1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/Analysis.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/SelectionDAGNodes.h" 37 #include "llvm/CodeGen/TargetLowering.h" 38 #include "llvm/CodeGen/TargetPassConfig.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Argument.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/MDBuilder.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/PatternMatch.h" 67 #include "llvm/IR/Statepoint.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/Use.h" 70 #include "llvm/IR/User.h" 71 #include "llvm/IR/Value.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/IR/ValueMap.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/BlockFrequency.h" 76 #include "llvm/Support/BranchProbability.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/MachineValueType.h" 83 #include "llvm/Support/MathExtras.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include "llvm/Target/TargetOptions.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <iterator> 94 #include <limits> 95 #include <memory> 96 #include <utility> 97 #include <vector> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define DEBUG_TYPE "codegenprepare" 103 104 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 105 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 106 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 108 "sunken Cmps"); 109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 110 "of sunken Casts"); 111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 112 "computations were sunk"); 113 STATISTIC(NumMemoryInstsPhiCreated, 114 "Number of phis created when address " 115 "computations were sunk to memory instructions"); 116 STATISTIC(NumMemoryInstsSelectCreated, 117 "Number of select created when address " 118 "computations were sunk to memory instructions"); 119 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 120 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 121 STATISTIC(NumAndsAdded, 122 "Number of and mask instructions added to form ext loads"); 123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 124 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 128 129 static cl::opt<bool> DisableBranchOpts( 130 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 131 cl::desc("Disable branch optimizations in CodeGenPrepare")); 132 133 static cl::opt<bool> 134 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable GC optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> DisableSelectToBranch( 138 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 139 cl::desc("Disable select to branch conversion.")); 140 141 static cl::opt<bool> AddrSinkUsingGEPs( 142 "addr-sink-using-gep", cl::Hidden, cl::init(true), 143 cl::desc("Address sinking in CGP using GEPs.")); 144 145 static cl::opt<bool> EnableAndCmpSinking( 146 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 147 cl::desc("Enable sinkinig and/cmp into branches.")); 148 149 static cl::opt<bool> DisableStoreExtract( 150 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 151 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 152 153 static cl::opt<bool> StressStoreExtract( 154 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> DisableExtLdPromotion( 158 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 159 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 160 "CodeGenPrepare")); 161 162 static cl::opt<bool> StressExtLdPromotion( 163 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 164 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 165 "optimization in CodeGenPrepare")); 166 167 static cl::opt<bool> DisablePreheaderProtect( 168 "disable-preheader-prot", cl::Hidden, cl::init(false), 169 cl::desc("Disable protection against removing loop preheaders")); 170 171 static cl::opt<bool> ProfileGuidedSectionPrefix( 172 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 173 cl::desc("Use profile info to add section prefix for hot/cold functions")); 174 175 static cl::opt<unsigned> FreqRatioToSkipMerge( 176 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 177 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 178 "(frequency of destination block) is greater than this ratio")); 179 180 static cl::opt<bool> ForceSplitStore( 181 "force-split-store", cl::Hidden, cl::init(false), 182 cl::desc("Force store splitting no matter what the target query says.")); 183 184 static cl::opt<bool> 185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 186 cl::desc("Enable merging of redundant sexts when one is dominating" 187 " the other."), cl::init(true)); 188 189 static cl::opt<bool> DisableComplexAddrModes( 190 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 191 cl::desc("Disables combining addressing modes with different parts " 192 "in optimizeMemoryInst.")); 193 194 static cl::opt<bool> 195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 196 cl::desc("Allow creation of Phis in Address sinking.")); 197 198 static cl::opt<bool> 199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 200 cl::desc("Allow creation of selects in Address sinking.")); 201 202 static cl::opt<bool> AddrSinkCombineBaseReg( 203 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 204 cl::desc("Allow combining of BaseReg field in Address sinking.")); 205 206 static cl::opt<bool> AddrSinkCombineBaseGV( 207 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 208 cl::desc("Allow combining of BaseGV field in Address sinking.")); 209 210 static cl::opt<bool> AddrSinkCombineBaseOffs( 211 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 212 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 213 214 static cl::opt<bool> AddrSinkCombineScaledReg( 215 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 216 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 217 218 static cl::opt<bool> 219 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 220 cl::init(true), 221 cl::desc("Enable splitting large offset of GEP.")); 222 223 namespace { 224 225 enum ExtType { 226 ZeroExtension, // Zero extension has been seen. 227 SignExtension, // Sign extension has been seen. 228 BothExtension // This extension type is used if we saw sext after 229 // ZeroExtension had been set, or if we saw zext after 230 // SignExtension had been set. It makes the type 231 // information of a promoted instruction invalid. 232 }; 233 234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 237 using SExts = SmallVector<Instruction *, 16>; 238 using ValueToSExts = DenseMap<Value *, SExts>; 239 240 class TypePromotionTransaction; 241 242 class CodeGenPrepare : public FunctionPass { 243 const TargetMachine *TM = nullptr; 244 const TargetSubtargetInfo *SubtargetInfo; 245 const TargetLowering *TLI = nullptr; 246 const TargetRegisterInfo *TRI; 247 const TargetTransformInfo *TTI = nullptr; 248 const TargetLibraryInfo *TLInfo; 249 const LoopInfo *LI; 250 std::unique_ptr<BlockFrequencyInfo> BFI; 251 std::unique_ptr<BranchProbabilityInfo> BPI; 252 253 /// As we scan instructions optimizing them, this is the next instruction 254 /// to optimize. Transforms that can invalidate this should update it. 255 BasicBlock::iterator CurInstIterator; 256 257 /// Keeps track of non-local addresses that have been sunk into a block. 258 /// This allows us to avoid inserting duplicate code for blocks with 259 /// multiple load/stores of the same address. The usage of WeakTrackingVH 260 /// enables SunkAddrs to be treated as a cache whose entries can be 261 /// invalidated if a sunken address computation has been erased. 262 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 263 264 /// Keeps track of all instructions inserted for the current function. 265 SetOfInstrs InsertedInsts; 266 267 /// Keeps track of the type of the related instruction before their 268 /// promotion for the current function. 269 InstrToOrigTy PromotedInsts; 270 271 /// Keep track of instructions removed during promotion. 272 SetOfInstrs RemovedInsts; 273 274 /// Keep track of sext chains based on their initial value. 275 DenseMap<Value *, Instruction *> SeenChainsForSExt; 276 277 /// Keep track of GEPs accessing the same data structures such as structs or 278 /// arrays that are candidates to be split later because of their large 279 /// size. 280 MapVector< 281 AssertingVH<Value>, 282 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 283 LargeOffsetGEPMap; 284 285 /// Keep track of new GEP base after splitting the GEPs having large offset. 286 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 287 288 /// Map serial numbers to Large offset GEPs. 289 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 290 291 /// Keep track of SExt promoted. 292 ValueToSExts ValToSExtendedUses; 293 294 /// True if optimizing for size. 295 bool OptSize; 296 297 /// DataLayout for the Function being processed. 298 const DataLayout *DL = nullptr; 299 300 public: 301 static char ID; // Pass identification, replacement for typeid 302 303 CodeGenPrepare() : FunctionPass(ID) { 304 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 305 } 306 307 bool runOnFunction(Function &F) override; 308 309 StringRef getPassName() const override { return "CodeGen Prepare"; } 310 311 void getAnalysisUsage(AnalysisUsage &AU) const override { 312 // FIXME: When we can selectively preserve passes, preserve the domtree. 313 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 314 AU.addRequired<TargetLibraryInfoWrapperPass>(); 315 AU.addRequired<TargetTransformInfoWrapperPass>(); 316 AU.addRequired<LoopInfoWrapperPass>(); 317 } 318 319 private: 320 template <typename F> 321 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 322 // Substituting can cause recursive simplifications, which can invalidate 323 // our iterator. Use a WeakTrackingVH to hold onto it in case this 324 // happens. 325 Value *CurValue = &*CurInstIterator; 326 WeakTrackingVH IterHandle(CurValue); 327 328 f(); 329 330 // If the iterator instruction was recursively deleted, start over at the 331 // start of the block. 332 if (IterHandle != CurValue) { 333 CurInstIterator = BB->begin(); 334 SunkAddrs.clear(); 335 } 336 } 337 338 bool eliminateFallThrough(Function &F); 339 bool eliminateMostlyEmptyBlocks(Function &F); 340 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 341 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 342 void eliminateMostlyEmptyBlock(BasicBlock *BB); 343 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 344 bool isPreheader); 345 bool optimizeBlock(BasicBlock &BB, DominatorTree &DT, bool &ModifiedDT); 346 bool optimizeInst(Instruction *I, DominatorTree &DT, bool &ModifiedDT); 347 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 348 Type *AccessTy, unsigned AddrSpace); 349 bool optimizeInlineAsmInst(CallInst *CS); 350 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 351 bool optimizeExt(Instruction *&I); 352 bool optimizeExtUses(Instruction *I); 353 bool optimizeLoadExt(LoadInst *Load); 354 bool optimizeSelectInst(SelectInst *SI, bool &ModifiedDT); 355 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 356 bool optimizeSwitchInst(SwitchInst *SI); 357 bool optimizeExtractElementInst(Instruction *Inst); 358 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 359 bool placeDbgValues(Function &F); 360 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 361 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 362 bool tryToPromoteExts(TypePromotionTransaction &TPT, 363 const SmallVectorImpl<Instruction *> &Exts, 364 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 365 unsigned CreatedInstsCost = 0); 366 bool mergeSExts(Function &F, DominatorTree &DT); 367 bool splitLargeGEPOffsets(); 368 bool performAddressTypePromotion( 369 Instruction *&Inst, 370 bool AllowPromotionWithoutCommonHeader, 371 bool HasPromoted, TypePromotionTransaction &TPT, 372 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 373 bool splitBranchCondition(Function &F, bool &ModifiedDT); 374 bool simplifyOffsetableRelocate(Instruction &I); 375 376 bool tryToSinkFreeOperands(Instruction *I); 377 }; 378 379 } // end anonymous namespace 380 381 char CodeGenPrepare::ID = 0; 382 383 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 384 "Optimize for code generation", false, false) 385 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 386 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 387 "Optimize for code generation", false, false) 388 389 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 390 391 bool CodeGenPrepare::runOnFunction(Function &F) { 392 if (skipFunction(F)) 393 return false; 394 395 DL = &F.getParent()->getDataLayout(); 396 397 bool EverMadeChange = false; 398 // Clear per function information. 399 InsertedInsts.clear(); 400 PromotedInsts.clear(); 401 402 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 403 TM = &TPC->getTM<TargetMachine>(); 404 SubtargetInfo = TM->getSubtargetImpl(F); 405 TLI = SubtargetInfo->getTargetLowering(); 406 TRI = SubtargetInfo->getRegisterInfo(); 407 } 408 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 409 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 410 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 411 BPI.reset(new BranchProbabilityInfo(F, *LI)); 412 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 413 OptSize = F.optForSize(); 414 415 ProfileSummaryInfo *PSI = 416 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 417 if (ProfileGuidedSectionPrefix) { 418 if (PSI->isFunctionHotInCallGraph(&F, *BFI)) 419 F.setSectionPrefix(".hot"); 420 else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) 421 F.setSectionPrefix(".unlikely"); 422 } 423 424 /// This optimization identifies DIV instructions that can be 425 /// profitably bypassed and carried out with a shorter, faster divide. 426 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && 427 TLI->isSlowDivBypassed()) { 428 const DenseMap<unsigned int, unsigned int> &BypassWidths = 429 TLI->getBypassSlowDivWidths(); 430 BasicBlock* BB = &*F.begin(); 431 while (BB != nullptr) { 432 // bypassSlowDivision may create new BBs, but we don't want to reapply the 433 // optimization to those blocks. 434 BasicBlock* Next = BB->getNextNode(); 435 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 436 BB = Next; 437 } 438 } 439 440 // Eliminate blocks that contain only PHI nodes and an 441 // unconditional branch. 442 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 443 444 bool ModifiedDT = false; 445 if (!DisableBranchOpts) 446 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 447 448 // Split some critical edges where one of the sources is an indirect branch, 449 // to help generate sane code for PHIs involving such edges. 450 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 451 452 bool MadeChange = true; 453 while (MadeChange) { 454 MadeChange = false; 455 DominatorTree DT(F); 456 for (Function::iterator I = F.begin(); I != F.end(); ) { 457 BasicBlock *BB = &*I++; 458 bool ModifiedDTOnIteration = false; 459 MadeChange |= optimizeBlock(*BB, DT, ModifiedDTOnIteration); 460 461 // Restart BB iteration if the dominator tree of the Function was changed 462 if (ModifiedDTOnIteration) 463 break; 464 } 465 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 466 MadeChange |= mergeSExts(F, DT); 467 if (!LargeOffsetGEPMap.empty()) 468 MadeChange |= splitLargeGEPOffsets(); 469 470 // Really free removed instructions during promotion. 471 for (Instruction *I : RemovedInsts) 472 I->deleteValue(); 473 474 EverMadeChange |= MadeChange; 475 SeenChainsForSExt.clear(); 476 ValToSExtendedUses.clear(); 477 RemovedInsts.clear(); 478 LargeOffsetGEPMap.clear(); 479 LargeOffsetGEPID.clear(); 480 } 481 482 SunkAddrs.clear(); 483 484 if (!DisableBranchOpts) { 485 MadeChange = false; 486 // Use a set vector to get deterministic iteration order. The order the 487 // blocks are removed may affect whether or not PHI nodes in successors 488 // are removed. 489 SmallSetVector<BasicBlock*, 8> WorkList; 490 for (BasicBlock &BB : F) { 491 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 492 MadeChange |= ConstantFoldTerminator(&BB, true); 493 if (!MadeChange) continue; 494 495 for (SmallVectorImpl<BasicBlock*>::iterator 496 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 497 if (pred_begin(*II) == pred_end(*II)) 498 WorkList.insert(*II); 499 } 500 501 // Delete the dead blocks and any of their dead successors. 502 MadeChange |= !WorkList.empty(); 503 while (!WorkList.empty()) { 504 BasicBlock *BB = WorkList.pop_back_val(); 505 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 506 507 DeleteDeadBlock(BB); 508 509 for (SmallVectorImpl<BasicBlock*>::iterator 510 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 511 if (pred_begin(*II) == pred_end(*II)) 512 WorkList.insert(*II); 513 } 514 515 // Merge pairs of basic blocks with unconditional branches, connected by 516 // a single edge. 517 if (EverMadeChange || MadeChange) 518 MadeChange |= eliminateFallThrough(F); 519 520 EverMadeChange |= MadeChange; 521 } 522 523 if (!DisableGCOpts) { 524 SmallVector<Instruction *, 2> Statepoints; 525 for (BasicBlock &BB : F) 526 for (Instruction &I : BB) 527 if (isStatepoint(I)) 528 Statepoints.push_back(&I); 529 for (auto &I : Statepoints) 530 EverMadeChange |= simplifyOffsetableRelocate(*I); 531 } 532 533 // Do this last to clean up use-before-def scenarios introduced by other 534 // preparatory transforms. 535 EverMadeChange |= placeDbgValues(F); 536 537 return EverMadeChange; 538 } 539 540 /// Merge basic blocks which are connected by a single edge, where one of the 541 /// basic blocks has a single successor pointing to the other basic block, 542 /// which has a single predecessor. 543 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 544 bool Changed = false; 545 // Scan all of the blocks in the function, except for the entry block. 546 // Use a temporary array to avoid iterator being invalidated when 547 // deleting blocks. 548 SmallVector<WeakTrackingVH, 16> Blocks; 549 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 550 Blocks.push_back(&Block); 551 552 for (auto &Block : Blocks) { 553 auto *BB = cast_or_null<BasicBlock>(Block); 554 if (!BB) 555 continue; 556 // If the destination block has a single pred, then this is a trivial 557 // edge, just collapse it. 558 BasicBlock *SinglePred = BB->getSinglePredecessor(); 559 560 // Don't merge if BB's address is taken. 561 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 562 563 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 564 if (Term && !Term->isConditional()) { 565 Changed = true; 566 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 567 568 // Merge BB into SinglePred and delete it. 569 MergeBlockIntoPredecessor(BB); 570 } 571 } 572 return Changed; 573 } 574 575 /// Find a destination block from BB if BB is mergeable empty block. 576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 577 // If this block doesn't end with an uncond branch, ignore it. 578 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 579 if (!BI || !BI->isUnconditional()) 580 return nullptr; 581 582 // If the instruction before the branch (skipping debug info) isn't a phi 583 // node, then other stuff is happening here. 584 BasicBlock::iterator BBI = BI->getIterator(); 585 if (BBI != BB->begin()) { 586 --BBI; 587 while (isa<DbgInfoIntrinsic>(BBI)) { 588 if (BBI == BB->begin()) 589 break; 590 --BBI; 591 } 592 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 593 return nullptr; 594 } 595 596 // Do not break infinite loops. 597 BasicBlock *DestBB = BI->getSuccessor(0); 598 if (DestBB == BB) 599 return nullptr; 600 601 if (!canMergeBlocks(BB, DestBB)) 602 DestBB = nullptr; 603 604 return DestBB; 605 } 606 607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 609 /// edges in ways that are non-optimal for isel. Start by eliminating these 610 /// blocks so we can split them the way we want them. 611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 612 SmallPtrSet<BasicBlock *, 16> Preheaders; 613 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 614 while (!LoopList.empty()) { 615 Loop *L = LoopList.pop_back_val(); 616 LoopList.insert(LoopList.end(), L->begin(), L->end()); 617 if (BasicBlock *Preheader = L->getLoopPreheader()) 618 Preheaders.insert(Preheader); 619 } 620 621 bool MadeChange = false; 622 // Copy blocks into a temporary array to avoid iterator invalidation issues 623 // as we remove them. 624 // Note that this intentionally skips the entry block. 625 SmallVector<WeakTrackingVH, 16> Blocks; 626 for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) 627 Blocks.push_back(&Block); 628 629 for (auto &Block : Blocks) { 630 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 631 if (!BB) 632 continue; 633 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 634 if (!DestBB || 635 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 636 continue; 637 638 eliminateMostlyEmptyBlock(BB); 639 MadeChange = true; 640 } 641 return MadeChange; 642 } 643 644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 645 BasicBlock *DestBB, 646 bool isPreheader) { 647 // Do not delete loop preheaders if doing so would create a critical edge. 648 // Loop preheaders can be good locations to spill registers. If the 649 // preheader is deleted and we create a critical edge, registers may be 650 // spilled in the loop body instead. 651 if (!DisablePreheaderProtect && isPreheader && 652 !(BB->getSinglePredecessor() && 653 BB->getSinglePredecessor()->getSingleSuccessor())) 654 return false; 655 656 // Skip merging if the block's successor is also a successor to any callbr 657 // that leads to this block. 658 // FIXME: Is this really needed? Is this a correctness issue? 659 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 660 if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) 661 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 662 if (DestBB == CBI->getSuccessor(i)) 663 return false; 664 } 665 666 // Try to skip merging if the unique predecessor of BB is terminated by a 667 // switch or indirect branch instruction, and BB is used as an incoming block 668 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 669 // add COPY instructions in the predecessor of BB instead of BB (if it is not 670 // merged). Note that the critical edge created by merging such blocks wont be 671 // split in MachineSink because the jump table is not analyzable. By keeping 672 // such empty block (BB), ISel will place COPY instructions in BB, not in the 673 // predecessor of BB. 674 BasicBlock *Pred = BB->getUniquePredecessor(); 675 if (!Pred || 676 !(isa<SwitchInst>(Pred->getTerminator()) || 677 isa<IndirectBrInst>(Pred->getTerminator()))) 678 return true; 679 680 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 681 return true; 682 683 // We use a simple cost heuristic which determine skipping merging is 684 // profitable if the cost of skipping merging is less than the cost of 685 // merging : Cost(skipping merging) < Cost(merging BB), where the 686 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 687 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 688 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 689 // Freq(Pred) / Freq(BB) > 2. 690 // Note that if there are multiple empty blocks sharing the same incoming 691 // value for the PHIs in the DestBB, we consider them together. In such 692 // case, Cost(merging BB) will be the sum of their frequencies. 693 694 if (!isa<PHINode>(DestBB->begin())) 695 return true; 696 697 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 698 699 // Find all other incoming blocks from which incoming values of all PHIs in 700 // DestBB are the same as the ones from BB. 701 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 702 ++PI) { 703 BasicBlock *DestBBPred = *PI; 704 if (DestBBPred == BB) 705 continue; 706 707 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 708 return DestPN.getIncomingValueForBlock(BB) == 709 DestPN.getIncomingValueForBlock(DestBBPred); 710 })) 711 SameIncomingValueBBs.insert(DestBBPred); 712 } 713 714 // See if all BB's incoming values are same as the value from Pred. In this 715 // case, no reason to skip merging because COPYs are expected to be place in 716 // Pred already. 717 if (SameIncomingValueBBs.count(Pred)) 718 return true; 719 720 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 721 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 722 723 for (auto SameValueBB : SameIncomingValueBBs) 724 if (SameValueBB->getUniquePredecessor() == Pred && 725 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 726 BBFreq += BFI->getBlockFreq(SameValueBB); 727 728 return PredFreq.getFrequency() <= 729 BBFreq.getFrequency() * FreqRatioToSkipMerge; 730 } 731 732 /// Return true if we can merge BB into DestBB if there is a single 733 /// unconditional branch between them, and BB contains no other non-phi 734 /// instructions. 735 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 736 const BasicBlock *DestBB) const { 737 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 738 // the successor. If there are more complex condition (e.g. preheaders), 739 // don't mess around with them. 740 for (const PHINode &PN : BB->phis()) { 741 for (const User *U : PN.users()) { 742 const Instruction *UI = cast<Instruction>(U); 743 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 744 return false; 745 // If User is inside DestBB block and it is a PHINode then check 746 // incoming value. If incoming value is not from BB then this is 747 // a complex condition (e.g. preheaders) we want to avoid here. 748 if (UI->getParent() == DestBB) { 749 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 750 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 751 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 752 if (Insn && Insn->getParent() == BB && 753 Insn->getParent() != UPN->getIncomingBlock(I)) 754 return false; 755 } 756 } 757 } 758 } 759 760 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 761 // and DestBB may have conflicting incoming values for the block. If so, we 762 // can't merge the block. 763 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 764 if (!DestBBPN) return true; // no conflict. 765 766 // Collect the preds of BB. 767 SmallPtrSet<const BasicBlock*, 16> BBPreds; 768 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 769 // It is faster to get preds from a PHI than with pred_iterator. 770 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 771 BBPreds.insert(BBPN->getIncomingBlock(i)); 772 } else { 773 BBPreds.insert(pred_begin(BB), pred_end(BB)); 774 } 775 776 // Walk the preds of DestBB. 777 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 778 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 779 if (BBPreds.count(Pred)) { // Common predecessor? 780 for (const PHINode &PN : DestBB->phis()) { 781 const Value *V1 = PN.getIncomingValueForBlock(Pred); 782 const Value *V2 = PN.getIncomingValueForBlock(BB); 783 784 // If V2 is a phi node in BB, look up what the mapped value will be. 785 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 786 if (V2PN->getParent() == BB) 787 V2 = V2PN->getIncomingValueForBlock(Pred); 788 789 // If there is a conflict, bail out. 790 if (V1 != V2) return false; 791 } 792 } 793 } 794 795 return true; 796 } 797 798 /// Eliminate a basic block that has only phi's and an unconditional branch in 799 /// it. 800 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 801 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 802 BasicBlock *DestBB = BI->getSuccessor(0); 803 804 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 805 << *BB << *DestBB); 806 807 // If the destination block has a single pred, then this is a trivial edge, 808 // just collapse it. 809 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 810 if (SinglePred != DestBB) { 811 assert(SinglePred == BB && 812 "Single predecessor not the same as predecessor"); 813 // Merge DestBB into SinglePred/BB and delete it. 814 MergeBlockIntoPredecessor(DestBB); 815 // Note: BB(=SinglePred) will not be deleted on this path. 816 // DestBB(=its single successor) is the one that was deleted. 817 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 818 return; 819 } 820 } 821 822 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 823 // to handle the new incoming edges it is about to have. 824 for (PHINode &PN : DestBB->phis()) { 825 // Remove the incoming value for BB, and remember it. 826 Value *InVal = PN.removeIncomingValue(BB, false); 827 828 // Two options: either the InVal is a phi node defined in BB or it is some 829 // value that dominates BB. 830 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 831 if (InValPhi && InValPhi->getParent() == BB) { 832 // Add all of the input values of the input PHI as inputs of this phi. 833 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 834 PN.addIncoming(InValPhi->getIncomingValue(i), 835 InValPhi->getIncomingBlock(i)); 836 } else { 837 // Otherwise, add one instance of the dominating value for each edge that 838 // we will be adding. 839 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 840 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 841 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 842 } else { 843 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 844 PN.addIncoming(InVal, *PI); 845 } 846 } 847 } 848 849 // The PHIs are now updated, change everything that refers to BB to use 850 // DestBB and remove BB. 851 BB->replaceAllUsesWith(DestBB); 852 BB->eraseFromParent(); 853 ++NumBlocksElim; 854 855 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 856 } 857 858 // Computes a map of base pointer relocation instructions to corresponding 859 // derived pointer relocation instructions given a vector of all relocate calls 860 static void computeBaseDerivedRelocateMap( 861 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 862 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 863 &RelocateInstMap) { 864 // Collect information in two maps: one primarily for locating the base object 865 // while filling the second map; the second map is the final structure holding 866 // a mapping between Base and corresponding Derived relocate calls 867 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 868 for (auto *ThisRelocate : AllRelocateCalls) { 869 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 870 ThisRelocate->getDerivedPtrIndex()); 871 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 872 } 873 for (auto &Item : RelocateIdxMap) { 874 std::pair<unsigned, unsigned> Key = Item.first; 875 if (Key.first == Key.second) 876 // Base relocation: nothing to insert 877 continue; 878 879 GCRelocateInst *I = Item.second; 880 auto BaseKey = std::make_pair(Key.first, Key.first); 881 882 // We're iterating over RelocateIdxMap so we cannot modify it. 883 auto MaybeBase = RelocateIdxMap.find(BaseKey); 884 if (MaybeBase == RelocateIdxMap.end()) 885 // TODO: We might want to insert a new base object relocate and gep off 886 // that, if there are enough derived object relocates. 887 continue; 888 889 RelocateInstMap[MaybeBase->second].push_back(I); 890 } 891 } 892 893 // Accepts a GEP and extracts the operands into a vector provided they're all 894 // small integer constants 895 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 896 SmallVectorImpl<Value *> &OffsetV) { 897 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 898 // Only accept small constant integer operands 899 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 900 if (!Op || Op->getZExtValue() > 20) 901 return false; 902 } 903 904 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 905 OffsetV.push_back(GEP->getOperand(i)); 906 return true; 907 } 908 909 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 910 // replace, computes a replacement, and affects it. 911 static bool 912 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 913 const SmallVectorImpl<GCRelocateInst *> &Targets) { 914 bool MadeChange = false; 915 // We must ensure the relocation of derived pointer is defined after 916 // relocation of base pointer. If we find a relocation corresponding to base 917 // defined earlier than relocation of base then we move relocation of base 918 // right before found relocation. We consider only relocation in the same 919 // basic block as relocation of base. Relocations from other basic block will 920 // be skipped by optimization and we do not care about them. 921 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 922 &*R != RelocatedBase; ++R) 923 if (auto RI = dyn_cast<GCRelocateInst>(R)) 924 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 925 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 926 RelocatedBase->moveBefore(RI); 927 break; 928 } 929 930 for (GCRelocateInst *ToReplace : Targets) { 931 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 932 "Not relocating a derived object of the original base object"); 933 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 934 // A duplicate relocate call. TODO: coalesce duplicates. 935 continue; 936 } 937 938 if (RelocatedBase->getParent() != ToReplace->getParent()) { 939 // Base and derived relocates are in different basic blocks. 940 // In this case transform is only valid when base dominates derived 941 // relocate. However it would be too expensive to check dominance 942 // for each such relocate, so we skip the whole transformation. 