1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/TargetLibraryInfo.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/ISDOpcodes.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetPassConfig.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Argument.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GetElementPtrTypeIterator.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/MDBuilder.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/PatternMatch.h"
67 #include "llvm/IR/Statepoint.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/Use.h"
70 #include "llvm/IR/User.h"
71 #include "llvm/IR/Value.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/IR/ValueMap.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/BlockFrequency.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/MachineValueType.h"
83 #include "llvm/Support/MathExtras.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include "llvm/Target/TargetOptions.h"
87 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
88 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
89 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <limits>
95 #include <memory>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 
102 #define DEBUG_TYPE "codegenprepare"
103 
104 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
105 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
106 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
107 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
108                       "sunken Cmps");
109 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
110                        "of sunken Casts");
111 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
112                           "computations were sunk");
113 STATISTIC(NumMemoryInstsPhiCreated,
114           "Number of phis created when address "
115           "computations were sunk to memory instructions");
116 STATISTIC(NumMemoryInstsSelectCreated,
117           "Number of select created when address "
118           "computations were sunk to memory instructions");
119 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
120 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
121 STATISTIC(NumAndsAdded,
122           "Number of and mask instructions added to form ext loads");
123 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
124 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
125 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
126 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
127 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
128 
129 static cl::opt<bool> DisableBranchOpts(
130   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
131   cl::desc("Disable branch optimizations in CodeGenPrepare"));
132 
133 static cl::opt<bool>
134     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
135                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
136 
137 static cl::opt<bool> DisableSelectToBranch(
138   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
139   cl::desc("Disable select to branch conversion."));
140 
141 static cl::opt<bool> AddrSinkUsingGEPs(
142   "addr-sink-using-gep", cl::Hidden, cl::init(true),
143   cl::desc("Address sinking in CGP using GEPs."));
144 
145 static cl::opt<bool> EnableAndCmpSinking(
146    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
147    cl::desc("Enable sinkinig and/cmp into branches."));
148 
149 static cl::opt<bool> DisableStoreExtract(
150     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
151     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
152 
153 static cl::opt<bool> StressStoreExtract(
154     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
155     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
156 
157 static cl::opt<bool> DisableExtLdPromotion(
158     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
159     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
160              "CodeGenPrepare"));
161 
162 static cl::opt<bool> StressExtLdPromotion(
163     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
165              "optimization in CodeGenPrepare"));
166 
167 static cl::opt<bool> DisablePreheaderProtect(
168     "disable-preheader-prot", cl::Hidden, cl::init(false),
169     cl::desc("Disable protection against removing loop preheaders"));
170 
171 static cl::opt<bool> ProfileGuidedSectionPrefix(
172     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
173     cl::desc("Use profile info to add section prefix for hot/cold functions"));
174 
175 static cl::opt<unsigned> FreqRatioToSkipMerge(
176     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
177     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
178              "(frequency of destination block) is greater than this ratio"));
179 
180 static cl::opt<bool> ForceSplitStore(
181     "force-split-store", cl::Hidden, cl::init(false),
182     cl::desc("Force store splitting no matter what the target query says."));
183 
184 static cl::opt<bool>
185 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
186     cl::desc("Enable merging of redundant sexts when one is dominating"
187     " the other."), cl::init(true));
188 
189 static cl::opt<bool> DisableComplexAddrModes(
190     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
191     cl::desc("Disables combining addressing modes with different parts "
192              "in optimizeMemoryInst."));
193 
194 static cl::opt<bool>
195 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
196                 cl::desc("Allow creation of Phis in Address sinking."));
197 
198 static cl::opt<bool>
199 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
200                    cl::desc("Allow creation of selects in Address sinking."));
201 
202 static cl::opt<bool> AddrSinkCombineBaseReg(
203     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
204     cl::desc("Allow combining of BaseReg field in Address sinking."));
205 
206 static cl::opt<bool> AddrSinkCombineBaseGV(
207     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
208     cl::desc("Allow combining of BaseGV field in Address sinking."));
209 
210 static cl::opt<bool> AddrSinkCombineBaseOffs(
211     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
212     cl::desc("Allow combining of BaseOffs field in Address sinking."));
213 
214 static cl::opt<bool> AddrSinkCombineScaledReg(
215     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
216     cl::desc("Allow combining of ScaledReg field in Address sinking."));
217 
218 static cl::opt<bool>
219     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
220                          cl::init(true),
221                          cl::desc("Enable splitting large offset of GEP."));
222 
223 namespace {
224 
225 enum ExtType {
226   ZeroExtension,   // Zero extension has been seen.
227   SignExtension,   // Sign extension has been seen.
228   BothExtension    // This extension type is used if we saw sext after
229                    // ZeroExtension had been set, or if we saw zext after
230                    // SignExtension had been set. It makes the type
231                    // information of a promoted instruction invalid.
232 };
233 
234 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
235 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
236 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
237 using SExts = SmallVector<Instruction *, 16>;
238 using ValueToSExts = DenseMap<Value *, SExts>;
239 
240 class TypePromotionTransaction;
241 
242   class CodeGenPrepare : public FunctionPass {
243     const TargetMachine *TM = nullptr;
244     const TargetSubtargetInfo *SubtargetInfo;
245     const TargetLowering *TLI = nullptr;
246     const TargetRegisterInfo *TRI;
247     const TargetTransformInfo *TTI = nullptr;
248     const TargetLibraryInfo *TLInfo;
249     const LoopInfo *LI;
250     std::unique_ptr<BlockFrequencyInfo> BFI;
251     std::unique_ptr<BranchProbabilityInfo> BPI;
252 
253     /// As we scan instructions optimizing them, this is the next instruction
254     /// to optimize. Transforms that can invalidate this should update it.
255     BasicBlock::iterator CurInstIterator;
256 
257     /// Keeps track of non-local addresses that have been sunk into a block.
258     /// This allows us to avoid inserting duplicate code for blocks with
259     /// multiple load/stores of the same address. The usage of WeakTrackingVH
260     /// enables SunkAddrs to be treated as a cache whose entries can be
261     /// invalidated if a sunken address computation has been erased.
262     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
263 
264     /// Keeps track of all instructions inserted for the current function.
265     SetOfInstrs InsertedInsts;
266 
267     /// Keeps track of the type of the related instruction before their
268     /// promotion for the current function.
269     InstrToOrigTy PromotedInsts;
270 
271     /// Keep track of instructions removed during promotion.
272     SetOfInstrs RemovedInsts;
273 
274     /// Keep track of sext chains based on their initial value.
275     DenseMap<Value *, Instruction *> SeenChainsForSExt;
276 
277     /// Keep track of GEPs accessing the same data structures such as structs or
278     /// arrays that are candidates to be split later because of their large
279     /// size.
280     MapVector<
281         AssertingVH<Value>,
282         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
283         LargeOffsetGEPMap;
284 
285     /// Keep track of new GEP base after splitting the GEPs having large offset.
286     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
287 
288     /// Map serial numbers to Large offset GEPs.
289     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
290 
291     /// Keep track of SExt promoted.
292     ValueToSExts ValToSExtendedUses;
293 
294     /// True if optimizing for size.
295     bool OptSize;
296 
297     /// DataLayout for the Function being processed.
298     const DataLayout *DL = nullptr;
299 
300   public:
301     static char ID; // Pass identification, replacement for typeid
302 
303     CodeGenPrepare() : FunctionPass(ID) {
304       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
305     }
306 
307     bool runOnFunction(Function &F) override;
308 
309     StringRef getPassName() const override { return "CodeGen Prepare"; }
310 
311     void getAnalysisUsage(AnalysisUsage &AU) const override {
312       // FIXME: When we can selectively preserve passes, preserve the domtree.
313       AU.addRequired<ProfileSummaryInfoWrapperPass>();
314       AU.addRequired<TargetLibraryInfoWrapperPass>();
315       AU.addRequired<TargetTransformInfoWrapperPass>();
316       AU.addRequired<LoopInfoWrapperPass>();
317     }
318 
319   private:
320     template <typename F>
321     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
322       // Substituting can cause recursive simplifications, which can invalidate
323       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
324       // happens.
325       Value *CurValue = &*CurInstIterator;
326       WeakTrackingVH IterHandle(CurValue);
327 
328       f();
329 
330       // If the iterator instruction was recursively deleted, start over at the
331       // start of the block.
332       if (IterHandle != CurValue) {
333         CurInstIterator = BB->begin();
334         SunkAddrs.clear();
335       }
336     }
337 
338     bool eliminateFallThrough(Function &F);
339     bool eliminateMostlyEmptyBlocks(Function &F);
340     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
341     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
342     void eliminateMostlyEmptyBlock(BasicBlock *BB);
343     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
344                                        bool isPreheader);
345     bool optimizeBlock(BasicBlock &BB, DominatorTree &DT, bool &ModifiedDT);
346     bool optimizeInst(Instruction *I, DominatorTree &DT, bool &ModifiedDT);
347     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
348                             Type *AccessTy, unsigned AddrSpace);
349     bool optimizeInlineAsmInst(CallInst *CS);
350     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
351     bool optimizeExt(Instruction *&I);
352     bool optimizeExtUses(Instruction *I);
353     bool optimizeLoadExt(LoadInst *Load);
354     bool optimizeSelectInst(SelectInst *SI, bool &ModifiedDT);
355     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
356     bool optimizeSwitchInst(SwitchInst *SI);
357     bool optimizeExtractElementInst(Instruction *Inst);
358     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
359     bool placeDbgValues(Function &F);
360     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
361                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
362     bool tryToPromoteExts(TypePromotionTransaction &TPT,
363                           const SmallVectorImpl<Instruction *> &Exts,
364                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
365                           unsigned CreatedInstsCost = 0);
366     bool mergeSExts(Function &F, DominatorTree &DT);
367     bool splitLargeGEPOffsets();
368     bool performAddressTypePromotion(
369         Instruction *&Inst,
370         bool AllowPromotionWithoutCommonHeader,
371         bool HasPromoted, TypePromotionTransaction &TPT,
372         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
373     bool splitBranchCondition(Function &F, bool &ModifiedDT);
374     bool simplifyOffsetableRelocate(Instruction &I);
375 
376     bool tryToSinkFreeOperands(Instruction *I);
377   };
378 
379 } // end anonymous namespace
380 
381 char CodeGenPrepare::ID = 0;
382 
383 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
384                       "Optimize for code generation", false, false)
385 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
386 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
387                     "Optimize for code generation", false, false)
388 
389 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
390 
391 bool CodeGenPrepare::runOnFunction(Function &F) {
392   if (skipFunction(F))
393     return false;
394 
395   DL = &F.getParent()->getDataLayout();
396 
397   bool EverMadeChange = false;
398   // Clear per function information.
399   InsertedInsts.clear();
400   PromotedInsts.clear();
401 
402   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
403     TM = &TPC->getTM<TargetMachine>();
404     SubtargetInfo = TM->getSubtargetImpl(F);
405     TLI = SubtargetInfo->getTargetLowering();
406     TRI = SubtargetInfo->getRegisterInfo();
407   }
408   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
409   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
410   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
411   BPI.reset(new BranchProbabilityInfo(F, *LI));
412   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
413   OptSize = F.optForSize();
414 
415   ProfileSummaryInfo *PSI =
416       &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
417   if (ProfileGuidedSectionPrefix) {
418     if (PSI->isFunctionHotInCallGraph(&F, *BFI))
419       F.setSectionPrefix(".hot");
420     else if (PSI->isFunctionColdInCallGraph(&F, *BFI))
421       F.setSectionPrefix(".unlikely");
422   }
423 
424   /// This optimization identifies DIV instructions that can be
425   /// profitably bypassed and carried out with a shorter, faster divide.
426   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI &&
427       TLI->isSlowDivBypassed()) {
428     const DenseMap<unsigned int, unsigned int> &BypassWidths =
429        TLI->getBypassSlowDivWidths();
430     BasicBlock* BB = &*F.begin();
431     while (BB != nullptr) {
432       // bypassSlowDivision may create new BBs, but we don't want to reapply the
433       // optimization to those blocks.
434       BasicBlock* Next = BB->getNextNode();
435       EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
436       BB = Next;
437     }
438   }
439 
440   // Eliminate blocks that contain only PHI nodes and an
441   // unconditional branch.
442   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
443 
444   bool ModifiedDT = false;
445   if (!DisableBranchOpts)
446     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
447 
448   // Split some critical edges where one of the sources is an indirect branch,
449   // to help generate sane code for PHIs involving such edges.
450   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
451 
452   bool MadeChange = true;
453   while (MadeChange) {
454     MadeChange = false;
455     DominatorTree DT(F);
456     for (Function::iterator I = F.begin(); I != F.end(); ) {
457       BasicBlock *BB = &*I++;
458       bool ModifiedDTOnIteration = false;
459       MadeChange |= optimizeBlock(*BB, DT, ModifiedDTOnIteration);
460 
461       // Restart BB iteration if the dominator tree of the Function was changed
462       if (ModifiedDTOnIteration)
463         break;
464     }
465     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
466       MadeChange |= mergeSExts(F, DT);
467     if (!LargeOffsetGEPMap.empty())
468       MadeChange |= splitLargeGEPOffsets();
469 
470     // Really free removed instructions during promotion.
471     for (Instruction *I : RemovedInsts)
472       I->deleteValue();
473 
474     EverMadeChange |= MadeChange;
475     SeenChainsForSExt.clear();
476     ValToSExtendedUses.clear();
477     RemovedInsts.clear();
478     LargeOffsetGEPMap.clear();
479     LargeOffsetGEPID.clear();
480   }
481 
482   SunkAddrs.clear();
483 
484   if (!DisableBranchOpts) {
485     MadeChange = false;
486     // Use a set vector to get deterministic iteration order. The order the
487     // blocks are removed may affect whether or not PHI nodes in successors
488     // are removed.
489     SmallSetVector<BasicBlock*, 8> WorkList;
490     for (BasicBlock &BB : F) {
491       SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB));
492       MadeChange |= ConstantFoldTerminator(&BB, true);
493       if (!MadeChange) continue;
494 
495       for (SmallVectorImpl<BasicBlock*>::iterator
496              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
497         if (pred_begin(*II) == pred_end(*II))
498           WorkList.insert(*II);
499     }
500 
501     // Delete the dead blocks and any of their dead successors.
502     MadeChange |= !WorkList.empty();
503     while (!WorkList.empty()) {
504       BasicBlock *BB = WorkList.pop_back_val();
505       SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
506 
507       DeleteDeadBlock(BB);
508 
509       for (SmallVectorImpl<BasicBlock*>::iterator
510              II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
511         if (pred_begin(*II) == pred_end(*II))
512           WorkList.insert(*II);
513     }
514 
515     // Merge pairs of basic blocks with unconditional branches, connected by
516     // a single edge.
517     if (EverMadeChange || MadeChange)
518       MadeChange |= eliminateFallThrough(F);
519 
520     EverMadeChange |= MadeChange;
521   }
522 
523   if (!DisableGCOpts) {
524     SmallVector<Instruction *, 2> Statepoints;
525     for (BasicBlock &BB : F)
526       for (Instruction &I : BB)
527         if (isStatepoint(I))
528           Statepoints.push_back(&I);
529     for (auto &I : Statepoints)
530       EverMadeChange |= simplifyOffsetableRelocate(*I);
531   }
532 
533   // Do this last to clean up use-before-def scenarios introduced by other
534   // preparatory transforms.
535   EverMadeChange |= placeDbgValues(F);
536 
537   return EverMadeChange;
538 }
539 
540 /// Merge basic blocks which are connected by a single edge, where one of the
541 /// basic blocks has a single successor pointing to the other basic block,
542 /// which has a single predecessor.
543 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
544   bool Changed = false;
545   // Scan all of the blocks in the function, except for the entry block.
546   // Use a temporary array to avoid iterator being invalidated when
547   // deleting blocks.
548   SmallVector<WeakTrackingVH, 16> Blocks;
549   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
550     Blocks.push_back(&Block);
551 
552   for (auto &Block : Blocks) {
553     auto *BB = cast_or_null<BasicBlock>(Block);
554     if (!BB)
555       continue;
556     // If the destination block has a single pred, then this is a trivial
557     // edge, just collapse it.
558     BasicBlock *SinglePred = BB->getSinglePredecessor();
559 
560     // Don't merge if BB's address is taken.
561     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
562 
563     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
564     if (Term && !Term->isConditional()) {
565       Changed = true;
566       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
567 
568       // Merge BB into SinglePred and delete it.
569       MergeBlockIntoPredecessor(BB);
570     }
571   }
572   return Changed;
573 }
574 
575 /// Find a destination block from BB if BB is mergeable empty block.
576 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
577   // If this block doesn't end with an uncond branch, ignore it.
578   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
579   if (!BI || !BI->isUnconditional())
580     return nullptr;
581 
582   // If the instruction before the branch (skipping debug info) isn't a phi
583   // node, then other stuff is happening here.
584   BasicBlock::iterator BBI = BI->getIterator();
585   if (BBI != BB->begin()) {
586     --BBI;
587     while (isa<DbgInfoIntrinsic>(BBI)) {
588       if (BBI == BB->begin())
589         break;
590       --BBI;
591     }
592     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
593       return nullptr;
594   }
595 
596   // Do not break infinite loops.
597   BasicBlock *DestBB = BI->getSuccessor(0);
598   if (DestBB == BB)
599     return nullptr;
600 
601   if (!canMergeBlocks(BB, DestBB))
602     DestBB = nullptr;
603 
604   return DestBB;
605 }
606 
607 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
608 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
609 /// edges in ways that are non-optimal for isel. Start by eliminating these
610 /// blocks so we can split them the way we want them.
611 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
612   SmallPtrSet<BasicBlock *, 16> Preheaders;
613   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
614   while (!LoopList.empty()) {
615     Loop *L = LoopList.pop_back_val();
616     LoopList.insert(LoopList.end(), L->begin(), L->end());
617     if (BasicBlock *Preheader = L->getLoopPreheader())
618       Preheaders.insert(Preheader);
619   }
620 
621   bool MadeChange = false;
622   // Copy blocks into a temporary array to avoid iterator invalidation issues
623   // as we remove them.
624   // Note that this intentionally skips the entry block.
625   SmallVector<WeakTrackingVH, 16> Blocks;
626   for (auto &Block : llvm::make_range(std::next(F.begin()), F.end()))
627     Blocks.push_back(&Block);
628 
629   for (auto &Block : Blocks) {
630     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
631     if (!BB)
632       continue;
633     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
634     if (!DestBB ||
635         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
636       continue;
637 
638     eliminateMostlyEmptyBlock(BB);
639     MadeChange = true;
640   }
641   return MadeChange;
642 }
643 
644 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
645                                                    BasicBlock *DestBB,
646                                                    bool isPreheader) {
647   // Do not delete loop preheaders if doing so would create a critical edge.
648   // Loop preheaders can be good locations to spill registers. If the
649   // preheader is deleted and we create a critical edge, registers may be
650   // spilled in the loop body instead.
651   if (!DisablePreheaderProtect && isPreheader &&
652       !(BB->getSinglePredecessor() &&
653         BB->getSinglePredecessor()->getSingleSuccessor()))
654     return false;
655 
656   // Skip merging if the block's successor is also a successor to any callbr
657   // that leads to this block.
658   // FIXME: Is this really needed? Is this a correctness issue?
659   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
660     if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator()))
661       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
662         if (DestBB == CBI->getSuccessor(i))
663           return false;
664   }
665 
666   // Try to skip merging if the unique predecessor of BB is terminated by a
667   // switch or indirect branch instruction, and BB is used as an incoming block
668   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
669   // add COPY instructions in the predecessor of BB instead of BB (if it is not
670   // merged). Note that the critical edge created by merging such blocks wont be
671   // split in MachineSink because the jump table is not analyzable. By keeping
672   // such empty block (BB), ISel will place COPY instructions in BB, not in the
673   // predecessor of BB.
674   BasicBlock *Pred = BB->getUniquePredecessor();
675   if (!Pred ||
676       !(isa<SwitchInst>(Pred->getTerminator()) ||
677         isa<IndirectBrInst>(Pred->getTerminator())))
678     return true;
679 
680   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
681     return true;
682 
683   // We use a simple cost heuristic which determine skipping merging is
684   // profitable if the cost of skipping merging is less than the cost of
685   // merging : Cost(skipping merging) < Cost(merging BB), where the
686   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
687   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
688   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
689   //   Freq(Pred) / Freq(BB) > 2.
690   // Note that if there are multiple empty blocks sharing the same incoming
691   // value for the PHIs in the DestBB, we consider them together. In such
692   // case, Cost(merging BB) will be the sum of their frequencies.
693 
694   if (!isa<PHINode>(DestBB->begin()))
695     return true;
696 
697   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
698 
699   // Find all other incoming blocks from which incoming values of all PHIs in
700   // DestBB are the same as the ones from BB.
701   for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E;
702        ++PI) {
703     BasicBlock *DestBBPred = *PI;
704     if (DestBBPred == BB)
705       continue;
706 
707     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
708           return DestPN.getIncomingValueForBlock(BB) ==
709                  DestPN.getIncomingValueForBlock(DestBBPred);
710         }))
711       SameIncomingValueBBs.insert(DestBBPred);
712   }
713 
714   // See if all BB's incoming values are same as the value from Pred. In this
715   // case, no reason to skip merging because COPYs are expected to be place in
716   // Pred already.
717   if (SameIncomingValueBBs.count(Pred))
718     return true;
719 
720   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
721   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
722 
723   for (auto SameValueBB : SameIncomingValueBBs)
724     if (SameValueBB->getUniquePredecessor() == Pred &&
725         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
726       BBFreq += BFI->getBlockFreq(SameValueBB);
727 
728   return PredFreq.getFrequency() <=
729          BBFreq.getFrequency() * FreqRatioToSkipMerge;
730 }
731 
732 /// Return true if we can merge BB into DestBB if there is a single
733 /// unconditional branch between them, and BB contains no other non-phi
734 /// instructions.
735 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
736                                     const BasicBlock *DestBB) const {
737   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
738   // the successor.  If there are more complex condition (e.g. preheaders),
739   // don't mess around with them.
740   for (const PHINode &PN : BB->phis()) {
741     for (const User *U : PN.users()) {
742       const Instruction *UI = cast<Instruction>(U);
743       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
744         return false;
745       // If User is inside DestBB block and it is a PHINode then check
746       // incoming value. If incoming value is not from BB then this is
747       // a complex condition (e.g. preheaders) we want to avoid here.
748       if (UI->getParent() == DestBB) {
749         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
750           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
751             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
752             if (Insn && Insn->getParent() == BB &&
753                 Insn->getParent() != UPN->getIncomingBlock(I))
754               return false;
755           }
756       }
757     }
758   }
759 
760   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
761   // and DestBB may have conflicting incoming values for the block.  If so, we
762   // can't merge the block.
763   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
764   if (!DestBBPN) return true;  // no conflict.
765 
766   // Collect the preds of BB.
767   SmallPtrSet<const BasicBlock*, 16> BBPreds;
768   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
769     // It is faster to get preds from a PHI than with pred_iterator.
770     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
771       BBPreds.insert(BBPN->getIncomingBlock(i));
772   } else {
773     BBPreds.insert(pred_begin(BB), pred_end(BB));
774   }
775 
776   // Walk the preds of DestBB.
777   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
778     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
779     if (BBPreds.count(Pred)) {   // Common predecessor?
780       for (const PHINode &PN : DestBB->phis()) {
781         const Value *V1 = PN.getIncomingValueForBlock(Pred);
782         const Value *V2 = PN.getIncomingValueForBlock(BB);
783 
784         // If V2 is a phi node in BB, look up what the mapped value will be.
785         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
786           if (V2PN->getParent() == BB)
787             V2 = V2PN->getIncomingValueForBlock(Pred);
788 
789         // If there is a conflict, bail out.
790         if (V1 != V2) return false;
791       }
792     }
793   }
794 
795   return true;
796 }
797 
798 /// Eliminate a basic block that has only phi's and an unconditional branch in
799 /// it.
800 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
801   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
802   BasicBlock *DestBB = BI->getSuccessor(0);
803 
804   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
805                     << *BB << *DestBB);
806 
807   // If the destination block has a single pred, then this is a trivial edge,
808   // just collapse it.
809   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
810     if (SinglePred != DestBB) {
811       assert(SinglePred == BB &&
812              "Single predecessor not the same as predecessor");
813       // Merge DestBB into SinglePred/BB and delete it.
814       MergeBlockIntoPredecessor(DestBB);
815       // Note: BB(=SinglePred) will not be deleted on this path.
816       // DestBB(=its single successor) is the one that was deleted.
817       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
818       return;
819     }
820   }
821 
822   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
823   // to handle the new incoming edges it is about to have.
824   for (PHINode &PN : DestBB->phis()) {
825     // Remove the incoming value for BB, and remember it.
826     Value *InVal = PN.removeIncomingValue(BB, false);
827 
828     // Two options: either the InVal is a phi node defined in BB or it is some
829     // value that dominates BB.
830     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
831     if (InValPhi && InValPhi->getParent() == BB) {
832       // Add all of the input values of the input PHI as inputs of this phi.
833       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
834         PN.addIncoming(InValPhi->getIncomingValue(i),
835                        InValPhi->getIncomingBlock(i));
836     } else {
837       // Otherwise, add one instance of the dominating value for each edge that
838       // we will be adding.
839       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
840         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
841           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
842       } else {
843         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
844           PN.addIncoming(InVal, *PI);
845       }
846     }
847   }
848 
849   // The PHIs are now updated, change everything that refers to BB to use
850   // DestBB and remove BB.
851   BB->replaceAllUsesWith(DestBB);
852   BB->eraseFromParent();
853   ++NumBlocksElim;
854 
855   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
856 }
857 
858 // Computes a map of base pointer relocation instructions to corresponding
859 // derived pointer relocation instructions given a vector of all relocate calls
860 static void computeBaseDerivedRelocateMap(
861     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
862     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
863         &RelocateInstMap) {
864   // Collect information in two maps: one primarily for locating the base object
865   // while filling the second map; the second map is the final structure holding
866   // a mapping between Base and corresponding Derived relocate calls
867   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
868   for (auto *ThisRelocate : AllRelocateCalls) {
869     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
870                             ThisRelocate->getDerivedPtrIndex());
871     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
872   }
873   for (auto &Item : RelocateIdxMap) {
874     std::pair<unsigned, unsigned> Key = Item.first;
875     if (Key.first == Key.second)
876       // Base relocation: nothing to insert
877       continue;
878 
879     GCRelocateInst *I = Item.second;
880     auto BaseKey = std::make_pair(Key.first, Key.first);
881 
882     // We're iterating over RelocateIdxMap so we cannot modify it.
883     auto MaybeBase = RelocateIdxMap.find(BaseKey);
884     if (MaybeBase == RelocateIdxMap.end())
885       // TODO: We might want to insert a new base object relocate and gep off
886       // that, if there are enough derived object relocates.
887       continue;
888 
889     RelocateInstMap[MaybeBase->second].push_back(I);
890   }
891 }
892 
893 // Accepts a GEP and extracts the operands into a vector provided they're all
894 // small integer constants
895 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
896                                           SmallVectorImpl<Value *> &OffsetV) {
897   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
898     // Only accept small constant integer operands
899     auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
900     if (!Op || Op->getZExtValue() > 20)
901       return false;
902   }
903 
904   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
905     OffsetV.push_back(GEP->getOperand(i));
906   return true;
907 }
908 
909 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
910 // replace, computes a replacement, and affects it.
911 static bool
912 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
913                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
914   bool MadeChange = false;
915   // We must ensure the relocation of derived pointer is defined after
916   // relocation of base pointer. If we find a relocation corresponding to base
917   // defined earlier than relocation of base then we move relocation of base
918   // right before found relocation. We consider only relocation in the same
919   // basic block as relocation of base. Relocations from other basic block will
920   // be skipped by optimization and we do not care about them.
921   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
922        &*R != RelocatedBase; ++R)
923     if (auto RI = dyn_cast<GCRelocateInst>(R))
924       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
925         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
926           RelocatedBase->moveBefore(RI);
927           break;
928         }
929 
930   for (GCRelocateInst *ToReplace : Targets) {
931     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
932            "Not relocating a derived object of the original base object");
933     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
934       // A duplicate relocate call. TODO: coalesce duplicates.
935       continue;
936     }
937 
938     if (RelocatedBase->getParent() != ToReplace->getParent()) {
939       // Base and derived relocates are in different basic blocks.
940       // In this case transform is only valid when base dominates derived
941       // relocate. However it would be too expensive to check dominance
942       // for each such relocate, so we skip the whole transformation.
943       continue;
944     }
945 
946     Value *Base = ToReplace->getBasePtr();
947     auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
948     if (!Derived || Derived->getPointerOperand() != Base)
949       continue;
950 
951     SmallVector<Value *, 2> OffsetV;
952     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
953       continue;
954 
955     // Create a Builder and replace the target callsite with a gep
956     assert(RelocatedBase->getNextNode() &&
957            "Should always have one since it's not a terminator");
958 
959     // Insert after RelocatedBase
960     IRBuilder<> Builder(RelocatedBase->getNextNode());
961     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
962 
963     // If gc_relocate does not match the actual type, cast it to the right type.
964     // In theory, there must be a bitcast after gc_relocate if the type does not
965     // match, and we should reuse it to get the derived pointer. But it could be
966     // cases like this:
967     // bb1:
968     //  ...
969     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
970     //  br label %merge
971     //
972     // bb2:
973     //  ...
974     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
975     //  br label %merge
976     //
977     // merge:
978     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
979     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
980     //
981     // In this case, we can not find the bitcast any more. So we insert a new bitcast
982     // no matter there is already one or not. In this way, we can handle all cases, and
983     // the extra bitcast should be optimized away in later passes.
984     Value *ActualRelocatedBase = RelocatedBase;
985     if (RelocatedBase->getType() != Base->getType()) {
986       ActualRelocatedBase =
987           Builder.CreateBitCast(RelocatedBase, Base->getType());
988     }
989     Value *Replacement = Builder.CreateGEP(
990         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
991     Replacement->takeName(ToReplace);
992     // If the newly generated derived pointer's type does not match the original derived
993     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
994     Value *ActualReplacement = Replacement;
995     if (Replacement->getType() != ToReplace->getType()) {
996       ActualReplacement =
997           Builder.CreateBitCast(Replacement, ToReplace->getType());
998     }
999     ToReplace->replaceAllUsesWith(ActualReplacement);
1000     ToReplace->eraseFromParent();
1001 
1002     MadeChange = true;
1003   }
1004   return MadeChange;
1005 }
1006 
1007 // Turns this:
1008 //
1009 // %base = ...
