1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass munges the code in the input function to better prepare it for 11 // SelectionDAG-based code generation. This works around limitations in it's 12 // basic-block-at-a-time approach. It should eventually be removed. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/BlockFrequencyInfo.h" 22 #include "llvm/Analysis/BranchProbabilityInfo.h" 23 #include "llvm/Analysis/CFG.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/Analysis/ProfileSummaryInfo.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/MemoryBuiltins.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InlineAsm.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/MDBuilder.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Statepoint.h" 46 #include "llvm/IR/ValueHandle.h" 47 #include "llvm/IR/ValueMap.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/BranchProbability.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetLowering.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/BuildLibCalls.h" 57 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 58 #include "llvm/Transforms/Utils/Cloning.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 61 #include "llvm/Transforms/Utils/ValueMapper.h" 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "codegenprepare" 66 67 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 68 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 69 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 70 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 71 "sunken Cmps"); 72 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 73 "of sunken Casts"); 74 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 75 "computations were sunk"); 76 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 77 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 78 STATISTIC(NumAndsAdded, 79 "Number of and mask instructions added to form ext loads"); 80 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 81 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 82 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 83 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 84 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 85 86 static cl::opt<bool> DisableBranchOpts( 87 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 88 cl::desc("Disable branch optimizations in CodeGenPrepare")); 89 90 static cl::opt<bool> 91 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 92 cl::desc("Disable GC optimizations in CodeGenPrepare")); 93 94 static cl::opt<bool> DisableSelectToBranch( 95 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 96 cl::desc("Disable select to branch conversion.")); 97 98 static cl::opt<bool> AddrSinkUsingGEPs( 99 "addr-sink-using-gep", cl::Hidden, cl::init(false), 100 cl::desc("Address sinking in CGP using GEPs.")); 101 102 static cl::opt<bool> EnableAndCmpSinking( 103 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 104 cl::desc("Enable sinkinig and/cmp into branches.")); 105 106 static cl::opt<bool> DisableStoreExtract( 107 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 108 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 109 110 static cl::opt<bool> StressStoreExtract( 111 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 112 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 113 114 static cl::opt<bool> DisableExtLdPromotion( 115 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 116 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 117 "CodeGenPrepare")); 118 119 static cl::opt<bool> StressExtLdPromotion( 120 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 121 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 122 "optimization in CodeGenPrepare")); 123 124 static cl::opt<bool> DisablePreheaderProtect( 125 "disable-preheader-prot", cl::Hidden, cl::init(false), 126 cl::desc("Disable protection against removing loop preheaders")); 127 128 static cl::opt<bool> ProfileGuidedSectionPrefix( 129 "profile-guided-section-prefix", cl::Hidden, cl::init(true), 130 cl::desc("Use profile info to add section prefix for hot/cold functions")); 131 132 static cl::opt<unsigned> FreqRatioToSkipMerge( 133 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 134 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 135 "(frequency of destination block) is greater than this ratio")); 136 137 static cl::opt<bool> ForceSplitStore( 138 "force-split-store", cl::Hidden, cl::init(false), 139 cl::desc("Force store splitting no matter what the target query says.")); 140 141 namespace { 142 typedef SmallPtrSet<Instruction *, 16> SetOfInstrs; 143 typedef PointerIntPair<Type *, 1, bool> TypeIsSExt; 144 typedef DenseMap<Instruction *, TypeIsSExt> InstrToOrigTy; 145 class TypePromotionTransaction; 146 147 class CodeGenPrepare : public FunctionPass { 148 const TargetMachine *TM; 149 const TargetSubtargetInfo *SubtargetInfo; 150 const TargetLowering *TLI; 151 const TargetRegisterInfo *TRI; 152 const TargetTransformInfo *TTI; 153 const TargetLibraryInfo *TLInfo; 154 const LoopInfo *LI; 155 std::unique_ptr<BlockFrequencyInfo> BFI; 156 std::unique_ptr<BranchProbabilityInfo> BPI; 157 158 /// As we scan instructions optimizing them, this is the next instruction 159 /// to optimize. Transforms that can invalidate this should update it. 160 BasicBlock::iterator CurInstIterator; 161 162 /// Keeps track of non-local addresses that have been sunk into a block. 163 /// This allows us to avoid inserting duplicate code for blocks with 164 /// multiple load/stores of the same address. 165 ValueMap<Value*, Value*> SunkAddrs; 166 167 /// Keeps track of all instructions inserted for the current function. 168 SetOfInstrs InsertedInsts; 169 /// Keeps track of the type of the related instruction before their 170 /// promotion for the current function. 171 InstrToOrigTy PromotedInsts; 172 173 /// True if CFG is modified in any way. 174 bool ModifiedDT; 175 176 /// True if optimizing for size. 177 bool OptSize; 178 179 /// DataLayout for the Function being processed. 180 const DataLayout *DL; 181 182 public: 183 static char ID; // Pass identification, replacement for typeid 184 explicit CodeGenPrepare(const TargetMachine *TM = nullptr) 185 : FunctionPass(ID), TM(TM), TLI(nullptr), TTI(nullptr), DL(nullptr) { 186 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 187 } 188 bool runOnFunction(Function &F) override; 189 190 StringRef getPassName() const override { return "CodeGen Prepare"; } 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 // FIXME: When we can selectively preserve passes, preserve the domtree. 194 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 195 AU.addRequired<TargetLibraryInfoWrapperPass>(); 196 AU.addRequired<TargetTransformInfoWrapperPass>(); 197 AU.addRequired<LoopInfoWrapperPass>(); 198 } 199 200 private: 201 bool eliminateFallThrough(Function &F); 202 bool eliminateMostlyEmptyBlocks(Function &F); 203 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 204 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 205 void eliminateMostlyEmptyBlock(BasicBlock *BB); 206 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 207 bool isPreheader); 208 bool optimizeBlock(BasicBlock &BB, bool& ModifiedDT); 209 bool optimizeInst(Instruction *I, bool& ModifiedDT); 210 bool optimizeMemoryInst(Instruction *I, Value *Addr, 211 Type *AccessTy, unsigned AS); 212 bool optimizeInlineAsmInst(CallInst *CS); 213 bool optimizeCallInst(CallInst *CI, bool& ModifiedDT); 214 bool moveExtToFormExtLoad(Instruction *&I); 215 bool optimizeExtUses(Instruction *I); 216 bool optimizeLoadExt(LoadInst *I); 217 bool optimizeSelectInst(SelectInst *SI); 218 bool optimizeShuffleVectorInst(ShuffleVectorInst *SI); 219 bool optimizeSwitchInst(SwitchInst *CI); 220 bool optimizeExtractElementInst(Instruction *Inst); 221 bool dupRetToEnableTailCallOpts(BasicBlock *BB); 222 bool placeDbgValues(Function &F); 223 bool extLdPromotion(TypePromotionTransaction &TPT, LoadInst *&LI, 224 Instruction *&Inst, 225 const SmallVectorImpl<Instruction *> &Exts, 226 unsigned CreatedInstCost); 227 bool splitBranchCondition(Function &F); 228 bool simplifyOffsetableRelocate(Instruction &I); 229 bool splitIndirectCriticalEdges(Function &F); 230 }; 231 } 232 233 char CodeGenPrepare::ID = 0; 234 INITIALIZE_TM_PASS_BEGIN(CodeGenPrepare, "codegenprepare", 235 "Optimize for code generation", false, false) 236 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 237 INITIALIZE_TM_PASS_END(CodeGenPrepare, "codegenprepare", 238 "Optimize for code generation", false, false) 239 240 FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) { 241 return new CodeGenPrepare(TM); 242 } 243 244 bool CodeGenPrepare::runOnFunction(Function &F) { 245 if (skipFunction(F)) 246 return false; 247 248 DL = &F.getParent()->getDataLayout(); 249 250 bool EverMadeChange = false; 251 // Clear per function information. 252 InsertedInsts.clear(); 253 PromotedInsts.clear(); 254 BFI.reset(); 255 BPI.reset(); 256 257 ModifiedDT = false; 258 if (TM) { 259 SubtargetInfo = TM->getSubtargetImpl(F); 260 TLI = SubtargetInfo->getTargetLowering(); 261 TRI = SubtargetInfo->getRegisterInfo(); 262 } 263 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 264 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 265 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 266 OptSize = F.optForSize(); 267 268 if (ProfileGuidedSectionPrefix) { 269 ProfileSummaryInfo *PSI = 270 getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 271 if (PSI->isFunctionEntryHot(&F)) 272 F.setSectionPrefix(".hot"); 273 else if (PSI->isFunctionEntryCold(&F)) 274 F.setSectionPrefix(".cold"); 275 } 276 277 /// This optimization identifies DIV instructions that can be 278 /// profitably bypassed and carried out with a shorter, faster divide. 279 if (!OptSize && TLI && TLI->isSlowDivBypassed()) { 280 const DenseMap<unsigned int, unsigned int> &BypassWidths = 281 TLI->getBypassSlowDivWidths(); 282 BasicBlock* BB = &*F.begin(); 283 while (BB != nullptr) { 284 // bypassSlowDivision may create new BBs, but we don't want to reapply the 285 // optimization to those blocks. 286 BasicBlock* Next = BB->getNextNode(); 287 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 288 BB = Next; 289 } 290 } 291 292 // Eliminate blocks that contain only PHI nodes and an 293 // unconditional branch. 294 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 295 296 // llvm.dbg.value is far away from the value then iSel may not be able 297 // handle it properly. iSel will drop llvm.dbg.value if it can not 298 // find a node corresponding to the value. 299 EverMadeChange |= placeDbgValues(F); 300 301 if (!DisableBranchOpts) 302 EverMadeChange |= splitBranchCondition(F); 303 304 // Split some critical edges where one of the sources is an indirect branch, 305 // to help generate sane code for PHIs involving such edges. 306 EverMadeChange |= splitIndirectCriticalEdges(F); 307 308 bool MadeChange = true; 309 while (MadeChange) { 310 MadeChange = false; 311 for (Function::iterator I = F.begin(); I != F.end(); ) { 312 BasicBlock *BB = &*I++; 313 bool ModifiedDTOnIteration = false; 314 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 315 316 // Restart BB iteration if the dominator tree of the Function was changed 317 if (ModifiedDTOnIteration) 318 break; 319 } 320 EverMadeChange |= MadeChange; 321 } 322 323 SunkAddrs.clear(); 324 325 if (!DisableBranchOpts) { 326 MadeChange = false; 327 SmallPtrSet<BasicBlock*, 8> WorkList; 328 for (BasicBlock &BB : F) { 329 SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); 330 MadeChange |= ConstantFoldTerminator(&BB, true); 331 if (!MadeChange) continue; 332 333 for (SmallVectorImpl<BasicBlock*>::iterator 334 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 335 if (pred_begin(*II) == pred_end(*II)) 336 WorkList.insert(*II); 337 } 338 339 // Delete the dead blocks and any of their dead successors. 340 MadeChange |= !WorkList.empty(); 341 while (!WorkList.empty()) { 342 BasicBlock *BB = *WorkList.begin(); 343 WorkList.erase(BB); 344 SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); 345 346 DeleteDeadBlock(BB); 347 348 for (SmallVectorImpl<BasicBlock*>::iterator 349 II = Successors.begin(), IE = Successors.end(); II != IE; ++II) 350 if (pred_begin(*II) == pred_end(*II)) 351 WorkList.insert(*II); 352 } 353 354 // Merge pairs of basic blocks with unconditional branches, connected by 355 // a single edge. 356 if (EverMadeChange || MadeChange) 357 MadeChange |= eliminateFallThrough(F); 358 359 EverMadeChange |= MadeChange; 360 } 361 362 if (!DisableGCOpts) { 363 SmallVector<Instruction *, 2> Statepoints; 364 for (BasicBlock &BB : F) 365 for (Instruction &I : BB) 366 if (isStatepoint(I)) 367 Statepoints.push_back(&I); 368 for (auto &I : Statepoints) 369 EverMadeChange |= simplifyOffsetableRelocate(*I); 370 } 371 372 return EverMadeChange; 373 } 374 375 /// Merge basic blocks which are connected by a single edge, where one of the 376 /// basic blocks has a single successor pointing to the other basic block, 377 /// which has a single predecessor. 378 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 379 bool Changed = false; 380 // Scan all of the blocks in the function, except for the entry block. 381 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 382 BasicBlock *BB = &*I++; 383 // If the destination block has a single pred, then this is a trivial 384 // edge, just collapse it. 385 BasicBlock *SinglePred = BB->getSinglePredecessor(); 386 387 // Don't merge if BB's address is taken. 388 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 389 390 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 391 if (Term && !Term->isConditional()) { 392 Changed = true; 393 DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); 394 // Remember if SinglePred was the entry block of the function. 395 // If so, we will need to move BB back to the entry position. 396 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 397 MergeBasicBlockIntoOnlyPred(BB, nullptr); 398 399 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 400 BB->moveBefore(&BB->getParent()->getEntryBlock()); 401 402 // We have erased a block. Update the iterator. 403 I = BB->getIterator(); 404 } 405 } 406 return Changed; 407 } 408 409 /// Find a destination block from BB if BB is mergeable empty block. 410 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 411 // If this block doesn't end with an uncond branch, ignore it. 412 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 413 if (!BI || !BI->isUnconditional()) 414 return nullptr; 415 416 // If the instruction before the branch (skipping debug info) isn't a phi 417 // node, then other stuff is happening here. 418 BasicBlock::iterator BBI = BI->getIterator(); 419 if (BBI != BB->begin()) { 420 --BBI; 421 while (isa<DbgInfoIntrinsic>(BBI)) { 422 if (BBI == BB->begin()) 423 break; 424 --BBI; 425 } 426 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 427 return nullptr; 428 } 429 430 // Do not break infinite loops. 431 BasicBlock *DestBB = BI->getSuccessor(0); 432 if (DestBB == BB) 433 return nullptr; 434 435 if (!canMergeBlocks(BB, DestBB)) 436 DestBB = nullptr; 437 438 return DestBB; 439 } 440 441 // Return the unique indirectbr predecessor of a block. This may return null 442 // even if such a predecessor exists, if it's not useful for splitting. 443 // If a predecessor is found, OtherPreds will contain all other (non-indirectbr) 444 // predecessors of BB. 445 static BasicBlock * 446 findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) { 447 // If the block doesn't have any PHIs, we don't care about it, since there's 448 // no point in splitting it. 449 PHINode *PN = dyn_cast<PHINode>(BB->begin()); 450 if (!PN) 451 return nullptr; 452 453 // Verify we have exactly one IBR predecessor. 454 // Conservatively bail out if one of the other predecessors is not a "regular" 455 // terminator (that is, not a switch or a br). 456 BasicBlock *IBB = nullptr; 457 for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) { 458 BasicBlock *PredBB = PN->getIncomingBlock(Pred); 459 TerminatorInst *PredTerm = PredBB->getTerminator(); 460 switch (PredTerm->getOpcode()) { 461 case Instruction::IndirectBr: 462 if (IBB) 463 return nullptr; 464 IBB = PredBB; 465 break; 466 case Instruction::Br: 467 case Instruction::Switch: 468 OtherPreds.push_back(PredBB); 469 continue; 470 default: 471 return nullptr; 472 } 473 } 474 475 return IBB; 476 } 477 478 // Split critical edges where the source of the edge is an indirectbr 479 // instruction. This isn't always possible, but we can handle some easy cases. 480 // This is useful because MI is unable to split such critical edges, 481 // which means it will not be able to sink instructions along those edges. 482 // This is especially painful for indirect branches with many successors, where 483 // we end up having to prepare all outgoing values in the origin block. 484 // 485 // Our normal algorithm for splitting critical edges requires us to update 486 // the outgoing edges of the edge origin block, but for an indirectbr this 487 // is hard, since it would require finding and updating the block addresses 488 // the indirect branch uses. But if a block only has a single indirectbr 489 // predecessor, with the others being regular branches, we can do it in a 490 // different way. 491 // Say we have A -> D, B -> D, I -> D where only I -> D is an indirectbr. 492 // We can split D into D0 and D1, where D0 contains only the PHIs from D, 493 // and D1 is the D block body. We can then duplicate D0 as D0A and D0B, and 494 // create the following structure: 495 // A -> D0A, B -> D0A, I -> D0B, D0A -> D1, D0B -> D1 496 bool CodeGenPrepare::splitIndirectCriticalEdges(Function &F) { 497 // Check whether the function has any indirectbrs, and collect which blocks 498 // they may jump to. Since most functions don't have indirect branches, 499 // this lowers the common case's overhead to O(Blocks) instead of O(Edges). 500 SmallSetVector<BasicBlock *, 16> Targets; 501 for (auto &BB : F) { 502 auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator()); 503 if (!IBI) 504 continue; 505 506 for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ) 507 Targets.insert(IBI->getSuccessor(Succ)); 508 } 509 510 if (Targets.empty()) 511 return false; 512 513 bool Changed = false; 514 for (BasicBlock *Target : Targets) { 515 SmallVector<BasicBlock *, 16> OtherPreds; 516 BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds); 517 // If we did not found an indirectbr, or the indirectbr is the only 518 // incoming edge, this isn't the kind of edge we're looking for. 519 if (!IBRPred || OtherPreds.empty()) 520 continue; 521 522 // Don't even think about ehpads/landingpads. 523 Instruction *FirstNonPHI = Target->getFirstNonPHI(); 524 if (FirstNonPHI->isEHPad() || Target->isLandingPad()) 525 continue; 526 527 BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split"); 528 // It's possible Target was its own successor through an indirectbr. 529 // In this case, the indirectbr now comes from BodyBlock. 530 if (IBRPred == Target) 531 IBRPred = BodyBlock; 532 533 // At this point Target only has PHIs, and BodyBlock has the rest of the 534 // block's body. Create a copy of Target that will be used by the "direct" 535 // preds. 536 ValueToValueMapTy VMap; 537 BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F); 538 539 for (BasicBlock *Pred : OtherPreds) 540 Pred->getTerminator()->replaceUsesOfWith(Target, DirectSucc); 541 542 // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that 543 // they are clones, so the number of PHIs are the same. 544 // (a) Remove the edge coming from IBRPred from the "Direct" PHI 545 // (b) Leave that as the only edge in the "Indirect" PHI. 546 // (c) Merge the two in the body block. 547 BasicBlock::iterator Indirect = Target->begin(), 548 End = Target->getFirstNonPHI()->getIterator(); 549 BasicBlock::iterator Direct = DirectSucc->begin(); 550 BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt(); 551 552 assert(&*End == Target->getTerminator() && 553 "Block was expected to only contain PHIs"); 554 555 while (Indirect != End) { 556 PHINode *DirPHI = cast<PHINode>(Direct); 557 PHINode *IndPHI = cast<PHINode>(Indirect); 558 559 // Now, clean up - the direct block shouldn't get the indirect value, 560 // and vice versa. 561 DirPHI->removeIncomingValue(IBRPred); 562 Direct++; 563 564 // Advance the pointer here, to avoid invalidation issues when the old 565 // PHI is erased. 566 Indirect++; 567 568 PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI); 569 NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred), 570 IBRPred); 571 572 // Create a PHI in the body block, to merge the direct and indirect 573 // predecessors. 574 PHINode *MergePHI = 575 PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert); 576 MergePHI->addIncoming(NewIndPHI, Target); 577 MergePHI->addIncoming(DirPHI, DirectSucc); 578 579 IndPHI->replaceAllUsesWith(MergePHI); 580 IndPHI->eraseFromParent(); 581 } 582 583 Changed = true; 584 } 585 586 return Changed; 587 } 588 589 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 590 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 591 /// edges in ways that are non-optimal for isel. Start by eliminating these 592 /// blocks so we can split them the way we want them. 593 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 594 SmallPtrSet<BasicBlock *, 16> Preheaders; 595 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 596 while (!LoopList.empty()) { 597 Loop *L = LoopList.pop_back_val(); 598 LoopList.insert(LoopList.end(), L->begin(), L->end()); 599 if (BasicBlock *Preheader = L->getLoopPreheader()) 600 Preheaders.insert(Preheader); 601 } 602 603 bool MadeChange = false; 604 // Note that this intentionally skips the entry block. 605 for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) { 606 BasicBlock *BB = &*I++; 607 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 608 if (!DestBB || 609 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 610 continue; 611 612 eliminateMostlyEmptyBlock(BB); 613 MadeChange = true; 614 } 615 return MadeChange; 616 } 617 618 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 619 BasicBlock *DestBB, 620 bool isPreheader) { 621 // Do not delete loop preheaders if doing so would create a critical edge. 622 // Loop preheaders can be good locations to spill registers. If the 623 // preheader is deleted and we create a critical edge, registers may be 624 // spilled in the loop body instead. 625 if (!DisablePreheaderProtect && isPreheader && 626 !(BB->getSinglePredecessor() && 627 BB->getSinglePredecessor()->getSingleSuccessor())) 628 return false; 629 630 // Try to skip merging if the unique predecessor of BB is terminated by a 631 // switch or indirect branch instruction, and BB is used as an incoming block 632 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 633 // add COPY instructions in the predecessor of BB instead of BB (if it is not 634 // merged). Note that the critical edge created by merging such blocks wont be 635 // split in MachineSink because the jump table is not analyzable. By keeping 636 // such empty block (BB), ISel will place COPY instructions in BB, not in the 637 // predecessor of BB. 638 BasicBlock *Pred = BB->getUniquePredecessor(); 639 if (!Pred || 640 !(isa<SwitchInst>(Pred->getTerminator()) || 641 isa<IndirectBrInst>(Pred->getTerminator()))) 642 return true; 643 644 if (BB->getTerminator() != BB->getFirstNonPHI()) 645 return true; 646 647 // We use a simple cost heuristic which determine skipping merging is 648 // profitable if the cost of skipping merging is less than the cost of 649 // merging : Cost(skipping merging) < Cost(merging BB), where the 650 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 651 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 652 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 653 // Freq(Pred) / Freq(BB) > 2. 654 // Note that if there are multiple empty blocks sharing the same incoming 655 // value for the PHIs in the DestBB, we consider them together. In such 656 // case, Cost(merging BB) will be the sum of their frequencies. 657 658 if (!isa<PHINode>(DestBB->begin())) 659 return true; 660 661 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 662 663 // Find all other incoming blocks from which incoming values of all PHIs in 664 // DestBB are the same as the ones from BB. 665 for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; 666 ++PI) { 667 BasicBlock *DestBBPred = *PI; 668 if (DestBBPred == BB) 669 continue; 670 671 bool HasAllSameValue = true; 672 BasicBlock::const_iterator DestBBI = DestBB->begin(); 673 while (const PHINode *DestPN = dyn_cast<PHINode>(DestBBI++)) { 674 if (DestPN->getIncomingValueForBlock(BB) != 675 DestPN->getIncomingValueForBlock(DestBBPred)) { 676 HasAllSameValue = false; 677 break; 678 } 679 } 680 if (HasAllSameValue) 681 SameIncomingValueBBs.insert(DestBBPred); 682 } 683 684 // See if all BB's incoming values are same as the value from Pred. In this 685 // case, no reason to skip merging because COPYs are expected to be place in 686 // Pred already. 687 if (SameIncomingValueBBs.count(Pred)) 688 return true; 689 690 if (!BFI) { 691 Function &F = *BB->getParent(); 692 LoopInfo LI{DominatorTree(F)}; 693 BPI.reset(new BranchProbabilityInfo(F, LI)); 694 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 695 } 696 697 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 698 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 699 700 for (auto SameValueBB : SameIncomingValueBBs) 701 if (SameValueBB->getUniquePredecessor() == Pred && 702 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 703 BBFreq += BFI->getBlockFreq(SameValueBB); 704 705 return PredFreq.getFrequency() <= 706 BBFreq.getFrequency() * FreqRatioToSkipMerge; 707 } 708 709 /// Return true if we can merge BB into DestBB if there is a single 710 /// unconditional branch between them, and BB contains no other non-phi 711 /// instructions. 712 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 713 const BasicBlock *DestBB) const { 714 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 715 // the successor. If there are more complex condition (e.g. preheaders), 716 // don't mess around with them. 717 BasicBlock::const_iterator BBI = BB->begin(); 718 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 719 for (const User *U : PN->users()) { 720 const Instruction *UI = cast<Instruction>(U); 721 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 722 return false; 723 // If User is inside DestBB block and it is a PHINode then check 724 // incoming value. If incoming value is not from BB then this is 725 // a complex condition (e.g. preheaders) we want to avoid here. 726 if (UI->getParent() == DestBB) { 727 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 728 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 729 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 730 if (Insn && Insn->getParent() == BB && 731 Insn->getParent() != UPN->getIncomingBlock(I)) 732 return false; 733 } 734 } 735 } 736 } 737 738 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 739 // and DestBB may have conflicting incoming values for the block. If so, we 740 // can't merge the block. 741 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 742 if (!DestBBPN) return true; // no conflict. 743 744 // Collect the preds of BB. 745 SmallPtrSet<const BasicBlock*, 16> BBPreds; 746 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 747 // It is faster to get preds from a PHI than with pred_iterator. 748 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 749 BBPreds.insert(BBPN->getIncomingBlock(i)); 750 } else { 751 BBPreds.insert(pred_begin(BB), pred_end(BB)); 752 } 753 754 // Walk the preds of DestBB. 755 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 756 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 757 if (BBPreds.count(Pred)) { // Common predecessor? 