943 continue; 944 } 945 946 Value *Base = ToReplace->getBasePtr(); 947 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 948 if (!Derived || Derived->getPointerOperand() != Base) 949 continue; 950 951 SmallVector<Value *, 2> OffsetV; 952 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 953 continue; 954 955 // Create a Builder and replace the target callsite with a gep 956 assert(RelocatedBase->getNextNode() && 957 "Should always have one since it's not a terminator"); 958 959 // Insert after RelocatedBase 960 IRBuilder<> Builder(RelocatedBase->getNextNode()); 961 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 962 963 // If gc_relocate does not match the actual type, cast it to the right type. 964 // In theory, there must be a bitcast after gc_relocate if the type does not 965 // match, and we should reuse it to get the derived pointer. But it could be 966 // cases like this: 967 // bb1: 968 // ... 969 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 970 // br label %merge 971 // 972 // bb2: 973 // ... 974 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 975 // br label %merge 976 // 977 // merge: 978 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 979 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 980 // 981 // In this case, we can not find the bitcast any more. So we insert a new bitcast 982 // no matter there is already one or not. In this way, we can handle all cases, and 983 // the extra bitcast should be optimized away in later passes. 984 Value *ActualRelocatedBase = RelocatedBase; 985 if (RelocatedBase->getType() != Base->getType()) { 986 ActualRelocatedBase = 987 Builder.CreateBitCast(RelocatedBase, Base->getType()); 988 } 989 Value *Replacement = Builder.CreateGEP( 990 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 991 Replacement->takeName(ToReplace); 992 // If the newly generated derived pointer's type does not match the original derived 993 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 994 Value *ActualReplacement = Replacement; 995 if (Replacement->getType() != ToReplace->getType()) { 996 ActualReplacement = 997 Builder.CreateBitCast(Replacement, ToReplace->getType()); 998 } 999 ToReplace->replaceAllUsesWith(ActualReplacement); 1000 ToReplace->eraseFromParent(); 1001 1002 MadeChange = true; 1003 } 1004 return MadeChange; 1005 } 1006 1007 // Turns this: 1008 // 1009 // %base = ... 1010 // %ptr = gep %base + 15 1011 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1012 // %base' = relocate(%tok, i32 4, i32 4) 1013 // %ptr' = relocate(%tok, i32 4, i32 5) 1014 // %val = load %ptr' 1015 // 1016 // into this: 1017 // 1018 // %base = ... 1019 // %ptr = gep %base + 15 1020 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1021 // %base' = gc.relocate(%tok, i32 4, i32 4) 1022 // %ptr' = gep %base' + 15 1023 // %val = load %ptr' 1024 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 1025 bool MadeChange = false; 1026 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1027 1028 for (auto *U : I.users()) 1029 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1030 // Collect all the relocate calls associated with a statepoint 1031 AllRelocateCalls.push_back(Relocate); 1032 1033 // We need atleast one base pointer relocation + one derived pointer 1034 // relocation to mangle 1035 if (AllRelocateCalls.size() < 2) 1036 return false; 1037 1038 // RelocateInstMap is a mapping from the base relocate instruction to the 1039 // corresponding derived relocate instructions 1040 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1041 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1042 if (RelocateInstMap.empty()) 1043 return false; 1044 1045 for (auto &Item : RelocateInstMap) 1046 // Item.first is the RelocatedBase to offset against 1047 // Item.second is the vector of Targets to replace 1048 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1049 return MadeChange; 1050 } 1051 1052 /// Sink the specified cast instruction into its user blocks. 1053 static bool SinkCast(CastInst *CI) { 1054 BasicBlock *DefBB = CI->getParent(); 1055 1056 /// InsertedCasts - Only insert a cast in each block once. 1057 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1058 1059 bool MadeChange = false; 1060 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1061 UI != E; ) { 1062 Use &TheUse = UI.getUse(); 1063 Instruction *User = cast<Instruction>(*UI); 1064 1065 // Figure out which BB this cast is used in. For PHI's this is the 1066 // appropriate predecessor block. 1067 BasicBlock *UserBB = User->getParent(); 1068 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1069 UserBB = PN->getIncomingBlock(TheUse); 1070 } 1071 1072 // Preincrement use iterator so we don't invalidate it. 1073 ++UI; 1074 1075 // The first insertion point of a block containing an EH pad is after the 1076 // pad. If the pad is the user, we cannot sink the cast past the pad. 1077 if (User->isEHPad()) 1078 continue; 1079 1080 // If the block selected to receive the cast is an EH pad that does not 1081 // allow non-PHI instructions before the terminator, we can't sink the 1082 // cast. 1083 if (UserBB->getTerminator()->isEHPad()) 1084 continue; 1085 1086 // If this user is in the same block as the cast, don't change the cast. 1087 if (UserBB == DefBB) continue; 1088 1089 // If we have already inserted a cast into this block, use it. 1090 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1091 1092 if (!InsertedCast) { 1093 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1094 assert(InsertPt != UserBB->end()); 1095 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1096 CI->getType(), "", &*InsertPt); 1097 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1098 } 1099 1100 // Replace a use of the cast with a use of the new cast. 1101 TheUse = InsertedCast; 1102 MadeChange = true; 1103 ++NumCastUses; 1104 } 1105 1106 // If we removed all uses, nuke the cast. 1107 if (CI->use_empty()) { 1108 salvageDebugInfo(*CI); 1109 CI->eraseFromParent(); 1110 MadeChange = true; 1111 } 1112 1113 return MadeChange; 1114 } 1115 1116 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1117 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1118 /// reduce the number of virtual registers that must be created and coalesced. 1119 /// 1120 /// Return true if any changes are made. 1121 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1122 const DataLayout &DL) { 1123 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1124 // than sinking only nop casts, but is helpful on some platforms. 1125 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1126 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1127 ASC->getDestAddressSpace())) 1128 return false; 1129 } 1130 1131 // If this is a noop copy, 1132 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1133 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1134 1135 // This is an fp<->int conversion? 1136 if (SrcVT.isInteger() != DstVT.isInteger()) 1137 return false; 1138 1139 // If this is an extension, it will be a zero or sign extension, which 1140 // isn't a noop. 1141 if (SrcVT.bitsLT(DstVT)) return false; 1142 1143 // If these values will be promoted, find out what they will be promoted 1144 // to. This helps us consider truncates on PPC as noop copies when they 1145 // are. 1146 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1147 TargetLowering::TypePromoteInteger) 1148 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1149 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1150 TargetLowering::TypePromoteInteger) 1151 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1152 1153 // If, after promotion, these are the same types, this is a noop copy. 1154 if (SrcVT != DstVT) 1155 return false; 1156 1157 return SinkCast(CI); 1158 } 1159 1160 static bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, 1161 Intrinsic::ID IID, DominatorTree &DT) { 1162 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1163 Value *Arg0 = BO->getOperand(0); 1164 Value *Arg1 = BO->getOperand(1); 1165 if (BO->getOpcode() == Instruction::Add && 1166 IID == Intrinsic::usub_with_overflow) { 1167 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1168 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1169 } 1170 1171 Instruction *InsertPt; 1172 if (BO->hasOneUse() && BO->user_back() == Cmp) { 1173 // If the math is only used by the compare, insert at the compare to keep 1174 // the condition in the same block as its users. (CGP aggressively sinks 1175 // compares to help out SDAG.) 1176 InsertPt = Cmp; 1177 } else { 1178 // The math and compare may be independent instructions. Check dominance to 1179 // determine the insertion point for the intrinsic. 1180 bool MathDominates = DT.dominates(BO, Cmp); 1181 if (!MathDominates && !DT.dominates(Cmp, BO)) 1182 return false; 1183 1184 BasicBlock *MathBB = BO->getParent(), *CmpBB = Cmp->getParent(); 1185 if (MathBB != CmpBB) { 1186 // Avoid hoisting an extra op into a dominating block and creating a 1187 // potentially longer critical path. 1188 if (!MathDominates) 1189 return false; 1190 // Check that the insertion doesn't create a value that is live across 1191 // more than two blocks, so to minimise the increase in register pressure. 1192 BasicBlock *Dominator = MathDominates ? MathBB : CmpBB; 1193 BasicBlock *Dominated = MathDominates ? CmpBB : MathBB; 1194 auto Successors = successors(Dominator); 1195 if (llvm::find(Successors, Dominated) == Successors.end()) 1196 return false; 1197 } 1198 1199 InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp); 1200 } 1201 1202 IRBuilder<> Builder(InsertPt); 1203 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1204 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1205 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1206 BO->replaceAllUsesWith(Math); 1207 Cmp->replaceAllUsesWith(OV); 1208 BO->eraseFromParent(); 1209 Cmp->eraseFromParent(); 1210 return true; 1211 } 1212 1213 /// Match special-case patterns that check for unsigned add overflow. 1214 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1215 BinaryOperator *&Add) { 1216 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1217 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1218 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1219 1220 // We are not expecting non-canonical/degenerate code. Just bail out. 1221 if (isa<Constant>(A)) 1222 return false; 1223 1224 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1225 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1226 B = ConstantInt::get(B->getType(), 1); 1227 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1228 B = ConstantInt::get(B->getType(), -1); 1229 else 1230 return false; 1231 1232 // Check the users of the variable operand of the compare looking for an add 1233 // with the adjusted constant. 1234 for (User *U : A->users()) { 1235 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1236 Add = cast<BinaryOperator>(U); 1237 return true; 1238 } 1239 } 1240 return false; 1241 } 1242 1243 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1244 /// intrinsic. Return true if any changes were made. 1245 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1246 const DataLayout &DL, DominatorTree &DT, 1247 bool &ModifiedDT) { 1248 Value *A, *B; 1249 BinaryOperator *Add; 1250 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) 1251 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1252 return false; 1253 1254 if (!TLI.shouldFormOverflowOp(ISD::UADDO, 1255 TLI.getValueType(DL, Add->getType()))) 1256 return false; 1257 1258 // We don't want to move around uses of condition values this late, so we 1259 // check if it is legal to create the call to the intrinsic in the basic 1260 // block containing the icmp. 1261 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1262 return false; 1263 1264 if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow, DT)) 1265 return false; 1266 1267 // Reset callers - do not crash by iterating over a dead instruction. 1268 ModifiedDT = true; 1269 return true; 1270 } 1271 1272 static bool combineToUSubWithOverflow(CmpInst *Cmp, const TargetLowering &TLI, 1273 const DataLayout &DL, DominatorTree &DT, 1274 bool &ModifiedDT) { 1275 // We are not expecting non-canonical/degenerate code. Just bail out. 1276 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1277 if (isa<Constant>(A) && isa<Constant>(B)) 1278 return false; 1279 1280 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1281 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1282 if (Pred == ICmpInst::ICMP_UGT) { 1283 std::swap(A, B); 1284 Pred = ICmpInst::ICMP_ULT; 1285 } 1286 // Convert special-case: (A == 0) is the same as (A u< 1). 1287 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1288 B = ConstantInt::get(B->getType(), 1); 1289 Pred = ICmpInst::ICMP_ULT; 1290 } 1291 // Convert special-case: (A != 0) is the same as (0 u< A). 1292 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1293 std::swap(A, B); 1294 Pred = ICmpInst::ICMP_ULT; 1295 } 1296 if (Pred != ICmpInst::ICMP_ULT) 1297 return false; 1298 1299 // Walk the users of a variable operand of a compare looking for a subtract or 1300 // add with that same operand. Also match the 2nd operand of the compare to 1301 // the add/sub, but that may be a negated constant operand of an add. 1302 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1303 BinaryOperator *Sub = nullptr; 1304 for (User *U : CmpVariableOperand->users()) { 1305 // A - B, A u< B --> usubo(A, B) 1306 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1307 Sub = cast<BinaryOperator>(U); 1308 break; 1309 } 1310 1311 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1312 const APInt *CmpC, *AddC; 1313 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1314 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1315 Sub = cast<BinaryOperator>(U); 1316 break; 1317 } 1318 } 1319 if (!Sub) 1320 return false; 1321 1322 if (!TLI.shouldFormOverflowOp(ISD::USUBO, 1323 TLI.getValueType(DL, Sub->getType()))) 1324 return false; 1325 1326 if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow, DT)) 1327 return false; 1328 1329 // Reset callers - do not crash by iterating over a dead instruction. 1330 ModifiedDT = true; 1331 return true; 1332 } 1333 1334 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1335 /// registers that must be created and coalesced. This is a clear win except on 1336 /// targets with multiple condition code registers (PowerPC), where it might 1337 /// lose; some adjustment may be wanted there. 1338 /// 1339 /// Return true if any changes are made. 1340 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1341 if (TLI.hasMultipleConditionRegisters()) 1342 return false; 1343 1344 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1345 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1346 return false; 1347 1348 // Only insert a cmp in each block once. 1349 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1350 1351 bool MadeChange = false; 1352 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1353 UI != E; ) { 1354 Use &TheUse = UI.getUse(); 1355 Instruction *User = cast<Instruction>(*UI); 1356 1357 // Preincrement use iterator so we don't invalidate it. 1358 ++UI; 1359 1360 // Don't bother for PHI nodes. 1361 if (isa<PHINode>(User)) 1362 continue; 1363 1364 // Figure out which BB this cmp is used in. 1365 BasicBlock *UserBB = User->getParent(); 1366 BasicBlock *DefBB = Cmp->getParent(); 1367 1368 // If this user is in the same block as the cmp, don't change the cmp. 1369 if (UserBB == DefBB) continue; 1370 1371 // If we have already inserted a cmp into this block, use it. 1372 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1373 1374 if (!InsertedCmp) { 1375 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1376 assert(InsertPt != UserBB->end()); 1377 InsertedCmp = 1378 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1379 Cmp->getOperand(0), Cmp->getOperand(1), "", 1380 &*InsertPt); 1381 // Propagate the debug info. 1382 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1383 } 1384 1385 // Replace a use of the cmp with a use of the new cmp. 1386 TheUse = InsertedCmp; 1387 MadeChange = true; 1388 ++NumCmpUses; 1389 } 1390 1391 // If we removed all uses, nuke the cmp. 1392 if (Cmp->use_empty()) { 1393 Cmp->eraseFromParent(); 1394 MadeChange = true; 1395 } 1396 1397 return MadeChange; 1398 } 1399 1400 static bool optimizeCmp(CmpInst *Cmp, const TargetLowering &TLI, 1401 const DataLayout &DL, DominatorTree &DT, 1402 bool &ModifiedDT) { 1403 if (sinkCmpExpression(Cmp, TLI)) 1404 return true; 1405 1406 if (combineToUAddWithOverflow(Cmp, TLI, DL, DT, ModifiedDT)) 1407 return true; 1408 1409 if (combineToUSubWithOverflow(Cmp, TLI, DL, DT, ModifiedDT)) 1410 return true; 1411 1412 return false; 1413 } 1414 1415 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1416 /// used in a compare to allow isel to generate better code for targets where 1417 /// this operation can be combined. 1418 /// 1419 /// Return true if any changes are made. 1420 static bool sinkAndCmp0Expression(Instruction *AndI, 1421 const TargetLowering &TLI, 1422 SetOfInstrs &InsertedInsts) { 1423 // Double-check that we're not trying to optimize an instruction that was 1424 // already optimized by some other part of this pass. 1425 assert(!InsertedInsts.count(AndI) && 1426 "Attempting to optimize already optimized and instruction"); 1427 (void) InsertedInsts; 1428 1429 // Nothing to do for single use in same basic block. 1430 if (AndI->hasOneUse() && 1431 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1432 return false; 1433 1434 // Try to avoid cases where sinking/duplicating is likely to increase register 1435 // pressure. 1436 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1437 !isa<ConstantInt>(AndI->getOperand(1)) && 1438 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1439 return false; 1440 1441 for (auto *U : AndI->users()) { 1442 Instruction *User = cast<Instruction>(U); 1443 1444 // Only sink 'and' feeding icmp with 0. 1445 if (!isa<ICmpInst>(User)) 1446 return false; 1447 1448 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1449 if (!CmpC || !CmpC->isZero()) 1450 return false; 1451 } 1452 1453 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1454 return false; 1455 1456 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1457 LLVM_DEBUG(AndI->getParent()->dump()); 1458 1459 // Push the 'and' into the same block as the icmp 0. There should only be 1460 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1461 // others, so we don't need to keep track of which BBs we insert into. 1462 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1463 UI != E; ) { 1464 Use &TheUse = UI.getUse(); 1465 Instruction *User = cast<Instruction>(*UI); 1466 1467 // Preincrement use iterator so we don't invalidate it. 1468 ++UI; 1469 1470 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1471 1472 // Keep the 'and' in the same place if the use is already in the same block. 1473 Instruction *InsertPt = 1474 User->getParent() == AndI->getParent() ? AndI : User; 1475 Instruction *InsertedAnd = 1476 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1477 AndI->getOperand(1), "", InsertPt); 1478 // Propagate the debug info. 1479 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1480 1481 // Replace a use of the 'and' with a use of the new 'and'. 1482 TheUse = InsertedAnd; 1483 ++NumAndUses; 1484 LLVM_DEBUG(User->getParent()->dump()); 1485 } 1486 1487 // We removed all uses, nuke the and. 1488 AndI->eraseFromParent(); 1489 return true; 1490 } 1491 1492 /// Check if the candidates could be combined with a shift instruction, which 1493 /// includes: 1494 /// 1. Truncate instruction 1495 /// 2. And instruction and the imm is a mask of the low bits: 1496 /// imm & (imm+1) == 0 1497 static bool isExtractBitsCandidateUse(Instruction *User) { 1498 if (!isa<TruncInst>(User)) { 1499 if (User->getOpcode() != Instruction::And || 1500 !isa<ConstantInt>(User->getOperand(1))) 1501 return false; 1502 1503 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1504 1505 if ((Cimm & (Cimm + 1)).getBoolValue()) 1506 return false; 1507 } 1508 return true; 1509 } 1510 1511 /// Sink both shift and truncate instruction to the use of truncate's BB. 1512 static bool 1513 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1514 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1515 const TargetLowering &TLI, const DataLayout &DL) { 1516 BasicBlock *UserBB = User->getParent(); 1517 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1518 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1519 bool MadeChange = false; 1520 1521 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1522 TruncE = TruncI->user_end(); 1523 TruncUI != TruncE;) { 1524 1525 Use &TruncTheUse = TruncUI.getUse(); 1526 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1527 // Preincrement use iterator so we don't invalidate it. 1528 1529 ++TruncUI; 1530 1531 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1532 if (!ISDOpcode) 1533 continue; 1534 1535 // If the use is actually a legal node, there will not be an 1536 // implicit truncate. 1537 // FIXME: always querying the result type is just an 1538 // approximation; some nodes' legality is determined by the 1539 // operand or other means. There's no good way to find out though. 1540 if (TLI.isOperationLegalOrCustom( 1541 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1542 continue; 1543 1544 // Don't bother for PHI nodes. 1545 if (isa<PHINode>(TruncUser)) 1546 continue; 1547 1548 BasicBlock *TruncUserBB = TruncUser->getParent(); 1549 1550 if (UserBB == TruncUserBB) 1551 continue; 1552 1553 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1554 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1555 1556 if (!InsertedShift && !InsertedTrunc) { 1557 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1558 assert(InsertPt != TruncUserBB->end()); 1559 // Sink the shift 1560 if (ShiftI->getOpcode() == Instruction::AShr) 1561 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1562 "", &*InsertPt); 1563 else 1564 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1565 "", &*InsertPt); 1566 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1567 1568 // Sink the trunc 1569 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1570 TruncInsertPt++; 1571 assert(TruncInsertPt != TruncUserBB->end()); 1572 1573 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1574 TruncI->getType(), "", &*TruncInsertPt); 1575 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1576 1577 MadeChange = true; 1578 1579 TruncTheUse = InsertedTrunc; 1580 } 1581 } 1582 return MadeChange; 1583 } 1584 1585 /// Sink the shift *right* instruction into user blocks if the uses could 1586 /// potentially be combined with this shift instruction and generate BitExtract 1587 /// instruction. It will only be applied if the architecture supports BitExtract 1588 /// instruction. Here is an example: 1589 /// BB1: 1590 /// %x.extract.shift = lshr i64 %arg1, 32 1591 /// BB2: 1592 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1593 /// ==> 1594 /// 1595 /// BB2: 1596 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1597 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1598 /// 1599 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1600 /// instruction. 1601 /// Return true if any changes are made. 1602 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1603 const TargetLowering &TLI, 1604 const DataLayout &DL) { 1605 BasicBlock *DefBB = ShiftI->getParent(); 1606 1607 /// Only insert instructions in each block once. 1608 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1609 1610 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1611 1612 bool MadeChange = false; 1613 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1614 UI != E;) { 1615 Use &TheUse = UI.getUse(); 1616 Instruction *User = cast<Instruction>(*UI); 1617 // Preincrement use iterator so we don't invalidate it. 1618 ++UI; 1619 1620 // Don't bother for PHI nodes. 1621 if (isa<PHINode>(User)) 1622 continue; 1623 1624 if (!isExtractBitsCandidateUse(User)) 1625 continue; 1626 1627 BasicBlock *UserBB = User->getParent(); 1628 1629 if (UserBB == DefBB) { 1630 // If the shift and truncate instruction are in the same BB. The use of 1631 // the truncate(TruncUse) may still introduce another truncate if not 1632 // legal. In this case, we would like to sink both shift and truncate 1633 // instruction to the BB of TruncUse. 1634 // for example: 1635 // BB1: 1636 // i64 shift.result = lshr i64 opnd, imm 1637 // trunc.result = trunc shift.result to i16 1638 // 1639 // BB2: 1640 // ----> We will have an implicit truncate here if the architecture does 1641 // not have i16 compare. 1642 // cmp i16 trunc.result, opnd2 1643 // 1644 if (isa<TruncInst>(User) && shiftIsLegal 1645 // If the type of the truncate is legal, no truncate will be 1646 // introduced in other basic blocks. 1647 && 1648 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1649 MadeChange = 1650 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1651 1652 continue; 1653 } 1654 // If we have already inserted a shift into this block, use it. 1655 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1656 1657 if (!InsertedShift) { 1658 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1659 assert(InsertPt != UserBB->end()); 1660 1661 if (ShiftI->getOpcode() == Instruction::AShr) 1662 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1663 "", &*InsertPt); 1664 else 1665 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1666 "", &*InsertPt); 1667 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1668 1669 MadeChange = true; 1670 } 1671 1672 // Replace a use of the shift with a use of the new shift. 1673 TheUse = InsertedShift; 1674 } 1675 1676 // If we removed all uses, nuke the shift. 1677 if (ShiftI->use_empty()) { 1678 salvageDebugInfo(*ShiftI); 1679 ShiftI->eraseFromParent(); 1680 } 1681 1682 return MadeChange; 1683 } 1684 1685 /// If counting leading or trailing zeros is an expensive operation and a zero 1686 /// input is defined, add a check for zero to avoid calling the intrinsic. 1687 /// 1688 /// We want to transform: 1689 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1690 /// 1691 /// into: 1692 /// entry: 1693 /// %cmpz = icmp eq i64 %A, 0 1694 /// br i1 %cmpz, label %cond.end, label %cond.false 1695 /// cond.false: 1696 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1697 /// br label %cond.end 1698 /// cond.end: 1699 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1700 /// 1701 /// If the transform is performed, return true and set ModifiedDT to true. 1702 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1703 const TargetLowering *TLI, 1704 const DataLayout *DL, 1705 bool &ModifiedDT) { 1706 if (!TLI || !DL) 1707 return false; 1708 1709 // If a zero input is undefined, it doesn't make sense to despeculate that. 1710 if (match(CountZeros->getOperand(1), m_One())) 1711 return false; 1712 1713 // If it's cheap to speculate, there's nothing to do. 1714 auto IntrinsicID = CountZeros->getIntrinsicID(); 1715 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1716 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1717 return false; 1718 1719 // Only handle legal scalar cases. Anything else requires too much work. 1720 Type *Ty = CountZeros->getType(); 1721 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1722 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1723 return false; 1724 1725 // The intrinsic will be sunk behind a compare against zero and branch. 1726 BasicBlock *StartBlock = CountZeros->getParent(); 1727 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1728 1729 // Create another block after the count zero intrinsic. A PHI will be added 1730 // in this block to select the result of the intrinsic or the bit-width 1731 // constant if the input to the intrinsic is zero. 1732 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1733 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1734 1735 // Set up a builder to create a compare, conditional branch, and PHI. 1736 IRBuilder<> Builder(CountZeros->getContext()); 1737 Builder.SetInsertPoint(StartBlock->getTerminator()); 1738 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1739 1740 // Replace the unconditional branch that was created by the first split with 1741 // a compare against zero and a conditional branch. 1742 Value *Zero = Constant::getNullValue(Ty); 1743 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1744 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1745 StartBlock->getTerminator()->eraseFromParent(); 1746 1747 // Create a PHI in the end block to select either the output of the intrinsic 1748 // or the bit width of the operand. 1749 Builder.SetInsertPoint(&EndBlock->front()); 1750 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1751 CountZeros->replaceAllUsesWith(PN); 1752 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1753 PN->addIncoming(BitWidth, StartBlock); 1754 PN->addIncoming(CountZeros, CallBlock); 1755 1756 // We are explicitly handling the zero case, so we can set the intrinsic's 1757 // undefined zero argument to 'true'. This will also prevent reprocessing the 1758 // intrinsic; we only despeculate when a zero input is defined. 1759 CountZeros->setArgOperand(1, Builder.getTrue()); 1760 ModifiedDT = true; 1761 return true; 1762 } 1763 1764 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 1765 BasicBlock *BB = CI->getParent(); 1766 1767 // Lower inline assembly if we can. 1768 // If we found an inline asm expession, and if the target knows how to 1769 // lower it to normal LLVM code, do so now. 1770 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 1771 if (TLI->ExpandInlineAsm(CI)) { 1772 // Avoid invalidating the iterator. 1773 CurInstIterator = BB->begin(); 1774 // Avoid processing instructions out of order, which could cause 1775 // reuse before a value is defined. 1776 SunkAddrs.clear(); 1777 return true; 1778 } 1779 // Sink address computing for memory operands into the block. 1780 if (optimizeInlineAsmInst(CI)) 1781 return true; 1782 } 1783 1784 // Align the pointer arguments to this call if the target thinks it's a good 1785 // idea 1786 unsigned MinSize, PrefAlign; 1787 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 1788 for (auto &Arg : CI->arg_operands()) { 1789 // We want to align both objects whose address is used directly and 1790 // objects whose address is used in casts and GEPs, though it only makes 1791 // sense for GEPs if the offset is a multiple of the desired alignment and 1792 // if size - offset meets the size threshold. 1793 if (!Arg->getType()->isPointerTy()) 1794 continue; 1795 APInt Offset(DL->getIndexSizeInBits( 1796 cast<PointerType>(Arg->getType())->getAddressSpace()), 1797 0); 1798 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 1799 uint64_t Offset2 = Offset.getLimitedValue(); 1800 if ((Offset2 & (PrefAlign-1)) != 0) 1801 continue; 1802 AllocaInst *AI; 1803 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 1804 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 1805 AI->setAlignment(PrefAlign); 1806 // Global variables can only be aligned if they are defined in this 1807 // object (i.e. they are uniquely initialized in this object), and 1808 // over-aligning global variables that have an explicit section is 1809 // forbidden. 1810 GlobalVariable *GV; 1811 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 1812 GV->getPointerAlignment(*DL) < PrefAlign && 1813 DL->getTypeAllocSize(GV->getValueType()) >= 1814 MinSize + Offset2) 1815 GV->setAlignment(PrefAlign); 1816 } 1817 // If this is a memcpy (or similar) then we may be able to improve the 1818 // alignment 1819 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 1820 unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); 1821 if (DestAlign > MI->getDestAlignment()) 1822 MI->setDestAlignment(DestAlign); 1823 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 1824 unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 1825 if (SrcAlign > MTI->getSourceAlignment()) 1826 MTI->setSourceAlignment(SrcAlign); 1827 } 1828 } 1829 } 1830 1831 // If we have a cold call site, try to sink addressing computation into the 1832 // cold block. This interacts with our handling for loads and stores to 1833 // ensure that we can fold all uses of a potential addressing computation 1834 // into their uses. TODO: generalize this to work over profiling data 1835 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 1836 for (auto &Arg : CI->arg_operands()) { 1837 if (!Arg->getType()->isPointerTy()) 1838 continue; 1839 unsigned AS = Arg->getType()->getPointerAddressSpace(); 1840 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 1841 } 1842 1843 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 1844 if (II) { 1845 switch (II->getIntrinsicID()) { 1846 default: break; 1847 case Intrinsic::experimental_widenable_condition: { 1848 // Give up on future widening oppurtunties so that we can fold away dead 1849 // paths and merge blocks before going into block-local instruction 1850 // selection. 1851 if (II->use_empty()) { 1852 II->eraseFromParent(); 1853 return true; 1854 } 1855 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 1856 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1857 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1858 }); 1859 return true; 1860 } 1861 case Intrinsic::objectsize: { 1862 // Lower all uses of llvm.objectsize.