1010 // %ptr = gep %base + 15
1011 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1012 // %base' = relocate(%tok, i32 4, i32 4)
1013 // %ptr' = relocate(%tok, i32 4, i32 5)
1014 // %val = load %ptr'
1015 //
1016 // into this:
1017 //
1018 // %base = ...
1019 // %ptr = gep %base + 15
1020 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1021 // %base' = gc.relocate(%tok, i32 4, i32 4)
1022 // %ptr' = gep %base' + 15
1023 // %val = load %ptr'
1024 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) {
1025   bool MadeChange = false;
1026   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1027 
1028   for (auto *U : I.users())
1029     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1030       // Collect all the relocate calls associated with a statepoint
1031       AllRelocateCalls.push_back(Relocate);
1032 
1033   // We need atleast one base pointer relocation + one derived pointer
1034   // relocation to mangle
1035   if (AllRelocateCalls.size() < 2)
1036     return false;
1037 
1038   // RelocateInstMap is a mapping from the base relocate instruction to the
1039   // corresponding derived relocate instructions
1040   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1041   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1042   if (RelocateInstMap.empty())
1043     return false;
1044 
1045   for (auto &Item : RelocateInstMap)
1046     // Item.first is the RelocatedBase to offset against
1047     // Item.second is the vector of Targets to replace
1048     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1049   return MadeChange;
1050 }
1051 
1052 /// Sink the specified cast instruction into its user blocks.
1053 static bool SinkCast(CastInst *CI) {
1054   BasicBlock *DefBB = CI->getParent();
1055 
1056   /// InsertedCasts - Only insert a cast in each block once.
1057   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1058 
1059   bool MadeChange = false;
1060   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1061        UI != E; ) {
1062     Use &TheUse = UI.getUse();
1063     Instruction *User = cast<Instruction>(*UI);
1064 
1065     // Figure out which BB this cast is used in.  For PHI's this is the
1066     // appropriate predecessor block.
1067     BasicBlock *UserBB = User->getParent();
1068     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1069       UserBB = PN->getIncomingBlock(TheUse);
1070     }
1071 
1072     // Preincrement use iterator so we don't invalidate it.
1073     ++UI;
1074 
1075     // The first insertion point of a block containing an EH pad is after the
1076     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1077     if (User->isEHPad())
1078       continue;
1079 
1080     // If the block selected to receive the cast is an EH pad that does not
1081     // allow non-PHI instructions before the terminator, we can't sink the
1082     // cast.
1083     if (UserBB->getTerminator()->isEHPad())
1084       continue;
1085 
1086     // If this user is in the same block as the cast, don't change the cast.
1087     if (UserBB == DefBB) continue;
1088 
1089     // If we have already inserted a cast into this block, use it.
1090     CastInst *&InsertedCast = InsertedCasts[UserBB];
1091 
1092     if (!InsertedCast) {
1093       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1094       assert(InsertPt != UserBB->end());
1095       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1096                                       CI->getType(), "", &*InsertPt);
1097       InsertedCast->setDebugLoc(CI->getDebugLoc());
1098     }
1099 
1100     // Replace a use of the cast with a use of the new cast.
1101     TheUse = InsertedCast;
1102     MadeChange = true;
1103     ++NumCastUses;
1104   }
1105 
1106   // If we removed all uses, nuke the cast.
1107   if (CI->use_empty()) {
1108     salvageDebugInfo(*CI);
1109     CI->eraseFromParent();
1110     MadeChange = true;
1111   }
1112 
1113   return MadeChange;
1114 }
1115 
1116 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1117 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1118 /// reduce the number of virtual registers that must be created and coalesced.
1119 ///
1120 /// Return true if any changes are made.
1121 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1122                                        const DataLayout &DL) {
1123   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1124   // than sinking only nop casts, but is helpful on some platforms.
1125   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1126     if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(),
1127                                   ASC->getDestAddressSpace()))
1128       return false;
1129   }
1130 
1131   // If this is a noop copy,
1132   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1133   EVT DstVT = TLI.getValueType(DL, CI->getType());
1134 
1135   // This is an fp<->int conversion?
1136   if (SrcVT.isInteger() != DstVT.isInteger())
1137     return false;
1138 
1139   // If this is an extension, it will be a zero or sign extension, which
1140   // isn't a noop.
1141   if (SrcVT.bitsLT(DstVT)) return false;
1142 
1143   // If these values will be promoted, find out what they will be promoted
1144   // to.  This helps us consider truncates on PPC as noop copies when they
1145   // are.
1146   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1147       TargetLowering::TypePromoteInteger)
1148     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1149   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1150       TargetLowering::TypePromoteInteger)
1151     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1152 
1153   // If, after promotion, these are the same types, this is a noop copy.
1154   if (SrcVT != DstVT)
1155     return false;
1156 
1157   return SinkCast(CI);
1158 }
1159 
1160 static bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp,
1161                                         Intrinsic::ID IID, DominatorTree &DT) {
1162   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1163   Value *Arg0 = BO->getOperand(0);
1164   Value *Arg1 = BO->getOperand(1);
1165   if (BO->getOpcode() == Instruction::Add &&
1166       IID == Intrinsic::usub_with_overflow) {
1167     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1168     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1169   }
1170 
1171   Instruction *InsertPt;
1172   if (BO->hasOneUse() && BO->user_back() == Cmp) {
1173     // If the math is only used by the compare, insert at the compare to keep
1174     // the condition in the same block as its users. (CGP aggressively sinks
1175     // compares to help out SDAG.)
1176     InsertPt = Cmp;
1177   } else {
1178     // The math and compare may be independent instructions. Check dominance to
1179     // determine the insertion point for the intrinsic.
1180     bool MathDominates = DT.dominates(BO, Cmp);
1181     if (!MathDominates && !DT.dominates(Cmp, BO))
1182       return false;
1183 
1184     BasicBlock *MathBB = BO->getParent(), *CmpBB = Cmp->getParent();
1185     if (MathBB != CmpBB) {
1186       // Avoid hoisting an extra op into a dominating block and creating a
1187       // potentially longer critical path.
1188       if (!MathDominates)
1189         return false;
1190       // Check that the insertion doesn't create a value that is live across
1191       // more than two blocks, so to minimise the increase in register pressure.
1192       BasicBlock *Dominator = MathDominates ? MathBB : CmpBB;
1193       BasicBlock *Dominated = MathDominates ? CmpBB : MathBB;
1194       auto Successors = successors(Dominator);
1195       if (llvm::find(Successors, Dominated) == Successors.end())
1196         return false;
1197     }
1198 
1199     InsertPt = MathDominates ? cast<Instruction>(BO) : cast<Instruction>(Cmp);
1200   }
1201 
1202   IRBuilder<> Builder(InsertPt);
1203   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1204   Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1205   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1206   BO->replaceAllUsesWith(Math);
1207   Cmp->replaceAllUsesWith(OV);
1208   BO->eraseFromParent();
1209   Cmp->eraseFromParent();
1210   return true;
1211 }
1212 
1213 /// Match special-case patterns that check for unsigned add overflow.
1214 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1215                                                    BinaryOperator *&Add) {
1216   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1217   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1218   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1219 
1220   // We are not expecting non-canonical/degenerate code. Just bail out.
1221   if (isa<Constant>(A))
1222     return false;
1223 
1224   ICmpInst::Predicate Pred = Cmp->getPredicate();
1225   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1226     B = ConstantInt::get(B->getType(), 1);
1227   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1228     B = ConstantInt::get(B->getType(), -1);
1229   else
1230     return false;
1231 
1232   // Check the users of the variable operand of the compare looking for an add
1233   // with the adjusted constant.
1234   for (User *U : A->users()) {
1235     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1236       Add = cast<BinaryOperator>(U);
1237       return true;
1238     }
1239   }
1240   return false;
1241 }
1242 
1243 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1244 /// intrinsic. Return true if any changes were made.
1245 static bool combineToUAddWithOverflow(CmpInst *Cmp, const TargetLowering &TLI,
1246                                       const DataLayout &DL, DominatorTree &DT,
1247                                       bool &ModifiedDT) {
1248   Value *A, *B;
1249   BinaryOperator *Add;
1250   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add))))
1251     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1252       return false;
1253 
1254   if (!TLI.shouldFormOverflowOp(ISD::UADDO,
1255                                 TLI.getValueType(DL, Add->getType())))
1256     return false;
1257 
1258   // We don't want to move around uses of condition values this late, so we
1259   // check if it is legal to create the call to the intrinsic in the basic
1260   // block containing the icmp.
1261   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1262     return false;
1263 
1264   if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow, DT))
1265     return false;
1266 
1267   // Reset callers - do not crash by iterating over a dead instruction.
1268   ModifiedDT = true;
1269   return true;
1270 }
1271 
1272 static bool combineToUSubWithOverflow(CmpInst *Cmp, const TargetLowering &TLI,
1273                                       const DataLayout &DL, DominatorTree &DT,
1274                                       bool &ModifiedDT) {
1275   // We are not expecting non-canonical/degenerate code. Just bail out.
1276   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1277   if (isa<Constant>(A) && isa<Constant>(B))
1278     return false;
1279 
1280   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1281   ICmpInst::Predicate Pred = Cmp->getPredicate();
1282   if (Pred == ICmpInst::ICMP_UGT) {
1283     std::swap(A, B);
1284     Pred = ICmpInst::ICMP_ULT;
1285   }
1286   // Convert special-case: (A == 0) is the same as (A u< 1).
1287   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1288     B = ConstantInt::get(B->getType(), 1);
1289     Pred = ICmpInst::ICMP_ULT;
1290   }
1291   // Convert special-case: (A != 0) is the same as (0 u< A).
1292   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1293     std::swap(A, B);
1294     Pred = ICmpInst::ICMP_ULT;
1295   }
1296   if (Pred != ICmpInst::ICMP_ULT)
1297     return false;
1298 
1299   // Walk the users of a variable operand of a compare looking for a subtract or
1300   // add with that same operand. Also match the 2nd operand of the compare to
1301   // the add/sub, but that may be a negated constant operand of an add.
1302   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1303   BinaryOperator *Sub = nullptr;
1304   for (User *U : CmpVariableOperand->users()) {
1305     // A - B, A u< B --> usubo(A, B)
1306     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1307       Sub = cast<BinaryOperator>(U);
1308       break;
1309     }
1310 
1311     // A + (-C), A u< C (canonicalized form of (sub A, C))
1312     const APInt *CmpC, *AddC;
1313     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1314         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1315       Sub = cast<BinaryOperator>(U);
1316       break;
1317     }
1318   }
1319   if (!Sub)
1320     return false;
1321 
1322   if (!TLI.shouldFormOverflowOp(ISD::USUBO,
1323                                 TLI.getValueType(DL, Sub->getType())))
1324     return false;
1325 
1326   if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow, DT))
1327     return false;
1328 
1329   // Reset callers - do not crash by iterating over a dead instruction.
1330   ModifiedDT = true;
1331   return true;
1332 }
1333 
1334 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1335 /// registers that must be created and coalesced. This is a clear win except on
1336 /// targets with multiple condition code registers (PowerPC), where it might
1337 /// lose; some adjustment may be wanted there.
1338 ///
1339 /// Return true if any changes are made.
1340 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1341   if (TLI.hasMultipleConditionRegisters())
1342     return false;
1343 
1344   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1345   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1346     return false;
1347 
1348   // Only insert a cmp in each block once.
1349   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1350 
1351   bool MadeChange = false;
1352   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1353        UI != E; ) {
1354     Use &TheUse = UI.getUse();
1355     Instruction *User = cast<Instruction>(*UI);
1356 
1357     // Preincrement use iterator so we don't invalidate it.
1358     ++UI;
1359 
1360     // Don't bother for PHI nodes.
1361     if (isa<PHINode>(User))
1362       continue;
1363 
1364     // Figure out which BB this cmp is used in.
1365     BasicBlock *UserBB = User->getParent();
1366     BasicBlock *DefBB = Cmp->getParent();
1367 
1368     // If this user is in the same block as the cmp, don't change the cmp.
1369     if (UserBB == DefBB) continue;
1370 
1371     // If we have already inserted a cmp into this block, use it.
1372     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1373 
1374     if (!InsertedCmp) {
1375       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1376       assert(InsertPt != UserBB->end());
1377       InsertedCmp =
1378           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1379                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1380                           &*InsertPt);
1381       // Propagate the debug info.
1382       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1383     }
1384 
1385     // Replace a use of the cmp with a use of the new cmp.
1386     TheUse = InsertedCmp;
1387     MadeChange = true;
1388     ++NumCmpUses;
1389   }
1390 
1391   // If we removed all uses, nuke the cmp.
1392   if (Cmp->use_empty()) {
1393     Cmp->eraseFromParent();
1394     MadeChange = true;
1395   }
1396 
1397   return MadeChange;
1398 }
1399 
1400 static bool optimizeCmp(CmpInst *Cmp, const TargetLowering &TLI,
1401                         const DataLayout &DL, DominatorTree &DT,
1402                         bool &ModifiedDT) {
1403   if (sinkCmpExpression(Cmp, TLI))
1404     return true;
1405 
1406   if (combineToUAddWithOverflow(Cmp, TLI, DL, DT, ModifiedDT))
1407     return true;
1408 
1409   if (combineToUSubWithOverflow(Cmp, TLI, DL, DT, ModifiedDT))
1410     return true;
1411 
1412   return false;
1413 }
1414 
1415 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1416 /// used in a compare to allow isel to generate better code for targets where
1417 /// this operation can be combined.
1418 ///
1419 /// Return true if any changes are made.
1420 static bool sinkAndCmp0Expression(Instruction *AndI,
1421                                   const TargetLowering &TLI,
1422                                   SetOfInstrs &InsertedInsts) {
1423   // Double-check that we're not trying to optimize an instruction that was
1424   // already optimized by some other part of this pass.
1425   assert(!InsertedInsts.count(AndI) &&
1426          "Attempting to optimize already optimized and instruction");
1427   (void) InsertedInsts;
1428 
1429   // Nothing to do for single use in same basic block.
1430   if (AndI->hasOneUse() &&
1431       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1432     return false;
1433 
1434   // Try to avoid cases where sinking/duplicating is likely to increase register
1435   // pressure.
1436   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1437       !isa<ConstantInt>(AndI->getOperand(1)) &&
1438       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1439     return false;
1440 
1441   for (auto *U : AndI->users()) {
1442     Instruction *User = cast<Instruction>(U);
1443 
1444     // Only sink 'and' feeding icmp with 0.
1445     if (!isa<ICmpInst>(User))
1446       return false;
1447 
1448     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1449     if (!CmpC || !CmpC->isZero())
1450       return false;
1451   }
1452 
1453   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1454     return false;
1455 
1456   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1457   LLVM_DEBUG(AndI->getParent()->dump());
1458 
1459   // Push the 'and' into the same block as the icmp 0.  There should only be
1460   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1461   // others, so we don't need to keep track of which BBs we insert into.
1462   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1463        UI != E; ) {
1464     Use &TheUse = UI.getUse();
1465     Instruction *User = cast<Instruction>(*UI);
1466 
1467     // Preincrement use iterator so we don't invalidate it.
1468     ++UI;
1469 
1470     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1471 
1472     // Keep the 'and' in the same place if the use is already in the same block.
1473     Instruction *InsertPt =
1474         User->getParent() == AndI->getParent() ? AndI : User;
1475     Instruction *InsertedAnd =
1476         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1477                                AndI->getOperand(1), "", InsertPt);
1478     // Propagate the debug info.
1479     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1480 
1481     // Replace a use of the 'and' with a use of the new 'and'.
1482     TheUse = InsertedAnd;
1483     ++NumAndUses;
1484     LLVM_DEBUG(User->getParent()->dump());
1485   }
1486 
1487   // We removed all uses, nuke the and.
1488   AndI->eraseFromParent();
1489   return true;
1490 }
1491 
1492 /// Check if the candidates could be combined with a shift instruction, which
1493 /// includes:
1494 /// 1. Truncate instruction
1495 /// 2. And instruction and the imm is a mask of the low bits:
1496 /// imm & (imm+1) == 0
1497 static bool isExtractBitsCandidateUse(Instruction *User) {
1498   if (!isa<TruncInst>(User)) {
1499     if (User->getOpcode() != Instruction::And ||
1500         !isa<ConstantInt>(User->getOperand(1)))
1501       return false;
1502 
1503     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1504 
1505     if ((Cimm & (Cimm + 1)).getBoolValue())
1506       return false;
1507   }
1508   return true;
1509 }
1510 
1511 /// Sink both shift and truncate instruction to the use of truncate's BB.
1512 static bool
1513 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1514                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1515                      const TargetLowering &TLI, const DataLayout &DL) {
1516   BasicBlock *UserBB = User->getParent();
1517   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1518   TruncInst *TruncI = dyn_cast<TruncInst>(User);
1519   bool MadeChange = false;
1520 
1521   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1522                             TruncE = TruncI->user_end();
1523        TruncUI != TruncE;) {
1524 
1525     Use &TruncTheUse = TruncUI.getUse();
1526     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1527     // Preincrement use iterator so we don't invalidate it.
1528 
1529     ++TruncUI;
1530 
1531     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1532     if (!ISDOpcode)
1533       continue;
1534 
1535     // If the use is actually a legal node, there will not be an
1536     // implicit truncate.
1537     // FIXME: always querying the result type is just an
1538     // approximation; some nodes' legality is determined by the
1539     // operand or other means. There's no good way to find out though.
1540     if (TLI.isOperationLegalOrCustom(
1541             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1542       continue;
1543 
1544     // Don't bother for PHI nodes.
1545     if (isa<PHINode>(TruncUser))
1546       continue;
1547 
1548     BasicBlock *TruncUserBB = TruncUser->getParent();
1549 
1550     if (UserBB == TruncUserBB)
1551       continue;
1552 
1553     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1554     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1555 
1556     if (!InsertedShift && !InsertedTrunc) {
1557       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1558       assert(InsertPt != TruncUserBB->end());
1559       // Sink the shift
1560       if (ShiftI->getOpcode() == Instruction::AShr)
1561         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1562                                                    "", &*InsertPt);
1563       else
1564         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1565                                                    "", &*InsertPt);
1566       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1567 
1568       // Sink the trunc
1569       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1570       TruncInsertPt++;
1571       assert(TruncInsertPt != TruncUserBB->end());
1572 
1573       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1574                                        TruncI->getType(), "", &*TruncInsertPt);
1575       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1576 
1577       MadeChange = true;
1578 
1579       TruncTheUse = InsertedTrunc;
1580     }
1581   }
1582   return MadeChange;
1583 }
1584 
1585 /// Sink the shift *right* instruction into user blocks if the uses could
1586 /// potentially be combined with this shift instruction and generate BitExtract
1587 /// instruction. It will only be applied if the architecture supports BitExtract
1588 /// instruction. Here is an example:
1589 /// BB1:
1590 ///   %x.extract.shift = lshr i64 %arg1, 32
1591 /// BB2:
1592 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1593 /// ==>
1594 ///
1595 /// BB2:
1596 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1597 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1598 ///
1599 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1600 /// instruction.
1601 /// Return true if any changes are made.
1602 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1603                                 const TargetLowering &TLI,
1604                                 const DataLayout &DL) {
1605   BasicBlock *DefBB = ShiftI->getParent();
1606 
1607   /// Only insert instructions in each block once.
1608   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1609 
1610   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1611 
1612   bool MadeChange = false;
1613   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1614        UI != E;) {
1615     Use &TheUse = UI.getUse();
1616     Instruction *User = cast<Instruction>(*UI);
1617     // Preincrement use iterator so we don't invalidate it.
1618     ++UI;
1619 
1620     // Don't bother for PHI nodes.
1621     if (isa<PHINode>(User))
1622       continue;
1623 
1624     if (!isExtractBitsCandidateUse(User))
1625       continue;
1626 
1627     BasicBlock *UserBB = User->getParent();
1628 
1629     if (UserBB == DefBB) {
1630       // If the shift and truncate instruction are in the same BB. The use of
1631       // the truncate(TruncUse) may still introduce another truncate if not
1632       // legal. In this case, we would like to sink both shift and truncate
1633       // instruction to the BB of TruncUse.
1634       // for example:
1635       // BB1:
1636       // i64 shift.result = lshr i64 opnd, imm
1637       // trunc.result = trunc shift.result to i16
1638       //
1639       // BB2:
1640       //   ----> We will have an implicit truncate here if the architecture does
1641       //   not have i16 compare.
1642       // cmp i16 trunc.result, opnd2
1643       //
1644       if (isa<TruncInst>(User) && shiftIsLegal
1645           // If the type of the truncate is legal, no truncate will be
1646           // introduced in other basic blocks.
1647           &&
1648           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1649         MadeChange =
1650             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1651 
1652       continue;
1653     }
1654     // If we have already inserted a shift into this block, use it.
1655     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1656 
1657     if (!InsertedShift) {
1658       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1659       assert(InsertPt != UserBB->end());
1660 
1661       if (ShiftI->getOpcode() == Instruction::AShr)
1662         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1663                                                    "", &*InsertPt);
1664       else
1665         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1666                                                    "", &*InsertPt);
1667       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1668 
1669       MadeChange = true;
1670     }
1671 
1672     // Replace a use of the shift with a use of the new shift.
1673     TheUse = InsertedShift;
1674   }
1675 
1676   // If we removed all uses, nuke the shift.
1677   if (ShiftI->use_empty()) {
1678     salvageDebugInfo(*ShiftI);
1679     ShiftI->eraseFromParent();
1680   }
1681 
1682   return MadeChange;
1683 }
1684 
1685 /// If counting leading or trailing zeros is an expensive operation and a zero
1686 /// input is defined, add a check for zero to avoid calling the intrinsic.
1687 ///
1688 /// We want to transform:
1689 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
1690 ///
1691 /// into:
1692 ///   entry:
1693 ///     %cmpz = icmp eq i64 %A, 0
1694 ///     br i1 %cmpz, label %cond.end, label %cond.false
1695 ///   cond.false:
1696 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
1697 ///     br label %cond.end
1698 ///   cond.end:
1699 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
1700 ///
1701 /// If the transform is performed, return true and set ModifiedDT to true.
1702 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
1703                                   const TargetLowering *TLI,
1704                                   const DataLayout *DL,
1705                                   bool &ModifiedDT) {
1706   if (!TLI || !DL)
1707     return false;
1708 
1709   // If a zero input is undefined, it doesn't make sense to despeculate that.
1710   if (match(CountZeros->getOperand(1), m_One()))
1711     return false;
1712 
1713   // If it's cheap to speculate, there's nothing to do.
1714   auto IntrinsicID = CountZeros->getIntrinsicID();
1715   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
1716       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
1717     return false;
1718 
1719   // Only handle legal scalar cases. Anything else requires too much work.
1720   Type *Ty = CountZeros->getType();
1721   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
1722   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
1723     return false;
1724 
1725   // The intrinsic will be sunk behind a compare against zero and branch.
1726   BasicBlock *StartBlock = CountZeros->getParent();
1727   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
1728 
1729   // Create another block after the count zero intrinsic. A PHI will be added
1730   // in this block to select the result of the intrinsic or the bit-width
1731   // constant if the input to the intrinsic is zero.
1732   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
1733   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
1734 
1735   // Set up a builder to create a compare, conditional branch, and PHI.
1736   IRBuilder<> Builder(CountZeros->getContext());
1737   Builder.SetInsertPoint(StartBlock->getTerminator());
1738   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
1739 
1740   // Replace the unconditional branch that was created by the first split with
1741   // a compare against zero and a conditional branch.
1742   Value *Zero = Constant::getNullValue(Ty);
1743   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
1744   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
1745   StartBlock->getTerminator()->eraseFromParent();
1746 
1747   // Create a PHI in the end block to select either the output of the intrinsic
1748   // or the bit width of the operand.
1749   Builder.SetInsertPoint(&EndBlock->front());
1750   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
1751   CountZeros->replaceAllUsesWith(PN);
1752   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
1753   PN->addIncoming(BitWidth, StartBlock);
1754   PN->addIncoming(CountZeros, CallBlock);
1755 
1756   // We are explicitly handling the zero case, so we can set the intrinsic's
1757   // undefined zero argument to 'true'. This will also prevent reprocessing the
1758   // intrinsic; we only despeculate when a zero input is defined.
1759   CountZeros->setArgOperand(1, Builder.getTrue());
1760   ModifiedDT = true;
1761   return true;
1762 }
1763 
1764 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
1765   BasicBlock *BB = CI->getParent();
1766 
1767   // Lower inline assembly if we can.
1768   // If we found an inline asm expession, and if the target knows how to
1769   // lower it to normal LLVM code, do so now.
1770   if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
1771     if (TLI->ExpandInlineAsm(CI)) {
1772       // Avoid invalidating the iterator.
1773       CurInstIterator = BB->begin();
1774       // Avoid processing instructions out of order, which could cause
1775       // reuse before a value is defined.
1776       SunkAddrs.clear();
1777       return true;
1778     }
1779     // Sink address computing for memory operands into the block.
1780     if (optimizeInlineAsmInst(CI))
1781       return true;
1782   }
1783 
1784   // Align the pointer arguments to this call if the target thinks it's a good
1785   // idea
1786   unsigned MinSize, PrefAlign;
1787   if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
1788     for (auto &Arg : CI->arg_operands()) {
1789       // We want to align both objects whose address is used directly and
1790       // objects whose address is used in casts and GEPs, though it only makes
1791       // sense for GEPs if the offset is a multiple of the desired alignment and
1792       // if size - offset meets the size threshold.
1793       if (!Arg->getType()->isPointerTy())
1794         continue;
1795       APInt Offset(DL->getIndexSizeInBits(
1796                        cast<PointerType>(Arg->getType())->getAddressSpace()),
1797                    0);
1798       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
1799       uint64_t Offset2 = Offset.getLimitedValue();
1800       if ((Offset2 & (PrefAlign-1)) != 0)
1801         continue;
1802       AllocaInst *AI;
1803       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
1804           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
1805         AI->setAlignment(PrefAlign);
1806       // Global variables can only be aligned if they are defined in this
1807       // object (i.e. they are uniquely initialized in this object), and
1808       // over-aligning global variables that have an explicit section is
1809       // forbidden.
1810       GlobalVariable *GV;
1811       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
1812           GV->getPointerAlignment(*DL) < PrefAlign &&
1813           DL->getTypeAllocSize(GV->getValueType()) >=
1814               MinSize + Offset2)
1815         GV->setAlignment(PrefAlign);
1816     }
1817     // If this is a memcpy (or similar) then we may be able to improve the
1818     // alignment
1819     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
1820       unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL);
1821       if (DestAlign > MI->getDestAlignment())
1822         MI->setDestAlignment(DestAlign);
1823       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
1824         unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
1825         if (SrcAlign > MTI->getSourceAlignment())
1826           MTI->setSourceAlignment(SrcAlign);
1827       }
1828     }
1829   }
1830 
1831   // If we have a cold call site, try to sink addressing computation into the
1832   // cold block.  This interacts with our handling for loads and stores to
1833   // ensure that we can fold all uses of a potential addressing computation
1834   // into their uses.  TODO: generalize this to work over profiling data
1835   if (!OptSize && CI->hasFnAttr(Attribute::Cold))
1836     for (auto &Arg : CI->arg_operands()) {
1837       if (!Arg->getType()->isPointerTy())
1838         continue;
1839       unsigned AS = Arg->getType()->getPointerAddressSpace();
1840       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
1841     }
1842 
1843   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
1844   if (II) {
1845     switch (II->getIntrinsicID()) {
1846     default: break;
1847     case Intrinsic::experimental_widenable_condition: {
1848       // Give up on future widening oppurtunties so that we can fold away dead
1849       // paths and merge blocks before going into block-local instruction
1850       // selection.
1851       if (II->use_empty()) {
1852         II->eraseFromParent();
1853         return true;
1854       }
1855       Constant *RetVal = ConstantInt::getTrue(II->getContext());
1856       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1857         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1858       });
1859       return true;
1860     }
1861     case Intrinsic::objectsize: {
1862       // Lower all uses of llvm.objectsize.*
1863       Value *RetVal =
1864           lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true);
1865 
1866       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1867         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1868       });
1869       return true;
1870     }
1871     case Intrinsic::is_constant: {
1872       // If is_constant hasn't folded away yet, lower it to false now.
1873       Constant *RetVal = ConstantInt::get(II->getType(), 0);
1874       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
1875         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
1876       });
1877       return true;
1878     }
1879     case Intrinsic::aarch64_stlxr:
1880     case Intrinsic::aarch64_stxr: {
1881       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
1882       if (!ExtVal || !ExtVal->hasOneUse() ||
1883           ExtVal->getParent() == CI->getParent())
1884         return false;
1885       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
1886       ExtVal->moveBefore(CI);
1887       // Mark this instruction as "inserted by CGP", so that other
1888       // optimizations don't touch it.
1889       InsertedInsts.insert(ExtVal);
1890       return true;
1891     }
1892 
1893     case Intrinsic::launder_invariant_group:
1894     case Intrinsic::strip_invariant_group: {
1895       Value *ArgVal = II->getArgOperand(0);
1896       auto it = LargeOffsetGEPMap.find(II);
1897       if (it != LargeOffsetGEPMap.end()) {
1898           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
1899           // Make sure not to have to deal with iterator invalidation
1900           // after possibly adding ArgVal to LargeOffsetGEPMap.
1901           auto GEPs = std::move(it->second);
1902           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
1903           LargeOffsetGEPMap.erase(II);
1904       }
1905 
1906       II->replaceAllUsesWith(ArgVal);
1907       II->eraseFromParent();
1908       return true;
1909     }
1910     case Intrinsic::cttz:
1911     case Intrinsic::ctlz:
1912       // If counting zeros is expensive, try to avoid it.
1913       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
1914     }
1915 
1916     if (TLI) {
1917       SmallVector<Value*, 2> PtrOps;
1918       Type *AccessTy;
1919       if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
1920         while (!PtrOps.empty()) {
1921           Value *PtrVal = PtrOps.pop_back_val();
1922           unsigned AS = PtrVal->getType()->getPointerAddressSpace();
1923           if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
1924             return true;
1925         }
1926     }
1927   }
1928 
1929   // From here on out we're working with named functions.