758 BBI = DestBB->begin(); 759 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { 760 const Value *V1 = PN->getIncomingValueForBlock(Pred); 761 const Value *V2 = PN->getIncomingValueForBlock(BB); 762 763 // If V2 is a phi node in BB, look up what the mapped value will be. 764 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 765 if (V2PN->getParent() == BB) 766 V2 = V2PN->getIncomingValueForBlock(Pred); 767 768 // If there is a conflict, bail out. 769 if (V1 != V2) return false; 770 } 771 } 772 } 773 774 return true; 775 } 776 777 778 /// Eliminate a basic block that has only phi's and an unconditional branch in 779 /// it. 780 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 781 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 782 BasicBlock *DestBB = BI->getSuccessor(0); 783 784 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); 785 786 // If the destination block has a single pred, then this is a trivial edge, 787 // just collapse it. 788 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 789 if (SinglePred != DestBB) { 790 // Remember if SinglePred was the entry block of the function. If so, we 791 // will need to move BB back to the entry position. 792 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); 793 MergeBasicBlockIntoOnlyPred(DestBB, nullptr); 794 795 if (isEntry && BB != &BB->getParent()->getEntryBlock()) 796 BB->moveBefore(&BB->getParent()->getEntryBlock()); 797 798 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 799 return; 800 } 801 } 802 803 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 804 // to handle the new incoming edges it is about to have. 805 PHINode *PN; 806 for (BasicBlock::iterator BBI = DestBB->begin(); 807 (PN = dyn_cast<PHINode>(BBI)); ++BBI) { 808 // Remove the incoming value for BB, and remember it. 809 Value *InVal = PN->removeIncomingValue(BB, false); 810 811 // Two options: either the InVal is a phi node defined in BB or it is some 812 // value that dominates BB. 813 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 814 if (InValPhi && InValPhi->getParent() == BB) { 815 // Add all of the input values of the input PHI as inputs of this phi. 816 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 817 PN->addIncoming(InValPhi->getIncomingValue(i), 818 InValPhi->getIncomingBlock(i)); 819 } else { 820 // Otherwise, add one instance of the dominating value for each edge that 821 // we will be adding. 822 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 823 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 824 PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); 825 } else { 826 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 827 PN->addIncoming(InVal, *PI); 828 } 829 } 830 } 831 832 // The PHIs are now updated, change everything that refers to BB to use 833 // DestBB and remove BB. 834 BB->replaceAllUsesWith(DestBB); 835 BB->eraseFromParent(); 836 ++NumBlocksElim; 837 838 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 839 } 840 841 // Computes a map of base pointer relocation instructions to corresponding 842 // derived pointer relocation instructions given a vector of all relocate calls 843 static void computeBaseDerivedRelocateMap( 844 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 845 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 846 &RelocateInstMap) { 847 // Collect information in two maps: one primarily for locating the base object 848 // while filling the second map; the second map is the final structure holding 849 // a mapping between Base and corresponding Derived relocate calls 850 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 851 for (auto *ThisRelocate : AllRelocateCalls) { 852 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 853 ThisRelocate->getDerivedPtrIndex()); 854 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 855 } 856 for (auto &Item : RelocateIdxMap) { 857 std::pair<unsigned, unsigned> Key = Item.first; 858 if (Key.first == Key.second) 859 // Base relocation: nothing to insert 860 continue; 861 862 GCRelocateInst *I = Item.second; 863 auto BaseKey = std::make_pair(Key.first, Key.first); 864 865 // We're iterating over RelocateIdxMap so we cannot modify it. 866 auto MaybeBase = RelocateIdxMap.find(BaseKey); 867 if (MaybeBase == RelocateIdxMap.end()) 868 // TODO: We might want to insert a new base object relocate and gep off 869 // that, if there are enough derived object relocates. 870 continue; 871 872 RelocateInstMap[MaybeBase->second].push_back(I); 873 } 874 } 875 876 // Accepts a GEP and extracts the operands into a vector provided they're all 877 // small integer constants 878 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 879 SmallVectorImpl<Value *> &OffsetV) { 880 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 881 // Only accept small constant integer operands 882 auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 883 if (!Op || Op->getZExtValue() > 20) 884 return false; 885 } 886 887 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 888 OffsetV.push_back(GEP->getOperand(i)); 889 return true; 890 } 891 892 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 893 // replace, computes a replacement, and affects it. 894 static bool 895 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 896 const SmallVectorImpl<GCRelocateInst *> &Targets) { 897 bool MadeChange = false; 898 for (GCRelocateInst *ToReplace : Targets) { 899 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 900 "Not relocating a derived object of the original base object"); 901 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 902 // A duplicate relocate call. TODO: coalesce duplicates. 903 continue; 904 } 905 906 if (RelocatedBase->getParent() != ToReplace->getParent()) { 907 // Base and derived relocates are in different basic blocks. 908 // In this case transform is only valid when base dominates derived 909 // relocate. However it would be too expensive to check dominance 910 // for each such relocate, so we skip the whole transformation. 911 continue; 912 } 913 914 Value *Base = ToReplace->getBasePtr(); 915 auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 916 if (!Derived || Derived->getPointerOperand() != Base) 917 continue; 918 919 SmallVector<Value *, 2> OffsetV; 920 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 921 continue; 922 923 // Create a Builder and replace the target callsite with a gep 924 assert(RelocatedBase->getNextNode() && 925 "Should always have one since it's not a terminator"); 926 927 // Insert after RelocatedBase 928 IRBuilder<> Builder(RelocatedBase->getNextNode()); 929 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 930 931 // If gc_relocate does not match the actual type, cast it to the right type. 932 // In theory, there must be a bitcast after gc_relocate if the type does not 933 // match, and we should reuse it to get the derived pointer. But it could be 934 // cases like this: 935 // bb1: 936 // ... 937 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 938 // br label %merge 939 // 940 // bb2: 941 // ... 942 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 943 // br label %merge 944 // 945 // merge: 946 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 947 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 948 // 949 // In this case, we can not find the bitcast any more. So we insert a new bitcast 950 // no matter there is already one or not. In this way, we can handle all cases, and 951 // the extra bitcast should be optimized away in later passes. 952 Value *ActualRelocatedBase = RelocatedBase; 953 if (RelocatedBase->getType() != Base->getType()) { 954 ActualRelocatedBase = 955 Builder.CreateBitCast(RelocatedBase, Base->getType()); 956 } 957 Value *Replacement = Builder.CreateGEP( 958 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 959 Replacement->takeName(ToReplace); 960 // If the newly generated derived pointer's type does not match the original derived 961 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 962 Value *ActualReplacement = Replacement; 963 if (Replacement->getType() != ToReplace->getType()) { 964 ActualReplacement = 965 Builder.CreateBitCast(Replacement, ToReplace->getType()); 966 } 967 ToReplace->replaceAllUsesWith(ActualReplacement); 968 ToReplace->eraseFromParent(); 969 970 MadeChange = true; 971 } 972 return MadeChange; 973 } 974 975 // Turns this: 976 // 977 // %base = ... 978 // %ptr = gep %base + 15 979 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 980 // %base' = relocate(%tok, i32 4, i32 4) 981 // %ptr' = relocate(%tok, i32 4, i32 5) 982 // %val = load %ptr' 983 // 984 // into this: 985 // 986 // %base = ... 987 // %ptr = gep %base + 15 988 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 989 // %base' = gc.relocate(%tok, i32 4, i32 4) 990 // %ptr' = gep %base' + 15 991 // %val = load %ptr' 992 bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { 993 bool MadeChange = false; 994 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 995 996 for (auto *U : I.users()) 997 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 998 // Collect all the relocate calls associated with a statepoint 999 AllRelocateCalls.push_back(Relocate); 1000 1001 // We need atleast one base pointer relocation + one derived pointer 1002 // relocation to mangle 1003 if (AllRelocateCalls.size() < 2) 1004 return false; 1005 1006 // RelocateInstMap is a mapping from the base relocate instruction to the 1007 // corresponding derived relocate instructions 1008 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1009 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1010 if (RelocateInstMap.empty()) 1011 return false; 1012 1013 for (auto &Item : RelocateInstMap) 1014 // Item.first is the RelocatedBase to offset against 1015 // Item.second is the vector of Targets to replace 1016 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1017 return MadeChange; 1018 } 1019 1020 /// SinkCast - Sink the specified cast instruction into its user blocks 1021 static bool SinkCast(CastInst *CI) { 1022 BasicBlock *DefBB = CI->getParent(); 1023 1024 /// InsertedCasts - Only insert a cast in each block once. 1025 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1026 1027 bool MadeChange = false; 1028 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1029 UI != E; ) { 1030 Use &TheUse = UI.getUse(); 1031 Instruction *User = cast<Instruction>(*UI); 1032 1033 // Figure out which BB this cast is used in. For PHI's this is the 1034 // appropriate predecessor block. 1035 BasicBlock *UserBB = User->getParent(); 1036 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1037 UserBB = PN->getIncomingBlock(TheUse); 1038 } 1039 1040 // Preincrement use iterator so we don't invalidate it. 1041 ++UI; 1042 1043 // The first insertion point of a block containing an EH pad is after the 1044 // pad. If the pad is the user, we cannot sink the cast past the pad. 1045 if (User->isEHPad()) 1046 continue; 1047 1048 // If the block selected to receive the cast is an EH pad that does not 1049 // allow non-PHI instructions before the terminator, we can't sink the 1050 // cast. 1051 if (UserBB->getTerminator()->isEHPad()) 1052 continue; 1053 1054 // If this user is in the same block as the cast, don't change the cast. 1055 if (UserBB == DefBB) continue; 1056 1057 // If we have already inserted a cast into this block, use it. 1058 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1059 1060 if (!InsertedCast) { 1061 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1062 assert(InsertPt != UserBB->end()); 1063 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1064 CI->getType(), "", &*InsertPt); 1065 } 1066 1067 // Replace a use of the cast with a use of the new cast. 1068 TheUse = InsertedCast; 1069 MadeChange = true; 1070 ++NumCastUses; 1071 } 1072 1073 // If we removed all uses, nuke the cast. 1074 if (CI->use_empty()) { 1075 CI->eraseFromParent(); 1076 MadeChange = true; 1077 } 1078 1079 return MadeChange; 1080 } 1081 1082 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1083 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1084 /// reduce the number of virtual registers that must be created and coalesced. 1085 /// 1086 /// Return true if any changes are made. 1087 /// 1088 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1089 const DataLayout &DL) { 1090 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1091 // than sinking only nop casts, but is helpful on some platforms. 1092 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1093 if (!TLI.isCheapAddrSpaceCast(ASC->getSrcAddressSpace(), 1094 ASC->getDestAddressSpace())) 1095 return false; 1096 } 1097 1098 // If this is a noop copy, 1099 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1100 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1101 1102 // This is an fp<->int conversion? 1103 if (SrcVT.isInteger() != DstVT.isInteger()) 1104 return false; 1105 1106 // If this is an extension, it will be a zero or sign extension, which 1107 // isn't a noop. 1108 if (SrcVT.bitsLT(DstVT)) return false; 1109 1110 // If these values will be promoted, find out what they will be promoted 1111 // to. This helps us consider truncates on PPC as noop copies when they 1112 // are. 1113 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1114 TargetLowering::TypePromoteInteger) 1115 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1116 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1117 TargetLowering::TypePromoteInteger) 1118 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1119 1120 // If, after promotion, these are the same types, this is a noop copy. 1121 if (SrcVT != DstVT) 1122 return false; 1123 1124 return SinkCast(CI); 1125 } 1126 1127 /// Try to combine CI into a call to the llvm.uadd.with.overflow intrinsic if 1128 /// possible. 1129 /// 1130 /// Return true if any changes were made. 1131 static bool CombineUAddWithOverflow(CmpInst *CI) { 1132 Value *A, *B; 1133 Instruction *AddI; 1134 if (!match(CI, 1135 m_UAddWithOverflow(m_Value(A), m_Value(B), m_Instruction(AddI)))) 1136 return false; 1137 1138 Type *Ty = AddI->getType(); 1139 if (!isa<IntegerType>(Ty)) 1140 return false; 1141 1142 // We don't want to move around uses of condition values this late, so we we 1143 // check if it is legal to create the call to the intrinsic in the basic 1144 // block containing the icmp: 1145 1146 if (AddI->getParent() != CI->getParent() && !AddI->hasOneUse()) 1147 return false; 1148 1149 #ifndef NDEBUG 1150 // Someday m_UAddWithOverflow may get smarter, but this is a safe assumption 1151 // for now: 1152 if (AddI->hasOneUse()) 1153 assert(*AddI->user_begin() == CI && "expected!"); 1154 #endif 1155 1156 Module *M = CI->getModule(); 1157 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty); 1158 1159 auto *InsertPt = AddI->hasOneUse() ? CI : AddI; 1160 1161 auto *UAddWithOverflow = 1162 CallInst::Create(F, {A, B}, "uadd.overflow", InsertPt); 1163 auto *UAdd = ExtractValueInst::Create(UAddWithOverflow, 0, "uadd", InsertPt); 1164 auto *Overflow = 1165 ExtractValueInst::Create(UAddWithOverflow, 1, "overflow", InsertPt); 1166 1167 CI->replaceAllUsesWith(Overflow); 1168 AddI->replaceAllUsesWith(UAdd); 1169 CI->eraseFromParent(); 1170 AddI->eraseFromParent(); 1171 return true; 1172 } 1173 1174 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1175 /// registers that must be created and coalesced. This is a clear win except on 1176 /// targets with multiple condition code registers (PowerPC), where it might 1177 /// lose; some adjustment may be wanted there. 1178 /// 1179 /// Return true if any changes are made. 1180 static bool SinkCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1181 BasicBlock *DefBB = CI->getParent(); 1182 1183 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1184 if (TLI && TLI->useSoftFloat() && isa<FCmpInst>(CI)) 1185 return false; 1186 1187 // Only insert a cmp in each block once. 1188 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1189 1190 bool MadeChange = false; 1191 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1192 UI != E; ) { 1193 Use &TheUse = UI.getUse(); 1194 Instruction *User = cast<Instruction>(*UI); 1195 1196 // Preincrement use iterator so we don't invalidate it. 1197 ++UI; 1198 1199 // Don't bother for PHI nodes. 1200 if (isa<PHINode>(User)) 1201 continue; 1202 1203 // Figure out which BB this cmp is used in. 1204 BasicBlock *UserBB = User->getParent(); 1205 1206 // If this user is in the same block as the cmp, don't change the cmp. 1207 if (UserBB == DefBB) continue; 1208 1209 // If we have already inserted a cmp into this block, use it. 1210 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1211 1212 if (!InsertedCmp) { 1213 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1214 assert(InsertPt != UserBB->end()); 1215 InsertedCmp = 1216 CmpInst::Create(CI->getOpcode(), CI->getPredicate(), 1217 CI->getOperand(0), CI->getOperand(1), "", &*InsertPt); 1218 // Propagate the debug info. 1219 InsertedCmp->setDebugLoc(CI->getDebugLoc()); 1220 } 1221 1222 // Replace a use of the cmp with a use of the new cmp. 1223 TheUse = InsertedCmp; 1224 MadeChange = true; 1225 ++NumCmpUses; 1226 } 1227 1228 // If we removed all uses, nuke the cmp. 1229 if (CI->use_empty()) { 1230 CI->eraseFromParent(); 1231 MadeChange = true; 1232 } 1233 1234 return MadeChange; 1235 } 1236 1237 static bool OptimizeCmpExpression(CmpInst *CI, const TargetLowering *TLI) { 1238 if (SinkCmpExpression(CI, TLI)) 1239 return true; 1240 1241 if (CombineUAddWithOverflow(CI)) 1242 return true; 1243 1244 return false; 1245 } 1246 1247 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1248 /// used in a compare to allow isel to generate better code for targets where 1249 /// this operation can be combined. 1250 /// 1251 /// Return true if any changes are made. 1252 static bool sinkAndCmp0Expression(Instruction *AndI, 1253 const TargetLowering &TLI, 1254 SetOfInstrs &InsertedInsts) { 1255 // Double-check that we're not trying to optimize an instruction that was 1256 // already optimized by some other part of this pass. 1257 assert(!InsertedInsts.count(AndI) && 1258 "Attempting to optimize already optimized and instruction"); 1259 (void) InsertedInsts; 1260 1261 // Nothing to do for single use in same basic block. 1262 if (AndI->hasOneUse() && 1263 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1264 return false; 1265 1266 // Try to avoid cases where sinking/duplicating is likely to increase register 1267 // pressure. 1268 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1269 !isa<ConstantInt>(AndI->getOperand(1)) && 1270 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1271 return false; 1272 1273 for (auto *U : AndI->users()) { 1274 Instruction *User = cast<Instruction>(U); 1275 1276 // Only sink for and mask feeding icmp with 0. 1277 if (!isa<ICmpInst>(User)) 1278 return false; 1279 1280 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1281 if (!CmpC || !CmpC->isZero()) 1282 return false; 1283 } 1284 1285 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1286 return false; 1287 1288 DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1289 DEBUG(AndI->getParent()->dump()); 1290 1291 // Push the 'and' into the same block as the icmp 0. There should only be 1292 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1293 // others, so we don't need to keep track of which BBs we insert into. 1294 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1295 UI != E; ) { 1296 Use &TheUse = UI.getUse(); 1297 Instruction *User = cast<Instruction>(*UI); 1298 1299 // Preincrement use iterator so we don't invalidate it. 1300 ++UI; 1301 1302 DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1303 1304 // Keep the 'and' in the same place if the use is already in the same block. 1305 Instruction *InsertPt = 1306 User->getParent() == AndI->getParent() ? AndI : User; 1307 Instruction *InsertedAnd = 1308 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1309 AndI->getOperand(1), "", InsertPt); 1310 // Propagate the debug info. 1311 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1312 1313 // Replace a use of the 'and' with a use of the new 'and'. 1314 TheUse = InsertedAnd; 1315 ++NumAndUses; 1316 DEBUG(User->getParent()->dump()); 1317 } 1318 1319 // We removed all uses, nuke the and. 1320 AndI->eraseFromParent(); 1321 return true; 1322 } 1323 1324 /// Check if the candidates could be combined with a shift instruction, which 1325 /// includes: 1326 /// 1. Truncate instruction 1327 /// 2. And instruction and the imm is a mask of the low bits: 1328 /// imm & (imm+1) == 0 1329 static bool isExtractBitsCandidateUse(Instruction *User) { 1330 if (!isa<TruncInst>(User)) { 1331 if (User->getOpcode() != Instruction::And || 1332 !isa<ConstantInt>(User->getOperand(1))) 1333 return false; 1334 1335 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1336 1337 if ((Cimm & (Cimm + 1)).getBoolValue()) 1338 return false; 1339 } 1340 return true; 1341 } 1342 1343 /// Sink both shift and truncate instruction to the use of truncate's BB. 1344 static bool 1345 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1346 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1347 const TargetLowering &TLI, const DataLayout &DL) { 1348 BasicBlock *UserBB = User->getParent(); 1349 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1350 TruncInst *TruncI = dyn_cast<TruncInst>(User); 1351 bool MadeChange = false; 1352 1353 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1354 TruncE = TruncI->user_end(); 1355 TruncUI != TruncE;) { 1356 1357 Use &TruncTheUse = TruncUI.getUse(); 1358 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1359 // Preincrement use iterator so we don't invalidate it. 1360 1361 ++TruncUI; 1362 1363 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1364 if (!ISDOpcode) 1365 continue; 1366 1367 // If the use is actually a legal node, there will not be an 1368 // implicit truncate. 1369 // FIXME: always querying the result type is just an 1370 // approximation; some nodes' legality is determined by the 1371 // operand or other means. There's no good way to find out though. 1372 if (TLI.isOperationLegalOrCustom( 1373 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1374 continue; 1375 1376 // Don't bother for PHI nodes. 1377 if (isa<PHINode>(TruncUser)) 1378 continue; 1379 1380 BasicBlock *TruncUserBB = TruncUser->getParent(); 1381 1382 if (UserBB == TruncUserBB) 1383 continue; 1384 1385 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1386 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1387 1388 if (!InsertedShift && !InsertedTrunc) { 1389 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1390 assert(InsertPt != TruncUserBB->end()); 1391 // Sink the shift 1392 if (ShiftI->getOpcode() == Instruction::AShr) 1393 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1394 "", &*InsertPt); 1395 else 1396 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1397 "", &*InsertPt); 1398 1399 // Sink the trunc 1400 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1401 TruncInsertPt++; 1402 assert(TruncInsertPt != TruncUserBB->end()); 1403 1404 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1405 TruncI->getType(), "", &*TruncInsertPt); 1406 1407 MadeChange = true; 1408 1409 TruncTheUse = InsertedTrunc; 1410 } 1411 } 1412 return MadeChange; 1413 } 1414 1415 /// Sink the shift *right* instruction into user blocks if the uses could 1416 /// potentially be combined with this shift instruction and generate BitExtract 1417 /// instruction. It will only be applied if the architecture supports BitExtract 1418 /// instruction. Here is an example: 1419 /// BB1: 1420 /// %x.extract.shift = lshr i64 %arg1, 32 1421 /// BB2: 1422 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1423 /// ==> 1424 /// 1425 /// BB2: 1426 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1427 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1428 /// 1429 /// CodeGen will recoginze the pattern in BB2 and generate BitExtract 1430 /// instruction. 1431 /// Return true if any changes are made. 1432 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1433 const TargetLowering &TLI, 1434 const DataLayout &DL) { 1435 BasicBlock *DefBB = ShiftI->getParent(); 1436 1437 /// Only insert instructions in each block once. 1438 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1439 1440 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1441 1442 bool MadeChange = false; 1443 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1444 UI != E;) { 1445 Use &TheUse = UI.getUse(); 1446 Instruction *User = cast<Instruction>(*UI); 1447 // Preincrement use iterator so we don't invalidate it. 1448 ++UI; 1449 1450 // Don't bother for PHI nodes. 1451 if (isa<PHINode>(User)) 1452 continue; 1453 1454 if (!isExtractBitsCandidateUse(User)) 1455 continue; 1456 1457 BasicBlock *UserBB = User->getParent(); 1458 1459 if (UserBB == DefBB) { 1460 // If the shift and truncate instruction are in the same BB. The use of 1461 // the truncate(TruncUse) may still introduce another truncate if not 1462 // legal. In this case, we would like to sink both shift and truncate 1463 // instruction to the BB of TruncUse. 1464 // for example: 1465 // BB1: 1466 // i64 shift.result = lshr i64 opnd, imm 1467 // trunc.result = trunc shift.result to i16 1468 // 1469 // BB2: 1470 // ----> We will have an implicit truncate here if the architecture does 1471 // not have i16 compare. 1472 // cmp i16 trunc.result, opnd2 1473 // 1474 if (isa<TruncInst>(User) && shiftIsLegal 1475 // If the type of the truncate is legal, no trucate will be 1476 // introduced in other basic blocks. 1477 && 1478 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1479 MadeChange = 1480 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1481 1482 continue; 1483 } 1484 // If we have already inserted a shift into this block, use it. 1485 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1486 1487 if (!InsertedShift) { 1488 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1489 assert(InsertPt != UserBB->end()); 1490 1491 if (ShiftI->getOpcode() == Instruction::AShr) 1492 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1493 "", &*InsertPt); 1494 else 1495 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1496 "", &*InsertPt); 1497 1498 MadeChange = true; 1499 } 1500 1501 // Replace a use of the shift with a use of the new shift. 1502 TheUse = InsertedShift; 1503 } 1504 1505 // If we removed all uses, nuke the shift. 1506 if (ShiftI->use_empty()) 1507 ShiftI->eraseFromParent(); 1508 1509 return MadeChange; 1510 } 1511 1512 // Translate a masked load intrinsic like 1513 // <16 x i32 > @llvm.masked.load( <16 x i32>* %addr, i32 align, 1514 // <16 x i1> %mask, <16 x i32> %passthru) 1515 // to a chain of basic blocks, with loading element one-by-one if 1516 // the appropriate mask bit is set 1517 // 1518 // %1 = bitcast i8* %addr to i32* 1519 // %2 = extractelement <16 x i1> %mask, i32 0 1520 // %3 = icmp eq i1 %2, true 1521 // br i1 %3, label %cond.load, label %else 1522 // 1523 //cond.load: ; preds = %0 1524 // %4 = getelementptr i32* %1, i32 0 1525 // %5 = load i32* %4 1526 // %6 = insertelement <16 x i32> undef, i32 %5, i32 0 1527 // br label %else 1528 // 1529 //else: ; preds = %0, %cond.load 1530 // %res.phi.else = phi <16 x i32> [ %6, %cond.load ], [ undef, %0 ] 1531 // %7 = extractelement <16 x i1> %mask, i32 1 1532 // %8 = icmp eq i1 %7, true 1533 // br i1 %8, label %cond.load1, label %else2 1534 // 1535 //cond.load1: ; preds = %else 1536 // %9 = getelementptr i32* %1, i32 1 1537 // %10 = load i32* %9 1538 // %11 = insertelement <16 x i32> %res.phi.else, i32 %10, i32 1 1539 // br label %else2 1540 // 1541 //else2: ; preds = %else, %cond.load1 1542 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1543 // %12 = extractelement <16 x i1> %mask, i32 2 1544 // %13 = icmp eq i1 %12, true 1545 // br i1 %13, label %cond.load4, label %else5 1546 // 1547 static void scalarizeMaskedLoad(CallInst *CI) { 1548 Value *Ptr = CI->getArgOperand(0); 1549 Value *Alignment = CI->getArgOperand(1); 1550 Value *Mask = CI->getArgOperand(2); 1551 Value *Src0 = CI->getArgOperand(3); 1552 1553 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1554 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1555 assert(VecType && "Unexpected return type of masked load intrinsic"); 1556 1557 Type *EltTy = CI->getType()->getVectorElementType(); 1558 1559 IRBuilder<> Builder(CI->getContext()); 1560 Instruction *InsertPt = CI; 1561 BasicBlock *IfBlock = CI->getParent(); 1562 BasicBlock *CondBlock = nullptr; 1563 BasicBlock *PrevIfBlock = CI->getParent(); 1564 1565 Builder.SetInsertPoint(InsertPt); 1566 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1567 1568 // Short-cut if the mask is all-true. 1569 bool IsAllOnesMask = isa<Constant>(Mask) && 1570 cast<Constant>(Mask)->isAllOnesValue(); 1571 1572 if (IsAllOnesMask) { 1573 Value *NewI = Builder.CreateAlignedLoad(Ptr, AlignVal); 1574 CI->replaceAllUsesWith(NewI); 1575 CI->eraseFromParent(); 1576 return; 1577 } 1578 1579 // Adjust alignment for the scalar instruction. 