* 1863 Value *RetVal = 1864 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 1865 1866 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1867 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1868 }); 1869 return true; 1870 } 1871 case Intrinsic::is_constant: { 1872 // If is_constant hasn't folded away yet, lower it to false now. 1873 Constant *RetVal = ConstantInt::get(II->getType(), 0); 1874 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 1875 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 1876 }); 1877 return true; 1878 } 1879 case Intrinsic::aarch64_stlxr: 1880 case Intrinsic::aarch64_stxr: { 1881 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 1882 if (!ExtVal || !ExtVal->hasOneUse() || 1883 ExtVal->getParent() == CI->getParent()) 1884 return false; 1885 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 1886 ExtVal->moveBefore(CI); 1887 // Mark this instruction as "inserted by CGP", so that other 1888 // optimizations don't touch it. 1889 InsertedInsts.insert(ExtVal); 1890 return true; 1891 } 1892 1893 case Intrinsic::launder_invariant_group: 1894 case Intrinsic::strip_invariant_group: { 1895 Value *ArgVal = II->getArgOperand(0); 1896 auto it = LargeOffsetGEPMap.find(II); 1897 if (it != LargeOffsetGEPMap.end()) { 1898 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 1899 // Make sure not to have to deal with iterator invalidation 1900 // after possibly adding ArgVal to LargeOffsetGEPMap. 1901 auto GEPs = std::move(it->second); 1902 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 1903 LargeOffsetGEPMap.erase(II); 1904 } 1905 1906 II->replaceAllUsesWith(ArgVal); 1907 II->eraseFromParent(); 1908 return true; 1909 } 1910 case Intrinsic::cttz: 1911 case Intrinsic::ctlz: 1912 // If counting zeros is expensive, try to avoid it. 1913 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 1914 } 1915 1916 if (TLI) { 1917 SmallVector<Value*, 2> PtrOps; 1918 Type *AccessTy; 1919 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 1920 while (!PtrOps.empty()) { 1921 Value *PtrVal = PtrOps.pop_back_val(); 1922 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 1923 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 1924 return true; 1925 } 1926 } 1927 } 1928 1929 // From here on out we're working with named functions. 1930 if (!CI->getCalledFunction()) return false; 1931 1932 // Lower all default uses of _chk calls. This is very similar 1933 // to what InstCombineCalls does, but here we are only lowering calls 1934 // to fortified library functions (e.g. __memcpy_chk) that have the default 1935 // "don't know" as the objectsize. Anything else should be left alone. 1936 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 1937 if (Value *V = Simplifier.optimizeCall(CI)) { 1938 CI->replaceAllUsesWith(V); 1939 CI->eraseFromParent(); 1940 return true; 1941 } 1942 1943 return false; 1944 } 1945 1946 /// Look for opportunities to duplicate return instructions to the predecessor 1947 /// to enable tail call optimizations. The case it is currently looking for is: 1948 /// @code 1949 /// bb0: 1950 /// %tmp0 = tail call i32 @f0() 1951 /// br label %return 1952 /// bb1: 1953 /// %tmp1 = tail call i32 @f1() 1954 /// br label %return 1955 /// bb2: 1956 /// %tmp2 = tail call i32 @f2() 1957 /// br label %return 1958 /// return: 1959 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 1960 /// ret i32 %retval 1961 /// @endcode 1962 /// 1963 /// => 1964 /// 1965 /// @code 1966 /// bb0: 1967 /// %tmp0 = tail call i32 @f0() 1968 /// ret i32 %tmp0 1969 /// bb1: 1970 /// %tmp1 = tail call i32 @f1() 1971 /// ret i32 %tmp1 1972 /// bb2: 1973 /// %tmp2 = tail call i32 @f2() 1974 /// ret i32 %tmp2 1975 /// @endcode 1976 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 1977 if (!TLI) 1978 return false; 1979 1980 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 1981 if (!RetI) 1982 return false; 1983 1984 PHINode *PN = nullptr; 1985 BitCastInst *BCI = nullptr; 1986 Value *V = RetI->getReturnValue(); 1987 if (V) { 1988 BCI = dyn_cast<BitCastInst>(V); 1989 if (BCI) 1990 V = BCI->getOperand(0); 1991 1992 PN = dyn_cast<PHINode>(V); 1993 if (!PN) 1994 return false; 1995 } 1996 1997 if (PN && PN->getParent() != BB) 1998 return false; 1999 2000 // Make sure there are no instructions between the PHI and return, or that the 2001 // return is the first instruction in the block. 2002 if (PN) { 2003 BasicBlock::iterator BI = BB->begin(); 2004 // Skip over debug and the bitcast. 2005 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); 2006 if (&*BI != RetI) 2007 return false; 2008 } else { 2009 BasicBlock::iterator BI = BB->begin(); 2010 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2011 if (&*BI != RetI) 2012 return false; 2013 } 2014 2015 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2016 /// call. 2017 const Function *F = BB->getParent(); 2018 SmallVector<CallInst*, 4> TailCalls; 2019 if (PN) { 2020 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2021 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2022 // Make sure the phi value is indeed produced by the tail call. 2023 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2024 TLI->mayBeEmittedAsTailCall(CI) && 2025 attributesPermitTailCall(F, CI, RetI, *TLI)) 2026 TailCalls.push_back(CI); 2027 } 2028 } else { 2029 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2030 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2031 if (!VisitedBBs.insert(*PI).second) 2032 continue; 2033 2034 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2035 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2036 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2037 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2038 if (RI == RE) 2039 continue; 2040 2041 CallInst *CI = dyn_cast<CallInst>(&*RI); 2042 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2043 attributesPermitTailCall(F, CI, RetI, *TLI)) 2044 TailCalls.push_back(CI); 2045 } 2046 } 2047 2048 bool Changed = false; 2049 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2050 CallInst *CI = TailCalls[i]; 2051 CallSite CS(CI); 2052 2053 // Make sure the call instruction is followed by an unconditional branch to 2054 // the return block. 2055 BasicBlock *CallBB = CI->getParent(); 2056 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2057 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2058 continue; 2059 2060 // Duplicate the return into CallBB. 2061 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2062 ModifiedDT = Changed = true; 2063 ++NumRetsDup; 2064 } 2065 2066 // If we eliminated all predecessors of the block, delete the block now. 2067 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2068 BB->eraseFromParent(); 2069 2070 return Changed; 2071 } 2072 2073 //===----------------------------------------------------------------------===// 2074 // Memory Optimization 2075 //===----------------------------------------------------------------------===// 2076 2077 namespace { 2078 2079 /// This is an extended version of TargetLowering::AddrMode 2080 /// which holds actual Value*'s for register values. 2081 struct ExtAddrMode : public TargetLowering::AddrMode { 2082 Value *BaseReg = nullptr; 2083 Value *ScaledReg = nullptr; 2084 Value *OriginalValue = nullptr; 2085 bool InBounds = true; 2086 2087 enum FieldName { 2088 NoField = 0x00, 2089 BaseRegField = 0x01, 2090 BaseGVField = 0x02, 2091 BaseOffsField = 0x04, 2092 ScaledRegField = 0x08, 2093 ScaleField = 0x10, 2094 MultipleFields = 0xff 2095 }; 2096 2097 2098 ExtAddrMode() = default; 2099 2100 void print(raw_ostream &OS) const; 2101 void dump() const; 2102 2103 FieldName compare(const ExtAddrMode &other) { 2104 // First check that the types are the same on each field, as differing types 2105 // is something we can't cope with later on. 2106 if (BaseReg && other.BaseReg && 2107 BaseReg->getType() != other.BaseReg->getType()) 2108 return MultipleFields; 2109 if (BaseGV && other.BaseGV && 2110 BaseGV->getType() != other.BaseGV->getType()) 2111 return MultipleFields; 2112 if (ScaledReg && other.ScaledReg && 2113 ScaledReg->getType() != other.ScaledReg->getType()) 2114 return MultipleFields; 2115 2116 // Conservatively reject 'inbounds' mismatches. 2117 if (InBounds != other.InBounds) 2118 return MultipleFields; 2119 2120 // Check each field to see if it differs. 2121 unsigned Result = NoField; 2122 if (BaseReg != other.BaseReg) 2123 Result |= BaseRegField; 2124 if (BaseGV != other.BaseGV) 2125 Result |= BaseGVField; 2126 if (BaseOffs != other.BaseOffs) 2127 Result |= BaseOffsField; 2128 if (ScaledReg != other.ScaledReg) 2129 Result |= ScaledRegField; 2130 // Don't count 0 as being a different scale, because that actually means 2131 // unscaled (which will already be counted by having no ScaledReg). 2132 if (Scale && other.Scale && Scale != other.Scale) 2133 Result |= ScaleField; 2134 2135 if (countPopulation(Result) > 1) 2136 return MultipleFields; 2137 else 2138 return static_cast<FieldName>(Result); 2139 } 2140 2141 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2142 // with no offset. 2143 bool isTrivial() { 2144 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2145 // trivial if at most one of these terms is nonzero, except that BaseGV and 2146 // BaseReg both being zero actually means a null pointer value, which we 2147 // consider to be 'non-zero' here. 2148 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2149 } 2150 2151 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2152 switch (Field) { 2153 default: 2154 return nullptr; 2155 case BaseRegField: 2156 return BaseReg; 2157 case BaseGVField: 2158 return BaseGV; 2159 case ScaledRegField: 2160 return ScaledReg; 2161 case BaseOffsField: 2162 return ConstantInt::get(IntPtrTy, BaseOffs); 2163 } 2164 } 2165 2166 void SetCombinedField(FieldName Field, Value *V, 2167 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2168 switch (Field) { 2169 default: 2170 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2171 break; 2172 case ExtAddrMode::BaseRegField: 2173 BaseReg = V; 2174 break; 2175 case ExtAddrMode::BaseGVField: 2176 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2177 // in the BaseReg field. 2178 assert(BaseReg == nullptr); 2179 BaseReg = V; 2180 BaseGV = nullptr; 2181 break; 2182 case ExtAddrMode::ScaledRegField: 2183 ScaledReg = V; 2184 // If we have a mix of scaled and unscaled addrmodes then we want scale 2185 // to be the scale and not zero. 2186 if (!Scale) 2187 for (const ExtAddrMode &AM : AddrModes) 2188 if (AM.Scale) { 2189 Scale = AM.Scale; 2190 break; 2191 } 2192 break; 2193 case ExtAddrMode::BaseOffsField: 2194 // The offset is no longer a constant, so it goes in ScaledReg with a 2195 // scale of 1. 2196 assert(ScaledReg == nullptr); 2197 ScaledReg = V; 2198 Scale = 1; 2199 BaseOffs = 0; 2200 break; 2201 } 2202 } 2203 }; 2204 2205 } // end anonymous namespace 2206 2207 #ifndef NDEBUG 2208 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2209 AM.print(OS); 2210 return OS; 2211 } 2212 #endif 2213 2214 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2215 void ExtAddrMode::print(raw_ostream &OS) const { 2216 bool NeedPlus = false; 2217 OS << "["; 2218 if (InBounds) 2219 OS << "inbounds "; 2220 if (BaseGV) { 2221 OS << (NeedPlus ? " + " : "") 2222 << "GV:"; 2223 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2224 NeedPlus = true; 2225 } 2226 2227 if (BaseOffs) { 2228 OS << (NeedPlus ? " + " : "") 2229 << BaseOffs; 2230 NeedPlus = true; 2231 } 2232 2233 if (BaseReg) { 2234 OS << (NeedPlus ? " + " : "") 2235 << "Base:"; 2236 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2237 NeedPlus = true; 2238 } 2239 if (Scale) { 2240 OS << (NeedPlus ? " + " : "") 2241 << Scale << "*"; 2242 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2243 } 2244 2245 OS << ']'; 2246 } 2247 2248 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2249 print(dbgs()); 2250 dbgs() << '\n'; 2251 } 2252 #endif 2253 2254 namespace { 2255 2256 /// This class provides transaction based operation on the IR. 2257 /// Every change made through this class is recorded in the internal state and 2258 /// can be undone (rollback) until commit is called. 2259 class TypePromotionTransaction { 2260 /// This represents the common interface of the individual transaction. 2261 /// Each class implements the logic for doing one specific modification on 2262 /// the IR via the TypePromotionTransaction. 2263 class TypePromotionAction { 2264 protected: 2265 /// The Instruction modified. 2266 Instruction *Inst; 2267 2268 public: 2269 /// Constructor of the action. 2270 /// The constructor performs the related action on the IR. 2271 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2272 2273 virtual ~TypePromotionAction() = default; 2274 2275 /// Undo the modification done by this action. 2276 /// When this method is called, the IR must be in the same state as it was 2277 /// before this action was applied. 2278 /// \pre Undoing the action works if and only if the IR is in the exact same 2279 /// state as it was directly after this action was applied. 2280 virtual void undo() = 0; 2281 2282 /// Advocate every change made by this action. 2283 /// When the results on the IR of the action are to be kept, it is important 2284 /// to call this function, otherwise hidden information may be kept forever. 2285 virtual void commit() { 2286 // Nothing to be done, this action is not doing anything. 2287 } 2288 }; 2289 2290 /// Utility to remember the position of an instruction. 2291 class InsertionHandler { 2292 /// Position of an instruction. 2293 /// Either an instruction: 2294 /// - Is the first in a basic block: BB is used. 2295 /// - Has a previous instruction: PrevInst is used. 2296 union { 2297 Instruction *PrevInst; 2298 BasicBlock *BB; 2299 } Point; 2300 2301 /// Remember whether or not the instruction had a previous instruction. 2302 bool HasPrevInstruction; 2303 2304 public: 2305 /// Record the position of \p Inst. 2306 InsertionHandler(Instruction *Inst) { 2307 BasicBlock::iterator It = Inst->getIterator(); 2308 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2309 if (HasPrevInstruction) 2310 Point.PrevInst = &*--It; 2311 else 2312 Point.BB = Inst->getParent(); 2313 } 2314 2315 /// Insert \p Inst at the recorded position. 2316 void insert(Instruction *Inst) { 2317 if (HasPrevInstruction) { 2318 if (Inst->getParent()) 2319 Inst->removeFromParent(); 2320 Inst->insertAfter(Point.PrevInst); 2321 } else { 2322 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2323 if (Inst->getParent()) 2324 Inst->moveBefore(Position); 2325 else 2326 Inst->insertBefore(Position); 2327 } 2328 } 2329 }; 2330 2331 /// Move an instruction before another. 2332 class InstructionMoveBefore : public TypePromotionAction { 2333 /// Original position of the instruction. 2334 InsertionHandler Position; 2335 2336 public: 2337 /// Move \p Inst before \p Before. 2338 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2339 : TypePromotionAction(Inst), Position(Inst) { 2340 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2341 << "\n"); 2342 Inst->moveBefore(Before); 2343 } 2344 2345 /// Move the instruction back to its original position. 2346 void undo() override { 2347 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2348 Position.insert(Inst); 2349 } 2350 }; 2351 2352 /// Set the operand of an instruction with a new value. 2353 class OperandSetter : public TypePromotionAction { 2354 /// Original operand of the instruction. 2355 Value *Origin; 2356 2357 /// Index of the modified instruction. 2358 unsigned Idx; 2359 2360 public: 2361 /// Set \p Idx operand of \p Inst with \p NewVal. 2362 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2363 : TypePromotionAction(Inst), Idx(Idx) { 2364 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2365 << "for:" << *Inst << "\n" 2366 << "with:" << *NewVal << "\n"); 2367 Origin = Inst->getOperand(Idx); 2368 Inst->setOperand(Idx, NewVal); 2369 } 2370 2371 /// Restore the original value of the instruction. 2372 void undo() override { 2373 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2374 << "for: " << *Inst << "\n" 2375 << "with: " << *Origin << "\n"); 2376 Inst->setOperand(Idx, Origin); 2377 } 2378 }; 2379 2380 /// Hide the operands of an instruction. 2381 /// Do as if this instruction was not using any of its operands. 2382 class OperandsHider : public TypePromotionAction { 2383 /// The list of original operands. 2384 SmallVector<Value *, 4> OriginalValues; 2385 2386 public: 2387 /// Remove \p Inst from the uses of the operands of \p Inst. 2388 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2389 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2390 unsigned NumOpnds = Inst->getNumOperands(); 2391 OriginalValues.reserve(NumOpnds); 2392 for (unsigned It = 0; It < NumOpnds; ++It) { 2393 // Save the current operand. 2394 Value *Val = Inst->getOperand(It); 2395 OriginalValues.push_back(Val); 2396 // Set a dummy one. 2397 // We could use OperandSetter here, but that would imply an overhead 2398 // that we are not willing to pay. 2399 Inst->setOperand(It, UndefValue::get(Val->getType())); 2400 } 2401 } 2402 2403 /// Restore the original list of uses. 2404 void undo() override { 2405 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2406 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2407 Inst->setOperand(It, OriginalValues[It]); 2408 } 2409 }; 2410 2411 /// Build a truncate instruction. 2412 class TruncBuilder : public TypePromotionAction { 2413 Value *Val; 2414 2415 public: 2416 /// Build a truncate instruction of \p Opnd producing a \p Ty 2417 /// result. 2418 /// trunc Opnd to Ty. 2419 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2420 IRBuilder<> Builder(Opnd); 2421 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2422 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2423 } 2424 2425 /// Get the built value. 2426 Value *getBuiltValue() { return Val; } 2427 2428 /// Remove the built instruction. 2429 void undo() override { 2430 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2431 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2432 IVal->eraseFromParent(); 2433 } 2434 }; 2435 2436 /// Build a sign extension instruction. 2437 class SExtBuilder : public TypePromotionAction { 2438 Value *Val; 2439 2440 public: 2441 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2442 /// result. 2443 /// sext Opnd to Ty. 2444 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2445 : TypePromotionAction(InsertPt) { 2446 IRBuilder<> Builder(InsertPt); 2447 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2448 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2449 } 2450 2451 /// Get the built value. 2452 Value *getBuiltValue() { return Val; } 2453 2454 /// Remove the built instruction. 2455 void undo() override { 2456 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2457 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2458 IVal->eraseFromParent(); 2459 } 2460 }; 2461 2462 /// Build a zero extension instruction. 2463 class ZExtBuilder : public TypePromotionAction { 2464 Value *Val; 2465 2466 public: 2467 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2468 /// result. 2469 /// zext Opnd to Ty. 2470 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2471 : TypePromotionAction(InsertPt) { 2472 IRBuilder<> Builder(InsertPt); 2473 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2474 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2475 } 2476 2477 /// Get the built value. 2478 Value *getBuiltValue() { return Val; } 2479 2480 /// Remove the built instruction. 2481 void undo() override { 2482 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2483 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2484 IVal->eraseFromParent(); 2485 } 2486 }; 2487 2488 /// Mutate an instruction to another type. 2489 class TypeMutator : public TypePromotionAction { 2490 /// Record the original type. 2491 Type *OrigTy; 2492 2493 public: 2494 /// Mutate the type of \p Inst into \p NewTy. 2495 TypeMutator(Instruction *Inst, Type *NewTy) 2496 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2497 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2498 << "\n"); 2499 Inst->mutateType(NewTy); 2500 } 2501 2502 /// Mutate the instruction back to its original type. 2503 void undo() override { 2504 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2505 << "\n"); 2506 Inst->mutateType(OrigTy); 2507 } 2508 }; 2509 2510 /// Replace the uses of an instruction by another instruction. 2511 class UsesReplacer : public TypePromotionAction { 2512 /// Helper structure to keep track of the replaced uses. 2513 struct InstructionAndIdx { 2514 /// The instruction using the instruction. 2515 Instruction *Inst; 2516 2517 /// The index where this instruction is used for Inst. 2518 unsigned Idx; 2519 2520 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2521 : Inst(Inst), Idx(Idx) {} 2522 }; 2523 2524 /// Keep track of the original uses (pair Instruction, Index). 2525 SmallVector<InstructionAndIdx, 4> OriginalUses; 2526 /// Keep track of the debug users. 2527 SmallVector<DbgValueInst *, 1> DbgValues; 2528 2529 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2530 2531 public: 2532 /// Replace all the use of \p Inst by \p New. 2533 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2534 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2535 << "\n"); 2536 // Record the original uses. 2537 for (Use &U : Inst->uses()) { 2538 Instruction *UserI = cast<Instruction>(U.getUser()); 2539 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2540 } 2541 // Record the debug uses separately. They are not in the instruction's 2542 // use list, but they are replaced by RAUW. 2543 findDbgValues(DbgValues, Inst); 2544 2545 // Now, we can replace the uses. 2546 Inst->replaceAllUsesWith(New); 2547 } 2548 2549 /// Reassign the original uses of Inst to Inst. 2550 void undo() override { 2551 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2552 for (use_iterator UseIt = OriginalUses.begin(), 2553 EndIt = OriginalUses.end(); 2554 UseIt != EndIt; ++UseIt) { 2555 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2556 } 2557 // RAUW has replaced all original uses with references to the new value, 2558 // including the debug uses. Since we are undoing the replacements, 2559 // the original debug uses must also be reinstated to maintain the 2560 // correctness and utility of debug value instructions. 2561 for (auto *DVI: DbgValues) { 2562 LLVMContext &Ctx = Inst->getType()->getContext(); 2563 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2564 DVI->setOperand(0, MV); 2565 } 2566 } 2567 }; 2568 2569 /// Remove an instruction from the IR. 2570 class InstructionRemover : public TypePromotionAction { 2571 /// Original position of the instruction. 2572 InsertionHandler Inserter; 2573 2574 /// Helper structure to hide all the link to the instruction. In other 2575 /// words, this helps to do as if the instruction was removed. 2576 OperandsHider Hider; 2577 2578 /// Keep track of the uses replaced, if any. 2579 UsesReplacer *Replacer = nullptr; 2580 2581 /// Keep track of instructions removed. 2582 SetOfInstrs &RemovedInsts; 2583 2584 public: 2585 /// Remove all reference of \p Inst and optionally replace all its 2586 /// uses with New. 2587 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2588 /// \pre If !Inst->use_empty(), then New != nullptr 2589 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2590 Value *New = nullptr) 2591 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2592 RemovedInsts(RemovedInsts) { 2593 if (New) 2594 Replacer = new UsesReplacer(Inst, New); 2595 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2596 RemovedInsts.insert(Inst); 2597 /// The instructions removed here will be freed after completing 2598 /// optimizeBlock() for all blocks as we need to keep track of the 2599 /// removed instructions during promotion. 2600 Inst->removeFromParent(); 2601 } 2602 2603 ~InstructionRemover() override { delete Replacer; } 2604 2605 /// Resurrect the instruction and reassign it to the proper uses if 2606 /// new value was provided when build this action. 2607 void undo() override { 2608 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2609 Inserter.insert(Inst); 2610 if (Replacer) 2611 Replacer->undo(); 2612 Hider.undo(); 2613 RemovedInsts.erase(Inst); 2614 } 2615 }; 2616 2617 public: 2618 /// Restoration point. 2619 /// The restoration point is a pointer to an action instead of an iterator 2620 /// because the iterator may be invalidated but not the pointer. 2621 using ConstRestorationPt = const TypePromotionAction *; 2622 2623 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2624 : RemovedInsts(RemovedInsts) {} 2625 2626 /// Advocate every changes made in that transaction. 2627 void commit(); 2628 2629 /// Undo all the changes made after the given point. 2630 void rollback(ConstRestorationPt Point); 2631 2632 /// Get the current restoration point. 2633 ConstRestorationPt getRestorationPoint() const; 2634 2635 /// \name API for IR modification with state keeping to support rollback. 2636 /// @{ 2637 /// Same as Instruction::setOperand. 2638 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2639 2640 /// Same as Instruction::eraseFromParent. 2641 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2642 2643 /// Same as Value::replaceAllUsesWith. 2644 void replaceAllUsesWith(Instruction *Inst, Value *New); 2645 2646 /// Same as Value::mutateType. 2647 void mutateType(Instruction *Inst, Type *NewTy); 2648 2649 /// Same as IRBuilder::createTrunc. 2650 Value *createTrunc(Instruction *Opnd, Type *Ty); 2651 2652 /// Same as IRBuilder::createSExt. 2653 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2654 2655 /// Same as IRBuilder::createZExt. 2656 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2657 2658 /// Same as Instruction::moveBefore. 2659 void moveBefore(Instruction *Inst, Instruction *Before); 2660 /// @} 2661 2662 private: 2663 /// The ordered list of actions made so far. 2664 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2665 2666 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2667 2668 SetOfInstrs &RemovedInsts; 2669 }; 2670 2671 } // end anonymous namespace 2672 2673 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2674 Value *NewVal) { 2675 Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( 2676 Inst, Idx, NewVal)); 2677 } 2678 2679 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2680 Value *NewVal) { 2681 Actions.push_back( 2682 llvm::make_unique<TypePromotionTransaction::InstructionRemover>( 2683 Inst, RemovedInsts, NewVal)); 2684 } 2685 2686 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2687 Value *New) { 2688 Actions.push_back( 2689 llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2690 } 2691 2692 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2693 Actions.push_back( 2694 llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2695 } 2696 2697 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2698 Type *Ty) { 2699 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2700 Value *Val = Ptr->getBuiltValue(); 2701 Actions.push_back(std::move(Ptr)); 2702 return Val; 2703 } 2704 2705 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2706 Value *Opnd, Type *Ty) { 2707 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2708 Value *Val = Ptr->getBuiltValue(); 2709 Actions.push_back(std::move(Ptr)); 2710 return Val; 2711 } 2712 2713 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2714 Value *Opnd, Type *Ty) { 2715 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2716 Value *Val = Ptr->getBuiltValue(); 2717 Actions.push_back(std::move(Ptr)); 2718 return Val; 2719 } 2720 2721 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2722 Instruction *Before) { 2723 Actions.push_back( 2724 llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 2725 Inst, Before)); 2726 } 2727 2728 TypePromotionTransaction::ConstRestorationPt 2729 TypePromotionTransaction::getRestorationPoint() const { 2730 return !Actions.empty() ? Actions.back().get() : nullptr; 2731 } 2732 2733 void TypePromotionTransaction::commit() { 2734 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2735 ++It) 2736 (*It)->commit(); 2737 Actions.clear(); 2738 } 2739 2740 void TypePromotionTransaction::rollback( 2741 TypePromotionTransaction::ConstRestorationPt Point) { 2742 while (!Actions.empty() && Point != Actions.back().get()) { 2743 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2744 Curr->undo(); 2745 } 2746 } 2747 2748 namespace { 2749 2750 /// A helper class for matching addressing modes. 2751 /// 2752 /// This encapsulates the logic for matching the target-legal addressing modes. 2753 class AddressingModeMatcher { 2754 SmallVectorImpl<Instruction*> &AddrModeInsts; 2755 const TargetLowering &TLI; 2756 const TargetRegisterInfo &TRI; 2757 const DataLayout &DL; 2758 2759 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2760 /// the memory instruction that we're computing this address for. 2761 Type *AccessTy; 2762 unsigned AddrSpace; 2763 Instruction *MemoryInst; 2764 2765 /// This is the addressing mode that we're building up. This is 2766 /// part of the return value of this addressing mode matching stuff. 2767 ExtAddrMode &AddrMode; 2768 2769 /// The instructions inserted by other CodeGenPrepare optimizations. 2770 const SetOfInstrs &InsertedInsts; 2771 2772 /// A map from the instructions to their type before promotion. 2773 InstrToOrigTy &PromotedInsts; 2774 2775 /// The ongoing transaction where every action should be registered. 2776 TypePromotionTransaction &TPT; 2777 2778 // A GEP which has too large offset to be folded into the addressing mode. 2779 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 2780 2781 /// This is set to true when we should not do profitability checks. 2782 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2783 bool IgnoreProfitability; 2784 2785 AddressingModeMatcher( 2786 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 2787 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 2788 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 2789 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 2790 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) 2791 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2792 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2793 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2794 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { 2795 IgnoreProfitability = false; 2796 } 2797 2798 public: 2799 /// Find the maximal addressing mode that a load/store of V can fold, 2800 /// give an access type of AccessTy. This returns a list of involved 2801 /// instructions in AddrModeInsts. 2802 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2803 /// optimizations. 2804 /// \p PromotedInsts maps the instructions to their type before promotion. 2805 /// \p The ongoing transaction where every action should be registered. 2806 static ExtAddrMode 2807 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 2808 SmallVectorImpl<Instruction *> &AddrModeInsts, 2809 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 2810 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 2811 TypePromotionTransaction &TPT, 2812 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { 2813 ExtAddrMode Result; 2814 2815 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 2816 MemoryInst, Result, InsertedInsts, 2817 PromotedInsts, TPT, LargeOffsetGEP) 2818 .matchAddr(V, 0); 2819 (void)Success; assert(Success && "Couldn't select *anything*?"); 2820 return Result; 2821 } 2822 2823 private: 2824 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 2825 bool matchAddr(Value *Addr, unsigned Depth); 2826 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 2827 bool *MovedAway = nullptr); 2828 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 2829 ExtAddrMode &AMBefore, 2830 ExtAddrMode &AMAfter); 2831 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 2832 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 2833 Value *PromotedOperand) const; 2834 }; 2835 2836 class PhiNodeSet; 2837 2838 /// An iterator for PhiNodeSet. 2839 class PhiNodeSetIterator { 2840 PhiNodeSet * const Set; 2841 size_t CurrentIndex = 0; 2842 2843 public: 2844 /// The constructor. Start should point to either a valid element, or be equal 2845 /// to the size of the underlying SmallVector of the PhiNodeSet. 2846 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 2847 PHINode * operator*() const; 2848 PhiNodeSetIterator& operator++(); 2849 bool operator==(const PhiNodeSetIterator &RHS) const; 2850 bool operator!=(const PhiNodeSetIterator &RHS) const; 2851 }; 2852 2853 /// Keeps a set of PHINodes. 2854 /// 2855 /// This is a minimal set implementation for a specific use case: 2856 /// It is very fast when there are very few elements, but also provides good 2857 /// performance when there are many. It is similar to SmallPtrSet, but also 2858 /// provides iteration by insertion order, which is deterministic and stable 2859 /// across runs. It is also similar to SmallSetVector, but provides removing 2860 /// elements in O(1) time. This is achieved by not actually removing the element 2861 /// from the underlying vector, so comes at the cost of using more memory, but 2862 /// that is fine, since PhiNodeSets are used as short lived objects. 2863 class PhiNodeSet { 2864 friend class PhiNodeSetIterator; 2865 2866 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 2867 using iterator = PhiNodeSetIterator; 2868 2869 /// Keeps the elements in the order of their insertion in the underlying 2870 /// vector. To achieve constant time removal, it never deletes any element. 