1930   if (!CI->getCalledFunction()) return false;
1931 
1932   // Lower all default uses of _chk calls.  This is very similar
1933   // to what InstCombineCalls does, but here we are only lowering calls
1934   // to fortified library functions (e.g. __memcpy_chk) that have the default
1935   // "don't know" as the objectsize.  Anything else should be left alone.
1936   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
1937   if (Value *V = Simplifier.optimizeCall(CI)) {
1938     CI->replaceAllUsesWith(V);
1939     CI->eraseFromParent();
1940     return true;
1941   }
1942 
1943   return false;
1944 }
1945 
1946 /// Look for opportunities to duplicate return instructions to the predecessor
1947 /// to enable tail call optimizations. The case it is currently looking for is:
1948 /// @code
1949 /// bb0:
1950 ///   %tmp0 = tail call i32 @f0()
1951 ///   br label %return
1952 /// bb1:
1953 ///   %tmp1 = tail call i32 @f1()
1954 ///   br label %return
1955 /// bb2:
1956 ///   %tmp2 = tail call i32 @f2()
1957 ///   br label %return
1958 /// return:
1959 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
1960 ///   ret i32 %retval
1961 /// @endcode
1962 ///
1963 /// =>
1964 ///
1965 /// @code
1966 /// bb0:
1967 ///   %tmp0 = tail call i32 @f0()
1968 ///   ret i32 %tmp0
1969 /// bb1:
1970 ///   %tmp1 = tail call i32 @f1()
1971 ///   ret i32 %tmp1
1972 /// bb2:
1973 ///   %tmp2 = tail call i32 @f2()
1974 ///   ret i32 %tmp2
1975 /// @endcode
1976 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
1977   if (!TLI)
1978     return false;
1979 
1980   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
1981   if (!RetI)
1982     return false;
1983 
1984   PHINode *PN = nullptr;
1985   BitCastInst *BCI = nullptr;
1986   Value *V = RetI->getReturnValue();
1987   if (V) {
1988     BCI = dyn_cast<BitCastInst>(V);
1989     if (BCI)
1990       V = BCI->getOperand(0);
1991 
1992     PN = dyn_cast<PHINode>(V);
1993     if (!PN)
1994       return false;
1995   }
1996 
1997   if (PN && PN->getParent() != BB)
1998     return false;
1999 
2000   // Make sure there are no instructions between the PHI and return, or that the
2001   // return is the first instruction in the block.
2002   if (PN) {
2003     BasicBlock::iterator BI = BB->begin();
2004     // Skip over debug and the bitcast.
2005     do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI);
2006     if (&*BI != RetI)
2007       return false;
2008   } else {
2009     BasicBlock::iterator BI = BB->begin();
2010     while (isa<DbgInfoIntrinsic>(BI)) ++BI;
2011     if (&*BI != RetI)
2012       return false;
2013   }
2014 
2015   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2016   /// call.
2017   const Function *F = BB->getParent();
2018   SmallVector<CallInst*, 4> TailCalls;
2019   if (PN) {
2020     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2021       CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
2022       // Make sure the phi value is indeed produced by the tail call.
2023       if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
2024           TLI->mayBeEmittedAsTailCall(CI) &&
2025           attributesPermitTailCall(F, CI, RetI, *TLI))
2026         TailCalls.push_back(CI);
2027     }
2028   } else {
2029     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2030     for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
2031       if (!VisitedBBs.insert(*PI).second)
2032         continue;
2033 
2034       BasicBlock::InstListType &InstList = (*PI)->getInstList();
2035       BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
2036       BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
2037       do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
2038       if (RI == RE)
2039         continue;
2040 
2041       CallInst *CI = dyn_cast<CallInst>(&*RI);
2042       if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2043           attributesPermitTailCall(F, CI, RetI, *TLI))
2044         TailCalls.push_back(CI);
2045     }
2046   }
2047 
2048   bool Changed = false;
2049   for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
2050     CallInst *CI = TailCalls[i];
2051     CallSite CS(CI);
2052 
2053     // Make sure the call instruction is followed by an unconditional branch to
2054     // the return block.
2055     BasicBlock *CallBB = CI->getParent();
2056     BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
2057     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2058       continue;
2059 
2060     // Duplicate the return into CallBB.
2061     (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB);
2062     ModifiedDT = Changed = true;
2063     ++NumRetsDup;
2064   }
2065 
2066   // If we eliminated all predecessors of the block, delete the block now.
2067   if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
2068     BB->eraseFromParent();
2069 
2070   return Changed;
2071 }
2072 
2073 //===----------------------------------------------------------------------===//
2074 // Memory Optimization
2075 //===----------------------------------------------------------------------===//
2076 
2077 namespace {
2078 
2079 /// This is an extended version of TargetLowering::AddrMode
2080 /// which holds actual Value*'s for register values.
2081 struct ExtAddrMode : public TargetLowering::AddrMode {
2082   Value *BaseReg = nullptr;
2083   Value *ScaledReg = nullptr;
2084   Value *OriginalValue = nullptr;
2085   bool InBounds = true;
2086 
2087   enum FieldName {
2088     NoField        = 0x00,
2089     BaseRegField   = 0x01,
2090     BaseGVField    = 0x02,
2091     BaseOffsField  = 0x04,
2092     ScaledRegField = 0x08,
2093     ScaleField     = 0x10,
2094     MultipleFields = 0xff
2095   };
2096 
2097 
2098   ExtAddrMode() = default;
2099 
2100   void print(raw_ostream &OS) const;
2101   void dump() const;
2102 
2103   FieldName compare(const ExtAddrMode &other) {
2104     // First check that the types are the same on each field, as differing types
2105     // is something we can't cope with later on.
2106     if (BaseReg && other.BaseReg &&
2107         BaseReg->getType() != other.BaseReg->getType())
2108       return MultipleFields;
2109     if (BaseGV && other.BaseGV &&
2110         BaseGV->getType() != other.BaseGV->getType())
2111       return MultipleFields;
2112     if (ScaledReg && other.ScaledReg &&
2113         ScaledReg->getType() != other.ScaledReg->getType())
2114       return MultipleFields;
2115 
2116     // Conservatively reject 'inbounds' mismatches.
2117     if (InBounds != other.InBounds)
2118       return MultipleFields;
2119 
2120     // Check each field to see if it differs.
2121     unsigned Result = NoField;
2122     if (BaseReg != other.BaseReg)
2123       Result |= BaseRegField;
2124     if (BaseGV != other.BaseGV)
2125       Result |= BaseGVField;
2126     if (BaseOffs != other.BaseOffs)
2127       Result |= BaseOffsField;
2128     if (ScaledReg != other.ScaledReg)
2129       Result |= ScaledRegField;
2130     // Don't count 0 as being a different scale, because that actually means
2131     // unscaled (which will already be counted by having no ScaledReg).
2132     if (Scale && other.Scale && Scale != other.Scale)
2133       Result |= ScaleField;
2134 
2135     if (countPopulation(Result) > 1)
2136       return MultipleFields;
2137     else
2138       return static_cast<FieldName>(Result);
2139   }
2140 
2141   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2142   // with no offset.
2143   bool isTrivial() {
2144     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2145     // trivial if at most one of these terms is nonzero, except that BaseGV and
2146     // BaseReg both being zero actually means a null pointer value, which we
2147     // consider to be 'non-zero' here.
2148     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2149   }
2150 
2151   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2152     switch (Field) {
2153     default:
2154       return nullptr;
2155     case BaseRegField:
2156       return BaseReg;
2157     case BaseGVField:
2158       return BaseGV;
2159     case ScaledRegField:
2160       return ScaledReg;
2161     case BaseOffsField:
2162       return ConstantInt::get(IntPtrTy, BaseOffs);
2163     }
2164   }
2165 
2166   void SetCombinedField(FieldName Field, Value *V,
2167                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2168     switch (Field) {
2169     default:
2170       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2171       break;
2172     case ExtAddrMode::BaseRegField:
2173       BaseReg = V;
2174       break;
2175     case ExtAddrMode::BaseGVField:
2176       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2177       // in the BaseReg field.
2178       assert(BaseReg == nullptr);
2179       BaseReg = V;
2180       BaseGV = nullptr;
2181       break;
2182     case ExtAddrMode::ScaledRegField:
2183       ScaledReg = V;
2184       // If we have a mix of scaled and unscaled addrmodes then we want scale
2185       // to be the scale and not zero.
2186       if (!Scale)
2187         for (const ExtAddrMode &AM : AddrModes)
2188           if (AM.Scale) {
2189             Scale = AM.Scale;
2190             break;
2191           }
2192       break;
2193     case ExtAddrMode::BaseOffsField:
2194       // The offset is no longer a constant, so it goes in ScaledReg with a
2195       // scale of 1.
2196       assert(ScaledReg == nullptr);
2197       ScaledReg = V;
2198       Scale = 1;
2199       BaseOffs = 0;
2200       break;
2201     }
2202   }
2203 };
2204 
2205 } // end anonymous namespace
2206 
2207 #ifndef NDEBUG
2208 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2209   AM.print(OS);
2210   return OS;
2211 }
2212 #endif
2213 
2214 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2215 void ExtAddrMode::print(raw_ostream &OS) const {
2216   bool NeedPlus = false;
2217   OS << "[";
2218   if (InBounds)
2219     OS << "inbounds ";
2220   if (BaseGV) {
2221     OS << (NeedPlus ? " + " : "")
2222        << "GV:";
2223     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2224     NeedPlus = true;
2225   }
2226 
2227   if (BaseOffs) {
2228     OS << (NeedPlus ? " + " : "")
2229        << BaseOffs;
2230     NeedPlus = true;
2231   }
2232 
2233   if (BaseReg) {
2234     OS << (NeedPlus ? " + " : "")
2235        << "Base:";
2236     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2237     NeedPlus = true;
2238   }
2239   if (Scale) {
2240     OS << (NeedPlus ? " + " : "")
2241        << Scale << "*";
2242     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2243   }
2244 
2245   OS << ']';
2246 }
2247 
2248 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2249   print(dbgs());
2250   dbgs() << '\n';
2251 }
2252 #endif
2253 
2254 namespace {
2255 
2256 /// This class provides transaction based operation on the IR.
2257 /// Every change made through this class is recorded in the internal state and
2258 /// can be undone (rollback) until commit is called.
2259 class TypePromotionTransaction {
2260   /// This represents the common interface of the individual transaction.
2261   /// Each class implements the logic for doing one specific modification on
2262   /// the IR via the TypePromotionTransaction.
2263   class TypePromotionAction {
2264   protected:
2265     /// The Instruction modified.
2266     Instruction *Inst;
2267 
2268   public:
2269     /// Constructor of the action.
2270     /// The constructor performs the related action on the IR.
2271     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2272 
2273     virtual ~TypePromotionAction() = default;
2274 
2275     /// Undo the modification done by this action.
2276     /// When this method is called, the IR must be in the same state as it was
2277     /// before this action was applied.
2278     /// \pre Undoing the action works if and only if the IR is in the exact same
2279     /// state as it was directly after this action was applied.
2280     virtual void undo() = 0;
2281 
2282     /// Advocate every change made by this action.
2283     /// When the results on the IR of the action are to be kept, it is important
2284     /// to call this function, otherwise hidden information may be kept forever.
2285     virtual void commit() {
2286       // Nothing to be done, this action is not doing anything.
2287     }
2288   };
2289 
2290   /// Utility to remember the position of an instruction.
2291   class InsertionHandler {
2292     /// Position of an instruction.
2293     /// Either an instruction:
2294     /// - Is the first in a basic block: BB is used.
2295     /// - Has a previous instruction: PrevInst is used.
2296     union {
2297       Instruction *PrevInst;
2298       BasicBlock *BB;
2299     } Point;
2300 
2301     /// Remember whether or not the instruction had a previous instruction.
2302     bool HasPrevInstruction;
2303 
2304   public:
2305     /// Record the position of \p Inst.
2306     InsertionHandler(Instruction *Inst) {
2307       BasicBlock::iterator It = Inst->getIterator();
2308       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2309       if (HasPrevInstruction)
2310         Point.PrevInst = &*--It;
2311       else
2312         Point.BB = Inst->getParent();
2313     }
2314 
2315     /// Insert \p Inst at the recorded position.
2316     void insert(Instruction *Inst) {
2317       if (HasPrevInstruction) {
2318         if (Inst->getParent())
2319           Inst->removeFromParent();
2320         Inst->insertAfter(Point.PrevInst);
2321       } else {
2322         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2323         if (Inst->getParent())
2324           Inst->moveBefore(Position);
2325         else
2326           Inst->insertBefore(Position);
2327       }
2328     }
2329   };
2330 
2331   /// Move an instruction before another.
2332   class InstructionMoveBefore : public TypePromotionAction {
2333     /// Original position of the instruction.
2334     InsertionHandler Position;
2335 
2336   public:
2337     /// Move \p Inst before \p Before.
2338     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2339         : TypePromotionAction(Inst), Position(Inst) {
2340       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2341                         << "\n");
2342       Inst->moveBefore(Before);
2343     }
2344 
2345     /// Move the instruction back to its original position.
2346     void undo() override {
2347       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2348       Position.insert(Inst);
2349     }
2350   };
2351 
2352   /// Set the operand of an instruction with a new value.
2353   class OperandSetter : public TypePromotionAction {
2354     /// Original operand of the instruction.
2355     Value *Origin;
2356 
2357     /// Index of the modified instruction.
2358     unsigned Idx;
2359 
2360   public:
2361     /// Set \p Idx operand of \p Inst with \p NewVal.
2362     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2363         : TypePromotionAction(Inst), Idx(Idx) {
2364       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2365                         << "for:" << *Inst << "\n"
2366                         << "with:" << *NewVal << "\n");
2367       Origin = Inst->getOperand(Idx);
2368       Inst->setOperand(Idx, NewVal);
2369     }
2370 
2371     /// Restore the original value of the instruction.
2372     void undo() override {
2373       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2374                         << "for: " << *Inst << "\n"
2375                         << "with: " << *Origin << "\n");
2376       Inst->setOperand(Idx, Origin);
2377     }
2378   };
2379 
2380   /// Hide the operands of an instruction.
2381   /// Do as if this instruction was not using any of its operands.
2382   class OperandsHider : public TypePromotionAction {
2383     /// The list of original operands.
2384     SmallVector<Value *, 4> OriginalValues;
2385 
2386   public:
2387     /// Remove \p Inst from the uses of the operands of \p Inst.
2388     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2389       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2390       unsigned NumOpnds = Inst->getNumOperands();
2391       OriginalValues.reserve(NumOpnds);
2392       for (unsigned It = 0; It < NumOpnds; ++It) {
2393         // Save the current operand.
2394         Value *Val = Inst->getOperand(It);
2395         OriginalValues.push_back(Val);
2396         // Set a dummy one.
2397         // We could use OperandSetter here, but that would imply an overhead
2398         // that we are not willing to pay.
2399         Inst->setOperand(It, UndefValue::get(Val->getType()));
2400       }
2401     }
2402 
2403     /// Restore the original list of uses.
2404     void undo() override {
2405       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2406       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2407         Inst->setOperand(It, OriginalValues[It]);
2408     }
2409   };
2410 
2411   /// Build a truncate instruction.
2412   class TruncBuilder : public TypePromotionAction {
2413     Value *Val;
2414 
2415   public:
2416     /// Build a truncate instruction of \p Opnd producing a \p Ty
2417     /// result.
2418     /// trunc Opnd to Ty.
2419     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2420       IRBuilder<> Builder(Opnd);
2421       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2422       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2423     }
2424 
2425     /// Get the built value.
2426     Value *getBuiltValue() { return Val; }
2427 
2428     /// Remove the built instruction.
2429     void undo() override {
2430       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2431       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2432         IVal->eraseFromParent();
2433     }
2434   };
2435 
2436   /// Build a sign extension instruction.
2437   class SExtBuilder : public TypePromotionAction {
2438     Value *Val;
2439 
2440   public:
2441     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2442     /// result.
2443     /// sext Opnd to Ty.
2444     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2445         : TypePromotionAction(InsertPt) {
2446       IRBuilder<> Builder(InsertPt);
2447       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2448       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2449     }
2450 
2451     /// Get the built value.
2452     Value *getBuiltValue() { return Val; }
2453 
2454     /// Remove the built instruction.
2455     void undo() override {
2456       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2457       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2458         IVal->eraseFromParent();
2459     }
2460   };
2461 
2462   /// Build a zero extension instruction.
2463   class ZExtBuilder : public TypePromotionAction {
2464     Value *Val;
2465 
2466   public:
2467     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2468     /// result.
2469     /// zext Opnd to Ty.
2470     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2471         : TypePromotionAction(InsertPt) {
2472       IRBuilder<> Builder(InsertPt);
2473       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2474       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2475     }
2476 
2477     /// Get the built value.
2478     Value *getBuiltValue() { return Val; }
2479 
2480     /// Remove the built instruction.
2481     void undo() override {
2482       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2483       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2484         IVal->eraseFromParent();
2485     }
2486   };
2487 
2488   /// Mutate an instruction to another type.
2489   class TypeMutator : public TypePromotionAction {
2490     /// Record the original type.
2491     Type *OrigTy;
2492 
2493   public:
2494     /// Mutate the type of \p Inst into \p NewTy.
2495     TypeMutator(Instruction *Inst, Type *NewTy)
2496         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2497       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2498                         << "\n");
2499       Inst->mutateType(NewTy);
2500     }
2501 
2502     /// Mutate the instruction back to its original type.
2503     void undo() override {
2504       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2505                         << "\n");
2506       Inst->mutateType(OrigTy);
2507     }
2508   };
2509 
2510   /// Replace the uses of an instruction by another instruction.
2511   class UsesReplacer : public TypePromotionAction {
2512     /// Helper structure to keep track of the replaced uses.
2513     struct InstructionAndIdx {
2514       /// The instruction using the instruction.
2515       Instruction *Inst;
2516 
2517       /// The index where this instruction is used for Inst.
2518       unsigned Idx;
2519 
2520       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2521           : Inst(Inst), Idx(Idx) {}
2522     };
2523 
2524     /// Keep track of the original uses (pair Instruction, Index).
2525     SmallVector<InstructionAndIdx, 4> OriginalUses;
2526     /// Keep track of the debug users.
2527     SmallVector<DbgValueInst *, 1> DbgValues;
2528 
2529     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2530 
2531   public:
2532     /// Replace all the use of \p Inst by \p New.
2533     UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
2534       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2535                         << "\n");
2536       // Record the original uses.
2537       for (Use &U : Inst->uses()) {
2538         Instruction *UserI = cast<Instruction>(U.getUser());
2539         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2540       }
2541       // Record the debug uses separately. They are not in the instruction's
2542       // use list, but they are replaced by RAUW.
2543       findDbgValues(DbgValues, Inst);
2544 
2545       // Now, we can replace the uses.
2546       Inst->replaceAllUsesWith(New);
2547     }
2548 
2549     /// Reassign the original uses of Inst to Inst.
2550     void undo() override {
2551       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2552       for (use_iterator UseIt = OriginalUses.begin(),
2553                         EndIt = OriginalUses.end();
2554            UseIt != EndIt; ++UseIt) {
2555         UseIt->Inst->setOperand(UseIt->Idx, Inst);
2556       }
2557       // RAUW has replaced all original uses with references to the new value,
2558       // including the debug uses. Since we are undoing the replacements,
2559       // the original debug uses must also be reinstated to maintain the
2560       // correctness and utility of debug value instructions.
2561       for (auto *DVI: DbgValues) {
2562         LLVMContext &Ctx = Inst->getType()->getContext();
2563         auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst));
2564         DVI->setOperand(0, MV);
2565       }
2566     }
2567   };
2568 
2569   /// Remove an instruction from the IR.
2570   class InstructionRemover : public TypePromotionAction {
2571     /// Original position of the instruction.
2572     InsertionHandler Inserter;
2573 
2574     /// Helper structure to hide all the link to the instruction. In other
2575     /// words, this helps to do as if the instruction was removed.
2576     OperandsHider Hider;
2577 
2578     /// Keep track of the uses replaced, if any.
2579     UsesReplacer *Replacer = nullptr;
2580 
2581     /// Keep track of instructions removed.
2582     SetOfInstrs &RemovedInsts;
2583 
2584   public:
2585     /// Remove all reference of \p Inst and optionally replace all its
2586     /// uses with New.
2587     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2588     /// \pre If !Inst->use_empty(), then New != nullptr
2589     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2590                        Value *New = nullptr)
2591         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2592           RemovedInsts(RemovedInsts) {
2593       if (New)
2594         Replacer = new UsesReplacer(Inst, New);
2595       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2596       RemovedInsts.insert(Inst);
2597       /// The instructions removed here will be freed after completing
2598       /// optimizeBlock() for all blocks as we need to keep track of the
2599       /// removed instructions during promotion.
2600       Inst->removeFromParent();
2601     }
2602 
2603     ~InstructionRemover() override { delete Replacer; }
2604 
2605     /// Resurrect the instruction and reassign it to the proper uses if
2606     /// new value was provided when build this action.
2607     void undo() override {
2608       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2609       Inserter.insert(Inst);
2610       if (Replacer)
2611         Replacer->undo();
2612       Hider.undo();
2613       RemovedInsts.erase(Inst);
2614     }
2615   };
2616 
2617 public:
2618   /// Restoration point.
2619   /// The restoration point is a pointer to an action instead of an iterator
2620   /// because the iterator may be invalidated but not the pointer.
2621   using ConstRestorationPt = const TypePromotionAction *;
2622 
2623   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2624       : RemovedInsts(RemovedInsts) {}
2625 
2626   /// Advocate every changes made in that transaction.
2627   void commit();
2628 
2629   /// Undo all the changes made after the given point.
2630   void rollback(ConstRestorationPt Point);
2631 
2632   /// Get the current restoration point.
2633   ConstRestorationPt getRestorationPoint() const;
2634 
2635   /// \name API for IR modification with state keeping to support rollback.
2636   /// @{
2637   /// Same as Instruction::setOperand.
2638   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2639 
2640   /// Same as Instruction::eraseFromParent.
2641   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2642 
2643   /// Same as Value::replaceAllUsesWith.
2644   void replaceAllUsesWith(Instruction *Inst, Value *New);
2645 
2646   /// Same as Value::mutateType.
2647   void mutateType(Instruction *Inst, Type *NewTy);
2648 
2649   /// Same as IRBuilder::createTrunc.
2650   Value *createTrunc(Instruction *Opnd, Type *Ty);
2651 
2652   /// Same as IRBuilder::createSExt.
2653   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
2654 
2655   /// Same as IRBuilder::createZExt.
2656   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
2657 
2658   /// Same as Instruction::moveBefore.
2659   void moveBefore(Instruction *Inst, Instruction *Before);
2660   /// @}
2661 
2662 private:
2663   /// The ordered list of actions made so far.
2664   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
2665 
2666   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
2667 
2668   SetOfInstrs &RemovedInsts;
2669 };
2670 
2671 } // end anonymous namespace
2672 
2673 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
2674                                           Value *NewVal) {
2675   Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>(
2676       Inst, Idx, NewVal));
2677 }
2678 
2679 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
2680                                                 Value *NewVal) {
2681   Actions.push_back(
2682       llvm::make_unique<TypePromotionTransaction::InstructionRemover>(
2683           Inst, RemovedInsts, NewVal));
2684 }
2685 
2686 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
2687                                                   Value *New) {
2688   Actions.push_back(
2689       llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
2690 }
2691 
2692 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
2693   Actions.push_back(
2694       llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
2695 }
2696 
2697 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
2698                                              Type *Ty) {
2699   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
2700   Value *Val = Ptr->getBuiltValue();
2701   Actions.push_back(std::move(Ptr));
2702   return Val;
2703 }
2704 
2705 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
2706                                             Value *Opnd, Type *Ty) {
2707   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
2708   Value *Val = Ptr->getBuiltValue();
2709   Actions.push_back(std::move(Ptr));
2710   return Val;
2711 }
2712 
2713 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
2714                                             Value *Opnd, Type *Ty) {
2715   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
2716   Value *Val = Ptr->getBuiltValue();
2717   Actions.push_back(std::move(Ptr));
2718   return Val;
2719 }
2720 
2721 void TypePromotionTransaction::moveBefore(Instruction *Inst,
2722                                           Instruction *Before) {
2723   Actions.push_back(
2724       llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
2725           Inst, Before));
2726 }
2727 
2728 TypePromotionTransaction::ConstRestorationPt
2729 TypePromotionTransaction::getRestorationPoint() const {
2730   return !Actions.empty() ? Actions.back().get() : nullptr;
2731 }
2732 
2733 void TypePromotionTransaction::commit() {
2734   for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
2735        ++It)
2736     (*It)->commit();
2737   Actions.clear();
2738 }
2739 
2740 void TypePromotionTransaction::rollback(
2741     TypePromotionTransaction::ConstRestorationPt Point) {
2742   while (!Actions.empty() && Point != Actions.back().get()) {
2743     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
2744     Curr->undo();
2745   }
2746 }
2747 
2748 namespace {
2749 
2750 /// A helper class for matching addressing modes.
2751 ///
2752 /// This encapsulates the logic for matching the target-legal addressing modes.
2753 class AddressingModeMatcher {
2754   SmallVectorImpl<Instruction*> &AddrModeInsts;
2755   const TargetLowering &TLI;
2756   const TargetRegisterInfo &TRI;
2757   const DataLayout &DL;
2758 
2759   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
2760   /// the memory instruction that we're computing this address for.
2761   Type *AccessTy;
2762   unsigned AddrSpace;
2763   Instruction *MemoryInst;
2764 
2765   /// This is the addressing mode that we're building up. This is
2766   /// part of the return value of this addressing mode matching stuff.
2767   ExtAddrMode &AddrMode;
2768 
2769   /// The instructions inserted by other CodeGenPrepare optimizations.
2770   const SetOfInstrs &InsertedInsts;
2771 
2772   /// A map from the instructions to their type before promotion.
2773   InstrToOrigTy &PromotedInsts;
2774 
2775   /// The ongoing transaction where every action should be registered.
2776   TypePromotionTransaction &TPT;
2777 
2778   // A GEP which has too large offset to be folded into the addressing mode.
2779   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
2780 
2781   /// This is set to true when we should not do profitability checks.
2782   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
2783   bool IgnoreProfitability;
2784 
2785   AddressingModeMatcher(
2786       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
2787       const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI,
2788       ExtAddrMode &AM, const SetOfInstrs &InsertedInsts,
2789       InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
2790       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP)
2791       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
2792         DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS),
2793         MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts),
2794         PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) {
2795     IgnoreProfitability = false;
2796   }
2797 
2798 public:
2799   /// Find the maximal addressing mode that a load/store of V can fold,
2800   /// give an access type of AccessTy.  This returns a list of involved
2801   /// instructions in AddrModeInsts.
2802   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
2803   /// optimizations.
2804   /// \p PromotedInsts maps the instructions to their type before promotion.
2805   /// \p The ongoing transaction where every action should be registered.
2806   static ExtAddrMode
2807   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
2808         SmallVectorImpl<Instruction *> &AddrModeInsts,
2809         const TargetLowering &TLI, const TargetRegisterInfo &TRI,
2810         const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
2811         TypePromotionTransaction &TPT,
2812         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) {
2813     ExtAddrMode Result;
2814 
2815     bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS,
2816                                          MemoryInst, Result, InsertedInsts,
2817                                          PromotedInsts, TPT, LargeOffsetGEP)
2818                        .matchAddr(V, 0);
2819     (void)Success; assert(Success && "Couldn't select *anything*?");
2820     return Result;
2821   }
2822 
2823 private:
2824   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
2825   bool matchAddr(Value *Addr, unsigned Depth);
2826   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
2827                           bool *MovedAway = nullptr);
2828   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
2829                                             ExtAddrMode &AMBefore,
2830                                             ExtAddrMode &AMAfter);
2831   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
2832   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
2833                              Value *PromotedOperand) const;
2834 };
2835 
2836 class PhiNodeSet;
2837 
2838 /// An iterator for PhiNodeSet.
2839 class PhiNodeSetIterator {
2840   PhiNodeSet * const Set;
2841   size_t CurrentIndex = 0;
2842 
2843 public:
2844   /// The constructor. Start should point to either a valid element, or be equal
2845   /// to the size of the underlying SmallVector of the PhiNodeSet.
2846   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
2847   PHINode * operator*() const;
2848   PhiNodeSetIterator& operator++();
2849   bool operator==(const PhiNodeSetIterator &RHS) const;
2850   bool operator!=(const PhiNodeSetIterator &RHS) const;
2851 };
2852 
2853 /// Keeps a set of PHINodes.
2854 ///
2855 /// This is a minimal set implementation for a specific use case:
2856 /// It is very fast when there are very few elements, but also provides good
2857 /// performance when there are many. It is similar to SmallPtrSet, but also
2858 /// provides iteration by insertion order, which is deterministic and stable
2859 /// across runs. It is also similar to SmallSetVector, but provides removing
2860 /// elements in O(1) time. This is achieved by not actually removing the element
2861 /// from the underlying vector, so comes at the cost of using more memory, but
2862 /// that is fine, since PhiNodeSets are used as short lived objects.
2863 class PhiNodeSet {
2864   friend class PhiNodeSetIterator;
2865 
2866   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
2867   using iterator =  PhiNodeSetIterator;
2868 
2869   /// Keeps the elements in the order of their insertion in the underlying
2870   /// vector. To achieve constant time removal, it never deletes any element.
2871   SmallVector<PHINode *, 32> NodeList;
2872 
2873   /// Keeps the elements in the underlying set implementation. This (and not the
2874   /// NodeList defined above) is the source of truth on whether an element
2875   /// is actually in the collection.
2876   MapType NodeMap;
2877 
2878   /// Points to the first valid (not deleted) element when the set is not empty
2879   /// and the value is not zero. Equals to the size of the underlying vector
2880   /// when the set is empty. When the value is 0, as in the beginning, the
2881   /// first element may or may not be valid.
2882   size_t FirstValidElement = 0;
2883 
2884 public:
2885   /// Inserts a new element to the collection.
2886   /// \returns true if the element is actually added, i.e. was not in the
2887   /// collection before the operation.
2888   bool insert(PHINode *Ptr) {
2889     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
2890       NodeList.push_back(Ptr);
2891       return true;
2892     }
2893     return false;
2894   }
2895 
2896   /// Removes the element from the collection.
2897   /// \returns whether the element is actually removed, i.e. was in the
2898   /// collection before the operation.
