1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/MDBuilder.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/IR/ValueMap.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Target/TargetLowering.h" 44 #include "llvm/Target/TargetSubtargetInfo.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/BuildLibCalls.h" 47 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 50 using namespace llvm; 51 using namespace llvm::PatternMatch; 52 53 #define DEBUG_TYPE "codegenprepare" 54 55 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 56 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 57 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 58 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 59 "sunken Cmps"); 60 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 61 "of sunken Casts"); 62 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 63 "computations were sunk"); 64 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 65 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 66 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 67 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 68 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 69 STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches"); 70 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 71 72 static cl::opt<bool> DisableBranchOpts( 73 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 74 cl::desc("Disable branch optimizations in CodeGenPrepare")); 75 76 static cl::opt<bool> 77 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 78 cl::desc("Disable GC optimizations in CodeGenPrepare")); 79 80 static cl::opt<bool> DisableSelectToBranch( 81 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 82 cl::desc("Disable select to branch conversion.")); 83 84 static cl::opt<bool> AddrSinkUsingGEPs( 85 "addr-sink-using-gep", cl::Hidden, cl::init(false), 86 cl::desc("Address sinking in CGP using GEPs.")); 87 88 static cl::opt<bool> EnableAndCmpSinking( 89 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 90 cl::desc("Enable sinkinig and/cmp into branches.")); 91 92 static cl::opt<bool> DisableStoreExtract( 93 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 94 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 95 96 static cl::opt<bool> StressStoreExtract( 97 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 98 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 99 100 static cl::opt<bool> DisableExtLdPromotion( 101 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 102 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 103 "CodeGenPrepare")); 104 105 static cl::opt<bool> StressExtLdPromotion( 106 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 107 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 108 "optimization in CodeGenPrepare")); 109 110 namespace { 111 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 112 struct TypeIsSExt { 113 Type *Ty; 114 bool IsSExt; 115 TypeIsSExt(Type *Ty, bool IsSExt) : Ty(Ty), IsSExt(IsSExt) {} 116 }; 117 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 118 class TypePromotionTransaction; 119 120 class CodeGenPrepare : public FunctionPass { 121 /// TLI - Keep a pointer of a TargetLowering to consult for determining 122 /// transformation profitability. 123 const TargetMachine *TM; 124 const TargetLowering *TLI; 125 const TargetTransformInfo *TTI; 126 const TargetLibraryInfo *TLInfo; 127 DominatorTree *DT; 128 129 /// CurInstIterator - As we scan instructions optimizing them, this is the 130 /// next instruction to optimize. Xforms that can invalidate this should 131 /// update it. 132 BasicBlock::iterator CurInstIterator; 133 134 /// Keeps track of non-local addresses that have been sunk into a block. 135 /// This allows us to avoid inserting duplicate code for blocks with 136 /// multiple load/stores of the same address. 137 ValueMap<Value*, Value*> SunkAddrs; 138 139 /// Keeps track of all truncates inserted for the current function. 140 SetOfInstrs InsertedTruncsSet; 141 /// Keeps track of the type of the related instruction before their 142 /// promotion for the current function. 143 InstrToOrigTy PromotedInsts; 144 145 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to 146 /// be updated. 147 bool ModifiedDT; 148 149 /// OptSize - True if optimizing for size. 150 bool OptSize; 151 152 public: 153 static char ID; // Pass identification, replacement for typeid 154 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 155 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr) { 156 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 157 } 158 bool runOnFunction(Function &F) override; 159 160 const char *getPassName() const override { return "CodeGen Prepare"; } 161 162 void getAnalysisUsage(AnalysisUsage &AU) const override { 163 AU.addPreserved<DominatorTreeWrapperPass>(); 164 AU.addRequired<TargetLibraryInfoWrapperPass>(); 165 AU.addRequired<TargetTransformInfoWrapperPass>(); 166 } 167 168 private: 169 bool EliminateFallThrough(Function &F); 170 bool EliminateMostlyEmptyBlocks(Function &F); 171 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 172 void EliminateMostlyEmptyBlock(BasicBlock *BB); 173 bool OptimizeBlock(BasicBlock &BB, bool& ModifiedDT); 174 bool OptimizeInst(Instruction *I, bool& ModifiedDT); 175 bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); 176 bool OptimizeInlineAsmInst(CallInst *CS); 177 bool OptimizeCallInst(CallInst *CI, bool& ModifiedDT); 178 bool MoveExtToFormExtLoad(Instruction *&I); 179 bool OptimizeExtUses(Instruction *I); 180 bool OptimizeSelectInst(SelectInst *SI); 181 bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI); 182 bool OptimizeExtractElementInst(Instruction *Inst); 183 bool DupRetToEnableTailCallOpts(BasicBlock *BB); 184 bool PlaceDbgValues(Function &F); 185 bool sinkAndCmp(Function &F); 186 bool ExtLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 187 Instruction *&Inst, 188 const SmallVectorImpl<Instruction *> &Exts, 189 unsigned CreatedInst); 190 bool splitBranchCondition(Function &F); 191 bool simplifyOffsetableRelocate(Instruction &I); 192 }; 193 } 194 195 char CodeGenPrepare::ID = 0; 196 INITIALIZE_TM_PASS(CodeGenPrepare, "codegenprepare", 197 "Optimize for code generation", false, false) 198 199 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 200 return new CodeGenPrepare(TM); 201 } 202 203 bool CodeGenPrepare::runOnFunction(Function &F) { 204 if (skipOptnoneFunction(F)) 205 return false; 206 207 bool EverMadeChange = false; 208 // Clear per function information. 209 InsertedTruncsSet.clear(); 210 PromotedInsts.clear(); 211 212 ModifiedDT = false; 213 if (TM) 214 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 215 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 216 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 217 DominatorTreeWrapperPass *DTWP = 218 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 219 DT = DTWP ? &DTWP->getDomTree() : nullptr; 220 OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, 221 Attribute::OptimizeForSize); 222 223 /// This optimization identifies DIV instructions that can be 224 /// profitably bypassed and carried out with a shorter, faster divide. 225 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 226 const DenseMap<unsigned int, unsigned int> &BypassWidths = 227 TLI->getBypassSlowDivWidths(); 228 for (Function::iterator I = F.begin(); I != F.end(); I++) 229 EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); 230 } 231 232 // Eliminate blocks that contain only PHI nodes and an 233 // unconditional branch. 234 EverMadeChange |= EliminateMostlyEmptyBlocks(F); 235 236 // llvm.dbg.value is far away from the value then iSel may not be able 237 // handle it properly. iSel will drop llvm.dbg.value if it can not 238 // find a node corresponding to the value. 239 EverMadeChange |= PlaceDbgValues(F); 240 241 // If there is a mask, compare against zero, and branch that can be combined 242 // into a single target instruction, push the mask and compare into branch 243 // users. Do this before OptimizeBlock -> OptimizeInst -> 244 // OptimizeCmpExpression, which perturbs the pattern being searched for. 245 if (!DisableBranchOpts) { 246 EverMadeChange |= sinkAndCmp(F); 247 EverMadeChange |= splitBranchCondition(F); 248 } 249 250 bool MadeChange = true; 251 while (MadeChange) { 252 MadeChange = false; 253 for (Function::iterator I = F.begin(); I != F.end(); ) { 254 BasicBlock *BB = I++; 255 bool ModifiedDTOnIteration = false; 256 MadeChange |= OptimizeBlock(*BB, ModifiedDTOnIteration); 257 258 // Restart BB iteration if the dominator tree of the Function was changed 259 ModifiedDT |= ModifiedDTOnIteration; 260 if (ModifiedDTOnIteration) 261 break; 262 } 263 EverMadeChange |= MadeChange; 264 } 265 266 SunkAddrs.clear(); 267 268 if (!DisableBranchOpts) { 269 MadeChange = false; 270 SmallPtrSet<BasicBlock*, 8> WorkList; 271 for (BasicBlock &BB : F) { 272 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 273 MadeChange |= ConstantFoldTerminator(&BB, true); 274 if (!MadeChange) continue; 275 276 for (SmallVectorImpl<BasicBlock*>::iterator 277 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 278 if (pred_begin(*II) == pred_end(*II)) 279 WorkList.insert(*II); 280 } 281 282 // Delete the dead blocks and any of their dead successors. 283 MadeChange |= !WorkList.empty(); 284 while (!WorkList.empty()) { 285 BasicBlock *BB = *WorkList.begin(); 286 WorkList.erase(BB); 287 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 288 289 DeleteDeadBlock(BB); 290 291 for (SmallVectorImpl<BasicBlock*>::iterator 292 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 293 if (pred_begin(*II) == pred_end(*II)) 294 WorkList.insert(*II); 295 } 296 297 // Merge pairs of basic blocks with unconditional branches, connected by 298 // a single edge. 299 if (EverMadeChange || MadeChange) 300 MadeChange |= EliminateFallThrough(F); 301 302 if (MadeChange) 303 ModifiedDT = true; 304 EverMadeChange |= MadeChange; 305 } 306 307 if (!DisableGCOpts) { 308 SmallVector<Instruction *, 2> Statepoints; 309 for (BasicBlock &BB : F) 310 for (Instruction &I : BB) 311 if (isStatepoint(I)) 312 Statepoints.push_back(&I); 313 for (auto &I : Statepoints) 314 EverMadeChange |= simplifyOffsetableRelocate(*I); 315 } 316 317 if (ModifiedDT && DT) 318 DT->recalculate(F); 319 320 return EverMadeChange; 321 } 322 323 /// EliminateFallThrough - Merge basic blocks which are connected 324 /// by a single edge, where one of the basic blocks has a single successor 325 /// pointing to the other basic block, which has a single predecessor. 326 bool CodeGenPrepare::EliminateFallThrough(Function &F) { 327 bool Changed = false; 328 // Scan all of the blocks in the function, except for the entry block. 329 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 330 BasicBlock *BB = I++; 331 // If the destination block has a single pred, then this is a trivial 332 // edge, just collapse it. 333 BasicBlock *SinglePred = BB->getSinglePredecessor(); 334 335 // Don't merge if BB's address is taken. 336 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 337 338 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 339 if (Term && !Term->isConditional()) { 340 Changed = true; 341 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 342 // Remember if SinglePred was the entry block of the function. 343 // If so, we will need to move BB back to the entry position. 344 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 345 MergeBasicBlockIntoOnlyPred(BB, DT); 346 347 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 348 BB->moveBefore(&BB->getParent()->getEntryBlock()); 349 350 // We have erased a block. Update the iterator. 351 I = BB; 352 } 353 } 354 return Changed; 355 } 356 357 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, 358 /// debug info directives, and an unconditional branch. Passes before isel 359 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for 360 /// isel. Start by eliminating these blocks so we can split them the way we 361 /// want them. 362 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { 363 bool MadeChange = false; 364 // Note that this intentionally skips the entry block. 365 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 366 BasicBlock *BB = I++; 367 368 // If this block doesn't end with an uncond branch, ignore it. 369 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 370 if (!BI || !BI->isUnconditional()) 371 continue; 372 373 // If the instruction before the branch (skipping debug info) isn't a phi 374 // node, then other stuff is happening here. 375 BasicBlock::iterator BBI = BI; 376 if (BBI != BB->begin()) { 377 --BBI; 378 while (isa<DbgInfoIntrinsic>(BBI)) { 379 if (BBI == BB->begin()) 380 break; 381 --BBI; 382 } 383 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 384 continue; 385 } 386 387 // Do not break infinite loops. 388 BasicBlock *DestBB = BI->getSuccessor(0); 389 if (DestBB == BB) 390 continue; 391 392 if (!CanMergeBlocks(BB, DestBB)) 393 continue; 394 395 EliminateMostlyEmptyBlock(BB); 396 MadeChange = true; 397 } 398 return MadeChange; 399 } 400 401 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a 402 /// single uncond branch between them, and BB contains no other non-phi 403 /// instructions. 404 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, 405 const BasicBlock *DestBB) const { 406 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 407 // the successor. If there are more complex condition (e.g. preheaders), 408 // don't mess around with them. 409 BasicBlock::const_iterator BBI = BB->begin(); 410 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 411 for (const User *U : PN->users()) { 412 const Instruction *UI = cast<Instruction>(U); 413 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 414 return false; 415 // If User is inside DestBB block and it is a PHINode then check 416 // incoming value. If incoming value is not from BB then this is 417 // a complex condition (e.g. preheaders) we want to avoid here. 418 if (UI->getParent() == DestBB) { 419 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 420 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 421 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 422 if (Insn && Insn->getParent() == BB && 423 Insn->getParent() != UPN->getIncomingBlock(I)) 424 return false; 425 } 426 } 427 } 428 } 429 430 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 431 // and DestBB may have conflicting incoming values for the block. If so, we 432 // can't merge the block. 433 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 434 if (!DestBBPN) return true; // no conflict. 435 436 // Collect the preds of BB. 437 SmallPtrSet<const BasicBlock*, 16> BBPreds; 438 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 439 // It is faster to get preds from a PHI than with pred_iterator. 440 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 441 BBPreds.insert(BBPN->getIncomingBlock(i)); 442 } else { 443 BBPreds.insert(pred_begin(BB), pred_end(BB)); 444 } 445 446 // Walk the preds of DestBB. 447 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 448 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 449 if (BBPreds.count(Pred)) { // Common predecessor? 450 BBI = DestBB->begin(); 451 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 452 const Value *V1 = PN->getIncomingValueForBlock(Pred); 453 const Value *V2 = PN->getIncomingValueForBlock(BB); 454 455 // If V2 is a phi node in BB, look up what the mapped value will be. 456 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 457 if (V2PN->getParent() == BB) 458 V2 = V2PN->getIncomingValueForBlock(Pred); 459 460 // If there is a conflict, bail out. 461 if (V1 != V2) return false; 462 } 463 } 464 } 465 466 return true; 467 } 468 469 470 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and 471 /// an unconditional branch in it. 472 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { 473 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 474 BasicBlock *DestBB = BI->getSuccessor(0); 475 476 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 477 478 // If the destination block has a single pred, then this is a trivial edge, 479 // just collapse it. 480 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 481 if (SinglePred != DestBB) { 482 // Remember if SinglePred was the entry block of the function. If so, we 483 // will need to move BB back to the entry position. 484 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 485 MergeBasicBlockIntoOnlyPred(DestBB, DT); 486 487 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 488 BB->moveBefore(&BB->getParent()->getEntryBlock()); 489 490 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 491 return; 492 } 493 } 494 495 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 496 // to handle the new incoming edges it is about to have. 497 PHINode *PN; 498 for (BasicBlock::iterator BBI = DestBB->begin(); 499 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 500 // Remove the incoming value for BB, and remember it. 501 Value *InVal = PN->removeIncomingValue(BB, false); 502 503 // Two options: either the InVal is a phi node defined in BB or it is some 504 // value that dominates BB. 505 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 506 if (InValPhi && InValPhi->getParent() == BB) { 507 // Add all of the input values of the input PHI as inputs of this phi. 508 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 509 PN->addIncoming(InValPhi->getIncomingValue(i), 510 InValPhi->getIncomingBlock(i)); 511 } else { 512 // Otherwise, add one instance of the dominating value for each edge that 513 // we will be adding. 514 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 515 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 516 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 517 } else { 518 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 519 PN->addIncoming(InVal, *PI); 520 } 521 } 522 } 523 524 // The PHIs are now updated, change everything that refers to BB to use 525 // DestBB and remove BB. 526 BB->replaceAllUsesWith(DestBB); 527 if (DT && !ModifiedDT) { 528 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); 529 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); 530 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); 531 DT->changeImmediateDominator(DestBB, NewIDom); 532 DT->eraseNode(BB); 533 } 534 BB->eraseFromParent(); 535 ++NumBlocksElim; 536 537 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 538 } 539 540 // Computes a map of base pointer relocation instructions to corresponding 541 // derived pointer relocation instructions given a vector of all relocate calls 542 static void computeBaseDerivedRelocateMap( 543 const SmallVectorImpl<User *> &AllRelocateCalls, 544 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> & 545 RelocateInstMap) { 546 // Collect information in two maps: one primarily for locating the base object 547 // while filling the second map; the second map is the final structure holding 548 // a mapping between Base and corresponding Derived relocate calls 549 DenseMap<std::pair<unsigned, unsigned>, IntrinsicInst *> RelocateIdxMap; 550 for (auto &U : AllRelocateCalls) { 551 GCRelocateOperands ThisRelocate(U); 552 IntrinsicInst *I = cast<IntrinsicInst>(U); 553 auto K = std::make_pair(ThisRelocate.basePtrIndex(), 554 ThisRelocate.derivedPtrIndex()); 555 RelocateIdxMap.insert(std::make_pair(K, I)); 556 } 557 for (auto &Item : RelocateIdxMap) { 558 std::pair<unsigned, unsigned> Key = Item.first; 559 if (Key.first == Key.second) 560 // Base relocation: nothing to insert 561 continue; 562 563 IntrinsicInst *I = Item.second; 564 auto BaseKey = std::make_pair(Key.first, Key.first); 565 IntrinsicInst *Base = RelocateIdxMap[BaseKey]; 566 if (!Base) 567 // TODO: We might want to insert a new base object relocate and gep off 568 // that, if there are enough derived object relocates. 569 continue; 570 RelocateInstMap[Base].push_back(I); 571 } 572 } 573 574 // Accepts a GEP and extracts the operands into a vector provided they're all 575 // small integer constants 576 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 577 SmallVectorImpl<Value *> &OffsetV) { 578 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 579 // Only accept small constant integer operands 580 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 581 if (!Op || Op->getZExtValue() > 20) 582 return false; 583 } 584 585 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 586 OffsetV.push_back(GEP->getOperand(i)); 587 return true; 588 } 589 590 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 591 // replace, computes a replacement, and affects it. 592 static bool 593 simplifyRelocatesOffABase(IntrinsicInst *RelocatedBase, 594 const SmallVectorImpl<IntrinsicInst *> &Targets) { 595 bool MadeChange = false; 596 for (auto &ToReplace : Targets) { 597 GCRelocateOperands MasterRelocate(RelocatedBase); 598 GCRelocateOperands ThisRelocate(ToReplace); 599 600 assert(ThisRelocate.basePtrIndex() == MasterRelocate.basePtrIndex() && 601 "Not relocating a derived object of the original base object"); 602 if (ThisRelocate.basePtrIndex() == ThisRelocate.derivedPtrIndex()) { 603 // A duplicate relocate call. TODO: coalesce duplicates. 604 continue; 605 } 606 607 Value *Base = ThisRelocate.basePtr(); 608 auto Derived = dyn_cast<GetElementPtrInst>(ThisRelocate.derivedPtr()); 609 if (!Derived || Derived->getPointerOperand() != Base) 610 continue; 611 612 SmallVector<Value *, 2> OffsetV; 613 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 614 continue; 615 616 // Create a Builder and replace the target callsite with a gep 617 IRBuilder<> Builder(ToReplace); 618 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 619 Value *Replacement = 620 Builder.CreateGEP(RelocatedBase, makeArrayRef(OffsetV)); 621 Instruction *ReplacementInst = cast<Instruction>(Replacement); 622 ReplacementInst->removeFromParent(); 623 ReplacementInst->insertAfter(RelocatedBase); 624 Replacement->takeName(ToReplace); 625 ToReplace->replaceAllUsesWith(Replacement); 626 ToReplace->eraseFromParent(); 627 628 MadeChange = true; 629 } 630 return MadeChange; 631 } 632 633 // Turns this: 634 // 635 // %base = ... 