built value. 2678 Value *getBuiltValue() { return Val; } 2679 2680 /// Remove the built instruction. 2681 void undo() override { 2682 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2683 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2684 IVal->eraseFromParent(); 2685 } 2686 }; 2687 2688 /// Mutate an instruction to another type. 2689 class TypeMutator : public TypePromotionAction { 2690 /// Record the original type. 2691 Type *OrigTy; 2692 2693 public: 2694 /// Mutate the type of \p Inst into \p NewTy. 2695 TypeMutator(Instruction *Inst, Type *NewTy) 2696 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2697 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2698 << "\n"); 2699 Inst->mutateType(NewTy); 2700 } 2701 2702 /// Mutate the instruction back to its original type. 2703 void undo() override { 2704 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2705 << "\n"); 2706 Inst->mutateType(OrigTy); 2707 } 2708 }; 2709 2710 /// Replace the uses of an instruction by another instruction. 2711 class UsesReplacer : public TypePromotionAction { 2712 /// Helper structure to keep track of the replaced uses. 2713 struct InstructionAndIdx { 2714 /// The instruction using the instruction. 2715 Instruction *Inst; 2716 2717 /// The index where this instruction is used for Inst. 2718 unsigned Idx; 2719 2720 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2721 : Inst(Inst), Idx(Idx) {} 2722 }; 2723 2724 /// Keep track of the original uses (pair Instruction, Index). 2725 SmallVector<InstructionAndIdx, 4> OriginalUses; 2726 /// Keep track of the debug users. 2727 SmallVector<DbgValueInst *, 1> DbgValues; 2728 2729 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2730 2731 public: 2732 /// Replace all the use of \p Inst by \p New. 2733 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2734 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2735 << "\n"); 2736 // Record the original uses. 2737 for (Use &U : Inst->uses()) { 2738 Instruction *UserI = cast<Instruction>(U.getUser()); 2739 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2740 } 2741 // Record the debug uses separately. They are not in the instruction's 2742 // use list, but they are replaced by RAUW. 2743 findDbgValues(DbgValues, Inst); 2744 2745 // Now, we can replace the uses. 2746 Inst->replaceAllUsesWith(New); 2747 } 2748 2749 /// Reassign the original uses of Inst to Inst. 2750 void undo() override { 2751 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2752 for (use_iterator UseIt = OriginalUses.begin(), 2753 EndIt = OriginalUses.end(); 2754 UseIt != EndIt; ++UseIt) { 2755 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2756 } 2757 // RAUW has replaced all original uses with references to the new value, 2758 // including the debug uses. Since we are undoing the replacements, 2759 // the original debug uses must also be reinstated to maintain the 2760 // correctness and utility of debug value instructions. 2761 for (auto *DVI: DbgValues) { 2762 LLVMContext &Ctx = Inst->getType()->getContext(); 2763 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2764 DVI->setOperand(0, MV); 2765 } 2766 } 2767 }; 2768 2769 /// Remove an instruction from the IR. 2770 class InstructionRemover : public TypePromotionAction { 2771 /// Original position of the instruction. 2772 InsertionHandler Inserter; 2773 2774 /// Helper structure to hide all the link to the instruction. In other 2775 /// words, this helps to do as if the instruction was removed. 2776 OperandsHider Hider; 2777 2778 /// Keep track of the uses replaced, if any. 2779 UsesReplacer *Replacer = nullptr; 2780 2781 /// Keep track of instructions removed. 2782 SetOfInstrs &RemovedInsts; 2783 2784 public: 2785 /// Remove all reference of \p Inst and optionally replace all its 2786 /// uses with New. 2787 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2788 /// \pre If !Inst->use_empty(), then New != nullptr 2789 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2790 Value *New = nullptr) 2791 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2792 RemovedInsts(RemovedInsts) { 2793 if (New) 2794 Replacer = new UsesReplacer(Inst, New); 2795 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2796 RemovedInsts.insert(Inst); 2797 /// The instructions removed here will be freed after completing 2798 /// optimizeBlock() for all blocks as we need to keep track of the 2799 /// removed instructions during promotion. 2800 Inst->removeFromParent(); 2801 } 2802 2803 ~InstructionRemover() override { delete Replacer; } 2804 2805 /// Resurrect the instruction and reassign it to the proper uses if 2806 /// new value was provided when build this action. 2807 void undo() override { 2808 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2809 Inserter.insert(Inst); 2810 if (Replacer) 2811 Replacer->undo(); 2812 Hider.undo(); 2813 RemovedInsts.erase(Inst); 2814 } 2815 }; 2816 2817 public: 2818 /// Restoration point. 2819 /// The restoration point is a pointer to an action instead of an iterator 2820 /// because the iterator may be invalidated but not the pointer. 2821 using ConstRestorationPt = const TypePromotionAction *; 2822 2823 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2824 : RemovedInsts(RemovedInsts) {} 2825 2826 /// Advocate every changes made in that transaction. 2827 void commit(); 2828 2829 /// Undo all the changes made after the given point. 2830 void rollback(ConstRestorationPt Point); 2831 2832 /// Get the current restoration point. 2833 ConstRestorationPt getRestorationPoint() const; 2834 2835 /// \name API for IR modification with state keeping to support rollback. 2836 /// @{ 2837 /// Same as Instruction::setOperand. 2838 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2839 2840 /// Same as Instruction::eraseFromParent. 2841 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2842 2843 /// Same as Value::replaceAllUsesWith. 2844 void replaceAllUsesWith(Instruction *Inst, Value *New); 2845 2846 /// Same as Value::mutateType. 2847 void mutateType(Instruction *Inst, Type *NewTy); 2848 2849 /// Same as IRBuilder::createTrunc. 2850 Value *createTrunc(Instruction *Opnd, Type *Ty); 2851 2852 /// Same as IRBuilder::createSExt. 2853 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2854 2855 /// Same as IRBuilder::createZExt. 2856 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2857 2858 /// Same as Instruction::moveBefore. 2859 void moveBefore(Instruction *Inst, Instruction *Before); 2860 /// @} 2861 2862 private: 2863 /// The ordered list of actions made so far. 2864 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2865 2866 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2867 2868 SetOfInstrs &RemovedInsts; 2869 }; 2870 2871 } // end anonymous namespace 2872 2873 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2874 Value *NewVal) { 2875 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2876 Inst, Idx, NewVal)); 2877 } 2878 2879 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2880 Value *NewVal) { 2881 Actions.push_back( 2882 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2883 Inst, RemovedInsts, NewVal)); 2884 } 2885 2886 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2887 Value *New) { 2888 Actions.push_back( 2889 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2890 } 2891 2892 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2893 Actions.push_back( 2894 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2895 } 2896 2897 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2898 Type *Ty) { 2899 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2900 Value *Val = Ptr->getBuiltValue(); 2901 Actions.push_back(std::move(Ptr)); 2902 return Val; 2903 } 2904 2905 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2906 Value *Opnd, Type *Ty) { 2907 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2908 Value *Val = Ptr->getBuiltValue(); 2909 Actions.push_back(std::move(Ptr)); 2910 return Val; 2911 } 2912 2913 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2914 Value *Opnd, Type *Ty) { 2915 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2916 Value *Val = Ptr->getBuiltValue(); 2917 Actions.push_back(std::move(Ptr)); 2918 return Val; 2919 } 2920 2921 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2922 Instruction *Before) { 2923 Actions.push_back( 2924 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2925 Inst, Before)); 2926 } 2927 2928 TypePromotionTransaction::ConstRestorationPt 2929 TypePromotionTransaction::getRestorationPoint() const { 2930 return !Actions.empty() ? Actions.back().get() : nullptr; 2931 } 2932 2933 void TypePromotionTransaction::commit() { 2934 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2935 ++It) 2936 (*It)->commit(); 2937 Actions.clear(); 2938 } 2939 2940 void TypePromotionTransaction::rollback( 2941 TypePromotionTransaction::ConstRestorationPt Point) { 2942 while (!Actions.empty() && Point != Actions.back().get()) { 2943 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2944 Curr->undo(); 2945 } 2946 } 2947 2948 namespace { 2949 2950 /// A helper class for matching addressing modes. 2951 /// 2952 /// This encapsulates the logic for matching the target-legal addressing modes. 2953 class AddressingModeMatcher { 2954 SmallVectorImpl<Instruction*> &AddrModeInsts; 2955 const TargetLowering &TLI; 2956 const TargetRegisterInfo &TRI; 2957 const DataLayout &DL; 2958 2959 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2960 /// the memory instruction that we're computing this address for. 2961 Type *AccessTy; 2962 unsigned AddrSpace; 2963 Instruction *MemoryInst; 2964 2965 /// This is the addressing mode that we're building up. This is 2966 /// part of the return value of this addressing mode matching stuff. 2967 ExtAddrMode &AddrMode; 2968 2969 /// The instructions inserted by other CodeGenPrepare optimizations. 2970 const SetOfInstrs &InsertedInsts; 2971 2972 /// A map from the instructions to their type before promotion. 2973 InstrToOrigTy &PromotedInsts; 2974 2975 /// The ongoing transaction where every action should be registered. 2976 TypePromotionTransaction &TPT; 2977 2978 // A GEP which has too large offset to be folded into the addressing mode. 2979 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2980 2981 /// This is set to true when we should not do profitability checks. 2982 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2983 bool IgnoreProfitability; 2984 2985 /// True if we are optimizing for size. 2986 bool OptSize; 2987 2988 ProfileSummaryInfo *PSI; 2989 BlockFrequencyInfo *BFI; 2990 2991 AddressingModeMatcher( 2992 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2993 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2994 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2995 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2996 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 2997 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 2998 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2999 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3000 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3001 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3002 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3003 IgnoreProfitability = false; 3004 } 3005 3006 public: 3007 /// Find the maximal addressing mode that a load/store of V can fold, 3008 /// give an access type of AccessTy. This returns a list of involved 3009 /// instructions in AddrModeInsts. 3010 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3011 /// optimizations. 3012 /// \p PromotedInsts maps the instructions to their type before promotion. 3013 /// \p The ongoing transaction where every action should be registered. 3014 static ExtAddrMode 3015 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3016 SmallVectorImpl<Instruction *> &AddrModeInsts, 3017 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3018 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3019 TypePromotionTransaction &TPT, 3020 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3021 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3022 ExtAddrMode Result; 3023 3024 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3025 MemoryInst, Result, InsertedInsts, 3026 PromotedInsts, TPT, LargeOffsetGEP, 3027 OptSize, PSI, BFI) 3028 .matchAddr(V, 0); 3029 (void)Success; assert(Success && "Couldn't select *anything*?"); 3030 return Result; 3031 } 3032 3033 private: 3034 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3035 bool matchAddr(Value *Addr, unsigned Depth); 3036 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3037 bool *MovedAway = nullptr); 3038 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3039 ExtAddrMode &AMBefore, 3040 ExtAddrMode &AMAfter); 3041 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3042 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3043 Value *PromotedOperand) const; 3044 }; 3045 3046 class PhiNodeSet; 3047 3048 /// An iterator for PhiNodeSet. 3049 class PhiNodeSetIterator { 3050 PhiNodeSet * const Set; 3051 size_t CurrentIndex = 0; 3052 3053 public: 3054 /// The constructor. Start should point to either a valid element, or be equal 3055 /// to the size of the underlying SmallVector of the PhiNodeSet. 3056 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3057 PHINode * operator*() const; 3058 PhiNodeSetIterator& operator++(); 3059 bool operator==(const PhiNodeSetIterator &RHS) const; 3060 bool operator!=(const PhiNodeSetIterator &RHS) const; 3061 }; 3062 3063 /// Keeps a set of PHINodes. 3064 /// 3065 /// This is a minimal set implementation for a specific use case: 3066 /// It is very fast when there are very few elements, but also provides good 3067 /// performance when there are many. It is similar to SmallPtrSet, but also 3068 /// provides iteration by insertion order, which is deterministic and stable 3069 /// across runs. It is also similar to SmallSetVector, but provides removing 3070 /// elements in O(1) time. This is achieved by not actually removing the element 3071 /// from the underlying vector, so comes at the cost of using more memory, but 3072 /// that is fine, since PhiNodeSets are used as short lived objects. 3073 class PhiNodeSet { 3074 friend class PhiNodeSetIterator; 3075 3076 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3077 using iterator = PhiNodeSetIterator; 3078 3079 /// Keeps the elements in the order of their insertion in the underlying 3080 /// vector. To achieve constant time removal, it never deletes any element. 3081 SmallVector<PHINode *, 32> NodeList; 3082 3083 /// Keeps the elements in the underlying set implementation. This (and not the 3084 /// NodeList defined above) is the source of truth on whether an element 3085 /// is actually in the collection. 3086 MapType NodeMap; 3087 3088 /// Points to the first valid (not deleted) element when the set is not empty 3089 /// and the value is not zero. Equals to the size of the underlying vector 3090 /// when the set is empty. When the value is 0, as in the beginning, the 3091 /// first element may or may not be valid. 3092 size_t FirstValidElement = 0; 3093 3094 public: 3095 /// Inserts a new element to the collection. 3096 /// \returns true if the element is actually added, i.e. was not in the 3097 /// collection before the operation. 3098 bool insert(PHINode *Ptr) { 3099 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3100 NodeList.push_back(Ptr); 3101 return true; 3102 } 3103 return false; 3104 } 3105 3106 /// Removes the element from the collection. 3107 /// \returns whether the element is actually removed, i.e. was in the 3108 /// collection before the operation. 3109 bool erase(PHINode *Ptr) { 3110 auto it = NodeMap.find(Ptr); 3111 if (it != NodeMap.end()) { 3112 NodeMap.erase(Ptr); 3113 SkipRemovedElements(FirstValidElement); 3114 return true; 3115 } 3116 return false; 3117 } 3118 3119 /// Removes all elements and clears the collection. 3120 void clear() { 3121 NodeMap.clear(); 3122 NodeList.clear(); 3123 FirstValidElement = 0; 3124 } 3125 3126 /// \returns an iterator that will iterate the elements in the order of 3127 /// insertion. 3128 iterator begin() { 3129 if (FirstValidElement == 0) 3130 SkipRemovedElements(FirstValidElement); 3131 return PhiNodeSetIterator(this, FirstValidElement); 3132 } 3133 3134 /// \returns an iterator that points to the end of the collection. 3135 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3136 3137 /// Returns the number of elements in the collection. 3138 size_t size() const { 3139 return NodeMap.size(); 3140 } 3141 3142 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3143 size_t count(PHINode *Ptr) const { 3144 return NodeMap.count(Ptr); 3145 } 3146 3147 private: 3148 /// Updates the CurrentIndex so that it will point to a valid element. 3149 /// 3150 /// If the element of NodeList at CurrentIndex is valid, it does not 3151 /// change it. If there are no more valid elements, it updates CurrentIndex 3152 /// to point to the end of the NodeList. 3153 void SkipRemovedElements(size_t &CurrentIndex) { 3154 while (CurrentIndex < NodeList.size()) { 3155 auto it = NodeMap.find(NodeList[CurrentIndex]); 3156 // If the element has been deleted and added again later, NodeMap will 3157 // point to a different index, so CurrentIndex will still be invalid. 3158 if (it != NodeMap.end() && it->second == CurrentIndex) 3159 break; 3160 ++CurrentIndex; 3161 } 3162 } 3163 }; 3164 3165 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3166 : Set(Set), CurrentIndex(Start) {} 3167 3168 PHINode * PhiNodeSetIterator::operator*() const { 3169 assert(CurrentIndex < Set->NodeList.size() && 3170 "PhiNodeSet access out of range"); 3171 return Set->NodeList[CurrentIndex]; 3172 } 3173 3174 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3175 assert(CurrentIndex < Set->NodeList.size() && 3176 "PhiNodeSet access out of range"); 3177 ++CurrentIndex; 3178 Set->SkipRemovedElements(CurrentIndex); 3179 return *this; 3180 } 3181 3182 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3183 return CurrentIndex == RHS.CurrentIndex; 3184 } 3185 3186 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3187 return !((*this) == RHS); 3188 } 3189 3190 /// Keep track of simplification of Phi nodes. 3191 /// Accept the set of all phi nodes and erase phi node from this set 3192 /// if it is simplified. 3193 class SimplificationTracker { 3194 DenseMap<Value *, Value *> Storage; 3195 const SimplifyQuery &SQ; 3196 // Tracks newly created Phi nodes. The elements are iterated by insertion 3197 // order. 3198 PhiNodeSet AllPhiNodes; 3199 // Tracks newly created Select nodes. 3200 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3201 3202 public: 3203 SimplificationTracker(const SimplifyQuery &sq) 3204 : SQ(sq) {} 3205 3206 Value *Get(Value *V) { 3207 do { 3208 auto SV = Storage.find(V); 3209 if (SV == Storage.end()) 3210 return V; 3211 V = SV->second; 3212 } while (true); 3213 } 3214 3215 Value *Simplify(Value *Val) { 3216 SmallVector<Value *, 32> WorkList; 3217 SmallPtrSet<Value *, 32> Visited; 3218 WorkList.push_back(Val); 3219 while (!WorkList.empty()) { 3220 auto *P = WorkList.pop_back_val(); 3221 if (!Visited.insert(P).second) 3222 continue; 3223 if (auto *PI = dyn_cast<Instruction>(P)) 3224 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3225 for (auto *U : PI->users()) 3226 WorkList.push_back(cast<Value>(U)); 3227 Put(PI, V); 3228 PI->replaceAllUsesWith(V); 3229 if (auto *PHI = dyn_cast<PHINode>(PI)) 3230 AllPhiNodes.erase(PHI); 3231 if (auto *Select = dyn_cast<SelectInst>(PI)) 3232 AllSelectNodes.erase(Select); 3233 PI->eraseFromParent(); 3234 } 3235 } 3236 return Get(Val); 3237 } 3238 3239 void Put(Value *From, Value *To) { 3240 Storage.insert({ From, To }); 3241 } 3242 3243 void ReplacePhi(PHINode *From, PHINode *To) { 3244 Value* OldReplacement = Get(From); 3245 while (OldReplacement != From) { 3246 From = To; 3247 To = dyn_cast<PHINode>(OldReplacement); 3248 OldReplacement = Get(From); 3249 } 3250 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3251 Put(From, To); 3252 From->replaceAllUsesWith(To); 3253 AllPhiNodes.erase(From); 3254 From->eraseFromParent(); 3255 } 3256 3257 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3258 3259 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3260 3261 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3262 3263 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3264 3265 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3266 3267 void destroyNewNodes(Type *CommonType) { 3268 // For safe erasing, replace the uses with dummy value first. 3269 auto *Dummy = UndefValue::get(CommonType); 3270 for (auto *I : AllPhiNodes) { 3271 I->replaceAllUsesWith(Dummy); 3272 I->eraseFromParent(); 3273 } 3274 AllPhiNodes.clear(); 3275 for (auto *I : AllSelectNodes) { 3276 I->replaceAllUsesWith(Dummy); 3277 I->eraseFromParent(); 3278 } 3279 AllSelectNodes.clear(); 3280 } 3281 }; 3282 3283 /// A helper class for combining addressing modes. 3284 class AddressingModeCombiner { 3285 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3286 typedef std::pair<PHINode *, PHINode *> PHIPair; 3287 3288 private: 3289 /// The addressing modes we've collected. 3290 SmallVector<ExtAddrMode, 16> AddrModes; 3291 3292 /// The field in which the AddrModes differ, when we have more than one. 3293 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3294 3295 /// Are the AddrModes that we have all just equal to their original values? 3296 bool AllAddrModesTrivial = true; 3297 3298 /// Common Type for all different fields in addressing modes. 3299 Type *CommonType; 3300 3301 /// SimplifyQuery for simplifyInstruction utility. 3302 const SimplifyQuery &SQ; 3303 3304 /// Original Address. 3305 Value *Original; 3306 3307 public: 3308 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3309 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3310 3311 /// Get the combined AddrMode 3312 const ExtAddrMode &getAddrMode() const { 3313 return AddrModes[0]; 3314 } 3315 3316 /// Add a new AddrMode if it's compatible with the AddrModes we already 3317 /// have. 3318 /// \return True iff we succeeded in doing so. 3319 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3320 // Take note of if we have any non-trivial AddrModes, as we need to detect 3321 // when all AddrModes are trivial as then we would introduce a phi or select 3322 // which just duplicates what's already there. 3323 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3324 3325 // If this is the first addrmode then everything is fine. 3326 if (AddrModes.empty()) { 3327 AddrModes.emplace_back(NewAddrMode); 3328 return true; 3329 } 3330 3331 // Figure out how different this is from the other address modes, which we 3332 // can do just by comparing against the first one given that we only care 3333 // about the cumulative difference. 3334 ExtAddrMode::FieldName ThisDifferentField = 3335 AddrModes[0].compare(NewAddrMode); 3336 if (DifferentField == ExtAddrMode::NoField) 3337 DifferentField = ThisDifferentField; 3338 else if (DifferentField != ThisDifferentField) 3339 DifferentField = ExtAddrMode::MultipleFields; 3340 3341 // If NewAddrMode differs in more than one dimension we cannot handle it. 3342 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3343 3344 // If Scale Field is different then we reject. 3345 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3346 3347 // We also must reject the case when base offset is different and 3348 // scale reg is not null, we cannot handle this case due to merge of 3349 // different offsets will be used as ScaleReg. 3350 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3351 !NewAddrMode.ScaledReg); 3352 3353 // We also must reject the case when GV is different and BaseReg installed 3354 // due to we want to use base reg as a merge of GV values. 3355 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3356 !NewAddrMode.HasBaseReg); 3357 3358 // Even if NewAddMode is the same we still need to collect it due to 3359 // original value is different. And later we will need all original values 3360 // as anchors during finding the common Phi node. 3361 if (CanHandle) 3362 AddrModes.emplace_back(NewAddrMode); 3363 else 3364 AddrModes.clear(); 3365 3366 return CanHandle; 3367 } 3368 3369 /// Combine the addressing modes we've collected into a single 3370 /// addressing mode. 3371 /// \return True iff we successfully combined them or we only had one so 3372 /// didn't need to combine them anyway. 