1580 AlignVal = std::min(AlignVal, VecType->getScalarSizeInBits()/8); 1581 // Bitcast %addr fron i8* to EltTy* 1582 Type *NewPtrType = 1583 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1584 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1585 unsigned VectorWidth = VecType->getNumElements(); 1586 1587 Value *UndefVal = UndefValue::get(VecType); 1588 1589 // The result vector 1590 Value *VResult = UndefVal; 1591 1592 if (isa<ConstantVector>(Mask)) { 1593 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1594 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1595 continue; 1596 Value *Gep = 1597 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1598 LoadInst* Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1599 VResult = Builder.CreateInsertElement(VResult, Load, 1600 Builder.getInt32(Idx)); 1601 } 1602 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1603 CI->replaceAllUsesWith(NewI); 1604 CI->eraseFromParent(); 1605 return; 1606 } 1607 1608 PHINode *Phi = nullptr; 1609 Value *PrevPhi = UndefVal; 1610 1611 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1612 1613 // Fill the "else" block, created in the previous iteration 1614 // 1615 // %res.phi.else3 = phi <16 x i32> [ %11, %cond.load1 ], [ %res.phi.else, %else ] 1616 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1617 // %to_load = icmp eq i1 %mask_1, true 1618 // br i1 %to_load, label %cond.load, label %else 1619 // 1620 if (Idx > 0) { 1621 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1622 Phi->addIncoming(VResult, CondBlock); 1623 Phi->addIncoming(PrevPhi, PrevIfBlock); 1624 PrevPhi = Phi; 1625 VResult = Phi; 1626 } 1627 1628 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1629 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1630 ConstantInt::get(Predicate->getType(), 1)); 1631 1632 // Create "cond" block 1633 // 1634 // %EltAddr = getelementptr i32* %1, i32 0 1635 // %Elt = load i32* %EltAddr 1636 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1637 // 1638 CondBlock = IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.load"); 1639 Builder.SetInsertPoint(InsertPt); 1640 1641 Value *Gep = 1642 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1643 LoadInst *Load = Builder.CreateAlignedLoad(Gep, AlignVal); 1644 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx)); 1645 1646 // Create "else" block, fill it in the next iteration 1647 BasicBlock *NewIfBlock = 1648 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1649 Builder.SetInsertPoint(InsertPt); 1650 Instruction *OldBr = IfBlock->getTerminator(); 1651 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1652 OldBr->eraseFromParent(); 1653 PrevIfBlock = IfBlock; 1654 IfBlock = NewIfBlock; 1655 } 1656 1657 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1658 Phi->addIncoming(VResult, CondBlock); 1659 Phi->addIncoming(PrevPhi, PrevIfBlock); 1660 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1661 CI->replaceAllUsesWith(NewI); 1662 CI->eraseFromParent(); 1663 } 1664 1665 // Translate a masked store intrinsic, like 1666 // void @llvm.masked.store(<16 x i32> %src, <16 x i32>* %addr, i32 align, 1667 // <16 x i1> %mask) 1668 // to a chain of basic blocks, that stores element one-by-one if 1669 // the appropriate mask bit is set 1670 // 1671 // %1 = bitcast i8* %addr to i32* 1672 // %2 = extractelement <16 x i1> %mask, i32 0 1673 // %3 = icmp eq i1 %2, true 1674 // br i1 %3, label %cond.store, label %else 1675 // 1676 // cond.store: ; preds = %0 1677 // %4 = extractelement <16 x i32> %val, i32 0 1678 // %5 = getelementptr i32* %1, i32 0 1679 // store i32 %4, i32* %5 1680 // br label %else 1681 // 1682 // else: ; preds = %0, %cond.store 1683 // %6 = extractelement <16 x i1> %mask, i32 1 1684 // %7 = icmp eq i1 %6, true 1685 // br i1 %7, label %cond.store1, label %else2 1686 // 1687 // cond.store1: ; preds = %else 1688 // %8 = extractelement <16 x i32> %val, i32 1 1689 // %9 = getelementptr i32* %1, i32 1 1690 // store i32 %8, i32* %9 1691 // br label %else2 1692 // . . . 1693 static void scalarizeMaskedStore(CallInst *CI) { 1694 Value *Src = CI->getArgOperand(0); 1695 Value *Ptr = CI->getArgOperand(1); 1696 Value *Alignment = CI->getArgOperand(2); 1697 Value *Mask = CI->getArgOperand(3); 1698 1699 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1700 VectorType *VecType = dyn_cast<VectorType>(Src->getType()); 1701 assert(VecType && "Unexpected data type in masked store intrinsic"); 1702 1703 Type *EltTy = VecType->getElementType(); 1704 1705 IRBuilder<> Builder(CI->getContext()); 1706 Instruction *InsertPt = CI; 1707 BasicBlock *IfBlock = CI->getParent(); 1708 Builder.SetInsertPoint(InsertPt); 1709 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1710 1711 // Short-cut if the mask is all-true. 1712 bool IsAllOnesMask = isa<Constant>(Mask) && 1713 cast<Constant>(Mask)->isAllOnesValue(); 1714 1715 if (IsAllOnesMask) { 1716 Builder.CreateAlignedStore(Src, Ptr, AlignVal); 1717 CI->eraseFromParent(); 1718 return; 1719 } 1720 1721 // Adjust alignment for the scalar instruction. 1722 AlignVal = std::max(AlignVal, VecType->getScalarSizeInBits()/8); 1723 // Bitcast %addr fron i8* to EltTy* 1724 Type *NewPtrType = 1725 EltTy->getPointerTo(cast<PointerType>(Ptr->getType())->getAddressSpace()); 1726 Value *FirstEltPtr = Builder.CreateBitCast(Ptr, NewPtrType); 1727 unsigned VectorWidth = VecType->getNumElements(); 1728 1729 if (isa<ConstantVector>(Mask)) { 1730 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1731 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1732 continue; 1733 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1734 Value *Gep = 1735 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1736 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1737 } 1738 CI->eraseFromParent(); 1739 return; 1740 } 1741 1742 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1743 1744 // Fill the "else" block, created in the previous iteration 1745 // 1746 // %mask_1 = extractelement <16 x i1> %mask, i32 Idx 1747 // %to_store = icmp eq i1 %mask_1, true 1748 // br i1 %to_store, label %cond.store, label %else 1749 // 1750 Value *Predicate = Builder.CreateExtractElement(Mask, Builder.getInt32(Idx)); 1751 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1752 ConstantInt::get(Predicate->getType(), 1)); 1753 1754 // Create "cond" block 1755 // 1756 // %OneElt = extractelement <16 x i32> %Src, i32 Idx 1757 // %EltAddr = getelementptr i32* %1, i32 0 1758 // %store i32 %OneElt, i32* %EltAddr 1759 // 1760 BasicBlock *CondBlock = 1761 IfBlock->splitBasicBlock(InsertPt->getIterator(), "cond.store"); 1762 Builder.SetInsertPoint(InsertPt); 1763 1764 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx)); 1765 Value *Gep = 1766 Builder.CreateInBoundsGEP(EltTy, FirstEltPtr, Builder.getInt32(Idx)); 1767 Builder.CreateAlignedStore(OneElt, Gep, AlignVal); 1768 1769 // Create "else" block, fill it in the next iteration 1770 BasicBlock *NewIfBlock = 1771 CondBlock->splitBasicBlock(InsertPt->getIterator(), "else"); 1772 Builder.SetInsertPoint(InsertPt); 1773 Instruction *OldBr = IfBlock->getTerminator(); 1774 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1775 OldBr->eraseFromParent(); 1776 IfBlock = NewIfBlock; 1777 } 1778 CI->eraseFromParent(); 1779 } 1780 1781 // Translate a masked gather intrinsic like 1782 // <16 x i32 > @llvm.masked.gather.v16i32( <16 x i32*> %Ptrs, i32 4, 1783 // <16 x i1> %Mask, <16 x i32> %Src) 1784 // to a chain of basic blocks, with loading element one-by-one if 1785 // the appropriate mask bit is set 1786 // 1787 // % Ptrs = getelementptr i32, i32* %base, <16 x i64> %ind 1788 // % Mask0 = extractelement <16 x i1> %Mask, i32 0 1789 // % ToLoad0 = icmp eq i1 % Mask0, true 1790 // br i1 % ToLoad0, label %cond.load, label %else 1791 // 1792 // cond.load: 1793 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1794 // % Load0 = load i32, i32* % Ptr0, align 4 1795 // % Res0 = insertelement <16 x i32> undef, i32 % Load0, i32 0 1796 // br label %else 1797 // 1798 // else: 1799 // %res.phi.else = phi <16 x i32>[% Res0, %cond.load], [undef, % 0] 1800 // % Mask1 = extractelement <16 x i1> %Mask, i32 1 1801 // % ToLoad1 = icmp eq i1 % Mask1, true 1802 // br i1 % ToLoad1, label %cond.load1, label %else2 1803 // 1804 // cond.load1: 1805 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1806 // % Load1 = load i32, i32* % Ptr1, align 4 1807 // % Res1 = insertelement <16 x i32> %res.phi.else, i32 % Load1, i32 1 1808 // br label %else2 1809 // . . . 1810 // % Result = select <16 x i1> %Mask, <16 x i32> %res.phi.select, <16 x i32> %Src 1811 // ret <16 x i32> %Result 1812 static void scalarizeMaskedGather(CallInst *CI) { 1813 Value *Ptrs = CI->getArgOperand(0); 1814 Value *Alignment = CI->getArgOperand(1); 1815 Value *Mask = CI->getArgOperand(2); 1816 Value *Src0 = CI->getArgOperand(3); 1817 1818 VectorType *VecType = dyn_cast<VectorType>(CI->getType()); 1819 1820 assert(VecType && "Unexpected return type of masked load intrinsic"); 1821 1822 IRBuilder<> Builder(CI->getContext()); 1823 Instruction *InsertPt = CI; 1824 BasicBlock *IfBlock = CI->getParent(); 1825 BasicBlock *CondBlock = nullptr; 1826 BasicBlock *PrevIfBlock = CI->getParent(); 1827 Builder.SetInsertPoint(InsertPt); 1828 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1829 1830 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1831 1832 Value *UndefVal = UndefValue::get(VecType); 1833 1834 // The result vector 1835 Value *VResult = UndefVal; 1836 unsigned VectorWidth = VecType->getNumElements(); 1837 1838 // Shorten the way if the mask is a vector of constants. 1839 bool IsConstMask = isa<ConstantVector>(Mask); 1840 1841 if (IsConstMask) { 1842 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1843 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1844 continue; 1845 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1846 "Ptr" + Twine(Idx)); 1847 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1848 "Load" + Twine(Idx)); 1849 VResult = Builder.CreateInsertElement(VResult, Load, 1850 Builder.getInt32(Idx), 1851 "Res" + Twine(Idx)); 1852 } 1853 Value *NewI = Builder.CreateSelect(Mask, VResult, Src0); 1854 CI->replaceAllUsesWith(NewI); 1855 CI->eraseFromParent(); 1856 return; 1857 } 1858 1859 PHINode *Phi = nullptr; 1860 Value *PrevPhi = UndefVal; 1861 1862 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1863 1864 // Fill the "else" block, created in the previous iteration 1865 // 1866 // %Mask1 = extractelement <16 x i1> %Mask, i32 1 1867 // %ToLoad1 = icmp eq i1 %Mask1, true 1868 // br i1 %ToLoad1, label %cond.load, label %else 1869 // 1870 if (Idx > 0) { 1871 Phi = Builder.CreatePHI(VecType, 2, "res.phi.else"); 1872 Phi->addIncoming(VResult, CondBlock); 1873 Phi->addIncoming(PrevPhi, PrevIfBlock); 1874 PrevPhi = Phi; 1875 VResult = Phi; 1876 } 1877 1878 Value *Predicate = Builder.CreateExtractElement(Mask, 1879 Builder.getInt32(Idx), 1880 "Mask" + Twine(Idx)); 1881 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1882 ConstantInt::get(Predicate->getType(), 1), 1883 "ToLoad" + Twine(Idx)); 1884 1885 // Create "cond" block 1886 // 1887 // %EltAddr = getelementptr i32* %1, i32 0 1888 // %Elt = load i32* %EltAddr 1889 // VResult = insertelement <16 x i32> VResult, i32 %Elt, i32 Idx 1890 // 1891 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.load"); 1892 Builder.SetInsertPoint(InsertPt); 1893 1894 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1895 "Ptr" + Twine(Idx)); 1896 LoadInst *Load = Builder.CreateAlignedLoad(Ptr, AlignVal, 1897 "Load" + Twine(Idx)); 1898 VResult = Builder.CreateInsertElement(VResult, Load, Builder.getInt32(Idx), 1899 "Res" + Twine(Idx)); 1900 1901 // Create "else" block, fill it in the next iteration 1902 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1903 Builder.SetInsertPoint(InsertPt); 1904 Instruction *OldBr = IfBlock->getTerminator(); 1905 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1906 OldBr->eraseFromParent(); 1907 PrevIfBlock = IfBlock; 1908 IfBlock = NewIfBlock; 1909 } 1910 1911 Phi = Builder.CreatePHI(VecType, 2, "res.phi.select"); 1912 Phi->addIncoming(VResult, CondBlock); 1913 Phi->addIncoming(PrevPhi, PrevIfBlock); 1914 Value *NewI = Builder.CreateSelect(Mask, Phi, Src0); 1915 CI->replaceAllUsesWith(NewI); 1916 CI->eraseFromParent(); 1917 } 1918 1919 // Translate a masked scatter intrinsic, like 1920 // void @llvm.masked.scatter.v16i32(<16 x i32> %Src, <16 x i32*>* %Ptrs, i32 4, 1921 // <16 x i1> %Mask) 1922 // to a chain of basic blocks, that stores element one-by-one if 1923 // the appropriate mask bit is set. 1924 // 1925 // % Ptrs = getelementptr i32, i32* %ptr, <16 x i64> %ind 1926 // % Mask0 = extractelement <16 x i1> % Mask, i32 0 1927 // % ToStore0 = icmp eq i1 % Mask0, true 1928 // br i1 %ToStore0, label %cond.store, label %else 1929 // 1930 // cond.store: 1931 // % Elt0 = extractelement <16 x i32> %Src, i32 0 1932 // % Ptr0 = extractelement <16 x i32*> %Ptrs, i32 0 1933 // store i32 %Elt0, i32* % Ptr0, align 4 1934 // br label %else 1935 // 1936 // else: 1937 // % Mask1 = extractelement <16 x i1> % Mask, i32 1 1938 // % ToStore1 = icmp eq i1 % Mask1, true 1939 // br i1 % ToStore1, label %cond.store1, label %else2 1940 // 1941 // cond.store1: 1942 // % Elt1 = extractelement <16 x i32> %Src, i32 1 1943 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 1944 // store i32 % Elt1, i32* % Ptr1, align 4 1945 // br label %else2 1946 // . . . 1947 static void scalarizeMaskedScatter(CallInst *CI) { 1948 Value *Src = CI->getArgOperand(0); 1949 Value *Ptrs = CI->getArgOperand(1); 1950 Value *Alignment = CI->getArgOperand(2); 1951 Value *Mask = CI->getArgOperand(3); 1952 1953 assert(isa<VectorType>(Src->getType()) && 1954 "Unexpected data type in masked scatter intrinsic"); 1955 assert(isa<VectorType>(Ptrs->getType()) && 1956 isa<PointerType>(Ptrs->getType()->getVectorElementType()) && 1957 "Vector of pointers is expected in masked scatter intrinsic"); 1958 1959 IRBuilder<> Builder(CI->getContext()); 1960 Instruction *InsertPt = CI; 1961 BasicBlock *IfBlock = CI->getParent(); 1962 Builder.SetInsertPoint(InsertPt); 1963 Builder.SetCurrentDebugLocation(CI->getDebugLoc()); 1964 1965 unsigned AlignVal = cast<ConstantInt>(Alignment)->getZExtValue(); 1966 unsigned VectorWidth = Src->getType()->getVectorNumElements(); 1967 1968 // Shorten the way if the mask is a vector of constants. 1969 bool IsConstMask = isa<ConstantVector>(Mask); 1970 1971 if (IsConstMask) { 1972 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1973 if (cast<ConstantVector>(Mask)->getOperand(Idx)->isNullValue()) 1974 continue; 1975 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 1976 "Elt" + Twine(Idx)); 1977 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 1978 "Ptr" + Twine(Idx)); 1979 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 1980 } 1981 CI->eraseFromParent(); 1982 return; 1983 } 1984 for (unsigned Idx = 0; Idx < VectorWidth; ++Idx) { 1985 // Fill the "else" block, created in the previous iteration 1986 // 1987 // % Mask1 = extractelement <16 x i1> % Mask, i32 Idx 1988 // % ToStore = icmp eq i1 % Mask1, true 1989 // br i1 % ToStore, label %cond.store, label %else 1990 // 1991 Value *Predicate = Builder.CreateExtractElement(Mask, 1992 Builder.getInt32(Idx), 1993 "Mask" + Twine(Idx)); 1994 Value *Cmp = 1995 Builder.CreateICmp(ICmpInst::ICMP_EQ, Predicate, 1996 ConstantInt::get(Predicate->getType(), 1), 1997 "ToStore" + Twine(Idx)); 1998 1999 // Create "cond" block 2000 // 2001 // % Elt1 = extractelement <16 x i32> %Src, i32 1 2002 // % Ptr1 = extractelement <16 x i32*> %Ptrs, i32 1 2003 // %store i32 % Elt1, i32* % Ptr1 2004 // 2005 BasicBlock *CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2006 Builder.SetInsertPoint(InsertPt); 2007 2008 Value *OneElt = Builder.CreateExtractElement(Src, Builder.getInt32(Idx), 2009 "Elt" + Twine(Idx)); 2010 Value *Ptr = Builder.CreateExtractElement(Ptrs, Builder.getInt32(Idx), 2011 "Ptr" + Twine(Idx)); 2012 Builder.CreateAlignedStore(OneElt, Ptr, AlignVal); 2013 2014 // Create "else" block, fill it in the next iteration 2015 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2016 Builder.SetInsertPoint(InsertPt); 2017 Instruction *OldBr = IfBlock->getTerminator(); 2018 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2019 OldBr->eraseFromParent(); 2020 IfBlock = NewIfBlock; 2021 } 2022 CI->eraseFromParent(); 2023 } 2024 2025 /// If counting leading or trailing zeros is an expensive operation and a zero 2026 /// input is defined, add a check for zero to avoid calling the intrinsic. 2027 /// 2028 /// We want to transform: 2029 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 2030 /// 2031 /// into: 2032 /// entry: 2033 /// %cmpz = icmp eq i64 %A, 0 2034 /// br i1 %cmpz, label %cond.end, label %cond.false 2035 /// cond.false: 2036 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 2037 /// br label %cond.end 2038 /// cond.end: 2039 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 2040 /// 2041 /// If the transform is performed, return true and set ModifiedDT to true. 2042 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 2043 const TargetLowering *TLI, 2044 const DataLayout *DL, 2045 bool &ModifiedDT) { 2046 if (!TLI || !DL) 2047 return false; 2048 2049 // If a zero input is undefined, it doesn't make sense to despeculate that. 2050 if (match(CountZeros->getOperand(1), m_One())) 2051 return false; 2052 2053 // If it's cheap to speculate, there's nothing to do. 2054 auto IntrinsicID = CountZeros->getIntrinsicID(); 2055 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 2056 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 2057 return false; 2058 2059 // Only handle legal scalar cases. Anything else requires too much work. 2060 Type *Ty = CountZeros->getType(); 2061 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 2062 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 2063 return false; 2064 2065 // The intrinsic will be sunk behind a compare against zero and branch. 2066 BasicBlock *StartBlock = CountZeros->getParent(); 2067 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 2068 2069 // Create another block after the count zero intrinsic. A PHI will be added 2070 // in this block to select the result of the intrinsic or the bit-width 2071 // constant if the input to the intrinsic is zero. 2072 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 2073 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 2074 2075 // Set up a builder to create a compare, conditional branch, and PHI. 2076 IRBuilder<> Builder(CountZeros->getContext()); 2077 Builder.SetInsertPoint(StartBlock->getTerminator()); 2078 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 2079 2080 // Replace the unconditional branch that was created by the first split with 2081 // a compare against zero and a conditional branch. 2082 Value *Zero = Constant::getNullValue(Ty); 2083 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 2084 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 2085 StartBlock->getTerminator()->eraseFromParent(); 2086 2087 // Create a PHI in the end block to select either the output of the intrinsic 2088 // or the bit width of the operand. 2089 Builder.SetInsertPoint(&EndBlock->front()); 2090 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 2091 CountZeros->replaceAllUsesWith(PN); 2092 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 2093 PN->addIncoming(BitWidth, StartBlock); 2094 PN->addIncoming(CountZeros, CallBlock); 2095 2096 // We are explicitly handling the zero case, so we can set the intrinsic's 2097 // undefined zero argument to 'true'. This will also prevent reprocessing the 2098 // intrinsic; we only despeculate when a zero input is defined. 2099 CountZeros->setArgOperand(1, Builder.getTrue()); 2100 ModifiedDT = true; 2101 return true; 2102 } 2103 2104 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool& ModifiedDT) { 2105 BasicBlock *BB = CI->getParent(); 2106 2107 // Lower inline assembly if we can. 2108 // If we found an inline asm expession, and if the target knows how to 2109 // lower it to normal LLVM code, do so now. 2110 if (TLI && isa<InlineAsm>(CI->getCalledValue())) { 2111 if (TLI->ExpandInlineAsm(CI)) { 2112 // Avoid invalidating the iterator. 2113 CurInstIterator = BB->begin(); 2114 // Avoid processing instructions out of order, which could cause 2115 // reuse before a value is defined. 2116 SunkAddrs.clear(); 2117 return true; 2118 } 2119 // Sink address computing for memory operands into the block. 2120 if (optimizeInlineAsmInst(CI)) 2121 return true; 2122 } 2123 2124 // Align the pointer arguments to this call if the target thinks it's a good 2125 // idea 2126 unsigned MinSize, PrefAlign; 2127 if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2128 for (auto &Arg : CI->arg_operands()) { 2129 // We want to align both objects whose address is used directly and 2130 // objects whose address is used in casts and GEPs, though it only makes 2131 // sense for GEPs if the offset is a multiple of the desired alignment and 2132 // if size - offset meets the size threshold. 2133 if (!Arg->getType()->isPointerTy()) 2134 continue; 2135 APInt Offset(DL->getPointerSizeInBits( 2136 cast<PointerType>(Arg->getType())->getAddressSpace()), 2137 0); 2138 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2139 uint64_t Offset2 = Offset.getLimitedValue(); 2140 if ((Offset2 & (PrefAlign-1)) != 0) 2141 continue; 2142 AllocaInst *AI; 2143 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2144 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2145 AI->setAlignment(PrefAlign); 2146 // Global variables can only be aligned if they are defined in this 2147 // object (i.e. they are uniquely initialized in this object), and 2148 // over-aligning global variables that have an explicit section is 2149 // forbidden. 2150 GlobalVariable *GV; 2151 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2152 GV->getPointerAlignment(*DL) < PrefAlign && 2153 DL->getTypeAllocSize(GV->getValueType()) >= 2154 MinSize + Offset2) 2155 GV->setAlignment(PrefAlign); 2156 } 2157 // If this is a memcpy (or similar) then we may be able to improve the 2158 // alignment 2159 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2160 unsigned Align = getKnownAlignment(MI->getDest(), *DL); 2161 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) 2162 Align = std::min(Align, getKnownAlignment(MTI->getSource(), *DL)); 2163 if (Align > MI->getAlignment()) 2164 MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), Align)); 2165 } 2166 } 2167 2168 // If we have a cold call site, try to sink addressing computation into the 2169 // cold block. This interacts with our handling for loads and stores to 2170 // ensure that we can fold all uses of a potential addressing computation 2171 // into their uses. TODO: generalize this to work over profiling data 2172 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 2173 for (auto &Arg : CI->arg_operands()) { 2174 if (!Arg->getType()->isPointerTy()) 2175 continue; 2176 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2177 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2178 } 2179 2180 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2181 if (II) { 2182 switch (II->getIntrinsicID()) { 2183 default: break; 2184 case Intrinsic::objectsize: { 2185 // Lower all uses of llvm.objectsize.* 2186 ConstantInt *RetVal = 2187 lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); 2188 // Substituting this can cause recursive simplifications, which can 2189 // invalidate our iterator. Use a WeakVH to hold onto it in case this 2190 // happens. 2191 Value *CurValue = &*CurInstIterator; 2192 WeakVH IterHandle(CurValue); 2193 2194 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2195 2196 // If the iterator instruction was recursively deleted, start over at the 2197 // start of the block. 2198 if (IterHandle != CurValue) { 2199 CurInstIterator = BB->begin(); 2200 SunkAddrs.clear(); 2201 } 2202 return true; 2203 } 2204 case Intrinsic::masked_load: { 2205 // Scalarize unsupported vector masked load 2206 if (!TTI->isLegalMaskedLoad(CI->getType())) { 2207 scalarizeMaskedLoad(CI); 2208 ModifiedDT = true; 2209 return true; 2210 } 2211 return false; 2212 } 2213 case Intrinsic::masked_store: { 2214 if (!TTI->isLegalMaskedStore(CI->getArgOperand(0)->getType())) { 2215 scalarizeMaskedStore(CI); 2216 ModifiedDT = true; 2217 return true; 2218 } 2219 return false; 2220 } 2221 case Intrinsic::masked_gather: { 2222 if (!TTI->isLegalMaskedGather(CI->getType())) { 2223 scalarizeMaskedGather(CI); 2224 ModifiedDT = true; 2225 return true; 2226 } 2227 return false; 2228 } 2229 case Intrinsic::masked_scatter: { 2230 if (!TTI->isLegalMaskedScatter(CI->getArgOperand(0)->getType())) { 2231 scalarizeMaskedScatter(CI); 2232 ModifiedDT = true; 2233 return true; 2234 } 2235 return false; 2236 } 2237 case Intrinsic::aarch64_stlxr: 2238 case Intrinsic::aarch64_stxr: { 2239 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2240 if (!ExtVal || !ExtVal->hasOneUse() || 2241 ExtVal->getParent() == CI->getParent()) 2242 return false; 2243 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2244 ExtVal->moveBefore(CI); 2245 // Mark this instruction as "inserted by CGP", so that other 2246 // optimizations don't touch it. 2247 InsertedInsts.insert(ExtVal); 2248 return true; 2249 } 2250 case Intrinsic::invariant_group_barrier: 2251 II->replaceAllUsesWith(II->getArgOperand(0)); 2252 II->eraseFromParent(); 2253 return true; 2254 2255 case Intrinsic::cttz: 2256 case Intrinsic::ctlz: 2257 // If counting zeros is expensive, try to avoid it. 2258 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2259 } 2260 2261 if (TLI) { 2262 SmallVector<Value*, 2> PtrOps; 2263 Type *AccessTy; 2264 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2265 while (!PtrOps.empty()) { 2266 Value *PtrVal = PtrOps.pop_back_val(); 2267 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2268 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2269 return true; 2270 } 2271 } 2272 } 2273 2274 // From here on out we're working with named functions. 2275 if (!CI->getCalledFunction()) return false; 2276 2277 // Lower all default uses of _chk calls. This is very similar 2278 // to what InstCombineCalls does, but here we are only lowering calls 2279 // to fortified library functions (e.g. __memcpy_chk) that have the default 2280 // "don't know" as the objectsize. Anything else should be left alone. 2281 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2282 if (Value *V = Simplifier.optimizeCall(CI)) { 2283 CI->replaceAllUsesWith(V); 2284 CI->eraseFromParent(); 2285 return true; 2286 } 2287 return false; 2288 } 2289 2290 /// Look for opportunities to duplicate return instructions to the predecessor 2291 /// to enable tail call optimizations. The case it is currently looking for is: 2292 /// @code 2293 /// bb0: 2294 /// %tmp0 = tail call i32 @f0() 2295 /// br label %return 2296 /// bb1: 2297 /// %tmp1 = tail call i32 @f1() 2298 /// br label %return 2299 /// bb2: 2300 /// %tmp2 = tail call i32 @f2() 2301 /// br label %return 2302 /// return: 2303 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2304 /// ret i32 %retval 2305 /// @endcode 2306 /// 2307 /// => 2308 /// 2309 /// @code 2310 /// bb0: 2311 /// %tmp0 = tail call i32 @f0() 2312 /// ret i32 %tmp0 2313 /// bb1: 2314 /// %tmp1 = tail call i32 @f1() 2315 /// ret i32 %tmp1 2316 /// bb2: 2317 /// %tmp2 = tail call i32 @f2() 2318 /// ret i32 %tmp2 2319 /// @endcode 2320 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB) { 2321 if (!TLI) 2322 return false; 2323 2324 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2325 if (!RetI) 2326 return false; 2327 2328 PHINode *PN = nullptr; 2329 BitCastInst *BCI = nullptr; 2330 Value *V = RetI->getReturnValue(); 2331 if (V) { 2332 BCI = dyn_cast<BitCastInst>(V); 2333 if (BCI) 2334 V = BCI->getOperand(0); 2335 2336 PN = dyn_cast<PHINode>(V); 2337 if (!PN) 2338 return false; 2339 } 2340 2341 if (PN && PN->getParent() != BB) 2342 return false; 2343 2344 // Make sure there are no instructions between the PHI and return, or that the 2345 // return is the first instruction in the block. 2346 if (PN) { 2347 BasicBlock::iterator BI = BB->begin(); 2348 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); 2349 if (&*BI == BCI) 2350 // Also skip over the bitcast. 