636 // %ptr = gep %base + 15 637 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 638 // %base' = relocate(%tok, i32 4, i32 4) 639 // %ptr' = relocate(%tok, i32 4, i32 5) 640 // %val = load %ptr' 641 // 642 // into this: 643 // 644 // %base = ... 645 // %ptr = gep %base + 15 646 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 647 // %base' = gc.relocate(%tok, i32 4, i32 4) 648 // %ptr' = gep %base' + 15 649 // %val = load %ptr' 650 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 651 bool MadeChange = false; 652 SmallVector<User *, 2> AllRelocateCalls; 653 654 for (auto *U : I.users()) 655 if (isGCRelocate(dyn_cast<Instruction>(U))) 656 // Collect all the relocate calls associated with a statepoint 657 AllRelocateCalls.push_back(U); 658 659 // We need atleast one base pointer relocation + one derived pointer 660 // relocation to mangle 661 if (AllRelocateCalls.size() < 2) 662 return false; 663 664 // RelocateInstMap is a mapping from the base relocate instruction to the 665 // corresponding derived relocate instructions 666 DenseMap<IntrinsicInst *, SmallVector<IntrinsicInst *, 2>> RelocateInstMap; 667 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 668 if (RelocateInstMap.empty()) 669 return false; 670 671 for (auto &Item : RelocateInstMap) 672 // Item.first is the RelocatedBase to offset against 673 // Item.second is the vector of Targets to replace 674 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 675 return MadeChange; 676 } 677 678 /// SinkCast - Sink the specified cast instruction into its user blocks 679 static bool SinkCast(CastInst *CI) { 680 BasicBlock *DefBB = CI->getParent(); 681 682 /// InsertedCasts - Only insert a cast in each block once. 683 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 684 685 bool MadeChange = false; 686 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 687 UI != E; ) { 688 Use &TheUse = UI.getUse(); 689 Instruction *User = cast<Instruction>(*UI); 690 691 // Figure out which BB this cast is used in. For PHI's this is the 692 // appropriate predecessor block. 693 BasicBlock *UserBB = User->getParent(); 694 if (PHINode *PN = dyn_cast<PHINode>(User)) { 695 UserBB = PN->getIncomingBlock(TheUse); 696 } 697 698 // Preincrement use iterator so we don't invalidate it. 699 ++UI; 700 701 // If this user is in the same block as the cast, don't change the cast. 702 if (UserBB == DefBB) continue; 703 704 // If we have already inserted a cast into this block, use it. 705 CastInst *&InsertedCast = InsertedCasts[UserBB]; 706 707 if (!InsertedCast) { 708 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 709 InsertedCast = 710 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 711 InsertPt); 712 MadeChange = true; 713 } 714 715 // Replace a use of the cast with a use of the new cast. 716 TheUse = InsertedCast; 717 ++NumCastUses; 718 } 719 720 // If we removed all uses, nuke the cast. 721 if (CI->use_empty()) { 722 CI->eraseFromParent(); 723 MadeChange = true; 724 } 725 726 return MadeChange; 727 } 728 729 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop 730 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), 731 /// sink it into user blocks to reduce the number of virtual 732 /// registers that must be created and coalesced. 733 /// 734 /// Return true if any changes are made. 735 /// 736 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ 737 // If this is a noop copy, 738 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); 739 EVT DstVT = TLI.getValueType(CI->getType()); 740 741 // This is an fp<->int conversion? 742 if (SrcVT.isInteger() != DstVT.isInteger()) 743 return false; 744 745 // If this is an extension, it will be a zero or sign extension, which 746 // isn't a noop. 747 if (SrcVT.bitsLT(DstVT)) return false; 748 749 // If these values will be promoted, find out what they will be promoted 750 // to. This helps us consider truncates on PPC as noop copies when they 751 // are. 752 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 753 TargetLowering::TypePromoteInteger) 754 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 755 if (TLI.getTypeAction(CI->getContext(), DstVT) == 756 TargetLowering::TypePromoteInteger) 757 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 758 759 // If, after promotion, these are the same types, this is a noop copy. 760 if (SrcVT != DstVT) 761 return false; 762 763 return SinkCast(CI); 764 } 765 766 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce 767 /// the number of virtual registers that must be created and coalesced. This is 768 /// a clear win except on targets with multiple condition code registers 769 /// (PowerPC), where it might lose; some adjustment may be wanted there. 770 /// 771 /// Return true if any changes are made. 772 static bool OptimizeCmpExpression(CmpInst *CI) { 773 BasicBlock *DefBB = CI->getParent(); 774 775 /// InsertedCmp - Only insert a cmp in each block once. 776 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 777 778 bool MadeChange = false; 779 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 780 UI != E; ) { 781 Use &TheUse = UI.getUse(); 782 Instruction *User = cast<Instruction>(*UI); 783 784 // Preincrement use iterator so we don't invalidate it. 785 ++UI; 786 787 // Don't bother for PHI nodes. 788 if (isa<PHINode>(User)) 789 continue; 790 791 // Figure out which BB this cmp is used in. 792 BasicBlock *UserBB = User->getParent(); 793 794 // If this user is in the same block as the cmp, don't change the cmp. 795 if (UserBB == DefBB) continue; 796 797 // If we have already inserted a cmp into this block, use it. 798 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 799 800 if (!InsertedCmp) { 801 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 802 InsertedCmp = 803 CmpInst::Create(CI->getOpcode(), 804 CI->getPredicate(), CI->getOperand(0), 805 CI->getOperand(1), "", InsertPt); 806 MadeChange = true; 807 } 808 809 // Replace a use of the cmp with a use of the new cmp. 810 TheUse = InsertedCmp; 811 ++NumCmpUses; 812 } 813 814 // If we removed all uses, nuke the cmp. 815 if (CI->use_empty()) 816 CI->eraseFromParent(); 817 818 return MadeChange; 819 } 820 821 /// isExtractBitsCandidateUse - Check if the candidates could 822 /// be combined with shift instruction, which includes: 823 /// 1. Truncate instruction 824 /// 2. And instruction and the imm is a mask of the low bits: 825 /// imm & (imm+1) == 0 826 static bool isExtractBitsCandidateUse(Instruction *User) { 827 if (!isa<TruncInst>(User)) { 828 if (User->getOpcode() != Instruction::And || 829 !isa<ConstantInt>(User->getOperand(1))) 830 return false; 831 832 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 833 834 if ((Cimm & (Cimm + 1)).getBoolValue()) 835 return false; 836 } 837 return true; 838 } 839 840 /// SinkShiftAndTruncate - sink both shift and truncate instruction 841 /// to the use of truncate's BB. 842 static bool 843 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 844 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 845 const TargetLowering &TLI) { 846 BasicBlock *UserBB = User->getParent(); 847 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 848 TruncInst *TruncI = dyn_cast<TruncInst>(User); 849 bool MadeChange = false; 850 851 for (Value::user_iterator TruncUI = TruncI->user_begin(), 852 TruncE = TruncI->user_end(); 853 TruncUI != TruncE;) { 854 855 Use &TruncTheUse = TruncUI.getUse(); 856 Instruction *TruncUser = cast<Instruction>(*TruncUI); 857 // Preincrement use iterator so we don't invalidate it. 858 859 ++TruncUI; 860 861 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 862 if (!ISDOpcode) 863 continue; 864 865 // If the use is actually a legal node, there will not be an 866 // implicit truncate. 867 // FIXME: always querying the result type is just an 868 // approximation; some nodes' legality is determined by the 869 // operand or other means. There's no good way to find out though. 870 if (TLI.isOperationLegalOrCustom( 871 ISDOpcode, TLI.getValueType(TruncUser->getType(), true))) 872 continue; 873 874 // Don't bother for PHI nodes. 875 if (isa<PHINode>(TruncUser)) 876 continue; 877 878 BasicBlock *TruncUserBB = TruncUser->getParent(); 879 880 if (UserBB == TruncUserBB) 881 continue; 882 883 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 884 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 885 886 if (!InsertedShift && !InsertedTrunc) { 887 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 888 // Sink the shift 889 if (ShiftI->getOpcode() == Instruction::AShr) 890 InsertedShift = 891 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 892 else 893 InsertedShift = 894 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 895 896 // Sink the trunc 897 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 898 TruncInsertPt++; 899 900 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 901 TruncI->getType(), "", TruncInsertPt); 902 903 MadeChange = true; 904 905 TruncTheUse = InsertedTrunc; 906 } 907 } 908 return MadeChange; 909 } 910 911 /// OptimizeExtractBits - sink the shift *right* instruction into user blocks if 912 /// the uses could potentially be combined with this shift instruction and 913 /// generate BitExtract instruction. It will only be applied if the architecture 914 /// supports BitExtract instruction. Here is an example: 915 /// BB1: 916 /// %x.extract.shift = lshr i64 %arg1, 32 917 /// BB2: 918 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 919 /// ==> 920 /// 921 /// BB2: 922 /// %x.extract.shift.1 = lshr i64 %arg1, 32 923 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 924 /// 925 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 926 /// instruction. 927 /// Return true if any changes are made. 928 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 929 const TargetLowering &TLI) { 930 BasicBlock *DefBB = ShiftI->getParent(); 931 932 /// Only insert instructions in each block once. 933 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 934 935 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType())); 936 937 bool MadeChange = false; 938 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 939 UI != E;) { 940 Use &TheUse = UI.getUse(); 941 Instruction *User = cast<Instruction>(*UI); 942 // Preincrement use iterator so we don't invalidate it. 943 ++UI; 944 945 // Don't bother for PHI nodes. 946 if (isa<PHINode>(User)) 947 continue; 948 949 if (!isExtractBitsCandidateUse(User)) 950 continue; 951 952 BasicBlock *UserBB = User->getParent(); 953 954 if (UserBB == DefBB) { 955 // If the shift and truncate instruction are in the same BB. The use of 956 // the truncate(TruncUse) may still introduce another truncate if not 957 // legal. In this case, we would like to sink both shift and truncate 958 // instruction to the BB of TruncUse. 959 // for example: 960 // BB1: 961 // i64 shift.result = lshr i64 opnd, imm 962 // trunc.result = trunc shift.result to i16 963 // 964 // BB2: 965 // ----> We will have an implicit truncate here if the architecture does 966 // not have i16 compare. 967 // cmp i16 trunc.result, opnd2 968 // 969 if (isa<TruncInst>(User) && shiftIsLegal 970 // If the type of the truncate is legal, no trucate will be 971 // introduced in other basic blocks. 972 && (!TLI.isTypeLegal(TLI.getValueType(User->getType())))) 973 MadeChange = 974 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI); 975 976 continue; 977 } 978 // If we have already inserted a shift into this block, use it. 979 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 980 981 if (!InsertedShift) { 982 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 983 984 if (ShiftI->getOpcode() == Instruction::AShr) 985 InsertedShift = 986 BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt); 987 else 988 InsertedShift = 989 BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt); 990 991 MadeChange = true; 992 } 993 994 // Replace a use of the shift with a use of the new shift. 995 TheUse = InsertedShift; 996 } 997 998 // If we removed all uses, nuke the shift. 999 if (ShiftI->use_empty()) 1000 ShiftI->eraseFromParent(); 1001 1002 return MadeChange; 1003 } 1004 1005 // ScalarizeMaskedLoad() translates masked load intrinsic, like 1006 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1007 // <16 x i1> %mask, <16 x i32> %passthru) 1008 // to a chain of basic blocks, whith loading element one-by-one if 1009 // the appropriate mask bit is set 1010 // 1011 // %1 = bitcast i8* %addr to i32* 1012 // %2 = extractelement <16 x i1> %mask, i32 0 1013 // %3 = icmp eq i1 %2, true 1014 // br i1 %3, label %cond.load, label %else 1015 // 1016 //cond.load: ; preds = %0 1017 // %4 = getelementptr i32* %1, i32 0 1018 // %5 = load i32* %4 1019 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1020 // br label %else 1021 // 1022 //else: ; preds = %0, %cond.load 1023 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1024 // %7 = extractelement <16 x i1> %mask, i32 1 1025 // %8 = icmp eq i1 %7, true 1026 // br i1 %8, label %cond.load1, label %else2 1027 // 1028 //cond.load1: ; preds = %else 1029 // %9 = getelementptr i32* %1, i32 1 1030 // %10 = load i32* %9 1031 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1032 // br label %else2 1033 // 1034 //else2: ; preds = %else, %cond.load1 1035 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1036 // %12 = extractelement <16 x i1> %mask, i32 2 1037 // %13 = icmp eq i1 %12, true 1038 // br i1 %13, label %cond.load4, label %else5 1039 // 1040 static void ScalarizeMaskedLoad(CallInst *CI) { 1041 Value *Ptr = CI->getArgOperand(0); 1042 Value *Src0 = CI->getArgOperand(3); 1043 Value *Mask = CI->getArgOperand(2); 1044 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1045 Type *EltTy = VecType->getElementType(); 1046 1047 assert(VecType && "Unexpected return type of masked load intrinsic"); 1048 1049 IRBuilder<> Builder(CI->getContext()); 1050 Instruction *InsertPt = CI; 1051 BasicBlock *IfBlock = CI->getParent(); 1052 BasicBlock *CondBlock = nullptr; 1053 BasicBlock *PrevIfBlock = CI->getParent(); 1054 Builder.SetInsertPoint(InsertPt); 1055 1056 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1057 1058 // Bitcast %addr fron i8* to EltTy* 1059 Type *NewPtrType = 1060 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1061 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1062 Value *UndefVal = UndefValue::get(VecType); 1063 1064 // The result vector 1065 Value *VResult = UndefVal; 1066 1067 PHINode *Phi = nullptr; 1068 Value *PrevPhi = UndefVal; 1069 1070 unsigned VectorWidth = VecType->getNumElements(); 1071 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1072 1073 // Fill the "else" block, created in the previous iteration 1074 // 1075 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1076 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1077 // %to_load = icmp eq i1 %mask_1, true 1078 // br i1 %to_load, label %cond.load, label %else 1079 // 1080 if (Idx > 0) { 1081 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1082 Phi->addIncoming(VResult, CondBlock); 1083 Phi->addIncoming(PrevPhi, PrevIfBlock); 1084 PrevPhi = Phi; 1085 VResult = Phi; 1086 } 1087 1088 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1089 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1090 ConstantInt::get(Predicate->getType(), 1)); 1091 1092 // Create "cond" block 1093 // 1094 // %EltAddr = getelementptr i32* %1, i32 0 1095 // %Elt = load i32* %EltAddr 1096 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1097 // 1098 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1099 Builder.SetInsertPoint(InsertPt); 1100 1101 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1102 LoadInst* Load = Builder.CreateLoad(Gep, false); 1103 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1104 1105 // Create "else" block, fill it in the next iteration 1106 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1107 Builder.SetInsertPoint(InsertPt); 1108 Instruction *OldBr = IfBlock->getTerminator(); 1109 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1110 OldBr->eraseFromParent(); 1111 PrevIfBlock = IfBlock; 1112 IfBlock = NewIfBlock; 1113 } 1114 1115 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1116 Phi->addIncoming(VResult, CondBlock); 1117 Phi->addIncoming(PrevPhi, PrevIfBlock); 1118 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1119 CI->replaceAllUsesWith(NewI); 1120 CI->eraseFromParent(); 1121 } 1122 1123 // ScalarizeMaskedStore() translates masked store intrinsic, like 1124 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1125 // <16 x i1> %mask) 1126 // to a chain of basic blocks, that stores element one-by-one if 1127 // the appropriate mask bit is set 1128 // 1129 // %1 = bitcast i8* %addr to i32* 1130 // %2 = extractelement <16 x i1> %mask, i32 0 1131 // %3 = icmp eq i1 %2, true 1132 // br i1 %3, label %cond.store, label %else 1133 // 1134 // cond.store: ; preds = %0 1135 // %4 = extractelement <16 x i32> %val, i32 0 1136 // %5 = getelementptr i32* %1, i32 0 1137 // store i32 %4, i32* %5 1138 // br label %else 1139 // 1140 // else: ; preds = %0, %cond.store 1141 // %6 = extractelement <16 x i1> %mask, i32 1 1142 // %7 = icmp eq i1 %6, true 1143 // br i1 %7, label %cond.store1, label %else2 1144 // 1145 // cond.store1: ; preds = %else 1146 // %8 = extractelement <16 x i32> %val, i32 1 1147 // %9 = getelementptr i32* %1, i32 1 1148 // store i32 %8, i32* %9 1149 // br label %else2 1150 // . . . 1151 static void ScalarizeMaskedStore(CallInst *CI) { 1152 Value *Ptr = CI->getArgOperand(1); 1153 Value *Src = CI->getArgOperand(0); 1154 Value *Mask = CI->getArgOperand(3); 1155 1156 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1157 Type *EltTy = VecType->getElementType(); 1158 1159 assert(VecType && "Unexpected data type in masked store intrinsic"); 1160 1161 IRBuilder<> Builder(CI->getContext()); 1162 Instruction *InsertPt = CI; 1163 BasicBlock *IfBlock = CI->getParent(); 1164 Builder.SetInsertPoint(InsertPt); 1165 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1166 1167 // Bitcast %addr fron i8* to EltTy* 1168 Type *NewPtrType = 1169 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1170 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1171 1172 unsigned VectorWidth = VecType->getNumElements(); 1173 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1174 1175 // Fill the "else" block, created in the previous iteration 1176 // 1177 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1178 // %to_store = icmp eq i1 %mask_1, true 1179 // br i1 %to_load, label %cond.store, label %else 1180 // 1181 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1182 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1183 ConstantInt::get(Predicate->getType(), 1)); 1184 1185 // Create "cond" block 1186 // 1187 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1188 // %EltAddr = getelementptr i32* %1, i32 0 1189 // %store i32 %OneElt, i32* %EltAddr 1190 // 1191 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1192 Builder.SetInsertPoint(InsertPt); 1193 1194 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1195 Value* Gep = Builder.CreateInBoundsGEP(FirstEltPtr, Builder.getInt32(Idx)); 1196 Builder.CreateStore(OneElt, Gep); 1197 1198 // Create "else" block, fill it in the next iteration 1199 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1200 Builder.SetInsertPoint(InsertPt); 1201 Instruction *OldBr = IfBlock->getTerminator(); 1202 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1203 OldBr->eraseFromParent(); 1204 IfBlock = NewIfBlock; 1205 } 1206 CI->eraseFromParent(); 1207 } 1208 1209 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI, bool& ModifiedDT) { 1210 BasicBlock *BB = CI->getParent(); 1211 1212 // Lower inline assembly if we can. 1213 // If we found an inline asm expession, and if the target knows how to 1214 // lower it to normal LLVM code, do so now. 1215 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1216 if (TLI->ExpandInlineAsm(CI)) { 1217 // Avoid invalidating the iterator. 1218 CurInstIterator = BB->begin(); 1219 // Avoid processing instructions out of order, which could cause 1220 // reuse before a value is defined. 1221 SunkAddrs.clear(); 1222 return true; 1223 } 1224 // Sink address computing for memory operands into the block. 1225 if (OptimizeInlineAsmInst(CI)) 1226 return true; 1227 } 1228 1229 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1230 if (II) { 1231 switch (II->getIntrinsicID()) { 1232 default: break; 1233 case Intrinsic::objectsize: { 1234 // Lower all uses of llvm.objectsize.* 1235 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); 1236 Type *ReturnTy = CI->getType(); 1237 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); 1238 1239 // Substituting this can cause recursive simplifications, which can 1240 // invalidate our iterator. Use a WeakVH to hold onto it in case this 1241 // happens. 1242 WeakVH IterHandle(CurInstIterator); 1243 1244 replaceAndRecursivelySimplify(CI, RetVal, 1245 TLI ? TLI->getDataLayout() : nullptr, 1246 TLInfo, ModifiedDT ? nullptr : DT); 1247 1248 // If the iterator instruction was recursively deleted, start over at the 1249 // start of the block. 