3373 bool combineAddrModes() { 3374 // If we have no AddrModes then they can't be combined. 3375 if (AddrModes.size() == 0) 3376 return false; 3377 3378 // A single AddrMode can trivially be combined. 3379 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3380 return true; 3381 3382 // If the AddrModes we collected are all just equal to the value they are 3383 // derived from then combining them wouldn't do anything useful. 3384 if (AllAddrModesTrivial) 3385 return false; 3386 3387 if (!addrModeCombiningAllowed()) 3388 return false; 3389 3390 // Build a map between <original value, basic block where we saw it> to 3391 // value of base register. 3392 // Bail out if there is no common type. 3393 FoldAddrToValueMapping Map; 3394 if (!initializeMap(Map)) 3395 return false; 3396 3397 Value *CommonValue = findCommon(Map); 3398 if (CommonValue) 3399 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3400 return CommonValue != nullptr; 3401 } 3402 3403 private: 3404 /// Initialize Map with anchor values. For address seen 3405 /// we set the value of different field saw in this address. 3406 /// At the same time we find a common type for different field we will 3407 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3408 /// Return false if there is no common type found. 3409 bool initializeMap(FoldAddrToValueMapping &Map) { 3410 // Keep track of keys where the value is null. We will need to replace it 3411 // with constant null when we know the common type. 3412 SmallVector<Value *, 2> NullValue; 3413 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3414 for (auto &AM : AddrModes) { 3415 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3416 if (DV) { 3417 auto *Type = DV->getType(); 3418 if (CommonType && CommonType != Type) 3419 return false; 3420 CommonType = Type; 3421 Map[AM.OriginalValue] = DV; 3422 } else { 3423 NullValue.push_back(AM.OriginalValue); 3424 } 3425 } 3426 assert(CommonType && "At least one non-null value must be!"); 3427 for (auto *V : NullValue) 3428 Map[V] = Constant::getNullValue(CommonType); 3429 return true; 3430 } 3431 3432 /// We have mapping between value A and other value B where B was a field in 3433 /// addressing mode represented by A. Also we have an original value C 3434 /// representing an address we start with. Traversing from C through phi and 3435 /// selects we ended up with A's in a map. This utility function tries to find 3436 /// a value V which is a field in addressing mode C and traversing through phi 3437 /// nodes and selects we will end up in corresponded values B in a map. 3438 /// The utility will create a new Phi/Selects if needed. 3439 // The simple example looks as follows: 3440 // BB1: 3441 // p1 = b1 + 40 3442 // br cond BB2, BB3 3443 // BB2: 3444 // p2 = b2 + 40 3445 // br BB3 3446 // BB3: 3447 // p = phi [p1, BB1], [p2, BB2] 3448 // v = load p 3449 // Map is 3450 // p1 -> b1 3451 // p2 -> b2 3452 // Request is 3453 // p -> ? 3454 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3455 Value *findCommon(FoldAddrToValueMapping &Map) { 3456 // Tracks the simplification of newly created phi nodes. The reason we use 3457 // this mapping is because we will add new created Phi nodes in AddrToBase. 3458 // Simplification of Phi nodes is recursive, so some Phi node may 3459 // be simplified after we added it to AddrToBase. In reality this 3460 // simplification is possible only if original phi/selects were not 3461 // simplified yet. 3462 // Using this mapping we can find the current value in AddrToBase. 3463 SimplificationTracker ST(SQ); 3464 3465 // First step, DFS to create PHI nodes for all intermediate blocks. 3466 // Also fill traverse order for the second step. 3467 SmallVector<Value *, 32> TraverseOrder; 3468 InsertPlaceholders(Map, TraverseOrder, ST); 3469 3470 // Second Step, fill new nodes by merged values and simplify if possible. 3471 FillPlaceholders(Map, TraverseOrder, ST); 3472 3473 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3474 ST.destroyNewNodes(CommonType); 3475 return nullptr; 3476 } 3477 3478 // Now we'd like to match New Phi nodes to existed ones. 3479 unsigned PhiNotMatchedCount = 0; 3480 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3481 ST.destroyNewNodes(CommonType); 3482 return nullptr; 3483 } 3484 3485 auto *Result = ST.Get(Map.find(Original)->second); 3486 if (Result) { 3487 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3488 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3489 } 3490 return Result; 3491 } 3492 3493 /// Try to match PHI node to Candidate. 3494 /// Matcher tracks the matched Phi nodes. 3495 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3496 SmallSetVector<PHIPair, 8> &Matcher, 3497 PhiNodeSet &PhiNodesToMatch) { 3498 SmallVector<PHIPair, 8> WorkList; 3499 Matcher.insert({ PHI, Candidate }); 3500 SmallSet<PHINode *, 8> MatchedPHIs; 3501 MatchedPHIs.insert(PHI); 3502 WorkList.push_back({ PHI, Candidate }); 3503 SmallSet<PHIPair, 8> Visited; 3504 while (!WorkList.empty()) { 3505 auto Item = WorkList.pop_back_val(); 3506 if (!Visited.insert(Item).second) 3507 continue; 3508 // We iterate over all incoming values to Phi to compare them. 3509 // If values are different and both of them Phi and the first one is a 3510 // Phi we added (subject to match) and both of them is in the same basic 3511 // block then we can match our pair if values match. So we state that 3512 // these values match and add it to work list to verify that. 3513 for (auto B : Item.first->blocks()) { 3514 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3515 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3516 if (FirstValue == SecondValue) 3517 continue; 3518 3519 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3520 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3521 3522 // One of them is not Phi or 3523 // The first one is not Phi node from the set we'd like to match or 3524 // Phi nodes from different basic blocks then 3525 // we will not be able to match. 3526 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3527 FirstPhi->getParent() != SecondPhi->getParent()) 3528 return false; 3529 3530 // If we already matched them then continue. 3531 if (Matcher.count({ FirstPhi, SecondPhi })) 3532 continue; 3533 // So the values are different and does not match. So we need them to 3534 // match. (But we register no more than one match per PHI node, so that 3535 // we won't later try to replace them twice.) 3536 if (MatchedPHIs.insert(FirstPhi).second) 3537 Matcher.insert({ FirstPhi, SecondPhi }); 3538 // But me must check it. 3539 WorkList.push_back({ FirstPhi, SecondPhi }); 3540 } 3541 } 3542 return true; 3543 } 3544 3545 /// For the given set of PHI nodes (in the SimplificationTracker) try 3546 /// to find their equivalents. 3547 /// Returns false if this matching fails and creation of new Phi is disabled. 3548 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3549 unsigned &PhiNotMatchedCount) { 3550 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3551 // order, so the replacements (ReplacePhi) are also done in a deterministic 3552 // order. 3553 SmallSetVector<PHIPair, 8> Matched; 3554 SmallPtrSet<PHINode *, 8> WillNotMatch; 3555 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3556 while (PhiNodesToMatch.size()) { 3557 PHINode *PHI = *PhiNodesToMatch.begin(); 3558 3559 // Add us, if no Phi nodes in the basic block we do not match. 3560 WillNotMatch.clear(); 3561 WillNotMatch.insert(PHI); 3562 3563 // Traverse all Phis until we found equivalent or fail to do that. 3564 bool IsMatched = false; 3565 for (auto &P : PHI->getParent()->phis()) { 3566 if (&P == PHI) 3567 continue; 3568 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3569 break; 3570 // If it does not match, collect all Phi nodes from matcher. 3571 // if we end up with no match, them all these Phi nodes will not match 3572 // later. 3573 for (auto M : Matched) 3574 WillNotMatch.insert(M.first); 3575 Matched.clear(); 3576 } 3577 if (IsMatched) { 3578 // Replace all matched values and erase them. 3579 for (auto MV : Matched) 3580 ST.ReplacePhi(MV.first, MV.second); 3581 Matched.clear(); 3582 continue; 3583 } 3584 // If we are not allowed to create new nodes then bail out. 3585 if (!AllowNewPhiNodes) 3586 return false; 3587 // Just remove all seen values in matcher. They will not match anything. 3588 PhiNotMatchedCount += WillNotMatch.size(); 3589 for (auto *P : WillNotMatch) 3590 PhiNodesToMatch.erase(P); 3591 } 3592 return true; 3593 } 3594 /// Fill the placeholders with values from predecessors and simplify them. 3595 void FillPlaceholders(FoldAddrToValueMapping &Map, 3596 SmallVectorImpl<Value *> &TraverseOrder, 3597 SimplificationTracker &ST) { 3598 while (!TraverseOrder.empty()) { 3599 Value *Current = TraverseOrder.pop_back_val(); 3600 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3601 Value *V = Map[Current]; 3602 3603 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3604 // CurrentValue also must be Select. 3605 auto *CurrentSelect = cast<SelectInst>(Current); 3606 auto *TrueValue = CurrentSelect->getTrueValue(); 3607 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3608 Select->setTrueValue(ST.Get(Map[TrueValue])); 3609 auto *FalseValue = CurrentSelect->getFalseValue(); 3610 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3611 Select->setFalseValue(ST.Get(Map[FalseValue])); 3612 } else { 3613 // Must be a Phi node then. 3614 auto *PHI = cast<PHINode>(V); 3615 // Fill the Phi node with values from predecessors. 3616 for (auto *B : predecessors(PHI->getParent())) { 3617 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3618 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3619 PHI->addIncoming(ST.Get(Map[PV]), B); 3620 } 3621 } 3622 Map[Current] = ST.Simplify(V); 3623 } 3624 } 3625 3626 /// Starting from original value recursively iterates over def-use chain up to 3627 /// known ending values represented in a map. For each traversed phi/select 3628 /// inserts a placeholder Phi or Select. 3629 /// Reports all new created Phi/Select nodes by adding them to set. 3630 /// Also reports and order in what values have been traversed. 3631 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3632 SmallVectorImpl<Value *> &TraverseOrder, 3633 SimplificationTracker &ST) { 3634 SmallVector<Value *, 32> Worklist; 3635 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3636 "Address must be a Phi or Select node"); 3637 auto *Dummy = UndefValue::get(CommonType); 3638 Worklist.push_back(Original); 3639 while (!Worklist.empty()) { 3640 Value *Current = Worklist.pop_back_val(); 3641 // if it is already visited or it is an ending value then skip it. 3642 if (Map.find(Current) != Map.end()) 3643 continue; 3644 TraverseOrder.push_back(Current); 3645 3646 // CurrentValue must be a Phi node or select. All others must be covered 3647 // by anchors. 3648 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3649 // Is it OK to get metadata from OrigSelect?! 3650 // Create a Select placeholder with dummy value. 3651 SelectInst *Select = SelectInst::Create( 3652 CurrentSelect->getCondition(), Dummy, Dummy, 3653 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3654 Map[Current] = Select; 3655 ST.insertNewSelect(Select); 3656 // We are interested in True and False values. 3657 Worklist.push_back(CurrentSelect->getTrueValue()); 3658 Worklist.push_back(CurrentSelect->getFalseValue()); 3659 } else { 3660 // It must be a Phi node then. 3661 PHINode *CurrentPhi = cast<PHINode>(Current); 3662 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3663 PHINode *PHI = 3664 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3665 Map[Current] = PHI; 3666 ST.insertNewPhi(PHI); 3667 for (Value *P : CurrentPhi->incoming_values()) 3668 Worklist.push_back(P); 3669 } 3670 } 3671 } 3672 3673 bool addrModeCombiningAllowed() { 3674 if (DisableComplexAddrModes) 3675 return false; 3676 switch (DifferentField) { 3677 default: 3678 return false; 3679 case ExtAddrMode::BaseRegField: 3680 return AddrSinkCombineBaseReg; 3681 case ExtAddrMode::BaseGVField: 3682 return AddrSinkCombineBaseGV; 3683 case ExtAddrMode::BaseOffsField: 3684 return AddrSinkCombineBaseOffs; 3685 case ExtAddrMode::ScaledRegField: 3686 return AddrSinkCombineScaledReg; 3687 } 3688 } 3689 }; 3690 } // end anonymous namespace 3691 3692 /// Try adding ScaleReg*Scale to the current addressing mode. 3693 /// Return true and update AddrMode if this addr mode is legal for the target, 3694 /// false if not. 3695 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3696 unsigned Depth) { 3697 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3698 // mode. Just process that directly. 3699 if (Scale == 1) 3700 return matchAddr(ScaleReg, Depth); 3701 3702 // If the scale is 0, it takes nothing to add this. 3703 if (Scale == 0) 3704 return true; 3705 3706 // If we already have a scale of this value, we can add to it, otherwise, we 3707 // need an available scale field. 3708 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3709 return false; 3710 3711 ExtAddrMode TestAddrMode = AddrMode; 3712 3713 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3714 // [A+B + A*7] -> [B+A*8]. 3715 TestAddrMode.Scale += Scale; 3716 TestAddrMode.ScaledReg = ScaleReg; 3717 3718 // If the new address isn't legal, bail out. 3719 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3720 return false; 3721 3722 // It was legal, so commit it. 3723 AddrMode = TestAddrMode; 3724 3725 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3726 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3727 // X*Scale + C*Scale to addr mode. 3728 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3729 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3730 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3731 CI->getValue().isSignedIntN(64)) { 3732 TestAddrMode.InBounds = false; 3733 TestAddrMode.ScaledReg = AddLHS; 3734 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3735 3736 // If this addressing mode is legal, commit it and remember that we folded 3737 // this instruction. 3738 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3739 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3740 AddrMode = TestAddrMode; 3741 return true; 3742 } 3743 } 3744 3745 // Otherwise, not (x+c)*scale, just return what we have. 3746 return true; 3747 } 3748 3749 /// This is a little filter, which returns true if an addressing computation 3750 /// involving I might be folded into a load/store accessing it. 3751 /// This doesn't need to be perfect, but needs to accept at least 3752 /// the set of instructions that MatchOperationAddr can. 3753 static bool MightBeFoldableInst(Instruction *I) { 3754 switch (I->getOpcode()) { 3755 case Instruction::BitCast: 3756 case Instruction::AddrSpaceCast: 3757 // Don't touch identity bitcasts. 3758 if (I->getType() == I->getOperand(0)->getType()) 3759 return false; 3760 return I->getType()->isIntOrPtrTy(); 3761 case Instruction::PtrToInt: 3762 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3763 return true; 3764 case Instruction::IntToPtr: 3765 // We know the input is intptr_t, so this is foldable. 3766 return true; 3767 case Instruction::Add: 3768 return true; 3769 case Instruction::Mul: 3770 case Instruction::Shl: 3771 // Can only handle X*C and X << C. 3772 return isa<ConstantInt>(I->getOperand(1)); 3773 case Instruction::GetElementPtr: 3774 return true; 3775 default: 3776 return false; 3777 } 3778 } 3779 3780 /// Check whether or not \p Val is a legal instruction for \p TLI. 3781 /// \note \p Val is assumed to be the product of some type promotion. 3782 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3783 /// to be legal, as the non-promoted value would have had the same state. 3784 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3785 const DataLayout &DL, Value *Val) { 3786 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3787 if (!PromotedInst) 3788 return false; 3789 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3790 // If the ISDOpcode is undefined, it was undefined before the promotion. 3791 if (!ISDOpcode) 3792 return true; 3793 // Otherwise, check if the promoted instruction is legal or not. 3794 return TLI.isOperationLegalOrCustom( 3795 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3796 } 3797 3798 namespace { 3799 3800 /// Hepler class to perform type promotion. 3801 class TypePromotionHelper { 3802 /// Utility function to add a promoted instruction \p ExtOpnd to 3803 /// \p PromotedInsts and record the type of extension we have seen. 3804 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3805 Instruction *ExtOpnd, 3806 bool IsSExt) { 3807 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3808 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3809 if (It != PromotedInsts.end()) { 3810 // If the new extension is same as original, the information in 3811 // PromotedInsts[ExtOpnd] is still correct. 3812 if (It->second.getInt() == ExtTy) 3813 return; 3814 3815 // Now the new extension is different from old extension, we make 3816 // the type information invalid by setting extension type to 3817 // BothExtension. 3818 ExtTy = BothExtension; 3819 } 3820 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3821 } 3822 3823 /// Utility function to query the original type of instruction \p Opnd 3824 /// with a matched extension type. If the extension doesn't match, we 3825 /// cannot use the information we had on the original type. 3826 /// BothExtension doesn't match any extension type. 3827 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3828 Instruction *Opnd, 3829 bool IsSExt) { 3830 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3831 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3832 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3833 return It->second.getPointer(); 3834 return nullptr; 3835 } 3836 3837 /// Utility function to check whether or not a sign or zero extension 3838 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3839 /// either using the operands of \p Inst or promoting \p Inst. 3840 /// The type of the extension is defined by \p IsSExt. 3841 /// In other words, check if: 3842 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3843 /// #1 Promotion applies: 3844 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3845 /// #2 Operand reuses: 3846 /// ext opnd1 to ConsideredExtType. 3847 /// \p PromotedInsts maps the instructions to their type before promotion. 3848 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3849 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3850 3851 /// Utility function to determine if \p OpIdx should be promoted when 3852 /// promoting \p Inst. 3853 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3854 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3855 } 3856 3857 /// Utility function to promote the operand of \p Ext when this 3858 /// operand is a promotable trunc or sext or zext. 3859 /// \p PromotedInsts maps the instructions to their type before promotion. 3860 /// \p CreatedInstsCost[out] contains the cost of all instructions 3861 /// created to promote the operand of Ext. 3862 /// Newly added extensions are inserted in \p Exts. 3863 /// Newly added truncates are inserted in \p Truncs. 3864 /// Should never be called directly. 3865 /// \return The promoted value which is used instead of Ext. 3866 static Value *promoteOperandForTruncAndAnyExt( 3867 Instruction *Ext, TypePromotionTransaction &TPT, 3868 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3869 SmallVectorImpl<Instruction *> *Exts, 3870 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3871 3872 /// Utility function to promote the operand of \p Ext when this 3873 /// operand is promotable and is not a supported trunc or sext. 3874 /// \p PromotedInsts maps the instructions to their type before promotion. 3875 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3876 /// created to promote the operand of Ext. 3877 /// Newly added extensions are inserted in \p Exts. 3878 /// Newly added truncates are inserted in \p Truncs. 3879 /// Should never be called directly. 3880 /// \return The promoted value which is used instead of Ext. 3881 static Value *promoteOperandForOther(Instruction *Ext, 3882 TypePromotionTransaction &TPT, 3883 InstrToOrigTy &PromotedInsts, 3884 unsigned &CreatedInstsCost, 3885 SmallVectorImpl<Instruction *> *Exts, 3886 SmallVectorImpl<Instruction *> *Truncs, 3887 const TargetLowering &TLI, bool IsSExt); 3888 3889 /// \see promoteOperandForOther. 3890 static Value *signExtendOperandForOther( 3891 Instruction *Ext, TypePromotionTransaction &TPT, 3892 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3893 SmallVectorImpl<Instruction *> *Exts, 3894 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3895 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3896 Exts, Truncs, TLI, true); 3897 } 3898 3899 /// \see promoteOperandForOther. 3900 static Value *zeroExtendOperandForOther( 3901 Instruction *Ext, TypePromotionTransaction &TPT, 3902 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3903 SmallVectorImpl<Instruction *> *Exts, 3904 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3905 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3906 Exts, Truncs, TLI, false); 3907 } 3908 3909 public: 3910 /// Type for the utility function that promotes the operand of Ext. 3911 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3912 InstrToOrigTy &PromotedInsts, 3913 unsigned &CreatedInstsCost, 3914 SmallVectorImpl<Instruction *> *Exts, 3915 SmallVectorImpl<Instruction *> *Truncs, 3916 const TargetLowering &TLI); 3917 3918 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3919 /// action to promote the operand of \p Ext instead of using Ext. 3920 /// \return NULL if no promotable action is possible with the current 3921 /// sign extension. 3922 /// \p InsertedInsts keeps track of all the instructions inserted by the 3923 /// other CodeGenPrepare optimizations. This information is important 3924 /// because we do not want to promote these instructions as CodeGenPrepare 3925 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3926 /// \p PromotedInsts maps the instructions to their type before promotion. 3927 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3928 const TargetLowering &TLI, 3929 const InstrToOrigTy &PromotedInsts); 3930 }; 3931 3932 } // end anonymous namespace 3933 3934 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3935 Type *ConsideredExtType, 3936 const InstrToOrigTy &PromotedInsts, 3937 bool IsSExt) { 3938 // The promotion helper does not know how to deal with vector types yet. 3939 // To be able to fix that, we would need to fix the places where we 3940 // statically extend, e.g., constants and such. 3941 if (Inst->getType()->isVectorTy()) 3942 return false; 3943 3944 // We can always get through zext. 3945 if (isa<ZExtInst>(Inst)) 3946 return true; 3947 3948 // sext(sext) is ok too. 3949 if (IsSExt && isa<SExtInst>(Inst)) 3950 return true; 3951 3952 // We can get through binary operator, if it is legal. In other words, the 3953 // binary operator must have a nuw or nsw flag. 3954 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3955 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 3956 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3957 (IsSExt && BinOp->hasNoSignedWrap()))) 3958 return true; 3959 3960 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3961 if ((Inst->getOpcode() == Instruction::And || 3962 Inst->getOpcode() == Instruction::Or)) 3963 return true; 3964 3965 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3966 if (Inst->getOpcode() == Instruction::Xor) { 3967 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3968 // Make sure it is not a NOT. 3969 if (Cst && !Cst->getValue().isAllOnesValue()) 3970 return true; 3971 } 3972 3973 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3974 // It may change a poisoned value into a regular value, like 3975 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3976 // poisoned value regular value 3977 // It should be OK since undef covers valid value. 3978 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3979 return true; 3980 3981 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3982 // It may change a poisoned value into a regular value, like 3983 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3984 // poisoned value regular value 3985 // It should be OK since undef covers valid value. 