2871 SmallVector<PHINode *, 32> NodeList; 2872 2873 /// Keeps the elements in the underlying set implementation. This (and not the 2874 /// NodeList defined above) is the source of truth on whether an element 2875 /// is actually in the collection. 2876 MapType NodeMap; 2877 2878 /// Points to the first valid (not deleted) element when the set is not empty 2879 /// and the value is not zero. Equals to the size of the underlying vector 2880 /// when the set is empty. When the value is 0, as in the beginning, the 2881 /// first element may or may not be valid. 2882 size_t FirstValidElement = 0; 2883 2884 public: 2885 /// Inserts a new element to the collection. 2886 /// \returns true if the element is actually added, i.e. was not in the 2887 /// collection before the operation. 2888 bool insert(PHINode *Ptr) { 2889 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 2890 NodeList.push_back(Ptr); 2891 return true; 2892 } 2893 return false; 2894 } 2895 2896 /// Removes the element from the collection. 2897 /// \returns whether the element is actually removed, i.e. was in the 2898 /// collection before the operation. 2899 bool erase(PHINode *Ptr) { 2900 auto it = NodeMap.find(Ptr); 2901 if (it != NodeMap.end()) { 2902 NodeMap.erase(Ptr); 2903 SkipRemovedElements(FirstValidElement); 2904 return true; 2905 } 2906 return false; 2907 } 2908 2909 /// Removes all elements and clears the collection. 2910 void clear() { 2911 NodeMap.clear(); 2912 NodeList.clear(); 2913 FirstValidElement = 0; 2914 } 2915 2916 /// \returns an iterator that will iterate the elements in the order of 2917 /// insertion. 2918 iterator begin() { 2919 if (FirstValidElement == 0) 2920 SkipRemovedElements(FirstValidElement); 2921 return PhiNodeSetIterator(this, FirstValidElement); 2922 } 2923 2924 /// \returns an iterator that points to the end of the collection. 2925 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 2926 2927 /// Returns the number of elements in the collection. 2928 size_t size() const { 2929 return NodeMap.size(); 2930 } 2931 2932 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 2933 size_t count(PHINode *Ptr) const { 2934 return NodeMap.count(Ptr); 2935 } 2936 2937 private: 2938 /// Updates the CurrentIndex so that it will point to a valid element. 2939 /// 2940 /// If the element of NodeList at CurrentIndex is valid, it does not 2941 /// change it. If there are no more valid elements, it updates CurrentIndex 2942 /// to point to the end of the NodeList. 2943 void SkipRemovedElements(size_t &CurrentIndex) { 2944 while (CurrentIndex < NodeList.size()) { 2945 auto it = NodeMap.find(NodeList[CurrentIndex]); 2946 // If the element has been deleted and added again later, NodeMap will 2947 // point to a different index, so CurrentIndex will still be invalid. 2948 if (it != NodeMap.end() && it->second == CurrentIndex) 2949 break; 2950 ++CurrentIndex; 2951 } 2952 } 2953 }; 2954 2955 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 2956 : Set(Set), CurrentIndex(Start) {} 2957 2958 PHINode * PhiNodeSetIterator::operator*() const { 2959 assert(CurrentIndex < Set->NodeList.size() && 2960 "PhiNodeSet access out of range"); 2961 return Set->NodeList[CurrentIndex]; 2962 } 2963 2964 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 2965 assert(CurrentIndex < Set->NodeList.size() && 2966 "PhiNodeSet access out of range"); 2967 ++CurrentIndex; 2968 Set->SkipRemovedElements(CurrentIndex); 2969 return *this; 2970 } 2971 2972 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 2973 return CurrentIndex == RHS.CurrentIndex; 2974 } 2975 2976 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 2977 return !((*this) == RHS); 2978 } 2979 2980 /// Keep track of simplification of Phi nodes. 2981 /// Accept the set of all phi nodes and erase phi node from this set 2982 /// if it is simplified. 2983 class SimplificationTracker { 2984 DenseMap<Value *, Value *> Storage; 2985 const SimplifyQuery &SQ; 2986 // Tracks newly created Phi nodes. The elements are iterated by insertion 2987 // order. 2988 PhiNodeSet AllPhiNodes; 2989 // Tracks newly created Select nodes. 2990 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 2991 2992 public: 2993 SimplificationTracker(const SimplifyQuery &sq) 2994 : SQ(sq) {} 2995 2996 Value *Get(Value *V) { 2997 do { 2998 auto SV = Storage.find(V); 2999 if (SV == Storage.end()) 3000 return V; 3001 V = SV->second; 3002 } while (true); 3003 } 3004 3005 Value *Simplify(Value *Val) { 3006 SmallVector<Value *, 32> WorkList; 3007 SmallPtrSet<Value *, 32> Visited; 3008 WorkList.push_back(Val); 3009 while (!WorkList.empty()) { 3010 auto P = WorkList.pop_back_val(); 3011 if (!Visited.insert(P).second) 3012 continue; 3013 if (auto *PI = dyn_cast<Instruction>(P)) 3014 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3015 for (auto *U : PI->users()) 3016 WorkList.push_back(cast<Value>(U)); 3017 Put(PI, V); 3018 PI->replaceAllUsesWith(V); 3019 if (auto *PHI = dyn_cast<PHINode>(PI)) 3020 AllPhiNodes.erase(PHI); 3021 if (auto *Select = dyn_cast<SelectInst>(PI)) 3022 AllSelectNodes.erase(Select); 3023 PI->eraseFromParent(); 3024 } 3025 } 3026 return Get(Val); 3027 } 3028 3029 void Put(Value *From, Value *To) { 3030 Storage.insert({ From, To }); 3031 } 3032 3033 void ReplacePhi(PHINode *From, PHINode *To) { 3034 Value* OldReplacement = Get(From); 3035 while (OldReplacement != From) { 3036 From = To; 3037 To = dyn_cast<PHINode>(OldReplacement); 3038 OldReplacement = Get(From); 3039 } 3040 assert(Get(To) == To && "Replacement PHI node is already replaced."); 3041 Put(From, To); 3042 From->replaceAllUsesWith(To); 3043 AllPhiNodes.erase(From); 3044 From->eraseFromParent(); 3045 } 3046 3047 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3048 3049 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3050 3051 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3052 3053 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3054 3055 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3056 3057 void destroyNewNodes(Type *CommonType) { 3058 // For safe erasing, replace the uses with dummy value first. 3059 auto Dummy = UndefValue::get(CommonType); 3060 for (auto I : AllPhiNodes) { 3061 I->replaceAllUsesWith(Dummy); 3062 I->eraseFromParent(); 3063 } 3064 AllPhiNodes.clear(); 3065 for (auto I : AllSelectNodes) { 3066 I->replaceAllUsesWith(Dummy); 3067 I->eraseFromParent(); 3068 } 3069 AllSelectNodes.clear(); 3070 } 3071 }; 3072 3073 /// A helper class for combining addressing modes. 3074 class AddressingModeCombiner { 3075 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3076 typedef std::pair<PHINode *, PHINode *> PHIPair; 3077 3078 private: 3079 /// The addressing modes we've collected. 3080 SmallVector<ExtAddrMode, 16> AddrModes; 3081 3082 /// The field in which the AddrModes differ, when we have more than one. 3083 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3084 3085 /// Are the AddrModes that we have all just equal to their original values? 3086 bool AllAddrModesTrivial = true; 3087 3088 /// Common Type for all different fields in addressing modes. 3089 Type *CommonType; 3090 3091 /// SimplifyQuery for simplifyInstruction utility. 3092 const SimplifyQuery &SQ; 3093 3094 /// Original Address. 3095 Value *Original; 3096 3097 public: 3098 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3099 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3100 3101 /// Get the combined AddrMode 3102 const ExtAddrMode &getAddrMode() const { 3103 return AddrModes[0]; 3104 } 3105 3106 /// Add a new AddrMode if it's compatible with the AddrModes we already 3107 /// have. 3108 /// \return True iff we succeeded in doing so. 3109 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3110 // Take note of if we have any non-trivial AddrModes, as we need to detect 3111 // when all AddrModes are trivial as then we would introduce a phi or select 3112 // which just duplicates what's already there. 3113 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3114 3115 // If this is the first addrmode then everything is fine. 3116 if (AddrModes.empty()) { 3117 AddrModes.emplace_back(NewAddrMode); 3118 return true; 3119 } 3120 3121 // Figure out how different this is from the other address modes, which we 3122 // can do just by comparing against the first one given that we only care 3123 // about the cumulative difference. 3124 ExtAddrMode::FieldName ThisDifferentField = 3125 AddrModes[0].compare(NewAddrMode); 3126 if (DifferentField == ExtAddrMode::NoField) 3127 DifferentField = ThisDifferentField; 3128 else if (DifferentField != ThisDifferentField) 3129 DifferentField = ExtAddrMode::MultipleFields; 3130 3131 // If NewAddrMode differs in more than one dimension we cannot handle it. 3132 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3133 3134 // If Scale Field is different then we reject. 3135 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3136 3137 // We also must reject the case when base offset is different and 3138 // scale reg is not null, we cannot handle this case due to merge of 3139 // different offsets will be used as ScaleReg. 3140 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3141 !NewAddrMode.ScaledReg); 3142 3143 // We also must reject the case when GV is different and BaseReg installed 3144 // due to we want to use base reg as a merge of GV values. 3145 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3146 !NewAddrMode.HasBaseReg); 3147 3148 // Even if NewAddMode is the same we still need to collect it due to 3149 // original value is different. And later we will need all original values 3150 // as anchors during finding the common Phi node. 3151 if (CanHandle) 3152 AddrModes.emplace_back(NewAddrMode); 3153 else 3154 AddrModes.clear(); 3155 3156 return CanHandle; 3157 } 3158 3159 /// Combine the addressing modes we've collected into a single 3160 /// addressing mode. 3161 /// \return True iff we successfully combined them or we only had one so 3162 /// didn't need to combine them anyway. 3163 bool combineAddrModes() { 3164 // If we have no AddrModes then they can't be combined. 3165 if (AddrModes.size() == 0) 3166 return false; 3167 3168 // A single AddrMode can trivially be combined. 3169 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3170 return true; 3171 3172 // If the AddrModes we collected are all just equal to the value they are 3173 // derived from then combining them wouldn't do anything useful. 3174 if (AllAddrModesTrivial) 3175 return false; 3176 3177 if (!addrModeCombiningAllowed()) 3178 return false; 3179 3180 // Build a map between <original value, basic block where we saw it> to 3181 // value of base register. 3182 // Bail out if there is no common type. 3183 FoldAddrToValueMapping Map; 3184 if (!initializeMap(Map)) 3185 return false; 3186 3187 Value *CommonValue = findCommon(Map); 3188 if (CommonValue) 3189 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3190 return CommonValue != nullptr; 3191 } 3192 3193 private: 3194 /// Initialize Map with anchor values. For address seen 3195 /// we set the value of different field saw in this address. 3196 /// At the same time we find a common type for different field we will 3197 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3198 /// Return false if there is no common type found. 3199 bool initializeMap(FoldAddrToValueMapping &Map) { 3200 // Keep track of keys where the value is null. We will need to replace it 3201 // with constant null when we know the common type. 3202 SmallVector<Value *, 2> NullValue; 3203 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3204 for (auto &AM : AddrModes) { 3205 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3206 if (DV) { 3207 auto *Type = DV->getType(); 3208 if (CommonType && CommonType != Type) 3209 return false; 3210 CommonType = Type; 3211 Map[AM.OriginalValue] = DV; 3212 } else { 3213 NullValue.push_back(AM.OriginalValue); 3214 } 3215 } 3216 assert(CommonType && "At least one non-null value must be!"); 3217 for (auto *V : NullValue) 3218 Map[V] = Constant::getNullValue(CommonType); 3219 return true; 3220 } 3221 3222 /// We have mapping between value A and other value B where B was a field in 3223 /// addressing mode represented by A. Also we have an original value C 3224 /// representing an address we start with. Traversing from C through phi and 3225 /// selects we ended up with A's in a map. This utility function tries to find 3226 /// a value V which is a field in addressing mode C and traversing through phi 3227 /// nodes and selects we will end up in corresponded values B in a map. 3228 /// The utility will create a new Phi/Selects if needed. 3229 // The simple example looks as follows: 3230 // BB1: 3231 // p1 = b1 + 40 3232 // br cond BB2, BB3 3233 // BB2: 3234 // p2 = b2 + 40 3235 // br BB3 3236 // BB3: 3237 // p = phi [p1, BB1], [p2, BB2] 3238 // v = load p 3239 // Map is 3240 // p1 -> b1 3241 // p2 -> b2 3242 // Request is 3243 // p -> ? 3244 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3245 Value *findCommon(FoldAddrToValueMapping &Map) { 3246 // Tracks the simplification of newly created phi nodes. The reason we use 3247 // this mapping is because we will add new created Phi nodes in AddrToBase. 3248 // Simplification of Phi nodes is recursive, so some Phi node may 3249 // be simplified after we added it to AddrToBase. In reality this 3250 // simplification is possible only if original phi/selects were not 3251 // simplified yet. 3252 // Using this mapping we can find the current value in AddrToBase. 3253 SimplificationTracker ST(SQ); 3254 3255 // First step, DFS to create PHI nodes for all intermediate blocks. 3256 // Also fill traverse order for the second step. 3257 SmallVector<Value *, 32> TraverseOrder; 3258 InsertPlaceholders(Map, TraverseOrder, ST); 3259 3260 // Second Step, fill new nodes by merged values and simplify if possible. 3261 FillPlaceholders(Map, TraverseOrder, ST); 3262 3263 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3264 ST.destroyNewNodes(CommonType); 3265 return nullptr; 3266 } 3267 3268 // Now we'd like to match New Phi nodes to existed ones. 3269 unsigned PhiNotMatchedCount = 0; 3270 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3271 ST.destroyNewNodes(CommonType); 3272 return nullptr; 3273 } 3274 3275 auto *Result = ST.Get(Map.find(Original)->second); 3276 if (Result) { 3277 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3278 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3279 } 3280 return Result; 3281 } 3282 3283 /// Try to match PHI node to Candidate. 3284 /// Matcher tracks the matched Phi nodes. 3285 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3286 SmallSetVector<PHIPair, 8> &Matcher, 3287 PhiNodeSet &PhiNodesToMatch) { 3288 SmallVector<PHIPair, 8> WorkList; 3289 Matcher.insert({ PHI, Candidate }); 3290 SmallSet<PHINode *, 8> MatchedPHIs; 3291 MatchedPHIs.insert(PHI); 3292 WorkList.push_back({ PHI, Candidate }); 3293 SmallSet<PHIPair, 8> Visited; 3294 while (!WorkList.empty()) { 3295 auto Item = WorkList.pop_back_val(); 3296 if (!Visited.insert(Item).second) 3297 continue; 3298 // We iterate over all incoming values to Phi to compare them. 3299 // If values are different and both of them Phi and the first one is a 3300 // Phi we added (subject to match) and both of them is in the same basic 3301 // block then we can match our pair if values match. So we state that 3302 // these values match and add it to work list to verify that. 3303 for (auto B : Item.first->blocks()) { 3304 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3305 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3306 if (FirstValue == SecondValue) 3307 continue; 3308 3309 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3310 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3311 3312 // One of them is not Phi or 3313 // The first one is not Phi node from the set we'd like to match or 3314 // Phi nodes from different basic blocks then 3315 // we will not be able to match. 3316 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3317 FirstPhi->getParent() != SecondPhi->getParent()) 3318 return false; 3319 3320 // If we already matched them then continue. 3321 if (Matcher.count({ FirstPhi, SecondPhi })) 3322 continue; 3323 // So the values are different and does not match. So we need them to 3324 // match. (But we register no more than one match per PHI node, so that 3325 // we won't later try to replace them twice.) 3326 if (!MatchedPHIs.insert(FirstPhi).second) 3327 Matcher.insert({ FirstPhi, SecondPhi }); 3328 // But me must check it. 3329 WorkList.push_back({ FirstPhi, SecondPhi }); 3330 } 3331 } 3332 return true; 3333 } 3334 3335 /// For the given set of PHI nodes (in the SimplificationTracker) try 3336 /// to find their equivalents. 3337 /// Returns false if this matching fails and creation of new Phi is disabled. 3338 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3339 unsigned &PhiNotMatchedCount) { 3340 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3341 // order, so the replacements (ReplacePhi) are also done in a deterministic 3342 // order. 3343 SmallSetVector<PHIPair, 8> Matched; 3344 SmallPtrSet<PHINode *, 8> WillNotMatch; 3345 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3346 while (PhiNodesToMatch.size()) { 3347 PHINode *PHI = *PhiNodesToMatch.begin(); 3348 3349 // Add us, if no Phi nodes in the basic block we do not match. 3350 WillNotMatch.clear(); 3351 WillNotMatch.insert(PHI); 3352 3353 // Traverse all Phis until we found equivalent or fail to do that. 3354 bool IsMatched = false; 3355 for (auto &P : PHI->getParent()->phis()) { 3356 if (&P == PHI) 3357 continue; 3358 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3359 break; 3360 // If it does not match, collect all Phi nodes from matcher. 3361 // if we end up with no match, them all these Phi nodes will not match 3362 // later. 3363 for (auto M : Matched) 3364 WillNotMatch.insert(M.first); 3365 Matched.clear(); 3366 } 3367 if (IsMatched) { 3368 // Replace all matched values and erase them. 3369 for (auto MV : Matched) 3370 ST.ReplacePhi(MV.first, MV.second); 3371 Matched.clear(); 3372 continue; 3373 } 3374 // If we are not allowed to create new nodes then bail out. 3375 if (!AllowNewPhiNodes) 3376 return false; 3377 // Just remove all seen values in matcher. They will not match anything. 3378 PhiNotMatchedCount += WillNotMatch.size(); 3379 for (auto *P : WillNotMatch) 3380 PhiNodesToMatch.erase(P); 3381 } 3382 return true; 3383 } 3384 /// Fill the placeholders with values from predecessors and simplify them. 3385 void FillPlaceholders(FoldAddrToValueMapping &Map, 3386 SmallVectorImpl<Value *> &TraverseOrder, 3387 SimplificationTracker &ST) { 3388 while (!TraverseOrder.empty()) { 3389 Value *Current = TraverseOrder.pop_back_val(); 3390 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3391 Value *V = Map[Current]; 3392 3393 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3394 // CurrentValue also must be Select. 3395 auto *CurrentSelect = cast<SelectInst>(Current); 3396 auto *TrueValue = CurrentSelect->getTrueValue(); 3397 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3398 Select->setTrueValue(ST.Get(Map[TrueValue])); 3399 auto *FalseValue = CurrentSelect->getFalseValue(); 3400 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3401 Select->setFalseValue(ST.Get(Map[FalseValue])); 3402 } else { 3403 // Must be a Phi node then. 3404 PHINode *PHI = cast<PHINode>(V); 3405 auto *CurrentPhi = dyn_cast<PHINode>(Current); 3406 // Fill the Phi node with values from predecessors. 3407 for (auto B : predecessors(PHI->getParent())) { 3408 Value *PV = CurrentPhi->getIncomingValueForBlock(B); 3409 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3410 PHI->addIncoming(ST.Get(Map[PV]), B); 3411 } 3412 } 3413 Map[Current] = ST.Simplify(V); 3414 } 3415 } 3416 3417 /// Starting from original value recursively iterates over def-use chain up to 3418 /// known ending values represented in a map. For each traversed phi/select 3419 /// inserts a placeholder Phi or Select. 3420 /// Reports all new created Phi/Select nodes by adding them to set. 3421 /// Also reports and order in what values have been traversed. 3422 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3423 SmallVectorImpl<Value *> &TraverseOrder, 3424 SimplificationTracker &ST) { 3425 SmallVector<Value *, 32> Worklist; 3426 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3427 "Address must be a Phi or Select node"); 3428 auto *Dummy = UndefValue::get(CommonType); 3429 Worklist.push_back(Original); 3430 while (!Worklist.empty()) { 3431 Value *Current = Worklist.pop_back_val(); 3432 // if it is already visited or it is an ending value then skip it. 3433 if (Map.find(Current) != Map.end()) 3434 continue; 3435 TraverseOrder.push_back(Current); 3436 3437 // CurrentValue must be a Phi node or select. All others must be covered 3438 // by anchors. 3439 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3440 // Is it OK to get metadata from OrigSelect?! 3441 // Create a Select placeholder with dummy value. 3442 SelectInst *Select = SelectInst::Create( 3443 CurrentSelect->getCondition(), Dummy, Dummy, 3444 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3445 Map[Current] = Select; 3446 ST.insertNewSelect(Select); 3447 // We are interested in True and False values. 3448 Worklist.push_back(CurrentSelect->getTrueValue()); 3449 Worklist.push_back(CurrentSelect->getFalseValue()); 3450 } else { 3451 // It must be a Phi node then. 3452 PHINode *CurrentPhi = cast<PHINode>(Current); 3453 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3454 PHINode *PHI = 3455 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3456 Map[Current] = PHI; 3457 ST.insertNewPhi(PHI); 3458 for (Value *P : CurrentPhi->incoming_values()) 3459 Worklist.push_back(P); 3460 } 3461 } 3462 } 3463 3464 bool addrModeCombiningAllowed() { 3465 if (DisableComplexAddrModes) 3466 return false; 3467 switch (DifferentField) { 3468 default: 3469 return false; 3470 case ExtAddrMode::BaseRegField: 3471 return AddrSinkCombineBaseReg; 3472 case ExtAddrMode::BaseGVField: 3473 return AddrSinkCombineBaseGV; 3474 case ExtAddrMode::BaseOffsField: 3475 return AddrSinkCombineBaseOffs; 3476 case ExtAddrMode::ScaledRegField: 3477 return AddrSinkCombineScaledReg; 3478 } 3479 } 3480 }; 3481 } // end anonymous namespace 3482 3483 /// Try adding ScaleReg*Scale to the current addressing mode. 3484 /// Return true and update AddrMode if this addr mode is legal for the target, 3485 /// false if not. 3486 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3487 unsigned Depth) { 3488 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3489 // mode. Just process that directly. 3490 if (Scale == 1) 3491 return matchAddr(ScaleReg, Depth); 3492 3493 // If the scale is 0, it takes nothing to add this. 3494 if (Scale == 0) 3495 return true; 3496 3497 // If we already have a scale of this value, we can add to it, otherwise, we 3498 // need an available scale field. 3499 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3500 return false; 3501 3502 ExtAddrMode TestAddrMode = AddrMode; 3503 3504 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3505 // [A+B + A*7] -> [B+A*8]. 3506 TestAddrMode.Scale += Scale; 3507 TestAddrMode.ScaledReg = ScaleReg; 3508 3509 // If the new address isn't legal, bail out. 3510 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3511 return false; 3512 3513 // It was legal, so commit it. 3514 AddrMode = TestAddrMode; 3515 3516 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3517 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3518 // X*Scale + C*Scale to addr mode. 3519 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3520 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3521 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3522 TestAddrMode.InBounds = false; 3523 TestAddrMode.ScaledReg = AddLHS; 3524 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3525 3526 // If this addressing mode is legal, commit it and remember that we folded 3527 // this instruction. 3528 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3529 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3530 AddrMode = TestAddrMode; 3531 return true; 3532 } 3533 } 3534 3535 // Otherwise, not (x+c)*scale, just return what we have. 3536 return true; 3537 } 3538 3539 /// This is a little filter, which returns true if an addressing computation 3540 /// involving I might be folded into a load/store accessing it. 3541 /// This doesn't need to be perfect, but needs to accept at least 3542 /// the set of instructions that MatchOperationAddr can. 3543 static bool MightBeFoldableInst(Instruction *I) { 3544 switch (I->getOpcode()) { 3545 case Instruction::BitCast: 3546 case Instruction::AddrSpaceCast: 3547 // Don't touch identity bitcasts. 3548 if (I->getType() == I->getOperand(0)->getType()) 3549 return false; 3550 return I->getType()->isIntOrPtrTy(); 3551 case Instruction::PtrToInt: 3552 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3553 return true; 3554 case Instruction::IntToPtr: 3555 // We know the input is intptr_t, so this is foldable. 3556 return true; 3557 case Instruction::Add: 3558 return true; 3559 case Instruction::Mul: 3560 case Instruction::Shl: 3561 // Can only handle X*C and X << C. 3562 return isa<ConstantInt>(I->getOperand(1)); 3563 case Instruction::GetElementPtr: 3564 return true; 3565 default: 3566 return false; 3567 } 3568 } 3569 3570 /// Check whether or not \p Val is a legal instruction for \p TLI. 3571 /// \note \p Val is assumed to be the product of some type promotion. 3572 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3573 /// to be legal, as the non-promoted value would have had the same state. 3574 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3575 const DataLayout &DL, Value *Val) { 3576 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3577 if (!PromotedInst) 3578 return false; 3579 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3580 // If the ISDOpcode is undefined, it was undefined before the promotion. 3581 if (!ISDOpcode) 3582 return true; 3583 // Otherwise, check if the promoted instruction is legal or not. 3584 return TLI.isOperationLegalOrCustom( 3585 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3586 } 3587 3588 namespace { 3589 3590 /// Hepler class to perform type promotion. 3591 class TypePromotionHelper { 3592 /// Utility function to add a promoted instruction \p ExtOpnd to 3593 /// \p PromotedInsts and record the type of extension we have seen. 3594 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3595 Instruction *ExtOpnd, 3596 bool IsSExt) { 3597 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3598 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3599 if (It != PromotedInsts.end()) { 3600 // If the new extension is same as original, the information in 3601 // PromotedInsts[ExtOpnd] is still correct. 3602 if (It->second.getInt() == ExtTy) 3603 return; 3604 3605 // Now the new extension is different from old extension, we make 3606 // the type information invalid by setting extension type to 3607 // BothExtension. 3608 ExtTy = BothExtension; 3609 } 3610 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3611 } 3612 3613 /// Utility function to query the original type of instruction \p Opnd 3614 /// with a matched extension type. If the extension doesn't match, we 3615 /// cannot use the information we had on the original type. 3616 /// BothExtension doesn't match any extension type. 3617 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3618 Instruction *Opnd, 3619 bool IsSExt) { 3620 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3621 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3622 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3623 return It->second.getPointer(); 3624 return nullptr; 3625 } 3626 3627 /// Utility function to check whether or not a sign or zero extension 3628 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3629 /// either using the operands of \p Inst or promoting \p Inst. 3630 /// The type of the extension is defined by \p IsSExt. 3631 /// In other words, check if: 3632 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3633 /// #1 Promotion applies: 3634 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3635 /// #2 Operand reuses: 3636 /// ext opnd1 to ConsideredExtType. 3637 /// \p PromotedInsts maps the instructions to their type before promotion. 3638 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3639 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3640 3641 /// Utility function to determine if \p OpIdx should be promoted when 3642 /// promoting \p Inst. 3643 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3644 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3645 } 3646 3647 /// Utility function to promote the operand of \p Ext when this 3648 /// operand is a promotable trunc or sext or zext. 3649 /// \p PromotedInsts maps the instructions to their type before promotion. 3650 /// \p CreatedInstsCost[out] contains the cost of all instructions 3651 /// created to promote the operand of Ext. 3652 /// Newly added extensions are inserted in \p Exts. 3653 /// Newly added truncates are inserted in \p Truncs. 3654 /// Should never be called directly. 3655 /// \return The promoted value which is used instead of Ext. 3656 static Value *promoteOperandForTruncAndAnyExt( 3657 Instruction *Ext, TypePromotionTransaction &TPT, 3658 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3659 SmallVectorImpl<Instruction *> *Exts, 3660 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3661 3662 /// Utility function to promote the operand of \p Ext when this 3663 /// operand is promotable and is not a supported trunc or sext. 3664 /// \p PromotedInsts maps the instructions to their type before promotion. 3665 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3666 /// created to promote the operand of Ext. 3667 /// Newly added extensions are inserted in \p Exts. 3668 /// Newly added truncates are inserted in \p Truncs. 3669 /// Should never be called directly. 3670 /// \return The promoted value which is used instead of Ext. 3671 static Value *promoteOperandForOther(Instruction *Ext, 3672 TypePromotionTransaction &TPT, 3673 InstrToOrigTy &PromotedInsts, 3674 unsigned &CreatedInstsCost, 3675 SmallVectorImpl<Instruction *> *Exts, 3676 SmallVectorImpl<Instruction *> *Truncs, 3677 const TargetLowering &TLI, bool IsSExt); 3678 3679 /// \see promoteOperandForOther. 3680 static Value *signExtendOperandForOther( 3681 Instruction *Ext, TypePromotionTransaction &TPT, 3682 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3683 SmallVectorImpl<Instruction *> *Exts, 3684 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3685 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3686 Exts, Truncs, TLI, true); 3687 } 3688 3689 /// \see promoteOperandForOther. 3690 static Value *zeroExtendOperandForOther( 3691 Instruction *Ext, TypePromotionTransaction &TPT, 3692 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3693 SmallVectorImpl<Instruction *> *Exts, 3694 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3695 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3696 Exts, Truncs, TLI, false); 3697 } 3698 3699 public: 3700 /// Type for the utility function that promotes the operand of Ext. 3701 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3702 InstrToOrigTy &PromotedInsts, 3703 unsigned &CreatedInstsCost, 3704 SmallVectorImpl<Instruction *> *Exts, 3705 SmallVectorImpl<Instruction *> *Truncs, 3706 const TargetLowering &TLI); 3707 3708 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3709 /// action to promote the operand of \p Ext instead of using Ext. 3710 /// \return NULL if no promotable action is possible with the current 3711 /// sign extension. 3712 /// \p InsertedInsts keeps track of all the instructions inserted by the 3713 /// other CodeGenPrepare optimizations. This information is important 3714 /// because we do not want to promote these instructions as CodeGenPrepare 3715 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3716 /// \p PromotedInsts maps the instructions to their type before promotion. 3717 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3718 const TargetLowering &TLI, 3719 const InstrToOrigTy &PromotedInsts); 3720 }; 3721 3722 } // end anonymous namespace 3723 3724 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3725 Type *ConsideredExtType, 3726 const InstrToOrigTy &PromotedInsts, 3727 bool IsSExt) { 3728 // The promotion helper does not know how to deal with vector types yet. 3729 // To be able to fix that, we would need to fix the places where we 3730 // statically extend, e.g., constants and such. 3731 if (Inst->getType()->isVectorTy()) 3732 return false; 3733 3734 // We can always get through zext. 3735 if (isa<ZExtInst>(Inst)) 3736 return true; 3737 3738 // sext(sext) is ok too. 3739 if (IsSExt && isa<SExtInst>(Inst)) 3740 return true; 3741 3742 // We can get through binary operator, if it is legal. In other words, the 3743 // binary operator must have a nuw or nsw flag. 3744 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3745 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3746 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3747 (IsSExt && BinOp->hasNoSignedWrap()))) 3748 return true; 3749 3750 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 3751 if ((Inst->getOpcode() == Instruction::And || 3752 Inst->getOpcode() == Instruction::Or)) 3753 return true; 3754 3755 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 3756 if (Inst->getOpcode() == Instruction::Xor) { 3757 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 3758 // Make sure it is not a NOT. 3759 if (Cst && !Cst->getValue().isAllOnesValue()) 3760 return true; 3761 } 3762 3763 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 3764 // It may change a poisoned value into a regular value, like 3765 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 3766 // poisoned value regular value 3767 // It should be OK since undef covers valid value. 