1250 if (IterHandle != CurInstIterator) { 1251 CurInstIterator = BB->begin(); 1252 SunkAddrs.clear(); 1253 } 1254 return true; 1255 } 1256 case Intrinsic::masked_load: { 1257 // Scalarize unsupported vector masked load 1258 if (!TTI->isLegalMaskedLoad(CI->getType(), 1)) { 1259 ScalarizeMaskedLoad(CI); 1260 ModifiedDT = true; 1261 return true; 1262 } 1263 return false; 1264 } 1265 case Intrinsic::masked_store: { 1266 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType(), 1)) { 1267 ScalarizeMaskedStore(CI); 1268 ModifiedDT = true; 1269 return true; 1270 } 1271 return false; 1272 } 1273 } 1274 1275 if (TLI) { 1276 SmallVector<Value*, 2> PtrOps; 1277 Type *AccessTy; 1278 if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) 1279 while (!PtrOps.empty()) 1280 if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) 1281 return true; 1282 } 1283 } 1284 1285 // From here on out we're working with named functions. 1286 if (!CI->getCalledFunction()) return false; 1287 1288 // We'll need DataLayout from here on out. 1289 const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr; 1290 if (!TD) return false; 1291 1292 // Lower all default uses of _chk calls. This is very similar 1293 // to what InstCombineCalls does, but here we are only lowering calls 1294 // to fortified library functions (e.g. __memcpy_chk) that have the default 1295 // "don't know" as the objectsize. Anything else should be left alone. 1296 FortifiedLibCallSimplifier Simplifier(TD, TLInfo, true); 1297 if (Value *V = Simplifier.optimizeCall(CI)) { 1298 CI->replaceAllUsesWith(V); 1299 CI->eraseFromParent(); 1300 return true; 1301 } 1302 return false; 1303 } 1304 1305 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return 1306 /// instructions to the predecessor to enable tail call optimizations. The 1307 /// case it is currently looking for is: 1308 /// @code 1309 /// bb0: 1310 /// %tmp0 = tail call i32 @f0() 1311 /// br label %return 1312 /// bb1: 1313 /// %tmp1 = tail call i32 @f1() 1314 /// br label %return 1315 /// bb2: 1316 /// %tmp2 = tail call i32 @f2() 1317 /// br label %return 1318 /// return: 1319 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1320 /// ret i32 %retval 1321 /// @endcode 1322 /// 1323 /// => 1324 /// 1325 /// @code 1326 /// bb0: 1327 /// %tmp0 = tail call i32 @f0() 1328 /// ret i32 %tmp0 1329 /// bb1: 1330 /// %tmp1 = tail call i32 @f1() 1331 /// ret i32 %tmp1 1332 /// bb2: 1333 /// %tmp2 = tail call i32 @f2() 1334 /// ret i32 %tmp2 1335 /// @endcode 1336 bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { 1337 if (!TLI) 1338 return false; 1339 1340 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 1341 if (!RI) 1342 return false; 1343 1344 PHINode *PN = nullptr; 1345 BitCastInst *BCI = nullptr; 1346 Value *V = RI->getReturnValue(); 1347 if (V) { 1348 BCI = dyn_cast<BitCastInst>(V); 1349 if (BCI) 1350 V = BCI->getOperand(0); 1351 1352 PN = dyn_cast<PHINode>(V); 1353 if (!PN) 1354 return false; 1355 } 1356 1357 if (PN && PN->getParent() != BB) 1358 return false; 1359 1360 // It's not safe to eliminate the sign / zero extension of the return value. 1361 // See llvm::isInTailCallPosition(). 1362 const Function *F = BB->getParent(); 1363 AttributeSet CallerAttrs = F->getAttributes(); 1364 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 1365 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1366 return false; 1367 1368 // Make sure there are no instructions between the PHI and return, or that the 1369 // return is the first instruction in the block. 1370 if (PN) { 1371 BasicBlock::iterator BI = BB->begin(); 1372 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 1373 if (&*BI == BCI) 1374 // Also skip over the bitcast. 1375 ++BI; 1376 if (&*BI != RI) 1377 return false; 1378 } else { 1379 BasicBlock::iterator BI = BB->begin(); 1380 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 1381 if (&*BI != RI) 1382 return false; 1383 } 1384 1385 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 1386 /// call. 1387 SmallVector<CallInst*, 4> TailCalls; 1388 if (PN) { 1389 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 1390 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 1391 // Make sure the phi value is indeed produced by the tail call. 1392 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 1393 TLI->mayBeEmittedAsTailCall(CI)) 1394 TailCalls.push_back(CI); 1395 } 1396 } else { 1397 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 1398 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 1399 if (!VisitedBBs.insert(*PI).second) 1400 continue; 1401 1402 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 1403 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 1404 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 1405 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 1406 if (RI == RE) 1407 continue; 1408 1409 CallInst *CI = dyn_cast<CallInst>(&*RI); 1410 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) 1411 TailCalls.push_back(CI); 1412 } 1413 } 1414 1415 bool Changed = false; 1416 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 1417 CallInst *CI = TailCalls[i]; 1418 CallSite CS(CI); 1419 1420 // Conservatively require the attributes of the call to match those of the 1421 // return. Ignore noalias because it doesn't affect the call sequence. 1422 AttributeSet CalleeAttrs = CS.getAttributes(); 1423 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1424 removeAttribute(Attribute::NoAlias) != 1425 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 1426 removeAttribute(Attribute::NoAlias)) 1427 continue; 1428 1429 // Make sure the call instruction is followed by an unconditional branch to 1430 // the return block. 1431 BasicBlock *CallBB = CI->getParent(); 1432 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 1433 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 1434 continue; 1435 1436 // Duplicate the return into CallBB. 1437 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); 1438 ModifiedDT = Changed = true; 1439 ++NumRetsDup; 1440 } 1441 1442 // If we eliminated all predecessors of the block, delete the block now. 1443 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 1444 BB->eraseFromParent(); 1445 1446 return Changed; 1447 } 1448 1449 //===----------------------------------------------------------------------===// 1450 // Memory Optimization 1451 //===----------------------------------------------------------------------===// 1452 1453 namespace { 1454 1455 /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode 1456 /// which holds actual Value*'s for register values. 1457 struct ExtAddrMode : public TargetLowering::AddrMode { 1458 Value *BaseReg; 1459 Value *ScaledReg; 1460 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 1461 void print(raw_ostream &OS) const; 1462 void dump() const; 1463 1464 bool operator==(const ExtAddrMode& O) const { 1465 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 1466 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 1467 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 1468 } 1469 }; 1470 1471 #ifndef NDEBUG 1472 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 1473 AM.print(OS); 1474 return OS; 1475 } 1476 #endif 1477 1478 void ExtAddrMode::print(raw_ostream &OS) const { 1479 bool NeedPlus = false; 1480 OS << "["; 1481 if (BaseGV) { 1482 OS << (NeedPlus ? " + " : "") 1483 << "GV:"; 1484 BaseGV->printAsOperand(OS, /*PrintType=*/false); 1485 NeedPlus = true; 1486 } 1487 1488 if (BaseOffs) { 1489 OS << (NeedPlus ? " + " : "") 1490 << BaseOffs; 1491 NeedPlus = true; 1492 } 1493 1494 if (BaseReg) { 1495 OS << (NeedPlus ? " + " : "") 1496 << "Base:"; 1497 BaseReg->printAsOperand(OS, /*PrintType=*/false); 1498 NeedPlus = true; 1499 } 1500 if (Scale) { 1501 OS << (NeedPlus ? " + " : "") 1502 << Scale << "*"; 1503 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 1504 } 1505 1506 OS << ']'; 1507 } 1508 1509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1510 void ExtAddrMode::dump() const { 1511 print(dbgs()); 1512 dbgs() << '\n'; 1513 } 1514 #endif 1515 1516 /// \brief This class provides transaction based operation on the IR. 1517 /// Every change made through this class is recorded in the internal state and 1518 /// can be undone (rollback) until commit is called. 1519 class TypePromotionTransaction { 1520 1521 /// \brief This represents the common interface of the individual transaction. 1522 /// Each class implements the logic for doing one specific modification on 1523 /// the IR via the TypePromotionTransaction. 1524 class TypePromotionAction { 1525 protected: 1526 /// The Instruction modified. 1527 Instruction *Inst; 1528 1529 public: 1530 /// \brief Constructor of the action. 1531 /// The constructor performs the related action on the IR. 1532 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 1533 1534 virtual ~TypePromotionAction() {} 1535 1536 /// \brief Undo the modification done by this action. 1537 /// When this method is called, the IR must be in the same state as it was 1538 /// before this action was applied. 1539 /// \pre Undoing the action works if and only if the IR is in the exact same 1540 /// state as it was directly after this action was applied. 1541 virtual void undo() = 0; 1542 1543 /// \brief Advocate every change made by this action. 1544 /// When the results on the IR of the action are to be kept, it is important 1545 /// to call this function, otherwise hidden information may be kept forever. 1546 virtual void commit() { 1547 // Nothing to be done, this action is not doing anything. 1548 } 1549 }; 1550 1551 /// \brief Utility to remember the position of an instruction. 1552 class InsertionHandler { 1553 /// Position of an instruction. 1554 /// Either an instruction: 1555 /// - Is the first in a basic block: BB is used. 1556 /// - Has a previous instructon: PrevInst is used. 1557 union { 1558 Instruction *PrevInst; 1559 BasicBlock *BB; 1560 } Point; 1561 /// Remember whether or not the instruction had a previous instruction. 1562 bool HasPrevInstruction; 1563 1564 public: 1565 /// \brief Record the position of \p Inst. 1566 InsertionHandler(Instruction *Inst) { 1567 BasicBlock::iterator It = Inst; 1568 HasPrevInstruction = (It != (Inst->getParent()->begin())); 1569 if (HasPrevInstruction) 1570 Point.PrevInst = --It; 1571 else 1572 Point.BB = Inst->getParent(); 1573 } 1574 1575 /// \brief Insert \p Inst at the recorded position. 1576 void insert(Instruction *Inst) { 1577 if (HasPrevInstruction) { 1578 if (Inst->getParent()) 1579 Inst->removeFromParent(); 1580 Inst->insertAfter(Point.PrevInst); 1581 } else { 1582 Instruction *Position = Point.BB->getFirstInsertionPt(); 1583 if (Inst->getParent()) 1584 Inst->moveBefore(Position); 1585 else 1586 Inst->insertBefore(Position); 1587 } 1588 } 1589 }; 1590 1591 /// \brief Move an instruction before another. 1592 class InstructionMoveBefore : public TypePromotionAction { 1593 /// Original position of the instruction. 1594 InsertionHandler Position; 1595 1596 public: 1597 /// \brief Move \p Inst before \p Before. 1598 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 1599 : TypePromotionAction(Inst), Position(Inst) { 1600 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 1601 Inst->moveBefore(Before); 1602 } 1603 1604 /// \brief Move the instruction back to its original position. 1605 void undo() override { 1606 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 1607 Position.insert(Inst); 1608 } 1609 }; 1610 1611 /// \brief Set the operand of an instruction with a new value. 1612 class OperandSetter : public TypePromotionAction { 1613 /// Original operand of the instruction. 1614 Value *Origin; 1615 /// Index of the modified instruction. 1616 unsigned Idx; 1617 1618 public: 1619 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 1620 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 1621 : TypePromotionAction(Inst), Idx(Idx) { 1622 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 1623 << "for:" << *Inst << "\n" 1624 << "with:" << *NewVal << "\n"); 1625 Origin = Inst->getOperand(Idx); 1626 Inst->setOperand(Idx, NewVal); 1627 } 1628 1629 /// \brief Restore the original value of the instruction. 1630 void undo() override { 1631 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 1632 << "for: " << *Inst << "\n" 1633 << "with: " << *Origin << "\n"); 1634 Inst->setOperand(Idx, Origin); 1635 } 1636 }; 1637 1638 /// \brief Hide the operands of an instruction. 1639 /// Do as if this instruction was not using any of its operands. 1640 class OperandsHider : public TypePromotionAction { 1641 /// The list of original operands. 1642 SmallVector<Value *, 4> OriginalValues; 1643 1644 public: 1645 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 1646 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 1647 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 1648 unsigned NumOpnds = Inst->getNumOperands(); 1649 OriginalValues.reserve(NumOpnds); 1650 for (unsigned It = 0; It < NumOpnds; ++It) { 1651 // Save the current operand. 1652 Value *Val = Inst->getOperand(It); 1653 OriginalValues.push_back(Val); 1654 // Set a dummy one. 1655 // We could use OperandSetter here, but that would implied an overhead 1656 // that we are not willing to pay. 1657 Inst->setOperand(It, UndefValue::get(Val->getType())); 1658 } 1659 } 1660 1661 /// \brief Restore the original list of uses. 1662 void undo() override { 1663 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 1664 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 1665 Inst->setOperand(It, OriginalValues[It]); 1666 } 1667 }; 1668 1669 /// \brief Build a truncate instruction. 1670 class TruncBuilder : public TypePromotionAction { 1671 Value *Val; 1672 public: 1673 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 1674 /// result. 1675 /// trunc Opnd to Ty. 1676 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 1677 IRBuilder<> Builder(Opnd); 1678 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 1679 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 1680 } 1681 1682 /// \brief Get the built value. 1683 Value *getBuiltValue() { return Val; } 1684 1685 /// \brief Remove the built instruction. 1686 void undo() override { 1687 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 1688 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1689 IVal->eraseFromParent(); 1690 } 1691 }; 1692 1693 /// \brief Build a sign extension instruction. 1694 class SExtBuilder : public TypePromotionAction { 1695 Value *Val; 1696 public: 1697 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 1698 /// result. 1699 /// sext Opnd to Ty. 1700 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1701 : TypePromotionAction(InsertPt) { 1702 IRBuilder<> Builder(InsertPt); 1703 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 1704 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 1705 } 1706 1707 /// \brief Get the built value. 1708 Value *getBuiltValue() { return Val; } 1709 1710 /// \brief Remove the built instruction. 1711 void undo() override { 1712 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 1713 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1714 IVal->eraseFromParent(); 1715 } 1716 }; 1717 1718 /// \brief Build a zero extension instruction. 1719 class ZExtBuilder : public TypePromotionAction { 1720 Value *Val; 1721 public: 1722 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 1723 /// result. 1724 /// zext Opnd to Ty. 1725 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 1726 : TypePromotionAction(InsertPt) { 1727 IRBuilder<> Builder(InsertPt); 1728 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 1729 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 1730 } 1731 1732 /// \brief Get the built value. 1733 Value *getBuiltValue() { return Val; } 1734 1735 /// \brief Remove the built instruction. 1736 void undo() override { 1737 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 1738 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 1739 IVal->eraseFromParent(); 1740 } 1741 }; 1742 1743 /// \brief Mutate an instruction to another type. 1744 class TypeMutator : public TypePromotionAction { 1745 /// Record the original type. 1746 Type *OrigTy; 1747 1748 public: 1749 /// \brief Mutate the type of \p Inst into \p NewTy. 1750 TypeMutator(Instruction *Inst, Type *NewTy) 1751 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 1752 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 1753 << "\n"); 1754 Inst->mutateType(NewTy); 1755 } 1756 1757 /// \brief Mutate the instruction back to its original type. 1758 void undo() override { 1759 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 1760 << "\n"); 1761 Inst->mutateType(OrigTy); 1762 } 1763 }; 1764 1765 /// \brief Replace the uses of an instruction by another instruction. 1766 class UsesReplacer : public TypePromotionAction { 1767 /// Helper structure to keep track of the replaced uses. 1768 struct InstructionAndIdx { 1769 /// The instruction using the instruction. 1770 Instruction *Inst; 1771 /// The index where this instruction is used for Inst. 1772 unsigned Idx; 1773 InstructionAndIdx(Instruction *Inst, unsigned Idx) 1774 : Inst(Inst), Idx(Idx) {} 1775 }; 1776 1777 /// Keep track of the original uses (pair Instruction, Index). 1778 SmallVector<InstructionAndIdx, 4> OriginalUses; 1779 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 1780 1781 public: 1782 /// \brief Replace all the use of \p Inst by \p New. 1783 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 1784 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 1785 << "\n"); 1786 // Record the original uses. 1787 for (Use &U : Inst->uses()) { 1788 Instruction *UserI = cast<Instruction>(U.getUser()); 1789 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 1790 } 1791 // Now, we can replace the uses. 1792 Inst->replaceAllUsesWith(New); 1793 } 1794 1795 /// \brief Reassign the original uses of Inst to Inst. 1796 void undo() override { 1797 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 1798 for (use_iterator UseIt = OriginalUses.begin(), 1799 EndIt = OriginalUses.end(); 1800 UseIt != EndIt; ++UseIt) { 1801 UseIt->Inst->setOperand(UseIt->Idx, Inst); 1802 } 1803 } 1804 }; 1805 1806 /// \brief Remove an instruction from the IR. 1807 class InstructionRemover : public TypePromotionAction { 1808 /// Original position of the instruction. 1809 InsertionHandler Inserter; 1810 /// Helper structure to hide all the link to the instruction. In other 1811 /// words, this helps to do as if the instruction was removed. 1812 OperandsHider Hider; 1813 /// Keep track of the uses replaced, if any. 1814 UsesReplacer *Replacer; 1815 1816 public: 1817 /// \brief Remove all reference of \p Inst and optinally replace all its 1818 /// uses with New. 1819 /// \pre If !Inst->use_empty(), then New != nullptr 1820 InstructionRemover(Instruction *Inst, Value *New = nullptr) 1821 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 1822 Replacer(nullptr) { 1823 if (New) 1824 Replacer = new UsesReplacer(Inst, New); 1825 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 1826 Inst->removeFromParent(); 1827 } 1828 1829 ~InstructionRemover() { delete Replacer; } 1830 1831 /// \brief Really remove the instruction. 1832 void commit() override { delete Inst; } 1833 1834 /// \brief Resurrect the instruction and reassign it to the proper uses if 1835 /// new value was provided when build this action. 1836 void undo() override { 1837 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 1838 Inserter.insert(Inst); 1839 if (Replacer) 1840 Replacer->undo(); 1841 Hider.undo(); 1842 } 1843 }; 1844 1845 public: 1846 /// Restoration point. 1847 /// The restoration point is a pointer to an action instead of an iterator 1848 /// because the iterator may be invalidated but not the pointer. 1849 typedef const TypePromotionAction *ConstRestorationPt; 1850 /// Advocate every changes made in that transaction. 1851 void commit(); 1852 /// Undo all the changes made after the given point. 1853 void rollback(ConstRestorationPt Point); 1854 /// Get the current restoration point. 1855 ConstRestorationPt getRestorationPoint() const; 1856 1857 /// \name API for IR modification with state keeping to support rollback. 1858 /// @{ 1859 /// Same as Instruction::setOperand. 1860 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 1861 /// Same as Instruction::eraseFromParent. 1862 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 1863 /// Same as Value::replaceAllUsesWith. 1864 void replaceAllUsesWith(Instruction *Inst, Value *New); 1865 /// Same as Value::mutateType. 1866 void mutateType(Instruction *Inst, Type *NewTy); 1867 /// Same as IRBuilder::createTrunc. 1868 Value *createTrunc(Instruction *Opnd, Type *Ty); 1869 /// Same as IRBuilder::createSExt. 1870 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 1871 /// Same as IRBuilder::createZExt. 1872 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 1873 /// Same as Instruction::moveBefore. 1874 void moveBefore(Instruction *Inst, Instruction *Before); 1875 /// @} 1876 1877 private: 1878 /// The ordered list of actions made so far. 1879 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 1880 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 1881 }; 1882 1883 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 1884 Value *NewVal) { 1885 Actions.push_back( 1886 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 1887 } 1888 1889 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 1890 Value *NewVal) { 1891 Actions.push_back( 1892 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 1893 } 1894 1895 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 1896 Value *New) { 1897 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 1898 } 1899 1900 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 1901 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 1902 } 1903 1904 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 1905 Type *Ty) { 1906 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 1907 Value *Val = Ptr->getBuiltValue(); 1908 Actions.push_back(std::move(Ptr)); 1909 return Val; 1910 } 1911 1912 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 1913 Value *Opnd, Type *Ty) { 1914 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 1915 Value *Val = Ptr->getBuiltValue(); 1916 Actions.push_back(std::move(Ptr)); 1917 return Val; 1918 } 1919 1920 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 1921 Value *Opnd, Type *Ty) { 1922 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 1923 Value *Val = Ptr->getBuiltValue(); 1924 Actions.push_back(std::move(Ptr)); 1925 return Val; 1926 } 1927 1928 void TypePromotionTransaction::moveBefore(Instruction *Inst, 1929 Instruction *Before) { 1930 Actions.push_back( 1931 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 1932 } 1933 1934 TypePromotionTransaction::ConstRestorationPt 1935 TypePromotionTransaction::getRestorationPoint() const { 1936 return !Actions.empty() ? Actions.back().get() : nullptr; 1937 } 1938 1939 void TypePromotionTransaction::commit() { 1940 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 1941 ++It) 1942 (*It)->commit(); 1943 Actions.clear(); 1944 } 1945 1946 void TypePromotionTransaction::rollback( 1947 TypePromotionTransaction::ConstRestorationPt Point) { 1948 while (!Actions.empty() && Point != Actions.back().get()) { 1949 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 1950 Curr->undo(); 1951 } 1952 } 1953 1954 /// \brief A helper class for matching addressing modes. 