2351 ++BI; 2352 if (&*BI != RetI) 2353 return false; 2354 } else { 2355 BasicBlock::iterator BI = BB->begin(); 2356 while (isa<DbgInfoIntrinsic>(BI)) ++BI; 2357 if (&*BI != RetI) 2358 return false; 2359 } 2360 2361 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2362 /// call. 2363 const Function *F = BB->getParent(); 2364 SmallVector<CallInst*, 4> TailCalls; 2365 if (PN) { 2366 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2367 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); 2368 // Make sure the phi value is indeed produced by the tail call. 2369 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && 2370 TLI->mayBeEmittedAsTailCall(CI) && 2371 attributesPermitTailCall(F, CI, RetI, *TLI)) 2372 TailCalls.push_back(CI); 2373 } 2374 } else { 2375 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2376 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { 2377 if (!VisitedBBs.insert(*PI).second) 2378 continue; 2379 2380 BasicBlock::InstListType &InstList = (*PI)->getInstList(); 2381 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); 2382 BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); 2383 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); 2384 if (RI == RE) 2385 continue; 2386 2387 CallInst *CI = dyn_cast<CallInst>(&*RI); 2388 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2389 attributesPermitTailCall(F, CI, RetI, *TLI)) 2390 TailCalls.push_back(CI); 2391 } 2392 } 2393 2394 bool Changed = false; 2395 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { 2396 CallInst *CI = TailCalls[i]; 2397 CallSite CS(CI); 2398 2399 // Conservatively require the attributes of the call to match those of the 2400 // return. Ignore noalias because it doesn't affect the call sequence. 2401 AttributeSet CalleeAttrs = CS.getAttributes(); 2402 if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2403 removeAttribute(Attribute::NoAlias) != 2404 AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). 2405 removeAttribute(Attribute::NoAlias)) 2406 continue; 2407 2408 // Make sure the call instruction is followed by an unconditional branch to 2409 // the return block. 2410 BasicBlock *CallBB = CI->getParent(); 2411 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); 2412 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2413 continue; 2414 2415 // Duplicate the return into CallBB. 2416 (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); 2417 ModifiedDT = Changed = true; 2418 ++NumRetsDup; 2419 } 2420 2421 // If we eliminated all predecessors of the block, delete the block now. 2422 if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) 2423 BB->eraseFromParent(); 2424 2425 return Changed; 2426 } 2427 2428 //===----------------------------------------------------------------------===// 2429 // Memory Optimization 2430 //===----------------------------------------------------------------------===// 2431 2432 namespace { 2433 2434 /// This is an extended version of TargetLowering::AddrMode 2435 /// which holds actual Value*'s for register values. 2436 struct ExtAddrMode : public TargetLowering::AddrMode { 2437 Value *BaseReg; 2438 Value *ScaledReg; 2439 ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {} 2440 void print(raw_ostream &OS) const; 2441 void dump() const; 2442 2443 bool operator==(const ExtAddrMode& O) const { 2444 return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && 2445 (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && 2446 (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); 2447 } 2448 }; 2449 2450 #ifndef NDEBUG 2451 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2452 AM.print(OS); 2453 return OS; 2454 } 2455 #endif 2456 2457 void ExtAddrMode::print(raw_ostream &OS) const { 2458 bool NeedPlus = false; 2459 OS << "["; 2460 if (BaseGV) { 2461 OS << (NeedPlus ? " + " : "") 2462 << "GV:"; 2463 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2464 NeedPlus = true; 2465 } 2466 2467 if (BaseOffs) { 2468 OS << (NeedPlus ? " + " : "") 2469 << BaseOffs; 2470 NeedPlus = true; 2471 } 2472 2473 if (BaseReg) { 2474 OS << (NeedPlus ? " + " : "") 2475 << "Base:"; 2476 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2477 NeedPlus = true; 2478 } 2479 if (Scale) { 2480 OS << (NeedPlus ? " + " : "") 2481 << Scale << "*"; 2482 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2483 } 2484 2485 OS << ']'; 2486 } 2487 2488 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2489 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2490 print(dbgs()); 2491 dbgs() << '\n'; 2492 } 2493 #endif 2494 2495 /// \brief This class provides transaction based operation on the IR. 2496 /// Every change made through this class is recorded in the internal state and 2497 /// can be undone (rollback) until commit is called. 2498 class TypePromotionTransaction { 2499 2500 /// \brief This represents the common interface of the individual transaction. 2501 /// Each class implements the logic for doing one specific modification on 2502 /// the IR via the TypePromotionTransaction. 2503 class TypePromotionAction { 2504 protected: 2505 /// The Instruction modified. 2506 Instruction *Inst; 2507 2508 public: 2509 /// \brief Constructor of the action. 2510 /// The constructor performs the related action on the IR. 2511 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2512 2513 virtual ~TypePromotionAction() {} 2514 2515 /// \brief Undo the modification done by this action. 2516 /// When this method is called, the IR must be in the same state as it was 2517 /// before this action was applied. 2518 /// \pre Undoing the action works if and only if the IR is in the exact same 2519 /// state as it was directly after this action was applied. 2520 virtual void undo() = 0; 2521 2522 /// \brief Advocate every change made by this action. 2523 /// When the results on the IR of the action are to be kept, it is important 2524 /// to call this function, otherwise hidden information may be kept forever. 2525 virtual void commit() { 2526 // Nothing to be done, this action is not doing anything. 2527 } 2528 }; 2529 2530 /// \brief Utility to remember the position of an instruction. 2531 class InsertionHandler { 2532 /// Position of an instruction. 2533 /// Either an instruction: 2534 /// - Is the first in a basic block: BB is used. 2535 /// - Has a previous instructon: PrevInst is used. 2536 union { 2537 Instruction *PrevInst; 2538 BasicBlock *BB; 2539 } Point; 2540 /// Remember whether or not the instruction had a previous instruction. 2541 bool HasPrevInstruction; 2542 2543 public: 2544 /// \brief Record the position of \p Inst. 2545 InsertionHandler(Instruction *Inst) { 2546 BasicBlock::iterator It = Inst->getIterator(); 2547 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2548 if (HasPrevInstruction) 2549 Point.PrevInst = &*--It; 2550 else 2551 Point.BB = Inst->getParent(); 2552 } 2553 2554 /// \brief Insert \p Inst at the recorded position. 2555 void insert(Instruction *Inst) { 2556 if (HasPrevInstruction) { 2557 if (Inst->getParent()) 2558 Inst->removeFromParent(); 2559 Inst->insertAfter(Point.PrevInst); 2560 } else { 2561 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2562 if (Inst->getParent()) 2563 Inst->moveBefore(Position); 2564 else 2565 Inst->insertBefore(Position); 2566 } 2567 } 2568 }; 2569 2570 /// \brief Move an instruction before another. 2571 class InstructionMoveBefore : public TypePromotionAction { 2572 /// Original position of the instruction. 2573 InsertionHandler Position; 2574 2575 public: 2576 /// \brief Move \p Inst before \p Before. 2577 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2578 : TypePromotionAction(Inst), Position(Inst) { 2579 DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n"); 2580 Inst->moveBefore(Before); 2581 } 2582 2583 /// \brief Move the instruction back to its original position. 2584 void undo() override { 2585 DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2586 Position.insert(Inst); 2587 } 2588 }; 2589 2590 /// \brief Set the operand of an instruction with a new value. 2591 class OperandSetter : public TypePromotionAction { 2592 /// Original operand of the instruction. 2593 Value *Origin; 2594 /// Index of the modified instruction. 2595 unsigned Idx; 2596 2597 public: 2598 /// \brief Set \p Idx operand of \p Inst with \p NewVal. 2599 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2600 : TypePromotionAction(Inst), Idx(Idx) { 2601 DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2602 << "for:" << *Inst << "\n" 2603 << "with:" << *NewVal << "\n"); 2604 Origin = Inst->getOperand(Idx); 2605 Inst->setOperand(Idx, NewVal); 2606 } 2607 2608 /// \brief Restore the original value of the instruction. 2609 void undo() override { 2610 DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2611 << "for: " << *Inst << "\n" 2612 << "with: " << *Origin << "\n"); 2613 Inst->setOperand(Idx, Origin); 2614 } 2615 }; 2616 2617 /// \brief Hide the operands of an instruction. 2618 /// Do as if this instruction was not using any of its operands. 2619 class OperandsHider : public TypePromotionAction { 2620 /// The list of original operands. 2621 SmallVector<Value *, 4> OriginalValues; 2622 2623 public: 2624 /// \brief Remove \p Inst from the uses of the operands of \p Inst. 2625 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2626 DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2627 unsigned NumOpnds = Inst->getNumOperands(); 2628 OriginalValues.reserve(NumOpnds); 2629 for (unsigned It = 0; It < NumOpnds; ++It) { 2630 // Save the current operand. 2631 Value *Val = Inst->getOperand(It); 2632 OriginalValues.push_back(Val); 2633 // Set a dummy one. 2634 // We could use OperandSetter here, but that would imply an overhead 2635 // that we are not willing to pay. 2636 Inst->setOperand(It, UndefValue::get(Val->getType())); 2637 } 2638 } 2639 2640 /// \brief Restore the original list of uses. 2641 void undo() override { 2642 DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2643 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2644 Inst->setOperand(It, OriginalValues[It]); 2645 } 2646 }; 2647 2648 /// \brief Build a truncate instruction. 2649 class TruncBuilder : public TypePromotionAction { 2650 Value *Val; 2651 public: 2652 /// \brief Build a truncate instruction of \p Opnd producing a \p Ty 2653 /// result. 2654 /// trunc Opnd to Ty. 2655 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2656 IRBuilder<> Builder(Opnd); 2657 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2658 DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2659 } 2660 2661 /// \brief Get the built value. 2662 Value *getBuiltValue() { return Val; } 2663 2664 /// \brief Remove the built instruction. 2665 void undo() override { 2666 DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2667 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2668 IVal->eraseFromParent(); 2669 } 2670 }; 2671 2672 /// \brief Build a sign extension instruction. 2673 class SExtBuilder : public TypePromotionAction { 2674 Value *Val; 2675 public: 2676 /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty 2677 /// result. 2678 /// sext Opnd to Ty. 2679 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2680 : TypePromotionAction(InsertPt) { 2681 IRBuilder<> Builder(InsertPt); 2682 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2683 DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2684 } 2685 2686 /// \brief Get the built value. 2687 Value *getBuiltValue() { return Val; } 2688 2689 /// \brief Remove the built instruction. 2690 void undo() override { 2691 DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2692 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2693 IVal->eraseFromParent(); 2694 } 2695 }; 2696 2697 /// \brief Build a zero extension instruction. 2698 class ZExtBuilder : public TypePromotionAction { 2699 Value *Val; 2700 public: 2701 /// \brief Build a zero extension instruction of \p Opnd producing a \p Ty 2702 /// result. 2703 /// zext Opnd to Ty. 2704 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2705 : TypePromotionAction(InsertPt) { 2706 IRBuilder<> Builder(InsertPt); 2707 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2708 DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2709 } 2710 2711 /// \brief Get the built value. 2712 Value *getBuiltValue() { return Val; } 2713 2714 /// \brief Remove the built instruction. 2715 void undo() override { 2716 DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2717 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2718 IVal->eraseFromParent(); 2719 } 2720 }; 2721 2722 /// \brief Mutate an instruction to another type. 2723 class TypeMutator : public TypePromotionAction { 2724 /// Record the original type. 2725 Type *OrigTy; 2726 2727 public: 2728 /// \brief Mutate the type of \p Inst into \p NewTy. 2729 TypeMutator(Instruction *Inst, Type *NewTy) 2730 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2731 DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2732 << "\n"); 2733 Inst->mutateType(NewTy); 2734 } 2735 2736 /// \brief Mutate the instruction back to its original type. 2737 void undo() override { 2738 DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2739 << "\n"); 2740 Inst->mutateType(OrigTy); 2741 } 2742 }; 2743 2744 /// \brief Replace the uses of an instruction by another instruction. 2745 class UsesReplacer : public TypePromotionAction { 2746 /// Helper structure to keep track of the replaced uses. 2747 struct InstructionAndIdx { 2748 /// The instruction using the instruction. 2749 Instruction *Inst; 2750 /// The index where this instruction is used for Inst. 2751 unsigned Idx; 2752 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2753 : Inst(Inst), Idx(Idx) {} 2754 }; 2755 2756 /// Keep track of the original uses (pair Instruction, Index). 2757 SmallVector<InstructionAndIdx, 4> OriginalUses; 2758 typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator; 2759 2760 public: 2761 /// \brief Replace all the use of \p Inst by \p New. 2762 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2763 DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2764 << "\n"); 2765 // Record the original uses. 2766 for (Use &U : Inst->uses()) { 2767 Instruction *UserI = cast<Instruction>(U.getUser()); 2768 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2769 } 2770 // Now, we can replace the uses. 2771 Inst->replaceAllUsesWith(New); 2772 } 2773 2774 /// \brief Reassign the original uses of Inst to Inst. 2775 void undo() override { 2776 DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2777 for (use_iterator UseIt = OriginalUses.begin(), 2778 EndIt = OriginalUses.end(); 2779 UseIt != EndIt; ++UseIt) { 2780 UseIt->Inst->setOperand(UseIt->Idx, Inst); 2781 } 2782 } 2783 }; 2784 2785 /// \brief Remove an instruction from the IR. 2786 class InstructionRemover : public TypePromotionAction { 2787 /// Original position of the instruction. 2788 InsertionHandler Inserter; 2789 /// Helper structure to hide all the link to the instruction. In other 2790 /// words, this helps to do as if the instruction was removed. 2791 OperandsHider Hider; 2792 /// Keep track of the uses replaced, if any. 2793 UsesReplacer *Replacer; 2794 2795 public: 2796 /// \brief Remove all reference of \p Inst and optinally replace all its 2797 /// uses with New. 2798 /// \pre If !Inst->use_empty(), then New != nullptr 2799 InstructionRemover(Instruction *Inst, Value *New = nullptr) 2800 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2801 Replacer(nullptr) { 2802 if (New) 2803 Replacer = new UsesReplacer(Inst, New); 2804 DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2805 Inst->removeFromParent(); 2806 } 2807 2808 ~InstructionRemover() override { delete Replacer; } 2809 2810 /// \brief Really remove the instruction. 2811 void commit() override { delete Inst; } 2812 2813 /// \brief Resurrect the instruction and reassign it to the proper uses if 2814 /// new value was provided when build this action. 2815 void undo() override { 2816 DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2817 Inserter.insert(Inst); 2818 if (Replacer) 2819 Replacer->undo(); 2820 Hider.undo(); 2821 } 2822 }; 2823 2824 public: 2825 /// Restoration point. 2826 /// The restoration point is a pointer to an action instead of an iterator 2827 /// because the iterator may be invalidated but not the pointer. 2828 typedef const TypePromotionAction *ConstRestorationPt; 2829 /// Advocate every changes made in that transaction. 2830 void commit(); 2831 /// Undo all the changes made after the given point. 2832 void rollback(ConstRestorationPt Point); 2833 /// Get the current restoration point. 2834 ConstRestorationPt getRestorationPoint() const; 2835 2836 /// \name API for IR modification with state keeping to support rollback. 2837 /// @{ 2838 /// Same as Instruction::setOperand. 2839 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2840 /// Same as Instruction::eraseFromParent. 2841 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2842 /// Same as Value::replaceAllUsesWith. 2843 void replaceAllUsesWith(Instruction *Inst, Value *New); 2844 /// Same as Value::mutateType. 2845 void mutateType(Instruction *Inst, Type *NewTy); 2846 /// Same as IRBuilder::createTrunc. 2847 Value *createTrunc(Instruction *Opnd, Type *Ty); 2848 /// Same as IRBuilder::createSExt. 2849 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2850 /// Same as IRBuilder::createZExt. 2851 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2852 /// Same as Instruction::moveBefore. 2853 void moveBefore(Instruction *Inst, Instruction *Before); 2854 /// @} 2855 2856 private: 2857 /// The ordered list of actions made so far. 2858 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2859 typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt; 2860 }; 2861 2862 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2863 Value *NewVal) { 2864 Actions.push_back( 2865 make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal)); 2866 } 2867 2868 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2869 Value *NewVal) { 2870 Actions.push_back( 2871 make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal)); 2872 } 2873 2874 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2875 Value *New) { 2876 Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2877 } 2878 2879 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2880 Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2881 } 2882 2883 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2884 Type *Ty) { 2885 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2886 Value *Val = Ptr->getBuiltValue(); 2887 Actions.push_back(std::move(Ptr)); 2888 return Val; 2889 } 2890 2891 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2892 Value *Opnd, Type *Ty) { 2893 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2894 Value *Val = Ptr->getBuiltValue(); 2895 Actions.push_back(std::move(Ptr)); 2896 return Val; 2897 } 2898 2899 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2900 Value *Opnd, Type *Ty) { 2901 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2902 Value *Val = Ptr->getBuiltValue(); 2903 Actions.push_back(std::move(Ptr)); 2904 return Val; 2905 } 2906 2907 void TypePromotionTransaction::moveBefore(Instruction *Inst, 2908 Instruction *Before) { 2909 Actions.push_back( 2910 make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before)); 2911 } 2912 2913 TypePromotionTransaction::ConstRestorationPt 2914 TypePromotionTransaction::getRestorationPoint() const { 2915 return !Actions.empty() ? Actions.back().get() : nullptr; 2916 } 2917 2918 void TypePromotionTransaction::commit() { 2919 for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; 2920 ++It) 2921 (*It)->commit(); 2922 Actions.clear(); 2923 } 2924 2925 void TypePromotionTransaction::rollback( 2926 TypePromotionTransaction::ConstRestorationPt Point) { 2927 while (!Actions.empty() && Point != Actions.back().get()) { 2928 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 2929 Curr->undo(); 2930 } 2931 } 2932 2933 /// \brief A helper class for matching addressing modes. 2934 /// 2935 /// This encapsulates the logic for matching the target-legal addressing modes. 2936 class AddressingModeMatcher { 2937 SmallVectorImpl<Instruction*> &AddrModeInsts; 2938 const TargetLowering &TLI; 2939 const TargetRegisterInfo &TRI; 2940 const DataLayout &DL; 2941 2942 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 2943 /// the memory instruction that we're computing this address for. 2944 Type *AccessTy; 2945 unsigned AddrSpace; 2946 Instruction *MemoryInst; 2947 2948 /// This is the addressing mode that we're building up. This is 2949 /// part of the return value of this addressing mode matching stuff. 2950 ExtAddrMode &AddrMode; 2951 2952 /// The instructions inserted by other CodeGenPrepare optimizations. 2953 const SetOfInstrs &InsertedInsts; 2954 /// A map from the instructions to their type before promotion. 2955 InstrToOrigTy &PromotedInsts; 2956 /// The ongoing transaction where every action should be registered. 2957 TypePromotionTransaction &TPT; 2958 2959 /// This is set to true when we should not do profitability checks. 2960 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 2961 bool IgnoreProfitability; 2962 2963 AddressingModeMatcher(SmallVectorImpl<Instruction *> &AMI, 2964 const TargetLowering &TLI, 2965 const TargetRegisterInfo &TRI, 2966 Type *AT, unsigned AS, 2967 Instruction *MI, ExtAddrMode &AM, 2968 const SetOfInstrs &InsertedInsts, 2969 InstrToOrigTy &PromotedInsts, 2970 TypePromotionTransaction &TPT) 2971 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 2972 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 2973 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 2974 PromotedInsts(PromotedInsts), TPT(TPT) { 2975 IgnoreProfitability = false; 2976 } 2977 public: 2978 2979 /// Find the maximal addressing mode that a load/store of V can fold, 2980 /// give an access type of AccessTy. This returns a list of involved 2981 /// instructions in AddrModeInsts. 2982 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 2983 /// optimizations. 2984 /// \p PromotedInsts maps the instructions to their type before promotion. 2985 /// \p The ongoing transaction where every action should be registered. 2986 static ExtAddrMode Match(Value *V, Type *AccessTy, unsigned AS, 2987 Instruction *MemoryInst, 2988 SmallVectorImpl<Instruction*> &AddrModeInsts, 2989 const TargetLowering &TLI, 2990 const TargetRegisterInfo &TRI, 2991 const SetOfInstrs &InsertedInsts, 2992 InstrToOrigTy &PromotedInsts, 2993 TypePromotionTransaction &TPT) { 2994 ExtAddrMode Result; 2995 2996 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, 2997 AccessTy, AS, 2998 MemoryInst, Result, InsertedInsts, 2999 PromotedInsts, TPT).matchAddr(V, 0); 3000 (void)Success; assert(Success && "Couldn't select *anything*?"); 3001 return Result; 3002 } 3003 private: 3004 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3005 bool matchAddr(Value *V, unsigned Depth); 3006 bool matchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth, 3007 bool *MovedAway = nullptr); 3008 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3009 ExtAddrMode &AMBefore, 3010 ExtAddrMode &AMAfter); 3011 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3012 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3013 Value *PromotedOperand) const; 3014 }; 3015 3016 /// Try adding ScaleReg*Scale to the current addressing mode. 3017 /// Return true and update AddrMode if this addr mode is legal for the target, 3018 /// false if not. 3019 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3020 unsigned Depth) { 3021 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3022 // mode. Just process that directly. 3023 if (Scale == 1) 3024 return matchAddr(ScaleReg, Depth); 3025 3026 // If the scale is 0, it takes nothing to add this. 3027 if (Scale == 0) 3028 return true; 3029 3030 // If we already have a scale of this value, we can add to it, otherwise, we 3031 // need an available scale field. 3032 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3033 return false; 3034 3035 ExtAddrMode TestAddrMode = AddrMode; 3036 3037 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3038 // [A+B + A*7] -> [B+A*8]. 3039 TestAddrMode.Scale += Scale; 3040 TestAddrMode.ScaledReg = ScaleReg; 3041 3042 // If the new address isn't legal, bail out. 3043 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3044 return false; 3045 3046 // It was legal, so commit it. 3047 AddrMode = TestAddrMode; 3048 3049 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3050 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3051 // X*Scale + C*Scale to addr mode. 3052 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3053 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3054 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { 3055 TestAddrMode.ScaledReg = AddLHS; 3056 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; 3057 3058 // If this addressing mode is legal, commit it and remember that we folded 3059 // this instruction. 3060 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3061 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3062 AddrMode = TestAddrMode; 3063 return true; 3064 } 3065 } 3066 3067 // Otherwise, not (x+c)*scale, just return what we have. 3068 return true; 3069 } 3070 3071 /// This is a little filter, which returns true if an addressing computation 3072 /// involving I might be folded into a load/store accessing it. 3073 /// This doesn't need to be perfect, but needs to accept at least 3074 /// the set of instructions that MatchOperationAddr can. 3075 static bool MightBeFoldableInst(Instruction *I) { 3076 switch (I->getOpcode()) { 3077 case Instruction::BitCast: 3078 case Instruction::AddrSpaceCast: 3079 // Don't touch identity bitcasts. 3080 if (I->getType() == I->getOperand(0)->getType()) 3081 return false; 3082 return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); 3083 case Instruction::PtrToInt: 3084 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3085 return true; 3086 case Instruction::IntToPtr: 3087 // We know the input is intptr_t, so this is foldable. 3088 return true; 3089 case Instruction::Add: 3090 return true; 3091 case Instruction::Mul: 3092 case Instruction::Shl: 3093 // Can only handle X*C and X << C. 3094 return isa<ConstantInt>(I->getOperand(1)); 3095 case Instruction::GetElementPtr: 3096 return true; 3097 default: 3098 return false; 3099 } 3100 } 3101 3102 /// \brief Check whether or not \p Val is a legal instruction for \p TLI. 3103 /// \note \p Val is assumed to be the product of some type promotion. 3104 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3105 /// to be legal, as the non-promoted value would have had the same state. 3106 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3107 const DataLayout &DL, Value *Val) { 3108 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3109 if (!PromotedInst) 3110 return false; 3111 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3112 // If the ISDOpcode is undefined, it was undefined before the promotion. 3113 if (!ISDOpcode) 3114 return true; 3115 // Otherwise, check if the promoted instruction is legal or not. 3116 return TLI.isOperationLegalOrCustom( 3117 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3118 } 3119 3120 /// \brief Hepler class to perform type promotion. 3121 class TypePromotionHelper { 3122 /// \brief Utility function to check whether or not a sign or zero extension 3123 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3124 /// either using the operands of \p Inst or promoting \p Inst. 3125 /// The type of the extension is defined by \p IsSExt. 3126 /// In other words, check if: 3127 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3128 /// #1 Promotion applies: 3129 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3130 /// #2 Operand reuses: 3131 /// ext opnd1 to ConsideredExtType. 3132 /// \p PromotedInsts maps the instructions to their type before promotion. 3133 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3134 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3135 3136 /// \brief Utility function to determine if \p OpIdx should be promoted when 3137 /// promoting \p Inst. 3138 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3139 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3140 } 3141 3142 /// \brief Utility function to promote the operand of \p Ext when this 3143 /// operand is a promotable trunc or sext or zext. 3144 /// \p PromotedInsts maps the instructions to their type before promotion. 