3768 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 3769 return true; 3770 3771 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 3772 // It may change a poisoned value into a regular value, like 3773 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 3774 // poisoned value regular value 3775 // It should be OK since undef covers valid value. 3776 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 3777 const Instruction *ExtInst = 3778 dyn_cast<const Instruction>(*Inst->user_begin()); 3779 if (ExtInst->hasOneUse()) { 3780 const Instruction *AndInst = 3781 dyn_cast<const Instruction>(*ExtInst->user_begin()); 3782 if (AndInst && AndInst->getOpcode() == Instruction::And) { 3783 const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 3784 if (Cst && 3785 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 3786 return true; 3787 } 3788 } 3789 } 3790 3791 // Check if we can do the following simplification. 3792 // ext(trunc(opnd)) --> ext(opnd) 3793 if (!isa<TruncInst>(Inst)) 3794 return false; 3795 3796 Value *OpndVal = Inst->getOperand(0); 3797 // Check if we can use this operand in the extension. 3798 // If the type is larger than the result type of the extension, we cannot. 3799 if (!OpndVal->getType()->isIntegerTy() || 3800 OpndVal->getType()->getIntegerBitWidth() > 3801 ConsideredExtType->getIntegerBitWidth()) 3802 return false; 3803 3804 // If the operand of the truncate is not an instruction, we will not have 3805 // any information on the dropped bits. 3806 // (Actually we could for constant but it is not worth the extra logic). 3807 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3808 if (!Opnd) 3809 return false; 3810 3811 // Check if the source of the type is narrow enough. 3812 // I.e., check that trunc just drops extended bits of the same kind of 3813 // the extension. 3814 // #1 get the type of the operand and check the kind of the extended bits. 3815 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 3816 if (OpndType) 3817 ; 3818 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3819 OpndType = Opnd->getOperand(0)->getType(); 3820 else 3821 return false; 3822 3823 // #2 check that the truncate just drops extended bits. 3824 return Inst->getType()->getIntegerBitWidth() >= 3825 OpndType->getIntegerBitWidth(); 3826 } 3827 3828 TypePromotionHelper::Action TypePromotionHelper::getAction( 3829 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3830 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3831 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3832 "Unexpected instruction type"); 3833 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3834 Type *ExtTy = Ext->getType(); 3835 bool IsSExt = isa<SExtInst>(Ext); 3836 // If the operand of the extension is not an instruction, we cannot 3837 // get through. 3838 // If it, check we can get through. 3839 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3840 return nullptr; 3841 3842 // Do not promote if the operand has been added by codegenprepare. 3843 // Otherwise, it means we are undoing an optimization that is likely to be 3844 // redone, thus causing potential infinite loop. 3845 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3846 return nullptr; 3847 3848 // SExt or Trunc instructions. 3849 // Return the related handler. 3850 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3851 isa<ZExtInst>(ExtOpnd)) 3852 return promoteOperandForTruncAndAnyExt; 3853 3854 // Regular instruction. 3855 // Abort early if we will have to insert non-free instructions. 3856 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3857 return nullptr; 3858 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3859 } 3860 3861 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3862 Instruction *SExt, TypePromotionTransaction &TPT, 3863 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3864 SmallVectorImpl<Instruction *> *Exts, 3865 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3866 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3867 // get through it and this method should not be called. 3868 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3869 Value *ExtVal = SExt; 3870 bool HasMergedNonFreeExt = false; 3871 if (isa<ZExtInst>(SExtOpnd)) { 3872 // Replace s|zext(zext(opnd)) 3873 // => zext(opnd). 3874 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3875 Value *ZExt = 3876 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3877 TPT.replaceAllUsesWith(SExt, ZExt); 3878 TPT.eraseInstruction(SExt); 3879 ExtVal = ZExt; 3880 } else { 3881 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3882 // => z|sext(opnd). 3883 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3884 } 3885 CreatedInstsCost = 0; 3886 3887 // Remove dead code. 3888 if (SExtOpnd->use_empty()) 3889 TPT.eraseInstruction(SExtOpnd); 3890 3891 // Check if the extension is still needed. 3892 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3893 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3894 if (ExtInst) { 3895 if (Exts) 3896 Exts->push_back(ExtInst); 3897 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3898 } 3899 return ExtVal; 3900 } 3901 3902 // At this point we have: ext ty opnd to ty. 3903 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3904 Value *NextVal = ExtInst->getOperand(0); 3905 TPT.eraseInstruction(ExtInst, NextVal); 3906 return NextVal; 3907 } 3908 3909 Value *TypePromotionHelper::promoteOperandForOther( 3910 Instruction *Ext, TypePromotionTransaction &TPT, 3911 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3912 SmallVectorImpl<Instruction *> *Exts, 3913 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3914 bool IsSExt) { 3915 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3916 // get through it and this method should not be called. 3917 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3918 CreatedInstsCost = 0; 3919 if (!ExtOpnd->hasOneUse()) { 3920 // ExtOpnd will be promoted. 3921 // All its uses, but Ext, will need to use a truncated value of the 3922 // promoted version. 3923 // Create the truncate now. 3924 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3925 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3926 // Insert it just after the definition. 3927 ITrunc->moveAfter(ExtOpnd); 3928 if (Truncs) 3929 Truncs->push_back(ITrunc); 3930 } 3931 3932 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3933 // Restore the operand of Ext (which has been replaced by the previous call 3934 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3935 TPT.setOperand(Ext, 0, ExtOpnd); 3936 } 3937 3938 // Get through the Instruction: 3939 // 1. Update its type. 3940 // 2. Replace the uses of Ext by Inst. 3941 // 3. Extend each operand that needs to be extended. 3942 3943 // Remember the original type of the instruction before promotion. 3944 // This is useful to know that the high bits are sign extended bits. 3945 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 3946 // Step #1. 3947 TPT.mutateType(ExtOpnd, Ext->getType()); 3948 // Step #2. 3949 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3950 // Step #3. 3951 Instruction *ExtForOpnd = Ext; 3952 3953 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 3954 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3955 ++OpIdx) { 3956 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3957 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3958 !shouldExtOperand(ExtOpnd, OpIdx)) { 3959 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 3960 continue; 3961 } 3962 // Check if we can statically extend the operand. 3963 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3964 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3965 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3966 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3967 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3968 : Cst->getValue().zext(BitWidth); 3969 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3970 continue; 3971 } 3972 // UndefValue are typed, so we have to statically sign extend them. 3973 if (isa<UndefValue>(Opnd)) { 3974 LLVM_DEBUG(dbgs() << "Statically extend\n"); 3975 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3976 continue; 3977 } 3978 3979 // Otherwise we have to explicitly sign extend the operand. 3980 // Check if Ext was reused to extend an operand. 3981 if (!ExtForOpnd) { 3982 // If yes, create a new one. 3983 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 3984 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3985 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3986 if (!isa<Instruction>(ValForExtOpnd)) { 3987 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3988 continue; 3989 } 3990 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3991 } 3992 if (Exts) 3993 Exts->push_back(ExtForOpnd); 3994 TPT.setOperand(ExtForOpnd, 0, Opnd); 3995 3996 // Move the sign extension before the insertion point. 3997 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3998 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3999 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4000 // If more sext are required, new instructions will have to be created. 4001 ExtForOpnd = nullptr; 4002 } 4003 if (ExtForOpnd == Ext) { 4004 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4005 TPT.eraseInstruction(Ext); 4006 } 4007 return ExtOpnd; 4008 } 4009 4010 /// Check whether or not promoting an instruction to a wider type is profitable. 4011 /// \p NewCost gives the cost of extension instructions created by the 4012 /// promotion. 4013 /// \p OldCost gives the cost of extension instructions before the promotion 4014 /// plus the number of instructions that have been 4015 /// matched in the addressing mode the promotion. 4016 /// \p PromotedOperand is the value that has been promoted. 4017 /// \return True if the promotion is profitable, false otherwise. 4018 bool AddressingModeMatcher::isPromotionProfitable( 4019 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4020 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4021 << '\n'); 4022 // The cost of the new extensions is greater than the cost of the 4023 // old extension plus what we folded. 4024 // This is not profitable. 4025 if (NewCost > OldCost) 4026 return false; 4027 if (NewCost < OldCost) 4028 return true; 4029 // The promotion is neutral but it may help folding the sign extension in 4030 // loads for instance. 4031 // Check that we did not create an illegal instruction. 4032 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4033 } 4034 4035 /// Given an instruction or constant expr, see if we can fold the operation 4036 /// into the addressing mode. If so, update the addressing mode and return 4037 /// true, otherwise return false without modifying AddrMode. 4038 /// If \p MovedAway is not NULL, it contains the information of whether or 4039 /// not AddrInst has to be folded into the addressing mode on success. 4040 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4041 /// because it has been moved away. 4042 /// Thus AddrInst must not be added in the matched instructions. 4043 /// This state can happen when AddrInst is a sext, since it may be moved away. 4044 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4045 /// not be referenced anymore. 4046 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4047 unsigned Depth, 4048 bool *MovedAway) { 4049 // Avoid exponential behavior on extremely deep expression trees. 4050 if (Depth >= 5) return false; 4051 4052 // By default, all matched instructions stay in place. 4053 if (MovedAway) 4054 *MovedAway = false; 4055 4056 switch (Opcode) { 4057 case Instruction::PtrToInt: 4058 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4059 return matchAddr(AddrInst->getOperand(0), Depth); 4060 case Instruction::IntToPtr: { 4061 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4062 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4063 // This inttoptr is a no-op if the integer type is pointer sized. 4064 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4065 return matchAddr(AddrInst->getOperand(0), Depth); 4066 return false; 4067 } 4068 case Instruction::BitCast: 4069 // BitCast is always a noop, and we can handle it as long as it is 4070 // int->int or pointer->pointer (we don't want int<->fp or something). 4071 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4072 // Don't touch identity bitcasts. These were probably put here by LSR, 4073 // and we don't want to mess around with them. Assume it knows what it 4074 // is doing. 4075 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4076 return matchAddr(AddrInst->getOperand(0), Depth); 4077 return false; 4078 case Instruction::AddrSpaceCast: { 4079 unsigned SrcAS 4080 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4081 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4082 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 4083 return matchAddr(AddrInst->getOperand(0), Depth); 4084 return false; 4085 } 4086 case Instruction::Add: { 4087 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4088 ExtAddrMode BackupAddrMode = AddrMode; 4089 unsigned OldSize = AddrModeInsts.size(); 4090 // Start a transaction at this point. 4091 // The LHS may match but not the RHS. 4092 // Therefore, we need a higher level restoration point to undo partially 4093 // matched operation. 4094 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4095 TPT.getRestorationPoint(); 4096 4097 AddrMode.InBounds = false; 4098 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4099 matchAddr(AddrInst->getOperand(0), Depth+1)) 4100 return true; 4101 4102 // Restore the old addr mode info. 4103 AddrMode = BackupAddrMode; 4104 AddrModeInsts.resize(OldSize); 4105 TPT.rollback(LastKnownGood); 4106 4107 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4108 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4109 matchAddr(AddrInst->getOperand(1), Depth+1)) 4110 return true; 4111 4112 // Otherwise we definitely can't merge the ADD in. 4113 AddrMode = BackupAddrMode; 4114 AddrModeInsts.resize(OldSize); 4115 TPT.rollback(LastKnownGood); 4116 break; 4117 } 4118 //case Instruction::Or: 4119 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4120 //break; 4121 case Instruction::Mul: 4122 case Instruction::Shl: { 4123 // Can only handle X*C and X << C. 4124 AddrMode.InBounds = false; 4125 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4126 if (!RHS || RHS->getBitWidth() > 64) 4127 return false; 4128 int64_t Scale = RHS->getSExtValue(); 4129 if (Opcode == Instruction::Shl) 4130 Scale = 1LL << Scale; 4131 4132 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4133 } 4134 case Instruction::GetElementPtr: { 4135 // Scan the GEP. We check it if it contains constant offsets and at most 4136 // one variable offset. 4137 int VariableOperand = -1; 4138 unsigned VariableScale = 0; 4139 4140 int64_t ConstantOffset = 0; 4141 gep_type_iterator GTI = gep_type_begin(AddrInst); 4142 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4143 if (StructType *STy = GTI.getStructTypeOrNull()) { 4144 const StructLayout *SL = DL.getStructLayout(STy); 4145 unsigned Idx = 4146 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4147 ConstantOffset += SL->getElementOffset(Idx); 4148 } else { 4149 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 4150 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4151 const APInt &CVal = CI->getValue(); 4152 if (CVal.getMinSignedBits() <= 64) { 4153 ConstantOffset += CVal.getSExtValue() * TypeSize; 4154 continue; 4155 } 4156 } 4157 if (TypeSize) { // Scales of zero don't do anything. 4158 // We only allow one variable index at the moment. 4159 if (VariableOperand != -1) 4160 return false; 4161 4162 // Remember the variable index. 4163 VariableOperand = i; 4164 VariableScale = TypeSize; 4165 } 4166 } 4167 } 4168 4169 // A common case is for the GEP to only do a constant offset. In this case, 4170 // just add it to the disp field and check validity. 4171 if (VariableOperand == -1) { 4172 AddrMode.BaseOffs += ConstantOffset; 4173 if (ConstantOffset == 0 || 4174 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4175 // Check to see if we can fold the base pointer in too. 4176 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4177 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4178 AddrMode.InBounds = false; 4179 return true; 4180 } 4181 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4182 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4183 ConstantOffset > 0) { 4184 // Record GEPs with non-zero offsets as candidates for splitting in the 4185 // event that the offset cannot fit into the r+i addressing mode. 4186 // Simple and common case that only one GEP is used in calculating the 4187 // address for the memory access. 4188 Value *Base = AddrInst->getOperand(0); 4189 auto *BaseI = dyn_cast<Instruction>(Base); 4190 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4191 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4192 (BaseI && !isa<CastInst>(BaseI) && 4193 !isa<GetElementPtrInst>(BaseI))) { 4194 // If the base is an instruction, make sure the GEP is not in the same 4195 // basic block as the base. If the base is an argument or global 4196 // value, make sure the GEP is not in the entry block. Otherwise, 4197 // instruction selection can undo the split. Also make sure the 4198 // parent block allows inserting non-PHI instructions before the 4199 // terminator. 4200 BasicBlock *Parent = 4201 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4202 if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad()) 4203 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4204 } 4205 } 4206 AddrMode.BaseOffs -= ConstantOffset; 4207 return false; 4208 } 4209 4210 // Save the valid addressing mode in case we can't match. 4211 ExtAddrMode BackupAddrMode = AddrMode; 4212 unsigned OldSize = AddrModeInsts.size(); 4213 4214 // See if the scale and offset amount is valid for this target. 4215 AddrMode.BaseOffs += ConstantOffset; 4216 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4217 AddrMode.InBounds = false; 4218 4219 // Match the base operand of the GEP. 4220 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4221 // If it couldn't be matched, just stuff the value in a register. 4222 if (AddrMode.HasBaseReg) { 4223 AddrMode = BackupAddrMode; 4224 AddrModeInsts.resize(OldSize); 4225 return false; 4226 } 4227 AddrMode.HasBaseReg = true; 4228 AddrMode.BaseReg = AddrInst->getOperand(0); 4229 } 4230 4231 // Match the remaining variable portion of the GEP. 4232 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4233 Depth)) { 4234 // If it couldn't be matched, try stuffing the base into a register 4235 // instead of matching it, and retrying the match of the scale. 4236 AddrMode = BackupAddrMode; 4237 AddrModeInsts.resize(OldSize); 4238 if (AddrMode.HasBaseReg) 4239 return false; 4240 AddrMode.HasBaseReg = true; 4241 AddrMode.BaseReg = AddrInst->getOperand(0); 4242 AddrMode.BaseOffs += ConstantOffset; 4243 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4244 VariableScale, Depth)) { 4245 // If even that didn't work, bail. 4246 AddrMode = BackupAddrMode; 4247 AddrModeInsts.resize(OldSize); 4248 return false; 4249 } 4250 } 4251 4252 return true; 4253 } 4254 case Instruction::SExt: 4255 case Instruction::ZExt: { 4256 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4257 if (!Ext) 4258 return false; 4259 4260 // Try to move this ext out of the way of the addressing mode. 4261 // Ask for a method for doing so. 4262 TypePromotionHelper::Action TPH = 4263 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4264 if (!TPH) 4265 return false; 4266 4267 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4268 TPT.getRestorationPoint(); 4269 unsigned CreatedInstsCost = 0; 4270 unsigned ExtCost = !TLI.isExtFree(Ext); 4271 Value *PromotedOperand = 4272 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4273 // SExt has been moved away. 4274 // Thus either it will be rematched later in the recursive calls or it is 4275 // gone. Anyway, we must not fold it into the addressing mode at this point. 4276 // E.g., 4277 // op = add opnd, 1 4278 // idx = ext op 4279 // addr = gep base, idx 4280 // is now: 4281 // promotedOpnd = ext opnd <- no match here 4282 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4283 // addr = gep base, op <- match 4284 if (MovedAway) 4285 *MovedAway = true; 4286 4287 assert(PromotedOperand && 4288 "TypePromotionHelper should have filtered out those cases"); 4289 4290 ExtAddrMode BackupAddrMode = AddrMode; 4291 unsigned OldSize = AddrModeInsts.size(); 4292 4293 if (!matchAddr(PromotedOperand, Depth) || 4294 // The total of the new cost is equal to the cost of the created 4295 // instructions. 4296 // The total of the old cost is equal to the cost of the extension plus 4297 // what we have saved in the addressing mode. 4298 !isPromotionProfitable(CreatedInstsCost, 4299 ExtCost + (AddrModeInsts.size() - OldSize), 4300 PromotedOperand)) { 4301 AddrMode = BackupAddrMode; 4302 AddrModeInsts.resize(OldSize); 4303 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4304 TPT.rollback(LastKnownGood); 4305 return false; 4306 } 4307 return true; 4308 } 4309 } 4310 return false; 4311 } 4312 4313 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4314 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4315 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4316 /// for the target. 4317 /// 4318 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4319 // Start a transaction at this point that we will rollback if the matching 4320 // fails. 4321 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4322 TPT.getRestorationPoint(); 4323 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4324 // Fold in immediates if legal for the target. 4325 AddrMode.BaseOffs += CI->getSExtValue(); 4326 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4327 return true; 4328 AddrMode.BaseOffs -= CI->getSExtValue(); 4329 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4330 // If this is a global variable, try to fold it into the addressing mode. 4331 if (!AddrMode.BaseGV) { 4332 AddrMode.BaseGV = GV; 4333 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4334 return true; 4335 AddrMode.BaseGV = nullptr; 4336 } 4337 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4338 ExtAddrMode BackupAddrMode = AddrMode; 4339 unsigned OldSize = AddrModeInsts.size(); 4340 4341 // Check to see if it is possible to fold this operation. 4342 bool MovedAway = false; 4343 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4344 // This instruction may have been moved away. If so, there is nothing 4345 // to check here. 4346 if (MovedAway) 4347 return true; 4348 // Okay, it's possible to fold this. Check to see if it is actually 4349 // *profitable* to do so. We use a simple cost model to avoid increasing 4350 // register pressure too much. 4351 if (I->hasOneUse() || 4352 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4353 AddrModeInsts.push_back(I); 4354 return true; 4355 } 4356 4357 // It isn't profitable to do this, roll back. 4358 //cerr << "NOT FOLDING: " << *I; 4359 AddrMode = BackupAddrMode; 4360 AddrModeInsts.resize(OldSize); 4361 TPT.rollback(LastKnownGood); 4362 } 4363 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4364 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4365 return true; 4366 TPT.rollback(LastKnownGood); 4367 } else if (isa<ConstantPointerNull>(Addr)) { 4368 // Null pointer gets folded without affecting the addressing mode. 4369 return true; 4370 } 4371 4372 // Worse case, the target should support [reg] addressing modes. :) 4373 if (!AddrMode.HasBaseReg) { 4374 AddrMode.HasBaseReg = true; 4375 AddrMode.BaseReg = Addr; 4376 // Still check for legality in case the target supports [imm] but not [i+r]. 4377 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4378 return true; 4379 AddrMode.HasBaseReg = false; 4380 AddrMode.BaseReg = nullptr; 4381 } 4382 4383 // If the base register is already taken, see if we can do [r+r]. 4384 if (AddrMode.Scale == 0) { 4385 AddrMode.Scale = 1; 4386 AddrMode.ScaledReg = Addr; 4387 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4388 return true; 4389 AddrMode.Scale = 0; 4390 AddrMode.ScaledReg = nullptr; 4391 } 4392 // Couldn't match. 4393 TPT.rollback(LastKnownGood); 4394 return false; 4395 } 4396 4397 /// Check to see if all uses of OpVal by the specified inline asm call are due 4398 /// to memory operands. If so, return true, otherwise return false. 4399 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4400 const TargetLowering &TLI, 4401 const TargetRegisterInfo &TRI) { 4402 const Function *F = CI->getFunction(); 4403 TargetLowering::AsmOperandInfoVector TargetConstraints = 4404 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 4405 ImmutableCallSite(CI)); 4406 4407 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4408 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4409 4410 // Compute the constraint code and ConstraintType to use. 4411 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4412 4413 // If this asm operand is our Value*, and if it isn't an indirect memory 4414 // operand, we can't fold it! 4415 if (OpInfo.CallOperandVal == OpVal && 4416 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4417 !OpInfo.isIndirect)) 4418 return false; 4419 } 4420 4421 return true; 4422 } 4423 4424 // Max number of memory uses to look at before aborting the search to conserve 4425 // compile time. 4426 static constexpr int MaxMemoryUsesToScan = 20; 4427 4428 /// Recursively walk all the uses of I until we find a memory use. 4429 /// If we find an obviously non-foldable instruction, return true. 4430 /// Add the ultimately found memory instructions to MemoryUses. 4431 static bool FindAllMemoryUses( 4432 Instruction *I, 4433 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4434 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4435 const TargetRegisterInfo &TRI, int SeenInsts = 0) { 4436 // If we already considered this instruction, we're done. 4437 if (!ConsideredInsts.insert(I).second) 4438 return false; 4439 4440 // If this is an obviously unfoldable instruction, bail out. 4441 if (!MightBeFoldableInst(I)) 4442 return true; 4443 4444 const bool OptSize = I->getFunction()->optForSize(); 4445 4446 // Loop over all the uses, recursively processing them. 4447 for (Use &U : I->uses()) { 4448 // Conservatively return true if we're seeing a large number or a deep chain 4449 // of users. This avoids excessive compilation times in pathological cases. 4450 if (SeenInsts++ >= MaxMemoryUsesToScan) 4451 return true; 4452 4453 Instruction *UserI = cast<Instruction>(U.getUser()); 4454 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4455 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4456 continue; 4457 } 4458 4459 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4460 unsigned opNo = U.getOperandNo(); 4461 if (opNo != StoreInst::getPointerOperandIndex()) 4462 return true; // Storing addr, not into addr. 4463 MemoryUses.push_back(std::make_pair(SI, opNo)); 4464 continue; 4465 } 4466 4467 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4468 unsigned opNo = U.getOperandNo(); 4469 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4470 return true; // Storing addr, not into addr. 4471 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4472 continue; 4473 } 4474 4475 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4476 unsigned opNo = U.getOperandNo(); 4477 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4478 return true; // Storing addr, not into addr. 4479 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4480 continue; 4481 } 4482 4483 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4484 // If this is a cold call, we can sink the addressing calculation into 4485 // the cold path. See optimizeCallInst 4486 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 4487 continue; 4488 4489 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 4490 if (!IA) return true; 4491 4492 // If this is a memory operand, we're cool, otherwise bail out. 4493 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4494 return true; 4495 continue; 4496 } 4497 4498 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, 4499 SeenInsts)) 4500 return true; 4501 } 4502 4503 return false; 4504 } 4505 4506 /// Return true if Val is already known to be live at the use site that we're 4507 /// folding it into. If so, there is no cost to include it in the addressing 4508 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4509 /// instruction already. 4510 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4511 Value *KnownLive2) { 4512 // If Val is either of the known-live values, we know it is live! 4513 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4514 return true; 4515 4516 // All values other than instructions and arguments (e.g. constants) are live. 4517 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4518 4519 // If Val is a constant sized alloca in the entry block, it is live, this is 4520 // true because it is just a reference to the stack/frame pointer, which is 4521 // live for the whole function. 4522 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4523 if (AI->isStaticAlloca()) 4524 return true; 4525 4526 // Check to see if this value is already used in the memory instruction's 4527 // block. If so, it's already live into the block at the very least, so we 4528 // can reasonably fold it. 4529 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4530 } 4531 4532 /// It is possible for the addressing mode of the machine to fold the specified 4533 /// instruction into a load or store that ultimately uses it. 4534 /// However, the specified instruction has multiple uses. 4535 /// Given this, it may actually increase register pressure to fold it 4536 /// into the load. For example, consider this code: 4537 /// 4538 /// X = ... 4539 /// Y = X+1 4540 /// use(Y) -> nonload/store 4541 /// Z = Y+1 4542 /// load Z 4543 /// 4544 /// In this case, Y has multiple uses, and can be folded into the load of Z 4545 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4546 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4547 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4548 /// number of computations either. 4549 /// 4550 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4551 /// X was live across 'load Z' for other reasons, we actually *would* want to 4552 /// fold the addressing mode in the Z case. This would make Y die earlier. 4553 bool AddressingModeMatcher:: 4554 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4555 ExtAddrMode &AMAfter) { 4556 if (IgnoreProfitability) return true; 4557 4558 // AMBefore is the addressing mode before this instruction was folded into it, 4559 // and AMAfter is the addressing mode after the instruction was folded. Get 4560 // the set of registers referenced by AMAfter and subtract out those 4561 // referenced by AMBefore: this is the set of values which folding in this 4562 // address extends the lifetime of. 4563 // 4564 // Note that there are only two potential values being referenced here, 4565 // BaseReg and ScaleReg (global addresses are always available, as are any 4566 // folded immediates). 4567 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4568 4569 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4570 // lifetime wasn't extended by adding this instruction. 4571 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4572 BaseReg = nullptr; 4573 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4574 ScaledReg = nullptr; 4575 4576 // If folding this instruction (and it's subexprs) didn't extend any live 4577 // ranges, we're ok with it. 4578 if (!BaseReg && !ScaledReg) 4579 return true; 4580 4581 // If all uses of this instruction can have the address mode sunk into them, 4582 // we can remove the addressing mode and effectively trade one live register 4583 // for another (at worst.) In this context, folding an addressing mode into 4584 // the use is just a particularly nice way of sinking it. 4585 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4586 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4587 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 4588 return false; // Has a non-memory, non-foldable use! 4589 4590 // Now that we know that all uses of this instruction are part of a chain of 4591 // computation involving only operations that could theoretically be folded 4592 // into a memory use, loop over each of these memory operation uses and see 4593 // if they could *actually* fold the instruction. The assumption is that 4594 // addressing modes are cheap and that duplicating the computation involved 4595 // many times is worthwhile, even on a fastpath. For sinking candidates 4596 // (i.e. cold call sites), this serves as a way to prevent excessive code 4597 // growth since most architectures have some reasonable small and fast way to 4598 // compute an effective address. (i.e LEA on x86) 4599 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4600 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4601 Instruction *User = MemoryUses[i].first; 4602 unsigned OpNo = MemoryUses[i].second; 4603 4604 // Get the access type of this use. If the use isn't a pointer, we don't 4605 // know what it accesses. 