1955 /// 1956 /// This encapsulates the logic for matching the target-legal addressing modes. 1957 class AddressingModeMatcher { 1958 SmallVectorImpl<Instruction*> &AddrModeInsts; 1959 const TargetLowering &TLI; 1960 1961 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 1962 /// the memory instruction that we're computing this address for. 1963 Type *AccessTy; 1964 Instruction *MemoryInst; 1965 1966 /// AddrMode - This is the addressing mode that we're building up. This is 1967 /// part of the return value of this addressing mode matching stuff. 1968 ExtAddrMode &AddrMode; 1969 1970 /// The truncate instruction inserted by other CodeGenPrepare optimizations. 1971 const SetOfInstrs &InsertedTruncs; 1972 /// A map from the instructions to their type before promotion. 1973 InstrToOrigTy &PromotedInsts; 1974 /// The ongoing transaction where every action should be registered. 1975 TypePromotionTransaction &TPT; 1976 1977 /// IgnoreProfitability - This is set to true when we should not do 1978 /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode 1979 /// always returns true. 1980 bool IgnoreProfitability; 1981 1982 AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, 1983 const TargetLowering &T, Type *AT, 1984 Instruction *MI, ExtAddrMode &AM, 1985 const SetOfInstrs &InsertedTruncs, 1986 InstrToOrigTy &PromotedInsts, 1987 TypePromotionTransaction &TPT) 1988 : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM), 1989 InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) { 1990 IgnoreProfitability = false; 1991 } 1992 public: 1993 1994 /// Match - Find the maximal addressing mode that a load/store of V can fold, 1995 /// give an access type of AccessTy. This returns a list of involved 1996 /// instructions in AddrModeInsts. 1997 /// \p InsertedTruncs The truncate instruction inserted by other 1998 /// CodeGenPrepare 1999 /// optimizations. 2000 /// \p PromotedInsts maps the instructions to their type before promotion. 2001 /// \p The ongoing transaction where every action should be registered. 2002 static ExtAddrMode Match(Value *V, Type *AccessTy, 2003 Instruction *MemoryInst, 2004 SmallVectorImpl<Instruction*> &AddrModeInsts, 2005 const TargetLowering &TLI, 2006 const SetOfInstrs &InsertedTruncs, 2007 InstrToOrigTy &PromotedInsts, 2008 TypePromotionTransaction &TPT) { 2009 ExtAddrMode Result; 2010 2011 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, 2012 MemoryInst, Result, InsertedTruncs, 2013 PromotedInsts, TPT).MatchAddr(V, 0); 2014 (void)Success; assert(Success && "Couldn't select *anything*?"); 2015 return Result; 2016 } 2017 private: 2018 bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2019 bool MatchAddr(Value *V, unsigned Depth); 2020 bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 2021 bool *MovedAway = nullptr); 2022 bool IsProfitableToFoldIntoAddressingMode(Instruction *I, 2023 ExtAddrMode &AMBefore, 2024 ExtAddrMode &AMAfter); 2025 bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2026 bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion, 2027 Value *PromotedOperand) const; 2028 }; 2029 2030 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. 2031 /// Return true and update AddrMode if this addr mode is legal for the target, 2032 /// false if not. 2033 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, 2034 unsigned Depth) { 2035 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 2036 // mode. Just process that directly. 2037 if (Scale == 1) 2038 return MatchAddr(ScaleReg, Depth); 2039 2040 // If the scale is 0, it takes nothing to add this. 2041 if (Scale == 0) 2042 return true; 2043 2044 // If we already have a scale of this value, we can add to it, otherwise, we 2045 // need an available scale field. 2046 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 2047 return false; 2048 2049 ExtAddrMode TestAddrMode = AddrMode; 2050 2051 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 2052 // [A+B + A*7] -> [B+A*8]. 2053 TestAddrMode.Scale += Scale; 2054 TestAddrMode.ScaledReg = ScaleReg; 2055 2056 // If the new address isn't legal, bail out. 2057 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) 2058 return false; 2059 2060 // It was legal, so commit it. 2061 AddrMode = TestAddrMode; 2062 2063 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 2064 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 2065 // X*Scale + C*Scale to addr mode. 2066 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 2067 if (isa<Instruction>(ScaleReg) && // not a constant expr. 2068 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 2069 TestAddrMode.ScaledReg = AddLHS; 2070 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 2071 2072 // If this addressing mode is legal, commit it and remember that we folded 2073 // this instruction. 2074 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { 2075 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 2076 AddrMode = TestAddrMode; 2077 return true; 2078 } 2079 } 2080 2081 // Otherwise, not (x+c)*scale, just return what we have. 2082 return true; 2083 } 2084 2085 /// MightBeFoldableInst - This is a little filter, which returns true if an 2086 /// addressing computation involving I might be folded into a load/store 2087 /// accessing it. This doesn't need to be perfect, but needs to accept at least 2088 /// the set of instructions that MatchOperationAddr can. 2089 static bool MightBeFoldableInst(Instruction *I) { 2090 switch (I->getOpcode()) { 2091 case Instruction::BitCast: 2092 case Instruction::AddrSpaceCast: 2093 // Don't touch identity bitcasts. 2094 if (I->getType() == I->getOperand(0)->getType()) 2095 return false; 2096 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 2097 case Instruction::PtrToInt: 2098 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2099 return true; 2100 case Instruction::IntToPtr: 2101 // We know the input is intptr_t, so this is foldable. 2102 return true; 2103 case Instruction::Add: 2104 return true; 2105 case Instruction::Mul: 2106 case Instruction::Shl: 2107 // Can only handle X*C and X << C. 2108 return isa<ConstantInt>(I->getOperand(1)); 2109 case Instruction::GetElementPtr: 2110 return true; 2111 default: 2112 return false; 2113 } 2114 } 2115 2116 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 2117 /// \note \p Val is assumed to be the product of some type promotion. 2118 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 2119 /// to be legal, as the non-promoted value would have had the same state. 2120 static bool isPromotedInstructionLegal(const TargetLowering &TLI, Value *Val) { 2121 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 2122 if (!PromotedInst) 2123 return false; 2124 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 2125 // If the ISDOpcode is undefined, it was undefined before the promotion. 2126 if (!ISDOpcode) 2127 return true; 2128 // Otherwise, check if the promoted instruction is legal or not. 2129 return TLI.isOperationLegalOrCustom( 2130 ISDOpcode, TLI.getValueType(PromotedInst->getType())); 2131 } 2132 2133 /// \brief Hepler class to perform type promotion. 2134 class TypePromotionHelper { 2135 /// \brief Utility function to check whether or not a sign or zero extension 2136 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 2137 /// either using the operands of \p Inst or promoting \p Inst. 2138 /// The type of the extension is defined by \p IsSExt. 2139 /// In other words, check if: 2140 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 2141 /// #1 Promotion applies: 2142 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 2143 /// #2 Operand reuses: 2144 /// ext opnd1 to ConsideredExtType. 2145 /// \p PromotedInsts maps the instructions to their type before promotion. 2146 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 2147 const InstrToOrigTy &PromotedInsts, bool IsSExt); 2148 2149 /// \brief Utility function to determine if \p OpIdx should be promoted when 2150 /// promoting \p Inst. 2151 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 2152 if (isa<SelectInst>(Inst) && OpIdx == 0) 2153 return false; 2154 return true; 2155 } 2156 2157 /// \brief Utility function to promote the operand of \p Ext when this 2158 /// operand is a promotable trunc or sext or zext. 2159 /// \p PromotedInsts maps the instructions to their type before promotion. 2160 /// \p CreatedInsts[out] contains how many non-free instructions have been 2161 /// created to promote the operand of Ext. 2162 /// Newly added extensions are inserted in \p Exts. 2163 /// Newly added truncates are inserted in \p Truncs. 2164 /// Should never be called directly. 2165 /// \return The promoted value which is used instead of Ext. 2166 static Value *promoteOperandForTruncAndAnyExt( 2167 Instruction *Ext, TypePromotionTransaction &TPT, 2168 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2169 SmallVectorImpl<Instruction *> *Exts, 2170 SmallVectorImpl<Instruction *> *Truncs); 2171 2172 /// \brief Utility function to promote the operand of \p Ext when this 2173 /// operand is promotable and is not a supported trunc or sext. 2174 /// \p PromotedInsts maps the instructions to their type before promotion. 2175 /// \p CreatedInsts[out] contains how many non-free instructions have been 2176 /// created to promote the operand of Ext. 2177 /// Newly added extensions are inserted in \p Exts. 2178 /// Newly added truncates are inserted in \p Truncs. 2179 /// Should never be called directly. 2180 /// \return The promoted value which is used instead of Ext. 2181 static Value * 2182 promoteOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2183 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2184 SmallVectorImpl<Instruction *> *Exts, 2185 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt); 2186 2187 /// \see promoteOperandForOther. 2188 static Value * 2189 signExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2190 InstrToOrigTy &PromotedInsts, 2191 unsigned &CreatedInsts, 2192 SmallVectorImpl<Instruction *> *Exts, 2193 SmallVectorImpl<Instruction *> *Truncs) { 2194 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2195 Truncs, true); 2196 } 2197 2198 /// \see promoteOperandForOther. 2199 static Value * 2200 zeroExtendOperandForOther(Instruction *Ext, TypePromotionTransaction &TPT, 2201 InstrToOrigTy &PromotedInsts, 2202 unsigned &CreatedInsts, 2203 SmallVectorImpl<Instruction *> *Exts, 2204 SmallVectorImpl<Instruction *> *Truncs) { 2205 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInsts, Exts, 2206 Truncs, false); 2207 } 2208 2209 public: 2210 /// Type for the utility function that promotes the operand of Ext. 2211 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 2212 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2213 SmallVectorImpl<Instruction *> *Exts, 2214 SmallVectorImpl<Instruction *> *Truncs); 2215 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 2216 /// action to promote the operand of \p Ext instead of using Ext. 2217 /// \return NULL if no promotable action is possible with the current 2218 /// sign extension. 2219 /// \p InsertedTruncs keeps track of all the truncate instructions inserted by 2220 /// the others CodeGenPrepare optimizations. This information is important 2221 /// because we do not want to promote these instructions as CodeGenPrepare 2222 /// will reinsert them later. Thus creating an infinite loop: create/remove. 2223 /// \p PromotedInsts maps the instructions to their type before promotion. 2224 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2225 const TargetLowering &TLI, 2226 const InstrToOrigTy &PromotedInsts); 2227 }; 2228 2229 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 2230 Type *ConsideredExtType, 2231 const InstrToOrigTy &PromotedInsts, 2232 bool IsSExt) { 2233 // The promotion helper does not know how to deal with vector types yet. 2234 // To be able to fix that, we would need to fix the places where we 2235 // statically extend, e.g., constants and such. 2236 if (Inst->getType()->isVectorTy()) 2237 return false; 2238 2239 // We can always get through zext. 2240 if (isa<ZExtInst>(Inst)) 2241 return true; 2242 2243 // sext(sext) is ok too. 2244 if (IsSExt && isa<SExtInst>(Inst)) 2245 return true; 2246 2247 // We can get through binary operator, if it is legal. In other words, the 2248 // binary operator must have a nuw or nsw flag. 2249 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 2250 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 2251 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 2252 (IsSExt && BinOp->hasNoSignedWrap()))) 2253 return true; 2254 2255 // Check if we can do the following simplification. 2256 // ext(trunc(opnd)) --> ext(opnd) 2257 if (!isa<TruncInst>(Inst)) 2258 return false; 2259 2260 Value *OpndVal = Inst->getOperand(0); 2261 // Check if we can use this operand in the extension. 2262 // If the type is larger than the result type of the extension, 2263 // we cannot. 2264 if (!OpndVal->getType()->isIntegerTy() || 2265 OpndVal->getType()->getIntegerBitWidth() > 2266 ConsideredExtType->getIntegerBitWidth()) 2267 return false; 2268 2269 // If the operand of the truncate is not an instruction, we will not have 2270 // any information on the dropped bits. 2271 // (Actually we could for constant but it is not worth the extra logic). 2272 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 2273 if (!Opnd) 2274 return false; 2275 2276 // Check if the source of the type is narrow enough. 2277 // I.e., check that trunc just drops extended bits of the same kind of 2278 // the extension. 2279 // #1 get the type of the operand and check the kind of the extended bits. 2280 const Type *OpndType; 2281 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 2282 if (It != PromotedInsts.end() && It->second.IsSExt == IsSExt) 2283 OpndType = It->second.Ty; 2284 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 2285 OpndType = Opnd->getOperand(0)->getType(); 2286 else 2287 return false; 2288 2289 // #2 check that the truncate just drop extended bits. 2290 if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth()) 2291 return true; 2292 2293 return false; 2294 } 2295 2296 TypePromotionHelper::Action TypePromotionHelper::getAction( 2297 Instruction *Ext, const SetOfInstrs &InsertedTruncs, 2298 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 2299 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 2300 "Unexpected instruction type"); 2301 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 2302 Type *ExtTy = Ext->getType(); 2303 bool IsSExt = isa<SExtInst>(Ext); 2304 // If the operand of the extension is not an instruction, we cannot 2305 // get through. 2306 // If it, check we can get through. 2307 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 2308 return nullptr; 2309 2310 // Do not promote if the operand has been added by codegenprepare. 2311 // Otherwise, it means we are undoing an optimization that is likely to be 2312 // redone, thus causing potential infinite loop. 2313 if (isa<TruncInst>(ExtOpnd) && InsertedTruncs.count(ExtOpnd)) 2314 return nullptr; 2315 2316 // SExt or Trunc instructions. 2317 // Return the related handler. 2318 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 2319 isa<ZExtInst>(ExtOpnd)) 2320 return promoteOperandForTruncAndAnyExt; 2321 2322 // Regular instruction. 2323 // Abort early if we will have to insert non-free instructions. 2324 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 2325 return nullptr; 2326 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 2327 } 2328 2329 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 2330 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 2331 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2332 SmallVectorImpl<Instruction *> *Exts, 2333 SmallVectorImpl<Instruction *> *Truncs) { 2334 // By construction, the operand of SExt is an instruction. Otherwise we cannot 2335 // get through it and this method should not be called. 2336 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 2337 Value *ExtVal = SExt; 2338 if (isa<ZExtInst>(SExtOpnd)) { 2339 // Replace s|zext(zext(opnd)) 2340 // => zext(opnd). 2341 Value *ZExt = 2342 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 2343 TPT.replaceAllUsesWith(SExt, ZExt); 2344 TPT.eraseInstruction(SExt); 2345 ExtVal = ZExt; 2346 } else { 2347 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 2348 // => z|sext(opnd). 2349 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 2350 } 2351 CreatedInsts = 0; 2352 2353 // Remove dead code. 2354 if (SExtOpnd->use_empty()) 2355 TPT.eraseInstruction(SExtOpnd); 2356 2357 // Check if the extension is still needed. 2358 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 2359 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 2360 if (ExtInst && Exts) 2361 Exts->push_back(ExtInst); 2362 return ExtVal; 2363 } 2364 2365 // At this point we have: ext ty opnd to ty. 2366 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 2367 Value *NextVal = ExtInst->getOperand(0); 2368 TPT.eraseInstruction(ExtInst, NextVal); 2369 return NextVal; 2370 } 2371 2372 Value *TypePromotionHelper::promoteOperandForOther( 2373 Instruction *Ext, TypePromotionTransaction &TPT, 2374 InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts, 2375 SmallVectorImpl<Instruction *> *Exts, 2376 SmallVectorImpl<Instruction *> *Truncs, bool IsSExt) { 2377 // By construction, the operand of Ext is an instruction. Otherwise we cannot 2378 // get through it and this method should not be called. 2379 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 2380 CreatedInsts = 0; 2381 if (!ExtOpnd->hasOneUse()) { 2382 // ExtOpnd will be promoted. 2383 // All its uses, but Ext, will need to use a truncated value of the 2384 // promoted version. 2385 // Create the truncate now. 2386 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 2387 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 2388 ITrunc->removeFromParent(); 2389 // Insert it just after the definition. 2390 ITrunc->insertAfter(ExtOpnd); 2391 if (Truncs) 2392 Truncs->push_back(ITrunc); 2393 } 2394 2395 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 2396 // Restore the operand of Ext (which has been replace by the previous call 2397 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 2398 TPT.setOperand(Ext, 0, ExtOpnd); 2399 } 2400 2401 // Get through the Instruction: 2402 // 1. Update its type. 2403 // 2. Replace the uses of Ext by Inst. 2404 // 3. Extend each operand that needs to be extended. 2405 2406 // Remember the original type of the instruction before promotion. 2407 // This is useful to know that the high bits are sign extended bits. 2408 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 2409 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 2410 // Step #1. 2411 TPT.mutateType(ExtOpnd, Ext->getType()); 2412 // Step #2. 2413 TPT.replaceAllUsesWith(Ext, ExtOpnd); 2414 // Step #3. 2415 Instruction *ExtForOpnd = Ext; 2416 2417 DEBUG(dbgs() << "Propagate Ext to operands\n"); 2418 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 2419 ++OpIdx) { 2420 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 2421 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 2422 !shouldExtOperand(ExtOpnd, OpIdx)) { 2423 DEBUG(dbgs() << "No need to propagate\n"); 2424 continue; 2425 } 2426 // Check if we can statically extend the operand. 2427 Value *Opnd = ExtOpnd->getOperand(OpIdx); 2428 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 2429 DEBUG(dbgs() << "Statically extend\n"); 2430 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 2431 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 2432 : Cst->getValue().zext(BitWidth); 2433 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 2434 continue; 2435 } 2436 // UndefValue are typed, so we have to statically sign extend them. 2437 if (isa<UndefValue>(Opnd)) { 2438 DEBUG(dbgs() << "Statically extend\n"); 2439 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 2440 continue; 2441 } 2442 2443 // Otherwise we have to explicity sign extend the operand. 2444 // Check if Ext was reused to extend an operand. 2445 if (!ExtForOpnd) { 2446 // If yes, create a new one. 2447 DEBUG(dbgs() << "More operands to ext\n"); 2448 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 2449 : TPT.createZExt(Ext, Opnd, Ext->getType()); 2450 if (!isa<Instruction>(ValForExtOpnd)) { 2451 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 2452 continue; 2453 } 2454 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 2455 ++CreatedInsts; 2456 } 2457 if (Exts) 2458 Exts->push_back(ExtForOpnd); 2459 TPT.setOperand(ExtForOpnd, 0, Opnd); 2460 2461 // Move the sign extension before the insertion point. 2462 TPT.moveBefore(ExtForOpnd, ExtOpnd); 2463 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 2464 // If more sext are required, new instructions will have to be created. 