3986 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3987 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 3988 if (ExtInst->hasOneUse()) { 3989 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 3990 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3991 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3992 if (Cst && 3993 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3994 return true; 3995 } 3996 } 3997 } 3998 3999 // Check if we can do the following simplification. 4000 // ext(trunc(opnd)) --> ext(opnd) 4001 if (!isa<TruncInst>(Inst)) 4002 return false; 4003 4004 Value *OpndVal = Inst->getOperand(0); 4005 // Check if we can use this operand in the extension. 4006 // If the type is larger than the result type of the extension, we cannot. 4007 if (!OpndVal->getType()->isIntegerTy() || 4008 OpndVal->getType()->getIntegerBitWidth() > 4009 ConsideredExtType->getIntegerBitWidth()) 4010 return false; 4011 4012 // If the operand of the truncate is not an instruction, we will not have 4013 // any information on the dropped bits. 4014 // (Actually we could for constant but it is not worth the extra logic). 4015 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4016 if (!Opnd) 4017 return false; 4018 4019 // Check if the source of the type is narrow enough. 4020 // I.e., check that trunc just drops extended bits of the same kind of 4021 // the extension. 4022 // #1 get the type of the operand and check the kind of the extended bits. 4023 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4024 if (OpndType) 4025 ; 4026 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4027 OpndType = Opnd->getOperand(0)->getType(); 4028 else 4029 return false; 4030 4031 // #2 check that the truncate just drops extended bits. 4032 return Inst->getType()->getIntegerBitWidth() >= 4033 OpndType->getIntegerBitWidth(); 4034 } 4035 4036 TypePromotionHelper::Action TypePromotionHelper::getAction( 4037 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4038 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4039 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4040 "Unexpected instruction type"); 4041 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4042 Type *ExtTy = Ext->getType(); 4043 bool IsSExt = isa<SExtInst>(Ext); 4044 // If the operand of the extension is not an instruction, we cannot 4045 // get through. 4046 // If it, check we can get through. 4047 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4048 return nullptr; 4049 4050 // Do not promote if the operand has been added by codegenprepare. 4051 // Otherwise, it means we are undoing an optimization that is likely to be 4052 // redone, thus causing potential infinite loop. 4053 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4054 return nullptr; 4055 4056 // SExt or Trunc instructions. 4057 // Return the related handler. 4058 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4059 isa<ZExtInst>(ExtOpnd)) 4060 return promoteOperandForTruncAndAnyExt; 4061 4062 // Regular instruction. 4063 // Abort early if we will have to insert non-free instructions. 4064 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4065 return nullptr; 4066 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4067 } 4068 4069 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4070 Instruction *SExt, TypePromotionTransaction &TPT, 4071 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4072 SmallVectorImpl<Instruction *> *Exts, 4073 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4074 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4075 // get through it and this method should not be called. 4076 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4077 Value *ExtVal = SExt; 4078 bool HasMergedNonFreeExt = false; 4079 if (isa<ZExtInst>(SExtOpnd)) { 4080 // Replace s|zext(zext(opnd)) 4081 // => zext(opnd). 4082 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4083 Value *ZExt = 4084 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4085 TPT.replaceAllUsesWith(SExt, ZExt); 4086 TPT.eraseInstruction(SExt); 4087 ExtVal = ZExt; 4088 } else { 4089 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4090 // => z|sext(opnd). 4091 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4092 } 4093 CreatedInstsCost = 0; 4094 4095 // Remove dead code. 4096 if (SExtOpnd->use_empty()) 4097 TPT.eraseInstruction(SExtOpnd); 4098 4099 // Check if the extension is still needed. 4100 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4101 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4102 if (ExtInst) { 4103 if (Exts) 4104 Exts->push_back(ExtInst); 4105 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4106 } 4107 return ExtVal; 4108 } 4109 4110 // At this point we have: ext ty opnd to ty. 4111 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4112 Value *NextVal = ExtInst->getOperand(0); 4113 TPT.eraseInstruction(ExtInst, NextVal); 4114 return NextVal; 4115 } 4116 4117 Value *TypePromotionHelper::promoteOperandForOther( 4118 Instruction *Ext, TypePromotionTransaction &TPT, 4119 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4120 SmallVectorImpl<Instruction *> *Exts, 4121 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4122 bool IsSExt) { 4123 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4124 // get through it and this method should not be called. 4125 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4126 CreatedInstsCost = 0; 4127 if (!ExtOpnd->hasOneUse()) { 4128 // ExtOpnd will be promoted. 4129 // All its uses, but Ext, will need to use a truncated value of the 4130 // promoted version. 4131 // Create the truncate now. 4132 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4133 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4134 // Insert it just after the definition. 4135 ITrunc->moveAfter(ExtOpnd); 4136 if (Truncs) 4137 Truncs->push_back(ITrunc); 4138 } 4139 4140 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4141 // Restore the operand of Ext (which has been replaced by the previous call 4142 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4143 TPT.setOperand(Ext, 0, ExtOpnd); 4144 } 4145 4146 // Get through the Instruction: 4147 // 1. Update its type. 4148 // 2. Replace the uses of Ext by Inst. 4149 // 3. Extend each operand that needs to be extended. 4150 4151 // Remember the original type of the instruction before promotion. 4152 // This is useful to know that the high bits are sign extended bits. 4153 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4154 // Step #1. 4155 TPT.mutateType(ExtOpnd, Ext->getType()); 4156 // Step #2. 4157 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4158 // Step #3. 4159 Instruction *ExtForOpnd = Ext; 4160 4161 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4162 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4163 ++OpIdx) { 4164 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4165 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4166 !shouldExtOperand(ExtOpnd, OpIdx)) { 4167 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4168 continue; 4169 } 4170 // Check if we can statically extend the operand. 4171 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4172 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4173 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4174 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4175 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4176 : Cst->getValue().zext(BitWidth); 4177 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4178 continue; 4179 } 4180 // UndefValue are typed, so we have to statically sign extend them. 4181 if (isa<UndefValue>(Opnd)) { 4182 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4183 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4184 continue; 4185 } 4186 4187 // Otherwise we have to explicitly sign extend the operand. 4188 // Check if Ext was reused to extend an operand. 4189 if (!ExtForOpnd) { 4190 // If yes, create a new one. 4191 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4192 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4193 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4194 if (!isa<Instruction>(ValForExtOpnd)) { 4195 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4196 continue; 4197 } 4198 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4199 } 4200 if (Exts) 4201 Exts->push_back(ExtForOpnd); 4202 TPT.setOperand(ExtForOpnd, 0, Opnd); 4203 4204 // Move the sign extension before the insertion point. 4205 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4206 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4207 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4208 // If more sext are required, new instructions will have to be created. 4209 ExtForOpnd = nullptr; 4210 } 4211 if (ExtForOpnd == Ext) { 4212 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4213 TPT.eraseInstruction(Ext); 4214 } 4215 return ExtOpnd; 4216 } 4217 4218 /// Check whether or not promoting an instruction to a wider type is profitable. 4219 /// \p NewCost gives the cost of extension instructions created by the 4220 /// promotion. 4221 /// \p OldCost gives the cost of extension instructions before the promotion 4222 /// plus the number of instructions that have been 4223 /// matched in the addressing mode the promotion. 4224 /// \p PromotedOperand is the value that has been promoted. 4225 /// \return True if the promotion is profitable, false otherwise. 4226 bool AddressingModeMatcher::isPromotionProfitable( 4227 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4228 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4229 << '\n'); 4230 // The cost of the new extensions is greater than the cost of the 4231 // old extension plus what we folded. 4232 // This is not profitable. 4233 if (NewCost > OldCost) 4234 return false; 4235 if (NewCost < OldCost) 4236 return true; 4237 // The promotion is neutral but it may help folding the sign extension in 4238 // loads for instance. 4239 // Check that we did not create an illegal instruction. 4240 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4241 } 4242 4243 /// Given an instruction or constant expr, see if we can fold the operation 4244 /// into the addressing mode. If so, update the addressing mode and return 4245 /// true, otherwise return false without modifying AddrMode. 4246 /// If \p MovedAway is not NULL, it contains the information of whether or 4247 /// not AddrInst has to be folded into the addressing mode on success. 4248 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4249 /// because it has been moved away. 4250 /// Thus AddrInst must not be added in the matched instructions. 4251 /// This state can happen when AddrInst is a sext, since it may be moved away. 4252 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4253 /// not be referenced anymore. 4254 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4255 unsigned Depth, 4256 bool *MovedAway) { 4257 // Avoid exponential behavior on extremely deep expression trees. 4258 if (Depth >= 5) return false; 4259 4260 // By default, all matched instructions stay in place. 4261 if (MovedAway) 4262 *MovedAway = false; 4263 4264 switch (Opcode) { 4265 case Instruction::PtrToInt: 4266 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4267 return matchAddr(AddrInst->getOperand(0), Depth); 4268 case Instruction::IntToPtr: { 4269 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4270 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4271 // This inttoptr is a no-op if the integer type is pointer sized. 4272 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4273 return matchAddr(AddrInst->getOperand(0), Depth); 4274 return false; 4275 } 4276 case Instruction::BitCast: 4277 // BitCast is always a noop, and we can handle it as long as it is 4278 // int->int or pointer->pointer (we don't want int<->fp or something). 4279 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4280 // Don't touch identity bitcasts. These were probably put here by LSR, 4281 // and we don't want to mess around with them. Assume it knows what it 4282 // is doing. 4283 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4284 return matchAddr(AddrInst->getOperand(0), Depth); 4285 return false; 4286 case Instruction::AddrSpaceCast: { 4287 unsigned SrcAS 4288 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4289 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4290 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4291 return matchAddr(AddrInst->getOperand(0), Depth); 4292 return false; 4293 } 4294 case Instruction::Add: { 4295 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4296 ExtAddrMode BackupAddrMode = AddrMode; 4297 unsigned OldSize = AddrModeInsts.size(); 4298 // Start a transaction at this point. 4299 // The LHS may match but not the RHS. 4300 // Therefore, we need a higher level restoration point to undo partially 4301 // matched operation. 4302 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4303 TPT.getRestorationPoint(); 4304 4305 AddrMode.InBounds = false; 4306 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4307 matchAddr(AddrInst->getOperand(0), Depth+1)) 4308 return true; 4309 4310 // Restore the old addr mode info. 4311 AddrMode = BackupAddrMode; 4312 AddrModeInsts.resize(OldSize); 4313 TPT.rollback(LastKnownGood); 4314 4315 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4316 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4317 matchAddr(AddrInst->getOperand(1), Depth+1)) 4318 return true; 4319 4320 // Otherwise we definitely can't merge the ADD in. 4321 AddrMode = BackupAddrMode; 4322 AddrModeInsts.resize(OldSize); 4323 TPT.rollback(LastKnownGood); 4324 break; 4325 } 4326 //case Instruction::Or: 4327 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4328 //break; 4329 case Instruction::Mul: 4330 case Instruction::Shl: { 4331 // Can only handle X*C and X << C. 4332 AddrMode.InBounds = false; 4333 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4334 if (!RHS || RHS->getBitWidth() > 64) 4335 return false; 4336 int64_t Scale = RHS->getSExtValue(); 4337 if (Opcode == Instruction::Shl) 4338 Scale = 1LL << Scale; 4339 4340 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4341 } 4342 case Instruction::GetElementPtr: { 4343 // Scan the GEP. We check it if it contains constant offsets and at most 4344 // one variable offset. 4345 int VariableOperand = -1; 4346 unsigned VariableScale = 0; 4347 4348 int64_t ConstantOffset = 0; 4349 gep_type_iterator GTI = gep_type_begin(AddrInst); 4350 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4351 if (StructType *STy = GTI.getStructTypeOrNull()) { 4352 const StructLayout *SL = DL.getStructLayout(STy); 4353 unsigned Idx = 4354 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4355 ConstantOffset += SL->getElementOffset(Idx); 4356 } else { 4357 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4358 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4359 const APInt &CVal = CI->getValue(); 4360 if (CVal.getMinSignedBits() <= 64) { 4361 ConstantOffset += CVal.getSExtValue() * TypeSize; 4362 continue; 4363 } 4364 } 4365 if (TypeSize) { // Scales of zero don't do anything. 4366 // We only allow one variable index at the moment. 4367 if (VariableOperand != -1) 4368 return false; 4369 4370 // Remember the variable index. 4371 VariableOperand = i; 4372 VariableScale = TypeSize; 4373 } 4374 } 4375 } 4376 4377 // A common case is for the GEP to only do a constant offset. In this case, 4378 // just add it to the disp field and check validity. 4379 if (VariableOperand == -1) { 4380 AddrMode.BaseOffs += ConstantOffset; 4381 if (ConstantOffset == 0 || 4382 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4383 // Check to see if we can fold the base pointer in too. 4384 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4385 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4386 AddrMode.InBounds = false; 4387 return true; 4388 } 4389 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4390 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4391 ConstantOffset > 0) { 4392 // Record GEPs with non-zero offsets as candidates for splitting in the 4393 // event that the offset cannot fit into the r+i addressing mode. 4394 // Simple and common case that only one GEP is used in calculating the 4395 // address for the memory access. 4396 Value *Base = AddrInst->getOperand(0); 4397 auto *BaseI = dyn_cast<Instruction>(Base); 4398 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4399 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4400 (BaseI && !isa<CastInst>(BaseI) && 4401 !isa<GetElementPtrInst>(BaseI))) { 4402 // Make sure the parent block allows inserting non-PHI instructions 4403 // before the terminator. 4404 BasicBlock *Parent = 4405 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4406 if (!Parent->getTerminator()->isEHPad()) 4407 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4408 } 4409 } 4410 AddrMode.BaseOffs -= ConstantOffset; 4411 return false; 4412 } 4413 4414 // Save the valid addressing mode in case we can't match. 4415 ExtAddrMode BackupAddrMode = AddrMode; 4416 unsigned OldSize = AddrModeInsts.size(); 4417 4418 // See if the scale and offset amount is valid for this target. 4419 AddrMode.BaseOffs += ConstantOffset; 4420 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4421 AddrMode.InBounds = false; 4422 4423 // Match the base operand of the GEP. 4424 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4425 // If it couldn't be matched, just stuff the value in a register. 4426 if (AddrMode.HasBaseReg) { 4427 AddrMode = BackupAddrMode; 4428 AddrModeInsts.resize(OldSize); 4429 return false; 4430 } 4431 AddrMode.HasBaseReg = true; 4432 AddrMode.BaseReg = AddrInst->getOperand(0); 4433 } 4434 4435 // Match the remaining variable portion of the GEP. 4436 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4437 Depth)) { 4438 // If it couldn't be matched, try stuffing the base into a register 4439 // instead of matching it, and retrying the match of the scale. 4440 AddrMode = BackupAddrMode; 4441 AddrModeInsts.resize(OldSize); 4442 if (AddrMode.HasBaseReg) 4443 return false; 4444 AddrMode.HasBaseReg = true; 4445 AddrMode.BaseReg = AddrInst->getOperand(0); 4446 AddrMode.BaseOffs += ConstantOffset; 4447 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4448 VariableScale, Depth)) { 4449 // If even that didn't work, bail. 4450 AddrMode = BackupAddrMode; 4451 AddrModeInsts.resize(OldSize); 4452 return false; 4453 } 4454 } 4455 4456 return true; 4457 } 4458 case Instruction::SExt: 4459 case Instruction::ZExt: { 4460 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4461 if (!Ext) 4462 return false; 4463 4464 // Try to move this ext out of the way of the addressing mode. 4465 // Ask for a method for doing so. 4466 TypePromotionHelper::Action TPH = 4467 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4468 if (!TPH) 4469 return false; 4470 4471 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4472 TPT.getRestorationPoint(); 4473 unsigned CreatedInstsCost = 0; 4474 unsigned ExtCost = !TLI.isExtFree(Ext); 4475 Value *PromotedOperand = 4476 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4477 // SExt has been moved away. 4478 // Thus either it will be rematched later in the recursive calls or it is 4479 // gone. Anyway, we must not fold it into the addressing mode at this point. 4480 // E.g., 4481 // op = add opnd, 1 4482 // idx = ext op 4483 // addr = gep base, idx 4484 // is now: 4485 // promotedOpnd = ext opnd <- no match here 4486 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4487 // addr = gep base, op <- match 4488 if (MovedAway) 4489 *MovedAway = true; 4490 4491 assert(PromotedOperand && 4492 "TypePromotionHelper should have filtered out those cases"); 4493 4494 ExtAddrMode BackupAddrMode = AddrMode; 4495 unsigned OldSize = AddrModeInsts.size(); 4496 4497 if (!matchAddr(PromotedOperand, Depth) || 4498 // The total of the new cost is equal to the cost of the created 4499 // instructions. 4500 // The total of the old cost is equal to the cost of the extension plus 4501 // what we have saved in the addressing mode. 4502 !isPromotionProfitable(CreatedInstsCost, 4503 ExtCost + (AddrModeInsts.size() - OldSize), 4504 PromotedOperand)) { 4505 AddrMode = BackupAddrMode; 4506 AddrModeInsts.resize(OldSize); 4507 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4508 TPT.rollback(LastKnownGood); 4509 return false; 4510 } 4511 return true; 4512 } 4513 } 4514 return false; 4515 } 4516 4517 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4518 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4519 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4520 /// for the target. 4521 /// 4522 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4523 // Start a transaction at this point that we will rollback if the matching 4524 // fails. 4525 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4526 TPT.getRestorationPoint(); 4527 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4528 if (CI->getValue().isSignedIntN(64)) { 4529 // Fold in immediates if legal for the target. 4530 AddrMode.BaseOffs += CI->getSExtValue(); 4531 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4532 return true; 4533 AddrMode.BaseOffs -= CI->getSExtValue(); 4534 } 4535 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4536 // If this is a global variable, try to fold it into the addressing mode. 4537 if (!AddrMode.BaseGV) { 4538 AddrMode.BaseGV = GV; 4539 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4540 return true; 4541 AddrMode.BaseGV = nullptr; 4542 } 4543 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4544 ExtAddrMode BackupAddrMode = AddrMode; 4545 unsigned OldSize = AddrModeInsts.size(); 4546 4547 // Check to see if it is possible to fold this operation. 4548 bool MovedAway = false; 4549 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4550 // This instruction may have been moved away. If so, there is nothing 4551 // to check here. 4552 if (MovedAway) 4553 return true; 4554 // Okay, it's possible to fold this. Check to see if it is actually 4555 // *profitable* to do so. We use a simple cost model to avoid increasing 4556 // register pressure too much. 4557 if (I->hasOneUse() || 4558 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4559 AddrModeInsts.push_back(I); 4560 return true; 4561 } 4562 4563 // It isn't profitable to do this, roll back. 4564 //cerr << "NOT FOLDING: " << *I; 4565 AddrMode = BackupAddrMode; 4566 AddrModeInsts.resize(OldSize); 4567 TPT.rollback(LastKnownGood); 4568 } 4569 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4570 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4571 return true; 4572 TPT.rollback(LastKnownGood); 4573 } else if (isa<ConstantPointerNull>(Addr)) { 4574 // Null pointer gets folded without affecting the addressing mode. 4575 return true; 4576 } 4577 4578 // Worse case, the target should support [reg] addressing modes. :) 4579 if (!AddrMode.HasBaseReg) { 4580 AddrMode.HasBaseReg = true; 4581 AddrMode.BaseReg = Addr; 4582 // Still check for legality in case the target supports [imm] but not [i+r]. 4583 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4584 return true; 4585 AddrMode.HasBaseReg = false; 4586 AddrMode.BaseReg = nullptr; 4587 } 4588 4589 // If the base register is already taken, see if we can do [r+r]. 4590 if (AddrMode.Scale == 0) { 4591 AddrMode.Scale = 1; 4592 AddrMode.ScaledReg = Addr; 4593 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4594 return true; 4595 AddrMode.Scale = 0; 4596 AddrMode.ScaledReg = nullptr; 4597 } 4598 // Couldn't match. 4599 TPT.rollback(LastKnownGood); 4600 return false; 4601 } 4602 4603 /// Check to see if all uses of OpVal by the specified inline asm call are due 4604 /// to memory operands. If so, return true, otherwise return false. 4605 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4606 const TargetLowering &TLI, 4607 const TargetRegisterInfo &TRI) { 4608 const Function *F = CI->getFunction(); 4609 TargetLowering::AsmOperandInfoVector TargetConstraints = 4610 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4611 4612 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4613 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4614 4615 // Compute the constraint code and ConstraintType to use. 4616 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4617 4618 // If this asm operand is our Value*, and if it isn't an indirect memory 4619 // operand, we can't fold it! 4620 if (OpInfo.CallOperandVal == OpVal && 4621 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4622 !OpInfo.isIndirect)) 4623 return false; 4624 } 4625 4626 return true; 4627 } 4628 4629 // Max number of memory uses to look at before aborting the search to conserve 4630 // compile time. 4631 static constexpr int MaxMemoryUsesToScan = 20; 4632 4633 /// Recursively walk all the uses of I until we find a memory use. 4634 /// If we find an obviously non-foldable instruction, return true. 4635 /// Add the ultimately found memory instructions to MemoryUses. 