4606 Value *Address = User->getOperand(OpNo); 4607 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4608 if (!AddrTy) 4609 return false; 4610 Type *AddressAccessTy = AddrTy->getElementType(); 4611 unsigned AS = AddrTy->getAddressSpace(); 4612 4613 // Do a match against the root of this address, ignoring profitability. This 4614 // will tell us if the addressing mode for the memory operation will 4615 // *actually* cover the shared instruction. 4616 ExtAddrMode Result; 4617 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4618 0); 4619 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4620 TPT.getRestorationPoint(); 4621 AddressingModeMatcher Matcher( 4622 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4623 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4624 Matcher.IgnoreProfitability = true; 4625 bool Success = Matcher.matchAddr(Address, 0); 4626 (void)Success; assert(Success && "Couldn't select *anything*?"); 4627 4628 // The match was to check the profitability, the changes made are not 4629 // part of the original matcher. Therefore, they should be dropped 4630 // otherwise the original matcher will not present the right state. 4631 TPT.rollback(LastKnownGood); 4632 4633 // If the match didn't cover I, then it won't be shared by it. 4634 if (!is_contained(MatchedAddrModeInsts, I)) 4635 return false; 4636 4637 MatchedAddrModeInsts.clear(); 4638 } 4639 4640 return true; 4641 } 4642 4643 /// Return true if the specified values are defined in a 4644 /// different basic block than BB. 4645 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4646 if (Instruction *I = dyn_cast<Instruction>(V)) 4647 return I->getParent() != BB; 4648 return false; 4649 } 4650 4651 /// Sink addressing mode computation immediate before MemoryInst if doing so 4652 /// can be done without increasing register pressure. The need for the 4653 /// register pressure constraint means this can end up being an all or nothing 4654 /// decision for all uses of the same addressing computation. 4655 /// 4656 /// Load and Store Instructions often have addressing modes that can do 4657 /// significant amounts of computation. As such, instruction selection will try 4658 /// to get the load or store to do as much computation as possible for the 4659 /// program. The problem is that isel can only see within a single block. As 4660 /// such, we sink as much legal addressing mode work into the block as possible. 4661 /// 4662 /// This method is used to optimize both load/store and inline asms with memory 4663 /// operands. It's also used to sink addressing computations feeding into cold 4664 /// call sites into their (cold) basic block. 4665 /// 4666 /// The motivation for handling sinking into cold blocks is that doing so can 4667 /// both enable other address mode sinking (by satisfying the register pressure 4668 /// constraint above), and reduce register pressure globally (by removing the 4669 /// addressing mode computation from the fast path entirely.). 4670 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4671 Type *AccessTy, unsigned AddrSpace) { 4672 Value *Repl = Addr; 4673 4674 // Try to collapse single-value PHI nodes. This is necessary to undo 4675 // unprofitable PRE transformations. 4676 SmallVector<Value*, 8> worklist; 4677 SmallPtrSet<Value*, 16> Visited; 4678 worklist.push_back(Addr); 4679 4680 // Use a worklist to iteratively look through PHI and select nodes, and 4681 // ensure that the addressing mode obtained from the non-PHI/select roots of 4682 // the graph are compatible. 4683 bool PhiOrSelectSeen = false; 4684 SmallVector<Instruction*, 16> AddrModeInsts; 4685 const SimplifyQuery SQ(*DL, TLInfo); 4686 AddressingModeCombiner AddrModes(SQ, Addr); 4687 TypePromotionTransaction TPT(RemovedInsts); 4688 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4689 TPT.getRestorationPoint(); 4690 while (!worklist.empty()) { 4691 Value *V = worklist.back(); 4692 worklist.pop_back(); 4693 4694 // We allow traversing cyclic Phi nodes. 4695 // In case of success after this loop we ensure that traversing through 4696 // Phi nodes ends up with all cases to compute address of the form 4697 // BaseGV + Base + Scale * Index + Offset 4698 // where Scale and Offset are constans and BaseGV, Base and Index 4699 // are exactly the same Values in all cases. 4700 // It means that BaseGV, Scale and Offset dominate our memory instruction 4701 // and have the same value as they had in address computation represented 4702 // as Phi. So we can safely sink address computation to memory instruction. 4703 if (!Visited.insert(V).second) 4704 continue; 4705 4706 // For a PHI node, push all of its incoming values. 4707 if (PHINode *P = dyn_cast<PHINode>(V)) { 4708 for (Value *IncValue : P->incoming_values()) 4709 worklist.push_back(IncValue); 4710 PhiOrSelectSeen = true; 4711 continue; 4712 } 4713 // Similar for select. 4714 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 4715 worklist.push_back(SI->getFalseValue()); 4716 worklist.push_back(SI->getTrueValue()); 4717 PhiOrSelectSeen = true; 4718 continue; 4719 } 4720 4721 // For non-PHIs, determine the addressing mode being computed. Note that 4722 // the result may differ depending on what other uses our candidate 4723 // addressing instructions might have. 4724 AddrModeInsts.clear(); 4725 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4726 0); 4727 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4728 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 4729 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); 4730 4731 GetElementPtrInst *GEP = LargeOffsetGEP.first; 4732 if (GEP && GEP->getParent() != MemoryInst->getParent() && 4733 !NewGEPBases.count(GEP)) { 4734 // If splitting the underlying data structure can reduce the offset of a 4735 // GEP, collect the GEP. Skip the GEPs that are the new bases of 4736 // previously split data structures. 4737 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 4738 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 4739 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 4740 } 4741 4742 NewAddrMode.OriginalValue = V; 4743 if (!AddrModes.addNewAddrMode(NewAddrMode)) 4744 break; 4745 } 4746 4747 // Try to combine the AddrModes we've collected. If we couldn't collect any, 4748 // or we have multiple but either couldn't combine them or combining them 4749 // wouldn't do anything useful, bail out now. 4750 if (!AddrModes.combineAddrModes()) { 4751 TPT.rollback(LastKnownGood); 4752 return false; 4753 } 4754 TPT.commit(); 4755 4756 // Get the combined AddrMode (or the only AddrMode, if we only had one). 4757 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 4758 4759 // If all the instructions matched are already in this BB, don't do anything. 4760 // If we saw a Phi node then it is not local definitely, and if we saw a select 4761 // then we want to push the address calculation past it even if it's already 4762 // in this BB. 4763 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 4764 return IsNonLocalValue(V, MemoryInst->getParent()); 4765 })) { 4766 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 4767 << "\n"); 4768 return false; 4769 } 4770 4771 // Insert this computation right after this user. Since our caller is 4772 // scanning from the top of the BB to the bottom, reuse of the expr are 4773 // guaranteed to happen later. 4774 IRBuilder<> Builder(MemoryInst); 4775 4776 // Now that we determined the addressing expression we want to use and know 4777 // that we have to sink it into this block. Check to see if we have already 4778 // done this for some other load/store instr in this block. If so, reuse 4779 // the computation. Before attempting reuse, check if the address is valid 4780 // as it may have been erased. 4781 4782 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 4783 4784 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 4785 if (SunkAddr) { 4786 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 4787 << " for " << *MemoryInst << "\n"); 4788 if (SunkAddr->getType() != Addr->getType()) 4789 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4790 } else if (AddrSinkUsingGEPs || 4791 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { 4792 // By default, we use the GEP-based method when AA is used later. This 4793 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4794 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4795 << " for " << *MemoryInst << "\n"); 4796 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4797 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4798 4799 // First, find the pointer. 4800 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4801 ResultPtr = AddrMode.BaseReg; 4802 AddrMode.BaseReg = nullptr; 4803 } 4804 4805 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4806 // We can't add more than one pointer together, nor can we scale a 4807 // pointer (both of which seem meaningless). 4808 if (ResultPtr || AddrMode.Scale != 1) 4809 return false; 4810 4811 ResultPtr = AddrMode.ScaledReg; 4812 AddrMode.Scale = 0; 4813 } 4814 4815 // It is only safe to sign extend the BaseReg if we know that the math 4816 // required to create it did not overflow before we extend it. Since 4817 // the original IR value was tossed in favor of a constant back when 4818 // the AddrMode was created we need to bail out gracefully if widths 4819 // do not match instead of extending it. 4820 // 4821 // (See below for code to add the scale.) 4822 if (AddrMode.Scale) { 4823 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 4824 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 4825 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 4826 return false; 4827 } 4828 4829 if (AddrMode.BaseGV) { 4830 if (ResultPtr) 4831 return false; 4832 4833 ResultPtr = AddrMode.BaseGV; 4834 } 4835 4836 // If the real base value actually came from an inttoptr, then the matcher 4837 // will look through it and provide only the integer value. In that case, 4838 // use it here. 4839 if (!DL->isNonIntegralPointerType(Addr->getType())) { 4840 if (!ResultPtr && AddrMode.BaseReg) { 4841 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 4842 "sunkaddr"); 4843 AddrMode.BaseReg = nullptr; 4844 } else if (!ResultPtr && AddrMode.Scale == 1) { 4845 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 4846 "sunkaddr"); 4847 AddrMode.Scale = 0; 4848 } 4849 } 4850 4851 if (!ResultPtr && 4852 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4853 SunkAddr = Constant::getNullValue(Addr->getType()); 4854 } else if (!ResultPtr) { 4855 return false; 4856 } else { 4857 Type *I8PtrTy = 4858 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4859 Type *I8Ty = Builder.getInt8Ty(); 4860 4861 // Start with the base register. Do this first so that subsequent address 4862 // matching finds it last, which will prevent it from trying to match it 4863 // as the scaled value in case it happens to be a mul. That would be 4864 // problematic if we've sunk a different mul for the scale, because then 4865 // we'd end up sinking both muls. 4866 if (AddrMode.BaseReg) { 4867 Value *V = AddrMode.BaseReg; 4868 if (V->getType() != IntPtrTy) 4869 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4870 4871 ResultIndex = V; 4872 } 4873 4874 // Add the scale value. 4875 if (AddrMode.Scale) { 4876 Value *V = AddrMode.ScaledReg; 4877 if (V->getType() == IntPtrTy) { 4878 // done. 4879 } else { 4880 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 4881 cast<IntegerType>(V->getType())->getBitWidth() && 4882 "We can't transform if ScaledReg is too narrow"); 4883 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4884 } 4885 4886 if (AddrMode.Scale != 1) 4887 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4888 "sunkaddr"); 4889 if (ResultIndex) 4890 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4891 else 4892 ResultIndex = V; 4893 } 4894 4895 // Add in the Base Offset if present. 4896 if (AddrMode.BaseOffs) { 4897 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4898 if (ResultIndex) { 4899 // We need to add this separately from the scale above to help with 4900 // SDAG consecutive load/store merging. 4901 if (ResultPtr->getType() != I8PtrTy) 4902 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4903 ResultPtr = 4904 AddrMode.InBounds 4905 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4906 "sunkaddr") 4907 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4908 } 4909 4910 ResultIndex = V; 4911 } 4912 4913 if (!ResultIndex) { 4914 SunkAddr = ResultPtr; 4915 } else { 4916 if (ResultPtr->getType() != I8PtrTy) 4917 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4918 SunkAddr = 4919 AddrMode.InBounds 4920 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 4921 "sunkaddr") 4922 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4923 } 4924 4925 if (SunkAddr->getType() != Addr->getType()) 4926 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4927 } 4928 } else { 4929 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 4930 // non-integral pointers, so in that case bail out now. 4931 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 4932 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 4933 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 4934 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 4935 if (DL->isNonIntegralPointerType(Addr->getType()) || 4936 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 4937 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 4938 (AddrMode.BaseGV && 4939 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 4940 return false; 4941 4942 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 4943 << " for " << *MemoryInst << "\n"); 4944 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4945 Value *Result = nullptr; 4946 4947 // Start with the base register. Do this first so that subsequent address 4948 // matching finds it last, which will prevent it from trying to match it 4949 // as the scaled value in case it happens to be a mul. That would be 4950 // problematic if we've sunk a different mul for the scale, because then 4951 // we'd end up sinking both muls. 4952 if (AddrMode.BaseReg) { 4953 Value *V = AddrMode.BaseReg; 4954 if (V->getType()->isPointerTy()) 4955 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4956 if (V->getType() != IntPtrTy) 4957 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4958 Result = V; 4959 } 4960 4961 // Add the scale value. 4962 if (AddrMode.Scale) { 4963 Value *V = AddrMode.ScaledReg; 4964 if (V->getType() == IntPtrTy) { 4965 // done. 4966 } else if (V->getType()->isPointerTy()) { 4967 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4968 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4969 cast<IntegerType>(V->getType())->getBitWidth()) { 4970 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4971 } else { 4972 // It is only safe to sign extend the BaseReg if we know that the math 4973 // required to create it did not overflow before we extend it. Since 4974 // the original IR value was tossed in favor of a constant back when 4975 // the AddrMode was created we need to bail out gracefully if widths 4976 // do not match instead of extending it. 4977 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4978 if (I && (Result != AddrMode.BaseReg)) 4979 I->eraseFromParent(); 4980 return false; 4981 } 4982 if (AddrMode.Scale != 1) 4983 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4984 "sunkaddr"); 4985 if (Result) 4986 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4987 else 4988 Result = V; 4989 } 4990 4991 // Add in the BaseGV if present. 4992 if (AddrMode.BaseGV) { 4993 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4994 if (Result) 4995 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4996 else 4997 Result = V; 4998 } 4999 5000 // Add in the Base Offset if present. 5001 if (AddrMode.BaseOffs) { 5002 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5003 if (Result) 5004 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5005 else 5006 Result = V; 5007 } 5008 5009 if (!Result) 5010 SunkAddr = Constant::getNullValue(Addr->getType()); 5011 else 5012 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5013 } 5014 5015 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5016 // Store the newly computed address into the cache. In the case we reused a 5017 // value, this should be idempotent. 5018 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5019 5020 // If we have no uses, recursively delete the value and all dead instructions 5021 // using it. 5022 if (Repl->use_empty()) { 5023 // This can cause recursive deletion, which can invalidate our iterator. 5024 // Use a WeakTrackingVH to hold onto it in case this happens. 5025 Value *CurValue = &*CurInstIterator; 5026 WeakTrackingVH IterHandle(CurValue); 5027 BasicBlock *BB = CurInstIterator->getParent(); 5028 5029 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 5030 5031 if (IterHandle != CurValue) { 5032 // If the iterator instruction was recursively deleted, start over at the 5033 // start of the block. 5034 CurInstIterator = BB->begin(); 5035 SunkAddrs.clear(); 5036 } 5037 } 5038 ++NumMemoryInsts; 5039 return true; 5040 } 5041 5042 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5043 /// address computing into the block when possible / profitable. 5044 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5045 bool MadeChange = false; 5046 5047 const TargetRegisterInfo *TRI = 5048 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5049 TargetLowering::AsmOperandInfoVector TargetConstraints = 5050 TLI->ParseConstraints(*DL, TRI, CS); 5051 unsigned ArgNo = 0; 5052 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5053 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5054 5055 // Compute the constraint code and ConstraintType to use. 5056 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5057 5058 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5059 OpInfo.isIndirect) { 5060 Value *OpVal = CS->getArgOperand(ArgNo++); 5061 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5062 } else if (OpInfo.Type == InlineAsm::isInput) 5063 ArgNo++; 5064 } 5065 5066 return MadeChange; 5067 } 5068 5069 /// Check if all the uses of \p Val are equivalent (or free) zero or 5070 /// sign extensions. 5071 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5072 assert(!Val->use_empty() && "Input must have at least one use"); 5073 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5074 bool IsSExt = isa<SExtInst>(FirstUser); 5075 Type *ExtTy = FirstUser->getType(); 5076 for (const User *U : Val->users()) { 5077 const Instruction *UI = cast<Instruction>(U); 5078 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5079 return false; 5080 Type *CurTy = UI->getType(); 5081 // Same input and output types: Same instruction after CSE. 5082 if (CurTy == ExtTy) 5083 continue; 5084 5085 // If IsSExt is true, we are in this situation: 5086 // a = Val 5087 // b = sext ty1 a to ty2 5088 // c = sext ty1 a to ty3 5089 // Assuming ty2 is shorter than ty3, this could be turned into: 5090 // a = Val 5091 // b = sext ty1 a to ty2 5092 // c = sext ty2 b to ty3 5093 // However, the last sext is not free. 5094 if (IsSExt) 5095 return false; 5096 5097 // This is a ZExt, maybe this is free to extend from one type to another. 5098 // In that case, we would not account for a different use. 5099 Type *NarrowTy; 5100 Type *LargeTy; 5101 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5102 CurTy->getScalarType()->getIntegerBitWidth()) { 5103 NarrowTy = CurTy; 5104 LargeTy = ExtTy; 5105 } else { 5106 NarrowTy = ExtTy; 5107 LargeTy = CurTy; 5108 } 5109 5110 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5111 return false; 5112 } 5113 // All uses are the same or can be derived from one another for free. 5114 return true; 5115 } 5116 5117 /// Try to speculatively promote extensions in \p Exts and continue 5118 /// promoting through newly promoted operands recursively as far as doing so is 5119 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5120 /// When some promotion happened, \p TPT contains the proper state to revert 5121 /// them. 5122 /// 5123 /// \return true if some promotion happened, false otherwise. 5124 bool CodeGenPrepare::tryToPromoteExts( 5125 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5126 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5127 unsigned CreatedInstsCost) { 5128 bool Promoted = false; 5129 5130 // Iterate over all the extensions to try to promote them. 5131 for (auto I : Exts) { 5132 // Early check if we directly have ext(load). 5133 if (isa<LoadInst>(I->getOperand(0))) { 5134 ProfitablyMovedExts.push_back(I); 5135 continue; 5136 } 5137 5138 // Check whether or not we want to do any promotion. The reason we have 5139 // this check inside the for loop is to catch the case where an extension 5140 // is directly fed by a load because in such case the extension can be moved 5141 // up without any promotion on its operands. 5142 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5143 return false; 5144 5145 // Get the action to perform the promotion. 5146 TypePromotionHelper::Action TPH = 5147 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5148 // Check if we can promote. 5149 if (!TPH) { 5150 // Save the current extension as we cannot move up through its operand. 5151 ProfitablyMovedExts.push_back(I); 5152 continue; 5153 } 5154 5155 // Save the current state. 5156 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5157 TPT.getRestorationPoint(); 5158 SmallVector<Instruction *, 4> NewExts; 5159 unsigned NewCreatedInstsCost = 0; 5160 unsigned ExtCost = !TLI->isExtFree(I); 5161 // Promote. 5162 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5163 &NewExts, nullptr, *TLI); 5164 assert(PromotedVal && 5165 "TypePromotionHelper should have filtered out those cases"); 5166 5167 // We would be able to merge only one extension in a load. 5168 // Therefore, if we have more than 1 new extension we heuristically 5169 // cut this search path, because it means we degrade the code quality. 5170 // With exactly 2, the transformation is neutral, because we will merge 5171 // one extension but leave one. However, we optimistically keep going, 5172 // because the new extension may be removed too. 5173 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5174 // FIXME: It would be possible to propagate a negative value instead of 5175 // conservatively ceiling it to 0. 5176 TotalCreatedInstsCost = 5177 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5178 if (!StressExtLdPromotion && 5179 (TotalCreatedInstsCost > 1 || 5180 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5181 // This promotion is not profitable, rollback to the previous state, and 5182 // save the current extension in ProfitablyMovedExts as the latest 5183 // speculative promotion turned out to be unprofitable. 5184 TPT.rollback(LastKnownGood); 5185 ProfitablyMovedExts.push_back(I); 5186 continue; 5187 } 5188 // Continue promoting NewExts as far as doing so is profitable. 5189 SmallVector<Instruction *, 2> NewlyMovedExts; 5190 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5191 bool NewPromoted = false; 5192 for (auto ExtInst : NewlyMovedExts) { 5193 Instruction *MovedExt = cast<Instruction>(ExtInst); 5194 Value *ExtOperand = MovedExt->getOperand(0); 5195 // If we have reached to a load, we need this extra profitability check 5196 // as it could potentially be merged into an ext(load). 5197 if (isa<LoadInst>(ExtOperand) && 5198 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5199 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5200 continue; 5201 5202 ProfitablyMovedExts.push_back(MovedExt); 5203 NewPromoted = true; 5204 } 5205 5206 // If none of speculative promotions for NewExts is profitable, rollback 5207 // and save the current extension (I) as the last profitable extension. 5208 if (!NewPromoted) { 5209 TPT.rollback(LastKnownGood); 5210 ProfitablyMovedExts.push_back(I); 5211 continue; 5212 } 5213 // The promotion is profitable. 5214 Promoted = true; 5215 } 5216 return Promoted; 5217 } 5218 5219 /// Merging redundant sexts when one is dominating the other. 5220 bool CodeGenPrepare::mergeSExts(Function &F, DominatorTree &DT) { 5221 bool Changed = false; 5222 for (auto &Entry : ValToSExtendedUses) { 5223 SExts &Insts = Entry.second; 5224 SExts CurPts; 5225 for (Instruction *Inst : Insts) { 5226 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5227 Inst->getOperand(0) != Entry.first) 5228 continue; 5229 bool inserted = false; 5230 for (auto &Pt : CurPts) { 5231 if (DT.dominates(Inst, Pt)) { 5232 Pt->replaceAllUsesWith(Inst); 5233 RemovedInsts.insert(Pt); 5234 Pt->removeFromParent(); 5235 Pt = Inst; 5236 inserted = true; 5237 Changed = true; 5238 break; 5239 } 5240 if (!DT.dominates(Pt, Inst)) 5241 // Give up if we need to merge in a common dominator as the 5242 // experiments show it is not profitable. 5243 continue; 5244 Inst->replaceAllUsesWith(Pt); 5245 RemovedInsts.insert(Inst); 5246 Inst->removeFromParent(); 5247 inserted = true; 5248 Changed = true; 5249 break; 5250 } 5251 if (!inserted) 5252 CurPts.push_back(Inst); 5253 } 5254 } 5255 return Changed; 5256 } 5257 5258 // Spliting large data structures so that the GEPs accessing them can have 5259 // smaller offsets so that they can be sunk to the same blocks as their users. 5260 // For example, a large struct starting from %base is splitted into two parts 5261 // where the second part starts from %new_base. 5262 // 5263 // Before: 5264 // BB0: 5265 // %base = 5266 // 5267 // BB1: 5268 // %gep0 = gep %base, off0 5269 // %gep1 = gep %base, off1 5270 // %gep2 = gep %base, off2 5271 // 5272 // BB2: 5273 // %load1 = load %gep0 5274 // %load2 = load %gep1 5275 // %load3 = load %gep2 5276 // 5277 // After: 5278 // BB0: 5279 // %base = 5280 // %new_base = gep %base, off0 5281 // 5282 // BB1: 5283 // %new_gep0 = %new_base 5284 // %new_gep1 = gep %new_base, off1 - off0 5285 // %new_gep2 = gep %new_base, off2 - off0 5286 // 5287 // BB2: 5288 // %load1 = load i32, i32* %new_gep0 5289 // %load2 = load i32, i32* %new_gep1 5290 // %load3 = load i32, i32* %new_gep2 5291 // 5292 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5293 // their offsets are smaller enough to fit into the addressing mode. 5294 bool CodeGenPrepare::splitLargeGEPOffsets() { 5295 bool Changed = false; 5296 for (auto &Entry : LargeOffsetGEPMap) { 5297 Value *OldBase = Entry.first; 5298 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5299 &LargeOffsetGEPs = Entry.second; 5300 auto compareGEPOffset = 5301 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5302 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5303 if (LHS.first == RHS.first) 5304 return false; 5305 if (LHS.second != RHS.second) 5306 return LHS.second < RHS.second; 5307 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5308 }; 5309 // Sorting all the GEPs of the same data structures based on the offsets. 5310 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5311 LargeOffsetGEPs.erase( 5312 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5313 LargeOffsetGEPs.end()); 5314 // Skip if all the GEPs have the same offsets. 5315 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5316 continue; 5317 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5318 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5319 Value *NewBaseGEP = nullptr; 5320 5321 auto LargeOffsetGEP = LargeOffsetGEPs.begin(); 5322 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5323 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5324 int64_t Offset = LargeOffsetGEP->second; 5325 if (Offset != BaseOffset) { 5326 TargetLowering::AddrMode AddrMode; 5327 AddrMode.BaseOffs = Offset - BaseOffset; 5328 // The result type of the GEP might not be the type of the memory 5329 // access. 5330 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5331 GEP->getResultElementType(), 5332 GEP->getAddressSpace())) { 5333 // We need to create a new base if the offset to the current base is 5334 // too large to fit into the addressing mode. So, a very large struct 5335 // may be splitted into several parts. 5336 BaseGEP = GEP; 5337 BaseOffset = Offset; 5338 NewBaseGEP = nullptr; 5339 } 5340 } 5341 5342 // Generate a new GEP to replace the current one. 5343 LLVMContext &Ctx = GEP->getContext(); 5344 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5345 Type *I8PtrTy = 5346 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5347 Type *I8Ty = Type::getInt8Ty(Ctx); 5348 5349 if (!NewBaseGEP) { 5350 // Create a new base if we don't have one yet. Find the insertion 5351 // pointer for the new base first. 5352 BasicBlock::iterator NewBaseInsertPt; 5353 BasicBlock *NewBaseInsertBB; 5354 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5355 // If the base of the struct is an instruction, the new base will be 5356 // inserted close to it. 5357 NewBaseInsertBB = BaseI->getParent(); 5358 if (isa<PHINode>(BaseI)) 5359 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5360 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5361 NewBaseInsertBB = 5362 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5363 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5364 } else 5365 NewBaseInsertPt = std::next(BaseI->getIterator()); 5366 } else { 5367 // If the current base is an argument or global value, the new base 5368 // will be inserted to the entry block. 5369 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5370 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5371 } 5372 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5373 // Create a new base. 5374 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5375 NewBaseGEP = OldBase; 5376 if (NewBaseGEP->getType() != I8PtrTy) 5377 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5378 NewBaseGEP = 5379 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5380 NewGEPBases.insert(NewBaseGEP); 5381 } 5382 5383 IRBuilder<> Builder(GEP); 5384 Value *NewGEP = NewBaseGEP; 5385 if (Offset == BaseOffset) { 5386 if (GEP->getType() != I8PtrTy) 5387 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5388 } else { 5389 // Calculate the new offset for the new GEP. 5390 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5391 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5392 5393 if (GEP->getType() != I8PtrTy) 5394 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5395 } 5396 GEP->replaceAllUsesWith(NewGEP); 5397 LargeOffsetGEPID.erase(GEP); 5398 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5399 GEP->eraseFromParent(); 5400 Changed = true; 5401 } 5402 } 5403 return Changed; 5404 } 5405 5406 /// Return true, if an ext(load) can be formed from an extension in 5407 /// \p MovedExts. 5408 bool CodeGenPrepare::canFormExtLd( 5409 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5410 Instruction *&Inst, bool HasPromoted) { 5411 for (auto *MovedExtInst : MovedExts) { 5412 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5413 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 5414 Inst = MovedExtInst; 5415 break; 5416 } 5417 } 5418 if (!LI) 5419 return false; 5420 5421 // If they're already in the same block, there's nothing to do. 5422 // Make the cheap checks first if we did not promote. 5423 // If we promoted, we need to check if it is indeed profitable. 5424 if (!HasPromoted && LI->getParent() == Inst->getParent()) 5425 return false; 5426 5427 return TLI->isExtLoad(LI, Inst, *DL); 5428 } 5429 5430 /// Move a zext or sext fed by a load into the same basic block as the load, 5431 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 5432 /// extend into the load. 5433 /// 5434 /// E.g., 5435 /// \code 5436 /// %ld = load i32* %addr 5437 /// %add = add nuw i32 %ld, 4 5438 /// %zext = zext i32 %add to i64 5439 // \endcode 5440 /// => 5441 /// \code 5442 /// %ld = load i32* %addr 5443 /// %zext = zext i32 %ld to i64 5444 /// %add = add nuw i64 %zext, 4 5445 /// \encode 5446 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 5447 /// allow us to match zext(load i32*) to i64. 5448 /// 5449 /// Also, try to promote the computations used to obtain a sign extended 5450 /// value used into memory accesses. 5451 /// E.g., 5452 /// \code 5453 /// a = add nsw i32 b, 3 5454 /// d = sext i32 a to i64 5455 /// e = getelementptr ..., i64 d 5456 /// \endcode 5457 /// => 5458 /// \code 5459 /// f = sext i32 b to i64 5460 /// a = add nsw i64 f, 3 5461 /// e = getelementptr ..., i64 a 5462 /// \endcode 5463 /// 5464 /// \p Inst[in/out] the extension may be modified during the process if some 5465 /// promotions apply. 5466 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 5467 // ExtLoad formation and address type promotion infrastructure requires TLI to 5468 // be effective. 5469 if (!TLI) 5470 return false; 5471 5472 bool AllowPromotionWithoutCommonHeader = false; 5473 /// See if it is an interesting sext operations for the address type 5474 /// promotion before trying to promote it, e.g., the ones with the right 5475 /// type and used in memory accesses. 