2899   bool erase(PHINode *Ptr) {
2900     auto it = NodeMap.find(Ptr);
2901     if (it != NodeMap.end()) {
2902       NodeMap.erase(Ptr);
2903       SkipRemovedElements(FirstValidElement);
2904       return true;
2905     }
2906     return false;
2907   }
2908 
2909   /// Removes all elements and clears the collection.
2910   void clear() {
2911     NodeMap.clear();
2912     NodeList.clear();
2913     FirstValidElement = 0;
2914   }
2915 
2916   /// \returns an iterator that will iterate the elements in the order of
2917   /// insertion.
2918   iterator begin() {
2919     if (FirstValidElement == 0)
2920       SkipRemovedElements(FirstValidElement);
2921     return PhiNodeSetIterator(this, FirstValidElement);
2922   }
2923 
2924   /// \returns an iterator that points to the end of the collection.
2925   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
2926 
2927   /// Returns the number of elements in the collection.
2928   size_t size() const {
2929     return NodeMap.size();
2930   }
2931 
2932   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
2933   size_t count(PHINode *Ptr) const {
2934     return NodeMap.count(Ptr);
2935   }
2936 
2937 private:
2938   /// Updates the CurrentIndex so that it will point to a valid element.
2939   ///
2940   /// If the element of NodeList at CurrentIndex is valid, it does not
2941   /// change it. If there are no more valid elements, it updates CurrentIndex
2942   /// to point to the end of the NodeList.
2943   void SkipRemovedElements(size_t &CurrentIndex) {
2944     while (CurrentIndex < NodeList.size()) {
2945       auto it = NodeMap.find(NodeList[CurrentIndex]);
2946       // If the element has been deleted and added again later, NodeMap will
2947       // point to a different index, so CurrentIndex will still be invalid.
2948       if (it != NodeMap.end() && it->second == CurrentIndex)
2949         break;
2950       ++CurrentIndex;
2951     }
2952   }
2953 };
2954 
2955 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
2956     : Set(Set), CurrentIndex(Start) {}
2957 
2958 PHINode * PhiNodeSetIterator::operator*() const {
2959   assert(CurrentIndex < Set->NodeList.size() &&
2960          "PhiNodeSet access out of range");
2961   return Set->NodeList[CurrentIndex];
2962 }
2963 
2964 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
2965   assert(CurrentIndex < Set->NodeList.size() &&
2966          "PhiNodeSet access out of range");
2967   ++CurrentIndex;
2968   Set->SkipRemovedElements(CurrentIndex);
2969   return *this;
2970 }
2971 
2972 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
2973   return CurrentIndex == RHS.CurrentIndex;
2974 }
2975 
2976 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
2977   return !((*this) == RHS);
2978 }
2979 
2980 /// Keep track of simplification of Phi nodes.
2981 /// Accept the set of all phi nodes and erase phi node from this set
2982 /// if it is simplified.
2983 class SimplificationTracker {
2984   DenseMap<Value *, Value *> Storage;
2985   const SimplifyQuery &SQ;
2986   // Tracks newly created Phi nodes. The elements are iterated by insertion
2987   // order.
2988   PhiNodeSet AllPhiNodes;
2989   // Tracks newly created Select nodes.
2990   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
2991 
2992 public:
2993   SimplificationTracker(const SimplifyQuery &sq)
2994       : SQ(sq) {}
2995 
2996   Value *Get(Value *V) {
2997     do {
2998       auto SV = Storage.find(V);
2999       if (SV == Storage.end())
3000         return V;
3001       V = SV->second;
3002     } while (true);
3003   }
3004 
3005   Value *Simplify(Value *Val) {
3006     SmallVector<Value *, 32> WorkList;
3007     SmallPtrSet<Value *, 32> Visited;
3008     WorkList.push_back(Val);
3009     while (!WorkList.empty()) {
3010       auto P = WorkList.pop_back_val();
3011       if (!Visited.insert(P).second)
3012         continue;
3013       if (auto *PI = dyn_cast<Instruction>(P))
3014         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3015           for (auto *U : PI->users())
3016             WorkList.push_back(cast<Value>(U));
3017           Put(PI, V);
3018           PI->replaceAllUsesWith(V);
3019           if (auto *PHI = dyn_cast<PHINode>(PI))
3020             AllPhiNodes.erase(PHI);
3021           if (auto *Select = dyn_cast<SelectInst>(PI))
3022             AllSelectNodes.erase(Select);
3023           PI->eraseFromParent();
3024         }
3025     }
3026     return Get(Val);
3027   }
3028 
3029   void Put(Value *From, Value *To) {
3030     Storage.insert({ From, To });
3031   }
3032 
3033   void ReplacePhi(PHINode *From, PHINode *To) {
3034     Value* OldReplacement = Get(From);
3035     while (OldReplacement != From) {
3036       From = To;
3037       To = dyn_cast<PHINode>(OldReplacement);
3038       OldReplacement = Get(From);
3039     }
3040     assert(Get(To) == To && "Replacement PHI node is already replaced.");
3041     Put(From, To);
3042     From->replaceAllUsesWith(To);
3043     AllPhiNodes.erase(From);
3044     From->eraseFromParent();
3045   }
3046 
3047   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3048 
3049   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3050 
3051   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3052 
3053   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3054 
3055   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3056 
3057   void destroyNewNodes(Type *CommonType) {
3058     // For safe erasing, replace the uses with dummy value first.
3059     auto Dummy = UndefValue::get(CommonType);
3060     for (auto I : AllPhiNodes) {
3061       I->replaceAllUsesWith(Dummy);
3062       I->eraseFromParent();
3063     }
3064     AllPhiNodes.clear();
3065     for (auto I : AllSelectNodes) {
3066       I->replaceAllUsesWith(Dummy);
3067       I->eraseFromParent();
3068     }
3069     AllSelectNodes.clear();
3070   }
3071 };
3072 
3073 /// A helper class for combining addressing modes.
3074 class AddressingModeCombiner {
3075   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3076   typedef std::pair<PHINode *, PHINode *> PHIPair;
3077 
3078 private:
3079   /// The addressing modes we've collected.
3080   SmallVector<ExtAddrMode, 16> AddrModes;
3081 
3082   /// The field in which the AddrModes differ, when we have more than one.
3083   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3084 
3085   /// Are the AddrModes that we have all just equal to their original values?
3086   bool AllAddrModesTrivial = true;
3087 
3088   /// Common Type for all different fields in addressing modes.
3089   Type *CommonType;
3090 
3091   /// SimplifyQuery for simplifyInstruction utility.
3092   const SimplifyQuery &SQ;
3093 
3094   /// Original Address.
3095   Value *Original;
3096 
3097 public:
3098   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3099       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3100 
3101   /// Get the combined AddrMode
3102   const ExtAddrMode &getAddrMode() const {
3103     return AddrModes[0];
3104   }
3105 
3106   /// Add a new AddrMode if it's compatible with the AddrModes we already
3107   /// have.
3108   /// \return True iff we succeeded in doing so.
3109   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3110     // Take note of if we have any non-trivial AddrModes, as we need to detect
3111     // when all AddrModes are trivial as then we would introduce a phi or select
3112     // which just duplicates what's already there.
3113     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3114 
3115     // If this is the first addrmode then everything is fine.
3116     if (AddrModes.empty()) {
3117       AddrModes.emplace_back(NewAddrMode);
3118       return true;
3119     }
3120 
3121     // Figure out how different this is from the other address modes, which we
3122     // can do just by comparing against the first one given that we only care
3123     // about the cumulative difference.
3124     ExtAddrMode::FieldName ThisDifferentField =
3125       AddrModes[0].compare(NewAddrMode);
3126     if (DifferentField == ExtAddrMode::NoField)
3127       DifferentField = ThisDifferentField;
3128     else if (DifferentField != ThisDifferentField)
3129       DifferentField = ExtAddrMode::MultipleFields;
3130 
3131     // If NewAddrMode differs in more than one dimension we cannot handle it.
3132     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3133 
3134     // If Scale Field is different then we reject.
3135     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3136 
3137     // We also must reject the case when base offset is different and
3138     // scale reg is not null, we cannot handle this case due to merge of
3139     // different offsets will be used as ScaleReg.
3140     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3141                               !NewAddrMode.ScaledReg);
3142 
3143     // We also must reject the case when GV is different and BaseReg installed
3144     // due to we want to use base reg as a merge of GV values.
3145     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3146                               !NewAddrMode.HasBaseReg);
3147 
3148     // Even if NewAddMode is the same we still need to collect it due to
3149     // original value is different. And later we will need all original values
3150     // as anchors during finding the common Phi node.
3151     if (CanHandle)
3152       AddrModes.emplace_back(NewAddrMode);
3153     else
3154       AddrModes.clear();
3155 
3156     return CanHandle;
3157   }
3158 
3159   /// Combine the addressing modes we've collected into a single
3160   /// addressing mode.
3161   /// \return True iff we successfully combined them or we only had one so
3162   /// didn't need to combine them anyway.
3163   bool combineAddrModes() {
3164     // If we have no AddrModes then they can't be combined.
3165     if (AddrModes.size() == 0)
3166       return false;
3167 
3168     // A single AddrMode can trivially be combined.
3169     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3170       return true;
3171 
3172     // If the AddrModes we collected are all just equal to the value they are
3173     // derived from then combining them wouldn't do anything useful.
3174     if (AllAddrModesTrivial)
3175       return false;
3176 
3177     if (!addrModeCombiningAllowed())
3178       return false;
3179 
3180     // Build a map between <original value, basic block where we saw it> to
3181     // value of base register.
3182     // Bail out if there is no common type.
3183     FoldAddrToValueMapping Map;
3184     if (!initializeMap(Map))
3185       return false;
3186 
3187     Value *CommonValue = findCommon(Map);
3188     if (CommonValue)
3189       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3190     return CommonValue != nullptr;
3191   }
3192 
3193 private:
3194   /// Initialize Map with anchor values. For address seen
3195   /// we set the value of different field saw in this address.
3196   /// At the same time we find a common type for different field we will
3197   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3198   /// Return false if there is no common type found.
3199   bool initializeMap(FoldAddrToValueMapping &Map) {
3200     // Keep track of keys where the value is null. We will need to replace it
3201     // with constant null when we know the common type.
3202     SmallVector<Value *, 2> NullValue;
3203     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3204     for (auto &AM : AddrModes) {
3205       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3206       if (DV) {
3207         auto *Type = DV->getType();
3208         if (CommonType && CommonType != Type)
3209           return false;
3210         CommonType = Type;
3211         Map[AM.OriginalValue] = DV;
3212       } else {
3213         NullValue.push_back(AM.OriginalValue);
3214       }
3215     }
3216     assert(CommonType && "At least one non-null value must be!");
3217     for (auto *V : NullValue)
3218       Map[V] = Constant::getNullValue(CommonType);
3219     return true;
3220   }
3221 
3222   /// We have mapping between value A and other value B where B was a field in
3223   /// addressing mode represented by A. Also we have an original value C
3224   /// representing an address we start with. Traversing from C through phi and
3225   /// selects we ended up with A's in a map. This utility function tries to find
3226   /// a value V which is a field in addressing mode C and traversing through phi
3227   /// nodes and selects we will end up in corresponded values B in a map.
3228   /// The utility will create a new Phi/Selects if needed.
3229   // The simple example looks as follows:
3230   // BB1:
3231   //   p1 = b1 + 40
3232   //   br cond BB2, BB3
3233   // BB2:
3234   //   p2 = b2 + 40
3235   //   br BB3
3236   // BB3:
3237   //   p = phi [p1, BB1], [p2, BB2]
3238   //   v = load p
3239   // Map is
3240   //   p1 -> b1
3241   //   p2 -> b2
3242   // Request is
3243   //   p -> ?
3244   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
3245   Value *findCommon(FoldAddrToValueMapping &Map) {
3246     // Tracks the simplification of newly created phi nodes. The reason we use
3247     // this mapping is because we will add new created Phi nodes in AddrToBase.
3248     // Simplification of Phi nodes is recursive, so some Phi node may
3249     // be simplified after we added it to AddrToBase. In reality this
3250     // simplification is possible only if original phi/selects were not
3251     // simplified yet.
3252     // Using this mapping we can find the current value in AddrToBase.
3253     SimplificationTracker ST(SQ);
3254 
3255     // First step, DFS to create PHI nodes for all intermediate blocks.
3256     // Also fill traverse order for the second step.
3257     SmallVector<Value *, 32> TraverseOrder;
3258     InsertPlaceholders(Map, TraverseOrder, ST);
3259 
3260     // Second Step, fill new nodes by merged values and simplify if possible.
3261     FillPlaceholders(Map, TraverseOrder, ST);
3262 
3263     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3264       ST.destroyNewNodes(CommonType);
3265       return nullptr;
3266     }
3267 
3268     // Now we'd like to match New Phi nodes to existed ones.
3269     unsigned PhiNotMatchedCount = 0;
3270     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3271       ST.destroyNewNodes(CommonType);
3272       return nullptr;
3273     }
3274 
3275     auto *Result = ST.Get(Map.find(Original)->second);
3276     if (Result) {
3277       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3278       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3279     }
3280     return Result;
3281   }
3282 
3283   /// Try to match PHI node to Candidate.
3284   /// Matcher tracks the matched Phi nodes.
3285   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3286                     SmallSetVector<PHIPair, 8> &Matcher,
3287                     PhiNodeSet &PhiNodesToMatch) {
3288     SmallVector<PHIPair, 8> WorkList;
3289     Matcher.insert({ PHI, Candidate });
3290     SmallSet<PHINode *, 8> MatchedPHIs;
3291     MatchedPHIs.insert(PHI);
3292     WorkList.push_back({ PHI, Candidate });
3293     SmallSet<PHIPair, 8> Visited;
3294     while (!WorkList.empty()) {
3295       auto Item = WorkList.pop_back_val();
3296       if (!Visited.insert(Item).second)
3297         continue;
3298       // We iterate over all incoming values to Phi to compare them.
3299       // If values are different and both of them Phi and the first one is a
3300       // Phi we added (subject to match) and both of them is in the same basic
3301       // block then we can match our pair if values match. So we state that
3302       // these values match and add it to work list to verify that.
3303       for (auto B : Item.first->blocks()) {
3304         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3305         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3306         if (FirstValue == SecondValue)
3307           continue;
3308 
3309         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3310         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3311 
3312         // One of them is not Phi or
3313         // The first one is not Phi node from the set we'd like to match or
3314         // Phi nodes from different basic blocks then
3315         // we will not be able to match.
3316         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3317             FirstPhi->getParent() != SecondPhi->getParent())
3318           return false;
3319 
3320         // If we already matched them then continue.
3321         if (Matcher.count({ FirstPhi, SecondPhi }))
3322           continue;
3323         // So the values are different and does not match. So we need them to
3324         // match. (But we register no more than one match per PHI node, so that
3325         // we won't later try to replace them twice.)
3326         if (!MatchedPHIs.insert(FirstPhi).second)
3327           Matcher.insert({ FirstPhi, SecondPhi });
3328         // But me must check it.
3329         WorkList.push_back({ FirstPhi, SecondPhi });
3330       }
3331     }
3332     return true;
3333   }
3334 
3335   /// For the given set of PHI nodes (in the SimplificationTracker) try
3336   /// to find their equivalents.
3337   /// Returns false if this matching fails and creation of new Phi is disabled.
3338   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3339                    unsigned &PhiNotMatchedCount) {
3340     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3341     // order, so the replacements (ReplacePhi) are also done in a deterministic
3342     // order.
3343     SmallSetVector<PHIPair, 8> Matched;
3344     SmallPtrSet<PHINode *, 8> WillNotMatch;
3345     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3346     while (PhiNodesToMatch.size()) {
3347       PHINode *PHI = *PhiNodesToMatch.begin();
3348 
3349       // Add us, if no Phi nodes in the basic block we do not match.
3350       WillNotMatch.clear();
3351       WillNotMatch.insert(PHI);
3352 
3353       // Traverse all Phis until we found equivalent or fail to do that.
3354       bool IsMatched = false;
3355       for (auto &P : PHI->getParent()->phis()) {
3356         if (&P == PHI)
3357           continue;
3358         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3359           break;
3360         // If it does not match, collect all Phi nodes from matcher.
3361         // if we end up with no match, them all these Phi nodes will not match
3362         // later.
3363         for (auto M : Matched)
3364           WillNotMatch.insert(M.first);
3365         Matched.clear();
3366       }
3367       if (IsMatched) {
3368         // Replace all matched values and erase them.
3369         for (auto MV : Matched)
3370           ST.ReplacePhi(MV.first, MV.second);
3371         Matched.clear();
3372         continue;
3373       }
3374       // If we are not allowed to create new nodes then bail out.
3375       if (!AllowNewPhiNodes)
3376         return false;
3377       // Just remove all seen values in matcher. They will not match anything.
3378       PhiNotMatchedCount += WillNotMatch.size();
3379       for (auto *P : WillNotMatch)
3380         PhiNodesToMatch.erase(P);
3381     }
3382     return true;
3383   }
3384   /// Fill the placeholders with values from predecessors and simplify them.
3385   void FillPlaceholders(FoldAddrToValueMapping &Map,
3386                         SmallVectorImpl<Value *> &TraverseOrder,
3387                         SimplificationTracker &ST) {
3388     while (!TraverseOrder.empty()) {
3389       Value *Current = TraverseOrder.pop_back_val();
3390       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3391       Value *V = Map[Current];
3392 
3393       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3394         // CurrentValue also must be Select.
3395         auto *CurrentSelect = cast<SelectInst>(Current);
3396         auto *TrueValue = CurrentSelect->getTrueValue();
3397         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3398         Select->setTrueValue(ST.Get(Map[TrueValue]));
3399         auto *FalseValue = CurrentSelect->getFalseValue();
3400         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3401         Select->setFalseValue(ST.Get(Map[FalseValue]));
3402       } else {
3403         // Must be a Phi node then.
3404         PHINode *PHI = cast<PHINode>(V);
3405         auto *CurrentPhi = dyn_cast<PHINode>(Current);
3406         // Fill the Phi node with values from predecessors.
3407         for (auto B : predecessors(PHI->getParent())) {
3408           Value *PV = CurrentPhi->getIncomingValueForBlock(B);
3409           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3410           PHI->addIncoming(ST.Get(Map[PV]), B);
3411         }
3412       }
3413       Map[Current] = ST.Simplify(V);
3414     }
3415   }
3416 
3417   /// Starting from original value recursively iterates over def-use chain up to
3418   /// known ending values represented in a map. For each traversed phi/select
3419   /// inserts a placeholder Phi or Select.
3420   /// Reports all new created Phi/Select nodes by adding them to set.
3421   /// Also reports and order in what values have been traversed.
3422   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3423                           SmallVectorImpl<Value *> &TraverseOrder,
3424                           SimplificationTracker &ST) {
3425     SmallVector<Value *, 32> Worklist;
3426     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3427            "Address must be a Phi or Select node");
3428     auto *Dummy = UndefValue::get(CommonType);
3429     Worklist.push_back(Original);
3430     while (!Worklist.empty()) {
3431       Value *Current = Worklist.pop_back_val();
3432       // if it is already visited or it is an ending value then skip it.
3433       if (Map.find(Current) != Map.end())
3434         continue;
3435       TraverseOrder.push_back(Current);
3436 
3437       // CurrentValue must be a Phi node or select. All others must be covered
3438       // by anchors.
3439       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3440         // Is it OK to get metadata from OrigSelect?!
3441         // Create a Select placeholder with dummy value.
3442         SelectInst *Select = SelectInst::Create(
3443             CurrentSelect->getCondition(), Dummy, Dummy,
3444             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3445         Map[Current] = Select;
3446         ST.insertNewSelect(Select);
3447         // We are interested in True and False values.
3448         Worklist.push_back(CurrentSelect->getTrueValue());
3449         Worklist.push_back(CurrentSelect->getFalseValue());
3450       } else {
3451         // It must be a Phi node then.
3452         PHINode *CurrentPhi = cast<PHINode>(Current);
3453         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3454         PHINode *PHI =
3455             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3456         Map[Current] = PHI;
3457         ST.insertNewPhi(PHI);
3458         for (Value *P : CurrentPhi->incoming_values())
3459           Worklist.push_back(P);
3460       }
3461     }
3462   }
3463 
3464   bool addrModeCombiningAllowed() {
3465     if (DisableComplexAddrModes)
3466       return false;
3467     switch (DifferentField) {
3468     default:
3469       return false;
3470     case ExtAddrMode::BaseRegField:
3471       return AddrSinkCombineBaseReg;
3472     case ExtAddrMode::BaseGVField:
3473       return AddrSinkCombineBaseGV;
3474     case ExtAddrMode::BaseOffsField:
3475       return AddrSinkCombineBaseOffs;
3476     case ExtAddrMode::ScaledRegField:
3477       return AddrSinkCombineScaledReg;
3478     }
3479   }
3480 };
3481 } // end anonymous namespace
3482 
3483 /// Try adding ScaleReg*Scale to the current addressing mode.
3484 /// Return true and update AddrMode if this addr mode is legal for the target,
3485 /// false if not.
3486 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3487                                              unsigned Depth) {
3488   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3489   // mode.  Just process that directly.
3490   if (Scale == 1)
3491     return matchAddr(ScaleReg, Depth);
3492 
3493   // If the scale is 0, it takes nothing to add this.
3494   if (Scale == 0)
3495     return true;
3496 
3497   // If we already have a scale of this value, we can add to it, otherwise, we
3498   // need an available scale field.
3499   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3500     return false;
3501 
3502   ExtAddrMode TestAddrMode = AddrMode;
3503 
3504   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3505   // [A+B + A*7] -> [B+A*8].
3506   TestAddrMode.Scale += Scale;
3507   TestAddrMode.ScaledReg = ScaleReg;
3508 
3509   // If the new address isn't legal, bail out.
3510   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3511     return false;
3512 
3513   // It was legal, so commit it.
3514   AddrMode = TestAddrMode;
3515 
3516   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3517   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3518   // X*Scale + C*Scale to addr mode.
3519   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3520   if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
3521       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
3522     TestAddrMode.InBounds = false;
3523     TestAddrMode.ScaledReg = AddLHS;
3524     TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
3525 
3526     // If this addressing mode is legal, commit it and remember that we folded
3527     // this instruction.
3528     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3529       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3530       AddrMode = TestAddrMode;
3531       return true;
3532     }
3533   }
3534 
3535   // Otherwise, not (x+c)*scale, just return what we have.
3536   return true;
3537 }
3538 
3539 /// This is a little filter, which returns true if an addressing computation
3540 /// involving I might be folded into a load/store accessing it.
3541 /// This doesn't need to be perfect, but needs to accept at least
3542 /// the set of instructions that MatchOperationAddr can.
3543 static bool MightBeFoldableInst(Instruction *I) {
3544   switch (I->getOpcode()) {
3545   case Instruction::BitCast:
3546   case Instruction::AddrSpaceCast:
3547     // Don't touch identity bitcasts.
3548     if (I->getType() == I->getOperand(0)->getType())
3549       return false;
3550     return I->getType()->isIntOrPtrTy();
3551   case Instruction::PtrToInt:
3552     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3553     return true;
3554   case Instruction::IntToPtr:
3555     // We know the input is intptr_t, so this is foldable.
3556     return true;
3557   case Instruction::Add:
3558     return true;
3559   case Instruction::Mul:
3560   case Instruction::Shl:
3561     // Can only handle X*C and X << C.
3562     return isa<ConstantInt>(I->getOperand(1));
3563   case Instruction::GetElementPtr:
3564     return true;
3565   default:
3566     return false;
3567   }
3568 }
3569 
3570 /// Check whether or not \p Val is a legal instruction for \p TLI.
3571 /// \note \p Val is assumed to be the product of some type promotion.
3572 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
3573 /// to be legal, as the non-promoted value would have had the same state.
3574 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
3575                                        const DataLayout &DL, Value *Val) {
3576   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
3577   if (!PromotedInst)
3578     return false;
3579   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
3580   // If the ISDOpcode is undefined, it was undefined before the promotion.
3581   if (!ISDOpcode)
3582     return true;
3583   // Otherwise, check if the promoted instruction is legal or not.
3584   return TLI.isOperationLegalOrCustom(
3585       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
3586 }
3587 
3588 namespace {
3589 
3590 /// Hepler class to perform type promotion.
3591 class TypePromotionHelper {
3592   /// Utility function to add a promoted instruction \p ExtOpnd to
3593   /// \p PromotedInsts and record the type of extension we have seen.
3594   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
3595                               Instruction *ExtOpnd,
3596                               bool IsSExt) {
3597     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3598     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
3599     if (It != PromotedInsts.end()) {
3600       // If the new extension is same as original, the information in
3601       // PromotedInsts[ExtOpnd] is still correct.
3602       if (It->second.getInt() == ExtTy)
3603         return;
3604 
3605       // Now the new extension is different from old extension, we make
3606       // the type information invalid by setting extension type to
3607       // BothExtension.
3608       ExtTy = BothExtension;
3609     }
3610     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
3611   }
3612 
3613   /// Utility function to query the original type of instruction \p Opnd
3614   /// with a matched extension type. If the extension doesn't match, we
3615   /// cannot use the information we had on the original type.
3616   /// BothExtension doesn't match any extension type.
3617   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
3618                                  Instruction *Opnd,
3619                                  bool IsSExt) {
3620     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
3621     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
3622     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
3623       return It->second.getPointer();
3624     return nullptr;
3625   }
3626 
3627   /// Utility function to check whether or not a sign or zero extension
3628   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
3629   /// either using the operands of \p Inst or promoting \p Inst.
3630   /// The type of the extension is defined by \p IsSExt.
3631   /// In other words, check if:
3632   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
3633   /// #1 Promotion applies:
3634   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
3635   /// #2 Operand reuses:
3636   /// ext opnd1 to ConsideredExtType.
3637   /// \p PromotedInsts maps the instructions to their type before promotion.
3638   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
3639                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
3640 
3641   /// Utility function to determine if \p OpIdx should be promoted when
3642   /// promoting \p Inst.
3643   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
3644     return !(isa<SelectInst>(Inst) && OpIdx == 0);
3645   }
3646 
3647   /// Utility function to promote the operand of \p Ext when this
3648   /// operand is a promotable trunc or sext or zext.
3649   /// \p PromotedInsts maps the instructions to their type before promotion.
3650   /// \p CreatedInstsCost[out] contains the cost of all instructions
3651   /// created to promote the operand of Ext.
3652   /// Newly added extensions are inserted in \p Exts.
3653   /// Newly added truncates are inserted in \p Truncs.
3654   /// Should never be called directly.
3655   /// \return The promoted value which is used instead of Ext.
3656   static Value *promoteOperandForTruncAndAnyExt(
3657       Instruction *Ext, TypePromotionTransaction &TPT,
3658       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3659       SmallVectorImpl<Instruction *> *Exts,
3660       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
3661 
3662   /// Utility function to promote the operand of \p Ext when this
3663   /// operand is promotable and is not a supported trunc or sext.
3664   /// \p PromotedInsts maps the instructions to their type before promotion.
3665   /// \p CreatedInstsCost[out] contains the cost of all the instructions
3666   /// created to promote the operand of Ext.
3667   /// Newly added extensions are inserted in \p Exts.
3668   /// Newly added truncates are inserted in \p Truncs.
3669   /// Should never be called directly.
3670   /// \return The promoted value which is used instead of Ext.
3671   static Value *promoteOperandForOther(Instruction *Ext,
3672                                        TypePromotionTransaction &TPT,
3673                                        InstrToOrigTy &PromotedInsts,
3674                                        unsigned &CreatedInstsCost,
3675                                        SmallVectorImpl<Instruction *> *Exts,
3676                                        SmallVectorImpl<Instruction *> *Truncs,
3677                                        const TargetLowering &TLI, bool IsSExt);
3678 
3679   /// \see promoteOperandForOther.
3680   static Value *signExtendOperandForOther(
3681       Instruction *Ext, TypePromotionTransaction &TPT,
3682       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3683       SmallVectorImpl<Instruction *> *Exts,
3684       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3685     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3686                                   Exts, Truncs, TLI, true);
3687   }
3688 
3689   /// \see promoteOperandForOther.
3690   static Value *zeroExtendOperandForOther(
3691       Instruction *Ext, TypePromotionTransaction &TPT,
3692       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3693       SmallVectorImpl<Instruction *> *Exts,
3694       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3695     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
3696                                   Exts, Truncs, TLI, false);
3697   }
3698 
3699 public:
3700   /// Type for the utility function that promotes the operand of Ext.
3701   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
3702                             InstrToOrigTy &PromotedInsts,
3703                             unsigned &CreatedInstsCost,
3704                             SmallVectorImpl<Instruction *> *Exts,
3705                             SmallVectorImpl<Instruction *> *Truncs,
3706                             const TargetLowering &TLI);
3707 
3708   /// Given a sign/zero extend instruction \p Ext, return the appropriate
3709   /// action to promote the operand of \p Ext instead of using Ext.
3710   /// \return NULL if no promotable action is possible with the current
3711   /// sign extension.
3712   /// \p InsertedInsts keeps track of all the instructions inserted by the
3713   /// other CodeGenPrepare optimizations. This information is important
3714   /// because we do not want to promote these instructions as CodeGenPrepare
3715   /// will reinsert them later. Thus creating an infinite loop: create/remove.
3716   /// \p PromotedInsts maps the instructions to their type before promotion.
3717   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
3718                           const TargetLowering &TLI,
3719                           const InstrToOrigTy &PromotedInsts);
3720 };
3721 
3722 } // end anonymous namespace
3723 
3724 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
3725                                         Type *ConsideredExtType,
3726                                         const InstrToOrigTy &PromotedInsts,
3727                                         bool IsSExt) {
3728   // The promotion helper does not know how to deal with vector types yet.
3729   // To be able to fix that, we would need to fix the places where we
3730   // statically extend, e.g., constants and such.
3731   if (Inst->getType()->isVectorTy())
3732     return false;
3733 
3734   // We can always get through zext.
3735   if (isa<ZExtInst>(Inst))
3736     return true;
3737 
3738   // sext(sext) is ok too.
3739   if (IsSExt && isa<SExtInst>(Inst))
3740     return true;
3741 
3742   // We can get through binary operator, if it is legal. In other words, the
3743   // binary operator must have a nuw or nsw flag.
3744   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
3745   if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
3746       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
3747        (IsSExt && BinOp->hasNoSignedWrap())))
3748     return true;
3749 
3750   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
3751   if ((Inst->getOpcode() == Instruction::And ||
3752        Inst->getOpcode() == Instruction::Or))
3753     return true;
3754 
3755   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
3756   if (Inst->getOpcode() == Instruction::Xor) {
3757     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
3758     // Make sure it is not a NOT.