4636 static bool FindAllMemoryUses( 4637 Instruction *I, 4638 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4639 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4640 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4641 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4642 // If we already considered this instruction, we're done. 4643 if (!ConsideredInsts.insert(I).second) 4644 return false; 4645 4646 // If this is an obviously unfoldable instruction, bail out. 4647 if (!MightBeFoldableInst(I)) 4648 return true; 4649 4650 // Loop over all the uses, recursively processing them. 4651 for (Use &U : I->uses()) { 4652 // Conservatively return true if we're seeing a large number or a deep chain 4653 // of users. This avoids excessive compilation times in pathological cases. 4654 if (SeenInsts++ >= MaxMemoryUsesToScan) 4655 return true; 4656 4657 Instruction *UserI = cast<Instruction>(U.getUser()); 4658 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4659 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4660 continue; 4661 } 4662 4663 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4664 unsigned opNo = U.getOperandNo(); 4665 if (opNo != StoreInst::getPointerOperandIndex()) 4666 return true; // Storing addr, not into addr. 4667 MemoryUses.push_back(std::make_pair(SI, opNo)); 4668 continue; 4669 } 4670 4671 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4672 unsigned opNo = U.getOperandNo(); 4673 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4674 return true; // Storing addr, not into addr. 4675 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4676 continue; 4677 } 4678 4679 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4680 unsigned opNo = U.getOperandNo(); 4681 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4682 return true; // Storing addr, not into addr. 4683 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4684 continue; 4685 } 4686 4687 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4688 if (CI->hasFnAttr(Attribute::Cold)) { 4689 // If this is a cold call, we can sink the addressing calculation into 4690 // the cold path. See optimizeCallInst 4691 bool OptForSize = OptSize || 4692 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4693 if (!OptForSize) 4694 continue; 4695 } 4696 4697 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4698 if (!IA) return true; 4699 4700 // If this is a memory operand, we're cool, otherwise bail out. 4701 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4702 return true; 4703 continue; 4704 } 4705 4706 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4707 PSI, BFI, SeenInsts)) 4708 return true; 4709 } 4710 4711 return false; 4712 } 4713 4714 /// Return true if Val is already known to be live at the use site that we're 4715 /// folding it into. If so, there is no cost to include it in the addressing 4716 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4717 /// instruction already. 4718 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4719 Value *KnownLive2) { 4720 // If Val is either of the known-live values, we know it is live! 4721 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4722 return true; 4723 4724 // All values other than instructions and arguments (e.g. constants) are live. 4725 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4726 4727 // If Val is a constant sized alloca in the entry block, it is live, this is 4728 // true because it is just a reference to the stack/frame pointer, which is 4729 // live for the whole function. 4730 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4731 if (AI->isStaticAlloca()) 4732 return true; 4733 4734 // Check to see if this value is already used in the memory instruction's 4735 // block. If so, it's already live into the block at the very least, so we 4736 // can reasonably fold it. 4737 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4738 } 4739 4740 /// It is possible for the addressing mode of the machine to fold the specified 4741 /// instruction into a load or store that ultimately uses it. 4742 /// However, the specified instruction has multiple uses. 4743 /// Given this, it may actually increase register pressure to fold it 4744 /// into the load. For example, consider this code: 4745 /// 4746 /// X = ... 4747 /// Y = X+1 4748 /// use(Y) -> nonload/store 4749 /// Z = Y+1 4750 /// load Z 4751 /// 4752 /// In this case, Y has multiple uses, and can be folded into the load of Z 4753 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4754 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4755 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4756 /// number of computations either. 4757 /// 4758 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4759 /// X was live across 'load Z' for other reasons, we actually *would* want to 4760 /// fold the addressing mode in the Z case. This would make Y die earlier. 4761 bool AddressingModeMatcher:: 4762 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4763 ExtAddrMode &AMAfter) { 4764 if (IgnoreProfitability) return true; 4765 4766 // AMBefore is the addressing mode before this instruction was folded into it, 4767 // and AMAfter is the addressing mode after the instruction was folded. Get 4768 // the set of registers referenced by AMAfter and subtract out those 4769 // referenced by AMBefore: this is the set of values which folding in this 4770 // address extends the lifetime of. 4771 // 4772 // Note that there are only two potential values being referenced here, 4773 // BaseReg and ScaleReg (global addresses are always available, as are any 4774 // folded immediates). 4775 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4776 4777 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4778 // lifetime wasn't extended by adding this instruction. 4779 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4780 BaseReg = nullptr; 4781 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4782 ScaledReg = nullptr; 4783 4784 // If folding this instruction (and it's subexprs) didn't extend any live 4785 // ranges, we're ok with it. 4786 if (!BaseReg && !ScaledReg) 4787 return true; 4788 4789 // If all uses of this instruction can have the address mode sunk into them, 4790 // we can remove the addressing mode and effectively trade one live register 4791 // for another (at worst.) In this context, folding an addressing mode into 4792 // the use is just a particularly nice way of sinking it. 4793 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4794 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4795 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4796 PSI, BFI)) 4797 return false; // Has a non-memory, non-foldable use! 4798 4799 // Now that we know that all uses of this instruction are part of a chain of 4800 // computation involving only operations that could theoretically be folded 4801 // into a memory use, loop over each of these memory operation uses and see 4802 // if they could *actually* fold the instruction. The assumption is that 4803 // addressing modes are cheap and that duplicating the computation involved 4804 // many times is worthwhile, even on a fastpath. For sinking candidates 4805 // (i.e. cold call sites), this serves as a way to prevent excessive code 4806 // growth since most architectures have some reasonable small and fast way to 4807 // compute an effective address. (i.e LEA on x86) 4808 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4809 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4810 Instruction *User = MemoryUses[i].first; 4811 unsigned OpNo = MemoryUses[i].second; 4812 4813 // Get the access type of this use. If the use isn't a pointer, we don't 4814 // know what it accesses. 4815 Value *Address = User->getOperand(OpNo); 4816 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4817 if (!AddrTy) 4818 return false; 4819 Type *AddressAccessTy = AddrTy->getElementType(); 4820 unsigned AS = AddrTy->getAddressSpace(); 4821 4822 // Do a match against the root of this address, ignoring profitability. This 4823 // will tell us if the addressing mode for the memory operation will 4824 // *actually* cover the shared instruction. 4825 ExtAddrMode Result; 4826 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4827 0); 4828 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4829 TPT.getRestorationPoint(); 4830 AddressingModeMatcher Matcher( 4831 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4832 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4833 Matcher.IgnoreProfitability = true; 4834 bool Success = Matcher.matchAddr(Address, 0); 4835 (void)Success; assert(Success && "Couldn't select *anything*?"); 4836 4837 // The match was to check the profitability, the changes made are not 4838 // part of the original matcher. Therefore, they should be dropped 4839 // otherwise the original matcher will not present the right state. 4840 TPT.rollback(LastKnownGood); 4841 4842 // If the match didn't cover I, then it won't be shared by it. 4843 if (!is_contained(MatchedAddrModeInsts, I)) 4844 return false; 4845 4846 MatchedAddrModeInsts.clear(); 4847 } 4848 4849 return true; 4850 } 4851 4852 /// Return true if the specified values are defined in a 4853 /// different basic block than BB. 4854 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4855 if (Instruction *I = dyn_cast<Instruction>(V)) 4856 return I->getParent() != BB; 4857 return false; 4858 } 4859 4860 /// Sink addressing mode computation immediate before MemoryInst if doing so 4861 /// can be done without increasing register pressure. The need for the 4862 /// register pressure constraint means this can end up being an all or nothing 4863 /// decision for all uses of the same addressing computation. 4864 /// 4865 /// Load and Store Instructions often have addressing modes that can do 4866 /// significant amounts of computation. As such, instruction selection will try 4867 /// to get the load or store to do as much computation as possible for the 4868 /// program. The problem is that isel can only see within a single block. As 4869 /// such, we sink as much legal addressing mode work into the block as possible. 4870 /// 4871 /// This method is used to optimize both load/store and inline asms with memory 4872 /// operands. It's also used to sink addressing computations feeding into cold 4873 /// call sites into their (cold) basic block. 4874 /// 4875 /// The motivation for handling sinking into cold blocks is that doing so can 4876 /// both enable other address mode sinking (by satisfying the register pressure 4877 /// constraint above), and reduce register pressure globally (by removing the 4878 /// addressing mode computation from the fast path entirely.). 4879 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4880 Type *AccessTy, unsigned AddrSpace) { 4881 Value *Repl = Addr; 4882 4883 // Try to collapse single-value PHI nodes. This is necessary to undo 4884 // unprofitable PRE transformations. 4885 SmallVector<Value*, 8> worklist; 4886 SmallPtrSet<Value*, 16> Visited; 4887 worklist.push_back(Addr); 4888 4889 // Use a worklist to iteratively look through PHI and select nodes, and 4890 // ensure that the addressing mode obtained from the non-PHI/select roots of 4891 // the graph are compatible. 4892 bool PhiOrSelectSeen = false; 4893 SmallVector<Instruction*, 16> AddrModeInsts; 4894 const SimplifyQuery SQ(*DL, TLInfo); 4895 AddressingModeCombiner AddrModes(SQ, Addr); 4896 TypePromotionTransaction TPT(RemovedInsts); 4897 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4898 TPT.getRestorationPoint(); 4899 while (!worklist.empty()) { 4900 Value *V = worklist.back(); 4901 worklist.pop_back(); 4902 4903 // We allow traversing cyclic Phi nodes. 4904 // In case of success after this loop we ensure that traversing through 4905 // Phi nodes ends up with all cases to compute address of the form 4906 // BaseGV + Base + Scale * Index + Offset 4907 // where Scale and Offset are constans and BaseGV, Base and Index 4908 // are exactly the same Values in all cases. 4909 // It means that BaseGV, Scale and Offset dominate our memory instruction 4910 // and have the same value as they had in address computation represented 4911 // as Phi. So we can safely sink address computation to memory instruction. 4912 if (!Visited.insert(V).second) 4913 continue; 4914 4915 // For a PHI node, push all of its incoming values. 4916 if (PHINode *P = dyn_cast<PHINode>(V)) { 4917 for (Value *IncValue : P->incoming_values()) 4918 worklist.push_back(IncValue); 4919 PhiOrSelectSeen = true; 4920 continue; 4921 } 4922 // Similar for select. 4923 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4924 worklist.push_back(SI->getFalseValue()); 4925 worklist.push_back(SI->getTrueValue()); 4926 PhiOrSelectSeen = true; 4927 continue; 4928 } 4929 4930 // For non-PHIs, determine the addressing mode being computed. Note that 4931 // the result may differ depending on what other uses our candidate 4932 // addressing instructions might have. 4933 AddrModeInsts.clear(); 4934 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4935 0); 4936 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4937 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4938 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 4939 BFI.get()); 4940 4941 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4942 if (GEP && !NewGEPBases.count(GEP)) { 4943 // If splitting the underlying data structure can reduce the offset of a 4944 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4945 // previously split data structures. 4946 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4947 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4948 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4949 } 4950 4951 NewAddrMode.OriginalValue = V; 4952 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4953 break; 4954 } 4955 4956 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4957 // or we have multiple but either couldn't combine them or combining them 4958 // wouldn't do anything useful, bail out now. 4959 if (!AddrModes.combineAddrModes()) { 4960 TPT.rollback(LastKnownGood); 4961 return false; 4962 } 4963 TPT.commit(); 4964 4965 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4966 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4967 4968 // If all the instructions matched are already in this BB, don't do anything. 4969 // If we saw a Phi node then it is not local definitely, and if we saw a select 4970 // then we want to push the address calculation past it even if it's already 4971 // in this BB. 4972 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4973 return IsNonLocalValue(V, MemoryInst->getParent()); 4974 })) { 4975 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4976 << "\n"); 4977 return false; 4978 } 4979 4980 // Insert this computation right after this user. Since our caller is 4981 // scanning from the top of the BB to the bottom, reuse of the expr are 4982 // guaranteed to happen later. 4983 IRBuilder<> Builder(MemoryInst); 4984 4985 // Now that we determined the addressing expression we want to use and know 4986 // that we have to sink it into this block. Check to see if we have already 4987 // done this for some other load/store instr in this block. If so, reuse 4988 // the computation. Before attempting reuse, check if the address is valid 4989 // as it may have been erased. 4990 4991 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4992 4993 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4994 if (SunkAddr) { 4995 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4996 << " for " << *MemoryInst << "\n"); 4997 if (SunkAddr->getType() != Addr->getType()) 4998 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4999 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5000 SubtargetInfo->addrSinkUsingGEPs())) { 5001 // By default, we use the GEP-based method when AA is used later. This 5002 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5003 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5004 << " for " << *MemoryInst << "\n"); 5005 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5006 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5007 5008 // First, find the pointer. 5009 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5010 ResultPtr = AddrMode.BaseReg; 5011 AddrMode.BaseReg = nullptr; 5012 } 5013 5014 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5015 // We can't add more than one pointer together, nor can we scale a 5016 // pointer (both of which seem meaningless). 5017 if (ResultPtr || AddrMode.Scale != 1) 5018 return false; 5019 5020 ResultPtr = AddrMode.ScaledReg; 5021 AddrMode.Scale = 0; 5022 } 5023 5024 // It is only safe to sign extend the BaseReg if we know that the math 5025 // required to create it did not overflow before we extend it. Since 5026 // the original IR value was tossed in favor of a constant back when 5027 // the AddrMode was created we need to bail out gracefully if widths 5028 // do not match instead of extending it. 5029 // 5030 // (See below for code to add the scale.) 5031 if (AddrMode.Scale) { 5032 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5033 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5034 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5035 return false; 5036 } 5037 5038 if (AddrMode.BaseGV) { 5039 if (ResultPtr) 5040 return false; 5041 5042 ResultPtr = AddrMode.BaseGV; 5043 } 5044 5045 // If the real base value actually came from an inttoptr, then the matcher 5046 // will look through it and provide only the integer value. In that case, 5047 // use it here. 5048 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5049 if (!ResultPtr && AddrMode.BaseReg) { 5050 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5051 "sunkaddr"); 5052 AddrMode.BaseReg = nullptr; 5053 } else if (!ResultPtr && AddrMode.Scale == 1) { 5054 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5055 "sunkaddr"); 5056 AddrMode.Scale = 0; 5057 } 5058 } 5059 5060 if (!ResultPtr && 5061 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5062 SunkAddr = Constant::getNullValue(Addr->getType()); 5063 } else if (!ResultPtr) { 5064 return false; 5065 } else { 5066 Type *I8PtrTy = 5067 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5068 Type *I8Ty = Builder.getInt8Ty(); 5069 5070 // Start with the base register. Do this first so that subsequent address 5071 // matching finds it last, which will prevent it from trying to match it 5072 // as the scaled value in case it happens to be a mul. That would be 5073 // problematic if we've sunk a different mul for the scale, because then 5074 // we'd end up sinking both muls. 5075 if (AddrMode.BaseReg) { 5076 Value *V = AddrMode.BaseReg; 5077 if (V->getType() != IntPtrTy) 5078 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5079 5080 ResultIndex = V; 5081 } 5082 5083 // Add the scale value. 5084 if (AddrMode.Scale) { 5085 Value *V = AddrMode.ScaledReg; 5086 if (V->getType() == IntPtrTy) { 5087 // done. 5088 } else { 5089 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5090 cast<IntegerType>(V->getType())->getBitWidth() && 5091 "We can't transform if ScaledReg is too narrow"); 5092 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5093 } 5094 5095 if (AddrMode.Scale != 1) 5096 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5097 "sunkaddr"); 5098 if (ResultIndex) 5099 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5100 else 5101 ResultIndex = V; 5102 } 5103 5104 // Add in the Base Offset if present. 5105 if (AddrMode.BaseOffs) { 5106 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5107 if (ResultIndex) { 5108 // We need to add this separately from the scale above to help with 5109 // SDAG consecutive load/store merging. 5110 if (ResultPtr->getType() != I8PtrTy) 5111 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5112 ResultPtr = 5113 AddrMode.InBounds 5114 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5115 "sunkaddr") 5116 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5117 } 5118 5119 ResultIndex = V; 5120 } 5121 5122 if (!ResultIndex) { 5123 SunkAddr = ResultPtr; 5124 } else { 5125 if (ResultPtr->getType() != I8PtrTy) 5126 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5127 SunkAddr = 5128 AddrMode.InBounds 5129 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5130 "sunkaddr") 5131 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5132 } 5133 5134 if (SunkAddr->getType() != Addr->getType()) 5135 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5136 } 5137 } else { 5138 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5139 // non-integral pointers, so in that case bail out now. 5140 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5141 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5142 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5143 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5144 if (DL->isNonIntegralPointerType(Addr->getType()) || 5145 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5146 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5147 (AddrMode.BaseGV && 5148 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5149 return false; 5150 5151 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5152 << " for " << *MemoryInst << "\n"); 5153 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5154 Value *Result = nullptr; 5155 5156 // Start with the base register. Do this first so that subsequent address 5157 // matching finds it last, which will prevent it from trying to match it 5158 // as the scaled value in case it happens to be a mul. That would be 5159 // problematic if we've sunk a different mul for the scale, because then 5160 // we'd end up sinking both muls. 5161 if (AddrMode.BaseReg) { 5162 Value *V = AddrMode.BaseReg; 5163 if (V->getType()->isPointerTy()) 5164 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5165 if (V->getType() != IntPtrTy) 5166 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5167 Result = V; 5168 } 5169 5170 // Add the scale value. 5171 if (AddrMode.Scale) { 5172 Value *V = AddrMode.ScaledReg; 5173 if (V->getType() == IntPtrTy) { 5174 // done. 5175 } else if (V->getType()->isPointerTy()) { 5176 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5177 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5178 cast<IntegerType>(V->getType())->getBitWidth()) { 5179 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5180 } else { 5181 // It is only safe to sign extend the BaseReg if we know that the math 5182 // required to create it did not overflow before we extend it. Since 5183 // the original IR value was tossed in favor of a constant back when 5184 // the AddrMode was created we need to bail out gracefully if widths 5185 // do not match instead of extending it. 5186 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5187 if (I && (Result != AddrMode.BaseReg)) 5188 I->eraseFromParent(); 5189 return false; 5190 } 5191 if (AddrMode.Scale != 1) 5192 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5193 "sunkaddr"); 5194 if (Result) 5195 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5196 else 5197 Result = V; 5198 } 5199 5200 // Add in the BaseGV if present. 5201 if (AddrMode.BaseGV) { 5202 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5203 if (Result) 5204 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5205 else 5206 Result = V; 5207 } 5208 5209 // Add in the Base Offset if present. 5210 if (AddrMode.BaseOffs) { 5211 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5212 if (Result) 5213 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5214 else 5215 Result = V; 5216 } 5217 5218 if (!Result) 5219 SunkAddr = Constant::getNullValue(Addr->getType()); 5220 else 5221 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5222 } 5223 5224 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5225 // Store the newly computed address into the cache. In the case we reused a 5226 // value, this should be idempotent. 5227 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5228 5229 // If we have no uses, recursively delete the value and all dead instructions 5230 // using it. 5231 if (Repl->use_empty()) { 5232 // This can cause recursive deletion, which can invalidate our iterator. 