3145 /// \p CreatedInstsCost[out] contains the cost of all instructions 3146 /// created to promote the operand of Ext. 3147 /// Newly added extensions are inserted in \p Exts. 3148 /// Newly added truncates are inserted in \p Truncs. 3149 /// Should never be called directly. 3150 /// \return The promoted value which is used instead of Ext. 3151 static Value *promoteOperandForTruncAndAnyExt( 3152 Instruction *Ext, TypePromotionTransaction &TPT, 3153 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3154 SmallVectorImpl<Instruction *> *Exts, 3155 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3156 3157 /// \brief Utility function to promote the operand of \p Ext when this 3158 /// operand is promotable and is not a supported trunc or sext. 3159 /// \p PromotedInsts maps the instructions to their type before promotion. 3160 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3161 /// created to promote the operand of Ext. 3162 /// Newly added extensions are inserted in \p Exts. 3163 /// Newly added truncates are inserted in \p Truncs. 3164 /// Should never be called directly. 3165 /// \return The promoted value which is used instead of Ext. 3166 static Value *promoteOperandForOther(Instruction *Ext, 3167 TypePromotionTransaction &TPT, 3168 InstrToOrigTy &PromotedInsts, 3169 unsigned &CreatedInstsCost, 3170 SmallVectorImpl<Instruction *> *Exts, 3171 SmallVectorImpl<Instruction *> *Truncs, 3172 const TargetLowering &TLI, bool IsSExt); 3173 3174 /// \see promoteOperandForOther. 3175 static Value *signExtendOperandForOther( 3176 Instruction *Ext, TypePromotionTransaction &TPT, 3177 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3178 SmallVectorImpl<Instruction *> *Exts, 3179 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3180 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3181 Exts, Truncs, TLI, true); 3182 } 3183 3184 /// \see promoteOperandForOther. 3185 static Value *zeroExtendOperandForOther( 3186 Instruction *Ext, TypePromotionTransaction &TPT, 3187 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3188 SmallVectorImpl<Instruction *> *Exts, 3189 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3190 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3191 Exts, Truncs, TLI, false); 3192 } 3193 3194 public: 3195 /// Type for the utility function that promotes the operand of Ext. 3196 typedef Value *(*Action)(Instruction *Ext, TypePromotionTransaction &TPT, 3197 InstrToOrigTy &PromotedInsts, 3198 unsigned &CreatedInstsCost, 3199 SmallVectorImpl<Instruction *> *Exts, 3200 SmallVectorImpl<Instruction *> *Truncs, 3201 const TargetLowering &TLI); 3202 /// \brief Given a sign/zero extend instruction \p Ext, return the approriate 3203 /// action to promote the operand of \p Ext instead of using Ext. 3204 /// \return NULL if no promotable action is possible with the current 3205 /// sign extension. 3206 /// \p InsertedInsts keeps track of all the instructions inserted by the 3207 /// other CodeGenPrepare optimizations. This information is important 3208 /// because we do not want to promote these instructions as CodeGenPrepare 3209 /// will reinsert them later. Thus creating an infinite loop: create/remove. 3210 /// \p PromotedInsts maps the instructions to their type before promotion. 3211 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 3212 const TargetLowering &TLI, 3213 const InstrToOrigTy &PromotedInsts); 3214 }; 3215 3216 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 3217 Type *ConsideredExtType, 3218 const InstrToOrigTy &PromotedInsts, 3219 bool IsSExt) { 3220 // The promotion helper does not know how to deal with vector types yet. 3221 // To be able to fix that, we would need to fix the places where we 3222 // statically extend, e.g., constants and such. 3223 if (Inst->getType()->isVectorTy()) 3224 return false; 3225 3226 // We can always get through zext. 3227 if (isa<ZExtInst>(Inst)) 3228 return true; 3229 3230 // sext(sext) is ok too. 3231 if (IsSExt && isa<SExtInst>(Inst)) 3232 return true; 3233 3234 // We can get through binary operator, if it is legal. In other words, the 3235 // binary operator must have a nuw or nsw flag. 3236 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 3237 if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && 3238 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 3239 (IsSExt && BinOp->hasNoSignedWrap()))) 3240 return true; 3241 3242 // Check if we can do the following simplification. 3243 // ext(trunc(opnd)) --> ext(opnd) 3244 if (!isa<TruncInst>(Inst)) 3245 return false; 3246 3247 Value *OpndVal = Inst->getOperand(0); 3248 // Check if we can use this operand in the extension. 3249 // If the type is larger than the result type of the extension, we cannot. 3250 if (!OpndVal->getType()->isIntegerTy() || 3251 OpndVal->getType()->getIntegerBitWidth() > 3252 ConsideredExtType->getIntegerBitWidth()) 3253 return false; 3254 3255 // If the operand of the truncate is not an instruction, we will not have 3256 // any information on the dropped bits. 3257 // (Actually we could for constant but it is not worth the extra logic). 3258 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 3259 if (!Opnd) 3260 return false; 3261 3262 // Check if the source of the type is narrow enough. 3263 // I.e., check that trunc just drops extended bits of the same kind of 3264 // the extension. 3265 // #1 get the type of the operand and check the kind of the extended bits. 3266 const Type *OpndType; 3267 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3268 if (It != PromotedInsts.end() && It->second.getInt() == IsSExt) 3269 OpndType = It->second.getPointer(); 3270 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 3271 OpndType = Opnd->getOperand(0)->getType(); 3272 else 3273 return false; 3274 3275 // #2 check that the truncate just drops extended bits. 3276 return Inst->getType()->getIntegerBitWidth() >= 3277 OpndType->getIntegerBitWidth(); 3278 } 3279 3280 TypePromotionHelper::Action TypePromotionHelper::getAction( 3281 Instruction *Ext, const SetOfInstrs &InsertedInsts, 3282 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 3283 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 3284 "Unexpected instruction type"); 3285 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 3286 Type *ExtTy = Ext->getType(); 3287 bool IsSExt = isa<SExtInst>(Ext); 3288 // If the operand of the extension is not an instruction, we cannot 3289 // get through. 3290 // If it, check we can get through. 3291 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 3292 return nullptr; 3293 3294 // Do not promote if the operand has been added by codegenprepare. 3295 // Otherwise, it means we are undoing an optimization that is likely to be 3296 // redone, thus causing potential infinite loop. 3297 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 3298 return nullptr; 3299 3300 // SExt or Trunc instructions. 3301 // Return the related handler. 3302 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 3303 isa<ZExtInst>(ExtOpnd)) 3304 return promoteOperandForTruncAndAnyExt; 3305 3306 // Regular instruction. 3307 // Abort early if we will have to insert non-free instructions. 3308 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 3309 return nullptr; 3310 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 3311 } 3312 3313 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 3314 llvm::Instruction *SExt, TypePromotionTransaction &TPT, 3315 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3316 SmallVectorImpl<Instruction *> *Exts, 3317 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3318 // By construction, the operand of SExt is an instruction. Otherwise we cannot 3319 // get through it and this method should not be called. 3320 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 3321 Value *ExtVal = SExt; 3322 bool HasMergedNonFreeExt = false; 3323 if (isa<ZExtInst>(SExtOpnd)) { 3324 // Replace s|zext(zext(opnd)) 3325 // => zext(opnd). 3326 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 3327 Value *ZExt = 3328 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 3329 TPT.replaceAllUsesWith(SExt, ZExt); 3330 TPT.eraseInstruction(SExt); 3331 ExtVal = ZExt; 3332 } else { 3333 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 3334 // => z|sext(opnd). 3335 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 3336 } 3337 CreatedInstsCost = 0; 3338 3339 // Remove dead code. 3340 if (SExtOpnd->use_empty()) 3341 TPT.eraseInstruction(SExtOpnd); 3342 3343 // Check if the extension is still needed. 3344 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 3345 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 3346 if (ExtInst) { 3347 if (Exts) 3348 Exts->push_back(ExtInst); 3349 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 3350 } 3351 return ExtVal; 3352 } 3353 3354 // At this point we have: ext ty opnd to ty. 3355 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 3356 Value *NextVal = ExtInst->getOperand(0); 3357 TPT.eraseInstruction(ExtInst, NextVal); 3358 return NextVal; 3359 } 3360 3361 Value *TypePromotionHelper::promoteOperandForOther( 3362 Instruction *Ext, TypePromotionTransaction &TPT, 3363 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3364 SmallVectorImpl<Instruction *> *Exts, 3365 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 3366 bool IsSExt) { 3367 // By construction, the operand of Ext is an instruction. Otherwise we cannot 3368 // get through it and this method should not be called. 3369 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 3370 CreatedInstsCost = 0; 3371 if (!ExtOpnd->hasOneUse()) { 3372 // ExtOpnd will be promoted. 3373 // All its uses, but Ext, will need to use a truncated value of the 3374 // promoted version. 3375 // Create the truncate now. 3376 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 3377 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 3378 ITrunc->removeFromParent(); 3379 // Insert it just after the definition. 3380 ITrunc->insertAfter(ExtOpnd); 3381 if (Truncs) 3382 Truncs->push_back(ITrunc); 3383 } 3384 3385 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 3386 // Restore the operand of Ext (which has been replaced by the previous call 3387 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 3388 TPT.setOperand(Ext, 0, ExtOpnd); 3389 } 3390 3391 // Get through the Instruction: 3392 // 1. Update its type. 3393 // 2. Replace the uses of Ext by Inst. 3394 // 3. Extend each operand that needs to be extended. 3395 3396 // Remember the original type of the instruction before promotion. 3397 // This is useful to know that the high bits are sign extended bits. 3398 PromotedInsts.insert(std::pair<Instruction *, TypeIsSExt>( 3399 ExtOpnd, TypeIsSExt(ExtOpnd->getType(), IsSExt))); 3400 // Step #1. 3401 TPT.mutateType(ExtOpnd, Ext->getType()); 3402 // Step #2. 3403 TPT.replaceAllUsesWith(Ext, ExtOpnd); 3404 // Step #3. 3405 Instruction *ExtForOpnd = Ext; 3406 3407 DEBUG(dbgs() << "Propagate Ext to operands\n"); 3408 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 3409 ++OpIdx) { 3410 DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 3411 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 3412 !shouldExtOperand(ExtOpnd, OpIdx)) { 3413 DEBUG(dbgs() << "No need to propagate\n"); 3414 continue; 3415 } 3416 // Check if we can statically extend the operand. 3417 Value *Opnd = ExtOpnd->getOperand(OpIdx); 3418 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 3419 DEBUG(dbgs() << "Statically extend\n"); 3420 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 3421 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 3422 : Cst->getValue().zext(BitWidth); 3423 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 3424 continue; 3425 } 3426 // UndefValue are typed, so we have to statically sign extend them. 3427 if (isa<UndefValue>(Opnd)) { 3428 DEBUG(dbgs() << "Statically extend\n"); 3429 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 3430 continue; 3431 } 3432 3433 // Otherwise we have to explicity sign extend the operand. 3434 // Check if Ext was reused to extend an operand. 3435 if (!ExtForOpnd) { 3436 // If yes, create a new one. 3437 DEBUG(dbgs() << "More operands to ext\n"); 3438 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 3439 : TPT.createZExt(Ext, Opnd, Ext->getType()); 3440 if (!isa<Instruction>(ValForExtOpnd)) { 3441 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 3442 continue; 3443 } 3444 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 3445 } 3446 if (Exts) 3447 Exts->push_back(ExtForOpnd); 3448 TPT.setOperand(ExtForOpnd, 0, Opnd); 3449 3450 // Move the sign extension before the insertion point. 3451 TPT.moveBefore(ExtForOpnd, ExtOpnd); 3452 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 3453 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 3454 // If more sext are required, new instructions will have to be created. 3455 ExtForOpnd = nullptr; 3456 } 3457 if (ExtForOpnd == Ext) { 3458 DEBUG(dbgs() << "Extension is useless now\n"); 3459 TPT.eraseInstruction(Ext); 3460 } 3461 return ExtOpnd; 3462 } 3463 3464 /// Check whether or not promoting an instruction to a wider type is profitable. 3465 /// \p NewCost gives the cost of extension instructions created by the 3466 /// promotion. 3467 /// \p OldCost gives the cost of extension instructions before the promotion 3468 /// plus the number of instructions that have been 3469 /// matched in the addressing mode the promotion. 3470 /// \p PromotedOperand is the value that has been promoted. 3471 /// \return True if the promotion is profitable, false otherwise. 3472 bool AddressingModeMatcher::isPromotionProfitable( 3473 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 3474 DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost << '\n'); 3475 // The cost of the new extensions is greater than the cost of the 3476 // old extension plus what we folded. 3477 // This is not profitable. 3478 if (NewCost > OldCost) 3479 return false; 3480 if (NewCost < OldCost) 3481 return true; 3482 // The promotion is neutral but it may help folding the sign extension in 3483 // loads for instance. 3484 // Check that we did not create an illegal instruction. 3485 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 3486 } 3487 3488 /// Given an instruction or constant expr, see if we can fold the operation 3489 /// into the addressing mode. If so, update the addressing mode and return 3490 /// true, otherwise return false without modifying AddrMode. 3491 /// If \p MovedAway is not NULL, it contains the information of whether or 3492 /// not AddrInst has to be folded into the addressing mode on success. 3493 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 3494 /// because it has been moved away. 3495 /// Thus AddrInst must not be added in the matched instructions. 3496 /// This state can happen when AddrInst is a sext, since it may be moved away. 3497 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 3498 /// not be referenced anymore. 3499 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 3500 unsigned Depth, 3501 bool *MovedAway) { 3502 // Avoid exponential behavior on extremely deep expression trees. 3503 if (Depth >= 5) return false; 3504 3505 // By default, all matched instructions stay in place. 3506 if (MovedAway) 3507 *MovedAway = false; 3508 3509 switch (Opcode) { 3510 case Instruction::PtrToInt: 3511 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3512 return matchAddr(AddrInst->getOperand(0), Depth); 3513 case Instruction::IntToPtr: { 3514 auto AS = AddrInst->getType()->getPointerAddressSpace(); 3515 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 3516 // This inttoptr is a no-op if the integer type is pointer sized. 3517 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 3518 return matchAddr(AddrInst->getOperand(0), Depth); 3519 return false; 3520 } 3521 case Instruction::BitCast: 3522 // BitCast is always a noop, and we can handle it as long as it is 3523 // int->int or pointer->pointer (we don't want int<->fp or something). 3524 if ((AddrInst->getOperand(0)->getType()->isPointerTy() || 3525 AddrInst->getOperand(0)->getType()->isIntegerTy()) && 3526 // Don't touch identity bitcasts. These were probably put here by LSR, 3527 // and we don't want to mess around with them. Assume it knows what it 3528 // is doing. 3529 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 3530 return matchAddr(AddrInst->getOperand(0), Depth); 3531 return false; 3532 case Instruction::AddrSpaceCast: { 3533 unsigned SrcAS 3534 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 3535 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 3536 if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3537 return matchAddr(AddrInst->getOperand(0), Depth); 3538 return false; 3539 } 3540 case Instruction::Add: { 3541 // Check to see if we can merge in the RHS then the LHS. If so, we win. 3542 ExtAddrMode BackupAddrMode = AddrMode; 3543 unsigned OldSize = AddrModeInsts.size(); 3544 // Start a transaction at this point. 3545 // The LHS may match but not the RHS. 3546 // Therefore, we need a higher level restoration point to undo partially 3547 // matched operation. 3548 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3549 TPT.getRestorationPoint(); 3550 3551 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 3552 matchAddr(AddrInst->getOperand(0), Depth+1)) 3553 return true; 3554 3555 // Restore the old addr mode info. 3556 AddrMode = BackupAddrMode; 3557 AddrModeInsts.resize(OldSize); 3558 TPT.rollback(LastKnownGood); 3559 3560 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 3561 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 3562 matchAddr(AddrInst->getOperand(1), Depth+1)) 3563 return true; 3564 3565 // Otherwise we definitely can't merge the ADD in. 3566 AddrMode = BackupAddrMode; 3567 AddrModeInsts.resize(OldSize); 3568 TPT.rollback(LastKnownGood); 3569 break; 3570 } 3571 //case Instruction::Or: 3572 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 3573 //break; 3574 case Instruction::Mul: 3575 case Instruction::Shl: { 3576 // Can only handle X*C and X << C. 3577 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 3578 if (!RHS) 3579 return false; 3580 int64_t Scale = RHS->getSExtValue(); 3581 if (Opcode == Instruction::Shl) 3582 Scale = 1LL << Scale; 3583 3584 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 3585 } 3586 case Instruction::GetElementPtr: { 3587 // Scan the GEP. We check it if it contains constant offsets and at most 3588 // one variable offset. 3589 int VariableOperand = -1; 3590 unsigned VariableScale = 0; 3591 3592 int64_t ConstantOffset = 0; 3593 gep_type_iterator GTI = gep_type_begin(AddrInst); 3594 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 3595 if (StructType *STy = GTI.getStructTypeOrNull()) { 3596 const StructLayout *SL = DL.getStructLayout(STy); 3597 unsigned Idx = 3598 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 3599 ConstantOffset += SL->getElementOffset(Idx); 3600 } else { 3601 uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); 3602 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 3603 ConstantOffset += CI->getSExtValue()*TypeSize; 3604 } else if (TypeSize) { // Scales of zero don't do anything. 3605 // We only allow one variable index at the moment. 3606 if (VariableOperand != -1) 3607 return false; 3608 3609 // Remember the variable index. 3610 VariableOperand = i; 3611 VariableScale = TypeSize; 3612 } 3613 } 3614 } 3615 3616 // A common case is for the GEP to only do a constant offset. In this case, 3617 // just add it to the disp field and check validity. 3618 if (VariableOperand == -1) { 3619 AddrMode.BaseOffs += ConstantOffset; 3620 if (ConstantOffset == 0 || 3621 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 3622 // Check to see if we can fold the base pointer in too. 3623 if (matchAddr(AddrInst->getOperand(0), Depth+1)) 3624 return true; 3625 } 3626 AddrMode.BaseOffs -= ConstantOffset; 3627 return false; 3628 } 3629 3630 // Save the valid addressing mode in case we can't match. 3631 ExtAddrMode BackupAddrMode = AddrMode; 3632 unsigned OldSize = AddrModeInsts.size(); 3633 3634 // See if the scale and offset amount is valid for this target. 3635 AddrMode.BaseOffs += ConstantOffset; 3636 3637 // Match the base operand of the GEP. 3638 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 3639 // If it couldn't be matched, just stuff the value in a register. 3640 if (AddrMode.HasBaseReg) { 3641 AddrMode = BackupAddrMode; 3642 AddrModeInsts.resize(OldSize); 3643 return false; 3644 } 3645 AddrMode.HasBaseReg = true; 3646 AddrMode.BaseReg = AddrInst->getOperand(0); 3647 } 3648 3649 // Match the remaining variable portion of the GEP. 3650 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 3651 Depth)) { 3652 // If it couldn't be matched, try stuffing the base into a register 3653 // instead of matching it, and retrying the match of the scale. 3654 AddrMode = BackupAddrMode; 3655 AddrModeInsts.resize(OldSize); 3656 if (AddrMode.HasBaseReg) 3657 return false; 3658 AddrMode.HasBaseReg = true; 3659 AddrMode.BaseReg = AddrInst->getOperand(0); 3660 AddrMode.BaseOffs += ConstantOffset; 3661 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 3662 VariableScale, Depth)) { 3663 // If even that didn't work, bail. 3664 AddrMode = BackupAddrMode; 3665 AddrModeInsts.resize(OldSize); 3666 return false; 3667 } 3668 } 3669 3670 return true; 3671 } 3672 case Instruction::SExt: 3673 case Instruction::ZExt: { 3674 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 3675 if (!Ext) 3676 return false; 3677 3678 // Try to move this ext out of the way of the addressing mode. 3679 // Ask for a method for doing so. 3680 TypePromotionHelper::Action TPH = 3681 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 3682 if (!TPH) 3683 return false; 3684 3685 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3686 TPT.getRestorationPoint(); 3687 unsigned CreatedInstsCost = 0; 3688 unsigned ExtCost = !TLI.isExtFree(Ext); 3689 Value *PromotedOperand = 3690 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 3691 // SExt has been moved away. 3692 // Thus either it will be rematched later in the recursive calls or it is 3693 // gone. Anyway, we must not fold it into the addressing mode at this point. 3694 // E.g., 3695 // op = add opnd, 1 3696 // idx = ext op 3697 // addr = gep base, idx 3698 // is now: 3699 // promotedOpnd = ext opnd <- no match here 3700 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 3701 // addr = gep base, op <- match 3702 if (MovedAway) 3703 *MovedAway = true; 3704 3705 assert(PromotedOperand && 3706 "TypePromotionHelper should have filtered out those cases"); 3707 3708 ExtAddrMode BackupAddrMode = AddrMode; 3709 unsigned OldSize = AddrModeInsts.size(); 3710 3711 if (!matchAddr(PromotedOperand, Depth) || 3712 // The total of the new cost is equal to the cost of the created 3713 // instructions. 3714 // The total of the old cost is equal to the cost of the extension plus 3715 // what we have saved in the addressing mode. 3716 !isPromotionProfitable(CreatedInstsCost, 3717 ExtCost + (AddrModeInsts.size() - OldSize), 3718 PromotedOperand)) { 3719 AddrMode = BackupAddrMode; 3720 AddrModeInsts.resize(OldSize); 3721 DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 3722 TPT.rollback(LastKnownGood); 3723 return false; 3724 } 3725 return true; 3726 } 3727 } 3728 return false; 3729 } 3730 3731 /// If we can, try to add the value of 'Addr' into the current addressing mode. 3732 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 3733 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 3734 /// for the target. 3735 /// 3736 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 3737 // Start a transaction at this point that we will rollback if the matching 3738 // fails. 3739 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 3740 TPT.getRestorationPoint(); 3741 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 3742 // Fold in immediates if legal for the target. 3743 AddrMode.BaseOffs += CI->getSExtValue(); 3744 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3745 return true; 3746 AddrMode.BaseOffs -= CI->getSExtValue(); 3747 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 3748 // If this is a global variable, try to fold it into the addressing mode. 3749 if (!AddrMode.BaseGV) { 3750 AddrMode.BaseGV = GV; 3751 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3752 return true; 3753 AddrMode.BaseGV = nullptr; 3754 } 3755 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 3756 ExtAddrMode BackupAddrMode = AddrMode; 3757 unsigned OldSize = AddrModeInsts.size(); 3758 3759 // Check to see if it is possible to fold this operation. 3760 bool MovedAway = false; 3761 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 3762 // This instruction may have been moved away. If so, there is nothing 3763 // to check here. 3764 if (MovedAway) 3765 return true; 3766 // Okay, it's possible to fold this. Check to see if it is actually 3767 // *profitable* to do so. We use a simple cost model to avoid increasing 3768 // register pressure too much. 3769 if (I->hasOneUse() || 3770 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 3771 AddrModeInsts.push_back(I); 3772 return true; 3773 } 3774 3775 // It isn't profitable to do this, roll back. 3776 //cerr << "NOT FOLDING: " << *I; 3777 AddrMode = BackupAddrMode; 3778 AddrModeInsts.resize(OldSize); 3779 TPT.rollback(LastKnownGood); 3780 } 3781 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 3782 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 3783 return true; 3784 TPT.rollback(LastKnownGood); 3785 } else if (isa<ConstantPointerNull>(Addr)) { 3786 // Null pointer gets folded without affecting the addressing mode. 3787 return true; 3788 } 3789 3790 // Worse case, the target should support [reg] addressing modes. :) 3791 if (!AddrMode.HasBaseReg) { 3792 AddrMode.HasBaseReg = true; 3793 AddrMode.BaseReg = Addr; 3794 // Still check for legality in case the target supports [imm] but not [i+r]. 3795 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3796 return true; 3797 AddrMode.HasBaseReg = false; 3798 AddrMode.BaseReg = nullptr; 3799 } 3800 3801 // If the base register is already taken, see if we can do [r+r]. 3802 if (AddrMode.Scale == 0) { 3803 AddrMode.Scale = 1; 3804 AddrMode.ScaledReg = Addr; 3805 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 3806 return true; 3807 AddrMode.Scale = 0; 3808 AddrMode.ScaledReg = nullptr; 3809 } 3810 // Couldn't match. 3811 TPT.rollback(LastKnownGood); 3812 return false; 3813 } 3814 3815 /// Check to see if all uses of OpVal by the specified inline asm call are due 3816 /// to memory operands. If so, return true, otherwise return false. 3817 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 3818 const TargetLowering &TLI, 3819 const TargetRegisterInfo &TRI) { 3820 const Function *F = CI->getParent()->getParent(); 3821 TargetLowering::AsmOperandInfoVector TargetConstraints = 3822 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, 3823 ImmutableCallSite(CI)); 3824 3825 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 3826 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 3827 3828 // Compute the constraint code and ConstraintType to use. 3829 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 3830 3831 // If this asm operand is our Value*, and if it isn't an indirect memory 3832 // operand, we can't fold it! 3833 if (OpInfo.CallOperandVal == OpVal && 3834 (OpInfo.ConstraintType != TargetLowering::C_Memory || 3835 !OpInfo.isIndirect)) 3836 return false; 3837 } 3838 3839 return true; 3840 } 3841 3842 /// Recursively walk all the uses of I until we find a memory use. 3843 /// If we find an obviously non-foldable instruction, return true. 3844 /// Add the ultimately found memory instructions to MemoryUses. 