5476 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 5477 *Inst, AllowPromotionWithoutCommonHeader); 5478 TypePromotionTransaction TPT(RemovedInsts); 5479 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5480 TPT.getRestorationPoint(); 5481 SmallVector<Instruction *, 1> Exts; 5482 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 5483 Exts.push_back(Inst); 5484 5485 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 5486 5487 // Look for a load being extended. 5488 LoadInst *LI = nullptr; 5489 Instruction *ExtFedByLoad; 5490 5491 // Try to promote a chain of computation if it allows to form an extended 5492 // load. 5493 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 5494 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 5495 TPT.commit(); 5496 // Move the extend into the same block as the load 5497 ExtFedByLoad->moveAfter(LI); 5498 // CGP does not check if the zext would be speculatively executed when moved 5499 // to the same basic block as the load. Preserving its original location 5500 // would pessimize the debugging experience, as well as negatively impact 5501 // the quality of sample pgo. We don't want to use "line 0" as that has a 5502 // size cost in the line-table section and logically the zext can be seen as 5503 // part of the load. Therefore we conservatively reuse the same debug 5504 // location for the load and the zext. 5505 ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); 5506 ++NumExtsMoved; 5507 Inst = ExtFedByLoad; 5508 return true; 5509 } 5510 5511 // Continue promoting SExts if known as considerable depending on targets. 5512 if (ATPConsiderable && 5513 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 5514 HasPromoted, TPT, SpeculativelyMovedExts)) 5515 return true; 5516 5517 TPT.rollback(LastKnownGood); 5518 return false; 5519 } 5520 5521 // Perform address type promotion if doing so is profitable. 5522 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 5523 // instructions that sign extended the same initial value. However, if 5524 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 5525 // extension is just profitable. 5526 bool CodeGenPrepare::performAddressTypePromotion( 5527 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 5528 bool HasPromoted, TypePromotionTransaction &TPT, 5529 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 5530 bool Promoted = false; 5531 SmallPtrSet<Instruction *, 1> UnhandledExts; 5532 bool AllSeenFirst = true; 5533 for (auto I : SpeculativelyMovedExts) { 5534 Value *HeadOfChain = I->getOperand(0); 5535 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 5536 SeenChainsForSExt.find(HeadOfChain); 5537 // If there is an unhandled SExt which has the same header, try to promote 5538 // it as well. 5539 if (AlreadySeen != SeenChainsForSExt.end()) { 5540 if (AlreadySeen->second != nullptr) 5541 UnhandledExts.insert(AlreadySeen->second); 5542 AllSeenFirst = false; 5543 } 5544 } 5545 5546 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 5547 SpeculativelyMovedExts.size() == 1)) { 5548 TPT.commit(); 5549 if (HasPromoted) 5550 Promoted = true; 5551 for (auto I : SpeculativelyMovedExts) { 5552 Value *HeadOfChain = I->getOperand(0); 5553 SeenChainsForSExt[HeadOfChain] = nullptr; 5554 ValToSExtendedUses[HeadOfChain].push_back(I); 5555 } 5556 // Update Inst as promotion happen. 5557 Inst = SpeculativelyMovedExts.pop_back_val(); 5558 } else { 5559 // This is the first chain visited from the header, keep the current chain 5560 // as unhandled. Defer to promote this until we encounter another SExt 5561 // chain derived from the same header. 5562 for (auto I : SpeculativelyMovedExts) { 5563 Value *HeadOfChain = I->getOperand(0); 5564 SeenChainsForSExt[HeadOfChain] = Inst; 5565 } 5566 return false; 5567 } 5568 5569 if (!AllSeenFirst && !UnhandledExts.empty()) 5570 for (auto VisitedSExt : UnhandledExts) { 5571 if (RemovedInsts.count(VisitedSExt)) 5572 continue; 5573 TypePromotionTransaction TPT(RemovedInsts); 5574 SmallVector<Instruction *, 1> Exts; 5575 SmallVector<Instruction *, 2> Chains; 5576 Exts.push_back(VisitedSExt); 5577 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 5578 TPT.commit(); 5579 if (HasPromoted) 5580 Promoted = true; 5581 for (auto I : Chains) { 5582 Value *HeadOfChain = I->getOperand(0); 5583 // Mark this as handled. 5584 SeenChainsForSExt[HeadOfChain] = nullptr; 5585 ValToSExtendedUses[HeadOfChain].push_back(I); 5586 } 5587 } 5588 return Promoted; 5589 } 5590 5591 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 5592 BasicBlock *DefBB = I->getParent(); 5593 5594 // If the result of a {s|z}ext and its source are both live out, rewrite all 5595 // other uses of the source with result of extension. 5596 Value *Src = I->getOperand(0); 5597 if (Src->hasOneUse()) 5598 return false; 5599 5600 // Only do this xform if truncating is free. 5601 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 5602 return false; 5603 5604 // Only safe to perform the optimization if the source is also defined in 5605 // this block. 5606 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 5607 return false; 5608 5609 bool DefIsLiveOut = false; 5610 for (User *U : I->users()) { 5611 Instruction *UI = cast<Instruction>(U); 5612 5613 // Figure out which BB this ext is used in. 5614 BasicBlock *UserBB = UI->getParent(); 5615 if (UserBB == DefBB) continue; 5616 DefIsLiveOut = true; 5617 break; 5618 } 5619 if (!DefIsLiveOut) 5620 return false; 5621 5622 // Make sure none of the uses are PHI nodes. 5623 for (User *U : Src->users()) { 5624 Instruction *UI = cast<Instruction>(U); 5625 BasicBlock *UserBB = UI->getParent(); 5626 if (UserBB == DefBB) continue; 5627 // Be conservative. We don't want this xform to end up introducing 5628 // reloads just before load / store instructions. 5629 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 5630 return false; 5631 } 5632 5633 // InsertedTruncs - Only insert one trunc in each block once. 5634 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 5635 5636 bool MadeChange = false; 5637 for (Use &U : Src->uses()) { 5638 Instruction *User = cast<Instruction>(U.getUser()); 5639 5640 // Figure out which BB this ext is used in. 5641 BasicBlock *UserBB = User->getParent(); 5642 if (UserBB == DefBB) continue; 5643 5644 // Both src and def are live in this block. Rewrite the use. 5645 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 5646 5647 if (!InsertedTrunc) { 5648 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5649 assert(InsertPt != UserBB->end()); 5650 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 5651 InsertedInsts.insert(InsertedTrunc); 5652 } 5653 5654 // Replace a use of the {s|z}ext source with a use of the result. 5655 U = InsertedTrunc; 5656 ++NumExtUses; 5657 MadeChange = true; 5658 } 5659 5660 return MadeChange; 5661 } 5662 5663 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 5664 // just after the load if the target can fold this into one extload instruction, 5665 // with the hope of eliminating some of the other later "and" instructions using 5666 // the loaded value. "and"s that are made trivially redundant by the insertion 5667 // of the new "and" are removed by this function, while others (e.g. those whose 5668 // path from the load goes through a phi) are left for isel to potentially 5669 // remove. 5670 // 5671 // For example: 5672 // 5673 // b0: 5674 // x = load i32 5675 // ... 5676 // b1: 5677 // y = and x, 0xff 5678 // z = use y 5679 // 5680 // becomes: 5681 // 5682 // b0: 5683 // x = load i32 5684 // x' = and x, 0xff 5685 // ... 5686 // b1: 5687 // z = use x' 5688 // 5689 // whereas: 5690 // 5691 // b0: 5692 // x1 = load i32 5693 // ... 5694 // b1: 5695 // x2 = load i32 5696 // ... 5697 // b2: 5698 // x = phi x1, x2 5699 // y = and x, 0xff 5700 // 5701 // becomes (after a call to optimizeLoadExt for each load): 5702 // 5703 // b0: 5704 // x1 = load i32 5705 // x1' = and x1, 0xff 5706 // ... 5707 // b1: 5708 // x2 = load i32 5709 // x2' = and x2, 0xff 5710 // ... 5711 // b2: 5712 // x = phi x1', x2' 5713 // y = and x, 0xff 5714 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 5715 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 5716 return false; 5717 5718 // Skip loads we've already transformed. 5719 if (Load->hasOneUse() && 5720 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 5721 return false; 5722 5723 // Look at all uses of Load, looking through phis, to determine how many bits 5724 // of the loaded value are needed. 5725 SmallVector<Instruction *, 8> WorkList; 5726 SmallPtrSet<Instruction *, 16> Visited; 5727 SmallVector<Instruction *, 8> AndsToMaybeRemove; 5728 for (auto *U : Load->users()) 5729 WorkList.push_back(cast<Instruction>(U)); 5730 5731 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 5732 unsigned BitWidth = LoadResultVT.getSizeInBits(); 5733 APInt DemandBits(BitWidth, 0); 5734 APInt WidestAndBits(BitWidth, 0); 5735 5736 while (!WorkList.empty()) { 5737 Instruction *I = WorkList.back(); 5738 WorkList.pop_back(); 5739 5740 // Break use-def graph loops. 5741 if (!Visited.insert(I).second) 5742 continue; 5743 5744 // For a PHI node, push all of its users. 5745 if (auto *Phi = dyn_cast<PHINode>(I)) { 5746 for (auto *U : Phi->users()) 5747 WorkList.push_back(cast<Instruction>(U)); 5748 continue; 5749 } 5750 5751 switch (I->getOpcode()) { 5752 case Instruction::And: { 5753 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 5754 if (!AndC) 5755 return false; 5756 APInt AndBits = AndC->getValue(); 5757 DemandBits |= AndBits; 5758 // Keep track of the widest and mask we see. 5759 if (AndBits.ugt(WidestAndBits)) 5760 WidestAndBits = AndBits; 5761 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 5762 AndsToMaybeRemove.push_back(I); 5763 break; 5764 } 5765 5766 case Instruction::Shl: { 5767 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 5768 if (!ShlC) 5769 return false; 5770 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 5771 DemandBits.setLowBits(BitWidth - ShiftAmt); 5772 break; 5773 } 5774 5775 case Instruction::Trunc: { 5776 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 5777 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 5778 DemandBits.setLowBits(TruncBitWidth); 5779 break; 5780 } 5781 5782 default: 5783 return false; 5784 } 5785 } 5786 5787 uint32_t ActiveBits = DemandBits.getActiveBits(); 5788 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 5789 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 5790 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 5791 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 5792 // followed by an AND. 5793 // TODO: Look into removing this restriction by fixing backends to either 5794 // return false for isLoadExtLegal for i1 or have them select this pattern to 5795 // a single instruction. 5796 // 5797 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 5798 // mask, since these are the only ands that will be removed by isel. 5799 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 5800 WidestAndBits != DemandBits) 5801 return false; 5802 5803 LLVMContext &Ctx = Load->getType()->getContext(); 5804 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 5805 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 5806 5807 // Reject cases that won't be matched as extloads. 5808 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 5809 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 5810 return false; 5811 5812 IRBuilder<> Builder(Load->getNextNode()); 5813 auto *NewAnd = dyn_cast<Instruction>( 5814 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 5815 // Mark this instruction as "inserted by CGP", so that other 5816 // optimizations don't touch it. 5817 InsertedInsts.insert(NewAnd); 5818 5819 // Replace all uses of load with new and (except for the use of load in the 5820 // new and itself). 5821 Load->replaceAllUsesWith(NewAnd); 5822 NewAnd->setOperand(0, Load); 5823 5824 // Remove any and instructions that are now redundant. 5825 for (auto *And : AndsToMaybeRemove) 5826 // Check that the and mask is the same as the one we decided to put on the 5827 // new and. 5828 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 5829 And->replaceAllUsesWith(NewAnd); 5830 if (&*CurInstIterator == And) 5831 CurInstIterator = std::next(And->getIterator()); 5832 And->eraseFromParent(); 5833 ++NumAndUses; 5834 } 5835 5836 ++NumAndsAdded; 5837 return true; 5838 } 5839 5840 /// Check if V (an operand of a select instruction) is an expensive instruction 5841 /// that is only used once. 5842 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 5843 auto *I = dyn_cast<Instruction>(V); 5844 // If it's safe to speculatively execute, then it should not have side 5845 // effects; therefore, it's safe to sink and possibly *not* execute. 5846 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 5847 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 5848 } 5849 5850 /// Returns true if a SelectInst should be turned into an explicit branch. 5851 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 5852 const TargetLowering *TLI, 5853 SelectInst *SI) { 5854 // If even a predictable select is cheap, then a branch can't be cheaper. 5855 if (!TLI->isPredictableSelectExpensive()) 5856 return false; 5857 5858 // FIXME: This should use the same heuristics as IfConversion to determine 5859 // whether a select is better represented as a branch. 5860 5861 // If metadata tells us that the select condition is obviously predictable, 5862 // then we want to replace the select with a branch. 5863 uint64_t TrueWeight, FalseWeight; 5864 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 5865 uint64_t Max = std::max(TrueWeight, FalseWeight); 5866 uint64_t Sum = TrueWeight + FalseWeight; 5867 if (Sum != 0) { 5868 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 5869 if (Probability > TLI->getPredictableBranchThreshold()) 5870 return true; 5871 } 5872 } 5873 5874 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 5875 5876 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 5877 // comparison condition. If the compare has more than one use, there's 5878 // probably another cmov or setcc around, so it's not worth emitting a branch. 5879 if (!Cmp || !Cmp->hasOneUse()) 5880 return false; 5881 5882 // If either operand of the select is expensive and only needed on one side 5883 // of the select, we should form a branch. 5884 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 5885 sinkSelectOperand(TTI, SI->getFalseValue())) 5886 return true; 5887 5888 return false; 5889 } 5890 5891 /// If \p isTrue is true, return the true value of \p SI, otherwise return 5892 /// false value of \p SI. If the true/false value of \p SI is defined by any 5893 /// select instructions in \p Selects, look through the defining select 5894 /// instruction until the true/false value is not defined in \p Selects. 5895 static Value *getTrueOrFalseValue( 5896 SelectInst *SI, bool isTrue, 5897 const SmallPtrSet<const Instruction *, 2> &Selects) { 5898 Value *V; 5899 5900 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 5901 DefSI = dyn_cast<SelectInst>(V)) { 5902 assert(DefSI->getCondition() == SI->getCondition() && 5903 "The condition of DefSI does not match with SI"); 5904 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 5905 } 5906 return V; 5907 } 5908 5909 /// If we have a SelectInst that will likely profit from branch prediction, 5910 /// turn it into a branch. 5911 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI, bool &ModifiedDT) { 5912 // If branch conversion isn't desirable, exit early. 5913 if (DisableSelectToBranch || OptSize || !TLI) 5914 return false; 5915 5916 // Find all consecutive select instructions that share the same condition. 5917 SmallVector<SelectInst *, 2> ASI; 5918 ASI.push_back(SI); 5919 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 5920 It != SI->getParent()->end(); ++It) { 5921 SelectInst *I = dyn_cast<SelectInst>(&*It); 5922 if (I && SI->getCondition() == I->getCondition()) { 5923 ASI.push_back(I); 5924 } else { 5925 break; 5926 } 5927 } 5928 5929 SelectInst *LastSI = ASI.back(); 5930 // Increment the current iterator to skip all the rest of select instructions 5931 // because they will be either "not lowered" or "all lowered" to branch. 5932 CurInstIterator = std::next(LastSI->getIterator()); 5933 5934 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 5935 5936 // Can we convert the 'select' to CF ? 5937 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 5938 return false; 5939 5940 TargetLowering::SelectSupportKind SelectKind; 5941 if (VectorCond) 5942 SelectKind = TargetLowering::VectorMaskSelect; 5943 else if (SI->getType()->isVectorTy()) 5944 SelectKind = TargetLowering::ScalarCondVectorVal; 5945 else 5946 SelectKind = TargetLowering::ScalarValSelect; 5947 5948 if (TLI->isSelectSupported(SelectKind) && 5949 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5950 return false; 5951 5952 ModifiedDT = true; 5953 5954 // Transform a sequence like this: 5955 // start: 5956 // %cmp = cmp uge i32 %a, %b 5957 // %sel = select i1 %cmp, i32 %c, i32 %d 5958 // 5959 // Into: 5960 // start: 5961 // %cmp = cmp uge i32 %a, %b 5962 // br i1 %cmp, label %select.true, label %select.false 5963 // select.true: 5964 // br label %select.end 5965 // select.false: 5966 // br label %select.end 5967 // select.end: 5968 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5969 // 5970 // In addition, we may sink instructions that produce %c or %d from 5971 // the entry block into the destination(s) of the new branch. 5972 // If the true or false blocks do not contain a sunken instruction, that 5973 // block and its branch may be optimized away. In that case, one side of the 5974 // first branch will point directly to select.end, and the corresponding PHI 5975 // predecessor block will be the start block. 5976 5977 // First, we split the block containing the select into 2 blocks. 5978 BasicBlock *StartBlock = SI->getParent(); 5979 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5980 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5981 5982 // Delete the unconditional branch that was just created by the split. 5983 StartBlock->getTerminator()->eraseFromParent(); 5984 5985 // These are the new basic blocks for the conditional branch. 5986 // At least one will become an actual new basic block. 5987 BasicBlock *TrueBlock = nullptr; 5988 BasicBlock *FalseBlock = nullptr; 5989 BranchInst *TrueBranch = nullptr; 5990 BranchInst *FalseBranch = nullptr; 5991 5992 // Sink expensive instructions into the conditional blocks to avoid executing 5993 // them speculatively. 5994 for (SelectInst *SI : ASI) { 5995 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5996 if (TrueBlock == nullptr) { 5997 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5998 EndBlock->getParent(), EndBlock); 5999 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6000 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6001 } 6002 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6003 TrueInst->moveBefore(TrueBranch); 6004 } 6005 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6006 if (FalseBlock == nullptr) { 6007 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6008 EndBlock->getParent(), EndBlock); 6009 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6010 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6011 } 6012 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6013 FalseInst->moveBefore(FalseBranch); 6014 } 6015 } 6016 6017 // If there was nothing to sink, then arbitrarily choose the 'false' side 6018 // for a new input value to the PHI. 6019 if (TrueBlock == FalseBlock) { 6020 assert(TrueBlock == nullptr && 6021 "Unexpected basic block transform while optimizing select"); 6022 6023 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6024 EndBlock->getParent(), EndBlock); 6025 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6026 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6027 } 6028 6029 // Insert the real conditional branch based on the original condition. 6030 // If we did not create a new block for one of the 'true' or 'false' paths 6031 // of the condition, it means that side of the branch goes to the end block 6032 // directly and the path originates from the start block from the point of 6033 // view of the new PHI. 6034 BasicBlock *TT, *FT; 6035 if (TrueBlock == nullptr) { 6036 TT = EndBlock; 6037 FT = FalseBlock; 6038 TrueBlock = StartBlock; 6039 } else if (FalseBlock == nullptr) { 6040 TT = TrueBlock; 6041 FT = EndBlock; 6042 FalseBlock = StartBlock; 6043 } else { 6044 TT = TrueBlock; 6045 FT = FalseBlock; 6046 } 6047 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 6048 6049 SmallPtrSet<const Instruction *, 2> INS; 6050 INS.insert(ASI.begin(), ASI.end()); 6051 // Use reverse iterator because later select may use the value of the 6052 // earlier select, and we need to propagate value through earlier select 6053 // to get the PHI operand. 6054 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6055 SelectInst *SI = *It; 6056 // The select itself is replaced with a PHI Node. 6057 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6058 PN->takeName(SI); 6059 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6060 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6061 PN->setDebugLoc(SI->getDebugLoc()); 6062 6063 SI->replaceAllUsesWith(PN); 6064 SI->eraseFromParent(); 6065 INS.erase(SI); 6066 ++NumSelectsExpanded; 6067 } 6068 6069 // Instruct OptimizeBlock to skip to the next block. 6070 CurInstIterator = StartBlock->end(); 6071 return true; 6072 } 6073 6074 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 6075 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 6076 int SplatElem = -1; 6077 for (unsigned i = 0; i < Mask.size(); ++i) { 6078 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 6079 return false; 6080 SplatElem = Mask[i]; 6081 } 6082 6083 return true; 6084 } 6085 6086 /// Some targets have expensive vector shifts if the lanes aren't all the same 6087 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 6088 /// it's often worth sinking a shufflevector splat down to its use so that 6089 /// codegen can spot all lanes are identical. 6090 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6091 BasicBlock *DefBB = SVI->getParent(); 6092 6093 // Only do this xform if variable vector shifts are particularly expensive. 6094 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 6095 return false; 6096 6097 // We only expect better codegen by sinking a shuffle if we can recognise a 6098 // constant splat. 6099 if (!isBroadcastShuffle(SVI)) 6100 return false; 6101 6102 // InsertedShuffles - Only insert a shuffle in each block once. 6103 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 6104 6105 bool MadeChange = false; 6106 for (User *U : SVI->users()) { 6107 Instruction *UI = cast<Instruction>(U); 6108 6109 // Figure out which BB this ext is used in. 6110 BasicBlock *UserBB = UI->getParent(); 6111 if (UserBB == DefBB) continue; 6112 6113 // For now only apply this when the splat is used by a shift instruction. 6114 if (!UI->isShift()) continue; 6115 6116 // Everything checks out, sink the shuffle if the user's block doesn't 6117 // already have a copy. 6118 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 6119 6120 if (!InsertedShuffle) { 6121 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6122 assert(InsertPt != UserBB->end()); 6123 InsertedShuffle = 6124 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 6125 SVI->getOperand(2), "", &*InsertPt); 6126 } 6127 6128 UI->replaceUsesOfWith(SVI, InsertedShuffle); 6129 MadeChange = true; 6130 } 6131 6132 // If we removed all uses, nuke the shuffle. 6133 if (SVI->use_empty()) { 6134 SVI->eraseFromParent(); 6135 MadeChange = true; 6136 } 6137 6138 return MadeChange; 6139 } 6140 6141 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6142 // If the operands of I can be folded into a target instruction together with 6143 // I, duplicate and sink them. 6144 SmallVector<Use *, 4> OpsToSink; 6145 if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) 6146 return false; 6147 6148 // OpsToSink can contain multiple uses in a use chain (e.g. 6149 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6150 // uses must come first, which means they are sunk first, temporarily creating 6151 // invalid IR. This will be fixed once their dominated users are sunk and 6152 // updated. 6153 BasicBlock *TargetBB = I->getParent(); 6154 bool Changed = false; 6155 SmallVector<Use *, 4> ToReplace; 6156 for (Use *U : OpsToSink) { 6157 auto *UI = cast<Instruction>(U->get()); 6158 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6159 continue; 6160 ToReplace.push_back(U); 6161 } 6162 6163 SmallPtrSet<Instruction *, 4> MaybeDead; 6164 for (Use *U : ToReplace) { 6165 auto *UI = cast<Instruction>(U->get()); 6166 Instruction *NI = UI->clone(); 6167 MaybeDead.insert(UI); 6168 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6169 NI->insertBefore(I); 6170 InsertedInsts.insert(NI); 6171 U->set(NI); 6172 Changed = true; 6173 } 6174 6175 // Remove instructions that are dead after sinking. 6176 for (auto *I : MaybeDead) 6177 if (!I->hasNUsesOrMore(1)) 6178 I->eraseFromParent(); 6179 6180 return Changed; 6181 } 6182 6183 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6184 if (!TLI || !DL) 6185 return false; 6186 6187 Value *Cond = SI->getCondition(); 6188 Type *OldType = Cond->getType(); 6189 LLVMContext &Context = Cond->getContext(); 6190 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6191 unsigned RegWidth = RegType.getSizeInBits(); 6192 6193 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6194 return false; 6195 6196 // If the register width is greater than the type width, expand the condition 6197 // of the switch instruction and each case constant to the width of the 6198 // register. By widening the type of the switch condition, subsequent 6199 // comparisons (for case comparisons) will not need to be extended to the 6200 // preferred register width, so we will potentially eliminate N-1 extends, 6201 // where N is the number of cases in the switch. 6202 auto *NewType = Type::getIntNTy(Context, RegWidth); 6203 6204 // Zero-extend the switch condition and case constants unless the switch 6205 // condition is a function argument that is already being sign-extended. 6206 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6207 // everything instead. 6208 Instruction::CastOps ExtType = Instruction::ZExt; 6209 if (auto *Arg = dyn_cast<Argument>(Cond)) 6210 if (Arg->hasSExtAttr()) 6211 ExtType = Instruction::SExt; 6212 6213 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6214 ExtInst->insertBefore(SI); 6215 ExtInst->setDebugLoc(SI->getDebugLoc()); 6216 SI->setCondition(ExtInst); 6217 for (auto Case : SI->cases()) { 6218 APInt NarrowConst = Case.getCaseValue()->getValue(); 6219 APInt WideConst = (ExtType == Instruction::ZExt) ? 6220 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6221 Case.setValue(ConstantInt::get(Context, WideConst)); 6222 } 6223 6224 return true; 6225 } 6226 6227 6228 namespace { 6229 6230 /// Helper class to promote a scalar operation to a vector one. 6231 /// This class is used to move downward extractelement transition. 6232 /// E.g., 6233 /// a = vector_op <2 x i32> 6234 /// b = extractelement <2 x i32> a, i32 0 6235 /// c = scalar_op b 6236 /// store c 6237 /// 6238 /// => 6239 /// a = vector_op <2 x i32> 6240 /// c = vector_op a (equivalent to scalar_op on the related lane) 6241 /// * d = extractelement <2 x i32> c, i32 0 6242 /// * store d 6243 /// Assuming both extractelement and store can be combine, we get rid of the 6244 /// transition. 6245 class VectorPromoteHelper { 6246 /// DataLayout associated with the current module. 6247 const DataLayout &DL; 6248 6249 /// Used to perform some checks on the legality of vector operations. 6250 const TargetLowering &TLI; 6251 6252 /// Used to estimated the cost of the promoted chain. 6253 const TargetTransformInfo &TTI; 6254 6255 /// The transition being moved downwards. 6256 Instruction *Transition; 6257 6258 /// The sequence of instructions to be promoted. 6259 SmallVector<Instruction *, 4> InstsToBePromoted; 6260 6261 /// Cost of combining a store and an extract. 6262 unsigned StoreExtractCombineCost; 6263 6264 /// Instruction that will be combined with the transition. 6265 Instruction *CombineInst = nullptr; 6266 6267 /// The instruction that represents the current end of the transition. 6268 /// Since we are faking the promotion until we reach the end of the chain 6269 /// of computation, we need a way to get the current end of the transition. 6270 Instruction *getEndOfTransition() const { 6271 if (InstsToBePromoted.empty()) 6272 return Transition; 6273 return InstsToBePromoted.back(); 6274 } 6275 6276 /// Return the index of the original value in the transition. 6277 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6278 /// c, is at index 0. 6279 unsigned getTransitionOriginalValueIdx() const { 6280 assert(isa<ExtractElementInst>(Transition) && 6281 "Other kind of transitions are not supported yet"); 6282 return 0; 6283 } 6284 6285 /// Return the index of the index in the transition. 6286 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6287 /// is at index 1. 6288 unsigned getTransitionIdx() const { 6289 assert(isa<ExtractElementInst>(Transition) && 6290 "Other kind of transitions are not supported yet"); 6291 return 1; 6292 } 6293 6294 /// Get the type of the transition. 6295 /// This is the type of the original value. 6296 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6297 /// transition is <2 x i32>. 6298 Type *getTransitionType() const { 6299 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6300 } 6301 6302 /// Promote \p ToBePromoted by moving \p Def downward through. 6303 /// I.e., we have the following sequence: 6304 /// Def = Transition <ty1> a to <ty2> 6305 /// b = ToBePromoted <ty2> Def, ... 6306 /// => 6307 /// b = ToBePromoted <ty1> a, ... 6308 /// Def = Transition <ty1> ToBePromoted to <ty2> 6309 void promoteImpl(Instruction *ToBePromoted); 6310 6311 /// Check whether or not it is profitable to promote all the 6312 /// instructions enqueued to be promoted. 6313 bool isProfitableToPromote() { 6314 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6315 unsigned Index = isa<ConstantInt>(ValIdx) 6316 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6317 : -1; 6318 Type *PromotedType = getTransitionType(); 6319 6320 StoreInst *ST = cast<StoreInst>(CombineInst); 6321 unsigned AS = ST->getPointerAddressSpace(); 6322 unsigned Align = ST->getAlignment(); 6323 // Check if this store is supported. 6324 if (!TLI.allowsMisalignedMemoryAccesses( 6325 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6326 Align)) { 6327 // If this is not supported, there is no way we can combine 6328 // the extract with the store. 6329 return false; 6330 } 6331 6332 // The scalar chain of computation has to pay for the transition 6333 // scalar to vector. 6334 // The vector chain has to account for the combining cost. 6335 uint64_t ScalarCost = 6336 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6337 uint64_t VectorCost = StoreExtractCombineCost; 6338 for (const auto &Inst : InstsToBePromoted) { 6339 // Compute the cost. 6340 // By construction, all instructions being promoted are arithmetic ones. 6341 // Moreover, one argument is a constant that can be viewed as a splat 6342 // constant. 6343 Value *Arg0 = Inst->getOperand(0); 6344 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6345 isa<ConstantFP>(Arg0); 6346 TargetTransformInfo::OperandValueKind Arg0OVK = 6347 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6348 : TargetTransformInfo::OK_AnyValue; 6349 TargetTransformInfo::OperandValueKind Arg1OVK = 6350 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6351 : TargetTransformInfo::OK_AnyValue; 6352 ScalarCost += TTI.getArithmeticInstrCost( 6353 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 6354 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6355 Arg0OVK, Arg1OVK); 6356 } 6357 LLVM_DEBUG( 6358 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 6359 << ScalarCost << "\nVector: " << VectorCost << '\n'); 6360 return ScalarCost > VectorCost; 6361 } 6362 6363 /// Generate a constant vector with \p Val with the same 6364 /// number of elements as the transition. 6365 /// \p UseSplat defines whether or not \p Val should be replicated 6366 /// across the whole vector. 6367 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 6368 /// otherwise we generate a vector with as many undef as possible: 6369 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 6370 /// used at the index of the extract. 6371 Value *getConstantVector(Constant *Val, bool UseSplat) const { 6372 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 6373 if (!UseSplat) { 6374 // If we cannot determine where the constant must be, we have to 6375 // use a splat constant. 6376 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 6377 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 6378 ExtractIdx = CstVal->getSExtValue(); 6379 else 6380 UseSplat = true; 6381 } 6382 6383 unsigned End = getTransitionType()->getVectorNumElements(); 6384 if (UseSplat) 6385 return ConstantVector::getSplat(End, Val); 6386 6387 SmallVector<Constant *, 4> ConstVec; 6388 UndefValue *UndefVal = UndefValue::get(Val->getType()); 6389 for (unsigned Idx = 0; Idx != End; ++Idx) { 6390 if (Idx == ExtractIdx) 6391 ConstVec.push_back(Val); 6392 else 6393 ConstVec.push_back(UndefVal); 6394 } 6395 return ConstantVector::get(ConstVec); 6396 } 6397 6398 /// Check if promoting to a vector type an operand at \p OperandIdx 6399 /// in \p Use can trigger undefined behavior. 