5233 // Use a WeakTrackingVH to hold onto it in case this happens. 5234 Value *CurValue = &*CurInstIterator; 5235 WeakTrackingVH IterHandle(CurValue); 5236 BasicBlock *BB = CurInstIterator->getParent(); 5237 5238 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5239 5240 if (IterHandle != CurValue) { 5241 // If the iterator instruction was recursively deleted, start over at the 5242 // start of the block. 5243 CurInstIterator = BB->begin(); 5244 SunkAddrs.clear(); 5245 } 5246 } 5247 ++NumMemoryInsts; 5248 return true; 5249 } 5250 5251 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5252 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5253 /// only handle a 2 operand GEP in the same basic block or a splat constant 5254 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5255 /// index. 5256 /// 5257 /// If the existing GEP has a vector base pointer that is splat, we can look 5258 /// through the splat to find the scalar pointer. If we can't find a scalar 5259 /// pointer there's nothing we can do. 5260 /// 5261 /// If we have a GEP with more than 2 indices where the middle indices are all 5262 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5263 /// 5264 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5265 /// followed by a GEP with an all zeroes vector index. This will enable 5266 /// SelectionDAGBuilder to use a the scalar GEP as the uniform base and have a 5267 /// zero index. 5268 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5269 Value *Ptr) { 5270 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 5271 if (!GEP || !GEP->hasIndices()) 5272 return false; 5273 5274 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5275 // FIXME: We should support this by sinking the GEP. 5276 if (MemoryInst->getParent() != GEP->getParent()) 5277 return false; 5278 5279 SmallVector<Value *, 2> Ops(GEP->op_begin(), GEP->op_end()); 5280 5281 bool RewriteGEP = false; 5282 5283 if (Ops[0]->getType()->isVectorTy()) { 5284 Ops[0] = const_cast<Value *>(getSplatValue(Ops[0])); 5285 if (!Ops[0]) 5286 return false; 5287 RewriteGEP = true; 5288 } 5289 5290 unsigned FinalIndex = Ops.size() - 1; 5291 5292 // Ensure all but the last index is 0. 5293 // FIXME: This isn't strictly required. All that's required is that they are 5294 // all scalars or splats. 5295 for (unsigned i = 1; i < FinalIndex; ++i) { 5296 auto *C = dyn_cast<Constant>(Ops[i]); 5297 if (!C) 5298 return false; 5299 if (isa<VectorType>(C->getType())) 5300 C = C->getSplatValue(); 5301 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5302 if (!CI || !CI->isZero()) 5303 return false; 5304 // Scalarize the index if needed. 5305 Ops[i] = CI; 5306 } 5307 5308 // Try to scalarize the final index. 5309 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5310 if (Value *V = const_cast<Value *>(getSplatValue(Ops[FinalIndex]))) { 5311 auto *C = dyn_cast<ConstantInt>(V); 5312 // Don't scalarize all zeros vector. 5313 if (!C || !C->isZero()) { 5314 Ops[FinalIndex] = V; 5315 RewriteGEP = true; 5316 } 5317 } 5318 } 5319 5320 // If we made any changes or the we have extra operands, we need to generate 5321 // new instructions. 5322 if (!RewriteGEP && Ops.size() == 2) 5323 return false; 5324 5325 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 5326 5327 IRBuilder<> Builder(MemoryInst); 5328 5329 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5330 5331 Value *NewAddr; 5332 5333 // If the final index isn't a vector, emit a scalar GEP containing all ops 5334 // and a vector GEP with all zeroes final index. 5335 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5336 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5337 auto *IndexTy = FixedVectorType::get(ScalarIndexTy, NumElts); 5338 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5339 } else { 5340 Value *Base = Ops[0]; 5341 Value *Index = Ops[FinalIndex]; 5342 5343 // Create a scalar GEP if there are more than 2 operands. 5344 if (Ops.size() != 2) { 5345 // Replace the last index with 0. 5346 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5347 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5348 } 5349 5350 // Now create the GEP with scalar pointer and vector index. 5351 NewAddr = Builder.CreateGEP(Base, Index); 5352 } 5353 5354 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5355 5356 // If we have no uses, recursively delete the value and all dead instructions 5357 // using it. 5358 if (Ptr->use_empty()) 5359 RecursivelyDeleteTriviallyDeadInstructions(Ptr, TLInfo); 5360 5361 return true; 5362 } 5363 5364 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5365 /// address computing into the block when possible / profitable. 5366 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5367 bool MadeChange = false; 5368 5369 const TargetRegisterInfo *TRI = 5370 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5371 TargetLowering::AsmOperandInfoVector TargetConstraints = 5372 TLI->ParseConstraints(*DL, TRI, *CS); 5373 unsigned ArgNo = 0; 5374 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5375 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5376 5377 // Compute the constraint code and ConstraintType to use. 5378 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5379 5380 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5381 OpInfo.isIndirect) { 5382 Value *OpVal = CS->getArgOperand(ArgNo++); 5383 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5384 } else if (OpInfo.Type == InlineAsm::isInput) 5385 ArgNo++; 5386 } 5387 5388 return MadeChange; 5389 } 5390 5391 /// Check if all the uses of \p Val are equivalent (or free) zero or 5392 /// sign extensions. 5393 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5394 assert(!Val->use_empty() && "Input must have at least one use"); 5395 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5396 bool IsSExt = isa<SExtInst>(FirstUser); 5397 Type *ExtTy = FirstUser->getType(); 5398 for (const User *U : Val->users()) { 5399 const Instruction *UI = cast<Instruction>(U); 5400 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5401 return false; 5402 Type *CurTy = UI->getType(); 5403 // Same input and output types: Same instruction after CSE. 5404 if (CurTy == ExtTy) 5405 continue; 5406 5407 // If IsSExt is true, we are in this situation: 5408 // a = Val 5409 // b = sext ty1 a to ty2 5410 // c = sext ty1 a to ty3 5411 // Assuming ty2 is shorter than ty3, this could be turned into: 5412 // a = Val 5413 // b = sext ty1 a to ty2 5414 // c = sext ty2 b to ty3 5415 // However, the last sext is not free. 5416 if (IsSExt) 5417 return false; 5418 5419 // This is a ZExt, maybe this is free to extend from one type to another. 5420 // In that case, we would not account for a different use. 5421 Type *NarrowTy; 5422 Type *LargeTy; 5423 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5424 CurTy->getScalarType()->getIntegerBitWidth()) { 5425 NarrowTy = CurTy; 5426 LargeTy = ExtTy; 5427 } else { 5428 NarrowTy = ExtTy; 5429 LargeTy = CurTy; 5430 } 5431 5432 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5433 return false; 5434 } 5435 // All uses are the same or can be derived from one another for free. 5436 return true; 5437 } 5438 5439 /// Try to speculatively promote extensions in \p Exts and continue 5440 /// promoting through newly promoted operands recursively as far as doing so is 5441 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5442 /// When some promotion happened, \p TPT contains the proper state to revert 5443 /// them. 5444 /// 5445 /// \return true if some promotion happened, false otherwise. 5446 bool CodeGenPrepare::tryToPromoteExts( 5447 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5448 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5449 unsigned CreatedInstsCost) { 5450 bool Promoted = false; 5451 5452 // Iterate over all the extensions to try to promote them. 5453 for (auto *I : Exts) { 5454 // Early check if we directly have ext(load). 5455 if (isa<LoadInst>(I->getOperand(0))) { 5456 ProfitablyMovedExts.push_back(I); 5457 continue; 5458 } 5459 5460 // Check whether or not we want to do any promotion. The reason we have 5461 // this check inside the for loop is to catch the case where an extension 5462 // is directly fed by a load because in such case the extension can be moved 5463 // up without any promotion on its operands. 5464 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5465 return false; 5466 5467 // Get the action to perform the promotion. 5468 TypePromotionHelper::Action TPH = 5469 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5470 // Check if we can promote. 5471 if (!TPH) { 5472 // Save the current extension as we cannot move up through its operand. 5473 ProfitablyMovedExts.push_back(I); 5474 continue; 5475 } 5476 5477 // Save the current state. 5478 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5479 TPT.getRestorationPoint(); 5480 SmallVector<Instruction *, 4> NewExts; 5481 unsigned NewCreatedInstsCost = 0; 5482 unsigned ExtCost = !TLI->isExtFree(I); 5483 // Promote. 5484 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5485 &NewExts, nullptr, *TLI); 5486 assert(PromotedVal && 5487 "TypePromotionHelper should have filtered out those cases"); 5488 5489 // We would be able to merge only one extension in a load. 5490 // Therefore, if we have more than 1 new extension we heuristically 5491 // cut this search path, because it means we degrade the code quality. 5492 // With exactly 2, the transformation is neutral, because we will merge 5493 // one extension but leave one. However, we optimistically keep going, 5494 // because the new extension may be removed too. 5495 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5496 // FIXME: It would be possible to propagate a negative value instead of 5497 // conservatively ceiling it to 0. 5498 TotalCreatedInstsCost = 5499 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5500 if (!StressExtLdPromotion && 5501 (TotalCreatedInstsCost > 1 || 5502 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5503 // This promotion is not profitable, rollback to the previous state, and 5504 // save the current extension in ProfitablyMovedExts as the latest 5505 // speculative promotion turned out to be unprofitable. 5506 TPT.rollback(LastKnownGood); 5507 ProfitablyMovedExts.push_back(I); 5508 continue; 5509 } 5510 // Continue promoting NewExts as far as doing so is profitable. 5511 SmallVector<Instruction *, 2> NewlyMovedExts; 5512 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5513 bool NewPromoted = false; 5514 for (auto *ExtInst : NewlyMovedExts) { 5515 Instruction *MovedExt = cast<Instruction>(ExtInst); 5516 Value *ExtOperand = MovedExt->getOperand(0); 5517 // If we have reached to a load, we need this extra profitability check 5518 // as it could potentially be merged into an ext(load). 5519 if (isa<LoadInst>(ExtOperand) && 5520 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5521 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5522 continue; 5523 5524 ProfitablyMovedExts.push_back(MovedExt); 5525 NewPromoted = true; 5526 } 5527 5528 // If none of speculative promotions for NewExts is profitable, rollback 5529 // and save the current extension (I) as the last profitable extension. 5530 if (!NewPromoted) { 5531 TPT.rollback(LastKnownGood); 5532 ProfitablyMovedExts.push_back(I); 5533 continue; 5534 } 5535 // The promotion is profitable. 5536 Promoted = true; 5537 } 5538 return Promoted; 5539 } 5540 5541 /// Merging redundant sexts when one is dominating the other. 5542 bool CodeGenPrepare::mergeSExts(Function &F) { 5543 bool Changed = false; 5544 for (auto &Entry : ValToSExtendedUses) { 5545 SExts &Insts = Entry.second; 5546 SExts CurPts; 5547 for (Instruction *Inst : Insts) { 5548 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5549 Inst->getOperand(0) != Entry.first) 5550 continue; 5551 bool inserted = false; 5552 for (auto &Pt : CurPts) { 5553 if (getDT(F).dominates(Inst, Pt)) { 5554 Pt->replaceAllUsesWith(Inst); 5555 RemovedInsts.insert(Pt); 5556 Pt->removeFromParent(); 5557 Pt = Inst; 5558 inserted = true; 5559 Changed = true; 5560 break; 5561 } 5562 if (!getDT(F).dominates(Pt, Inst)) 5563 // Give up if we need to merge in a common dominator as the 5564 // experiments show it is not profitable. 5565 continue; 5566 Inst->replaceAllUsesWith(Pt); 5567 RemovedInsts.insert(Inst); 5568 Inst->removeFromParent(); 5569 inserted = true; 5570 Changed = true; 5571 break; 5572 } 5573 if (!inserted) 5574 CurPts.push_back(Inst); 5575 } 5576 } 5577 return Changed; 5578 } 5579 5580 // Spliting large data structures so that the GEPs accessing them can have 5581 // smaller offsets so that they can be sunk to the same blocks as their users. 5582 // For example, a large struct starting from %base is splitted into two parts 5583 // where the second part starts from %new_base. 5584 // 5585 // Before: 5586 // BB0: 5587 // %base = 5588 // 5589 // BB1: 5590 // %gep0 = gep %base, off0 5591 // %gep1 = gep %base, off1 5592 // %gep2 = gep %base, off2 5593 // 5594 // BB2: 5595 // %load1 = load %gep0 5596 // %load2 = load %gep1 5597 // %load3 = load %gep2 5598 // 5599 // After: 5600 // BB0: 5601 // %base = 5602 // %new_base = gep %base, off0 5603 // 5604 // BB1: 5605 // %new_gep0 = %new_base 5606 // %new_gep1 = gep %new_base, off1 - off0 5607 // %new_gep2 = gep %new_base, off2 - off0 5608 // 5609 // BB2: 5610 // %load1 = load i32, i32* %new_gep0 5611 // %load2 = load i32, i32* %new_gep1 5612 // %load3 = load i32, i32* %new_gep2 5613 // 5614 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5615 // their offsets are smaller enough to fit into the addressing mode. 5616 bool CodeGenPrepare::splitLargeGEPOffsets() { 5617 bool Changed = false; 5618 for (auto &Entry : LargeOffsetGEPMap) { 5619 Value *OldBase = Entry.first; 5620 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5621 &LargeOffsetGEPs = Entry.second; 5622 auto compareGEPOffset = 5623 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5624 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5625 if (LHS.first == RHS.first) 5626 return false; 5627 if (LHS.second != RHS.second) 5628 return LHS.second < RHS.second; 5629 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5630 }; 5631 // Sorting all the GEPs of the same data structures based on the offsets. 5632 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5633 LargeOffsetGEPs.erase( 5634 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5635 LargeOffsetGEPs.end()); 5636 // Skip if all the GEPs have the same offsets. 5637 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5638 continue; 5639 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5640 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5641 Value *NewBaseGEP = nullptr; 5642 5643 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5644 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5645 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5646 int64_t Offset = LargeOffsetGEP->second; 5647 if (Offset != BaseOffset) { 5648 TargetLowering::AddrMode AddrMode; 5649 AddrMode.BaseOffs = Offset - BaseOffset; 5650 // The result type of the GEP might not be the type of the memory 5651 // access. 5652 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5653 GEP->getResultElementType(), 5654 GEP->getAddressSpace())) { 5655 // We need to create a new base if the offset to the current base is 5656 // too large to fit into the addressing mode. So, a very large struct 5657 // may be splitted into several parts. 5658 BaseGEP = GEP; 5659 BaseOffset = Offset; 5660 NewBaseGEP = nullptr; 5661 } 5662 } 5663 5664 // Generate a new GEP to replace the current one. 5665 LLVMContext &Ctx = GEP->getContext(); 5666 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5667 Type *I8PtrTy = 5668 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5669 Type *I8Ty = Type::getInt8Ty(Ctx); 5670 5671 if (!NewBaseGEP) { 5672 // Create a new base if we don't have one yet. Find the insertion 5673 // pointer for the new base first. 5674 BasicBlock::iterator NewBaseInsertPt; 5675 BasicBlock *NewBaseInsertBB; 5676 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5677 // If the base of the struct is an instruction, the new base will be 5678 // inserted close to it. 5679 NewBaseInsertBB = BaseI->getParent(); 5680 if (isa<PHINode>(BaseI)) 5681 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5682 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5683 NewBaseInsertBB = 5684 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5685 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5686 } else 5687 NewBaseInsertPt = std::next(BaseI->getIterator()); 5688 } else { 5689 // If the current base is an argument or global value, the new base 5690 // will be inserted to the entry block. 5691 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5692 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5693 } 5694 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5695 // Create a new base. 5696 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5697 NewBaseGEP = OldBase; 5698 if (NewBaseGEP->getType() != I8PtrTy) 5699 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5700 NewBaseGEP = 5701 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5702 NewGEPBases.insert(NewBaseGEP); 5703 } 5704 5705 IRBuilder<> Builder(GEP); 5706 Value *NewGEP = NewBaseGEP; 5707 if (Offset == BaseOffset) { 5708 if (GEP->getType() != I8PtrTy) 5709 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5710 } else { 5711 // Calculate the new offset for the new GEP. 5712 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5713 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5714 5715 if (GEP->getType() != I8PtrTy) 5716 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5717 } 5718 GEP->replaceAllUsesWith(NewGEP); 5719 LargeOffsetGEPID.erase(GEP); 5720 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5721 GEP->eraseFromParent(); 5722 Changed = true; 5723 } 5724 } 5725 return Changed; 5726 } 5727 5728 bool CodeGenPrepare::optimizePhiType( 5729 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5730 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5731 // We are looking for a collection on interconnected phi nodes that together 5732 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5733 // are of the same type. Convert the whole set of nodes to the type of the 5734 // bitcast. 5735 Type *PhiTy = I->getType(); 5736 Type *ConvertTy = nullptr; 5737 if (Visited.count(I) || 5738 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5739 return false; 5740 5741 SmallVector<Instruction *, 4> Worklist; 5742 Worklist.push_back(cast<Instruction>(I)); 5743 SmallPtrSet<PHINode *, 4> PhiNodes; 5744 PhiNodes.insert(I); 5745 Visited.insert(I); 5746 SmallPtrSet<Instruction *, 4> Defs; 5747 SmallPtrSet<Instruction *, 4> Uses; 5748 5749 while (!Worklist.empty()) { 5750 Instruction *II = Worklist.pop_back_val(); 5751 5752 if (auto *Phi = dyn_cast<PHINode>(II)) { 5753 // Handle Defs, which might also be PHI's 5754 for (Value *V : Phi->incoming_values()) { 5755 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5756 if (!PhiNodes.count(OpPhi)) { 5757 if (Visited.count(OpPhi)) 5758 return false; 5759 PhiNodes.insert(OpPhi); 5760 Visited.insert(OpPhi); 5761 Worklist.push_back(OpPhi); 5762 } 5763 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5764 if (!Defs.count(OpLoad)) { 5765 Defs.insert(OpLoad); 5766 Worklist.push_back(OpLoad); 5767 } 5768 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5769 if (!Defs.count(OpEx)) { 5770 Defs.insert(OpEx); 5771 Worklist.push_back(OpEx); 5772 } 5773 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5774 if (!ConvertTy) 5775 ConvertTy = OpBC->getOperand(0)->getType(); 5776 if (OpBC->getOperand(0)->getType() != ConvertTy) 5777 return false; 5778 if (!Defs.count(OpBC)) { 5779 Defs.insert(OpBC); 5780 Worklist.push_back(OpBC); 5781 } 5782 } else if (!isa<UndefValue>(V)) 5783 return false; 5784 } 5785 } 5786 5787 // Handle uses which might also be phi's 5788 for (User *V : II->users()) { 5789 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5790 if (!PhiNodes.count(OpPhi)) { 5791 if (Visited.count(OpPhi)) 5792 return false; 5793 PhiNodes.insert(OpPhi); 5794 Visited.insert(OpPhi); 5795 Worklist.push_back(OpPhi); 5796 } 5797 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5798 if (OpStore->getOperand(0) != II) 5799 return false; 5800 Uses.insert(OpStore); 5801 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5802 if (!ConvertTy) 5803 ConvertTy = OpBC->getType(); 5804 if (OpBC->getType() != ConvertTy) 5805 return false; 5806 Uses.insert(OpBC); 5807 } else 5808 return false; 5809 } 5810 } 5811 5812 if (!ConvertTy || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5813 return false; 5814 5815 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5816 << *ConvertTy << "\n"); 5817 5818 // Create all the new phi nodes of the new type, and bitcast any loads to the 5819 // correct type. 5820 ValueToValueMap ValMap; 5821 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5822 for (Instruction *D : Defs) { 5823 if (isa<BitCastInst>(D)) 5824 ValMap[D] = D->getOperand(0); 5825 else 5826 ValMap[D] = 5827 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5828 } 5829 for (PHINode *Phi : PhiNodes) 5830 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5831 Phi->getName() + ".tc", Phi); 5832 // Pipe together all the PhiNodes. 5833 for (PHINode *Phi : PhiNodes) { 5834 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5835 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5836 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5837 Phi->getIncomingBlock(i)); 5838 } 5839 // And finally pipe up the stores and bitcasts 5840 for (Instruction *U : Uses) { 5841 if (isa<BitCastInst>(U)) { 5842 DeletedInstrs.insert(U); 5843 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5844 } else 5845 U->setOperand(0, 5846 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5847 } 5848 5849 // Save the removed phis to be deleted later. 5850 for (PHINode *Phi : PhiNodes) 5851 DeletedInstrs.insert(Phi); 5852 return true; 5853 } 5854 5855 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5856 if (!OptimizePhiTypes) 5857 return false; 5858 5859 bool Changed = false; 5860 SmallPtrSet<PHINode *, 4> Visited; 5861 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5862 5863 // Attempt to optimize all the phis in the functions to the correct type. 5864 for (auto &BB : F) 5865 for (auto &Phi : BB.phis()) 5866 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5867 5868 // Remove any old phi's that have been converted. 5869 for (auto *I : DeletedInstrs) { 5870 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5871 I->eraseFromParent(); 5872 } 5873 5874 return Changed; 5875 } 5876 5877 /// Return true, if an ext(load) can be formed from an extension in 5878 /// \p MovedExts. 5879 bool CodeGenPrepare::canFormExtLd( 5880 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5881 Instruction *&Inst, bool HasPromoted) { 5882 for (auto *MovedExtInst : MovedExts) { 5883 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5884 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5885 Inst = MovedExtInst; 5886 break; 5887 } 5888 } 5889 if (!LI) 5890 return false; 5891 5892 // If they're already in the same block, there's nothing to do. 5893 // Make the cheap checks first if we did not promote. 5894 // If we promoted, we need to check if it is indeed profitable. 5895 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5896 return false; 5897 5898 return TLI->isExtLoad(LI, Inst, *DL); 5899 } 5900 5901 /// Move a zext or sext fed by a load into the same basic block as the load, 5902 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5903 /// extend into the load. 5904 /// 5905 /// E.g., 5906 /// \code 5907 /// %ld = load i32* %addr 5908 /// %add = add nuw i32 %ld, 4 5909 /// %zext = zext i32 %add to i64 5910 // \endcode 5911 /// => 5912 /// \code 5913 /// %ld = load i32* %addr 5914 /// %zext = zext i32 %ld to i64 5915 /// %add = add nuw i64 %zext, 4 5916 /// \encode 5917 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5918 /// allow us to match zext(load i32*) to i64. 5919 /// 5920 /// Also, try to promote the computations used to obtain a sign extended 5921 /// value used into memory accesses. 