3845 static bool FindAllMemoryUses( 3846 Instruction *I, 3847 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 3848 SmallPtrSetImpl<Instruction *> &ConsideredInsts, 3849 const TargetLowering &TLI, const TargetRegisterInfo &TRI) { 3850 // If we already considered this instruction, we're done. 3851 if (!ConsideredInsts.insert(I).second) 3852 return false; 3853 3854 // If this is an obviously unfoldable instruction, bail out. 3855 if (!MightBeFoldableInst(I)) 3856 return true; 3857 3858 const bool OptSize = I->getFunction()->optForSize(); 3859 3860 // Loop over all the uses, recursively processing them. 3861 for (Use &U : I->uses()) { 3862 Instruction *UserI = cast<Instruction>(U.getUser()); 3863 3864 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 3865 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 3866 continue; 3867 } 3868 3869 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 3870 unsigned opNo = U.getOperandNo(); 3871 if (opNo == 0) return true; // Storing addr, not into addr. 3872 MemoryUses.push_back(std::make_pair(SI, opNo)); 3873 continue; 3874 } 3875 3876 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 3877 // If this is a cold call, we can sink the addressing calculation into 3878 // the cold path. See optimizeCallInst 3879 if (!OptSize && CI->hasFnAttr(Attribute::Cold)) 3880 continue; 3881 3882 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); 3883 if (!IA) return true; 3884 3885 // If this is a memory operand, we're cool, otherwise bail out. 3886 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 3887 return true; 3888 continue; 3889 } 3890 3891 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI)) 3892 return true; 3893 } 3894 3895 return false; 3896 } 3897 3898 /// Return true if Val is already known to be live at the use site that we're 3899 /// folding it into. If so, there is no cost to include it in the addressing 3900 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 3901 /// instruction already. 3902 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 3903 Value *KnownLive2) { 3904 // If Val is either of the known-live values, we know it is live! 3905 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 3906 return true; 3907 3908 // All values other than instructions and arguments (e.g. constants) are live. 3909 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 3910 3911 // If Val is a constant sized alloca in the entry block, it is live, this is 3912 // true because it is just a reference to the stack/frame pointer, which is 3913 // live for the whole function. 3914 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 3915 if (AI->isStaticAlloca()) 3916 return true; 3917 3918 // Check to see if this value is already used in the memory instruction's 3919 // block. If so, it's already live into the block at the very least, so we 3920 // can reasonably fold it. 3921 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 3922 } 3923 3924 /// It is possible for the addressing mode of the machine to fold the specified 3925 /// instruction into a load or store that ultimately uses it. 3926 /// However, the specified instruction has multiple uses. 3927 /// Given this, it may actually increase register pressure to fold it 3928 /// into the load. For example, consider this code: 3929 /// 3930 /// X = ... 3931 /// Y = X+1 3932 /// use(Y) -> nonload/store 3933 /// Z = Y+1 3934 /// load Z 3935 /// 3936 /// In this case, Y has multiple uses, and can be folded into the load of Z 3937 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 3938 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 3939 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 3940 /// number of computations either. 3941 /// 3942 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 3943 /// X was live across 'load Z' for other reasons, we actually *would* want to 3944 /// fold the addressing mode in the Z case. This would make Y die earlier. 3945 bool AddressingModeMatcher:: 3946 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 3947 ExtAddrMode &AMAfter) { 3948 if (IgnoreProfitability) return true; 3949 3950 // AMBefore is the addressing mode before this instruction was folded into it, 3951 // and AMAfter is the addressing mode after the instruction was folded. Get 3952 // the set of registers referenced by AMAfter and subtract out those 3953 // referenced by AMBefore: this is the set of values which folding in this 3954 // address extends the lifetime of. 3955 // 3956 // Note that there are only two potential values being referenced here, 3957 // BaseReg and ScaleReg (global addresses are always available, as are any 3958 // folded immediates). 3959 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 3960 3961 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 3962 // lifetime wasn't extended by adding this instruction. 3963 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3964 BaseReg = nullptr; 3965 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 3966 ScaledReg = nullptr; 3967 3968 // If folding this instruction (and it's subexprs) didn't extend any live 3969 // ranges, we're ok with it. 3970 if (!BaseReg && !ScaledReg) 3971 return true; 3972 3973 // If all uses of this instruction can have the address mode sunk into them, 3974 // we can remove the addressing mode and effectively trade one live register 3975 // for another (at worst.) In this context, folding an addressing mode into 3976 // the use is just a particularly nice way of sinking it. 3977 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 3978 SmallPtrSet<Instruction*, 16> ConsideredInsts; 3979 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) 3980 return false; // Has a non-memory, non-foldable use! 3981 3982 // Now that we know that all uses of this instruction are part of a chain of 3983 // computation involving only operations that could theoretically be folded 3984 // into a memory use, loop over each of these memory operation uses and see 3985 // if they could *actually* fold the instruction. The assumption is that 3986 // addressing modes are cheap and that duplicating the computation involved 3987 // many times is worthwhile, even on a fastpath. For sinking candidates 3988 // (i.e. cold call sites), this serves as a way to prevent excessive code 3989 // growth since most architectures have some reasonable small and fast way to 3990 // compute an effective address. (i.e LEA on x86) 3991 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 3992 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 3993 Instruction *User = MemoryUses[i].first; 3994 unsigned OpNo = MemoryUses[i].second; 3995 3996 // Get the access type of this use. If the use isn't a pointer, we don't 3997 // know what it accesses. 3998 Value *Address = User->getOperand(OpNo); 3999 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4000 if (!AddrTy) 4001 return false; 4002 Type *AddressAccessTy = AddrTy->getElementType(); 4003 unsigned AS = AddrTy->getAddressSpace(); 4004 4005 // Do a match against the root of this address, ignoring profitability. This 4006 // will tell us if the addressing mode for the memory operation will 4007 // *actually* cover the shared instruction. 4008 ExtAddrMode Result; 4009 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4010 TPT.getRestorationPoint(); 4011 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, 4012 AddressAccessTy, AS, 4013 MemoryInst, Result, InsertedInsts, 4014 PromotedInsts, TPT); 4015 Matcher.IgnoreProfitability = true; 4016 bool Success = Matcher.matchAddr(Address, 0); 4017 (void)Success; assert(Success && "Couldn't select *anything*?"); 4018 4019 // The match was to check the profitability, the changes made are not 4020 // part of the original matcher. Therefore, they should be dropped 4021 // otherwise the original matcher will not present the right state. 4022 TPT.rollback(LastKnownGood); 4023 4024 // If the match didn't cover I, then it won't be shared by it. 4025 if (!is_contained(MatchedAddrModeInsts, I)) 4026 return false; 4027 4028 MatchedAddrModeInsts.clear(); 4029 } 4030 4031 return true; 4032 } 4033 4034 } // end anonymous namespace 4035 4036 /// Return true if the specified values are defined in a 4037 /// different basic block than BB. 4038 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4039 if (Instruction *I = dyn_cast<Instruction>(V)) 4040 return I->getParent() != BB; 4041 return false; 4042 } 4043 4044 /// Sink addressing mode computation immediate before MemoryInst if doing so 4045 /// can be done without increasing register pressure. The need for the 4046 /// register pressure constraint means this can end up being an all or nothing 4047 /// decision for all uses of the same addressing computation. 4048 /// 4049 /// Load and Store Instructions often have addressing modes that can do 4050 /// significant amounts of computation. As such, instruction selection will try 4051 /// to get the load or store to do as much computation as possible for the 4052 /// program. The problem is that isel can only see within a single block. As 4053 /// such, we sink as much legal addressing mode work into the block as possible. 4054 /// 4055 /// This method is used to optimize both load/store and inline asms with memory 4056 /// operands. It's also used to sink addressing computations feeding into cold 4057 /// call sites into their (cold) basic block. 4058 /// 4059 /// The motivation for handling sinking into cold blocks is that doing so can 4060 /// both enable other address mode sinking (by satisfying the register pressure 4061 /// constraint above), and reduce register pressure globally (by removing the 4062 /// addressing mode computation from the fast path entirely.). 4063 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4064 Type *AccessTy, unsigned AddrSpace) { 4065 Value *Repl = Addr; 4066 4067 // Try to collapse single-value PHI nodes. This is necessary to undo 4068 // unprofitable PRE transformations. 4069 SmallVector<Value*, 8> worklist; 4070 SmallPtrSet<Value*, 16> Visited; 4071 worklist.push_back(Addr); 4072 4073 // Use a worklist to iteratively look through PHI nodes, and ensure that 4074 // the addressing mode obtained from the non-PHI roots of the graph 4075 // are equivalent. 4076 Value *Consensus = nullptr; 4077 unsigned NumUsesConsensus = 0; 4078 bool IsNumUsesConsensusValid = false; 4079 SmallVector<Instruction*, 16> AddrModeInsts; 4080 ExtAddrMode AddrMode; 4081 TypePromotionTransaction TPT; 4082 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4083 TPT.getRestorationPoint(); 4084 while (!worklist.empty()) { 4085 Value *V = worklist.back(); 4086 worklist.pop_back(); 4087 4088 // Break use-def graph loops. 4089 if (!Visited.insert(V).second) { 4090 Consensus = nullptr; 4091 break; 4092 } 4093 4094 // For a PHI node, push all of its incoming values. 4095 if (PHINode *P = dyn_cast<PHINode>(V)) { 4096 for (Value *IncValue : P->incoming_values()) 4097 worklist.push_back(IncValue); 4098 continue; 4099 } 4100 4101 // For non-PHIs, determine the addressing mode being computed. Note that 4102 // the result may differ depending on what other uses our candidate 4103 // addressing instructions might have. 4104 SmallVector<Instruction*, 16> NewAddrModeInsts; 4105 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 4106 V, AccessTy, AddrSpace, MemoryInst, NewAddrModeInsts, *TLI, *TRI, 4107 InsertedInsts, PromotedInsts, TPT); 4108 4109 // This check is broken into two cases with very similar code to avoid using 4110 // getNumUses() as much as possible. Some values have a lot of uses, so 4111 // calling getNumUses() unconditionally caused a significant compile-time 4112 // regression. 4113 if (!Consensus) { 4114 Consensus = V; 4115 AddrMode = NewAddrMode; 4116 AddrModeInsts = NewAddrModeInsts; 4117 continue; 4118 } else if (NewAddrMode == AddrMode) { 4119 if (!IsNumUsesConsensusValid) { 4120 NumUsesConsensus = Consensus->getNumUses(); 4121 IsNumUsesConsensusValid = true; 4122 } 4123 4124 // Ensure that the obtained addressing mode is equivalent to that obtained 4125 // for all other roots of the PHI traversal. Also, when choosing one 4126 // such root as representative, select the one with the most uses in order 4127 // to keep the cost modeling heuristics in AddressingModeMatcher 4128 // applicable. 4129 unsigned NumUses = V->getNumUses(); 4130 if (NumUses > NumUsesConsensus) { 4131 Consensus = V; 4132 NumUsesConsensus = NumUses; 4133 AddrModeInsts = NewAddrModeInsts; 4134 } 4135 continue; 4136 } 4137 4138 Consensus = nullptr; 4139 break; 4140 } 4141 4142 // If the addressing mode couldn't be determined, or if multiple different 4143 // ones were determined, bail out now. 4144 if (!Consensus) { 4145 TPT.rollback(LastKnownGood); 4146 return false; 4147 } 4148 TPT.commit(); 4149 4150 // If all the instructions matched are already in this BB, don't do anything. 4151 if (none_of(AddrModeInsts, [&](Value *V) { 4152 return IsNonLocalValue(V, MemoryInst->getParent()); 4153 })) { 4154 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); 4155 return false; 4156 } 4157 4158 // Insert this computation right after this user. Since our caller is 4159 // scanning from the top of the BB to the bottom, reuse of the expr are 4160 // guaranteed to happen later. 4161 IRBuilder<> Builder(MemoryInst); 4162 4163 // Now that we determined the addressing expression we want to use and know 4164 // that we have to sink it into this block. Check to see if we have already 4165 // done this for some other load/store instr in this block. If so, reuse the 4166 // computation. 4167 Value *&SunkAddr = SunkAddrs[Addr]; 4168 if (SunkAddr) { 4169 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " 4170 << *MemoryInst << "\n"); 4171 if (SunkAddr->getType() != Addr->getType()) 4172 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4173 } else if (AddrSinkUsingGEPs || 4174 (!AddrSinkUsingGEPs.getNumOccurrences() && TM && 4175 SubtargetInfo->useAA())) { 4176 // By default, we use the GEP-based method when AA is used later. This 4177 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 4178 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4179 << *MemoryInst << "\n"); 4180 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4181 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 4182 4183 // First, find the pointer. 4184 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 4185 ResultPtr = AddrMode.BaseReg; 4186 AddrMode.BaseReg = nullptr; 4187 } 4188 4189 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 4190 // We can't add more than one pointer together, nor can we scale a 4191 // pointer (both of which seem meaningless). 4192 if (ResultPtr || AddrMode.Scale != 1) 4193 return false; 4194 4195 ResultPtr = AddrMode.ScaledReg; 4196 AddrMode.Scale = 0; 4197 } 4198 4199 if (AddrMode.BaseGV) { 4200 if (ResultPtr) 4201 return false; 4202 4203 ResultPtr = AddrMode.BaseGV; 4204 } 4205 4206 // If the real base value actually came from an inttoptr, then the matcher 4207 // will look through it and provide only the integer value. In that case, 4208 // use it here. 4209 if (!ResultPtr && AddrMode.BaseReg) { 4210 ResultPtr = 4211 Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr"); 4212 AddrMode.BaseReg = nullptr; 4213 } else if (!ResultPtr && AddrMode.Scale == 1) { 4214 ResultPtr = 4215 Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr"); 4216 AddrMode.Scale = 0; 4217 } 4218 4219 if (!ResultPtr && 4220 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 4221 SunkAddr = Constant::getNullValue(Addr->getType()); 4222 } else if (!ResultPtr) { 4223 return false; 4224 } else { 4225 Type *I8PtrTy = 4226 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 4227 Type *I8Ty = Builder.getInt8Ty(); 4228 4229 // Start with the base register. Do this first so that subsequent address 4230 // matching finds it last, which will prevent it from trying to match it 4231 // as the scaled value in case it happens to be a mul. That would be 4232 // problematic if we've sunk a different mul for the scale, because then 4233 // we'd end up sinking both muls. 4234 if (AddrMode.BaseReg) { 4235 Value *V = AddrMode.BaseReg; 4236 if (V->getType() != IntPtrTy) 4237 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4238 4239 ResultIndex = V; 4240 } 4241 4242 // Add the scale value. 4243 if (AddrMode.Scale) { 4244 Value *V = AddrMode.ScaledReg; 4245 if (V->getType() == IntPtrTy) { 4246 // done. 4247 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4248 cast<IntegerType>(V->getType())->getBitWidth()) { 4249 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4250 } else { 4251 // It is only safe to sign extend the BaseReg if we know that the math 4252 // required to create it did not overflow before we extend it. Since 4253 // the original IR value was tossed in favor of a constant back when 4254 // the AddrMode was created we need to bail out gracefully if widths 4255 // do not match instead of extending it. 4256 Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex); 4257 if (I && (ResultIndex != AddrMode.BaseReg)) 4258 I->eraseFromParent(); 4259 return false; 4260 } 4261 4262 if (AddrMode.Scale != 1) 4263 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4264 "sunkaddr"); 4265 if (ResultIndex) 4266 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 4267 else 4268 ResultIndex = V; 4269 } 4270 4271 // Add in the Base Offset if present. 4272 if (AddrMode.BaseOffs) { 4273 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4274 if (ResultIndex) { 4275 // We need to add this separately from the scale above to help with 4276 // SDAG consecutive load/store merging. 4277 if (ResultPtr->getType() != I8PtrTy) 4278 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4279 ResultPtr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4280 } 4281 4282 ResultIndex = V; 4283 } 4284 4285 if (!ResultIndex) { 4286 SunkAddr = ResultPtr; 4287 } else { 4288 if (ResultPtr->getType() != I8PtrTy) 4289 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 4290 SunkAddr = Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 4291 } 4292 4293 if (SunkAddr->getType() != Addr->getType()) 4294 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 4295 } 4296 } else { 4297 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " 4298 << *MemoryInst << "\n"); 4299 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 4300 Value *Result = nullptr; 4301 4302 // Start with the base register. Do this first so that subsequent address 4303 // matching finds it last, which will prevent it from trying to match it 4304 // as the scaled value in case it happens to be a mul. That would be 4305 // problematic if we've sunk a different mul for the scale, because then 4306 // we'd end up sinking both muls. 4307 if (AddrMode.BaseReg) { 4308 Value *V = AddrMode.BaseReg; 4309 if (V->getType()->isPointerTy()) 4310 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4311 if (V->getType() != IntPtrTy) 4312 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 4313 Result = V; 4314 } 4315 4316 // Add the scale value. 4317 if (AddrMode.Scale) { 4318 Value *V = AddrMode.ScaledReg; 4319 if (V->getType() == IntPtrTy) { 4320 // done. 4321 } else if (V->getType()->isPointerTy()) { 4322 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 4323 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 4324 cast<IntegerType>(V->getType())->getBitWidth()) { 4325 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 4326 } else { 4327 // It is only safe to sign extend the BaseReg if we know that the math 4328 // required to create it did not overflow before we extend it. Since 4329 // the original IR value was tossed in favor of a constant back when 4330 // the AddrMode was created we need to bail out gracefully if widths 4331 // do not match instead of extending it. 4332 Instruction *I = dyn_cast_or_null<Instruction>(Result); 4333 if (I && (Result != AddrMode.BaseReg)) 4334 I->eraseFromParent(); 4335 return false; 4336 } 4337 if (AddrMode.Scale != 1) 4338 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 4339 "sunkaddr"); 4340 if (Result) 4341 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4342 else 4343 Result = V; 4344 } 4345 4346 // Add in the BaseGV if present. 4347 if (AddrMode.BaseGV) { 4348 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 4349 if (Result) 4350 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4351 else 4352 Result = V; 4353 } 4354 4355 // Add in the Base Offset if present. 4356 if (AddrMode.BaseOffs) { 4357 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 4358 if (Result) 4359 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 4360 else 4361 Result = V; 4362 } 4363 4364 if (!Result) 4365 SunkAddr = Constant::getNullValue(Addr->getType()); 4366 else 4367 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 4368 } 4369 4370 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 4371 4372 // If we have no uses, recursively delete the value and all dead instructions 4373 // using it. 4374 if (Repl->use_empty()) { 4375 // This can cause recursive deletion, which can invalidate our iterator. 4376 // Use a WeakVH to hold onto it in case this happens. 4377 Value *CurValue = &*CurInstIterator; 4378 WeakVH IterHandle(CurValue); 4379 BasicBlock *BB = CurInstIterator->getParent(); 4380 4381 RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); 4382 4383 if (IterHandle != CurValue) { 4384 // If the iterator instruction was recursively deleted, start over at the 4385 // start of the block. 4386 CurInstIterator = BB->begin(); 4387 SunkAddrs.clear(); 4388 } 4389 } 4390 ++NumMemoryInsts; 4391 return true; 4392 } 4393 4394 /// If there are any memory operands, use OptimizeMemoryInst to sink their 4395 /// address computing into the block when possible / profitable. 4396 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 4397 bool MadeChange = false; 4398 4399 const TargetRegisterInfo *TRI = 4400 TM->getSubtargetImpl(*CS->getParent()->getParent())->getRegisterInfo(); 4401 TargetLowering::AsmOperandInfoVector TargetConstraints = 4402 TLI->ParseConstraints(*DL, TRI, CS); 4403 unsigned ArgNo = 0; 4404 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4405 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4406 4407 // Compute the constraint code and ConstraintType to use. 4408 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 4409 4410 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 4411 OpInfo.isIndirect) { 4412 Value *OpVal = CS->getArgOperand(ArgNo++); 4413 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 4414 } else if (OpInfo.Type == InlineAsm::isInput) 4415 ArgNo++; 4416 } 4417 4418 return MadeChange; 4419 } 4420 4421 /// \brief Check if all the uses of \p Inst are equivalent (or free) zero or 4422 /// sign extensions. 4423 static bool hasSameExtUse(Instruction *Inst, const TargetLowering &TLI) { 4424 assert(!Inst->use_empty() && "Input must have at least one use"); 4425 const Instruction *FirstUser = cast<Instruction>(*Inst->user_begin()); 4426 bool IsSExt = isa<SExtInst>(FirstUser); 4427 Type *ExtTy = FirstUser->getType(); 4428 for (const User *U : Inst->users()) { 4429 const Instruction *UI = cast<Instruction>(U); 4430 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 4431 return false; 4432 Type *CurTy = UI->getType(); 4433 // Same input and output types: Same instruction after CSE. 4434 if (CurTy == ExtTy) 4435 continue; 4436 4437 // If IsSExt is true, we are in this situation: 4438 // a = Inst 4439 // b = sext ty1 a to ty2 4440 // c = sext ty1 a to ty3 4441 // Assuming ty2 is shorter than ty3, this could be turned into: 4442 // a = Inst 4443 // b = sext ty1 a to ty2 4444 // c = sext ty2 b to ty3 4445 // However, the last sext is not free. 4446 if (IsSExt) 4447 return false; 4448 4449 // This is a ZExt, maybe this is free to extend from one type to another. 4450 // In that case, we would not account for a different use. 4451 Type *NarrowTy; 4452 Type *LargeTy; 4453 if (ExtTy->getScalarType()->getIntegerBitWidth() > 4454 CurTy->getScalarType()->getIntegerBitWidth()) { 4455 NarrowTy = CurTy; 4456 LargeTy = ExtTy; 4457 } else { 4458 NarrowTy = ExtTy; 4459 LargeTy = CurTy; 4460 } 4461 4462 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 4463 return false; 4464 } 4465 // All uses are the same or can be derived from one another for free. 4466 return true; 4467 } 4468 4469 /// \brief Try to form ExtLd by promoting \p Exts until they reach a 4470 /// load instruction. 4471 /// If an ext(load) can be formed, it is returned via \p LI for the load 4472 /// and \p Inst for the extension. 4473 /// Otherwise LI == nullptr and Inst == nullptr. 4474 /// When some promotion happened, \p TPT contains the proper state to 4475 /// revert them. 4476 /// 4477 /// \return true when promoting was necessary to expose the ext(load) 4478 /// opportunity, false otherwise. 4479 /// 4480 /// Example: 4481 /// \code 4482 /// %ld = load i32* %addr 4483 /// %add = add nuw i32 %ld, 4 4484 /// %zext = zext i32 %add to i64 4485 /// \endcode 4486 /// => 4487 /// \code 4488 /// %ld = load i32* %addr 4489 /// %zext = zext i32 %ld to i64 4490 /// %add = add nuw i64 %zext, 4 4491 /// \endcode 4492 /// Thanks to the promotion, we can match zext(load i32*) to i64. 4493 bool CodeGenPrepare::extLdPromotion(TypePromotionTransaction &TPT, 4494 LoadInst *&LI, Instruction *&Inst, 4495 const SmallVectorImpl<Instruction *> &Exts, 4496 unsigned CreatedInstsCost = 0) { 4497 // Iterate over all the extensions to see if one form an ext(load). 4498 for (auto I : Exts) { 4499 // Check if we directly have ext(load). 4500 if ((LI = dyn_cast<LoadInst>(I->getOperand(0)))) { 4501 Inst = I; 4502 // No promotion happened here. 4503 return false; 4504 } 4505 // Check whether or not we want to do any promotion. 4506 if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) 4507 continue; 4508 // Get the action to perform the promotion. 4509 TypePromotionHelper::Action TPH = TypePromotionHelper::getAction( 4510 I, InsertedInsts, *TLI, PromotedInsts); 4511 // Check if we can promote. 4512 if (!TPH) 4513 continue; 4514 // Save the current state. 4515 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4516 TPT.getRestorationPoint(); 4517 SmallVector<Instruction *, 4> NewExts; 4518 unsigned NewCreatedInstsCost = 0; 4519 unsigned ExtCost = !TLI->isExtFree(I); 4520 // Promote. 4521 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 4522 &NewExts, nullptr, *TLI); 4523 assert(PromotedVal && 4524 "TypePromotionHelper should have filtered out those cases"); 4525 4526 // We would be able to merge only one extension in a load. 4527 // Therefore, if we have more than 1 new extension we heuristically 4528 // cut this search path, because it means we degrade the code quality. 4529 // With exactly 2, the transformation is neutral, because we will merge 4530 // one extension but leave one. However, we optimistically keep going, 4531 // because the new extension may be removed too. 4532 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 4533 // FIXME: It would be possible to propagate a negative value instead of 4534 // conservatively ceiling it to 0. 4535 TotalCreatedInstsCost = 4536 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 4537 if (!StressExtLdPromotion && 4538 (TotalCreatedInstsCost > 1 || 4539 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 4540 // The promotion is not profitable, rollback to the previous state. 4541 TPT.rollback(LastKnownGood); 4542 continue; 4543 } 4544 // The promotion is profitable. 4545 // Check if it exposes an ext(load). 4546 (void)extLdPromotion(TPT, LI, Inst, NewExts, TotalCreatedInstsCost); 4547 if (LI && (StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 4548 // If we have created a new extension, i.e., now we have two 4549 // extensions. We must make sure one of them is merged with 4550 // the load, otherwise we may degrade the code quality. 4551 (LI->hasOneUse() || hasSameExtUse(LI, *TLI)))) 4552 // Promotion happened. 4553 return true; 4554 // If this does not help to expose an ext(load) then, rollback. 4555 TPT.rollback(LastKnownGood); 4556 } 4557 // None of the extension can form an ext(load). 4558 LI = nullptr; 4559 Inst = nullptr; 4560 return false; 4561 } 4562 4563 /// Move a zext or sext fed by a load into the same basic block as the load, 4564 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 4565 /// extend into the load. 4566 /// \p I[in/out] the extension may be modified during the process if some 4567 /// promotions apply. 4568 /// 4569 bool CodeGenPrepare::moveExtToFormExtLoad(Instruction *&I) { 4570 // ExtLoad formation infrastructure requires TLI to be effective. 4571 if (!TLI) 4572 return false; 4573 4574 // Try to promote a chain of computation if it allows to form 4575 // an extended load. 4576 TypePromotionTransaction TPT; 4577 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4578 TPT.getRestorationPoint(); 4579 SmallVector<Instruction *, 1> Exts; 4580 Exts.push_back(I); 4581 // Look for a load being extended. 