3759     if (Cst && !Cst->getValue().isAllOnesValue())
3760       return true;
3761   }
3762 
3763   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
3764   // It may change a poisoned value into a regular value, like
3765   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
3766   //          poisoned value                    regular value
3767   // It should be OK since undef covers valid value.
3768   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
3769     return true;
3770 
3771   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
3772   // It may change a poisoned value into a regular value, like
3773   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
3774   //          poisoned value                    regular value
3775   // It should be OK since undef covers valid value.
3776   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
3777     const Instruction *ExtInst =
3778         dyn_cast<const Instruction>(*Inst->user_begin());
3779     if (ExtInst->hasOneUse()) {
3780       const Instruction *AndInst =
3781           dyn_cast<const Instruction>(*ExtInst->user_begin());
3782       if (AndInst && AndInst->getOpcode() == Instruction::And) {
3783         const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
3784         if (Cst &&
3785             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
3786           return true;
3787       }
3788     }
3789   }
3790 
3791   // Check if we can do the following simplification.
3792   // ext(trunc(opnd)) --> ext(opnd)
3793   if (!isa<TruncInst>(Inst))
3794     return false;
3795 
3796   Value *OpndVal = Inst->getOperand(0);
3797   // Check if we can use this operand in the extension.
3798   // If the type is larger than the result type of the extension, we cannot.
3799   if (!OpndVal->getType()->isIntegerTy() ||
3800       OpndVal->getType()->getIntegerBitWidth() >
3801           ConsideredExtType->getIntegerBitWidth())
3802     return false;
3803 
3804   // If the operand of the truncate is not an instruction, we will not have
3805   // any information on the dropped bits.
3806   // (Actually we could for constant but it is not worth the extra logic).
3807   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
3808   if (!Opnd)
3809     return false;
3810 
3811   // Check if the source of the type is narrow enough.
3812   // I.e., check that trunc just drops extended bits of the same kind of
3813   // the extension.
3814   // #1 get the type of the operand and check the kind of the extended bits.
3815   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
3816   if (OpndType)
3817     ;
3818   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
3819     OpndType = Opnd->getOperand(0)->getType();
3820   else
3821     return false;
3822 
3823   // #2 check that the truncate just drops extended bits.
3824   return Inst->getType()->getIntegerBitWidth() >=
3825          OpndType->getIntegerBitWidth();
3826 }
3827 
3828 TypePromotionHelper::Action TypePromotionHelper::getAction(
3829     Instruction *Ext, const SetOfInstrs &InsertedInsts,
3830     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
3831   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3832          "Unexpected instruction type");
3833   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
3834   Type *ExtTy = Ext->getType();
3835   bool IsSExt = isa<SExtInst>(Ext);
3836   // If the operand of the extension is not an instruction, we cannot
3837   // get through.
3838   // If it, check we can get through.
3839   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
3840     return nullptr;
3841 
3842   // Do not promote if the operand has been added by codegenprepare.
3843   // Otherwise, it means we are undoing an optimization that is likely to be
3844   // redone, thus causing potential infinite loop.
3845   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
3846     return nullptr;
3847 
3848   // SExt or Trunc instructions.
3849   // Return the related handler.
3850   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
3851       isa<ZExtInst>(ExtOpnd))
3852     return promoteOperandForTruncAndAnyExt;
3853 
3854   // Regular instruction.
3855   // Abort early if we will have to insert non-free instructions.
3856   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
3857     return nullptr;
3858   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
3859 }
3860 
3861 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
3862     Instruction *SExt, TypePromotionTransaction &TPT,
3863     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3864     SmallVectorImpl<Instruction *> *Exts,
3865     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
3866   // By construction, the operand of SExt is an instruction. Otherwise we cannot
3867   // get through it and this method should not be called.
3868   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
3869   Value *ExtVal = SExt;
3870   bool HasMergedNonFreeExt = false;
3871   if (isa<ZExtInst>(SExtOpnd)) {
3872     // Replace s|zext(zext(opnd))
3873     // => zext(opnd).
3874     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
3875     Value *ZExt =
3876         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
3877     TPT.replaceAllUsesWith(SExt, ZExt);
3878     TPT.eraseInstruction(SExt);
3879     ExtVal = ZExt;
3880   } else {
3881     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
3882     // => z|sext(opnd).
3883     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
3884   }
3885   CreatedInstsCost = 0;
3886 
3887   // Remove dead code.
3888   if (SExtOpnd->use_empty())
3889     TPT.eraseInstruction(SExtOpnd);
3890 
3891   // Check if the extension is still needed.
3892   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
3893   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
3894     if (ExtInst) {
3895       if (Exts)
3896         Exts->push_back(ExtInst);
3897       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
3898     }
3899     return ExtVal;
3900   }
3901 
3902   // At this point we have: ext ty opnd to ty.
3903   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
3904   Value *NextVal = ExtInst->getOperand(0);
3905   TPT.eraseInstruction(ExtInst, NextVal);
3906   return NextVal;
3907 }
3908 
3909 Value *TypePromotionHelper::promoteOperandForOther(
3910     Instruction *Ext, TypePromotionTransaction &TPT,
3911     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
3912     SmallVectorImpl<Instruction *> *Exts,
3913     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
3914     bool IsSExt) {
3915   // By construction, the operand of Ext is an instruction. Otherwise we cannot
3916   // get through it and this method should not be called.
3917   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
3918   CreatedInstsCost = 0;
3919   if (!ExtOpnd->hasOneUse()) {
3920     // ExtOpnd will be promoted.
3921     // All its uses, but Ext, will need to use a truncated value of the
3922     // promoted version.
3923     // Create the truncate now.
3924     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
3925     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
3926       // Insert it just after the definition.
3927       ITrunc->moveAfter(ExtOpnd);
3928       if (Truncs)
3929         Truncs->push_back(ITrunc);
3930     }
3931 
3932     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
3933     // Restore the operand of Ext (which has been replaced by the previous call
3934     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
3935     TPT.setOperand(Ext, 0, ExtOpnd);
3936   }
3937 
3938   // Get through the Instruction:
3939   // 1. Update its type.
3940   // 2. Replace the uses of Ext by Inst.
3941   // 3. Extend each operand that needs to be extended.
3942 
3943   // Remember the original type of the instruction before promotion.
3944   // This is useful to know that the high bits are sign extended bits.
3945   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
3946   // Step #1.
3947   TPT.mutateType(ExtOpnd, Ext->getType());
3948   // Step #2.
3949   TPT.replaceAllUsesWith(Ext, ExtOpnd);
3950   // Step #3.
3951   Instruction *ExtForOpnd = Ext;
3952 
3953   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
3954   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
3955        ++OpIdx) {
3956     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
3957     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
3958         !shouldExtOperand(ExtOpnd, OpIdx)) {
3959       LLVM_DEBUG(dbgs() << "No need to propagate\n");
3960       continue;
3961     }
3962     // Check if we can statically extend the operand.
3963     Value *Opnd = ExtOpnd->getOperand(OpIdx);
3964     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
3965       LLVM_DEBUG(dbgs() << "Statically extend\n");
3966       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
3967       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
3968                             : Cst->getValue().zext(BitWidth);
3969       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
3970       continue;
3971     }
3972     // UndefValue are typed, so we have to statically sign extend them.
3973     if (isa<UndefValue>(Opnd)) {
3974       LLVM_DEBUG(dbgs() << "Statically extend\n");
3975       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
3976       continue;
3977     }
3978 
3979     // Otherwise we have to explicitly sign extend the operand.
3980     // Check if Ext was reused to extend an operand.
3981     if (!ExtForOpnd) {
3982       // If yes, create a new one.
3983       LLVM_DEBUG(dbgs() << "More operands to ext\n");
3984       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
3985         : TPT.createZExt(Ext, Opnd, Ext->getType());
3986       if (!isa<Instruction>(ValForExtOpnd)) {
3987         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
3988         continue;
3989       }
3990       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
3991     }
3992     if (Exts)
3993       Exts->push_back(ExtForOpnd);
3994     TPT.setOperand(ExtForOpnd, 0, Opnd);
3995 
3996     // Move the sign extension before the insertion point.
3997     TPT.moveBefore(ExtForOpnd, ExtOpnd);
3998     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
3999     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4000     // If more sext are required, new instructions will have to be created.
4001     ExtForOpnd = nullptr;
4002   }
4003   if (ExtForOpnd == Ext) {
4004     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4005     TPT.eraseInstruction(Ext);
4006   }
4007   return ExtOpnd;
4008 }
4009 
4010 /// Check whether or not promoting an instruction to a wider type is profitable.
4011 /// \p NewCost gives the cost of extension instructions created by the
4012 /// promotion.
4013 /// \p OldCost gives the cost of extension instructions before the promotion
4014 /// plus the number of instructions that have been
4015 /// matched in the addressing mode the promotion.
4016 /// \p PromotedOperand is the value that has been promoted.
4017 /// \return True if the promotion is profitable, false otherwise.
4018 bool AddressingModeMatcher::isPromotionProfitable(
4019     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4020   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4021                     << '\n');
4022   // The cost of the new extensions is greater than the cost of the
4023   // old extension plus what we folded.
4024   // This is not profitable.
4025   if (NewCost > OldCost)
4026     return false;
4027   if (NewCost < OldCost)
4028     return true;
4029   // The promotion is neutral but it may help folding the sign extension in
4030   // loads for instance.
4031   // Check that we did not create an illegal instruction.
4032   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4033 }
4034 
4035 /// Given an instruction or constant expr, see if we can fold the operation
4036 /// into the addressing mode. If so, update the addressing mode and return
4037 /// true, otherwise return false without modifying AddrMode.
4038 /// If \p MovedAway is not NULL, it contains the information of whether or
4039 /// not AddrInst has to be folded into the addressing mode on success.
4040 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4041 /// because it has been moved away.
4042 /// Thus AddrInst must not be added in the matched instructions.
4043 /// This state can happen when AddrInst is a sext, since it may be moved away.
4044 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4045 /// not be referenced anymore.
4046 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4047                                                unsigned Depth,
4048                                                bool *MovedAway) {
4049   // Avoid exponential behavior on extremely deep expression trees.
4050   if (Depth >= 5) return false;
4051 
4052   // By default, all matched instructions stay in place.
4053   if (MovedAway)
4054     *MovedAway = false;
4055 
4056   switch (Opcode) {
4057   case Instruction::PtrToInt:
4058     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4059     return matchAddr(AddrInst->getOperand(0), Depth);
4060   case Instruction::IntToPtr: {
4061     auto AS = AddrInst->getType()->getPointerAddressSpace();
4062     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4063     // This inttoptr is a no-op if the integer type is pointer sized.
4064     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4065       return matchAddr(AddrInst->getOperand(0), Depth);
4066     return false;
4067   }
4068   case Instruction::BitCast:
4069     // BitCast is always a noop, and we can handle it as long as it is
4070     // int->int or pointer->pointer (we don't want int<->fp or something).
4071     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4072         // Don't touch identity bitcasts.  These were probably put here by LSR,
4073         // and we don't want to mess around with them.  Assume it knows what it
4074         // is doing.
4075         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4076       return matchAddr(AddrInst->getOperand(0), Depth);
4077     return false;
4078   case Instruction::AddrSpaceCast: {
4079     unsigned SrcAS
4080       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4081     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4082     if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
4083       return matchAddr(AddrInst->getOperand(0), Depth);
4084     return false;
4085   }
4086   case Instruction::Add: {
4087     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4088     ExtAddrMode BackupAddrMode = AddrMode;
4089     unsigned OldSize = AddrModeInsts.size();
4090     // Start a transaction at this point.
4091     // The LHS may match but not the RHS.
4092     // Therefore, we need a higher level restoration point to undo partially
4093     // matched operation.
4094     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4095         TPT.getRestorationPoint();
4096 
4097     AddrMode.InBounds = false;
4098     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4099         matchAddr(AddrInst->getOperand(0), Depth+1))
4100       return true;
4101 
4102     // Restore the old addr mode info.
4103     AddrMode = BackupAddrMode;
4104     AddrModeInsts.resize(OldSize);
4105     TPT.rollback(LastKnownGood);
4106 
4107     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4108     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4109         matchAddr(AddrInst->getOperand(1), Depth+1))
4110       return true;
4111 
4112     // Otherwise we definitely can't merge the ADD in.
4113     AddrMode = BackupAddrMode;
4114     AddrModeInsts.resize(OldSize);
4115     TPT.rollback(LastKnownGood);
4116     break;
4117   }
4118   //case Instruction::Or:
4119   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4120   //break;
4121   case Instruction::Mul:
4122   case Instruction::Shl: {
4123     // Can only handle X*C and X << C.
4124     AddrMode.InBounds = false;
4125     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4126     if (!RHS || RHS->getBitWidth() > 64)
4127       return false;
4128     int64_t Scale = RHS->getSExtValue();
4129     if (Opcode == Instruction::Shl)
4130       Scale = 1LL << Scale;
4131 
4132     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4133   }
4134   case Instruction::GetElementPtr: {
4135     // Scan the GEP.  We check it if it contains constant offsets and at most
4136     // one variable offset.
4137     int VariableOperand = -1;
4138     unsigned VariableScale = 0;
4139 
4140     int64_t ConstantOffset = 0;
4141     gep_type_iterator GTI = gep_type_begin(AddrInst);
4142     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4143       if (StructType *STy = GTI.getStructTypeOrNull()) {
4144         const StructLayout *SL = DL.getStructLayout(STy);
4145         unsigned Idx =
4146           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4147         ConstantOffset += SL->getElementOffset(Idx);
4148       } else {
4149         uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType());
4150         if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4151           const APInt &CVal = CI->getValue();
4152           if (CVal.getMinSignedBits() <= 64) {
4153             ConstantOffset += CVal.getSExtValue() * TypeSize;
4154             continue;
4155           }
4156         }
4157         if (TypeSize) {  // Scales of zero don't do anything.
4158           // We only allow one variable index at the moment.
4159           if (VariableOperand != -1)
4160             return false;
4161 
4162           // Remember the variable index.
4163           VariableOperand = i;
4164           VariableScale = TypeSize;
4165         }
4166       }
4167     }
4168 
4169     // A common case is for the GEP to only do a constant offset.  In this case,
4170     // just add it to the disp field and check validity.
4171     if (VariableOperand == -1) {
4172       AddrMode.BaseOffs += ConstantOffset;
4173       if (ConstantOffset == 0 ||
4174           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4175         // Check to see if we can fold the base pointer in too.
4176         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4177           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4178             AddrMode.InBounds = false;
4179           return true;
4180         }
4181       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4182                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4183                  ConstantOffset > 0) {
4184         // Record GEPs with non-zero offsets as candidates for splitting in the
4185         // event that the offset cannot fit into the r+i addressing mode.
4186         // Simple and common case that only one GEP is used in calculating the
4187         // address for the memory access.
4188         Value *Base = AddrInst->getOperand(0);
4189         auto *BaseI = dyn_cast<Instruction>(Base);
4190         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4191         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4192             (BaseI && !isa<CastInst>(BaseI) &&
4193              !isa<GetElementPtrInst>(BaseI))) {
4194           // If the base is an instruction, make sure the GEP is not in the same
4195           // basic block as the base. If the base is an argument or global
4196           // value, make sure the GEP is not in the entry block.  Otherwise,
4197           // instruction selection can undo the split.  Also make sure the
4198           // parent block allows inserting non-PHI instructions before the
4199           // terminator.
4200           BasicBlock *Parent =
4201               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4202           if (GEP->getParent() != Parent && !Parent->getTerminator()->isEHPad())
4203             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4204         }
4205       }
4206       AddrMode.BaseOffs -= ConstantOffset;
4207       return false;
4208     }
4209 
4210     // Save the valid addressing mode in case we can't match.
4211     ExtAddrMode BackupAddrMode = AddrMode;
4212     unsigned OldSize = AddrModeInsts.size();
4213 
4214     // See if the scale and offset amount is valid for this target.
4215     AddrMode.BaseOffs += ConstantOffset;
4216     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4217       AddrMode.InBounds = false;
4218 
4219     // Match the base operand of the GEP.
4220     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4221       // If it couldn't be matched, just stuff the value in a register.
4222       if (AddrMode.HasBaseReg) {
4223         AddrMode = BackupAddrMode;
4224         AddrModeInsts.resize(OldSize);
4225         return false;
4226       }
4227       AddrMode.HasBaseReg = true;
4228       AddrMode.BaseReg = AddrInst->getOperand(0);
4229     }
4230 
4231     // Match the remaining variable portion of the GEP.
4232     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4233                           Depth)) {
4234       // If it couldn't be matched, try stuffing the base into a register
4235       // instead of matching it, and retrying the match of the scale.
4236       AddrMode = BackupAddrMode;
4237       AddrModeInsts.resize(OldSize);
4238       if (AddrMode.HasBaseReg)
4239         return false;
4240       AddrMode.HasBaseReg = true;
4241       AddrMode.BaseReg = AddrInst->getOperand(0);
4242       AddrMode.BaseOffs += ConstantOffset;
4243       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4244                             VariableScale, Depth)) {
4245         // If even that didn't work, bail.
4246         AddrMode = BackupAddrMode;
4247         AddrModeInsts.resize(OldSize);
4248         return false;
4249       }
4250     }
4251 
4252     return true;
4253   }
4254   case Instruction::SExt:
4255   case Instruction::ZExt: {
4256     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4257     if (!Ext)
4258       return false;
4259 
4260     // Try to move this ext out of the way of the addressing mode.
4261     // Ask for a method for doing so.
4262     TypePromotionHelper::Action TPH =
4263         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4264     if (!TPH)
4265       return false;
4266 
4267     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4268         TPT.getRestorationPoint();
4269     unsigned CreatedInstsCost = 0;
4270     unsigned ExtCost = !TLI.isExtFree(Ext);
4271     Value *PromotedOperand =
4272         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4273     // SExt has been moved away.
4274     // Thus either it will be rematched later in the recursive calls or it is
4275     // gone. Anyway, we must not fold it into the addressing mode at this point.
4276     // E.g.,
4277     // op = add opnd, 1
4278     // idx = ext op
4279     // addr = gep base, idx
4280     // is now:
4281     // promotedOpnd = ext opnd            <- no match here
4282     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4283     // addr = gep base, op                <- match
4284     if (MovedAway)
4285       *MovedAway = true;
4286 
4287     assert(PromotedOperand &&
4288            "TypePromotionHelper should have filtered out those cases");
4289 
4290     ExtAddrMode BackupAddrMode = AddrMode;
4291     unsigned OldSize = AddrModeInsts.size();
4292 
4293     if (!matchAddr(PromotedOperand, Depth) ||
4294         // The total of the new cost is equal to the cost of the created
4295         // instructions.
4296         // The total of the old cost is equal to the cost of the extension plus
4297         // what we have saved in the addressing mode.
4298         !isPromotionProfitable(CreatedInstsCost,
4299                                ExtCost + (AddrModeInsts.size() - OldSize),
4300                                PromotedOperand)) {
4301       AddrMode = BackupAddrMode;
4302       AddrModeInsts.resize(OldSize);
4303       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4304       TPT.rollback(LastKnownGood);
4305       return false;
4306     }
4307     return true;
4308   }
4309   }
4310   return false;
4311 }
4312 
4313 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4314 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4315 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4316 /// for the target.
4317 ///
4318 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4319   // Start a transaction at this point that we will rollback if the matching
4320   // fails.
4321   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4322       TPT.getRestorationPoint();
4323   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4324     // Fold in immediates if legal for the target.
4325     AddrMode.BaseOffs += CI->getSExtValue();
4326     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4327       return true;
4328     AddrMode.BaseOffs -= CI->getSExtValue();
4329   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4330     // If this is a global variable, try to fold it into the addressing mode.
4331     if (!AddrMode.BaseGV) {
4332       AddrMode.BaseGV = GV;
4333       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4334         return true;
4335       AddrMode.BaseGV = nullptr;
4336     }
4337   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4338     ExtAddrMode BackupAddrMode = AddrMode;
4339     unsigned OldSize = AddrModeInsts.size();
4340 
4341     // Check to see if it is possible to fold this operation.
4342     bool MovedAway = false;
4343     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4344       // This instruction may have been moved away. If so, there is nothing
4345       // to check here.
4346       if (MovedAway)
4347         return true;
4348       // Okay, it's possible to fold this.  Check to see if it is actually
4349       // *profitable* to do so.  We use a simple cost model to avoid increasing
4350       // register pressure too much.
4351       if (I->hasOneUse() ||
4352           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4353         AddrModeInsts.push_back(I);
4354         return true;
4355       }
4356 
4357       // It isn't profitable to do this, roll back.
4358       //cerr << "NOT FOLDING: " << *I;
4359       AddrMode = BackupAddrMode;
4360       AddrModeInsts.resize(OldSize);
4361       TPT.rollback(LastKnownGood);
4362     }
4363   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4364     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4365       return true;
4366     TPT.rollback(LastKnownGood);
4367   } else if (isa<ConstantPointerNull>(Addr)) {
4368     // Null pointer gets folded without affecting the addressing mode.
4369     return true;
4370   }
4371 
4372   // Worse case, the target should support [reg] addressing modes. :)
4373   if (!AddrMode.HasBaseReg) {
4374     AddrMode.HasBaseReg = true;
4375     AddrMode.BaseReg = Addr;
4376     // Still check for legality in case the target supports [imm] but not [i+r].
4377     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4378       return true;
4379     AddrMode.HasBaseReg = false;
4380     AddrMode.BaseReg = nullptr;
4381   }
4382 
4383   // If the base register is already taken, see if we can do [r+r].
4384   if (AddrMode.Scale == 0) {
4385     AddrMode.Scale = 1;
4386     AddrMode.ScaledReg = Addr;
4387     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4388       return true;
4389     AddrMode.Scale = 0;
4390     AddrMode.ScaledReg = nullptr;
4391   }
4392   // Couldn't match.
4393   TPT.rollback(LastKnownGood);
4394   return false;
4395 }
4396 
4397 /// Check to see if all uses of OpVal by the specified inline asm call are due
4398 /// to memory operands. If so, return true, otherwise return false.
4399 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4400                                     const TargetLowering &TLI,
4401                                     const TargetRegisterInfo &TRI) {
4402   const Function *F = CI->getFunction();
4403   TargetLowering::AsmOperandInfoVector TargetConstraints =
4404       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI,
4405                             ImmutableCallSite(CI));
4406 
4407   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4408     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4409 
4410     // Compute the constraint code and ConstraintType to use.
4411     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4412 
4413     // If this asm operand is our Value*, and if it isn't an indirect memory
4414     // operand, we can't fold it!
4415     if (OpInfo.CallOperandVal == OpVal &&
4416         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4417          !OpInfo.isIndirect))
4418       return false;
4419   }
4420 
4421   return true;
4422 }
4423 
4424 // Max number of memory uses to look at before aborting the search to conserve
4425 // compile time.
4426 static constexpr int MaxMemoryUsesToScan = 20;
4427 
4428 /// Recursively walk all the uses of I until we find a memory use.
4429 /// If we find an obviously non-foldable instruction, return true.
4430 /// Add the ultimately found memory instructions to MemoryUses.
4431 static bool FindAllMemoryUses(
4432     Instruction *I,
4433     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4434     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4435     const TargetRegisterInfo &TRI, int SeenInsts = 0) {
4436   // If we already considered this instruction, we're done.
4437   if (!ConsideredInsts.insert(I).second)
4438     return false;
4439 
4440   // If this is an obviously unfoldable instruction, bail out.
4441   if (!MightBeFoldableInst(I))
4442     return true;
4443 
4444   const bool OptSize = I->getFunction()->optForSize();
4445 
4446   // Loop over all the uses, recursively processing them.
4447   for (Use &U : I->uses()) {
4448     // Conservatively return true if we're seeing a large number or a deep chain
4449     // of users. This avoids excessive compilation times in pathological cases.
4450     if (SeenInsts++ >= MaxMemoryUsesToScan)
4451       return true;
4452 
4453     Instruction *UserI = cast<Instruction>(U.getUser());
4454     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4455       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4456       continue;
4457     }
4458 
4459     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4460       unsigned opNo = U.getOperandNo();
4461       if (opNo != StoreInst::getPointerOperandIndex())
4462         return true; // Storing addr, not into addr.
4463       MemoryUses.push_back(std::make_pair(SI, opNo));
4464       continue;
4465     }
4466 
4467     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4468       unsigned opNo = U.getOperandNo();
4469       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4470         return true; // Storing addr, not into addr.
4471       MemoryUses.push_back(std::make_pair(RMW, opNo));
4472       continue;
4473     }
4474 
4475     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4476       unsigned opNo = U.getOperandNo();
4477       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4478         return true; // Storing addr, not into addr.
4479       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4480       continue;
4481     }
4482 
4483     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4484       // If this is a cold call, we can sink the addressing calculation into
4485       // the cold path.  See optimizeCallInst
4486       if (!OptSize && CI->hasFnAttr(Attribute::Cold))
4487         continue;
4488 
4489       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
4490       if (!IA) return true;
4491 
4492       // If this is a memory operand, we're cool, otherwise bail out.
4493       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4494         return true;
4495       continue;
4496     }
4497 
4498     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI,
4499                           SeenInsts))
4500       return true;
4501   }
4502 
4503   return false;
4504 }
4505 
4506 /// Return true if Val is already known to be live at the use site that we're
4507 /// folding it into. If so, there is no cost to include it in the addressing
4508 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4509 /// instruction already.
4510 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4511                                                    Value *KnownLive2) {
4512   // If Val is either of the known-live values, we know it is live!
4513   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4514     return true;
4515 
4516   // All values other than instructions and arguments (e.g. constants) are live.
4517   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4518 
4519   // If Val is a constant sized alloca in the entry block, it is live, this is
4520   // true because it is just a reference to the stack/frame pointer, which is
4521   // live for the whole function.
4522   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4523     if (AI->isStaticAlloca())
4524       return true;
4525 
4526   // Check to see if this value is already used in the memory instruction's
4527   // block.  If so, it's already live into the block at the very least, so we
4528   // can reasonably fold it.
4529   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4530 }
4531 
4532 /// It is possible for the addressing mode of the machine to fold the specified
4533 /// instruction into a load or store that ultimately uses it.
4534 /// However, the specified instruction has multiple uses.
4535 /// Given this, it may actually increase register pressure to fold it
4536 /// into the load. For example, consider this code:
4537 ///
4538 ///     X = ...
4539 ///     Y = X+1
4540 ///     use(Y)   -> nonload/store
4541 ///     Z = Y+1
4542 ///     load Z
4543 ///
4544 /// In this case, Y has multiple uses, and can be folded into the load of Z
4545 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4546 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4547 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4548 /// number of computations either.
4549 ///
4550 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4551 /// X was live across 'load Z' for other reasons, we actually *would* want to
4552 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4553 bool AddressingModeMatcher::
4554 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4555                                      ExtAddrMode &AMAfter) {
4556   if (IgnoreProfitability) return true;
4557 
4558   // AMBefore is the addressing mode before this instruction was folded into it,
4559   // and AMAfter is the addressing mode after the instruction was folded.  Get
4560   // the set of registers referenced by AMAfter and subtract out those
4561   // referenced by AMBefore: this is the set of values which folding in this
4562   // address extends the lifetime of.
4563   //
4564   // Note that there are only two potential values being referenced here,
4565   // BaseReg and ScaleReg (global addresses are always available, as are any
4566   // folded immediates).
4567   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4568 
4569   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
4570   // lifetime wasn't extended by adding this instruction.
4571   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4572     BaseReg = nullptr;
4573   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
4574     ScaledReg = nullptr;
4575 
4576   // If folding this instruction (and it's subexprs) didn't extend any live
4577   // ranges, we're ok with it.
4578   if (!BaseReg && !ScaledReg)
4579     return true;
4580 
4581   // If all uses of this instruction can have the address mode sunk into them,
4582   // we can remove the addressing mode and effectively trade one live register
4583   // for another (at worst.)  In this context, folding an addressing mode into
4584   // the use is just a particularly nice way of sinking it.
4585   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
4586   SmallPtrSet<Instruction*, 16> ConsideredInsts;
4587   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI))
4588     return false;  // Has a non-memory, non-foldable use!
4589 
4590   // Now that we know that all uses of this instruction are part of a chain of
4591   // computation involving only operations that could theoretically be folded
4592   // into a memory use, loop over each of these memory operation uses and see
4593   // if they could  *actually* fold the instruction.  The assumption is that
4594   // addressing modes are cheap and that duplicating the computation involved
4595   // many times is worthwhile, even on a fastpath. For sinking candidates
4596   // (i.e. cold call sites), this serves as a way to prevent excessive code
4597   // growth since most architectures have some reasonable small and fast way to
4598   // compute an effective address.  (i.e LEA on x86)
4599   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
4600   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
4601     Instruction *User = MemoryUses[i].first;
4602     unsigned OpNo = MemoryUses[i].second;
4603 
4604     // Get the access type of this use.  If the use isn't a pointer, we don't
4605     // know what it accesses.
4606     Value *Address = User->getOperand(OpNo);
4607     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
4608     if (!AddrTy)
4609       return false;
4610     Type *AddressAccessTy = AddrTy->getElementType();
4611     unsigned AS = AddrTy->getAddressSpace();
4612 
4613     // Do a match against the root of this address, ignoring profitability. This
4614     // will tell us if the addressing mode for the memory operation will
4615     // *actually* cover the shared instruction.
4616     ExtAddrMode Result;
4617     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4618                                                                       0);
4619     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4620         TPT.getRestorationPoint();
4621     AddressingModeMatcher Matcher(
4622         MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result,
4623         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4624     Matcher.IgnoreProfitability = true;
4625     bool Success = Matcher.matchAddr(Address, 0);
4626     (void)Success; assert(Success && "Couldn't select *anything*?");
4627 
4628     // The match was to check the profitability, the changes made are not
4629     // part of the original matcher. Therefore, they should be dropped
4630     // otherwise the original matcher will not present the right state.
4631     TPT.rollback(LastKnownGood);
4632 
4633     // If the match didn't cover I, then it won't be shared by it.
4634     if (!is_contained(MatchedAddrModeInsts, I))
4635       return false;
4636 
4637     MatchedAddrModeInsts.clear();
4638   }
4639 
4640   return true;
4641 }
4642 
4643 /// Return true if the specified values are defined in a
4644 /// different basic block than BB.