5922 /// E.g., 5923 /// \code 5924 /// a = add nsw i32 b, 3 5925 /// d = sext i32 a to i64 5926 /// e = getelementptr ..., i64 d 5927 /// \endcode 5928 /// => 5929 /// \code 5930 /// f = sext i32 b to i64 5931 /// a = add nsw i64 f, 3 5932 /// e = getelementptr ..., i64 a 5933 /// \endcode 5934 /// 5935 /// \p Inst[in/out] the extension may be modified during the process if some 5936 /// promotions apply. 5937 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5938 bool AllowPromotionWithoutCommonHeader = false; 5939 /// See if it is an interesting sext operations for the address type 5940 /// promotion before trying to promote it, e.g., the ones with the right 5941 /// type and used in memory accesses. 5942 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5943 *Inst, AllowPromotionWithoutCommonHeader); 5944 TypePromotionTransaction TPT(RemovedInsts); 5945 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5946 TPT.getRestorationPoint(); 5947 SmallVector<Instruction *, 1> Exts; 5948 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5949 Exts.push_back(Inst); 5950 5951 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5952 5953 // Look for a load being extended. 5954 LoadInst *LI = nullptr; 5955 Instruction *ExtFedByLoad; 5956 5957 // Try to promote a chain of computation if it allows to form an extended 5958 // load. 5959 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5960 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5961 TPT.commit(); 5962 // Move the extend into the same block as the load. 5963 ExtFedByLoad->moveAfter(LI); 5964 ++NumExtsMoved; 5965 Inst = ExtFedByLoad; 5966 return true; 5967 } 5968 5969 // Continue promoting SExts if known as considerable depending on targets. 5970 if (ATPConsiderable && 5971 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5972 HasPromoted, TPT, SpeculativelyMovedExts)) 5973 return true; 5974 5975 TPT.rollback(LastKnownGood); 5976 return false; 5977 } 5978 5979 // Perform address type promotion if doing so is profitable. 5980 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5981 // instructions that sign extended the same initial value. However, if 5982 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5983 // extension is just profitable. 5984 bool CodeGenPrepare::performAddressTypePromotion( 5985 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5986 bool HasPromoted, TypePromotionTransaction &TPT, 5987 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5988 bool Promoted = false; 5989 SmallPtrSet<Instruction *, 1> UnhandledExts; 5990 bool AllSeenFirst = true; 5991 for (auto *I : SpeculativelyMovedExts) { 5992 Value *HeadOfChain = I->getOperand(0); 5993 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5994 SeenChainsForSExt.find(HeadOfChain); 5995 // If there is an unhandled SExt which has the same header, try to promote 5996 // it as well. 5997 if (AlreadySeen != SeenChainsForSExt.end()) { 5998 if (AlreadySeen->second != nullptr) 5999 UnhandledExts.insert(AlreadySeen->second); 6000 AllSeenFirst = false; 6001 } 6002 } 6003 6004 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6005 SpeculativelyMovedExts.size() == 1)) { 6006 TPT.commit(); 6007 if (HasPromoted) 6008 Promoted = true; 6009 for (auto *I : SpeculativelyMovedExts) { 6010 Value *HeadOfChain = I->getOperand(0); 6011 SeenChainsForSExt[HeadOfChain] = nullptr; 6012 ValToSExtendedUses[HeadOfChain].push_back(I); 6013 } 6014 // Update Inst as promotion happen. 6015 Inst = SpeculativelyMovedExts.pop_back_val(); 6016 } else { 6017 // This is the first chain visited from the header, keep the current chain 6018 // as unhandled. Defer to promote this until we encounter another SExt 6019 // chain derived from the same header. 6020 for (auto *I : SpeculativelyMovedExts) { 6021 Value *HeadOfChain = I->getOperand(0); 6022 SeenChainsForSExt[HeadOfChain] = Inst; 6023 } 6024 return false; 6025 } 6026 6027 if (!AllSeenFirst && !UnhandledExts.empty()) 6028 for (auto *VisitedSExt : UnhandledExts) { 6029 if (RemovedInsts.count(VisitedSExt)) 6030 continue; 6031 TypePromotionTransaction TPT(RemovedInsts); 6032 SmallVector<Instruction *, 1> Exts; 6033 SmallVector<Instruction *, 2> Chains; 6034 Exts.push_back(VisitedSExt); 6035 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6036 TPT.commit(); 6037 if (HasPromoted) 6038 Promoted = true; 6039 for (auto *I : Chains) { 6040 Value *HeadOfChain = I->getOperand(0); 6041 // Mark this as handled. 6042 SeenChainsForSExt[HeadOfChain] = nullptr; 6043 ValToSExtendedUses[HeadOfChain].push_back(I); 6044 } 6045 } 6046 return Promoted; 6047 } 6048 6049 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6050 BasicBlock *DefBB = I->getParent(); 6051 6052 // If the result of a {s|z}ext and its source are both live out, rewrite all 6053 // other uses of the source with result of extension. 6054 Value *Src = I->getOperand(0); 6055 if (Src->hasOneUse()) 6056 return false; 6057 6058 // Only do this xform if truncating is free. 6059 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6060 return false; 6061 6062 // Only safe to perform the optimization if the source is also defined in 6063 // this block. 6064 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6065 return false; 6066 6067 bool DefIsLiveOut = false; 6068 for (User *U : I->users()) { 6069 Instruction *UI = cast<Instruction>(U); 6070 6071 // Figure out which BB this ext is used in. 6072 BasicBlock *UserBB = UI->getParent(); 6073 if (UserBB == DefBB) continue; 6074 DefIsLiveOut = true; 6075 break; 6076 } 6077 if (!DefIsLiveOut) 6078 return false; 6079 6080 // Make sure none of the uses are PHI nodes. 6081 for (User *U : Src->users()) { 6082 Instruction *UI = cast<Instruction>(U); 6083 BasicBlock *UserBB = UI->getParent(); 6084 if (UserBB == DefBB) continue; 6085 // Be conservative. We don't want this xform to end up introducing 6086 // reloads just before load / store instructions. 6087 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6088 return false; 6089 } 6090 6091 // InsertedTruncs - Only insert one trunc in each block once. 6092 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6093 6094 bool MadeChange = false; 6095 for (Use &U : Src->uses()) { 6096 Instruction *User = cast<Instruction>(U.getUser()); 6097 6098 // Figure out which BB this ext is used in. 6099 BasicBlock *UserBB = User->getParent(); 6100 if (UserBB == DefBB) continue; 6101 6102 // Both src and def are live in this block. Rewrite the use. 6103 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6104 6105 if (!InsertedTrunc) { 6106 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6107 assert(InsertPt != UserBB->end()); 6108 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6109 InsertedInsts.insert(InsertedTrunc); 6110 } 6111 6112 // Replace a use of the {s|z}ext source with a use of the result. 6113 U = InsertedTrunc; 6114 ++NumExtUses; 6115 MadeChange = true; 6116 } 6117 6118 return MadeChange; 6119 } 6120 6121 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6122 // just after the load if the target can fold this into one extload instruction, 6123 // with the hope of eliminating some of the other later "and" instructions using 6124 // the loaded value. "and"s that are made trivially redundant by the insertion 6125 // of the new "and" are removed by this function, while others (e.g. those whose 6126 // path from the load goes through a phi) are left for isel to potentially 6127 // remove. 6128 // 6129 // For example: 6130 // 6131 // b0: 6132 // x = load i32 6133 // ... 6134 // b1: 6135 // y = and x, 0xff 6136 // z = use y 6137 // 6138 // becomes: 6139 // 6140 // b0: 6141 // x = load i32 6142 // x' = and x, 0xff 6143 // ... 6144 // b1: 6145 // z = use x' 6146 // 6147 // whereas: 6148 // 6149 // b0: 6150 // x1 = load i32 6151 // ... 6152 // b1: 6153 // x2 = load i32 6154 // ... 6155 // b2: 6156 // x = phi x1, x2 6157 // y = and x, 0xff 6158 // 6159 // becomes (after a call to optimizeLoadExt for each load): 6160 // 6161 // b0: 6162 // x1 = load i32 6163 // x1' = and x1, 0xff 6164 // ... 6165 // b1: 6166 // x2 = load i32 6167 // x2' = and x2, 0xff 6168 // ... 6169 // b2: 6170 // x = phi x1', x2' 6171 // y = and x, 0xff 6172 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6173 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6174 return false; 6175 6176 // Skip loads we've already transformed. 6177 if (Load->hasOneUse() && 6178 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6179 return false; 6180 6181 // Look at all uses of Load, looking through phis, to determine how many bits 6182 // of the loaded value are needed. 6183 SmallVector<Instruction *, 8> WorkList; 6184 SmallPtrSet<Instruction *, 16> Visited; 6185 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6186 for (auto *U : Load->users()) 6187 WorkList.push_back(cast<Instruction>(U)); 6188 6189 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6190 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6191 APInt DemandBits(BitWidth, 0); 6192 APInt WidestAndBits(BitWidth, 0); 6193 6194 while (!WorkList.empty()) { 6195 Instruction *I = WorkList.back(); 6196 WorkList.pop_back(); 6197 6198 // Break use-def graph loops. 6199 if (!Visited.insert(I).second) 6200 continue; 6201 6202 // For a PHI node, push all of its users. 6203 if (auto *Phi = dyn_cast<PHINode>(I)) { 6204 for (auto *U : Phi->users()) 6205 WorkList.push_back(cast<Instruction>(U)); 6206 continue; 6207 } 6208 6209 switch (I->getOpcode()) { 6210 case Instruction::And: { 6211 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6212 if (!AndC) 6213 return false; 6214 APInt AndBits = AndC->getValue(); 6215 DemandBits |= AndBits; 6216 // Keep track of the widest and mask we see. 6217 if (AndBits.ugt(WidestAndBits)) 6218 WidestAndBits = AndBits; 6219 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6220 AndsToMaybeRemove.push_back(I); 6221 break; 6222 } 6223 6224 case Instruction::Shl: { 6225 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6226 if (!ShlC) 6227 return false; 6228 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6229 DemandBits.setLowBits(BitWidth - ShiftAmt); 6230 break; 6231 } 6232 6233 case Instruction::Trunc: { 6234 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6235 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6236 DemandBits.setLowBits(TruncBitWidth); 6237 break; 6238 } 6239 6240 default: 6241 return false; 6242 } 6243 } 6244 6245 uint32_t ActiveBits = DemandBits.getActiveBits(); 6246 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6247 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6248 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6249 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6250 // followed by an AND. 6251 // TODO: Look into removing this restriction by fixing backends to either 6252 // return false for isLoadExtLegal for i1 or have them select this pattern to 6253 // a single instruction. 6254 // 6255 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6256 // mask, since these are the only ands that will be removed by isel. 6257 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6258 WidestAndBits != DemandBits) 6259 return false; 6260 6261 LLVMContext &Ctx = Load->getType()->getContext(); 6262 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6263 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6264 6265 // Reject cases that won't be matched as extloads. 6266 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6267 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6268 return false; 6269 6270 IRBuilder<> Builder(Load->getNextNode()); 6271 auto *NewAnd = cast<Instruction>( 6272 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6273 // Mark this instruction as "inserted by CGP", so that other 6274 // optimizations don't touch it. 6275 InsertedInsts.insert(NewAnd); 6276 6277 // Replace all uses of load with new and (except for the use of load in the 6278 // new and itself). 6279 Load->replaceAllUsesWith(NewAnd); 6280 NewAnd->setOperand(0, Load); 6281 6282 // Remove any and instructions that are now redundant. 6283 for (auto *And : AndsToMaybeRemove) 6284 // Check that the and mask is the same as the one we decided to put on the 6285 // new and. 6286 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6287 And->replaceAllUsesWith(NewAnd); 6288 if (&*CurInstIterator == And) 6289 CurInstIterator = std::next(And->getIterator()); 6290 And->eraseFromParent(); 6291 ++NumAndUses; 6292 } 6293 6294 ++NumAndsAdded; 6295 return true; 6296 } 6297 6298 /// Check if V (an operand of a select instruction) is an expensive instruction 6299 /// that is only used once. 6300 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6301 auto *I = dyn_cast<Instruction>(V); 6302 // If it's safe to speculatively execute, then it should not have side 6303 // effects; therefore, it's safe to sink and possibly *not* execute. 6304 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6305 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6306 TargetTransformInfo::TCC_Expensive; 6307 } 6308 6309 /// Returns true if a SelectInst should be turned into an explicit branch. 6310 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6311 const TargetLowering *TLI, 6312 SelectInst *SI) { 6313 // If even a predictable select is cheap, then a branch can't be cheaper. 6314 if (!TLI->isPredictableSelectExpensive()) 6315 return false; 6316 6317 // FIXME: This should use the same heuristics as IfConversion to determine 6318 // whether a select is better represented as a branch. 6319 6320 // If metadata tells us that the select condition is obviously predictable, 6321 // then we want to replace the select with a branch. 6322 uint64_t TrueWeight, FalseWeight; 6323 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6324 uint64_t Max = std::max(TrueWeight, FalseWeight); 6325 uint64_t Sum = TrueWeight + FalseWeight; 6326 if (Sum != 0) { 6327 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6328 if (Probability > TLI->getPredictableBranchThreshold()) 6329 return true; 6330 } 6331 } 6332 6333 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6334 6335 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6336 // comparison condition. If the compare has more than one use, there's 6337 // probably another cmov or setcc around, so it's not worth emitting a branch. 6338 if (!Cmp || !Cmp->hasOneUse()) 6339 return false; 6340 6341 // If either operand of the select is expensive and only needed on one side 6342 // of the select, we should form a branch. 6343 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6344 sinkSelectOperand(TTI, SI->getFalseValue())) 6345 return true; 6346 6347 return false; 6348 } 6349 6350 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6351 /// false value of \p SI. If the true/false value of \p SI is defined by any 6352 /// select instructions in \p Selects, look through the defining select 6353 /// instruction until the true/false value is not defined in \p Selects. 6354 static Value *getTrueOrFalseValue( 6355 SelectInst *SI, bool isTrue, 6356 const SmallPtrSet<const Instruction *, 2> &Selects) { 6357 Value *V = nullptr; 6358 6359 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6360 DefSI = dyn_cast<SelectInst>(V)) { 6361 assert(DefSI->getCondition() == SI->getCondition() && 6362 "The condition of DefSI does not match with SI"); 6363 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6364 } 6365 6366 assert(V && "Failed to get select true/false value"); 6367 return V; 6368 } 6369 6370 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6371 assert(Shift->isShift() && "Expected a shift"); 6372 6373 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6374 // general vector shifts, and (3) the shift amount is a select-of-splatted 6375 // values, hoist the shifts before the select: 6376 // shift Op0, (select Cond, TVal, FVal) --> 6377 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6378 // 6379 // This is inverting a generic IR transform when we know that the cost of a 6380 // general vector shift is more than the cost of 2 shift-by-scalars. 6381 // We can't do this effectively in SDAG because we may not be able to 6382 // determine if the select operands are splats from within a basic block. 6383 Type *Ty = Shift->getType(); 6384 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6385 return false; 6386 Value *Cond, *TVal, *FVal; 6387 if (!match(Shift->getOperand(1), 6388 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6389 return false; 6390 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6391 return false; 6392 6393 IRBuilder<> Builder(Shift); 6394 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6395 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6396 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6397 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6398 Shift->replaceAllUsesWith(NewSel); 6399 Shift->eraseFromParent(); 6400 return true; 6401 } 6402 6403 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6404 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6405 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6406 "Expected a funnel shift"); 6407 6408 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6409 // than general vector shifts, and (3) the shift amount is select-of-splatted 6410 // values, hoist the funnel shifts before the select: 6411 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6412 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6413 // 6414 // This is inverting a generic IR transform when we know that the cost of a 6415 // general vector shift is more than the cost of 2 shift-by-scalars. 6416 // We can't do this effectively in SDAG because we may not be able to 6417 // determine if the select operands are splats from within a basic block. 6418 Type *Ty = Fsh->getType(); 6419 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6420 return false; 6421 Value *Cond, *TVal, *FVal; 6422 if (!match(Fsh->getOperand(2), 6423 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6424 return false; 6425 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6426 return false; 6427 6428 IRBuilder<> Builder(Fsh); 6429 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6430 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6431 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6432 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6433 Fsh->replaceAllUsesWith(NewSel); 6434 Fsh->eraseFromParent(); 6435 return true; 6436 } 6437 6438 /// If we have a SelectInst that will likely profit from branch prediction, 6439 /// turn it into a branch. 6440 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6441 // If branch conversion isn't desirable, exit early. 6442 if (DisableSelectToBranch || OptSize || 6443 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())) 6444 return false; 6445 6446 // Find all consecutive select instructions that share the same condition. 6447 SmallVector<SelectInst *, 2> ASI; 6448 ASI.push_back(SI); 6449 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6450 It != SI->getParent()->end(); ++It) { 6451 SelectInst *I = dyn_cast<SelectInst>(&*It); 6452 if (I && SI->getCondition() == I->getCondition()) { 6453 ASI.push_back(I); 6454 } else { 6455 break; 6456 } 6457 } 6458 6459 SelectInst *LastSI = ASI.back(); 6460 // Increment the current iterator to skip all the rest of select instructions 6461 // because they will be either "not lowered" or "all lowered" to branch. 6462 CurInstIterator = std::next(LastSI->getIterator()); 6463 6464 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6465 6466 // Can we convert the 'select' to CF ? 6467 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6468 return false; 6469 6470 TargetLowering::SelectSupportKind SelectKind; 6471 if (VectorCond) 6472 SelectKind = TargetLowering::VectorMaskSelect; 6473 else if (SI->getType()->isVectorTy()) 6474 SelectKind = TargetLowering::ScalarCondVectorVal; 6475 else 6476 SelectKind = TargetLowering::ScalarValSelect; 6477 6478 if (TLI->isSelectSupported(SelectKind) && 6479 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 6480 return false; 6481 6482 // The DominatorTree needs to be rebuilt by any consumers after this 6483 // transformation. We simply reset here rather than setting the ModifiedDT 6484 // flag to avoid restarting the function walk in runOnFunction for each 6485 // select optimized. 6486 DT.reset(); 6487 6488 // Transform a sequence like this: 6489 // start: 6490 // %cmp = cmp uge i32 %a, %b 6491 // %sel = select i1 %cmp, i32 %c, i32 %d 6492 // 6493 // Into: 6494 // start: 6495 // %cmp = cmp uge i32 %a, %b 6496 // %cmp.frozen = freeze %cmp 6497 // br i1 %cmp.frozen, label %select.true, label %select.false 6498 // select.true: 6499 // br label %select.end 6500 // select.false: 6501 // br label %select.end 6502 // select.end: 6503 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6504 // 6505 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6506 // In addition, we may sink instructions that produce %c or %d from 6507 // the entry block into the destination(s) of the new branch. 6508 // If the true or false blocks do not contain a sunken instruction, that 6509 // block and its branch may be optimized away. In that case, one side of the 6510 // first branch will point directly to select.end, and the corresponding PHI 6511 // predecessor block will be the start block. 6512 6513 // First, we split the block containing the select into 2 blocks. 6514 BasicBlock *StartBlock = SI->getParent(); 6515 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6516 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6517 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6518 6519 // Delete the unconditional branch that was just created by the split. 6520 StartBlock->getTerminator()->eraseFromParent(); 6521 6522 // These are the new basic blocks for the conditional branch. 6523 // At least one will become an actual new basic block. 6524 BasicBlock *TrueBlock = nullptr; 6525 BasicBlock *FalseBlock = nullptr; 6526 BranchInst *TrueBranch = nullptr; 6527 BranchInst *FalseBranch = nullptr; 6528 6529 // Sink expensive instructions into the conditional blocks to avoid executing 6530 // them speculatively. 6531 for (SelectInst *SI : ASI) { 6532 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6533 if (TrueBlock == nullptr) { 6534 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6535 EndBlock->getParent(), EndBlock); 6536 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6537 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6538 } 6539 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6540 TrueInst->moveBefore(TrueBranch); 6541 } 6542 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6543 if (FalseBlock == nullptr) { 6544 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6545 EndBlock->getParent(), EndBlock); 6546 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6547 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6548 } 6549 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6550 FalseInst->moveBefore(FalseBranch); 6551 } 6552 } 6553 6554 // If there was nothing to sink, then arbitrarily choose the 'false' side 6555 // for a new input value to the PHI. 6556 if (TrueBlock == FalseBlock) { 6557 assert(TrueBlock == nullptr && 6558 "Unexpected basic block transform while optimizing select"); 6559 6560 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6561 EndBlock->getParent(), EndBlock); 6562 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6563 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6564 } 6565 6566 // Insert the real conditional branch based on the original condition. 6567 // If we did not create a new block for one of the 'true' or 'false' paths 6568 // of the condition, it means that side of the branch goes to the end block 6569 // directly and the path originates from the start block from the point of 6570 // view of the new PHI. 6571 BasicBlock *TT, *FT; 6572 if (TrueBlock == nullptr) { 6573 TT = EndBlock; 6574 FT = FalseBlock; 6575 TrueBlock = StartBlock; 6576 } else if (FalseBlock == nullptr) { 6577 TT = TrueBlock; 6578 FT = EndBlock; 6579 FalseBlock = StartBlock; 6580 } else { 6581 TT = TrueBlock; 6582 FT = FalseBlock; 6583 } 6584 IRBuilder<> IB(SI); 6585 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6586 IB.CreateCondBr(CondFr, TT, FT, SI); 6587 6588 SmallPtrSet<const Instruction *, 2> INS; 6589 INS.insert(ASI.begin(), ASI.end()); 6590 // Use reverse iterator because later select may use the value of the 6591 // earlier select, and we need to propagate value through earlier select 6592 // to get the PHI operand. 