2465 ExtForOpnd = nullptr; 2466 } 2467 if (ExtForOpnd == Ext) { 2468 DEBUG(dbgs() << "Extension is useless now\n"); 2469 TPT.eraseInstruction(Ext); 2470 } 2471 return ExtOpnd; 2472 } 2473 2474 /// IsPromotionProfitable - Check whether or not promoting an instruction 2475 /// to a wider type was profitable. 2476 /// \p MatchedSize gives the number of instructions that have been matched 2477 /// in the addressing mode after the promotion was applied. 2478 /// \p SizeWithPromotion gives the number of created instructions for 2479 /// the promotion plus the number of instructions that have been 2480 /// matched in the addressing mode before the promotion. 2481 /// \p PromotedOperand is the value that has been promoted. 2482 /// \return True if the promotion is profitable, false otherwise. 2483 bool 2484 AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize, 2485 unsigned SizeWithPromotion, 2486 Value *PromotedOperand) const { 2487 // We folded less instructions than what we created to promote the operand. 2488 // This is not profitable. 2489 if (MatchedSize < SizeWithPromotion) 2490 return false; 2491 if (MatchedSize > SizeWithPromotion) 2492 return true; 2493 // The promotion is neutral but it may help folding the sign extension in 2494 // loads for instance. 2495 // Check that we did not create an illegal instruction. 2496 return isPromotedInstructionLegal(TLI, PromotedOperand); 2497 } 2498 2499 /// MatchOperationAddr - Given an instruction or constant expr, see if we can 2500 /// fold the operation into the addressing mode. If so, update the addressing 2501 /// mode and return true, otherwise return false without modifying AddrMode. 2502 /// If \p MovedAway is not NULL, it contains the information of whether or 2503 /// not AddrInst has to be folded into the addressing mode on success. 2504 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 2505 /// because it has been moved away. 2506 /// Thus AddrInst must not be added in the matched instructions. 2507 /// This state can happen when AddrInst is a sext, since it may be moved away. 2508 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 2509 /// not be referenced anymore. 2510 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, 2511 unsigned Depth, 2512 bool *MovedAway) { 2513 // Avoid exponential behavior on extremely deep expression trees. 2514 if (Depth >= 5) return false; 2515 2516 // By default, all matched instructions stay in place. 2517 if (MovedAway) 2518 *MovedAway = false; 2519 2520 switch (Opcode) { 2521 case Instruction::PtrToInt: 2522 // PtrToInt is always a noop, as we know that the int type is pointer sized. 2523 return MatchAddr(AddrInst->getOperand(0), Depth); 2524 case Instruction::IntToPtr: 2525 // This inttoptr is a no-op if the integer type is pointer sized. 2526 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == 2527 TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace())) 2528 return MatchAddr(AddrInst->getOperand(0), Depth); 2529 return false; 2530 case Instruction::BitCast: 2531 case Instruction::AddrSpaceCast: 2532 // BitCast is always a noop, and we can handle it as long as it is 2533 // int->int or pointer->pointer (we don't want int<->fp or something). 2534 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 2535 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 2536 // Don't touch identity bitcasts. These were probably put here by LSR, 2537 // and we don't want to mess around with them. Assume it knows what it 2538 // is doing. 2539 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 2540 return MatchAddr(AddrInst->getOperand(0), Depth); 2541 return false; 2542 case Instruction::Add: { 2543 // Check to see if we can merge in the RHS then the LHS. If so, we win. 2544 ExtAddrMode BackupAddrMode = AddrMode; 2545 unsigned OldSize = AddrModeInsts.size(); 2546 // Start a transaction at this point. 2547 // The LHS may match but not the RHS. 2548 // Therefore, we need a higher level restoration point to undo partially 2549 // matched operation. 2550 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2551 TPT.getRestorationPoint(); 2552 2553 if (MatchAddr(AddrInst->getOperand(1), Depth+1) && 2554 MatchAddr(AddrInst->getOperand(0), Depth+1)) 2555 return true; 2556 2557 // Restore the old addr mode info. 2558 AddrMode = BackupAddrMode; 2559 AddrModeInsts.resize(OldSize); 2560 TPT.rollback(LastKnownGood); 2561 2562 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 2563 if (MatchAddr(AddrInst->getOperand(0), Depth+1) && 2564 MatchAddr(AddrInst->getOperand(1), Depth+1)) 2565 return true; 2566 2567 // Otherwise we definitely can't merge the ADD in. 2568 AddrMode = BackupAddrMode; 2569 AddrModeInsts.resize(OldSize); 2570 TPT.rollback(LastKnownGood); 2571 break; 2572 } 2573 //case Instruction::Or: 2574 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 2575 //break; 2576 case Instruction::Mul: 2577 case Instruction::Shl: { 2578 // Can only handle X*C and X << C. 2579 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 2580 if (!RHS) 2581 return false; 2582 int64_t Scale = RHS->getSExtValue(); 2583 if (Opcode == Instruction::Shl) 2584 Scale = 1LL << Scale; 2585 2586 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); 2587 } 2588 case Instruction::GetElementPtr: { 2589 // Scan the GEP. We check it if it contains constant offsets and at most 2590 // one variable offset. 2591 int VariableOperand = -1; 2592 unsigned VariableScale = 0; 2593 2594 int64_t ConstantOffset = 0; 2595 const DataLayout *TD = TLI.getDataLayout(); 2596 gep_type_iterator GTI = gep_type_begin(AddrInst); 2597 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 2598 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 2599 const StructLayout *SL = TD->getStructLayout(STy); 2600 unsigned Idx = 2601 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 2602 ConstantOffset += SL->getElementOffset(Idx); 2603 } else { 2604 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); 2605 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 2606 ConstantOffset += CI->getSExtValue()*TypeSize; 2607 } else if (TypeSize) { // Scales of zero don't do anything. 2608 // We only allow one variable index at the moment. 2609 if (VariableOperand != -1) 2610 return false; 2611 2612 // Remember the variable index. 2613 VariableOperand = i; 2614 VariableScale = TypeSize; 2615 } 2616 } 2617 } 2618 2619 // A common case is for the GEP to only do a constant offset. In this case, 2620 // just add it to the disp field and check validity. 2621 if (VariableOperand == -1) { 2622 AddrMode.BaseOffs += ConstantOffset; 2623 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ 2624 // Check to see if we can fold the base pointer in too. 2625 if (MatchAddr(AddrInst->getOperand(0), Depth+1)) 2626 return true; 2627 } 2628 AddrMode.BaseOffs -= ConstantOffset; 2629 return false; 2630 } 2631 2632 // Save the valid addressing mode in case we can't match. 2633 ExtAddrMode BackupAddrMode = AddrMode; 2634 unsigned OldSize = AddrModeInsts.size(); 2635 2636 // See if the scale and offset amount is valid for this target. 2637 AddrMode.BaseOffs += ConstantOffset; 2638 2639 // Match the base operand of the GEP. 2640 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { 2641 // If it couldn't be matched, just stuff the value in a register. 2642 if (AddrMode.HasBaseReg) { 2643 AddrMode = BackupAddrMode; 2644 AddrModeInsts.resize(OldSize); 2645 return false; 2646 } 2647 AddrMode.HasBaseReg = true; 2648 AddrMode.BaseReg = AddrInst->getOperand(0); 2649 } 2650 2651 // Match the remaining variable portion of the GEP. 2652 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 2653 Depth)) { 2654 // If it couldn't be matched, try stuffing the base into a register 2655 // instead of matching it, and retrying the match of the scale. 2656 AddrMode = BackupAddrMode; 2657 AddrModeInsts.resize(OldSize); 2658 if (AddrMode.HasBaseReg) 2659 return false; 2660 AddrMode.HasBaseReg = true; 2661 AddrMode.BaseReg = AddrInst->getOperand(0); 2662 AddrMode.BaseOffs += ConstantOffset; 2663 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), 2664 VariableScale, Depth)) { 2665 // If even that didn't work, bail. 2666 AddrMode = BackupAddrMode; 2667 AddrModeInsts.resize(OldSize); 2668 return false; 2669 } 2670 } 2671 2672 return true; 2673 } 2674 case Instruction::SExt: 2675 case Instruction::ZExt: { 2676 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 2677 if (!Ext) 2678 return false; 2679 2680 // Try to move this ext out of the way of the addressing mode. 2681 // Ask for a method for doing so. 2682 TypePromotionHelper::Action TPH = 2683 TypePromotionHelper::getAction(Ext, InsertedTruncs, TLI, PromotedInsts); 2684 if (!TPH) 2685 return false; 2686 2687 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2688 TPT.getRestorationPoint(); 2689 unsigned CreatedInsts = 0; 2690 Value *PromotedOperand = 2691 TPH(Ext, TPT, PromotedInsts, CreatedInsts, nullptr, nullptr); 2692 // SExt has been moved away. 2693 // Thus either it will be rematched later in the recursive calls or it is 2694 // gone. Anyway, we must not fold it into the addressing mode at this point. 2695 // E.g., 2696 // op = add opnd, 1 2697 // idx = ext op 2698 // addr = gep base, idx 2699 // is now: 2700 // promotedOpnd = ext opnd <- no match here 2701 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 2702 // addr = gep base, op <- match 2703 if (MovedAway) 2704 *MovedAway = true; 2705 2706 assert(PromotedOperand && 2707 "TypePromotionHelper should have filtered out those cases"); 2708 2709 ExtAddrMode BackupAddrMode = AddrMode; 2710 unsigned OldSize = AddrModeInsts.size(); 2711 2712 if (!MatchAddr(PromotedOperand, Depth) || 2713 !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts, 2714 PromotedOperand)) { 2715 AddrMode = BackupAddrMode; 2716 AddrModeInsts.resize(OldSize); 2717 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 2718 TPT.rollback(LastKnownGood); 2719 return false; 2720 } 2721 return true; 2722 } 2723 } 2724 return false; 2725 } 2726 2727 /// MatchAddr - If we can, try to add the value of 'Addr' into the current 2728 /// addressing mode. If Addr can't be added to AddrMode this returns false and 2729 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type 2730 /// or intptr_t for the target. 2731 /// 2732 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { 2733 // Start a transaction at this point that we will rollback if the matching 2734 // fails. 2735 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2736 TPT.getRestorationPoint(); 2737 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 2738 // Fold in immediates if legal for the target. 2739 AddrMode.BaseOffs += CI->getSExtValue(); 2740 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2741 return true; 2742 AddrMode.BaseOffs -= CI->getSExtValue(); 2743 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 2744 // If this is a global variable, try to fold it into the addressing mode. 2745 if (!AddrMode.BaseGV) { 2746 AddrMode.BaseGV = GV; 2747 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2748 return true; 2749 AddrMode.BaseGV = nullptr; 2750 } 2751 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 2752 ExtAddrMode BackupAddrMode = AddrMode; 2753 unsigned OldSize = AddrModeInsts.size(); 2754 2755 // Check to see if it is possible to fold this operation. 2756 bool MovedAway = false; 2757 if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 2758 // This instruction may have been move away. If so, there is nothing 2759 // to check here. 2760 if (MovedAway) 2761 return true; 2762 // Okay, it's possible to fold this. Check to see if it is actually 2763 // *profitable* to do so. We use a simple cost model to avoid increasing 2764 // register pressure too much. 2765 if (I->hasOneUse() || 2766 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 2767 AddrModeInsts.push_back(I); 2768 return true; 2769 } 2770 2771 // It isn't profitable to do this, roll back. 2772 //cerr << "NOT FOLDING: " << *I; 2773 AddrMode = BackupAddrMode; 2774 AddrModeInsts.resize(OldSize); 2775 TPT.rollback(LastKnownGood); 2776 } 2777 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 2778 if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) 2779 return true; 2780 TPT.rollback(LastKnownGood); 2781 } else if (isa<ConstantPointerNull>(Addr)) { 2782 // Null pointer gets folded without affecting the addressing mode. 2783 return true; 2784 } 2785 2786 // Worse case, the target should support [reg] addressing modes. :) 2787 if (!AddrMode.HasBaseReg) { 2788 AddrMode.HasBaseReg = true; 2789 AddrMode.BaseReg = Addr; 2790 // Still check for legality in case the target supports [imm] but not [i+r]. 2791 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2792 return true; 2793 AddrMode.HasBaseReg = false; 2794 AddrMode.BaseReg = nullptr; 2795 } 2796 2797 // If the base register is already taken, see if we can do [r+r]. 2798 if (AddrMode.Scale == 0) { 2799 AddrMode.Scale = 1; 2800 AddrMode.ScaledReg = Addr; 2801 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) 2802 return true; 2803 AddrMode.Scale = 0; 2804 AddrMode.ScaledReg = nullptr; 2805 } 2806 // Couldn't match. 2807 TPT.rollback(LastKnownGood); 2808 return false; 2809 } 2810 2811 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified 2812 /// inline asm call are due to memory operands. If so, return true, otherwise 2813 /// return false. 2814 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 2815 const TargetLowering &TLI) { 2816 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); 2817 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 2818 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 2819 2820 // Compute the constraint code and ConstraintType to use. 2821 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 2822 2823 // If this asm operand is our Value*, and if it isn't an indirect memory 2824 // operand, we can't fold it! 2825 if (OpInfo.CallOperandVal == OpVal && 2826 (OpInfo.ConstraintType != TargetLowering::C_Memory || 2827 !OpInfo.isIndirect)) 2828 return false; 2829 } 2830 2831 return true; 2832 } 2833 2834 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a 2835 /// memory use. If we find an obviously non-foldable instruction, return true. 2836 /// Add the ultimately found memory instructions to MemoryUses. 2837 static bool FindAllMemoryUses(Instruction *I, 2838 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, 2839 SmallPtrSetImpl<Instruction*> &ConsideredInsts, 2840 const TargetLowering &TLI) { 2841 // If we already considered this instruction, we're done. 2842 if (!ConsideredInsts.insert(I).second) 2843 return false; 2844 2845 // If this is an obviously unfoldable instruction, bail out. 2846 if (!MightBeFoldableInst(I)) 2847 return true; 2848 2849 // Loop over all the uses, recursively processing them. 2850 for (Use &U : I->uses()) { 2851 Instruction *UserI = cast<Instruction>(U.getUser()); 2852 2853 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 2854 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 2855 continue; 2856 } 2857 2858 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 2859 unsigned opNo = U.getOperandNo(); 2860 if (opNo == 0) return true; // Storing addr, not into addr. 2861 MemoryUses.push_back(std::make_pair(SI, opNo)); 2862 continue; 2863 } 2864 2865 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 2866 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 2867 if (!IA) return true; 2868 2869 // If this is a memory operand, we're cool, otherwise bail out. 2870 if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) 2871 return true; 2872 continue; 2873 } 2874 2875 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI)) 2876 return true; 2877 } 2878 2879 return false; 2880 } 2881 2882 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at 2883 /// the use site that we're folding it into. If so, there is no cost to 2884 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values 2885 /// that we know are live at the instruction already. 2886 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 2887 Value *KnownLive2) { 2888 // If Val is either of the known-live values, we know it is live! 2889 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 2890 return true; 2891 2892 // All values other than instructions and arguments (e.g. constants) are live. 2893 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 2894 2895 // If Val is a constant sized alloca in the entry block, it is live, this is 2896 // true because it is just a reference to the stack/frame pointer, which is 2897 // live for the whole function. 2898 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 2899 if (AI->isStaticAlloca()) 2900 return true; 2901 2902 // Check to see if this value is already used in the memory instruction's 2903 // block. If so, it's already live into the block at the very least, so we 2904 // can reasonably fold it. 2905 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 2906 } 2907 2908 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing 2909 /// mode of the machine to fold the specified instruction into a load or store 2910 /// that ultimately uses it. However, the specified instruction has multiple 2911 /// uses. Given this, it may actually increase register pressure to fold it 2912 /// into the load. For example, consider this code: 2913 /// 2914 /// X = ... 2915 /// Y = X+1 2916 /// use(Y) -> nonload/store 2917 /// Z = Y+1 2918 /// load Z 2919 /// 2920 /// In this case, Y has multiple uses, and can be folded into the load of Z 2921 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 2922 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 2923 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 2924 /// number of computations either. 2925 /// 2926 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 2927 /// X was live across 'load Z' for other reasons, we actually *would* want to 2928 /// fold the addressing mode in the Z case. This would make Y die earlier. 2929 bool AddressingModeMatcher:: 2930 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 2931 ExtAddrMode &AMAfter) { 2932 if (IgnoreProfitability) return true; 2933 2934 // AMBefore is the addressing mode before this instruction was folded into it, 2935 // and AMAfter is the addressing mode after the instruction was folded. Get 2936 // the set of registers referenced by AMAfter and subtract out those 2937 // referenced by AMBefore: this is the set of values which folding in this 2938 // address extends the lifetime of. 2939 // 2940 // Note that there are only two potential values being referenced here, 2941 // BaseReg and ScaleReg (global addresses are always available, as are any 2942 // folded immediates). 2943 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 2944 2945 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 2946 // lifetime wasn't extended by adding this instruction. 2947 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2948 BaseReg = nullptr; 2949 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 2950 ScaledReg = nullptr; 2951 2952 // If folding this instruction (and it's subexprs) didn't extend any live 2953 // ranges, we're ok with it. 2954 if (!BaseReg && !ScaledReg) 2955 return true; 2956 2957 // If all uses of this instruction are ultimately load/store/inlineasm's, 2958 // check to see if their addressing modes will include this instruction. If 2959 // so, we can fold it into all uses, so it doesn't matter if it has multiple 2960 // uses. 2961 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 2962 SmallPtrSet<Instruction*, 16> ConsideredInsts; 2963 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) 2964 return false; // Has a non-memory, non-foldable use! 2965 2966 // Now that we know that all uses of this instruction are part of a chain of 2967 // computation involving only operations that could theoretically be folded 2968 // into a memory use, loop over each of these uses and see if they could 2969 // *actually* fold the instruction. 2970 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 2971 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 2972 Instruction *User = MemoryUses[i].first; 2973 unsigned OpNo = MemoryUses[i].second; 2974 2975 // Get the access type of this use. If the use isn't a pointer, we don't 2976 // know what it accesses. 2977 Value *Address = User->getOperand(OpNo); 2978 if (!Address->getType()->isPointerTy()) 2979 return false; 2980 Type *AddressAccessTy = Address->getType()->getPointerElementType(); 2981 2982 // Do a match against the root of this address, ignoring profitability. This 2983 // will tell us if the addressing mode for the memory operation will 2984 // *actually* cover the shared instruction. 2985 ExtAddrMode Result; 2986 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 2987 TPT.getRestorationPoint(); 2988 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, 2989 MemoryInst, Result, InsertedTruncs, 2990 PromotedInsts, TPT); 2991 Matcher.IgnoreProfitability = true; 2992 bool Success = Matcher.MatchAddr(Address, 0); 2993 (void)Success; assert(Success && "Couldn't select *anything*?"); 2994 2995 // The match was to check the profitability, the changes made are not 2996 // part of the original matcher. Therefore, they should be dropped 2997 // otherwise the original matcher will not present the right state. 2998 TPT.rollback(LastKnownGood); 2999 3000 // If the match didn't cover I, then it won't be shared by it. 3001 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), 3002 I) == MatchedAddrModeInsts.end()) 3003 return false; 3004 3005 MatchedAddrModeInsts.clear(); 3006 } 3007 3008 return true; 3009 } 3010 3011 } // end anonymous namespace 3012 3013 /// IsNonLocalValue - Return true if the specified values are defined in a 3014 /// different basic block than BB. 3015 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 3016 if (Instruction *I = dyn_cast<Instruction>(V)) 3017 return I->getParent() != BB; 3018 return false; 3019 } 3020 3021 /// OptimizeMemoryInst - Load and Store Instructions often have 3022 /// addressing modes that can do significant amounts of computation. As such, 3023 /// instruction selection will try to get the load or store to do as much 3024 /// computation as possible for the program. The problem is that isel can only 3025 /// see within a single block. As such, we sink as much legal addressing mode 3026 /// stuff into the block as possible. 