4645 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
4646   if (Instruction *I = dyn_cast<Instruction>(V))
4647     return I->getParent() != BB;
4648   return false;
4649 }
4650 
4651 /// Sink addressing mode computation immediate before MemoryInst if doing so
4652 /// can be done without increasing register pressure.  The need for the
4653 /// register pressure constraint means this can end up being an all or nothing
4654 /// decision for all uses of the same addressing computation.
4655 ///
4656 /// Load and Store Instructions often have addressing modes that can do
4657 /// significant amounts of computation. As such, instruction selection will try
4658 /// to get the load or store to do as much computation as possible for the
4659 /// program. The problem is that isel can only see within a single block. As
4660 /// such, we sink as much legal addressing mode work into the block as possible.
4661 ///
4662 /// This method is used to optimize both load/store and inline asms with memory
4663 /// operands.  It's also used to sink addressing computations feeding into cold
4664 /// call sites into their (cold) basic block.
4665 ///
4666 /// The motivation for handling sinking into cold blocks is that doing so can
4667 /// both enable other address mode sinking (by satisfying the register pressure
4668 /// constraint above), and reduce register pressure globally (by removing the
4669 /// addressing mode computation from the fast path entirely.).
4670 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
4671                                         Type *AccessTy, unsigned AddrSpace) {
4672   Value *Repl = Addr;
4673 
4674   // Try to collapse single-value PHI nodes.  This is necessary to undo
4675   // unprofitable PRE transformations.
4676   SmallVector<Value*, 8> worklist;
4677   SmallPtrSet<Value*, 16> Visited;
4678   worklist.push_back(Addr);
4679 
4680   // Use a worklist to iteratively look through PHI and select nodes, and
4681   // ensure that the addressing mode obtained from the non-PHI/select roots of
4682   // the graph are compatible.
4683   bool PhiOrSelectSeen = false;
4684   SmallVector<Instruction*, 16> AddrModeInsts;
4685   const SimplifyQuery SQ(*DL, TLInfo);
4686   AddressingModeCombiner AddrModes(SQ, Addr);
4687   TypePromotionTransaction TPT(RemovedInsts);
4688   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4689       TPT.getRestorationPoint();
4690   while (!worklist.empty()) {
4691     Value *V = worklist.back();
4692     worklist.pop_back();
4693 
4694     // We allow traversing cyclic Phi nodes.
4695     // In case of success after this loop we ensure that traversing through
4696     // Phi nodes ends up with all cases to compute address of the form
4697     //    BaseGV + Base + Scale * Index + Offset
4698     // where Scale and Offset are constans and BaseGV, Base and Index
4699     // are exactly the same Values in all cases.
4700     // It means that BaseGV, Scale and Offset dominate our memory instruction
4701     // and have the same value as they had in address computation represented
4702     // as Phi. So we can safely sink address computation to memory instruction.
4703     if (!Visited.insert(V).second)
4704       continue;
4705 
4706     // For a PHI node, push all of its incoming values.
4707     if (PHINode *P = dyn_cast<PHINode>(V)) {
4708       for (Value *IncValue : P->incoming_values())
4709         worklist.push_back(IncValue);
4710       PhiOrSelectSeen = true;
4711       continue;
4712     }
4713     // Similar for select.
4714     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
4715       worklist.push_back(SI->getFalseValue());
4716       worklist.push_back(SI->getTrueValue());
4717       PhiOrSelectSeen = true;
4718       continue;
4719     }
4720 
4721     // For non-PHIs, determine the addressing mode being computed.  Note that
4722     // the result may differ depending on what other uses our candidate
4723     // addressing instructions might have.
4724     AddrModeInsts.clear();
4725     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
4726                                                                       0);
4727     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
4728         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI,
4729         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP);
4730 
4731     GetElementPtrInst *GEP = LargeOffsetGEP.first;
4732     if (GEP && GEP->getParent() != MemoryInst->getParent() &&
4733         !NewGEPBases.count(GEP)) {
4734       // If splitting the underlying data structure can reduce the offset of a
4735       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
4736       // previously split data structures.
4737       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
4738       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
4739         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
4740     }
4741 
4742     NewAddrMode.OriginalValue = V;
4743     if (!AddrModes.addNewAddrMode(NewAddrMode))
4744       break;
4745   }
4746 
4747   // Try to combine the AddrModes we've collected. If we couldn't collect any,
4748   // or we have multiple but either couldn't combine them or combining them
4749   // wouldn't do anything useful, bail out now.
4750   if (!AddrModes.combineAddrModes()) {
4751     TPT.rollback(LastKnownGood);
4752     return false;
4753   }
4754   TPT.commit();
4755 
4756   // Get the combined AddrMode (or the only AddrMode, if we only had one).
4757   ExtAddrMode AddrMode = AddrModes.getAddrMode();
4758 
4759   // If all the instructions matched are already in this BB, don't do anything.
4760   // If we saw a Phi node then it is not local definitely, and if we saw a select
4761   // then we want to push the address calculation past it even if it's already
4762   // in this BB.
4763   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
4764         return IsNonLocalValue(V, MemoryInst->getParent());
4765                   })) {
4766     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
4767                       << "\n");
4768     return false;
4769   }
4770 
4771   // Insert this computation right after this user.  Since our caller is
4772   // scanning from the top of the BB to the bottom, reuse of the expr are
4773   // guaranteed to happen later.
4774   IRBuilder<> Builder(MemoryInst);
4775 
4776   // Now that we determined the addressing expression we want to use and know
4777   // that we have to sink it into this block.  Check to see if we have already
4778   // done this for some other load/store instr in this block.  If so, reuse
4779   // the computation.  Before attempting reuse, check if the address is valid
4780   // as it may have been erased.
4781 
4782   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
4783 
4784   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
4785   if (SunkAddr) {
4786     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
4787                       << " for " << *MemoryInst << "\n");
4788     if (SunkAddr->getType() != Addr->getType())
4789       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4790   } else if (AddrSinkUsingGEPs ||
4791              (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) {
4792     // By default, we use the GEP-based method when AA is used later. This
4793     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
4794     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4795                       << " for " << *MemoryInst << "\n");
4796     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4797     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
4798 
4799     // First, find the pointer.
4800     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
4801       ResultPtr = AddrMode.BaseReg;
4802       AddrMode.BaseReg = nullptr;
4803     }
4804 
4805     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
4806       // We can't add more than one pointer together, nor can we scale a
4807       // pointer (both of which seem meaningless).
4808       if (ResultPtr || AddrMode.Scale != 1)
4809         return false;
4810 
4811       ResultPtr = AddrMode.ScaledReg;
4812       AddrMode.Scale = 0;
4813     }
4814 
4815     // It is only safe to sign extend the BaseReg if we know that the math
4816     // required to create it did not overflow before we extend it. Since
4817     // the original IR value was tossed in favor of a constant back when
4818     // the AddrMode was created we need to bail out gracefully if widths
4819     // do not match instead of extending it.
4820     //
4821     // (See below for code to add the scale.)
4822     if (AddrMode.Scale) {
4823       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
4824       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
4825           cast<IntegerType>(ScaledRegTy)->getBitWidth())
4826         return false;
4827     }
4828 
4829     if (AddrMode.BaseGV) {
4830       if (ResultPtr)
4831         return false;
4832 
4833       ResultPtr = AddrMode.BaseGV;
4834     }
4835 
4836     // If the real base value actually came from an inttoptr, then the matcher
4837     // will look through it and provide only the integer value. In that case,
4838     // use it here.
4839     if (!DL->isNonIntegralPointerType(Addr->getType())) {
4840       if (!ResultPtr && AddrMode.BaseReg) {
4841         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
4842                                            "sunkaddr");
4843         AddrMode.BaseReg = nullptr;
4844       } else if (!ResultPtr && AddrMode.Scale == 1) {
4845         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
4846                                            "sunkaddr");
4847         AddrMode.Scale = 0;
4848       }
4849     }
4850 
4851     if (!ResultPtr &&
4852         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
4853       SunkAddr = Constant::getNullValue(Addr->getType());
4854     } else if (!ResultPtr) {
4855       return false;
4856     } else {
4857       Type *I8PtrTy =
4858           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
4859       Type *I8Ty = Builder.getInt8Ty();
4860 
4861       // Start with the base register. Do this first so that subsequent address
4862       // matching finds it last, which will prevent it from trying to match it
4863       // as the scaled value in case it happens to be a mul. That would be
4864       // problematic if we've sunk a different mul for the scale, because then
4865       // we'd end up sinking both muls.
4866       if (AddrMode.BaseReg) {
4867         Value *V = AddrMode.BaseReg;
4868         if (V->getType() != IntPtrTy)
4869           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4870 
4871         ResultIndex = V;
4872       }
4873 
4874       // Add the scale value.
4875       if (AddrMode.Scale) {
4876         Value *V = AddrMode.ScaledReg;
4877         if (V->getType() == IntPtrTy) {
4878           // done.
4879         } else {
4880           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
4881                  cast<IntegerType>(V->getType())->getBitWidth() &&
4882                  "We can't transform if ScaledReg is too narrow");
4883           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4884         }
4885 
4886         if (AddrMode.Scale != 1)
4887           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4888                                 "sunkaddr");
4889         if (ResultIndex)
4890           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
4891         else
4892           ResultIndex = V;
4893       }
4894 
4895       // Add in the Base Offset if present.
4896       if (AddrMode.BaseOffs) {
4897         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
4898         if (ResultIndex) {
4899           // We need to add this separately from the scale above to help with
4900           // SDAG consecutive load/store merging.
4901           if (ResultPtr->getType() != I8PtrTy)
4902             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4903           ResultPtr =
4904               AddrMode.InBounds
4905                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4906                                               "sunkaddr")
4907                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4908         }
4909 
4910         ResultIndex = V;
4911       }
4912 
4913       if (!ResultIndex) {
4914         SunkAddr = ResultPtr;
4915       } else {
4916         if (ResultPtr->getType() != I8PtrTy)
4917           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
4918         SunkAddr =
4919             AddrMode.InBounds
4920                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
4921                                             "sunkaddr")
4922                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
4923       }
4924 
4925       if (SunkAddr->getType() != Addr->getType())
4926         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
4927     }
4928   } else {
4929     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
4930     // non-integral pointers, so in that case bail out now.
4931     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
4932     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
4933     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
4934     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
4935     if (DL->isNonIntegralPointerType(Addr->getType()) ||
4936         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
4937         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
4938         (AddrMode.BaseGV &&
4939          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
4940       return false;
4941 
4942     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
4943                       << " for " << *MemoryInst << "\n");
4944     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
4945     Value *Result = nullptr;
4946 
4947     // Start with the base register. Do this first so that subsequent address
4948     // matching finds it last, which will prevent it from trying to match it
4949     // as the scaled value in case it happens to be a mul. That would be
4950     // problematic if we've sunk a different mul for the scale, because then
4951     // we'd end up sinking both muls.
4952     if (AddrMode.BaseReg) {
4953       Value *V = AddrMode.BaseReg;
4954       if (V->getType()->isPointerTy())
4955         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4956       if (V->getType() != IntPtrTy)
4957         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
4958       Result = V;
4959     }
4960 
4961     // Add the scale value.
4962     if (AddrMode.Scale) {
4963       Value *V = AddrMode.ScaledReg;
4964       if (V->getType() == IntPtrTy) {
4965         // done.
4966       } else if (V->getType()->isPointerTy()) {
4967         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
4968       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
4969                  cast<IntegerType>(V->getType())->getBitWidth()) {
4970         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
4971       } else {
4972         // It is only safe to sign extend the BaseReg if we know that the math
4973         // required to create it did not overflow before we extend it. Since
4974         // the original IR value was tossed in favor of a constant back when
4975         // the AddrMode was created we need to bail out gracefully if widths
4976         // do not match instead of extending it.
4977         Instruction *I = dyn_cast_or_null<Instruction>(Result);
4978         if (I && (Result != AddrMode.BaseReg))
4979           I->eraseFromParent();
4980         return false;
4981       }
4982       if (AddrMode.Scale != 1)
4983         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
4984                               "sunkaddr");
4985       if (Result)
4986         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4987       else
4988         Result = V;
4989     }
4990 
4991     // Add in the BaseGV if present.
4992     if (AddrMode.BaseGV) {
4993       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
4994       if (Result)
4995         Result = Builder.CreateAdd(Result, V, "sunkaddr");
4996       else
4997         Result = V;
4998     }
4999 
5000     // Add in the Base Offset if present.
5001     if (AddrMode.BaseOffs) {
5002       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5003       if (Result)
5004         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5005       else
5006         Result = V;
5007     }
5008 
5009     if (!Result)
5010       SunkAddr = Constant::getNullValue(Addr->getType());
5011     else
5012       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5013   }
5014 
5015   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5016   // Store the newly computed address into the cache. In the case we reused a
5017   // value, this should be idempotent.
5018   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5019 
5020   // If we have no uses, recursively delete the value and all dead instructions
5021   // using it.
5022   if (Repl->use_empty()) {
5023     // This can cause recursive deletion, which can invalidate our iterator.
5024     // Use a WeakTrackingVH to hold onto it in case this happens.
5025     Value *CurValue = &*CurInstIterator;
5026     WeakTrackingVH IterHandle(CurValue);
5027     BasicBlock *BB = CurInstIterator->getParent();
5028 
5029     RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
5030 
5031     if (IterHandle != CurValue) {
5032       // If the iterator instruction was recursively deleted, start over at the
5033       // start of the block.
5034       CurInstIterator = BB->begin();
5035       SunkAddrs.clear();
5036     }
5037   }
5038   ++NumMemoryInsts;
5039   return true;
5040 }
5041 
5042 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5043 /// address computing into the block when possible / profitable.
5044 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5045   bool MadeChange = false;
5046 
5047   const TargetRegisterInfo *TRI =
5048       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5049   TargetLowering::AsmOperandInfoVector TargetConstraints =
5050       TLI->ParseConstraints(*DL, TRI, CS);
5051   unsigned ArgNo = 0;
5052   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5053     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5054 
5055     // Compute the constraint code and ConstraintType to use.
5056     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5057 
5058     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5059         OpInfo.isIndirect) {
5060       Value *OpVal = CS->getArgOperand(ArgNo++);
5061       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5062     } else if (OpInfo.Type == InlineAsm::isInput)
5063       ArgNo++;
5064   }
5065 
5066   return MadeChange;
5067 }
5068 
5069 /// Check if all the uses of \p Val are equivalent (or free) zero or
5070 /// sign extensions.
5071 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5072   assert(!Val->use_empty() && "Input must have at least one use");
5073   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5074   bool IsSExt = isa<SExtInst>(FirstUser);
5075   Type *ExtTy = FirstUser->getType();
5076   for (const User *U : Val->users()) {
5077     const Instruction *UI = cast<Instruction>(U);
5078     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5079       return false;
5080     Type *CurTy = UI->getType();
5081     // Same input and output types: Same instruction after CSE.
5082     if (CurTy == ExtTy)
5083       continue;
5084 
5085     // If IsSExt is true, we are in this situation:
5086     // a = Val
5087     // b = sext ty1 a to ty2
5088     // c = sext ty1 a to ty3
5089     // Assuming ty2 is shorter than ty3, this could be turned into:
5090     // a = Val
5091     // b = sext ty1 a to ty2
5092     // c = sext ty2 b to ty3
5093     // However, the last sext is not free.
5094     if (IsSExt)
5095       return false;
5096 
5097     // This is a ZExt, maybe this is free to extend from one type to another.
5098     // In that case, we would not account for a different use.
5099     Type *NarrowTy;
5100     Type *LargeTy;
5101     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5102         CurTy->getScalarType()->getIntegerBitWidth()) {
5103       NarrowTy = CurTy;
5104       LargeTy = ExtTy;
5105     } else {
5106       NarrowTy = ExtTy;
5107       LargeTy = CurTy;
5108     }
5109 
5110     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5111       return false;
5112   }
5113   // All uses are the same or can be derived from one another for free.
5114   return true;
5115 }
5116 
5117 /// Try to speculatively promote extensions in \p Exts and continue
5118 /// promoting through newly promoted operands recursively as far as doing so is
5119 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5120 /// When some promotion happened, \p TPT contains the proper state to revert
5121 /// them.
5122 ///
5123 /// \return true if some promotion happened, false otherwise.
5124 bool CodeGenPrepare::tryToPromoteExts(
5125     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5126     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5127     unsigned CreatedInstsCost) {
5128   bool Promoted = false;
5129 
5130   // Iterate over all the extensions to try to promote them.
5131   for (auto I : Exts) {
5132     // Early check if we directly have ext(load).
5133     if (isa<LoadInst>(I->getOperand(0))) {
5134       ProfitablyMovedExts.push_back(I);
5135       continue;
5136     }
5137 
5138     // Check whether or not we want to do any promotion.  The reason we have
5139     // this check inside the for loop is to catch the case where an extension
5140     // is directly fed by a load because in such case the extension can be moved
5141     // up without any promotion on its operands.
5142     if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5143       return false;
5144 
5145     // Get the action to perform the promotion.
5146     TypePromotionHelper::Action TPH =
5147         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5148     // Check if we can promote.
5149     if (!TPH) {
5150       // Save the current extension as we cannot move up through its operand.
5151       ProfitablyMovedExts.push_back(I);
5152       continue;
5153     }
5154 
5155     // Save the current state.
5156     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5157         TPT.getRestorationPoint();
5158     SmallVector<Instruction *, 4> NewExts;
5159     unsigned NewCreatedInstsCost = 0;
5160     unsigned ExtCost = !TLI->isExtFree(I);
5161     // Promote.
5162     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5163                              &NewExts, nullptr, *TLI);
5164     assert(PromotedVal &&
5165            "TypePromotionHelper should have filtered out those cases");
5166 
5167     // We would be able to merge only one extension in a load.
5168     // Therefore, if we have more than 1 new extension we heuristically
5169     // cut this search path, because it means we degrade the code quality.
5170     // With exactly 2, the transformation is neutral, because we will merge
5171     // one extension but leave one. However, we optimistically keep going,
5172     // because the new extension may be removed too.
5173     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5174     // FIXME: It would be possible to propagate a negative value instead of
5175     // conservatively ceiling it to 0.
5176     TotalCreatedInstsCost =
5177         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5178     if (!StressExtLdPromotion &&
5179         (TotalCreatedInstsCost > 1 ||
5180          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5181       // This promotion is not profitable, rollback to the previous state, and
5182       // save the current extension in ProfitablyMovedExts as the latest
5183       // speculative promotion turned out to be unprofitable.
5184       TPT.rollback(LastKnownGood);
5185       ProfitablyMovedExts.push_back(I);
5186       continue;
5187     }
5188     // Continue promoting NewExts as far as doing so is profitable.
5189     SmallVector<Instruction *, 2> NewlyMovedExts;
5190     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5191     bool NewPromoted = false;
5192     for (auto ExtInst : NewlyMovedExts) {
5193       Instruction *MovedExt = cast<Instruction>(ExtInst);
5194       Value *ExtOperand = MovedExt->getOperand(0);
5195       // If we have reached to a load, we need this extra profitability check
5196       // as it could potentially be merged into an ext(load).
5197       if (isa<LoadInst>(ExtOperand) &&
5198           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5199             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5200         continue;
5201 
5202       ProfitablyMovedExts.push_back(MovedExt);
5203       NewPromoted = true;
5204     }
5205 
5206     // If none of speculative promotions for NewExts is profitable, rollback
5207     // and save the current extension (I) as the last profitable extension.
5208     if (!NewPromoted) {
5209       TPT.rollback(LastKnownGood);
5210       ProfitablyMovedExts.push_back(I);
5211       continue;
5212     }
5213     // The promotion is profitable.
5214     Promoted = true;
5215   }
5216   return Promoted;
5217 }
5218 
5219 /// Merging redundant sexts when one is dominating the other.
5220 bool CodeGenPrepare::mergeSExts(Function &F, DominatorTree &DT) {
5221   bool Changed = false;
5222   for (auto &Entry : ValToSExtendedUses) {
5223     SExts &Insts = Entry.second;
5224     SExts CurPts;
5225     for (Instruction *Inst : Insts) {
5226       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5227           Inst->getOperand(0) != Entry.first)
5228         continue;
5229       bool inserted = false;
5230       for (auto &Pt : CurPts) {
5231         if (DT.dominates(Inst, Pt)) {
5232           Pt->replaceAllUsesWith(Inst);
5233           RemovedInsts.insert(Pt);
5234           Pt->removeFromParent();
5235           Pt = Inst;
5236           inserted = true;
5237           Changed = true;
5238           break;
5239         }
5240         if (!DT.dominates(Pt, Inst))
5241           // Give up if we need to merge in a common dominator as the
5242           // experiments show it is not profitable.
5243           continue;
5244         Inst->replaceAllUsesWith(Pt);
5245         RemovedInsts.insert(Inst);
5246         Inst->removeFromParent();
5247         inserted = true;
5248         Changed = true;
5249         break;
5250       }
5251       if (!inserted)
5252         CurPts.push_back(Inst);
5253     }
5254   }
5255   return Changed;
5256 }
5257 
5258 // Spliting large data structures so that the GEPs accessing them can have
5259 // smaller offsets so that they can be sunk to the same blocks as their users.
5260 // For example, a large struct starting from %base is splitted into two parts
5261 // where the second part starts from %new_base.
5262 //
5263 // Before:
5264 // BB0:
5265 //   %base     =
5266 //
5267 // BB1:
5268 //   %gep0     = gep %base, off0
5269 //   %gep1     = gep %base, off1
5270 //   %gep2     = gep %base, off2
5271 //
5272 // BB2:
5273 //   %load1    = load %gep0
5274 //   %load2    = load %gep1
5275 //   %load3    = load %gep2
5276 //
5277 // After:
5278 // BB0:
5279 //   %base     =
5280 //   %new_base = gep %base, off0
5281 //
5282 // BB1:
5283 //   %new_gep0 = %new_base
5284 //   %new_gep1 = gep %new_base, off1 - off0
5285 //   %new_gep2 = gep %new_base, off2 - off0
5286 //
5287 // BB2:
5288 //   %load1    = load i32, i32* %new_gep0
5289 //   %load2    = load i32, i32* %new_gep1
5290 //   %load3    = load i32, i32* %new_gep2
5291 //
5292 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5293 // their offsets are smaller enough to fit into the addressing mode.
5294 bool CodeGenPrepare::splitLargeGEPOffsets() {
5295   bool Changed = false;
5296   for (auto &Entry : LargeOffsetGEPMap) {
5297     Value *OldBase = Entry.first;
5298     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5299         &LargeOffsetGEPs = Entry.second;
5300     auto compareGEPOffset =
5301         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5302             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5303           if (LHS.first == RHS.first)
5304             return false;
5305           if (LHS.second != RHS.second)
5306             return LHS.second < RHS.second;
5307           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5308         };
5309     // Sorting all the GEPs of the same data structures based on the offsets.
5310     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5311     LargeOffsetGEPs.erase(
5312         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5313         LargeOffsetGEPs.end());
5314     // Skip if all the GEPs have the same offsets.
5315     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5316       continue;
5317     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5318     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5319     Value *NewBaseGEP = nullptr;
5320 
5321     auto LargeOffsetGEP = LargeOffsetGEPs.begin();
5322     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5323       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5324       int64_t Offset = LargeOffsetGEP->second;
5325       if (Offset != BaseOffset) {
5326         TargetLowering::AddrMode AddrMode;
5327         AddrMode.BaseOffs = Offset - BaseOffset;
5328         // The result type of the GEP might not be the type of the memory
5329         // access.
5330         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5331                                         GEP->getResultElementType(),
5332                                         GEP->getAddressSpace())) {
5333           // We need to create a new base if the offset to the current base is
5334           // too large to fit into the addressing mode. So, a very large struct
5335           // may be splitted into several parts.
5336           BaseGEP = GEP;
5337           BaseOffset = Offset;
5338           NewBaseGEP = nullptr;
5339         }
5340       }
5341 
5342       // Generate a new GEP to replace the current one.
5343       LLVMContext &Ctx = GEP->getContext();
5344       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5345       Type *I8PtrTy =
5346           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5347       Type *I8Ty = Type::getInt8Ty(Ctx);
5348 
5349       if (!NewBaseGEP) {
5350         // Create a new base if we don't have one yet.  Find the insertion
5351         // pointer for the new base first.
5352         BasicBlock::iterator NewBaseInsertPt;
5353         BasicBlock *NewBaseInsertBB;
5354         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5355           // If the base of the struct is an instruction, the new base will be
5356           // inserted close to it.
5357           NewBaseInsertBB = BaseI->getParent();
5358           if (isa<PHINode>(BaseI))
5359             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5360           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5361             NewBaseInsertBB =
5362                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5363             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5364           } else
5365             NewBaseInsertPt = std::next(BaseI->getIterator());
5366         } else {
5367           // If the current base is an argument or global value, the new base
5368           // will be inserted to the entry block.
5369           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5370           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5371         }
5372         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5373         // Create a new base.
5374         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5375         NewBaseGEP = OldBase;
5376         if (NewBaseGEP->getType() != I8PtrTy)
5377           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5378         NewBaseGEP =
5379             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5380         NewGEPBases.insert(NewBaseGEP);
5381       }
5382 
5383       IRBuilder<> Builder(GEP);
5384       Value *NewGEP = NewBaseGEP;
5385       if (Offset == BaseOffset) {
5386         if (GEP->getType() != I8PtrTy)
5387           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5388       } else {
5389         // Calculate the new offset for the new GEP.
5390         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5391         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5392 
5393         if (GEP->getType() != I8PtrTy)
5394           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5395       }
5396       GEP->replaceAllUsesWith(NewGEP);
5397       LargeOffsetGEPID.erase(GEP);
5398       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5399       GEP->eraseFromParent();
5400       Changed = true;
5401     }
5402   }
5403   return Changed;
5404 }
5405 
5406 /// Return true, if an ext(load) can be formed from an extension in
5407 /// \p MovedExts.
5408 bool CodeGenPrepare::canFormExtLd(
5409     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
5410     Instruction *&Inst, bool HasPromoted) {
5411   for (auto *MovedExtInst : MovedExts) {
5412     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
5413       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
5414       Inst = MovedExtInst;
5415       break;
5416     }
5417   }
5418   if (!LI)
5419     return false;
5420 
5421   // If they're already in the same block, there's nothing to do.
5422   // Make the cheap checks first if we did not promote.
5423   // If we promoted, we need to check if it is indeed profitable.
5424   if (!HasPromoted && LI->getParent() == Inst->getParent())
5425     return false;
5426 
5427   return TLI->isExtLoad(LI, Inst, *DL);
5428 }
5429 
5430 /// Move a zext or sext fed by a load into the same basic block as the load,
5431 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
5432 /// extend into the load.
5433 ///
5434 /// E.g.,
5435 /// \code
5436 /// %ld = load i32* %addr
5437 /// %add = add nuw i32 %ld, 4
5438 /// %zext = zext i32 %add to i64
5439 // \endcode
5440 /// =>
5441 /// \code
5442 /// %ld = load i32* %addr
5443 /// %zext = zext i32 %ld to i64
5444 /// %add = add nuw i64 %zext, 4
5445 /// \encode
5446 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
5447 /// allow us to match zext(load i32*) to i64.
5448 ///
5449 /// Also, try to promote the computations used to obtain a sign extended
5450 /// value used into memory accesses.
5451 /// E.g.,
5452 /// \code
5453 /// a = add nsw i32 b, 3
5454 /// d = sext i32 a to i64
5455 /// e = getelementptr ..., i64 d
5456 /// \endcode
5457 /// =>
5458 /// \code
5459 /// f = sext i32 b to i64
5460 /// a = add nsw i64 f, 3
5461 /// e = getelementptr ..., i64 a
5462 /// \endcode
5463 ///
5464 /// \p Inst[in/out] the extension may be modified during the process if some
5465 /// promotions apply.
5466 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
5467   // ExtLoad formation and address type promotion infrastructure requires TLI to
5468   // be effective.
5469   if (!TLI)
5470     return false;
5471 
5472   bool AllowPromotionWithoutCommonHeader = false;
5473   /// See if it is an interesting sext operations for the address type
5474   /// promotion before trying to promote it, e.g., the ones with the right
5475   /// type and used in memory accesses.
5476   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
5477       *Inst, AllowPromotionWithoutCommonHeader);
5478   TypePromotionTransaction TPT(RemovedInsts);
5479   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5480       TPT.getRestorationPoint();
5481   SmallVector<Instruction *, 1> Exts;
5482   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
5483   Exts.push_back(Inst);
5484 
5485   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
5486 
5487   // Look for a load being extended.
5488   LoadInst *LI = nullptr;
5489   Instruction *ExtFedByLoad;
5490 
5491   // Try to promote a chain of computation if it allows to form an extended
5492   // load.
5493   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
5494     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
5495     TPT.commit();
5496     // Move the extend into the same block as the load
5497     ExtFedByLoad->moveAfter(LI);
5498     // CGP does not check if the zext would be speculatively executed when moved
5499     // to the same basic block as the load. Preserving its original location
5500     // would pessimize the debugging experience, as well as negatively impact
5501     // the quality of sample pgo. We don't want to use "line 0" as that has a
5502     // size cost in the line-table section and logically the zext can be seen as
5503     // part of the load. Therefore we conservatively reuse the same debug
5504     // location for the load and the zext.
5505     ExtFedByLoad->setDebugLoc(LI->getDebugLoc());
5506     ++NumExtsMoved;
5507     Inst = ExtFedByLoad;
5508     return true;
5509   }
5510 
5511   // Continue promoting SExts if known as considerable depending on targets.
5512   if (ATPConsiderable &&
5513       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
5514                                   HasPromoted, TPT, SpeculativelyMovedExts))
5515     return true;
5516 
5517   TPT.rollback(LastKnownGood);
5518   return false;
5519 }
5520 
5521 // Perform address type promotion if doing so is profitable.
5522 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
5523 // instructions that sign extended the same initial value. However, if
5524 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
5525 // extension is just profitable.
5526 bool CodeGenPrepare::performAddressTypePromotion(
5527     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
5528     bool HasPromoted, TypePromotionTransaction &TPT,
5529     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
5530   bool Promoted = false;
5531   SmallPtrSet<Instruction *, 1> UnhandledExts;
5532   bool AllSeenFirst = true;
5533   for (auto I : SpeculativelyMovedExts) {
5534     Value *HeadOfChain = I->getOperand(0);
5535     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
5536         SeenChainsForSExt.find(HeadOfChain);
5537     // If there is an unhandled SExt which has the same header, try to promote
5538     // it as well.