6593 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6594 SelectInst *SI = *It; 6595 // The select itself is replaced with a PHI Node. 6596 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6597 PN->takeName(SI); 6598 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6599 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6600 PN->setDebugLoc(SI->getDebugLoc()); 6601 6602 SI->replaceAllUsesWith(PN); 6603 SI->eraseFromParent(); 6604 INS.erase(SI); 6605 ++NumSelectsExpanded; 6606 } 6607 6608 // Instruct OptimizeBlock to skip to the next block. 6609 CurInstIterator = StartBlock->end(); 6610 return true; 6611 } 6612 6613 /// Some targets only accept certain types for splat inputs. For example a VDUP 6614 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6615 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6616 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6617 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6618 m_Undef(), m_ZeroMask()))) 6619 return false; 6620 Type *NewType = TLI->shouldConvertSplatType(SVI); 6621 if (!NewType) 6622 return false; 6623 6624 VectorType *SVIVecType = cast<VectorType>(SVI->getType()); 6625 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6626 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6627 "Expected a type of the same size!"); 6628 auto *NewVecType = 6629 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6630 6631 // Create a bitcast (shuffle (insert (bitcast(..)))) 6632 IRBuilder<> Builder(SVI->getContext()); 6633 Builder.SetInsertPoint(SVI); 6634 Value *BC1 = Builder.CreateBitCast( 6635 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6636 Value *Insert = Builder.CreateInsertElement(UndefValue::get(NewVecType), BC1, 6637 (uint64_t)0); 6638 Value *Shuffle = Builder.CreateShuffleVector( 6639 Insert, UndefValue::get(NewVecType), SVI->getShuffleMask()); 6640 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6641 6642 SVI->replaceAllUsesWith(BC2); 6643 RecursivelyDeleteTriviallyDeadInstructions(SVI); 6644 6645 // Also hoist the bitcast up to its operand if it they are not in the same 6646 // block. 6647 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6648 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6649 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6650 !Op->isTerminator() && !Op->isEHPad()) 6651 BCI->moveAfter(Op); 6652 6653 return true; 6654 } 6655 6656 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6657 // If the operands of I can be folded into a target instruction together with 6658 // I, duplicate and sink them. 6659 SmallVector<Use *, 4> OpsToSink; 6660 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6661 return false; 6662 6663 // OpsToSink can contain multiple uses in a use chain (e.g. 6664 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6665 // uses must come first, so we process the ops in reverse order so as to not 6666 // create invalid IR. 6667 BasicBlock *TargetBB = I->getParent(); 6668 bool Changed = false; 6669 SmallVector<Use *, 4> ToReplace; 6670 for (Use *U : reverse(OpsToSink)) { 6671 auto *UI = cast<Instruction>(U->get()); 6672 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6673 continue; 6674 ToReplace.push_back(U); 6675 } 6676 6677 SetVector<Instruction *> MaybeDead; 6678 DenseMap<Instruction *, Instruction *> NewInstructions; 6679 Instruction *InsertPoint = I; 6680 for (Use *U : ToReplace) { 6681 auto *UI = cast<Instruction>(U->get()); 6682 Instruction *NI = UI->clone(); 6683 NewInstructions[UI] = NI; 6684 MaybeDead.insert(UI); 6685 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6686 NI->insertBefore(InsertPoint); 6687 InsertPoint = NI; 6688 InsertedInsts.insert(NI); 6689 6690 // Update the use for the new instruction, making sure that we update the 6691 // sunk instruction uses, if it is part of a chain that has already been 6692 // sunk. 6693 Instruction *OldI = cast<Instruction>(U->getUser()); 6694 if (NewInstructions.count(OldI)) 6695 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6696 else 6697 U->set(NI); 6698 Changed = true; 6699 } 6700 6701 // Remove instructions that are dead after sinking. 6702 for (auto *I : MaybeDead) { 6703 if (!I->hasNUsesOrMore(1)) { 6704 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6705 I->eraseFromParent(); 6706 } 6707 } 6708 6709 return Changed; 6710 } 6711 6712 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6713 Value *Cond = SI->getCondition(); 6714 Type *OldType = Cond->getType(); 6715 LLVMContext &Context = Cond->getContext(); 6716 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6717 unsigned RegWidth = RegType.getSizeInBits(); 6718 6719 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6720 return false; 6721 6722 // If the register width is greater than the type width, expand the condition 6723 // of the switch instruction and each case constant to the width of the 6724 // register. By widening the type of the switch condition, subsequent 6725 // comparisons (for case comparisons) will not need to be extended to the 6726 // preferred register width, so we will potentially eliminate N-1 extends, 6727 // where N is the number of cases in the switch. 6728 auto *NewType = Type::getIntNTy(Context, RegWidth); 6729 6730 // Zero-extend the switch condition and case constants unless the switch 6731 // condition is a function argument that is already being sign-extended. 6732 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6733 // everything instead. 6734 Instruction::CastOps ExtType = Instruction::ZExt; 6735 if (auto *Arg = dyn_cast<Argument>(Cond)) 6736 if (Arg->hasSExtAttr()) 6737 ExtType = Instruction::SExt; 6738 6739 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6740 ExtInst->insertBefore(SI); 6741 ExtInst->setDebugLoc(SI->getDebugLoc()); 6742 SI->setCondition(ExtInst); 6743 for (auto Case : SI->cases()) { 6744 APInt NarrowConst = Case.getCaseValue()->getValue(); 6745 APInt WideConst = (ExtType == Instruction::ZExt) ? 6746 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6747 Case.setValue(ConstantInt::get(Context, WideConst)); 6748 } 6749 6750 return true; 6751 } 6752 6753 6754 namespace { 6755 6756 /// Helper class to promote a scalar operation to a vector one. 6757 /// This class is used to move downward extractelement transition. 6758 /// E.g., 6759 /// a = vector_op <2 x i32> 6760 /// b = extractelement <2 x i32> a, i32 0 6761 /// c = scalar_op b 6762 /// store c 6763 /// 6764 /// => 6765 /// a = vector_op <2 x i32> 6766 /// c = vector_op a (equivalent to scalar_op on the related lane) 6767 /// * d = extractelement <2 x i32> c, i32 0 6768 /// * store d 6769 /// Assuming both extractelement and store can be combine, we get rid of the 6770 /// transition. 6771 class VectorPromoteHelper { 6772 /// DataLayout associated with the current module. 6773 const DataLayout &DL; 6774 6775 /// Used to perform some checks on the legality of vector operations. 6776 const TargetLowering &TLI; 6777 6778 /// Used to estimated the cost of the promoted chain. 6779 const TargetTransformInfo &TTI; 6780 6781 /// The transition being moved downwards. 6782 Instruction *Transition; 6783 6784 /// The sequence of instructions to be promoted. 6785 SmallVector<Instruction *, 4> InstsToBePromoted; 6786 6787 /// Cost of combining a store and an extract. 6788 unsigned StoreExtractCombineCost; 6789 6790 /// Instruction that will be combined with the transition. 6791 Instruction *CombineInst = nullptr; 6792 6793 /// The instruction that represents the current end of the transition. 6794 /// Since we are faking the promotion until we reach the end of the chain 6795 /// of computation, we need a way to get the current end of the transition. 6796 Instruction *getEndOfTransition() const { 6797 if (InstsToBePromoted.empty()) 6798 return Transition; 6799 return InstsToBePromoted.back(); 6800 } 6801 6802 /// Return the index of the original value in the transition. 6803 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6804 /// c, is at index 0. 6805 unsigned getTransitionOriginalValueIdx() const { 6806 assert(isa<ExtractElementInst>(Transition) && 6807 "Other kind of transitions are not supported yet"); 6808 return 0; 6809 } 6810 6811 /// Return the index of the index in the transition. 6812 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6813 /// is at index 1. 6814 unsigned getTransitionIdx() const { 6815 assert(isa<ExtractElementInst>(Transition) && 6816 "Other kind of transitions are not supported yet"); 6817 return 1; 6818 } 6819 6820 /// Get the type of the transition. 6821 /// This is the type of the original value. 6822 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6823 /// transition is <2 x i32>. 6824 Type *getTransitionType() const { 6825 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6826 } 6827 6828 /// Promote \p ToBePromoted by moving \p Def downward through. 6829 /// I.e., we have the following sequence: 6830 /// Def = Transition <ty1> a to <ty2> 6831 /// b = ToBePromoted <ty2> Def, ... 6832 /// => 6833 /// b = ToBePromoted <ty1> a, ... 6834 /// Def = Transition <ty1> ToBePromoted to <ty2> 6835 void promoteImpl(Instruction *ToBePromoted); 6836 6837 /// Check whether or not it is profitable to promote all the 6838 /// instructions enqueued to be promoted. 6839 bool isProfitableToPromote() { 6840 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6841 unsigned Index = isa<ConstantInt>(ValIdx) 6842 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6843 : -1; 6844 Type *PromotedType = getTransitionType(); 6845 6846 StoreInst *ST = cast<StoreInst>(CombineInst); 6847 unsigned AS = ST->getPointerAddressSpace(); 6848 unsigned Align = ST->getAlignment(); 6849 // Check if this store is supported. 6850 if (!TLI.allowsMisalignedMemoryAccesses( 6851 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6852 Align)) { 6853 // If this is not supported, there is no way we can combine 6854 // the extract with the store. 6855 return false; 6856 } 6857 6858 // The scalar chain of computation has to pay for the transition 6859 // scalar to vector. 6860 // The vector chain has to account for the combining cost. 6861 uint64_t ScalarCost = 6862 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6863 uint64_t VectorCost = StoreExtractCombineCost; 6864 enum TargetTransformInfo::TargetCostKind CostKind = 6865 TargetTransformInfo::TCK_RecipThroughput; 6866 for (const auto &Inst : InstsToBePromoted) { 6867 // Compute the cost. 6868 // By construction, all instructions being promoted are arithmetic ones. 6869 // Moreover, one argument is a constant that can be viewed as a splat 6870 // constant. 6871 Value *Arg0 = Inst->getOperand(0); 6872 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6873 isa<ConstantFP>(Arg0); 6874 TargetTransformInfo::OperandValueKind Arg0OVK = 6875 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6876 : TargetTransformInfo::OK_AnyValue; 6877 TargetTransformInfo::OperandValueKind Arg1OVK = 6878 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6879 : TargetTransformInfo::OK_AnyValue; 6880 ScalarCost += TTI.getArithmeticInstrCost( 6881 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6882 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6883 CostKind, 6884 Arg0OVK, Arg1OVK); 6885 } 6886 LLVM_DEBUG( 6887 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6888 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6889 return ScalarCost > VectorCost; 6890 } 6891 6892 /// Generate a constant vector with \p Val with the same 6893 /// number of elements as the transition. 6894 /// \p UseSplat defines whether or not \p Val should be replicated 6895 /// across the whole vector. 6896 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6897 /// otherwise we generate a vector with as many undef as possible: 6898 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6899 /// used at the index of the extract. 6900 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6901 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6902 if (!UseSplat) { 6903 // If we cannot determine where the constant must be, we have to 6904 // use a splat constant. 6905 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6906 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6907 ExtractIdx = CstVal->getSExtValue(); 6908 else 6909 UseSplat = true; 6910 } 6911 6912 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 6913 if (UseSplat) 6914 return ConstantVector::getSplat(EC, Val); 6915 6916 if (!EC.Scalable) { 6917 SmallVector<Constant *, 4> ConstVec; 6918 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6919 for (unsigned Idx = 0; Idx != EC.Min; ++Idx) { 6920 if (Idx == ExtractIdx) 6921 ConstVec.push_back(Val); 6922 else 6923 ConstVec.push_back(UndefVal); 6924 } 6925 return ConstantVector::get(ConstVec); 6926 } else 6927 llvm_unreachable( 6928 "Generate scalable vector for non-splat is unimplemented"); 6929 } 6930 6931 /// Check if promoting to a vector type an operand at \p OperandIdx 6932 /// in \p Use can trigger undefined behavior. 6933 static bool canCauseUndefinedBehavior(const Instruction *Use, 6934 unsigned OperandIdx) { 6935 // This is not safe to introduce undef when the operand is on 6936 // the right hand side of a division-like instruction. 6937 if (OperandIdx != 1) 6938 return false; 6939 switch (Use->getOpcode()) { 6940 default: 6941 return false; 6942 case Instruction::SDiv: 6943 case Instruction::UDiv: 6944 case Instruction::SRem: 6945 case Instruction::URem: 6946 return true; 6947 case Instruction::FDiv: 6948 case Instruction::FRem: 6949 return !Use->hasNoNaNs(); 6950 } 6951 llvm_unreachable(nullptr); 6952 } 6953 6954 public: 6955 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6956 const TargetTransformInfo &TTI, Instruction *Transition, 6957 unsigned CombineCost) 6958 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6959 StoreExtractCombineCost(CombineCost) { 6960 assert(Transition && "Do not know how to promote null"); 6961 } 6962 6963 /// Check if we can promote \p ToBePromoted to \p Type. 6964 bool canPromote(const Instruction *ToBePromoted) const { 6965 // We could support CastInst too. 6966 return isa<BinaryOperator>(ToBePromoted); 6967 } 6968 6969 /// Check if it is profitable to promote \p ToBePromoted 6970 /// by moving downward the transition through. 6971 bool shouldPromote(const Instruction *ToBePromoted) const { 6972 // Promote only if all the operands can be statically expanded. 6973 // Indeed, we do not want to introduce any new kind of transitions. 6974 for (const Use &U : ToBePromoted->operands()) { 6975 const Value *Val = U.get(); 6976 if (Val == getEndOfTransition()) { 6977 // If the use is a division and the transition is on the rhs, 6978 // we cannot promote the operation, otherwise we may create a 6979 // division by zero. 6980 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6981 return false; 6982 continue; 6983 } 6984 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6985 !isa<ConstantFP>(Val)) 6986 return false; 6987 } 6988 // Check that the resulting operation is legal. 6989 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6990 if (!ISDOpcode) 6991 return false; 6992 return StressStoreExtract || 6993 TLI.isOperationLegalOrCustom( 6994 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6995 } 6996 6997 /// Check whether or not \p Use can be combined 6998 /// with the transition. 6999 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7000 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7001 7002 /// Record \p ToBePromoted as part of the chain to be promoted. 7003 void enqueueForPromotion(Instruction *ToBePromoted) { 7004 InstsToBePromoted.push_back(ToBePromoted); 7005 } 7006 7007 /// Set the instruction that will be combined with the transition. 7008 void recordCombineInstruction(Instruction *ToBeCombined) { 7009 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7010 CombineInst = ToBeCombined; 7011 } 7012 7013 /// Promote all the instructions enqueued for promotion if it is 7014 /// is profitable. 7015 /// \return True if the promotion happened, false otherwise. 7016 bool promote() { 7017 // Check if there is something to promote. 7018 // Right now, if we do not have anything to combine with, 7019 // we assume the promotion is not profitable. 7020 if (InstsToBePromoted.empty() || !CombineInst) 7021 return false; 7022 7023 // Check cost. 7024 if (!StressStoreExtract && !isProfitableToPromote()) 7025 return false; 7026 7027 // Promote. 7028 for (auto &ToBePromoted : InstsToBePromoted) 7029 promoteImpl(ToBePromoted); 7030 InstsToBePromoted.clear(); 7031 return true; 7032 } 7033 }; 7034 7035 } // end anonymous namespace 7036 7037 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7038 // At this point, we know that all the operands of ToBePromoted but Def 7039 // can be statically promoted. 7040 // For Def, we need to use its parameter in ToBePromoted: 7041 // b = ToBePromoted ty1 a 7042 // Def = Transition ty1 b to ty2 7043 // Move the transition down. 7044 // 1. Replace all uses of the promoted operation by the transition. 7045 // = ... b => = ... Def. 7046 assert(ToBePromoted->getType() == Transition->getType() && 7047 "The type of the result of the transition does not match " 7048 "the final type"); 7049 ToBePromoted->replaceAllUsesWith(Transition); 7050 // 2. Update the type of the uses. 7051 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7052 Type *TransitionTy = getTransitionType(); 7053 ToBePromoted->mutateType(TransitionTy); 7054 // 3. Update all the operands of the promoted operation with promoted 7055 // operands. 7056 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7057 for (Use &U : ToBePromoted->operands()) { 7058 Value *Val = U.get(); 7059 Value *NewVal = nullptr; 7060 if (Val == Transition) 7061 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7062 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7063 isa<ConstantFP>(Val)) { 7064 // Use a splat constant if it is not safe to use undef. 7065 NewVal = getConstantVector( 7066 cast<Constant>(Val), 7067 isa<UndefValue>(Val) || 7068 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7069 } else 7070 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7071 "this?"); 7072 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7073 } 7074 Transition->moveAfter(ToBePromoted); 7075 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7076 } 7077 7078 /// Some targets can do store(extractelement) with one instruction. 7079 /// Try to push the extractelement towards the stores when the target 7080 /// has this feature and this is profitable. 7081 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7082 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7083 if (DisableStoreExtract || 7084 (!StressStoreExtract && 7085 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7086 Inst->getOperand(1), CombineCost))) 7087 return false; 7088 7089 // At this point we know that Inst is a vector to scalar transition. 7090 // Try to move it down the def-use chain, until: 7091 // - We can combine the transition with its single use 7092 // => we got rid of the transition. 7093 // - We escape the current basic block 7094 // => we would need to check that we are moving it at a cheaper place and 7095 // we do not do that for now. 7096 BasicBlock *Parent = Inst->getParent(); 7097 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7098 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7099 // If the transition has more than one use, assume this is not going to be 7100 // beneficial. 7101 while (Inst->hasOneUse()) { 7102 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7103 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7104 7105 if (ToBePromoted->getParent() != Parent) { 7106 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7107 << ToBePromoted->getParent()->getName() 7108 << ") than the transition (" << Parent->getName() 7109 << ").\n"); 7110 return false; 7111 } 7112 7113 if (VPH.canCombine(ToBePromoted)) { 7114 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7115 << "will be combined with: " << *ToBePromoted << '\n'); 7116 VPH.recordCombineInstruction(ToBePromoted); 7117 bool Changed = VPH.promote(); 7118 NumStoreExtractExposed += Changed; 7119 return Changed; 7120 } 7121 7122 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7123 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7124 return false; 7125 7126 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7127 7128 VPH.enqueueForPromotion(ToBePromoted); 7129 Inst = ToBePromoted; 7130 } 7131 return false; 7132 } 7133 7134 /// For the instruction sequence of store below, F and I values 7135 /// are bundled together as an i64 value before being stored into memory. 7136 /// Sometimes it is more efficient to generate separate stores for F and I, 7137 /// which can remove the bitwise instructions or sink them to colder places. 7138 /// 7139 /// (store (or (zext (bitcast F to i32) to i64), 7140 /// (shl (zext I to i64), 32)), addr) --> 7141 /// (store F, addr) and (store I, addr+4) 7142 /// 7143 /// Similarly, splitting for other merged store can also be beneficial, like: 7144 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7145 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7146 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7147 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7148 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7149 /// 7150 /// We allow each target to determine specifically which kind of splitting is 7151 /// supported. 7152 /// 7153 /// The store patterns are commonly seen from the simple code snippet below 7154 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7155 /// void goo(const std::pair<int, float> &); 7156 /// hoo() { 7157 /// ... 7158 /// goo(std::make_pair(tmp, ftmp)); 7159 /// ... 7160 /// } 7161 /// 7162 /// Although we already have similar splitting in DAG Combine, we duplicate 7163 /// it in CodeGenPrepare to catch the case in which pattern is across 7164 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7165 /// during code expansion. 7166 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7167 const TargetLowering &TLI) { 7168 // Handle simple but common cases only. 7169 Type *StoreType = SI.getValueOperand()->getType(); 7170 7171 // The code below assumes shifting a value by <number of bits>, 7172 // whereas scalable vectors would have to be shifted by 7173 // <2log(vscale) + number of bits> in order to store the 7174 // low/high parts. Bailing out for now. 7175 if (isa<ScalableVectorType>(StoreType)) 7176 return false; 7177 7178 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7179 DL.getTypeSizeInBits(StoreType) == 0) 7180 return false; 7181 7182 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7183 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7184 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7185 return false; 7186 7187 // Don't split the store if it is volatile. 7188 if (SI.isVolatile()) 7189 return false; 7190 7191 // Match the following patterns: 7192 // (store (or (zext LValue to i64), 7193 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7194 // or 7195 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7196 // (zext LValue to i64), 7197 // Expect both operands of OR and the first operand of SHL have only 7198 // one use. 7199 Value *LValue, *HValue; 7200 if (!match(SI.getValueOperand(), 7201 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7202 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7203 m_SpecificInt(HalfValBitSize)))))) 7204 return false; 7205 7206 // Check LValue and HValue are int with size less or equal than 32. 7207 if (!LValue->getType()->isIntegerTy() || 7208 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7209 !HValue->getType()->isIntegerTy() || 7210 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7211 return false; 7212 7213 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7214 // as the input of target query. 7215 auto *LBC = dyn_cast<BitCastInst>(LValue); 7216 auto *HBC = dyn_cast<BitCastInst>(HValue); 7217 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7218 : EVT::getEVT(LValue->getType()); 7219 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7220 : EVT::getEVT(HValue->getType()); 7221 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7222 return false; 7223 7224 // Start to split store. 7225 IRBuilder<> Builder(SI.getContext()); 7226 Builder.SetInsertPoint(&SI); 7227 7228 // If LValue/HValue is a bitcast in another BB, create a new one in current 7229 // BB so it may be merged with the splitted stores by dag combiner. 