4582 LoadInst *LI = nullptr; 4583 Instruction *OldExt = I; 4584 bool HasPromoted = extLdPromotion(TPT, LI, I, Exts); 4585 if (!LI || !I) { 4586 assert(!HasPromoted && !LI && "If we did not match any load instruction " 4587 "the code must remain the same"); 4588 I = OldExt; 4589 return false; 4590 } 4591 4592 // If they're already in the same block, there's nothing to do. 4593 // Make the cheap checks first if we did not promote. 4594 // If we promoted, we need to check if it is indeed profitable. 4595 if (!HasPromoted && LI->getParent() == I->getParent()) 4596 return false; 4597 4598 EVT VT = TLI->getValueType(*DL, I->getType()); 4599 EVT LoadVT = TLI->getValueType(*DL, LI->getType()); 4600 4601 // If the load has other users and the truncate is not free, this probably 4602 // isn't worthwhile. 4603 if (!LI->hasOneUse() && 4604 (TLI->isTypeLegal(LoadVT) || !TLI->isTypeLegal(VT)) && 4605 !TLI->isTruncateFree(I->getType(), LI->getType())) { 4606 I = OldExt; 4607 TPT.rollback(LastKnownGood); 4608 return false; 4609 } 4610 4611 // Check whether the target supports casts folded into loads. 4612 unsigned LType; 4613 if (isa<ZExtInst>(I)) 4614 LType = ISD::ZEXTLOAD; 4615 else { 4616 assert(isa<SExtInst>(I) && "Unexpected ext type!"); 4617 LType = ISD::SEXTLOAD; 4618 } 4619 if (!TLI->isLoadExtLegal(LType, VT, LoadVT)) { 4620 I = OldExt; 4621 TPT.rollback(LastKnownGood); 4622 return false; 4623 } 4624 4625 // Move the extend into the same block as the load, so that SelectionDAG 4626 // can fold it. 4627 TPT.commit(); 4628 I->removeFromParent(); 4629 I->insertAfter(LI); 4630 // CGP does not check if the zext would be speculatively executed when moved 4631 // to the same basic block as the load. Preserving its original location would 4632 // pessimize the debugging experience, as well as negatively impact the 4633 // quality of sample pgo. We don't want to use "line 0" as that has a 4634 // size cost in the line-table section and logically the zext can be seen as 4635 // part of the load. Therefore we conservatively reuse the same debug location 4636 // for the load and the zext. 4637 I->setDebugLoc(LI->getDebugLoc()); 4638 ++NumExtsMoved; 4639 return true; 4640 } 4641 4642 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 4643 BasicBlock *DefBB = I->getParent(); 4644 4645 // If the result of a {s|z}ext and its source are both live out, rewrite all 4646 // other uses of the source with result of extension. 4647 Value *Src = I->getOperand(0); 4648 if (Src->hasOneUse()) 4649 return false; 4650 4651 // Only do this xform if truncating is free. 4652 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) 4653 return false; 4654 4655 // Only safe to perform the optimization if the source is also defined in 4656 // this block. 4657 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 4658 return false; 4659 4660 bool DefIsLiveOut = false; 4661 for (User *U : I->users()) { 4662 Instruction *UI = cast<Instruction>(U); 4663 4664 // Figure out which BB this ext is used in. 4665 BasicBlock *UserBB = UI->getParent(); 4666 if (UserBB == DefBB) continue; 4667 DefIsLiveOut = true; 4668 break; 4669 } 4670 if (!DefIsLiveOut) 4671 return false; 4672 4673 // Make sure none of the uses are PHI nodes. 4674 for (User *U : Src->users()) { 4675 Instruction *UI = cast<Instruction>(U); 4676 BasicBlock *UserBB = UI->getParent(); 4677 if (UserBB == DefBB) continue; 4678 // Be conservative. We don't want this xform to end up introducing 4679 // reloads just before load / store instructions. 4680 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 4681 return false; 4682 } 4683 4684 // InsertedTruncs - Only insert one trunc in each block once. 4685 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 4686 4687 bool MadeChange = false; 4688 for (Use &U : Src->uses()) { 4689 Instruction *User = cast<Instruction>(U.getUser()); 4690 4691 // Figure out which BB this ext is used in. 4692 BasicBlock *UserBB = User->getParent(); 4693 if (UserBB == DefBB) continue; 4694 4695 // Both src and def are live in this block. Rewrite the use. 4696 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 4697 4698 if (!InsertedTrunc) { 4699 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 4700 assert(InsertPt != UserBB->end()); 4701 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 4702 InsertedInsts.insert(InsertedTrunc); 4703 } 4704 4705 // Replace a use of the {s|z}ext source with a use of the result. 4706 U = InsertedTrunc; 4707 ++NumExtUses; 4708 MadeChange = true; 4709 } 4710 4711 return MadeChange; 4712 } 4713 4714 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 4715 // just after the load if the target can fold this into one extload instruction, 4716 // with the hope of eliminating some of the other later "and" instructions using 4717 // the loaded value. "and"s that are made trivially redundant by the insertion 4718 // of the new "and" are removed by this function, while others (e.g. those whose 4719 // path from the load goes through a phi) are left for isel to potentially 4720 // remove. 4721 // 4722 // For example: 4723 // 4724 // b0: 4725 // x = load i32 4726 // ... 4727 // b1: 4728 // y = and x, 0xff 4729 // z = use y 4730 // 4731 // becomes: 4732 // 4733 // b0: 4734 // x = load i32 4735 // x' = and x, 0xff 4736 // ... 4737 // b1: 4738 // z = use x' 4739 // 4740 // whereas: 4741 // 4742 // b0: 4743 // x1 = load i32 4744 // ... 4745 // b1: 4746 // x2 = load i32 4747 // ... 4748 // b2: 4749 // x = phi x1, x2 4750 // y = and x, 0xff 4751 // 4752 // becomes (after a call to optimizeLoadExt for each load): 4753 // 4754 // b0: 4755 // x1 = load i32 4756 // x1' = and x1, 0xff 4757 // ... 4758 // b1: 4759 // x2 = load i32 4760 // x2' = and x2, 0xff 4761 // ... 4762 // b2: 4763 // x = phi x1', x2' 4764 // y = and x, 0xff 4765 // 4766 4767 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 4768 4769 if (!Load->isSimple() || 4770 !(Load->getType()->isIntegerTy() || Load->getType()->isPointerTy())) 4771 return false; 4772 4773 // Skip loads we've already transformed. 4774 if (Load->hasOneUse() && 4775 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 4776 return false; 4777 4778 // Look at all uses of Load, looking through phis, to determine how many bits 4779 // of the loaded value are needed. 4780 SmallVector<Instruction *, 8> WorkList; 4781 SmallPtrSet<Instruction *, 16> Visited; 4782 SmallVector<Instruction *, 8> AndsToMaybeRemove; 4783 for (auto *U : Load->users()) 4784 WorkList.push_back(cast<Instruction>(U)); 4785 4786 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 4787 unsigned BitWidth = LoadResultVT.getSizeInBits(); 4788 APInt DemandBits(BitWidth, 0); 4789 APInt WidestAndBits(BitWidth, 0); 4790 4791 while (!WorkList.empty()) { 4792 Instruction *I = WorkList.back(); 4793 WorkList.pop_back(); 4794 4795 // Break use-def graph loops. 4796 if (!Visited.insert(I).second) 4797 continue; 4798 4799 // For a PHI node, push all of its users. 4800 if (auto *Phi = dyn_cast<PHINode>(I)) { 4801 for (auto *U : Phi->users()) 4802 WorkList.push_back(cast<Instruction>(U)); 4803 continue; 4804 } 4805 4806 switch (I->getOpcode()) { 4807 case llvm::Instruction::And: { 4808 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 4809 if (!AndC) 4810 return false; 4811 APInt AndBits = AndC->getValue(); 4812 DemandBits |= AndBits; 4813 // Keep track of the widest and mask we see. 4814 if (AndBits.ugt(WidestAndBits)) 4815 WidestAndBits = AndBits; 4816 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 4817 AndsToMaybeRemove.push_back(I); 4818 break; 4819 } 4820 4821 case llvm::Instruction::Shl: { 4822 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 4823 if (!ShlC) 4824 return false; 4825 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 4826 auto ShlDemandBits = APInt::getAllOnesValue(BitWidth).lshr(ShiftAmt); 4827 DemandBits |= ShlDemandBits; 4828 break; 4829 } 4830 4831 case llvm::Instruction::Trunc: { 4832 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 4833 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 4834 auto TruncBits = APInt::getAllOnesValue(TruncBitWidth).zext(BitWidth); 4835 DemandBits |= TruncBits; 4836 break; 4837 } 4838 4839 default: 4840 return false; 4841 } 4842 } 4843 4844 uint32_t ActiveBits = DemandBits.getActiveBits(); 4845 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 4846 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 4847 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 4848 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 4849 // followed by an AND. 4850 // TODO: Look into removing this restriction by fixing backends to either 4851 // return false for isLoadExtLegal for i1 or have them select this pattern to 4852 // a single instruction. 4853 // 4854 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 4855 // mask, since these are the only ands that will be removed by isel. 4856 if (ActiveBits <= 1 || !APIntOps::isMask(ActiveBits, DemandBits) || 4857 WidestAndBits != DemandBits) 4858 return false; 4859 4860 LLVMContext &Ctx = Load->getType()->getContext(); 4861 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 4862 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 4863 4864 // Reject cases that won't be matched as extloads. 4865 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 4866 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 4867 return false; 4868 4869 IRBuilder<> Builder(Load->getNextNode()); 4870 auto *NewAnd = dyn_cast<Instruction>( 4871 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 4872 // Mark this instruction as "inserted by CGP", so that other 4873 // optimizations don't touch it. 4874 InsertedInsts.insert(NewAnd); 4875 4876 // Replace all uses of load with new and (except for the use of load in the 4877 // new and itself). 4878 Load->replaceAllUsesWith(NewAnd); 4879 NewAnd->setOperand(0, Load); 4880 4881 // Remove any and instructions that are now redundant. 4882 for (auto *And : AndsToMaybeRemove) 4883 // Check that the and mask is the same as the one we decided to put on the 4884 // new and. 4885 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 4886 And->replaceAllUsesWith(NewAnd); 4887 if (&*CurInstIterator == And) 4888 CurInstIterator = std::next(And->getIterator()); 4889 And->eraseFromParent(); 4890 ++NumAndUses; 4891 } 4892 4893 ++NumAndsAdded; 4894 return true; 4895 } 4896 4897 /// Check if V (an operand of a select instruction) is an expensive instruction 4898 /// that is only used once. 4899 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 4900 auto *I = dyn_cast<Instruction>(V); 4901 // If it's safe to speculatively execute, then it should not have side 4902 // effects; therefore, it's safe to sink and possibly *not* execute. 4903 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 4904 TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; 4905 } 4906 4907 /// Returns true if a SelectInst should be turned into an explicit branch. 4908 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 4909 const TargetLowering *TLI, 4910 SelectInst *SI) { 4911 // If even a predictable select is cheap, then a branch can't be cheaper. 4912 if (!TLI->isPredictableSelectExpensive()) 4913 return false; 4914 4915 // FIXME: This should use the same heuristics as IfConversion to determine 4916 // whether a select is better represented as a branch. 4917 4918 // If metadata tells us that the select condition is obviously predictable, 4919 // then we want to replace the select with a branch. 4920 uint64_t TrueWeight, FalseWeight; 4921 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 4922 uint64_t Max = std::max(TrueWeight, FalseWeight); 4923 uint64_t Sum = TrueWeight + FalseWeight; 4924 if (Sum != 0) { 4925 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 4926 if (Probability > TLI->getPredictableBranchThreshold()) 4927 return true; 4928 } 4929 } 4930 4931 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 4932 4933 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 4934 // comparison condition. If the compare has more than one use, there's 4935 // probably another cmov or setcc around, so it's not worth emitting a branch. 4936 if (!Cmp || !Cmp->hasOneUse()) 4937 return false; 4938 4939 // If either operand of the select is expensive and only needed on one side 4940 // of the select, we should form a branch. 4941 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 4942 sinkSelectOperand(TTI, SI->getFalseValue())) 4943 return true; 4944 4945 return false; 4946 } 4947 4948 /// If \p isTrue is true, return the true value of \p SI, otherwise return 4949 /// false value of \p SI. If the true/false value of \p SI is defined by any 4950 /// select instructions in \p Selects, look through the defining select 4951 /// instruction until the true/false value is not defined in \p Selects. 4952 static Value *getTrueOrFalseValue( 4953 SelectInst *SI, bool isTrue, 4954 const SmallPtrSet<const Instruction *, 2> &Selects) { 4955 Value *V; 4956 4957 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 4958 DefSI = dyn_cast<SelectInst>(V)) { 4959 assert(DefSI->getCondition() == SI->getCondition() && 4960 "The condition of DefSI does not match with SI"); 4961 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 4962 } 4963 return V; 4964 } 4965 4966 /// If we have a SelectInst that will likely profit from branch prediction, 4967 /// turn it into a branch. 4968 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 4969 // Find all consecutive select instructions that share the same condition. 4970 SmallVector<SelectInst *, 2> ASI; 4971 ASI.push_back(SI); 4972 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 4973 It != SI->getParent()->end(); ++It) { 4974 SelectInst *I = dyn_cast<SelectInst>(&*It); 4975 if (I && SI->getCondition() == I->getCondition()) { 4976 ASI.push_back(I); 4977 } else { 4978 break; 4979 } 4980 } 4981 4982 SelectInst *LastSI = ASI.back(); 4983 // Increment the current iterator to skip all the rest of select instructions 4984 // because they will be either "not lowered" or "all lowered" to branch. 4985 CurInstIterator = std::next(LastSI->getIterator()); 4986 4987 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 4988 4989 // Can we convert the 'select' to CF ? 4990 if (DisableSelectToBranch || OptSize || !TLI || VectorCond || 4991 SI->getMetadata(LLVMContext::MD_unpredictable)) 4992 return false; 4993 4994 TargetLowering::SelectSupportKind SelectKind; 4995 if (VectorCond) 4996 SelectKind = TargetLowering::VectorMaskSelect; 4997 else if (SI->getType()->isVectorTy()) 4998 SelectKind = TargetLowering::ScalarCondVectorVal; 4999 else 5000 SelectKind = TargetLowering::ScalarValSelect; 5001 5002 if (TLI->isSelectSupported(SelectKind) && 5003 !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) 5004 return false; 5005 5006 ModifiedDT = true; 5007 5008 // Transform a sequence like this: 5009 // start: 5010 // %cmp = cmp uge i32 %a, %b 5011 // %sel = select i1 %cmp, i32 %c, i32 %d 5012 // 5013 // Into: 5014 // start: 5015 // %cmp = cmp uge i32 %a, %b 5016 // br i1 %cmp, label %select.true, label %select.false 5017 // select.true: 5018 // br label %select.end 5019 // select.false: 5020 // br label %select.end 5021 // select.end: 5022 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 5023 // 5024 // In addition, we may sink instructions that produce %c or %d from 5025 // the entry block into the destination(s) of the new branch. 5026 // If the true or false blocks do not contain a sunken instruction, that 5027 // block and its branch may be optimized away. In that case, one side of the 5028 // first branch will point directly to select.end, and the corresponding PHI 5029 // predecessor block will be the start block. 5030 5031 // First, we split the block containing the select into 2 blocks. 5032 BasicBlock *StartBlock = SI->getParent(); 5033 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 5034 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 5035 5036 // Delete the unconditional branch that was just created by the split. 5037 StartBlock->getTerminator()->eraseFromParent(); 5038 5039 // These are the new basic blocks for the conditional branch. 5040 // At least one will become an actual new basic block. 5041 BasicBlock *TrueBlock = nullptr; 5042 BasicBlock *FalseBlock = nullptr; 5043 BranchInst *TrueBranch = nullptr; 5044 BranchInst *FalseBranch = nullptr; 5045 5046 // Sink expensive instructions into the conditional blocks to avoid executing 5047 // them speculatively. 5048 for (SelectInst *SI : ASI) { 5049 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 5050 if (TrueBlock == nullptr) { 5051 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 5052 EndBlock->getParent(), EndBlock); 5053 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 5054 } 5055 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 5056 TrueInst->moveBefore(TrueBranch); 5057 } 5058 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 5059 if (FalseBlock == nullptr) { 5060 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 5061 EndBlock->getParent(), EndBlock); 5062 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 5063 } 5064 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 5065 FalseInst->moveBefore(FalseBranch); 5066 } 5067 } 5068 5069 // If there was nothing to sink, then arbitrarily choose the 'false' side 5070 // for a new input value to the PHI. 5071 if (TrueBlock == FalseBlock) { 5072 assert(TrueBlock == nullptr && 5073 "Unexpected basic block transform while optimizing select"); 5074 5075 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 5076 EndBlock->getParent(), EndBlock); 5077 BranchInst::Create(EndBlock, FalseBlock); 5078 } 5079 5080 // Insert the real conditional branch based on the original condition. 5081 // If we did not create a new block for one of the 'true' or 'false' paths 5082 // of the condition, it means that side of the branch goes to the end block 5083 // directly and the path originates from the start block from the point of 5084 // view of the new PHI. 5085 BasicBlock *TT, *FT; 5086 if (TrueBlock == nullptr) { 5087 TT = EndBlock; 5088 FT = FalseBlock; 5089 TrueBlock = StartBlock; 5090 } else if (FalseBlock == nullptr) { 5091 TT = TrueBlock; 5092 FT = EndBlock; 5093 FalseBlock = StartBlock; 5094 } else { 5095 TT = TrueBlock; 5096 FT = FalseBlock; 5097 } 5098 IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); 5099 5100 SmallPtrSet<const Instruction *, 2> INS; 5101 INS.insert(ASI.begin(), ASI.end()); 5102 // Use reverse iterator because later select may use the value of the 5103 // earlier select, and we need to propagate value through earlier select 5104 // to get the PHI operand. 5105 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 5106 SelectInst *SI = *It; 5107 // The select itself is replaced with a PHI Node. 5108 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 5109 PN->takeName(SI); 5110 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 5111 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 5112 5113 SI->replaceAllUsesWith(PN); 5114 SI->eraseFromParent(); 5115 INS.erase(SI); 5116 ++NumSelectsExpanded; 5117 } 5118 5119 // Instruct OptimizeBlock to skip to the next block. 5120 CurInstIterator = StartBlock->end(); 5121 return true; 5122 } 5123 5124 static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { 5125 SmallVector<int, 16> Mask(SVI->getShuffleMask()); 5126 int SplatElem = -1; 5127 for (unsigned i = 0; i < Mask.size(); ++i) { 5128 if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) 5129 return false; 5130 SplatElem = Mask[i]; 5131 } 5132 5133 return true; 5134 } 5135 5136 /// Some targets have expensive vector shifts if the lanes aren't all the same 5137 /// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases 5138 /// it's often worth sinking a shufflevector splat down to its use so that 5139 /// codegen can spot all lanes are identical. 5140 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 5141 BasicBlock *DefBB = SVI->getParent(); 5142 5143 // Only do this xform if variable vector shifts are particularly expensive. 5144 if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) 5145 return false; 5146 5147 // We only expect better codegen by sinking a shuffle if we can recognise a 5148 // constant splat. 5149 if (!isBroadcastShuffle(SVI)) 5150 return false; 5151 5152 // InsertedShuffles - Only insert a shuffle in each block once. 5153 DenseMap<BasicBlock*, Instruction*> InsertedShuffles; 5154 5155 bool MadeChange = false; 5156 for (User *U : SVI->users()) { 5157 Instruction *UI = cast<Instruction>(U); 5158 5159 // Figure out which BB this ext is used in. 5160 BasicBlock *UserBB = UI->getParent(); 5161 if (UserBB == DefBB) continue; 5162 5163 // For now only apply this when the splat is used by a shift instruction. 5164 if (!UI->isShift()) continue; 5165 5166 // Everything checks out, sink the shuffle if the user's block doesn't 5167 // already have a copy. 5168 Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; 5169 5170 if (!InsertedShuffle) { 5171 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 5172 assert(InsertPt != UserBB->end()); 5173 InsertedShuffle = 5174 new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5175 SVI->getOperand(2), "", &*InsertPt); 5176 } 5177 5178 UI->replaceUsesOfWith(SVI, InsertedShuffle); 5179 MadeChange = true; 5180 } 5181 5182 // If we removed all uses, nuke the shuffle. 5183 if (SVI->use_empty()) { 5184 SVI->eraseFromParent(); 5185 MadeChange = true; 5186 } 5187 5188 return MadeChange; 5189 } 5190 5191 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 5192 if (!TLI || !DL) 5193 return false; 5194 5195 Value *Cond = SI->getCondition(); 5196 Type *OldType = Cond->getType(); 5197 LLVMContext &Context = Cond->getContext(); 5198 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 5199 unsigned RegWidth = RegType.getSizeInBits(); 5200 5201 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 5202 return false; 5203 5204 // If the register width is greater than the type width, expand the condition 5205 // of the switch instruction and each case constant to the width of the 5206 // register. By widening the type of the switch condition, subsequent 5207 // comparisons (for case comparisons) will not need to be extended to the 5208 // preferred register width, so we will potentially eliminate N-1 extends, 5209 // where N is the number of cases in the switch. 5210 auto *NewType = Type::getIntNTy(Context, RegWidth); 5211 5212 // Zero-extend the switch condition and case constants unless the switch 5213 // condition is a function argument that is already being sign-extended. 5214 // In that case, we can avoid an unnecessary mask/extension by sign-extending 5215 // everything instead. 5216 Instruction::CastOps ExtType = Instruction::ZExt; 5217 if (auto *Arg = dyn_cast<Argument>(Cond)) 5218 if (Arg->hasSExtAttr()) 5219 ExtType = Instruction::SExt; 5220 5221 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 5222 ExtInst->insertBefore(SI); 5223 SI->setCondition(ExtInst); 5224 for (SwitchInst::CaseIt Case : SI->cases()) { 5225 APInt NarrowConst = Case.getCaseValue()->getValue(); 5226 APInt WideConst = (ExtType == Instruction::ZExt) ? 5227 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 5228 Case.setValue(ConstantInt::get(Context, WideConst)); 5229 } 5230 5231 return true; 5232 } 5233 5234 namespace { 5235 /// \brief Helper class to promote a scalar operation to a vector one. 5236 /// This class is used to move downward extractelement transition. 5237 /// E.g., 5238 /// a = vector_op <2 x i32> 5239 /// b = extractelement <2 x i32> a, i32 0 5240 /// c = scalar_op b 5241 /// store c 5242 /// 5243 /// => 5244 /// a = vector_op <2 x i32> 5245 /// c = vector_op a (equivalent to scalar_op on the related lane) 5246 /// * d = extractelement <2 x i32> c, i32 0 5247 /// * store d 5248 /// Assuming both extractelement and store can be combine, we get rid of the 5249 /// transition. 5250 class VectorPromoteHelper { 5251 /// DataLayout associated with the current module. 5252 const DataLayout &DL; 5253 5254 /// Used to perform some checks on the legality of vector operations. 5255 const TargetLowering &TLI; 5256 5257 /// Used to estimated the cost of the promoted chain. 5258 const TargetTransformInfo &TTI; 5259 5260 /// The transition being moved downwards. 5261 Instruction *Transition; 5262 /// The sequence of instructions to be promoted. 5263 SmallVector<Instruction *, 4> InstsToBePromoted; 5264 /// Cost of combining a store and an extract. 5265 unsigned StoreExtractCombineCost; 5266 /// Instruction that will be combined with the transition. 5267 Instruction *CombineInst; 5268 5269 /// \brief The instruction that represents the current end of the transition. 5270 /// Since we are faking the promotion until we reach the end of the chain 5271 /// of computation, we need a way to get the current end of the transition. 5272 Instruction *getEndOfTransition() const { 5273 if (InstsToBePromoted.empty()) 5274 return Transition; 5275 return InstsToBePromoted.back(); 5276 } 5277 5278 /// \brief Return the index of the original value in the transition. 5279 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 5280 /// c, is at index 0. 5281 unsigned getTransitionOriginalValueIdx() const { 5282 assert(isa<ExtractElementInst>(Transition) && 5283 "Other kind of transitions are not supported yet"); 5284 return 0; 5285 } 5286 5287 /// \brief Return the index of the index in the transition. 5288 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 5289 /// is at index 1. 5290 unsigned getTransitionIdx() const { 5291 assert(isa<ExtractElementInst>(Transition) && 5292 "Other kind of transitions are not supported yet"); 5293 return 1; 5294 } 5295 5296 /// \brief Get the type of the transition. 5297 /// This is the type of the original value. 5298 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 5299 /// transition is <2 x i32>. 5300 Type *getTransitionType() const { 5301 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 5302 } 5303 5304 /// \brief Promote \p ToBePromoted by moving \p Def downward through. 5305 /// I.e., we have the following sequence: 5306 /// Def = Transition <ty1> a to <ty2> 5307 /// b = ToBePromoted <ty2> Def, ... 5308 /// => 5309 /// b = ToBePromoted <ty1> a, ... 5310 /// Def = Transition <ty1> ToBePromoted to <ty2> 5311 void promoteImpl(Instruction *ToBePromoted); 5312 5313 /// \brief Check whether or not it is profitable to promote all the 5314 /// instructions enqueued to be promoted. 5315 bool isProfitableToPromote() { 5316 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 5317 unsigned Index = isa<ConstantInt>(ValIdx) 5318 ? cast<ConstantInt>(ValIdx)->getZExtValue() 5319 : -1; 5320 Type *PromotedType = getTransitionType(); 5321 5322 StoreInst *ST = cast<StoreInst>(CombineInst); 5323 unsigned AS = ST->getPointerAddressSpace(); 5324 unsigned Align = ST->getAlignment(); 5325 // Check if this store is supported. 5326 if (!TLI.allowsMisalignedMemoryAccesses( 5327 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 5328 Align)) { 5329 // If this is not supported, there is no way we can combine 5330 // the extract with the store. 5331 return false; 5332 } 5333 5334 // The scalar chain of computation has to pay for the transition 5335 // scalar to vector. 5336 // The vector chain has to account for the combining cost. 5337 uint64_t ScalarCost = 5338 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 5339 uint64_t VectorCost = StoreExtractCombineCost; 5340 for (const auto &Inst : InstsToBePromoted) { 5341 // Compute the cost. 5342 // By construction, all instructions being promoted are arithmetic ones. 5343 // Moreover, one argument is a constant that can be viewed as a splat 5344 // constant. 5345 Value *Arg0 = Inst->getOperand(0); 5346 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 5347 isa<ConstantFP>(Arg0); 5348 TargetTransformInfo::OperandValueKind Arg0OVK = 5349 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5350 : TargetTransformInfo::OK_AnyValue; 5351 TargetTransformInfo::OperandValueKind Arg1OVK = 5352 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 5353 : TargetTransformInfo::OK_AnyValue; 5354 ScalarCost += TTI.getArithmeticInstrCost( 5355 Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); 5356 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 5357 Arg0OVK, Arg1OVK); 5358 } 5359 DEBUG(dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 5360 << ScalarCost << "\nVector: " << VectorCost << '\n'); 5361 return ScalarCost > VectorCost; 5362 } 5363 5364 /// \brief Generate a constant vector with \p Val with the same 5365 /// number of elements as the transition. 