3027 /// 3028 /// This method is used to optimize both load/store and inline asms with memory 3029 /// operands. 3030 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 3031 Type *AccessTy) { 3032 Value *Repl = Addr; 3033 3034 // Try to collapse single-value PHI nodes. This is necessary to undo 3035 // unprofitable PRE transformations. 3036 SmallVector<Value*, 8> worklist; 3037 SmallPtrSet<Value*, 16> Visited; 3038 worklist.push_back(Addr); 3039 3040 // Use a worklist to iteratively look through PHI nodes, and ensure that 3041 // the addressing mode obtained from the non-PHI roots of the graph 3042 // are equivalent. 3043 Value *Consensus = nullptr; 3044 unsigned NumUsesConsensus = 0; 3045 bool IsNumUsesConsensusValid = false; 3046 SmallVector<Instruction*, 16> AddrModeInsts; 3047 ExtAddrMode AddrMode; 3048 TypePromotionTransaction TPT; 3049 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3050 TPT.getRestorationPoint(); 3051 while (!worklist.empty()) { 3052 Value *V = worklist.back(); 3053 worklist.pop_back(); 3054 3055 // Break use-def graph loops. 3056 if (!Visited.insert(V).second) { 3057 Consensus = nullptr; 3058 break; 3059 } 3060 3061 // For a PHI node, push all of its incoming values. 3062 if (PHINode *P = dyn_cast<PHINode>(V)) { 3063 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) 3064 worklist.push_back(P->getIncomingValue(i)); 3065 continue; 3066 } 3067 3068 // For non-PHIs, determine the addressing mode being computed. 3069 SmallVector<Instruction*, 16> NewAddrModeInsts; 3070 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 3071 V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet, 3072 PromotedInsts, TPT); 3073 3074 // This check is broken into two cases with very similar code to avoid using 3075 // getNumUses() as much as possible. Some values have a lot of uses, so 3076 // calling getNumUses() unconditionally caused a significant compile-time 3077 // regression. 3078 if (!Consensus) { 3079 Consensus = V; 3080 AddrMode = NewAddrMode; 3081 AddrModeInsts = NewAddrModeInsts; 3082 continue; 3083 } else if (NewAddrMode == AddrMode) { 3084 if (!IsNumUsesConsensusValid) { 3085 NumUsesConsensus = Consensus->getNumUses(); 3086 IsNumUsesConsensusValid = true; 3087 } 3088 3089 // Ensure that the obtained addressing mode is equivalent to that obtained 3090 // for all other roots of the PHI traversal. Also, when choosing one 3091 // such root as representative, select the one with the most uses in order 3092 // to keep the cost modeling heuristics in AddressingModeMatcher 3093 // applicable. 3094 unsigned NumUses = V->getNumUses(); 3095 if (NumUses > NumUsesConsensus) { 3096 Consensus = V; 3097 NumUsesConsensus = NumUses; 3098 AddrModeInsts = NewAddrModeInsts; 3099 } 3100 continue; 3101 } 3102 3103 Consensus = nullptr; 3104 break; 3105 } 3106 3107 // If the addressing mode couldn't be determined, or if multiple different 3108 // ones were determined, bail out now. 3109 if (!Consensus) { 3110 TPT.rollback(LastKnownGood); 3111 return false; 3112 } 3113 TPT.commit(); 3114 3115 // Check to see if any of the instructions supersumed by this addr mode are 3116 // non-local to I's BB. 3117 bool AnyNonLocal = false; 3118 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { 3119 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { 3120 AnyNonLocal = true; 3121 break; 3122 } 3123 } 3124 3125 // If all the instructions matched are already in this BB, don't do anything. 3126 if (!AnyNonLocal) { 3127 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 3128 return false; 3129 } 3130 3131 // Insert this computation right after this user. Since our caller is 3132 // scanning from the top of the BB to the bottom, reuse of the expr are 3133 // guaranteed to happen later. 3134 IRBuilder<> Builder(MemoryInst); 3135 3136 // Now that we determined the addressing expression we want to use and know 3137 // that we have to sink it into this block. Check to see if we have already 3138 // done this for some other load/store instr in this block. If so, reuse the 3139 // computation. 3140 Value *&SunkAddr = SunkAddrs[Addr]; 3141 if (SunkAddr) { 3142 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 3143 << *MemoryInst << "\n"); 3144 if (SunkAddr->getType() != Addr->getType()) 3145 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3146 } else if (AddrSinkUsingGEPs || 3147 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 3148 TM->getSubtargetImpl(*MemoryInst->getParent()->getParent()) 3149 ->useAA())) { 3150 // By default, we use the GEP-based method when AA is used later. This 3151 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 3152 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3153 << *MemoryInst << "\n"); 3154 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3155 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 3156 3157 // First, find the pointer. 3158 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 3159 ResultPtr = AddrMode.BaseReg; 3160 AddrMode.BaseReg = nullptr; 3161 } 3162 3163 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 3164 // We can't add more than one pointer together, nor can we scale a 3165 // pointer (both of which seem meaningless). 3166 if (ResultPtr || AddrMode.Scale != 1) 3167 return false; 3168 3169 ResultPtr = AddrMode.ScaledReg; 3170 AddrMode.Scale = 0; 3171 } 3172 3173 if (AddrMode.BaseGV) { 3174 if (ResultPtr) 3175 return false; 3176 3177 ResultPtr = AddrMode.BaseGV; 3178 } 3179 3180 // If the real base value actually came from an inttoptr, then the matcher 3181 // will look through it and provide only the integer value. In that case, 3182 // use it here. 3183 if (!ResultPtr && AddrMode.BaseReg) { 3184 ResultPtr = 3185 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 3186 AddrMode.BaseReg = nullptr; 3187 } else if (!ResultPtr && AddrMode.Scale == 1) { 3188 ResultPtr = 3189 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 3190 AddrMode.Scale = 0; 3191 } 3192 3193 if (!ResultPtr && 3194 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 3195 SunkAddr = Constant::getNullValue(Addr->getType()); 3196 } else if (!ResultPtr) { 3197 return false; 3198 } else { 3199 Type *I8PtrTy = 3200 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 3201 3202 // Start with the base register. Do this first so that subsequent address 3203 // matching finds it last, which will prevent it from trying to match it 3204 // as the scaled value in case it happens to be a mul. That would be 3205 // problematic if we've sunk a different mul for the scale, because then 3206 // we'd end up sinking both muls. 3207 if (AddrMode.BaseReg) { 3208 Value *V = AddrMode.BaseReg; 3209 if (V->getType() != IntPtrTy) 3210 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3211 3212 ResultIndex = V; 3213 } 3214 3215 // Add the scale value. 3216 if (AddrMode.Scale) { 3217 Value *V = AddrMode.ScaledReg; 3218 if (V->getType() == IntPtrTy) { 3219 // done. 3220 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3221 cast<IntegerType>(V->getType())->getBitWidth()) { 3222 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3223 } else { 3224 // It is only safe to sign extend the BaseReg if we know that the math 3225 // required to create it did not overflow before we extend it. Since 3226 // the original IR value was tossed in favor of a constant back when 3227 // the AddrMode was created we need to bail out gracefully if widths 3228 // do not match instead of extending it. 3229 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 3230 if (I && (ResultIndex != AddrMode.BaseReg)) 3231 I->eraseFromParent(); 3232 return false; 3233 } 3234 3235 if (AddrMode.Scale != 1) 3236 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3237 "sunkaddr"); 3238 if (ResultIndex) 3239 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 3240 else 3241 ResultIndex = V; 3242 } 3243 3244 // Add in the Base Offset if present. 3245 if (AddrMode.BaseOffs) { 3246 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3247 if (ResultIndex) { 3248 // We need to add this separately from the scale above to help with 3249 // SDAG consecutive load/store merging. 3250 if (ResultPtr->getType() != I8PtrTy) 3251 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3252 ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3253 } 3254 3255 ResultIndex = V; 3256 } 3257 3258 if (!ResultIndex) { 3259 SunkAddr = ResultPtr; 3260 } else { 3261 if (ResultPtr->getType() != I8PtrTy) 3262 ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy); 3263 SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr"); 3264 } 3265 3266 if (SunkAddr->getType() != Addr->getType()) 3267 SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); 3268 } 3269 } else { 3270 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 3271 << *MemoryInst << "\n"); 3272 Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType()); 3273 Value *Result = nullptr; 3274 3275 // Start with the base register. Do this first so that subsequent address 3276 // matching finds it last, which will prevent it from trying to match it 3277 // as the scaled value in case it happens to be a mul. That would be 3278 // problematic if we've sunk a different mul for the scale, because then 3279 // we'd end up sinking both muls. 3280 if (AddrMode.BaseReg) { 3281 Value *V = AddrMode.BaseReg; 3282 if (V->getType()->isPointerTy()) 3283 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3284 if (V->getType() != IntPtrTy) 3285 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 3286 Result = V; 3287 } 3288 3289 // Add the scale value. 3290 if (AddrMode.Scale) { 3291 Value *V = AddrMode.ScaledReg; 3292 if (V->getType() == IntPtrTy) { 3293 // done. 3294 } else if (V->getType()->isPointerTy()) { 3295 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 3296 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 3297 cast<IntegerType>(V->getType())->getBitWidth()) { 3298 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 3299 } else { 3300 // It is only safe to sign extend the BaseReg if we know that the math 3301 // required to create it did not overflow before we extend it. Since 3302 // the original IR value was tossed in favor of a constant back when 3303 // the AddrMode was created we need to bail out gracefully if widths 3304 // do not match instead of extending it. 3305 Instruction *I = dyn_cast_or_null<Instruction>(Result); 3306 if (I && (Result != AddrMode.BaseReg)) 3307 I->eraseFromParent(); 3308 return false; 3309 } 3310 if (AddrMode.Scale != 1) 3311 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 3312 "sunkaddr"); 3313 if (Result) 3314 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3315 else 3316 Result = V; 3317 } 3318 3319 // Add in the BaseGV if present. 3320 if (AddrMode.BaseGV) { 3321 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 3322 if (Result) 3323 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3324 else 3325 Result = V; 3326 } 3327 3328 // Add in the Base Offset if present. 3329 if (AddrMode.BaseOffs) { 3330 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 3331 if (Result) 3332 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 3333 else 3334 Result = V; 3335 } 3336 3337 if (!Result) 3338 SunkAddr = Constant::getNullValue(Addr->getType()); 3339 else 3340 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 3341 } 3342 3343 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 3344 3345 // If we have no uses, recursively delete the value and all dead instructions 3346 // using it. 3347 if (Repl->use_empty()) { 3348 // This can cause recursive deletion, which can invalidate our iterator. 3349 // Use a WeakVH to hold onto it in case this happens. 3350 WeakVH IterHandle(CurInstIterator); 3351 BasicBlock *BB = CurInstIterator->getParent(); 3352 3353 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 3354 3355 if (IterHandle != CurInstIterator) { 3356 // If the iterator instruction was recursively deleted, start over at the 3357 // start of the block. 3358 CurInstIterator = BB->begin(); 3359 SunkAddrs.clear(); 3360 } 3361 } 3362 ++NumMemoryInsts; 3363 return true; 3364 } 3365 3366 /// OptimizeInlineAsmInst - If there are any memory operands, use 3367 /// OptimizeMemoryInst to sink their address computing into the block when 3368 /// possible / profitable. 3369 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { 3370 bool MadeChange = false; 3371 3372 TargetLowering::AsmOperandInfoVector 3373 TargetConstraints = TLI->ParseConstraints(CS); 3374 unsigned ArgNo = 0; 3375 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3376 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3377 3378 // Compute the constraint code and ConstraintType to use. 3379 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 3380 3381 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 3382 OpInfo.isIndirect) { 3383 Value *OpVal = CS->getArgOperand(ArgNo++); 3384 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); 3385 } else if (OpInfo.Type == InlineAsm::isInput) 3386 ArgNo++; 3387 } 3388 3389 return MadeChange; 3390 } 3391 3392 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 3393 /// sign extensions. 3394 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 3395 assert(!Inst->use_empty() && "Input must have at least one use"); 3396 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 3397 bool IsSExt = isa<SExtInst>(FirstUser); 3398 Type *ExtTy = FirstUser->getType(); 3399 for (const User *U : Inst->users()) { 3400 const Instruction *UI = cast<Instruction>(U); 3401 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 3402 return false; 3403 Type *CurTy = UI->getType(); 3404 // Same input and output types: Same instruction after CSE. 3405 if (CurTy == ExtTy) 3406 continue; 3407 3408 // If IsSExt is true, we are in this situation: 3409 // a = Inst 3410 // b = sext ty1 a to ty2 3411 // c = sext ty1 a to ty3 3412 // Assuming ty2 is shorter than ty3, this could be turned into: 3413 // a = Inst 3414 // b = sext ty1 a to ty2 3415 // c = sext ty2 b to ty3 3416 // However, the last sext is not free. 3417 if (IsSExt) 3418 return false; 3419 3420 // This is a ZExt, maybe this is free to extend from one type to another. 3421 // In that case, we would not account for a different use. 3422 Type *NarrowTy; 3423 Type *LargeTy; 3424 if (ExtTy->getScalarType()->getIntegerBitWidth() > 3425 CurTy->getScalarType()->getIntegerBitWidth()) { 3426 NarrowTy = CurTy; 3427 LargeTy = ExtTy; 3428 } else { 3429 NarrowTy = ExtTy; 3430 LargeTy = CurTy; 3431 } 3432 3433 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 3434 return false; 3435 } 3436 // All uses are the same or can be derived from one another for free. 3437 return true; 3438 } 3439 3440 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 3441 /// load instruction. 3442 /// If an ext(load) can be formed, it is returned via \p LI for the load 3443 /// and \p Inst for the extension. 3444 /// Otherwise LI == nullptr and Inst == nullptr. 3445 /// When some promotion happened, \p TPT contains the proper state to 3446 /// revert them. 3447 /// 3448 /// \return true when promoting was necessary to expose the ext(load) 3449 /// opportunity, false otherwise. 3450 /// 3451 /// Example: 3452 /// \code 3453 /// %ld = load i32* %addr 3454 /// %add = add nuw i32 %ld, 4 3455 /// %zext = zext i32 %add to i64 3456 /// \endcode 3457 /// => 3458 /// \code 3459 /// %ld = load i32* %addr 3460 /// %zext = zext i32 %ld to i64 3461 /// %add = add nuw i64 %zext, 4 3462 /// \encode 3463 /// Thanks to the promotion, we can match zext(load i32*) to i64. 3464 bool CodeGenPrepare::ExtLdPromotion(TypePromotionTransaction &TPT, 3465 LoadInst *&LI, Instruction *&Inst, 3466 const SmallVectorImpl<Instruction *> &Exts, 3467 unsigned CreatedInsts = 0) { 3468 // Iterate over all the extensions to see if one form an ext(load). 3469 for (auto I : Exts) { 3470 // Check if we directly have ext(load). 3471 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 3472 Inst = I; 3473 // No promotion happened here. 3474 return false; 3475 } 3476 // Check whether or not we want to do any promotion. 3477 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 3478 continue; 3479 // Get the action to perform the promotion. 3480 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 3481 I, InsertedTruncsSet, *TLI, PromotedInsts); 3482 // Check if we can promote. 3483 if (!TPH) 3484 continue; 3485 // Save the current state. 3486 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3487 TPT.getRestorationPoint(); 3488 SmallVector<Instruction *, 4> NewExts; 3489 unsigned NewCreatedInsts = 0; 3490 // Promote. 3491 Value *PromotedVal = 3492 TPH(I, TPT, PromotedInsts, NewCreatedInsts, &NewExts, nullptr); 3493 assert(PromotedVal && 3494 "TypePromotionHelper should have filtered out those cases"); 3495 3496 // We would be able to merge only one extension in a load. 3497 // Therefore, if we have more than 1 new extension we heuristically 3498 // cut this search path, because it means we degrade the code quality. 3499 // With exactly 2, the transformation is neutral, because we will merge 3500 // one extension but leave one. However, we optimistically keep going, 3501 // because the new extension may be removed too. 3502 unsigned TotalCreatedInsts = CreatedInsts + NewCreatedInsts; 3503 if (!StressExtLdPromotion && 3504 (TotalCreatedInsts > 1 || 3505 !isPromotedInstructionLegal(*TLI, PromotedVal))) { 3506 // The promotion is not profitable, rollback to the previous state. 3507 TPT.rollback(LastKnownGood); 3508 continue; 3509 } 3510 // The promotion is profitable. 3511 // Check if it exposes an ext(load). 3512 (void)ExtLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInsts); 3513 if (LI && (StressExtLdPromotion || NewCreatedInsts == 0 || 3514 // If we have created a new extension, i.e., now we have two 3515 // extensions. We must make sure one of them is merged with 3516 // the load, otherwise we may degrade the code quality. 3517 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 3518 // Promotion happened. 3519 return true; 3520 // If this does not help to expose an ext(load) then, rollback. 3521 TPT.rollback(LastKnownGood); 3522 } 3523 // None of the extension can form an ext(load). 3524 LI = nullptr; 3525 Inst = nullptr; 3526 return false; 3527 } 3528 3529 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same 3530 /// basic block as the load, unless conditions are unfavorable. This allows 3531 /// SelectionDAG to fold the extend into the load. 3532 /// \p I[in/out] the extension may be modified during the process if some 3533 /// promotions apply. 3534 /// 3535 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *&I) { 3536 // Try to promote a chain of computation if it allows to form 3537 // an extended load. 3538 TypePromotionTransaction TPT; 3539 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3540 TPT.getRestorationPoint(); 3541 SmallVector<Instruction *, 1> Exts; 3542 Exts.push_back(I); 3543 // Look for a load being extended. 3544 LoadInst *LI = nullptr; 3545 Instruction *OldExt = I; 3546 bool HasPromoted = ExtLdPromotion(TPT, LI, I, Exts); 3547 if (!LI || !I) { 3548 assert(!HasPromoted && !LI && "If we did not match any load instruction " 3549 "the code must remain the same"); 3550 I = OldExt; 3551 return false; 3552 } 3553 3554 // If they're already in the same block, there's nothing to do. 3555 // Make the cheap checks first if we did not promote. 3556 // If we promoted, we need to check if it is indeed profitable. 3557 if (!HasPromoted && LI->getParent() == I->getParent()) 3558 return false; 3559 3560 EVT VT = TLI->getValueType(I->getType()); 3561 EVT LoadVT = TLI->getValueType(LI->getType()); 3562 3563 // If the load has other users and the truncate is not free, this probably 3564 // isn't worthwhile. 3565 if (!LI->hasOneUse() && TLI && 3566 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 3567 !TLI->isTruncateFree(I->getType(), LI->getType())) { 3568 I = OldExt; 3569 TPT.rollback(LastKnownGood); 3570 return false; 3571 } 3572 3573 // Check whether the target supports casts folded into loads. 3574 unsigned LType; 3575 if (isa<ZExtInst>(I)) 3576 LType = ISD::ZEXTLOAD; 3577 else { 3578 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 3579 LType = ISD::SEXTLOAD; 3580 } 3581 if (TLI && !TLI->isLoadExtLegal(LType, VT, LoadVT)) { 3582 I = OldExt; 3583 TPT.rollback(LastKnownGood); 3584 return false; 3585 } 3586 3587 // Move the extend into the same block as the load, so that SelectionDAG 3588 // can fold it. 3589 TPT.commit(); 3590 I->removeFromParent(); 3591 I->insertAfter(LI); 3592 ++NumExtsMoved; 3593 return true; 3594 } 3595 3596 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { 3597 BasicBlock *DefBB = I->getParent(); 3598 3599 // If the result of a {s|z}ext and its source are both live out, rewrite all 3600 // other uses of the source with result of extension. 3601 Value *Src = I->getOperand(0); 3602 if (Src->hasOneUse()) 3603 return false; 3604 3605 // Only do this xform if truncating is free. 3606 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 3607 return false; 3608 3609 // Only safe to perform the optimization if the source is also defined in 3610 // this block. 3611 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 3612 return false; 3613 3614 bool DefIsLiveOut = false; 3615 for (User *U : I->users()) { 3616 Instruction *UI = cast<Instruction>(U); 3617 3618 // Figure out which BB this ext is used in. 3619 BasicBlock *UserBB = UI->getParent(); 3620 if (UserBB == DefBB) continue; 3621 DefIsLiveOut = true; 3622 break; 3623 } 3624 if (!DefIsLiveOut) 3625 return false; 3626 3627 // Make sure none of the uses are PHI nodes. 