7230 if (LBC && LBC->getParent() != SI.getParent()) 7231 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7232 if (HBC && HBC->getParent() != SI.getParent()) 7233 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7234 7235 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7236 auto CreateSplitStore = [&](Value *V, bool Upper) { 7237 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7238 Value *Addr = Builder.CreateBitCast( 7239 SI.getOperand(1), 7240 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7241 Align Alignment = SI.getAlign(); 7242 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7243 if (IsOffsetStore) { 7244 Addr = Builder.CreateGEP( 7245 SplitStoreType, Addr, 7246 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7247 7248 // When splitting the store in half, naturally one half will retain the 7249 // alignment of the original wider store, regardless of whether it was 7250 // over-aligned or not, while the other will require adjustment. 7251 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7252 } 7253 Builder.CreateAlignedStore(V, Addr, Alignment); 7254 }; 7255 7256 CreateSplitStore(LValue, false); 7257 CreateSplitStore(HValue, true); 7258 7259 // Delete the old store. 7260 SI.eraseFromParent(); 7261 return true; 7262 } 7263 7264 // Return true if the GEP has two operands, the first operand is of a sequential 7265 // type, and the second operand is a constant. 7266 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7267 gep_type_iterator I = gep_type_begin(*GEP); 7268 return GEP->getNumOperands() == 2 && 7269 I.isSequential() && 7270 isa<ConstantInt>(GEP->getOperand(1)); 7271 } 7272 7273 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7274 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7275 // reducing liveness interference across those edges benefits global register 7276 // allocation. Currently handles only certain cases. 7277 // 7278 // For example, unmerge %GEPI and %UGEPI as below. 7279 // 7280 // ---------- BEFORE ---------- 7281 // SrcBlock: 7282 // ... 7283 // %GEPIOp = ... 7284 // ... 7285 // %GEPI = gep %GEPIOp, Idx 7286 // ... 7287 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7288 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7289 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7290 // %UGEPI) 7291 // 7292 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7293 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7294 // ... 7295 // 7296 // DstBi: 7297 // ... 7298 // %UGEPI = gep %GEPIOp, UIdx 7299 // ... 7300 // --------------------------- 7301 // 7302 // ---------- AFTER ---------- 7303 // SrcBlock: 7304 // ... (same as above) 7305 // (* %GEPI is still alive on the indirectbr edges) 7306 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7307 // unmerging) 7308 // ... 7309 // 7310 // DstBi: 7311 // ... 7312 // %UGEPI = gep %GEPI, (UIdx-Idx) 7313 // ... 7314 // --------------------------- 7315 // 7316 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7317 // no longer alive on them. 7318 // 7319 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7320 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7321 // not to disable further simplications and optimizations as a result of GEP 7322 // merging. 7323 // 7324 // Note this unmerging may increase the length of the data flow critical path 7325 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7326 // between the register pressure and the length of data-flow critical 7327 // path. Restricting this to the uncommon IndirectBr case would minimize the 7328 // impact of potentially longer critical path, if any, and the impact on compile 7329 // time. 7330 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7331 const TargetTransformInfo *TTI) { 7332 BasicBlock *SrcBlock = GEPI->getParent(); 7333 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7334 // (non-IndirectBr) cases exit early here. 7335 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7336 return false; 7337 // Check that GEPI is a simple gep with a single constant index. 7338 if (!GEPSequentialConstIndexed(GEPI)) 7339 return false; 7340 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7341 // Check that GEPI is a cheap one. 7342 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7343 TargetTransformInfo::TCK_SizeAndLatency) 7344 > TargetTransformInfo::TCC_Basic) 7345 return false; 7346 Value *GEPIOp = GEPI->getOperand(0); 7347 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7348 if (!isa<Instruction>(GEPIOp)) 7349 return false; 7350 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7351 if (GEPIOpI->getParent() != SrcBlock) 7352 return false; 7353 // Check that GEP is used outside the block, meaning it's alive on the 7354 // IndirectBr edge(s). 7355 if (find_if(GEPI->users(), [&](User *Usr) { 7356 if (auto *I = dyn_cast<Instruction>(Usr)) { 7357 if (I->getParent() != SrcBlock) { 7358 return true; 7359 } 7360 } 7361 return false; 7362 }) == GEPI->users().end()) 7363 return false; 7364 // The second elements of the GEP chains to be unmerged. 7365 std::vector<GetElementPtrInst *> UGEPIs; 7366 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7367 // on IndirectBr edges. 7368 for (User *Usr : GEPIOp->users()) { 7369 if (Usr == GEPI) continue; 7370 // Check if Usr is an Instruction. If not, give up. 7371 if (!isa<Instruction>(Usr)) 7372 return false; 7373 auto *UI = cast<Instruction>(Usr); 7374 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7375 if (UI->getParent() == SrcBlock) 7376 continue; 7377 // Check if Usr is a GEP. If not, give up. 7378 if (!isa<GetElementPtrInst>(Usr)) 7379 return false; 7380 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7381 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7382 // the pointer operand to it. If so, record it in the vector. If not, give 7383 // up. 7384 if (!GEPSequentialConstIndexed(UGEPI)) 7385 return false; 7386 if (UGEPI->getOperand(0) != GEPIOp) 7387 return false; 7388 if (GEPIIdx->getType() != 7389 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7390 return false; 7391 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7392 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7393 TargetTransformInfo::TCK_SizeAndLatency) 7394 > TargetTransformInfo::TCC_Basic) 7395 return false; 7396 UGEPIs.push_back(UGEPI); 7397 } 7398 if (UGEPIs.size() == 0) 7399 return false; 7400 // Check the materializing cost of (Uidx-Idx). 7401 for (GetElementPtrInst *UGEPI : UGEPIs) { 7402 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7403 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7404 unsigned ImmCost = 7405 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7406 TargetTransformInfo::TCK_SizeAndLatency); 7407 if (ImmCost > TargetTransformInfo::TCC_Basic) 7408 return false; 7409 } 7410 // Now unmerge between GEPI and UGEPIs. 7411 for (GetElementPtrInst *UGEPI : UGEPIs) { 7412 UGEPI->setOperand(0, GEPI); 7413 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7414 Constant *NewUGEPIIdx = 7415 ConstantInt::get(GEPIIdx->getType(), 7416 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7417 UGEPI->setOperand(1, NewUGEPIIdx); 7418 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7419 // inbounds to avoid UB. 7420 if (!GEPI->isInBounds()) { 7421 UGEPI->setIsInBounds(false); 7422 } 7423 } 7424 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7425 // alive on IndirectBr edges). 7426 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7427 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7428 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7429 return true; 7430 } 7431 7432 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7433 // Bail out if we inserted the instruction to prevent optimizations from 7434 // stepping on each other's toes. 7435 if (InsertedInsts.count(I)) 7436 return false; 7437 7438 // TODO: Move into the switch on opcode below here. 7439 if (PHINode *P = dyn_cast<PHINode>(I)) { 7440 // It is possible for very late stage optimizations (such as SimplifyCFG) 7441 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7442 // trivial PHI, go ahead and zap it here. 7443 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7444 LargeOffsetGEPMap.erase(P); 7445 P->replaceAllUsesWith(V); 7446 P->eraseFromParent(); 7447 ++NumPHIsElim; 7448 return true; 7449 } 7450 return false; 7451 } 7452 7453 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7454 // If the source of the cast is a constant, then this should have 7455 // already been constant folded. The only reason NOT to constant fold 7456 // it is if something (e.g. LSR) was careful to place the constant 7457 // evaluation in a block other than then one that uses it (e.g. to hoist 7458 // the address of globals out of a loop). If this is the case, we don't 7459 // want to forward-subst the cast. 7460 if (isa<Constant>(CI->getOperand(0))) 7461 return false; 7462 7463 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7464 return true; 7465 7466 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7467 /// Sink a zext or sext into its user blocks if the target type doesn't 7468 /// fit in one register 7469 if (TLI->getTypeAction(CI->getContext(), 7470 TLI->getValueType(*DL, CI->getType())) == 7471 TargetLowering::TypeExpandInteger) { 7472 return SinkCast(CI); 7473 } else { 7474 bool MadeChange = optimizeExt(I); 7475 return MadeChange | optimizeExtUses(I); 7476 } 7477 } 7478 return false; 7479 } 7480 7481 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7482 if (optimizeCmp(Cmp, ModifiedDT)) 7483 return true; 7484 7485 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7486 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7487 bool Modified = optimizeLoadExt(LI); 7488 unsigned AS = LI->getPointerAddressSpace(); 7489 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7490 return Modified; 7491 } 7492 7493 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7494 if (splitMergedValStore(*SI, *DL, *TLI)) 7495 return true; 7496 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7497 unsigned AS = SI->getPointerAddressSpace(); 7498 return optimizeMemoryInst(I, SI->getOperand(1), 7499 SI->getOperand(0)->getType(), AS); 7500 } 7501 7502 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7503 unsigned AS = RMW->getPointerAddressSpace(); 7504 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7505 RMW->getType(), AS); 7506 } 7507 7508 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7509 unsigned AS = CmpX->getPointerAddressSpace(); 7510 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7511 CmpX->getCompareOperand()->getType(), AS); 7512 } 7513 7514 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7515 7516 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7517 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7518 7519 // TODO: Move this into the switch on opcode - it handles shifts already. 7520 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7521 BinOp->getOpcode() == Instruction::LShr)) { 7522 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7523 if (CI && TLI->hasExtractBitsInsn()) 7524 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7525 return true; 7526 } 7527 7528 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7529 if (GEPI->hasAllZeroIndices()) { 7530 /// The GEP operand must be a pointer, so must its result -> BitCast 7531 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7532 GEPI->getName(), GEPI); 7533 NC->setDebugLoc(GEPI->getDebugLoc()); 7534 GEPI->replaceAllUsesWith(NC); 7535 GEPI->eraseFromParent(); 7536 ++NumGEPsElim; 7537 optimizeInst(NC, ModifiedDT); 7538 return true; 7539 } 7540 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7541 return true; 7542 } 7543 return false; 7544 } 7545 7546 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7547 // freeze(icmp a, const)) -> icmp (freeze a), const 7548 // This helps generate efficient conditional jumps. 7549 Instruction *CmpI = nullptr; 7550 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7551 CmpI = II; 7552 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7553 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7554 7555 if (CmpI && CmpI->hasOneUse()) { 7556 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7557 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7558 isa<ConstantPointerNull>(Op0); 7559 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7560 isa<ConstantPointerNull>(Op1); 7561 if (Const0 || Const1) { 7562 if (!Const0 || !Const1) { 7563 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7564 F->takeName(FI); 7565 CmpI->setOperand(Const0 ? 1 : 0, F); 7566 } 7567 FI->replaceAllUsesWith(CmpI); 7568 FI->eraseFromParent(); 7569 return true; 7570 } 7571 } 7572 return false; 7573 } 7574 7575 if (tryToSinkFreeOperands(I)) 7576 return true; 7577 7578 switch (I->getOpcode()) { 7579 case Instruction::Shl: 7580 case Instruction::LShr: 7581 case Instruction::AShr: 7582 return optimizeShiftInst(cast<BinaryOperator>(I)); 7583 case Instruction::Call: 7584 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7585 case Instruction::Select: 7586 return optimizeSelectInst(cast<SelectInst>(I)); 7587 case Instruction::ShuffleVector: 7588 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7589 case Instruction::Switch: 7590 return optimizeSwitchInst(cast<SwitchInst>(I)); 7591 case Instruction::ExtractElement: 7592 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7593 } 7594 7595 return false; 7596 } 7597 7598 /// Given an OR instruction, check to see if this is a bitreverse 7599 /// idiom. If so, insert the new intrinsic and return true. 7600 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7601 const TargetLowering &TLI) { 7602 if (!I.getType()->isIntegerTy() || 7603 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7604 TLI.getValueType(DL, I.getType(), true))) 7605 return false; 7606 7607 SmallVector<Instruction*, 4> Insts; 7608 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7609 return false; 7610 Instruction *LastInst = Insts.back(); 7611 I.replaceAllUsesWith(LastInst); 7612 RecursivelyDeleteTriviallyDeadInstructions(&I); 7613 return true; 7614 } 7615 7616 // In this pass we look for GEP and cast instructions that are used 7617 // across basic blocks and rewrite them to improve basic-block-at-a-time 7618 // selection. 7619 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7620 SunkAddrs.clear(); 7621 bool MadeChange = false; 7622 7623 CurInstIterator = BB.begin(); 7624 while (CurInstIterator != BB.end()) { 7625 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7626 if (ModifiedDT) 7627 return true; 7628 } 7629 7630 bool MadeBitReverse = true; 7631 while (MadeBitReverse) { 7632 MadeBitReverse = false; 7633 for (auto &I : reverse(BB)) { 7634 if (makeBitReverse(I, *DL, *TLI)) { 7635 MadeBitReverse = MadeChange = true; 7636 break; 7637 } 7638 } 7639 } 7640 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7641 7642 return MadeChange; 7643 } 7644 7645 // Some CGP optimizations may move or alter what's computed in a block. Check 7646 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7647 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7648 assert(isa<DbgValueInst>(I)); 7649 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7650 7651 // Does this dbg.value refer to a sunk address calculation? 7652 Value *Location = DVI.getVariableLocation(); 7653 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7654 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7655 if (SunkAddr) { 7656 // Point dbg.value at locally computed address, which should give the best 7657 // opportunity to be accurately lowered. This update may change the type of 7658 // pointer being referred to; however this makes no difference to debugging 7659 // information, and we can't generate bitcasts that may affect codegen. 7660 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7661 ValueAsMetadata::get(SunkAddr))); 7662 return true; 7663 } 7664 return false; 7665 } 7666 7667 // A llvm.dbg.value may be using a value before its definition, due to 7668 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7669 // them by moving the dbg.value to immediately after the value definition. 7670 // FIXME: Ideally this should never be necessary, and this has the potential 7671 // to re-order dbg.value intrinsics. 7672 bool CodeGenPrepare::placeDbgValues(Function &F) { 7673 bool MadeChange = false; 7674 DominatorTree DT(F); 7675 7676 for (BasicBlock &BB : F) { 7677 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7678 Instruction *Insn = &*BI++; 7679 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7680 if (!DVI) 7681 continue; 7682 7683 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7684 7685 if (!VI || VI->isTerminator()) 7686 continue; 7687 7688 // If VI is a phi in a block with an EHPad terminator, we can't insert 7689 // after it. 7690 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7691 continue; 7692 7693 // If the defining instruction dominates the dbg.value, we do not need 7694 // to move the dbg.value. 7695 if (DT.dominates(VI, DVI)) 7696 continue; 7697 7698 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7699 << *DVI << ' ' << *VI); 7700 DVI->removeFromParent(); 7701 if (isa<PHINode>(VI)) 7702 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7703 else 7704 DVI->insertAfter(VI); 7705 MadeChange = true; 7706 ++NumDbgValueMoved; 7707 } 7708 } 7709 return MadeChange; 7710 } 7711 7712 /// Scale down both weights to fit into uint32_t. 7713 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7714 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7715 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7716 NewTrue = NewTrue / Scale; 7717 NewFalse = NewFalse / Scale; 7718 } 7719 7720 /// Some targets prefer to split a conditional branch like: 7721 /// \code 7722 /// %0 = icmp ne i32 %a, 0 7723 /// %1 = icmp ne i32 %b, 0 7724 /// %or.cond = or i1 %0, %1 7725 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7726 /// \endcode 7727 /// into multiple branch instructions like: 7728 /// \code 7729 /// bb1: 7730 /// %0 = icmp ne i32 %a, 0 7731 /// br i1 %0, label %TrueBB, label %bb2 7732 /// bb2: 7733 /// %1 = icmp ne i32 %b, 0 7734 /// br i1 %1, label %TrueBB, label %FalseBB 7735 /// \endcode 7736 /// This usually allows instruction selection to do even further optimizations 7737 /// and combine the compare with the branch instruction. Currently this is 7738 /// applied for targets which have "cheap" jump instructions. 7739 /// 7740 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7741 /// 7742 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7743 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7744 return false; 7745 7746 bool MadeChange = false; 7747 for (auto &BB : F) { 7748 // Does this BB end with the following? 7749 // %cond1 = icmp|fcmp|binary instruction ... 7750 // %cond2 = icmp|fcmp|binary instruction ... 7751 // %cond.or = or|and i1 %cond1, cond2 7752 // br i1 %cond.or label %dest1, label %dest2" 7753 BinaryOperator *LogicOp; 7754 BasicBlock *TBB, *FBB; 7755 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7756 continue; 7757 7758 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7759 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7760 continue; 7761 7762 // The merging of mostly empty BB can cause a degenerate branch. 7763 if (TBB == FBB) 7764 continue; 7765 7766 unsigned Opc; 7767 Value *Cond1, *Cond2; 7768 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7769 m_OneUse(m_Value(Cond2))))) 7770 Opc = Instruction::And; 7771 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7772 m_OneUse(m_Value(Cond2))))) 7773 Opc = Instruction::Or; 7774 else 7775 continue; 7776 7777 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7778 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7779 continue; 7780 7781 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7782 7783 // Create a new BB. 7784 auto *TmpBB = 7785 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7786 BB.getParent(), BB.getNextNode()); 7787 7788 // Update original basic block by using the first condition directly by the 7789 // branch instruction and removing the no longer needed and/or instruction. 7790 Br1->setCondition(Cond1); 7791 LogicOp->eraseFromParent(); 7792 7793 // Depending on the condition we have to either replace the true or the 7794 // false successor of the original branch instruction. 7795 if (Opc == Instruction::And) 7796 Br1->setSuccessor(0, TmpBB); 7797 else 7798 Br1->setSuccessor(1, TmpBB); 7799 7800 // Fill in the new basic block. 7801 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7802 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7803 I->removeFromParent(); 7804 I->insertBefore(Br2); 7805 } 7806 7807 // Update PHI nodes in both successors. The original BB needs to be 7808 // replaced in one successor's PHI nodes, because the branch comes now from 7809 // the newly generated BB (NewBB). In the other successor we need to add one 7810 // incoming edge to the PHI nodes, because both branch instructions target 7811 // now the same successor. Depending on the original branch condition 7812 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7813 // we perform the correct update for the PHI nodes. 7814 // This doesn't change the successor order of the just created branch 7815 // instruction (or any other instruction). 7816 if (Opc == Instruction::Or) 7817 std::swap(TBB, FBB); 7818 7819 // Replace the old BB with the new BB. 7820 TBB->replacePhiUsesWith(&BB, TmpBB); 7821 7822 // Add another incoming edge form the new BB. 7823 for (PHINode &PN : FBB->phis()) { 7824 auto *Val = PN.getIncomingValueForBlock(&BB); 7825 PN.addIncoming(Val, TmpBB); 7826 } 7827 7828 // Update the branch weights (from SelectionDAGBuilder:: 7829 // FindMergedConditions). 7830 if (Opc == Instruction::Or) { 7831 // Codegen X | Y as: 7832 // BB1: 7833 // jmp_if_X TBB 7834 // jmp TmpBB 7835 // TmpBB: 7836 // jmp_if_Y TBB 7837 // jmp FBB 7838 // 7839 7840 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7841 // The requirement is that 7842 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7843 // = TrueProb for original BB. 7844 // Assuming the original weights are A and B, one choice is to set BB1's 7845 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7846 // assumes that 7847 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7848 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7849 // TmpBB, but the math is more complicated. 7850 uint64_t TrueWeight, FalseWeight; 7851 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7852 uint64_t NewTrueWeight = TrueWeight; 7853 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7854 scaleWeights(NewTrueWeight, NewFalseWeight); 7855 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7856 .createBranchWeights(TrueWeight, FalseWeight)); 7857 7858 NewTrueWeight = TrueWeight; 7859 NewFalseWeight = 2 * FalseWeight; 7860 scaleWeights(NewTrueWeight, NewFalseWeight); 7861 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7862 .createBranchWeights(TrueWeight, FalseWeight)); 7863 } 7864 } else { 7865 // Codegen X & Y as: 7866 // BB1: 7867 // jmp_if_X TmpBB 7868 // jmp FBB 7869 // TmpBB: 7870 // jmp_if_Y TBB 7871 // jmp FBB 7872 // 7873 // This requires creation of TmpBB after CurBB. 7874 7875 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7876 // The requirement is that 7877 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7878 // = FalseProb for original BB. 7879 // Assuming the original weights are A and B, one choice is to set BB1's 7880 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7881 // assumes that 7882 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7883 uint64_t TrueWeight, FalseWeight; 7884 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7885 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7886 uint64_t NewFalseWeight = FalseWeight; 7887 scaleWeights(NewTrueWeight, NewFalseWeight); 7888 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7889 .createBranchWeights(TrueWeight, FalseWeight)); 7890 7891 NewTrueWeight = 2 * TrueWeight; 7892 NewFalseWeight = FalseWeight; 7893 scaleWeights(NewTrueWeight, NewFalseWeight); 7894 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7895 .createBranchWeights(TrueWeight, FalseWeight)); 7896 } 7897 } 7898 7899 ModifiedDT = true; 7900 MadeChange = true; 7901 7902 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7903 TmpBB->dump()); 7904 } 7905 return MadeChange; 7906 } 7907