5366 /// \p UseSplat defines whether or not \p Val should be replicated 5367 /// across the whole vector. 5368 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 5369 /// otherwise we generate a vector with as many undef as possible: 5370 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 5371 /// used at the index of the extract. 5372 Value *getConstantVector(Constant *Val, bool UseSplat) const { 5373 unsigned ExtractIdx = UINT_MAX; 5374 if (!UseSplat) { 5375 // If we cannot determine where the constant must be, we have to 5376 // use a splat constant. 5377 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 5378 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 5379 ExtractIdx = CstVal->getSExtValue(); 5380 else 5381 UseSplat = true; 5382 } 5383 5384 unsigned End = getTransitionType()->getVectorNumElements(); 5385 if (UseSplat) 5386 return ConstantVector::getSplat(End, Val); 5387 5388 SmallVector<Constant *, 4> ConstVec; 5389 UndefValue *UndefVal = UndefValue::get(Val->getType()); 5390 for (unsigned Idx = 0; Idx != End; ++Idx) { 5391 if (Idx == ExtractIdx) 5392 ConstVec.push_back(Val); 5393 else 5394 ConstVec.push_back(UndefVal); 5395 } 5396 return ConstantVector::get(ConstVec); 5397 } 5398 5399 /// \brief Check if promoting to a vector type an operand at \p OperandIdx 5400 /// in \p Use can trigger undefined behavior. 5401 static bool canCauseUndefinedBehavior(const Instruction *Use, 5402 unsigned OperandIdx) { 5403 // This is not safe to introduce undef when the operand is on 5404 // the right hand side of a division-like instruction. 5405 if (OperandIdx != 1) 5406 return false; 5407 switch (Use->getOpcode()) { 5408 default: 5409 return false; 5410 case Instruction::SDiv: 5411 case Instruction::UDiv: 5412 case Instruction::SRem: 5413 case Instruction::URem: 5414 return true; 5415 case Instruction::FDiv: 5416 case Instruction::FRem: 5417 return !Use->hasNoNaNs(); 5418 } 5419 llvm_unreachable(nullptr); 5420 } 5421 5422 public: 5423 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 5424 const TargetTransformInfo &TTI, Instruction *Transition, 5425 unsigned CombineCost) 5426 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 5427 StoreExtractCombineCost(CombineCost), CombineInst(nullptr) { 5428 assert(Transition && "Do not know how to promote null"); 5429 } 5430 5431 /// \brief Check if we can promote \p ToBePromoted to \p Type. 5432 bool canPromote(const Instruction *ToBePromoted) const { 5433 // We could support CastInst too. 5434 return isa<BinaryOperator>(ToBePromoted); 5435 } 5436 5437 /// \brief Check if it is profitable to promote \p ToBePromoted 5438 /// by moving downward the transition through. 5439 bool shouldPromote(const Instruction *ToBePromoted) const { 5440 // Promote only if all the operands can be statically expanded. 5441 // Indeed, we do not want to introduce any new kind of transitions. 5442 for (const Use &U : ToBePromoted->operands()) { 5443 const Value *Val = U.get(); 5444 if (Val == getEndOfTransition()) { 5445 // If the use is a division and the transition is on the rhs, 5446 // we cannot promote the operation, otherwise we may create a 5447 // division by zero. 5448 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 5449 return false; 5450 continue; 5451 } 5452 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 5453 !isa<ConstantFP>(Val)) 5454 return false; 5455 } 5456 // Check that the resulting operation is legal. 5457 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 5458 if (!ISDOpcode) 5459 return false; 5460 return StressStoreExtract || 5461 TLI.isOperationLegalOrCustom( 5462 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 5463 } 5464 5465 /// \brief Check whether or not \p Use can be combined 5466 /// with the transition. 5467 /// I.e., is it possible to do Use(Transition) => AnotherUse? 5468 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 5469 5470 /// \brief Record \p ToBePromoted as part of the chain to be promoted. 5471 void enqueueForPromotion(Instruction *ToBePromoted) { 5472 InstsToBePromoted.push_back(ToBePromoted); 5473 } 5474 5475 /// \brief Set the instruction that will be combined with the transition. 5476 void recordCombineInstruction(Instruction *ToBeCombined) { 5477 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 5478 CombineInst = ToBeCombined; 5479 } 5480 5481 /// \brief Promote all the instructions enqueued for promotion if it is 5482 /// is profitable. 5483 /// \return True if the promotion happened, false otherwise. 5484 bool promote() { 5485 // Check if there is something to promote. 5486 // Right now, if we do not have anything to combine with, 5487 // we assume the promotion is not profitable. 5488 if (InstsToBePromoted.empty() || !CombineInst) 5489 return false; 5490 5491 // Check cost. 5492 if (!StressStoreExtract && !isProfitableToPromote()) 5493 return false; 5494 5495 // Promote. 5496 for (auto &ToBePromoted : InstsToBePromoted) 5497 promoteImpl(ToBePromoted); 5498 InstsToBePromoted.clear(); 5499 return true; 5500 } 5501 }; 5502 } // End of anonymous namespace. 5503 5504 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 5505 // At this point, we know that all the operands of ToBePromoted but Def 5506 // can be statically promoted. 5507 // For Def, we need to use its parameter in ToBePromoted: 5508 // b = ToBePromoted ty1 a 5509 // Def = Transition ty1 b to ty2 5510 // Move the transition down. 5511 // 1. Replace all uses of the promoted operation by the transition. 5512 // = ... b => = ... Def. 5513 assert(ToBePromoted->getType() == Transition->getType() && 5514 "The type of the result of the transition does not match " 5515 "the final type"); 5516 ToBePromoted->replaceAllUsesWith(Transition); 5517 // 2. Update the type of the uses. 5518 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 5519 Type *TransitionTy = getTransitionType(); 5520 ToBePromoted->mutateType(TransitionTy); 5521 // 3. Update all the operands of the promoted operation with promoted 5522 // operands. 5523 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 5524 for (Use &U : ToBePromoted->operands()) { 5525 Value *Val = U.get(); 5526 Value *NewVal = nullptr; 5527 if (Val == Transition) 5528 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 5529 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 5530 isa<ConstantFP>(Val)) { 5531 // Use a splat constant if it is not safe to use undef. 5532 NewVal = getConstantVector( 5533 cast<Constant>(Val), 5534 isa<UndefValue>(Val) || 5535 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 5536 } else 5537 llvm_unreachable("Did you modified shouldPromote and forgot to update " 5538 "this?"); 5539 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 5540 } 5541 Transition->removeFromParent(); 5542 Transition->insertAfter(ToBePromoted); 5543 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 5544 } 5545 5546 /// Some targets can do store(extractelement) with one instruction. 5547 /// Try to push the extractelement towards the stores when the target 5548 /// has this feature and this is profitable. 5549 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 5550 unsigned CombineCost = UINT_MAX; 5551 if (DisableStoreExtract || !TLI || 5552 (!StressStoreExtract && 5553 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 5554 Inst->getOperand(1), CombineCost))) 5555 return false; 5556 5557 // At this point we know that Inst is a vector to scalar transition. 5558 // Try to move it down the def-use chain, until: 5559 // - We can combine the transition with its single use 5560 // => we got rid of the transition. 5561 // - We escape the current basic block 5562 // => we would need to check that we are moving it at a cheaper place and 5563 // we do not do that for now. 5564 BasicBlock *Parent = Inst->getParent(); 5565 DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 5566 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 5567 // If the transition has more than one use, assume this is not going to be 5568 // beneficial. 5569 while (Inst->hasOneUse()) { 5570 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 5571 DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 5572 5573 if (ToBePromoted->getParent() != Parent) { 5574 DEBUG(dbgs() << "Instruction to promote is in a different block (" 5575 << ToBePromoted->getParent()->getName() 5576 << ") than the transition (" << Parent->getName() << ").\n"); 5577 return false; 5578 } 5579 5580 if (VPH.canCombine(ToBePromoted)) { 5581 DEBUG(dbgs() << "Assume " << *Inst << '\n' 5582 << "will be combined with: " << *ToBePromoted << '\n'); 5583 VPH.recordCombineInstruction(ToBePromoted); 5584 bool Changed = VPH.promote(); 5585 NumStoreExtractExposed += Changed; 5586 return Changed; 5587 } 5588 5589 DEBUG(dbgs() << "Try promoting.\n"); 5590 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 5591 return false; 5592 5593 DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 5594 5595 VPH.enqueueForPromotion(ToBePromoted); 5596 Inst = ToBePromoted; 5597 } 5598 return false; 5599 } 5600 5601 /// For the instruction sequence of store below, F and I values 5602 /// are bundled together as an i64 value before being stored into memory. 5603 /// Sometimes it is more efficent to generate separate stores for F and I, 5604 /// which can remove the bitwise instructions or sink them to colder places. 5605 /// 5606 /// (store (or (zext (bitcast F to i32) to i64), 5607 /// (shl (zext I to i64), 32)), addr) --> 5608 /// (store F, addr) and (store I, addr+4) 5609 /// 5610 /// Similarly, splitting for other merged store can also be beneficial, like: 5611 /// For pair of {i32, i32}, i64 store --> two i32 stores. 5612 /// For pair of {i32, i16}, i64 store --> two i32 stores. 5613 /// For pair of {i16, i16}, i32 store --> two i16 stores. 5614 /// For pair of {i16, i8}, i32 store --> two i16 stores. 5615 /// For pair of {i8, i8}, i16 store --> two i8 stores. 5616 /// 5617 /// We allow each target to determine specifically which kind of splitting is 5618 /// supported. 5619 /// 5620 /// The store patterns are commonly seen from the simple code snippet below 5621 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 5622 /// void goo(const std::pair<int, float> &); 5623 /// hoo() { 5624 /// ... 5625 /// goo(std::make_pair(tmp, ftmp)); 5626 /// ... 5627 /// } 5628 /// 5629 /// Although we already have similar splitting in DAG Combine, we duplicate 5630 /// it in CodeGenPrepare to catch the case in which pattern is across 5631 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 5632 /// during code expansion. 5633 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 5634 const TargetLowering &TLI) { 5635 // Handle simple but common cases only. 5636 Type *StoreType = SI.getValueOperand()->getType(); 5637 if (DL.getTypeStoreSizeInBits(StoreType) != DL.getTypeSizeInBits(StoreType) || 5638 DL.getTypeSizeInBits(StoreType) == 0) 5639 return false; 5640 5641 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 5642 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 5643 if (DL.getTypeStoreSizeInBits(SplitStoreType) != 5644 DL.getTypeSizeInBits(SplitStoreType)) 5645 return false; 5646 5647 // Match the following patterns: 5648 // (store (or (zext LValue to i64), 5649 // (shl (zext HValue to i64), 32)), HalfValBitSize) 5650 // or 5651 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 5652 // (zext LValue to i64), 5653 // Expect both operands of OR and the first operand of SHL have only 5654 // one use. 5655 Value *LValue, *HValue; 5656 if (!match(SI.getValueOperand(), 5657 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 5658 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 5659 m_SpecificInt(HalfValBitSize)))))) 5660 return false; 5661 5662 // Check LValue and HValue are int with size less or equal than 32. 5663 if (!LValue->getType()->isIntegerTy() || 5664 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 5665 !HValue->getType()->isIntegerTy() || 5666 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 5667 return false; 5668 5669 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 5670 // as the input of target query. 5671 auto *LBC = dyn_cast<BitCastInst>(LValue); 5672 auto *HBC = dyn_cast<BitCastInst>(HValue); 5673 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 5674 : EVT::getEVT(LValue->getType()); 5675 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 5676 : EVT::getEVT(HValue->getType()); 5677 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 5678 return false; 5679 5680 // Start to split store. 5681 IRBuilder<> Builder(SI.getContext()); 5682 Builder.SetInsertPoint(&SI); 5683 5684 // If LValue/HValue is a bitcast in another BB, create a new one in current 5685 // BB so it may be merged with the splitted stores by dag combiner. 5686 if (LBC && LBC->getParent() != SI.getParent()) 5687 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 5688 if (HBC && HBC->getParent() != SI.getParent()) 5689 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 5690 5691 auto CreateSplitStore = [&](Value *V, bool Upper) { 5692 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 5693 Value *Addr = Builder.CreateBitCast( 5694 SI.getOperand(1), 5695 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 5696 if (Upper) 5697 Addr = Builder.CreateGEP( 5698 SplitStoreType, Addr, 5699 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 5700 Builder.CreateAlignedStore( 5701 V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); 5702 }; 5703 5704 CreateSplitStore(LValue, false); 5705 CreateSplitStore(HValue, true); 5706 5707 // Delete the old store. 5708 SI.eraseFromParent(); 5709 return true; 5710 } 5711 5712 bool CodeGenPrepare::optimizeInst(Instruction *I, bool& ModifiedDT) { 5713 // Bail out if we inserted the instruction to prevent optimizations from 5714 // stepping on each other's toes. 5715 if (InsertedInsts.count(I)) 5716 return false; 5717 5718 if (PHINode *P = dyn_cast<PHINode>(I)) { 5719 // It is possible for very late stage optimizations (such as SimplifyCFG) 5720 // to introduce PHI nodes too late to be cleaned up. If we detect such a 5721 // trivial PHI, go ahead and zap it here. 5722 if (Value *V = SimplifyInstruction(P, *DL, TLInfo, nullptr)) { 5723 P->replaceAllUsesWith(V); 5724 P->eraseFromParent(); 5725 ++NumPHIsElim; 5726 return true; 5727 } 5728 return false; 5729 } 5730 5731 if (CastInst *CI = dyn_cast<CastInst>(I)) { 5732 // If the source of the cast is a constant, then this should have 5733 // already been constant folded. The only reason NOT to constant fold 5734 // it is if something (e.g. LSR) was careful to place the constant 5735 // evaluation in a block other than then one that uses it (e.g. to hoist 5736 // the address of globals out of a loop). If this is the case, we don't 5737 // want to forward-subst the cast. 5738 if (isa<Constant>(CI->getOperand(0))) 5739 return false; 5740 5741 if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) 5742 return true; 5743 5744 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 5745 /// Sink a zext or sext into its user blocks if the target type doesn't 5746 /// fit in one register 5747 if (TLI && 5748 TLI->getTypeAction(CI->getContext(), 5749 TLI->getValueType(*DL, CI->getType())) == 5750 TargetLowering::TypeExpandInteger) { 5751 return SinkCast(CI); 5752 } else { 5753 bool MadeChange = moveExtToFormExtLoad(I); 5754 return MadeChange | optimizeExtUses(I); 5755 } 5756 } 5757 return false; 5758 } 5759 5760 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5761 if (!TLI || !TLI->hasMultipleConditionRegisters()) 5762 return OptimizeCmpExpression(CI, TLI); 5763 5764 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5765 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5766 if (TLI) { 5767 bool Modified = optimizeLoadExt(LI); 5768 unsigned AS = LI->getPointerAddressSpace(); 5769 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 5770 return Modified; 5771 } 5772 return false; 5773 } 5774 5775 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 5776 if (TLI && splitMergedValStore(*SI, *DL, *TLI)) 5777 return true; 5778 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 5779 if (TLI) { 5780 unsigned AS = SI->getPointerAddressSpace(); 5781 return optimizeMemoryInst(I, SI->getOperand(1), 5782 SI->getOperand(0)->getType(), AS); 5783 } 5784 return false; 5785 } 5786 5787 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 5788 5789 if (BinOp && (BinOp->getOpcode() == Instruction::And) && 5790 EnableAndCmpSinking && TLI) 5791 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 5792 5793 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 5794 BinOp->getOpcode() == Instruction::LShr)) { 5795 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 5796 if (TLI && CI && TLI->hasExtractBitsInsn()) 5797 return OptimizeExtractBits(BinOp, CI, *TLI, *DL); 5798 5799 return false; 5800 } 5801 5802 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 5803 if (GEPI->hasAllZeroIndices()) { 5804 /// The GEP operand must be a pointer, so must its result -> BitCast 5805 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 5806 GEPI->getName(), GEPI); 5807 GEPI->replaceAllUsesWith(NC); 5808 GEPI->eraseFromParent(); 5809 ++NumGEPsElim; 5810 optimizeInst(NC, ModifiedDT); 5811 return true; 5812 } 5813 return false; 5814 } 5815 5816 if (CallInst *CI = dyn_cast<CallInst>(I)) 5817 return optimizeCallInst(CI, ModifiedDT); 5818 5819 if (SelectInst *SI = dyn_cast<SelectInst>(I)) 5820 return optimizeSelectInst(SI); 5821 5822 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) 5823 return optimizeShuffleVectorInst(SVI); 5824 5825 if (auto *Switch = dyn_cast<SwitchInst>(I)) 5826 return optimizeSwitchInst(Switch); 5827 5828 if (isa<ExtractElementInst>(I)) 5829 return optimizeExtractElementInst(I); 5830 5831 return false; 5832 } 5833 5834 /// Given an OR instruction, check to see if this is a bitreverse 5835 /// idiom. If so, insert the new intrinsic and return true. 5836 static bool makeBitReverse(Instruction &I, const DataLayout &DL, 5837 const TargetLowering &TLI) { 5838 if (!I.getType()->isIntegerTy() || 5839 !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, 5840 TLI.getValueType(DL, I.getType(), true))) 5841 return false; 5842 5843 SmallVector<Instruction*, 4> Insts; 5844 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 5845 return false; 5846 Instruction *LastInst = Insts.back(); 5847 I.replaceAllUsesWith(LastInst); 5848 RecursivelyDeleteTriviallyDeadInstructions(&I); 5849 return true; 5850 } 5851 5852 // In this pass we look for GEP and cast instructions that are used 5853 // across basic blocks and rewrite them to improve basic-block-at-a-time 5854 // selection. 5855 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool& ModifiedDT) { 5856 SunkAddrs.clear(); 5857 bool MadeChange = false; 5858 5859 CurInstIterator = BB.begin(); 5860 while (CurInstIterator != BB.end()) { 5861 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 5862 if (ModifiedDT) 5863 return true; 5864 } 5865 5866 bool MadeBitReverse = true; 5867 while (TLI && MadeBitReverse) { 5868 MadeBitReverse = false; 5869 for (auto &I : reverse(BB)) { 5870 if (makeBitReverse(I, *DL, *TLI)) { 5871 MadeBitReverse = MadeChange = true; 5872 ModifiedDT = true; 5873 break; 5874 } 5875 } 5876 } 5877 MadeChange |= dupRetToEnableTailCallOpts(&BB); 5878 5879 return MadeChange; 5880 } 5881 5882 // llvm.dbg.value is far away from the value then iSel may not be able 5883 // handle it properly. iSel will drop llvm.dbg.value if it can not 5884 // find a node corresponding to the value. 5885 bool CodeGenPrepare::placeDbgValues(Function &F) { 5886 bool MadeChange = false; 5887 for (BasicBlock &BB : F) { 5888 Instruction *PrevNonDbgInst = nullptr; 5889 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 5890 Instruction *Insn = &*BI++; 5891 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 5892 // Leave dbg.values that refer to an alloca alone. These 5893 // instrinsics describe the address of a variable (= the alloca) 5894 // being taken. They should not be moved next to the alloca 5895 // (and to the beginning of the scope), but rather stay close to 5896 // where said address is used. 5897 if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { 5898 PrevNonDbgInst = Insn; 5899 continue; 5900 } 5901 5902 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 5903 if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { 5904 // If VI is a phi in a block with an EHPad terminator, we can't insert 5905 // after it. 5906 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 5907 continue; 5908 DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); 5909 DVI->removeFromParent(); 5910 if (isa<PHINode>(VI)) 5911 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 5912 else 5913 DVI->insertAfter(VI); 5914 MadeChange = true; 5915 ++NumDbgValueMoved; 5916 } 5917 } 5918 } 5919 return MadeChange; 5920 } 5921 5922 /// \brief Scale down both weights to fit into uint32_t. 5923 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 5924 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 5925 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 5926 NewTrue = NewTrue / Scale; 5927 NewFalse = NewFalse / Scale; 5928 } 5929 5930 /// \brief Some targets prefer to split a conditional branch like: 5931 /// \code 5932 /// %0 = icmp ne i32 %a, 0 5933 /// %1 = icmp ne i32 %b, 0 5934 /// %or.cond = or i1 %0, %1 5935 /// br i1 %or.cond, label %TrueBB, label %FalseBB 5936 /// \endcode 5937 /// into multiple branch instructions like: 5938 /// \code 5939 /// bb1: 5940 /// %0 = icmp ne i32 %a, 0 5941 /// br i1 %0, label %TrueBB, label %bb2 5942 /// bb2: 5943 /// %1 = icmp ne i32 %b, 0 5944 /// br i1 %1, label %TrueBB, label %FalseBB 5945 /// \endcode 5946 /// This usually allows instruction selection to do even further optimizations 5947 /// and combine the compare with the branch instruction. Currently this is 5948 /// applied for targets which have "cheap" jump instructions. 5949 /// 5950 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 5951 /// 5952 bool CodeGenPrepare::splitBranchCondition(Function &F) { 5953 if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) 5954 return false; 5955 5956 bool MadeChange = false; 5957 for (auto &BB : F) { 5958 // Does this BB end with the following? 5959 // %cond1 = icmp|fcmp|binary instruction ... 5960 // %cond2 = icmp|fcmp|binary instruction ... 5961 // %cond.or = or|and i1 %cond1, cond2 5962 // br i1 %cond.or label %dest1, label %dest2" 5963 BinaryOperator *LogicOp; 5964 BasicBlock *TBB, *FBB; 5965 if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) 5966 continue; 5967 5968 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 5969 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 5970 continue; 5971 5972 unsigned Opc; 5973 Value *Cond1, *Cond2; 5974 if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), 5975 m_OneUse(m_Value(Cond2))))) 5976 Opc = Instruction::And; 5977 else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), 5978 m_OneUse(m_Value(Cond2))))) 5979 Opc = Instruction::Or; 5980 else 5981 continue; 5982 5983 if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || 5984 !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) 5985 continue; 5986 5987 DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 5988 5989 // Create a new BB. 5990 auto TmpBB = 5991 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 5992 BB.getParent(), BB.getNextNode()); 5993 5994 // Update original basic block by using the first condition directly by the 5995 // branch instruction and removing the no longer needed and/or instruction. 5996 Br1->setCondition(Cond1); 5997 LogicOp->eraseFromParent(); 5998 5999 // Depending on the conditon we have to either replace the true or the false 6000 // successor of the original branch instruction. 6001 if (Opc == Instruction::And) 6002 Br1->setSuccessor(0, TmpBB); 6003 else 6004 Br1->setSuccessor(1, TmpBB); 6005 6006 // Fill in the new basic block. 6007 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 6008 if (auto *I = dyn_cast<Instruction>(Cond2)) { 6009 I->removeFromParent(); 6010 I->insertBefore(Br2); 6011 } 6012 6013 // Update PHI nodes in both successors. The original BB needs to be 6014 // replaced in one succesor's PHI nodes, because the branch comes now from 6015 // the newly generated BB (NewBB). In the other successor we need to add one 6016 // incoming edge to the PHI nodes, because both branch instructions target 6017 // now the same successor. Depending on the original branch condition 6018 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 6019 // we perform the correct update for the PHI nodes. 6020 // This doesn't change the successor order of the just created branch 6021 // instruction (or any other instruction). 6022 if (Opc == Instruction::Or) 6023 std::swap(TBB, FBB); 6024 6025 // Replace the old BB with the new BB. 6026 for (auto &I : *TBB) { 6027 PHINode *PN = dyn_cast<PHINode>(&I); 6028 if (!PN) 6029 break; 6030 int i; 6031 while ((i = PN->getBasicBlockIndex(&BB)) >= 0) 6032 PN->setIncomingBlock(i, TmpBB); 6033 } 6034 6035 // Add another incoming edge form the new BB. 6036 for (auto &I : *FBB) { 6037 PHINode *PN = dyn_cast<PHINode>(&I); 6038 if (!PN) 6039 break; 6040 auto *Val = PN->getIncomingValueForBlock(&BB); 6041 PN->addIncoming(Val, TmpBB); 6042 } 6043 6044 // Update the branch weights (from SelectionDAGBuilder:: 6045 // FindMergedConditions). 6046 if (Opc == Instruction::Or) { 6047 // Codegen X | Y as: 6048 // BB1: 6049 // jmp_if_X TBB 6050 // jmp TmpBB 6051 // TmpBB: 6052 // jmp_if_Y TBB 6053 // jmp FBB 6054 // 6055 6056 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 6057 // The requirement is that 6058 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 6059 // = TrueProb for orignal BB. 6060 // Assuming the orignal weights are A and B, one choice is to set BB1's 6061 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 6062 // assumes that 6063 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 6064 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 6065 // TmpBB, but the math is more complicated. 6066 uint64_t TrueWeight, FalseWeight; 6067 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6068 uint64_t NewTrueWeight = TrueWeight; 6069 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 6070 scaleWeights(NewTrueWeight, NewFalseWeight); 6071 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6072 .createBranchWeights(TrueWeight, FalseWeight)); 6073 6074 NewTrueWeight = TrueWeight; 6075 NewFalseWeight = 2 * FalseWeight; 6076 scaleWeights(NewTrueWeight, NewFalseWeight); 6077 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6078 .createBranchWeights(TrueWeight, FalseWeight)); 6079 } 6080 } else { 6081 // Codegen X & Y as: 6082 // BB1: 6083 // jmp_if_X TmpBB 6084 // jmp FBB 6085 // TmpBB: 6086 // jmp_if_Y TBB 6087 // jmp FBB 6088 // 6089 // This requires creation of TmpBB after CurBB. 6090 6091 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 6092 // The requirement is that 6093 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 6094 // = FalseProb for orignal BB. 6095 // Assuming the orignal weights are A and B, one choice is to set BB1's 6096 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 6097 // assumes that 6098 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 6099 uint64_t TrueWeight, FalseWeight; 6100 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 6101 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 6102 uint64_t NewFalseWeight = FalseWeight; 6103 scaleWeights(NewTrueWeight, NewFalseWeight); 6104 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 6105 .createBranchWeights(TrueWeight, FalseWeight)); 6106 6107 NewTrueWeight = 2 * TrueWeight; 6108 NewFalseWeight = FalseWeight; 6109 scaleWeights(NewTrueWeight, NewFalseWeight); 6110 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 6111 .createBranchWeights(TrueWeight, FalseWeight)); 6112 } 6113 } 6114 6115 // Note: No point in getting fancy here, since the DT info is never 6116 // available to CodeGenPrepare. 6117 ModifiedDT = true; 6118 6119 MadeChange = true; 6120 6121 DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 6122 TmpBB->dump()); 6123 } 6124 return MadeChange; 6125 } 6126