5539     if (AlreadySeen != SeenChainsForSExt.end()) {
5540       if (AlreadySeen->second != nullptr)
5541         UnhandledExts.insert(AlreadySeen->second);
5542       AllSeenFirst = false;
5543     }
5544   }
5545 
5546   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
5547                         SpeculativelyMovedExts.size() == 1)) {
5548     TPT.commit();
5549     if (HasPromoted)
5550       Promoted = true;
5551     for (auto I : SpeculativelyMovedExts) {
5552       Value *HeadOfChain = I->getOperand(0);
5553       SeenChainsForSExt[HeadOfChain] = nullptr;
5554       ValToSExtendedUses[HeadOfChain].push_back(I);
5555     }
5556     // Update Inst as promotion happen.
5557     Inst = SpeculativelyMovedExts.pop_back_val();
5558   } else {
5559     // This is the first chain visited from the header, keep the current chain
5560     // as unhandled. Defer to promote this until we encounter another SExt
5561     // chain derived from the same header.
5562     for (auto I : SpeculativelyMovedExts) {
5563       Value *HeadOfChain = I->getOperand(0);
5564       SeenChainsForSExt[HeadOfChain] = Inst;
5565     }
5566     return false;
5567   }
5568 
5569   if (!AllSeenFirst && !UnhandledExts.empty())
5570     for (auto VisitedSExt : UnhandledExts) {
5571       if (RemovedInsts.count(VisitedSExt))
5572         continue;
5573       TypePromotionTransaction TPT(RemovedInsts);
5574       SmallVector<Instruction *, 1> Exts;
5575       SmallVector<Instruction *, 2> Chains;
5576       Exts.push_back(VisitedSExt);
5577       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
5578       TPT.commit();
5579       if (HasPromoted)
5580         Promoted = true;
5581       for (auto I : Chains) {
5582         Value *HeadOfChain = I->getOperand(0);
5583         // Mark this as handled.
5584         SeenChainsForSExt[HeadOfChain] = nullptr;
5585         ValToSExtendedUses[HeadOfChain].push_back(I);
5586       }
5587     }
5588   return Promoted;
5589 }
5590 
5591 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
5592   BasicBlock *DefBB = I->getParent();
5593 
5594   // If the result of a {s|z}ext and its source are both live out, rewrite all
5595   // other uses of the source with result of extension.
5596   Value *Src = I->getOperand(0);
5597   if (Src->hasOneUse())
5598     return false;
5599 
5600   // Only do this xform if truncating is free.
5601   if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
5602     return false;
5603 
5604   // Only safe to perform the optimization if the source is also defined in
5605   // this block.
5606   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
5607     return false;
5608 
5609   bool DefIsLiveOut = false;
5610   for (User *U : I->users()) {
5611     Instruction *UI = cast<Instruction>(U);
5612 
5613     // Figure out which BB this ext is used in.
5614     BasicBlock *UserBB = UI->getParent();
5615     if (UserBB == DefBB) continue;
5616     DefIsLiveOut = true;
5617     break;
5618   }
5619   if (!DefIsLiveOut)
5620     return false;
5621 
5622   // Make sure none of the uses are PHI nodes.
5623   for (User *U : Src->users()) {
5624     Instruction *UI = cast<Instruction>(U);
5625     BasicBlock *UserBB = UI->getParent();
5626     if (UserBB == DefBB) continue;
5627     // Be conservative. We don't want this xform to end up introducing
5628     // reloads just before load / store instructions.
5629     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
5630       return false;
5631   }
5632 
5633   // InsertedTruncs - Only insert one trunc in each block once.
5634   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
5635 
5636   bool MadeChange = false;
5637   for (Use &U : Src->uses()) {
5638     Instruction *User = cast<Instruction>(U.getUser());
5639 
5640     // Figure out which BB this ext is used in.
5641     BasicBlock *UserBB = User->getParent();
5642     if (UserBB == DefBB) continue;
5643 
5644     // Both src and def are live in this block. Rewrite the use.
5645     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
5646 
5647     if (!InsertedTrunc) {
5648       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
5649       assert(InsertPt != UserBB->end());
5650       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
5651       InsertedInsts.insert(InsertedTrunc);
5652     }
5653 
5654     // Replace a use of the {s|z}ext source with a use of the result.
5655     U = InsertedTrunc;
5656     ++NumExtUses;
5657     MadeChange = true;
5658   }
5659 
5660   return MadeChange;
5661 }
5662 
5663 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
5664 // just after the load if the target can fold this into one extload instruction,
5665 // with the hope of eliminating some of the other later "and" instructions using
5666 // the loaded value.  "and"s that are made trivially redundant by the insertion
5667 // of the new "and" are removed by this function, while others (e.g. those whose
5668 // path from the load goes through a phi) are left for isel to potentially
5669 // remove.
5670 //
5671 // For example:
5672 //
5673 // b0:
5674 //   x = load i32
5675 //   ...
5676 // b1:
5677 //   y = and x, 0xff
5678 //   z = use y
5679 //
5680 // becomes:
5681 //
5682 // b0:
5683 //   x = load i32
5684 //   x' = and x, 0xff
5685 //   ...
5686 // b1:
5687 //   z = use x'
5688 //
5689 // whereas:
5690 //
5691 // b0:
5692 //   x1 = load i32
5693 //   ...
5694 // b1:
5695 //   x2 = load i32
5696 //   ...
5697 // b2:
5698 //   x = phi x1, x2
5699 //   y = and x, 0xff
5700 //
5701 // becomes (after a call to optimizeLoadExt for each load):
5702 //
5703 // b0:
5704 //   x1 = load i32
5705 //   x1' = and x1, 0xff
5706 //   ...
5707 // b1:
5708 //   x2 = load i32
5709 //   x2' = and x2, 0xff
5710 //   ...
5711 // b2:
5712 //   x = phi x1', x2'
5713 //   y = and x, 0xff
5714 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
5715   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
5716     return false;
5717 
5718   // Skip loads we've already transformed.
5719   if (Load->hasOneUse() &&
5720       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
5721     return false;
5722 
5723   // Look at all uses of Load, looking through phis, to determine how many bits
5724   // of the loaded value are needed.
5725   SmallVector<Instruction *, 8> WorkList;
5726   SmallPtrSet<Instruction *, 16> Visited;
5727   SmallVector<Instruction *, 8> AndsToMaybeRemove;
5728   for (auto *U : Load->users())
5729     WorkList.push_back(cast<Instruction>(U));
5730 
5731   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
5732   unsigned BitWidth = LoadResultVT.getSizeInBits();
5733   APInt DemandBits(BitWidth, 0);
5734   APInt WidestAndBits(BitWidth, 0);
5735 
5736   while (!WorkList.empty()) {
5737     Instruction *I = WorkList.back();
5738     WorkList.pop_back();
5739 
5740     // Break use-def graph loops.
5741     if (!Visited.insert(I).second)
5742       continue;
5743 
5744     // For a PHI node, push all of its users.
5745     if (auto *Phi = dyn_cast<PHINode>(I)) {
5746       for (auto *U : Phi->users())
5747         WorkList.push_back(cast<Instruction>(U));
5748       continue;
5749     }
5750 
5751     switch (I->getOpcode()) {
5752     case Instruction::And: {
5753       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
5754       if (!AndC)
5755         return false;
5756       APInt AndBits = AndC->getValue();
5757       DemandBits |= AndBits;
5758       // Keep track of the widest and mask we see.
5759       if (AndBits.ugt(WidestAndBits))
5760         WidestAndBits = AndBits;
5761       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
5762         AndsToMaybeRemove.push_back(I);
5763       break;
5764     }
5765 
5766     case Instruction::Shl: {
5767       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
5768       if (!ShlC)
5769         return false;
5770       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
5771       DemandBits.setLowBits(BitWidth - ShiftAmt);
5772       break;
5773     }
5774 
5775     case Instruction::Trunc: {
5776       EVT TruncVT = TLI->getValueType(*DL, I->getType());
5777       unsigned TruncBitWidth = TruncVT.getSizeInBits();
5778       DemandBits.setLowBits(TruncBitWidth);
5779       break;
5780     }
5781 
5782     default:
5783       return false;
5784     }
5785   }
5786 
5787   uint32_t ActiveBits = DemandBits.getActiveBits();
5788   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
5789   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
5790   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
5791   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
5792   // followed by an AND.
5793   // TODO: Look into removing this restriction by fixing backends to either
5794   // return false for isLoadExtLegal for i1 or have them select this pattern to
5795   // a single instruction.
5796   //
5797   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
5798   // mask, since these are the only ands that will be removed by isel.
5799   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
5800       WidestAndBits != DemandBits)
5801     return false;
5802 
5803   LLVMContext &Ctx = Load->getType()->getContext();
5804   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
5805   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
5806 
5807   // Reject cases that won't be matched as extloads.
5808   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
5809       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
5810     return false;
5811 
5812   IRBuilder<> Builder(Load->getNextNode());
5813   auto *NewAnd = dyn_cast<Instruction>(
5814       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
5815   // Mark this instruction as "inserted by CGP", so that other
5816   // optimizations don't touch it.
5817   InsertedInsts.insert(NewAnd);
5818 
5819   // Replace all uses of load with new and (except for the use of load in the
5820   // new and itself).
5821   Load->replaceAllUsesWith(NewAnd);
5822   NewAnd->setOperand(0, Load);
5823 
5824   // Remove any and instructions that are now redundant.
5825   for (auto *And : AndsToMaybeRemove)
5826     // Check that the and mask is the same as the one we decided to put on the
5827     // new and.
5828     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
5829       And->replaceAllUsesWith(NewAnd);
5830       if (&*CurInstIterator == And)
5831         CurInstIterator = std::next(And->getIterator());
5832       And->eraseFromParent();
5833       ++NumAndUses;
5834     }
5835 
5836   ++NumAndsAdded;
5837   return true;
5838 }
5839 
5840 /// Check if V (an operand of a select instruction) is an expensive instruction
5841 /// that is only used once.
5842 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
5843   auto *I = dyn_cast<Instruction>(V);
5844   // If it's safe to speculatively execute, then it should not have side
5845   // effects; therefore, it's safe to sink and possibly *not* execute.
5846   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
5847          TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive;
5848 }
5849 
5850 /// Returns true if a SelectInst should be turned into an explicit branch.
5851 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
5852                                                 const TargetLowering *TLI,
5853                                                 SelectInst *SI) {
5854   // If even a predictable select is cheap, then a branch can't be cheaper.
5855   if (!TLI->isPredictableSelectExpensive())
5856     return false;
5857 
5858   // FIXME: This should use the same heuristics as IfConversion to determine
5859   // whether a select is better represented as a branch.
5860 
5861   // If metadata tells us that the select condition is obviously predictable,
5862   // then we want to replace the select with a branch.
5863   uint64_t TrueWeight, FalseWeight;
5864   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
5865     uint64_t Max = std::max(TrueWeight, FalseWeight);
5866     uint64_t Sum = TrueWeight + FalseWeight;
5867     if (Sum != 0) {
5868       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
5869       if (Probability > TLI->getPredictableBranchThreshold())
5870         return true;
5871     }
5872   }
5873 
5874   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
5875 
5876   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
5877   // comparison condition. If the compare has more than one use, there's
5878   // probably another cmov or setcc around, so it's not worth emitting a branch.
5879   if (!Cmp || !Cmp->hasOneUse())
5880     return false;
5881 
5882   // If either operand of the select is expensive and only needed on one side
5883   // of the select, we should form a branch.
5884   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
5885       sinkSelectOperand(TTI, SI->getFalseValue()))
5886     return true;
5887 
5888   return false;
5889 }
5890 
5891 /// If \p isTrue is true, return the true value of \p SI, otherwise return
5892 /// false value of \p SI. If the true/false value of \p SI is defined by any
5893 /// select instructions in \p Selects, look through the defining select
5894 /// instruction until the true/false value is not defined in \p Selects.
5895 static Value *getTrueOrFalseValue(
5896     SelectInst *SI, bool isTrue,
5897     const SmallPtrSet<const Instruction *, 2> &Selects) {
5898   Value *V;
5899 
5900   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
5901        DefSI = dyn_cast<SelectInst>(V)) {
5902     assert(DefSI->getCondition() == SI->getCondition() &&
5903            "The condition of DefSI does not match with SI");
5904     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
5905   }
5906   return V;
5907 }
5908 
5909 /// If we have a SelectInst that will likely profit from branch prediction,
5910 /// turn it into a branch.
5911 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI, bool &ModifiedDT) {
5912   // If branch conversion isn't desirable, exit early.
5913   if (DisableSelectToBranch || OptSize || !TLI)
5914     return false;
5915 
5916   // Find all consecutive select instructions that share the same condition.
5917   SmallVector<SelectInst *, 2> ASI;
5918   ASI.push_back(SI);
5919   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
5920        It != SI->getParent()->end(); ++It) {
5921     SelectInst *I = dyn_cast<SelectInst>(&*It);
5922     if (I && SI->getCondition() == I->getCondition()) {
5923       ASI.push_back(I);
5924     } else {
5925       break;
5926     }
5927   }
5928 
5929   SelectInst *LastSI = ASI.back();
5930   // Increment the current iterator to skip all the rest of select instructions
5931   // because they will be either "not lowered" or "all lowered" to branch.
5932   CurInstIterator = std::next(LastSI->getIterator());
5933 
5934   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
5935 
5936   // Can we convert the 'select' to CF ?
5937   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
5938     return false;
5939 
5940   TargetLowering::SelectSupportKind SelectKind;
5941   if (VectorCond)
5942     SelectKind = TargetLowering::VectorMaskSelect;
5943   else if (SI->getType()->isVectorTy())
5944     SelectKind = TargetLowering::ScalarCondVectorVal;
5945   else
5946     SelectKind = TargetLowering::ScalarValSelect;
5947 
5948   if (TLI->isSelectSupported(SelectKind) &&
5949       !isFormingBranchFromSelectProfitable(TTI, TLI, SI))
5950     return false;
5951 
5952   ModifiedDT = true;
5953 
5954   // Transform a sequence like this:
5955   //    start:
5956   //       %cmp = cmp uge i32 %a, %b
5957   //       %sel = select i1 %cmp, i32 %c, i32 %d
5958   //
5959   // Into:
5960   //    start:
5961   //       %cmp = cmp uge i32 %a, %b
5962   //       br i1 %cmp, label %select.true, label %select.false
5963   //    select.true:
5964   //       br label %select.end
5965   //    select.false:
5966   //       br label %select.end
5967   //    select.end:
5968   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
5969   //
5970   // In addition, we may sink instructions that produce %c or %d from
5971   // the entry block into the destination(s) of the new branch.
5972   // If the true or false blocks do not contain a sunken instruction, that
5973   // block and its branch may be optimized away. In that case, one side of the
5974   // first branch will point directly to select.end, and the corresponding PHI
5975   // predecessor block will be the start block.
5976 
5977   // First, we split the block containing the select into 2 blocks.
5978   BasicBlock *StartBlock = SI->getParent();
5979   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
5980   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
5981 
5982   // Delete the unconditional branch that was just created by the split.
5983   StartBlock->getTerminator()->eraseFromParent();
5984 
5985   // These are the new basic blocks for the conditional branch.
5986   // At least one will become an actual new basic block.
5987   BasicBlock *TrueBlock = nullptr;
5988   BasicBlock *FalseBlock = nullptr;
5989   BranchInst *TrueBranch = nullptr;
5990   BranchInst *FalseBranch = nullptr;
5991 
5992   // Sink expensive instructions into the conditional blocks to avoid executing
5993   // them speculatively.
5994   for (SelectInst *SI : ASI) {
5995     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
5996       if (TrueBlock == nullptr) {
5997         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
5998                                        EndBlock->getParent(), EndBlock);
5999         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6000         TrueBranch->setDebugLoc(SI->getDebugLoc());
6001       }
6002       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6003       TrueInst->moveBefore(TrueBranch);
6004     }
6005     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6006       if (FalseBlock == nullptr) {
6007         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6008                                         EndBlock->getParent(), EndBlock);
6009         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6010         FalseBranch->setDebugLoc(SI->getDebugLoc());
6011       }
6012       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6013       FalseInst->moveBefore(FalseBranch);
6014     }
6015   }
6016 
6017   // If there was nothing to sink, then arbitrarily choose the 'false' side
6018   // for a new input value to the PHI.
6019   if (TrueBlock == FalseBlock) {
6020     assert(TrueBlock == nullptr &&
6021            "Unexpected basic block transform while optimizing select");
6022 
6023     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6024                                     EndBlock->getParent(), EndBlock);
6025     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6026     FalseBranch->setDebugLoc(SI->getDebugLoc());
6027   }
6028 
6029   // Insert the real conditional branch based on the original condition.
6030   // If we did not create a new block for one of the 'true' or 'false' paths
6031   // of the condition, it means that side of the branch goes to the end block
6032   // directly and the path originates from the start block from the point of
6033   // view of the new PHI.
6034   BasicBlock *TT, *FT;
6035   if (TrueBlock == nullptr) {
6036     TT = EndBlock;
6037     FT = FalseBlock;
6038     TrueBlock = StartBlock;
6039   } else if (FalseBlock == nullptr) {
6040     TT = TrueBlock;
6041     FT = EndBlock;
6042     FalseBlock = StartBlock;
6043   } else {
6044     TT = TrueBlock;
6045     FT = FalseBlock;
6046   }
6047   IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI);
6048 
6049   SmallPtrSet<const Instruction *, 2> INS;
6050   INS.insert(ASI.begin(), ASI.end());
6051   // Use reverse iterator because later select may use the value of the
6052   // earlier select, and we need to propagate value through earlier select
6053   // to get the PHI operand.
6054   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6055     SelectInst *SI = *It;
6056     // The select itself is replaced with a PHI Node.
6057     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6058     PN->takeName(SI);
6059     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6060     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6061     PN->setDebugLoc(SI->getDebugLoc());
6062 
6063     SI->replaceAllUsesWith(PN);
6064     SI->eraseFromParent();
6065     INS.erase(SI);
6066     ++NumSelectsExpanded;
6067   }
6068 
6069   // Instruct OptimizeBlock to skip to the next block.
6070   CurInstIterator = StartBlock->end();
6071   return true;
6072 }
6073 
6074 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
6075   SmallVector<int, 16> Mask(SVI->getShuffleMask());
6076   int SplatElem = -1;
6077   for (unsigned i = 0; i < Mask.size(); ++i) {
6078     if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
6079       return false;
6080     SplatElem = Mask[i];
6081   }
6082 
6083   return true;
6084 }
6085 
6086 /// Some targets have expensive vector shifts if the lanes aren't all the same
6087 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
6088 /// it's often worth sinking a shufflevector splat down to its use so that
6089 /// codegen can spot all lanes are identical.
6090 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6091   BasicBlock *DefBB = SVI->getParent();
6092 
6093   // Only do this xform if variable vector shifts are particularly expensive.
6094   if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
6095     return false;
6096 
6097   // We only expect better codegen by sinking a shuffle if we can recognise a
6098   // constant splat.
6099   if (!isBroadcastShuffle(SVI))
6100     return false;
6101 
6102   // InsertedShuffles - Only insert a shuffle in each block once.
6103   DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
6104 
6105   bool MadeChange = false;
6106   for (User *U : SVI->users()) {
6107     Instruction *UI = cast<Instruction>(U);
6108 
6109     // Figure out which BB this ext is used in.
6110     BasicBlock *UserBB = UI->getParent();
6111     if (UserBB == DefBB) continue;
6112 
6113     // For now only apply this when the splat is used by a shift instruction.
6114     if (!UI->isShift()) continue;
6115 
6116     // Everything checks out, sink the shuffle if the user's block doesn't
6117     // already have a copy.
6118     Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
6119 
6120     if (!InsertedShuffle) {
6121       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6122       assert(InsertPt != UserBB->end());
6123       InsertedShuffle =
6124           new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
6125                                 SVI->getOperand(2), "", &*InsertPt);
6126     }
6127 
6128     UI->replaceUsesOfWith(SVI, InsertedShuffle);
6129     MadeChange = true;
6130   }
6131 
6132   // If we removed all uses, nuke the shuffle.
6133   if (SVI->use_empty()) {
6134     SVI->eraseFromParent();
6135     MadeChange = true;
6136   }
6137 
6138   return MadeChange;
6139 }
6140 
6141 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6142   // If the operands of I can be folded into a target instruction together with
6143   // I, duplicate and sink them.
6144   SmallVector<Use *, 4> OpsToSink;
6145   if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink))
6146     return false;
6147 
6148   // OpsToSink can contain multiple uses in a use chain (e.g.
6149   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6150   // uses must come first, which means they are sunk first, temporarily creating
6151   // invalid IR. This will be fixed once their dominated users are sunk and
6152   // updated.
6153   BasicBlock *TargetBB = I->getParent();
6154   bool Changed = false;
6155   SmallVector<Use *, 4> ToReplace;
6156   for (Use *U : OpsToSink) {
6157     auto *UI = cast<Instruction>(U->get());
6158     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6159       continue;
6160     ToReplace.push_back(U);
6161   }
6162 
6163   SmallPtrSet<Instruction *, 4> MaybeDead;
6164   for (Use *U : ToReplace) {
6165     auto *UI = cast<Instruction>(U->get());
6166     Instruction *NI = UI->clone();
6167     MaybeDead.insert(UI);
6168     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6169     NI->insertBefore(I);
6170     InsertedInsts.insert(NI);
6171     U->set(NI);
6172     Changed = true;
6173   }
6174 
6175   // Remove instructions that are dead after sinking.
6176   for (auto *I : MaybeDead)
6177     if (!I->hasNUsesOrMore(1))
6178       I->eraseFromParent();
6179 
6180   return Changed;
6181 }
6182 
6183 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6184   if (!TLI || !DL)
6185     return false;
6186 
6187   Value *Cond = SI->getCondition();
6188   Type *OldType = Cond->getType();
6189   LLVMContext &Context = Cond->getContext();
6190   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6191   unsigned RegWidth = RegType.getSizeInBits();
6192 
6193   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6194     return false;
6195 
6196   // If the register width is greater than the type width, expand the condition
6197   // of the switch instruction and each case constant to the width of the
6198   // register. By widening the type of the switch condition, subsequent
6199   // comparisons (for case comparisons) will not need to be extended to the
6200   // preferred register width, so we will potentially eliminate N-1 extends,
6201   // where N is the number of cases in the switch.
6202   auto *NewType = Type::getIntNTy(Context, RegWidth);
6203 
6204   // Zero-extend the switch condition and case constants unless the switch
6205   // condition is a function argument that is already being sign-extended.
6206   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6207   // everything instead.
6208   Instruction::CastOps ExtType = Instruction::ZExt;
6209   if (auto *Arg = dyn_cast<Argument>(Cond))
6210     if (Arg->hasSExtAttr())
6211       ExtType = Instruction::SExt;
6212 
6213   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
6214   ExtInst->insertBefore(SI);
6215   ExtInst->setDebugLoc(SI->getDebugLoc());
6216   SI->setCondition(ExtInst);
6217   for (auto Case : SI->cases()) {
6218     APInt NarrowConst = Case.getCaseValue()->getValue();
6219     APInt WideConst = (ExtType == Instruction::ZExt) ?
6220                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
6221     Case.setValue(ConstantInt::get(Context, WideConst));
6222   }
6223 
6224   return true;
6225 }
6226 
6227 
6228 namespace {
6229 
6230 /// Helper class to promote a scalar operation to a vector one.
6231 /// This class is used to move downward extractelement transition.
6232 /// E.g.,
6233 /// a = vector_op <2 x i32>
6234 /// b = extractelement <2 x i32> a, i32 0
6235 /// c = scalar_op b
6236 /// store c
6237 ///
6238 /// =>
6239 /// a = vector_op <2 x i32>
6240 /// c = vector_op a (equivalent to scalar_op on the related lane)
6241 /// * d = extractelement <2 x i32> c, i32 0
6242 /// * store d
6243 /// Assuming both extractelement and store can be combine, we get rid of the
6244 /// transition.
6245 class VectorPromoteHelper {
6246   /// DataLayout associated with the current module.
6247   const DataLayout &DL;
6248 
6249   /// Used to perform some checks on the legality of vector operations.
6250   const TargetLowering &TLI;
6251 
6252   /// Used to estimated the cost of the promoted chain.
6253   const TargetTransformInfo &TTI;
6254 
6255   /// The transition being moved downwards.
6256   Instruction *Transition;
6257 
6258   /// The sequence of instructions to be promoted.
6259   SmallVector<Instruction *, 4> InstsToBePromoted;
6260 
6261   /// Cost of combining a store and an extract.
6262   unsigned StoreExtractCombineCost;
6263 
6264   /// Instruction that will be combined with the transition.
6265   Instruction *CombineInst = nullptr;
6266 
6267   /// The instruction that represents the current end of the transition.
6268   /// Since we are faking the promotion until we reach the end of the chain
6269   /// of computation, we need a way to get the current end of the transition.
6270   Instruction *getEndOfTransition() const {
6271     if (InstsToBePromoted.empty())
6272       return Transition;
6273     return InstsToBePromoted.back();
6274   }
6275 
6276   /// Return the index of the original value in the transition.
6277   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
6278   /// c, is at index 0.
6279   unsigned getTransitionOriginalValueIdx() const {
6280     assert(isa<ExtractElementInst>(Transition) &&
6281            "Other kind of transitions are not supported yet");
6282     return 0;
6283   }
6284 
6285   /// Return the index of the index in the transition.
6286   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
6287   /// is at index 1.
6288   unsigned getTransitionIdx() const {
6289     assert(isa<ExtractElementInst>(Transition) &&
6290            "Other kind of transitions are not supported yet");
6291     return 1;
6292   }
6293 
6294   /// Get the type of the transition.
6295   /// This is the type of the original value.
6296   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
6297   /// transition is <2 x i32>.
6298   Type *getTransitionType() const {
6299     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
6300   }
6301 
6302   /// Promote \p ToBePromoted by moving \p Def downward through.
6303   /// I.e., we have the following sequence:
6304   /// Def = Transition <ty1> a to <ty2>
6305   /// b = ToBePromoted <ty2> Def, ...
6306   /// =>
6307   /// b = ToBePromoted <ty1> a, ...
6308   /// Def = Transition <ty1> ToBePromoted to <ty2>
6309   void promoteImpl(Instruction *ToBePromoted);
6310 
6311   /// Check whether or not it is profitable to promote all the
6312   /// instructions enqueued to be promoted.
6313   bool isProfitableToPromote() {
6314     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
6315     unsigned Index = isa<ConstantInt>(ValIdx)
6316                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
6317                          : -1;
6318     Type *PromotedType = getTransitionType();
6319 
6320     StoreInst *ST = cast<StoreInst>(CombineInst);
6321     unsigned AS = ST->getPointerAddressSpace();
6322     unsigned Align = ST->getAlignment();
6323     // Check if this store is supported.
6324     if (!TLI.allowsMisalignedMemoryAccesses(
6325             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
6326             Align)) {
6327       // If this is not supported, there is no way we can combine
6328       // the extract with the store.
6329       return false;
6330     }
6331 
6332     // The scalar chain of computation has to pay for the transition
6333     // scalar to vector.
6334     // The vector chain has to account for the combining cost.
6335     uint64_t ScalarCost =
6336         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
6337     uint64_t VectorCost = StoreExtractCombineCost;
6338     for (const auto &Inst : InstsToBePromoted) {
6339       // Compute the cost.
6340       // By construction, all instructions being promoted are arithmetic ones.
6341       // Moreover, one argument is a constant that can be viewed as a splat
6342       // constant.
6343       Value *Arg0 = Inst->getOperand(0);
6344       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
6345                             isa<ConstantFP>(Arg0);
6346       TargetTransformInfo::OperandValueKind Arg0OVK =
6347           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6348                          : TargetTransformInfo::OK_AnyValue;
6349       TargetTransformInfo::OperandValueKind Arg1OVK =
6350           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
6351                           : TargetTransformInfo::OK_AnyValue;
6352       ScalarCost += TTI.getArithmeticInstrCost(
6353           Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK);
6354       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
6355                                                Arg0OVK, Arg1OVK);
6356     }
6357     LLVM_DEBUG(
6358         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
6359                << ScalarCost << "\nVector: " << VectorCost << '\n');
6360     return ScalarCost > VectorCost;
6361   }
6362 
6363   /// Generate a constant vector with \p Val with the same
6364   /// number of elements as the transition.
6365   /// \p UseSplat defines whether or not \p Val should be replicated
6366   /// across the whole vector.
6367   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
6368   /// otherwise we generate a vector with as many undef as possible:
6369   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
6370   /// used at the index of the extract.
6371   Value *getConstantVector(Constant *Val, bool UseSplat) const {
6372     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
6373     if (!UseSplat) {
6374       // If we cannot determine where the constant must be, we have to
6375       // use a splat constant.
6376       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
6377       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
6378         ExtractIdx = CstVal->getSExtValue();
6379       else
6380         UseSplat = true;
6381     }
6382 
6383     unsigned End = getTransitionType()->getVectorNumElements();
6384     if (UseSplat)
6385       return ConstantVector::getSplat(End, Val);
6386 
6387     SmallVector<Constant *, 4> ConstVec;
6388     UndefValue *UndefVal = UndefValue::get(Val->getType());
6389     for (unsigned Idx = 0; Idx != End; ++Idx) {
6390       if (Idx == ExtractIdx)
6391         ConstVec.push_back(Val);
6392       else
6393         ConstVec.push_back(UndefVal);
6394     }
6395     return ConstantVector::get(ConstVec);
6396   }
6397 
6398   /// Check if promoting to a vector type an operand at \p OperandIdx
6399   /// in \p Use can trigger undefined behavior.
6400   static bool canCauseUndefinedBehavior(const Instruction *Use,
6401                                         unsigned OperandIdx) {
6402     // This is not safe to introduce undef when the operand is on
6403     // the right hand side of a division-like instruction.
6404     if (OperandIdx != 1)
6405       return false;
6406     switch (Use->getOpcode()) {
6407     default:
6408       return false;
6409     case Instruction::SDiv:
6410     case Instruction::UDiv:
6411     case Instruction::SRem:
6412     case Instruction::URem:
6413       return true;
6414     case Instruction::FDiv:
6415     case Instruction::FRem:
6416       return !Use->hasNoNaNs();
6417     }
6418     llvm_unreachable(nullptr);
6419   }
6420 
6421 public:
6422   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
6423                       const TargetTransformInfo &TTI, Instruction *Transition,
6424                       unsigned CombineCost)
6425       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
6426         StoreExtractCombineCost(CombineCost) {
6427     assert(Transition && "Do not know how to promote null");
6428   }
6429 
6430   /// Check if we can promote \p ToBePromoted to \p Type.