3628 for (User *U : Src->users()) { 3629 Instruction *UI = cast<Instruction>(U); 3630 BasicBlock *UserBB = UI->getParent(); 3631 if (UserBB == DefBB) continue; 3632 // Be conservative. We don't want this xform to end up introducing 3633 // reloads just before load / store instructions. 3634 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 3635 return false; 3636 } 3637 3638 // InsertedTruncs - Only insert one trunc in each block once. 3639 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 3640 3641 bool MadeChange = false; 3642 for (Use &U : Src->uses()) { 3643 Instruction *User = cast<Instruction>(U.getUser()); 3644 3645 // Figure out which BB this ext is used in. 3646 BasicBlock *UserBB = User->getParent(); 3647 if (UserBB == DefBB) continue; 3648 3649 // Both src and def are live in this block. Rewrite the use. 3650 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 3651 3652 if (!InsertedTrunc) { 3653 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3654 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); 3655 InsertedTruncsSet.insert(InsertedTrunc); 3656 } 3657 3658 // Replace a use of the {s|z}ext source with a use of the result. 3659 U = InsertedTrunc; 3660 ++NumExtUses; 3661 MadeChange = true; 3662 } 3663 3664 return MadeChange; 3665 } 3666 3667 /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be 3668 /// turned into an explicit branch. 3669 static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { 3670 // FIXME: This should use the same heuristics as IfConversion to determine 3671 // whether a select is better represented as a branch. This requires that 3672 // branch probability metadata is preserved for the select, which is not the 3673 // case currently. 3674 3675 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 3676 3677 // If the branch is predicted right, an out of order CPU can avoid blocking on 3678 // the compare. Emit cmovs on compares with a memory operand as branches to 3679 // avoid stalls on the load from memory. If the compare has more than one use 3680 // there's probably another cmov or setcc around so it's not worth emitting a 3681 // branch. 3682 if (!Cmp) 3683 return false; 3684 3685 Value *CmpOp0 = Cmp->getOperand(0); 3686 Value *CmpOp1 = Cmp->getOperand(1); 3687 3688 // We check that the memory operand has one use to avoid uses of the loaded 3689 // value directly after the compare, making branches unprofitable. 3690 return Cmp->hasOneUse() && 3691 ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || 3692 (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); 3693 } 3694 3695 3696 /// If we have a SelectInst that will likely profit from branch prediction, 3697 /// turn it into a branch. 3698 bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { 3699 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 3700 3701 // Can we convert the 'select' to CF ? 3702 if (DisableSelectToBranch || OptSize || !TLI || VectorCond) 3703 return false; 3704 3705 TargetLowering::SelectSupportKind SelectKind; 3706 if (VectorCond) 3707 SelectKind = TargetLowering::VectorMaskSelect; 3708 else if (SI->getType()->isVectorTy()) 3709 SelectKind = TargetLowering::ScalarCondVectorVal; 3710 else 3711 SelectKind = TargetLowering::ScalarValSelect; 3712 3713 // Do we have efficient codegen support for this kind of 'selects' ? 3714 if (TLI->isSelectSupported(SelectKind)) { 3715 // We have efficient codegen support for the select instruction. 3716 // Check if it is profitable to keep this 'select'. 3717 if (!TLI->isPredictableSelectExpensive() || 3718 !isFormingBranchFromSelectProfitable(SI)) 3719 return false; 3720 } 3721 3722 ModifiedDT = true; 3723 3724 // First, we split the block containing the select into 2 blocks. 3725 BasicBlock *StartBlock = SI->getParent(); 3726 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); 3727 BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 3728 3729 // Create a new block serving as the landing pad for the branch. 3730 BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", 3731 NextBlock->getParent(), NextBlock); 3732 3733 // Move the unconditional branch from the block with the select in it into our 3734 // landing pad block. 3735 StartBlock->getTerminator()->eraseFromParent(); 3736 BranchInst::Create(NextBlock, SmallBlock); 3737 3738 // Insert the real conditional branch based on the original condition. 3739 BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); 3740 3741 // The select itself is replaced with a PHI Node. 3742 PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); 3743 PN->takeName(SI); 3744 PN->addIncoming(SI->getTrueValue(), StartBlock); 3745 PN->addIncoming(SI->getFalseValue(), SmallBlock); 3746 SI->replaceAllUsesWith(PN); 3747 SI->eraseFromParent(); 3748 3749 // Instruct OptimizeBlock to skip to the next block. 3750 CurInstIterator = StartBlock->end(); 3751 ++NumSelectsExpanded; 3752 return true; 3753 } 3754 3755 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 3756 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 3757 int SplatElem = -1; 3758 for (unsigned i = 0; i < Mask.size(); ++i) { 3759 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 3760 return false; 3761 SplatElem = Mask[i]; 3762 } 3763 3764 return true; 3765 } 3766 3767 /// Some targets have expensive vector shifts if the lanes aren't all the same 3768 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 3769 /// it's often worth sinking a shufflevector splat down to its use so that 3770 /// codegen can spot all lanes are identical. 3771 bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 3772 BasicBlock *DefBB = SVI->getParent(); 3773 3774 // Only do this xform if variable vector shifts are particularly expensive. 3775 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 3776 return false; 3777 3778 // We only expect better codegen by sinking a shuffle if we can recognise a 3779 // constant splat. 3780 if (!isBroadcastShuffle(SVI)) 3781 return false; 3782 3783 // InsertedShuffles - Only insert a shuffle in each block once. 3784 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 3785 3786 bool MadeChange = false; 3787 for (User *U : SVI->users()) { 3788 Instruction *UI = cast<Instruction>(U); 3789 3790 // Figure out which BB this ext is used in. 3791 BasicBlock *UserBB = UI->getParent(); 3792 if (UserBB == DefBB) continue; 3793 3794 // For now only apply this when the splat is used by a shift instruction. 3795 if (!UI->isShift()) continue; 3796 3797 // Everything checks out, sink the shuffle if the user's block doesn't 3798 // already have a copy. 3799 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 3800 3801 if (!InsertedShuffle) { 3802 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 3803 InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0), 3804 SVI->getOperand(1), 3805 SVI->getOperand(2), "", InsertPt); 3806 } 3807 3808 UI->replaceUsesOfWith(SVI, InsertedShuffle); 3809 MadeChange = true; 3810 } 3811 3812 // If we removed all uses, nuke the shuffle. 3813 if (SVI->use_empty()) { 3814 SVI->eraseFromParent(); 3815 MadeChange = true; 3816 } 3817 3818 return MadeChange; 3819 } 3820 3821 namespace { 3822 /// \brief Helper class to promote a scalar operation to a vector one. 3823 /// This class is used to move downward extractelement transition. 3824 /// E.g., 3825 /// a = vector_op <2 x i32> 3826 /// b = extractelement <2 x i32> a, i32 0 3827 /// c = scalar_op b 3828 /// store c 3829 /// 3830 /// => 3831 /// a = vector_op <2 x i32> 3832 /// c = vector_op a (equivalent to scalar_op on the related lane) 3833 /// * d = extractelement <2 x i32> c, i32 0 3834 /// * store d 3835 /// Assuming both extractelement and store can be combine, we get rid of the 3836 /// transition. 3837 class VectorPromoteHelper { 3838 /// Used to perform some checks on the legality of vector operations. 3839 const TargetLowering &TLI; 3840 3841 /// Used to estimated the cost of the promoted chain. 3842 const TargetTransformInfo &TTI; 3843 3844 /// The transition being moved downwards. 3845 Instruction *Transition; 3846 /// The sequence of instructions to be promoted. 3847 SmallVector<Instruction *, 4> InstsToBePromoted; 3848 /// Cost of combining a store and an extract. 3849 unsigned StoreExtractCombineCost; 3850 /// Instruction that will be combined with the transition. 3851 Instruction *CombineInst; 3852 3853 /// \brief The instruction that represents the current end of the transition. 3854 /// Since we are faking the promotion until we reach the end of the chain 3855 /// of computation, we need a way to get the current end of the transition. 3856 Instruction *getEndOfTransition() const { 3857 if (InstsToBePromoted.empty()) 3858 return Transition; 3859 return InstsToBePromoted.back(); 3860 } 3861 3862 /// \brief Return the index of the original value in the transition. 3863 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 3864 /// c, is at index 0. 3865 unsigned getTransitionOriginalValueIdx() const { 3866 assert(isa<ExtractElementInst>(Transition) && 3867 "Other kind of transitions are not supported yet"); 3868 return 0; 3869 } 3870 3871 /// \brief Return the index of the index in the transition. 3872 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 3873 /// is at index 1. 3874 unsigned getTransitionIdx() const { 3875 assert(isa<ExtractElementInst>(Transition) && 3876 "Other kind of transitions are not supported yet"); 3877 return 1; 3878 } 3879 3880 /// \brief Get the type of the transition. 3881 /// This is the type of the original value. 3882 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 3883 /// transition is <2 x i32>. 3884 Type *getTransitionType() const { 3885 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 3886 } 3887 3888 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 3889 /// I.e., we have the following sequence: 3890 /// Def = Transition <ty1> a to <ty2> 3891 /// b = ToBePromoted <ty2> Def, ... 3892 /// => 3893 /// b = ToBePromoted <ty1> a, ... 3894 /// Def = Transition <ty1> ToBePromoted to <ty2> 3895 void promoteImpl(Instruction *ToBePromoted); 3896 3897 /// \brief Check whether or not it is profitable to promote all the 3898 /// instructions enqueued to be promoted. 3899 bool isProfitableToPromote() { 3900 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 3901 unsigned Index = isa<ConstantInt>(ValIdx) 3902 ? cast<ConstantInt>(ValIdx)->getZExtValue() 3903 : -1; 3904 Type *PromotedType = getTransitionType(); 3905 3906 StoreInst *ST = cast<StoreInst>(CombineInst); 3907 unsigned AS = ST->getPointerAddressSpace(); 3908 unsigned Align = ST->getAlignment(); 3909 // Check if this store is supported. 3910 if (!TLI.allowsMisalignedMemoryAccesses( 3911 TLI.getValueType(ST->getValueOperand()->getType()), AS, Align)) { 3912 // If this is not supported, there is no way we can combine 3913 // the extract with the store. 3914 return false; 3915 } 3916 3917 // The scalar chain of computation has to pay for the transition 3918 // scalar to vector. 3919 // The vector chain has to account for the combining cost. 3920 uint64_t ScalarCost = 3921 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 3922 uint64_t VectorCost = StoreExtractCombineCost; 3923 for (const auto &Inst : InstsToBePromoted) { 3924 // Compute the cost. 3925 // By construction, all instructions being promoted are arithmetic ones. 3926 // Moreover, one argument is a constant that can be viewed as a splat 3927 // constant. 3928 Value *Arg0 = Inst->getOperand(0); 3929 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 3930 isa<ConstantFP>(Arg0); 3931 TargetTransformInfo::OperandValueKind Arg0OVK = 3932 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3933 : TargetTransformInfo::OK_AnyValue; 3934 TargetTransformInfo::OperandValueKind Arg1OVK = 3935 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 3936 : TargetTransformInfo::OK_AnyValue; 3937 ScalarCost += TTI.getArithmeticInstrCost( 3938 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 3939 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 3940 Arg0OVK, Arg1OVK); 3941 } 3942 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 3943 << ScalarCost << "\nVector: " << VectorCost << '\n'); 3944 return ScalarCost > VectorCost; 3945 } 3946 3947 /// \brief Generate a constant vector with \p Val with the same 3948 /// number of elements as the transition. 3949 /// \p UseSplat defines whether or not \p Val should be replicated 3950 /// accross the whole vector. 3951 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 3952 /// otherwise we generate a vector with as many undef as possible: 3953 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 3954 /// used at the index of the extract. 3955 Value *getConstantVector(Constant *Val, bool UseSplat) const { 3956 unsigned ExtractIdx = UINT_MAX; 3957 if (!UseSplat) { 3958 // If we cannot determine where the constant must be, we have to 3959 // use a splat constant. 3960 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 3961 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 3962 ExtractIdx = CstVal->getSExtValue(); 3963 else 3964 UseSplat = true; 3965 } 3966 3967 unsigned End = getTransitionType()->getVectorNumElements(); 3968 if (UseSplat) 3969 return ConstantVector::getSplat(End, Val); 3970 3971 SmallVector<Constant *, 4> ConstVec; 3972 UndefValue *UndefVal = UndefValue::get(Val->getType()); 3973 for (unsigned Idx = 0; Idx != End; ++Idx) { 3974 if (Idx == ExtractIdx) 3975 ConstVec.push_back(Val); 3976 else 3977 ConstVec.push_back(UndefVal); 3978 } 3979 return ConstantVector::get(ConstVec); 3980 } 3981 3982 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 3983 /// in \p Use can trigger undefined behavior. 3984 static bool canCauseUndefinedBehavior(const Instruction *Use, 3985 unsigned OperandIdx) { 3986 // This is not safe to introduce undef when the operand is on 3987 // the right hand side of a division-like instruction. 3988 if (OperandIdx != 1) 3989 return false; 3990 switch (Use->getOpcode()) { 3991 default: 3992 return false; 3993 case Instruction::SDiv: 3994 case Instruction::UDiv: 3995 case Instruction::SRem: 3996 case Instruction::URem: 3997 return true; 3998 case Instruction::FDiv: 3999 case Instruction::FRem: 4000 return !Use->hasNoNaNs(); 4001 } 4002 llvm_unreachable(nullptr); 4003 } 4004 4005 public: 4006 VectorPromoteHelper(const TargetLowering &TLI, const TargetTransformInfo &TTI, 4007 Instruction *Transition, unsigned CombineCost) 4008 : TLI(TLI), TTI(TTI), Transition(Transition), 4009 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 4010 assert(Transition && "Do not know how to promote null"); 4011 } 4012 4013 /// \brief Check if we can promote \p ToBePromoted to \p Type. 4014 bool canPromote(const Instruction *ToBePromoted) const { 4015 // We could support CastInst too. 4016 return isa<BinaryOperator>(ToBePromoted); 4017 } 4018 4019 /// \brief Check if it is profitable to promote \p ToBePromoted 4020 /// by moving downward the transition through. 4021 bool shouldPromote(const Instruction *ToBePromoted) const { 4022 // Promote only if all the operands can be statically expanded. 4023 // Indeed, we do not want to introduce any new kind of transitions. 4024 for (const Use &U : ToBePromoted->operands()) { 4025 const Value *Val = U.get(); 4026 if (Val == getEndOfTransition()) { 4027 // If the use is a division and the transition is on the rhs, 4028 // we cannot promote the operation, otherwise we may create a 4029 // division by zero. 4030 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 4031 return false; 4032 continue; 4033 } 4034 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 4035 !isa<ConstantFP>(Val)) 4036 return false; 4037 } 4038 // Check that the resulting operation is legal. 4039 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 4040 if (!ISDOpcode) 4041 return false; 4042 return StressStoreExtract || 4043 TLI.isOperationLegalOrCustom( 4044 ISDOpcode, TLI.getValueType(getTransitionType(), true)); 4045 } 4046 4047 /// \brief Check whether or not \p Use can be combined 4048 /// with the transition. 4049 /// I.e., is it possible to do Use(Transition) => AnotherUse? 4050 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 4051 4052 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 4053 void enqueueForPromotion(Instruction *ToBePromoted) { 4054 InstsToBePromoted.push_back(ToBePromoted); 4055 } 4056 4057 /// \brief Set the instruction that will be combined with the transition. 4058 void recordCombineInstruction(Instruction *ToBeCombined) { 4059 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 4060 CombineInst = ToBeCombined; 4061 } 4062 4063 /// \brief Promote all the instructions enqueued for promotion if it is 4064 /// is profitable. 4065 /// \return True if the promotion happened, false otherwise. 4066 bool promote() { 4067 // Check if there is something to promote. 4068 // Right now, if we do not have anything to combine with, 4069 // we assume the promotion is not profitable. 4070 if (InstsToBePromoted.empty() || !CombineInst) 4071 return false; 4072 4073 // Check cost. 4074 if (!StressStoreExtract && !isProfitableToPromote()) 4075 return false; 4076 4077 // Promote. 4078 for (auto &ToBePromoted : InstsToBePromoted) 4079 promoteImpl(ToBePromoted); 4080 InstsToBePromoted.clear(); 4081 return true; 4082 } 4083 }; 4084 } // End of anonymous namespace. 4085 4086 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 4087 // At this point, we know that all the operands of ToBePromoted but Def 4088 // can be statically promoted. 4089 // For Def, we need to use its parameter in ToBePromoted: 4090 // b = ToBePromoted ty1 a 4091 // Def = Transition ty1 b to ty2 4092 // Move the transition down. 4093 // 1. Replace all uses of the promoted operation by the transition. 4094 // = ... b => = ... Def. 4095 assert(ToBePromoted->getType() == Transition->getType() && 4096 "The type of the result of the transition does not match " 4097 "the final type"); 4098 ToBePromoted->replaceAllUsesWith(Transition); 4099 // 2. Update the type of the uses. 4100 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 4101 Type *TransitionTy = getTransitionType(); 4102 ToBePromoted->mutateType(TransitionTy); 4103 // 3. Update all the operands of the promoted operation with promoted 4104 // operands. 4105 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 4106 for (Use &U : ToBePromoted->operands()) { 4107 Value *Val = U.get(); 4108 Value *NewVal = nullptr; 4109 if (Val == Transition) 4110 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 4111 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 4112 isa<ConstantFP>(Val)) { 4113 // Use a splat constant if it is not safe to use undef. 4114 NewVal = getConstantVector( 4115 cast<Constant>(Val), 4116 isa<UndefValue>(Val) || 4117 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 4118 } else 4119 llvm_unreachable("Did you modified shouldPromote and forgot to update " 4120 "this?"); 4121 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 4122 } 4123 Transition->removeFromParent(); 4124 Transition->insertAfter(ToBePromoted); 4125 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 4126 } 4127 4128 // See if we can speculate calls to intrinsic cttz/ctlz. 4129 // 4130 // Example: 4131 // entry: 4132 // ... 4133 // %cmp = icmp eq i64 %val, 0 4134 // br i1 %cmp, label %end.bb, label %then.bb 4135 // 4136 // then.bb: 4137 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 true) 4138 // br label %EndBB 4139 // 4140 // end.bb: 4141 // %cond = phi i64 [ %c, %then.bb ], [ 64, %entry ] 4142 // 4143 // ==> 4144 // 4145 // entry: 4146 // ... 4147 // %c = tail call i64 @llvm.cttz.i64(i64 %val, i1 false) 4148 // 4149 static bool OptimizeBranchInst(BranchInst *BrInst, const TargetLowering &TLI) { 4150 assert(BrInst->isConditional() && "Expected a conditional branch!"); 4151 BasicBlock *ThenBB = BrInst->getSuccessor(1); 4152 BasicBlock *EndBB = BrInst->getSuccessor(0); 4153 4154 // See if ThenBB contains only one instruction (excluding the 4155 // terminator and DbgInfoIntrinsic calls). 4156 IntrinsicInst *II = nullptr; 4157 CastInst *CI = nullptr; 4158 for (BasicBlock::iterator I = ThenBB->begin(), 4159 E = std::prev(ThenBB->end()); I != E; ++I) { 4160 // Skip debug info. 4161 if (isa<DbgInfoIntrinsic>(I)) 4162 continue; 4163 4164 // Check if this is a zero extension or a truncate of a previously 4165 // matched call to intrinsic cttz/ctlz. 4166 if (II) { 4167 // Early exit if we already found a "free" zero extend/truncate. 4168 if (CI) 4169 return false; 4170 4171 Type *SrcTy = II->getType(); 4172 Type *DestTy = I->getType(); 4173 Value *V; 4174 4175 if (match(cast<Instruction>(I), m_ZExt(m_Value(V))) && V == II) { 4176 // Speculate this zero extend only if it is "free" for the target. 4177 if (TLI.isZExtFree(SrcTy, DestTy)) { 4178 CI = cast<CastInst>(I); 4179 continue; 4180 } 4181 } else if (match(cast<Instruction>(I), m_Trunc(m_Value(V))) && V == II) { 4182 // Speculate this truncate only if it is "free" for the target. 4183 if (TLI.isTruncateFree(SrcTy, DestTy)) { 4184 CI = cast<CastInst>(I); 4185 continue; 4186 } 4187 } else { 4188 // Avoid speculating more than one instruction. 4189 return false; 4190 } 4191 } 4192 4193 // See if this is a call to intrinsic cttz/ctlz. 4194 if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::cttz>())) { 4195 // Avoid speculating expensive intrinsic calls. 4196 if (!TLI.isCheapToSpeculateCttz()) 4197 return false; 4198 } 4199 else if (match(cast<Instruction>(I), m_Intrinsic<Intrinsic::ctlz>())) { 4200 // Avoid speculating expensive intrinsic calls. 4201 if (!TLI.isCheapToSpeculateCtlz()) 4202 return false; 4203 } else 4204 return false; 4205 4206 II = cast<IntrinsicInst>(I); 4207 } 4208 4209 // Look for PHI nodes with 'II' as the incoming value from 'ThenBB'. 