6400 static bool canCauseUndefinedBehavior(const Instruction *Use, 6401 unsigned OperandIdx) { 6402 // This is not safe to introduce undef when the operand is on 6403 // the right hand side of a division-like instruction. 6404 if (OperandIdx != 1) 6405 return false; 6406 switch (Use->getOpcode()) { 6407 default: 6408 return false; 6409 case Instruction::SDiv: 6410 case Instruction::UDiv: 6411 case Instruction::SRem: 6412 case Instruction::URem: 6413 return true; 6414 case Instruction::FDiv: 6415 case Instruction::FRem: 6416 return !Use->hasNoNaNs(); 6417 } 6418 llvm_unreachable(nullptr); 6419 } 6420 6421 public: 6422 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 6423 const TargetTransformInfo &TTI, Instruction *Transition, 6424 unsigned CombineCost) 6425 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 6426 StoreExtractCombineCost(CombineCost) { 6427 assert(Transition && "Do not know how to promote null"); 6428 } 6429 6430 /// Check if we can promote \p ToBePromoted to \p Type. 6431 bool canPromote(const Instruction *ToBePromoted) const { 6432 // We could support CastInst too. 6433 return isa<BinaryOperator>(ToBePromoted); 6434 } 6435 6436 /// Check if it is profitable to promote \p ToBePromoted 6437 /// by moving downward the transition through. 6438 bool shouldPromote(const Instruction *ToBePromoted) const { 6439 // Promote only if all the operands can be statically expanded. 6440 // Indeed, we do not want to introduce any new kind of transitions. 6441 for (const Use &U : ToBePromoted->operands()) { 6442 const Value *Val = U.get(); 6443 if (Val == getEndOfTransition()) { 6444 // If the use is a division and the transition is on the rhs, 6445 // we cannot promote the operation, otherwise we may create a 6446 // division by zero. 6447 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 6448 return false; 6449 continue; 6450 } 6451 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 6452 !isa<ConstantFP>(Val)) 6453 return false; 6454 } 6455 // Check that the resulting operation is legal. 6456 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 6457 if (!ISDOpcode) 6458 return false; 6459 return StressStoreExtract || 6460 TLI.isOperationLegalOrCustom( 6461 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 6462 } 6463 6464 /// Check whether or not \p Use can be combined 6465 /// with the transition. 6466 /// I.e., is it possible to do Use(Transition) => AnotherUse? 6467 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 6468 6469 /// Record \p ToBePromoted as part of the chain to be promoted. 6470 void enqueueForPromotion(Instruction *ToBePromoted) { 6471 InstsToBePromoted.push_back(ToBePromoted); 6472 } 6473 6474 /// Set the instruction that will be combined with the transition. 6475 void recordCombineInstruction(Instruction *ToBeCombined) { 6476 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 6477 CombineInst = ToBeCombined; 6478 } 6479 6480 /// Promote all the instructions enqueued for promotion if it is 6481 /// is profitable. 6482 /// \return True if the promotion happened, false otherwise. 6483 bool promote() { 6484 // Check if there is something to promote. 6485 // Right now, if we do not have anything to combine with, 6486 // we assume the promotion is not profitable. 6487 if (InstsToBePromoted.empty() || !CombineInst) 6488 return false; 6489 6490 // Check cost. 6491 if (!StressStoreExtract && !isProfitableToPromote()) 6492 return false; 6493 6494 // Promote. 6495 for (auto &ToBePromoted : InstsToBePromoted) 6496 promoteImpl(ToBePromoted); 6497 InstsToBePromoted.clear(); 6498 return true; 6499 } 6500 }; 6501 6502 } // end anonymous namespace 6503 6504 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 6505 // At this point, we know that all the operands of ToBePromoted but Def 6506 // can be statically promoted. 6507 // For Def, we need to use its parameter in ToBePromoted: 6508 // b = ToBePromoted ty1 a 6509 // Def = Transition ty1 b to ty2 6510 // Move the transition down. 6511 // 1. Replace all uses of the promoted operation by the transition. 6512 // = ... b => = ... Def. 6513 assert(ToBePromoted->getType() == Transition->getType() && 6514 "The type of the result of the transition does not match " 6515 "the final type"); 6516 ToBePromoted->replaceAllUsesWith(Transition); 6517 // 2. Update the type of the uses. 6518 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 6519 Type *TransitionTy = getTransitionType(); 6520 ToBePromoted->mutateType(TransitionTy); 6521 // 3. Update all the operands of the promoted operation with promoted 6522 // operands. 6523 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 6524 for (Use &U : ToBePromoted->operands()) { 6525 Value *Val = U.get(); 6526 Value *NewVal = nullptr; 6527 if (Val == Transition) 6528 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 6529 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 6530 isa<ConstantFP>(Val)) { 6531 // Use a splat constant if it is not safe to use undef. 6532 NewVal = getConstantVector( 6533 cast<Constant>(Val), 6534 isa<UndefValue>(Val) || 6535 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 6536 } else 6537 llvm_unreachable("Did you modified shouldPromote and forgot to update " 6538 "this?"); 6539 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 6540 } 6541 Transition->moveAfter(ToBePromoted); 6542 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 6543 } 6544 6545 /// Some targets can do store(extractelement) with one instruction. 6546 /// Try to push the extractelement towards the stores when the target 6547 /// has this feature and this is profitable. 6548 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 6549 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 6550 if (DisableStoreExtract || !TLI || 6551 (!StressStoreExtract && 6552 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 6553 Inst->getOperand(1), CombineCost))) 6554 return false; 6555 6556 // At this point we know that Inst is a vector to scalar transition. 6557 // Try to move it down the def-use chain, until: 6558 // - We can combine the transition with its single use 6559 // => we got rid of the transition. 6560 // - We escape the current basic block 6561 // => we would need to check that we are moving it at a cheaper place and 6562 // we do not do that for now. 6563 BasicBlock *Parent = Inst->getParent(); 6564 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 6565 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 6566 // If the transition has more than one use, assume this is not going to be 6567 // beneficial. 6568 while (Inst->hasOneUse()) { 6569 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 6570 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 6571 6572 if (ToBePromoted->getParent() != Parent) { 6573 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 6574 << ToBePromoted->getParent()->getName() 6575 << ") than the transition (" << Parent->getName() 6576 << ").\n"); 6577 return false; 6578 } 6579 6580 if (VPH.canCombine(ToBePromoted)) { 6581 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 6582 << "will be combined with: " << *ToBePromoted << '\n'); 6583 VPH.recordCombineInstruction(ToBePromoted); 6584 bool Changed = VPH.promote(); 6585 NumStoreExtractExposed += Changed; 6586 return Changed; 6587 } 6588 6589 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 6590 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 6591 return false; 6592 6593 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 6594 6595 VPH.enqueueForPromotion(ToBePromoted); 6596 Inst = ToBePromoted; 6597 } 6598 return false; 6599 } 6600 6601 /// For the instruction sequence of store below, F and I values 6602 /// are bundled together as an i64 value before being stored into memory. 6603 /// Sometimes it is more efficient to generate separate stores for F and I, 6604 /// which can remove the bitwise instructions or sink them to colder places. 6605 /// 6606 /// (store (or (zext (bitcast F to i32) to i64), 6607 /// (shl (zext I to i64), 32)), addr) --> 6608 /// (store F, addr) and (store I, addr+4) 6609 /// 6610 /// Similarly, splitting for other merged store can also be beneficial, like: 6611 /// For pair of {i32, i32}, i64 store --> two i32 stores. 6612 /// For pair of {i32, i16}, i64 store --> two i32 stores. 6613 /// For pair of {i16, i16}, i32 store --> two i16 stores. 6614 /// For pair of {i16, i8}, i32 store --> two i16 stores. 6615 /// For pair of {i8, i8}, i16 store --> two i8 stores. 6616 /// 6617 /// We allow each target to determine specifically which kind of splitting is 6618 /// supported. 6619 /// 6620 /// The store patterns are commonly seen from the simple code snippet below 6621 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 6622 /// void goo(const std::pair<int, float> &); 6623 /// hoo() { 6624 /// ... 6625 /// goo(std::make_pair(tmp, ftmp)); 6626 /// ... 6627 /// } 6628 /// 6629 /// Although we already have similar splitting in DAG Combine, we duplicate 6630 /// it in CodeGenPrepare to catch the case in which pattern is across 6631 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 6632 /// during code expansion. 6633 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 6634 const TargetLowering &TLI) { 6635 // Handle simple but common cases only. 6636 Type *StoreType = SI.getValueOperand()->getType(); 6637 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 6638 DL.getTypeSizeInBits(StoreType) == 0) 6639 return false; 6640 6641 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 6642 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 6643 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 6644 DL.getTypeSizeInBits(SplitStoreType)) 6645 return false; 6646 6647 // Match the following patterns: 6648 // (store (or (zext LValue to i64), 6649 // (shl (zext HValue to i64), 32)), HalfValBitSize) 6650 // or 6651 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 6652 // (zext LValue to i64), 6653 // Expect both operands of OR and the first operand of SHL have only 6654 // one use. 6655 Value *LValue, *HValue; 6656 if (!match(SI.getValueOperand(), 6657 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 6658 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 6659 m_SpecificInt(HalfValBitSize)))))) 6660 return false; 6661 6662 // Check LValue and HValue are int with size less or equal than 32. 6663 if (!LValue->getType()->isIntegerTy() || 6664 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 6665 !HValue->getType()->isIntegerTy() || 6666 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 6667 return false; 6668 6669 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 6670 // as the input of target query. 6671 auto *LBC = dyn_cast<BitCastInst>(LValue); 6672 auto *HBC = dyn_cast<BitCastInst>(HValue); 6673 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 6674 : EVT::getEVT(LValue->getType()); 6675 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 6676 : EVT::getEVT(HValue->getType()); 6677 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 6678 return false; 6679 6680 // Start to split store. 6681 IRBuilder<> Builder(SI.getContext()); 6682 Builder.SetInsertPoint(&SI); 6683 6684 // If LValue/HValue is a bitcast in another BB, create a new one in current 6685 // BB so it may be merged with the splitted stores by dag combiner. 6686 if (LBC && LBC->getParent() != SI.getParent()) 6687 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 6688 if (HBC && HBC->getParent() != SI.getParent()) 6689 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 6690 6691 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 6692 auto CreateSplitStore = [&](Value *V, bool Upper) { 6693 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 6694 Value *Addr = Builder.CreateBitCast( 6695 SI.getOperand(1), 6696 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 6697 if ((IsLE && Upper) || (!IsLE && !Upper)) 6698 Addr = Builder.CreateGEP( 6699 SplitStoreType, Addr, 6700 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 6701 Builder.CreateAlignedStore( 6702 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 6703 }; 6704 6705 CreateSplitStore(LValue, false); 6706 CreateSplitStore(HValue, true); 6707 6708 // Delete the old store. 6709 SI.eraseFromParent(); 6710 return true; 6711 } 6712 6713 // Return true if the GEP has two operands, the first operand is of a sequential 6714 // type, and the second operand is a constant. 6715 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 6716 gep_type_iterator I = gep_type_begin(*GEP); 6717 return GEP->getNumOperands() == 2 && 6718 I.isSequential() && 6719 isa<ConstantInt>(GEP->getOperand(1)); 6720 } 6721 6722 // Try unmerging GEPs to reduce liveness interference (register pressure) across 6723 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 6724 // reducing liveness interference across those edges benefits global register 6725 // allocation. Currently handles only certain cases. 6726 // 6727 // For example, unmerge %GEPI and %UGEPI as below. 6728 // 6729 // ---------- BEFORE ---------- 6730 // SrcBlock: 6731 // ... 6732 // %GEPIOp = ... 6733 // ... 6734 // %GEPI = gep %GEPIOp, Idx 6735 // ... 6736 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 6737 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 6738 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 6739 // %UGEPI) 6740 // 6741 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 6742 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 6743 // ... 6744 // 6745 // DstBi: 6746 // ... 6747 // %UGEPI = gep %GEPIOp, UIdx 6748 // ... 6749 // --------------------------- 6750 // 6751 // ---------- AFTER ---------- 6752 // SrcBlock: 6753 // ... (same as above) 6754 // (* %GEPI is still alive on the indirectbr edges) 6755 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 6756 // unmerging) 6757 // ... 6758 // 6759 // DstBi: 6760 // ... 6761 // %UGEPI = gep %GEPI, (UIdx-Idx) 6762 // ... 6763 // --------------------------- 6764 // 6765 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 6766 // no longer alive on them. 6767 // 6768 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 6769 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 6770 // not to disable further simplications and optimizations as a result of GEP 6771 // merging. 6772 // 6773 // Note this unmerging may increase the length of the data flow critical path 6774 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 6775 // between the register pressure and the length of data-flow critical 6776 // path. Restricting this to the uncommon IndirectBr case would minimize the 6777 // impact of potentially longer critical path, if any, and the impact on compile 6778 // time. 6779 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 6780 const TargetTransformInfo *TTI) { 6781 BasicBlock *SrcBlock = GEPI->getParent(); 6782 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 6783 // (non-IndirectBr) cases exit early here. 6784 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 6785 return false; 6786 // Check that GEPI is a simple gep with a single constant index. 6787 if (!GEPSequentialConstIndexed(GEPI)) 6788 return false; 6789 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 6790 // Check that GEPI is a cheap one. 6791 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) 6792 > TargetTransformInfo::TCC_Basic) 6793 return false; 6794 Value *GEPIOp = GEPI->getOperand(0); 6795 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 6796 if (!isa<Instruction>(GEPIOp)) 6797 return false; 6798 auto *GEPIOpI = cast<Instruction>(GEPIOp); 6799 if (GEPIOpI->getParent() != SrcBlock) 6800 return false; 6801 // Check that GEP is used outside the block, meaning it's alive on the 6802 // IndirectBr edge(s). 6803 if (find_if(GEPI->users(), [&](User *Usr) { 6804 if (auto *I = dyn_cast<Instruction>(Usr)) { 6805 if (I->getParent() != SrcBlock) { 6806 return true; 6807 } 6808 } 6809 return false; 6810 }) == GEPI->users().end()) 6811 return false; 6812 // The second elements of the GEP chains to be unmerged. 6813 std::vector<GetElementPtrInst *> UGEPIs; 6814 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 6815 // on IndirectBr edges. 6816 for (User *Usr : GEPIOp->users()) { 6817 if (Usr == GEPI) continue; 6818 // Check if Usr is an Instruction. If not, give up. 6819 if (!isa<Instruction>(Usr)) 6820 return false; 6821 auto *UI = cast<Instruction>(Usr); 6822 // Check if Usr in the same block as GEPIOp, which is fine, skip. 6823 if (UI->getParent() == SrcBlock) 6824 continue; 6825 // Check if Usr is a GEP. If not, give up. 6826 if (!isa<GetElementPtrInst>(Usr)) 6827 return false; 6828 auto *UGEPI = cast<GetElementPtrInst>(Usr); 6829 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 6830 // the pointer operand to it. If so, record it in the vector. If not, give 6831 // up. 6832 if (!GEPSequentialConstIndexed(UGEPI)) 6833 return false; 6834 if (UGEPI->getOperand(0) != GEPIOp) 6835 return false; 6836 if (GEPIIdx->getType() != 6837 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 6838 return false; 6839 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6840 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) 6841 > TargetTransformInfo::TCC_Basic) 6842 return false; 6843 UGEPIs.push_back(UGEPI); 6844 } 6845 if (UGEPIs.size() == 0) 6846 return false; 6847 // Check the materializing cost of (Uidx-Idx). 6848 for (GetElementPtrInst *UGEPI : UGEPIs) { 6849 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6850 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 6851 unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); 6852 if (ImmCost > TargetTransformInfo::TCC_Basic) 6853 return false; 6854 } 6855 // Now unmerge between GEPI and UGEPIs. 6856 for (GetElementPtrInst *UGEPI : UGEPIs) { 6857 UGEPI->setOperand(0, GEPI); 6858 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 6859 Constant *NewUGEPIIdx = 6860 ConstantInt::get(GEPIIdx->getType(), 6861 UGEPIIdx->getValue() - GEPIIdx->getValue()); 6862 UGEPI->setOperand(1, NewUGEPIIdx); 6863 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 6864 // inbounds to avoid UB. 6865 if (!GEPI->isInBounds()) { 6866 UGEPI->setIsInBounds(false); 6867 } 6868 } 6869 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 6870 // alive on IndirectBr edges). 6871 assert(find_if(GEPIOp->users(), [&](User *Usr) { 6872 return cast<Instruction>(Usr)->getParent() != SrcBlock; 6873 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 6874 return true; 6875 } 6876 6877 bool CodeGenPrepare::optimizeInst(Instruction *I, DominatorTree &DT, 6878 bool &ModifiedDT) { 6879 // Bail out if we inserted the instruction to prevent optimizations from 6880 // stepping on each other's toes. 6881 if (InsertedInsts.count(I)) 6882 return false; 6883 6884 // TODO: Move into the switch on opcode below here. 6885 if (PHINode *P = dyn_cast<PHINode>(I)) { 6886 // It is possible for very late stage optimizations (such as SimplifyCFG) 6887 // to introduce PHI nodes too late to be cleaned up. If we detect such a 6888 // trivial PHI, go ahead and zap it here. 6889 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 6890 LargeOffsetGEPMap.erase(P); 6891 P->replaceAllUsesWith(V); 6892 P->eraseFromParent(); 6893 ++NumPHIsElim; 6894 return true; 6895 } 6896 return false; 6897 } 6898 6899 if (CastInst *CI = dyn_cast<CastInst>(I)) { 6900 // If the source of the cast is a constant, then this should have 6901 // already been constant folded. The only reason NOT to constant fold 6902 // it is if something (e.g. LSR) was careful to place the constant 6903 // evaluation in a block other than then one that uses it (e.g. to hoist 6904 // the address of globals out of a loop). If this is the case, we don't 6905 // want to forward-subst the cast. 6906 if (isa<Constant>(CI->getOperand(0))) 6907 return false; 6908 6909 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 6910 return true; 6911 6912 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 6913 /// Sink a zext or sext into its user blocks if the target type doesn't 6914 /// fit in one register 6915 if (TLI && 6916 TLI->getTypeAction(CI->getContext(), 6917 TLI->getValueType(*DL, CI->getType())) == 6918 TargetLowering::TypeExpandInteger) { 6919 return SinkCast(CI); 6920 } else { 6921 bool MadeChange = optimizeExt(I); 6922 return MadeChange | optimizeExtUses(I); 6923 } 6924 } 6925 return false; 6926 } 6927 6928 if (auto *Cmp = dyn_cast<CmpInst>(I)) 6929 if (TLI && optimizeCmp(Cmp, *TLI, *DL, DT, ModifiedDT)) 6930 return true; 6931 6932 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 6933 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6934 if (TLI) { 6935 bool Modified = optimizeLoadExt(LI); 6936 unsigned AS = LI->getPointerAddressSpace(); 6937 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 6938 return Modified; 6939 } 6940 return false; 6941 } 6942 6943 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 6944 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 6945 return true; 6946 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 6947 if (TLI) { 6948 unsigned AS = SI->getPointerAddressSpace(); 6949 return optimizeMemoryInst(I, SI->getOperand(1), 6950 SI->getOperand(0)->getType(), AS); 6951 } 6952 return false; 6953 } 6954 6955 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 6956 unsigned AS = RMW->getPointerAddressSpace(); 6957 return optimizeMemoryInst(I, RMW->getPointerOperand(), 6958 RMW->getType(), AS); 6959 } 6960 6961 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 6962 unsigned AS = CmpX->getPointerAddressSpace(); 6963 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 6964 CmpX->getCompareOperand()->getType(), AS); 6965 } 6966 6967 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 6968 6969 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 6970 EnableAndCmpSinking && TLI) 6971 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 6972 6973 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 6974 BinOp->getOpcode() == Instruction::LShr)) { 6975 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 6976 if (TLI && CI && TLI->hasExtractBitsInsn()) 6977 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 6978 6979 return false; 6980 } 6981 6982 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 6983 if (GEPI->hasAllZeroIndices()) { 6984 /// The GEP operand must be a pointer, so must its result -> BitCast 6985 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 6986 GEPI->getName(), GEPI); 6987 NC->setDebugLoc(GEPI->getDebugLoc()); 6988 GEPI->replaceAllUsesWith(NC); 6989 GEPI->eraseFromParent(); 6990 ++NumGEPsElim; 6991 optimizeInst(NC, DT, ModifiedDT); 6992 return true; 6993 } 6994 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 6995 return true; 6996 } 6997 return false; 6998 } 6999 7000 if (tryToSinkFreeOperands(I)) 7001 return true; 7002 7003 switch (I->getOpcode()) { 7004 case Instruction::Call: 7005 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7006 case Instruction::Select: 7007 return optimizeSelectInst(cast<SelectInst>(I), ModifiedDT); 7008 case Instruction::ShuffleVector: 7009 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7010 case Instruction::Switch: 7011 return optimizeSwitchInst(cast<SwitchInst>(I)); 7012 case Instruction::ExtractElement: 7013 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7014 } 7015 7016 return false; 7017 } 7018 7019 /// Given an OR instruction, check to see if this is a bitreverse 7020 /// idiom. If so, insert the new intrinsic and return true. 7021 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 7022 const TargetLowering &TLI) { 7023 if (!I.getType()->isIntegerTy() || 7024 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 7025 TLI.getValueType(DL, I.getType(), true))) 7026 return false; 7027 7028 SmallVector<Instruction*, 4> Insts; 7029 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7030 return false; 7031 Instruction *LastInst = Insts.back(); 7032 I.replaceAllUsesWith(LastInst); 7033 RecursivelyDeleteTriviallyDeadInstructions(&I); 7034 return true; 7035 } 7036 7037 // In this pass we look for GEP and cast instructions that are used 7038 // across basic blocks and rewrite them to improve basic-block-at-a-time 7039 // selection. 7040 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, DominatorTree &DT, 7041 bool &ModifiedDT) { 7042 SunkAddrs.clear(); 7043 bool MadeChange = false; 7044 7045 CurInstIterator = BB.begin(); 7046 while (CurInstIterator != BB.end()) { 7047 MadeChange |= optimizeInst(&*CurInstIterator++, DT, ModifiedDT); 7048 if (ModifiedDT) 7049 return true; 7050 } 7051 7052 bool MadeBitReverse = true; 7053 while (TLI && MadeBitReverse) { 7054 MadeBitReverse = false; 7055 for (auto &I : reverse(BB)) { 7056 if (makeBitReverse(I, *DL, *TLI)) { 7057 MadeBitReverse = MadeChange = true; 7058 ModifiedDT = true; 7059 break; 7060 } 7061 } 7062 } 7063 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7064 7065 return MadeChange; 7066 } 7067 7068 // llvm.dbg.value is far away from the value then iSel may not be able 7069 // handle it properly. iSel will drop llvm.dbg.value if it can not 7070 // find a node corresponding to the value. 7071 bool CodeGenPrepare::placeDbgValues(Function &F) { 7072 bool MadeChange = false; 7073 for (BasicBlock &BB : F) { 7074 Instruction *PrevNonDbgInst = nullptr; 7075 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7076 Instruction *Insn = &*BI++; 7077 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7078 // Leave dbg.values that refer to an alloca alone. These 7079 // intrinsics describe the address of a variable (= the alloca) 7080 // being taken. They should not be moved next to the alloca 7081 // (and to the beginning of the scope), but rather stay close to 7082 // where said address is used. 7083 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 7084 PrevNonDbgInst = Insn; 7085 continue; 7086 } 7087 7088 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7089 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 7090 // If VI is a phi in a block with an EHPad terminator, we can't insert 7091 // after it. 7092 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7093 continue; 7094 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7095 << *DVI << ' ' << *VI); 7096 DVI->removeFromParent(); 7097 if (isa<PHINode>(VI)) 7098 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7099 else 7100 DVI->insertAfter(VI); 7101 MadeChange = true; 7102 ++NumDbgValueMoved; 7103 } 7104 } 7105 } 7106 return MadeChange; 7107 } 7108 7109 /// Scale down both weights to fit into uint32_t. 7110 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7111 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7112 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7113 NewTrue = NewTrue / Scale; 7114 NewFalse = NewFalse / Scale; 7115 } 7116 7117 /// Some targets prefer to split a conditional branch like: 7118 /// \code 7119 /// %0 = icmp ne i32 %a, 0 7120 /// %1 = icmp ne i32 %b, 0 7121 /// %or.cond = or i1 %0, %1 7122 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7123 /// \endcode 7124 /// into multiple branch instructions like: 7125 /// \code 7126 /// bb1: 7127 /// %0 = icmp ne i32 %a, 0 7128 /// br i1 %0, label %TrueBB, label %bb2 7129 /// bb2: 7130 /// %1 = icmp ne i32 %b, 0 7131 /// br i1 %1, label %TrueBB, label %FalseBB 7132 /// \endcode 7133 /// This usually allows instruction selection to do even further optimizations 7134 /// and combine the compare with the branch instruction. Currently this is 7135 /// applied for targets which have "cheap" jump instructions. 7136 /// 7137 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7138 /// 7139 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7140 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 7141 return false; 7142 7143 bool MadeChange = false; 7144 for (auto &BB : F) { 7145 // Does this BB end with the following? 7146 // %cond1 = icmp|fcmp|binary instruction ... 7147 // %cond2 = icmp|fcmp|binary instruction ... 7148 // %cond.or = or|and i1 %cond1, cond2 7149 // br i1 %cond.or label %dest1, label %dest2" 7150 BinaryOperator *LogicOp; 7151 BasicBlock *TBB, *FBB; 7152 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 7153 continue; 7154 7155 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7156 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7157 continue; 7158 7159 unsigned Opc; 7160 Value *Cond1, *Cond2; 7161 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 7162 m_OneUse(m_Value(Cond2))))) 7163 Opc = Instruction::And; 7164 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 7165 m_OneUse(m_Value(Cond2))))) 7166 Opc = Instruction::Or; 7167 else 7168 continue; 7169 7170 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 7171 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 7172 continue; 7173 7174 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7175 7176 // Create a new BB. 7177 auto TmpBB = 7178 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7179 BB.getParent(), BB.getNextNode()); 7180 7181 // Update original basic block by using the first condition directly by the 7182 // branch instruction and removing the no longer needed and/or instruction. 7183 Br1->setCondition(Cond1); 7184 LogicOp->eraseFromParent(); 7185 7186 // Depending on the condition we have to either replace the true or the 7187 // false successor of the original branch instruction. 7188 if (Opc == Instruction::And) 7189 Br1->setSuccessor(0, TmpBB); 7190 else 7191 Br1->setSuccessor(1, TmpBB); 7192 7193 // Fill in the new basic block. 7194 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7195 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7196 I->removeFromParent(); 7197 I->insertBefore(Br2); 7198 } 7199 7200 // Update PHI nodes in both successors. The original BB needs to be 7201 // replaced in one successor's PHI nodes, because the branch comes now from 7202 // the newly generated BB (NewBB). In the other successor we need to add one 7203 // incoming edge to the PHI nodes, because both branch instructions target 7204 // now the same successor. Depending on the original branch condition 7205 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7206 // we perform the correct update for the PHI nodes. 7207 // This doesn't change the successor order of the just created branch 7208 // instruction (or any other instruction). 7209 if (Opc == Instruction::Or) 7210 std::swap(TBB, FBB); 7211 7212 // Replace the old BB with the new BB. 7213 for (PHINode &PN : TBB->phis()) { 7214 int i; 7215 while ((i = PN.getBasicBlockIndex(&BB)) >= 0) 7216 PN.setIncomingBlock(i, TmpBB); 7217 } 7218 7219 // Add another incoming edge form the new BB. 7220 for (PHINode &PN : FBB->phis()) { 7221 auto *Val = PN.getIncomingValueForBlock(&BB); 7222 PN.addIncoming(Val, TmpBB); 7223 } 7224 7225 // Update the branch weights (from SelectionDAGBuilder:: 7226 // FindMergedConditions). 7227 if (Opc == Instruction::Or) { 7228 // Codegen X | Y as: 7229 // BB1: 7230 // jmp_if_X TBB 7231 // jmp TmpBB 7232 // TmpBB: 7233 // jmp_if_Y TBB 7234 // jmp FBB 7235 // 7236 7237 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7238 // The requirement is that 7239 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7240 // = TrueProb for original BB. 7241 // Assuming the original weights are A and B, one choice is to set BB1's 7242 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7243 // assumes that 7244 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7245 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7246 // TmpBB, but the math is more complicated. 7247 uint64_t TrueWeight, FalseWeight; 7248 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7249 uint64_t NewTrueWeight = TrueWeight; 7250 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7251 scaleWeights(NewTrueWeight, NewFalseWeight); 7252 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7253 .createBranchWeights(TrueWeight, FalseWeight)); 7254 7255 NewTrueWeight = TrueWeight; 7256 NewFalseWeight = 2 * FalseWeight; 7257 scaleWeights(NewTrueWeight, NewFalseWeight); 7258 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7259 .createBranchWeights(TrueWeight, FalseWeight)); 7260 } 7261 } else { 7262 // Codegen X & Y as: 7263 // BB1: 7264 // jmp_if_X TmpBB 7265 // jmp FBB 7266 // TmpBB: 7267 // jmp_if_Y TBB 7268 // jmp FBB 7269 // 7270 // This requires creation of TmpBB after CurBB. 7271 7272 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7273 // The requirement is that 7274 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7275 // = FalseProb for original BB. 7276 // Assuming the original weights are A and B, one choice is to set BB1's 7277 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7278 // assumes that 7279 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 7280 uint64_t TrueWeight, FalseWeight; 7281 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7282 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 7283 uint64_t NewFalseWeight = FalseWeight; 7284 scaleWeights(NewTrueWeight, NewFalseWeight); 7285 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7286 .createBranchWeights(TrueWeight, FalseWeight)); 7287 7288 NewTrueWeight = 2 * TrueWeight; 7289 NewFalseWeight = FalseWeight; 7290 scaleWeights(NewTrueWeight, NewFalseWeight); 7291 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7292 .createBranchWeights(TrueWeight, FalseWeight)); 7293 } 7294 } 7295 7296 ModifiedDT = true; 7297 MadeChange = true; 7298 7299 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 7300 TmpBB->dump()); 7301 } 7302 return MadeChange; 7303 } 7304