6431   bool canPromote(const Instruction *ToBePromoted) const {
6432     // We could support CastInst too.
6433     return isa<BinaryOperator>(ToBePromoted);
6434   }
6435 
6436   /// Check if it is profitable to promote \p ToBePromoted
6437   /// by moving downward the transition through.
6438   bool shouldPromote(const Instruction *ToBePromoted) const {
6439     // Promote only if all the operands can be statically expanded.
6440     // Indeed, we do not want to introduce any new kind of transitions.
6441     for (const Use &U : ToBePromoted->operands()) {
6442       const Value *Val = U.get();
6443       if (Val == getEndOfTransition()) {
6444         // If the use is a division and the transition is on the rhs,
6445         // we cannot promote the operation, otherwise we may create a
6446         // division by zero.
6447         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
6448           return false;
6449         continue;
6450       }
6451       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
6452           !isa<ConstantFP>(Val))
6453         return false;
6454     }
6455     // Check that the resulting operation is legal.
6456     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
6457     if (!ISDOpcode)
6458       return false;
6459     return StressStoreExtract ||
6460            TLI.isOperationLegalOrCustom(
6461                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
6462   }
6463 
6464   /// Check whether or not \p Use can be combined
6465   /// with the transition.
6466   /// I.e., is it possible to do Use(Transition) => AnotherUse?
6467   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
6468 
6469   /// Record \p ToBePromoted as part of the chain to be promoted.
6470   void enqueueForPromotion(Instruction *ToBePromoted) {
6471     InstsToBePromoted.push_back(ToBePromoted);
6472   }
6473 
6474   /// Set the instruction that will be combined with the transition.
6475   void recordCombineInstruction(Instruction *ToBeCombined) {
6476     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
6477     CombineInst = ToBeCombined;
6478   }
6479 
6480   /// Promote all the instructions enqueued for promotion if it is
6481   /// is profitable.
6482   /// \return True if the promotion happened, false otherwise.
6483   bool promote() {
6484     // Check if there is something to promote.
6485     // Right now, if we do not have anything to combine with,
6486     // we assume the promotion is not profitable.
6487     if (InstsToBePromoted.empty() || !CombineInst)
6488       return false;
6489 
6490     // Check cost.
6491     if (!StressStoreExtract && !isProfitableToPromote())
6492       return false;
6493 
6494     // Promote.
6495     for (auto &ToBePromoted : InstsToBePromoted)
6496       promoteImpl(ToBePromoted);
6497     InstsToBePromoted.clear();
6498     return true;
6499   }
6500 };
6501 
6502 } // end anonymous namespace
6503 
6504 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
6505   // At this point, we know that all the operands of ToBePromoted but Def
6506   // can be statically promoted.
6507   // For Def, we need to use its parameter in ToBePromoted:
6508   // b = ToBePromoted ty1 a
6509   // Def = Transition ty1 b to ty2
6510   // Move the transition down.
6511   // 1. Replace all uses of the promoted operation by the transition.
6512   // = ... b => = ... Def.
6513   assert(ToBePromoted->getType() == Transition->getType() &&
6514          "The type of the result of the transition does not match "
6515          "the final type");
6516   ToBePromoted->replaceAllUsesWith(Transition);
6517   // 2. Update the type of the uses.
6518   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
6519   Type *TransitionTy = getTransitionType();
6520   ToBePromoted->mutateType(TransitionTy);
6521   // 3. Update all the operands of the promoted operation with promoted
6522   // operands.
6523   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
6524   for (Use &U : ToBePromoted->operands()) {
6525     Value *Val = U.get();
6526     Value *NewVal = nullptr;
6527     if (Val == Transition)
6528       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
6529     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
6530              isa<ConstantFP>(Val)) {
6531       // Use a splat constant if it is not safe to use undef.
6532       NewVal = getConstantVector(
6533           cast<Constant>(Val),
6534           isa<UndefValue>(Val) ||
6535               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
6536     } else
6537       llvm_unreachable("Did you modified shouldPromote and forgot to update "
6538                        "this?");
6539     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
6540   }
6541   Transition->moveAfter(ToBePromoted);
6542   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
6543 }
6544 
6545 /// Some targets can do store(extractelement) with one instruction.
6546 /// Try to push the extractelement towards the stores when the target
6547 /// has this feature and this is profitable.
6548 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
6549   unsigned CombineCost = std::numeric_limits<unsigned>::max();
6550   if (DisableStoreExtract || !TLI ||
6551       (!StressStoreExtract &&
6552        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
6553                                        Inst->getOperand(1), CombineCost)))
6554     return false;
6555 
6556   // At this point we know that Inst is a vector to scalar transition.
6557   // Try to move it down the def-use chain, until:
6558   // - We can combine the transition with its single use
6559   //   => we got rid of the transition.
6560   // - We escape the current basic block
6561   //   => we would need to check that we are moving it at a cheaper place and
6562   //      we do not do that for now.
6563   BasicBlock *Parent = Inst->getParent();
6564   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
6565   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
6566   // If the transition has more than one use, assume this is not going to be
6567   // beneficial.
6568   while (Inst->hasOneUse()) {
6569     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
6570     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
6571 
6572     if (ToBePromoted->getParent() != Parent) {
6573       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
6574                         << ToBePromoted->getParent()->getName()
6575                         << ") than the transition (" << Parent->getName()
6576                         << ").\n");
6577       return false;
6578     }
6579 
6580     if (VPH.canCombine(ToBePromoted)) {
6581       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
6582                         << "will be combined with: " << *ToBePromoted << '\n');
6583       VPH.recordCombineInstruction(ToBePromoted);
6584       bool Changed = VPH.promote();
6585       NumStoreExtractExposed += Changed;
6586       return Changed;
6587     }
6588 
6589     LLVM_DEBUG(dbgs() << "Try promoting.\n");
6590     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
6591       return false;
6592 
6593     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
6594 
6595     VPH.enqueueForPromotion(ToBePromoted);
6596     Inst = ToBePromoted;
6597   }
6598   return false;
6599 }
6600 
6601 /// For the instruction sequence of store below, F and I values
6602 /// are bundled together as an i64 value before being stored into memory.
6603 /// Sometimes it is more efficient to generate separate stores for F and I,
6604 /// which can remove the bitwise instructions or sink them to colder places.
6605 ///
6606 ///   (store (or (zext (bitcast F to i32) to i64),
6607 ///              (shl (zext I to i64), 32)), addr)  -->
6608 ///   (store F, addr) and (store I, addr+4)
6609 ///
6610 /// Similarly, splitting for other merged store can also be beneficial, like:
6611 /// For pair of {i32, i32}, i64 store --> two i32 stores.
6612 /// For pair of {i32, i16}, i64 store --> two i32 stores.
6613 /// For pair of {i16, i16}, i32 store --> two i16 stores.
6614 /// For pair of {i16, i8},  i32 store --> two i16 stores.
6615 /// For pair of {i8, i8},   i16 store --> two i8 stores.
6616 ///
6617 /// We allow each target to determine specifically which kind of splitting is
6618 /// supported.
6619 ///
6620 /// The store patterns are commonly seen from the simple code snippet below
6621 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
6622 ///   void goo(const std::pair<int, float> &);
6623 ///   hoo() {
6624 ///     ...
6625 ///     goo(std::make_pair(tmp, ftmp));
6626 ///     ...
6627 ///   }
6628 ///
6629 /// Although we already have similar splitting in DAG Combine, we duplicate
6630 /// it in CodeGenPrepare to catch the case in which pattern is across
6631 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
6632 /// during code expansion.
6633 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
6634                                 const TargetLowering &TLI) {
6635   // Handle simple but common cases only.
6636   Type *StoreType = SI.getValueOperand()->getType();
6637   if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) ||
6638       DL.getTypeSizeInBits(StoreType) == 0)
6639     return false;
6640 
6641   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
6642   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
6643   if (DL.getTypeStoreSizeInBits(SplitStoreType) !=
6644       DL.getTypeSizeInBits(SplitStoreType))
6645     return false;
6646 
6647   // Match the following patterns:
6648   // (store (or (zext LValue to i64),
6649   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
6650   //  or
6651   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
6652   //            (zext LValue to i64),
6653   // Expect both operands of OR and the first operand of SHL have only
6654   // one use.
6655   Value *LValue, *HValue;
6656   if (!match(SI.getValueOperand(),
6657              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
6658                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
6659                                    m_SpecificInt(HalfValBitSize))))))
6660     return false;
6661 
6662   // Check LValue and HValue are int with size less or equal than 32.
6663   if (!LValue->getType()->isIntegerTy() ||
6664       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
6665       !HValue->getType()->isIntegerTy() ||
6666       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
6667     return false;
6668 
6669   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
6670   // as the input of target query.
6671   auto *LBC = dyn_cast<BitCastInst>(LValue);
6672   auto *HBC = dyn_cast<BitCastInst>(HValue);
6673   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
6674                   : EVT::getEVT(LValue->getType());
6675   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
6676                    : EVT::getEVT(HValue->getType());
6677   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
6678     return false;
6679 
6680   // Start to split store.
6681   IRBuilder<> Builder(SI.getContext());
6682   Builder.SetInsertPoint(&SI);
6683 
6684   // If LValue/HValue is a bitcast in another BB, create a new one in current
6685   // BB so it may be merged with the splitted stores by dag combiner.
6686   if (LBC && LBC->getParent() != SI.getParent())
6687     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
6688   if (HBC && HBC->getParent() != SI.getParent())
6689     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
6690 
6691   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
6692   auto CreateSplitStore = [&](Value *V, bool Upper) {
6693     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
6694     Value *Addr = Builder.CreateBitCast(
6695         SI.getOperand(1),
6696         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
6697     if ((IsLE && Upper) || (!IsLE && !Upper))
6698       Addr = Builder.CreateGEP(
6699           SplitStoreType, Addr,
6700           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
6701     Builder.CreateAlignedStore(
6702         V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment());
6703   };
6704 
6705   CreateSplitStore(LValue, false);
6706   CreateSplitStore(HValue, true);
6707 
6708   // Delete the old store.
6709   SI.eraseFromParent();
6710   return true;
6711 }
6712 
6713 // Return true if the GEP has two operands, the first operand is of a sequential
6714 // type, and the second operand is a constant.
6715 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
6716   gep_type_iterator I = gep_type_begin(*GEP);
6717   return GEP->getNumOperands() == 2 &&
6718       I.isSequential() &&
6719       isa<ConstantInt>(GEP->getOperand(1));
6720 }
6721 
6722 // Try unmerging GEPs to reduce liveness interference (register pressure) across
6723 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
6724 // reducing liveness interference across those edges benefits global register
6725 // allocation. Currently handles only certain cases.
6726 //
6727 // For example, unmerge %GEPI and %UGEPI as below.
6728 //
6729 // ---------- BEFORE ----------
6730 // SrcBlock:
6731 //   ...
6732 //   %GEPIOp = ...
6733 //   ...
6734 //   %GEPI = gep %GEPIOp, Idx
6735 //   ...
6736 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
6737 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
6738 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
6739 //   %UGEPI)
6740 //
6741 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
6742 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
6743 // ...
6744 //
6745 // DstBi:
6746 //   ...
6747 //   %UGEPI = gep %GEPIOp, UIdx
6748 // ...
6749 // ---------------------------
6750 //
6751 // ---------- AFTER ----------
6752 // SrcBlock:
6753 //   ... (same as above)
6754 //    (* %GEPI is still alive on the indirectbr edges)
6755 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
6756 //    unmerging)
6757 // ...
6758 //
6759 // DstBi:
6760 //   ...
6761 //   %UGEPI = gep %GEPI, (UIdx-Idx)
6762 //   ...
6763 // ---------------------------
6764 //
6765 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
6766 // no longer alive on them.
6767 //
6768 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
6769 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
6770 // not to disable further simplications and optimizations as a result of GEP
6771 // merging.
6772 //
6773 // Note this unmerging may increase the length of the data flow critical path
6774 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
6775 // between the register pressure and the length of data-flow critical
6776 // path. Restricting this to the uncommon IndirectBr case would minimize the
6777 // impact of potentially longer critical path, if any, and the impact on compile
6778 // time.
6779 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
6780                                              const TargetTransformInfo *TTI) {
6781   BasicBlock *SrcBlock = GEPI->getParent();
6782   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
6783   // (non-IndirectBr) cases exit early here.
6784   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
6785     return false;
6786   // Check that GEPI is a simple gep with a single constant index.
6787   if (!GEPSequentialConstIndexed(GEPI))
6788     return false;
6789   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
6790   // Check that GEPI is a cheap one.
6791   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType())
6792       > TargetTransformInfo::TCC_Basic)
6793     return false;
6794   Value *GEPIOp = GEPI->getOperand(0);
6795   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
6796   if (!isa<Instruction>(GEPIOp))
6797     return false;
6798   auto *GEPIOpI = cast<Instruction>(GEPIOp);
6799   if (GEPIOpI->getParent() != SrcBlock)
6800     return false;
6801   // Check that GEP is used outside the block, meaning it's alive on the
6802   // IndirectBr edge(s).
6803   if (find_if(GEPI->users(), [&](User *Usr) {
6804         if (auto *I = dyn_cast<Instruction>(Usr)) {
6805           if (I->getParent() != SrcBlock) {
6806             return true;
6807           }
6808         }
6809         return false;
6810       }) == GEPI->users().end())
6811     return false;
6812   // The second elements of the GEP chains to be unmerged.
6813   std::vector<GetElementPtrInst *> UGEPIs;
6814   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
6815   // on IndirectBr edges.
6816   for (User *Usr : GEPIOp->users()) {
6817     if (Usr == GEPI) continue;
6818     // Check if Usr is an Instruction. If not, give up.
6819     if (!isa<Instruction>(Usr))
6820       return false;
6821     auto *UI = cast<Instruction>(Usr);
6822     // Check if Usr in the same block as GEPIOp, which is fine, skip.
6823     if (UI->getParent() == SrcBlock)
6824       continue;
6825     // Check if Usr is a GEP. If not, give up.
6826     if (!isa<GetElementPtrInst>(Usr))
6827       return false;
6828     auto *UGEPI = cast<GetElementPtrInst>(Usr);
6829     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
6830     // the pointer operand to it. If so, record it in the vector. If not, give
6831     // up.
6832     if (!GEPSequentialConstIndexed(UGEPI))
6833       return false;
6834     if (UGEPI->getOperand(0) != GEPIOp)
6835       return false;
6836     if (GEPIIdx->getType() !=
6837         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
6838       return false;
6839     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6840     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType())
6841         > TargetTransformInfo::TCC_Basic)
6842       return false;
6843     UGEPIs.push_back(UGEPI);
6844   }
6845   if (UGEPIs.size() == 0)
6846     return false;
6847   // Check the materializing cost of (Uidx-Idx).
6848   for (GetElementPtrInst *UGEPI : UGEPIs) {
6849     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6850     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
6851     unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType());
6852     if (ImmCost > TargetTransformInfo::TCC_Basic)
6853       return false;
6854   }
6855   // Now unmerge between GEPI and UGEPIs.
6856   for (GetElementPtrInst *UGEPI : UGEPIs) {
6857     UGEPI->setOperand(0, GEPI);
6858     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
6859     Constant *NewUGEPIIdx =
6860         ConstantInt::get(GEPIIdx->getType(),
6861                          UGEPIIdx->getValue() - GEPIIdx->getValue());
6862     UGEPI->setOperand(1, NewUGEPIIdx);
6863     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
6864     // inbounds to avoid UB.
6865     if (!GEPI->isInBounds()) {
6866       UGEPI->setIsInBounds(false);
6867     }
6868   }
6869   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
6870   // alive on IndirectBr edges).
6871   assert(find_if(GEPIOp->users(), [&](User *Usr) {
6872         return cast<Instruction>(Usr)->getParent() != SrcBlock;
6873       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
6874   return true;
6875 }
6876 
6877 bool CodeGenPrepare::optimizeInst(Instruction *I, DominatorTree &DT,
6878                                   bool &ModifiedDT) {
6879   // Bail out if we inserted the instruction to prevent optimizations from
6880   // stepping on each other's toes.
6881   if (InsertedInsts.count(I))
6882     return false;
6883 
6884   // TODO: Move into the switch on opcode below here.
6885   if (PHINode *P = dyn_cast<PHINode>(I)) {
6886     // It is possible for very late stage optimizations (such as SimplifyCFG)
6887     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
6888     // trivial PHI, go ahead and zap it here.
6889     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
6890       LargeOffsetGEPMap.erase(P);
6891       P->replaceAllUsesWith(V);
6892       P->eraseFromParent();
6893       ++NumPHIsElim;
6894       return true;
6895     }
6896     return false;
6897   }
6898 
6899   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6900     // If the source of the cast is a constant, then this should have
6901     // already been constant folded.  The only reason NOT to constant fold
6902     // it is if something (e.g. LSR) was careful to place the constant
6903     // evaluation in a block other than then one that uses it (e.g. to hoist
6904     // the address of globals out of a loop).  If this is the case, we don't
6905     // want to forward-subst the cast.
6906     if (isa<Constant>(CI->getOperand(0)))
6907       return false;
6908 
6909     if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL))
6910       return true;
6911 
6912     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6913       /// Sink a zext or sext into its user blocks if the target type doesn't
6914       /// fit in one register
6915       if (TLI &&
6916           TLI->getTypeAction(CI->getContext(),
6917                              TLI->getValueType(*DL, CI->getType())) ==
6918               TargetLowering::TypeExpandInteger) {
6919         return SinkCast(CI);
6920       } else {
6921         bool MadeChange = optimizeExt(I);
6922         return MadeChange | optimizeExtUses(I);
6923       }
6924     }
6925     return false;
6926   }
6927 
6928   if (auto *Cmp = dyn_cast<CmpInst>(I))
6929     if (TLI && optimizeCmp(Cmp, *TLI, *DL, DT, ModifiedDT))
6930       return true;
6931 
6932   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6933     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6934     if (TLI) {
6935       bool Modified = optimizeLoadExt(LI);
6936       unsigned AS = LI->getPointerAddressSpace();
6937       Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
6938       return Modified;
6939     }
6940     return false;
6941   }
6942 
6943   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
6944     if (TLI && splitMergedValStore(*SI, *DL, *TLI))
6945       return true;
6946     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
6947     if (TLI) {
6948       unsigned AS = SI->getPointerAddressSpace();
6949       return optimizeMemoryInst(I, SI->getOperand(1),
6950                                 SI->getOperand(0)->getType(), AS);
6951     }
6952     return false;
6953   }
6954 
6955   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
6956       unsigned AS = RMW->getPointerAddressSpace();
6957       return optimizeMemoryInst(I, RMW->getPointerOperand(),
6958                                 RMW->getType(), AS);
6959   }
6960 
6961   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
6962       unsigned AS = CmpX->getPointerAddressSpace();
6963       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
6964                                 CmpX->getCompareOperand()->getType(), AS);
6965   }
6966 
6967   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
6968 
6969   if (BinOp && (BinOp->getOpcode() == Instruction::And) &&
6970       EnableAndCmpSinking && TLI)
6971     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
6972 
6973   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
6974                 BinOp->getOpcode() == Instruction::LShr)) {
6975     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
6976     if (TLI && CI && TLI->hasExtractBitsInsn())
6977       return OptimizeExtractBits(BinOp, CI, *TLI, *DL);
6978 
6979     return false;
6980   }
6981 
6982   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
6983     if (GEPI->hasAllZeroIndices()) {
6984       /// The GEP operand must be a pointer, so must its result -> BitCast
6985       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
6986                                         GEPI->getName(), GEPI);
6987       NC->setDebugLoc(GEPI->getDebugLoc());
6988       GEPI->replaceAllUsesWith(NC);
6989       GEPI->eraseFromParent();
6990       ++NumGEPsElim;
6991       optimizeInst(NC, DT, ModifiedDT);
6992       return true;
6993     }
6994     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
6995       return true;
6996     }
6997     return false;
6998   }
6999 
7000   if (tryToSinkFreeOperands(I))
7001     return true;
7002 
7003   switch (I->getOpcode()) {
7004   case Instruction::Call:
7005     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7006   case Instruction::Select:
7007     return optimizeSelectInst(cast<SelectInst>(I), ModifiedDT);
7008   case Instruction::ShuffleVector:
7009     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7010   case Instruction::Switch:
7011     return optimizeSwitchInst(cast<SwitchInst>(I));
7012   case Instruction::ExtractElement:
7013     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7014   }
7015 
7016   return false;
7017 }
7018 
7019 /// Given an OR instruction, check to see if this is a bitreverse
7020 /// idiom. If so, insert the new intrinsic and return true.
7021 static bool makeBitReverse(Instruction &I, const DataLayout &DL,
7022                            const TargetLowering &TLI) {
7023   if (!I.getType()->isIntegerTy() ||
7024       !TLI.isOperationLegalOrCustom(ISD::BITREVERSE,
7025                                     TLI.getValueType(DL, I.getType(), true)))
7026     return false;
7027 
7028   SmallVector<Instruction*, 4> Insts;
7029   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7030     return false;
7031   Instruction *LastInst = Insts.back();
7032   I.replaceAllUsesWith(LastInst);
7033   RecursivelyDeleteTriviallyDeadInstructions(&I);
7034   return true;
7035 }
7036 
7037 // In this pass we look for GEP and cast instructions that are used
7038 // across basic blocks and rewrite them to improve basic-block-at-a-time
7039 // selection.
7040 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, DominatorTree &DT,
7041                                    bool &ModifiedDT) {
7042   SunkAddrs.clear();
7043   bool MadeChange = false;
7044 
7045   CurInstIterator = BB.begin();
7046   while (CurInstIterator != BB.end()) {
7047     MadeChange |= optimizeInst(&*CurInstIterator++, DT, ModifiedDT);
7048     if (ModifiedDT)
7049       return true;
7050   }
7051 
7052   bool MadeBitReverse = true;
7053   while (TLI && MadeBitReverse) {
7054     MadeBitReverse = false;
7055     for (auto &I : reverse(BB)) {
7056       if (makeBitReverse(I, *DL, *TLI)) {
7057         MadeBitReverse = MadeChange = true;
7058         ModifiedDT = true;
7059         break;
7060       }
7061     }
7062   }
7063   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7064 
7065   return MadeChange;
7066 }
7067 
7068 // llvm.dbg.value is far away from the value then iSel may not be able
7069 // handle it properly. iSel will drop llvm.dbg.value if it can not
7070 // find a node corresponding to the value.
7071 bool CodeGenPrepare::placeDbgValues(Function &F) {
7072   bool MadeChange = false;
7073   for (BasicBlock &BB : F) {
7074     Instruction *PrevNonDbgInst = nullptr;
7075     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
7076       Instruction *Insn = &*BI++;
7077       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
7078       // Leave dbg.values that refer to an alloca alone. These
7079       // intrinsics describe the address of a variable (= the alloca)
7080       // being taken.  They should not be moved next to the alloca
7081       // (and to the beginning of the scope), but rather stay close to
7082       // where said address is used.
7083       if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
7084         PrevNonDbgInst = Insn;
7085         continue;
7086       }
7087 
7088       Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
7089       if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
7090         // If VI is a phi in a block with an EHPad terminator, we can't insert
7091         // after it.
7092         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
7093           continue;
7094         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
7095                           << *DVI << ' ' << *VI);
7096         DVI->removeFromParent();
7097         if (isa<PHINode>(VI))
7098           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
7099         else
7100           DVI->insertAfter(VI);
7101         MadeChange = true;
7102         ++NumDbgValueMoved;
7103       }
7104     }
7105   }
7106   return MadeChange;
7107 }
7108 
7109 /// Scale down both weights to fit into uint32_t.
7110 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
7111   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
7112   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
7113   NewTrue = NewTrue / Scale;
7114   NewFalse = NewFalse / Scale;
7115 }
7116 
7117 /// Some targets prefer to split a conditional branch like:
7118 /// \code
7119 ///   %0 = icmp ne i32 %a, 0
7120 ///   %1 = icmp ne i32 %b, 0
7121 ///   %or.cond = or i1 %0, %1
7122 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
7123 /// \endcode
7124 /// into multiple branch instructions like:
7125 /// \code
7126 ///   bb1:
7127 ///     %0 = icmp ne i32 %a, 0
7128 ///     br i1 %0, label %TrueBB, label %bb2
7129 ///   bb2:
7130 ///     %1 = icmp ne i32 %b, 0
7131 ///     br i1 %1, label %TrueBB, label %FalseBB
7132 /// \endcode
7133 /// This usually allows instruction selection to do even further optimizations
7134 /// and combine the compare with the branch instruction. Currently this is
7135 /// applied for targets which have "cheap" jump instructions.
7136 ///
7137 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
7138 ///
7139 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
7140   if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive())
7141     return false;
7142 
7143   bool MadeChange = false;
7144   for (auto &BB : F) {
7145     // Does this BB end with the following?
7146     //   %cond1 = icmp|fcmp|binary instruction ...
7147     //   %cond2 = icmp|fcmp|binary instruction ...
7148     //   %cond.or = or|and i1 %cond1, cond2
7149     //   br i1 %cond.or label %dest1, label %dest2"
7150     BinaryOperator *LogicOp;
7151     BasicBlock *TBB, *FBB;
7152     if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB)))
7153       continue;
7154 
7155     auto *Br1 = cast<BranchInst>(BB.getTerminator());
7156     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
7157       continue;
7158 
7159     unsigned Opc;
7160     Value *Cond1, *Cond2;
7161     if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)),
7162                              m_OneUse(m_Value(Cond2)))))
7163       Opc = Instruction::And;
7164     else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)),
7165                                  m_OneUse(m_Value(Cond2)))))
7166       Opc = Instruction::Or;
7167     else
7168       continue;
7169 
7170     if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) ||
7171         !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp()))   )
7172       continue;
7173 
7174     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
7175 
7176     // Create a new BB.
7177     auto TmpBB =
7178         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
7179                            BB.getParent(), BB.getNextNode());
7180 
7181     // Update original basic block by using the first condition directly by the
7182     // branch instruction and removing the no longer needed and/or instruction.
7183     Br1->setCondition(Cond1);
7184     LogicOp->eraseFromParent();
7185 
7186     // Depending on the condition we have to either replace the true or the
7187     // false successor of the original branch instruction.
7188     if (Opc == Instruction::And)
7189       Br1->setSuccessor(0, TmpBB);
7190     else
7191       Br1->setSuccessor(1, TmpBB);
7192 
7193     // Fill in the new basic block.
7194     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
7195     if (auto *I = dyn_cast<Instruction>(Cond2)) {
7196       I->removeFromParent();
7197       I->insertBefore(Br2);
7198     }
7199 
7200     // Update PHI nodes in both successors. The original BB needs to be
7201     // replaced in one successor's PHI nodes, because the branch comes now from
7202     // the newly generated BB (NewBB). In the other successor we need to add one
7203     // incoming edge to the PHI nodes, because both branch instructions target
7204     // now the same successor. Depending on the original branch condition
7205     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
7206     // we perform the correct update for the PHI nodes.
7207     // This doesn't change the successor order of the just created branch
7208     // instruction (or any other instruction).
7209     if (Opc == Instruction::Or)
7210       std::swap(TBB, FBB);
7211 
7212     // Replace the old BB with the new BB.
7213     for (PHINode &PN : TBB->phis()) {
7214       int i;
7215       while ((i = PN.getBasicBlockIndex(&BB)) >= 0)
7216         PN.setIncomingBlock(i, TmpBB);
7217     }
7218 
7219     // Add another incoming edge form the new BB.
7220     for (PHINode &PN : FBB->phis()) {
7221       auto *Val = PN.getIncomingValueForBlock(&BB);
7222       PN.addIncoming(Val, TmpBB);
7223     }
7224 
7225     // Update the branch weights (from SelectionDAGBuilder::
7226     // FindMergedConditions).
7227     if (Opc == Instruction::Or) {
7228       // Codegen X | Y as:
7229       // BB1:
7230       //   jmp_if_X TBB
7231       //   jmp TmpBB
7232       // TmpBB:
7233       //   jmp_if_Y TBB
7234       //   jmp FBB
7235       //
7236 
7237       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
7238       // The requirement is that
7239       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
7240       //     = TrueProb for original BB.
7241       // Assuming the original weights are A and B, one choice is to set BB1's
7242       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
7243       // assumes that
7244       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
7245       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
7246       // TmpBB, but the math is more complicated.
7247       uint64_t TrueWeight, FalseWeight;
7248       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7249         uint64_t NewTrueWeight = TrueWeight;
7250         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
7251         scaleWeights(NewTrueWeight, NewFalseWeight);
7252         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7253                          .createBranchWeights(TrueWeight, FalseWeight));
7254 
7255         NewTrueWeight = TrueWeight;
7256         NewFalseWeight = 2 * FalseWeight;
7257         scaleWeights(NewTrueWeight, NewFalseWeight);
7258         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7259                          .createBranchWeights(TrueWeight, FalseWeight));
7260       }
7261     } else {
7262       // Codegen X & Y as:
7263       // BB1:
7264       //   jmp_if_X TmpBB
7265       //   jmp FBB
7266       // TmpBB:
7267       //   jmp_if_Y TBB
7268       //   jmp FBB
7269       //
7270       //  This requires creation of TmpBB after CurBB.
7271 
7272       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
7273       // The requirement is that
7274       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
7275       //     = FalseProb for original BB.
7276       // Assuming the original weights are A and B, one choice is to set BB1's
7277       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
7278       // assumes that
7279       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
7280       uint64_t TrueWeight, FalseWeight;
7281       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
7282         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
7283         uint64_t NewFalseWeight = FalseWeight;
7284         scaleWeights(NewTrueWeight, NewFalseWeight);
7285         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
7286                          .createBranchWeights(TrueWeight, FalseWeight));
7287 
7288         NewTrueWeight = 2 * TrueWeight;
7289         NewFalseWeight = FalseWeight;
7290         scaleWeights(NewTrueWeight, NewFalseWeight);
7291         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
7292                          .createBranchWeights(TrueWeight, FalseWeight));
7293       }
7294     }
7295 
7296     ModifiedDT = true;
7297     MadeChange = true;
7298 
7299     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
7300                TmpBB->dump());
7301   }
7302   return MadeChange;
7303 }
7304