4210 BasicBlock *EntryBB = BrInst->getParent(); 4211 for (BasicBlock::iterator I = EndBB->begin(); 4212 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 4213 Value *ThenV = PN->getIncomingValueForBlock(ThenBB); 4214 Value *OrigV = PN->getIncomingValueForBlock(EntryBB); 4215 4216 if (!OrigV) 4217 return false; 4218 4219 if (ThenV != II && (!CI || ThenV != CI)) 4220 return false; 4221 4222 if (ConstantInt *CInt = dyn_cast<ConstantInt>(OrigV)) { 4223 unsigned BitWidth = II->getType()->getIntegerBitWidth(); 4224 4225 // Don't try to simplify this phi node if 'ThenV' is a cttz/ctlz 4226 // intrinsic call, but 'OrigV' is not equal to the 'size-of' in bits 4227 // of the value in input to the cttz/ctlz. 4228 if (CInt->getValue() != BitWidth) 4229 return false; 4230 4231 // Hoist the call to cttz/ctlz from ThenBB into EntryBB. 4232 EntryBB->getInstList().splice(BrInst, ThenBB->getInstList(), 4233 ThenBB->begin(), std::prev(ThenBB->end())); 4234 4235 // Update PN setting ThenV as the incoming value from both 'EntryBB' 4236 // and 'ThenBB'. Eventually, method 'OptimizeInst' will fold this 4237 // phi node if all the incoming values are the same. 4238 PN->setIncomingValue(PN->getBasicBlockIndex(EntryBB), ThenV); 4239 PN->setIncomingValue(PN->getBasicBlockIndex(ThenBB), ThenV); 4240 4241 // Clear the 'undef on zero' flag of the cttz/ctlz intrinsic call. 4242 if (cast<ConstantInt>(II->getArgOperand(1))->isOne()) { 4243 Type *Ty = II->getArgOperand(0)->getType(); 4244 Value *Args[] = { II->getArgOperand(0), 4245 ConstantInt::getFalse(II->getContext()) }; 4246 Module *M = EntryBB->getParent()->getParent(); 4247 Value *IF = Intrinsic::getDeclaration(M, II->getIntrinsicID(), Ty); 4248 IRBuilder<> Builder(II); 4249 Instruction *NewI = Builder.CreateCall(IF, Args); 4250 4251 // Replace the old call to cttz/ctlz. 4252 II->replaceAllUsesWith(NewI); 4253 II->eraseFromParent(); 4254 } 4255 4256 // Update BrInst condition so that the branch to EndBB is always taken. 4257 // Later on, method 'ConstantFoldTerminator' will simplify this branch 4258 // replacing it with a direct branch to 'EndBB'. 4259 // As a side effect, CodeGenPrepare will attempt to simplify the control 4260 // flow graph by deleting basic block 'ThenBB' and merging 'EntryBB' into 4261 // 'EndBB' (calling method 'EliminateFallThrough'). 4262 BrInst->setCondition(ConstantInt::getTrue(BrInst->getContext())); 4263 return true; 4264 } 4265 } 4266 4267 return false; 4268 } 4269 4270 /// Some targets can do store(extractelement) with one instruction. 4271 /// Try to push the extractelement towards the stores when the target 4272 /// has this feature and this is profitable. 4273 bool CodeGenPrepare::OptimizeExtractElementInst(Instruction *Inst) { 4274 unsigned CombineCost = UINT_MAX; 4275 if (DisableStoreExtract || !TLI || 4276 (!StressStoreExtract && 4277 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 4278 Inst->getOperand(1), CombineCost))) 4279 return false; 4280 4281 // At this point we know that Inst is a vector to scalar transition. 4282 // Try to move it down the def-use chain, until: 4283 // - We can combine the transition with its single use 4284 // => we got rid of the transition. 4285 // - We escape the current basic block 4286 // => we would need to check that we are moving it at a cheaper place and 4287 // we do not do that for now. 4288 BasicBlock *Parent = Inst->getParent(); 4289 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 4290 VectorPromoteHelper VPH(*TLI, *TTI, Inst, CombineCost); 4291 // If the transition has more than one use, assume this is not going to be 4292 // beneficial. 4293 while (Inst->hasOneUse()) { 4294 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 4295 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 4296 4297 if (ToBePromoted->getParent() != Parent) { 4298 DEBUG(dbgs() << "Instruction to promote is in a different block (" 4299 << ToBePromoted->getParent()->getName() 4300 << ") than the transition (" << Parent->getName() << ").\n"); 4301 return false; 4302 } 4303 4304 if (VPH.canCombine(ToBePromoted)) { 4305 DEBUG(dbgs() << "Assume " << *Inst << '\n' 4306 << "will be combined with: " << *ToBePromoted << '\n'); 4307 VPH.recordCombineInstruction(ToBePromoted); 4308 bool Changed = VPH.promote(); 4309 NumStoreExtractExposed += Changed; 4310 return Changed; 4311 } 4312 4313 DEBUG(dbgs() << "Try promoting.\n"); 4314 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 4315 return false; 4316 4317 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 4318 4319 VPH.enqueueForPromotion(ToBePromoted); 4320 Inst = ToBePromoted; 4321 } 4322 return false; 4323 } 4324 4325 bool CodeGenPrepare::OptimizeInst(Instruction *I, bool& ModifiedDT) { 4326 if (PHINode *P = dyn_cast<PHINode>(I)) { 4327 // It is possible for very late stage optimizations (such as SimplifyCFG) 4328 // to introduce PHI nodes too late to be cleaned up. If we detect such a 4329 // trivial PHI, go ahead and zap it here. 4330 if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr, 4331 TLInfo, DT)) { 4332 P->replaceAllUsesWith(V); 4333 P->eraseFromParent(); 4334 ++NumPHIsElim; 4335 return true; 4336 } 4337 return false; 4338 } 4339 4340 if (CastInst *CI = dyn_cast<CastInst>(I)) { 4341 // If the source of the cast is a constant, then this should have 4342 // already been constant folded. The only reason NOT to constant fold 4343 // it is if something (e.g. LSR) was careful to place the constant 4344 // evaluation in a block other than then one that uses it (e.g. to hoist 4345 // the address of globals out of a loop). If this is the case, we don't 4346 // want to forward-subst the cast. 4347 if (isa<Constant>(CI->getOperand(0))) 4348 return false; 4349 4350 if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) 4351 return true; 4352 4353 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 4354 /// Sink a zext or sext into its user blocks if the target type doesn't 4355 /// fit in one register 4356 if (TLI && TLI->getTypeAction(CI->getContext(), 4357 TLI->getValueType(CI->getType())) == 4358 TargetLowering::TypeExpandInteger) { 4359 return SinkCast(CI); 4360 } else { 4361 bool MadeChange = MoveExtToFormExtLoad(I); 4362 return MadeChange | OptimizeExtUses(I); 4363 } 4364 } 4365 return false; 4366 } 4367 4368 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4369 if (!TLI || !TLI->hasMultipleConditionRegisters()) 4370 return OptimizeCmpExpression(CI); 4371 4372 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 4373 if (TLI) 4374 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); 4375 return false; 4376 } 4377 4378 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 4379 if (TLI) 4380 return OptimizeMemoryInst(I, SI->getOperand(1), 4381 SI->getOperand(0)->getType()); 4382 return false; 4383 } 4384 4385 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 4386 4387 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 4388 BinOp->getOpcode() == Instruction::LShr)) { 4389 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 4390 if (TLI && CI && TLI->hasExtractBitsInsn()) 4391 return OptimizeExtractBits(BinOp, CI, *TLI); 4392 4393 return false; 4394 } 4395 4396 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 4397 if (GEPI->hasAllZeroIndices()) { 4398 /// The GEP operand must be a pointer, so must its result -> BitCast 4399 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 4400 GEPI->getName(), GEPI); 4401 GEPI->replaceAllUsesWith(NC); 4402 GEPI->eraseFromParent(); 4403 ++NumGEPsElim; 4404 OptimizeInst(NC, ModifiedDT); 4405 return true; 4406 } 4407 return false; 4408 } 4409 4410 if (CallInst *CI = dyn_cast<CallInst>(I)) 4411 return OptimizeCallInst(CI, ModifiedDT); 4412 4413 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 4414 return OptimizeSelectInst(SI); 4415 4416 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 4417 return OptimizeShuffleVectorInst(SVI); 4418 4419 if (isa<ExtractElementInst>(I)) 4420 return OptimizeExtractElementInst(I); 4421 4422 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 4423 if (TLI && BI->isConditional() && BI->getCondition()->hasOneUse()) { 4424 // Check if the branch condition compares a value agaist zero. 4425 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 4426 if (ICI->getPredicate() == ICmpInst::ICMP_EQ && 4427 match(ICI->getOperand(1), m_Zero())) { 4428 BasicBlock *ThenBB = BI->getSuccessor(1); 4429 BasicBlock *EndBB = BI->getSuccessor(0); 4430 4431 // Check if ThenBB is only reachable from this basic block; also, 4432 // check if EndBB has more than one predecessor. 4433 if (ThenBB->getSinglePredecessor() && 4434 !EndBB->getSinglePredecessor()) { 4435 TerminatorInst *TI = ThenBB->getTerminator(); 4436 4437 if (TI->getNumSuccessors() == 1 && TI->getSuccessor(0) == EndBB && 4438 // Try to speculate calls to intrinsic cttz/ctlz from 'ThenBB'. 4439 OptimizeBranchInst(BI, *TLI)) { 4440 ModifiedDT = true; 4441 return true; 4442 } 4443 } 4444 } 4445 } 4446 } 4447 return false; 4448 } 4449 4450 return false; 4451 } 4452 4453 // In this pass we look for GEP and cast instructions that are used 4454 // across basic blocks and rewrite them to improve basic-block-at-a-time 4455 // selection. 4456 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 4457 SunkAddrs.clear(); 4458 bool MadeChange = false; 4459 4460 CurInstIterator = BB.begin(); 4461 while (CurInstIterator != BB.end()) { 4462 MadeChange |= OptimizeInst(CurInstIterator++, ModifiedDT); 4463 if (ModifiedDT) 4464 return true; 4465 } 4466 MadeChange |= DupRetToEnableTailCallOpts(&BB); 4467 4468 return MadeChange; 4469 } 4470 4471 // llvm.dbg.value is far away from the value then iSel may not be able 4472 // handle it properly. iSel will drop llvm.dbg.value if it can not 4473 // find a node corresponding to the value. 4474 bool CodeGenPrepare::PlaceDbgValues(Function &F) { 4475 bool MadeChange = false; 4476 for (BasicBlock &BB : F) { 4477 Instruction *PrevNonDbgInst = nullptr; 4478 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 4479 Instruction *Insn = BI++; 4480 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 4481 // Leave dbg.values that refer to an alloca alone. These 4482 // instrinsics describe the address of a variable (= the alloca) 4483 // being taken. They should not be moved next to the alloca 4484 // (and to the beginning of the scope), but rather stay close to 4485 // where said address is used. 4486 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 4487 PrevNonDbgInst = Insn; 4488 continue; 4489 } 4490 4491 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 4492 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 4493 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 4494 DVI->removeFromParent(); 4495 if (isa<PHINode>(VI)) 4496 DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); 4497 else 4498 DVI->insertAfter(VI); 4499 MadeChange = true; 4500 ++NumDbgValueMoved; 4501 } 4502 } 4503 } 4504 return MadeChange; 4505 } 4506 4507 // If there is a sequence that branches based on comparing a single bit 4508 // against zero that can be combined into a single instruction, and the 4509 // target supports folding these into a single instruction, sink the 4510 // mask and compare into the branch uses. Do this before OptimizeBlock -> 4511 // OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being 4512 // searched for. 4513 bool CodeGenPrepare::sinkAndCmp(Function &F) { 4514 if (!EnableAndCmpSinking) 4515 return false; 4516 if (!TLI || !TLI->isMaskAndBranchFoldingLegal()) 4517 return false; 4518 bool MadeChange = false; 4519 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) { 4520 BasicBlock *BB = I++; 4521 4522 // Does this BB end with the following? 4523 // %andVal = and %val, #single-bit-set 4524 // %icmpVal = icmp %andResult, 0 4525 // br i1 %cmpVal label %dest1, label %dest2" 4526 BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator()); 4527 if (!Brcc || !Brcc->isConditional()) 4528 continue; 4529 ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0)); 4530 if (!Cmp || Cmp->getParent() != BB) 4531 continue; 4532 ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1)); 4533 if (!Zero || !Zero->isZero()) 4534 continue; 4535 Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0)); 4536 if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB) 4537 continue; 4538 ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1)); 4539 if (!Mask || !Mask->getUniqueInteger().isPowerOf2()) 4540 continue; 4541 DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump()); 4542 4543 // Push the "and; icmp" for any users that are conditional branches. 4544 // Since there can only be one branch use per BB, we don't need to keep 4545 // track of which BBs we insert into. 4546 for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end(); 4547 UI != E; ) { 4548 Use &TheUse = *UI; 4549 // Find brcc use. 4550 BranchInst *BrccUser = dyn_cast<BranchInst>(*UI); 4551 ++UI; 4552 if (!BrccUser || !BrccUser->isConditional()) 4553 continue; 4554 BasicBlock *UserBB = BrccUser->getParent(); 4555 if (UserBB == BB) continue; 4556 DEBUG(dbgs() << "found Brcc use\n"); 4557 4558 // Sink the "and; icmp" to use. 4559 MadeChange = true; 4560 BinaryOperator *NewAnd = 4561 BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "", 4562 BrccUser); 4563 CmpInst *NewCmp = 4564 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero, 4565 "", BrccUser); 4566 TheUse = NewCmp; 4567 ++NumAndCmpsMoved; 4568 DEBUG(BrccUser->getParent()->dump()); 4569 } 4570 } 4571 return MadeChange; 4572 } 4573 4574 /// \brief Retrieve the probabilities of a conditional branch. Returns true on 4575 /// success, or returns false if no or invalid metadata was found. 4576 static bool extractBranchMetadata(BranchInst *BI, 4577 uint64_t &ProbTrue, uint64_t &ProbFalse) { 4578 assert(BI->isConditional() && 4579 "Looking for probabilities on unconditional branch?"); 4580 auto *ProfileData = BI->getMetadata(LLVMContext::MD_prof); 4581 if (!ProfileData || ProfileData->getNumOperands() != 3) 4582 return false; 4583 4584 const auto *CITrue = 4585 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)); 4586 const auto *CIFalse = 4587 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2)); 4588 if (!CITrue || !CIFalse) 4589 return false; 4590 4591 ProbTrue = CITrue->getValue().getZExtValue(); 4592 ProbFalse = CIFalse->getValue().getZExtValue(); 4593 4594 return true; 4595 } 4596 4597 /// \brief Scale down both weights to fit into uint32_t. 4598 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 4599 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 4600 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 4601 NewTrue = NewTrue / Scale; 4602 NewFalse = NewFalse / Scale; 4603 } 4604 4605 /// \brief Some targets prefer to split a conditional branch like: 4606 /// \code 4607 /// %0 = icmp ne i32 %a, 0 4608 /// %1 = icmp ne i32 %b, 0 4609 /// %or.cond = or i1 %0, %1 4610 /// br i1 %or.cond, label %TrueBB, label %FalseBB 4611 /// \endcode 4612 /// into multiple branch instructions like: 4613 /// \code 4614 /// bb1: 4615 /// %0 = icmp ne i32 %a, 0 4616 /// br i1 %0, label %TrueBB, label %bb2 4617 /// bb2: 4618 /// %1 = icmp ne i32 %b, 0 4619 /// br i1 %1, label %TrueBB, label %FalseBB 4620 /// \endcode 4621 /// This usually allows instruction selection to do even further optimizations 4622 /// and combine the compare with the branch instruction. Currently this is 4623 /// applied for targets which have "cheap" jump instructions. 4624 /// 4625 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 4626 /// 4627 bool CodeGenPrepare::splitBranchCondition(Function &F) { 4628 if (!TM || TM->Options.EnableFastISel != true || 4629 !TLI || TLI->isJumpExpensive()) 4630 return false; 4631 4632 bool MadeChange = false; 4633 for (auto &BB : F) { 4634 // Does this BB end with the following? 4635 // %cond1 = icmp|fcmp|binary instruction ... 4636 // %cond2 = icmp|fcmp|binary instruction ... 4637 // %cond.or = or|and i1 %cond1, cond2 4638 // br i1 %cond.or label %dest1, label %dest2" 4639 BinaryOperator *LogicOp; 4640 BasicBlock *TBB, *FBB; 4641 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 4642 continue; 4643 4644 unsigned Opc; 4645 Value *Cond1, *Cond2; 4646 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 4647 m_OneUse(m_Value(Cond2))))) 4648 Opc = Instruction::And; 4649 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 4650 m_OneUse(m_Value(Cond2))))) 4651 Opc = Instruction::Or; 4652 else 4653 continue; 4654 4655 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 4656 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 4657 continue; 4658 4659 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 4660 4661 // Create a new BB. 4662 auto *InsertBefore = std::next(Function::iterator(BB)) 4663 .getNodePtrUnchecked(); 4664 auto TmpBB = BasicBlock::Create(BB.getContext(), 4665 BB.getName() + ".cond.split", 4666 BB.getParent(), InsertBefore); 4667 4668 // Update original basic block by using the first condition directly by the 4669 // branch instruction and removing the no longer needed and/or instruction. 4670 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 4671 Br1->setCondition(Cond1); 4672 LogicOp->eraseFromParent(); 4673 4674 // Depending on the conditon we have to either replace the true or the false 4675 // successor of the original branch instruction. 4676 if (Opc == Instruction::And) 4677 Br1->setSuccessor(0, TmpBB); 4678 else 4679 Br1->setSuccessor(1, TmpBB); 4680 4681 // Fill in the new basic block. 4682 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 4683 if (auto *I = dyn_cast<Instruction>(Cond2)) { 4684 I->removeFromParent(); 4685 I->insertBefore(Br2); 4686 } 4687 4688 // Update PHI nodes in both successors. The original BB needs to be 4689 // replaced in one succesor's PHI nodes, because the branch comes now from 4690 // the newly generated BB (NewBB). In the other successor we need to add one 4691 // incoming edge to the PHI nodes, because both branch instructions target 4692 // now the same successor. Depending on the original branch condition 4693 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 4694 // we perfrom the correct update for the PHI nodes. 4695 // This doesn't change the successor order of the just created branch 4696 // instruction (or any other instruction). 4697 if (Opc == Instruction::Or) 4698 std::swap(TBB, FBB); 4699 4700 // Replace the old BB with the new BB. 4701 for (auto &I : *TBB) { 4702 PHINode *PN = dyn_cast<PHINode>(&I); 4703 if (!PN) 4704 break; 4705 int i; 4706 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 4707 PN->setIncomingBlock(i, TmpBB); 4708 } 4709 4710 // Add another incoming edge form the new BB. 4711 for (auto &I : *FBB) { 4712 PHINode *PN = dyn_cast<PHINode>(&I); 4713 if (!PN) 4714 break; 4715 auto *Val = PN->getIncomingValueForBlock(&BB); 4716 PN->addIncoming(Val, TmpBB); 4717 } 4718 4719 // Update the branch weights (from SelectionDAGBuilder:: 4720 // FindMergedConditions). 4721 if (Opc == Instruction::Or) { 4722 // Codegen X | Y as: 4723 // BB1: 4724 // jmp_if_X TBB 4725 // jmp TmpBB 4726 // TmpBB: 4727 // jmp_if_Y TBB 4728 // jmp FBB 4729 // 4730 4731 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 4732 // The requirement is that 4733 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 4734 // = TrueProb for orignal BB. 4735 // Assuming the orignal weights are A and B, one choice is to set BB1's 4736 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 4737 // assumes that 4738 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 4739 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 4740 // TmpBB, but the math is more complicated. 4741 uint64_t TrueWeight, FalseWeight; 4742 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4743 uint64_t NewTrueWeight = TrueWeight; 4744 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 4745 scaleWeights(NewTrueWeight, NewFalseWeight); 4746 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4747 .createBranchWeights(TrueWeight, FalseWeight)); 4748 4749 NewTrueWeight = TrueWeight; 4750 NewFalseWeight = 2 * FalseWeight; 4751 scaleWeights(NewTrueWeight, NewFalseWeight); 4752 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4753 .createBranchWeights(TrueWeight, FalseWeight)); 4754 } 4755 } else { 4756 // Codegen X & Y as: 4757 // BB1: 4758 // jmp_if_X TmpBB 4759 // jmp FBB 4760 // TmpBB: 4761 // jmp_if_Y TBB 4762 // jmp FBB 4763 // 4764 // This requires creation of TmpBB after CurBB. 4765 4766 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 4767 // The requirement is that 4768 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 4769 // = FalseProb for orignal BB. 4770 // Assuming the orignal weights are A and B, one choice is to set BB1's 4771 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 4772 // assumes that 4773 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 4774 uint64_t TrueWeight, FalseWeight; 4775 if (extractBranchMetadata(Br1, TrueWeight, FalseWeight)) { 4776 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 4777 uint64_t NewFalseWeight = FalseWeight; 4778 scaleWeights(NewTrueWeight, NewFalseWeight); 4779 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 4780 .createBranchWeights(TrueWeight, FalseWeight)); 4781 4782 NewTrueWeight = 2 * TrueWeight; 4783 NewFalseWeight = FalseWeight; 4784 scaleWeights(NewTrueWeight, NewFalseWeight); 4785 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 4786 .createBranchWeights(TrueWeight, FalseWeight)); 4787 } 4788 } 4789 4790 // Request DOM Tree update. 4791 // Note: No point in getting fancy here, since the DT info is never 4792 // available to CodeGenPrepare and the existing update code is broken 4793 // anyways. 4794 ModifiedDT = true; 4795 4796 MadeChange = true; 4797 4798 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 4799 TmpBB->dump()); 4800 } 4801 return MadeChange; 4802 } 4803